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Basic properties of vectors, matrices, determinants, eigenvalues and eigenvectors are
discussed. Then, applications of matrices and determinants to various areas of sta-
tistical problems such as principal components analysis, model building, regression
analysis, canonical correlation analysis, design of experiments etc. are examined. Ap-
plications of vector/matrix derivatives in the simplification of Taylor expansions of
functions of many real scalar variables are considered. Jacobians of matrix transfor-
mations of real-valued scalar functions of matrix argument, maxima/minima prob-
lems, optimizations of linear forms, quadratic forms, bilinear forms with linear and
quadratic constraints are examined. Matrix sequences and series, convergence of ma-
trix series etc. and applications in physical sciences, chemical sciences, social sci-
ences, input-analysis, linear programming problem, non-linear least squares and dy-
namic programming problems etc. are studied in this book.

Each topic is motivated by real-life situations and each concept is illustrated with
examples and counter examples. The book is class-tested since 1999. It is written with
the experience of teachingfifty years in various universities around theworld. The first
threeModules of the Centre for Mathematical and Statistical Sciences (CMSS)are com-
bined to make this book. These Modules are used for intensive undergraduate mathe-
matics training camps of CMSS. Each camp is a 10-day intensive training course with
40 hours of lectures and 40 hours of problem-solving sessions. Thirty such camps are
already conductedbyCMSS.Onlyhigh school levelmathematics is assumed. Thebook
is written as a self-study material. Each topic is brought from fundamentals to the se-
nior undergraduate to graduate level. Usual doubts of the students on various topics
are answered in the book.

Since 2004, the material in this book was made available to UN-affiliated Re-
gional Centres for Space Science and Technology Education, located in India, China,
Morocco, Nigeria, Jordan, Brazil, and Mexico (http://www.unoosa.org/oosa/en/
ourwork/psa/regional-centres/index.html).

Since 1988 the material was taken into account for the development of educa-
tion curricula in the fields of remote sensing and geographic information systems,
satellite meteorology and global climate, satellite communications, space and atmo-
spheric science, and global navigation satellite systems (http://www.unoosa.org/
oosa/en/ourwork/psa/regional-centres/study_curricula.html).

As such the material was considered to be a prerequisite for applications, teach-
ing, and research in space science and technology. It was also a prerequisite for the
nine-months post-graduate courses in the five disciplines of space science and tech-
nology, offered by the Regional Centres on an annual basis to participants from all 194
Member States of the United Nations.

Since 1991, whenever suitable at the research level, the material in this book was
utilized in lectures in a series of annual workshops and follow-up projects of the so-
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called Basic Space Science Initiative of the United Nations (http://www.unoosa.org/
oosa/en/ourwork/psa/bssi/index.html).

As such the material was considered a prerequisite for teaching and research in
astronomy and physics.

RIPPLE SIGHTING The cosmic dance of two black holes warped spacetime as the
pair spiraled inward and merged, creating gravitational waves (illustration below).
Advance Laser Interferometer Gravitational-Wave Observatory (LIGO) detected these
ripples, produced by black holes eight and 14 times the mass of the sun, on Decem-
ber 26, 2015. Einstein’s theory of general relativitywas 100years old in 2015. It has been
very important in applications such as GPS (GNSS), and tremendously successful in
understanding astrophysical systems like black holes. Gravitational waves, which are
ripples in the fabric of space and time produced by violent events in the distant uni-
verse – for example, by the collision of two black holes or by the cores of supernova
explosions –were predicted by Albert Einstein in 1916 as a consequence of his general
theory of relativity. Gravitational waves are emitted by accelerating masses much in
the same way electromagnetic waves are produced by accelerating charges, such as
radio waves radiated by electrons accelerating in antennas. As they travel to Earth,
these ripples in the space–time fabric carry information about their violent origins
and about the nature of gravity that cannot be obtained by traditional astronomical
observations using light. Gravitational waves have now been detected directly. Scien-
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tists do, however, have great confidence that they exist because their influence on a
binary pulsar system (two neutron stars orbiting each other) has been measured ac-
curately and is in excellent agreement with the predictions. Directly detecting gravi-
tational waves has confirmed Einstein’s prediction in a new regime of extreme rela-
tivistic conditions, and open a promising new window into some of the most violent
and cataclysmic events in the cosmos. The GNSS education curricula provides oppor-
tunities to teach navigation and do research in astrophysics (basic space science). The
development of the education curricula (illustrated above) started in 1988 at UNHead-
quarters in New York, the specific GNSS curriculum emanated only in 1999 after the
UNISPACE III Conference, held at and hosted by the United Nations at Vienna.

Usually students from other areas, other than mathematics, are intimidated by
seeing theorems and proofs. Hence no such phrase as “theorem” is used in the book.
Main results are called “results” and are written in bold so that the material will be
user-friendly.

This book can be used as a textbook for a beginning undergraduate level course
on vectors, matrices and determinants, and their applications, for students from all
disciplines.





Preface

The basic material in this book originated from a course given by the first author at
the University of Texas at El Paso in 1998–1999 academic year. Students from math-
ematics, engineering, biology, economics, physics and chemistry were in the class.
The textbook assigned to the course did not satisfy the students from any of the dis-
ciplines, including mathematics. Hence Dr Mathai started developing a course from
fundamentals, assuming no background, with lots of examples and counter exam-
ples taken from day to day life. All sections of the students enjoyed the course. Dr
Mathai gave courses on calculus and linear algebra and for both of these courses he
developed his own materials in close interaction with students. The El Paso experi-
ment was initially for one semester only but, due to the popularity, extended to more
semesters.

During 2000 to 2006 these notes were developed into CMSS Modules and based
on these Modules, occasional courses were given for teachers and students at various
levels in Kerala, India, as per requests from teachers. From2007 onwardCMSSbecame
a Department of Science and Technology, Government of India centre for mathemat-
ical and statistical sciences. Modules in other areas were also developed during this
period, and by 2014, ten Modules were developed.

As a Life Member of CMSS, the second author is an active participant of all pro-
grams at CMSS, including the undergraduatemathematics training camps, Ph.D train-
ing etc. and he is also a frequent visitor to CMSS to participate in and contribute to
various activities.

Chapter 1 is devoted to all basic properties of vectors as ordered set of real num-
bers, Each definition is motivated by real-life examples. After introducingmajor prop-
erties of vectors with the real elements, vectors in the complex domain are considered
and more rigorous definitions are introduced. Chapter 1 ends with Gram–Schmidt or-
thogonalization process.

Chapter 2 deals withmatrices. Again, all definitions and properties are introduced
from real-life situations. Roles of elementary matrices and elementary operations in
solving linear equations, checking consistency of linear systems, checking linear de-
pendence of vectors, evaluating rank of a matrix, canonical reductions of quadratic
and bilinear forms, triangularizations and diagonalizations of matrices, computing
inverses of matrices etc. are highlighted.

Chapter 3 deals with determinants. An axiomatic definition is introduced. Various
types of expansions of determinants are given. Role of elementary matrices in evalu-
ating determinants is highlighted. This chapter melts into Chapter 4 on eigenvalues
and eigenvectors and their properties.

Chapters 5 and 6 are on applications of matrices and determinants to various
disciplines. Applications tomaxima/minimaproblems, constrainedmaxima/minima,
optimization of linear, quadratic and bilinear forms, with linear and quadratic con-
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X | Preface

straints are considered. For each optimization, at least one practical procedure such
as principal components analysis, canonical correlation analysis, regression analysis
etc. is illustrated. Some additional topics are also developed in Chapter 6. Matrix poly-
nomials, matrix sequences and series, convergence, norms ofmatrices, singular value
decomposition of matrices, simultaneous reduction of matrices to diagonal forms etc.
are also discussed in Chapter 6.

A.M. Mathai
14th March 2017 H. J. Haubold
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1 Vectors

1.0 Introduction

We start with vectors as ordered sets in order to introduce various aspects of these
objects called vectors and the different properties enjoyed by them. After having dis-
cussed the basic ideas, a formal definition, as objects satisfying some general condi-
tions, will be introduced later on. Several examples from various disciplines will be
introduced to indicate the relevance of the concepts in various areas of study. As the
students may be familiar, a collection of well-defined objects is called a set. For ex-
ample {2,α,B} is a set of 3 objects, the objects being a number 2, a Greek letter α and
the capital letter B. Sets are usually denoted by curly brackets {list of objects}. Each
object in the set is called an element of the set. Let the above set be denoted by S, then
S = {2,α,B}. Then 2 is an element of S. It is usually written as 2 ∈ S (2 in S or 2 is an
element of S). Thus we have

S = {2,α,B}, 2 ∈ S, α ∈ S, B ∈ S, 7 ∉ S, −γ ∉ S (1.0.1)

where ∉ indicates “not in”. That is, 7 is not in S and −γ (gamma) is not an element of S.
For a set, the order in which the elements are written is unimportant. We could

have represented S equivalently as follows:

S = {2,α,B} = {2,B,α} = {α, 2,B}
= {α,B, 2} = {B, 2,α} = {B,α, 2} (1.0.2)

because all of these sets contain the same objects and hence they represent the same
set. Now, we consider ordered sets. In (1.0.2) there are 6 ordered arrangements of the
3 elements. Each permutation (rearrangement) of the objects gives a different ordered
set. With a set of n distinct objects we can have a total of n! = (1)(2)…(n) ordered sets.

1.1 Vectors as ordered sets

For the time being we will define a vector as an ordered set of objects. More rigorous
definitions will be given later on in our discussions. Vectors or these ordered sets will
be denoted by ordinary brackets (ordered list of elements) or by square brackets [or-
dered list of elements]. For example, if the ordered sequences are taken from (1.0.2)
then we have six vectors. If these are denoted by V1,V2,… ,V6 respectively, then we
have

V1 = (2,α,B), V2 = (2,B,α), V3 = (α, 2,B),
V4 = (α,B, 2), V5 = (B, 2,α), V6 = (B,α, 2).
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2 | 1 Vectors

We could have also represented these by square brackets, that is,

V1 = [2,α,B], … , V6 = [B,α, 2]. (1.1.1)

As a convention, we will use either all ordinary brackets (⋅) or all square brackets [⋅]
when we discuss a given collection of vectors. The two notations will not be mixed up
in the same collection. We could have also written the ordered sequences as columns,
rather than as rows. For example,

U1 =
[[

[

2
α
B

]]

]

, …, U6 =
[[

[

B
α
2

]]

]

or U1 =(
2
α
B
), …, U6 =(

B
α
2
) (1.1.2)

also represent the same collection or ordered sets or vectors. In (1.1.1) they are written
as row vectors whereas in (1.1.2) they are written as column vectors.

Definition 1.1.1 (An n-vector). It is an ordered set of n objects written either as a row
(a row n-vector) or as a column (a column n-vector).

Example 1.1.1 (Stock market gains). A person has invested in 4 different stocks. Tak-
ing the January 1, 1998 as the base the person is watching the gain/loss, from this base
value, at the end of each week.

Stock 1 Stock 2 Stock 3 Stock 4

Week 1 100 150 −50 50
Week 2 50 −50 70 −50
Week 3 −150 −100 −20 0

The performance vector at the end ofweek 1 is then (100, 150, −50,50), a negative num-
ber indicating the loss and a positive number denoting a gain. The performance vector
of stock 1 over the threeweeks is [ 10050

−150
]. Observe thatwe could have alsowrittenweeks

as columns and stocks as rows instead of the above format. Note also that for each el-
ement the position where it appears is relevant, in other words, the elements above
are ordered.

Example 1.1.2 (Consumption profile). Suppose the following are the data on the food
consumption of a family in a certain week, where q denotes quantity (in kilograms)
and p denotes price per unit (per kilogram).

Beef Pork Chicken Vegetables cereals

q 10 15 20 10 5
p $2.00 $1.50 $0.50 $1.00 $3.45

The vector of quantities consumed is [10, 15, 20, 10,5] and the price vector is [2.00, 1.50,
0.50, 1.00,3.45].
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Example 1.1.3 (Discrete statistical distributions). If a discrete random variable takes
values x1,x2,… ,xn with probabilities p1,… ,pn respectively where pi > 0, i = 1,… ,n,
p1 +⋯+ pn = 1 then this distribution can be represented as follows:

x-values x1 x2 … xn
probabilities p1 p2 … pn

As an example, if x takes the values 0, 1, −1, (such as a gambler gains nothing, gains
onedollar, loses onedollar)with probabilities 1

2 ,
1
4 ,

1
4 respectively then the distribution

can be written as

x-values 0 1 −1
probabilities 1

2
1
4

1
4

Here the observation vector is (0, 1, −1) and the corresponding probability vector is
( 12 ,

1
4 ,

1
4 ). Note that when writing the elements of a vector, the elements may be sepa-

rated by sufficient spaces, or by commas if there is possibility of confusion. Any vector
(p1,… ,pn) such that pi > 0, i = 1,… ,n, p1 +⋯ + pn = 1 is called a discrete probability
distribution.

Example 1.1.4 (Transition probability vector). Suppose at El Paso, Texas, there are
only two possibilities for a September day. It can be either sunny and hot or cloudy
and hot. Let these be denoted by S (sunny) and C (cloudy). A sunny day can be fol-
lowed by either a sunny day or a cloudy day and similarly a cloudy day can follow
either a sunny or a cloudy day. Suppose that the chances (transition probabilities) are
the following:

S C

S 0.95 0.05
C 0.90 0.10

Then for a sunny day the transition probability vector is (0.95,0.05) to be followed by
a sunny and a cloudy day respectively. For a cloudy day the corresponding vector is
(0.90,0.10).

Example 1.1.5 (Error vector). Suppose that an automaticmachine is filling 5 kg bag of
potatoes. The machine is not allowed to cut or chop to make the weight exactly 5 kg.
Naturally, if one such bag is taken then the actual weight can be less than or greater
than or equal to 5 kg. Let ϵ denote the error = observed weight minus the expected
weight(5 kg). [One could have defined “error” as expected value minus the observed
value]. Suppose 4 such bags are selected and weighed. Suppose the observation vec-
tor, denoted by X, is

X = (5.01,5.10,4.98,4.92).
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Then the error vector, denoted by ϵ, is

ϵ = (0.01,0.10, −0.02, −0.08)
= (5.01 − 5.00,5.10 − 5.00,4.98 − 5.00,4.92 − 5.00).

Note that we could have written both X and ϵ as column vectors as well.

Example 1.1.6 (Position vector). Suppose a person walks on a straight path (horizon-
tal) for 4 miles and then along a perpendicular path to the left for another 6 miles. If
these distances are denoted by x and y respectively then her position vector is, taking
the starting points as the origin,

(x,y) = (4,6).

Example 1.1.7 (Vector of partial derivatives). Consider f (x1,… ,xn), a scalar function
of n real variables x1,… ,xn. As an example,

f (x1,x2,x3) = 3x21 + x22 + x23 − 2x1x2 + 5x1x3 − 2x1 + 7.

Here n = 3 and there are 3 variables in f . Consider the partial derivative operators
𝜕
𝜕x1
, 𝜕𝜕x2 ,

𝜕
𝜕x3

, that is, 𝜕𝜕x1 operating on f means to differentiate f with respect to x1 treat-
ing x2 and x3 as constants. For example, 𝜕𝜕x1 operating on the above f gives

𝜕f
𝜕x1
= 6x1 − 2x2 + 5x3 − 2.

Consider the partial differential operator

𝜕
𝜕X
= ( 𝜕
𝜕x1
,… , 𝜕
𝜕xn
).

Then 𝜕𝜕X operating on f gives the vector

𝜕f
𝜕X
= (
𝜕f
𝜕x1
,… ,
𝜕f
𝜕xn
).

For the above example,

𝜕f
𝜕X
= ( 𝜕f
𝜕x1
, 𝜕f
𝜕x2
, 𝜕f
𝜕x3
)

= (6x1 − 2x2 + 5x3 − 2, 2x2 − 2x1, 2x3 + 5x1).

Example 1.1.8 (Students’ grades). Suppose that Miss Gomez, a first year student
at UTEP, is taking 5 courses, Calculus I (course 1), Linear Algebra (course 2),…,
(course 5). Suppose that each course requires 2 class tests, a set of assignments to
be submitted and a final exam. Suppose that Miss Gomez’ performance profile is the
following (all grades in percentages):
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course 1 course 2 course 3 course 4 course 5

test 1 80 85 80 90 95
test 2 85 85 85 95 100

assignments 100 100 100 100 100
final exam 90 95 90 92 95

Then for example, her performance profiles on courses 1 and 4 are

[[[[

[

80
85
100
90

]]]]

]

and
[[[[

[

90
95
100
92

]]]]

]

respectively. Her performances on all courses is the vector (80,85,80,90,95) for test 1.

Example 1.1.9 (Fertility data). Fertility of women is often measured in terms of the
number of children produced. Suppose that the following data represent the average
number of children in a particular State according to age and racial groups:

group 1 group 2 group 3 group 4

≤ 16 1 0.8 1.5 0.5
16 to ≤ 18 1 1 0.8 0.9
18 to ≤ 35 4 2 3 2
35 to ≤ 50 1 0 2 0
> 50 0 0 1 0

The first row vector in the above table represents the performance of girls 16 years or
younger over the 4 racial groups. Column 2 represents the performance of racial group
2 over the age groups, and so on.

Example 1.1.10 (Geometric probability law). Suppose that a person is playing a game
of chance in a casino. Suppose that the chance of winning at each trial is 0.2 and that
of losing is 0.8. Suppose that the trials are independent of each other. Then the person
can win at the first trial, or lose at the first trial and win at the second trial, or lose at
the first two trials and win at the third trial, and so on. Then the chance of winning at
the x-th trial, x = 1, 2,3,… is given by the vector

[0.2, (0.8)(0.2), (0.8)2(0.2), (0.8)3(0.2),…].

It is an n-vector with n = +∞. Note that the number of ordered objects, representing a
vector, could be finite or infinitely many (countable, that is one can draw a one-to-one
correspondence to the natural numbers 1, 2,3,…).

In Example 1.1.1 suppose that the gains/loses were in US dollars and suppose that
the investor was a Canadian and she would like to convert the first week’s gain/loss
into Canadian dollar equivalent. Suppose that the exchange rate is US$ 1=CA$ 1.60.
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Then the first week’s performance is available bymultiplying each element in the vec-
tor by 1.6. That is,

1.6(100, 150, −50,50) = ((1.6)(100), (1.6)(150), (1.6)(−50), (1.6)(50))
= (160, 240, −80,80).

Another example of this type is that someone has a measurement vector in feet and
that is to be converted into inches, then each element is multiplied by 12 (one foot =
12 inches), and so on.

Definition 1.1.2 (Scalar multiplication of a vector). Let c be a scalar, a 1-vector, and
U = (u1,… ,un) an n-vector. Then the scalar multiple of U , namely cU , is defined as

cU = (cu1,… , cun). (1.1.3)

As a convention the scalar quantity c is written on the left of U and not on the right,
that is, not as Uc but as cU . As numerical illustrations we have

−3[[
[

1
−1
2

]]

]

= [[

[

−3
3
−6

]]

]

; 0(
1
−1
2
)=(

0
0
0
); 1

2
[[

[

1
−1
2

]]

]

= [[

[

1
2
− 12
1

]]

]

;

4(2, −1) = (8, −4).

In Example 1.1.1 if the total (combined) gain/loss at the end of the second week is
needed then the combined performance vector is given by

(100 + 50, 150 − 50, −50 + 70,50 − 50) = (150, 100, 20,0).

If the combined performance of the first three weeks is required then it is the above
vector added to the third week’s vector, that is,

(150, 100, 20,0) + (−150, −100, −20,0) = (0,0,0,0).

Definition 1.1.3 (Addition of vectors). Let a = (a1,… ,an) and b = (b1,… ,bn) be two
n-vectors. Then the sum is defined as

a + b = (a1 + b1,… ,an + bn), (1.1.4)

that is, the vector obtained by adding the corresponding elements.

Note that vector addition is defined only for vectors of the same category and or-
der. Either both are row vectors of the same order or both are column vectors of the
same order. In other words, if U is an n-vector and V is an m-vector then U + V is not
defined unlessm = n, and further, both are either row vectors or column vectors.
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Definition 1.1.4 (A null vector). A vector with all its elements zeros is called a null
vector and it is usually denoted by a big O.

In Example 1.1.1 the combined performance of the first 3 weeks is a null vector. In
other words, after the first 3 weeks the performance is back to the base level. From the
above definitions the following properties are evident. If U ,V ,W are three n-vectors
(either all row vectors or all column vectors) and if a,b, c are scalars then

U + V = V +U ; U + (V +W) = (U + V) +W
U − V = U + (−1)V ; U +O = O +U = U ; U −U = O;

a[bU + cV] = abU + acV = b(aU) + c(aV). (1.1.5)

Some numerical illustrations are the following:

2[[
[

1
0
−1

]]

]

− 3[[
[

0
1
−2

]]

]

+[[

[

0
0
0

]]

]

= [[

[

2
0
−2

]]

]

+[[

[

0
−3
6

]]

]

+[[

[

0
0
0

]]

]

= [[

[

2 + 0 + 0
0 − 3 + 0
−2 + 6 + 0

]]

]

= [[

[

2
−3
4

]]

]

;

(1, −7) + 6(0, −1) + (0,0) = (1, −7) + (0, −6) + (0,0)
= (1 + 0 + 0, −7 − 6 + 0) = (1, −13);

(1, 1, 2) − (1, 1, 2) = (1, 1, 2) + (−1, −1, −2)
= (1 − 1, 1 − 1, 2 − 2) = (0,0,0).

Definition 1.1.5 (Transpose of a vector). [Standard notations: U′ = transpose of U ,
UT = transpose of U .] If U is a row n-vector then U′ is the same written as a column
and vice versa.

Some numerical illustrations are the following, where “⇒” means “implies”:

U = [[
[

−3
0
1

]]

]

⇒ U′ = [−3,0, 1]

V = [1,5, −1] ⇒ V′ = [[
[

1
5
−1

]]

]

= VT .

Note that in the above illustration U +V is not defined but U +V′ is defined. Similarly
U′ +V is defined but U′ +V′ is not defined. Also observe that if z is a 1-vector (a scalar
quantity) then z′ = z, that is, the transpose is itself.
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In Example 1.1.6 the position vector is (x,y) = (4,6). Then the distance of this po-
sition from the starting point is obtained from Pythagoras’ rule as,

√x2 + y2 = √42 + 62 = √52.

This then is the straight distance from the starting point (0,0) to the final position
(4,6). We will formally define the length of a vector as follows, the idea will be clearer
when we consider the geometry of vectors later on:

Definition 1.1.6 (Length of a vector). Let U be a real n-vector (either a column vector
or a row vector). If the elements of U are u1,… ,un then the length of U , denoted by
‖U‖, is defined as

‖U‖ = √u21 +⋯+ u2n, (1.1.6)

when the elements are real numbers. When the elements are not real then the length
will be redefined later on. Some numerical illustrations are the following:

U = [[
[

1
−1
0

]]

]

⇒ ‖U‖ = √(1)2 + (−1)2 + (0)2 = √2;

V = (1, 1, −2) ⇒ ‖V‖ = √(1)2 + (1)2 + (−2)2 = √6;

O = [[
[

0
0
0

]]

]

⇒ ‖O‖ = 0; e1 = (1,0,0,0) ⇒ ‖e1‖ = 1;

Z = ( 1√2
, − 1
√2
) ⇒ ‖Z‖ = 1.

Note that the “length”, by definition, is a non-negative quantity. It is either zero or a
positive quantity and it cannot be negative. For a null vector the length is zero. The
length of a vector is zero iff (if and only if) the vector is a null vector.

Definition 1.1.7 (A unit vector). A vector whose length is unity is called a unit vector.

Some numerical illustrations are the following:

e4 = (0,0,0, 1) ⇒ ‖e4‖ = 1.

But U = (1, −2, 1) ⇒ ‖U‖ = √6, U is not a unit vector whereas

V = 1
‖U‖

U = 1
√6
(1, −2, 1) = ( 1

√6
, − 2
√6
, 1√6
) ⇒ ‖V‖ = 1,

that is, V is a unit vector. Observe the following: A null vector is not a unit vector. If
the length of any vector is non-zero (the only vector with length zero is the null vector)
then taking a scalar multiple, where the scalar is the reciprocal of the length, a unit
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vector can be created out of the given non-null vector. In general, if U = (u1,… ,un),
where u1,… ,un are real, then

‖U‖ = ‖U′‖ = √u21 +⋯+ u2n
and

V = 1
‖U‖

U ⇒ ‖V‖ = 1 (1.1.7)

when ‖U‖ ≠ 0.
From the definition of length itself the following properties are obvious. If U and

V are n-vectors of the same type and if a,b, c are scalars, then

‖cU‖ = |c| ‖U‖; ‖cU + cV‖ = |c| ‖U + V‖
‖U + V‖ ≤ ‖U‖ + ‖V‖;
‖aU + bV‖ ≤ |a| ‖U‖ + |b| ‖V‖ (1.1.8)

where, for example, |c| means the absolute value of c, that is, the magnitude of c,
ignoring the sign. For example,

‖−2(1, −1, 1)‖ = |−2| √(1)2 + (−1)2 + (1)2 = 2√3;

‖2(1, −1, 1)‖ = 2√3;

U = [[
[

1
−1
1

]]

]

, V = [[
[

1
2
−3

]]

]

⇒ U + V = [[
[

2
1
−2

]]

]

;

‖U‖ = √(1)2 + (−1)2 + (1)2 = √3;

‖U + V‖ = √(2)2 + (1)2 + (−2)2 = √9 = 3 < ‖U‖ + ‖V‖ = √3 +√14.

Now,wewill look at another concept. In Example 1.1.2 the family’s total expense of the
week on those food items is available by multiplying the quantities with unit prices
and then adding up. That is, if the quantity vector is denoted by Q and the per unit
price vector is denoted by P then

Q = (10, 15, 20, 10,5)

and

P = (2.00, 1.50,0.50, 1.00,3.45).

Thus the total expense of that family for that week on these 5 items is obtained by
multiplying and adding the corresponding elements in P and Q. That is,

(10)(2.00) + (15)(1.50) + (20)(0.50) + (10)(1.00) + (5)(3.45) = $79.75.

It is a scalar quantity (1-vector) and not a 5-vector, even though the vectorsQ and P are
5-vectors. For computing quantities such as the one above we define a concept called
the dot product or the inner product between two vectors.
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Definition 1.1.8 (Dot product or inner product). LetU andV be two real n-vectors (ei-
ther both row vectors or both column vectors or one row vector and the other column
vector). Then the dot product between U and V , denoted by U .V is defined as

U .V = u1v1 +⋯+ unvn

that is, the corresponding elements are multiplied and added, where u1,… ,un and
v1,… , vn are the elements (real) in U and V respectively. (Vectors in the complex field
will be considered in a later chapter.)

Somenumerical illustrations are the following: In the above example, the family’s
consumption for the week is Q.P = P.Q = 79.75.

U1 =(
0
1
2
), U2 =(

1
−1
1
) ⇒

U1.U2 = (0)(1) + (1)(−1) + (2)(1) = 1.
V1 = (3, 1, −1,5), V2 = (−1,0,0, 1) ⇒

V1.V2 = (3)(−1) + (1)(0) + (−1)(0) + (5)(1) = 2.

From the definition itself the following properties are evident:

U .O = 0, aU .V = (aU).V = U .(aV)

where a is a scalar.

U .V = V .U , (aU).(bV) = ab(U .V)

where a and b are scalars.

U .(V +W) = U .V +U .W = (W + V).U . (1.1.9)

The notation with a dot, U .V , is an awkward one. But unfortunately this is a widely
used notation. A proper notation in terms of transposes andmatrixmultiplicationwill
be introduced later. Also, further properties of dot products will be considered later,
after looking at the geometry of vectors as ordered sets.

Exercises 1.1
1.1.1. Are the following defined? Whichever is defined compute the answers.

(a) [[
[

0
−1
1

]]

]

+ [
2
3
] ; (b) [[

[

1
0
1

]]

]

− 3[[
[

2
0
0

]]

]

;

(c) (3, −1,4) − (2, 1); (d) 5(1,0) − 3(−2, −1).
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1.1.2. Compute the lengths of the following vectors. Normalize the vectors (create a
vector with unit length from the given vector) if possible:

(a) (0,0,0); (b) (1, 1, −1);

(c) [[
[

2
−1
1

]]

]

; (d) [[
[

5
0
−1

]]

]

; (e) 3[[
[

1
−1
1

]]

]

.

1.1.3. Convert the stock market performance vectors in Example 1.1.1 to the following:
First week’s performance into pound sterling (1 $ = 0.5 pounds sterling); the second
week’s performance into Italian lira (1 $ = 2 000 lira).

1.1.4. In Example 1.1.3 compute the expected value of the random variable. [The ex-
pected value of a discrete random variable is denoted as E(x) and defined as E(x) =
x1p1 +⋯+ xnpn if x takes the values x1,… ,xn with probabilities p1,… ,pn respectively.]
If it is a game of chance where the person wins $0, $1, $(−1) (loses a dollar) with prob-
abilities 1

2 ,
1
4 ,

1
4 respectively howmuch money can the person expect to win in a given

trial of the game?

1.1.5. In Example 1.1.3 if the expected value is denoted by μ = X.P (μ the Greek letter
mu), where X = (x1,… ,xn) and P = (p1,… ,pn) then the variance of the random vari-
able is defined as the dot product between ((x1 − μ)2,… , (xn − μ)2) and P. Compute the
variance of the random variable in Example 1.1.3. [Variance is the square of a measure
of scatter or spread in the random variable.]

1.1.6. In Example 1.1.5 compute the sum of squares of the errors [Hint: If ϵ is the error
vector then the sum of squares of the errors is available by taking the dot product ϵ.ϵ.]

1.1.7. In Example 1.1.8 suppose that for each course the distribution of the final grade
is the following: 20 points each for each test, 10 points for assignments and 50 points
for the final exam. Compute the vector of final grades of the student for the 5 courses
by using the various vectors and using scalar multiplications and sums.

1.1.8. From the chance vector in Example 1.1.10 compute the chance of ever winning
(sum of the elements) and the expected number of trials for the first win, E(x) (note
that x takes the values 1, 2,… with the corresponding probabilities).

1.1.9. Consider an n-vector of unities denoted by J = (1, 1,… , 1). If X = (x1,… ,xn) is any
n-vector then compute (a) X.J; (b) 1

nX.J.

1.1.10. For the quantities in Exercise 1.1.9 establish the following:

(a) (X − μ̃).J = 0 where μ̃ = ( 1
n
X.J,… , 1

n
X.J).

[This holds whatever be the values of x1,… ,xn. Verify by taking some numerical val-
ues.]
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(b) (X − μ̃).(X − μ̃) = X.X − n( 1
n
X.J)

2

= X.X − 1
n
(X.J)(X.J)

whatever be the values of x1,… ,xn.
(c) Show that the statement in (a) above is equivalent to the statement∑ni=1(xi− x̄) =

0 where x̄ = ∑ni
xi
n with ∑ denoting a sum.

(d) Show that the statement in (b) is equivalent to the statements
n
∑
i=1
(xi − x̄)2 =

n
∑
i=1

x2i − nx̄2

=
n
∑
i=1

x2i −
1
n
(

n
∑
i=1

xi)
2

.

A note on ∑ notation. This is a convenient notation to denote a sum.

n
∑
i=1

ai = a1 +⋯+ an,

that is, i is replaced by 1, 2,… ,n and the elements are added up.
n
∑
i=1

4 = 4 + 4 +⋯+ 4 = 4n;

n
∑
i=1

aibi = a1b1 +⋯+ anbn = a.b

where a = (a1,… ,an) and b = (b1,… ,bn).

n
∑
i=1

a2i = a21 +⋯+ a2n = a.a;

n
∑
i=1
(5ai) = 5a1 +⋯+ 5an = 5(a1 +⋯+ an) = 5

n
∑
i=1

ai ;

n
∑
i=1

m
∑
j=1

aibj =
n
∑
i=1

ai[
m
∑
j=1

bj]

=
n
∑
i=1

ai(b1 +⋯+ bm) = (a1 +⋯+ an)(b1 +⋯+ bm)

=
m
∑
j=1

n
∑
i=1

aibj ;

m
∑
i=1

n
∑
j=1

aij = a11 +⋯+ a1n

+ a21 +⋯+ a2n
⋮
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+ am1 +⋯+ amn =
n
∑
j=1

m
∑
i=1

aij ;

n
∑
i=1
(ai + 3bi) =

n
∑
i=1

ai + 3
n
∑
i=1

bi ;

x̄ =
n
∑
j=1

xj
n
= 1
n
(x1 +⋯+ xn) =

1
n
X.J

where

X = (x1,… ,xn) and J = (1, 1,… , 1);
n
∑
i=1
(xi − x̄) =

n
∑
i=1

xi −
n
∑
i=1

x̄

=
n
∑
i=1

xi − nx̄ =
n
∑
i=1

xi − n(
n
∑
i=1

xi
n
)

=
n
∑
i=1

xi −
n
∑
i=1

xi = 0

whatever be x1,… ,xn.

1.1.11. When searching for maxima/minima of a scalar function f of many real scalar
variables the critical points (the points where onemay find amaximum or aminimum
or a saddle point) are available by operating with 𝜕𝜕X , equating to a null vector and
then solving the resulting equations. For the function

f (x1,x2) = 3x21 + x22 − 2x1 + x2 + 5

evaluate the following: (a) the operator 𝜕𝜕X , (b)
𝜕f
𝜕X , (c)

𝜕f
𝜕X = O, (d) the critical points.

1.1.12. For the following vectors U ,V ,W compute the dot products U .V , U .W , V .W
where

U = (1, 1, 1), V = (1, −2, 1), W = (1,0, −1).

1.1.13. If V1,V2,V3 are n vectors, either n × 1 column vectors or 1 × n row vectors and
if ‖Vj‖ denotes the length of the vector Vj then show that the following results hold in
general:
(i) ‖V1 − V2‖ > 0 and ‖V1 − V2‖ = 0 iff V1 = V2;
(ii) ‖cV1‖ = |c| ‖V1‖ where c is a scalar;
(iii) ‖V1 − V2‖ + ‖V2 − V3‖ ≥ ‖V1 − V3‖.

1.1.14. Verify (i), (ii), (iii) of Exercise 1.1.13 for

V1 = (1,0, −1), V2 = (0,0, 2), V3 = (2, 1, −1).

1.1.15. Let U = (1, −1, 1, −1). Construct three non-null vectors V1,V2,V3 such that
U .V1 = 0, U .V2 = 0, U .V3 = 0, V1.V2 = 0, V1.V3 = 0, V2.V3 = 0.
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1.2 Geometry of vectors

From the position vector in Example 1.1.6 it is evident that (x,y) = (4,6) can be denoted
as a point in a 2-space (plane) with a rectangular coordinate system. In general, since
an n-vector of real numbers is an ordered set of real numbers it can be represented as
a point in a Euclidean n-space.

1.2.1 Geometry of scalar multiplication

If the position (4,6), which could also be written as ( xy ) = ( 46 ), is marked in a 2-space
then we have the following Figure 1.2.1. One can also think of this as an arrowhead
starting at (0,0) and going to (4,6). In this representation the vector has a length and
adirection. In general, ifU is anarrowhead from theorigin (0,0,… ,0) in n-space to the
point U = (u1,… ,un) then −U will represent an arrowhead with the same length but
going in the opposite direction. Then cU will be an arrowhead in the same direction
with length c‖U‖ if c > 0 and in the opposite directionwith length |c| ‖U‖ if c < 0,where
|c| denotes the absolute value or the magnitude of c, and it is the origin itself if c = 0.
In physics, chemistry and engineering areas it is customary to denote a vector with an
arrow on top such as U⃗ , meaning the vector U⃗ .

Figure 1.2.1: Geometry of vectors.

1.2.2 Geometry of addition of vectors

Scalar multiplication is interpreted geometrically as above. Then, what will be the
geometrical interpretation for a sum of two vectors? For simplicity, let us consider a
2-space. If U⃗ = ( u1u2 ) and V⃗ = (

v1
v2 ) then algebraically

U⃗ + V⃗ = (u1 + v1
u2 + v2
)
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which is the arrowhead representing the diagonal of the parallelogram as shown in
Figure 1.2.2. From thegeometry of vectors one cannotice that a vector, as anordered set
of real numbers, possesses two properties basically, namely, a length and a direction.
Hence we can give a coordinate-free definition as an arrowhead with a length and a
direction.

Figure 1.2.2: Sum of two vectors.

1.2.3 A coordinate-free definition of vectors

Definition 1.2.1 (A coordinate-free definition for a vector). It is defined as an arrow-
head with a given length and a given direction.

Figure 1.2.3: Coordinate-free definition of vectors.

In this definition, observe that all arrowheads with the same length and same di-
rection are taken to be one and the same vector as shown in Figure 1.2.3. We canmove
an arrowhead parallel to itself. All such arrowheads obtained by such displacements
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are takenas one and the samevector. If onehas a coordinate system thenmove the vec-
tor parallel to itself so that the tail-end (the other end to the arrow tip) coincides with
the origin of the coordinate system. Thus the position vectors are also included in this
general definition. In a coordinate-free definition one can construct U⃗ + V⃗ and U⃗ − V⃗
as follows:Move U⃗ or V⃗ parallel to itself until the tail-ends coincide. Complete the par-
allelogram. The leading diagonal gives U⃗ + V⃗ and the diagonal going from the head of
U⃗ to the head of V⃗ gives V⃗ − U⃗ and the one the other way around is −(V⃗ − U⃗) = U⃗ − V⃗ .

1.2.4 Geometry of dot products

Consider a Euclidean 2-space and represent the vectors U⃗ = (u1,u2) and V⃗ = (v1, v2) as
points in a rectangular coordinate system. Let the angles, the vectors U⃗ and V⃗ make
with the x-axis be denoted by θ1 and θ2 respectively. Let

θ = θ1 − θ2.

Then

cosθ1 =
u1
√u21 + u22

, cosθ2 =
v1
√v21 + v22

,

sinθ1 =
u2
√u21 + u22

, sinθ2 =
v2
√v21 + v22

.

But

cosθ = cos(θ1 − θ2) = cosθ1 cosθ2 + sinθ1 sinθ2

= u1v1 + u2v2
√u21 + u22√v21 + v22

= U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

(1.2.1)

whenever ‖U⃗‖ ≠ 0 and ‖V⃗‖ ≠ 0. Thus

U⃗ .V⃗ = ‖U⃗‖ ‖V⃗‖cosθ, ‖U⃗‖ ≠ 0, ‖V⃗‖ ≠ 0. (1.2.2)

The dot product is the product of the lengths multiplied by the cosine of the angle
between the vectors. This result remains the same whatever be the space. That is, it
holds in 2-space, 3-space, 4-space and soon. TheFigure 1.2.4 shows the situationwhen
0 ≤ θ1 ≤ π/2, 0 ≤ θ2 ≤ π/2, θ1 > θ2. The student may verify the result for all possible
cases of θ1 and θ2, as an exercise. From (1.2.1) we can obtain an interesting result.
Since cosθ, in absolute value, is less than or equal to 1 we have a result known as
Cauchy–Schwartz inequality:

|cosθ| = | U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

| ≤ 1 ⇒ |U⃗ .V⃗ | ≤ ‖U⃗‖ ‖V⃗‖.
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Figure 1.2.4: Geometry of the dot product.

1.2.5 Cauchy–Schwartz inequality

|U⃗ .V⃗ | ≤ ‖U⃗‖ ‖V⃗‖.

In other words, if U⃗ = (u1,… ,un) and V⃗ = (v1,… , vn) then for real u1,… ,un and
v1,… , vn,

|u1v1 +⋯+ unvn| ≤ √u21 +⋯+ u2n√v21 +⋯+ v2n. (1.2.3)

When the angle θ between the vectors U⃗ and V⃗ is zero or 2nπ, n = 0, 1,… then cosθ = 1
which means that the two vectors are scalar multiples of each other. Thus we have an
interesting result:

(i) When equality in the Cauchy–Schwartz inequality holds the two vectors are
scalar multiples of each other, that is, U⃗ = cV⃗ where c is a scalar quantity.

When θ = π/2 then cosθ = 0 which means U⃗ .V⃗ = 0. When the angle between the vec-
tors U⃗ and V⃗ is π/2, wemay say that the vectors are orthogonal to each other, then the
dot product is zero. Orthogonality will be taken up later.

Example 1.2.1. A girl is standing in a park and looking at a bird sitting on a tree.
Taking one corner of the park as the origin and the rectangular border roads as the
(x,y)-axes the positions of the girl and the tree are (1, 2) and (10, 15) respectively, all
measurements in feet. The girl is 5 feet tall to her eye level and the bird’s position
from the ground is 20 feet up. Compute the following items: (a) The vector from the
girl’s eyes to the bird and its length; (b) The vector from the foot of the tree to the girl’s
feet and its length; (c) When the girl is looking at the bird the angle this path makes
with the horizontal direction; (d) The angle this pathmakeswith the vertical direction.

Solution 1.2.1. The positions of the girl’s eyes and the bird are respectively U⃗ = (1, 2,5)
and V⃗ = (10, 15, 20).
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(a) The vector from the girl’s eyes to the bird is then

V⃗ − U⃗ = (10 − 1, 15 − 2, 20 − 5) = (9, 13, 15)

and its length is then

‖V⃗ − U⃗‖ = √(9)2 + (13)2 + (15)2 = √475.

(b) The foot of the tree is V⃗ 1 = (10, 15,0) and the position of the girl’s feet is U⃗ 1 =
(1, 2,0). The vector from the foot of the tree to the girl’s feet is then

U⃗ 1 − V⃗ 1 = (1, 2,0) − (10, 15,0) = (−9, −13,0)

and its length is

‖U⃗ 1 − V⃗ 1‖ = √(−9)2 + (−13)2 + (0)2 = √250.

(c) From the girl’s eyes the vector in the horizontal direction to the tree is

V⃗ 2 − U⃗2 = (10, 15,5) − (1, 2,5) = (10 − 1, 15 − 2,5 − 5) = (9, 13,0)

and its length is

‖V⃗ 2 − U⃗2‖ = √(9)2 + (13)2 + (0)2 = √250.

Let θ be the angle between the vectors V⃗ − U⃗ and V⃗ 2 − U⃗2. Then

cosθ = (V⃗ − U⃗).(V⃗2 − U⃗2)
‖V⃗ − U⃗‖ ‖V⃗2 − U⃗2‖

= (9, 13, 15).(9, 13,0)√475√250
=
√250
√475
= √ 10

19
.

Then the angle θ is given by

θ = cos−1√ 10
19
.

(d) The angle in the vertical direction is

π
2
− θ = π

2
− cos−1√ 10

19
.
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1.2.6 Orthogonal and orthonormal vectors

Definition 1.2.2 (Orthogonal vectors). Two real vectors U⃗ and V⃗ are said to be orthog-
onal to each other if the angle between them is π

2 = 90° or equivalently, if cosθ = 0 or
equivalently, if U⃗ .V⃗ = 0.

It follows, trivially, that every vector is orthogonal to a null vector since the dot
product is zero.

Definition 1.2.3 (Orthonormal system of vectors). A system of real vectors U⃗ 1,… , U⃗k
is said to be an orthonormal system if U⃗ i .U⃗ j = 0 for all i and j, i ≠ j (all different vectors
are orthogonal to each other or they forman orthogonal system) and in addition, ‖U⃗ j‖ =
1, j = 1, 2,… ,k (all vectors have unit length).

As an illustrative example, consider the vectors

U⃗ 1 = (1, 1, 1), U⃗2 = (1,0, −1), U⃗3 = (1, −2, 1).

Then

U⃗1.U⃗2 = (1)(1) + (1)(0) + (1)(−1) = 0;
U⃗1.U⃗3 = (1)(1) + (1)(−2) + (1)(1) = 0;
U⃗2.U⃗3 = (1)(1) + (0)(−2) + (−1)(1) = 0.

Thus U⃗ 1, U⃗2, U⃗3 form an orthogonal system. Let us normalize the vectors in order to
create an orthonormal system. Let us compute the lengths

‖U⃗ 1‖ = √(1)2 + (1)2 + (1)2 = √3, ‖U⃗2‖ = √2, ‖U⃗3‖ = √6.

Consider the vectors

V⃗ 1 =
1
‖U⃗1‖

U⃗1 =
1
√3
(1, 1, 1) = ( 1

√3
, 1√3
, 1√3
)

V⃗2 =
1
‖U⃗2‖

U⃗2 = (
1
√2
(1,0, −1))

V⃗3 =
1
‖U⃗3‖

U⃗3 = (
1
√6
(1, −2, 1)).

Then V⃗ 1, V⃗ 2, V⃗ 3 form an orthonormal system.
As another example, consider the vectors,

e1 = (1,0,… ,0), e2 = (0, 1,0,… ,0), … , en = (0,… ,0, 1).

Then evidently

ei .ej = 0, i ≠ j, ‖ei‖ = 1, i, j = 1,… ,n.

Hence e1,… ,en is an orthonormal system.
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Definition 1.2.4 (Basic unit vectors). The above vectors e1,… ,en are called the basic
unit vectors in n-space. [One could have written them as column vectors as well.]

Engineers often use the notation

⃗i = (1,0), ⃗j = (0, 1) or ⃗i = (1
0
) , ⃗j = (0

1
) (1.2.4)

to denote the basic unit vectors in 2-space and

⃗i = (1,0,0), ⃗j = (0, 1,0), k⃗ = (0,0, 1) or

⃗i = [[
[

1
0
0

]]

]

, ⃗j = [[
[

0
1
0

]]

]

, k⃗ = [[
[

0
0
1

]]

]

(1.2.5)

to denote the basic unit vectors in 3-space. One interesting property is the following:

(ii) Any n-vector can be written as a linear combination of the basic unit vectors
e1,… ,en.

For example, consider a general 2-vector U⃗ = (a,b). Then

a ⃗i + b ⃗j = a(1,0) + b(0, 1) = (a,0) + (0,b) = (a,b) = U⃗ . (1.2.6)

If V⃗ = (a,b, c) is a general 3-vector then

a ⃗i + b ⃗j + ck⃗ = a(1,0,0) + b(0, 1,0) + c(0,0, 1)
= (a,0,0) + (0,b,0) + (0,0, c) = (a,b, c) = V⃗ . (1.2.7)

Note that the same notation ⃗i and ⃗j are used for the unit vectors in 2-space as well as
in 3-space. There is no room for confusion since we will not be mixing 2-vectors and
3-vectors at any stage when these are used. In general, we can state a general result.
Let U⃗ be an n-vector with the elements (u1,… ,un) then

U⃗ = u1e1 +⋯+ unen. (1.2.8)

[Either all row vectors or all column vectors.]
The geometry of the above result can be illustrated as follows: We take a 2-space

for convenience.
The vector ⃗i is in the horizontal directionwith unit length. Then a ⃗iwill be of length

|a| and in the same direction if a > 0 and in the opposite direction if a < 0. Similarly ⃗j
is a unit vector in the vertical direction and b ⃗j is of length |b| and in the same direction
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Figure 1.2.5: Geometry of linear combinations.

if b > 0 and in the opposite direction if b < 0 as shown in Figure 1.2.5. Then the point
(a,b), as an arrowhead, is a ⃗i + b ⃗j. If the angle the vector

U⃗ = (a,b) = a ⃗i + b ⃗j

makes with the x-axis is θ then

cosθ = (a
⃗i + b ⃗j).(a ⃗i)
‖a ⃗i + b ⃗j‖ ‖a ⃗i‖

= (a)(a) + (b)(0)√a2 + b2√a2

= a
√a2 + b2

(1.2.9)

and

sinθ = √1 − cos2 θ = b
√a2 + b2

. (1.2.10)

Observe that (1.2.9) and (1.2.10) are consistent with the notions in ordinary trigono-
metrical calculations as well.

1.2.7 Projections

If U⃗ = (a,b) then the projection of U⃗ in the horizontal direction is

a = √a2 + b2 cosθ = ‖U⃗‖cosθ

which is the shadow on the x-axis if light beams come parallel to the y-axis and hit
the vector (arrowhead), and the projection in the vertical direction is

b = √a2 + b2 sinθ = ‖U⃗‖ sinθ

which is the shadow on the y-axis if light beams come parallel to the x-axis and hit
the vector. These results hold in n-space also. Consider a plane on which the vector
V⃗ in n-space lies. Consider a horizontal and a vertical direction in this plane with the
tail-end of the vector at the origin and let θ be the angle V⃗ makes with the horizontal
direction. Then

‖V⃗‖cosθ = projection of V⃗ in the horizontal direction (1.2.11)
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and

‖V⃗‖ sinθ = projection of V⃗ in the vertical direction. (1.2.12)

In practical terms one can explain the horizontal and vertical components of a
vector as follows: Suppose that a particle is sitting at the position (0,0). A wind with
a speed of 5 cos45° = 5

√2 units is blowing in the horizontal direction and a wind with a
speed of 5 sin45° = 5

√2 units is blowing in the vertical direction. Then the particle will
move at 45° angle to the x-axis and move at a speed of 5 units.

Figure 1.2.6:Movement of a particle.

Consider two arbitrary vectors U⃗ and V⃗ (coordinate-free definitions). What is the
projection of V⃗ in the direction of U⃗? We can move V⃗ parallel to itself so that the tail-
end of V⃗ coincides with the tail-end of U⃗ . Consider the plane where these two vectors
lie and let θ be the angle this displaced V⃗ makes with U⃗ . Then the projection of V⃗ onto
U⃗ is ‖V⃗‖cosθ as shown in Figure 1.2.6 (b). But

cosθ = U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

⇒

‖V⃗‖cosθ = U⃗ .V⃗
‖U⃗‖
= projection of V⃗ onto U⃗ . (1.2.13)

If U⃗ is a unit vector then ‖U⃗‖ = 1 and then the projection of V⃗ in the direction of U⃗
is the dot product between U⃗ and V⃗ .

Definition 1.2.5 (Projection vector of V⃗ in the direction of a unit vector U⃗ ). A vector
in the direction of U⃗ with a length equal to ‖V⃗‖cosθ, the projection of V⃗ onto U⃗ , is
called the projection vector of V⃗ in the direction of U⃗ .

Then the projection vector V⃗ in the direction of U⃗ is given by

(U⃗ .V⃗ )U⃗ if U⃗ is a unit vector

and

(U⃗ .V⃗) U⃗
‖U⃗‖2

if U⃗ is any non-null vector. (1.2.14)
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Example 1.2.2. Evaluate the projection vector V⃗ in the direction of U⃗ if

(a) V⃗ = 2 ⃗i + ⃗j − k⃗, U⃗ = 1
√3
( ⃗i + ⃗j + k⃗);

(b) V⃗ = ⃗i − ⃗j + k⃗, U⃗ = 2 ⃗i + ⃗j + k⃗;

(c) V⃗ = ⃗i + ⃗j + k⃗, U⃗ = ⃗i − k⃗.

Solution 1.2.2. (a) Here U⃗ is a unit vector and hence the required vector is

(U⃗ .V⃗)U⃗ = [(2, 1, −1).( 1
√3
, 1√3
, 1√3
)](
⃗i
√3
+
⃗j
√3
+ k⃗
√3
)

= 2
√3
(
⃗i
√3
+
⃗j
√3
+ k⃗
√3
) = 2

3
( ⃗i + ⃗j + k⃗).

(b) Here U⃗ is not a unit vector. Let us create a unit vector in the direction of U⃗ ,
namely

U⃗ 1 =
U⃗
‖U⃗‖
= 1
√6
(2 ⃗i + ⃗j + k⃗).

Now apply the formula on V⃗ and U⃗ 1. The required vector is the following:

(V⃗ .U⃗1)U⃗1 = [(1, −1, 1).(
2
√6
, 1√6
, 1√6
)]( 2
√6
⃗i + 1
√6
⃗j + 1
√6

k⃗)

= 2
√6
( 2
√6
⃗i + 1
√6
⃗j + 1
√6

k⃗)

= 2
6
(2 ⃗i + ⃗j + k⃗).

(c) Here V⃗ .U⃗ = (1, 1, 1).(1,0, −1) = 0. Hence the projection vector is the null vector.

Definition 1.2.6 (Velocity vector). In the language of engineers andphysicists, the ve-
locity is a vector with a certain direction and magnitude (length of the vector) and
speed is the magnitude of the velocity vector.

For example, if V⃗ = (a,b) is the velocity vector as in Figure 1.2.6 then the direction
of the vector is shown by the arrowhead there and the speed in this case is √a2 + b2 =
‖V⃗‖. If the velocity vector of a wind is V⃗ = 2 ⃗i + ⃗j + k⃗ in a 3-space then its speed is ‖V⃗‖ =
√(2)2 + (1)2 + (−1)2 = √6.

Example 1.2.3. A plane is flying straight East horizontally at a speed of 200 km/hour
and another plane is flying horizontally North-East at a speed of 600 km/hour. Draw
the velocity vectors for both the planes.
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Figure 1.2.7: Velocity vectors.

Solution 1.2.3. If the velocity vectors for the two planes are denoted by U⃗ and V⃗ re-
spectively, as shown in Figure 1.2.7 then the given information is that

‖U⃗‖ = 200 and ‖V⃗‖ = 600.

If the direction of U⃗ is taken as the x-axis on the plane where the two vectors lie (dis-
placed if necessary so that the tail-ends meet at (0,0)) then on this plane

U⃗ = 200 ⃗i and V⃗ = (600cos45°) ⃗i + (600sin45°) ⃗j

= 600√2
⃗i + 600√2
⃗j.

Example 1.2.4. A sail boat is steered to move straight East. There is a wind with a
velocity in the North-East direction andwith a speed of 50 km/hour.What is the speed
of the boat if (a) the only force acting on the boat is thewind, (b) in addition to thewind
the sail boat has a motor which is set for a speed of 20 km/hour.

Solution 1.2.4. (a) The only component here is the component of the wind velocity
vector in the direction of the boat which is ‖V⃗‖cosθ if V⃗ is the velocity vector and
θ is the angle V⃗ makes with the East direction (East direction is taken as the x-axis
direction). We are given ‖V⃗‖ = 50 and θ = 45°. Then the speed of the boat is ‖V⃗‖cosθ =
50
√2 and the velocity is U⃗ =

50
√2
⃗i.

(b) In this case the above component plus the speed set by the engine are there.
Then the combined speed is 50

√2 + 20 and the velocity vector is

U⃗ = ( 50√2
+ 20) ⃗i.

1.2.8 Work done

When a force of magnitude F is applied on an object and the object is moved in the
samedirection of the force for a distance d thenwe say that thework done is Fd (Fmul-
tiplied by d). For example if the force vector has the magnitude 20 units and the dis-
tance moved in the same direction of the force is 10 units then the work done is 200
units (force, distance and work are measured in different units such as force in new-
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Figure 1.2.8:Work done.

tons, distance in kilometers and work in joules). Suppose that the force vector is in
a certain direction and the distance moved is in another direction then what will be
the work done? Let F⃗ be the force vector and d⃗ the displacement vector as shown in
Figure 1.2.8.

Let the force vector F⃗ make an angle θ with the displacement vector d⃗. Then the
projection of F⃗ in the direction of d⃗ is ‖F⃗‖cosθ [and the projection vector is ‖F⃗‖(cosθ)U⃗
where U⃗ is a unit vector in the direction of d⃗. The component vector of F⃗ in the per-
pendicular direction to d⃗ is

‖F⃗‖ sinθ = F⃗ − ‖F⃗‖(cosθ)U⃗ .

This is not required in our computations]. Then the work done, denoted by w, is

w = ‖F⃗‖cosθ‖d⃗‖

= ‖F⃗‖ (F⃗.d⃗)
‖F⃗‖ ‖d⃗‖
‖d⃗‖ = F⃗.d⃗. (1.2.15)

Example 1.2.5. The ground force F⃗ = 5 ⃗i + 2 ⃗j of a wind moved a stone in the direction
of the displacement d⃗ = ⃗i+3 ⃗j. What is thework done by this wind inmoving the stone?

Solution 1.2.5. According to (1.2.15) the work done is

w = F⃗ .d⃗ = (5, 2).(1,3) = (5)(1) + (2)(6) = 11.

Example 1.2.6. Consider a triangle ABC with the angles denoted by A,B,C and the
lengths of the sides opposite to these angles by a,b, c, as shown in Figure 1.2.9. Then
show that

a2 = b2 + c2 − 2bc cosA.

Solution 1.2.6. Consider the vectors ⃗AB and ⃗AC, starting from A and going to B and
C respectively.

Then the vector ⃗BC = ⃗AC − ⃗AB. Therefore

‖ ⃗BC‖2 = ‖ ⃗AC − ⃗AB‖2

= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2‖ ⃗AC‖ ‖ ⃗AB‖cosA.
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Figure 1.2.9: A triangle.

That is, a2 = b2 +c2 −2bc cosA.Herewe have used the fact that the square of the length
is the dot product with itself:

a2 = ‖ ⃗AC − ⃗AB‖2

= ( ⃗AC − ⃗AB).( ⃗AC − ⃗AB)
= ( ⃗AC. ⃗AC) − ( ⃗AC).( ⃗AB) − ( ⃗AB. ⃗AC) + ( ⃗AB).( ⃗AB)
= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2( ⃗AC. ⃗AB)
= ‖ ⃗AC‖2 + ‖ ⃗AB‖2 − 2‖ ⃗AC‖ ‖ ⃗AB‖cosA
= b2 + c2 − 2bc cosA.

Exercises 1.2
1.2.1. Give geometric representation to the following vectors:

(a) U⃗ = 2 ⃗i − 3 ⃗j, (b) 2U⃗ , (c) − 2U⃗ ,

(d) V⃗ = ⃗i + ⃗j, (e) U⃗ + V⃗ ,
(f) U⃗ − V⃗ , (g) V⃗ − 2U⃗ , (h) 2U⃗ + 3V⃗ .

1.2.2. Compute the angle between the following vectors:

(a) U⃗ = ⃗i + ⃗j − k⃗, V⃗ = 2 ⃗i − ⃗j + 3k⃗;

(b) U⃗ = ⃗i + ⃗j + k⃗, V⃗ = ⃗i − 2 ⃗j + k⃗;
(c) U⃗ = (1, −1, 2,3,5, −1), V⃗ = (2,0,0, −1, 1, 2).

1.2.3. Verify Cauchy–Schwartz inequality for U⃗ and V⃗ in the three cases in Exer-
cise 1.2.2.

1.2.4. Normalize the following vector U⃗ , then construct two vectors which are orthog-
onal among themselves as well as both are orthonormal to U⃗ , where U⃗ = (1, 1, 1, 1).

1.2.5. Given the two vectors U⃗ 1 = (1, 1, 1, 1) and U⃗2 = (1, 2, −1, 1) construct two vectors
V⃗ 1 and V⃗ 2 such that V⃗ 1 is the normalized U⃗ 1, V⃗ 2 is a normalized vector orthogonal to
V⃗ 1 and both V⃗ 1 and V⃗ 2 are linear functions of U⃗ 1 and U⃗2.
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1.2.6. Let P = (x0,y0, z0) a fixed point in 3-space, Q = (x,y, z) an arbitrary point in
3-space. Construct the vector going from P toQ. Derive the equation to the planewhere
the vector ⃗PQ lies on the plane as well as another vector N⃗ = (a,b, c) is normal to this
plane (Normal to a plane means orthogonal to every vector lying on the plane).

1.2.7. If x − y + z = 7 is a plane, (i) is the point (1, 1, 1) on this plane? (ii) construct a
normal to this plane with length 5, (iii) construct a plane parallel to the given plane
and passing through the point (1, 1, 2), (iv) construct a plane orthogonal to the given
plane and passing through the point (1, −1,4).

1.2.8. Derive the equation to the plane passing through the points

(1, 1, −1), (2, 1, 2), (2, 1,0).

1.2.9. Find the area of the parallelogram formed by the vectors (by completing it as in
Figure 1.2.2 on the plane determined by the two vectors),

U⃗ = 2 ⃗i + ⃗j − k⃗ and V⃗ = ⃗i − ⃗j + 3k⃗.

1.2.10. Find thework done by the force F⃗ = 2 ⃗i− ⃗j+3k⃗ for the displacement d⃗ = 3 ⃗i+ ⃗j− k⃗.

1.2.11. A boat is trying to cross a river at a speed of 20 miles/hour straight across. The
river flow downstream is 10 miles/hour. Evaluate the eventual direction and speed of
the boat.

1.2.12. In Exercise 1.2.11 if the river flowspeed is the samewhat should be thedirection
and speed of the boat so that it can travel straight across the river?

1.2.13. Evaluate the area of the triangle whose vertices are (1,0, 1), (2, 1,5), (1, −1, 2) by
using vector method.

1.2.14. Find the angle between the planes (angle between the normals to the planes)

x + y − z = 7 and 2x + y − 3z = 5.

1.2.15. In some engineering problems of signal processing a concept called convolu-
tion of two vectors is defined. Let X = (x1,… ,xn) and Y = (y1,… ,yn) be two row vectors
of the same order. Then the convolution, denoted by X ∗ Y , is defined as follows: It is
again a 1 × n vector where the i-th element in X ∗ Y is given by

x1yi + x2yi−1 +⋯+ xiy1
+ xi+1yn + xi+2yn−1 +⋯+ xnyi+1.

For example, for n = 2

X ∗ Y = (x1,x2) ∗ (y1,y2) = (x1y1 + x2y2,x1y2 + x2y1)

(a) Write down the explicit expression for (x1,x2,x3) ∗ (y1,y2,y3).
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(b) Show that the operator ∗ is commutative as well as associative for a general n.
(c) Evaluate (1,0, −1, 2) ∗ (3,4,5, −2).

1.2.16. Find the angle between the planes

x − y + z = 2 and 2x + 3y − 4z = 8.

1.2.17. Evaluate the area of the triangle whose vertices are (1, 1, 1), (2,5,3), (1, −1, −1).

1.2.18. Evaluate the area of theparallelogramdeterminedby the vectorsU =(1, −1, 2,5)
and V = (1, 1, −1, −1).

1.3 Linear dependence and linear independence of vectors

Consider the vectors U1 = (1,0, −1) and U2 = (1, 1, 1). For arbitrary scalars a1 and a2 let
us try to solve the equation

a1U1 + a2U2 = O (1.3.1)

to see whether there exist nonzero a1 and a2 such that (1.3.1) is satisfied.

a1U1 + a2U2 = O ⇒
a1(1,0, −1) + a2(1, 1, 1) = O = (0,0,0).

That is,

(a1 + a2,a2, −a1 + a2) = (0,0,0) ⇒
a1 + a2 = 0, a2 = 0, −a1 + a2 = 0.

The only values of a1 and a2 satisfying the three equations a1 + a2 = 0, a2 = 0 and
−a1 + a2 = 0 are a1 = 0 and a2 = 0. This means that the only solution for a1 and a2
in (1.3.1) is a1 = 0 and a2 = 0. Observe that a1 = 0, a2 = 0 is always a solution to the
equation (1.3.1). But here we have seen that a1 = 0, a2 = 0 is the only solution. Now, let
us look at another situation. Consider the vectors

U1 = (1, 1, 1), U2 = (1, −1, 2), U3 = (2,0,3).

Solve the equation

a1U1 + a2U2 + a3U3 = O (1.3.2)

for a1,a2,a3. Then

a1U1 + a2U2 + a3U3 = O ⇒
a1(1, 1, 1) + a2(1, −1, 2) + a3(2,0,3) = (0,0,0).

That is,

(a1 + a2 + 2a3,a1 − a2,a1 + 2a2 + 3a3) = (0,0,0).
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This means,

a1 + a2 + 2a3 = 0, (i)
a1 − a2 = 0, (ii)

a1 + 2a2 + 3a3 = 0. (iii)

From (ii), a1 = a2; substituting in (i), a1 = a2 = −a3; substituting in (iii) the equation is
satisfied. Then there are infinitelymany non-zero a1,a2,a3 for which (1.3.2) is satisfied.
For example, a1 = 1 = a2,a3 = −1will satisfy (1.3.2). In the above considerationswehave
two systems of vectors. In one system the only possibility for the coefficient vector is
the null vector which means that no vector can be written as a linear function of the
other vectors. In the other case the coefficient vector is not null which means that at
least one of the vectors there can be written as a linear combination of others.

Definition 1.3.1 (Linear independence). Let U1,U2,… ,Uk be k given non-null
n-vectors, where k is finite. Consider the equation

a1U1 + a2U2 +⋯+ akUk = O (1.3.3)

where a1,… ,ak are scalars. If the only possibility for (1.3.3) to hold is when a1 =
0,… ,ak = 0 then the vectors U1,… ,Uk are called linearly independent. If there exists
at least one non-null vector (a1,… ,ak) such that (1.3.3) is satisfied then the system of
vectors U1,… ,Uk are linearly dependent.

If a non-null vector (a1,… ,ak) exists then at least one of the elements is nonzero.
Let a1 ≠ 0. Then from (1.3.3)

U1 = −
a2
a1
U2 −⋯−

ak
a1
Uk . (1.3.4)

That is, U1 can be written as a linear function of U2,… ,Uk . Note that not all a2,… ,ak
can be zeros. If they are all zeros then from (1.3.4) U1 is a null vector. But a null vector
is not included in our definition. Thus at least one of them can be written as a linear
function of the others if U1,… ,Uk are linearly dependent. If they are linearly indepen-
dent then none can be written as a linear function of the others.

(i) A null vector is counted among dependent vectors. A set consisting of one non-
null vector is counted as an independent system of vectors.

Example 1.3.1. Show that the basic unit vectors e1,… ,en are linearly independent.

Solution 1.3.1. Consider the equation

a1e1 +⋯+ anen = O ⇒
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a1(1,0,… ,0) +⋯+ an(0,… ,0, 1) = (0,… ,0) ⇒
(a1,… ,an) = (0,… ,0) ⇒

a1 = 0,… ,an = 0

is the only solution, which means that e1,… ,en are linearly independent.

Example 1.3.2. Show that a system of non-null mutually orthogonal vectors are lin-
early independent.

Solution 1.3.2. LetV1,… ,Vk be a systemofmutually orthogonal vectors. Consider the
equation

a1V1 +⋯+ akVk = O.

Take the dot product on both sides with respect to V1. Then we have

a1V1.V1 + a2V2.V1 +⋯+ akVk .V1 = O.V1 = O.

But Vj .V1 = 0 for j ≠ 1 and V1.V1 = ‖V1‖2 ≠ 0. This means that a1 = 0. Similarly a2 =
0,… ,ak = 0 which means that V1,… ,Vk are linearly independent. This is a very im-
portant result.

(ii) Every set of mutually orthogonal non-null vectors are linearly independent.
(iii) Anyfinite collectionof vectors containing thenull vector is counted as a linearly
dependent systemof vectors. If S1 and S are twofinite collections of vectorswhere S1
is a subset of S, that is, S1 ⊂ S, then the following hold: If S1 is a linearly dependent
system then S is also a linearly dependent system. If S is a linearly independent
system then S1 is also a linearly independent system.

Example 1.3.3. Check the linear dependence of the following sets of vectors:

(a) U1 = (1, 2, 1), U2 = (1, 1, 1);
(b) U1 = (1, −1, 2), U2 = (1, 1,0);
(c) U1 = (1, 2, 1), U2 = (1, −1, 1), U3 = (3,3,3).

Solution 1.3.3. (a) For two vectors to be dependent one has to be a non-zero scalar
multiple of the other. Hence U1 and U2 here are linearly independent.

(b) By inspection U1.U2 = 0 and hence they are orthogonal thereby linearly inde-
pendent.

(c) U1 and U2 are evidently linearly independent, being not multiples of each
other. By inspection U3 = 2U1 + U2 and hence the set {U1,U2,U3} is a linearly depen-
dent system.
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(iv) Linear dependence or independence in a system of vectors is not altered by
scalar multiplication of the vectors by non-zero scalars.

This result can be easily seen from the definition itself. Let the n-vectors U1,… ,Uk be
linearly independent. Then

a1U1 +⋯+ akUk = O ⇒ a1 = 0,… ,ak = 0.

Let c1,… , ck be non-zero scalars. If ai = 0 then aici = 0 and vice versa since ci ≠ 0,
i = 1, 2,… ,k. Thus

a1(c1U1) +⋯+ ak(ckUk) = O ⇒ a1 = 0,… ,ak = 0.

On the other hand, if U1,… ,Uk are linearly dependent then at least one of them can
be written as a linear function of the others. Let

U1 = b2U2 +⋯+ bkUk

where b2,… ,bk are some constants, at least one of them nonzero. Then for
c1 ≠ 0,… , ck ≠ 0

c1U1 =
c1b2
c2
(c2U2) +⋯+

c1bk
ck
(ckUk).

Thus c1U1,… , ckUk are linearly dependent.
We have another important result on linear independence.

(v) Linear independence or dependence in a system of vectors is not altered by
adding a scalar multiple of any vector in the system to any other vector in the sys-
tem.

This result is easy to establish. Let the system U1,… ,Uk of n-vectors be linearly inde-
pendent. Then

a1U1 +⋯+ akUk = O ⇒ a1 = 0,… ,ak = 0.

Now, consider a new system U1, c U1 +U2,… ,Uk . [That is, U2 is replaced by c U1 +U2,
c ≠ 0. In other words, c U1 is added to U2.] Consider the equation

a1U1 + a2(c U1 +U2) + a3U3 +⋯+ akUk = O.

That is,

(a1 + ca2)U1 + a2U2 +⋯+ akUk = O.

Then since U1,… ,Uk are linearly independent a1 + ca2 = 0, a2 = 0, …, ak = 0 which
means a1 = 0 also which establishes that the system of vectors U1, cU1 + U2,U3,… ,Uk
is linearly independent. A similar procedure establishes that if the original system is
linearly dependent then the new system is also linearly dependent.
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By combining the results (iii) and (iv) above we can have the following result:

(vi) Consider a finite collection of n-vectors. If any number of vectors in this collec-
tion aremultiplied by nonzero scalars or a linear function of any number of them is
added to any member in the set, linear independence or dependence in the system
is preserved. That is, if the original system is linearly independent then the new
system is also linearly independent and if the original system is dependent then
the new system is also linearly dependent.

Example 1.3.4. Check to see whether the following system of vectors is linearly inde-
pendent or dependent:

U1 = (1,0, 2, −1,5)
U2 = (−1, 1, 1, −1, 2)
U3 = (2, 1,7, −4, 17)

Solution 1.3.4. Since nonzero scalar multiplication and addition do not alter inde-
pendence or dependence let us create new systems of vectors. In what follows the
following standard notations will be used:

A few standard notations

“α(i) ⇒ ” means the i-th vector multiplied by α (1.3.5)

In this operation the i-th vector in the set is replaced by α (Greek letter alpha) times
the original i-th vector. For example “−3(1) ⇒” means that “the first vector multiplied
by −3 gives”, that is, the new first vector is the original first vector multiplied by −3.

“α(i) + (j) ⇒ ” means α times the i-th vector added to the j-th vector (1.3.6)

In this operation the original i-th vector remains the samewhereas the new j-th vector
is the original j-th vector plus α times the original i-th vector. Let us apply these types
of operations on U1,U2,U3, remembering that linear independence or dependence is
preserved.

(1) + (2) ⇒ U1 = (1,0, 2, −1,5)
V2 = (0, 1,3, −2,7)
U3 = (2, 1,7, −4, 17)

In the above operation the second vectorU2 is replaced byU2+U1 = V2. Let us continue
the operations.

−2(1) + (3) ⇒ U1 = (1,0, 2, −1,5)
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V2 = (0, 1,3, −2,7)
V3 = (0, 1,3, −2,7)

In the set U1,V2,V3 we will do the next operation.

−(2) + (3) ⇒ U1 = (1,0, 2, −1,5)
V2 = (0, 1,3, −2,7)
W3 = (0,0,0,0,0)

HereW3 is obtained by adding (−1) times V2 to V3 or replacing V3 by V3 −V2 =W3. By
the above sequence of operationsW3 has become a null vector which by definition is
dependent. Hence the original system U1,U2,U3 is a linearly dependent system.

Example 1.3.5. Check the linear dependence or independence of the following sys-
tem of vectors:

U1 = (2, −1, 1, 1,3,4)
U2 = (5, 2, 1, −1, 2, 1)
U3 = (1, −1, 1, 1, 1,4)

Solution 1.3.5. Since linear dependence or independence is not altered by the order
in which the vectors are selected we will write U3 first and write only the elements in
3 rows and 6 columns as follows, rather than naming them as U3,U1,U2:

1 −1 1 1 1 4
2 −1 1 1 3 4
5 2 1 −1 2 1

We have written them in the order U3,U1,U2 to bring a convenient number, namely
1, at the first row first column position. This does not alter linear independence or
dependence in the system. Now, we will carry out more than one operations at a time.
[We add (−2) times the first row to the second row and (−5) times the first row to the
third row. The first row remains the same. The result is the following:]

−2(1) + (2); −5(1) + (3) ⇒
1 −1 1 1 1 4
0 1 −1 −1 1 −4
0 7 −4 −6 −3 −19

[On the new configuration we add the second row to the first row and (−7) times the
second row to the third row. The second row remains the same. The net result is the
following:]

(2) + (1); −7(2) + (3) ⇒
1 0 0 0 2 0
0 1 −1 −1 1 −4
0 0 3 1 −10 9



34 | 1 Vectors

[The third row is divided by 3. The third row changes.]

1
3
(3) ⇒

1 0 0 0 2 0
0 1 −1 −1 1 −4
0 0 1 1

3 −
10
3 3

[This operation is done to bring a convenient number at the third column position on
the third row. Now we add the new third row to the second row. The new third row
remains the same.]

(3) + (2) ⇒
1 0 0 0 2 0
0 1 0 − 23 −

7
3 −1

0 0 1 1
3 −

10
3 3

The aim in the above sequences of operations is to bring a unity at all leading diagonal
(thediagonal from theupper left-end corner down) positions, if possible. Interchanges
of rows can be done if necessary to achieve the above aim, because interchanges do
not alter the linear independence or dependence. During such a process if any row be-
comes null then automatically the original system, represented by the starting rows,
is dependent. If no row becomes null during the process then at the end of the pro-
cess look at the final first, second, etc columns. In our example above look at the first
column. No non-zero linear combination of the second and third rows can create a 1
at the first position. Hence the first row cannot be written as a linear function of the
second and third rows. Now look at the second column. By the same argument above
the second row cannot be written as a linear function of the first and third rows. Now
look at the third column. By the same argument the third row cannot be written as a
linear combination of the first and second rows. Hence all the three rows are linearly
independent or the original system {U1,U2,U3} is a linearly independent system.

The above procedure is called a sweep-out procedure. Then the principles to re-
member in a sweep-out procedure are the following: Assume that the system consists
ofm vectors, each is an n-vector.

Principles in a sweep-out procedure

(1) Write the given vectors as rows, interchange if necessary to bring a convenient
nonzero number, 1 if available, at the first row first column position. Do not inter-
change columns, the vectors will be altered.

(2) Add suitable multiples of the first row to the second, third,…, m-th row to make the
first column elements, except the first element, zeros.

(3) Start with the second row. Interchange 2nd, …, m-th rows if necessary to bring a
convenient nonzero number at the second position on the second row.

(4) Add suitable multiples of the second row to the first row, third row,…, m-th row to
make all elements in the second column, except the second element, zeros.
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(5) Repeat the process with the third, fourth etc rows until all the leading diagonal ele-
ments are non-zeros, unities if possible.

(6) During the process if any row becomes null then shift it to the bottom position. If
at any stage a vector has become null then the system is dependent. If all the lead-
ing diagonal elements are non-zeros when all other elements in the corresponding
columns are wiped out (made zeros) by the above process then the system is linearly
independent.

(7) If the first r, for some r, leading diagonal elements are non-zeros, none of the rows
has become null so far and the (r + 1)th elements in all the remaining rows are zeros
then continue the process with the (r + 2)th element on the (r + 1)th row and so on. If
no row has become null by the end of the whole process then all the rows are linearly
independent.

(8) Division of a row by a non-zero scalar usually brings in fractions. Hence multiply
the rows with appropriate numbers to avoid fractions and to achieve the sweep-out
process.

The leading diagonal elements need not be brought to unities to check for linear de-
pendence or independence. Only nonzero elements are to be brought to the diagonal
positions, if possible. When doing the operations, try to bring the system to a triangu-
lar format by reducing all elements below the leading diagonal to zeros, if possible.
When the system is in a triangular format all elements above nonzero diagonal ele-
ments can be simply put as zeros because this can always be achieved by operating
with the last row first, wiping out all last column elements except the last column last
row element, then last but one column elements and so on. Thus all elements above
nonzerodiagonal elements canbe simply put as zeros once thematrix is in a triangular
format.
(9) If the vectors to be checked for linear independence or dependence are column vec-

tors then write them as rows before executing a sweep-out process. This is done only
for convenience because operations on rows are easier to visualize.

(10)When doing a sweep-out process always write first the row that you are operating
with because this row is not changing and others can change as a result of the op-
erations.

Example 1.3.6. Check for linear independence or dependence in the following system
of vectors:

U1 = (2,0, 1,5)
U2 = (1, −1, 1, 1)
U3 = (4, 2, 2,8)

Solution 1.3.6. For convenience write in the order U2,U1,U3 and write only the ele-
ments and continue with the sweep-out process.
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1 −1 1 1
2 0 1 5
4 2 2 8

− 2(1) + (2); −4(1) + (3) ⇒
1 −1 1 1
0 2 −1 3
0 6 −2 4

2(1) ⇒
2 −2 2 2
0 2 −1 3
0 6 −2 4

(2) + (1); −3(2) + (3) ⇒
2 0 1 5
0 2 −1 3
0 0 1 −5

(3) + (2); −(3) + (1) ⇒
2 0 0 10
0 2 0 −2
0 0 1 −5

The leading diagonal elements are 2, 2, 1 which are non-zeros and hence the system
is linearly independent. [During the process above the first row is multiplied by 2 in
order to avoid fractions in the rest of the operations.]

Note that in the above operations the row that you are operating with remains
the same and the other rows, to which constant multiples are added, change. In the
last form above, are all the four columns linearly independent? Evidently not. The last
column = 5 (column 1)−(column 2)−5(column 3).

If our aim is only to check for linear independence or dependence then we need
to bring the original set to a triangular type format. In the second step above the op-
eration 2(1) and in the third stage the operation (2) + (1) need not be done. That is,

1 −1 1 1
0 2 −1 3
0 6 −2 4

−3(2) + (3) ⇒
1 −1 1 1
0 2 −1 3
0 0 1 −5

Nowwehave the triangular type formatwith nonzero diagonal elements. Note that the
first row cannot be written as a linear function of the second and third rows. Similarly
no row can be written as a linear function of the other two. At this stage if we wish to
create a diagonal format for the first three columns then by using the third row one
can wipe out all other elements in the third column, then by using the second row we
can wipe out all other elements in the second column. In other words, we can simply
replace all those elements by zeros, then only the last column will change.

1 −1 1 1
0 2 −1 3
0 0 1 −5

→
1 −1 0 6
0 2 0 −2
0 0 1 −5

(operating with the third row)

→
1 0 0 5
0 2 0 −2
0 0 1 −5

(operating with the second row) →
1 0 0 5
0 1 0 −1
0 0 1 −5

dividing the second rowby 2. Thus, the first three columns aremadebasic unit vectors,
the same procedure if we wish to create unit vectors in the first r columns and if there
are r linearly independent rows.
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At a certain stage, say the rth stage, suppose that all elements in the (r + 1)th col-
umn below the rth row are zeros. Then start with a nonzero element in the remaining
configuration of the columns in the remaining row and proceed to create a triangular
format. For example, consider the following situation:

1 1 −1 1 −1 1 1
0 1 0 2 1 −1 1
0 0 0 0 2 0 1
0 0 0 0 0 0 1
0 0 0 1 0 0 −1

→

1 1 −1 1 −1 1 1
0 1 0 2 1 −1 1
0 0 0 1 0 0 −1
0 0 0 0 2 0 1
0 0 0 0 0 0 1

The first two rows are evidently linearly independent. Our procedure of triangulariza-
tion cannot proceed. Write the 5th row in the 3rd row position to get the matrix on
the right above. Now we see that the new 3rd, 4th and 5th rows form a triangular type
format. This shows that all the five rows are linearly independent. Note that by using
the last row one can wipe out all other elements in the 7th column. Then by using the
4th row we can wipe out all other elements in the 5th column. Then by using the 3rd
row we can wipe out all other elements in the 4th column. Then by using the second
row we can wipe out all other elements in the second column. Now, one can see lin-
ear independence of all the five rows clearly. In the light of the above examples and
discussions we can state the following result:

(vii) There cannot be more than nmutually orthogonal n-vectors and there cannot
be more than n linearly independent n-vectors.

It is not difficult to establish this result. Consider the n-vectors U1,… ,Un,Un+1, that is,
n + 1 vectors of n elements each. Write the n + 1 vectors as n + 1 rows and apply the
above sweep-out process. If the first n vectors are linearly independent then all the n
leading diagonal spots have nonzero entries with all elements in the corresponding
columns zeros. Thus automatically the (n+ 1)th row becomes null. Hence the (n+ 1)th
row depends on the other n rows or the maximum number of linearly independent
n-vectors possible is n.

If possible, letV1,… ,Vn+1 bemutually orthogonal n-vectors. Fromwhatweproved
just above not all these n + 1 vectors can be linearly independent. Then the (n + 1)th
can be written as a linear function of the other n vectors. Then there exists a non-null
vector b = (b1,… ,bn) such that

Vn+1 = b1V1 +⋯+ bnVn.

Take the dot product on both sides with respect to Vi . If all V1,… ,Vn+1 are mutually
orthogonal then we have

0 = 0 + bi‖Vi‖2 + 0 ⇒ bi = 0, i = 1,… ,n
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since ‖Vi‖ ≠ 0, i = 1,… ,n. This then contradicts the fact that b is a non-null vector.
Thus they cannot be allmutually orthogonal. Since the orthogonal vectors are linearly
independent, proved earlier, the maximum number of n-vectors which are mutually
orthogonal is n.

1.3.1 A vector subspace

The vectors in our discussion so far are ordered n-tuples of real numbers. The notions
of vector spaces, dimension etc will be introduced for such vectors. Then later we will
generalize these ideas to cover some general objects called vectors satisfying some
general postulates. Consider, for example, two given vectors

U1 = (1,0, −1) and U2 = (2,3, 1).

Evidently U1 and U2 are linearly independent. Two vectors being dependent means
one is a multiple of the other. Consider a collection S1 of vectors which are spanned
by U1 and U2 by the following process. Every scalar multiple of U1 as well as of U2 is
in S1. For example

3U1 = 3(1,0, −1) = (3,0, −3) ∈ S1
−2U2 = −2(2,3, 1) = (−4, −6, −1) ∈ S1
0U1 = (0,0,0) ∈ S1.

Every linear combination of U1 and U2 is also in S1. For example,

2U1 − 5U2 = (2,0, −2) + (−10, −15, −5) = (−8, −15, −7) ∈ S1
U1 +U2 = (1,0, −1) + (2,3, 1) = (3,3,0) ∈ S1

U1 + 0U2 = U1 ∈ S1.

Since a scalar multiplication and then addition will create a linear combination the
basic operations are scalar multiplication and addition. Then every element in S1, el-
ements are vectors, can be written as a linear combination of U1 and U2. In this case
we say that S1 is spanned or generated or created by U1 and U2. Then we say that the
collection {U1,U2} is a spanning set of S1.

Definition 1.3.2 (Vector subspace). Let S be a collection of vectors such that if V1 ∈ S
then cV1 ∈ S where c is any scalar, including zero, and if V1 ∈ S and V2 ∈ S then
V1 + V2 ∈ S. Then S is called a vector subspace.

Another way of defining S is that it is a collection which is closed under scalar
multiplication and addition. When the elements of S are n-vectors (ordered set of n
real numbers) then the operations “scalar multiplication” and “addition” are easily
defined and many properties such as commutativity,
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V1 + V2 = V2 + V1,

associativity

V1 + (V2 + V3) = (V1 + V2) + V3

and so on are easily established. But if the elements of S are some general objects
then the operations “scalar multiplication” and “addition” are to be redefined and
then all types of extra properties are to be double-checked before constructing such a
collection which is closed under “scalar multiplication” and “addition”. A more gen-
eral definition of S will be introduced later. For the time being the elements in our S
are all n-tuples of real numbers. The null vector is automatically an element of any
such S. That is, O ∈ S. If V ∈ S then V +O = V , −V ∈ S, V − V = O.

Definition 1.3.3 (A spanning set of a vector subspace). A collection of vectors which
span the whole of a given vector subspace is called a spanning set of that vector sub-
space.

Note that there can be a number of spanning sets for a given subspace S. In our il-
lustrative example C1 = {U1,U2}, where U1 = (1,0, −1), U2 = (2,3, 1), spans the subspace
S1. The same subspace could be spanned by C2 = {U1,U2,U1 +U2} or C3 = {U1,U2 + 3U1}
or C4 = {U2,U1 − U2, 2U1 + 5U2,U1} and so on. Thus, for a given subspace there can be
infinitely many spanning sets. In all the spanning sets, C1,… ,C4 above the smallest
number of linearly independent vectors which can span S1 or the maximum number
of linearly independent vectors in all those spanning sets is 2.

Definition 1.3.4 (A basis for a vector subspace). A set of all linearly independent vec-
tors in a spanning set of a vector subspace is called a basis for that vector subspace.
That is, a basis is a spanning set consisting of only linearly independent vectors.

As there can be many spanning sets for a given vector subspace there can be
infinitely many bases for a given vector subspace. In our illustrative example B1 =
{U1,U2} is a basis, B2 = {U1,U2 + 3U1} is another basis, B3 = {U2,U1 −U2} is a third basis,
but B4 = {U2,U1 −U2, 2U1 +U2} is not a basis because one vector, namely

2U1 +U2 = 2(U1 −U2) + 3U2,

is a linear function of the other two. B4 is a spanning set but not a basis. We are im-
posing two conditions for a basis of a vector subspace. (i) A basis is a spanning set for
that vector subspace; (ii) A basis consists of only linearly independent vectors.

Example 1.3.7. Construct 3 bases for the vector subspace spanned by the following
set of vectors:

U1 = (1, 1, 1), U2 = (1, −1, 2), U3 = (2,0,3).
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Solution 1.3.7. Our first step is to determine the number of linearly independent vec-
tors in the given set so that one set of the maximum number of linearly independent
vectors can be collected. Let us apply the sweep-out process, writing the vectors as
rows.

1 1 1
1 −1 2
2 0 3

−1(1) + (2); −2(1) + (3) ⇒
1 1 1
0 −2 1
0 −2 1

−1(2) + (3) ⇒
1 1 1
0 −2 1
0 0 0

Thus the whole vector subspace S, which is spanned by {U1,U2,U3}, can also be
spanned by {V1,V2} where

V1 = (1, 1, 1), and V2 = (0, −2, 1).

Hence one basis for S is B1 = {V1,V2}. Any set of 2 linearly independent vectors that
can be constructed by using V1 and V2 is also a basis for S. For example,

B2 = {2V1,3V2}, B3 = {V1,V2 + V1}

are two more bases for S. Infinitely many such bases can be constructed for the same
vector subspace S. This means that if we start with V1 only then we can span only a
part of S or a subset of S, say S1. This S1 consists of all scalar multiples of V1. Similarly
if we start with only V2 we can only span a part of S or a subset of S, say S2. This S2
consists of scalar multiples of V2. Note that the union of S1 and S2, S1 ∪ S2, is not S. All
linear functions of V1 and V2 are also in S. Hence S1 ∪ S2 is only a subset of S.

Definition 1.3.5 (Dimension of a vector subspace). Themaximumnumber of linearly
independent vectors in a spanning set of S or the smallest number of linearly indepen-
dent vectors which can span the whole of S or the number of vectors in a basis of S is
called the dimension of the subspace S.

In our illustrative Example 1.3.7 the dimension of S is 2. In general, observe that
for a given subspace S there cannot be two different bases B1 and B2 where in B1 the
number of linearly independent vectors is m1 whereas in B2 that number is m2 with
m1 ≠m2. If possible letm1 <m2. Then every vector in S is a linear function of thesem1
vectors and hence by definition there cannot be a vector in S which is linearly inde-
pendent of thesem1 vectors. That meansm1 must be equal tom2.

One more point is worth observing. Since every 3-vector can be written as a linear
function of the basic unit vectors, the vectors U1 = (1,0, −1) and U2 = (2,3, 1) in our
illustrative example can be written as linear functions of the basic unit vectors

e1 = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1).
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Note that

U1 = e1 − e3 and U2 = 2e1 + 3e2 + e3.

In the set B = {e1,e2,e3} there are 3 linearly independent vectors.We have already seen
that U1 and U2 can be written as linear functions of these unit vectors. Thus this set
B could have spanned not only S of our Example 1.3.7, call it S̃, the vector subspace
spanned by U1 and U2, but also a much larger space S where our S̃ is a subset or S̃ is
contained in S or S̃ ⊂ S or S̃ is a subspace there. This is why we used the phrase “sub-
space” in our definitions. Incidently, since S ⊂ S we can also call S itself a subspace.

Definition 1.3.6 (Orthogonal subspaces). Consider two subspaces, S and S∗ of
n-vectors such that for every vector U ∈ S and every vector V ∈ S∗, U .V = 0. That
is, vectors in S are orthogonal to the vectors in S∗ and vice versa. Then S and S∗ are
called subspaces orthogonal to each other.

Obviously, since the same vector cannot be orthogonal to itself (except the null
vector) the same non-null vector cannot be present in S as well as in S∗. For example,
if U1 = (1, 1, 1) is in S then V1 = (1, −2, 1) and V2 = (1,0, −1) are two possible vectors in S∗

since U1.V1 = 0 and U1.V2 = 0. But V1 or V2 or both need not be present in S∗.

Example 1.3.8. IfU = (1, 2, −1) ∈ S and if S is spanned byU itself thenwhat is themax-
imum possible number of linearly independent vectors in a subspace S∗ orthogonal
to S? Construct a basis for such an S∗.

Solution 1.3.8. Let X = (x1,x2,x3) be in S∗. Then

U .X = 0 ⇒ x1 + 2x2 − x3 = 0. (1.3.7)

Themaximumnumber of linearly independent 3-vectors possible is 3. Orthogonal vec-
tors are linearly independent. Hence themaximumnumber of linearly independent X
possible is 3−1 = 2. In order to construct a basiswe construct two linearly independent
X from equation (1.3.7). For example, X1 = (−2, 1,0) and X2 = (−1, 1, 1) are two linearly
independent solutions of (1.3.7). Hence {X1,X2} is a basis for the orthogonal space S∗.
There can be many such bases for S∗, each basis will consist of two linearly indepen-
dent solutions of (1.3.7). Note that the subspace spanned by X1 = (−2, 1,0) alonewill be
orthogonal to S aswell as the subspace spanned byX2 = (−1, 1, 1) alonewill be orthogo-
nal to S. But wewere looking for that orthogonal subspace consisting of themaximum
number of linearly independent solutions of (1.3.7).

Definition 1.3.7 (Orthogonal complement of a subspace). Let S be a vector subspace
and S∗ a subspace orthogonal to S. If all the maximum possible number of linearly
independent vectors, orthogonal to S, are in S∗ then S∗ is the orthogonal complement
of S and it is usually written as S∗ = S⟂.
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(viii) If the dimension of a vector subspace S of n-vectors is m < n and if S∗ is the
orthogonal complement of S then the dimension of S∗ is n−m. If the dimension of S
is n then the dimension of S∗ is zero which means S∗ contains only the null vector.

1.3.2 Gram–Schmidt orthogonalization process

From a given set U1,… ,Uk of k linearly independent n-vectors can we create another
set V1,… ,Vk of vectors which form an orthonormal system and each Vj is a linear
function of the Uj ’s? That is, Vi .Vj = 0, i ≠ j and ‖Vj‖ = 1, j = 1,… ,k. The answer to this
question is in the affirmative and the process by which we obtain the set V1,… ,Vk
from the set U1,… ,Uk is known as the Gram–Schmidt orthogonalization process. This
process can be described as follows: Take the normalized U1 as V1. Construct a V2
where

V2 =
W2
‖W2‖
, W2 = U2 + aV1

where a is a scalar quantity. Since we require V1 to be orthogonal to W2 we have
W2.V1 = 0 or U2.V1 + aV1.V1 = U2.V1 + a = 0 since V1.V1 = 1. Then a = −U2.V1. That is,
W2 = U2 − (U2.V1)V1 where U2.V1 is the dot product of U2 and V1. Note that

W2.V1 = U2.V1 − (U2.V1)V1.V1 = U2.V1 −U2.V1 = 0

since V1.V1 = ‖V1‖2 = 1. Thus V1 and V2 are orthogonal to each other and each one is a
normalized vector. Now, consider the general formula

Wj = Uj − (Uj .V1)V1 − (Uj .V2)V2
−⋯− (Uj .Vj−1)Vj−1 for j = 2,… ,k and (1.3.8)

Vj =
Wj

‖Wj‖
.

For example,

W3 = U3 − (U3.V1)V1 − (U3.V2)V2,

V3 =
W3
‖W3‖
.

Let us see whetherW3 is orthogonal to both V1 and V2. Take the dot product

W3.V1 = U3.V1 − (U3.V1)V1.V1 − (U3.V2)V2.V1.

It is already shown that V2.V1 = 0 and V1.V1 = ‖V1‖2 = 1. Hence

W3.V1 = U3.V1 − (U3.V1) = 0.
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Now take,

W3.V2 = U3.V2 − (U3.V1)V1.V2 − (U3.V2)V2.V2
= U3.V2 − 0 − (U3.V2) = 0

since V2.V2 = ‖V2‖2 = 1 and V2.V1 = 0.
The formula (1.3.8) is constructed by writing Wj as a linear function of Uj ,V1,… ,

Vj−1 and then solving for the coefficients by using the conditions that the dot products
ofWj with V1,… ,Vj−1 are all zeros. One interesting observation can bemade on (1.3.8).
Vj is a linear function of V1,… ,Vj−1 and Uj which implies that Vj is a linear function
of U1,… ,Uj only. That is, V1 is a function of U1 only, V2 is a function of U1 and U2 only
and so on, a triangular format.

Example 1.3.9. Given the vectors

U1 = (1, 1, −1), U2 = (1, 2, 1), U3 = (2,3,4)

construct an orthonormal system by using U1,U2 and U3, if possible.

Solution 1.3.9. Let

V1 =
U1
‖U1‖
, ‖U1‖ = √(1)2 + (1)2 + (−1)2 = √3 ⇒

V1 =
1
√3
(1, 1, −1).

Let

W2 = U2 − (U2.V1)V1

where

V1.U2 =
1
√3
(1, 1, −1).(1, 2, 1)

= 1
√3
[(1)(1) + (1)(2) + (−1)(1)] = 2

√3
.

W2 = U2 − (U2.V1)V1

= (1, 2, 1) − 2
√3

1
√3
(1, 1, −1) = ( 1

3
,
4
3
,
5
3
) =

1
3
(1,4,5),

‖W2‖ =
1
3
√(1)2 + (4)2 + (5)2 =

√42
3
⇒

V2 =
W2
‖W2‖
= 1
√42
(1,4,5).

Note that for any vectorU and for any nonzero scalar a, ‖aU‖ = |a| ‖U‖ and hence keep
the constants outside when computing the lengths. Consider

W3 = U3 − (U3.V1)V1 − (U3.V2)V2,
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where

V1.U3 =
1
√3
(1, 1, −1).(2,3,4) = 1

√3
,

(V1.U3)V1 =
1
3
(1, 1, −1),

V2.U3 =
1
√42
(1,4,5).(2,3,4) = 34

√42
,

(V2.U3)V2 =
34
42
(1,4,5).

Therefore

W3 = (2,3,4) −
1
3
(1, 1, −1) − 34

42
(1,4,5) = 1

7
(6, −4, 2)

with

‖W3‖ =
√56
7
⇒ V3 =

W3
‖W3‖
= 1
√56
(6, −4, 2).

Verification

V1.V2 = [
1
√3
(1, 1, −1)].[ 1

√42
(1,4,5)] = 0;

V1.V3 = [
1
√3
(1, 1, −1)].[ 1

√56
(6, −4, 2)] = 0;

V2.V3 = [
1
√42
(1,4,5)].[ 1

√56
(6, −4, 2)] = 0.

Thus V1,V2,V3 is the system of orthonormal vectors available from U1,U2,U3.

Example 1.3.10. Given the vectors

U1 = (1, 1, −1), U2 = (1, 2, 1), U3 = (2,3,0)

construct an orthonormal system by using U1,U2,U3, if possible.

Solution 1.3.10. Since U1 and U2 are the same as the ones in Example 1.3.9 we have

V1 =
1
√3
(1, 1, −1) and V2 =

1
√42
(1,4,5).

Now, consider the equation

W3 = U3 − (U3.V1)V1 − (U3.V2)V2

where

V1.U3 = [
1
√3
(1, 1, −1)].[2,3,0] = 5

√3
,
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(V1.U3)V1 =
5
3
(1, 1, −1)

V2.U3 = [
1
√42
(1,4,5)].[2,3,0] = 14

√42
,

(V2.U3)V2 =
14
42
(1,4,5).

Then

W3 = (2,3,0) −
5
3
(1, 1, −1) − 14

42
(1,4,5) = (0,0,0).

In this case the only orthogonal system possible is with a null vector and the non-null
vectors V1 and V2. Here V1 and V2 are orthonormal but a null vector is orthogonal but
not a normal vector. This situation arose because in the original set U1,U2,U3, not all
vectors are linearly independent. U3 could have been written as a linear function of
U1 and U2, in fact U3 = U1 +U2, and that is whyW3 became null.

(ix) If there arem1 dependent vectors andm2 linearly independent vectors in a given
system of m1 +m2 vectors of the same category then when the Gram–Schmidt or-
thogonalizationprocess is appliedon thesem1+m2 vectorsweget onlym2 orthonor-
mal vectors and the remainingm1 will be null vectors.

When we start with a given set of vectors U1,… ,Uk we do not know whether it is a
linearly independent or dependent system. Hence, start with the orthogonalization
process. If a Wj becomes null, ignore the corresponding Uj and proceed with the re-
maining to obtain a set of orthonormal vectors. This will be m2 in number if in the
original set U1,… ,Uk onlym2 were linearly independent.

Note. For a more rigorous definition of a vector space we will wait until after the dis-
cussion of matrices so that these objects can also be included as elements in such a
vector space.

Exercises 1.3
1.3.1. Check for linear dependence or independence in the following set of vectors:

(a) U1 =

[[[[[[

[

1
−1
0
1
2

]]]]]]

]

, U2 =

[[[[[[

[

2
0
−1
1
5

]]]]]]

]

, U3 =

[[[[[[

[

3
1
1
−1
1

]]]]]]

]

, U4 =

[[[[[[

[

1
−1
0
0
1

]]]]]]

]

;

(b) U1 = (2,0, 1, −1), U2 = (3,0, −1, 2), U3 = (5,0,0, 1);
(c) U1 = (3, 1, −1, 1, 2), U2 = (5, 1, 2, −1,0), U3 = (7, −1, 1, −1,0).
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1.3.2. For each case in Exercise 1.3.1 find a basis for the vector subspace spanned by
the vectors in the set.

1.3.3. For each of the subspaces spanned by the vectors in Exercise 1.3.1 construct a
basis for the orthogonal complement and compute the dimensions of each of these
orthogonal complements.

1.3.4. For each set of vectors in Exercise 1.3.1 construct a set of (i) mutually orthogonal
vectors as linear functions of the given set of vectors, (ii) a set of orthonormal system
of vectors as linear functions of the given set of vectors, if possible.

1.3.5. Let U1 and U2 be two linearly independent 2-vectors. Let V be an arbitrary
2-vector. Show that V can be written as a linear function of U1 and U2.

1.3.6. Illustrate the result in Exercise 1.3.5 geometrically.

1.3.7. Let U1,U2 and U3 be three linearly independent 3-vectors and let V be an arbi-
trary 3-vector. Show that V can be written as a linear function of U1,U2 and U3.

1.3.8. Treating vectors as arrowheads let U⃗ 1 = (1, 1, −1) = ⃗i+ ⃗j− k⃗ and U⃗2 = (2, 1,0) = 2 ⃗i+ ⃗j
give a geometric interpretation of a basis for the subspace orthogonal to the subspace
spanned by U⃗ 1 and U⃗2.

1.3.9. In the language of analytical geometry two lines in a plane are perpendicular
to each other if the product of their slopes is −1. Express this statement in terms of the
dot product of two vectors being zero.

1.3.10. Find all vectorswhich are orthogonal to bothU1 = (1, 1, 1, −1) andU2 = (2, 1,3, 2).

1.3.11. IfU1 = (1, 1, 1) andU2 = (1, 1, −1), are the following true? Prove your assertions by
using the definition of linear independence. (i)U1 and 2U1 −U2, (ii)U1 +U2 andU1 −U2,
(iii) U1 −U2 and 2U1 + 2U2, (iv) U1 +U2 and 2U1 − 2U2, are all linearly independent.

1.3.12. Consider a subspace spanned by the vectors U1 and U2 in Exercise 1.3.11. Is it
true that the sets in (i) to (iv) there, are bases for that subspace. Justify your answer.

1.3.13. Let S be the vector subspace spanned byU1 andU2 of Exercise 1.3.11. Construct
2 bases for the orthogonal complement S∗ of S. What are the dimensions of S and S∗?

1.3.14. Consider a 3-space and two planes passing through the origin. Consider the
normals to these planes. Construct 3 bases for the subspace spanned by these normals
if (1) the planes are parallel, (2) the planes are perpendicular to each other, (3) the
planes are neither parallel nor perpendicular to each other.

1.3.15. In Exercise 1.3.14 construct the orthogonal complements of the subspaces
spanned in the three cases and find 2 bases each for these orthogonal complements.

1.3.16. Let Vj ∈ S, j = 1, 2,… be n-vectors where S is a vector space of dimension n.
Show that any set of n linearly independent Vj ’s is a basis of S.
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1.3.17. Let Vj ∈ S, j = 1,… , r, 1 ≤ r ≤ n − 1 where the dimension of S is n and all Vj ’s are
n-vectors. If V1,… ,Vr are linearly independent then show that there exist n − r other
elements Vr+1,… ,Vn of S such that V1,… ,Vn is a basis of S.

1.3.18. Let S be the vector space of all 1 × 3 vectors. Let S1 be spanned by V1 = (1, 1, 1),
V2 = (1,0, −1), V3 = (2, 1,0) and S2 be spanned by U1 = (2, 1, 1), U2 = (3, 1, −1). Show that
(1) S1 ⊂ S, S2 ⊂ S, that is, S1 and S2 are subspaces in S. (2) S1 ∩ S2 ≠ O, that is, the in-
tersection is not empty. (3) Determine the dimensions of S1 and S2. (4) Construct the
subspace S3 such that ifW ∈ S3 thenW = V + U where V ∈ S1 and U ∈ S2. [This S3 ⊂ S
is called a simple sum of S1 and S2 and it is usually written as S3 = S1 + S2.]

1.3.19. Consider the same S as in Exercise 1.3.18. Let

e1 = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1).

Let S1 be spanned by e1 and e2 and S2 be spanned by e3. Show that (1) S1 ⊂ S and S2 ⊂ S.
(2) S1 ∩ S2 = O. (3) Construct S3 as in Exercise 1.3.18.

1.3.20. Direct sum of subspaces. Let S be a finite dimensional linear space (vector
space) and let S1 and S2 be subspaces of S. Then the simple sum of S1 and S2, denoted
by S1 + S2, is the set of all sums of the type U + V where U ∈ S1 and V ∈ S2. Note that
S1 + S2 is also a subspace of S. In addition, if S1 ∩ S2 = O, that is, the intersection of
S1 and S2 is null or empty then the simple sum is called a direct sum, and it will be
denoted by S1 +̂S2. Show that for the simple sums,

dim(S1 + S2) + dim(S1 ∩ S2) = dim(S1) + dim(S2)

where dim(⋅) denotes the dimension of (⋅) and + the simple sum.

1.3.21. Let Sj, j = 1,… ,k be subspaces of a finite dimensional space S. Show that, for
the simple sums,

dim(S1 +⋯+ Sk) ≤
k
∑
i=1

dim(Si).

1.3.22. Let S1 and S2 be as in Exercise 1.3.20. Then show that every elementW ∈ (S1 +
S2) can be written asW = U +V , U ∈ S1, V ∈ S2 and that this decompositionW = U +V
is unique if and only if S1 ∩ S2 = O where Omeans a null set.

1.3.23. Let S0,S1,… ,Sk be subspaces of a finite dimensional linear space S. Show that
the subspace S0 can be written as a direct sum of the subspaces S1,… ,Sk if and only
if the union of the bases for S1,… ,Sk forms a basis for S0.

1.3.24. Let Sj ∈ S, j = 0, 1,… ,k where S is a finite dimensional linear space. Show that

S0 = S1 +̂⋯ +̂Sk
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if and only if

dim(S0) =
k
∑
j=1

dim(Sj).

1.3.25. Let Sj , j = 0, 1,… ,k be as in Exercise 1.3.24. Show that

S0 = S1 +̂⋯ +̂Sk

if and only if

Si ∩ (S1 +⋯+ Si−1) = O, i = 1,… ,k

where O is a null set.

1.3.26. By using vector methods prove that the segment joining the midpoints of two
sides of any triangle is parallel to the third side and half as long.

1.3.27. By using vector methods prove that the medians of a triangle (the line seg-
ments joining the vertices to the midpoints of opposite sides) intersect in a point of
trisection of each.

1.3.28. By using vector methods prove that the midpoints of the sides of any plane
convex quadrilateral are the vertices of a parallelogram.

1.3.29. By using vector methods prove that the lines from any vertex of a parallelo-
gram to the midpoints of the opposite sides trisect the diagonal they intersect.

1.3.30. If U1,… ,Uk is a finite collection of vectors and if ‖Uj‖ denotes the length of Uj
then show that

‖U1 +⋯+Uk‖ ≤ ‖U1‖ + ‖U2‖ +⋯+ ‖Uk‖.

1.4 Some applications

We will explore a few applications of vector methods in multivariable calculus, sta-
tistical problems, model building and other related areas. The students who are not
familiar with multivariable calculus may skip this section.

1.4.1 Partial differential operators

Consider a scalar function (as opposed to a vector function) of many real scalar (as
opposed to vector) variables, f (x1,… ,xn), where x1,… ,xn are functionally indepen-
dent (no variable can be written as a function of the other variables), or distinct, real
variables. For example,
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(i) f = 2x31 + x22 − 3x1x2 + x2 − 5x1 + 8
(ii) f = 3x21 + 2x22 − x1x2 − x2 − 2x1 + 10

are two such functions of two real scalar variables x1 and x2. Consider the vector of
partial differential operators. Let us use the following notations:

X =
[[[[

[

x1
x2
⋮
xn

]]]]

]

, 𝜕
𝜕X
=
[[[[[

[

𝜕
𝜕x1
𝜕
𝜕x2
⋮
𝜕
𝜕xn

]]]]]

]

, 𝜕
𝜕X

f = 𝜕f
𝜕X
=
[[[[[

[

𝜕f
𝜕x1
𝜕f
𝜕x2
⋮
𝜕f
𝜕xn

]]]]]

]

,

𝜕
𝜕X′
= ( 𝜕
𝜕x1
,… , 𝜕
𝜕xn
),

𝜕
𝜕X′

f = 𝜕f
𝜕X′
= ( 𝜕f
𝜕x1
,… , 𝜕f
𝜕xn
). (1.4.1)

For example, 𝜕f𝜕x1 means to differentiate f with respect to x1 partially which means as-
suming all other variables x2,… ,xn to be constants. In (ii) above 𝜕𝜕x1 operating on f
gives

𝜕f
𝜕x1
= 𝜕
𝜕x1
(3x21 + 2x22 − x1x2 − x2 − 2x1 + 10)

= 𝜕
𝜕x1
(3x21 ) +

𝜕
𝜕x1
(2x22) +

𝜕
𝜕x1
(−x1x2)

+ 𝜕
𝜕x1
(−x2) +

𝜕
𝜕x1
(−2x1) +

𝜕
𝜕x1
(10)

= 6x1 + 0 − x2 + 0 − 2 + 0
= 6x1 − x2 − 2.

Similarly 𝜕𝜕x2 operating on this f gives

𝜕f
𝜕x2
= 𝜕
𝜕x2
(3x21 + 2x22 − x1x2 − x2 − 2x1 + 10)

= 0 + 4x2 − x1 − 1 − 0 + 0
= 4x2 − x1 − 1.

Then 𝜕𝜕X operating on f is a column vector, namely,

𝜕
𝜕X

f = (
𝜕f
𝜕x1
𝜕f
𝜕x2

) = (
6x1 − x2 − 2
4x2 − x1 − 1

) .

The transpose of this vector is denoted by 𝜕f𝜕X′ (
𝜕
𝜕X′ operating on f ). That is,

𝜕f
𝜕X′
= (6x1 − x2 − 2, 4x2 − x1 − 1).
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1.4.2 Maxima/minima of a scalar function of many real scalar variables

When looking for points where the function may have local maximum or local mini-
mum we differentiate the function partially with respect to each variable, equate to
zero and solve the system of equations to determine the critical points or turning
points or points where the function may have local maximum or local minimum or
saddle points. These steps, in vector notation, are equivalent to solving the equation

𝜕f
𝜕X
= O (1.4.2)

where O denotes the null vector. In our illustrative example

𝜕f
𝜕X
= O ⇒ (6x1 − x2 − 2

4x2 − x1 − 1
) = (

0
0
) .

That is,
(a) 6x1 − x2 − 2 = 0,
(b) 4x2 − x1 − 1 = 0.

When solving 𝜕f𝜕X = O we need not write down the individual equations as in (a) and
(b) above. One can use matrix methods, which will be discussed in the next chapter,
and solve (1.4.2) directly. Solving (a) and (b) we have

(
x1
x2
) = (

9/23
8/23
) .

In our illustrative example there is only one critical point

(x1,x2) = (
9
23
, 8
23
).

This critical point may correspond to a maximum or a minimum or it may be a saddle
point. In order to check formaxima/minimawe look for thewhole configuration of the
matrix of second order partial derivatives and look for definiteness of matrices. This
aspect will be considered after introducing matrices in the next chapter.

1.4.3 Derivatives of linear and quadratic forms

Some obvious results when we use the operator 𝜕𝜕X on linear and quadratic forms will
be examined here. A linear form is available by taking a dot product of X with a con-
stant vector. For example if

X =(
x1
⋮
xn
), a =(

a1
⋮
an
)
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then

X.a = a.X = a1x1 +⋯+ anxn (1.4.3)

is a linear form. For example,

y1 = 2x1 − x2 + 3x3 + x4
y2 = x1 + x1 + x3 + x4 − 2x5 + 7x6

are two linear forms. In a linear form each term is of degree one and all terms are
of degree one each or a linear form is homogeneous of degree 1 in the variables. For
example, the degree of a term is determined as follows: 3x5 (degree 0+ 5 = 5), x51 + 3x52
(each term is of degree 5), 2x41 x2 (degree 0 + 4 + 1 = 5), 6x1 (degree 0 + 1 = 1, linear),
5 (degree 0, constant).

Whatwill be the result if a linear form is operatedwith the operator 𝜕𝜕X ? Let y = X.a
then

𝜕
𝜕X

y = 𝜕y
𝜕X
= [[[

[

𝜕y
𝜕x1
⋮
𝜕y
𝜕xn

]]]

]

= [[

[

a1
⋮
an

]]

]

= a.

Hence we have the following important result:

(i) Consider the operator 𝜕𝜕X and the linear form X.a where a is a constant vector.
Then

y = X.a = a.X ⇒ 𝜕
𝜕X

y = 𝜕y
𝜕X
= a

where a is the column vector of the coefficients in X.a.

Example 1.4.1. Evaluate 𝜕y𝜕X if

y = x1 − 5x2 + x3 − 2x4.

Solution 1.4.1.
𝜕y
𝜕x1
= 1, 𝜕y
𝜕x2
= −5, 𝜕y

𝜕x3
= 1, 𝜕y
𝜕x4
= −2

and hence

𝜕
𝜕X

y = 𝜕y
𝜕X
=
[[[[

[

1
−5
1
−2

]]]]

]

.

Now, let us examine a simple quadratic form. Consider the sum of squares of a
number of variables. Let
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X = [[
[

x1
⋮
xn

]]

]

then X.X = x21 + x22 +⋯+ x2n.

This is a special case of a quadratic form. In a quadratic form, every term is of degree
2 each or it is a homogeneous function of many variables of degree 2. For the time
being, we consider the above simple quadratic form. More general quadratic forms
will be considered after introducing matrices in the next chapter. What will happen
if a sum of squares is operated with the operator 𝜕𝜕X ? Proceeding as in the linear case
the result is the following:

(ii) Let y = X.X = x21 +⋯+ x2n then

y = X.X ⇒ 𝜕y
𝜕X
=(

2x1
⋮
2xn
)= 2X.

1.4.4 Model building

Suppose that a gardener suspects that the growth of a particular species of plant
(growthmeasured in terms of the height of the plant) is linearly related to the amount
of a certain fertilizer used. Let the amount of the fertilizer used be denoted by x and
the corresponding growth (height) be y. Then the gardener’s suspicion is that

y = a + bx

where a and b are some constants, that is, y and x are linearly related. What exactly is
this linear relationship? The gardener conducts an experiment to estimate the values
of a and b. Suppose that the gardener applies the amounts x1,… ,xn of the fertilizer x
on different plants of the same species, in a carefully planned experiment, and take
the corresponding measurements y1,… ,yn on y. Thus the gardener has the following
pairs of values (xi ,yi), i = 1,… ,n. For example, when one spoon of fertilizer (measured
in spoon units) is applied the growth (measured after a fixed time) noted is 3 inches
(growthmeasured in inches) then the corresponding pair is (x1,y1) = (1,3). If y = a+bx
is a mathematical relationship then every pair (x,y) should satisfy the equation y =
a + bx. Then we need only two pairs of values on (x,y) to exactly evaluate a and b
and then every other value on (x,y) must satisfy the relationship. But this is not the
situationhere. Thegardener is thinking that theremaybea relationshipbetween x and
y, that relationshipmay be a linear relationship and that she will be able to estimate y
at a preassigned value of x. Then the error in estimating y by using such a relationship
at a given value of x is y − (a + bx). Denoting the error in the i-th pair by ϵi we have

ϵi = yi − a − bxi .
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One way of estimating the unknown parameters a and b is to minimize the sum of
squares of the errors (error = observed value minus the modeled value, whatever be
the model, linear or not). Such a method of estimating the parameters in a model by
minimizing the error sumof squares is known as themethod of least squares. The error
vector and the error sum of squares in our linear model are given by

ϵ =(
ϵ1
⋮
ϵn
),

ϵ.ϵ = ϵ21 +⋯+ ϵ2n =
n
∑
i=1
(yi − a − bxi)2. (1.4.4)

Equation (1.4.4) can be written in a more elegant way as a quadratic form after dis-
cussingmatrices. Let the vector of unknowns be denoted by α = ( ab ). Then themethod
of least squares implies that ϵ.ϵ is minimized with respect to α. It is obvious that the
maximum of ϵ.ϵ, being a non-negative arbitrary quantity, is at +∞. Then theminimiz-
ing equations, often known as the normal equations in least square analysis, are the
following:

𝜕
𝜕α
(ϵ.ϵ) = O ⇒ (

𝜕
𝜕a
𝜕
𝜕b
)(ϵ.ϵ) = O ⇒

(
−2∑ni=1(yi − a − bxi)
−2∑ni=1 xi(yi − a − bxi)

) = (
0
0
) ⇒

n
∑
i=1
(yi − a − bxi) = 0 (a)

and
n
∑
i=1

xi(yi − a − bxi) = 0 (b)

since −2 ≠ 0. Opening up the sum we have, from (a) and (b),

(
n
∑
i=1

yi) − na − b(
n
∑
i=1

xi) = 0 (c)

and

(
n
∑
i=1

xiyi) − a(
n
∑
i=1

xi) − b(
n
∑
i=1

x2i ) = 0. (d)

Denoting

ȳ =
n
∑
i=1

yi
n

and x̄ =
n
∑
i=1

xi
n
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and solving (c) and (d) we get the values of a and b. Let us denote these estimates by
â and b̂ respectively. Then we have

b̂ =
∑ni=1(xi − x̄)(yi − ȳ)
∑ni=1(xi − x̄)2

=
(∑ni=1 xiyi) − n(x̄ȳ)
(∑ni=1 x2i ) − n(x̄)2

(1.4.5)

and

â = ȳ − b̂x̄. (1.4.6)

From (1.4.5) and (1.4.6) we have the estimates for a and b, and the estimated linear
model by using the method of least squares is then

y = â + b̂x. (1.4.7)

Example 1.4.2. In a feeding experiment with beef cattle the farmer suspects that the
increase in weight is linearly related to the quantity of a particular combination of
feed. The farmer has obtained the following data. Construct the estimating function
by the method of least squares and then estimate the weight if the quantity of feed is
2.2 kg.

Data: y = (gain in weight in kg) 0.5 0.8 1.5 2.0
x = (quantity of feed in kg) 1.2 1.5 2.0 2.5

Solution 1.4.2.

x̄ = 1.2 + 1.5 + 2.0 + 2.5
4

= 1.8, ȳ = 0.5 + 0.8 + 1.5 + 2.0
4

= 1.2.

For convenience of computations let us form the following table: [Use a calculator or
computer to compute â and b̂ directly.]

x y x − x̄ y − ȳ (x − x̄)2 (x − x̄)(y − ȳ)

1.2 0.5 −0.6 −.7 0.36 0.42
1.5 0.8 −0.3 −0.4 0.09 0.12
2.0 1.5 0.2 0.3 0.04 0.06
2.5 2.0 0.7 0.8 0.49 0.56

− − −− − − −−
0.98 1.16

b̂ = 1.16
0.98
≈ 1.1837, â = 1.2 − (1.16)

(0.98)
(1.8) ≈ −0.9306.

The estimated model is

y = −0.9306 + 1.1837x.

Then the predicted value of y at x = 2.2 is

ŷ = −0.9306 + 1.1837(2.2) ≈ 1.6735kg.



1.4 Some applications | 55

Exercises 1.4
1.4.1. Find the critical points for the following functions and then check to see
whether these correspond to maxima or minima or something else:
(a) f = 2x21 + x22 − 3x2 + 5x1x2 − x1 + 5.
(b) f = x21 + x22 − 2x1x2 − 5x1 − 2x2 + 8.

1.4.2. Evaluate 𝜕f𝜕X and write the results in vector notations:
(a) f = 3x1 − x2 + 5x3 − x4 + 10.
(b) f = x21 + 2x1x2 + x1x3 − x22 + 3x23.
(c) f = 2x21 + x22 + x23 − 5x1x2 + x2x3.

1.4.3. Write the operator 𝜕𝜕X′ . Then on each element of this vector apply the operator
𝜕
𝜕X . Explain what you have in this configurations of n rows and n columns.

1.4.4. Apply the operator 𝜕𝜕X
𝜕
𝜕X′ on f in each of (a), (b), (c) in Exercise 1.4.2.

1.4.5. Fit linear models of the type y = a + bx for the following data:
(a) (x,y) = {(0, 2), (1,5), (2,6), (3,9)}.
(b) (x,y) = {(−1, 1), (−2, −2), (0,3), (1,6)}.

1.4.6. Fit a model of the type y = a + bx + cx2 to the following data:

(x,y) = {(−1, 2), (0, 1), (1,5), (2,7), (3, 21)}.

1.4.7. In statistical distribution theory themoment generating function of a real vector
X′ = (x1,… ,xk) randomvariable is denoted byM(T), T′ = (t1,… , tk)where T is a vector
of parameters. WhenM(T) is evaluated for the real multivariate Gaussian distribution
we obtain

M(T) = eϕ(T)

where

ϕ(T) = t1μ1 +⋯+ tkμk +
1
2
[

k
∑
i,j=1

σijtitj]

where μ1,… ,μk aswell as σij , i = 1,… ,k, j = 1,… ,k are constants, free of T .WhenM(T)
is available and differentiable, then the expected value of X or the first moment of X,
denoted by μ = E(X), is obtained as 𝜕𝜕TM(T)|T=O, that is the first derivative evaluated
at T = O, and the variance–covariance matrix is 𝜕𝜕T

𝜕
𝜕T′M(T)|T=O − μμ

′. Evaluate E(X)
and the variance–covariance matrix for the multivariate Gaussian distribution.

1.4.8. The exponential series is

ey = y0 + y
1!
+
y2

2!
+⋯, y0 = 1.
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Consider the operator D = d
dx . Then

exD = (xD)0 + xD
1!
+ x

2D2

2!
+⋯.

where, for example, Dr = DD…D stands for D operating repeatedly r times. Let exDf0
denote exD operating on f and then Dr f is evaluated at x = 0, r = 0, 1,…. Then

exDf0 = f (0) +
x
1!
( d
dx

f)
x=0
+ x

2

2!
( d

2

dx2
f)

x=0
+⋯.

This is Taylor series in one variable. Now consider a two variable case. Let

∇ = (
D1
D2
) , Di =

𝜕
𝜕xi
, i = 1, 2

and the increment vector at the point (a1,a2) is Δ′ = (x1 − a1,x2 − a2). Then the dot
product is given by

∇.Δ = (x1 − a1)D1 + (x2 − a2)D2.

As before, let e∇.Δf0 denote e∇.Δ operating on f where the various derivatives are eval-
uated at the point (a1,a2). Write down the Taylor series expansion for two variables
(x1,x2) at the point (a1,a2) explicitly up to the terms involving all the second order
derivatives.

1.4.9. By using the operator ∇ in Exercise 1.4.8 expand the following functions by us-
ing Taylor expansion, at the specified points:
(a) x21 + 2x1x22 + x32 + 5x1 − x2 + 7 at (1, −1).
(b) 2x21 + x22 − 3x1x2 + 8 at (−2, −3).
(c) x41 + x31 x2 + 3x42 − x1x2 + 4 at (2,0).

1.4.10. Extend the ideas in Exercise 1.4.8 to a scalar function f (x1,x2,x3) of 3 real vari-
ables x1,x2,x3, at the point (a1,a2,a3). In this case Di =

𝜕
𝜕xi
, i = 1, 2,3. Evaluate the first

few terms of the series explicitly up to the terms involving (∇.Δ)3.

1.4.11. Apply the result in Exercise 1.4.10 to expand the following function up to terms
involving (∇.Δ)3, and at the point (1,0, −1):

x21e−x1−x2−x3 + 5x31 x22x3 − e−2x1+3x2 .

1.4.12. For Exercise 1.4.5 (a) estimate y at (i) x = 2.7, (ii) x = 3.1. Is it reasonable to use
the model to estimate y at x = 10?

1.4.13. For Exercise 1.4.6 estimate y at (i) x = 0.8, (ii) x = 3.1. Is it reasonable to predict
y at (iii) x = −4, (iv) x = 8 by using the same model?
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1.4.14. Use the method of least squares to fit the model

y = a0 + a1x21 + a2x1x2 + a3x22

to the following data:

(x1,x2,y) = (0,0, 1), (0, 1,0), (0, 2, −2), (1, −1, −1), (2, 1,8), (1, 2,3).

1.4.15. Can the method of least squares, as minimizing the error sum of squares with
error defined as “observedminus the modeled value”, be used to fit the model y = abx

to the data

(x,y) = (x1,y1), (x2,y2),… , (xn,yn)

and if not what are the difficulties encountered?





2 Matrices

2.0 Introduction

One of the most elegant tools in simplifying matters and dealing with systems of ob-
jects is the entity called a matrix. Plural of the word matrix is matrices. Suppose we
have a set ofmn objects, such asmn real numbers, and if these objects are arranged in
m rows and n column we get the configuration called a matrix. For example if 6 num-
bers are arranged in 3 rows and 2 columns we get a matrix, if the same numbers are
arranged in 2 rows and 3 columns we get another matrix, one row and 6 columns we
get a third matrix and so on:

A1 = [
5 −1 2
1 4 0

] = a matrix,

A2 =
[[

[

5 1
−1 4
2 0

]]

]

= another matrix,

A3 = [5 1 −1 4 2 0] = another matrix,

A4 = [
5 −1 2 1
4 0

] = not a matrix.

In the last representation two positions are empty and hence it is not a matrix. Here
A1 has 2 rows and 3 columns whereas A3 has one row and 6 columns.

Notation 2.0.1. If a matrix has m rows and n columns it is called an m × n (m by n)
matrix.

Here m represents the number of rows and n represents the number of columns.
In our illustrative examples A1 is 2 × 3 (not 6) matrix, A2 is a 3 × 2 matrix and A3 is
a 1 × 6 matrix. The symbol × (cross) simply separates the numbers m and n and it is
not used as a multiplication symbol in this notation.m.n orm ∗ n are not appropriate
notations in this respect. Obviously, a 1 × n matrix is a row vector of n elements and
an n × 1 matrix is a column vector of n elements. Thus all items in Chapter 1 become
special cases of the various properties of matrices.

Example 2.0.1 (Grades of students). Let the following tables give the grades, in per-
centages, obtained by 3 students in four class tests in two courses:

Course 1

test 1 test 2 test 3 test 4

Student 1 80 85 90 82
Student 2 65 60 70 72
Student 3 75 72 74 78

OpenAccess.©2017ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562507-002
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Course 2

test 1 test 2 test 3 test 4

Student 1 99 92 90 95
Student 2 60 62 65 63
Student 3 80 72 77 81

The number at each position signifies something. The first row second column entry
for Course 1, namely 85, is the grade of student 1 in test 2 in course 1. Thus the en-
tries cannot be arbitrarily interchanged. The interchanged arrangement will signify
something different from the original arrangement.

A convenient notation that can be used to denote a matrix is by denoting the ele-
ment at the i-th row, j-th column position in a matrix A by aij . In this case we write a
general matrix in the form

A = (aij) =
[[[[

[

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ … ⋮
am1 am2 … amn

]]]]

]

. (2.0.1)

The elements are enclosed by square brackets [⋅] or by ordinary brackets (⋅). The nota-
tion A = (aij) means the matrix where the i-th row, j-th column element or the (i, j)-th
element is aij for all i and j. In Example 2.0.1 for course 1, for example,

a11 = 80, a13 = 90, a22 = 60, a24 = 72, a31 = 75, a34 = 78.

The elements are usually separated by spaces. If there is possibility of confusion then
the elements in the configuration are separated by commas. When some of the ele-
ments are numbers, some are long expressions involving some variables etc there is
possibility of confusion. In this case we will separate the elements by commas.

If the matrix of grades in course 2 is denoted by B = (bij) then

A = [[
[

80 85 90 82
65 60 70 72
75 72 74 78

]]

]

, B = [[
[

99 92 90 95
60 62 65 63
80 72 77 81

]]

]

.

For example, b13 = 90, b24 = 63, b32 = 72. Here a11 = 80 ≠ b11 = 99 whereas a32 = 72 =
b32. If the student had exactly the same profiles of grades in the two courses then the
corresponding entries would have been all equal, that is aij = bij for all i and j.

2.1 Various definitions

A lot of technical terms and definitions will be introduced, all at once, since they can
be recognized easily and the properties can be memorized without difficulty.
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Definition 2.1.1 (Equality of matrices). Two matrices A and B are said to be equal if
(i) they are of the same category, that is, ifA ism×n then B has to bem×n, (ii) element-
wise they must be equal, that is, aij = bij for all i and j.

Example 2.1.1. Let

C = [1 −1 2
0 3 x

] , D = [a b 2
0 3 5

] .

Here both C and D are 2 × 3 matrices. C = D if and only if (iff) 1 = a, −1 = b, x = 5. If all
elements in C are equal to the corresponding elements in D, except for one pair, still
C ≠ D.

In Example 2.0.1 if the grades are to be represented out of 20 points each, rather
than as percentages, then each grade is to be divided by 5. Then the whole configura-
tion of grades is to be divided by 5, or each element there, is to be divided by 5. In this
casewe say that thewholematrix is divided by 5. For example, forA, the configuration
of grades out of 20 points will then be

[[[

[

80
5

85
5

90
5

82
5

65
5

60
5

70
5

72
5

75
5

72
5

74
5

78
5

]]]

]

= 1
5
[[

[

80 85 90 82
65 60 70 72
75 72 74 78

]]

]

= 1
5
A.

Definition 2.1.2 (Scalar multiplication of matrices).

cA = (caij)

where c is a scalar quantity (1 × 1 matrix).

That is, if every element in A is multiplied by c then we say that the matrix A is
multiplied by c. As a convention the scalar quantity c is written on the left of A as cA,
and not on the right as Ac, when writing a scalar multiple of A.

Example 2.1.2. Let

A = [1 −1
2 5
] .

Then

2A = [2 −2
4 10
] , −A = [−1 1

−2 −5
] , 0A = [0 0

0 0
] .

Definition 2.1.3 (A null matrix). If all the elements in a matrix are zeros it is called a
null matrix and it is denoted by a big O.
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Definition 2.1.4 (Square and rectangular matrices). In an m × n matrix if m = n, that
is, the number of rows is equal to the number of columns, then it is called a square
matrix. Non-square matrices are called rectangular matrices:

[
1 −1
1 0
] = a 2 × 2 square matrix,

[
2 1 5
1 1 −1

] = a 2 × 3 rectangular matrix,

[1 −1 2 3] = a 1 × 4 rectangular matrix or a row vector,

[
1
−7
] = a 2 × 1 rectangular matrix or a column vector.

Note that vectors of Chapter 1 are all either 1 × n (row vector) or n × 1 (column vector)
rectangular matrices.

Definition 2.1.5 (A diagonal matrix). In an n × n square matrix A = (aij) if aij = 0 for
all i and j, i ≠ j and at least one aii ≠ 0, i = 1,… ,n then A is called a diagonal matrix.

That is, the matrix has to be square, and all elements other than the ones on the
leading diagonal (the diagonal starting from the top left corner and going down; in a
square matrix this diagonal ends at the bottom right corner) are zeros and there is at
least one nonzero element on the diagonal. If all the elements on the diagonal are also
zeros then obviously it is a null matrix. A null matrix is not counted among diagonal
matrices even if the null matrix is a square matrix. For example,

[[

[

0 0 0
0 2 0
0 0 1

]]

]

, [
1 0
0 1
] , [

0 0
0 −5
]

are all diagonalmatrices. A convenient notation for a diagonalmatrix is the following:

D = diag(d1,… ,dn) (2.1.1)

which means D is a diagonal matrix with the diagonal elements d1,… ,dn respectively
or to be more specific, to indicate rows and columns, we may write

D = diag(d11,… ,dnn).

Definition 2.1.6 (A triangular matrix). A square matrix with all elements above the
leading diagonal zeros (there may be some zeros on the diagonal and below the di-
agonal also) then it is called a lower triangular matrix and if all elements below the
leading diagonal are zeros then it is called an upper triangular matrix. (A null matrix
is not counted as a triangular matrix or a diagonal matrix.)
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For example,

[[

[

1 0 0
3 0 0
−1 1 5

]]

]

is lower triangular, [[
[

7 1 0
0 −1 1
0 0 2

]]

]

is upper triangular.

Definition 2.1.7 (Identity and scalar matrices). A diagonal matrix with all diagonal
elements equal to d, d ≠ 1, d ≠ 0, is called a scalar matrix and if d = 1, that is, all
diagonal elements are equal to 1 then it is called an identity matrix and an identity
matrix is denoted by I, or In if the order is to be indicated that it is an n × n ma-
trix.

For example,

I2 = [
1 0
0 1
] , I3 =

[[

[

1 0 0
0 1 0
0 0 1

]]

]

, I4 =
[[[[

[

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]]]]

]

.

Definition 2.1.8 (The transpose of a matrix). If the i-th row of an m × n matrix A is
written as the i-th column for all i = 1,… ,m then the newmatrix thus obtained is called
the transpose of A and it is usually denoted as A′ (A prime) or AT (A transpose), trans-
pose of the matrix A.

Thus when A ism × n then A′ is n ×m. For example,

A = [1 1 1
1 −1 2

] ⇒ A′ = [[
[

1 1
1 −1
1 2

]]

]

;

B = (0, 1,5) ⇒ B′ =(
0
1
5
);

C = ( 1
−1
) ⇒ C′ = (1 −1).

(i) The transpose of a 1 × 1 matrix (scalar quantity) is itself.

Definition 2.1.9 (A symmetric matrix). If a squarematrixA = (aij) is such that aij = aji,
that is, the element in the (i, j)-th position is equal to the element in the (j, i)-th posi-
tion for all i and j then A is called a symmetric matrix. That is, if A is symmetric then
A = A′.
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For example,

A = [1 7
7 −3
] = A′, B = [[

[

1 2 3
2 0 −4
3 −4 7

]]

]

= B′, C = [2 0
0 −5
] = C′.

The following properties are immediate:

(ii) I = I′; D = D′ (D a diagonal matrix); (lower triangular)′ = upper triangular and
vice versa; O′ = O (when O is a square null matrix).

Definition 2.1.10 (A skew symmetric matrix). If a square matrix A = (aij) is such that
aij = −aji for all i and j then A is called a skew symmetric matrix. That is, A′ = −A.

For example,

A = [0 −4
4 0
] ⇒ A′ = −A;

B = [[
[

0 1 3
−1 0 −2
−3 2 0

]]

]

⇒ B′ = −B.

Note that when A = (aij) is skew symmetric then aii = −aii whichmeans aii = 0. That is,
all the diagonal elements are zeros.

(iii) All the leading diagonal elements of a skew symmetric matrix are zeros.

Example 2.1.3 (Consumption profiles). Suppose that the following tables give the
quantities (all in kg (kilograms)) of food items consumed by 3 families over two
weeks.

week 1

beef pork chicken beans

family 1 10 5 10 10
family 2 8 7 8 10
family 3 10 15 10 12

week 2

beef pork chicken beans

family 1 10 15 15 5
family 2 8 10 10 12
family 3 12 15 12 10
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The two matrices of weekly consumption, for all the 3 families, are therefore

A = [[
[

10 5 10 10
8 7 8 10
10 15 10 12

]]

]

and B = [[
[

10 15 15 5
8 10 10 12
12 15 12 10

]]

]

.

If we want to find the profile of total consumption in the two weeks together then we
add the corresponding elements. That is,

A + B = [[
[

10 + 10 5 + 15 10 + 15 10 + 5
8 + 8 7 + 10 8 + 10 10 + 12
10 + 12 15 + 15 10 + 12 12 + 10

]]

]

= [[

[

20 20 25 15
16 17 18 22
22 30 22 22

]]

]

.

Definition 2.1.11 (Sum of two matrices). It is defined only formatrices of the same cat-
egory, both must be m × n (same m, same n for both). Let A = (aij) and B = (bij). Then
the sum is defined as

A + B = (aij + bij)

or the matrix obtained by adding the corresponding elements as in the illustrative
example.

For example,

(1, 1, −1) + (2,0, 1) = (3, 1,0);

(1, 1, −1) +(
2
0
1
)= not defined;

[
1 1 0
2 −1 0

] + [
0 0 0
0 0 0

] = [
1 1 0
2 −1 0

] ;

(
0
1
−1
)+(

8
1
2
)=(

8
2
1
);

[[

[

5 2 −1
1 0 −1
2 2 4

]]

]

+[[

[

0 1 0
0 2 0
0 0 1

]]

]

= [[

[

5 3 −1
1 2 −1
2 2 5

]]

]

= [[

[

0 1 0
0 2 0
0 0 1

]]

]

+[[

[

5 2 −1
1 0 −1
2 2 4

]]

]

.
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We can extend this definition to any number of matrices of the same category. Com-
bining with the definition of scalar multiplication we can define a linear function of
two matrices (or of several matrices) of the same category. That is,

αA + βB = (αaij + βbij) (2.1.2)

where α,β are scalars andA = (aij) and B = (bij). That is, the corresponding linear func-
tions of the elements are taken. Now, we can establish the following properties easily.
For matrix addition we use the symbol +.

(vi) −A = (−1)A; A − A = O; A +O = A;
A + B = B + A; A + (B + C) = (A + B) + C;

α(A + B) = αA + αB (2.1.3)

where α is a scalar.

Example 2.1.4. In Example 2.1.3 if the price per kg for beef, pork, chicken and beans
for week 1 are respectively (2, 1,0.5,3) dollars and those for week 2 are respectively
(2.1, 1.2,0.8,3.2) dollars then construct the expense profiles for week 1 and week 2 for
the 3 families.

Solution 2.1.4. If the price vectors are

U =(

2
1
0.5
3

) and V =(

2.1
1.2
0.8
3.2

)

respectively then themoney value, in dollars, of the expense profiles for the twoweeks
are the following: For the first week, writing it as AU ,

AU = [[
[

10 5 10 10
8 7 8 10
10 15 10 12

]]

]

[[[[

[

2
1
0.5
3

]]]]

]

= [[

[

(10)(2) + (5)(1) + (10)(0.5) + (10)(3)
(8)(2) + (7)(1)+(8)(0.5) + (10)(3)
(10)(2) + (15)(1) + (10)(0.5) + (12)(3)

]]

]

= [[

[

60
57
76

]]

]
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and that for the second week, writing it as BV , we have

BV = [[
[

10 15 15 5
8 10 10 12
12 15 12 10

]]

]

[[[[

[

2.1
1.2
0.8
3.2

]]]]

]

= [[

[

(10)(2.1) + (15)(1.2) + (15)(0.8) + (5)(3.2)
(8)(2.1) + (10)(1.2) + (10)(0.8) + (12)(3.2)
(12)(2.1) + (15)(1.2) + (12)(0.8) + (10)(3.2)

]]

]

= [[

[

67
75.2
84.8

]]

]

.

The total expenses for the two weeks combined is then

[[

[

60
57
76

]]

]

+[[

[

67
75.2
84.8

]]

]

= [[

[

127
132.2
160.8

]]

]

.

Some sort of multiplication and addition of matrices is involved in calculating the
combined expense profile of the three families for two weeks. We will define matrix
multiplication in a formal way.

The matrix A = (aij) postmultiplied by B = (bij), denoted as AB (or B premultiplied
by A) is defined only when A and B are of the following types: A ism×n and B is n× r,
that is, the number of columns of A is equal to the number of rows of B. For example,

if A is 2 × 5,B is 5 × 4 then AB is defined but BA is not defined;
if A is 3 × 3,B is 3 × 3 then AB is defined and BA is also defined;
if A is 1 × n and B is n × 1 then AB and BA are defined;
if A is 3 × 4 and B is 2 × 3 then AB is not defined but BA is defined.

Definition 2.1.12 (Multiplication of matrices). Let A = (aij) be m × n and B = (bij) be
n × r then AB is an m × r matrix where the (i, j)-th element in AB is the dot product of
the i-th row vector of A with the j-th column vector of B.

The i-th row vector of A, denoted by αi, is the following:

αi = (ai1,ai2,… ,ain).

The j-th column vector of B, denoted by βj, is

βj =(

b1j
b2j
⋮
bnj

).
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Then writing element-wise multiplication and addition as

αiβj = (ai1,… ,ain)(
b1j
⋮
bnj
)

= ai1b1j + ai2b2j +⋯+ ainbnj

=
n
∑
k=1

aikbkj .

If AB is denoted by AB = C = (cij) then

cij = αiβj =
n
∑
k=1

aikbkj . (2.1.4)

Symbolically the multiplication can be expressed as follows:

The first row of A dot product with the various columns of B gives the first row
of C = AB, the second row of A dot product with the various columns of B gives the
second row of C, and so on.

Example 2.1.5. Evaluate the product of the matrices A and B to obtain AB, wherever
AB is defined:

(a) A = (1 −1 1 2), B =(

0
1
2
−1

);

(b) A = [ 0 1 −1 2
−1 1 5 4

] , B =
[[[[

[

1
2
−1
0

]]]]

]

;

(c) A = [[
[

2 1 −1
3 1 1
1 1 1

]]

]

, B = [[
[

−1 1
1 −1
0 0

]]

]

;

(d) A = [[
[

2 1 −1
3 1 1
1 1 1

]]

]

, B = [2 1 1 2
1 1 0 0

] ;
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(e) A = I3, B = (bij);

(f) A = [0 0 0
0 0 0

] , B = (bij) is 3 × 3.

Solutions 2.1.5.

(a) AB = (1 −1 1 2)(

0
1
2
−1

)

= (1)(0) + (−1)(1) + (1)(2) + (2)(−1) = −1.

(b) AB = [ 0 1 −1 2
−1 1 5 4

]
[[[[

[

1
2
−1
0

]]]]

]

where A is 2× 4 and B is 4× 1. Thus AB is 2× 1 which can be remembered symbolically
as 2 × 1 = 2 × (4 ∶ 4) × 1. The first row element in AB is

(0 1 −1 2)(

1
2
−1
0

)= (0)(1) + (1)(2) + (−1)(−1) + (2)(0) = 3

and the second row element in AB is

(−1 1 5 4)(

1
2
−1
0

)= (−1)(1) + (1)(2) + (5)(−1) + (4)(0) = −4.

Hence

AB = [ 3
−4
] .

(c) AB = [[
[

2 1 −1
3 1 1
1 1 1

]]

]

[[

[

−1 1
1 −1
0 0

]]

]

= [[

[

(2)(−1) + (1)(1) + (−1)(0), (2)(1) + (1)(−1) + (−1)(0)
(3)(−1) + (1)(1) + (1)(0), (3)(1) + (1)(−1) + (1)(0)
(1)(−1) + (1)(1) + (1)(0), (1)(1) + (1)(−1) + (1)(0)

]]

]

= [[

[

−1 1
−2 2
0 0

]]

]

.
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(d) Since A is 3 × 3 and B is 2 × 4, AB is not defined.
(e) Here A is an identity matrix and B is a general matrix.

AB = [[
[

1 0 0
0 1 0
0 0 1

]]

]

[[

[

b11 b12 b13
b21 b22 b23
b31 b32 b33

]]

]

= [[

[

b11 b12 b13
b21 b22 b23
b31 b32 b33

]]

]

= B.

(f) AB = [0 0 0
0 0 0

][[

[

b11 b12 b13
b21 b22 b23
b31 b32 b33

]]

]

= [
0 0 0
0 0 0

] = O.

It is interesting to observe the following general properties. As long as the products
are defined

(v) (A′)′ = A; IA = A; BI = B; OC = O; DO = O; AB ≠ BA
ABC ≠ ACB (2.1.5)

where A,B,C,D are arbitrary matrices and I and O denote the identity matrix and
the null matrix respectively, and when the products are defined.

Also note that if X is an n × 1 column vector then

X = [[
[

x1
⋮
xn

]]

]

⇒ X′X = (x1,… ,xn)(
x1
⋮
xn
)

= x21 + x22 +…+ x2n (2.1.6)

whereas

XX′ =(
x1
⋮
xn
)(x1,… ,xn)

=
[[[[

[

x21 x1x2 … x1xn
x2x1 x22 … x2xn
⋮ ⋮ … ⋮
xnx1 xnx2 … x2n

]]]]

]

. (2.1.7)

That is, X′X is a scalar (1 × 1 matrix) whereas XX′ is an n × nmatrix.
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Example 2.1.6. Write the following systems of linear equations in matrix notation:

(a) 2x1 − x2 + x3 = 4
x1 + x2 − x3 = 2;

(b) 3x1 + x2 + x3 = 1
x1 − 2x2 + x3 = 3
2x1 + x2 − x3 = 2;

(c) 5x1 − x2 + x3 − x4 = 0
2x1 + x2 − 3x3 + x4 = 0.

Solution 2.1.6. (a) The first equation in the first set can be written as

(2 −1 1)(
x1
x2
x3
)= 4

and the second as

(1, 1, −1)(
x1
x2
x3
)= 2

and combining the two we have

[
2 −1 1
1 −1 1

][[

[

x1
x2
x3

]]

]

= [
4
2
] or AX = b

where the coefficient matrix is A,

A = [2 −1 1
1 −1 1

] , X = [[
[

x1
x2
x3

]]

]

and b = [4
2
] .

(b) The coefficient matrix in the three equations is

A = [[
[

3 1 1
1 −2 1
2 1 −1

]]

]

and hence the three equations together is AX = b where A is given above

X =(
x1
x2
x3
) and b =(

1
3
2
).
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(c) Writing the two equations together as AX = b we have

A = [5 −1 1 −1
2 1 −3 1

] , X =
[[[[

[

x1
x2
x3
x4

]]]]

]

,

b = (0
0
) or AX = O

where O is a null vector.

Example 2.1.7 (Linear forms). Write the following linear forms (all terms are homo-
geneous of degree 1 each) in matrix notation:

(a) y = x1 − 3x2 + x3
(b) y = x1 − x2 − x3 + 2x4
(c) y1 = 2x1 − x2 + x3

y2 = x1 + x2
(d) y1 = a11x1 + a12x2 +…+ a1nxn

⋮

ym = am1x1 + am2x2 +…+ amnxn

where aij ’s are constants.

Solution 2.1.7.

(a) y = (1, −3, 1)(
x1
x2
x3
)= (x1,x2,x3)(

1
−3
1
)= a′X = X′a

where

a =(
1
−3
1
) and X =(

x1
x2
x3
).

(b) Writing it as y = a′X = X′a we have

a =
[[[[

[

1
−1
−1
2

]]]]

]

and X =
[[[[

[

x1
x2
x3
x4

]]]]

]

.
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(c) Writing the two linear forms together as one equation Y = AX we have

Y = [y1
y2
] , A = [2 −1 1

1 1 0
] , X = [[

[

x1
x2
x3

]]

]

.

(d) Writing them linear forms together as one equation Y = AX we have

Y = [[
[

y1
⋮
ym

]]

]

, A = [[
[

a11 a12 … a1n
⋮ ⋮ …⋮
am1 am2 … amn

]]

]

, X = [[
[

x1
⋮
xn

]]

]

.

The representation in (d) is a general linear formor it can also be considered as a linear
transformation of the vector X into the vector Y . It is linear in the sense that each yj is
a linear function (of the first degree in every term) of x1,… ,xn.

Example 2.1.8 (Quadratic forms). Write the following quadratic forms (all terms are
homogeneous of degree 2 each) in matrix notations:

(a) y = x21 + x22 + x23
(b) y = x21 − x22 + x23
(c) y = 2x21 + x22 − x23 + 5x1x2 − 2x1x3 + x2x3
(d) y = x22 + 4x1x2 − 2x2x3

(e) y =
n
∑
i=1

aiix2i + 2
n
∑
i<j=1

aijxixj =∑
ij
aijxixj .

Solutions 2.1.8. This is a simple sum of squares.

(a) y = X′X, X = [[
[

x1
x2
x3

]]

]

.

(b) Here the coefficients of x21 ,x22 and x23 are different. This format can be created
by a diagonal matrix. That is,

y = X′AX, X = [[
[

x1
x2
x3

]]

]

, A = [[
[

1 0 0
0 −1 0
0 0 1

]]

]

.

(c) Here the product terms are also present. Hence A has nonzero off-diagonal
elements.

y = X′AX, X = [[
[

x1
x2
x3

]]

]

, A = [[
[

2 5 −2
0 1 1
0 0 −1

]]

]

.



74 | 2 Matrices

Note that the coefficient of x1x2 is a12 = 5. But x1x2 = x2x1. Hence we could have written
5 as a21 instead as a12 or we could have distributed 5 equally to a12 and a21, that is,
a12 = a21 =

5
2 which is a symmetric format. Writing a symmetric format for A we have

the same quadratic form written as

y = X′AX, A = [[
[

2 5
2 −1

5
2 1 1

2
−1 1

2 −1

]]

]

.

In this format, the diagonal elements of A are the coefficients of the square terms, that
is aii is the coefficient of x2i , and the non-diagonal elements are the coefficients of the
corresponding product termswhere the coefficients are distributed equally as aij = aji,
that is the coefficients of xixj as well as that of xjxi is (aij + aji)/2 in order to write A as
a symmetric matrix for elegance.

(d) y = X′AX, X = [[
[

x1
x2
x3

]]

]

, A = [[
[

0 2 0
2 1 −1
0 −1 0

]]

]

.

Here A is written as a symmetric matrix. We could have written the quadratic form
in many different ways if we did not want A to be symmetric. For example, the same
quadratic form

y = X′BX = X′CX

where

B = [[
[

0 4 0
0 1 −2
0 0 0

]]

]

and C = [[
[

0 1 0
3 1 0
0 −2 0

]]

]

.

The following is a general quadratic form:

(e) y = X′AX, X = [[
[

x1
⋮
xn

]]

]

, A = (aij)

and without loss of generality we can take A to be symmetric, that is, A = A′.

(vi) The matrix A of the quadratic form X′AX can be taken as symmetric, that is,
A = A′, without loss of generality.

If A is not symmetric then the quadratic form can be rewritten equivalently as

X′AX = X′BX, where B = 1
2
(A + A′) = B′.

Thus B is symmetric.
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The following general properties can be observed for transposes and products.
The student may verify them by taking arbitrary 3 × 3 matrices:

(A′)′ = A; (A + B)′ = A′ + B′; (AB)′ = B′A′; (AA′)′ = AA′;

I′ = I ; O′ = O; (A1A2…Ak)′ = A′k…A′2A′1 . (2.1.8)

Whenever the sums and products are defined,
the transpose of a lower triangular matrix is upper triangular;
the transpose of an upper triangular matrix is lower triangular;
the transpose of a diagonal matrix is diagonal.

Whenever the product is defined,
the product of two identity matrices is an identity matrix;
the product of two diagonal matrices is a diagonal matrix;
the product of a null matrix with any other matrix is null;
the product of two lower triangular matrices is lower triangular;
the product of two upper triangular matrices is upper triangular.

Whenever the sum is defined,
the sum of two lower triangular matrices is lower triangular;
the sum of two upper triangular matrices is upper triangular;
the sum of two diagonal matrices is diagonal;
the sum of two identity matrices is a scalar matrix;
the sum of two symmetric matrices is symmetric;
the sum of two skew symmetric matrices is skew symmetric.

2.1.1 Some more practical situations

Many situations from various disciplines can be listed where systems of entities can
be written in nice elegant simplified forms with the help of matrices. A few more situ-
ations will be listed here where only the sums and products of matrices are involved.

Example 2.1.9 (The Jacobian matrix). Consider the following system of linear equa-
tions:

y1 = 2x1 + x2 − x3 + x4
y2 = x1 + 3x2 + x3 + 2x4
y3 = −x1 + x2 + x3 − x4
y4 = x1 + x2 + x3 + x4
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which can be written in matrix notation as,

Y = AX, Y =
[[[[

[

y1
y2
y3
y4

]]]]

]

, A =
[[[[

[

2 1 −1 1
1 3 1 2
−1 1 1 −1
1 1 1 1

]]]]

]

, X =
[[[[

[

x1
x2
x3
x4

]]]]

]

.

Consider the partial derivative of yi with respect to xj for all i and j and let the matrix
of these partial derivatives be denoted by

𝜕Y
𝜕X
= (𝜕yi
𝜕xj
) = [[[

[

𝜕y1
𝜕x1
… 𝜕y1
𝜕x4

⋮ … ⋮
𝜕y4
𝜕x1
… 𝜕y4
𝜕x4

]]]

]

.

Then thematrix 𝜕Y𝜕X is called the Jacobianmatrix of this transformationX toY . Evaluate
the Jacobian matrix in the above transformation.

Solution 2.1.9.

𝜕y1
𝜕x1
= 2, 𝜕y1
𝜕x2
= 1, 𝜕y1
𝜕x3
= −1, 𝜕y1

𝜕x4
= 1, etc.

Then

𝜕Y
𝜕X
= (𝜕yi
𝜕xj
) =
[[[[

[

2 1 −1 1
1 3 1 2
−1 1 1 −1
1 1 1 1

]]]]

]

= A =

the coefficient matrix in Y = AX.

Instead of linear functions if

yi = fi(x1,… ,xk), i = 1,… ,k

then the Jacobian matrix is still

𝜕Y
𝜕X
= (𝜕yi
𝜕xj
)

where 𝜕yi𝜕xj is the partial derivative of yi with respect to xj . The Jacobian matrices are
relevant only when the number of x1,… ,xk , that is k, is the same as the number of
y1,… ,yk , that is k. These numbers are equal, and further, we should be able to write
x1,… ,xk uniquely in terms of y1,… ,yk and vice versa. In this case we say that there is
a one-to-one transformation.



2.1 Various definitions | 77

Example 2.1.10 (Derivative of a quadratic form). Let

u = 3x21 + x22 − 2x23 − 2x1x2 + x1x3

and consider the differential operator discussed in Chapter 1, namely,

𝜕
𝜕X
=(

𝜕
𝜕x1
⋮
𝜕
𝜕xn

). (2.1.9)

Here n = 3. Evaluate 𝜕u𝜕X .

Solution 2.1.10. Writing A as a symmetric matrix

u = X′AX ⇒ X′ = (x1,x2,x3), A = [[
[

3 −1 1
2

−1 1 0
1
2 0 −2

]]

]

𝜕u
𝜕X
= [[[

[

𝜕u
𝜕x1
𝜕u
𝜕x2
𝜕u
𝜕x3

]]]

]

= [[

[

6x1 − 2x2 + x3
−2x1 + 2x2
x1 − 4x3

]]

]

= [[

[

6 −2 1
−2 2 0
1 0 −4

]]

]

[[

[

x1
x2
x3

]]

]

= 2[[
[

3 −1 1
2

−1 1 0
1
2 0 −2

]]

]

[[

[

x1
x2
x3

]]

]

= 2AX.

This, in fact, is a general result.

(vii) Let X be a k × 1 vector of real variables, A = A′ a symmetric k × k matrix of
constants, 𝜕𝜕X the k × 1 vector of partial derivative operator then

u = X′AX, A = A′, ⇒ 𝜕u
𝜕X
= 2AX, (2.1.10)

and

𝜕
𝜕X
𝜕u
𝜕X′
= 2A. (2.1.11)

If u = X′AX where A is not assumed to be symmetric then

u = X′AX ⇒ 𝜕u
𝜕X
= (A + A′)X (2.1.12)
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and

𝜕
𝜕X
𝜕u
𝜕X′
= (A + A′). (2.1.13)

Before concluding this section we will define powers of square matrices.

Definition 2.1.13 (Powers of a square matrix). Let A be an n × nmatrix. Then the r-th
power of A for r = 0, 1,… (non-negative integers) is defined as

Ar = AA⋯A

(product taken r times), with A0 = I .

As examples,

A = [1 0
0 1
] ⇒ A2 = [1 0

0 1
] ;

B = [0 1
1 0
] ⇒ B2 = [0 1

1 0
][

0 1
1 0
] = [

1 0
0 1
] ;

C = [ 0 −1
−1 0
] ⇒ C2 = [1 0

0 1
] ,

C3 = C, C4 = I , C2m = I , C2m+1 = C;

A1 = [
0 1
0 0
] ⇒ A21 = [

0 0
0 0
] = O;

A2 = [
d1 0
0 d2
] ⇒ Am2 = [

dm1 0
0 dm2
] .

Definition 2.1.14 (Idempotent matrices). If A = A2 then A is called an idempotentma-
trix when A is non-null.

As examples we have,

(i) I = I2 ⇒ I is an idempotent matrix.

Consider the n × 1 vector of unities, denoted by J. Then

J =(
1
⋮
1
) ⇒ J′J = n, JJ′ = [[

[

1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]

]

.
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Let A = 1
n JJ
′ then

(ii) A2 = ( 1
n
)
2
JJ′JJ′ = ( 1

n
)
2
J(J′J)J = 1

n
JJ′ = A.

(iii) A = [0 0
1 1
] , A2 = [0 0

1 1
][

0 0
1 1
] = [

0 0
1 1
] = A.

Thus A is idempotent. We can construct many such examples of idempotent matrices.

Definition 2.1.15 (Nilpotent matrix of order r). If a matrix B ≠ O is such that Br = O,
Br−1 ≠ O, for some fixed r, r = 2,3,… then B is called a nilpotent matrix of order r,
where r is the smallest integer where Br becomes null.

We can construct many examples of nilpotent matrices of various orders. For ex-
ample,

(i) B = [0 1
0 0
] ⇒ B2 = [0 1

0 0
][

0 1
0 0
] = [

0 0
0 0
] = O,

nilpotent of order 2;

(ii) C = [0 0
1 0
] ⇒ C2 = O, nilpotent of order 2.

Exercises 2.1
2.1.1. Compute 2A − B + 1

2C for the following matrices, wherever it is defined:

(a) A = (1, −1, 2,3), B = (2,5,0), C = (−1, 1);

(b) A = (1, −1, 2,3), B =
[[[[

[

2
0
1
−1

]]]]

]

, C =
[[[[

[

0
0
0
0

]]]]

]

;

(c) A = [1 1 −1
0 1 0

] , B = [ 0 1 2
−2 1 5

] , C = [0 4 6
1 −1 0

] ;

(d) A = [1 0
1 1
] , B = [0 1

1 0
] , C = [1 0

0 1
] .

2.1.2. Compute AB and BA, wherever defined, for the matrices A and B in Exer-
cise 2.1.1. Are AB = BA in general?

2.1.3. By taking an arbitrarym×nmatrixA = (aij) show thatOA = O, AO = Owhenever
the products are defined, where O indicates a null matrix.



80 | 2 Matrices

2.1.4. By taking an arbitrary m × n matrix A = (aij) show that ImA = A and AIn = A
where Im and In arem ×m and n × n identity matrices.

2.1.5. Construct a 2× 2 matrix A such that (a) A3 = O but A ≠ O, (b) A2 = A, A ≠ O, A ≠ I .

2.1.6. Consider a general 2 × 2 matrix A and consider

P1 = (
0 1
1 0
) , P2 = (

0 −1
1 0
) ,

P3 = (
0 1
−1 0
) , P4 = (

0 −1
−1 0
) .

(a) Premultiply A with each of P1,… ,P4 and explain in each case what happens to
the matrix A.

(b) PostmultiplyAwith each of P1,… ,P4 and explain in each casewhat happens toA.

2.1.7. Consider the 2 × 2 matrix A in Exercise 2.1.6 as two ordered points in a plane.
Explain geometrically what is seen in (a) and (b) of Exercise 2.1.6.

2.1.8. Let

A = [cosθ − sinθ
sinθ cosθ

] .

Compute AA′ and A′A.

2.1.9. Construct two examples each of two matrices A and B where (i) AB ≠ BA,
(ii) AB = BA. Exclude trivial cases involving identity, null and diagonal matrices.

2.1.10. Let

A = [1 1
1 −1
] .

Construct a matrix B such that AB = I ,BA = I where I is a 2 × 2 identity matrix.

2.1.11. Write the following systems of linear equations in matrix notation:

(a) x1 − x2 + x3 = 2
2x1 + x2 − 5x3 = 4;

(b) 2x1 + 3x2 + x3 − x4 = 1
x1 + x2 + x3 + x4 = 7

3x1 + 2x2 − x3 − x4 = 5
x1 − x2 − x3 + x4 = 4.
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2.1.12. If the right sides in (a) and (b) in Exercise 2.1.11 are replaced by variables
y1,y2,… then write the transformation in the form Y = AX and identity Y ,X,A in each
case.

2.1.13. Evaluate the Jacobian matrix in Exercise 2.1.12 (b).

2.1.14. Write the following quadratic forms in the form u = X′AX where (i) A = A′,
(ii) A ≠ A′:
(a) u = 2x21 + x22 − x23 + x24 − 2x1x2 − x2x4 + 3x3x4;
(b) u = −x21 + x24 + 2x1x3 − 2x1x4 + x1x2.

2.1.15. If 𝜕𝜕X denotes the column vector of partial differential operators evaluate 𝜕u𝜕X
and 𝜕𝜕X

𝜕u
𝜕X′ for (a) and (b) in Exercise 2.1.14. Write the final forms in matrix notations

(one case each where the matrix of the quadratic form is (i) symmetric, (ii) not sym-
metric).

2.1.16. Let

A = [1 1 1
1 0 −1

] .

(a) Construct a 3 × 1 non-null vector B such that AB = O.
(b) Construct a 3 × 2 non-null matrix B such that AB = O, if possible.

2.1.17. Let A and B be two matrices where AB is defined. Suppose that the second row
of A is 5 times the first row. Then show that, whatever be B, the second row of AB is
5 times the first row of AB.

2.2 More properties of matrices

A scalar function of the elements of a square matrix called the trace of the matrix is
very useful in some practical applications.

Definition 2.2.1 (The trace of a matrix). It is defined only for square matrices. Let A =
(aij) be n × n. Then the trace of A, denoted by tr(A), is the sum of the leading diagonal
elements of A. That is,

tr(A) = a11 + a22 +⋯+ ann.

For example,

A = [[
[

1 −1 1
2 3 0
1 4 −5

]]

]

⇒ tr(A) = 1 + 3 + (−5) = −1;
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A = [2 0
0 3
] ⇒ tr(A) = 2 + 3 = 5;

A = [0 0
0 0
] ⇒ tr(A) = 0.

The following properties follow from the definition itself:

tr(A′) = tr(A) (2.2.1)
tr(AB) = tr(BA) (2.2.2)

whenever AB and BA are defined. Note that, in general, AB need not be equal to BA
but their traces are equal. Extending (2.2.2) we have

tr(ABC) = tr(CAB) = tr(BCA) (2.2.3)

even though ABC ≠ CAB ≠ BCA.
Let A be a square matrix. For some matrices A we can construct another matrix B

such that

AB = I , BA = I

where I is the identity matrix.

Definition 2.2.2 (Regular inverse). If there exists a matrix, denoted by A−1, such that

AA−1 = I , A−1A = I

then A−1 is called the regular inverse, or simply the inverse, of A.

For example,

A = I2 = [
1 0
0 1
] ⇒ A−1 = I2, AA−1 = I2, A−1A = I2;

A = [2 0
0 −3
] ⇒ A−1 = [

1
2 0
0 − 13
] , AA−1 = I , A−1A = I ;

A = [1 1
1 2
] ⇒ A−1 = [ 2 −1

−1 1
] , AA−1 = I , A−1A = I ;

A = [ 1 0
−1 1
] ⇒ A−1 = [1 0

1 1
] , AA−1 = I , A−1A = I .

Later we will discuss a systematic way of evaluating the inverse of a given matrix,
whenever the inverse exists. The following properties are evident from the definition
itself.
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(i) IfA is an n×ndiagonalmatrixwith thediagonal elementsd1 ≠ 0,d2 ≠ 0,… ,dn ≠ 0
then A−1 is an n × n diagonal matrix with the diagonal elements 1

d1
,… , 1dn .

(ii) A diagonal matrix A with at least one of the diagonal elements zero has no in-
verse A−1.
(iii) A triangularmatrixA (lower or upper)with at least one of the diagonal elements
zero has no inverse A−1.
(iv) For a given matrix A if A−1 exists then it is unique. That is, if AB = I ,BA = I as
well as AC = I ,CA = I then B = C = A−1.
(v) A null matrix has no inverse.
(vi) If A and B are square matrices with A−1 and B−1 existing then

(AB)−1 = B−1A−1.

This result is easily proved by evaluating

(AB)(B−1A−1) as well as (B−1A−1)(AB).

Note that

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and similarly

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I .

This result can be extended to any number of n × nmatrices having inverses. That is,

(A1A2⋯Ak)−1 = A−1k ⋯A−12 A−11 . (2.2.4)

We have already seen a similar result on transposes. That is,

(A1A2⋯Ak)′ = A′k⋯A′2A′1 . (2.2.5)

An application of the regular inverse in solving systems of linear equations can be
stated as follows: Consider a system of n linear equations in n unknowns, written in
matrix notation as, AX = b. If the coefficient matrix A has a regular inverse then pre-
multiplying both sides by A−1 we get the unique solution of the system.

AX = b with A−1 existing means X = A−1b. (2.2.6)

Example 2.2.1. By using the illustrative example to Definition 2.2.2 solve the follow-
ing systems of linear equations by inspection:

(a) x1 + x2 = 2
x1 + 2x2 =0.

(b) 2x1 − x2 = 1
−x1 + x2 =3.
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Solution 2.2.1. (a) Writing the system as AX = b we have

A = [1 1
1 2
] , X = [x1

x2
] , b = [2

0
] .

But from the illustrative example

A−1 = [ 2 −1
−1 1
] .

Hence

A−1b = [ 2 −1
−1 1
][

2
0
] = [

4
−2
] ⇒ x1 = 4 and x2 = −2.

(b) Writing the system as AX = b we have

A = [ 2 −1
−1 1
] , X = (x1

x2
) , b = (1

3
) .

From the above (a) itself

A−1 = [1 1
1 2
] ⇒

A−1b = [1 1
1 2
][

1
3
] = [

4
7
] ⇒ x1 = 4 and x2 = 7.

Computing A−1 first and then solving the system of linear equations by using the for-
mula X = A−1b is not the easiest way of solving the system even when A−1 exists. We
can see from the above examples that if A is an n× nmatrix with n ≥ 3 then by inspec-
tion we may not be able to come up with A−1 even when A−1 exists. Another simpler
way of solving systems of linear equations by using a procedure called elementary
transformations will be considered later on.

A result on trace which will be useful in many applied problems is on the trace of
a product of the type AA′ where A need not be a square matrix. If A ism× n then A′ is
n ×m and AA′ is m ×m. The trace of an m ×mmatrix is defined. Similarly A′ is n ×m
which makes A′A an n × n matrix. Trace is again defined. By straight multiplication
and then summing up the leading diagonal elements we can establish the following
result:

(vii) Let A be anym × nmatrix. Then

tr(AA′) = tr(A′A) =∑
i
∑
j
a2ij =

sum of squares of all elements in A.
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The following results can be established easily.

(viii) tr(AA−1) = tr(I) = n

when A is an n × nmatrix with A−1 existing.
(ix) If A is idempotent and if A ≠ I then A−1 does not exist.
(x) If A is a nilpotent matrix of order r, for some r, then A−1 does not exist. (A null
matrix is not counted among nilpotent matrices.)

Example 2.2.2. Let the elements of anm×nmatrix X be all functionally independent
(distinct) real variables xij . Let ∫X denote the multiple integral over all the variables
xij ’s and dX the wedge product of all differentials in X. Then evaluate the integral

γ = ∫
X
e− tr(XX′)dX.

Solution 2.2.2. Since

tr(XX′) =
m
∑
i=1

n
∑
j=1

x2ij

(sum of squares of all elements in X), we have

γ = ∫⋯∫e−∑
m
i=1∑

n
j=1 x

2
ijdx11 ∧⋯∧ dxmn.

Since all the integrals over the individual variables are identical we need to evaluate
only one integral. Let

δ = ∫
∞

−∞
e−x2dx = 2∫

∞

0
e−x2dx

(since e−x2 is an even function and since the integral exists)

δ = ∫
∞

0
y

1
2−1e−ydy (put y = x2 ⇒ x = y

1
2 ⇒ dx = 1

2
y

1
2−1dy)

= Γ( 1
2
) = √π.

Therefore

γ = (√π)mn = πmn/2.

Note. The integral representation of a gamma function is the following: [A gamma
function is defined in different ways.]

Γ(α) = ∫
∞

0
xα−1e−xdx forℜ(α) > 0 (2.2.7)
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where ℜ(⋅) denotes the real part of (⋅). The notation Γ(α) (gamma alpha) is a stan-
dard notation. It is a function notation, function of α, gamma of alpha. The integral
in (2.2.7) exists even for complex parameter values of α provided the real part of this
complex parameter α is positive. Then, of course, it exists for real α such that α > 0.
For defining a gamma function this condition is not necessary. Only for representing a
gamma function as an integral the conditionℜ(α) > 0 is needed, otherwise Γ(α) exists
for all values of α ≠ 0, −1, −2,…. Two immediate properties of a gamma function are
the following:

Γ(α) = (α − 1)Γ(α − 1) forℜ(α − 1) > 0 (2.2.8)

and

Γ( 1
2
) = √π. (2.2.9)

Observe that (2.2.8) can be recursively applied to evaluate Γ(α) when α is a positive
integer. That is,

Γ(n) = (n − 1)! for n = 1, 2,… . (2.2.10)

If the inverses of A and B exist and if A and B are n×nmatrices then the following
properties hold:

(xi) (Am)−1 = (A−1)m = A−1A−1⋯A−1, m = 0, 1, 2,… .

(xii) (AmBr)−1 = (Br)−1(Am)−1 = (B−1)r(A−1)m, m, r = 0, 1, 2,… .

We have seen that the positive integer powers of a square matrix are defined. It is nat-
ural to ask the question: is the square root of a square matrix A defined? Can we find
a matrix B such that BB = B2 = A? Then, naturally, we can say that B is a square root
of A. Can we find such a square root for a given matrix A and when we can find one
such B, is that B going to be unique? Let us examine this a little bit further. Consider
the following matrices:

A1 = [
1 0
0 1
] , A2 = [

0 1
1 0
] ,

A3 = [
0 −1
−1 0
] , A4 = [

−1 0
0 −1
] .

Note that

A21 = [
1 0
0 1
][

1 0
0 1
] = [

1 0
0 1
] ;

A22 = [
1 0
0 1
] , A23 = [

1 0
0 1
] , A24 = [

1 0
0 1
] .
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The squares ofA1,A2,A3,A4 all are equal to the 2×2 identitymatrix I2. HenceA1,… ,A4
all qualify to be a square root of I2. One of the simplest matrices that we can con-
sider is an identity matrix. We see that when we can find a square root the square
root is not unique. In general, there need not exist a matrix B such that B2 = A for
a given matrix A, and when such a B exists it need not be unique. Hence we will
not deal with fractional powers of matrices in the following sections. The square root
will be explored further after discussing something called the eigenvalues of a matrix
later on.

2.2.1 Some more practical situations

A number of practical situations, where matrices come in naturally, are already dis-
cussed. Some more will be listed here which involve only sums and products of ma-
trices. The student is urged to take note of all the practical situations listed so far, and
also the ones to be listed later, because we are going to enlarge on each of them later
on.

Example 2.2.3 (Center of gravity and moment of inertia). Some concepts connected
with physics and statistics are the mean values and variances. Some of these will be
examined here. Consider a set of numbers x1,… ,xn (such as the heights of students in
a class, incomes of wage-earners in a city and so on). The average

x̄ = x1 +⋯+ xn
n
= 1
n
J′X = 1

n
X′J (2.2.11)

where J′ = (1, 1,… , 1) and X′ = (x1,… ,xn). Then

(x̄)2 = x̄x̄ = x̄(x̄)′

(note that x̄′ = x̄ since x̄ is 1 × 1)

(x̄)2 = ( 1
n
)
2
X′J(J′X) = 1

n2
X′JJ′X = 1

n
X′BX (2.2.12)

(a quadratic form in X) where

B = 1
n

[[[[

[

1 1 … 1
1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]]]

]

.

One interesting property of B is that

B = B2

which means that B is idempotent.
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If x1,… ,xn are the values taken by a discrete real random variable x with the cor-
responding probabilities p1,… ,pn, pi > 0, i = 1,… ,n, p1 + ⋯ + pn = 1 then the mean
value of the random variable x, denoted as μ = E(x), is given by

μ =
n
∑
j=1

xjpj = X′P = P′X

=
∑ni=1 xipi
∑ni=1 pi

(since
n
∑
i=1

pi = 1) (2.2.13)

where X′ = (x1,… ,xn) and P′ = (p1,… ,pn). The expression in (2.2.13) is themean value
of the random variable x in statistical literature and it is the center of gravity of the
system X when P is the vector of weights or forces and so on, in physics. The variance
of the real discrete random variable x, denoted by σ2, is defined as

σ2 =
n
∑
i=1
(xi − μ)2pi

which is also the moment of inertia of the system X and P in physics. When p1 =⋯ =
pn =

1
n we have

σ2 = 1
n

n
∑
i=1
(xi − μ)2 =

1
n
(X − μ̃)′(X − μ̃)

= 1
n

n
∑
i=1

x2i − (x̄)2

where X′ = (x1,… ,xn), μ̃′ = (μ,… ,μ),

μ =
n
∑
i=1

xi
n
= x̄ = 1

n
X′J.

But note that 1
n ∑

n
i=1 x

2
i =

1
nX
′X and x̄2 = 1

nX
′BX where B is defined in (2.2.12). Therefore

σ2 = 1
n
X′X − 1

n
X′BX = 1

n
X′[I − B]X (2.2.14)

where

I − B =
[[[[

[

1 − 1
n −

1
n … − 1n

− 1n 1 − 1
n … − 1n

⋮ ⋮ … ⋮
− 1n − 1n … 1 − 1

n

]]]]

]

. (2.2.15)

Observe that

(I − B)2 = (I − B)(I − B) = I − B − B + B2 = I − 2B + B = I − B



2.2 More properties of matrices | 89

sinceB = B2 is idempotent. (The studentmayverify bydirectly computing (I−B)2 also.)
This means that I − B is also idempotent. Further,

(I − B)B = B − B2 = B − B = O

since B is idempotent. The properties that B and I − B are idempotent and that
(I − B)B = O are the fundamental results in the analysis of variance principle, re-
gression analysis, design of experiments, independence of quadratic forms and in
many other similar topics in statistics, econometrics and related areas.

Definition 2.2.3 (Orthogonal matrices). If two non-null matrices A and B are such
that AB = O then A and B are said to be orthogonal to each other.

This is a generalization of the concept of orthogonal vectors in Chapter 1. For ex-
ample,

(a) A = [1 1 1
1 −2 1

] , B = [[
[

1
0
−1

]]

]

⇒ AB = O;

(b) A = [1 1 1
1 −2 1

] , B = [[
[

1 3
0 0
−1 −3

]]

]

⇒ AB = O.

Note that when AB = O every column vector in B is orthogonal to every row vector
in A or the angle between these vectors is π/2. As an immediate consequence of this
definition we can observe the following result:

(xiii) In a system of linear equations AX = O every solution vector X is orthogonal
to the rows of A, where A ism × n and X is n × 1.

Definition 2.2.4 (Orthonormal matrix). If a square matrix A is such that AA′ = I ,
A′A = I then A is called an orthonormal matrix or an element of the orthogonal group.

For example,

A = [cosθ − sinθ
sinθ cosθ

] ,

AA′ = [cosθ − sinθ
sinθ cosθ

][
cosθ sinθ
− sinθ cosθ

] = [
1 0
0 1
] = I

since cos2 θ + sin2 θ = 1. Hence A is an orthonormal matrix. Consider

B = [
[

1
√2

1
√2

1
√2 −

1
√2

]

]
⇒ BB′ = I , B′B = I
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which means B is orthonormal. Now, take

C =
[[[

[

1
√3

1
√3

1
√3

1
√6 −

2
√6

1
√6

1
√2 0 − 1

√2

]]]

]

⇒ CC′ = I , C′C = I

which means C is orthonormal.
The following properties are immediate:

(xiv) If A is an n × n orthonormal matrix then (a) the length of each row vector is
unity and the row vectors are orthogonal to each other, (b) the length of each col-
umn vector is unity and the column vectors are orthogonal to each other.
(xv) If A is n × n and if AA′ = I then A−1 = A′ and A′A = I .

This is a very important result which has consequences in linear transformations, or-
thogonal transformations, reductions of quadratic forms and so on.

(xvi) An n × n orthonormal matrix A represents a rotation of the coordinate axes.

This can be easily noticed geometrically as well as algebraically by looking at the
transformation

Y = AX,

where

A = [cosθ − sinθ
sinθ cosθ

] ,

X = (x1
x2
) , Y = (y1

y2
) , AA′ = I , A′A = I .

If the coordinate axes are rotated through the angle θ then the point ( x1x2 ) in the original
axes of coordinates becomes ( y1y2 ) in the new axes of coordinates.

Definition 2.2.5 (A semi-orthonormal matrix). If anm×n,m ≤ n rectangularmatrix A
is such that AA′ = Im then A is called a semi-orthonormal matrix or an element of the
Stiefel manifold, and ifm = n then it is a full orthonormal matrix.

For example,

A = (cosθ, − sinθ) ⇒ AA′ = I1 = 1 ⇒ A is semi-orthonormal;

B = [
1
√3

1
√3

1
√3

1
√2 0 − 1

√2
] ⇒ BB′ = I2 ⇒ B is semi-orthonormal.
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Observe that when A is m × n such that AA′ = Im then each row has length 1 and the
rows are orthogonal whereas the columns do not have these properties when m < n
which means that when m < n, AA′ = Im does not imply that A′A = In which can be
verified from the above illustrative examples.

Example 2.2.4 (The covariance matrix). The covariance matrix or the variance–co-
variance matrix in statistical theory, denoted by V , is defined as follows:

V = E[(X − μ)(X − μ)′] = E(XX′) − μμ′

where E denotes the expected value, μ = E(X) and X is a p × 1 vector of real random
variables. Thismatrix represents the configuration of variances and covariances in the
vector random variable X. For example, let the joint density of x1 and x2, X′ = (x1,x2),
be

f (X′) = f (x1,x2) = x1 + x2, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1

and f (X′) = 0 elsewhere. Then

X = (x1
x2
) , E(X) = (E(x1)

E(x2)
) = μ = (μ1

μ2
) ;

E(XX′) = E [ x
2
1 x1x2

x2x1 x22
] = [

E(x21 ) E(x1x2)
E(x2x1) E(x22)

] ;

E(x1) = ∫
1

0
∫
1

0
x1(x1 + x2)dx1 ∧ dx2

= ∫
1

0
x1(x1 +

1
2
)dx1 =

7
12
= E(x2)

due to symmetry, and

E(x1x2) = ∫
1

0
∫
1

0
x1x2(x1 + x2)dx1 ∧ dx2

= ∫
1

0
x1{∫

1

0
[x1x2 + x22]dx2}dx1 =

1
3
;

E(x21 ) = ∫
1

0
∫
1

0
x21 (x1 + x2)dx1 ∧ dx2 =

5
12
= E(x22)

due to symmetry. Then the covariance matrix

V = [ E(x
2
1 ) E(x1x2)

E(x2x1) E(x22)
] − [

μ21 μ1μ2
μ2μ1 μ22

]

= [
5
12

1
3

1
3

5
12
] − [
( 712 )

2 ( 712 )(
7
12 )

( 712 )(
7
12 ) (

7
12 )

2 ]

= [
11
144 −

1
144

− 1
144

11
144
] .
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Example 2.2.5 (Maxima/minima). When a scalar function

f = f (x1,… ,xn)

of many real variables x1,… ,xn is considered the critical points are available by solv-

ing 𝜕f𝜕X = Owhere 𝜕𝜕X = (
𝜕
𝜕x1
⋮
𝜕
𝜕xn

), as seen in Chapter 1. One can check formaxima/minima

at these critical points by evaluating the matrix 𝜕𝜕X
𝜕f
𝜕X′ at these critical points. For ex-

ample, let

f = x21 + 2x22 + 2x1x2 − x1 − 2x2 + 8.

Then

𝜕
𝜕X
= (
𝜕
𝜕x1
𝜕
𝜕x2

) ⇒ 𝜕f
𝜕X
= (
𝜕f
𝜕x1
𝜕f
𝜕x2

) = [
2x1 + 2x2 − 1
2x1 + 4x2 − 2

] .

Hence

𝜕f
𝜕X
= O ⇒ [2x1 + 2x2 − 1

2x1 + 4x2 − 2
] = [

0
0
] ⇒

(
x1
x2
) = (

0
1
2
) .

There is only one critical point ( x1x2 ) = (
0
1
2
). Now, consider the matrix operator

𝜕
𝜕X
𝜕f
𝜕X′
=
[[[

[

𝜕2
𝜕x21
… 𝜕2
𝜕x1𝜕xn

⋮ … ⋮
𝜕2
𝜕xn𝜕x1

… 𝜕2
𝜕x2n

]]]

]

,

which in our example is, with n = 2, operating on f .

𝜕
𝜕X
𝜕f
𝜕X′
= 𝜕
𝜕X
(2x1 + 2x2 − 1, 2x1 + 4x2 − 2)

= [
2 2
2 4
] .

Since this matrix here is free of x1 and x2 this matrix evaluated at the critical point
is itself. This matrix is positive definite and hence the critical point corresponds to a
minimum. [Definiteness of matrices will be considered later on.]
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Example 2.2.6 (Transition probability matrix). Aworker finds that his boss has three
stages of her mood, “pleasant”, “tolerable”, “intolerable”. If the boss is in a given
mood in the morning it can change to one of the three stages by the evening. That is,
for example, “pleasant” can change into “pleasant” or “tolerable” or “intolerable”. Let
pij be the chance (probability) that the i-th stage of the mood in the morning changes
to the j-th stage of the mood by the evening. Then the 3 × 3 matrix (pij) is a transition
probability matrix. For example, suppose

P = (pij) =
[[

[

0.5 0.4 0.1
0.3 0.6 0.1
0.1 0.2 0.7

]]

]

which in terms of the various stages of the mood is the following:

evening

pleasant tolerable intolerable

pleasant 0.5 0.4 0.1
morning tolerable 0.3 0.6 0.1

intolerable 0.1 0.2 0.7

For example the chance of going from “tolerable” to “pleasant” is 0.3 or 30%, whereas
going from “tolerable” to “intolerable” is 0.1 or 10%. The chance of going from “pleas-
ant” to “pleasant” is 0.5 and that from “intolerable” to “intolerable” is 0.7. In general,
if there are k stages and if pij is the probability of going from stage i to stage j then the
transition probability matrix is

P = (pij) =
[[[[

[

p11 p12 … p1k
p21 p22 … p2k
⋮ ⋮ … ⋮
pk1 pk2 … pkk

]]]]

]

where the sum of each row is unity, ∑kj=1 pij = 1 for each i = 1, 2,… ,k and each entry
pij ≥ 0. If the probability of transition from the j-th stage to the i-th stage is denoted by
pij then we have the transpose of the P above. In this case the sum of the elements in
each columnwill be 1. Such amatrix P where, either the elements in each row sum to 1
or the elements in each column sum to 1, but not both, is also called a singly stochastic
matrix. If both, the elements in each row and each column sum to 1, that is,∑kj=1 pij = 1
for each i aswell as∑ki=1 pij = 1 for each j then such amatrix is called adoubly stochastic
matrix.

For our example of the boss let us examine one interesting aspect. Suppose that
there is no mood change in the night. She will be in the same mood in the morning as
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the one of the previous evening. If she is in a “pleasant”mood in the first daymorning
what is the chance that she will be in a “pleasant” mood in the second day evening?
Let the three stages “pleasant”, “tolerable”, and “intolerable” be denoted by 1, 2,3 re-
spectively. If she is in stage 1 in the first day morning it can go from 1 to 1 or 1 to 2 or 1
to 3 by the evening. Then on the second day it can go from 1 to 1, given that she was
in stage 1 by the previous evening, or 2 to 1, given that she was in stage 2 by the previ-
ous evening, or 3 to 1, given that she was in stage 3 by the previous evening. Thus the
chance of finding her in stage 1 on the second evening is given by

(0.5)(0.5) + (0.4)(0.3) + (0.1)(0.1) = 0.38.

From stage 1 in the first morning to stage 2 in the second evening has the probability

(0.5)(0.4) + (0.4)(0.6) + (0.1)(0.2) = 0.46,

and so on. [Probability of the intersection of two events = conditional probability mul-
tiplied by the marginal probability.] The transition probability matrix for the second
evening starting with P in the first day morning is then

PP = P2 = [[
[

0.38 0.46 0.16
0.34 0.50 0.16
0.18 0.30 0.52

]]

]

.

The transition probability matrix from the first day morning to the k-th day evening is
then Pk . There are several interesting aspects that can be studied by using transition
probability matrices. Some of these will be considered later on in the coming chap-
ters.

Definition 2.2.6. If A and B are two non-null matrices such that AB = BA then A and
B are said to commute or are said to be commutative.

Note that in general, whenever AB and BA are defined AB ≠ BA. But in some cases
AB = BA. For example,

IA = AI ⇒

that any n×nmatrix A and the n×n identity matrix are commutative. Let D1 and D2 be
two diagonal matrices of the same order (which includes identity and scalar matrices)
then

D1D2 = D2D1.

(xvii) Diagonal matrices of the same order are commutative.
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If A is an arbitrary matrix and D a diagonal matrix (not equal to a scalar matrix) then
AD ≠ DA. Let

A =
[[[[

[

1 1 … 1
1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]]]

]

, B = (bij) = B′

then AB = BA (or A and B commute).

2.2.2 Pre and post multiplications by diagonal matrices

LetA = (aij) be an n×nmatrix andD = diag(d1,… ,dn) be a diagonalmatrix. The effects
of pre and postmultiplications of thematrixA by the diagonalmatrixD are something
very interesting. The student must memorize these results because inmany structural
decompositions of matrices these results will come in handy:

DA =
[[[[

[

d1 0 … 0
0 d2 … 0
⋮ ⋮ … ⋮
0 0 … dn

]]]]

]

[[[[

[

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ … ⋮
an1 an2 … ann

]]]]

]

=
[[[[

[

d1a11 d1a12 … d1a1n
d2a21 d2a22 … d2a2n
⋮ ⋮ … ⋮

dnan1 dnan2 … dnann

]]]]

]

.

(xviii) Premultiplication of a matrix A by a diagonal matrix D is equivalent to mul-
tiplying each row of A by the corresponding diagonal elements in D.

That is, the first row of A is multiplied by the first diagonal element in D, the second
row of A is multiplied by the second diagonal element in D and so on. Now, let us see
what happens if we postmultiply A with D:

AD =
[[[[

[

a11 a12 … a1n
a21 a22 … a2n
⋮ ⋮ … ⋮
an1 an2 … ann

]]]]

]

[[[[

[

d1 0 … 0
0 d2 … 0
⋮ ⋮ … ⋮
0 0 … dn

]]]]

]

=
[[[[

[

d1a11 d2a12 … dna1n
d1a21 d2a22 … dna2n
⋮ ⋮ … ⋮

d1an1 d2an2 … dnann

]]]]

]

.
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(xix) Postmultiplication of A by the diagonal matrix D is equivalent to multiplying
each column of A by the corresponding diagonal elements in D.

That is, the first column of A is multiplied by the first diagonal element in D, the sec-
ond column of A is multiplied by the second diagonal element in D and so on. For
example,

[
2 0
0 3
][

1 1
2 4
] = [

2 2
6 12
] ;

[
1 1
2 4
][

2 0
0 3
] = [

2 3
4 12
] .

It is worth observing that the same properties hold if an m × n matrix A is premul-
tiplied by an m × m diagonal matrix and postmultiplied by an n × n diagonal ma-
trix.

Example 2.2.7 (Covariance and correlation matrices). In statistical analysis the co-
variance between two real scalar random variables xi and xj, denoted by σij, has the
following representation:

σij = ρijσiσj , σi ≠ 0, σj ≠ 0

where ρij (Greek letter rho) is the correlation between xi and xj, σi and σj are the stan-
dard deviations (measures of scatter) in xi and xj respectively (σ2i is the variance of xi).
Then the covariance matrix or the variance–covariance matrix can be written in the
following structural form:

V = (σij) =
[[

[

ρ11σ21 ρ12σ1σ2 … ρ1nσ1σn
⋮ ⋮ … ⋮

ρn1σnσ1 ρn2σnσ2 … ρnnσ2n

]]

]

= DPD

where

D =
[[[[

[

σ1 0 … 0
0 σ2 … 0
⋮ ⋮ … ⋮
0 0 … σn

]]]]

]

and P =
[[[[

[

ρ11 ρ12 … ρ1n
ρ21 ρ22 … ρ2n
⋮ ⋮ … ⋮
ρn1 ρn2 … ρnn

]]]]

]

where V is the covariance matrix, D is a diagonal matrix of standard deviations and
P is the matrix of correlations. (Incidently ρii = 1, i = 1,… ,n which follows from the
definition itself.)
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Exercises 2.2
2.2.1. Compute the traces of the following matrices:

(a) A = [[
[

0 −1 2
2 3 1
0 0 7

]]

]

, B = [[
[

−1 0 1
0 2 1
0 0 −2

]]

]

, C = [[
[

2 0 0
1 1 2
0 1 −1

]]

]

;

(b) AB,BA; (c) ABC,CAB,BCA; (d) 2A − 5B, 2 tr(A) − 5 tr(B).

2.2.2. If A = (aij) is a 3× 3 matrix obtain (a) tr(A2), (b) tr(AA′) and compare the results
in (a) and (b).

2.2.3. If X is a p×pmatrix which can bewritten as X = TT′ where T is a lower triangu-
lar matrix, (a) compute the trace of X in terms of the elements of T; (b) can you repre-
sent every element in T as a function of the elements in X, if so, is the representation
unique? (c) What are the conditions on the elements of T so that the transformation
X = TT′ (it is a nonlinear transformation) is one-to-one, that is, every element in T can
be uniquely written as a function of the elements in X and vice versa?

2.2.4. By inspection, write down the regular inverses, if they exist, for the following
matrices:

A = [2 1
3 5
] , B =

[[[[

[

2 0 0 0
1 0 0 0
−1 2 1 0
5 −7 2 8

]]]]

]

,

C =
[[[[

[

5 0 0 0
0 −2 0 0
0 0 0 0
0 0 0 9

]]]]

]

, D = [[
[

−2 0 0
0 1 0
0 0 4

]]

]

.

2.2.5. Show that if A is lower (upper) triangular then its regular inverse, when it ex-
ists, is also lower (upper) triangular. Verify the result for a general 3 × 3 lower (upper)
triangular matrix.

2.2.6. Taking the matrices in Exercise 2.2.1 (a) verify the following results:

(a) (AB)′ = B′A′, (b) (ABC)′ = C′B′A′.

2.2.7. Let

A = 1
n
[[

[

1 … 1
⋮ … ⋮
1 … 1

]]

]

, B = [1 0
1 −1
] , C = 1

2
[
1 −1
1 −1
] ,

where A is n × n. Compute A2, A3, A100, A111, B2, B3, B100, B121, C2, C3, C30, C43. What
are Ak , Bk , Ck for a general k?
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2.2.8. (AB)2 ≠ A2B2 in general. But for some special situations (AB)2 = A2B2. Construct
non-null, non-diagonal 3 × 3 matrices A and B such that (a) (AB)2 ≠ A2B2, (b) (AB)2 =
A2B2.

2.2.9. Is (A + B)2 = A2 + 2AB + B2 for general n × n matrices, n > 1? If not, what is the
correct expansion formula? Derive the expansion formula for (A + B)3.

2.2.10. The product AB = C = (cij) is defined in such a way that the (i, j)-th element in
C, namely cij, is the dot product of the i-th row of Awith the j-th column of B. Now, let
α1,… ,αn be the columns of A and β1,… ,βn be the rows of B. Then obviously αiβj is an
n × nmatrix. Show that the product AB can also be written as a sum of such matrices
in the following form:

AB = α1β1 + α2β2 +⋯+ αnβn.

2.2.11. Construct different 3 × 3 matrices A,B,C, other than the ones in the text, such
that (a) AA′ = I, (b) B is semiorthonormal, (c) BC = O.

2.2.12. Let the illustrative orthonormal matrix in the text involving θ be denoted by

P(θ) = [cosθ − sinθ
sinθ cosθ

] .

Let P(θi) be the same P(θ) with θ replaced by θi . Then P(θ1) and P(θ2) represent rota-
tions of the coordinate axes through angles θ1 and θ2 respectively and P(θ1)P(θ2) rep-
resents the situation of first rotating through an angle θ2 and then rotating through an
angle θ1. Show that
(a) P(θ1)P(θ2) = P(θ1 + θ2).
(b) What is the geometrical interpretation of P(−θ)?

2.2.13. Construct different 2× 2 non-null matrices A,B,C with real elements such that

(a) A2 = −I , (b) BC = −CB.

2.2.14. Let A be a given n×nmatrix and X an arbitrary n×nmatrix such that AX = XA
for all X. Then show that A is a scalar multiple of an identity matrix (scalar matrix).

2.2.15. Show that inExample 2.2.7 the inverse of the covariancematrix,V−1,whenever
it exists, can be computed by the formula

V−1 = [[
[

1
σ1

0 … 0
⋮ ⋮ … ⋮
0 0 … 1

σn

]]

]

P−1[[
[

1
σ1

0 … 0
⋮ ⋮ … ⋮
0 0 … 1

σn

]]

]

.

2.2.16. (a) If A is anm × nmatrix and if A = −A then show that A is a null matrix.
(b) If c is a scalar (1 × 1 matrix) then the scalar multiplication cA is defined. Show

that the matrix multiplication cA is defined only ifm = 1.
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2.2.17. If A is an n × n matrix and if A commutes with every n × n matrix then show
that A is an identity matrix.

2.2.18. Prove that A is symmetric iff A′ is symmetric and vice versa.

2.2.19. Give two examples of different symmetric matrices A and B such that (1) AB is
symmetric; (2) AB is not symmetric.

2.2.20. If A is symmetric, is (1) Ak symmetric, where k is a positive integer? (2) Is A−1

symmetric if A is nonsingular also? (3) For any matrix A if A2 is symmetric is A sym-
metric? Justify your answer by examples (2 each) and counter examples (2 each).

2.2.21. If A is a skew symmetric matrix then show that B = (I +A)(I −A)−1 is orthonor-
mal, that is, BB′ = I ,B′B = I, and that B−1 = B′.

2.2.22. For anymatrix A show that tr(B−1AB) = tr(A)where B−1 exists and the product
is defined.

2.2.23. If A = (aij(t)) where each element of A is a function of the real variable t, then
show that

d
dt
(A−1) = −A−1(dA

dt
)A−1.

2.2.24. Right and left inverses. Let A be any m × n matrix. Any matrix B for which
BA = I is called a left-inverse of A and any matrix C for which AC = I is called a right-
inverse of A. Any matrix X such that AX = I ,XA = I is called the regular inverse of A.
Compute a left inverse B, and all possible right inverses C for the matrix

A = [1 1 −1
1 1 1

] .

2.2.25. Show that, in general, if L is a left inverse of any matrix A then L′ is a right
inverse of A′ and that if R is a right inverse of A then R′ is a left inverse of A′.

2.2.26. Let A be m × n and B be n × r with α1,… ,αm being the rows of A and β1,… ,βr
being the columns of B. Then show that

AB =(
α1B
⋮
αmB
)= (Aβ1,… ,Aβr).

2.2.27. For any square matrix A show that B = A +A′ is symmetric, C = A −A′ is skew
symmetric, A = 1

2B+
1
2C = sum of a symmetric and a skew symmetricmatrices and that

this representation is unique.
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2.3 Elementary matrices and elementary operations

Elementary matrices and elementary operations (multiplications by elementary ma-
trices) have wide spread applications in solving systems of linear equations, in deter-
mining linear independence and dependence of vectors, in determining the rank of a
matrix, in obtaining a basis for a vector space, in evaluating the inverse of a matrix,
and so on. Here we will define the basic elementary matrices and then will look into
various types of operations with elementary matrices.

Definition 2.3.1 (The basic elementary matrices). The two basic elementary matrices
are the following: Consider an n×n identitymatrix In. If any row (column) of In is mul-
tiplied by a nonzero scalar then the resulting matrix is called an elementary matrix.
This is one basic type of an elementary matrix. We will call this an E type elementary
matrix. If any row (column) of In is added to any other row (column) of In then the
resulting matrix is the second basic type of an elementary matrix. We will call this an
F type elementary matrix.

The E and F types of elementary matrices are the basic types of elementary matri-
ces. For example, consider a 3 × 3 identity matrix I = I3:

E1 =
[[

[

5 0 0
0 1 0
0 0 1

]]

]

is an elementary matrix (the first row of I3 is multiplied by 5);

E2 =
[[

[

1 0 0
0 −2 0
0 0 1

]]

]

is an elementary matrix (the second row of I3 is multiplied by −2);

E3 =
[[

[

1 0 0
0 1 0
0 0 x

]]

]

is an elementary matrix (the third row of I3 is multiplied by x for x ≠ 0);

F1 =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

is an elementary matrix (the first row of I3 is added to the second row);

F2 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]
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is an elementary matrix (the first row of I3 is added to the third row);

F3 =
[[

[

1 0 1
0 1 0
0 0 1

]]

]

is an elementary matrix (the third row of I3 is added to the first row);

F4 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

is an elementary matrix (the second row of I3 is added to the third row).
The row which is added remains the same. The net effect is on the row to which

another row is added. Before we start operating with these basic elementary matrices
let us look at the inverses of these. What is that matrix which nullifies the effect on
In or In is regained by premultiplication of a given elementary matrix with the new
matrix? For example, consider E1. What is E−11 such that E−11 E1 = I3? Multiplication of
a certain row of an identity matrix by a nonzero scalar can be nullified by dividing the
same row by that nonzero scalar. Therefore

E−11 =
[[

[

1
5 0 0
0 1 0
0 0 1

]]

]

so that E−11 E1 = I3 = E1E−11 ;

E−12 =
[[

[

1 0 0
0 − 12 0
0 0 1

]]

]

⇒ E−12 E2 = I3 = E2E−12 ;

E−13 =
[[

[

1 0 0
0 1 0
0 0 1

x

]]

]

⇒ E−13 E3 = I3 = E3E−13 , x ≠ 0.

Thus the inverses for the E series of elementary matrices are easily obtained. Similar
is the situation whatever be the order n in In. Now, look at the F series of elementary
matrices. How can the effect in F1 be nullified so that F1 multiplied by a matrix, de-
noted by F−11 , gives back I3? F1 is obtained by adding the first row to the second row.
Naturally the effect can be nullified by adding (−1) times the first row to the second
row. That is,

F−11 =
[[

[

1 0 0
−1 1 0
0 0 1

]]

]

so that F−11 F1 = I3 = F1F−11 ;

F−12 =
[[

[

1 0 0
0 1 0
−1 0 0

]]

]

⇒ F−12 F2 = F2F−12 = I3;
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F−13 =
[[

[

1 0 −1
0 1 0
0 0 1

]]

]

⇒ F−13 F3 = I3 = F3F−13 ;

F−14 =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

⇒ F−14 F4 = I3 = F4F−14 .

From the way we defined the basic elementary matrices it is evident that the regular
inverses exist for all elementary matrices.

(i) Regular inverses exist for all basic elementary matrices or elementary matrices,
thereby the products of elementary matrices, are nonsingular.

Definition 2.3.2. For a given square matrix A if there exists a matrix B such that
AB = I ,BA = I then the regular inverse exists and it is denoted by B = A−1 and in this
case A is called a nonsingular matrix and square matrices for which regular inverses
do not exist are called singularmatrices.

(ii) A square null matrix is a singular matrix.
(iii) A diagonal matrix with all nonzero diagonal elements is nonsingular and
if there is at least one zero diagonal element then the diagonal matrix is singu-
lar.
(iv) A triangular matrix (lower or upper) with all nonzero diagonal elements is
nonsingular and it is singular if there is at least one zero diagonal element.

2.3.1 Premultiplication of a matrix by elementary matrices

Consider an arbitrary 3× 3 matrix A = (aij) and consider the E1 of the previous section.
Then

E1A =
[[

[

5 0 0
0 1 0
0 0 1

]]

]

[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

= [[

[

5a11 5a12 5a13
a21 a22 a23
a31 a32 a33

]]

]

.

Note that E1 is created bymultiplying the first row of an identity matrix by 5. Whenwe
premultiply any 3× 3 matrix A by E1 the effect is exactly the same, that is, the first row
of A is multiplied by 5.
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(v) If E is an elementary matrix created from In by multiplying the i-th row by a
nonzero scalar c and if any n × n matrix A = (aij) is premultiplied by E, that is EA,
the net effect is that the i-th row of A is multiplied by c.

Note that E−1 in this case is a diagonal matrix with the i-th diagonal element 1
c and

all other elements unities. If we again premultiply EAwith this matrix E−1 then we get
back A. That is,

E−1(EA) = A.

Now, consider premultiplication of a 3 × 3 matrix A = (aij) by the F1 of the previous
section. That is,

F1A =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

= [[

[

a11 a12 a13
a21 + a11 a22 + a12 a23 + a13
a31 a32 a33

]]

]

.

Observe that F1 is created by adding the first row to the second row of an identity
matrix. (First row remains the same, the second row becomes the original second row
plus the original first row.) The net effect of premultiplication of A by F1 is exactly
the same, the first row of A is added to the second row of A. In general, we have the
following result:

(vi) If F is an elementary matrix created by adding the i-th row to the j-th row in In
and if an arbitrary n × n matrix A is premultiplied by F, that is FA, the net effect is
the same, that is, the i-th row of A is added to the j-th row of A.

Example 2.3.1. What are the net effects of the following operations? (a) E2F1E1A,
(b) E4F2E3E2F1E1A where

E1 =
[[

[

−2 0 0
0 1 0
0 0 1

]]

]

, F1 =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

, E2 = E−11 ,

E3 =
[[

[

−3 0 0
0 1 0
0 0 1

]]

]

, F2 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

, E4 = E−13 ,

A = [[
[

1 1 −1
2 0 −1
3 1 4

]]

]

.
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Solution 2.3.1.

E1A =
[[

[

−2 0 0
0 1 0
0 0 1

]]

]

[[

[

1 1 −1
2 0 −1
3 1 4

]]

]

= [[

[

−2 −2 2
2 0 −1
3 1 4

]]

]

,

F1E1A = F1(E1A)

= [[

[

1 0 0
1 1 0
0 0 1

]]

]

[[

[

−2 −2 2
2 0 −1
3 1 4

]]

]

= [[

[

−2 −2 2
0 −2 1
3 1 4

]]

]

,

E2F1E1A = E2(F1E1A)

= [[

[

− 12 0 0
0 1 0
0 0 1

]]

]

[[

[

−2 −2 2
0 −2 1
3 1 4

]]

]

= [[

[

1 1 −1
0 −2 1
3 1 4

]]

]

.

The net effect of the operations so far is that the (2, 1)-th element in A is made zero.

E3E2F1E1A = E3(E2F1E1A)

= [[

[

−3 0 0
0 1 0
0 0 1

]]

]

[[

[

1 1 −1
0 −2 1
3 1 4

]]

]

= [[

[

−3 −3 3
0 −2 1
3 1 4

]]

]

,

F2(E3E2F1E1A) =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

[[

[

−3 −3 3
0 −2 1
3 1 4

]]

]

= [[

[

−3 −3 3
0 −2 1
0 −2 7

]]

]

.

The net effect of the operations so far is that the first column elements, except the first
one, are reduced to zeros. Then operation on the left with E4 = E−13 gives

E4(F2E3E2F1E1A) =
[[

[

1 1 −1
0 −2 1
0 −2 7

]]

]

.

Example 2.3.2. Reduce the matrix A in Example 2.3.1 to a triangular form by premul-
tiplication with elementary matrices (by elementary operations).

Solution 2.3.2. Part of the work is already done in Example 2.3.1. Now we continue.
Consider the elementary matrices

E5 =
[[

[

1 0 0
0 −1 0
0 0 1

]]

]

, F3 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

.
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Then E5 operating on the reduced form from Example 2.3.1 gives

E5
[[

[

1 1 −1
0 −2 1
0 −2 7

]]

]

= [[

[

1 0 0
0 −1 0
0 0 1

]]

]

[[

[

1 1 −1
0 −2 1
0 −2 7

]]

]

= [[

[

1 1 −1
0 2 −1
0 −2 7

]]

]

.

Now, F3 operating on the above form gives

F3
[[

[

1 1 −1
0 2 −1
0 −2 7

]]

]

= [[

[

1 0 0
0 1 0
0 1 1

]]

]

[[

[

1 1 −1
0 2 −1
0 −2 7

]]

]

= [[

[

1 1 −1
0 2 −1
0 0 6

]]

]

.

This is an upper triangular matrix. Hence the solution is complete.

Note that ifA is to be recovered from the final form thenwrite the final equation as,

F3E5E4F2E3E2F1E1A =
[[

[

1 1 −1
0 2 −1
0 0 6

]]

]

.

Premultiply both sides by the inverses F−13 ,E−15 , and so on, in that order. Then

A = E−11 F−11 E−12 E−13 F−12 E−14 E−15 F−13
[[

[

1 1 −1
0 2 −1
0 0 6

]]

]

.

But

F−13 =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

, E−15 =
[[

[

1 0 0
0 −1 0
0 0 1

]]

]

,

E−14 =
[[

[

−3 0 0
0 1 0
0 0 1

]]

]

, F−12 =
[[

[

1 0 0
0 1 0
−1 0 1

]]

]

,

E−13 =
[[

[

− 13 0 0
0 1 0
0 0 1

]]

]

, E−12 =
[[

[

−2 0 0
0 1 0
0 0 1

]]

]

,

F−11 =
[[

[

1 0 0
−1 1 0
0 0 1

]]

]

, E−11 =
[[

[

− 12 0 0
0 1 0
0 0 1

]]

]

.
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Multiplications can be carried out by inspection, remembering that if any matrix is
premultiplied by an elementary matrix the same effect is there on that matrix. For
example, E−15 F−13 will have the effect that the second row of F−13 is multiplied by (−1).
That is,

E−15 F−13 =
[[

[

1 0 0
0 −1 0
0 −1 1

]]

]

.

Premultiplying this by E−14 will have the effect that the first row is multiplied by (−3).
That is,

E−14 E−15 F−13 =
[[

[

−3 0 0
0 −1 0
0 −1 1

]]

]

.

Premultiplying this by F−12 has the effect that (−1) times the first row is added to the
third row, and so on:

F−12 E−14 E−15 F−13 =
[[

[

−3 0 0
0 −1 0
3 −1 1

]]

]

;

E−13 (F−12 E−14 E−15 F−13 ) =
[[

[

1 0 0
0 −1 0
3 −1 1

]]

]

;

E−12 (E−13 F−12 E−14 E−15 F−13 ) =
[[

[

−2 0 0
0 −1 0
3 −1 1

]]

]

.

Premultiplying this with F−11 has the effect that (−1) times the first row is added to the
second row. That is,

F−11 (E−12 E−13 F−12 E−14 E−15 F−13 ) =
[[

[

−2 0 0
2 −1 0
3 −1 1

]]

]

.

Then

E−11 (F−11 E−12 E−13 F−12 E−14 E−15 F−13 ) =
[[

[

1 0 0
2 −1 0
3 −1 1

]]

]

.

Thus

A = [[
[

1 0 0
2 −1 0
3 −1 1

]]

]

[[

[

1 1 −1
0 2 −1
0 0 6

]]

]

.
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It can be verified by straight multiplication of the two matrices on the right and then
comparing it with the given matrix in the example. The whole process is done in de-
tail in Examples 2.3.1 and 2.3.2 so that the student can clearly understand the effects
of premultiplications by elementary matrices, how to write down the inverses of ele-
mentary matrices or products of elementary matrices without doing any computation
etc so that at later stages many such operations can be carried out simultaneously in-
stead of doing it one at a time. The final solution is that A is written as a product of a
lower triangular matrix, say L, and an upper triangular matrix, say U . That is,

A = LU . (2.3.1)

Is the reduction of any given n × n matrix A to a product of n × n lower and upper
triangular matrices possible? We can answer this question by making a series of ob-
servations.

(vii) Elementary matrices of the E category are always diagonal.
(viii) Elementary matrices of the F category are always lower triangular if the ele-
mentary matrices are created by adding the i-th row to the j-th row of an identity
matrix, with i < j. [If i > j the elementary matrix is no longer lower triangular.]
(ix) Product of a lower triangular matrix with a lower triangular matrix or with a
diagonal matrix remains lower triangular.
(x) Regular inverse of a lower triangular matrix is lower triangular (write it as a
product of elementary matrices and prove the result) and that of a diagonal matrix
is diagonal.

Therefore in attempting to reduce a given matrix A to the form LU if only the steps
in (vii) to (x) are involved we have a possibility of obtaining the form LU . If during
the process, at any stage, the lower triangular nature of an elementary matrix of the
F category is violated then we cannot expect the form LU unless the effect of that ele-
mentary operation is nullified by another elementary matrix during the process. Still
we may not be able to get the form LU . Note from the examples that we could reduce
the elements below the leading diagonal to zeros because we had a nonzero diago-
nal element sitting there at that stage of the operations. If the first row first column
element in A was zero then by adding suitable multiples of the first row to the other
rowswe could not reduce nonzero elements in the same column to zeros.We can bring
in a nonzero element to the (1, 1)-th position by using an elementary matrix of the F
category provided there is at least one nonzero element in the first column. But this F
will not be lower triangular since an i-th row will be added to the j-th row with i > j.
After reducing all elements in the first column to zeros except the first element, we
can use the second diagonal element, (2, 2)-th element, in the resulting matrix. If this
resulting (2, 2)-th element is zero the same situations as described above will arise.
That is, at every stage, the leading diagonal elements must be nonzero in the sense
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that when we come to reducing the elements below the diagonal on the j-th column
to zeros the (j, j)-th element must be nonzero for j = 1,… ,n − 1. Then we end up with
the form A = LU where L is lower triangular as well as nonsingular, being product of
elementary matrices, and U may or may not be nonsingular. If A itself is nonsingular
then both L and U will be nonsingular and in this case,

A = LU ⇒ A−1 = U−1L−1

whereU−1 and L−1 are easier to evaluate, being triangular, compared to the evaluation
of the inverse of a general n × nmatrix.

Example 2.3.3. Reduce the following matrix A to a triangular form by elementary
operations on the left of A, where

A = [[
[

0 1 −1
2 −1 2
1 3 −2

]]

]

.

Solution 2.3.3. Since the (1, 1)-th position has a zero element we add the third row to
the first row to bring in a nonzero entry at the (1, 1)-th position. This can be achieved
by premultiplying with

F1 =
[[

[

1 0 1
0 1 0
0 0 1

]]

]

.

That is,

F1A =
[[

[

1 0 1
0 1 0
0 0 1

]]

]

[[

[

0 1 −1
2 −1 2
1 3 −2

]]

]

= [[

[

1 4 −3
2 −1 2
1 3 −2

]]

]

.

Note that the net effect is on the first row and not on the third row. Instead of the third
rowwe could have added the second row to the first rowwhich would have brought in
a 2 at the (1, 1)-th position. But 1 is easier to handle than 2. Instead of operating with
elementary matrices of the E and F categories we may do two or more such opera-
tions together and write the resulting products of elementary matrices as G category
matrices. Let

G1 =
[[

[

1 0 0
−2 1 0
0 0 1

]]

]

which is evidently a product of the basic elementary matrices. The net effect of pre-
multiplying with G1 is that (−2) times the first row is added to the second row. Later
on, we will make a statement of such a premultiplication as follows:

α(i) + (j) ⇒ (2.3.2)
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which means that α times the i-th row is added to the j-th row, where the i-th row
remains the same whereas the j-th row changes to the original j-th row plus α times
the original i-th row. In terms of the notation in (2.3.2) we can write G1 as equivalent
to the operation

−2(1) + (2) ⇒ G1F1A =
[[

[

1 4 −3
0 −9 8
1 3 −2

]]

]

.

Let

G2 =
[[

[

1 0 0
0 1 0
−1 0 1

]]

]

or − 1(1) + (3) ⇒ .

Then

G2G1F1A =
[[

[

1 4 −3
0 −9 8
0 −1 1

]]

]

.

Since F1 is no longer a lower triangular form we do not expect A to be written as LU ,
product of lower and upper triangularmatrices. Now tomake (3, 2)-th element zero we
have two choices, either divide the second row by −9, which produces a fraction at the
(2,3)-th position, then operate with the resulting second row, or interchange the third
and second rows, which is a product of elementary operations, and then operate with
the new second row. This last procedure avoids fractions. Hence consider

G3 =
[[

[

1 0 0
0 0 1
0 1 0

]]

]

and then

G3(G2G1F1A) =
[[

[

1 0 0
0 0 1
0 1 0

]]

]

[[

[

1 4 −3
0 −9 8
0 −1 1

]]

]

= [[

[

1 4 −3
0 −1 1
0 −9 8

]]

]

.

Let

G4 =
[[

[

1 0 0
0 1 0
0 −9 1

]]

]

or − 9(2) + (3) ⇒
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(−9 times the second row is added to the third row). Then

G4G3G2G1F1A =
[[

[

1 4 −3
0 −1 1
0 0 −1

]]

]

.

This is the desired triangular form. Since G1,G2,G3,G4 are products of the basic ele-
mentary matrices they are nonsingular and their regular inverses exist. Again, these
inverses can be written down by inspection. In fact,

F−11 =
[[

[

1 0 −1
0 1 0
0 0 1

]]

]

, G−11 =
[[

[

1 0 0
2 1 0
0 0 1

]]

]

,

G−12 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

, G−13 =
[[

[

1 0 0
0 0 1
0 1 0

]]

]

,

G−14 =
[[

[

1 0 0
0 1 0
0 9 1

]]

]

.

From the above representation

A = F−11 G−11 G−12 G−13 G−14
[[

[

1 4 −3
0 −1 1
0 0 −1

]]

]

.

But G−13 operating on G−14 will make the second and third rows interchanged in the
original G−14 . That is,

G−13 G−14 =
[[

[

1 0 0
0 9 1
0 1 0

]]

]

;

G−12 G−13 G−14 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

[[

[

1 0 0
0 9 1
0 1 0

]]

]

= [[

[

1 0 0
0 9 0
1 1 0

]]

]

;

G−11 G−12 G−13 G−14 =
[[

[

1 0 0
2 9 1
1 1 0

]]

]

;

F−11 G−11 G−12 G−13 G−14 =
[[

[

0 −1 0
2 9 1
1 1 0

]]

]

.
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Thus A has the decomposition

A = [[
[

0 −1 0
2 9 1
1 1 0

]]

]

[[

[

1 4 −3
0 −1 1
0 0 −1

]]

]

where the first matrix on the right is not lower triangular but nonsingular (being prod-
uct of elementary matrices) but the second matrix on the right is upper triangular.
Thus, in general, we can have a decomposition of an n × nmatrix A to the form

A = BU (2.3.3)

where B is nonsingular and U is upper triangular. This U will be nonsingular if A is
nonsingular. In our example, U is nonsingular since none of the diagonal elements in
U is zero.

(xi) Interchange of two rows (columns) is a product of elementary operations.

2.3.2 Reduction of a square matrix into a diagonal form

Here we consider the reduction of a square matrix into a diagonal form by premulti-
plication with elementary matrices, that is, by premultiplication alone. Later we will
consider the reduction to a diagonal form by postmultiplication alone, and then re-
duction to a diagonal form by pre and post multiplications.

Example 2.3.4. Reduce the following matrix A to a diagonal form by premultiplica-
tion alone, where

A = [[
[

0 1 −2
1 2 5
3 −1 0

]]

]

.

Solution 2.3.4. Let

F1 =
[[

[

1 1 0
0 1 0
0 0 1

]]

]

,

that is, add the second row to the first row ((2) + (1) ⇒).

F1A =
[[

[

1 1 0
0 1 0
0 0 1

]]

]

[[

[

0 1 −2
1 2 5
3 −1 0

]]

]

= [[

[

1 3 3
1 2 5
3 −1 0

]]

]

.
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Let

G1 =
[[

[

1 0 0
−1 1 0
0 0 1

]]

]

, G2 =
[[

[

1 0 0
0 1 0
−3 0 1

]]

]

or

G1 ∶ −1(1) + (2) ⇒; G2 ∶ −3(1) + (3) ⇒ .

G2G1F1A =
[[

[

1 3 3
0 −1 2
0 −10 −9

]]

]

.

Let

G3 =
[[

[

1 3 0
0 1 0
0 0 1

]]

]

or 3(2) + (1) ⇒ and

G4 =
[[

[

1 0 0
0 1 0
0 −10 1

]]

]

or − 10(2) + (3) ⇒ .

Then

G4G3G2G1F1A =
[[

[

1 0 9
0 −1 2
0 0 −29

]]

]

.

Let

E1 =
[[

[

1 0 0
0 1 0
0 0 − 1

29

]]

]

or − 1
29
(3) ⇒

or the third row is divided by (−29). Then

E1G4G3G2G1F1A =
[[

[

1 0 9
0 −1 2
0 0 1

]]

]

.

Let

G5 =
[[

[

1 0 0
0 1 −2
0 0 1

]]

]

or − 2(3) + (2) ⇒;

G6 =
[[

[

1 0 −9
0 1 0
0 0 1

]]

]

or − 9(3) + (1) ⇒ .
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Then

G6G5E1G4G3G2G1F1A =
[[

[

1 0 0
0 −1 0
0 0 1

]]

]

.

That is, BA is a diagonal matrix where

B = G6G5E1G4G3G2G1F1

is a nonsingular matrix, being products of elementarymatrices. Therefore, in this rep-
resentation

A = B−1 multiplied by a diagonal matrix,
B−1 = F−11 G−11 G−12 G−13 G−14 E−11 G−15 G−16 .

Note that ifA is nonsingularwe can expect the diagonalmatrix to have all nonzero
diagonal elements. If A is singular then at least one diagonal element in the diagonal
matrix will be zero. Thus for any n × nmatrix A we have the representation

CA = D or A = C−1D (2.3.4)

where C is nonsingular and D is diagonal. If A is singular then D is singular and if A is
nonsingular then D is nonsingular. We can also represent A in the forms

A = DB, A = C1D1B1

where C,C1 and B,B1 are nonsingular matrices and D,D1 are diagonal matrices. These
will be considered later after looking into the solution of a system of linear equations.

2.3.3 Solving a system of linear equations

As we have already seen that a system of m linear equations in n real scalar variables
can be written in the form

AX = b

where A is the m × n known coefficient matrix, X is the n × 1 vector of variables or
unknowns and b is anm × 1 known vector. For example,

x1 − x2 + x3 − 2x4 = 5
2x1 + x2 − x3 + x4 = 2 ⇒ AX = b
x1 + x2 + x3 − 3x4 = 4
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where

A = [[
[

1 −1 1 −2
2 1 −1 1
1 1 1 −3

]]

]

, X = [[
[

x1
⋮
x4

]]

]

, b = [[
[

5
2
4

]]

]

.

Here m = 3, n = 4. One method of solving this system is by successive elimination,
which the student may be familiar with. This will be quite tedious when the number
of variables and the number of equations are large. We will solve this system by ele-
mentary operations. If there is a solution for AX = b, that is, if there exists a vector X
such that AX = b is satisfied then

BAX = Bb

has the same solution as the original equation AX = b as long as B is a nonsingular
matrix. Note that, by premultiplying both sides by B−1, when B is nonsingular B−1

exists, we get back the original equation

B−1(BAX) = B−1(Bb) ⇒ AX = b.

Since elementary matrices or products of them are nonsingular we may operate both
sides of AX = b by elementarymatrices. Premultiplication by elementarymatrices will
be stated by using our notation in (2.3.2).When premultiplying both sides ofAX = b by
elementary matrices the effects will be on A and b. Hence we need to look only at the
effects rather thanwriting thewhole system of equations each time. A convenient way
of writing A and b is to write A and then b separated by a vertical line or two vertical
lines to indicate that A and b are on separate sides of the equation AX = b. For the
illustrative example, this representation is then,

(a)
1 −1 1 −2
2 1 −1 1
1 1 1 −3

||

|

5
2
4

Now the idea is to get rid off the elements in the first column, except the (1, 1)-th ele-
ment, the elements in the second column, except the element at the (2, 2)-th position,
and so on or to reduce the elements below the leading diagonal of A to zeros or to
reduce the elements below as well as above the leading diagonal to zeros. Instead of
doing one operation at a time we can do several operations simultaneously:

−2(1) + (2); −1(1) + (3) ⇒

This means that (−2) times the first row (on both sides of the vertical line) is added
to the second row and then (−1) times the first row is added to the third row. The first
row, the one we are operating with, remains the same and the other rows change. The



2.3 Elementary matrices and elementary operations | 115

net result of these operations will give the following configurations: [Always write the
row that you are operating with first, since it is not going to change, and then write
the result of the operations on the other rows, on both sides.]

(b)
1 −1 1 −2
0 3 −3 5
0 2 0 −1

||

|

5
−8
−1

For a triangular type reduction we will try to get rid off the (3, 2)-th element by using
the (2, 2)-th element. This can be done by first dividing the second row by 3 and then
adding (−2) times the second row to the third row:

(c) 1
3
(2); −2(2) + (3) ⇒

1 −1 1 −2
0 1 −1 5

3
0 0 2 − 133

|||

|

5
− 83
13
3

In this triangular type reduction we cannot go further. One way of solving the system
is to write the whole system at this stage and then solve starting from the last equa-
tion. Translating (c) in terms of the original variables we have the following system of
equations:

x1 − x2 + x3 − 2x4 = 5

x2 − x3 +
5
3
x4 = −

8
3

2x3 −
13
3
x4 =

13
3
.

There are infinitelymany solutions in this case because any one variable, for example,
x4, canbe free.We canassign any value to x4 and can solve for the remaining variables.
For example let x4 = 0. Then we have 2x3 =

13
3 or x3 =

13
6 . Then from the next line above

x2 = x3 −
5
3
x4 −

8
3
= 13
6
− 0 − 8

3
= − 1

2

and finally

x1 = x2 − x3 + 2x4 + 5 = −
1
2
− 13
6
+ 0 + 5 = 7

3
.

Therefore one solution is

(x1,x2,x3,x4) = (
7
3
, − 1
2
, 13
6
,0).

By taking other values for x4 we get other solutions. Note that when solving a system
suchas the oneabove it iswiser to verify thefinal answer by substituting in the original
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system because it is likely that we may have made some computational errors during
the process.

If we wish to reduce our system to a diagonal type format then at the stage (c)
above, add the second row to the first row to obtain

(d)
1 0 0 −1/3
0 1 −1 5/3
0 0 2 −13/3

||

|

7/3
−8/3
13/3

Now divide the third row by 2 and then add the third row to the second row:

(e) 1
2
(3); (3) + (2) ⇒

1 0 0 −1/3
0 1 0 −1/2
0 0 1 −13/6

||

|

7/3
−1/2
13/6

Nowwith x4 = 0 we can read off values of the other variables from the right side itself.
That is, x3 =

13
6 , x2 = −

1
2 , x1 =

7
3 . Thus one solution is

(x1,x2,x3,x4) = (
7
3
, − 1
2
, 13
6
,0).

Whendoing elementary operations to solve a systemof equations the following points
are worth observing:

(xii) Interchange the rows (changing the order of the equations does not affect the
solutions), if necessary, to bring a nonzero number at the (1, 1)-th position to start
with. Repeat the same techniquewhen dealingwith the (i, i)-th position on theway,
i = 1, 2,….
(xiii) If a division creates fractions at any stage then multiply the equations with
appropriate numbers to avoid fractions when adding a constant multiple of a row
to another row.
(xiv) At any stage of the operations if any equation results in an impossible state-
ment, such as on the one side of the vertical line there is a zero only whereas on the
other side there is a nonzero number, then stop the process. There is no solution for
the system.

Example 2.3.5. Solve the following system of linear equations if there exists a solu-
tion:

x1 − x2 + 2x3 = 2
2x1 + 2x2 − x3 = 3
3x1 + x2 + x3 = 5.
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Solution 2.3.5. To start with we do not know whether the system has a solution or
not. Hence start the process and continue. Writing as before

1 −1 2
2 2 −1
3 1 1

||

|

2
3
5

−2(1) + (2); −3(1) + (3) ⇒
1 −1 2
0 4 −5
0 4 −5

||

|

2
−1
−1

−1(2) + (3) ⇒
1 −1 2
0 4 −5
0 0 0

||

|

2
−1
0

The last equation resulted in a statement 0 = 0 which is a valid statement. Thus the
last row disappears. We can start solving from this triangular type format or try to get
rid off the element at the (1, 2)-th position. This can be done by two steps, at the same
time avoiding fractions also. Multiply the first row by 4 and then add the second row
to the first row. That is,

4(1); (2) + (1) ⇒ 4 0 3
0 4 −5

|
7
−1

Writing the resulting equations we have

4x1 + 3x3 = 7
4x2 − 5x3 = −1.

There are several solutions. We can assign an arbitrary value to x3. For example let
x3 = 0 then one solution is

(x1,x2,x3) = (
7
4
, −

1
4
,0).

Example 2.3.6. Solve the following system of linear equations if there exists a solu-
tion:

2x2 − x3 = 1
x1 − x2 + 3x3 = 2
x1 + x2 + 2x3 = 5.

Solution 2.3.6. Wewill interchange the first and second equations to bring a nonzero
number at the (1, 1)-th position. The resulting configuration is the following:

1 −1 3
0 2 −1
1 1 2

||

|

2
1
5
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Now we start the elementary operations:

−1(1) + (3) ⇒
1 −1 3
0 2 −1
0 2 −1

||

|

2
1
3
; −1(2) + (3) ⇒

1 −1 3
0 2 −1
0 0 0

||

|

2
1
2
.

The last equation has resulted in an inconsistent statement that 2 = 0 and hence the
system has no solution, the system is inconsistent.

Definition 2.3.3. A system of linear equations AX = b is said to be consistent if there
exists at least one vector X (at least one solution) such that the equation AX = b is
satisfied. If there is no such X the system is said to be inconsistent.

In Example 2.3.6 the system is inconsistent whereas the system in Example 2.3.5
is consistent. When the system is consistent we may have just one solution (unique
solution) or many solutions.

(xv) IfA inAX = b is a square andnonsingularmatrix then there is a unique solution
and the solution is X = A−1b.
(xvi) If AX = b, with A a square matrix, and if the system is consistent with A singu-
lar then there are many solutions.
(xvii) If A ism× n, m < n the system AX = bmay not have a solution. Consistency of
the system does not go withm < n orm = n.

Exercises 2.3

2.3.1. Write the followingmatrices as products of the basic elementarymatrices of the
E and F types, if possible (see Definition 2.3.1):

A1 =
[[[[

[

1 0 0 0
−1 1 0 0
−2 0 1 0
0 0 0 1

]]]]

]

, A2 =
[[[[

[

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 0

]]]]

]

, A3 =
[[[[

[

1 −3 0 0
0 1 0 0
0 2 1 0
0 0 0 1

]]]]

]

.

2.3.2. Prove that the interchange of the i-th and the j-th rows of In is a product of
elementary matrices of the E and F types.

2.3.3. Evaluate the regular inverses of the matrices in Exercise 2.3.1, if they exist, by
first writing them as product of elementary matrices and then inverting them.

2.3.4. Let A be the matrix obtained by interchanging the i-th and j-th rows of In. Eval-
uate the regular inverse of A.
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2.3.5. Reduce the following matrices into the form LU , wherever possible, where L is
lower triangular and U is upper triangular:

A = [[
[

1 −1 2
−2 0 1
3 1 −1

]]

]

, B = [[
[

0 1 1
−1 1 5
2 0 4

]]

]

, C = [[
[

1 0 1
2 3 1
4 3 3

]]

]

.

2.3.6. Reduce the matrices in Exercise 2.3.5 to the form QU where Q is nonsingular
and U is upper triangular.

2.3.7. Reduce the matrices in Exercise 2.3.5 to the form SD where D is diagonal and S
is nonsingular.

2.3.8. Under what conditions the following matrices A and B nonsingular?

A = [[
[

2 0 0
0 c 0
3 2 1

]]

]

[[

[

d1 0 0
0 d2 0
0 0 d3

]]

]

, B = A[[
[

1 2 1
0 2 3
0 0 x

]]

]

.

2.3.9. Solve the systems of equations by reducing the coefficientmatrices to triangular
type forms:

(a) x2 − 3x3 + x4 = 1
2x1 − x2 + x3 + x4 = 2
3x1 − 2x2 + x3 − x4 = 1;

(b) x2 − 2x3 + 2x4 = 1
x1 − 2x2 + x3 + x4 = 2
x1 − x2 − x3 + 3x4 = 4;

(c) x1 + x2 − x3 + x4 = 1
2x1 − x2 + x3 + 2x4 = 2
x1 + x2 + x3 + x4 = 2

3x1 − 2x2 + x3 − 2x4 = 4.

2.3.10. Solve the same systems of equations in Exercise 2.3.9 by reducing the coeffi-
cient matrices to the diagonal type forms.

2.3.11. Solve the system of equations

x1 + x2 + x3 + x4 = 0
x1 − x2 + x3 − x4 = 0
−x1 − x2 + x3 + x4 = 0
x1 − x2 − x3 + x4 = 0.
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2.3.12. Solve the system of equations

x1 + x2 + x3 + x4 = 1
x1 − x2 + x3 − x4 = 2
−x1 − x2 + x3 + x4 = 1

2x1 + 2x3 = 3.

2.3.13. Solve the system of equations

x1 + x2 + x3 + x4 = 2
x1 − x2 + x3 − x4 = 1
x1 + 2x2 + x3 + x4 = 3

2x1 + x2 + 2x3 = 2.

2.3.14. Writing the equations in Exercises 2.3.11, 2.3.12 and 2.3.13 as AX = b and then
reducing A to triangular type forms determine whether or not (a) A is nonsingular in
each case, (b) A can be represented as LU in each case where L is lower triangular and
U is upper triangular, (c) A can be written as BD in each case where B is nonsingular
and D is diagonal.

2.3.15. Writing the equations in Exercises 2.3.11, 2.3.12 and 2.3.13 in the form AX = b
write A = BDC where D is diagonal, B and C nonsingular, B ≠ I4, C ≠ I4.

2.3.16. Solve the system of equations

x1 + 2x2 + x3 − x4 = 2
x2 + 5x3 + x4 = 4
x1 − x2 + x3 = 2

x1 + 2x2 + x3 − x4 = 5.

2.3.17. If there is a solution for the system inExercise 2.3.16what is the geometric inter-
pretation of a solution? If there is no solution in Exercise 2.3.16 explain the geometry.

2.3.18. If there is a system of n linear equations in n unknowns x1,… ,xn, that is,
AX = b where A is n × n and X′ = (x1,… ,xn), and if A is orthonormal, is the system
consistent? If so how many solutions are there? Obtain a solution without using ele-
mentary operations.

2.3.19. Suppose A,B and A+B are all nonsingular n× nmatrices. Show that A−1 +B−1

is nonsingular and that

(A−1 + B−1)−1 = A(A + B)−1B = B(A + B)−1A.
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2.3.20. Verify the results in Exercise 2.3.19 for

A = [[
[

1 0 0
1 2 0
2 1 3

]]

]

, B = [[
[

1 2 1
0 1 1
0 0 4

]]

]

.

2.4 Inverse, linear independence and ranks

In this section we shall consider a method of evaluating the regular inverse of a given
nonsingularmatrix by elementary operations, checking for linear dependence of a set
of vectors by elementary operations, the concepts of row and column ranks of amatrix
and the rank of a matrix.

First we deal with a technique of evaluating the regular inverse of a given matrix
whenever the inverse exists. There are several ways of doing this. One method based
on elementary operations will be discussed here.

2.4.1 Inverse of a matrix by elementary operations

Let A = (aij) be a given n× nmatrix. If the regular inverse of A exists let us denote it by
A−1. Then from the definition itself

AA−1 = I (2.4.1)

where I is the identity matrix. Equation (2.4.1) is the same equation if both sides are
multiplied by the same nonsingular matrix, say B, in the sense

AA−1 = I ⇒ BAA−1 = B ⇒ AA−1 = I .

Also note that B(AA−1) = (BA)A−1 or we can premultiply A with a nonsingular matrix
B and it will be equivalent to premultiplying (AA−1)with B. Since elementarymatrices
are nonsingular we will premultiply on both sides by elementary matrices and try to
reduce A to an identity matrix. If this is possible then A−1 is the product of the elemen-
tary matrices on the right.

Example 2.4.1. Evaluate the regular inverse of the following matrix A if it exists.

A = [[
[

1 0 −1
2 1 3
3 1 4

]]

]

.

Solution 2.4.1. IfAwas a rectangularmatrixwewouldnot have attempted to evaluate
the regular inverse since regular inverses do not exist for rectangular matrices. Our
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matrix A is a square matrix. It may or may not have the regular inverse A−1. We start
with the assumption that A−1 exists and proceed with elementary operations on the
left on both sides. If A−1 does not exist then some inconsistency will arise during the
process. Then we stop. If no inconsistency arises during the process then A−1 will be
available on the right side when A reduces to an identity matrix. Hence consider the
equation

[[

[

1 0 −1
2 1 3
3 1 4

]]

]

A−1 = [[
[

1 0 0
0 1 0
0 0 1

]]

]

.

We premultiply both sides by elementary matrices. In the first stage our aim is to
reduce the first column elements of A to zeros except the first element. This can be
achieved by a sequence of operations with elementarymatrices which in our notation
can be stated as follows:

−2(1) + (2); −3(1) + (3) ⇒

[(−2) times the first row added to the second row and (−3) times the first row added to
the third row give]

[[

[

1 0 −1
0 1 5
0 1 7

]]

]

A−1 = [[
[

1 0 0
−2 1 0
−3 0 1

]]

]

.

Note that we do the same operations on both sides (same premultiplications by ele-
mentary matrices on both sides). The net effect of these multiplications on the left is
on the matrix A itself. The final result of this stage of operations is given above. Our
next aim is to get rid off the elements in the second column of the resulting A by op-
erating with the second row (or with the help of the element at the (2, 2)-th position).
We have the (1, 2)-th element already zero and hence we need to get rid off only the
(3, 2)-th element.

−1(2) + (3) ⇒ [[
[

1 0 −1
0 1 5
0 0 2

]]

]

A−1 = [[
[

1 0 0
−2 1 0
−1 −1 1

]]

]

.

The next stage is to get rid off the elements in the third column and at the same time
make the elements at (3,3)-th position 1. This can be done first by dividing the third
row by 2 and with the help of this new third row get rid off the elements at the (2,3)-th
and (1,3)-th positions. The operations are the following:

1
2
(3); −5(3) + (2); (3) + (1) ⇒

[[

[

1 0 0
0 1 0
0 0 1

]]

]

A−1 = [[[
[

1
2 −

1
2

1
2

1
2

7
2 −

5
2

− 12 −
1
2

1
2

]]]

]

.
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Hence, writing with 1
2 outside,

A−1 = 1
2
[[

[

1 −1 1
1 7 −5
−1 −1 1

]]

]

.

The student may verify by multiplying this with A to see whether the product is an
identity matrix, to make sure that no computational error is made during the process.

Instead of writing the reduced matrix, A−1 and the reduced right side each time,
wemay simplywrite the configurations of the elements inAfirst thenput a vertical line
and write an identity matrix. Continue with the operations with the aim of reducing A
to an identitymatrix, each time doing the same operations on both sides of the vertical
line, [always premultiplications by elementary matrices on both sides of the vertical
line]. IfA reduces to an identitymatrix thenwhat is obtained on the right of the vertical
line at this stage is A−1.

Example 2.4.2. Evaluate the regular inverse of A if it exists, where

A = [[
[

1 0 −1
−3 2 1
−2 2 0

]]

]

.

Solution 2.4.2. We start with the equation AA−1 = I assuming that A−1 exists. Let us
write the configuration in A, a vertical line, the configuration in an identity matrix, in
that order. That is,

1 0 −1
−3 2 1
−2 2 0

||

|

1 0 0
0 1 0
0 0 1

Now we start with the operations on both sides, using the same notations as before:

3(1) + (2); 2(1) + (3) ⇒
1 0 −1
0 2 −2
0 2 −2

||

|

1 0 0
3 1 0
2 0 1

−1(2) + (3) ⇒
1 0 −1
0 2 −2
0 0 0

||

|

1 0 0
3 1 0
−1 −1 1

The last row on the left is null. Whatever linear operations we do on the left this form
cannot be reduced to an identity matrix. Hence A−1 does not exist in this case.
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(i) While doing elementary operations on the left if any row of the reduced matrix
on the left becomes null at any stage then there is no regular inverse for the given
matrix. Hence stop the process then and there when a null vector is obtained.
(ii) If the given matrix is rectangular then there is no regular inverse and hence do
not start elementary operations if the aim is to find the regular inverse.
(iii)While doing elementary operations on the leftmultiply the rows by appropriate
numbers (do the same multiplications on both sides of the vertical line) in order to
avoid fractions. Then at the very end of the operations divide the rows by appro-
priate numbers to create an identity matrix on the left of the vertical line. This will
make the computations much easier.

2.4.2 Checking linear independence through elementary operations

Consider ordered sets of real numbers defined as vectors. Consider m such n-vectors.
These m vectors can also be looked upon as the m rows of an m × n matrix. In such a
case we will be checking the linear dependence of the rows of a matrix also. Write the
m vectors as a matrix and apply elementary operations on the left, that is premultiply
by elementary matrices. As seen from Chapter 1, linear independence or dependence
in a set of vectors is not altered by nonzero scalar multiplications or additions, the
two basic elementary operations corresponding to the two types of basic elementary
matrices. Also interchanges of rows will not alter the linear independence or depen-
dence in the set. An interchange of rows can be looked upon as a product of elemen-
tary operations. Letm ≤ n for convenience. By elementary operations on the left, with
interchanges if necessary, bring A = (aij) the matrix representing the m vectors to the
following form:

A → [Ir C
O O
]

where Ir is an identity matrix, r ≤m, O indicates a null matrix and C is a matrix which
may or may not be null. Such a reduction is always possible provided there are no
null column vectors in the first r columns. If r =m then the null matrices will not be
present. Since Ir is an r × r identity matrix, r ≤ m ≤ n the first r rows of the reduced
matrix are linearly independent. Thus the maximum number of linearly independent
rows is r or the maximum number of linearly independent vectors in the given set of
m vectors is r. This process will be clear from the following example.

Example 2.4.3. Determine themaximumnumber of linearly independent rowvectors
and the maximum number of linearly independent column vectors in the following
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matrix A where,

A = [[
[

2 −3 1 5
1 2 −1 1
3 −1 0 6

]]

]

.

Solution 2.4.3. Since our aim is to check for linear independence or dependence we
can interchange the rows, if necessary. Let us interchange rows 1 and 2 to bring a 1 at
the (1, 1)-th position. That is,

1 2 −1 1
2 −3 1 5
3 −1 0 6

Now we do elementary operations, using our notations introduced earlier:

−2(1) + (2); −3(1) + (3) ⇒
1 2 −1 1
0 −7 3 3
0 −7 3 3

−1(2) + (3) ⇒
1 2 −1 1
0 −7 3 3
0 0 0 0

Linear independence can be determined at this stage itself without bringing the
matrix A to the form [ Ir CO O ]. The first two rows are linearly independent. Hence the
maximum number of linearly independent rows is 2. If we wish to bring the matrix to
the above form then do the following operations. Divide the second row by (−7) and
then add (−2) times the second row to the first row:

−
1
7
(2); −2(2) + (1) ⇒ [[[

[

1 0 − 17
13
7

0 1 − 37 −
3
7

0 0 0 0

]]]

]

= [
Ir C
O O
]

C = [
− 17

13
7

− 37 −
3
7
] .

Let

e1 = (
1
0
) , e2 = (

0
1
) .

Then

(
−1/7
−3/7
) = − 1

7
e1 −

3
7
e2
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and

(
13/7
−3/7
) = 13

7
e1 −

3
7
e2.

Hence the last two columns are linearly dependent on the first two columns. Thus the
maximum number of linearly independent columns is also 2. This in fact is a general
result. Before stating the general results we may observe one aspect. In the above ex-
ample we had interchanged two rows to start with. Thus the columns are disturbed.
Is linear independence of columns affected by such an interchange? Note that at the
last stagewemay interchange the rows back to the original order. Still we have the two
unit vectors e2 and e1 and still the last columns or the columns in C are linear func-
tions of e1 and e2. Hence linear dependence in the columns is not affected by such an
interchange of rows.

Definition 2.4.1. Themaximumnumber of linearly independent row vectors in ama-
trix A is called the row rank of A. The maximum number of linearly independent col-
umn vectors in a matrix A is called the column rank of A. It can be proved that the row
rank equals the column rank. Then this common rank is called the rank of the matrix.

(iv) In any matrix the row rank is equal to the column rank.

This result can be proved without much difficulty. Premultiplication of a matrix by el-
ementarymatrices does not alter the linear independence of the system of row vectors
or columnvectors. By elementary operations, and row interchanges if necessary, bring
the givenm × nmatrix,m ≤ n, to the form

(a) A → [Ir C
O O
]

where O indicates a null matrix and C may or may not be null. Let e1,… ,er be the r
basic unit column vectors. Since C is an r × (n − r) matrix every column there is an
r-vector and hence can be written as a linear combination of the basic unit vectors
e1,… ,er . Since every column vector in C is dependent on e1,… ,er the column rank
is r. Since Ir is present as the first block the first r row vectors are linearly independent,
the remaining are null vectors. Hence the row rank is also r. A similar argument holds
for the casem ≥ n.

Definition 2.4.2. If the rank of anm×n or n×mmatrixwithm ≤ n ism then thematrix
is said to be a full rank matrix.

Definition 2.4.3. An n×nmatrix Awith rank n is said to be a nonsingular matrixwith
a regular inverse A−1 such that AA−1 = In,A−1A = In and if the rank is r < n then it is
called a singular matrix with no regular inverse A−1.
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In Example 2.4.3 the rank of the matrix is 2. It is rectangular. It is not a full rank
matrix. If the rank was 3 then we would have called it a full rank matrix. Some of the
immediate consequences of the concept of rank are the following:

(v) The rank of anm×nmatrix cannot exceedm or n. Themaximum value possible
is the smaller of m and n. If the maximum is attained then it is a full rank matrix.
A nonsingular matrix is also a full rank matrix.
(vi) An n × nmatrix is nonsingular iff its rank is n.
(vii) The rank of a null matrix is zero.
(viii) The rank of an n × n orthonormal matrix is n.
(ix) The rank of an n × n idempotent matrix, not equal to In, is less than n.
(x) The rank of an n × n nilpotent matrix is less than n.
(xi) The rank of any matrix A and the rank of cA are the same where c is a nonzero
scalar.

Exercises 2.4
2.4.1. Evaluate the ranks of the following matrices:

A =
[[[[

[

2 1 −1 2
1 1 −1 3
1 0 0 1
4 2 −2 6

]]]]

]

, B =
[[[[

[

2 1 0 0
2 −1 1 2
3 1 1 −1
4 0 1 −1

]]]]

]

, C = [[
[

0 1 −1 1
2 1 0 −1
3 −1 0 1

]]

]

.

2.4.2. Evaluate the ranks of AB and CB where A,B,C are given in Exercise 2.4.1. What
can you say about the rank of a product of two matrices in terms of the ranks of the
individual matrices?

2.4.3. Show that the rank of AB, where A and B are general matrices with AB defined,
cannot exceed the rank of A or the rank of B.

2.4.4. Compute the ranks of (a)A+B, (b) 2A+3B for theA andB given in Exercise 2.4.1.

2.4.5. Show that for two arbitrarymatricesA andB such that αA+βB is defined,where
α and β are scalars, the rank of αA+βB cannot exceed the rank of A plus the rank of B.

2.4.6. Show that the only idempotent matrix with full rank is the identity matrix.

2.4.7. If A is a square matrix what can you say about the rank of A2 in terms of the
rank of A. Verify your result for the A of Exercise 2.4.1.

2.4.8. LetA be n×n,X an n×1 vector then show that for the systemof linear equations
AX = O to have a non-null solution (at least one X satisfying AX = O is such that X ≠ O)
the rank of Amust be less than n. If the rank is n then the only solution is X = O.
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2.4.9. Let

A = [[
[

1 0 −1
1 1 2
0 1 −1

]]

]

, X = [[
[

x1
x2
x3

]]

]

and consider the equation AX = λX. Find the values of λ so that the equation AX = λX
has a non-null solution (X ≠ O).

2.4.10. Evaluate the ranks of the following n × nmatrices:

A =
[[[[

[

a b … b
b a … b
⋮ ⋮ … ⋮
b b … a

]]]]

]

, a ≠ 0,b ≠ 0,a ≠ b; B =
[[[[

[

1 1 … 1
1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]]]

]

;

C = [[
[

1 − 1
n −

1
n… −

1
n

⋮ ⋮ … ⋮
− 1n − 1n … 1 − 1

n

]]

]

; G =
[[[[

[

1 a1 a21 … an−11
1 a2 a22 … an−12
⋮ ⋮ ⋮ … ⋮
a an a2n … an−1n

]]]]

]

,

aj ’s are distinct and nonzero.

2.4.11. What can you say about the rank of a singly stochastic matrix (sum of the ele-
ments in each row or each column is 1). Verify your result for a 2× 2 and 3× 3 matrices.

2.4.12. Let A and B be nonsingular n × nmatrices. Show that

AB, AB−1, A−1B, A−1B−1

are nonsingular matrices.

2.4.13. Let A and B be n× n nonsingular matrices. Show that A+B and A−B need not
be nonsingular. Give two such examples of A and B.

2.4.14. If A ism × n,m < n and with rankm then show that AA′ is nonsingular.

2.4.15. Show that the rank of AB is zero iff AB = O.

2.4.16. If A ism×n,m < n andwith rankm and if B ism×m nonsingular and C is n×n
nonsingular is BA of rankm? Is AC of rankm or n or something else?

2.5 Row and column subspaces and null spaces

Here we examine the subspaces generated by the rows of a given matrix, the columns
of a given matrix and subspaces which are orthogonal to these. Then we examine the
bases and dimensions of these subspaces.
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2.5.1 The row and column subspaces

Consider the subspaces generated by the row vectors of a given matrix A by the fol-
lowing basic operations of scalar multiplication and addition. Let this subspace be
denoted by S1. Then S1 is called the row subspace of the matrix A. Thus every linear
combination of the row vectors of A is in S1. That is, all the rows are in S1, every scalar
multiple of every row vector is in S1, every sum of such scalar multiples is also in S1.
Now, consider the subspace generated by the column of A. Then this subspace, de-
noted by S2, is called the column subspace of A. Thus every linear combination of the
columns of A is in S2.

IfA is anm×nmatrix then every vector in S1 is an n-vector whereas every vector in
S2 is an m-vector. Since the maximum number of linearly independent row vectors is
r, the rank of A, which is also equal to the maximum number of linearly independent
columnvectors ofA, the dimension of S1 is rwhich is also equal to the dimension of S2.
Consider the equation

AX = O (2.5.1)

where A is the given m × n matrix and X is an n × 1 vector of unknowns (variables or
parameters) and O is the null vector. [AX = O is also called the homogeneous system
of linear equations.] In (2.5.1) each row vector is orthogonal to each solution vector X.
Consider the set of all such solutions, {X}, that is the set of all possible X satisfying
(2.5.1).

Definition 2.5.1 (The null space). The set of all possible solutions, {X}, of the equa-
tions in (2.5.1) is called the null space or the right null space of the matrix A.

Definition 2.5.2 (The left null space). The solution space {Y} of the equationA′Y = O,
where A′ is the transpose of A, is called the left null space of A.

Let us denote the null space or the right null space by S3 and the left null space by
S4. Then each vector in S3 is an n-vector and it is orthogonal to each vector in the row
subspace S1. Similarly, each vector in S4 is an m-vector and it is orthogonal to each
vector in the column subspace S2. The subspaces S1 and S3 are orthogonal to each
other. Also the subspaces S2 and S4 are orthogonal to each other. Not only that, S3
is the orthogonal complement of S1 and S4 is the orthogonal complement of S2. (See
Chapter 1 for the definitions.)

Definition 2.5.3 (Orthogonal complements). If two subspaces of n-vectors S and S∗

are such that the dimension of S is r, the dimension of S∗ is n − r and further, S and
S∗ are orthogonal to each other then S∗ is called the orthogonal complement of S, and
vice versa.
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We will use the notation ⟂ to denote orthogonality. Then we have

S1 ⟂ S3 or S3 ⟂ S1 (orthogonal to each other).
S2 ⟂ S4 or S4 ⟂ S2 (orthogonal to each other).

The maximum number of linearly independent n-vectors is n. Also from Chapter 1 we
know that orthogonal vectors are linearly independent. The dimension of S1 is r, the
row rank of A. Since S3 is the orthogonal complement of S1 the dimension of S3 is n− r.
Similarly the dimension of S4 ism− r, the number of rowsminus the column rank ofA.
Thus we have the following results:

(i) The row subspace of an m × nmatrix A and the null space (the right null space)
S3 are of dimensions r and n− r respectively, where r is the rank ofA, and further, S1
and S3 are orthogonal complements of each other. Similarly the column subspace
S2 and the left null space S4 are of dimensions r andm− r respectively and further,
S2 and S4 are orthogonal complements of each other.
(ii)

dimension of S1+ dimension of S3 = n
dimension of S2+ dimension of S4 =m.

Example 2.5.1. Obtain 2 bases each for the row subspace S1, the column subspace S2
and the null space of A, where

A = [[
[

1 1 0 1
2 −1 1 2
4 1 1 4

]]

]

.

Solutions 2.5.1. In order to determine the rank or establish a basis for the row or col-
umnsubspaceweproceedas before, namelydo elementary operations since the linear
independence or dependence in the set of row or column vectors is unaltered by these
operations. Also we use the same notations as before:

−2(1) + (2); −4(1) + (3) ⇒
1 1 0 1
0 −3 1 0
0 −3 1 0

−1(2) + (3) ⇒
1 1 0 1
0 −3 1 0
0 0 0 0

(α)

At this stage we know that the row rank = r = 2 = the column rank. Hence the dimen-
sion of the row subspace S1 is 2, that of the null space S3 is 4− 2 = 2, that of the column
subspace S2 is 2 and that of the left null space S4 is 3 − 2 = 1. Any two linearly inde-
pendent row vectors is a basis for the row subspace S1. Two such bases are then two
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such collections of two linearly independent row vectors of A. Many such sets can be
constructed. One such set is already in (α). Two such bases are the following:

(1) { (1, 1,0, 1)
(2, −1, 1, 2)

} , (2) {(1, 1,0, 1)
(4, 1, 1,4)

} .

Any two linearly independent column vectors of A is a basis for the column subspace
S2. Two such bases are the following:

(1)
{{
{{
{

(
1
2
4
), (

1
−1
1
)
}}
}}
}

, (2)
{{
{{
{

(
1
2
4
), (

0
1
1
)
}}
}}
}

.

Every vector in the null space S3 is orthogonal to every vector in S1. There are sets of
two such linearly independent vectors. A general method of constructing a basis for
S3 would be to take a basis in S1 and construct two orthogonal vectors. In our example
here a simpler way of doing it is to reduce the reduced form of A, given in (α) above,
further. Divide the second row by (−3) and add (−1) times the second row to the first
row to obtain

1 0 1
3 1

0 1 − 13 0
0 0 0 0

(β)

Then a vector in the null space S3 must be orthogonal to the vectors (1,0, 13 , 1) as well
as to (0, 1, − 13 ,0). Let V , V

′ = (a,b, c,d) be a vector in S3. Then

(1,0, 1
3
, 1)V = 0 ⇒ a + 1

3
c + d = 0

and

(0, 1, − 1
3
,0)V = 0 ⇒ b − 1

3
c = 0.

Two solutions are

(a,b, c,d) = (−2, 1,3, 1), (−3, 1,3, 2).

Two other solutions are

(a,b, c,d) = (−4, 1,3,3), (−5, 1,3,4).

Hence two bases for the null space S3 are the following:

(1)
{{{{
{{{{
{

[[[[

[

−2
1
3
1

]]]]

]

,
[[[[

[

−3
1
3
2

]]]]

]

}}}}
}}}}
}

, (2)
{{{{
{{{{
{

[[[[

[

−4
1
3
3

]]]]

]

,
[[[[

[

−5
1
3
4

]]]]

]

}}}}
}}}}
}

.
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If two bases for the left null space S4 are needed then we can start with A. Since we
have done row operations to reduce A to (β) hence (β) is not a suitable starting point
here. Take any arbitrary column vector U , U′ = (a,b, c). Then U must be orthogonal to
the columns of A. Take any two linearly independent columns, say the second and the
third columns in A. Then take the dot products with U . That is,

a − b + c = 0, b + c = 0.

Two solutions are the following:

(
a
b
c
)=(

2
1
−1
), (
−2
−1
1
).

Note that the dimension of S4 is 1 and hence all vectors in S4 will be scalar multiples
of U . Then, for example, two bases for S4 are the two vectors given above. [A basis
consists of only one vector in this case.]

Example 2.5.2. Show that every row vector in A of Example 2.5.1 can be written as
a linear function of the vectors in each basis for the row subspace S1 constructed in
Example 2.5.1 and that each column vector in A can be written as a linear function of
the vectors in each basis of S2 there.

Solutions 2.5.2. Let us start with the basis (1) of the row subspace S1. Then the vector

(4, 1, 1,4) = 2(1, 1,0, 1) + (2, −1, 1, 2).

Hence all the row vectors are expressible as linear functions of the vectors in each
basis of S1. Now let us consider the basis (1) of the column subspace S2.

a(
1
2
4
)+ b(

1
−1
1
)=(

0
1
1
) ⇒ a = 1

3
, b = − 1

3
, or

1
3
(
1
2
4
)−

1
3
(

1
−1
1
)=(

0
1
1
).

c(
1
−1
1
)+ d(

0
1
1
)=(

1
2
4
) ⇒ c = 1, d = 3, or

(
1
−1
1
)+ 3(

0
1
1
)=(

1
2
4
).
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2.5.2 Consistency of a system of linear equations

A system of linear equations can be written as AX = b, that is,

[[

[

a11 … a1n
⋮ … ⋮
am1 … amn

]]

]

[[

[

x1
⋮
xn

]]

]

= [[

[

b1
⋮
bm

]]

]

(2.5.2)

where A and b are known and X is the unknown part. Writing the equations in (2.5.2)
in a slightly different equivalent form we have,

x1
[[

[

a11
⋮
am1

]]

]

+ x2
[[

[

a12
⋮
am2

]]

]

+…+ xn
[[

[

a1n
⋮
amn

]]

]

= [[

[

b1
⋮
bm

]]

]

. (2.5.3)

Note that (2.5.2) and (2.5.3) are equivalent representations of AX = b. If there is a solu-
tion for AX = b then we have a set of numbers for

X′ = (x1,… ,xn) = (c1,… , cn)

and for this set (2.5.3) becomes

c1
[[

[

a11
⋮
am1

]]

]

+ c2
[[

[

a12
⋮
am2

]]

]

+…+ cn
[[

[

a1n
⋮
amn

]]

]

= [[

[

b1
⋮
bm

]]

]

.

In other words, the vector b is a linear combination of the column vectors of thematrix
A or b is an element of the column subspace S2 of A. Therefore for the system AX = b
to have a solution, bmust be an element of S2.

(iii) The system of linear equations AX = b is consistent (have at least one solution)
if and only if b is an element of the column subspace S2 of A.

Now, let us examine the general solution for the system AX = b. Consider the homo-
geneous system

AX = O (2.5.4)

and consider all solutions of this homogeneous system. There are n − r linearly inde-
pendent solutions for (2.5.4) when A is m × n and when r is the rank of A. Let one set
of such linearly independent solutions be denoted by X(1),… ,X(n−r). That is,

AX(i) = O, for i = 1, 2,… ,n − r.

Take a general linear combination of X(i), i = 1,… ,n − r, say

Y = d1X(1) +⋯+ dn−rX(n−r) (2.5.5)
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where d1,… ,dn−r are arbitrary constants. Then

AY = O. (2.5.6)

Let X0 be a particular solution of AX = b. That is,

AX0 = b. (2.5.7)

Combining (2.5.6) and (2.5.7) we have

A(Y + X0) = O + b = b (2.5.8)

or Y +X0 is a solution of the starting system AX = b. Thus a general solution of AX = b
is available as follows:

(iv) The general solution of the linear system AX = b is Y + X0 where X0 is a partic-
ular solution of AX = b and Y is the general solution of AX = O.

Example 2.5.3. Consider the matrix A in Example 2.5.1 and consider the system of
linear equations

[[

[

1 1 0 1
2 −1 1 2
4 1 1 4

]]

]

[[[[

[

x1
x2
x3
x4

]]]]

]

= [[

[

b1
b2
b3

]]

]

or AX = b.

(i) Find one vector b0 so that the system is consistent.
(ii) Find the general solution of the system AX = b0.

Solution 2.5.3. (i) For the system to be consistent bmust be an element of the column
subspace S2 of A. That is, b must be a linear function of the vectors in a basis of S2.
Since the rank of A is 2 any two linearly independent columns of A is a basis of S2. For
example take

(
1
2
4
), (

1
−1
1
)

and b as the sum,

b =(
1
2
4
)+(

1
−1
1
)=(

2
1
5
).

Many such b’s can be constructed. (ii) A particular solution of this system

[[

[

1 1 0 1
2 −1 1 2
4 1 1 4

]]

]

[[[[

[

x1
x2
x3
x4

]]]]

]

= [[

[

2
1
5

]]

]

(2.5.9)
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can be taken either from the representation (α) or from (β) of Example 2.5.1. Taking
from (β) a particular solutionX′0 = (0, 2,3,0). The general solution of the systemAX = O
is a general linear combination of the vectors in a basis for the null space S3. Taking
the basis (1) of S3 in Example 2.5.1 a general linear combination is

c(

−2
1
3
1

)+ d(

−3
1
3
2

)

where c and d are arbitrary constants. Therefore the general solution of the system
(2.5.9), denoted by Z, is

Z =
[[[[

[

0
2
3
0

]]]]

]

+ c
[[[[

[

−2
1
3
1

]]]]

]

+ d
[[[[

[

−3
1
3
2

]]]]

]

=
[[[[

[

−2c − 3d
c + d + 2
3c + 3d + 3
c + 2d

]]]]

]

where c and d are arbitrary constants. [The student may substitute back in (2.5.9) and
verify the result.]

Definition 2.5.4. A linear system of equations AX = b, where A is n × n, is said to be
a singular system if A is singular, and a nonsingular system if A is nonsingular.

Exercises 2.5
2.5.1. Show that interchange of two rows in an m × n matrix can be effected by pre-
multiplying it by a product of elementary matrices.

2.5.2. Compute the ranks of the following matrices:

A =
[[[[[[

[

3 1 0 −1 2
4 0 1 −1 1
1 1 2 −2 1
2 4 1 0 1
1 0 1 1 −1

]]]]]]

]

, B =
[[[[

[

1 −1 1 2
2 1 −1 1
1 2 −1 1
4 2 −1 4

]]]]

]

,

C =
[[[[

[

2 0 1 −1
1 2 1 1
3 2 2 0
5 2 3 −1

]]]]

]

.

2.5.3. Construct 3 bases (not scalar multiples of each other) for (1) the row subspace
S1 and (2) the column subspace S2 for each of the matrices in Exercise 2.5.2.

2.5.4. Construct 3 bases for the null space S3 and the left null space S4 for each of the
matrices in Exercise 2.5.2.
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2.5.5. Check for linear independence anddetermine themaximumnumber of linearly
independent vectors in each of the following sets:

(a) U1 = (1, 1, −1, 2), U2 = (1, 1,0, 1),

U3 = (2, −1, 1,4), U4 = (1, 2, 1, 2),

U5 = (0, 1, −1, 1).

(b) V1 =
[[[[[[

[

1
−1
2
1
1

]]]]]]

]

, V2 =
[[[[[[

[

2
−1
1
2
1

]]]]]]

]

, V3 =
[[[[[[

[

3
1
−1
1
2

]]]]]]

]

, V4 =
[[[[[[

[

0
1
1
0
1

]]]]]]

]

.

2.5.6. For each of the matrices in Exercise 2.5.2 write the systems of linear equations
as AX = b1, BY = b2, CZ = b3. (a) Construct two different vectors for each of b1,b2,b3 so
that the systems are consistent. (b) Construct two vectors for each of b1,b2,b3 so that
the systems are not consistent. (c) For your answers in (a) evaluate the most general
solutions for each of the systems.

2.5.7. Determine the product of the basic elementary matrices of the E and F types so
that the matrix

[[[[

[

0 1 2 3
1 −1 2 4
2 1 −1 1
3 2 1 4

]]]]

]

→
[[[[

[

0 1 2 3
2 1 −1 1
3 2 1 4
1 −1 2 4

]]]]

]

.

2.5.8. Let U and V be n × 1 vectors and let A = VV′, B = UV′. Show that the n × n
matrices A and B have rank 1.

2.5.9. Show that the Vandermonde’s matrix

V =
[[[[

[

1 a1 a21 … an−11
1 a2 a22 … an−12
⋮ ⋮ ⋮ … ⋮
1 an a2n … an−1n

]]]]

]

is nonsingular, where ai ≠ 0, i = 1,… ,n and aj ’s are distinct.

2.5.10. For a 3 × 3 non-null matrix A, each row dot product with the vector (1, −1, 1) is
zero. What can you say about the rank of A?What can you say about the dimension of
the null space?
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2.5.11. Determine the rank and construct a basis each for (1) row subspace, (2) column
subspace, (3) right null space, (4) left null space of the matrix

A =
[[[[

[

a b … b
b a … b
⋮ ⋮ ⋱ ⋮
b b … a

]]]]

]

, a ≠ b, a ≠ 0, b ≠ 0.

2.5.12. In a non-null 3 × 3 matrix A each row is orthogonal to the vectors

V1 =(
1
0
1
), V2 =(

1
1
1
).

Determine the rank of A and construct a basis for the row subspace of A.

2.5.13. Consider the linear system of equations AX = b where

A = [[
[

1 1 1
2 1 2
1 0 1

]]

]

.

(a) Construct two examples of b where the system AX = b is not consistent; (b) Con-
struct two examples of b where the system is consistent; (c) In (b) construct one basis
each for the right null space ofA; (d) In (b) construct the general solution in each case.

2.5.14. Let J be the n × 1 column vector of unities, that is, J′ = (1, 1,… , 1). Let

A = 1
n
JJ′ and B = In −

1
n
JJ′.

Evaluate the ranks of A and B.

2.5.15. Construct one basis each for the right null space of the matrices A and B in
Exercise 2.5.14.

2.5.16. Show that any matrix A of rank r can be written as

A = R[Ir O
O O
]S

where R and S are nonsingular matrices.

2.5.17. If A and B are rectangular matrices of the same rank then show that there exist
two nonsingular matrices R and S such that

B = RAS.

2.5.18. If A and B are nonsingular matrices and C is any matrix then show that the
matrices C,AC,CB,ACB have the same rank as long as the multiplications are defined.
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2.6 Permutations and elementary operations on the right

So farwewere dealing exclusivelywith operating on the leftwith elementarymatrices,
that is, premultiplications of a matrix with elementary matrices. By this time the stu-
dent may be very clear about the effects of such premultiplications on a given matrix.
Now we consider postmultiplications by elementary matrices.

2.6.1 Permutations

It is already seen that if wewish to permute or interchange rowswe can effect thatwith
a product of the basic elementary matrices. Consider the matrices

G = [[
[

1 0 0
0 0 1
0 1 0

]]

]

, F1 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

, E1 =
[[

[

1 0 0
0 1 0
0 0 −1

]]

]

,

F2 =
[[

[

1 0 0
0 1 1
0 0 1

]]

]

, E2 =
[[

[

1 0 0
0 −1 0
0 0 1

]]

]

,

F3 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

, E3=
[[

[

1 0 0
0 1 0
0 0 −1

]]

]

.

Then it is easily seen that

G = E3F3E2F2E1F1,

a product of the basic elementary matrices. If we premultiply an arbitrary matrix with
G then we have

[[

[

1 0 0
0 0 1
0 1 0

]]

]

[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

= [[

[

a11 a12 a13
a31 a32 a33
a21 a32 a33

]]

]

.

That is, the second and the third rows are interchanged as it is the case inG orG can be
looked upon as an identity matrix with the second and the third rows interchanged.
Thus, in general, permutations of the rows can be achieved by premultiplication with
a product of elementary matrices.

2.6.2 Postmultiplications by elementary matrices

The technique of postmultiplications is postponed this far mainly to give the student
time to have the premultiplication ideas to sink in clearly. Otherwise there is great
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chance of getting confused about the effects of pre and post multiplications. Let us
start with the basic elementary matrices of the E and F types. Let

E1 =
[[

[

1 0 0
0 4 0
0 0 1

]]

]
amatrix obtained bymultiplying the second row of an identity matrix with 4. E1 oper-
ating on the left has the effect that the second row is multiplied by 4. Observe that E1
can also be looked upon as created by multiplying the second column of an identity
matrix by 4. Let us see what happens when E1 operates on the right:

AE1 =
[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

[[

[

1 0 0
0 4 0
0 0 1

]]

]

= [[

[

a11 4a12 a13
a21 4a22 a23
a31 4a32 a33

]]

]

.

That is, the second column is multiplied by 4. Thus we have the following result:

(i) If E is a basic elementary matrix created by multiplying the i-th column of an
identity matrix by the nonzero scalar c then any matrix A postmultiplied by E will
have the effect that the i-th column of A is multiplied by c.

Now, let us consider an elementary matrix of the F type. Let

F1 =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

,

obtained by adding the first row of I3 to the second row, which can also be considered
as obtained by adding the second column of I3 to the first column. Let us see what
happens if A is postmultiplied by F1:

AF1 =
[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

[[

[

1 0 0
1 1 0
0 0 1

]]

]

= [[

[

a11 + a12 a12 a13
a21 + a22 a22 a23
a31 + a32 a32 a33

]]

]

.

That is, the second column is added to the first column, exactly as F1 is obtained by
adding the second column of I3 to the first column. Now see the net effect of operating
on the right with F′1 the transpose of F1. This transpose could also be looked upon as
obtained by adding the first column of I3 to the second column:

AF′1 =
[[

[

a11 a12 a13
a21 a22 a23
a31 a32 a33

]]

]

[[

[

1 1 0
0 1 0
0 0 1

]]

]

= [[

[

a11 a12 + a11 a13
a21 a22 + a21 a13
a31 a32 + a31 a33

]]

]

.

Now the first column is added to the second column. Thus F′1 is the matrix to operate
on the right if the same type of effects on the columns is needed as the effects on the
rows when F1 operates on the left.
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(ii) Let F be an elementary matrix obtained by adding the i-th row to the j-th row
in In. Let A be an n×n arbitrary matrix. Then FA has the effect that the i-th row of A
is added to the j-th row of A. AF has the effect that the j-th column is added to the
i-th column. AF′ has the effect that the i-th column is added to the j-th column. [F′

is also the elementarymatrix obtained by adding the i-th column to the j-th column
of In.]
(iii) If F2 is an elementarymatrix obtained by adding the i-th column of In to the j-th
column of In then any arbitrary n × n matrix A postmultiplied by F2 has the effect
that the i-th column of A is added to the j-th column of A.

When premultiplying a matrix A by an elementary matrix then create the elementary
matrix by operating on the rows of the identity matrix I . The effect will be exactly the
same on the rows ofA.When postmultiplyingAwith an elementarymatrix then create
the elementary matrix by operating on the columns of I . The effect will be exactly the
same on the columns of A. The student is urged to memorize these properties. These
will be helpful when trying to reduce a matrix to a triangular or diagonal form.

Example 2.6.1. Write the following symmetric matrix A in the form A = QDQ′ where
D is a diagonal matrix, Q is a nonsingular matrix and Q′ the transpose of Q, where

A = [[
[

1 0 −1
0 2 4
−1 4 4

]]

]

.

Solution 2.6.1. Let

F1 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

or (1) + (3) ⇒

F1A =
[[

[

1 0 −1
0 2 4
0 4 3

]]

]

, F1AF′1 =
[[

[

1 0 0
0 2 4
0 4 3

]]

]

.

Observe that by operating on the left by F1 and on the right by its transpose F′1 the
symmetric nature of the resulting matrix is maintained. If we had operated on the
right first and then on the left we would have got the same result. [The student may
verify this aspect.] Now our aim is to get rid off the elements at the (3, 2)-th and (2,3)-th
positions and at the same time maintaining symmetry. This can be achieved by doing
the following operations. Let

G1 =
[[

[

1 0 0
0 1 0
0 −2 1

]]

]

or − 2(2) + (3) ⇒
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G1(F1AF′1 ) =
[[

[

1 0 0
0 2 4
0 0 −5

]]

]

,

G1(F1AF′1 )G′1 =
[[

[

1 0 0
0 2 0
0 0 −5

]]

]

.

That is,

A = F−11 G−11
[[

[

1 0 0
0 2 0
0 0 −5

]]

]

(F−11 G−11 )
′.

But, by inspection

F−11 =
[[

[

1 0 0
0 1 0
−1 0 1

]]

]

, G−11 =
[[

[

1 0 0
0 1 0
0 2 1

]]

]

⇒

F−11 G−11 =
[[

[

1 0 0
0 1 0
−1 0 1

]]

]

[[

[

1 0 0
0 1 0
0 2 1

]]

]

= [[

[

1 0 0
0 1 0
−1 2 1

]]

]

= Q.

Therefore

A = QDQ′, Q = [[
[

1 0 0
0 1 0
−1 2 1

]]

]

, D = [[
[

1 0 0
0 2 0
0 0 −5

]]

]

.

[The student may verify the result by straight multiplication of Q,D and Q′.]

Note thatwhen thematrixA is symmetricweneed to consider only a triangulariza-
tion of A by premultiplication with elementary matrices. The transpose of the product
of the elementarymatrices on the left is going to be thematrix on the right. Hence there
is no need to evaluate the inverses of the transposes of the elementary matrices also.
In the above example we obtained Q = F−11 G−11 and Q′ is the matrix on the right. Also,
Q being a product of elementary matrices will be nonsingular whereas the diagonal
matrix D need not be nonsingular. If the matrix A is singular then there will be at least
one zero diagonal element in D and if A is nonsingular then all diagonal elements in
D will be nonzeros.

Example 2.6.2. Reduce the following matrix A to the form A = PDQ where P and Q
are nonsingular matrices and D is a diagonal matrix, where

A = [[
[

1 0 −1
0 2 4
−1 2 4

]]

]

.
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Solution 2.6.2. Note that A is not symmetric here. Let

F1 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

.

Then

F1AF′1 =
[[

[

1 0 0
0 1 0
1 0 1

]]

]

[[

[

1 0 −1
0 2 4
−1 2 4

]]

]

[[

[

1 0 1
0 1 0
0 0 1

]]

]

= [[

[

1 0 0
0 2 4
0 2 3

]]

]

.

Let

G2 =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

, G3 =
[[

[

1 0 0
0 1 −2
0 0 1

]]

]

.

Then

G2(F1AF′1 ) =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

[[

[

1 0 0
0 2 4
0 2 3

]]

]

= [[

[

1 0 0
0 2 4
0 0 −1

]]

]

,

G2(F1AF′1 )G3 =
[[

[

1 0 0
0 2 4
0 0 −1

]]

]

[[

[

1 0 0
0 1 −2
0 0 1

]]

]

= [[

[

1 0 0
0 2 0
0 0 −1

]]

]

.

Hence

A = F−11 G−12 DG−13 (F′1 )
−1.

The inverses are available by inspection. That is,

F−11 =
[[

[

1 0 0
0 1 0
−1 0 1

]]

]

, G−12 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

,

G−13 =
[[

[

1 0 0
0 1 2
0 0 1

]]

]

, D = [[
[

1 0 0
0 2 0
0 0 −1

]]

]

.

Then

P = F−11 G−12 =
[[

[

1 0 0
0 1 0
−1 1 1

]]

]

,



2.6 Permutations and elementary operations on the right | 143

Q = G−13 (F−11 )
′

= [[

[

1 0 0
0 1 2
0 0 1

]]

]

[[

[

1 0 −1
0 1 0
0 0 1

]]

]

= [[

[

1 0 −1
0 1 2
0 0 1

]]

]

,

A = PDQ.

[In order to check for possible computational errors verify the result by straight mul-
tiplication.]

(iv) If there is a zero at the (1, 1)-th position then add the i-th row to the first row as
well as the i-th column to the first column if the element at the (i, 1)-th position is
nonzero. This will bring a nonzero element to the (1, 1)-th position as well as keep
the symmetry. If symmetry is not to be maintained then do only the first operation
above. Repeat a similar process at every stage when dealing with a zero diagonal
element.

Example 2.6.3. Reduce the same A in Example 2.6.2 to the form A = DQ where D is
diagonal and Q is nonsingular.

Solution 2.6.3. Since we want a form DQ we operate only on the right of A with ele-
mentary matrices. Let

F1 =
[[

[

1 0 1
0 1 0
0 0 1

]]

]

, E1 =
[[

[

1 0 0
0 1

2 0
0 0 1

]]

]

, F2 =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

,

G3 =
[[

[

1 0 0
0 1 −4
0 0 1

]]

]

, F4 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

, G5 =
[[

[

1 0 0
−1 1 0
0 0 1

]]

]

.

These are created from an identity matrix as follows:
F1: first column is added to the third column;
E1: second column is divided by 2;
F2: second column is added to the first column;
G3: (−4) times the second column is added to the third column;
F4: the third column is added to the second column;
G5: (−1) times the second column is added to the first column.

When postmultiplying Awith these elementarymatrices the effects will be exactly the
same on the columns of A:

AF1 =
[[

[

1 0 −1
0 2 4
−1 2 4

]]

]

[[

[

1 0 1
0 1 0
0 0 1

]]

]

= [[

[

1 0 0
0 2 4
−1 2 3

]]

]

;
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AF1E1 =
[[

[

1 0 0
0 1 4
−1 1 3

]]

]

; AF1E1F2 =
[[

[

1 0 0
1 1 4
0 1 3

]]

]

;

AF1E1F2G3 =
[[

[

1 0 0
1 1 0
0 1 −1

]]

]

;

AF1E1F2G3F4 =
[[

[

1 0 0
1 1 0
0 0 −1

]]

]

.

Hence

AF1E1F2G3F4G5 =
[[

[

1 0 0
0 1 0
0 0 −1

]]

]

.

Therefore,

A = DG−15 F−14 G−13 F−12 E−11 F−11

where

D = [[
[

1 0 0
0 1 0
0 0 −1

]]

]

, F−11 =
[[

[

1 0 −1
0 1 0
0 0 1

]]

]

, E−11 =
[[

[

1 0 0
0 2 0
0 0 1

]]

]

,

F−12 =
[[

[

1 0 0
−1 1 0
0 0 1

]]

]

, G−13 =
[[

[

1 0 0
0 1 4
0 0 1

]]

]

, F−14 =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

,

G−15 =
[[

[

1 0 0
1 1 0
0 0 1

]]

]

, E−11 F−11 =
[[

[

1 0 −1
0 2 0
0 0 1

]]

]

.

F−12 E−11 F−11 = F−12
[[

[

1 0 −1
0 2 0
0 0 1

]]

]

= [[

[

1 0 −1
−1 2 1
0 0 1

]]

]

.

(Remember that this is a premultiplication; the effect is on the rows.)

G−13 F−12 E−11 F−11 = G−13
[[

[

1 0 −1
−1 2 1
0 0 1

]]

]

= [[

[

1 0 −1
−1 2 5
0 0 1

]]

]

,

F−14 G−13 F−12 E−11 F−11 = F−14
[[

[

1 0 −1
−1 2 5
0 0 1

]]

]

= [[

[

1 0 −1
−1 2 5
1 −2 −4

]]

]

,
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G−15 F−14 G−13 F−12 E−11 F−11 = G−15
[[

[

1 0 −1
−1 2 5
1 −2 −4

]]

]

= [[

[

1 0 −1
0 2 4
1 −2 −4

]]

]
= Q.

Thus we have written

A = DQ

where

D = [[
[

1 0 0
0 1 0
0 0 −1

]]

]

and Q = [[
[

1 0 −1
0 2 4
1 −2 −4

]]

]

.

By operating on the right as well as on the left of a square matrix A by elementary
matrices, as well as operating on the left alone (considered in the previous sections)
andoperating on the right alonewe can reduce a givenmatrixA to the following forms:

A = PD, P nonsingular, D diagonal; (2.6.1)
A = DQ, D diagonal, Q nonsingular; (2.6.2)
A = RDS, D diagonal, R,S nonsingular; (2.6.3)
A = ZDZ′, Z nonsingular, D diagonal, when A = A′ (2.6.4)
A = LU , L lower and U upper triangular, (2.6.5)
A = L1DU1, L1 lower and U1 upper triangular, D diagonal, (2.6.6)

where the representations in (2.6.5) and (2.6.6) are not always possible. They depend
on the nature of A. As an application of (2.6.4) we can consider reduction of quadratic
forms to their canonical forms.

2.6.3 Reduction of quadratic forms to their canonical forms

Let

u = X′AX, A = A′

be a general quadratic form, where X is an n × 1 vector, A is an n × nmatrix of known
elements and, as we have seen before, A can be taken as a symmetric matrix without
any loss of generality. By using (2.6.4) write A as

A = PDP′
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where P is a nonsingular matrix, D is a diagonal matrix and P′ is the transpose of P.
Then the quadratic form

u = X′AX = X′PDP′X = Y′DY

where

Y = P′X =(
y1
⋮
yn
).

Let the diagonal elements in D be d1,… ,dn (some of these may be zeros depending
upon the singularity of A). Then

u = (y1,… ,yn)
[[

[

d1 0 … 0
⋮ ⋮ … ⋮
0 0 … dn

]]

]

[[

[

y1
⋮
yn

]]

]
= d1y21 +⋯+ dny2n (2.6.7)

a linear combination of the squares of yj ’s. This form in (2.6.7) is known as the canoni-
cal formof thequadratic form. This reductionhasmanyapplications indifferent fields.
Many such applications are given in the book Quadratic Forms in Random Variables:
Theory and Applications [7]. We may also observe one interesting aspect in (2.6.7). All
the yj , j = 1,… ,n are linear functions of the original xj ’s (the elements in X) since P′ is
a matrix of constants.

Example 2.6.4. Reduce the following quadratic form to its canonical form:

u = x21 − 2x1x3 + 2x22 + 8x2x3 + 4x23 .

Solution 2.6.4. Writing a symmetric matrix A the quadratic form can be written as

u = (x1,x2,x3)
[[

[

1 0 −1
0 2 4
−1 4 4

]]

]

[[

[

x1
x2
x3

]]

]

,

A = [[
[

1 0 −1
0 2 4
−1 4 4

]]

]

.

This matrix is already reduced to the form A = PDP′ in Example 2.6.1, where

D = [[
[

1 0 0
0 2 0
0 0 −5

]]

]

, P = [[
[

1 0 0
0 1 0
−1 2 1

]]

]

⇒

P′ = [[
[

1 0 −1
0 1 2
0 0 1

]]

]
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and

P′X = [[
[

1 0 −1
0 1 2
0 0 1

]]

]

[[

[

x1
x2
x3

]]

]

=(
x1 − x3
x2 + 2x3

x3
).

Writing

u = X′AX = X′PDP′X = Y′DY
= y21 + 2y22 − 5y23

we have

Y′ = (x1 − x3,x2 + 2x3,x3) ⇒
y1 = x1 − x3, y2 = x2 + 2x3, y3 = x3.

Observe that D in the canonical reduction above is not unique. By further elementary
operations we could have taken out various factors from the diagonal elements. Thus
D in the representation PDP′ is not unique.

2.6.4 Rotations

Here we look at stretching, rotations and projections. The basic ideas will be illus-
trated in a 2-space. Permutation matrices are already considered in the beginning of
Section 2.6. Consider a 2 × 2 scalar matrix

A = cI2 = (
c 0
0 c
) .

If we premultiply a 2 × 2 matrix with A then every row vector there is multiplied by c,
or we say, stretched by c. Then the above A is a stretching operator. Let

B = (0 −1
1 0
) , X = (x1

x2
) .

Then B operating on the left of X gives

BX = [0 −1
1 0
][

x1
x2
] = [
−x2
x1
] .

For example a point (2, 1) or the vector a⃗ = 2 ⃗i + ⃗j, ⃗i = (1,0), ⃗j = (0, 1) goes to b⃗ = − ⃗i + 2 ⃗j.
The dot product is

(x1,x2)(
−x2
x1
) = −x1x2 + x2x1 = 0.
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This means our matrix B rotates the vector x⃗ = x1 ⃗i + x2 ⃗j through a 90° angle. Then B
above is a rotation operator. Let

C = (0 1
1 0
) , X = (x1

x2
)

then

CX = (0 1
1 0
)(

x1
x2
) = (

x2
x1
) .

The two points ( x1x2 ) and (
x2
x1 ) are the mirror images on both sides of the line x1 = x2.

Here we say that C is a reflection operator. Let

D = [1 0
0 0
] ⇒ DX = [1 0

0 0
][

x1
x2
] = [

x1
0
] .

This gives the projection of the vector x⃗ = x1 ⃗i + x2 ⃗j onto the x-axis, namely x1 ⃗i. Then D
above is called a projection operator, see Figure 2.6.1. These ideas can be generalized
to the n-space, n = 3,4,….

Figure 2.6.1: Stretching, rotation, reflection and projection.

2.6.5 Linear transformations

Consider a vector X in n-space, an n-vector, or a point in the Euclidean n-space. X′ =
(x1,… ,xn). Let A be anm × nmatrix. Then we have the general properties
(a) AO = O, where O is a null vector;
(b) A(cX) = cAX, c is a scalar;
(c) A(X + Y) = AX + AY where Y is another n-vector.

Property (c) says that the operation is linear. U = AX in general represents a transfor-
mation of X going to U where every element of U is a linear function of X. That is, if
U′ = (u1,… ,um) and A = (aij) anm × nmatrix of constants then

ui = ai1x1 +⋯+ ainxn, i = 1,… ,m.
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It is a linear transformation. Later we will give a more general definition of a linear
transformation after introducing a more general definition for a vector. In that case
X will be an object called vector and “A” will stand for an operator and AX will be
A operating on X. In that case “scalar multiplication” and “addition” will also be re-
defined. In terms of general objects called vectors and an operator denoted by A the
transformation satisfying (a), (b), (c) above will be called a linear transformation. For
the time being we will confine our discussion to ordered n-tuples of real numbers as
vectors and A representing an m × n matrix of constants, c a scalar and addition and
scalar multiplication as defined before.

Definition 2.6.1 (Linear and orthogonal transformations). Y = AX whereA is anm×n
matrix of constants and X is an n × 1 vector of real variables, will be called a linear
transformation. When A is n × n and orthonormal, AA′ = I ,A′A = I, then the transfor-
mation is called an orthogonal transformation. When A ism × n,m < n and AA′ = Im it
is called a semiorthonormal transformation.

(v) Geometrically, an orthogonal transformation represents a rotation of the axes of
coordinates.

Example 2.6.5. Show that the following transformations are orthogonal transforma-
tions: Y = AX where

(a) A = [cosθ − sinθ
sinθ cosθ

] .

(This rotates the axes through an angle θ.)

(b) A = [[[
[

1
√3

1
√3

1
√3

1
√6 −

2
√6

1
√6

1
√2 0 − 1

√2

]]]

]

.

Solution 2.6.5. (a) This transformation is

(
y1
y2
) = (

cosθ − sinθ
sinθ cosθ

)(
x1
x2
) ⇒

y1 = x1 cosθ − x2 sinθ, y2 = x1 sinθ + x2 cosθ;

AA′ = [cosθ − sinθ
sinθ cosθ

][
cosθ sinθ
− sinθ cosθ

] = [
1 0
0 1
] = A′A.

Hence this linear transformation is an orthogonal transformation.

(b) [[

[

y1
y2
y3

]]

]

= [[[

[

1
√3

1
√3

1
√3

1
√6 −

2
√6

1
√6

1
√2 0 − 1

√2

]]]

]

[[

[

x1
x2
x3

]]

]

⇒
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y1 =
1
√3
(x1 + x2 + x3), y2 =

1
√6
(x1 − 2x2 + x3),

y3 =
1
√2
(x1 − x3); AA′ = I ,A′A = I

andhence this linear transformation is anorthogonal transformation. [If, for example,
the last row in (b) is deleted we have a semiorthogonal transformation.]

Suppose we transform an n-vector to anm-vector by the linear transformation Y =
AX where A ism×n. Suppose then we transform thism-vector Y to a p-vector Z by the
linear transformation Z = BY where B is p ×m. What is the net result of transforming
X to Z?

Z = BY = BAX.

Here BA is still a matrix of constants, BA is p × n. Hence X → Z is also a linear trans-
formation.

(vi) Product of two linear transformations, in the above sense, is again a linear
transformation.

Let us see what happens to the shape, angles etc under a linear transformation. In
order to illustrate the changes we will examine a simple linear transformation. Let
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 1. Consider the linear transformation

y1 = x1 + x2, y2 = x1 or [y1
y2
] = A[x1

x2
] , A = [1 1

1 0
]⇒

x1 = y2, x2 = y1 − y2.

Under this transformation the rectangle OACB, with angles π
2 each or the angle be-

tweenOA andOB is π
2 in Figure 2.6.2 and the lengthsOA = 2 andOB = 1, is transformed

into a parallelogram with angle between OA and OB changed to π
4 and lengths of OA

changed to 1 and OB changed to 2√2, see illustrations in Figure 2.6.3. Thus, in this
case the shape is not preserved, the lengths are not preserved and the angles are not
preserved.

Now, consider the transformation y1 =
1
√2x1 +

1
√2x2 and y2 =

1
√2x1 −

1
√2x2 or

[
y1
y2
] = [

1
√2

1
√2

1
√2 −

1
√2
][

x1
x2
] ,

A = [
1
√2

1
√2

1
√2 −

1
√2
] , AA′ = I , A′A = I .

Here A is an orthonormal matrix. Let us see what happens to the rectangle OACB in
the (x1,x2)-plane. Under this transformation

x1 =
1
√2

y1 +
1
√2

y2, x2 =
1
√2

y1 −
1
√2

y2
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Figure 2.6.2: Linear transformations.

Figure 2.6.3: Additional linear transformations.

and

x1 = 0 ⇒ y2 = −y1, x1 = 2 ⇒ y1 + y2 = 2√2,
x2 = 0 ⇒ y1 = y2, x2 = 1 ⇒ y1 − y2 = √2.

Here the angle between OA and OB is preserved as π
2 . The lengths of the sides

are preserved. The shape is also preserved. The net effect is the rotation of the axes of
coordinates through an angle θ = π

4 here. The general orthogonal transformation is of
the form

[
y1
y2
] = [

cosθ sinθ
sinθ −cosθ

][
x1
x2
] ⇒ A = [cosθ sinθ

sinθ −cosθ
] , AA′ = I , A′A = I .

Orthogonal transformations are simply rotations of the axes of coordinates through an
angle θwhere the angles, lengths and shapes in the original region in the (x1,x2)-plane
are preserved in the (y1,y2)-plane.
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2.6.6 Orthogonal bases for a vector subspace

Suppose we have located a basis for a given vector subspace. How can we convert this
basis to an orthogonal system of vectors or to come up with an orthogonal basis for
a given vector subspace? Recall the Gram–Schmidt orthogonalization process from
Chapter 1. This is onemethod of selecting a linear function of the given vectors so that
the new set will bemutually orthonormal. Then, after locating a basis transform them
to an orthonormal system by Gram–Schmidt orthogonalization process to obtain an
orthogonal basis.

Example 2.6.6. Construct an orthonormal basis for the row subspace of the matrix

A =
[[[[

[

1 1 1 1
1 −1 1 1
1 −1 −1 1
3 −1 1 3

]]]]

]

.

Solution 2.6.6. Through elementary operations on the left try to determine the rank
and a basis. Writing the operations by using our standard notations we have the fol-
lowing:

−1(1) + (2); − 1(1) + (3); −3(1) + (4) ⇒

A→
[[[[

[

1 1 1 1
0 −2 0 0
0 −2 −2 0
0 −4 −2 0

]]]]

]

= B;

−1(2) + (4); − 1(3) + (4) ⇒

B→
[[[[

[

1 1 1 1
0 −2 0 0
0 −2 −2 0
0 0 0 0

]]]]

]

= C;

−1(2) + (3) ⇒

C→
[[[[

[

1 1 1 1
0 −2 0 0
0 0 −2 0
0 0 0 0

]]]]

]

= C1.

Hence the rank is 3 and a basis, from C1 above, is

U1 = (0,0, −1,0), U2 = (0, −1,0,0), U3 = (1, 1, 1, 1).
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Now apply Gram–Schmidt process. Let

V1 =
U1
‖U1‖
= (0,0, −1,0)

is the normalized U1. Consider

W2 = U2 − (U2V′1 )V1

= (0, −1,0,0) − (0, −1,0,0)
[[[[

[

0
0
−1
0

]]]]

]

V1 = (0, −1,0,0);

V2 =
W2
‖W2‖
= (0, −1,0,0);

W3 = U3 − (U3V′1 )V1 − (U3V′2 )V2

= (1, 1, 1, 1) − (1, 1, 1, 1)
[[[[

[

0
0
−1
0

]]]]

]

(0,0, −1,0)

− (1, 1, 1, 1)
[[[[

[

0
−1
0
0

]]]]

]

(0, −1,0,0)

= (1, 1, 1, 1) + (0,0, −1,0) + (0, −1,0,0) = (1,0,0, 1);

V3 =
W3
‖W3‖
= 1
√2
(1,0,0, 1).

Evidently

‖Vi‖ = 1, i = 1, 2,3 and V1V′2 = 0, V1V′3 = 0, V2V′3 = 0.

Verification. Can we write all the row vectors in A as linear functions of V1,V2 and
V3? Note that

(1, 1, 1, 1) = −V1 − V2 +√2V3;

(1, −1, 1, 1) = −V1 + V2 +√2V3;

(1, −1, −1, 1) = V1 + V2 +√2V3

and the fourth row is already a linear function of the first three rows. Hence {V1,V2,V3}
is an orthonormal basis for the row subspace of A.



154 | 2 Matrices

2.6.7 A vector subspace, a more general definition

Now, we are in a better position to give a more general definition to a vector subspace.
The elements of the subspace are some general objects satisfying some conditions.
In the definition that we are going to give here the operations “scalar multiplication”
and “addition” are as defined for vectors (as n-tuples) andmatrices before. A stillmore
abstract definition can be given by defining “scalar multiplication” and “addition” as
well. Let S be a set of some objects on which one can define scalar multiplication and
addition. Suppose S and its elements satisfy the following conditions:
(a) If V ∈ S then cV ∈ S where c is any scalar, including zero.
(b) If U ∈ S, V ∈ S then U + V ∈ S.

That is, S is closed under scalar multiplication and addition. Then S will be called a
vector subspace.

Note that the same definitions introduced for linear dependence, independence,
rank or dimension etc go through for this general definition also.

Example 2.6.7. Check whether the following sets satisfy the conditions for a vector
subspace and if so construct a basis for the subspace:
(a) The set consisting only of the null vector.
(b) The set of all polynomials in t of degree ≤ 5.
(c) The set of all 2 × 2 matrices with real numbers as elements.
(d) The set of all 2 × 1, 2 × 2 and 2 × 3 matrices.

Solution 2.6.7. (a) It is a trivial case of a vector subspace. Since a null vector is not
counted in the set of linearly independent vectors we take the dimension of this sub-
space as zero.

(b) Let this set be denoted by S. Then 2t + t2 and t5 are two such polynomials in S.
Thus, for example, 5(2t + t2) = 10t + 5t2 is in S, 12t5 ∈ S. If

a0 + a1t +⋯+ a5t5 and b0 + b1t +⋯+ b5t5

are two polynomials in S then their sum and scalar multiples are also in S. These two
operations cannot create a polynomial not in S. We cannot create a 6-th degree or
higher degree polynomial by addition and scalar multiplication. Hence S is a vector
subspace. Note that any general polynomial of degree up to 5 can be generated by the
following quantities

1, t, t2, t3, t4, t5.

Obviously these are in S and linearly independent. None can be written as a linear
combination of the others. Hence a basis is {1, t, t2, t3, t4, t5} and the dimension of this
vector subspace is 6. [Note that, for example, t2 = t×t but this is not a scalarmultiple or
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a constantmultiple of t. Hence t2 cannot bewritten in terms of other elements through
the twooperations of scalarmultiplicationandaddition. Thus, these elements 1, t, ..., t5

are linearly independent.]
(c) Let this set be denoted by S. All elements are 2 × 2 matrices. Three typical ele-

ments are

V = [a b
c d
] ∈ S, V1 = [

a1 b1
c1 d1
] ∈ S and V2 = [

a2 b2
c2 d2
] ∈ S.

Then obviously V1 + V2 is a 2 × 2 matrix and hence in S. Also cV1 ∈ S for any scalar c.
For c = 0 it is a null matrix and hence the null matrix is also in S.

O = [0 0
0 0
] ∈ S, −V = [−a −b

−c −d
] ∈ S,

V − V = O ∈ S, I2V = V = VI2 ∈ S, I2 ∈ S,
V +O = V , c1c2V = c1(c2V) = c2(c1V)

where c1 and c2 are scalars. Obviously the following general conditions are satisfied
by the elements of S in this case:

(1) V1 + V2 = V2 + V1, V1 ∈ S, V2 ∈ S
(2) V1 + (V2 + V3) = (V1 + V2) + V3, V3 ∈ S
(3) V +O = V for all V , V ∈ S, O ∈ S
(4) − V ∈ S, V − V = V + (−1)V = O
(5) IV = V , I ∈ S
(6) (c1c2)V = c1(c2V), c1, c2 scalars
(7) c(V1 + V2) = cV1 + cV2, c a scalar
(8) (c1 + c2)V = c1V + c2V .

These eight properties are in fact the conditions that we will impose when we have a
more abstract definition of a vector subspace where we will also define what is meant
by “+” and “cV”. But we will not make the definition more abstract in this book.

What is a basis for our vector subspace in this case? Note that a general matrix of
the formV = [ a b

c d ] can be generated as a linear function of the following fourmatrices:

U1 = [
1 0
0 0
] , U2 = [

0 1
0 0
] , U3 = [

0 0
1 0
] , U4 = [

0 0
0 1
] .

Hence a basis is {U1,U2,U3,U4} and the dimension is 4 since these four are linearly
independent.

(d) Let the set be denoted by S. Let

U = (a
b
) , V = (c d

d f
) .



156 | 2 Matrices

Then U ∈ S, V ∈ S whereas U + V is not defined and hence S is not a vector subspace
in this case.

2.6.8 A linear transformation, a more general definition

Taking the general definition of a vector subspace in Section 2.6.7 we can define a lin-
ear transformation. Let the elements of a vector subspace S of Section 2.6.7 be some
general objectswhere S is closedunder addition and scalarmultiplication. LetA repre-
sent some operator operating on the elements of S such that the following conditions
(a), (b), (c) are satisfied:
(a) AO = O, where O is a null vector.
(b) A(cX) = cAX, c is a scalar and X ∈ S.
(c) A(X + Y) = AX + AY where X ∈ S, Y ∈ S.

Then Y = AX, X ∈ S is called a linear transformation. Of course this general definition
also covers the case when X is an ordered n-tuple and A an m × n matrix. Let us see
what are the general operators that we can include under this general definition of a
linear transformation.

Example 2.6.8. Consider a vector subspace S of all real polynomials in the real scalar
variable θ. Then a typical vector in this subspace S, for example a polynomial of de-
gree 3, will be of the form

X = a0 + a1θ + a2θ2 + a3θ3.

Consider the operator A = d
dθ . Then A operating on X, namely AX, will be to differen-

tiate X with respect to θ. Show that A is a linear operator.

Solution 2.6.8.

AX = d
dθ

X = a1 + 2a2θ + 3a3θ2 ∈ S;

A(cX) = c( d
dθ

X) = c(a1 + 2a2θ + 3a3θ2) ∈ S,

where c is a constant, free of θ. If

U = b0 + b1θ + b2θ2 + b3θ3 ∈ S

then obviously

A(U + X) = AU + AX = (a1 + b1) + 2(a2 + b2)θ + 3(a3 + b3)θ2 ∈ S.
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Hence A = d
dθ is a linear operator. What is the null space here? This means the set of

all X satisfying the condition

AX = O ⇒ d
dθ

X = O ⇒ X = constant.

The null space or the right null space is the set of all constants here.

Example 2.6.9. Consider the same vector subspace S of Example 2.6.8. Let A be the
integration operator, ∫θ . Show that A is a linear operator.

Solution 2.6.9. Let X and U be as defined in Example 2.6.8. Then

AX = ∫[a0 + a1θ + a2θ2 + a3θ3]dθ

= a0θ + a1
θ2

2
+ a2

θ3

3
+ a3

θ4

4
+ c1

where c1 is a constant. Note that A(cX) = cAX here as well as

A(X +U) = AX + AU .

Hence A = ∫θ is a linear operator. AX = O ⇒ ∫Xdθ = O. This has no solution here and
hence the null space for this vector subspace with respect to the operator A = ∫θ is
empty.

Example 2.6.10. Let S be the vector subspace of all real polynomials in the real scalar
variable t. Let A be the operator AX = X2. (A operating on an element gives the square
of that element.) Is A linear?

Solution 2.6.10. Two typical vectors in this S, for example of degree 1 each, are of the
form U = a0 + a1t and V = b0 + b1t. Then

AU = (a0 + a1t)2 = a20 + 2a0a1t + a21t2

AV = (b0 + b1t)2 = b20 + 2b0b1t + b21t2

A(U + V) = A[(a0 + b0) + (a1 + b1)t] = [(a0 + b0) + (a1 + b1)t]
2

≠ (a0 + a1t)2 + (b0 + b1t)2 = AU + AV .

Hence this operator A is not linear.

Exercises 2.6
2.6.1. Construct the matrix G, product of 4×4 elementary matrices, so that GA effects
the permutation of the rows to the order 2,3,4, 1 where A is a general 4 × 4 matrix.
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2.6.2. Write the followingmatrices in the form QDQ′ where Q is a nonsingular matrix
and D is a diagonal matrix:

A = [[
[

1 0 2
0 1 1
2 1 4

]]

]

, B =
[[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]]]]

]

, C = [[
[

2 1 −1
1 3 2
−1 2 −1

]]

]

.

2.6.3. Write the following matrices in the form PDQ where P and Q are nonsingular
matrices and D is a diagonal matrix:

A = [[
[

2 1 −1
1 1 2
−1 0 4

]]

]

, B = [[
[

3 1 −1
2 0 2
2 1 −1

]]

]

, C = [[
[

−2 2 −1
0 −1 0
2 1 5

]]

]

.

2.6.4. Write the matrices in Exercise 2.6.2 in the form (a) DQ, (b) PD where P and Q
are nonsingular matrices and D is a diagonal matrix.

2.6.5. Reduce the following quadratic forms to their canonical forms:
(a) u1 = 2x21 − x22 + 3x1x2 + x23 − 4x2x3
(b) u2 = 3x21 + x22 − 2x1x2 + 2x1x3 − 2x2x3 + 2x23.

2.6.6. Construct two orthonormal bases each for the row subspaces of the matrices in
Exercise 2.6.3.

2.6.7. Using the general definition in Section 2.6.7 are the following sets vector sub-
spaces?
(a) The set of all n × n lower triangular matrices for a fixed n. If so, what is its dimen-

sion?
(b) The set of all n × n diagonal matrices for a fixed n?
(c) The set of all integers, including zero.
(d) The set of all possible scalar functions f (x) of the real scalar variable x defined on

the interval [3,5].
(e) All couplets of real numbers (a,b), a ≥ 0, b ≥ 0.

2.6.8. Taking the general definition of linear transformation in Section 2.6.8 are the
following linear transformations?
(a) Let S be a vector subspace of polynomials in t of degree ≤ 3. For V ∈ S let AV =
(1 + t)V .

(b) Let S be the same subspace in (a) above. Let A be such that AV = V + 5.
(c) Let S be the subspace of 3 × 3 matrices. For V ∈ S let AV = V + I3 where I3 is the

identity matrix.

2.6.9. IfA+B = In, A = A′, B = B′, AB = O, whereA and B are n×nmatrices, then show
that A and B are idempotent with ranks r and n − r respectively.
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2.6.10. If A + B = In, A = A′, B = B′, AB = O then show that rank of A plus rank of B is
n, where A and B are n × nmatrices.

2.6.11. If A + B = In, A = A′, B = B′, where A and B are n × nmatrices, then show that
bothA andB can be reduced to diagonal forms by the same orthonormalmatrix, say P.

2.6.12. Show that every nonsingular matrix can be written as a product of the basic
elementary matrices.

2.6.13. Write the matrices in Exercise 2.6.3 into the forms (a) DQ, (b) PD where D is a
diagonal matrix and P and Q are nonsingular matrices.

2.6.14. Construct one orthonormal basis each for the right null spaces of thematrices
in Exercise 2.6.3, if possible.

2.6.15. Construct two examples each for the following: (a) sum of two nonsingular
matrices is singular; (b) sum of two nonsingular matrices is nonsingular; (c) sum of
two singular matrices is singular; (d) sum of two singular matrices is nonsingular.

2.6.16. (a) Can the product of two nonsingular matrices be singular? (b) Can the prod-
uct of two singular matrices be nonsingular? Prove your assertions.

2.6.17. Let A and B be rectangular matrices where AB is defined. (a) If A and B are of
full ranks can AB be of less than full rank? (b) If A and B are of less than full ranks
each can AB be of full rank? (c) If A or B is of full rank and the other is of less than full
rank can AB be of full rank? Prove your assertions.

2.6.18. Generalized inverse of a matrix. Consider an m × n matrix A of any rank.
A generalized inverse (there can bemany such inverses for a givenmatrix) or g-inverse
of A is an n ×m matrix, denoted by A−, such that X = A−b is a solution of the consis-
tent system of linear equations AX = b or equivalently A− is a g-inverse iff AA−A = A.
Evaluate a g-inverse of A where

A = [1 1 −1
1 0 1

] .

2.6.19. Let A− be a g-inverse of A and let H = A−A. Show that (a) H is idempotent,
(b) AH = A, (c) rank of A = rank of H = trace of H .

2.6.20. Let AX = b be a consistent system of linear equations. Show that a general
solution of this system can be written as

A−b + (H − I)Z

where A− is a g-inverse of A, H = A−A and Z is arbitrary.

2.6.21. Consider the space S of all n × nmatrices. Construct three subspaces S1,S2,S3
of this space S.
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2.6.22. Consider the vector space S of 3 × 3 matrices. Let

A1 =
[[

[

1 1 0
0 1 0
0 0 0

]]

]

, A2 =
[[

[

0 0 0
0 0 1
0 0 1

]]

]

, A3 =
[[

[

0 0 0
0 0 0
0 1 0

]]

]

.

Are A1,A2,A3, as elements in the vector space S, linearly independent? Prove your as-
sertion.

2.6.23. Consider the vector space S of all polynomials of degree less than or equal to
2 in the real variable t. Let

p1(t) = 1 + 2t, p2(t) = t2, p3(t) = 3 + 5t + 2t2.

Are these linearly independent? Prove your assertion.

2.6.24. Show that any matrix of rank r can be written as a sum of r matrices of rank
one each.

2.6.25. Let S1 and S2 be nontrivial subspaces of a vector space S. Show that S1 and S2
are orthogonal to each other if and only if each basis element of S1 is orthogonal to all
basis elements of S2 or vice versa.

2.6.26. Let S be the space of all polynomials in x of degree not exceeding n, for a
fixed n, with the inner product

∫
1

−1
p(x)q(x)dx, p(x) ∈ S, q(x) ∈ S

defined. Show that (Cauchy–Schwartz inequality)

|∫
1

−1
p(x)q(x)dx| ≤ [∫

1

−1
p2(x)dx]

1
2

[∫
1

−1
q2(x)dx]

1
2

.

2.6.27. Let S be the same vector space of polynomials in Exercise 2.6.26. Observe
that 1,x,x2,… ,xn is a basis of S. Obtain an orthonormal basis by applying the Gram–
Schmidt orthogonalization process.

2.6.28. Show that the orthonormal basis obtained in Exercise 2.6.27 can be written in
terms of the Legendre polynomials

Lk(x) =
1

2kk!
dk

dxk
(x2 − 1)k .

2.7 Partitioning of matrices

This is a very convenient way of doing matrix multiplications and computations of
inverses when we have large matrices [number of rows or columns or both large]. The
ideas will be introduced by looking at some special cases.
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2.7.1 Partitioning and products

Consider the multiplication involving two vectors

(1, −1, 2)[[
[

3
4
−5

]]

]

= [(1)(3) + (−1)(4)] + [(2)(−5)]

= [−1] + [−10] = −11.

Let

A1 = (1, −1), A2 = (2), B1 = [
3
4
] , B2 = (−5).

Then the above multiplication can be written as

(A1,A2) [
B1
B2
] = A1B1 + A2B2,

A1B1 = (1)(3) + (−1)(4) = −1,
A2B2 = (2)(−5) = −10.

Here the multiplication is carried out as if A1,A2,B1,B2 are scalars, but keeping the
order in which the submatrices occur. This means that instead of taking in the order
A1B1 we are not allowed to take in the order B1A1 when writing down the products. In
general, let a and b be n × 1 vectors. Let them be partitioned as follows:

a = [A1
A2
] , b = [B1

B2
] ⇒ a′ = (A′1 ,A′2),

a = [[
[

a1
⋮
an

]]

]

, b = [[
[

b1
⋮
bn

]]

]

, A1 =
[[

[

a1
⋮
ar

]]

]

, B1 =
[[

[

b1
⋮
br

]]

]

.

Then

a′b = (a1b1 +⋯+ arbr) + (ar+1br+1 +⋯+ anbn)
= A′1B1 + A′2B2.

This is possible as long as all the products are defined. If A1 is r × 1 and B1 is s× 1, r ≠ s
then such a partitioning will not produce a simplified form, A1B1 is not defined here.
Consider the product

(1, −1, | 2)
[[[[

[

3 1 1
4 0 1
− − − − − − − − −
−5 −2 1

]]]]

]

= (A1,A2) [
B1
B2
] ,

A1 = (1, −1), A2 = (2), B1 = [
3 1 1
4 0 1

] , B2 = (−5, −2, 1).
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Let us multiply Ai ’s and Bj ’s as if they are scalars but keeping the order. Then

(A1,A2)(
B1
B2
) = A1B1 + A2B2

= (1, −1) [3 1 1
4 0 1

] + (2)(−5, −2, 1)

= (−1, 1,0) + (−10, −4, 2) = (−11, −3, 2).

We get the same final answer if they are multiplied element-wise or directly. Consider
the partition

[
1 −1 | 2
0 1 | 1

]
[[[[

[

3 1 1
4 0 1
− − − − − − − − −
−5 −2 1

]]]]

]

= (A1,A2)(
B1
B2
)

= A1B1 + A2B2

where

A1 = [
1 −1
0 1
] , A2 = [

2
1
] , B1 = [

3 1 1
4 0 1

] ,

B2 = (−5, −2, 1).

Then

A1B1 = [
1 −1
0 1
][

3 1 1
4 0 1

] = [
−1 1 0
4 0 1

] ,

A2B2 = [
2
1
] [−5, −2, 1] = [−10 −4 2

−5 −2 1
]

and

A1B1 + A2B2 = [
−1 1 0
4 0 1

] + [
−10 −4 2
−5 −2 1

]

= [
−11 −3 2
−1 −2 2

] .

If we multiply element-wise we get the same answer.

Definition 2.7.1 (Conformal partitioning of matrices). Two matrices A and B are said
to be partitioned conformally for the product AB, when A and B are partitioned into
submatrices and if the multiplication AB is carried out treating the submatrices as if
they are scalars, but keeping the order, and when all products and sums of submatri-
ces involved are defined.
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Example 2.7.1. Checkwhether the following partitioning is conformal for the product
AB:

(a) A = [[
[

1 0 | 2
−1 1 | 1
1 1 | 1

]]

]

= (A1,A2),

B =
[[[[

[

1 1 −1 2
0 0 1 1
−− −− −− −−
1 1 0 1

]]]]

]

= [
B1
B2
] ;

(b) A = [[
[

1 | 0 2
−1 | 1 1
r1 | 1 1

]]

]

= (A1,A2),

B =
[[[[

[

1 1 −1 2
0 0 1 1
−− −− −− −−
1 1 0 1

]]]]

]

= [
B1
B2
] .

Solution 2.7.1. (a) If the submatrices are treated as scalars and if themultiplication is
carried out we get

AB = A1B1 + A2B2

where

A1 =
[[

[

1 0
−1 1
1 1

]]

]

, B1 = [
1 1 −1 2
0 0 1 1

] ,

A2 =
[[

[

2
1
1

]]

]

, B2 = (1, 1,0, 1).

A1B1, A2B2 and A1B1 +A2B2 are all defined and hence the partitioning is conformal for
the product AB.

(b) Here

A1 =
[[

[

1
−1
1

]]

]

, B1 = [
1 1 −1 2
0 0 1 1

]

but A1B1 is not defined and hence the partition is not conformal. If the partition was
after the first row that is, if B1 = (1, 1, −1, 2) then the partitioning would be conformal
for the product AB.
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2.7.2 Partitioning of quadratic forms

In statistical theory, regression analysis, econometrics, model building and in many
other areas one requires to study a part of a quadratic form or to study different parts
separately. This leads to partitioning of a quadratic form. Let X be an n × 1 vector of
real variables and let A be an n × n symmetric matrix of constants. We have already
seen that a quadratic form can be written in the form

u = X′AX, A = A′. (2.7.1)

Consider the partitions

X = (X1
X2
) , X1 =

[[

[

x1
⋮
xr

]]

]

, X2 =
[[

[

xr+1
⋮
xn

]]

]

,

A = [A11 A12
A21 A22

] ,

whereA11 is r× r,A22 is (n− r)× (n− r),A12 is r×(n− r) andA21 is (n− r)× r. WhenA = A′

we have A′21 = A12. Then in the partitioned form the quadratic form is the following:

u = (X′1 ,X′2 )(
A11 A12
A21 A22

)(
X1
X2
) .

It is easy to note that the partitioning is conformal to carry out all the multiplications.
Treating the submatrices as if they are scalars and completing the multiplications we
have

u = (X′1A11 + X′2A21,X′1A12 + X′2A22)(
X1
X2
)

= X′1A11X1 + X′2A21X1 + X′1A12X2 + X′2A22X2. (2.7.2)

We obtain two quadratic forms X′1A11X1 and X′2A22X2 and two bilinear forms X′2A21X1
and X′1A12X2. When A′21 = A12 we have an interesting property.

(X′2A21X1)
′ = X′1A′21(X′2 )

′ = X′1A12X2

which is the same as the other bilinear form. Further X′1A12X2 and X′2A21X1 are 1 × 1
matrices or scalars and hence they are equal.

(i) If P and Q are 1 × 1 matrices and if P′ = Q then P = Q.

Then, when A = A′,

u = X′1A11X1 + 2X′1A12X2 + X′2A22X2. (2.7.3)
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We can study the quadratic forms involving the subvectors X1 and X2 as well as the
bilinear form involving X1 and X2 by using the representation in (2.7.3). As a numerical
example, consider

u = 2x21 − x22 + x23 + 2x1x2 − 4x2x3

= (x1,x2, | x3)
[[[[

[

2 1 | 0
1 −1 | −2
−− −− −− −−
0 −2 | 1

]]]]

]

[[[[

[

x1
x2
−−
x3

]]]]

]

.

Consider the partitioning

X′ = (X′1 ,X′2 ), X′1 = (x1,x2), X′2 = x3

and the corresponding conformal partitioning of A. Then

u = X′1A11X1 + X′2A22X2 + 2X′1A12X2
= [2x21 + 2x1x2 − x22] + [x23] + 2[−2x2x3].

Note that

−2x2x3 = X′1A12X2 = X′2A21X1.

2.7.3 Partitioning of bilinear forms

A bilinear form in the vectors X and Y is a homogeneous linear form in X as well as in
Y . Let X be p × 1 and Y be q × 1. Let A be a p × q matrix of constants. Then a bilinear
form can be written in the form

w = X′AY . (2.7.4)

Bilinear forms have applications in studying covariances and correlations, in analysis
of covariance techniques in design of experiments and in many related areas. Some
theoretical aspects of bilinear forms in random variables may be seen from the book
Bilinear Forms and Zonal Polynomials [8]. If a study of bilinear forms involving some
subvectors of X and Y is undertaken then we need to partition the bilinear forms. Let

X = (X1
X2
) , Y = (Y1

Y2
) , A = (A11 A12

A21 A22
)

where X1 is p1 × 1, X2 is p2 × 1, p1 +p2 = p, Y1 is q1 × 1, Y2 is q2 × 1, q1 +q2 = q, A11 is p1 ×p1
and A22 is q2 × q2. Then A12 is p1 × q2, A21 is p2 × q1 and the partitioning is conformal.
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Then

w = X′AY

= (X′1 ,X′2 )(
A11 A12
A21 A22

)(
Y1
Y2
)

= X′1A11Y1 + X′2A22Y2
+ X′1A12Y2 + X′2A21Y1. (2.7.5)

Note that here A′12 ≠ A21. In fact the whole matrix A is rectangular if p ≠ q. In (2.7.5) we
get two bilinear forms involving (X1,Y1) and (X2,Y2) and two bilinear forms involving
(X1,Y2) and (X2,Y1). As a numerical example, let us consider the following bilinear
form in X′ = (x1,x2,x3) and Y′ = (y1,y2):

w = x1y1 − x2y1 + x3y1 + 2x1y2 + x2y2 + x3y2

= (x1, | x2,x3)(

1 | 2
−− −− −−
−1 | 1
1 | 1

)(
y1
−−
y2
)

= (X′1 ,X′2 )(
A11 A12
A21 A22

)(
Y1
Y2
) ,

X′1 = x1, X′2 = (x2,x3), Y1 = y1, Y2 = y2,

A11 = 1, A12 = 2, A21 = (
−1
1
) , A22 = (

1
1
) .

Note that

X′1A11Y1 = x1(1)y1 = x1y1,

X′2A22Y2 = (x2,x3)(
1
1
)y2 = x2y2 + x3y2,

X′1A12Y2 = x1(2)y2 = 2x1y2,

X′2A21Y1 = (x2,x3)(
−1
1
)y1 = −x2y1 + x3y1.

2.7.4 Inverses of partitioned matrices

LetA be a nonsingular n×nmatrix so that its regular inverseA−1 exists. Let us partition
A and A−1 as follows:

A = [A11 A12
A21 A22

] , A−1 = [A
11 A12

A21 A22
] .
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A convenient standard notation of the submatrices of the inverse A−1 is used here by
writing the corresponding superscripts. Let us investigate the relationships among the
submatrices. Suppose that the partitioning is conformal to take the productAA−1. Sup-
pose A11 and A11 are r × r so that the remaining are automatically defined. Let the iden-
tity matrix In be partitioned as

In = [
Ir O
O In−r

] .

Then writing the equations AA−1 = I we have

AA−1 = I⇒

[
A11 A12
A21 A22

][
A11 A12

A21 A22
] = [

Ir O
O In−r

]⇒

(1) A11A11 + A12A21 = Ir
(2) A11A12 + A12A22 = O
(3) A21A11 + A22A21 = O
(4) A21A12 + A22A22 = In−r .

Premultiplying (2) by A−111 , if A11 is nonsingular, yields

A12 = −A−111 A12A22.

Substitution in (4) yields

(−A21A−111 A12 + A22)A22 = I⇒

A22 = (A22 − A21A−111 A12)
−1.

From symmetry it follows that, assuming that the inverses exist,

(A11)−1 = A11 − A12A−122A21 (2.7.6)

(A22)−1 = A22 − A21A−111 A12 (2.7.7)

(A11)−1 = A11 − A12(A22)
−1A21 (2.7.8)

(A22)−1 = A22 − A21(A11)
−1A12. (2.7.9)

Similarly from (1), (2), (3), (4)we can solve forA12,A21,A12,A21 in terms of the other sub-
matrices. The results in equations (2.7.6) to (2.7.9) arewidely applicable in various types
of problems.

Example 2.7.2. Write z = X′1A11X1 + 2X′1A12X2 as the sum of two quadratic formswhere
one of them contains X1 and X2 and the other contains only X2, assumingA11 = A′11 and
nonsingular.
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Solution 2.7.2. This is similar to completing the square whenwe have a term contain-
ing the square of a scalar variable and a second term which is linear in the variable.
In order to see that the result can be achieved let us open up the following quadratic
form, where C is a vector such that X1 + C is defined:

(X1 + C)′A11(X1 + C) = X′1A11X1 + 2X′1A11C + C′A11C.

Comparing this with z, that is, comparing the quadratic and linear terms in X1, we see
that C corresponds to the following:

A11C = A12X2 ⇒ C = A−111 A12X2.

Hence the quantity to be added and subtracted is

C′A11C = (A−111 A12X2)
′A11(A−111 A12X2)

= X′2A′12A−111 A11A−111 A12X2
= X′2A′12A−111 A12X2.

Therefore

z = X′1A11X2 + 2X′1A12X2
= (X1 + C)′A11(X1 + C) − X′2A′12A−111 A12X2,

C = A−111 A12X2.

Example 2.7.3 (Gaussian density). Inmultivariate statistical analysis themost promi-
nent density is the Gaussian density. If X is a real p × 1 vector random variable then X
is said to have a Gaussian density if the density of X is of the form

f (X) = c e−
1
2 (X−μ)

′V−1(X−μ)

where μ is a constant vector, V = V′, V is such that the exponent of e remains negative
for all values of X and μ, and c is a normalizing constant such that the integral of f
over X will be unity. If X is partitioned as X = ( X1X2 ) where X1 is r × 1, r < p evaluate the
density of X1 (marginal density of X1 is available from f (X) by integrating out X2, the
remaining variables).

Solution 2.7.3. Consider the corresponding partitioning of μ and V , that is,

μ = (μ1
μ2
) , V = (V11 V12

V21 V22
) ,

V21 = V′12, V−1 = (V
11 V 12

V21 V22)
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where μ1 is r × 1 and V11 is r × r. For convenience let Y1 = X1 − μ1 and Y2 = X2 − μ2. Then

(X − μ)′V−1(X − μ) = [Y′1 ,Y′2 ][
V 11 V 12

V21 V22][
Y1
Y2
]

= Y′1 V 11Y1 + 2Y′1 V 12Y2 + Y′2V22Y2.

Writing the linear term and the quadratic term in Y2 with the help of the result in Ex-
ample 2.7.2 we have

2Y′1 V 12Y2 + Y′2V22Y2 = (Y2 + C)′V22(Y2 + C)

− Y′1 V 12(V22)−1V21Y1,

C = (V22)−1V21Y1.

Then

(X − μ)′V−1(X − μ) = Y′1 [V 11 − V 12(V22)−1V21]Y1
+ (Y2 + C)′V22(Y2 + C).

Then from (2.7.7)

V 11 − V 12(V22)−1V21 = V−111 .

Therefore

(X − μ)′V−1(X − μ) = (X1 − μ1)′V−111 (X1 − μ1)
+ (Y2 + C)′V22(Y2 + C), Y2 = X2 − μ2.

We want to integrate out X2 from f (X). That is, denoting ∫X2 (⋅)dX2 as the integral over
X2,

∫
X2
f (X)dX2 = c∫

X2
e−

1
2 (X−μ)

′V−1(X−μ)dX2

= c e−
1
2 (X1−μ1)

′V−111 (X1−μ1)

× ∫
X2
e−

1
2 (Y2+C)

′V 22(Y2+C)dX2.

But

dX2 = d(X2 − μ2) = dY2 = d(Y2 + C)

because all other quantities are fixed as far as the integral over X2 is concerned. Then
the integral produces only a constant so that the normalizing constant c changes to



170 | 2 Matrices

another normalizing constant c1. Then the marginal density of X1, denoted by f1(X1),
is given by

f1(X1) = c1e−
1
2 (X1−μ1)

′V−111 (X1−μ1),

exactly of the same form as f (X) with p replaced by r and with the corresponding
changes in μ and V . Thus all subsets of the p× 1 vector X have the densities belonging
to the same family as f (X) since the exponent is a symmetric function in the compo-
nents of X −μ and since it is proved above that a subvector has the same type of Gaus-
sian density. If f2(X2), which is available from f1(X1) with the corresponding changes
or from f (X) directly, denotes the marginal density of X2 then the conditional den-
sity of X1 given X2 (given X2 means X2 is assumed to be a constant vector) is given by
f (X)/f2(X2). Show that this conditional density also belongs to the same family as f (X).
(Exercise for the student.)

Before concluding this section a fewmore applications ofmatrices will be pointed
out. More will be considered after introducing the notion of determinants in the next
chapter.

2.7.5 Regression analysis

In statistics, econometrics and other areas, prediction of a variable by observing other
variables or at preassigned values of other variables is an important activity. For ex-
ample the worldmarket price for wheat on the next first of January, say y, is a function
ofmany variables such as x1 = the current Canadian stock of wheat, x2 = the USA stock
ofwheat, x3 = the Australian stock ofwheat, x4 = the drought situation in awheat buy-
ing country and so on. If y is to be predicted at preassigned values of x1,x2,… ,xk (say
k real variables) then y = f (x1,… ,xk), some scalar function of x1,… ,xk . If we assume
f to be linear then the prediction function is

y = a0 + a1x1 +⋯+ akxk (2.7.10)

where x1,… ,xk can be preassigned but a1,… ,ak are unknown. The above model is
called a linear regression model because the model assumes that the expected value
of y at preassigned values of x1,… ,xk (“preassigned”means that if x1 = 1 million tons,
if x2 = 3 million tons, etc. what will be y, y = the price per bushel on next January first)
is of the form in (2.7.10). [Regression of y on x1,… ,xk is the conditional expectation of
y at given values of x1,… ,xk because it can be proved that this conditional expecta-
tion is the best predictor of y, best in theminimummean square sense. For evaluating
this regression function we need the conditional distribution of y at given values of
x1,… ,xk . In the absence of conditional distribution, we will assume that this best pre-
dictor is of a certain form, such as a linear function.] We have the data points from
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previous years’ readings on y as well as on x1,… ,xk . If the assumed model is an exact
mathematical relationship then for every data point (yj ,x1j ,… ,xkj) the equation (2.7.10)
is satisfied. This is not the reality. The model is simply assumed to hold. There may or
may not be such a relationship. Hence if ϵj denotes the error in yj for using the model
in (2.7.10) then

ϵj = yj − [a0 + a1x1j +⋯+ akxkj], j = 1,… ,n, (2.7.11)

if there are n data points. Since k + 1 parameters a0,… ,ak are to be estimated n has to
be at least k + 1. Let, for n ≥ k + 1,

ϵ = [[
[

ϵ1
⋮
ϵn

]]

]

, Y = [[
[

y1
⋮
yn

]]

]

, β = [[
[

a0
⋮
ak

]]

]

,

X =
[[[[

[

1 x11 … xk1
1 x12 … xk2
⋮ ⋮ … ⋮
1 x1n … xkn

]]]]

]

.

Then

Y = Xβ + ϵ

and the error sum of squares is then

ϵ′ϵ = (Y − Xβ)′(Y − Xβ) (2.7.12)

where X is a known matrix, Y is a known set of observations, β is the only unknown
vector. The maximum value of ϵ′ϵ for arbitrary β is at +∞, being non-negative. If β
is estimated by minimizing (2.7.12) the method is called the method of least squares.
Recall from Chapter 1 the partial differential operator, which in the present situation
is,

𝜕
𝜕β
=(

𝜕
𝜕a0
⋮
𝜕
𝜕ak

)

and the effects of operating onaquadratic formand linear formare already considered
earlier. Thus

𝜕
𝜕β
(ϵ′ϵ) = 0 ⇒ −2X′(Y − Xβ) = 0

⇒ X′Xβ = X′Y . (2.7.13)
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Since xij ’s are preselected, without loss of generality we can assume X′X to be non-
singular (when data collected from the field are used sometimes X′X can be singular
or nearly singular). If X′X is nonsingular then, denoting the estimated value of β by
β̂, we have

β̂ = (X′X)−1X′Y . (2.7.14)

The following properties are easy to establish (left as exercises to the student):

(ii) The least square minimum S2, that is the right side of (2.7.12) when β is replaced
by β̂, is a quadratic form of the type

Y′[I − X(X′X)−1X′]Y = Y′[I − B]Y .

(iii) I −B is idempotent of rank n− (k + 1), B is idempotent of rank k + 1 and further,
I − B and B are orthogonal to each other. Also

Y′Y = Y′[I − B]Y + Y′BY .

When I − B and B are orthogonal to each other and when ϵ has a standard multivari-
ate Gaussian distribution it can be proved that Y′[I − B]Y and Y′BY are statistically
independently distributed. Comparison of the sum of squares due to β, namely Y′BY ,
with the residual sum of squares, namely Y′[I − B]Y , is the basis in regression anal-
ysis and in a large variety of statistical inference problems, such as testing statistical
hypotheses on β or on the individual components of β.

2.7.6 Design of experiments

Another prominent area of applied statistics is the topics of design of experiments and
analysis of variance. Suppose that 3 different methods of teaching (say comparison of
instructors) are to be studied for their effectiveness. Suppose that 3 sets of students
of, say 30 each, with exactly the same background are selected and subjected to the
3 different methods, one set of 30 under method 1, another set of 30 under method 2
and a third set of 30 under method 3. Designing aspect of the experiment is to control
all possible known factors, other than themethods of teaching, whichmay contribute
towards the gradeof the student. Let yij be the gradeof the j-th student undermethod i.
Here i = 1, 2,3 and j = 1, 2,… ,30. In general, we may want to compare k methods (i =
1,… ,k) andunder the i-thmethod theremay be ni students (n1 students undermethod
1, n2 students under method 2 and so on). Then a linear, additive, fixed effect model
is the following:

yij = μ + αi + eij (2.7.15)
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where μ is a general effect (the student would have got some grade if she/he had stud-
ied on her/his own; no instructor or method was involved), αi the deviation from the
general effect due to the i-th method of teaching, eij the random part (sum total con-
tribution coming from all unknown factors. Remember that all known factors which
may contribute towards yij are controlled by properly designing the experiment). Note
that μ,α1,… ,αk are all unknown. yij ’s are observed. The final aim is to test statistical
hypotheses on αi ’s such as the hypothesis that all the methods are equally effective
(α1 = ⋯ = αk ). First step towards the analysis is to estimate μ,α1,… ,αk . We use the
method of least squares. When μ,α1,… ,αk are all assumed to be unknown constants
we minimize the error sum of squares for estimating the parameters.

k
∑
i=1

ni
∑
j=1

e2ij =∑∑(yij − μ − αi)2. (2.7.16)

The following results can be easily established (left as exercises to the student):

(iv) The least square estimate of αi is given by

α̂i =
yi.
ni
− y..
n.
, yi. =

ni
∑
j=1

yij , y.. =
k
∑
i=1

ni
∑
j=1

yij .

(v) The least square minimum, in this case, is given by

S2 =∑
ij
y2ij −

k
∑
i=1

y2i.
ni
.

The problem described above is part of the analysis in a one-way classification model
arising from a completely randomized design in the field of Design of Experiments.

Exercises 2.7
2.7.1. Let

A = [[
[

3 0 −1 2
1 −1 0 1
1 1 1 1

]]

]

, B =
[[[[

[

1 2
−1 0
1 1
2 1

]]]]

]

,

C =
[[[[

[

1 2 1
−1 0 1
1 1 1
2 1 1

]]]]

]

, A = [A11 A12
A21 A22

] , A11 = [
3 0
1 −1
] .

(a) Give all possible partitioning of B so that AB is defined. Evaluate AB by using the
submatrices for each partition of B.
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(b) Give all possible partitioning of C so that AC is defined. Evaluate AC in terms of
the product of submatrices for each partition of C.

2.7.2. By using equations (2.7.6) to (2.7.9) and the corresponding equations for A12 and
A21 evaluate the inverses of the following matrices A,B and C, assuming the inverses
exist, by partitioning into convenient submatrices:

A = [a b
c d
] , B = [[

[

a 0 0
0 b c
0 d e

]]

]

, C = [[
[

a1 a2 a3
b1 b2 b3
c1 c2 c3

]]

]

.

2.7.3. By partitioning the matrix A and looking at the leading submatrices answer the
following question: If X′AX = 0 for all possible vectors X is A = O?

2.7.4. Variance, covariance, correlations. E = expected value is an operator in
Statistics. Let X be a p × 1 vector of real scalar random variables. Then μ = E(X) = the
mean value of X, V = E[(X − μ)(X − μ)′] is the covariance matrix of X. If V = (vij) then
vii is the variance of xi, the i-th component in X, and vij is the covariance between xi
and xj . Then ρij =

vij
√vii√vjj

is the correlation between xi and xj . Let

X = (x1
X2
) , X′2 = (x2,x3,… ,xp).

Let V be partitioned correspondingly. That is,

V = (v11 V12
V21 V22

)

where v11 is 1 × 1. Let u = a′X2, a′ = (a2,… ,ap) is a constant vector. This means that
we are considering a linear function of X2. Show the following: (a) the variance of u is
a′V22a, (b) the covariance between x1 and X2 is V12 = V′21, (c) themaximum correlation
possible between x1 and u is

V12V−122 V21
v11
= ρ21(2…p)

which is called the square of the multiple correlation between x1 and X2.

2.7.5. Show that ρ21(2.3) ≥ ρ21(2) where ρ2(⋅) is defined in Exercise 2.7.4. Generalize the re-
sult to show that ρ21(2…p) increases with p.

2.7.6. If A is real symmetric then show that A can be written as

PAP′ = [[
[

Ir O O
O −Is O
O O O

]]

]
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where r + s is the rank of A and P is a nonsingular matrix. [The diagonal block Omay
be absent.]

2.7.7. If A is n ×m, n >m such that A′A = Im then show that there exists an n × (n −m)
matrix B such that (A,B) is orthonormal.

2.7.8. Kronecker product. Let A = (aij) be p × p and B = (bij) be q × q. Consider the
pq × pq matrix A ⊗ B,

A ⊗ B =
[[[[

[

a11B a12B … a1pB
a21B a22B … a2pB
⋮ ⋮ … ⋮
ap1B ap2B … appB

]]]]

]

.

Then A ⊗ B is known as the Kronecker product of A with B.
(1) Evaluate the Kronecker product A ⊗ B where

A = [[
[

2 1 5
3 0 −1
1 4 2

]]

]

, B = [2 0
1 −1
] .

(2) Compute B ⊗ A and compare with the result in (1).

2.7.9. Let A be an m × n real matrix of rank r. Show that there exists a nonsingular
m ×mmatrix B and an orthonormal matrix C such that

A = B[Ir O
O O
]C.

2.7.10. Let A be anm×n real matrix,m ≥ n. Show that there exists anm×m orthonor-
mal matrix B such that

BA = (T
O
)

where T is an n × n upper triangular matrix and O is an (m − n) × n null matrix.

2.7.11. Let X be an n × 1 vector of unit length. Show that In − 2XX′ is an orthonormal
matrix.

2.7.12. Let A be an m × n real matrix of rank r with m ≥ n. Show that there exists an
m × (m − n) semiorthonormal matrix Q, Q′Q = I and an n × n upper triangular matrix
P such that

A = QP.
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2.7.13. Consider the following diagonal block matrix D where A,B,C are n × n, m ×m
and r × r square matrices. If D is nonsingular then show that D−1 = diag(A−1,B−1,C−1)
that is,

D = [[
[

A O O
O B O
O O C

]]

]

, D−1 = [[
[

A−1 O O
O B−1 O
O O C−1

]]

]

.

2.7.14. If A = [ B u
v′ d ] and A−1 = [ C w

x′ δ ] where u, v,w are vectors and d and δ are scalars
(1 × 1 matrices), then show that

B−1 = C −wδ−1x′, C = B−1 + δB−1uv′B−1,
w = −δB−1u, x′ = −δv′B−1.

2.7.15. If A = [ I B
O C ] and nonsingular then show that

A−1 = [ I −BC
−1

O C−1
] .

Additional problems on vectors and matrices

Use the 8 conditions listed after Example 2.6.7 as axioms to define a vector space, as-
sume scalar multiplication and addition are as done in the case of matrices and as-
sume that the scalars are real or complex numbers. Then establish the results in Exer-
cises 2.1 to 2.4 below.

2.1. Show that the following sets are vector spaces satisfying all the conditions as
mentioned above.
(i) The collection of vectors as n-tuples for a fixed n, as we have defined in Chapter 1

where the elements are real or complex numbers;
(ii) The collection of all polynomials in a real scalar variable of degree less than n, for

a given n, with coefficients real or complex numbers;
(iii) The collection of all real-valued functions of a real variable which are differen-

tiable;
(iv) The collection of all n × n matrices, with given n, where the elements are real or

complex numbers.

2.2. Construct one basis each for the vector spaces in Exercise 2.1 (i)–(iv).

2.3. Let V be a collection of couplets of real and positive numbers, that is, V =
{(α,β) ∶ α > 0, β > 0}. Define addition and scalar multiplication as follows:

(α1,β1) + (α2,β2) = (α1α2,β1β2) for every (α1,β1) and (α2,β2) in V.
c(α,β) = (αc ,βc) for every real number c and (α,β) in V.

Show that V is a vector space over the field of real numbers.
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2.4. Show that the concepts of linear dependence and linear independence of vectors,
basis of a vector space and dimensions of vector spaces as defined for ordered n-tuples
of real numbers also go through for the general vector space defined above. [More
on abstract vector spaces may be seen from more mathematically oriented books on
vectors and matrices, see for example, [9]

2.5. Find matrices A for which A′A = O, A ≠ O.

2.6. Show that

[
cosθ k sinθ
− 1k sinθ cosθ

]
n

= [
cosnθ k sinnθ
− 1k sinnθ cosnθ

] , k ≠ 0, n = 1, 2,… .

2.7. Kronecker product. The Kronecker product A ⊗ B is defined as A ⊗ B = (aijB). If
A = (aij) is p × q and B = (bij) ism × n then A ⊗ B is pm × qn. For example let

A = [1 −1 0
2 3 −2

] , B = [ 4 5
−3 7
]⇒

A ⊗ B = [(1)B (−1)B (0)B
(2)B (3)B (−2)B

] =
[[[[

[

4 5 −4 −5 0 0
−3 7 3 −7 0 0
8 10 12 15 −8 −10
−6 14 −9 21 6 −14

]]]]

]

and

B ⊗ A = [ (4)A (5)A
(−3)A (7)A

] =
[[[[

[

4 −4 0 5 −5 0
8 12 −8 10 15 −10
−3 3 0 7 −7 0
−6 −9 6 14 21 −14

]]]]

]

≠ A ⊗ B.

Write down A ⊗ B and B ⊗ A if

A = [ 1 −1
−2 0
] and B = [ 3 2

−3 4
] .

2.8. vec(X). Let X = (xij) be a p× qmatrix. Let the j-th column of X be denoted by x(j).
Consider the pq × 1 vector formed by appending x(1),x(2), ...,x(q) into a long column.
This is defined as vec(X). That is,

vec(X) =
[[[[

[

x(1)
x(2)
⋮
x(q)

]]]]

]

.



178 | 2 Matrices

For example, let

A = [1 −1 1
2 0 5

] ⇒ vec(A) =

[[[[[[[[[

[

1
2
−1
0
1
5

]]]]]]]]]

]

and [vec(A)]′ = (1, 2, −1,0, 1,5).

Form vec(A) for the following matrices:

(i) A = [[
[

1 0 −1
2 1 −1
0 1 0

]]

]

, (ii) A = [[
[

1 1
−1 0
2 5

]]

]

, (iii) A = I3.

2.9. Show that if A is p × q, X is q × r and B is r × s then the ps × 1 vector

vec(AXB) = (B′ ⊗ A)vec(X).

2.10. If Y = AX where X and Y are p × q matrices of functionally independent real
variables, A is a p × p nonsingular matrix of constants and if (dY) and (dX) represent
the matrices of differentials in Y and X respectively then show that

vec(dY) = (I ⊗ A)vec(dX).

2.11. If A,B,C,D are matrices for which the following sums and products are defined
then establish the following results:
(i) A ⊗ B ⊗ C = (A ⊗ B) ⊗ C = A ⊗ (B ⊗ C)
(ii) (A + B) ⊗ (C +D) = (A ⊗ C) + A ⊗D +D ⊗ C + B ⊗D
(iii) (A ⊗ B)(C ⊗D) = AC ⊗ BD
(iv) α ⊗ A = αA = A ⊗ α, α a scalar
(v) (A ⊗ B)′ = A′ ⊗ B′

(vi) tr(A ⊗ B) = [tr(A)][tr(B)]
(vii) (A ⊗ B)−1 = A−1 ⊗ B−1

(viii) a′ ⊗ b = ba′ = b ⊗ a′

where a and b are two column vectors, not necessarily of the same order. Also if A is a
partitioned matrix where A11,A12,A21,A22 are submatrices and if B is any other matrix
then show that

A = [A11 A12
A21 A22

] ⇒ A ⊗ B = [A11 ⊗ B A12 ⊗ B
A21 ⊗ B A22 ⊗ B

] .

2.12. For two matrices A and B show that A ⊗ B is nonsingular if and only if A and B
are nonsingular.
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2.13. For two matrices A and B show that vec(A) = vec(B) does not necessarily imply
that A = B.

2.14. For any two column vectors a and b show that

vec(a) = vec(a′) and vec(ab′) = b ⊗ a.

2.15. For three matrices A,B,C for which the product ABC is defined show that

vec(ABC) = (C′ ⊗ A)vec(B) and vec(AB) = (B′ ⊗ I)vec(A).

2.16. If A ism × n, B is n × r and α is r × 1 then show that

vec(AB) = (B′ ⊗ Im)vec(A) = (B′ ⊗ A)vec(In) = (Iq ⊗ A)vec(B)
ABα = (α′ ⊗ A)vec(B) = (A ⊗ α′)vec(B′).

2.17. If A,B,C are n × nmatrices and further, if C = C′ then show that

[vec(C)]′(A ⊗ B)vec(C) = [vec(C)]′(B ⊗ A)vec(C).

2.18. For anym × nmatrix A show that

vec(A) = (In ⊗ A)vec(In) = (A′ ⊗ Im)vec(Im).

2.19. For any four matrices A,B,C,D let ABCD be defined such that ABCD is a square
matrix. Then show that

tr(ABCD) = [vec(D′)]′(C′ ⊗ A)vec(B) = [vec(D)]′(A ⊗ C′)vec(B′).

2.20. If ρ(A) and ρ(B) denote the ranks of A and B respectively then show that

ρ(A) ρ(B) = ρ(A ⊗ B).

2.21. Let A be a square matrix of order n and let p(x) be a polynomial of degree k in
the scalar variable x, that is

p(x) = a0 + a1x +⋯+ akxk .

Let p(x),q(x),h(x), t(x) be polynomials in x such that

p(x) + q(x) = h(x) and p(x) q(x) = t(x).

Define

p(A) = a0I + a1A +⋯+ akAk .

Then show that

p(A) + q(A) = h(A) and p(A) q(A) = t(A).
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2.22. If ρ(⋅) denotes the rank of (⋅) and if AB and A + B are defined then show that

ρ(AB) ≤ ρ(A), ρ(AB) ≤ ρ(B), ρ(A + B) ≤ ρ(A) + ρ(B).

2.23. For the following matrix A take Ak , k = 1, 2,… by using a computer. Then show
that for all k ≥ 16 the matrix Ak remains the same (up to three decimal places) where

A = [[
[

0.8 0.2 0.1
0.1 0.7 0.3
0.1 0.1 0.6

]]

]

.

2.24. Take a 2 × 2 singly stochastic matrix A with nonzero elements and with the col-
umn sums equal to 1. Take powers of A by using a computer. Explain the behavior of
Ak for large k.

2.25. Repeat the process in Exercise 2.24 for a 3 × 3 singly stochastic matrix A and
explain the behavior for large k.



3 Determinants

3.0 Introduction

Adeterminant is an explicit scalar function of the elements of a squarematrix. It is de-
fined only for square matrices. A scalar function means a function which when eval-
uated is a 1 × 1 matrix. If the elements are real or complex numbers then this func-
tion will also be a real or complex number. A few scalar functions of a 2 × 2 matrix,
A = ( x1 x2

x3 x4 ), denoted by u1,u2,u3, are the following:

u1 = x21 + x22 + x23 + x24 = tr(AA′),
u2 = x1x4 − x2x3,
u3 = x1 + x4 = tr(A).

All the above functions are 1× 1 matrices or scalars. Out of these three wewill be inter-
ested in a function of the type u2. Why are we interested in such a scalar function? It is
mainly because of its applications in various fields. In Chapter 2 we have seen thatma-
trices appear naturally in many areas. More examples from several other areas could
also have been given in Chapter 2. In all such problems, where square matrices come
in, determinants can enter automatically.

We will define the determinant of an n × n matrix as a scalar function satisfying
certain conditions. Let α1,α2,… ,αn denote the n rows (or columns) of an n × nmatrix
A = (aij). Then, if they are rows,

αi = (ai1,… ,ain), i = 1,… ,n.

That is,

α1 = (a11,a12,… ,a1n) = first row,
α2 = (a21,a22,… ,a2n) = second row, and so on

3.1 Definition of the determinant of a square matrix

Let f bea scalar function (not a vector functionor amatrix function) of α1,… ,αn, called
the determinant of A, satisfying the following conditions:

f (α1,… , cαi ,… ,αn) = cf (α1,… ,αi ,… ,αn), (α)

where c is a scalar. This condition means that if any row (column) is multiplied by a
scalar then it is equivalent to multiplying the whole determinant by that scalar. This
scalar quantity can also be zero.

f (α1,… ,αi ,… ,αi + αj ,… ,αn) = f (α1,… ,αi ,… ,αj ,… ,αn). (β)

OpenAccess.©2017ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562507-003
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This condition says that if the i-th row (column) is added to the j-th row (column) the
value of the determinant remains the same. The i-th row (column) remains the same
but the new j-th row is αi + αj, that is, the original j-th row (column) plus the original
i-th row (column). Combination of conditions (α) and (β) shows that the value of the
determinant remains the same if a constant multiple of one row (column) is added to
another row (column).

Let αi be written as a sum of two vectors, αi = βi + γi . Then the next condition is
that

f (α1,… ,βi + γi ,… ,αn) = f (α1,… ,βi ,… ,αn) + f (α1,… , γi ,… ,αn). (γ)

This means that if the i-th row (column) is split as the sum of two vectors, βi + γi, then
the determinant becomes sumof two determinants where in one the i-th row (column)
is replaced by βi and in the other the i-th row (column) is replaced by γi .

f (e1,… ,en) = 1 (δ)

where e1,… ,en are the basic unit vectors. This condition says that the determinant of
an identity matrix is 1.

The above conditions can be called the postulates or axioms to define the deter-
minant of a square matrix. The standard notations used to denote the determinant of
a square matrix A are the following:

|A|, det(A) = determinant of A.

In the first notation above, A is enclosed by vertical bars. The matrix was enclosed by
ordinary or square brackets.

A = [a b
c d
] = matrix A, |A| = |a b

c d
| = determinant of A.

Let us evaluate the determinant of this 2 × 2 matrix A by using the postulates above.
Let a ≠ 0. Then by postulate (α),

|A| = a |1 b/a
c d
| .

We have divided the first row by a and in order to keep the value of the determinant
the same we kept a outside also because dividing any row by a ≠ 0 is equivalent to
dividing the whole determinant by a. In other words we have taken a outside from the
first row. Now add (−c) times the first row of the determinant on the right to the second
row. By postulates (α) and (β), the value of the determinant remains the same. Then

|A| = a |1
b
a

c
| = a |1

b
a

0 d − cba
| (postulates (α), (β))



3.1 Definition of the determinant of a square matrix | 183

= a(d − cb
a
)|1

b
a

0 1
| (postulate (α))

= a(d − cb
a
)|

1 0
0 1
| (postulates (α), (β))

= a(d − cb
a
) (postulate (δ))

= ad − bc.

If a = 0 then by adding other rows or columns one can bring a nonzero element at the
(1, 1)-th position without altering the value of the determinant, unless all elements
on the first row or first column are zeros. In such a case the determinant is zero by
postulate (α) itself. Thus, in general, we have the following result:

(i) The determinant of a 2 × 2 matrix A = [ a b
c d ] is |A| = ad − bc.

For example,

A = [ 2 3
−1 5
] ⇒ |A| = (2)(5) − (3)(−1) = 13;

B = [2 0
0 5
] ⇒ |B| = (2)(5) − (0)(0) = 10;

C = [2 3
0 5
] ⇒ |C| = (2)(5) − (3)(0) = 10.

3.1.1 Some general properties

A few properties follow immediately from the definition itself.

(ii) The determinant of a square null matrix is zero. The determinant of a square
matrix with one or more rows or columns null is zero.
(iii) The determinant of a diagonal matrix is the product of the diagonal elements.
[This means that if any diagonal element in a diagonal matrix is zero then the de-
terminant is zero.]
(iv) The determinant of a triangular (upper or lower) matrix is the product of the
diagonal elements. [This means that if any diagonal element in a triangular matrix
is zero then its determinant is zero.]

For example,

O = [[
[

0 0 0
0 0 0
0 0 0

]]

]

⇒ |O| = 0;
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A = [[
[

0 a2 a3
0 b2 b3
0 c2 c3

]]

]

⇒ |A| = 0;

D = [[
[

d1 0 0
0 d2 0
0 0 d3

]]

]

⇒ |D| = d1d2d3;

T = [[
[

a1 a2 a3
0 b2 b3
0 0 c3

]]

]

⇒ |T| = a1b2c3.

In A above, it is equivalent to multiplying the first column by the scalar c = 0 and
hence by postulate (α) the determinant of A is zero. In the triangular case T above, by
repeated application of postulate (α) and (β) the elements at the (1, 2)-th, (1,3)-th and
(2,3)-th positions inT canbemade zerowithout affecting the value of thedeterminant.
Then applying (iii) above the result follows:

(v) If any two rows (columns) are interchanged then the value of the determinant
of the new matrix (obtained after the interchange) is (−1) times the value of the
determinant of the original matrix.

For example,

A = [[
[

1 0 −1
1 1 1
0 −1 2

]]

]

and A1 =
[[

[

0 −1 2
1 1 1
1 0 −1

]]

]

⇒

|A1| = −|A| or |A| = −|A1|.

Here A1 is obtained from A by interchanging the first and the third rows. Let

A2 =
[[

[

0 1 −1
1 1 1
−1 0 2

]]

]

⇒ |A2| = −|A|.

Here A2 is obtained by interchanging the first and second columns.
Property (v) can be easily established. An outline of the proof is given here. Let

α1,… ,αn denote the rows (columns) of a matrix A. The i-th and j-th positions are in-
dicated in the following sequences of steps and the postulate used is indicated at the
right of each line:

|A| = f (α1,… ,αi ,… ,αj ,… ,αn)
= f (α1,… ,αi ,… ,αi + αj ,… ,αn) (β)
= −f (α1,… ,αi ,… ,−αi − αj ,… ,αn) (α)



3.1 Definition of the determinant of a square matrix | 185

= −f (α1,… ,−αj ,… ,−αi − αj ,… ,αn) (β)
= f (α1,… ,αj ,… ,−αi − αj ,… ,αn) (α)
= f (α1,… ,αj ,… ,−αi ,… ,αn) (β)
= −f (α1,… ,αj ,… ,αi ,… ,αn). (α)

In the above steps the i-th row (column) αi and the j-th row (column) αj are shown
to indicate the changes in these rows (columns) at the i-th and the j-th positions. For
example, step 2 above says that the i-th row (column) is added to the j-th row (column)
and the value of the determinant remaining the same.

Example 3.1.1. Evaluate the determinant of the following matrix:

A =
[[[[

[

1 1 −1 2
0 −1 3 0
2 1 −2 4
5 0 −1 1

]]]]

]

.

Solution 3.1.1. We add (−2) times the first row to the third row, the value of the de-
terminant remains the same according to postulate (β). We will indicate the steps by
using our standard notations of Chapters 1 and 2.

|A| =
||||

|

1 1 −1 2
0 −1 3 0
2 1 −2 4
5 0 −1 1

||||

|

=
||||

|

1 1 −1 2
0 −1 3 0
0 −1 0 0
5 0 −1 1

||||

|

.

Now, starting with the determinant on the right above we add (−5) times the first row
to the last row, the value of the determinant remains the same according to postulate
(β). That is,

−5(1) + (4) ⇒ |A| =
||||

|

1 1 −1 2
0 −1 3 0
0 −1 0 0
0 −5 4 −9

||||

|

.

Now we start with the second row and apply postulate (β) repeatedly.

−1(2) + (3); − 5(2) + (4) ⇒

|A| =
||||

|

1 1 −1 2
0 −1 3 0
0 0 −3 0
0 0 −11 −9

||||

|

.

For the next step we take out (−3) from the third row by using postulate (α) and then
add 11 times the third row to the fourth row. That is,
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|A| = (−3)
||||

|

1 1 −1 2
0 −1 3 0
0 0 1 0
0 0 −11 −9

||||

|

= (−3)
||||

|

1 1 −1 2
0 −1 3 0
0 0 1 0
0 0 0 −9

||||

|

= (−3)(1)(−1)(1)(−9) = −27.

The last step above is obtained bymultiplying the diagonal elements because the ma-
trix in the determinant is triangular. The above operations were in fact elementary
operations. Our aim was to reduce the matrix to a triangular form (upper or lower)
so that we know that the determinant would be the product of the diagonal elements
there.

Example 3.1.2. Evaluate the determinant of the following matrix:

A =
[[[[

[

0 2 1 5
4 0 1 2
−7 1 −1 0
5 0 1 2

]]]]

]

.

Solution 3.1.2. The element at the (1, 1)-th position is zero.Wewill bring a nonzero el-
ement at the (1, 1)-th position by interchanging rows or columns. For the above A if the
first and the third columns are interchanged then we can bring a convenient number
at the (1, 1)-th position. Remember that by this interchange the original determinant
is multiplied by (−1):

|A| = −
||||

|

1 2 0 5
1 0 4 2
−1 1 −7 0
1 0 5 2

||||

|

.

Now we do the following operations on the rows, without altering the value of the
determinant:

−1(1) + (2); (1) + (3); −1(1) + (4) ⇒

|A| = −
||||

|

1 2 0 5
0 −2 4 −3
0 3 −7 5
0 −2 5 −3

||||

|

.

By adding (−1) times the second row to the fourth row we can get rid off the number
at the (4, 2)-th position. That is,
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|A| = −
||||

|

1 2 0 5
0 −2 4 −3
0 3 −7 5
0 0 1 0

||||

|

.

In order to get rid off the element at the (3, 2)-th position we can divide the second
row by (−2) and then operate with the new second row. This brings in fractions and
the computations become complicated. But fractions can be avoided by multiplying
the second row by 3 and the third row by 2 and then operating with the second row.
[When a row is multiplied by a nonzero scalar remember to keep its reciprocal outside
to maintain the value of the determinant.]

|A| = − 1
(2)(3)

||||

|

1 2 0 5
0 −6 12 −9
0 6 −14 10
0 0 1 0

||||

|

= − 1
6

||||

|

1 2 0 5
0 −6 12 −9
0 0 −2 1
0 0 1 0

||||

|

.

The above line is the result of the operation [(2) + (3) ⇒]. Now we can either inter-
change the third and the fourth rows to avoid fractions or multiply the fourth row by
2 and then add the third row to the fourth row. Using the latter we have

|A| = − 1
12

||||

|

1 2 0 5
0 −6 12 −9
0 0 −2 1
0 0 2 0

||||

|

= −
1
12

||||

|

1 2 0 5
0 −6 12 −9
0 0 −2 1
0 0 0 1

||||

|

.

Now thematrix is brought to a triangular form and hence the determinant is the prod-
uct of the diagonal elements. That is,

|A| = − 1
12
(1)(−6)(−2)(1) = −1.

When evaluating a determinant the following are the steps to remember

(1) If the element at the (1, 1)-th position is 1 or the least common multiple of the ele-
ments in the first column then start the operations. With the help of the first row
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make all elements in the first column, except the first one, zeros. Adding anymul-
tiple of any row to any other rowwill not change the value of the determinant. The
basic aim is to bring the matrix of the determinant to a triangular form.

(2) If the element at the (1, 1)-th position is not 1 or not the least common multiple
of the elements in the first column then either by adding a row (column) to the
first row (column) or by interchange bring a suitable number to the (1, 1)-th posi-
tion. For each interchange keep one (−1) each outside because by one interchange
of rows or columns the determinant is multiplied by (−1). If these operations do
not bring a convenient number to the (1, 1)-th position then multiply the rows
(columns), as many of them as necessary, so that when suitable multiples of the
resulting first row is added to the other rows fractions are avoided. When any row
(column) is multiplied by a number c ≠ 0 remember to keep 1

c outside to maintain
the value of the determinant.

(3) After reducing the elements in the first column, except the first one, to zeros start
with the second row. Follow through the above steps with regard to the element at
the (2, 2)-th position. Operate onlywith the rows and columns from the second on-
ward. Otherwise the triangular nature of the final format will not be achieved. Try
to make all elements on the second column, starting from the third element on-
ward, to zeros. Repeat the same process with the third row, fourth row and so on.

(4) The value of the determinant is the product of the diagonal elements in the fi-
nal triangular format, multiplied by the quantities which were kept outside to
maintain the value of the determinant.

(5) For matrices of order n = 2,3, that is n × n matrices with n = 2 or n = 3, evaluate
the determinants directly. The 2 × 2 case is already dealt with in property (i) and
a mechanical procedure for the 3 × 3 case will be considered in the next section.
For n ≥ 4 use the steps (1) to (4) given above.

When every element of a matrix is multiplied by a scalar quantity c we say that the
matrix is multiplied by c whereas when any one particular row or column of a matrix
ismultipliedby c its determinant ismultipliedby c. Thuswehave the following result:

(vi)Whenan n×nmatrixA ismultiplied by the scalar c its determinant ismultiplied
by cn. That is,

|cA| = cn|A|, for example, | − A| = (−1)n|A|, |2A| = 2n|A|.

(vii) The value of the determinant of a matrix of real numbers can be negative, pos-
itive or zero.

From our postulate (β) the value of the determinant remains the same if any multiple
of any row(column) is added to any other row (column). Thus if one or more rows
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(columns) are linearly dependent on other rows (columns) then these dependent rows
(columns) can be made null by linear operations. Then the determinant is zero. Thus
we have the following result:

(viii) The determinant of a singular matrix (rows/columns are linearly dependent)
is zero and that of a nonsingular matrix is nonzero or one can define singularity or
nonsingularity of a matrix through this property of its determinant.

Definition 3.1.1. A square matrix A is singular iff |A| = 0 and nonsingular iff |A| ≠ 0.

3.1.2 A mechanical way of evaluating a 3 × 3 determinant

We can evaluate an n × n determinant, by adding suitable combinations of rows
(columns) to other rows (columns) and using the basic properties of determinants
as shown in the illustrative examples. If the steps are applied to a 3 × 3 determinant
the final answer can be shown to be equivalent to the expression obtained by the
following mechanical procedure. Let

A = [[
[

a1 a2 a3
b1 b2 b3
c1 c2 c3

]]

]

.

Write down the first two columns as the fourth and the fifth columns. Then we have
the configuration

a1 a2 a3 a1 a2
b1 b2 b3 b1 b2
c1 c2 c3 c1 c2

a1
↘

a2
↘

a3
↘

a3
↙

a1
↙

a2
↙

Take the product of the leading diagonal elements starting with the (1, 1)-th, thenwith
(1, 2)-th, and then with the (1,3)-th elements. We have three terms from this operation.
Now we look at the second diagonal, the diagonal going from the bottom left corner
and up. Take the product of the elements in the second diagonal starting with the
(3, 1)-th element, then with the (3, 2)-th element and then with the (3,3)-th element.
We have a second set of three elements. Multiply each element in the second set by
(−1). The sum of these two sets of 6 elements is the value of the determinant. The
operations are shown symbolically as above. The final answer is the following:

|A| = ||
|

a1 a2 a3
b1 b2 b3
c1 c2 c3

||

|

= a1b2c3 + a2b3c1 + a3b1c2

− a3b2c1 − a1b3c2 − a2b1c3. (3.1.1)
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[The student may verify it by evaluating the determinant directly.] This mechanical
procedure works only for the 3 × 3 case.

Example 3.1.3. Evaluate the determinant of A by using the mechanical procedure in
(3.1.1) and verify the result by evaluating it with the help of the postulates, where,

A = [[
[

1 2 4
−1 3 2
−2 0 −1

]]

]

.

Solution 3.1.3. For getting the solution from the mechanical procedure we write the
first two columns again and then from the leading and the second diagonals of the
new configuration we obtain the final answer. The new configuration is the following:

1 2 4 1 2
−1 3 2 −1 3
−2 0 −1 −2 0

→ [(1)(3)(−1) + (2)(2)(−2) + (4)(−1)(0)]

− [(4)(3)(−2) + (1)(2)(0) + (2)(−1)(−1)]
= [(−3) + (−8) + (0)] − [(−24) + (0) + (2)]
= 11.

In order to verify the result let us evaluate thedeterminant directly through elementary
operations. [The operations are listed on the right of each line.]

|A| = ||
|

1 2 4
−1 3 2
−2 0 −1

||

|

= ||

|

1 2 4
0 5 6
0 4 7

||

|

[(1) + (2); 2(1) + (3) ⇒]

= 1
20
||

|

1 2 4
0 20 24
0 20 35

||

|

[4(2); 5(3); ⇒]

=
1
20
||

|

1 2 4
0 20 24
0 0 11

||

|

[−1(2) + (3) ⇒]

=
1
20
(1)(20)(11) = 11.

Let us evaluate a 3×3 determinant of A = (aij) by using the postulates (γ) and then
(α) and (β). Let us open up the first row.

(a11,a12,a13) = a11(1,0,0) + a12(0, 1,0) + a13(0,0, 1).
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Then by postulate (γ)

|A| = ||
|

a11 a12 a13
a21 a22 a23
a31 a32 a33

||

|

= a11
||

|

1 0 0
a21 a22 a23
a31 a32 a33

||

|

+ a12
||

|

0 1 0
a21 a22 a23
a31 a32 a33

||

|

+ a13
||

|

0 0 1
a21 a22 a23
a31 a32 a33

||

|

.

Consider the firstmatrix on the right. Using the first rowby adding suitablemultiple to
the other rows (postulates (α) and (β)) we canwipe out all elements in the first column,
except the first element which is 1. Similarly, by using the first row we can wipe out
all elements in the second column, except the first one, in the second matrix on the
right. We can wipe out all elements in the third column, except the first one, in the
third matrix on the right. The result is the following:

|A| = a11
||

|

1 0 0
0 a22 a23
0 a32 a33

||

|

+ a12
||

|

0 1 0
a21 0 a23
a31 0 a23

||

|

+ a13
||

|

0 0 1
a21 a22 0
a31 a32 0

||

|

.

Then by transpositions (one transposition is one interchange of adjacent rows or
columns which will result in one minus sign coming out of the determinant also) of
the columns we can bring the second column in the second matrix on the right to
the first column position and the third column in the third matrix on the right to the
first column position. In the second matrix on the right we need one transposition
and hence one minus sign will come out. In the third matrix on the right we need two
transpositions and hence (−1)2 = 1 will come out. The final result is the following:

|A| = a11
||

|

1 0 0
0 a22 a23
0 a32 a33

||

|

− a12
||

|

1 0 0
0 a21 a23
0 a31 a33

||

|

+ a13
||

|

1 0 0
0 a21 a22
0 a31 a32

||

|

. (i)

Now, we will consider each determinant on the right. For example, consider the first
one. Open up the second row by using postulate γ. Then we have

||

|

1 0 0
0 a22 a23
0 a32 a33

||

|

= a22
||

|

1 0 0
0 1 0
0 a32 a33

||

|

+ a23
||

|

1 0 0
0 0 1
0 a32 a33

||

|

. (ii)

Now by using the second row wipe out the second column elements in the second
matrix and third column elements in the second matrix on the right and make one
transposition in the third column to the second column position (natural order). This
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will bring one minus sign there. That is,

||

|

1 0 0
0 a22 a23
0 a32 a33

||

|

= a22
||

|

1 0 0
0 1 0
0 0 a33

||

|

− a23
||

|

1 0 0
0 1 0
0 0 a32

||

|

.

Now take out the elements from the third row in both matrices and we have

a11
||

|

1 0 0
0 a22 a23
0 a32 a33

||

|

= a11a22a33 − a11a23a32.

When writing the elements keep the first subscripts in the natural order 1, 2,3. Note
that the second term is a11a23a32 and here the second subscripts are in the order 1,3, 2.
One transposition is needed to bring 1,3, 2 into the natural order 1, 2,3 and hence the
multiplicative factor outside is (−1)1 = −1. Now open up the second and third terms
in (ii) to get the balance of the terms in the mechanical procedure indicated earlier.
This is how we obtained the terms in the mechanical procedure. Note that when it is
a 3 × 3 determinant, when we open up, we have 3! = 6 terms. In each term, one and
only one element will come from each row and each column of A. Write these 3! terms
with the first subscripts in the natural order 1, 2,3. Now look at the second subscripts.
If the number of transpositions needed to bring this into the natural order 1, 2,3 is odd
thenmultiply by −1, if even thenmultiply by +1. The possible terms in our case are the
following:

a11a22a33, a11a23a32,
a12a21a33, a12a23a31,
a13a22a31, a13a21a32.

In the first term the second subscripts are in the order (1, 2,3). This is in the natural
order. Hence the number of transpositions needed to bring this to the natural order is
0 and hencewemultiply by (−1)0 = +1. The term a11a23a32 has the second subscripts in
the order (1,3, 2). One transposition, namely the interchange of the second and third
elements, will bring this to the natural order (1, 2,3). Hence we multiply this term by
(−1)1 = −1. The various terms and the signs are as given below:

Term Sign Final term

a11a22a33 +1 a11a22a33
a11a23a32 −1 −a11a23a32
a12a21a33 −1 −a12a21a33
a12a23a31 +1 a12a23a31
a13a22a31 −1 −a13a22a31
a13a21a32 +1 a13a21a32
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Then

|A| = [a11a22a33 + a12a23a31 + a13a21a32]
− [a11a23a32 + a12a21a33 + a13a22a31]

the same result obtained from the mechanical procedure in (3.1.1).

By using the same procedure as used to open up a 3× 3 determinant, we can open
up an n × n determinant |A| = |(aij)|. There will be n! terms. In each of these n! terms
there will be one and only one element coming from each row and each column of A.
A typical element can be written in the following form:

a1i1a2i2⋯anin

where i1,… , in represent the column numbers and the first subscripts the row num-
bers (taken in the natural order, 1, 2,… ,n) then a term will be multiplied by (+1) if the
number of transpositions needed (one transposition is one interchange of two adja-
cent columns or adjacent second subscripts) to bring (i1,… , in) into the natural order
(1, 2,… ,n) is even and if this number is odd then the term is multiplied by (−1). The
final value of the determinant can be written as follows, which can also be used as a
definition for the determinant:

(ix) Let A = (aij) be an n × nmatrix. Then its determinant is given by

|A| =∑
i1
∑
i2
⋯∑

in
(−1)ρ(i1,…,in)a1i1a2i2⋯anin (3.1.2)

where ρ(i1,… , in) stands for the number of transpositions needed to bring (i1,… , in)
to the natural order (1, 2,… ,n).

Wemay note that when n is large then (3.1.2) is not that easy to compute. Even for n = 3
it is found to be quite involved.Hence in a practical situationwewill use the postulates
mentioned in the beginning, along with the properties seen so far, to evaluate a deter-
minant. Even though (3.1.2) is not the most efficient way of evaluating a determinant
this representation has many theoretical uses.

Let us see what happens if one row of a 2 × 2 matrix is split into two rows. Let

A = [a b
c d
] = [

a1 + a2 b1 + b2
c d

] .

Here the first row is written as a sum to two rows, namely,

(a,b) = (a1,b1) + (a2,b2).
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Then the determinant

|A| = ad − bc = (a1 + a2)d − (b1 + b2)c
= (a1d − b1c) + (a2d − b2c)

= |
a1 b1
c d
| + |

a2 b2
c d
| .

The determinant has split into a sum of two determinants. Thus it is clear that if (3.1.2)
is used as a definition for the determinant then postulate (γ) can be derived from (3.1.2)
itself. Let us try to verify this result with a numerical example.

Example 3.1.4. Let

A = [[
[

1 1 −1
2 0 1
−2 1 3

]]

]

.

(a) Evaluate the determinant of A; (b) Let

(1, 1, −1) = (0, 1, −1) + (1,0,0).

Evaluate the determinant as the sum of two determinants with the first row replaced
by (0, 1, −1) and (1,0,0) respectively and show that this sum is equal to the determinant
of A evaluated in (a).

Solution 3.1.4. By elementary operations

|A| = ||
|

1 1 −1
2 0 1
−2 1 3

||

|

= ||

|

1 1 −1
0 −2 3
0 3 1

||

|

=
1
6
||

|

1 1 −1
0 −6 9
0 6 2

||

|

=
1
6
||

|

1 1 −1
0 −6 9
0 0 11

||

|

= 1
6
(1)(−6)(11) = −11.

Let A1 and A2 be the matrices with the first row of A replaced by the vectors (0, 1, −1)
and (1,0,0) respectively. Let us evaluate their determinants throughelementary opera-
tions. InA1 since the (1, 1)-th element is 0 interchange the first and the second columns
before starting the row operations.

|A1| =
||

|

0 1 −1
2 0 1
−2 1 3

||

|

= −||

|

1 0 −1
0 2 1
1 −2 3

||

|
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= −||

|

1 0 −1
0 2 1
0 −2 4

||

|

= −||

|

1 0 −1
0 2 1
0 0 5

||

|
= −(1)(2)(5) = −10;

|A2| =
||

|

1 0 0
2 0 1
−2 1 3

||

|

= −||

|

1 0 0
2 1 0
−2 3 1

||

|

[columns 2,3 interchanged]

= −(1)(1)(1) = −1.

Therefore

|A1| + |A2| = (−10) + (−1) = −11 = |A|.

The result is verified.

Before closing this section let us examine a fewmore propertieswhich follow from
the observations so far. From the representation of the determinant as the sum of all
possible terms consisting of one element each from each row and each column, given
in property (ix), or from the postulates themselves, it follows that anymatrix A and its
transpose A′ have the same determinant.

(x) For any n × nmatrix A with A′ denoting its transpose

|A| = |A′|.

For a skew symmetric matrix, A′ = −A which means that

|A| = |A′| = | − A| = (−1)n|A|.

Therefore if n is odd then

|A| = −|A| ⇒ |A| = 0.

Therefore we have the following result:

(xi) If an n × n matrix A is skew symmetric then |A| = 0 if n is odd or all skew sym-
metric matrices of odd order are singular.

3.1.3 Diagonal and triangular block matrices

Consider the matrices

A = [P O
O S
] , B = [P Q

O S
] , C = [P O

R S
] (3.1.3)
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where O indicates a null matrix, P is r × r, S is s × s. Then A is called a diagonal block
matrix or a block diagonal matrix, and B and C are called triangular block matrices
where B is an upper triangular type and C is a lower triangular block matrix. By ele-
mentary operations on the first r columns or on the last s rows we can reduce B to the
form A without affecting the value of the determinant. Similarly by using the first r
rows or the last s columns of C we can reduce C to the form in A without affecting the
value of the determinant. Thus it follows that A,B and C have the same determinants.
That is,

|A| = |B| = |C|. (3.1.4)

Now, notice that by operating on the first r rows and columns in Awe can reduce A to
the form

|A| = |P| |Ir O
O S
|

if |P| ≠ 0 or to zero if |P| = 0. Then operating on the last s rows and columns of A we
can write

|
Ir O
O S
| = |S| |Ir O

O Is
|

if |S| ≠ 0 or to 0 if |S| = 0. But from postulate (δ) we have

|
Ir O
O Is
| = |I| = 1.

Therefore we have the following result:

(xii) The determinant of a diagonal or triangular block matrix is the product of the
determinants of the diagonal blocks.

In our illustrative example

|A| = |B| = |C| = |P| |S|. (3.1.5)

Example 3.1.5. Evaluate the following determinant directly as well by using property
(xii):

|A| = ||
|

3 0 0
2 1 3
1 2 4

||

|

.

Solution 3.1.5. The matrix in this determinant can be looked upon as a triangular
block matrix. That is,
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A = [P Q
R S
] , P = (3), Q = (0,0),

R = [2
1
] , S = [1 3

2 4
] .

Then by using property (xii),

|A| = |P| |S| = (3) |1 3
2 4
|

= (3)[(1)(4) − (3)(2)] = −6.

For evaluating |A| directly we can add (−3) times the second column to the third col-
umn to obtain

|A| = ||
|

3 0 0
2 1 3
1 2 4

||

|

= ||

|

3 0 0
2 1 0
1 2 −2

||

|
= (3)(1)(−2) = −6.

One observation can be made from this example which is also a particular case of
property (xii).

(xiii) If the first row (column) elements of an n × nmatrix B = (bij) are zeros except
the first element, say b11, then the determinant of B is given by

|B| = b11|B11| (3.1.6)

where B11 is the matrix obtained by deleting the first row and the first column of B
or deleting the row and column containing b11.

This property will be exploited in the next section. It is not a special property of the
first row (column). If any other row (column) has all elements zeros except one ele-
ment then by transpositions of rows and columns (remember to multiply the deter-
minant by (−1) each time a transposition is done. Transpositions are done instead of
direct interchange of rows (columns) in order to maintain the order of the elements
in the remaining matrix) we can bring the nonzero element to the (1, 1)-th position.
For an element in the (i, j)-th position the number of column transpositions needed is
j and then the number of row transpositions needed is i and hence the total number
of transpositions needed is i + j and then multiplicative factor is (−1)i+j . Then we can
apply property (xiii).

We can extend the above ideas to look for the determinant of a product ofmatrices.
Let us recall the basic elementary matrices of the E and the F types from Section 2.3.
Postulate (β) of the definition of a determinant says that

|A| = |FA| = |F| |A| = |A|
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where F is a basic elementary matrix of the F type. From postulate (α) we have

|EA| = |E| |A| or |A| = |E−1||EA|

where E is a basic elementary matrix of the E type. Note that F type elementary oper-
ation (postulate (β)) has no effect on the determinant. Then |AB| = |E−1F−1| |(F1E1A)B|.
Operating on the left of ABwith elementary matrices is equivalent to operating on the
left of A with elementary matrices. EAB = (EA)B and FAB = (FA)B. Then

|E−1k F−1r ⋯E−11 F−11 | |(EkFr⋯F1E1A)B| = |AB|. (i)

Suppose that EkFr⋯F1E1A = D1, a diagonal matrix where D1 = I if A is nonsingular,
otherwise D1 is a diagonal matrix having at least one zero diagonal element which
makes D1B singular and |D1B| = 0. When EkFr⋯F1E1A = I we have A = E−1k F−1r ⋯E−11
and |E−1k ⋯F−11 E−11 | = |A|. Then from equation (i) above,whenA is nonsingular orwhen
D1 = I, |AB| = |E−1k ⋯F−11 E−11 | × |IB| = |A| × |B|.

(xiv) For n × nmatrices A and B

|AB| = |A| |B|

and the property can be extended to any number of n × nmatrices

|ABC⋯| = |A| |B| |C|⋯ .

Example 3.1.6. Evaluate the determinants |AB|, |A|, |B| and verify that |AB| = |A| |B|
where

A = [1 2
1 −1
] , B = [0 1

2 1
] .

Solution 3.1.6.

|A| = |1 2
1 −1
| = (1)(−1) − (1)(2) = −3;

|B| = |0 1
2 1
| = (0)(1) − (2)(1) = −2;

|AB| = |[1 2
1 −1
][

0 1
2 1
]| = |

4 3
−2 0
|

= (4)(0) − (−2)(3) = 6 = (−3)(−2) = |A| |B|.

By using property (xiv) we can establish many results. Note that Ar = AA⋯A,
product where A is multiplied by A a total of r times.
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(xv) |Ar | = |A|r , r = 0, 1, 2,…

|A−r | = |A|−r = 1
|A|r
, r = 0, 1, 2,… , |A| ≠ 0.

This fact follows from the property

AA−1 = I ⇒ 1 = |AA−1| = |A| |A−1| ⇒

|A−1| = 1
|A|

where A0 = I by convention.

(xvi) The determinant of on orthonormal matrix A is ±1.

AA′ = I ⇒ 1 = |AA′| = |A| |A′| = |A|2 ⇒ |A| = ±1.

(xvii) The determinant of an idempotent matrix is either 1 or 0.

A = A2 ⇒ |A| = |A|2 ⇒ |A|[1 − |A|] = 0 ⇒ |A| = 0, 1.

(xviii) The determinant of a nilpotent matrix is zero.

Ar = O, r ≥ 2 ⇒ 0 = |Ar | = |A|r ⇒ |A| = 0.

Exercises 3.1

3.1.1. Evaluate the determinants of the following matrices:

A = [[
[

2 0 0
0 −1 0
0 0 0

]]

]

, B = [[
[

1 0 −1
0 3 1
0 0 4

]]

]

,

C =
[[[[

[

a11 a12 … a1n
0 a22 … a2n
⋮ ⋮ … ⋮
0 0 … ann

]]]]

]

.
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3.1.2. Evaluate the determinants of the following matrices:

A =
[[[[

[

1 0 −1 2
3 0 −2 1
1 0 2 3
0 0 4 5

]]]]

]

, B =
[[[[

[

1 2 −1 1
3 0 −1 1
2 1 −1 0
8 0 −1 1

]]]]

]

,

C =
[[[[

[

4 1 7 −3
3 0 8 1
5 −1 4 2
2 1 2 5

]]]]

]

.

3.1.3. Let a and b be n × 1 column vectors, a′ = (a1,… ,an), b′ = (b1,… ,bn). Evaluate
the determinants of

(1) ab′, (2) a′b.

3.1.4. Consider the n × nmatrix

A =
[[[[

[

a b … b
b a … b
⋮ ⋮ … ⋮
b b … a

]]]]

]

(the diagonal elements are all a and the off-diagonal elements are all b). Show that
(1) |A| = (a − b)n−1[a + (n − 1)b].
(2) Verify the result in (1) for a 4 × 4 matrix with a = 2, b = 3, by direct evaluation.

3.1.5. Evaluate the determinant of

V3 =
[[

[

1 a1 a21
1 a2 a22
1 a3 a23

]]

]

and show that

|V3| = (a2 − a1)(a3 − a1)(a3 − a2) =∏
i>j
(ai − aj).

3.1.6. If Vn is an n×nmatrix created as in Exercise 3.1.5, such amatrix is called a Van-
dermonde’s matrix and its determinant is called a Vandermonde’s determinant, show
that

|Vn| =∏
i>j
(ai − aj).
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3.1.7. Show that

||||||

|

2 5 7 0 0
−1 3 2 0 0
5 4 1 0 0
0 0 0 6 4
0 0 0 −1 1

||||||

|

= ||

|

2 5 7
−1 3 2
5 4 1

||

|

× |
6 4
−1 1
| .

3.1.8. Show that

||||||

|

2 5 7 1 4
−1 3 2 6 5
5 4 1 0 2
0 0 0 6 4
0 0 0 −1 1

||||||

|

= ||

|

2 5 7
−1 3 2
5 4 1

||

|

|
6 4
−1 1
| .

3.1.9. Let

A = [[
[

a1 a2 a3
b1 b2 b3
c1 c2 c3

]]

]

and let

(a1,a2,a3) = a1(1,0,0) + a2(0, 1,0) + a3(0,0, 1)
= (a1,0,0) + (0,a2,0) + (0,0,a3).

Show that

|A| = a1|A11| − a2|A12| + a3|A13|

where Aij represents the matrix obtained by deleting the row and column containing
the element aij, namely the i-th row and the j-th column. Verify the result for

A = [[
[

7 8 −10
15 20 8
10 14 25

]]

]

.

[Such a decomposition helps to reduce the order of the determinants involved thereby
such a procedure is helpful when the elements of the matrix are large numbers.]

3.1.10. Evaluate the determinants |A|, |B|, |AB| and verify the result that |AB| = |A| |B|,
where

A = [[
[

1 0 −1
2 1 1
1 −1 1

]]

]

, B = [[
[

2 1 1
−1 0 1
1 1 −1

]]

]

.
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3.1.11. Construct (1) a 2×2 orthonormalmatrix, (2) a 3×3 orthonormalmatrix. Evaluate
the determinants and show that the value is ±1 in each case.

3.1.12. Construct a nilpotent matrix of order 3 and evaluate its determinant and show
that it is zero.

3.1.13. Let J′ = (1,… , 1), where J is an n × 1 vector of unities. Let B = 1
n JJ
′, A = In − B.

Show that the determinants of both A and B are zeros, or both A and B are singular.

3.1.14. Let

A = [[
[

1 2 3
4 6 5
7 9 8

]]

]

.

First evaluate the determinant, |A|, by elementary operations. Then show that |A| is
also equal to the following:

|A| = (1) |6 5
9 8
| − (2) |4 5

7 8
| + (3) |4 6

7 9
| .

3.1.15. For the same A in Exercise 3.1.14 show that the determinant is also equal to the
following:

|A| = −(4) |2 3
9 8
| + (6) |1 3

7 8
| − (5) |1 2

7 9
|

= (7) |2 3
6 5
| − (9) |1 3

4 5
| + (8) |1 2

4 6
| .

3.1.16. Evaluate the determinant of the following matrix A in two steps:

A =

[[[[[[[[[[[[[[

[

0 1 −1 2 4 1 −2 5
1 −1 1 2 5 8 9 7
1 1 −1 6 13 10 5 17
80 40 20 11 20 15 2 8
32 47 51 60 27 40 90 19
41 42 40 38 30 22 28 15
80 80 82 85 44 20 27 15
79 70 72 90 95 92 94 60

]]]]]]]]]]]]]]

]

.

3.1.17. Evaluate the determinant of the following matrix A in one step:

A =
[[[[[[

[

0 1 1 −1 1
−1 0 2 −3 5
−1 −2 0 4 2
1 3 −4 0 3
−1 −5 −2 −3 0

]]]]]]

]

.
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3.1.18. If A,B and A+B are nonsingular n× nmatrices is A−1 +B−1 singular or nonsin-
gular. Prove your assertion.

3.1.19. Let A bem× n and B be n×m,m < n. Let C = AB them×mmatrix thereby |C| is
defined. Show that

(i) [
Im A
O In
][

A O
−In B
] = [

O AB
−In B

] ;

(ii) |
A O
−In B
| = |

O AB
−In B

| = (−1)n(m+1)|AB|.

3.1.20. Verify the results in (i), (ii) of Exercise 3.1.19 for

A = [1 1 −1
1 2 1

] , B = [[
[

1 1
0 1
1 3

]]

]

.

3.2 Cofactor expansions

A convenient way of evaluating a determinant as well to study some theoretical prop-
erties of a determinant is to expand a determinant in terms of what is known as cofac-
tors. We define cofactors and minors of a matrix.

3.2.1 Cofactors and minors

Definition 3.2.1 (Minors). Let A = (aij) be an n × n matrix. Delete m rows and m
columns, m < n. The determinant of the resulting submatrix is called a minor. If the
i-th row and the j-th column (that is, the row and column where the element aij is
present) are deleted then the determinant of the resulting submatrix is called the
minor of aij .

For example, let

A = [[
[

2 0 −1
1 2 4
0 1 5

]]

]

= (aij).

Then

|
2 4
1 5
| = minor of a11, |

1 4
0 5
| = minor of a12,

|
1 2
0 1
| = minor of a13, |

2 −1
0 5
| = minor of a22,
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|
2 0
1 2
| = minor of a33, and so on.

Definition 3.2.2 (Leading minors). If the submatrices are formedbydeleting the rows
and columns from the 2nd onward, from the 3rd onward, and so on then the corre-
sponding minors are called the leading minors.

For example, for the same A above the leading minors are the following determi-
nants:

2, |2 0
1 2
| , ||

|

2 0 −1
1 2 4
0 1 5

||

|

.

Definition 3.2.3 (Cofactors). Let A = (aij) be an n × nmatrix. The cofactor of aij is de-
fined as (−1)i+j times the minor of aij . That is, if the cofactor and minor of aij are de-
noted by |Cij| and |Mij| respectively then

|Cij| = (−1)i+j|Mij|.

For example, let

A = [[
[

2 0 5
−2 1 4
2 3 7

]]

]

= (aij)

then

|C11| = (−1)1+1 |
1 4
3 7
| = |

1 4
3 7
| = −5 = cofactor of a11;

|C12| = (−1)1+2 |
−2 4
2 7
| = − |
−2 4
2 7
| = 22 = cofactor of a12;

|C13| = (−1)1+3 |
−2 1
2 3
| = |
−2 1
2 3
| = −8 = cofactor of a13;

|C23| = (−1)2+3 |
2 0
2 3
| = − |

2 0
2 3
| = −6 = cofactor of a23,

and so on. Immediate applications of these concepts of minors and cofactors are the
evaluation of the determinant of a square matrix, the evaluation of the inverse of a
nonsingular matrix andmany such items through what is known as a cofactor expan-
sion. We will establish a general result regarding the evaluation of a determinant in
terms of cofactors by examining a simple case.
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Example 3.2.1. Byusing postulate (γ) expand the determinant of the followingmatrix
in terms of the elements of the first row and their cofactors:

A = [[
[

4 2 3
0 −1 1
1 2 −4

]]

]

.

Solution 3.2.1. Write the first row as

(4, 2,3) = (4,0,0) + (0, 2,0) + (0,0,3).

Then from the application of postulate (γ) repeatedly we have

|A| = ||
|

4 0 0
0 −1 1
1 2 −4

||

|

+ ||

|

0 2 0
0 −1 1
1 2 −4

||

|

+ ||

|

0 0 3
0 −1 1
1 2 −4

||

|

.

Consider

||

|

4 0 0
0 −1 1
1 2 −4

||

|

= 4 ||
|

1 0 0
0 −1 1
1 2 −4

||

|

= 4 |−1 1
2 −4
| ,

where the first step is done by taking out 4 from the first row (postulate (α)) and the
second step is done by using property (xiii) of Section 3.1. Now consider the second
determinant. By transposition of columns 1 and 2 we have

||

|

0 2 0
0 −1 1
1 2 −4

||

|

= −||

|

2 0 0
−1 0 1
2 1 −4

||

|

= −2 |0 1
1 −4
| = −2[(0)(−4) − (1)(1)] = 2.

The last line is done by using property (xiii) of Section 3.1. Now consider the last deter-
minant. By two transpositions we can bring the last column to the first column, then
take out 3 and then apply property (xiii) of Section 3.1 to obtain

||

|

0 0 3
0 −1 1
1 2 −4

||

|

= 3 |0 −1
1 2
| = 3[(0)(2) − (1)(−1)] = 3.

Thus we have the following expansion of the determinant:

|A| = 4 |−1 1
2 −4
| − 2 |0 1

1 −4
| + 3 |0 −1

1 2
| .

From the above example and procedure it is clear that such an expansion is pos-
sible for a general matrix. Thus we have the following general result:
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(i) Let A = (aij) be an n × n matrix. Let |Cij| denote the cofactor of aij and |Mij| the
minor of aij respectively. Then

|A| = a11|C11| + a12|C12| +⋯ + a1n|C1n|
= a11|M11| − a12|M12| +⋯ + (−1)n+1a1n|M1n|

= ai1|Ci1| + ai2|Ci2| +⋯ + ain|Cin|
= ai1(−1)i+1|Mi1| + ai2(−1)i+2|Mi2| +⋯ + (−1)i+nain|M1n|

for i = 1, 2,… ,n.

This means that the cofactor expansion can be carried out in terms of the elements
and their cofactors of any row. The same is true for columns, that is, the expan-
sion can be carried out in terms of the elements of any column and their cofac-
tors.

Example 3.2.2. Let

A = [[
[

2 1 −7
1 −1 2
0 3 4

]]

]

.

Evaluate the following: Sum of products of the elements of the first row (1) with the
cofactors of the elements of the first row, (2) with the cofactors of the elements of the
second row, (3) with the cofactors of the elements of the third row.

Solution 3.2.2. (1) The cofactors of the elements of the first row are the following:

|C11| = |
−1 2
3 4
| = [(−1)(4) − (3)(2)] = −10,

|C12| = − |
1 2
0 4
| = −[(1)(4) − (0)(2)] = −4,

|C13| = |
1 −1
0 3
| = [(1)(3) − (0)(−1)] = 3.

Therefore

|A| = (2)[−10] + (1)[−4] + (−7)[3] = −45.

(2) Now let us expand in terms of the elements of the first row with the cofactors
of the elements of the second row. Let us denote this sum by p. Then

p = a11|C21| + a12|C22| + a13|C23|
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= (2)(−1)3 |1 −7
3 4
| + (1)(−1)4 |2 −7

0 4
| + (−7)(−1)5 |2 1

0 3
|

= −2(25) + (1)(8) + (7)(6) = 0.

(3) Now let us expand in terms of the elements of the first row with the cofactors
of the third row. Let us denote this sum by q.

Then

q = a11|C31| + a12|C32| + a13|C33|

= (2)(−1)4 | 1 −7
−1 2
| + (1)(−1)5 |2 −7

1 2
| + (−7)(−1)6 |2 1

1 −1
|

= (2)(−5) + (−1)(11) + (−7)(−3) = 0.

We see that sums such as the ones in (2) and (3) are zeros. This in fact is a general
result which can be proved bywriting the sum in each case as the sumof n×n determi-
nants by writing each cofactor as an n×n determinant rather than as an (n− 1)× (n− 1)
determinant. Then we will see that in sums, such as the ones in (2) and (3) above, two
rows will be identical and hence the determinant is zero.

(ii) Let A = (aij) be an n × n matrix with |Cij| denoting the cofactor of aij . Then, in
terms of the row elements,

ai1|Ck1| + ai2|Ck2| +⋯ + ain|Ckn| = 0

for all i and k, i ≠ k. In terms of the column elements,

a1i|C1k | + a2i|C2k | +⋯ + ani|Cnk | = 0

for all i and k, i ≠ k.

Consider, for example an expansion in terms of the elements of the second row and
cofactors of the first row. For proving the results we use the original representation of
the minors before wiping out the column elements, that is, let q be of the following
form:

q = a21|C11| +⋯ + a2n|C1n| (in terms of the cofactors)

= a21|M11| − a22|M12| +⋯ + (−1)1+na2n|M1n| (in terms of minors)

= a21
||||

|

1 0 ⋯ 0
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ ann

||||

|

+⋯+ a2n
||||

|

0 0 ⋯ 1
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ ann

||||

|
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Now, writing in terms of the original determinants we have

q =
||||

|

a21 0 ⋯ 0
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ ann

||||

|

=
||||

|

a21 a22 ⋯ a2n
a21 a22 ⋯ a2n
⋮ ⋮ ⋯ ⋮
an1 an2 ⋯ ann

||||

|

(by postulate (γ))

= 0

since two rows are identical in the matrix. Same procedure is applicable if the expan-
sion is taken as the elements of the i-th row with the cofactors of the j-th row, i ≠ j.

3.2.2 Inverse of a matrix in terms of the cofactor matrix

One immediate application of the results in (i) and (ii) is to obtain the inverse of a non-
singular matrix in terms of a matrix of cofactors thereby resulting in another method
of evaluating the inverse of a nonsingular matrix. One method through elementary
operations is already considered in Chapter 2. Let A = (aij) be an n × nmatrix. Let |Cij|
be the cofactor of aij . Consider amatrix created by replacing aij by its cofactor. Let this
matrix of cofactors be denoted by cof(A), called the cofactor matrix. Then

cof(A) =
[[[[

[

|C11| |C12| … |C1n|
|C21| |C22| … |C2n|
⋮ ⋮ … ⋮
|Cn1| |Cn2| … |Cnn|

]]]]

]

. (3.2.1)

Consider the transpose of this matrix and premultiply this transpose by the matrix A.
That is,

A[cof(A)]′ = [[
[

a11 a12 … a1n
⋮ ⋮ … ⋮
an1 an2 … ann

]]

]

[[[[

[

|C11| |C21| … |Cn1|
|C12| |C22| … |Cn2|
⋮ ⋮ … ⋮
|C1n| |C2n| … |Cnn|

]]]]

]

.

Then by the results (i) and (ii) all the diagonal elements of the product are equal to |A|
each and all the off-diagonal elements are zeros. Thus we have

A[cof(A)]′ =
[[[[

[

|A| 0 … 0
0 |A| … 0
⋮ ⋮ … ⋮
0 0 … |A|

]]]]

]

= |A| × I . (3.2.2)

Let

B = [cof(A)]
′

|A|
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when |A| ≠ 0. Then

AB = I ⇒ B = A−1.

That is, B stands for the inverse of A whenever the matrix is nonsingular. We have the
following result:

(iii) Let A = (aij) be an n × n matrix with |A| denoting the determinant, |Cij| the co-
factor of aij, cof(A) the cofactor matrix of A, [cof(A)]′ the transpose of the cofactor
matrix, then the inverse of A, whenever it exists, is given by

A−1 = 1
|A|
[cof(A)]′, |A| ≠ 0. (3.2.3)

This formula (3.2.3) gives another way of computing the inverse of a nonsingular ma-
trix.

Example 3.2.3. Evaluate the inverse of A, if it exists, by using the cofactor matrix,
where

A = [[
[

1 0 1
−1 1 1
1 1 1

]]

]

.

Solution 3.2.3. In order to apply this procedure we have to compute all the cofactors
as well as the determinant. [Hence this method of evaluating the inverse is not that
efficient unless the matrix is 2 × 2 in which case the determinant and the cofactor ma-
trix can be read without any computation.] The determinant of A through the cofactor
expansion is given by

|A| = (1) |1 1
1 1
| − (0) |−1 1

1 1
| + (1) |−1 1

1 1
| = −2.

Since |A| ≠ 0 the inverse exists. [If |A| was equal to 0 we would have stopped the pro-
cess here itself.] The various cofactors are the following:

|C11| = cofactor of a11 = |
1 1
1 1
| = 0,

|C12| = cofactor of a12 = −|
−1 1
1 1
| = 2,

|C13| = cofactor of a13 = |
−1 1
1 1
| = −2,

|C21| = cofactor of a21 = −|
0 1
1 1
| = 1,
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|C22| = |
1 1
1 1
| = 0, |C23| = − |

1 0
1 1
| = −1, |C31| = |

0 1
1 1
| = −1,

|C32| = − |
1 1
−1 1
| = −2, |C33| = |

1 0
−1 1
| = 1.

The matrix of cofactors is then

cof(A) = [[
[

0 2 −2
1 0 −1
−1 −2 1

]]

]

.

Then

A−1 = 1
|A|
[cof(A)]′ = − 1

2
[[

[

0 1 −1
2 0 −2
−2 −1 1

]]

]

= [[

[

0 − 12
1
2

−1 0 1
1 1

2 −
1
2

]]

]

.

Let us verify the result to see whether any computational error is made.

AA−1 = [[
[

1 0 1
−1 1 1
1 1 1

]]

]

[[

[

0 − 12
1
2

−1 0 1
1 1

2 −
1
2

]]

]

= [[

[

1 0 0
0 1 0
0 0 1

]]

]

= I .

The result is verified. Onemajor disadvantage of thismethod, compared to themethod
of elementary operations, is that here one has to evaluate one n × n determinant and
n2, (n − 1) × (n − 1) determinants.

Example 3.2.4 (Covariance matrix). In statistical theory and its applications inmany
fields a concept called the covariance matrix plays a vital role. Let X = ( x1x2 ) be a real
bivariate vector random variable. The covariance matrix for this real bivariate case is
given by

V = [ σ21 σ1σ2ρ
σ1σ2ρ σ22

]

where σ1 ≥ 0, σ2 ≥ 0 are the standard deviations of x1 and x2 respectively, their squares
are the variances, and ρ with −1 ≤ ρ ≤ 1 is the correlation between x1 and x2. When
σ1 = 0 and σ2 = 0 the variables are degenerate. When ρ± 1 thematrix V is singular and
the variables are linearly related. Evaluate the inverse of V in the nonsingular case.
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Solution 3.2.4. The determinant

|V | = | σ
2
1 σ1σ2ρ

σ1σ2ρ σ22
| = σ21σ22(1 − ρ2).

The cofactor matrix is then

cof(V) = [ σ22 −ρσ1σ2
−ρσ1σ2 σ21

] .

Since the cofactor matrix is symmetric here, its transpose is the same as itself. Hence

V−1 = 1
|V |
[cof(V)]′ = 1

σ21σ22 (1 − ρ2)
[

σ22 −ρσ1σ2
−ρσ1σ2 σ21

]

= 1
(1 − ρ2)

[
1
σ21
− ρ
σ1σ2

− ρ
σ1σ2

1
σ22

] .

[This is the matrix of the quadratic form appearing in the exponent of a real bivariate
normal or real Gaussian density.]

3.2.3 A matrix differential operator

Let X = (xij) be a matrix with functionally independent real variables as its elements,
that is, xij ’s are functionally independent (distinct) real variables. Functionally inde-
pendent means that no element is a function of other variables. Then the matrix dif-
ferential operator is defined as follows:

Definition 3.2.4 (A matrix differential operator).

𝜕
𝜕X
= ( 𝜕
𝜕xij
) = [[

[

𝜕
𝜕x11

𝜕
𝜕x12
… 𝜕
𝜕x1n

⋮ ⋮ … ⋮
𝜕
𝜕xm1

𝜕
𝜕xm2
… 𝜕
𝜕xmn

]]

]

;

𝜕f
𝜕X
= ( 𝜕f
𝜕xij
),

where f is a scalar function of them× nmatrix X. It is the matrix of the corresponding
partial derivatives.

Example 3.2.5. Let X be a p×pmatrix of functionally independent real variables and
u its trace. Evaluate 𝜕u𝜕X .

Solution 3.2.5. Trace is the sum of the leading diagonal elements:

u = tr(X) = x11 + x22 +⋯+ xpp.
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Therefore

𝜕u
𝜕x11
= 1, 𝜕u
𝜕x12
= 0,… , 𝜕u

𝜕x1p
= 0,…

𝜕u
𝜕xii
= 1, i = 1,… ,p, 𝜕u

𝜕xij
= 0, i ≠ j.

Hence

𝜕u
𝜕X
=
[[[[

[

1 0 … 0
0 1 … 0
⋮ ⋮ … ⋮
0 0 … 1

]]]]

]

= Ip.

Thus we have the following result:

(iv) When X is a p × pmatrix of functionally independent real variables

u = tr(X) ⇒ 𝜕u
𝜕X
= Ip.

Example 3.2.6. Let X be a p×pmatrix of functionally independent real variables. Let
|X| be the determinant of X, |X| ≠ 0, and 𝜕𝜕X the matrix differential operator. Evaluate
𝜕|X|
𝜕X .

Solution 3.2.6. Consider the cofactor expansion of |X| in terms of the elements of the
i-th row and their cofactors:

|X| = xi1|Ci1| + xi2|Ci2| +⋯ + xin|Cin| (3.2.4)

where |Cij| denotes the cofactor of xij . Note that |Cij| does not contain xij and hence
when the partial derivative of |X| is taken with respect to xij we obtain |Cij|. Thus when
the matrix differential operator operates on |X| we get the cofactor matrix. That is,

𝜕
𝜕X
|X| = cof(X) = [[

[

|C11| … |C1p|
⋮ … ⋮
|Cp1| … |Cpp|

]]

]

.

But we have already seen that the inverse of a nonsingular matrix is the transpose of
the cofactor matrix divided by the determinant. Then

𝜕|X|
𝜕X
= |X|(X−1)′.

Thus we have the following result:
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(v) When X is a nonsingular matrix of distinct functionally independent real vari-
ables

𝜕|X|
𝜕X
= |X|(X−1)′. (3.2.5)

We can modify the above result to obtain a result for a nonsingular symmetric matrix.
When X is of functionally independent real variables as elements except for the prop-
erty thatX = X′, that is,X is symmetric then following through the above procedurewe
can derive a result analogous to the one in (3.2.5). Observe that when X is symmetric
we have

𝜕|X|
𝜕xii
= |Cii| = cofactor of xii and

𝜕|X|
𝜕xij
= 2|Cij| = 2 times the cofactor of xij , i ≠ j.

Thus when the matrix operator 𝜕𝜕X operates on |X| we have the following format:

𝜕|X|
𝜕X
=
[[[[

[

|C11| 2|C12| … 2|C1p|
2|C21| |C22| … 2|C2p|
⋮ ⋮ … ⋮

2|Cp1| 2|Cp2| … |Cpp|

]]]]

]

. (3.2.6)

The diagonal elements are not multiplied by 2 whereas all the nondiagonal elements
are multiplied by 2. A convenient notation for writing the right side of (3.2.6) is the
following:

𝜕|X|
𝜕X
= 2cof(X) − diag(cof(X)) (3.2.7)

where diag[cof(X)]means a diagonalmatrix createdwith the diagonal elements of the
matrix cof(X). Then converting (3.2.7) in terms of the inverse ofX wehave the following
result:

(vi) When X is a nonsingular symmetric matrix of functionally independent real
variables then

𝜕|X|
𝜕X
= |X|[2X−1 − diag(X−1)]. (3.2.8)

This result has many applications, especially in obtaining the maximum likelihood
estimators of the parameters in amultivariate Gaussian density. This is also applicable
in general maxima/minima problems or optimization problems involving traces and
determinants.
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Example 3.2.7. Let X = (xij) be a p × pmatrix of distinct functionally independent p2

real scalar variables and let 𝜕𝜕X = (
𝜕
𝜕xij
) be the matrix differential operator. Let B = (bij)

be a p× pmatrix of constants, that is, bij ’s are not functions of the xij ’s. Let u = tr(BX).
Evaluate 𝜕u𝜕X .

Solution 3.2.7. The first diagonal element in the product BX is

b11x11 + b12x21 +⋯+ b1pxp1

or the i-th diagonal element in BX is given by

bi1x1i + bi2x2i +⋯+ bipxpi (3.2.9)

and then the trace is the sum of (3.2.9) over all i, i = 1,… ,p. Thus the partial derivative
of u = tr(BX) with respect to xij is bji . This may be noted from (3.2.9). Hence when all
the elements in X are distinct we have the matrix

𝜕u
𝜕X
= B′

the transpose of B. If X = X′ then the partial derivatives of u = tr(BX) with respect to
xij give

𝜕u
𝜕xij
=
{
{
{

bii for j = i
bji + bij for j ≠ i.

(3.2.10)

Thus the diagonal elements of B come only once. Then thematrix configuration, using
the notation in (vi), is

𝜕u
𝜕X
= B + B′ − diag(B)

where diag(B) is the diagonalmatrix created byusing the diagonal elements ofB. Thus
we have the following result:

(vii) When B = (bij) is a p × p matrix of constants and X = (xij) a p × p matrix of
functionally independent real scalar variables and when u = tr(BX) then

𝜕u
𝜕X
=
{{{
{{{
{

B′ if all elements in X are distinct
B + B′ − diag(B) if X = X′

2B − diag(B) if X = X′ and B = B′.
(3.2.11)

The result above has various types of applications in statistical analysis and related
areas.
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3.2.4 Products and square roots

Products and integer powers of matrices and their determinants are already consid-
ered at the end of Section 3.1. From there, many more properties follow. Even if the
squarematricesA and B do not commute the determinants ofAB and BA are the same.

(viii) |AB| = |BA| = |A| |B| = |B| |A|
|I − AB| = |I − BA| if B or A is nonsingular.

Now it is natural to ask the question: is |Ap/q| = |A|p/q where p and q are integers? Let
us examine a simple case with p = 1, q = 2 or the square root of a matrix A. For a given
matrix A can we find a matrix B such that B2 = A? This B, if such a B exists, can be
called a square root ofA. If such a B exists, is it unique? Can there be differentmatrices
whose squares are all equal to the same matrix? Let us take one of the simplest cases,
a 2 × 2 identity matrix. Let

A = I2 = [
1 0
0 1
] , B1 = [

1 0
0 1
] , B2 = [

−1 0
0 −1
] ,

B3 = [
0 1
1 0
] , B4 = [

0 −1
−1 0
] .

Note that

B21 = A = B22 = B23 = B24.

Thus B1,… ,B4, all qualify to be square roots of A. For a given matrix, even if such a B
exists it need not be unique unless more conditions are imposed on A. Hence in our
discussions to followwewill only consider integer powers (positive powers or negative
powers if the inverse exists) of a square matrix and the determinants associated with
such powers.

In Chapter 2 we have seen that when amatrix A is nonsingular then in most cases
it can be reduced to the form

A = LU

through elementary transformations, where L is lower triangular and U is upper tri-
angular. Then

|A| = |L| |U |

which is equal to the product of all the diagonal elements in L and U .
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3.2.5 Cramer’s rule for solving systems of linear equations

As another application of the cofactor expansion of a determinant one can examine
the solutions of a nonsingular system of linear equations. Let A = (aij) be an n × n
matrix and nonsingular and consider the system of linear equations

AX = b ⇒ X = A−1b,
b′ = (b1,… ,bn), X′ = (x1,… ,xn).

Writing A−1 in terms of the cofactor matrix we have

X = 1
|A|

[[[[

[

|C11| |C21| … |Cn1|
|C12| |C22| … |Cn2|
⋮ ⋮ … ⋮
|C1n| |C2n| … |Cnn|

]]]]

]

[[[[

[

b1
b2
⋮
bn

]]]]

]

where |Cij| is the cofactor of aij . Then the i-th element in X is given by

xi =
1
|A|
{b1|C1i| + b2|C2i| +⋯ + bn|Cni|}.

The numerator on the right side corresponds to the cofactor expansion of a determi-
nant in termsof the i-th columnofAwith the i-th columnbeingb andall other columns
the same as those of A. Therefore

xi =
|Ai|
|A|
, i = 1, 2,… ,n (3.2.12)

where |Ai| is the determinant of A with the i-th column of A replaced by b and other
columns remaining the same. [In a practical situation we will try to solve the sys-
tem through elementary transformations which may work out to be much easier and
faster than evaluating determinants of the type in (3.2.12).] The rule in (3.2.12) is called
Cramer’s rule and it is more of theoretical interest rather than of practical use.

Example 3.2.8. Solve the following system of equations by Cramer’s rule, if applica-
ble:

x1 + x2 + x3 = 3
x1 − x3 = 0

2x1 + x2 + 2x3 = 5.
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Solution 3.2.8. Writing the system as AX = b we have

A = [[
[

1 1 1
1 0 −1
2 1 2

]]

]

, X = [[
[

x1
x2
x3

]]

]

, b = [[
[

3
0
5

]]

]

.

First we need to compute |A|. If |A| = 0 then the rule does not apply.

|A| = ||
|

1 1 1
1 0 −1
2 1 2

||

|

= ||

|

1 1 1
0 −1 −2
0 −1 0

||

|

[−1(1) + (2); −2(1) + (3) ⇒]

= ||

|

1 1 1
0 −1 −2
0 0 2

||

|

[−1(2) + (3) ⇒]

= (1)(−1)(2) = −2.

The rule is applicable. Replace thefirst columnofA by b and evaluate thedeterminant.
According to our notation,

|A1| =
||

|

3 1 1
0 0 −1
5 1 2

||

|

.

Expanding in terms of the elements and their cofactors of the second row we have

|A1| = −(−1) |
3 1
5 1
| = −2.

Now, replace the second column by b. Then

|A2| =
||

|

1 3 1
1 0 −1
2 5 2

||

|

.

Expanding in terms of the elements of the second row and their cofactors we have

|A2| = −(1) |
3 1
5 2
| + 0 − (−1) |1 3

2 5
| = (−1)(1) − (−1)(−1) = −2.

Now,

|A3| =
||

|

1 1 3
1 0 0
2 1 5

||

|

.
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Expanding in terms of the elements of the second row and their cofactors we have

|A3| = −(1) |
1 3
1 5
| = −(1)(2) = −2.

Hence

x1 =
−2
−2
= 1 = x2 = x3.

Note that when evaluating the above determinants we looked for the rows or columns
containing themaximumnumber of zeros. Thenweuseda cofactor expansion in terms
of the elements of that row (column). If a cofactor expansion is going to beused to eval-
uate a determinant then this is a rule of thumb. Note also that Cramer’s rule is rather
lengthy because, in general, n + 1 determinants of n × n matrices are to be evaluated
to complete the process. In practice, the easiest way to solve a linear system is to go
through elementary operations which can also determine, at the same time, whether
the system is consistent, singular, nonsingular, with many solutions or with a unique
solution.

The configuration of signs when using a cofactor expansion to evaluate a deter-
minant can be remembered from the following matrix format:

+ − + − …
− + − + …
+ − + − …
⋮ ⋮ ⋮ ⋮ ⋱

Before we conclude this section we may observe a few more minor points. Consider a
product of several n × n nonsingular matrices, for example, a product of three, ABC.
Then

(ABC)−1 = C−1B−1A−1 ⇒
[cof(ABC)]′

|ABC|
=
[cof(C)]′

|C|
[cof(B)]′

|B|
[cof(A)]′

|A|
.

Therefore

(ix) [cof(ABC)]′ = [cof(C)]′[cof(B)]′[cof(A)]′.

Let us see what happens to the inverse of A′.

(A′)−1 = [cof(A
′)]′

|A′|
= cof(A)
|A|

since |A| = |A′|

= (A−1)′.

That is,
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(x) (A′)−1 = (A−1)′

and

[(ABC)′]−1 = (C−1)′(B−1)′(A−1)′.

Exercises 3.2
3.2.1. If the following matrix is denoted as A = (aij) then evaluate the cofactors and
minors of a12,a22,a31,a33, where

A = [[
[

2 0 1
−1 1 5
0 1 4

]]

]

.

3.2.2. For the matrix A in Exercise 3.2.1 compute the leading minors.

3.2.3. Expand |A| in terms of the elements of (a) the first row and their cofactors,
(b) the third row and the corresponding cofactors, (c) the second column and the cor-
responding cofactors, where A is the same matrix in Exercise 3.2.1.

3.2.4. Verify property (ii) by expanding |A| of thematrix inExercise 3.2.1 in termsof the
elements of the (a) first row and cofactors of the elements of the third row, (b) second
row and the cofactors of the elements of the third row.

3.2.5. Evaluate A−1, if it exists, by computing the cofactor matrix, where

A = [[
[

1 1 1
1 1 −1
2 1 4

]]

]

.

3.2.6. By multiplying and then taking the trace verify the result (3.2.11) if

(1) X = (xij), B = [[
[

2 1 −1
0 1 5
2 3 −1

]]

]

, xij’s are distinct;

(2) X = X′ and the same B as in (1);

(3) X = X′ and B = [[
[

2 1 −1
1 1 5
−1 5 −1

]]

]

.

3.2.7. From the mechanical rule of Section 3.1 write down the explicit form of the de-
terminant of a 3 × 3 matrix X = (xij). From this explicit form compute 𝜕𝜕X |X| for the
cases: (1) all elements of X are distinct, (2) X = X′. Thus verify the result in (3.2.8).
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3.2.8. Consider the n × nmatrices

B = 1
n
[[

[

1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]

]
A = In − B.

Compute the following:

(1) |B281|, (2) |A392|, (3) |A250 + B192|5.

3.2.9. Are the following statements true or false. If false give two counter examples
each: (1) | −A| = −|A|; (2) If A′ = −A then |A′| = −|A| and since |A′| = |A|, |A| = 0; (3) If A
is a matrix with real elements and if A = A′ then A can be written as A = BB′ where B
is a matrix with real elements.

3.2.10. Show that

||

|

2 −1 0
−1 2 −1
0 −1 2

||

|

= (3 + 1) = 4

and that for an n × nmatrix

||||||

|

2 −1 0 0 … 0 0
−1 2 −1 0 … 0 0
⋮ ⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 0 … 2 −1
0 0 0 0 … −1 2

||||||

|

= (n + 1).

3.2.11. Let Dn be the n × n determinant

Dn =
||||

|

1 −1 0 0 … 0 0
1 1 −1 0 … 0 0
⋮ ⋮ ⋮ ⋮ … ⋮ ⋮
0 0 0 0 … 1 1

||||

|

.

Show that Dn = Dn−1 +Dn−2. [This recurrence relation produces the Fibonacci numbers
1, 2,3,5,8, 13, 21,….]

3.2.12. Let A = (aij) be an n × nmatrix where aij = i + j. Evaluate the determinant of A.

3.2.13. Let

A = [[
[

1 a a2

1 b b2

1 c c2
]]

]

.

Evaluate the determinant of A250.
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3.2.14. Let

A =
[[[[

[

a b b b
b a b b
b b a b
b b b a

]]]]

]

, a ≠ b ≠ 0.

Evaluate the determinant of A100.

3.2.15. Show that (1) A−1 is symmetric if A is symmetric, (2) T−1 is lower (upper) trian-
gular if T is lower (upper) triangular.

3.2.16. Show that the determinant of the n × nmatrix

A =
[[[[[[

[

0 1 0 … 0 0
0 0 1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 0 1
−a0 −a1 −a2 … −an−2 −an−1

]]]]]]

]

is equal to (−1)na0.

3.2.17. Let

An =

[[[[[[[[[

[

a1 b1 0 0 … 0 0
c1 a2 b2 0 … 0 0
0 c2 a3 b3 … 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 … an−1 bn−1
0 0 0 0 … cn−1 an

]]]]]]]]]

]

.

Show that its determinant, |An|, can be written as

|An| = an|An−1| − bn−1cn−1|An−2| for n ≥ 3.

3.2.18. Let the n × nmatrix A be partitioned as follows, where A1 is p × p:

A = [A1 A2
A3 O
] .

Show that

|A| = (−1)(n+1)p|A2| |A3|.

3.2.19. Let Cof(A) denote the matrix of cofactors of the n×nmatrix A. Then show that
the determinant of this cofactor matrix is given by

|Cof(A)| = |A|n−1.
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3.2.20. Let I ,A,B be n×n. Show that if I +AB is nonsingular then I +BA is nonsingular
and that

(I + AB)−1 = I − B(I + BA)−1A.

3.2.21. If A is n × n, U is n × 1, V is n × 1 and if A + UV′ and A are nonsingular then
show that

(A +UV′)−1 = A−1 − (A
−1U)(V′A−1)
1 + V′A−1U

.

3.2.22. Let A = (aij(x)) be an n × n matrix where the elements aij ’s are differentiable
functions of x. Let a1,a2,… ,an denote the columns of A so that

A = (a1,… ,an) and |A| = |(a1,… ,an)|.

Let d
dxaj denote the vector of derivatives of the elements in aj. Then show that

d
dx
|A| = |( d

dx
a1,… ,an)| + |(a1,

d
dx

a2,… ,an)|

+⋯+ |(a1,… ,
d
dx

an)|.

3.2.23. Hadamard’s inequality. Let A = (aij) be an n × nmatrix. Show that

|A|2 ≤
n
∏
j=1
{

n
∑
i=1
|aij|2}.

3.2.24. For any twom×nmatrices A and B show that rank(A+B) ≤ rank(A) + rank(B).

3.2.25. If A and B are matrices such that AB is defined then show that

rank(AB) ≤min(rank(A), rank(B)).

3.2.26. If A is an n × n nonsingular matrix and if B is n ×m and C is p × n then show
that

rank(AB) = rank(B), rank(CA) = rank(C).

3.2.27. If A ism × n and B is n ×m withm > n then show that |AB| = 0.

3.2.28. Circulant matrix. Evaluate the determinant of the circulant matrix

A =
[[[[

[

a0 a1 a2 … an−1
an−1 a0 a1 … an−2
⋮ ⋮ ⋮ ⋱ a1
a1 a2 a3 … a0

]]]]

]

.

3.2.29. Show that |A| = cn−1(nx + c) where the n × nmatrix

A =
[[[[

[

x + c x … x
x x + c … x
⋮ ⋮ ⋱ ⋮
x x … x + c

]]]]

]

.
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3.3 Some practical situations

The theory of determinants has applications in all sorts of practical problems as well
as in theoretical developments ofmany other fields. A few of thesewill be listed in this
section.

3.3.1 Cross product

A concept called cross product of two vectors in 3-space is found in elementary
trigonometry, with applications in physics, chemistry and engineering problems.
In the notation of Chapter 1 let

a⃗ = a1 ⃗i + a2 ⃗j + a3k⃗,
⃗i = (1,0,0), ⃗j = (0, 1,0), k⃗ = (0,0, 1), and

b⃗ = b1 ⃗i + b2 ⃗j + b3k⃗

be two vectors in 3-space. Consider the parallelogram generated by these vectors on
the plane determined by a⃗ and b⃗ as shown in Figure 3.3.1.

Figure 3.3.1: Parallelogram.

Let us try to construct a vector c⃗ which is orthogonal to both a⃗ and b⃗ and whose
length is equal to the area of the parallelogram generated by a⃗ and b⃗. Such a vector is
usually denoted by

c⃗ = a⃗ × b⃗

the cross product of a⃗ with b⃗. From elementary considerations it can be shown that
the vector c⃗ is obtained by opening up the following 3 × 3 determinant

c⃗ = a⃗ × b⃗ = ||
|

⃗i ⃗j k⃗
a1 a2 a3
b1 b2 b3

||

|

. (3.3.1)
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Opening up in terms of the elements of the first row and their cofactors, treating ⃗i, ⃗j, k⃗
as some elements of the matrix, we have

a⃗ × b⃗ = ⃗i |a2 a3
b2 b3
| − ⃗j |a1 a3

b1 b3
| + k⃗ |a1 a2

b1 b2
|

= (a2b3 − a3b2) ⃗i − (a1b3 − a3b1) ⃗j + (a1b2 − a2b1)k⃗. (3.3.2)

Example 3.3.1. Construct the cross product of a⃗ = ⃗i + ⃗j − k⃗ with b⃗ = 2 ⃗i + ⃗j + k⃗ by using
(3.3.1) and show that this cross product vector is orthogonal to both a⃗ and b⃗ andwhose
length is equal to the area of the parallelogram generated by a⃗ and b⃗.

Solution 3.3.1. From (3.3.1)

c⃗ = a⃗ × b⃗ = ||
|

⃗i ⃗j k⃗
1 1 −1
2 1 1

||

|

= ⃗i |1 −1
1 1
| − ⃗j |1 −1

2 1
| + k⃗ |1 1

2 1
|

= 2 ⃗i − 3 ⃗j − k⃗.

The dot product between c⃗ and a⃗ is then

c⃗.a⃗ = (2)(1) + (−3)(1) + (−1)(−1) = 0.

The dot product between c⃗ and b⃗ is

c⃗.b⃗ = (2)(2) + (−3)(1) + (−1)(1) = 0.

Thus the cross product vector of a⃗ with b⃗ is orthogonal to both a⃗ and b⃗. The length of
c⃗ is given by

‖c⃗‖ = √(2)2 + (−3)2 + (−1)2 = √14.

For any two vectors U⃗ and V⃗ in n-space the area of the parallelogram on the plane
containing U⃗ and V⃗ is given by the following expression, see Figure 3.3.1.

area = ‖U⃗‖ ‖V⃗‖ sinθ.

[Twice the area of the triangle = 2(1/2) base times the altitude = base times the altitude
= (‖U⃗‖)(‖V⃗‖) sinθ] where θ is the angle between U⃗ and V⃗ . But

sinθ = √1 − cos2 θ = √1 − ( U⃗ .V⃗
‖U⃗‖ ‖V⃗‖

)
2
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= 1
‖U⃗‖ ‖V⃗‖

√‖U⃗‖2‖V⃗‖2 − (U⃗ .V⃗)2 (3.3.3)

holds for all U⃗ and V⃗ , U⃗ ≠ O, V⃗ ≠ O. Then the area of the parallelogram is

area = ‖U⃗‖ ‖V⃗‖ sinθ = √‖U⃗‖2‖V⃗‖2 − (U⃗ .V⃗ )2. (3.3.4)

Consider two vectors a⃗ and b⃗ in 3-space. Substituting in (3.3.4) we have

area = √(a21 + a22 + a23)(b21 + b22 + b23) − [a1b1 + a2b2 + a3b3]2.

Simplifying and rewriting we have

area = √(a2b3 − a3b2)2 + (a1b3 − a3b1)2 + (a1b2 − a2b1)2

= ‖a⃗ × b⃗‖.

In our illustrative example

[(1)(1) − (−1)(1)]2 + [(1)(1) − (−1)(2)]2 + [(1)(1) − (1)(2)]2 = 14.

This verifies the result.
One observation is immediate. If the second and third rows of (3.3.1) are inter-

changed then the resulting determinant is (−1) times the original determinant which
implies that

a⃗ × b⃗ = −b⃗ × a⃗. (3.3.5)

3.3.2 Areas and volumes

Consider two vectors a⃗ and b⃗ in 2-space as shown in Figure 3.3.2. The lengths of a⃗ and
b⃗ are

‖a⃗‖ = √a21 + a22, ‖b⃗‖ = √b21 + b22.

Let θ1 be the angle a⃗ makes with the x-axis and θ2 the angle b⃗ makes with the x-axis
and θ = θ2 − θ1, the angle between a⃗ and b⃗. One choice of θ1,θ2,θ is shown in Fig-
ure 3.3.2. [The final result will be true for all choices of θ1,θ2,θ.]

cosθ = cos(θ2 − θ1) = cosθ2 cosθ1 + sinθ2 sinθ1

= b1
√b21 + b22

a1
√a21 + a22

+ b2
√b21 + b22

a2
√a21 + a22

=
a⃗.b⃗
‖a⃗‖ ‖b⃗‖
.
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Figure 3.3.2: Area.

The area of the parallelogram is then

area = ‖a⃗‖ ‖b⃗‖ sinθ = √‖a⃗‖2‖b⃗‖2 − (a⃗.b⃗)2

= √(a21 + a22)(b21 + b22) − (a1b1 + a2b2)2

= √(a1b2 − a2b1)2 = {|
a1 a2
b1 b2
|
2

}
1/2

or the area is the absolute value of the determinant with a⃗ and b⃗ as its first and second
rows.

area = absolute value of |a1 a2
b1 b2
| .

Now, consider the parallelepiped generated by the three vectors a⃗, b⃗, c⃗ in a 3-space.
The volume of the parallelepiped is the base area multiplied by the altitude. Consider
the base area of the parallelogram generated by b⃗ and c⃗. The area is the length of the
cross product, ‖b⃗ × c⃗‖. The altitude is also equal to ‖a⃗‖cosθ where θ is the angle a⃗
make with the normal N⃗ = b⃗ × c⃗ as shown in Figure 3.3.3.

Figure 3.3.3: Volume of a parallelepiped.

Therefore the volume, denoted by v, is given by

v = ‖b⃗ × c⃗‖ ‖a⃗‖ [a⃗.(b⃗ × c⃗)]
‖a⃗‖ ‖b⃗ × c⃗‖

(substituting for cosθ)
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= [a⃗.(b⃗ × c⃗)]
= a1[b2c3 − b3c2] − a2[b1c3 − b3c1] + a3[b1c2 − b2c1]

= ||

|

a1 a2 a3
b1 b2 b3
c1 c2 c3

||

|

.

Thus the volume of the parallelepiped generated by the vectors a⃗, b⃗ and c⃗ in a 3-space
is the absolute value of the following determinant:

v = absolute value of ||
|

a1 a2 a3
b1 b2 b3
c1 c2 c3

||

|

. (3.3.6)

Note that v = 0 if any of the vectors is a linear function of the others. For example if a⃗
lies on the plane determined by b⃗ and c⃗ then v = 0. This formula can be generalized.
Let O be the origin of a rectangular coordinate system. Let

X1 = (x11,x12,… ,x1n),
X2 = (x21,x22,… ,x2n),
⋮ ⋮

Xn = (xn1,xn2,… ,xnn)

be n points and consider the vectors, ⃗OX1 ,… , ⃗OXn . Assuming that these are linearly
independent, the volume of the parallelotope generated by ⃗OX1 ,… , ⃗OXn is given by
the absolute value of the determinant

vn = absolute value of |X| = |XX′|1/2 (3.3.7)

where

X =
[[[[

[

x11 x12 … x1n
x21 x22 … x2n
⋮ ⋮ … ⋮
xn1 xn2 … xnn

]]]]

]

.

Note that |XX′| = |X| |X′| = |X|2. But |XX′| remains non-negative and hence by using
this form we do not have to worry about the absolute value. This form is also useful in
dealingwith r points in n-space, r < n. If there are n+ 1 points X1,… ,Xn+1 in an n-space
such as 3 points in a 2-space then we can shift the origin to one of the points then the
situation will be as in (3.3.7).

The volume of this parallelotope can be shown to be given by the following deter-
minant, in absolute value:

v =
||||

|

x11 x12 … x1n 1
x21 x22 … x2n 1
⋮ ⋮ … ⋮ ⋮

xn+1 1 xn+1 2 … xn+1n 1

||||

|
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Figure 3.3.4: n + 1 points in n-space.

= ||

|

x11 − xn+1 1 … x1n − xn+1n 0
⋮ …⋮ ⋮

xn1 − xn+1 1 … xnn − xn+1n 1

||

|

= ||

|

x11 − xn+1 1 … x1n − xn+1n
⋮ … ⋮

xn1 − xn+1 1 … xnn − xn+1n

||

|

= ||

|

X1 − Xn+1
⋮

Xn − Xn+1

||

|

. (3.3.8)

The origin is shifted to the pointXn+1, as indicated in Figure 3.3.4, then the other points
areXi−Xn+1, i = 1, 2,… ,nwith respect to thenewcoordinate system. Thus (3.3.8) agrees
with (3.3.7), where in (3.3.7), Xn+1 is the origin O itself.

Example 3.3.2. Evaluate the volume (area in 2 space) of the parallelotope (paral-
lelepiped in 3-space) created by the vectors ⃗OX1 ,… , ⃗OXn where O indicates the origin
where

(a) X1 = (1, 1), X2 = (1, −1),
(b) X1 = (2,0, −4), X2 = (1, 1, −1), X3 = (1,0, 1),
(c) X1 = (1, 1, 1, 1), X2 = (1, 1, 1, −1),

X3 = (1, 1, −1, 1), X4 = (1, −1, 1, 1).

Solution 3.3.2. (a) In this case we have the area of the parallelogram created by
⃗OX1 , ⃗OX2, denoted by v2. Then

|
1 1
1 −1
| = −2.

The absolute value = v2 = 2.
(b) In this case we have the volume of a parallelepiped, denoted by v3. Consider

||

|

2 0 −4
1 1 −1
1 0 1

||

|

= −||

|

1 0 1
1 1 −1
2 0 −4

||

|

= −||

|

1 0 1
0 1 −2
0 0 −6

||

|
= −(1)(1)(−6) = 6.

The absolute value is 6 and hence the volume is 6.
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(c) In this case we have the volume of a parallelotope in 4-space, denoted by v4.
Consider

||||

|

1 1 1 1
1 1 1 −1
1 1 −1 1
1 −1 1 1

||||

|

=
||||

|

1 1 1 1
0 0 0 −2
0 0 −2 0
0 −2 0 0

||||

|

= −
||||

|

1 1 1 1
0 −2 0 0
0 0 −2 0
0 0 0 −2

||||

|

= 8.

The absolute value is 8 and hence v4 = 8.
In a 2-space we have a parallelogram generated by ⃗OX1 and ⃗OX2, by completing

the parallelogram. This parallelogram consists of two identical triangles. Then the
area of one such triangle is 1

2v2 where v2 is the area of the parallelogram. In a 3-space
we have a parallelepiped. How many identical simplexes (simplices, 3-dimensional
analogue of the triangle) can be packed into this parallelepiped? It can be easily
seen that we can pack 6 = 3! such simplexes. The following are some standard no-
tations in this area. ∇n (nabla) and Δn (delta) are used to denote the volumes of the
n-parallelotope and n-simplex respectively.

Notation 3.3.1.

∇n = volume of an n-parallelotope in n-space
Δn = volume of an n-simplex in n-space.

Then we have

Δn =
1
n!
∇n. (3.3.9)

3.3.3 Jacobians of transformations

In a calculus course the instructor might have told that the Jacobian is a determinant
and the curious studentsmust havebeenwonderinghowadeterminant enters into the
picture. Let us see what happens if we take skew symmetric product of differentials.

Notation 3.3.2. ∧ = (wedge), dx ∧ dy (skew symmetric product of the differential dx
with the differential dy), where x and y are real scalar independent or free variables.

Definition 3.3.1. The skew symmetric product of the differential of x, dx, with the dif-
ferential of y, dy, is defined as
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dx ∧ dy = −dy ∧ dx ⇒ dx ∧ dx = −dx ∧ dx
⇒ dx ∧ dx = 0,

since dx ∧dx is a real scalar quantity. Let us consider some transformations. Let x and
y be two real free variables and let u and v be functions of x and y. Let

u = f1(x,y), v = f2(x,y). (3.3.10)

As examples,

(a) u = 2x − 3y, v = x + y
(b) u = x2 + y2, v = x − y
(c) u = x2 + 2xy + y2, v = x4 + 5.

Taking the differentials in (3.3.10) we have, from elementary calculus,

du = 𝜕f1
𝜕x

dx + 𝜕f1
𝜕y

dy and (a)

dv = 𝜕f2
𝜕x

dx + 𝜕f2
𝜕y

dy. (b)

Let us take the skew symmetric product of the differentials in u and v.

du ∧ dv = [𝜕f1
𝜕x

dx + 𝜕f1
𝜕y

dy] ∧ [𝜕f2
𝜕x

dx + 𝜕f2
𝜕y

dy]. (c)

According to Definition 3.3.1 an interchange brings in a negative sign and hence when
taking the product in (c) remember to keep the order and change the sign if the or-
der is reversed. Straight multiplication of the right side in (c), keeping the order and
neglecting higher orders such as dx ∧ dx and dy ∧ dy, since they are zeros, we have

du ∧ dv = 𝜕f1
𝜕x
𝜕f2
𝜕x

dx ∧ dx + 𝜕f1
𝜕x
𝜕f2
𝜕y

dx ∧ dy

+ 𝜕f1
𝜕y
𝜕f2
𝜕x

dy ∧ dx + 𝜕f1
𝜕y
𝜕f2
𝜕y

dy ∧ dy

= 𝜕f1
𝜕x
𝜕f2
𝜕y

dx ∧ dy + 𝜕f1
𝜕y
𝜕f2
𝜕x

dy ∧ dx + 0 + 0.

Note that in one term we have dx ∧dy and in the other term dy ∧dx = −dx ∧dy. There-
fore

du ∧ dv = [𝜕f1
𝜕x
𝜕f2
𝜕y
− 𝜕f1
𝜕y
𝜕f2
𝜕x
]dx ∧ dy

= |
𝜕f1
𝜕x
𝜕f1
𝜕y

𝜕f2
𝜕x
𝜕f2
𝜕y
|dx ∧ dy

= J dx ∧ dy.



3.3 Some practical situations | 231

The coefficient of dx ∧ dy is called the Jacobian J and it is a determinant. If J ≠ 0 then

dx ∧ dy = 1
J
du ∧ dv, (3.3.11)

and the transformation (x,y) → (u, v) is one to one. Let us generalize this procedure
to functions of many real variables. Let x1,… ,xk be k free real scalar variables and
consider k scalar functions of x1,… ,xk . Let

yi = fi(x1,… ,xk), i = 1, 2,… ,k.

If the number of equations is not equal to the number of independent variables
x1,… ,xk then we cannot expect a one to one transformation. Even then for a one to
one transformation we need the Jacobian to be nonzero. Only in this case one can
write dx1 ∧ ⋯ ∧ dxk in terms of dy1 ∧ ⋯ ∧ dyk and vice versa. Then proceeding as
before we note that

dy1 ∧⋯∧ dyk =
|||

|

𝜕f1
𝜕x1
… 𝜕f1
𝜕xk

⋮ … ⋮
𝜕fk
𝜕x1
… 𝜕fk
𝜕xk

|||

|

dx1 ∧⋯∧ dxk

where

J = determinant of the Jacobian matrix (𝜕yi
𝜕xj
).

The (i, j)-th element in the Jacobian matrix is the partial derivative of yi with respect
to xj . Since the transpose of this matrix also has the same determinant we could take
the Jacobian matrix as ( 𝜕yi𝜕xj ) or (

𝜕yi
𝜕xj
)′. Let us evaluate some Jacobians.

(a) Jacobians of linear transformations

Consider the linear transformation

yi = ai1x1 +⋯+ aikxk , i = 1,… ,k.

This can be written as

Y = AX, Y = [[
[

y1
⋮
yk

]]

]

, X = [[
[

x1
⋮
xk

]]

]

,

A = (aij) =
[[

[

a11 … a1k
⋮ … ⋮
ak1 … akk

]]

]

.
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Note that if |A| ≠ 0 then A−1 exists and then

Y = AX ⇒ X = A−1Y ,

that is, Y can bewritten uniquely as a function ofX and vice versa. In this casewehave
a one-to-one transformation. The coefficient matrix A in the above transformation is
a matrix of constants. The Jacobian matrix in this case is

(𝜕yi
𝜕xj
) = (aij) = A ⇒ J = |A|.

Thuswe have an interesting result. In all the results to followwewill use the following
notation.

Notation 3.3.3. When X is anm×nmatrix ofmn free real variables the skew symmet-
ric product of all the differentials in X will be denoted as follows:

dX =
m
⋀
i=1

n
⋀
j=1

dxij ,

and if X = X′ and p × p then

dX =
p
⋀
i≥j=1

dxij .

For example if

X = [x11 x12
x21 x22

] ⇒ dX = dx11 ∧ dx12 ∧ dx21 ∧ dx22

= dx11 ∧ dx12 ∧ dx22 for x12 = x21 or X = X′

When taking the variables x11,x12,x21,x22 to form dX they can be taken in any conve-
nient order to start with. Once they are taken in some order then that order has to be
kept throughout that computation involving dX. For any transposition of differentials
during the computational process the sign rule in the definition will apply.

In the symmetric case there are only p(p+1)/2 free scalar variables. From the above
notation, if X is a k × 1 vector then

dX = dX′ = dx1 ∧⋯∧ dxk .

Then we can write the result in the above linear transformation as follows:
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(i) Y = AX, |A| ≠ 0, ⇒ dY = |A|dX,

Y andX are k×1 vectors of real scalar variables andA = (aij) is amatrix of constants.

Example 3.3.3. Evaluate the Jacobian in the following linear transformation. Is the
transformation one-to-one?

y1 = x1 + x2 + x3
y2 = x1 − x2 + x3
y3 = 2x1 + x2 − x3.

Solution 3.3.3. Writing in matrix notation the transformation is

Y = AX, Y = [[
[

y1
y2
y3

]]

]

, X = [[
[

x1
x2
x3

]]

]

, A = [[
[

1 1 1
1 −1 1
2 1 −1

]]

]

.

The Jacobian, J, is seen as the determinant

J = ||
|

1 1 1
1 −1 1
2 1 −1

||

|

= ||

|

1 1 1
0 −2 0
0 −1 −3

||

|

[−1(1) + 2; −2(1) + (3) ⇒]

= |
−2 0
−1 −3
| = (−2)(−3) − (−1)(0) = 6.

Since J ≠ 0 the transformation is one-to-one here.

(b) Linear matrix transformation

Let us consider a more general linear transformation. Let X be an m × n matrix of
functionally independentmn real scalar variables, let A be anm×m nonsingular ma-
trix of constants. Consider the following one-to-one transformation (one-to-one since
|A| ≠ 0):

Y = AX, A = (aij) ism ×m, X,Y arem × n.

What is the Jacobian in this transformation? If X1,… ,Xn and Y1,… ,Yn denote the n
columns ofX andY respectively thenwe canwrite this transformation in the following
equivalent form:

[Y1,Y2,… ,Yn] = [AX1,AX2,… ,AXn].

Note thatY1 does not containX2,… ,Xn,Y2 contains onlyX2 and so on.Hence ifwe take

the variables in Y in the order (
Y1
⋮
Yn
) and the variables in X in the order (X′1 ,X′2 ,… ,X′n)
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then by taking the partial derivatives, the Jacobian matrix has the following form:

X′1 X′2 … X′n

Y1 A O … O
Y2 O A … O
⋮ ⋮ ⋮ … ⋮
Yn O O … A

observing that the partial derivative of Yi with respect to Xj can produce A if j = i and a
null matrix if j ≠ i. The determinant of the above block diagonal Jacobianmatrix is the
product of the determinants of the diagonal blocks. Hence the Jacobian is |A|n. That is,

(ii) Y = AX, |A| ≠ 0, Y ,X,m × n ⇒ dY = |A|ndX.

What will be the effect if X is postmultiplied by a nonsingular n × n constant matrix B
so that the transformation is one-to-one. That is,

Y = XB, |B| ≠ 0, Y and X arem × n, B is n × n.

This Jacobian can be evaluated by observing the following: Look at the rows on both
sides and follow through the procedure above then we have the next result.

(iii) Y = XB, |B| ≠ 0, Y ,X,m × n ⇒ dY = |B|mdX.

(c) Multilinear transformations

Combining the results in (ii) and (iii) above we have a general linear transformation
of the type Y = AXB, where Y and X arem × nmatrices ofmn free real scalar variables
and A,m ×m and B, n × n are nonsingular matrices of constants. This transformation
can be looked upon as Z = AX and Y = ZB or U = XB and Y = AU and then apply the
above results. Then we have the following:

(iv) For X and Y , m × n, |A| ≠ 0, |B| ≠ 0 where A is m ×m and B is n × n matrices of
constants,

Y = AXB ⇒ dY = |A|n |B|mdX.

Example 3.3.4. Consider the following linear transformation involving the free real
variables x11,x12,x13, x21,x22,x23. Evaluate the Jacobian in this linear transformation.

y11 = x11 + x21, y12 = x12 + x22, y13 = x13 + x23,
y21 = x11 − x21, y22 = x12 − x22, y23 = x13 − x23.
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Solution 3.3.4. Writing in matrix notation

Y = AX, Y = [y11 y12 y13
y21 y22 y23

]

X = [x11 x12 x13
x21 x22 x23

] , A = [1 1
1 −1
] .

Since |A| = −2 ≠ 0 it is a one-to-one transformation. Then from property (ii) above the
Jacobian is

J = |A|n = |1 1
1 −1
|
3

= (−2)3 = −8.

Example 3.3.5. Consider the linear transformation involving the free real variables
x11,x12,x13, x21,x22,x23.

y11 = x11 + x21 + x12 + x22 + x13 + x23, y12 = −(x13 + x23),
y13 = 3(x12 + x22) + 2(x13 + x23),
y21 = x11 − x21 + x12 − x22 + x13 − x23, y22 = −(x13 − x23),
y23 = 3(x12 − x22) + 2(x13 − x23).

Evaluate the Jacobian in this linear transformation. Is the transformation one-to-one?

Solution 3.3.5. Writing the transformation in matrix notation we have

Y = AXB, A = [1 1
1 −1
] , B = [[

[

1 0 0
1 0 3
1 −1 2

]]

]

;

X = [x11 x12 x13
x21 x22 x23

] , Y = [y11 y12 y13
y21 y22 y23

] .

Here |A| = −2 ≠ 0, |B| = 3 ≠ 0. Hence the transformation is one-to-one. From property
(iv) the Jacobian is given by

J = |A|n|B|m = (−2)3(3)2 = −72.

Before concluding this subsection let us consider a nonlinear transformation.

(d) Jacobian in a nonlinear transformation

Let X = (xij)with x11 > 0, x22 > 0, x11x22 −x212 > 0 be a 2×2 symmetricmatrix and T a 2×2
lower triangular matrix with positive diagonal elements. Assume that it is possible to
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express X = TT′. [Not all symmetric matrices can be written in this form. The matrices
which can be written in this form fall into the category of non-negative definite ma-
trices. Definiteness of matrices will be discussed in the next chapter in a systematic
way. When the matrix X is positive definite then the conditions stated above will be
necessary.] Then our transformation is given by

[
x11 x12
x12 x22

] = [
t11 0
t21 t22
][

t11 t21
0 t22
]

= [
t211 t11t21
t21t11 t221 + t222

] .

Is this transformation one-to-one? Here t211 = x11 ⇒ t11 = ±√x11. Hence we must have
t11 > 0 or strictly negative to have t11 uniquely defined in terms of xij ’s. Let t11 > 0. Then
t11 = √x11 is uniquely defined. [Note that when X is real positive definite then all di-
agonal elements of X must be positive. That is, xjj > 0, j = 1,… ,p for a p × p matrix.]
x12 = t11t21 ⇒ t21 =

x12
√x11

or t21 is uniquely defined. x22 = t221 + t222 ⇒ t222 = x22 − t221. There
are two possible values for t22. Hence if t11 > 0 and t22 > 0 the transformation is one-
to-one. This can be proved in general also for X a p × p symmetric matrix which can
be written as TT′ where T is p×p lower triangular with positive diagonal elements. In
this transformation p(p + 1)/2 elements, tij ’s, i ≥ j, in T go to p(p + 1)/2 elements xij ’s,
i ≥ j, in X. Let us evaluate the Jacobian in this transformation. Let us look at the 2 × 2
case, from where the general case will be obvious. We have

x11 = t211, x12 = t11t21, x22 = t221 + t222.

Take the xij ’s in the order x11,x12,x22 and the tij ’s in the order t11, t21, t22 and form the
matrix of partial derivatives.

𝜕x11
𝜕t11
= 2t11,

𝜕x12
𝜕t21
= t11,

𝜕x22
𝜕t22
= 2t22,

𝜕x11
𝜕t21
= 0, 𝜕x11
𝜕t22
= 0.

The matrix of partial derivatives is given by

t11 t21 t22

x11 2t11 0 0
x12 ∗ t11 0
x22 ∗ ∗ 2t22

Since the Jacobian matrix is in a triangular form we will not be interested in the ele-
ments marked by ∗ in the above configuration. The determinant is the product of the
diagonal elements. In this case it is 22t211t22.
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Suppose we have a p × p matrix X, symmetric and positive definite, and a p × p
lower triangular matrix T such that X = TT′ and tjj > 0, j = 1,… ,p. Then when the
Jacobianmatrix is formed by taking xij ’s in the order x11,x12,… ,x1p, x22,… ,x2p,…,xpp
and the tij ’s in the order t11, t21,… , tp1, t22,… , tp2, …, tpp then we have the following
quantities in the diagonal of the Jacobian matrix. When x11,… ,x1p are considered we
have one 2 and t11 appearing p times. When x22,… ,x2p are considered we have one 2
and t22 appearing p − 1 times, and so on. Hence the final result will be the following:

(v) If a symmetric matrix X can be written as TT′ where T is lower triangular with
positive diagonal elements then

X = TT′ ⇒

dX = 2ptp11t
p−1
22 ⋯ tppdT = 2p{

p
∏
j=1

tp+1−jjj }dT .

This Jacobian has some very interesting applications, especially in evaluating some
very complicated integrals.

Example 3.3.6. Evaluate the following multiple integral

∫∫∫[x11x22 − x212]
α e−(x11+x22)dx11 ∧ dx12 ∧ dx22

where x11 > 0, x22 > 0, x11x22 − x212 > 0.

Solution 3.3.6. Writing inmatrix anddeterminant notations the integral thatwewant
to evaluate can be written as follows, observing that,

|
x11 x12
x12 x22

| = x11x22 − x212,

X = [x11 x12
x12 x22

] , tr(X) = x11 + x22,

∫
X
|X|α e−tr(X)dX.

The conditions on xij ’s imply that X can be written as TT′ where T is lower triangular
with positive diagonal elements. Consider the transformation

X = TT′ = [ t
2
11 t11t21

t11t21 t221 + t222
] , T = [t11 0

t21 t22
] .

Then

dX = 22t211t22 dT , t11 > 0, t22 > 0.
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Let the integral be denoted by γ. Then

γ = ∫
X
|X|α e−tr(X)dX

= ∫
T
|TT′|α e−tr(TT′)22t211t22 dT .

Note that

|X| = |TT′| = t211t222,
tr(TT′) = t211 + t221 + t222.

Then

γ = 22 ∫
∞

0
(t211)

α+1 e−t211dt11

× ∫
∞

0
(t22)α+

1
2 e−t222dt22 ∫

∞

−∞
e−t221dt21.

Observe that t11 and t22 are restricted to be positive whereas t21 is free to vary. We need
to evaluate only two types of integrals.

2∫
∞

0
(u2)β e−u2du and ∫

∞

−∞
e−z2dz,

for β = α + 1
2 , α + 1. Substituting

v = u2 ⇒ u = v
1
2 ⇒ du = 1

2
v−

1
2 dv

we have

2∫
∞

0
(u2)β e−u2du = ∫

∞

0
vβ+

1
2−1 e−vdv

= Γ(β + 1
2
) forℜ(β + 1

2
) > 0

where Γ(⋅) is a gamma function and ℜ(⋅) denotes the real part of (⋅). [For the sake of
those students who are unfamiliar with gamma functions a definition will be given
after the discussion of this example.]

∫
∞

−∞
e−z2dz = 2∫

∞

0
e−z2dz (since e−z2 is even and the integral exists)

= ∫
∞

0
w

1
2−1e−wdw (put z2 =w,w > 0)

= Γ(
1
2
) = √π.

Hence the answer is that

γ = √πΓ(α + 3
2
)Γ(α + 1).
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Definition 3.3.2 (A gamma function Γ(α)). It can be defined in many ways. Γ(α) is de-
fined for all α ≠ 0, −1, −2,…. An integral representation of Γ(α) is the following: The
standard notation used is Γ(z), (gamma z or gamma of z; it is a function of z).

Γ(z) = ∫
∞

0
xz−1 e−xdx forℜ(z) > 0.

For the convergence of the integral the condition ℜ(z) > 0 is needed. If z is real then
the condition reduces to z > 0. This condition is needed only if we are using an inte-
gral representation. Otherwise the condition is z ≠ 0, −1, −2,… A few properties which
follow from the definition itself are the following:

Γ(α) = (α − 1)Γ(α − 1) forℜ(α − 1) > 0. (3.3.12)

This property is evident from the integral representation, by using integration by
parts. Extending this result we have

Γ(α) = (α − 1)(α − 2)…(α − r)Γ(α − r), ℜ(α − r) > 0. (3.3.13)
Γ(n) = (n − 1)! when n is a positive integer. (3.3.14)

The next result can be established by considering a double integral.

Γ( 1
2
) = √π. (3.3.15)

3.3.4 Functions of matrix argument

Consider a p × pmatrix X. We can define several scalar functions on X. For example

(a) f1(X) = |X| = determinant of X
(b) f2(X) = 2|X|2 − 3|X| + 5
(c) f3(X) = tr(X) = x11 +⋯+ xpp = trace of X

are all scalar functions of X. We could have also defined matrix functions. For exam-
ple,

(α) g1(X) = [I − X]−1

(β) g2(X) = I + 3X + X2 − 5X3

are matrix functions of X. We are interested in real-valued scalar functions of matrix
argument in this subsection here, that is, functions of the types (a), (b), (c) above.
One of the very basic functions in the theory of scalar functions of matrix argument is
a matrix-variate gamma, analogous to Definition 3.3.2. Since the algebra can get very
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involved we will only introduce amatrix-variate gamma and stop the discussion. Con-
sider the following integral, denoting it by

Γp(α) = ∫
X
|X|α−

p+1
2 e−tr(X)dX

where X is p × p such that it can be expressed in the form X = TT′ where T is lower
triangular with positive diagonal elements. Then making the transformation X = TT′

we have the Jacobian from property (v). That is,

Γp(α) = ∫
X
|X|α−

p+1
2 e−tr(X)dX

= ∫
T
|TT′|α−

p+1
2 e−tr(TT′)2p{

p
∏
j=1

tp+1−jjj }dT

= ∫
T
(

p
∏
j=1

t2jj)
α− p+12

2p{
p
∏
j=1

tp+1−jjj }

× e−(t211+t221+⋯+t2pp)dT

= {
p
∏
j=1

2∫
∞

0
(t2jj)

α− j2 e−t2jjdtjj}{∏
i>j
∫
∞

−∞
e−t2ijdtij}.

Evaluating with the help of the gamma integral of Definition 3.3.2 we have

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α − 1
2
)Γ(α − 1)⋯Γ(α − p − 1

2
)

for ℜ(α) > p−1
2 .

Definition 3.3.3. A real matrix-variate gamma: Notation Γp(α) (gamma p alpha),

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α − 1
2
)⋯Γ(α − p − 1

2
), ℜ(α) > p − 1

2

= ∫
X=X′>0
|X|α−

p+1
2 e−tr(X)dX, ℜ(α) > p − 1

2
.

Since the integral on the right gives Γp(α) if we divide both sides by Γp(α) we can cre-
ate a matrix-variate statistical density out of this function, known as the real matrix-
variate gamma density.

Definition 3.3.4. A real matrix-variate gamma density

f (X) = 1
Γp(α)
|X|α−

p+1
2 e−tr(X), X = X′ > 0 ℜ(α) > p − 1

2

where the matrix is p × p symmetric and can be written in the form X = TT′. The no-
tation U = U′ > 0 means the matrix U is symmetric positive definite. This concept of
definitenesswill be introduced properly later on. For the time being take it asmeaning
that X can be expressed in the form X = TT′ where T is lower triangular with positive
diagonal elements.
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3.3.5 Partitioned determinants and multiple correlation coefficient

The idea of partitioning amatrixwas introduced in Chapter 2. Let us examine the effect
of partitioning on determinants. Let an n × nmatrix A be partitioned as follows:

A = [A11 A12
A21 A22

]

where A11 is r × r thereby A12 is r × (n − r), A21 is (n − r) × r, A22 is (n − r) × (n − r). Let us
evaluate the determinant of A in terms of the determinants of the submatrices. Recall
the steps in the actual evaluation of a determinant.Wewere adding suitablemultiples
of rows (columns) to other rows (columns) to reduce the matrix to a triangular form or
to a block triangular form. Instead of adding one row (column) at a timewe could have
added suitable multiples of a block of rows to another block of rows. The result would
have been the same. Suppose that wewant to bring a null matrix at the position ofA21.
What suitable combinations of the first block of rows, namely (A11,A12) to be added to
the second block of rows, (A21,A22), so that a null matrix can be produced at the place
of A21? A suitable multiple is −A21A−111 times the first block (A11,A12) to be added to the
second block (A21,A22). The value of the determinant remains the same. [Remember
to keep the order of multiplication of the matrices involved.] Then

|A| = |A11 A12
A21 A22

| = |
A11 A12
O A22 − A21A−111 A12

| .

This can be done if A11 is nonsingular. Since the above is a triangular block matrix its
determinant is the product of the determinants of the diagonal blocks. That is,

|A| = |A11| |A22 − A21A−111 A12| for |A11| ≠ 0. (3.3.16)

From symmetry it follows that

|A| = |A22| |A11 − A12A−122A12| for |A22| ≠ 0. (3.3.17)

In (3.3.16) and (3.3.17) the submatrices enter into a cyclic order. If we start withA11 then
it goes A11 − A12A−122A21 and if we start with A22 then it goes A22 − A21A−111 A12. A major
advantage of the formulae (3.3.16) and (3.3.17) is that the orders of the determinants
on the right are reduced to r and (n − r) both of which will be less than the order n on
the left when 1 ≤ r < n. Thus the computations are made a little bit easier. For example
if we have a 16 × 16 determinant the evaluation can be reduced to the evaluation of
two 8 × 8 determinants, the latter will be considerably easier, but the penalty is that
one of the matrices involves product and an inverse.
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Example 3.3.7. Evaluate the following 4 × 4 determinant by partitioning into 2 × 2
blocks. Repeat the process with a partition where A11 is 1 × 1.

|A| =
||||

|

1 0 1 −1
0 1 1 1
1 1 0 0
1 −1 1 1

||||

|

.

Solution 3.3.7. Let

A = [A11 A12
A21 A22

] , A11 = [
1 0
0 1
] , A22 = [

0 0
1 1
] .

Then |A11| ≠ 0 whereas |A22| = 0. By using the formula (3.3.16) we have

|A| = |A11| |A22 − A21A−111 A12|

= |
1 0
0 1
| |[

0 0
1 1
] − [

1 1
1 −1
][

1 0
0 1
]
−1

[
1 −1
1 1
]| .

Since A11 = I2, A−111 = I2, |A11| = 1.

A22 − A21A−111 A12 = [
0 0
1 1
] − [

1 1
1 −1
] I [1 −1

1 1
]

= [
0 0
1 1
] − [

2 0
0 −2
]

= [
−2 0
1 3
] .

|A22 − A21A−111 A12| = |
−2 0
1 3
| = −6 ⇒ |A| = −6.

When A11 is 1× 1 we have A11 = 1, |A11| = 1, A−111 = 1. Again using the formula (3.3.16)
we have

A22 − A21A−111 A12 =
[[

[

1 1 1
1 0 0
−1 1 1

]]

]

−[[

[

0
1
1

]]

]

[1][0, 1, −1]

= [[

[

1 1 1
1 0 0
−1 1 1

]]

]

−[[

[

0 0 0
0 1 −1
0 1 −1

]]

]

= [[

[

1 1 1
1 −1 1
−1 0 2

]]

]

;
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|A22 − A21A−111 A12| =
||

|

1 1 1
1 −1 1
−1 0 2

||

|

= ||

|

1 1 1
0 −2 0
0 1 3

||

|

[−1(1) + (2); (1) + (3) ⇒]

= |
−2 0
1 3
| = −6 ⇒ |A| = −6.

Note 3.1. If partitioning technique is used to evaluate a determinant then select the
submatrices appropriately so that the computations can be minimized.

We can obtain a very interesting result when A11 or A22 is 1× 1. Let the p×pmatrix
V = (vij) be partitioned as follows:

V = [V11 V12
V21 V22

]

where V11 = v11 is 1× 1 thereby V12 is 1×(p− 1), V21 is (p− 1)× 1 and V22 is (p− 1)× (p− 1).
Let v11 ≠ 0, |V22| ≠ 0. Then from (3.3.16) and (3.3.17) we have

|V | = v11|V22 −
V21V12
v11
| (a)

= |V22| [v11 − V12V−122 V21]. (b)

That is, the scalar quantity,

v11 − V12V−122 V21 =
|V |
|V22|
= v11
|V22|
|V22 −

V21V12
v11
|. (3.3.18)

But

|V22 −
V21V12
v11
| = |V22||

v11I − V−122 V21V12
v11

|.

Comparing with (a) and (b) above we have

v11 − V12V−122 V21 = v11|I −
V−122 V21V12

v11
|. (3.3.19)

The beauty of the relationship is that on one side we have a scalar quantity whereas
on the other side we have a (p − 1) × (p − 1) determinant. This formula is often used
in statistical and other problems to reduce a (p − 1) × (p − 1) determinant to a scalar
quantity. Also from (a) and (b) above we have

1 − V12V
−1
22 V21
v11
=
|V |

v11|V22|
⇒ (c)
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V12V−122 V21
v11
= 1 − |V |

v11|V22|
.

WhenV is a variance–covariancematrix associatedwith a real vector randomvariable

X =(
x1
⋮
xp
)=(

x1
X2
) , X2 =(

x2
⋮
xp
)

then V12V−122 V21
v11

is called the square of the multiple correlation coefficient of x1 on

X2 = (
x2
⋮
xp
) and it is usually denoted by

ρ21(2…p) =
V12V−122 V21

v11

= v−
1
2

11 V12V−122 V21v
− 12
11 . (3.3.20)

One can show ρ1(2…p) to be the maximum correlation between x1 and an arbitrary lin-
ear functionof x2,… ,xp. In predictionproblemswhenavariable suchas x1 is predicted
by using a linear function of other variables such as x2,… ,xp then ρ1(2…p) is often used
tomeasure how good is the predictor in the sense, larger the value of ρ1(2…p) better the
predictor.

If V11 is p1 ×p1, V22 is p2 ×p2 such that p1 +p2 = p then (3.3.20) is no longer a scalar
quantity. If we write the last expression in (3.3.20) with V11 a p1 × p1 matrix, that is,

P = V−
1
2

11 V12V−122 V21V
− 12
11 (3.3.21)

where V
1
2
11 indicates a positive definite square root of V11 then P in (3.3.21) is known

as the canonical correlation matrix which plays a vital role in canonical correlation
analysis. This field is also mainly concerned about prediction problems, predicting a
set of variables with the help of another set of variables, a generalization of the first
situationwhere one scalar variable is predicted by using a set of other variables. These
areas are very rich in real-life situations where matrices and determinants play very
important roles.

Other concepts associated with the concept of multiple correlation and canoni-
cal correlations are the concepts of partial correlations, correlation ratios and partial
correlation matrices which come into regression problems, residual analysis, model
building and other prediction and estimation problems. These quantities can be writ-
ten up in terms of partitioned matrices and the corresponding determinants.

Example 3.3.8. Compute the multiple correlation coefficient of x1 on (x2,x3) from the
following variance–covariance matrix of X, where X′ = (x1,x2,x3):

V = [[
[

2 1 1
1 3 2
1 2 5

]]

]

.
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Solution 3.3.8. Let v11 = 2. Taking the expression from (c) above

ρ21(2.3) =
V12V−122 V21

v11
= 1 − |V |

v11|V22|
;

|V22| = |
3 2
2 5
| = 11;

|V | = ||
|

2 1 1
1 3 2
1 2 5

||

|

= 2 |3 2
2 5
| − |

1 2
1 5
| + |

1 3
1 2
|

= (2)(11) − 3 + (−1) = 18.

Hence
|V |

v11|V22|
= 18
(2)(11)
= 9
11
⇒

ρ21(2.3) = 1 −
9
11
= 2
11
.

3.3.6 Maxima/minima problems

One of the problems inmultivariable calculus is to look for maxima/minima of a func-
tion of many variables. Let f (X) be a scalar function of the p × 1 vector X of real vari-
ables. In Chapters 1 and 2 we have defined the differential operators

𝜕
𝜕X
= [[[

[

𝜕
𝜕x1
⋮
𝜕
𝜕xp

]]]

]

, 𝜕
𝜕X′
= ( 𝜕
𝜕x1
,… , 𝜕
𝜕xp
),

𝜕
𝜕X
𝜕
𝜕X′
=
[[[

[

𝜕2
𝜕x21
… 𝜕2
𝜕x1𝜕xp

⋮ … ⋮
𝜕2
𝜕xp𝜕x1

… 𝜕2
𝜕x2p

]]]

]

.

Then 𝜕𝜕X operating on a function f equated to a null vector gives the critical points and
𝜕
𝜕X
𝜕f
𝜕X′ at these critical points will decide on the critical points being corresponding to

a local maximum or a local minimum or something else.

Example 3.3.9. Check for maxima/minima in the following function

f = x21 + 2x22 + x23 − 2x1x2 − x2x3 + 2x1 + 4x2 + x3 + 8.

Solution 3.3.9. Consider

𝜕f
𝜕X
= [[

[

2x1 − 2x2 + 2
−2x1 + 4x2 − x3 + 4
−x2 + 2x3 + 1

]]

]

= [[

[

0
0
0

]]

]

.
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Let us solve the equations by looking at the coefficientmatrix and performing elemen-
tary operations:

1 −1 0
−2 4 −1
0 −1 2

||

|

−1
−4
−1
⇒

1 −1 0
0 2 −1
0 −1 2

||

|

−1
−6
−1

⇒
1 −1 0
0 −1 2
0 0 3

||

|

−1
−1
−8

⇒ x3 = −
8
3
, x2 = −

13
3
, x1 = −

16
3
.

There is only one critical point (x1,x2,x3) = (−
16
3 , −

13
3 , −

8
3 ). This pointmay correspond to

a local maximum or a local minimum or neither. Consider the matrix of second order
partial derivatives operating on f .

𝜕f
𝜕X′
= [2x1 − 2x2 + 2, −2x1 + 4x2 − x3 + 4, −x2 + 2x3 + 1]

𝜕
𝜕X
𝜕f
𝜕X′
= [[

[

2 −2 0
−2 4 −1
0 −1 2

]]

]

.

For a minimum this matrix at the critical point must be positive definite and for a
maximum it should be negative definite. We will define definiteness of matrices in
terms of determinants next. Definiteness can also be defined equivalently in terms of
other quantities.

Definition 3.3.5 (Definiteness of an n × n real symmetric matrix A). It is defined only
for non-null square symmetric matrices when real. Consider all the leading minors
of A. Let the leading minors be denoted by |M1|,… , |Mn|. Then A is positive definite
if |Mj| > 0, j = 1,… ,n (positive semi-definite if the minors can be zero also); negative
definite if |M1| < 0, |M2| > 0, |M3| < 0,… (negative semi-definite if the minors can be
zero also); and A is indefinite if some of the minors are negative and some positive, at
least one each set, and not belonging to the above types.

For our Example 3.3.9 let us look for the definiteness of our matrix of second or-
der partial derivatives, evaluated at the critical points. Since our matrix is free of the
variables the matrix evaluated at the critical point is itself. Let us look at the leading
or principalminors.

|M1| = 2 > 0,

|M2| = |
2 −2
−2 4
| = 4 > 0,
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|M3| =
||

|

2 −2 0
−2 4 −1
0 −1 2

||

|

= 2 | 4 −1
−1 2
| − (−2) |−2 −1

0 2
| + 0

= (2)(7) − 8 = 6 > 0.

Hence thematrix is positive definite. Therefore the critical point corresponds to amin-
imum.

Another definition of definiteness of matrices in terms of eigenvalues will be in-
troduced in the next chapter. Another one in terms of quadratic forms will be given
next.

Definition 3.3.6 (Definiteness of an n × n non-null real symmetric matrix A). Con-
sider a quadratic form u = X′AX, A = A′ where X is an n × 1 non-null vector and A
is the real symmetric matrix under consideration. If u > 0 for all possible non-null X
then A is positive definite (u ≥ 0 means positive semidefinite). If u < 0 for all possible
non-null X then A is negative definite (u ≤ 0 means negative semidefinite). If u > 0 for
some values of X and u < 0 for some other values of X then A is indefinite.

Note 3.2. In order to avoid confusion and possiblemisinterpretation, one should take
Definition 3.3.6 as the definition for definiteness in the real case and all other proper-
ties are to be treated as consequences.

Exercises 3.3
3.3.1. Evaluate the cross product a⃗ × b⃗ for the following cases: (1) a⃗ = ⃗i − ⃗j − k⃗, b⃗ =
2 ⃗i + 3 ⃗j − k⃗; (2) a⃗ = ⃗i, b⃗ = ⃗j; (3) a⃗ = ⃗i, b⃗ = k⃗.

3.3.2. Construct a vector parallel to the line of intersection of the planes

x + y + z = 2, 2x − 3y = z = 5.

3.3.3. Evaluate the volume of the parallelepiped generated by the following points
with the origin:

(1) (1, 1, −1), (1, 2,5), (3, 2, −1), (2) (2, 1, −1), (1, 1, 2), (3, 2, 1).

3.3.4. Evaluate the volume of (a) the parallelotope, (b) the simplex generated by the
following points with the origin.

(1) (1, 1, 1, 1, 1), (1, −1, 1, 2, 1), (1, 1, −1, 1, −1),
(2, 1,3, −1, 1), (1,0,0,0, 2)

(2) (1, 1, 1, 1), (1, 1, −1, −1), (1, −1, 1, −1), (1, −1, −1, −1).
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3.3.5. Evaluate the volume of (a) the parallelotope, (b) the simplex, determined by
the points

(1, 2, 1, 1), (1,3, 1, 2), (2, 1, 1, 1), (2,3,4, 1), (1, −1,0, 1).

3.3.6. Evaluate the Jacobians in the following linear transformations:

(a) y1 = 2x1 − x2 + x3, y2 = x1 − x2 + 2x3,
y3 = 2x1 − x2 − x3;

(b) y11 = 2x11 + x21, y12 = 2x12 + x22,
y21 = x11 + 3x21, y22 = x12 + 3x22;

(c) y11 = 2x11 + x21 + 2x12 + x22, y12 = 2x11 + x21 − 2x12 − x22,
y21 = x11 + 3x21 + x12 + 3x22, y22 = x11 + 3x21 − x12 − 3x22.

3.3.7. Let X = X′ be a p × p symmetric matrix of p(p + 1)/2 real variables. Let E and F
be two basic elementary matrices of the E and F types (see Chapter 2). Evaluate the
Jacobians in the following transformations:

(a) Y = EXE′, (b) Y = FXF′.

3.3.8. Let A be a p × p nonsingular matrix of constants, X a p × p symmetric matrix of
p(p + 1)/2 real variables. Evaluate the Jacobian in the linear transformation Y = AXA′

and show that dY = |A|p+1dX, ignoring the sign. [Hint: A nonsingular matrix of the
type A is a product of the elementary matrices of E and F types.]

3.3.9. Evaluate the Jacobian in the following nonlinear transformation. Let xj > 0, j =
1,… ,p. Let y1 = x1 +⋯ + xp, y2 = x1x2 + x1x3 +⋯ + xp−1xp,…, yp = x1…xp. [These are
the basic elementary symmetric functions].

3.3.10. Evaluate the Jacobian in the following generalized polar coordinate transfor-
mation:

x1 = r sinθ1 sinθ2⋯ sinθk−2 sinθk−1
x2 = r sinθ1 sinθ2⋯ sinθk−2 cosθk−1
x3 = r sinθ1 sinθ2⋯cosθk−2
⋮

xk−1 = r sinθ1 cosθ2
xk = r cosθ1

where 0 < θj ≤ π, j = 1, 2,… ,k − 2, 0 < θk−1 ≤ 2π, 0 < r <∞.

3.3.11. Evaluate the integral ∫X e
−tr(X)dX where X is p× p, X = X′ and X can be written

as X = TT′ where T is lower triangular with positive diagonal elements. ∫X means the
integral over all such X.
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3.3.12. Evaluate the integral ∫∞
−∞

e−(ax2+bx)dx, a > 0, b ≠ 0 and x is real scalar.

3.3.13. Let X be a p × 1 vector of real scalar variables. Let A be a p × p constant matrix
such that A can be written as A = BB′ with |B| ≠ 0. Evaluate the following integrals:

(a) ∫
X
e−X′AXdX, (b) ∫

X
e−(X−μ)′A(X−μ)dX

where μ is a constant vector. [Hint: Use the transformation of the type Y = B′X.]

3.3.14. Let X = ( X1X2 ), X1 is r × 1, X is p × 1 and let A = BB′, with |B| ≠ 0 a p × pmatrix of
constants. Evaluate the integral ∫X2 e

−X′AXdX2, that is, integrate out the variables inX2.

3.3.15.Multivariate Gaussian density. Themost popular density inmultivariate sta-
tistical analysis is the multivariate Gaussian density. Let X be a p × 1 vector of real
scalar random variables, μ a p × 1 vector of constants, V a p × p real symmetric posi-
tive definitematrix, that is, which can bewritten asV = BB′, |B| ≠ 0. Then the p-variate
Gaussian density is given by

f (X) = 1
(2π)p/2|V |1/2

e−
1
2 (X−μ)

′V−1(X−μ),

for −∞ < xi <∞, −∞ < μi <∞, with X′ = (x1,… ,xp), μ′ = (μ1,… ,μp), V = (vij). Show
the following: (a) f (X) is a density, that is to say that f (X) ≥ 0 for allX and∫X f (X)dX = 1;
(b) E(X) = μ, that is to say that ∫X Xf (X)dX = μ; (c) Covariance matrix of X is V , that is
to say that

V = E[(X − μ)(X − μ)′] = ∫
X
(X − μ)(X − μ)′f (X)dX.

3.3.16. Canonical form for a quadratic form. Let u = X′AX be a quadratic form.
Without loss of generality A = A′. From elementary transformations it was seen in
Chapter 2 that A can be written as A = QDQ′ where Q is nonsingular and D is diagonal.
Then if Y = Q′X the quadratic form reduces to its canonical form, a linear function of
squares of the form u = λ1y21 +⋯+λpy2p whenA is p×p. Reduce the following quadratic
forms to their canonical forms:
(a) u = 2x21 + 3x22 + 2x23 + 2x1x2 − 2x1x3;
(b) u = x21 + 2x1x2 + 2x22 + 2x2x3 − 2x23.

3.3.17. Show that u = 1 in Exercise 2.3.16(a) can be reduced to an ellipsoid in the stan-
dard form.

3.3.18. Show that for u = 1 in Exercise 2.3.16(b) is not an ellipsoid.

3.3.19. Write the following bilinear forms in matrix notation as X′AY :
(a) u1 = x1y1 + 2x2y1 + 2x3y1 − x1y2 + x3y2;
(b) u2 = x1y1 + 2x2y1 + 2x3y1 − x1y2 + 2x1y3 + x2y3 − x3y3.
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3.3.20. Through elementary transformations anm × nmatrix A can be written as A =
PDQwhere P andQ are nonsingularmatrices andD is a diagonal typematrix. By using
this property reduce the bilinear forms in (a) and (b) in Exercise 3.3.19 to the form

λ1z1t1 +⋯+ λpzptp.

3.3.21. Show that Definitions 3.3.5 and 3.3.6 are equivalent for real symmetric matri-
ces.

3.3.22. By using Definitions 3.3.5 and 3.3.6 show the following:
(a) If a real square matrix A is positive definite then it can always be written as A =

BB′, |B| ≠ 0.
(b) If B is a real rectangular matrix m × n then A = BB′ is either positive definite or

positive semidefinite.
(c) What should be the condition on B in (b) above so that A is strictly positive defi-

nite?
(d) Show that a negative definite or indefinite matrix A cannot be written in the form

A = CC′ for some matrix C.

3.3.23. Evaluate A20, B30, C−5 and their determinants, where

A = [2 5
0 0
] , B = [2 5

0 1
] , C = [2 5

0 1
]
−1

.

3.3.24. Let A and B be n × n matrices. If A and B differ only in their j-th column then
show that

21−n|A + B| = |A| + |B|.

3.3.25. Let A = [ 1 2 0
0 1 4
0 0 1
] and B = A10. Compute B.

3.3.26. Let J′ = (1, 1,… ,n) and let A = I − B, B = 1
n JJ
′ Compute |(AB)5|.

3.3.27. Let A be a 3 × 3 matrix with all principal minors positive. Show that |A| can be
written as |A| = a2b2c2 for some a,b, c.

3.3.28. By using Definition 3.3.6, or otherwise, show that if A = (aij), A = A′, n × n
positive definite then ajj > 0, j = 1,… ,n and if A is negative definite then ajj < 0, j =
1,… ,n. Note that these are necessary properties but not sufficient to talk about positive
definiteness or negative definiteness.

3.3.29. IfA = A′ is n×n then prove thatA is indefinite if at least one diagonal elements
is negative and at least one diagonal element is positive.
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3.3.30. LetA = (aij) be n×n. Consider the determinantA−xI|where x is a scalar quan-
tity and I is an n×n identitymatrix. That is, x is subtracted from the diagonal elements
ajj, j = 1,… ,n. Then prove that when |A − xI| is opened up with n! terms using (3.1.2)
then show that xn−1 can come only from one term, namely, (a11 − x)(a22 − x)⋯(app − x)
and there is no other term of degree n − 1 in x out of the n! terms.





4 Eigenvalues and eigenvectors

4.0 Introduction

Among all the concepts introduced so far none may have as many applications as the
concept of eigenvalues. Before introducing the possible fields of applications we will
define the concept, study some of the main properties and then we will have a suf-
ficient set of properties and tools to tackle practical problems where these are ap-
plicable. Fields of applications include theoretical developments of many branches
of mathematics, physics, statistics, econometrics and many other areas, and real-life
problems.

Definition 4.0.1 (Eigenvalues). Eigenvalues are defined only for square matrices. Let
A be an n × nmatrix. Consider the equation

AX = λX (4.0.1)

where λ is a scalar and X is a non-null n× 1 vector. This equation is evidently satisfied
by a null vector X. If the equation has a solution for a λ and for a non-null X then that
λ is called an eigenvalue or characteristic root or latent root of A and the non-null X
satisfying (4.0.1) for that particular λ is called the eigenvector or characteristic vector
or latent vector corresponding to that eigenvalue λ.

Let us examine the equation a bit more closely.

AX = λX ⇒ (A − λI)X = O. (4.0.2)

If this homogeneous linear system (A− λI)X = O has to have a non-null solution X
then A− λI must be singular. If A− λI is nonsingular then its regular inverse exists and
then multiplying both sides by (A − λI)−1 we have the only solution as X = O. If A − λI
is singular then its determinant must be zero. That is,

|A − λI| = 0. (4.0.3)

The eigenvalues can also be defined as the roots of the determinantal equation in
(4.0.3).

Definition 4.0.2 (Eigenvalues of an n × nmatrix A). They are the n roots of the deter-
minantal equation (4.0.3).

4.1 Eigenvalues of special matrices

Let us evaluate the eigenvalues of some special matrices.

OpenAccess.©2017ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562507-004
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Example 4.1.1. Determine the eigenvalues of (1) a diagonal matrix, (2) a triangular
matrix.

Solution 4.1.1. Let D = diag(d1,… ,dn) be a diagonal matrix. Consider the equation

|D − λI| = 0 ⇒
||||

|

d1 − λ 0 … 0
0 d2 − λ … 0
⋮ ⋮ … ⋮
0 0 … dn − λ

||||

|

= 0.

This determinantal equation is nothing but

(d1 − λ)(d2 − λ)⋯(dn − λ) = 0.

That is, the n roots are λ1 = d1,λ2 = d2,… ,λn = dn and these are the eigenvalues of D.
Now consider a triangular matrix, for example, a lower triangular matrix T . Then

|T − λI| =
||||

|

t11 − λ 0 … 0
t21 t22 − λ … 0
⋮ ⋮ … ⋮
tn1 tn2 … tnn − λ

||||

|

= 0.

Since the determinant of a triangular matrix (lower or upper) is the product of the
diagonal elements, the determinantal equation reduces to

(t11 − λ)⋯(tnn − λ) = 0.

Hence the n eigenvalues in this case are λ1 = t11,… ,λn = tnn.

(i) The eigenvalues of a diagonal matrix are its diagonal elements.
(ii) The eigenvalues of a triangular (upper or lower) matrix are its diagonal ele-
ments.
(iii) The eigenvalues of a scalar matrix with the diagonal elements c each are c re-
peated n times. The eigenvalues of an identity matrix In are 1 repeated n times.

Example 4.1.2. Evaluate the eigenvalues of

A = [1 3
0 1
] , B = [2 2

1 3
] .

Solution 4.1.2. Consider

|A − λ| = 0 ⇒ |1 − λ 3
0 1 − λ

| = 0

⇒ (1 − λ)(1 − λ) = 0
⇒ λ1 = 1, λ2 = 1

are the eigenvalues. It follows directly from property (ii) also since A is triangular.
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(iv) If the eigenvalues of a matrix are 1 repeated n times this does not mean that the
matrix is an identity matrix.

Now consider

|B − λI| = 0 ⇒ |2 − λ 2
1 3 − λ

| = 0

⇒ (2 − λ)(3 − λ) − 2 = 0.

That is,

λ2 − 5λ + 4 = 0 ⇒ (λ − 4)(λ − 1) = 0
⇒ λ1 = 4, λ2 = 1

are the eigenvalues.

Let us see what happens if we have an idempotent matrix. Idempotent means
A = A2. Consider the equation

AX = λX.

Premultiply both sides by A. Then we have

A2X = λAX = λ(λX) = λ2X.

But A2 = A and then

AX = λX = λ2X ⇒ (λ − λ2)X = O.

But by definition X ≠ O and λ is a scalar. Hence λ − λ2 = 0 which means the roots are 0
or 1.

(v) The eigenvalues of an idempotent matrix are 0’s and 1’s.

Identity matrix is an idempotent matrix with all eigenvalues 1 each. We can have a
triangular matrix with the diagonal elements 0’s and 1’s which means that for such a
triangular matrix also the eigenvalues are 0’s and 1’s.

(vi) If the eigenvalues of amatrix are 0’s and 1’s that does not necessarilymean that
the matrix is idempotent.

Example 4.1.3. Evaluate the eigenvalues of the matrix

A = 1
n

[[[[

[

1 1 … 1
1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]]]

]

.
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[This is the matrix of the quadratic form (x̄)2, x̄ = (x1 +⋯ + xn)/n the average of the n
quantities x1,… ,xn.]

Solution 4.1.3.

|A − λI| = 0 ⇒
|||||

|

1
n − λ

1
n … 1

n
1
n

1
n − λ …

1
n

⋮ ⋮ … ⋮
1
n

1
n … 1

n − λ

|||||

|

= 0.

Add all the rows to the first row, the value of the determinant remains the same, take
out (1 − λ) from the first row and then add (− 1n ) times the first row to all other rows to
obtain

|A − λI| = (1 − λ)
||||

|

1 1 … 1
0 −λ … 0
⋮ ⋮ … ⋮
0 0 … −λ

||||

|

= (1 − λ)(−λ)n−1.

Hence the roots are λ1 = 1, λ2 = 0 = ⋯ = λn. That is, one root is 1 and all other roots
are 0 each. In this example we can show that our matrix A is idempotent by showing
A2 = A also.

Let us examine the determinantal equation |A − λI| = 0. If λ1,… ,λn are the n roots
of this equation then

|A − λI| = (λ1 − λ)(λ2 − λ)⋯(λn − λ). (4.1.1)

The right side of (4.1.1), when opened up, is a polynomial in λ of degree n. That is,

|A − λI| = (−1)nλn + (−1)n−1[λ1 +⋯+ λn]λn−1

+ (−1)n−2[sum of products of roots taken two at a time]
+⋯+ (λ1⋯λn). (4.1.2)

Definition 4.1.1 (The characteristic polynomial of an n × nmatrix A). The polyno-
mial on the right of (4.1.2) or when |A − λI| is written as a polynomial in λ then this
polynomial is called the characteristic polynomial of A.

Treating (4.1.1) as a polynomial in λ andevaluating it at λ = 0wehave the following
result:

(vii) The determinant of an n × nmatrix A is the product of the eigenvalues of A.

Some immediate consequences of this property are the following:
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(viii) If at least one of the eigenvalues of A is zero then |A| = 0 or A is singular, and
if A is nonsingular then all the eigenvalues of A are nonzeros (may be positive or
negative but none zero).

From (4.1.2)wenote that the coefficient of (−λ)n−1 in the expansion of |A−λI| is the sum
of the eigenvalues. We will derive a very important result connecting the sum of the
eigenvalues to the trace of the matrix. To this end let us evaluate |A − λI|. Let B = (bij)
be an n × nmatrix. Then we had seen from Chapter 3 that

|B| =∑
i1
⋯∑

in
(−1)ρ(i1,…,in)b1i1b2i2⋯bnin . (4.1.3)

That is, when |B| is written as an explicit sum, each term in that sum contains one and
only one element from each row and each column. Now, look at the determinant

|A − λI| =
||||

|

a11 − λ a12 … a1n
a21 a22 − λ … a2n
⋮ ⋮ … ⋮
an1 an2 … ann − λ

||||

|

.

One term in this determinant, when the determinant is written as a sum of the type in
(4.1.3), is

(a11 − λ)(a22 − λ)⋯(ann − λ).

This, when opened up gives a term containing λn, a term containing λn−1 and so on.
The coefficient of (−λ)n−1 here is

a11 +⋯+ ann = tr(A).

What is the nature of any other term in the sum when |A − λI| is written as a sum?
One element, other than a11 − λ has to come from the first row. Let this be the j-th
element a1j . Then this rules out the presence of ajj − λ the term in the j-th column
containing λ. In otherwords, in all other terms the exponent of λ canbe only up to λn−2.
Now equating the coefficient of (−λ)n−1 on both sides of (4.1.2) we see that the trace of
A is the sum of the eigenvalues of A also. Thus we have the following important result:

(ix) For any n × nmatrix A = (aij)

tr(A) = a11 +⋯+ ann = λ1 +⋯+ λn

where λ1,… ,λn are the eigenvalues of A.
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This does not mean that λ1 = a11, etc. Thus the determinant of A is the product of the
eigenvalues and the trace is the sum of the eigenvalues of A. For example,

For the eigenvalues the matrix is its trace is its determinant is

1, −1, 2 nonsingular 2 −2
0, 1,3 singular 4 0
1, 1, 1, 1 nonsingular 4 1

1, −1, 1, −1 nonsingular 0 1
1,0, 1, −1 singular 1 0

Example 4.1.4. Verify the results (vii) and (ix) from Examples 4.1.1 to 4.1.3.

Solution 4.1.4. For the diagonal and triangularmatrices the results are obvious since
the diagonal elements themselves are the eigenvalues. In Example 4.1.2 the eigenval-
ues are 1, 1, tr(A) = 1 + 1 = 2, |A| = 1. In B, tr(B) = 2 + 3 = 5, the sum of the eigenvalues
is 4 + 1 = 5 and |B| = (2)(3) − (1)(2) = 4. The product of the eigenvalues is (4)(1) = 4. In
Example 4.1.3, tr(A) = 1

n +⋯ +
1
n = 1. The sum of the eigenvalues is 1 + 0 +⋯ + 0 = 1.

Since A is singular |A| = 0. The product of the eigenvalues is (1)(0)⋯(0) = 0.

Since A and A′ have the same determinant we have

|A − λI| = |A′ − λI|.

Hence we have the following result:

(x) The matrices A and A′ have the same eigenvalues.

What are the eigenvalues of an orthonormal matrix? An orthonormal matrix P is such
that PP′ = I, P′P = I . Let λ be an eigenvalue of P and X the corresponding eigenvector.
Then

PX = λX.

Premultiplying by P′ we have, since P′P = I, IX = X,

X = λP′X = λ2X

since P and P′ have the same eigenvalues. This means, (λ2 − 1)X = O where X ≠ O and
λ is a scalar. Therefore λ = ±1.

(xi) The eigenvalues of an orthonormal matrix are ±1.
(xii) For n × nmatrices A and B, |AB| = product of the eigenvalues of A and B.
(xiii) tr(A + B) = tr(A) + tr(B) = sum of the eigenvalues of A and B, when A + B is
defined.
(xiv) The eigenvalues of a null matrix are zeros.
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(xv) If λ is an eigenvalue of A then kλ is an eigenvalue of kA where k is a scalar
quantity.
(xvi) If λ is an eigenvalue of A then 1 ± kλ is an eigenvalue of I ± kA where k is a
scalar quantity.
(xvii) If A = QBQ−1 then

|A − λI| = |QBQ−1 − λI| = |B − λI|

and therefore A and B have the same eigenvalues.
(xviii) If A = A′ and if A = PDP′, where P is orthonormal and D is diagonal then the
eigenvalues of A are the diagonal elements in D.

Exercises 4.1

4.1.1. Evaluate the eigenvalues of the following matrices:

A = [1 1
1 2
] , B = [ 2 1

−1 0
] , C = [1 1

2 2
] .

4.1.2. Evaluate the eigenvalues of the following matrices:

A = [[
[

1 1 1
1 −1 1
−1 0 1

]]

]

, B = [[
[

0 1 −1
2 0 1
1 1 −1

]]

]

, C = [[
[

2 1 1
1 3 0
1 0 1

]]

]

,

D = [[
[

0 1 1
−1 0 2
−1 −2 0

]]

]

.

4.1.3. Let U and V be n × 1 non-null, non-orthogonal vectors. Show that at least one
eigenvalue of UV′ is zero and no eigenvalue of U′V is zero. What are the eigenvalues
in each?

4.1.4. Show that the eigenvalues of the n × nmatrix A, where

A =
[[[[[

[

1 − 1
n −

1
n … − 1n

− 1n 1 − 1
n … − 1n

⋮ ⋮ … ⋮
− 1n − 1n … 1 − 1

n

]]]]]

]

= I − B

are one zero and n − 1 unities, the eigenvalues of B are one unity and n − 1 zeros and
the eigenvalues of I − B are of the form 1 − eigenvalues of B.

4.1.5. Construct a 2×2matrixwith real elements butwhose eigenvalues are irrational.
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4.1.6. Construct a 2× 2 matrix with real elements but whose eigenvalues are complex
quantities. Can there be only one or an odd number of complex roots for any given
matrix with complex roots?

4.1.7. If tr(A) = 0 is A null? If not give two counter examples.

4.1.8. IfAB = O is tr(AB) = 0? If tr(AB) = 0 isAB null? If not give two counter examples.

4.1.9. If A + B = In is the sum of the eigenvalues of A and B equal to n. If not give two
counter examples.

4.1.10. If A = PDQ where P and Q are nonsingular and D is diagonal, are the eigen-
values of A the diagonal elements in D? If not give two counter examples in the 2 × 2
case.

4.2 Eigenvectors

Aneigenvector is defined alongwith an eigenvalue in Section 4.1. Herewewill redefine
it for the sake of completeness.

4.2.1 Some definitions and examples

Definition 4.2.1. If λ is an eigenvalue of A then any non-null vector X satisfying the
equation

AX = λX

is an eigenvector of A corresponding to the eigenvalue λ.

Some properties are immediate from this definition itself.

(i) If X1 is an eigenvector corresponding to the eigenvalue λ1 then cX1, c a nonzero
scalar, is also an eigenvector corresponding to λ1. If X1 and X2 are two eigenvectors
corresponding to the same eigenvalue λ1 then c1X1 + c2X2 is also an eigenvector
corresponding to λ1 where c1 and c2 are nonzero scalars.
(ii) If λ = 0 is an eigenvalue of A then the eigenvector corresponding to λ = 0 is a
vector in the null space of A. There are n− r such linearly independent eigenvectors
if the rank of A is r and if A is n × n.

Example 4.2.1. Compute the eigenvalues and the eigenvectors of the matrix

B = [2 2
1 3
] .



4.2 Eigenvectors | 261

Solution 4.2.1. The eigenvalues of thismatrix are 4 and 1, evaluated in Example 4.1.2.
Take λ1 = 1 and consider the equation

BX = λ1X ⇒ (B − λ1I)X = O

⇒ [
2 − 1 2
1 3 − 1

][
x1
x2
] = [

0
0
]

⇒ x1 + 2x2 = 0.

Both rows give the same equation. Since by definition B− λ1I is singular we cannot get
two linearly independent equations here:

x1 + 2x2 = 0 ⇒ X1 = (
x1
x2
) = (
−2
1
) .

One solution is this. Any nonzero scalar multiple of X1 is also a solution. There are
plenty of solutions. Hence one eigenvector corresponding to λ1 = 1, denoted by X1, is

X1 = (
−2
1
) .

If we want a normalized eigenvector corresponding to λ1 = 1 then

Y1 =
1
√5
(
−2
1
) = (
− 2
√5
1
√5
)

is that eigenvector. For λ2 = 4

(B − λ2I)X = O ⇒ [
2 − 4 2
1 3 − 4

][
x1
x2
] = [

0
0
]

⇒ −2x1 + 2x2 = 0 and x1 − x2 = 0
⇒ x1 = x2.

For example, for x2 = 1 we have x1 = 1 and X2 = ( 11 ) is an eigenvector corresponding to
λ2 = 4. A normalized eigenvector corresponding to λ2 = 4 is

Y2 =
1
√2
(
1
1
) = (

1
√2
1
√2
).

Let us create a matrix of eigenvectors and see what happens:

BX1 = λ1 and BX2 = λ2X2 ⇒

[
2 2
1 3
][
−2
1
] = 1[−2

1
] and

[
2 2
1 3
][

1
1
] = 4[1

1
] .
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Putting the two equations together we have,

B(X1,X2) = (X1,X2) [
λ1 0
0 λ2
] ⇒

[
2 2
1 3
][
−2 1
1 1
] = [
−2 1
1 1
][

1 0
0 4
] .

Note that X1 is multiplied by λ1 and X2 is multiplied by λ2 whichmeans that thematrix
(X1,X2) is postmultiplied by a diagonal matrix then the columns will be multiplied by
the correspondingdiagonal elements. From the above equationwehave the following:

B(X1,X2) = (X1,X2) [
λ1 0
0 λ2
] ⇒

B = (X1,X2) [
λ1 0
0 λ2
] (X1,X2)−1 if the inverse exists ⇒

[
2 2
1 3
] = [
−2 1
1 1
][

1 0
0 4
][
−2 1
1 1
]
−1

.

Let us verify this:

[
−2 1
1 1
]
−1

= 1
−3
[
1 −1
−1 −2
] = 1

3
[
−1 1
1 2
] .

Then

[
−2 1
1 1
][

1 0
0 4
][
−2 1
1 1
]
−1

= [
−2 1
1 1
][

1 0
0 4
]( 1

3
)[
−1 1
1 2
]

= 1
3
[
6 6
3 9
] = [

2 2
1 3
] = B.

It is verified. What we have seen is the following: The eigenvectors in this case are
linearly independent and if we denote the matrix of eigenvectors by Q, Q = (X1,X2)
above, which is nonsingular here, then

BQ = QD,

D is a diagonal matrix with the eigenvalues being the diagonal elements. Therefore

B = QDQ−1. (4.2.1)

We will investigate this aspect a little further later on.

Example 4.2.2. Evaluate the eigenvalues and eigenvectors of the matrix

A = [2 1
2 2
] .
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Solution 4.2.2.

|A − λI| = 0 ⇒ |2 − λ 1
2 2 − λ

| = 0

⇒ (2 − λ)2 − 2 = 0
⇒ λ2 − 4λ + 2 = 0.

The roots of this quadratic equation are available as λ1 = 2 +√2, λ2 = 2 −√2.

[ax2 + bx + c = 0 ⇒ x = −b ±
√b2 − 4ac
2a

].

The eigenvalues are irrational here. In order to compute one eigenvector correspond-
ing to the eigenvalue λ1 = 2 +√2 we consider the equation

[A − λ1I] [
x1
x2
] = [

0
0
] ⇒ [

2 − (2 +√2) 1
2 2 − (2 +√2)

][
x1
x2
] = [

0
0
]

⇒ [
−√2 1
2 −√2

][
x1
x2
] = [

0
0
] .

Note that if we multiply the first row by −√2 we get the second row. Hence we need to
consider only any one of the two equations. [The rows have to be dependent because
the matrix A − λ1I is singular.] Take the first equation:

−√2x1 + x2 = 0 ⇒ x2 = √2x1.

One solution is x1 = 1, x2 = √2 or

X1 = (
x1
x2
) = (

1
√2
) .

The normalized X1 is

Y1 =
1
√3
(
1
√2
) =(

1
√3
√2
√3

).

Now consider the equation corresponding to the second eigenvalue λ2 = 2 −√2.

[A − λ2I]X = O ⇒ [
2 − (2 −√2) 1

2 2 − (2 −√2)
][

x1
x2
] = [

0
0
]

⇒ [
√2 1
2 √2
][

x1
x2
] = [

0
0
] .
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As before, the second equation is amultiple of the first equation. Taking the first equa-
tion we have √2x1 + x2 = 0 which gives x2 = −√2x1. For example x1 = 1, x2 = −√2 is a
solution:

X2 = (
1
−√2
) . The normalized X2 is Y2 = (

1
√3

−√2√3
).

The matrix of eigenvectors X1 and X2 is then

Q = (X1,X2) = (
1 1
√2 −√2

) .

Then we have the equation

AQ = Q[λ1 0
0 λ2
] = [

1 1
√2 −√2

][
2 +√2 0
0 2 −√2

] .

This means that A, in this case, can be written as

A = QDQ−1 = [ 1 1
√2 −√2

][
2 +√2 0
0 2 −√2

][
1 1
√2 −√2

]
−1

= [
1 1
√2 −√2

][
2 +√2 0
0 2 −√2

][
1
2

1
2√2

1
2 −

1
2√2
] .

Example 4.2.3. Evaluate the eigenvalues and eigenvectors of the matrix

A = [1 −2
1 2
] .

Solution 4.2.3. Consider the equation

|A − λI| = 0 ⇒ |1 − λ −2
1 2 − λ

| = 0

⇒ (1 − λ)(2 − λ) + 2 = 0
⇒ λ2 − 3λ + 4 = 0.

The roots are

λ =
3 ±√32 − 4(4)

2
= 3
2
± i
√7
2
, i = √−1.

Both the roots are complex here. [Complex roots and irrational roots can only come in
pairs.] Let

λ1 =
3
2
+ i
√7
2
, λ2 =

3
2
− i
√7
2
.
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The eigenvector corresponding to λ1 is available by solving

[A − λ1I]X = O ⇒

[
1 − ( 32 + i

√7
2 ) −2

1 2 − ( 32 + i
√7
2 )
][

x1
x2
] = [

0
0
] ⇒

[
− 12 − i

√7
2 −2

1 1
2 − i
√7
2
][

x1
x2
] = [

0
0
] .

It is not obvious whether the second equation is a scalarmultiple of the first equa-
tion or not. Let us multiply the first equation by − 14 (1 − i√7). Then we get [1,

1
2 − i
√7
2 ].

(Exercise for the student.) Consider the second equation

x1 + (
1
2
− i
√7
2
)x2 = 0.

For example, for x2 = 1,x1 = −
1
2 + i
√7
2 . One eigenvector corresponding to the eigenvalue

λ1 =
3
2 + i
√7
2 is then

X1 = (
− 12 + i

√7
2

1
).

Now consider λ2 =
3
2 − i
√7
2 and the equation

[A − λ2I]X = O.

Proceeding as above one eigenvector is easily seen to be

X2 = (
− 12 − i

√7
2

1
).

Can we have a diagonalization of A by using Q = (X1,X2)? Here

Q = (X1,X2) = [
− 12 (1 − i√7) −

1
2 (1 + i√7)

1 1
] ,

Q−1 = 1
i√7
[
1 1

2 (1 + i√7)
−1 − 12 (1 − i√7)

] ,

D = [
1
2 (3 + i√7) 0

0 1
2 (3 − i√7)

] .

It is easily seen by straight multiplication (the multiplication is left to the student)
that, in fact,

QDQ−1 = A. (4.2.2)
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(iii) Even if all the elements of a matrix A are real the eigenvalues could be real,
rational, irrational or complex quantities. If the elements of A are real and if an
eigenvalue is real then the corresponding eigenvector is real and if an eigenvalue is
complex the corresponding eigenvector is complex.
(iv) Q in the representation of A in (4.2.2) is not unique. Multiply Q by a scalar k ≠ 0
then Q−1 produces 1

k and A remains the same whereas Q is changed.

Example 4.2.4. Evaluate the eigenvalues and the eigenvectors of the matrix

A = [2 1
0 2
] .

Solution 4.2.4. Since A is triangular with the diagonal elements 2 and 2 the eigenval-
ues are λ1 = 2, λ2 = 2. An eigenvector corresponding to λ1 = 2 is available from

(A − λ1I)X = O ⇒

[
2 − 2 1
0 2 − 2

][
x1
x2
] = [

0
0
] ⇒ [

0 1
0 0
][

x1
x2
] = [

0
0
] .

Thus a general solution is x1 = a, x2 = 0, a ≠ 0. Since the rank of the matrix ( 0 1
0 0 ) is 1

its null space has only one linearly independent vector or the space consists of scalar
multiples of ( 10 ).We cannot find two linearly independent eigenvectors corresponding
to the two roots λ1 = 2, λ2 = 2. Thus if Q denotes the matrix of eigenvectors then Q is
singular. Therefore this matrix A does not admit a decomposition A = QDQ−1 where D
is the diagonal matrix with the diagonal elements being the eigenvalues of A and Q
is the matrix of eigenvectors. We will see later that Q is singular here not because all
the eigenvalues are equal or repeated but because of the special nature of the matrix
involved.

Example 4.2.5. Construct a 2 × 2 matrix B whose eigenvalues are λ1 = 2, λ2 = 2 and
which can be written as HDH−1 for some H, |H| ≠ 0, D = diag(2, 2).

Solution 4.2.5. Take any 2 × 2 nonsingular matrix H and consider HDH−1. Since D is
2 times an identity matrix

HDH−1 = 2IHH−1 = 2I = D.

When D is a scalar matrix such as the one here, D = cI, c = 2 here, then any n-vector,
n = 2 here, is an eigenvector and n such linearly independent vectors can be con-
structed and H consists of the eigenvectors. If a given n × n matrix has eigenvalues
λ1 repeated n times can it be written in the form QDQ−1 where D = diag(λ1,… ,λ1). In
some cases it is possible and in some cases it is not possible.
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If a matrix has distinct eigenvalues, may be one of them is zero, what can we say
about the corresponding eigenvectors? Are they linearly independent or dependent?
Let λ1 and λ2, λ1 ≠ λ2 be two distinct eigenvalues of a matrix A and let X1 and X2 be two
eigenvectors corresponding to these eigenvalues. If X1 and X2 are linearly dependent
then there exists a non-null vector (c1, c2) such that c1X1 + c2X2 = O.

AX1 = λ1X1 ⇒ Ac1X1 = λ1c1X1
AX2 = λ2X2 ⇒ Ac2X2 = λ2c2X2

⇒ A(c1X1 + c2X2) = (λ1c1X1 + λ2c2X2).

That is,

λ1c1X1 + λ2c2X2 = O (a)

as well as c1X1 + c2X2 = O by assumption. From this

c1λ2X1 + c2λ2X2 = O. (b)

Substituting (b) in (a) we get

(λ1 − λ2)c1X1 = O ⇒ (λ1 − λ2)c1 = 0.

But λ1 ≠ λ2. Then c1 = 0. Similarly c2 = 0 which means that X1 and X2 are linearly inde-
pendent by the definition of linear independence. Note that the above proof does not
depend on whether λ1 and λ2 are real, including one of them zero, or in the complex
field and the elements of the eigenvectors could be real or in the complex field. The
abovemethod is applicable in the general situation. But ifweare only concernedabout
just two eigenvalues then if the eigenvectors are dependent, one is a scalar multiple
of the other. Then the result follows in two steps by using this property.

(v) If the eigenvalues of an n×nmatrix are all distinct, somemay be in the complex
field, onemay be zero also, then there are n linearly independent eigenvectors. Fur-
ther, eigenvectors corresponding to distinct eigenvalues are linearly independent.

Thus we are guaranteed that the matrix of eigenvectors will be nonsingular if all the
eigenvalues are distinct. This does not mean that if some eigenvalues are repeated
then the matrix of eigenvectors is singular. Example 4.2.3 gives a counter example.
Hence the situation is that in some cases when some eigenvalues are repeated the
matrix of eigenvectors can become singular.

4.2.2 Eigenvalues of powers of a matrix

Let X1 be an eigenvector corresponding to the eigenvalue λ1 of a matrix A. Then

AX1 = λ1X1.
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Premultiplying by A we have

A2X1 = λ1AX1 = λ21X1

which means that λ21 is an eigenvalue of A2 with the same eigenvector X1. Extending
this result we have the following:

(vi) If λ is an eigenvalue of A with the eigenvector X then λk is an eigenvalue of Ak

with the same eigenvector X of A, for k = 0, 1, 2,….

If A−1 exists what about the eigenvalues of A−1 in terms of the eigenvalues of A? Let λ1
be an eigenvalue of A and X1 an eigenvector corresponding to λ1. [If A−1 exists then all
eigenvalues are nonzero.]

AX1 = λ1X1.

If A−1 exists then premultiply by A−1 to obtain

A−1AX1 = λ1A−1X1 ⇒ A−1X1 =
1
λ1
X1

which means that 1
λ1
is an eigenvalue of A−1. Extending this result we have the follow-

ing:

(vii) If all eigenvalues λ1,… ,λn of A are nonzero then A−k has the eigenvalues
λ−k1 ,… ,λ−kn , for k = 0, 1, 2,… with the same eigenvectors as those of A.
(viii) If the matrix of eigenvectors Q is nonsingular then we have

Ak = AA⋯A = QDQ−1QDQ−1⋯QDQ−1

= QDkQ−1, D = diag(λ1,… ,λn)

which also means

Q−1AkQ = Dk

where λ1,… ,λn are the eigenvalues of A, for k = 0, 1, 2,…, and if A is nonsingular
then for k = 0, −1, −2,… also.
(ix) A being nonsingular means no eigenvalue of A is zero, Q being nonsingular
means there is a set of n linearly independent eigenvectors for the n × nmatrix A.

Definition 4.2.2 (Definiteness of real symmetric matrices). Definiteness is defined
only for symmetric matrices, when real, and Hermitian matrices, when in the com-
plex domain. If all the eigenvalues of an n × n real symmetric matrix A are strictly
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positive (eigenvalues of a real symmetric as well as Hermitian matrix are always real)
then A is called positive definite, (if the eigenvalues are ≥ 0 then A is positive semidefi-
nite), strictly negative then A is negative definite (if ≤ 0 then negative semidefinite) and
if some eigenvalues are negative and some positive, at least one in each set, then the
matrix A is called indefinite.

For example, we have the following situations when the matrix is real symmetric:

Eigenvalues the matrix is (singularity) the matrix is (definiteness)

1, 1,5 nonsingular positive definite
0, 1,4 singular positive semidefinite
−1, −3, −8 nonsingular negative definite
0, −3, −1 singular negative semidefinite
1,5, −2 nonsingular indefinite
0, 1, −3 singular indefinite

4.2.3 Eigenvalues and eigenvectors of real symmetric matrices

Let A = A′, a real symmetric n × nmatrix. Let λ1 and λ2 be two eigenvalues of A and X1
and X2 the corresponding eigenvectors. Then

AX1 = λ1X1 ⇒ X′2AX1 = λ1X′2X1 (a)
AX2 = λ2X2 ⇒ X′1AX2 = λ2X′1X2. (b)

But when A = A′ we have

(X′2AX1)
′ = X′1A′X2 = X′1AX2.

Hence the left sides of (a) and (b) are equal, because both quantities are 1× 1 matrices
and one is the transpose of the other. Similarly X′1X2 = X′2X1. Then from (a) and (b) we
have

(λ1 − λ2)X′1X2 = 0.

This can happen when either λ1 = λ2 or X′1X2 = 0 or both hold. If λ1 and λ2 are distinct
then X′1X2 = 0 which means that the eigenvectors are orthogonal to each other.

(x) When the matrix A is real symmetric the eigenvectors corresponding to distinct
eigenvalues are orthogonal to each other.

This leads to some very interesting results. A scalar multiple of an eigenvector is also
an eigenvector. If A is symmetric and if we have n linearly independent eigenvectors
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then the matrix of eigenvectors can be made into an orthonormal matrix, say P. For
orthonormal matrices we know that the transposes are the inverses. Then we have a
representation for A = A′.

A = PDP′, A = A′, PP′ = I , P′P = I

where D is a diagonal matrix with the diagonal elements being the eigenvalues of A,
and P is the matrix of normalized eigenvectors.

Example 4.2.6. Compute the eigenvalues and the eigenvectors of

A = [1 2
2 4
] .

Solution 4.2.6.

|A − λI| = 0 ⇒ |1 − λ 2
2 4 − λ

| = 0

⇒ (1 − λ)(4 − λ) − 4 = 0
⇒ λ(λ − 5) = 0.

Therefore λ1 = 0, λ2 = 5 are the eigenvalues of A. [Since the eigenvalues are positive or
zero this symmetric matrix A is positive semi-definite.] Let us compute the eigenvec-
tors. For λ1 = 0,

(A − λ1I)X = O ⇒ [
1 2
2 4
][

x1
x2
] = [

0
0
]

⇒ x1 + 2x2 = 0

⇒ (
x1
x2
) = (
−2
1
) = X1

is one eigenvector. Let us normalize X1. Then

Y1 = (
− 2
√5
1
√5
)

is the normalized eigenvector corresponding to λ1 = 0. For λ2 = 5,

(A − λ2I)X = O ⇒ [
−4 2
2 −1
][

x1
x2
] = [

0
0
]

⇒ X2 = (
1
2
)
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is an eigenvector. A normalized eigenvector is

Y2 = (
1
√5
2
√5
).

Can there be different normalized eigenvectors for the eigenvalue λ2 = 5? The answer
is in the affirmative:

(
− 1
√5
− 2
√5
)

is another one, normalized as well as orthogonal to Y1. Then the matrix of normalized
eigenvectors, denoted by P, is given by

P = [
− 2
√5

1
√5

1
√5

2
√5
] .

Note the following properties for P. The length of each row vector is 1. The length of
each column vector is 1. The row (column) vectors are orthogonal to each other. That
is, P is an orthonormal matrix. Then we have

XP = PΛ ⇒

[
1 2
2 4
][
− 2
√5

1
√5

1
√5

2
√5
] = [
− 2
√5

1
√5

1
√5

2
√5
][

0 0
0 5
]

where Λ is the diagonal matrix of eigenvalues. Since P′ is the inverse of P when P is
orthonormal we have

A = PΛP′. (4.2.3)

This is a very important representation for symmetric matrices A, in general.

Example 4.2.7. Compute the eigenvalues and eigenvectors of

A = [[
[

1 0 −1
0 3 0
−1 0 1

]]

]

.

Solution 4.2.7. Consider the equation

|A − λI| = 0 ⇒ ||
|

1 − λ 0 −1
0 3 − λ 0
−1 0 1 − λ

||

|

= 0

⇒ (3 − λ)(−λ)(2 − λ) = 0.
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Therefore λ1 = 0, λ2 = 2, λ3 = 3 are the eigenvalues. [The matrix A is positive semidefi-
nite.] Let us compute the eigenvectors. For λ1 = 0,

(A − λ1I)X = O ⇒
[[

[

1 0 −1
0 3 0
−1 0 1

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X1 =
[[

[

1
0
1

]]

]

is one such eigenvector. The corresponding normalized vector is

Y1 =(

1
√2
0
1
√2

).

For λ2 = 2,

(A − λ2I)X = O ⇒
[[

[

−1 0 −1
0 1 0
−1 0 −1

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X2 =
[[

[

1
0
−1

]]

]

or Y2 =
[[

[

1
√2
0
− 1
√2

]]

]

is a solution. For λ3 = 3,

(A − λ3I)X = O ⇒
[[

[

−2 0 −1
0 0 0
−1 0 −2

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X3 =
[[

[

0
1
0

]]

]

⇒ Y3 =
[[

[

0
1
0

]]

]

.

Note that the matrix (A − λiI), in each case i = 1, 2,3, is singular with rank 2. Hence in
the class of linearly independent vectors X there can be only one, 3− 2 = 1, vector for a
given eigenvalue. [This is a general property when the eigenvalues are distinct for any
matrix, neednot be symmetric.] Let us consider thematrix of normalized eigenvectors:

P = [[
[

1
√2

1
√2 0

0 0 1
1
√2 −

1
√2 0

]]

]

, PP′ = I , P′P = I .
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We have the representation

A = PΛP′

where

Λ = [[

[

0 0 0
0 2 0
0 0 3

]]

]

the diagonal matrix of eigenvalues of A.

We may also observe one interesting property from the representation A = PDP′.
We can always write

Λ =
[[[[

[

λ1 0 0 … 0
0 λ2 … 0
⋮ ⋮ … ⋮
0 0 … λn

]]]]

]

=
[[[[

[

λ1 0 … 0
0 0 … 0
⋮ ⋮ … ⋮
0 0 … .

]]]]

]

+⋯+
[[[[

[

0 0 … 0
0 0 … 0
⋮ ⋮ … ⋮
0 0 … λn

]]]]

]

= Λ1 + Λ2 +⋯+Λn.

That is, Λ is written as a sum of diagonal matrices of which the j-th one, namely Λj,
has λj as the j-th diagonal element and all other elements zeros for j = 1,… ,n. Then

PΛP′ = PΛ1P′ + PΛ2P′ +⋯+ PΛnP′.

Note that P postmultiplied by Λj gives the j-th column of P multiplied by λj and all
other columns multiplied by zeros and when this is postmultiplied by P′ we get only
the transpose of the j-th column and all other elements zeros. Thus if P1,… ,Pn denote
the columns of P then we have the following result:

(xi) A = PΛP′ = λ1P1P′1 +⋯+ λnPnP′n. (4.2.4)
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In Example 4.2.7 if we write by using this representation then we have

[[

[

1 0 −1
0 3 0
−1 0 1

]]

]

= 0[[
[

1
√2
0
1
√2

]]

]

[ 1√2
,0, 1√2
]

+ 2[[
[

1
√2
0
− 1
√2

]]

]

[ 1√2
,0, − 1
√2
] + 3[[
[

0
1
0

]]

]

[0, 1,0]

= O + 2[[
[

1
2 0 − 12
0 0 0
− 12 0 1

2

]]

]

+ 3[[
[

0 0 0
0 1 0
0 0 0

]]

]

.

Both sides are equal. In the general case when we have the representation,

A = QΛQ−1

whereA need not be symmetric, note that the columns ofQ−1 or the rows ofQ−1 are not
directly available from the corresponding rows or columns of Q as in the orthonormal
case.Hence, firstQ−1 has to be evaluated. Then look at the rows ofQ−1. Let the columns
of Q be Q1,… ,Qn and the rows of Q−1 be R1,… ,Rn. Then the representation will be the
following:

(xii) A = λ1Q1R1 +⋯+ λnQnRn. (4.2.5)

Let us verify this for the A in Example 4.2.1. There the various quantities are already
evaluated.

A = [2 2
1 3
] , Q = [−2 1

1 1
] ,

Q−1 = [
− 13

1
3

1
3

2
3
] , Λ = [

1 0
0 4
] .

Then, according to the notation in (4.2.5)

Q1 = [
−2
1
] , Q2 = [

1
1
] , R1 = [−

1
3 ,

1
3 ] , R2 = [

1
3 ,

2
3 ] ,

λ1 = 1, λ2 = 4. Then

λ1Q1R1 + λ2Q2R2 = 1[
−2
1
][− 1

3
, 1
3
] + 4[1

1
][ 1

3
, 2
3
]

= [
2
3 −

2
3

− 13
1
3
] + 4[

1
3

2
3

1
3

2
3
]

= [
2 2
1 3
] = A.



4.2 Eigenvectors | 275

The result is verified.

Example 4.2.8. Evaluate the eigenvalues and the eigenvectors of A and represent, if
possible, A in the form A = PΛP′ where

A = 1
3
[[

[

1 1 1
1 1 1
1 1 1

]]

]

.

Solution 4.2.8. The eigenvalues of such an n × nmatrix are already evaluated in Ex-
ample 4.1.3. The eigenvalues are 1 and the rest zeros. In our case the eigenvalues are
λ1 = 1, λ2 = 0, λ3 = 0. The eigenvectors corresponding to λ1 = 1 are given by

(A − λ1I)X = O ⇒
[[[

[

− 23
1
3

1
3

1
3 −

2
3

1
3

1
3

1
3 −

2
3

]]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X1 =
[[

[

1
1
1

]]

]

is an eigenvector. The normalized X1 is

Y1 =(

1
√3
1
√3
1
√3

).

Now consider

(A − λ2I)X = O ⇒
1
3
[[

[

1 1 1
1 1 1
1 1 1

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

.

We can obtain 2 linearly independent X since the rank of A is 1. For example

X2 =(
1
0
−1
) and X3 =(

1
−2
1
)

are two such vectors. The normalized vectors corresponding to these are

Y2 =(

1
√2
0
− 1
√2

) and Y3 =(

1
√6
− 2
√6
1
√6

).
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Hence the matrix of normalized eigenvectors is

P = [[[
[

1
√3

1
√2

1
√6

1
√3 0 − 2

√6
1
√3 −

1
√2

1
√6

]]]

]

.

It is evident that P is an orthonormal matrix, PP′ = I, P′P = I . Hence

A = PΛP′, Λ = [[
[

1 0 0
0 0 0
0 0 0

]]

]

.

Can we write this A in the form (4.2.4)?

A = λ1P1P′1 + λ2P2P′2 + λ3P3P′3

= 1[[[
[

1
√3
1
√3
1
√3

]]]

]

[ 1√3
, 1√3
, 1√3
] + 0 + 0

= [[[

[

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

]]]

]

.

The result is verified. Here in our example two eigenvalues were equal but still we
could get 3 eigenvectors which were orthonormal. This, in fact, is a general result for
symmetric matrices. It need not hold for nonsymmetric matrices. In nonsymmetric
cases in some situations it is possible to obtain a complete set of orthonormal vectors
and some cases it is not possible. In Chapter 2 it was illustrated that any symmetric
matrix A can always be written in the form

A = QDQ′

through elementary operations on the left and on the right, where D is diagonal and Q
is nonsingular. Now the question remains: canwe select aD and aQ for any given sym-
metric matrix A such that D contains all the eigenvalues of A and Q is orthonormal?
The answer to this is in the affirmative.Wewill establish this general result after intro-
ducing some aspects of complex numbers, andmatrices whose elements are complex
numbers, in the next section.

Before concluding this section observe the following points: Computations of
eigenvalues and eigenvectors are, in general, difficult problems. Even for a 3 × 3 ma-
trix the characteristic equation, |A − λI| = 0, is a cubic equation. Often one may have
to use a computer to obtain the roots or use the complicated formula for the three
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roots of a cubic equation. When the degree of the characteristic polynomial is large
the only way to solve may be to use a computer. Also the characteristic equation can
produce irrational or complex roots.

Exercises 4.2
4.2.1. Compute the eigenvalues and eigenvectors of A, and if possible, represent A in
the form A = QDQ−1, where

(a) A = [0 1
1 0
] , (b) A = [0 −1

1 0
] , (c) A = [ 0 1

−1 0
] ,

(d) A = [0 1
0 0
] , (e) A = 1

2
[
1 1
1 1
] .

4.2.2. Repeat Exercise 4.2.1 for

(a) A = [1 3
2 5
] , (b) A = [[

[

1 1 0
1 −1 2
3 0 4

]]

]

, (c) A = [[
[

1 2 1
2 4 2
3 6 3

]]

]

.

4.2.3. Repeat Exercise 4.2.1 for

(a) A = 1
4

[[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]]]]

]

, (b) A =
[[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]]]]

]

,

(c) A =
[[[[

[

1 1 1 1
1 −1 1 −1
1 −1 −1 1
1 1 −1 −1

]]]]

]

.

4.2.4. Construct a 3 × 3 matrix whose eigenvalues are λ1 = 1, λ2 = 2, λ3 = 3 and whose
eigenvectors are

X1 =(
1
1
1
), X2 =(

2
1
2
), X3 =(

3
2
2
).

Is this matrix unique or can you find one more matrix with the same eigenvalues and
eigenvectors?

4.2.5. Find two different matrices Q1 and Q2 such that the matrix in Exercise 4.2.3 (b)
can be written in the form

A = Q1ΛQ−11 = Q2ΛQ−12

where Λ is the diagonal matrix with the eigenvalues of A as the diagonal elements.
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4.2.6. Evaluate the eigenvalues and eigenvectors of the following matrices. Let Q de-
note the matrix of eigenvectors for each case. Is Q nonsingular?

A = [[
[

2 0 0
0 2 0
0 0 2

]]

]

, B = [[
[

1 2 3
0 4 −1
0 0 0

]]

]

, C = [[
[

0 0 0
2 0 0
1 −1 1

]]

]

.

4.2.7. From the results obtained in Exercise 4.2.3 compute the determinant of Awith-
out any additional computation.

4.2.8. Compute the eigenvalues and eigenvectors of A10 for each case of (1) Exer-
cise 4.2.1, (2) Exercise 4.2.2. List the cases where A−25 is defined.

4.2.9. Compute A100 for each case of A in Exercise 4.2.1.

4.2.10. Let A = (aij) and B = (bij) be n×nmatrices. By straightmultiplication and then
taking the traces show that

(a) tr(AB) = tr(BA), (b) AB − BA ≠ I .

4.2.11. If amatrixAhas eigenvalues 1, −1, 2 is thematrixQ of eigenvectors (a) singular?
(b) orthonormal?

4.2.12. Repeat Exercise 4.2.11 if the eigenvalues are

(a) 1, 1, 2, (b) 1,0,0.

4.2.13. Let

A = [1 2
1 1
] .

Compute (a) tr(A20), (b) |A−20| (the determinant of A−20).

4.2.14. If a matrix A can be written as A = QDQ−1 show that

tr(A10) = d101 +⋯+ d10n

where d1,… ,dn are the diagonal elements in D.

4.2.15. If A is a 3×3 symmetricmatrix with the eigenvalues 0, 1, 2 construct 4 different
matrices B such that B2 = A. [Here B is a square root of A.]

4.2.16. For the problem inExercise 4.2.3 (a) representA in the formof equation (4.2.4).

4.2.17. Represent A in the form of equation (4.2.5) where

A = [[
[

1 1 0
1 −2 2
3 0 4

]]

]

.
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4.2.18. Evaluate the eigenvalues of the following matrices:

A =
[[[[

[

a b … b
b a … b
⋮ ⋮ … ⋮
b b … a

]]]]

]

where A is n × n

B =

[[[[[[[[[[[[[[[[

[

0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 0 0 0

]]]]]]]]]]]]]]]]

]

.

4.2.19. Companionmatrix. Show that the n×n companionmatrix A has the charac-
teristic polynomial

P(λ) = λn +
n−1
∑
i=0

ciλi

where

A =
[[[[[[

[

0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 … 1
−c0 −c1 −c2 … −cn−1

]]]]]]

]

.

4.2.20. Let A be an n × n matrix with the characteristic polynomial P(λ) = ∑ni=0 ciλ
i .

Show that the scalar cr , 0 ≤ r < n, is equal to the sum of all principal minors of order
n − r of Amultiplied by (−1)n−r .

4.2.21. For the n × n real matrix A let λn − a1λn−1 + a2λn−2 −⋯± an = 0 be the charac-
teristic polynomial. Then show that

An − a1An−1 +⋯± anI = O.

4.2.22. For a nonsingular 2× 2 matrix A let λ2 −a1λ+a2 = 0 be the characteristic equa-
tion. Show that

a2A−1 = a1I − A.
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4.3 Some properties of complex numbers and matrices in
the complex fields

In all the discussions so far the elements in our vectors and matrices were real num-
bers or real quantities. Now we will extend our discussion to complex numbers and
matrices with the elements in the complex field.

4.3.1 Complex numbers

The very basic quantity in the field of complex numbers is denoted by i which is the
positive square root of −1, that is, i = √−1. It can arise, for example, when we try to
solve the equation

x2 + 1 = 0 ⇒ x2 = −1 ⇒ x = ±√−1 or x = ±i.

A complex number can be written as z = a + ib where a and b are real numbers and
i = √−1. Then we say that a is the real part of z, written as a = ℜ(z) and b is the imagi-
nary part of z, written as b = ℑ(z). For example,

complex number real part imaginary part

2 + 3i 2 3
2 − 3i 2 −3
3i 0 3
2 2 0

(i) A complex number with the imaginary part zero is a real number. A complex
number with the real part zero is a purely imaginary number.

Definition 4.3.1 (A complex number). Any number of the form a + ib where a and b
are real and i = √−1 is called a complex number.

Definition 4.3.2 (Complex conjugate). The complex conjugate of a + ib is defined as
a − ib, (with i replaced by −i) so that

(a + ib)(a − ib) = a2 + b2

is always real.

Notation 4.3.1. The complex conjugate of z is usually denoted by zc or ̄z. Since ̄z is
already used for the average we will denote the conjugate of z by zc .
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Definition 4.3.3 (The absolute value of a complex number). If z = a + ib is a complex
number its absolute value, denoted by |z|, is the positive square root of z multiplied
by its conjugate zc . That is,

|z| = √zzc = √(a + ib)(a − ib) = √a2 + b2 = |a + ib| = |a − ib|.

For example,

complex number its conjugate its absolute value

3 − 4i 3 + 4i +√(3)2 + (−4)2 = 5

1 + 2i 1 − 2i +√(1)2 + (2)2 = √5

7i −7i +√(0)2 + (−7)2 = 7

−2 −2 +√(−2)2 + (0)2 = 2

This definition of the absolute value is in agreement with the concept of the absolute
value of a real number. Also real numbers can be taken as particular cases of complex
numbers where the imaginary parts are zeros.

4.3.2 Geometry of complex numbers

Since any complex number is of the form z = x + iy where x and y are real and i =
√−1 the pair of real quantities (x,y) uniquely determine the complex number z. If we
take a rectangular coordinate system and call the x-axis the real axis, and the y-axis
the imaginary axis then x + iy is the point (x,y) in this complex plane. Some complex
numbers are marked in Figure 4.3.1.

Figure 4.3.1: A complex plane.

Let us take an arbitrary point z = x + iy. Call the origin of the above rectangular
coordinate system O and let P = (x,y) be the point z in this complex plane. Let θ be the
angle OP makes with the x-axis and r the length of OP. Then as shown in Figure 4.3.2

x = r cosθ, y = r sinθ, z = r cosθ + i r sinθ.



282 | 4 Eigenvalues and eigenvectors

Figure 4.3.2: Geometry of complex numbers.

What about powers of z, such as z2, z3,… or zk for some k, positive or negative. Trying
to take the powers directly as

zk = (r cosθ + i r sinθ)k = rk(cosθ + i sinθ)k

is not an easy process. But one thing is certain. When (cosθ + i sinθ)k is expanded it
can give terms containing i, i2, i3,… , ik . These powers of i can be reduced by using the
results i2 = −1, i3 = −i, i4 = 1, i5 = i and so on. Thus evidently, (cosθ + i sinθ)k gives rise
to a quantity of the form a + ib where a and b are real. Hence all powers of zk are also
complex numbers. In order to evaluate the powers in amuch simpler way wewill look
at another representation of a complex number. To this end, consider the expansion

eiθ = 1 + (iθ) + (iθ)
2

2!
+ (iθ)

3

3!
+⋯

= [1 − θ
2

2!
+ θ

4

4!
−⋯] + i[θ − θ

3

3!
+ θ

5

5!
−⋯].

These two seres (series) are known from calculus or trigonometry as

cosθ = 1 − θ
2

2!
+ θ

4

4!
+⋯

and

sinθ = θ − θ
3

3!
+
θ5

5!
−⋯.

Hence

eiθ = cosθ + i sinθ ⇒ (4.3.1)
z = r(cosθ + i sinθ) = reiθ . (4.3.2)

This is a very important formula to deal with complex numbers. For example,

z2 = [reiθ]2 = r2e2iθ = r2[cos 2θ + i sin 2θ];

z−1 = [reiθ]−1 = 1
r
[e−iθ] = 1

r
[cos(−θ) + i sin(−θ)]
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= 1
r
[cosθ − i sinθ], r ≠ 0;

zk = [reiθ]k = rkeikθ = rk[coskθ + i sinkθ],
k = 0, 1, 2,… ,−1, −2,… , r ≠ 0. (4.3.3)

Could we have obtained the same result by powers of z = r(cosθ + i sinθ) directly?
Yes, we could have arrived at the same results but the process would have involved
invoking many results from trigonometry. For example,

z2 = [r(cosθ + i sinθ)]2 = r2[cos2 θ + (i sinθ)2 + 2i cosθ sinθ]
= r2[cos2 θ − sin2 θ + i(2 sinθ cosθ)]
= r2[cos 2θ + i sin 2θ]

since cos 2θ = cos2 θ − sin2 θ and sin2θ = 2 sinθ cosθ. What about the exponents if we
take products and ratios? For example,

zz−1 = (reiθ)(reiθ)−1 = reiθ 1
r
e−iθ = 1, r ≠ 0;

z2z−1 = (r2e2iθ 1
r
e−iθ) = reiθ = z, r ≠ 0;

z2z3 = (r2ei2θ)(r3ei3θ) = r5ei5θ = z5;

z2z−3 = (r2ei2θ 1
r3
e−i3θ) = 1

r
e−iθ = z−1, r ≠ 0;

z
1
2 z

1
2 = (reiθ)

1
2 (reiθ)

1
2 = reiθ = z;

zmzn = zm+n.

The rules of multiplication and division can be carried through exactly as in the real
case. What about the complex conjugates? We have defined the conjugate of z = x + iy
as zc = x − iy. The absolute values remain the same.

|z| = √x2 + y2 = √x2 + (−y)2 = |zc|.

Writing x − iy as x + (−i)y we have

z = reiθ ⇒ zc = re−iθ

⇒ zzc = (reiθ)(re−iθ) = r2,

which is also seen from direct multiplication, (x + iy)(x − iy) = x2 + y2 = r2.

4.3.3 Algebra of complex numbers

What about the sums and products of complex numbers? Let

z1 = x1 + iy1 and z2 = x2 + iy2
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Figure 4.3.3: Powers of complex numbers.

where x1,x2,y1,y2 real. If (x1,y1) ≠ (x2,y2) then we have two complex numbers. A com-
plex number, its conjugate and powers are shown in Figure 4.3.3. Writing in exponen-
tial form we have

z1 = r1eiθ1 , z2 = r2eiθ2

where

r1 = √x21 + y21 , r2 = √x22 + y22 ,

θ1 = tan−1(
y1
x1
), θ2 = tan−1(

y2
x2
), x1 ≠ 0, x2 ≠ 0.

z1 + z2 = (x1 + iy1) + (x2 + iy2) = (x1 + y1) + i(x2 + y2)
= r1eiθ1 + r2eiθ2

= r1[cosθ1 + i sinθ1] + r2[cosθ2 + i sinθ2]
= (r1 cosθ1 + r2 cosθ2) + i(r1 sinθ1 + r2 sinθ2). (4.3.4)

All these are equivalent representations for z1 + z2. Thus z1 + z2 is again a complex
number.

z1z2 = [x1 + iy1][x2 + iy2] = (x1x2 − y1y2) + i(x1y2 + x2y1) (4.3.5)
= (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2)

= r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].
zzc = (x + iy)(x − iy) = x2 + y2 = (reiθ)(re−iθ) = r2

= [r(cosθ + i sinθ)][r(cosθ − i sinθ)] = r2[cos2 θ + sin2 θ]
= r2. (4.3.6)

What about the conjugate of the product z1z2?

(z1z2)c = [(x1x2 − y1y2) + i(x1y2 + x2y1)]
c

= (x1x2 − y1y2) − i(x1y2 + x2y1)
zc1 zc2 = [x1 − iy1][x2 − iy2] = (x1x2 − y1y2) − i(x1y2 + x2y1)
= (z1z2)c ⇒ (z1z2)c = zc1 zc2 . (4.3.7)
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Taking the conjugate of a product or the product of a conjugate give rise to the same
result. Some numerical examples are the following:

z = 2 + 3i, zc = 2 − 3i, |z| = √22 + 32 = √13,

z = √13eiθ , tanθ = 3
2
;

z1 = 3i, zc1 = −3i, |z1| = √(0)2 + (3)2 = 3,

cosθ = 0, sinθ = 1, θ = π
2

z1 = 3ei
π
2 = 3ei(

π
2 +2mπ), m = 0, 1, 2,… ;

z2 = 2, zc2 = 2, |z2| = √(2)2 + (0)2 = 2, cosθ = 1, sinθ = 0, θ = 0

z2 = 2ei(0+2mπ) = 2 (in agreement with the rules for real numbers);

z3 = 1 + 2i, z4 = 3 + 4i ⇒ z3 + z4 = (1 + 2i) + (3 + 4i) = 4 + 6i;

z3 − z4 = (1 + 2i) − (3 + 4i) = −2 − 2i;

z3 + zc4 = (1 + 2i) + (3 − 4i) = 4 − 2i = zc4 + z3;

z3 − zc4 = (1 + 2i) − (3 − 4i) = −2 + 6i;

2z3 + 5z4 = 2(1 + 2i) + 5(3 + 4i) = (2 + 4i) + (15 + 20i) = 17 + 24i;

z3z4 = (1 + 2i)(3 + 4i) = [(1)(3) + i2(2)(4)] + i[(1)(4) + (2)(3)]

= 3 − 8 + 10i = −5 + 10i;

z23 = (1 + 2i)2 = (1)2 + (2i)2 + 2(1)(2i) = 1 − 4 + 4i = −3 + 4i.

In the real case the square is a non-negative number. In the complex case we cannot
talk about non-negativity since it is again a complex number.

z3zc4 = (1 + 2i)(3 − 4i) = [(1)(3) + (2)(−4)i2] + [(1)(−4) + (2)(3)]i

= 11 + 2i;

(z3z4)c = (−5 + 10i)c = −5 − 10i;

zc3zc4 = (1 − 2i)(3 − 4i) = −5 − 10i = (z3z4)c ;

|z3z4| = |(−5 − 10i)| = √(−5)2 + (−10)2 = √125 = |(z3z4)c|;

|z3| |z4| = |(1 + 2i)| |(3 + 4i)| = √(1)2 + (2)2√(3)2 + (4)2

= √5√25 = √125 = |z3z4|.

This is a general result. If z1,… ,xk are complex numbers then the absolute value of
the product or the absolute value of the product of their conjugates is the product of
the absolute values.
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(ii) |z1z2⋯ zk | = |z1| |z2|⋯ |zk |
= |zc1 | |zc2 |⋯ |zck | = |(z1⋯ zk)c|. (4.3.8)

How do we compute the ratios of complex numbers? Since a complex number mul-
tiplied by its conjugate is a real number we may multiply the complex numbers ap-
pearing in the denominator by the conjugates to make the denominator real. This is a
convenient technique that can be employed when evaluating a ratio. Let z1 = x1 + iy1
and z2 = x2 + iy2. Then

z1
z2
= x1 + iy1
x2 + iy2

= (x1 + iy1)(x2 − iy2)
(x2 + iy2)(x2 − iy2)

= [x1x2 + y1y2] + i[−x1y2 + x2y1]
x22 + y22

= (x1x2 + y1y2)
x22 + y22

+ i (−x1y2 + x2y1)
x22 + y22

.

As numerical examples we have

(1 + 3i)
(2 − i)
= (1 + 3i)(2 + i)
(2 − i)(2 + i)

= [(1)(2) − (3)(1)] + i[(1)(1) + (3)(2)]
22 + 12

= − 1
5
+ 7
5
i;

1 + 3i
5i
= (1 + 3i)(−5i)
(5i)(−5i)

= 3
5
− 1
5
i.

Instead of −5i we could have kept 5 outside and multiplied both numerator and the
denominator by −i.

1 + 3i
2
= 1
2
+ 3
2
i;

(1 − 3i)
(1 + i)(2 + i)

= (1 − 3i)(1 − i)(2 − i)
(1 + i)(1 − i)(2 + i)(2 − i)

=
(−2 − 4i)(2 − i)
(12 + 12)(22 + 12)

= −
4
5
−
3
5
i;

(2 + i)
5i(1 − i)(2 − i)

= (2 + i)
5i(1 − i)(2 − i)

(−i)(1 + i)(2 + i)
(−i)(1 + i)(2 + i)

= −(2 + i)(−1 + i)(2 + i)
5(12 + 12)(22 + 12)

= 7
50
+ 1
50

i.

4.3.4 n-th roots of unity

The square roots of 1 are available by solving the equation x2 = 1 ⇒ x = ±1. If we
take the fourth root of 1 there must be 4 roots. What are they? x4 = 1 ⇒ x2 = ±1. Then
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x2 = 1 ⇒ x = ±1 and x2 = −1 ⇒ x = ±i. Hence the four roots of 1 are 1, −1, i, −i. What
about the n-th roots of 1 for any given n? There will be n roots. We must have a gen-
eral way of computing all the roots. This can be done through the representation of a
complex number in (4.3.2):

z = reiθ = r[cosθ + sinθ]
= r[cos(θ + 2mπ) + i sin(θ + 2mπ)] = rei(θ+2mπ)

form = 0, 1, 2,… since anymultiple of 2π will bring back to the original position. There-
fore the n roots of z are given by

z
1
n = r

1
n e

1
n (θ+2mπ), m = 0, 1,… ,n − 1

where the positive n-th root of r is taken in r
1
n and the remaining part is in the expo-

nential factor for various values of m. Note that for m = 0, 1,… ,n − 1 one set of n roots
are available. Then form = n,n + 1,… the same set of roots are repeated. Then writing

1 = ei(2mπ) ⇒ 1
1
n = ei(

2mπ
n ), m = 1, 2,… ,n.

But

ei(2mπ/n) = cos 2mπ
n
+ i sin 2mπ

n
, m = 1, 2,… ,n.

The n roots of 1 are then available from the above by substituting for various values
ofm,m = 1, 2,… ,n. What about the n-th root of −1? Note that

−1 = cosπ + i sinπ = cos(π + 2mπ) + i sin(π + 2mπ)
= ei(2m+1)π .

Therefore

(−1)
1
n = e(2m+1)π/n = cos(2m + 1

n
)π + i sin(2m + 1

n
)π

form = 1,… ,n. For example, the 4-th roots of 1 are

cos 2m
4
π + i sin 2m

4
π, m = 1, 2,3,4 ⇒ cos π

2
+ i sin π

2
, cosπ + i sinπ,

cos(π + π
2
) + i sin(π + π

2
), cos 2π + i sin 2π

⇒ 0 + i, −1 + (0)i,0 − i, 1
⇒ 1, −1, i, −i.
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What about the square root of −1 from the formula?

cos(2m + 1)π
2
+ i sin(2m + 1)π

2
, m = 1, 2

⇒ cos 3π
2
+ i sin 3π

2
, cos 5π

2
+ i sin 5π

2
,

⇒ cos π
2
− i sin π

2
, cos π

2
+ i sin π

2
⇒ 0 − i,0 + i ⇒ i, −i

are the roots. What about the n-th roots of any complex number a + ib? Take r =
√a2 + b2 and θ such that tanθ = b

a for a ≠ 0. If b = 0 then it is a real number. Then take
it as a multiplied by 1 if a > 0 or |a| multiplied by −1 if a < 0. Then take the positive
n-th root of |a|multiplied by all the n roots of 1 or −1 as the case may be. If a = 0 then
take it as ib and proceed as above taking the n-th positive root of |b| and all the n roots
of i or −i as the case may be.

Example 4.3.1. Compute the 4-th roots of 1 + i.

Solution 4.3.1. We can write

1 + i = rei(θ+2mπ), tanθ = 1
1
= 1 ⇒

θ = π
4
+ 2mπ, r = √12 + 12 = √2.

Hence

[1 + i]
1
4 = 2

1
8 [cos( π

16
+ 2mπ

4
) + i sin( π

16
+ 2mπ

4
), m = 1, 2,3,4].

The 4 roots are

2
1
8 [cos(π

2
+ π
16
) + i sin(π

2
+ π
16
),cos(π + π

16
) + i sin(π + π

16
),

cos(3π
2
+
π
16
) + i sin(3π

2
+
π
16
),cos(2π + π

16
) + i sin(2π + π

16
)].

That is,

2
1
8 [− sin π

16
+ i cos π

16
, − cos π

16
− i sin π

16
, sin π

16
− i cos π

16
,

cos π
16
+ sin π

16
].

What about the 4-th power of 1 + i?

1 + i = √2ei(
π
4 ) ⇒

(1 + i)4 = 4e4(iπ/4) = 4eiπ = 4[cosπ + i sinπ] = −4.



4.3 Some properties of complex numbers and matrices in the complex fields | 289

Let us verify it by direct multiplication.

(1 + i)2 = 1 + 2i + i2 = 1 + 2i − 1 = 2i,
(1 + i)4 = (2i)2 = 4(−1) = −4.

Thus the representation of a complex number in terms of its length or absolute value
r, and θ, such that tanθ = b

a , a ≠ 0, gives a convenient way of finding the powers or
roots of any complex or real number. The representations for real as well as purely
imaginary numbers are the following:

1 = ei(2mπ), m = 0, 1, 2,3,…
−1 = ei(2m+1)π , m = 0, 1, 2,…

i = ei(
π
2 +2mπ), m = 0, 1,…

−i = ei(
3π
2 +2mπ), m = 0, 1,… .

4.3.5 Vectors with complex elements

Let us start with the concept of vectors as n-tuples or as ordered set of n elements.
If some or all elements are complex what will happen to the various operations with
the vectors. Let U and V , U′ = (u1,… ,un), V′ = (v1,… ,un), be two n × 1 vectors. The
definition of a scalar multiple of a vector remains the same as in the real case:

cU′ = (cu1,… , cun)

where c is a scalar in the real or complex field. Addition remains the same:

cU′ + dV′ = (cu1 + dv1,… , cun + dvn)

where c and d are scalars. The definition of linear independence remains the same.
Let U1,… ,Uk be n-vectors defined in the complex space Cn. [We had denoted real Eu-
clidean n-spacebyRn. The complex n-spacewill be denotedbyCn. Since each complex
variable represents a pair of real variables one can look upon Cn as corresponding to
R2n.] Let c1,… , ck be scalars. If the equation

c1U1 +⋯+ ckUk = O

holds only when c1 = 0 =⋯ = ck , where O denotes the null vector, then U1,… ,Uk are
linearly independent. Otherwise they are linearly dependent, and when they are lin-
early dependent then at least one of them can be written as a linear function of the
others. The scalars c1,… , ck could be real or complex.

The definitions of vector subspaces, their bases and dimensions remain the same
as in the real case. Since the length or absolute value of a complex number is an ex-
tension of the length in the real case the length of a vector has to be redefined when
the elements are in the complex field.
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Definition 4.3.4 (The length of a vector). Let

Z =(
z1
⋮
zn
)=(

x1 + iy1
⋮

xn + iyn
), X =(

x1
⋮
xn
), Y =(

y1
⋮
yn
)

where x1,… ,xn, y1,… ,yn are all real and i = √−1. Then the length of Z, denoted by ‖Z‖,
is defined as

‖Z‖ = √|z1|2 +⋯+ |zn|2 = √(x21 + y21 ) +⋯+ (x2n + y2n) (4.3.9)

or ‖Z‖ satisfies the relation

(iii) ‖Z‖2 = ‖X‖2 + ‖Y‖2. (4.3.10)

For example,

Z = [ 2
3 − i
] ⇒ ‖Z‖2 = [22] + [(3)2 + (−1)2] = 14;

Z = (1 + i, 2 − 3i) ⇒ ‖Z‖2 = [(1)2 + (1)2] + [(2)2 + (−3)2] = 15;
Z = (2, 1 − i,4i) ⇒ ‖Z‖2 = [(2)2 + (0)2] + [(1)2 + (−1)2] + [(0)2 + (4)2]
= 22.

If X is an n × 1 real vector then the dot product of X with X is

X.X = X′X = x21 +⋯+ x2n.

Then length of X, denoted by ‖X‖ is given by

X′X = ‖X‖2. (4.3.11)

If this relationship is to be preserved then we should redefine dot product of two vec-
tors in the complex field slightly differently. Then when the vectors are in the complex
field the dot product will be different from that in the real case.

Definition 4.3.5 (The dot product in the complex case). LetU andV be vectors in the
complex space Cn. Let U∗ be the conjugate transpose of U (either take the transpose
first and then the complex conjugates of every element or take the complex conjugates
of every element first and then transpose the vector). The dot product of U with V is
defined as

U .V = U∗V = uc1v1 + uc2v2 +⋯+ ucnvn. (4.3.12)

Then the dot product of V with U will be

V .U = vc1u1 +⋯+ vcnun.
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Note that U .V need not be equal to V .U but if all the elements of U and V are real
then U .V = V .U . If U = V then

U .V = U .U = uc1u1 +⋯+ ucnun

and

U∗U = |u1|2 +⋯+ |un|2 = ‖U‖2 (4.3.13)

which is consistent with (4.3.11). For example,

(1) U = [[
[

2
1 − i
3i

]]

]

, V = [[
[

1 + i
2i

1 − 3i

]]

]

,

U∗V = 2(1 + i) + (1 + i)(2i) + (−3i)(1 − 3i) = −9 + i,
V∗U = (1 − i)(2) + (−2i)(1 − i) + (1 + 3i)(3i) = −9 − i;

(2) U = [[
[

1 + 2i
i

1 − i

]]

]

, V = [[
[

−2 + i
1 − i
1 − i

]]

]

,

U∗V = (1 − 2i)(−2 + i) + (−i)(1 − i) + (1 + i)(1 − i) = 1 + 4i,
V∗U = (−2 − i)(1 + 2i) + (1 + i)(i) + (1 + i)(1 − i) = 1 − 4i.

From the above examples it is evident that

(U∗V)∗ = V∗(U∗)∗ = V∗U . (4.3.14)

If U is changed to c1U and V is changed to c2V , where c1 and c2 are scalars, then the
dot product of (c1U) with c2V is given by

(c1U)∗(c2V) = cc1c2U∗V .

That is, c1 is changed to its complex conjugate whereas c2 remains as it is.

4.3.6 Matrices with complex elements

Let Z be an m × n matrix where the elements are in the complex field. Then Z will be
of the following form:

Z = [[
[

x11 + i y11 … x1n + i y1n
⋮ … ⋮

xm1 + i ym1 … xmn + i ymn

]]

]
= X + i Y , X = (xij), Y = (yij)



292 | 4 Eigenvalues and eigenvectors

where xij ’s and yij ’s are real. If any of the yij is zero then the corresponding element
is a real quantity. If any of the xij is zero then the corresponding element is a purely
imaginary quantity.

Definition 4.3.6 (Complex conjugate of a matrix). Let Z = X + iY be an m × n matrix
in the complex field. Then Zc = X − iY is called its complex conjugate. That is, the
complex conjugate of every element in Z is taken or if Z = (zij) then Zc = (zcij).

Definition 4.3.7 (The conjugate transpose of a matrix). The transpose of the conju-
gate matrix is called the conjugate transpose of the matrix. If Z = X + iY then its conju-
gate transpose, denoted by Z∗, is given by Z∗ = X′ − iY′ where the primes denote the
transposes. That is,

Z∗ = [(X + iY)c]′ = [X − iY]′ = X′ − iY′ = [(X + iY)′]c .

For example,

a matrix in the complex field its conjugate

[[

[

1 0 2 − i
1 + i 3 1 − i
2 3 + i 4 − i

]]

]

,
[[[[

[

1 0 2 + i

1 − i 3 1 + i
2 3 − i 4 + i

]]]]

]

,

(2 + i, 1, 1 − i) (2 − i, 1, 1 + i)

its conjugate transpose its conjugate transpose

[[

[

1 1 − i 2
0 3 3 − i

2 + i 1 + i 4 + i

]]

]

(
2 − i
1

1 + i
)

Let us seewhat happens if a squarematrix in the complex field is equal to its conjugate
transpose. Let

Z = X + iY ⇒ Z∗ = X′ − iY′.

If Z = Z∗ then X = X′ and Y = −Y′. That is, the real part of the matrix has to be sym-
metric and the imaginary part of the matrix has to be skew symmetric. Such matrices
are called Hermitian matrices.

Definition 4.3.8 (A Hermitian matrix). If Z is equal to its conjugate transpose Z∗ then
Z is called a Hermitian matrix.

Definition 4.3.9 (A skew Hermitian matrix). If Z is equal to (−1) times its conjugate
transpose, that is Z = −Z∗, then Z is called skew Hermitian.
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Thus if Z is skewHermitian then the real part is skewsymmetric and the imaginary
part is symmetric.

(iv) The diagonal elements of a Hermitian matrix are real. The diagonal elements
of a skew Hermitian matrix are purely imaginary or zero. The elements above the
leading diagonal of a Hermitian matrix are the complex conjugates of the corre-
sponding elements below the leading diagonal. The elements above the leading
diagonal of a skew Hermitian matrix are minus one times the complex conjugates
of the corresponding elements below the leading diagonal.

Let

Z = X + i Y , X = (xij), Y = (yij)
Z = Z∗ ⇒ xij = xji , yij = −yji , yii = 0, for all i and j;
Z = −Z∗ ⇒ xij = −xji , yij = yji , xii = 0, for all i and j.

For example,

(a) Z = [[
[

2 1 + i 2 − i
1 − i 5 3 + 2i
2 + i 3 − 2i 6

]]

]

, Z is Hermitian, Z∗ = Z;

(b) Z = [ 1 5 + 4i
5 − 4i 7

] , Z is Hermitian, Z∗ = Z;

(c) Z = [ 3i 2 − i
−2 − i −5i

] , Z is skew Hermitian, Z∗ = −Z;

(d) Z = [[
[

0 1 + i 2 + i
−1 + i 2i 1 − i
−2 + i −1 − i −5i

]]

]

, Z is skew Hermitian, Z∗ = −Z.

Some properties are immediate for conjugate transposes, denoted by ∗.

(A + B)∗ = A∗ + B∗;
(AB)∗ = B∗A∗;

(c1A + c2B)∗ = cc1A∗ + cc2B∗, c1, c2 scalars.

For n × 1 vectors U and V

U∗U = ‖U‖2 = |u1|2 +⋯+ |un|2 (square of the length);
U∗V ≠ V∗U , (U∗V)∗ = V∗U ;
U∗V = 0 ⇒ U is orthogonal to V ;
U∗U = 1 ⇒ is a normal vector;
U∗V = V∗U if U∗V is real.
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Definition 4.3.10 (Orthogonality). Let U and V be two vectors in the complex
space Cn. Then U is said to be orthogonal to V if U∗V = 0.

Note that (U∗V)∗ = V∗U = 0∗ = 0. Hence the condition U∗V = 0 also implies
V∗U = 0. That is, if U is orthogonal to V then V is orthogonal to U or they are orthog-
onal to each other.

Definition 4.3.11 (Orthonormal system). Let U1,… ,Uk be k vectors in Cn. They form
an orthonormal system if U∗i Uj = 0 for all i and j, i ≠ j and ‖Ui‖ = 1 for i = 1, 2,… ,k.

Definition 4.3.12 (A unitary matrix). Consider an n × n matrix Q whose columns are
orthonormal. Then Q is called a unitary matrix, Q∗Q = I or

Q∗Q = I ⇒ Q−1 = Q∗ ⇒ I = QQ∗.

When the columns are orthonormal the rows are also orthonormal for an n × n
unitary matrix. For example,

(a) Q = [
1+i
2

1−i
2

−1−i
2

1−i
2
] ,

Q∗ = [
1−i
2
−1+i
2

1+i
2

1+i
2
] , QQ∗ = I2, Q∗Q = I2;

(b) Q = [[[
[

1+i
√6

1+i
√6

1+i
√6

1−i
2 0 −1+i

2
1
√6 −

2
√6

1
√6

]]]

]

,

Q∗ = [[[
[

1−i
√6

1+i
2

1
√6

1−i
√6 0 − 2

√6
1−i
√6
−1−i
2

1
√6

]]]

]

, QQ∗ = I , Q∗Q = I3.

Definition 4.3.13 (Semiunitary matrices). Let Q be an n × n unitary matrix such that
Q∗Q = I, QQ∗ = I . Consider m columns of Q, m < n, for example the first m columns
U1,… ,Um. Let S be the matrix formed by thesem vectors, S = (U1,… ,Um). Then S∗S =
Im and S is called a semiunitary matrix or an element in the Stiefel manifold.

Note that SS∗ ≠ In and SS∗ is an n × nmatrix whereas S∗S is an m ×mmatrix. We

could have also taken m row vectors V1,… ,Vm of Q and create the matrix S1 = (
V1
⋮
Vm
).

Then S1S∗1 = Im whereas S∗1 S1 ≠ In. Thus S1 is also a semiunitary matrix. Semiunitary
matrix is a matrix formed with a subset of a full orthonormal system of vectors. In our
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illustrative examples above,

(1) S = [[[
[

1+i
√6

1+i
√6

1−i
2 0
1
√6 −

2
√6

]]]

]

, S∗S = I2, S is semiunitary;

(2) S = [[[
[

1+i
√6

1+i
√6

1−i
2
−1+i
2

1
√6

1
√6

]]]

]

, S∗S = I2, S is semiunitary;

(3) S1 = [
1+i
√6

1+i
√6

1+i
√6

1−i
2 0 −1+i

2
] , S1S∗1 = I2, S1 is semiunitary;

(4) S1 = [
1−i
2 0 −1+i

2
1
√6 −

2
√6

1
√6
] , S1S∗1 = I2, S1 is semiunitary.

Exercises 4.3
4.3.1. Mark the following complex numbers as points in an (x,y)-coordinate system.
2 + 4i, 2 − 4i, −2 + 4i, −2 − 4i, 1 + i, i, −2, −i.

4.3.2. Compute the following: (a) (z1 + z2) + z3, (b) z1 + (z2 + z3) where z1 = 1 + 3i,
z2 = 2 − i, z3 = 2 + 4i.

4.3.3. For z1, z2, z3 in Exercise 4.3.2 compute the following:

(1) z1z2, (2) z1zc2 , (3) zc1 z2, (4) zc1 zc2 , (5) z1z2z3,
(6) zc1 zc2 zc3 , (7) [z1z2z3]c , (8)

z1
(z2z3)2
, (9) ( z1z3z2

)
1
6 ,

all roots.

4.3.4. Compute the following for z1 = 2i, z2 = 1 − i, z3 = 4:

(1) (z1z2z3)
1
5 , all 5 roots, (2) (zc1 z22z3)

2
3 , all roots,

(3) ( z1z3z2
)4, (4) ( z1z3z2

)
1
6 , all roots.

4.3.5. For the following vectors compute (1) the conjugate, (2) the conjugate transpose

(a) [1 + 2i,3i,4], (b) [[
[

−i
2 + 3i
4i

]]

]

,

(c) [1, −1, 2i,0,4 + 2i].

4.3.6. Compute the lengths of the vectors in Exercise 4.3.5.

4.3.7. Mark the 5-th roots (all roots) of 1, −1, i, −i on the same graph.
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4.3.8. Take the 6-th roots of 1. Let the roots be denoted by 1,w1,w2,… ,w5 where w1 =
eiπ/3. Then show the following:
(1) wj =w

j
1, j = 2,3,4,5,

(2) 1 +w1 +⋯+w5 = 0,
(3) plot all the 6 roots in the same graph.

4.3.9. With w1 = ei2π/n show that the properties in Exercise 4.3.8 (1) and (2) hold for
any n and plot the points 1,w1,… ,wn−1 and examine their relations to a circle of unit
radius in the complex plane.

4.3.10. Show that the Fourier matrix

F =
[[[[

[

1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9

]]]]

]

has the inverse

F−1 = 1
4

[[[[

[

1 1 1 1
1 (−i) (−i)2 (−i)3

1 (−i)2 (−i)4 (−i)6

1 (−i)3 (−i)6 (−i)9

]]]]

]

.

4.3.11. Show the following: If

F2 = [
1 1
1 w2
] then F−12 =

1
2
[
1 1
1 w−12
] , wn = ei2π/n,

F3 =
[[

[

1 1 1
1 w3 w2

3
1 w2

3 w4
3

]]

]

then F−13 =
1
3
[[

[

1 1 1
1 w−13 w−23
1 w−23 w−43

]]

]

,

Fn =

[[[[[[[

[

1 1 1 … 1
1 wn w2

n … wn−1
n

1 w2
n w4

n … w2(n−1)
n

⋮ ⋮ ⋮ … ⋮
1 wn−1

n w2(n−1)
n … w(n−1)2n

]]]]]]]

]

then

F−1n =
1
n

[[[[[[[

[

1 1 1 … 1
1 w−1n w−2n … w−(n−1)n
1 w−2n w−4n … w−2(n−1)n
⋮ ⋮ ⋮ … ⋮
1 w−(n−1)n w−2(n−1)n … w−(n−1)2n

]]]]]]]

]

.
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4.3.12. Check whether the following system of vectors are linearly independent:

(a) U1 = (1 − i, 1 + i, 2), U2 = (1 + i, 1 − i,5),
U3 = (2 + i,3, 1 − i);

(b) U1 = (1 − i, 1 + i, 2), U2 = (2 + 3i, 2 + i, 1 − i),
U3 = (4 + i,4 + 2i,5 − i).

4.3.13. Construct four 4× 1 vectors in C4 such that they form an orthonormal (unitary)
system.

4.3.14. Construct 3 orthonormal 4 × 1 vectors U1,U2,U3 in C4 such that

(U1,U2,U3)∗(U1,U2,U3) = I3.

4.3.15. Construct 3 examples each of (1) 2 × 2, (3) 3 × 3, (3) 4 × 4 Hermitian matrices.

4.3.16. Construct 3 examples each of (1) 2 × 2, (2) 3 × 3, (3) 4 × 4 skew Hermitian ma-
trices.

4.3.17. Let A be an n × n matrix whose elements are in the complex field. Show that
one can always construct a Hermitian matrix B as a function of A.

4.3.18. Let A be an n × n matrix whose elements are in the complex field. Show that
one can always construct a skew Hermitian matrix C as a function of A.

4.3.19. If A is an n × n matrix and A∗ its conjugate transpose then show that (1) B =
(A + A∗)/2 is Hermitian and (2) C = (A − A∗)/2 is skew Hermitian.

4.3.20. Compute the eigenvalues and the corresponding eigenvectors of the matrix

A = [ 1 1 − i
−1 2 + i

] .

4.3.21. Compute the eigenvalues of the matrices in one example each in (1) and (2) of
Exercise 4.3.15. Is there any interesting property that you see for these eigenvalues?

4.3.22. Compute the eigenvalues of the matrices in one example each in (1) and (2) of
Exercise 4.3.16. Is there any interesting property for these eigenvalues? What can you
say about the singularity of the matrices in your examples?

4.3.23. If A is Hermitian show that Ak is Hermitian for k a positive integer.

4.3.24. If A2 is Hermitian is A Hermitian? Justify your answers.

4.3.25. Find the rank of the following matrix:

A = [[
[

2 + 3i 2 5 − i
2 − i 1 + i 3
2i −4 1 − i

]]

]
and if it is nonsingular then evaluate the regular inverse of A.
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4.3.26. Find nonsingular matrices R and S such that B = RAS where

A = [1 + i 2
3 − i i

] , B = [ 2i −3
3 + i 1 − i

] .

4.3.27. Solve the following system of linear equations:

(2 + i)x1 − x2 + (5 + i)x3 = 1 − i
3ix1 + (1 + i)x2 − x3 = 2 + i
x1 − x2 + (1 + i)x3 = 7.

4.3.28. Let A and B be n× nmatrices. Show that AB and BA have the same character-
istic polynomials and the same eigenvalues.

4.3.29. For square matrices A and B if AB = BA then show that A and B have at least
one common eigenvector.

4.3.30. If λ0 is an eigenvalue of an n × n matrix A and if P(λ) is any polynomial in λ
then show that P(λ0) is an eigenvalue of P(A). If

P(λ) = b0 + b1λ +⋯+ bkλk then P(A) = b0I + b1A +⋯+ bkAk .

4.4 More properties of matrices in the complex field

Since we have introduced vectors and matrices whose elements are in the complex
field we are in a better position to derive more properties of matrices. One of the prop-
erties that wewould like to investigate is concernedwith the eigenvalues of symmetric
andHermitianmatrices.What about the eigenvalues of a real symmetricmatrix? From
our numerical examples in Sections 4.1 and 4.2 we have seen that even if the elements
of a matrix are real their eigenvalues as well as eigenvectors could be in the complex
space.

4.4.1 Eigenvalues of symmetric and Hermitian matrices

If we confine our discussion to symmetric matrices with real elements (real symmetric
matrices) do we have any interesting results? Let A = A′ and real. Let λ1 be an eigen-
value of A and X1 a corresponding eigenvector. Then

AX1 = λ1X1 ⇒ X∗1 A∗ = λc1X∗1 (a)

where a ∗ indicates the conjugate transpose and c indicates the complex conjugate.
But since A is real and symmetric A∗ = A itself. Let us postmultiply (a) by X1. Then

X∗1 AX1 = λc1X∗1 X1. (b)
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ButX∗1 X1 = ‖X1‖2 = a real nonzero quantity. NowpremultiplyAX1 = λ1X1 byX∗1 to obtain

X∗1 AX1 = λ1X∗1 X1. (c)

From (b) and (c)

(λ1 − λc1 )X∗1 X1 = 0 ⇒ λ1 = λc1

since X∗1 X1 = ‖X1‖2 ≠ 0. Then λ1 = λc1 means that λ1 is real. Thus we have the following
important property.

(i) The eigenvalues of a real symmetric matrix are all real.

Since Hermitian matrices in the complex field and the real symmetric matrices have
many parallel properties let us look at the eigenvalues of a Hermitian matrix A. If A is
Hermitian then A = A∗. Let

A = A1 + iA2 then A = A∗ ⇒ A1 = A′1 , A′2 = −A2.

Let λ1 be an eigenvalue of A and X1 a corresponding eigenvector, λc1 the complex con-
jugate of λ1 and X∗1 the conjugate transpose of X1. Then

AX1 = λ1X1 ⇒ X∗1 A∗ = λc1X∗1 ,
⇒ X∗1 A = λc1X∗1 since A = A∗

X∗1 AX1 = λc1X∗1 X1. (d)

From AX1 = λ1X1 we have

X∗1 AX1 = λ1X∗1 X1. (e)

From (d) and (e), λ1 = λc1 or λ1 is real. Thus we have another important result. Note that
the step in (d) above holds if the matrix A is real symmetric or Hermitian symmetric.
If A is symmetric but with some of the elements complex then (d) and (e) need not
hold. Then when you take the conjugate transpose it need not be equal to the original
matrix. Hence symmetry is not sufficient. Either A should be real and symmetric or
Hermitian. Then only we can guarantee that the eigenvalues are real.

(ii) The eigenvalues of a Hermitian matrix are all real.

Example 4.4.1. Compute the eigenvalues and the eigenvectors of

A = [ 2 1 + i
1 − i 3

] .
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Solution 4.4.1. Note that A is Hermitian since A = A∗, and hence we can expect real
eigenvalues. Consider

|A − λI| = 0 ⇒ |2 − λ 1 + i
1 − i 3 − λ

| = 0

⇒ (2 − λ)(3 − λ) − (1 + i)(1 − i) = 0
⇒ λ2 − 5λ + 4 = 0 or λ1 = 1, λ2 = 4

are the eigenvalues. For λ1 = 1,

(A − λ1I)X = O ⇒ [
2 − 1 1 + i
1 − i 3 − 1

][
x1
x2
] = [

0
0
]

⇒ [
1 1 + i

1 − i 2
][

x1
x2
] = [

0
0
] .

Are the two rows of A − λ1I linearly dependent? They must be, otherwise we made
some computational errors somewhere. Multiply the first row by (1 − i), that is,

[1 − i, (1 − i)(1 + i)] = [1 − i, 2]

which is the second row. Taking the first equation

x1 + (1 + i)x2 = 0 ⇒ X1 = (
−1 − i
1
)

is one solution. Now, consider λ2 = 4.

(A − λ2I)X = O ⇒ [
2 − 4 1 + i
1 − i 3 − 4

][
x1
x2
] = [

0
0
]

⇒ (1 − i)x1 − x2 = 0

⇒ X2 = (
1

1 − i
)

is a vector corresponding to λ2. A matrix of eigenvectors in this case is given by

Q = [−1 − i 1
1 1 − i

] with its inverse Q−1 = [
−1+i
3

1
3

1
3

1+i
3
] .

Hence in this case we can have a representation of the form A = QΛQ−1, that is,

[
2 1 + i

1 − i 3
] = [
−1 − i 1
1 1 − i

][
1 0
0 4
][
−1+i
3

1
3

1
3

1+i
3
] .
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Example 4.4.2. Compute the eigenvalues and eigenvectors of

A = [ 2i 1 + i
−1 + i 3i

] .

Solution 4.4.2. Note that our matrix A here is skew Hermitian. Consider

|A − λI| = 0 ⇒ |2i − λ 1 + i
−1 + i 3i − λ

| = 0

⇒ λ2 − 5iλ − 4 = 0

⇒ λ =
5i ±√(5i)2 − (4)(−4)

2
= 5i ± 3i

2
⇒ λ1 = i, λ2 = 4i

are the eigenvalues. An eigenvector corresponding to λ1 = i is available from

(A − λ1I)X = O ⇒ [
2i − i 1 + i
−1 + i 3i − i

][
x1
x2
] = [

0
0
]

⇒ ix1 + (1 + i)x2 = 0.

For x2 = 1, x1 = −
1+i
i = −

(1+i)(i)
i2 = −1 + i. Hence one vector is

X1 = (
−1 + i
1
) .

Now, consider

(A − λ2I)X = O ⇒ (−1 + i)x1 − ix2 = 0.

For x2 = 1, x1 =
i
−1+i =

i(−1−i)
2 =

1−i
2 . One vector corresponding to λ2 = 4i is then

X2 = (
1−i
2
1
) .

A matrix of eigenvectors is therefore

Q = [−1 + i
1−i
2

1 1
] with Q−1 = 2

3
[
− 1
1−i

1
2

1
1−i 1
] .

Note that A can be written as A = QΛQ−1 in this case also. (Verification is left to the
student.)

One observation can be made from this example. We get the eigenvalues of this
skew Hermitian matrix as purely imaginary. Is this a general property? Let us investi-
gate this further. Let A be a general skew Hermitian matrix. Then

A∗ = −A, A = A1 + iA2 ⇒ A′1 = −A1, A′2 = A2.
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Let X1 be an eigenvector of A corresponding to an eigenvalue λ1. Then

AX1 = λ1X1 ⇒ X∗1 AX1 = λ1X∗1 X1. (a)
(AX1)∗ = X∗1 A∗ = −X∗1 A ⇒ −X∗1 AX1 = λc1X∗1 X1. (b)

From (a) and (b) we have, since X∗1 X1 = ‖X1‖2 ≠ 0,

λ1 + λc1 = 0.

This means the real part of λ1 is zero or λ1 = 0. Thus the eigenvalues of a skew Hermi-
tian matrix have to be purely imaginary or zero.

(iii) The eigenvalues of a skew Hermitian matrix are purely imaginary or zero.
(iv) The eigenvalues of a real skew symmetric matrix are purely imaginary or zero.

Since the complex roots appear in pairs we have an interesting result. There cannot be
an odd number of purely imaginary roots. Then if the order n is odd and if thematrix is
skew symmetric or skew Hermitian then it must be singular because at least one root
must be zero.

(v) If an n× nmatrix A is real skew symmetric or skew Hermitian then A is singular
if n is odd and the determinant of A, being product of eigenvalues, is the square of
real number if n is even. I + A and I − A are nonsingular.

Let us examine the eigenvalues of a unitary matrix. Let Q be a unitary matrix. Then

QQ∗ = I , Q∗Q = I .

Let λ1 be an eigenvalue of Q and X1 an eigenvector corresponding to λ1. Then

QX1 = λ1X1 ⇒ X∗1 Q∗ = λc1X∗1 (α)
⇒ X∗1 Q∗X1 = λc1X∗1 X1.

From (α), premultiplying the first part by Q∗, we have

X1 = λ1Q∗X1 ⇒ X∗1 X1 = λ1X∗1 Q∗X1 = λ1λc1X∗1 X1
⇒ λ1λc1 = 1⇒ |λ1|2 = 1.

(vi) The eigenvalues of a unitarymatrix are such that the absolute value of the roots
are 1, that is, if λ is a root then λλc = 1.
(vii) Every real square matrix can be written as a sum of a symmetric and a skew
symmetric matrix. [Let B = A+A′

2 and C = A−A′
2 , B′ = B, C′ = −C.]
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(viii) Every square matrix can be written as the sum of a Hermitian and a skew Her-
mitian matrix.
(ix) Every square matrix can be written as a sum of two nonsingular matrices.

We had seen from Chapter 2 that every square matrix can be written as A = PDQ
through elementary operations, where P and Q are nonsingular, D is diagonal and A
is n × n. Let D = diag(d1,… ,dr ,0,… ,0) where dj ≠ 0, j = 1,… , r. Write, for example,

D = D1 +D2, D1 = diag(
d1
2
,… , dr

2
,dr+1,… ,dn),

D2 = diag(
d1
2
,… , dr

2
, −dr+1,… ,−dn)

where dj ≠ 0, j = r + 1,… ,n. Then both PD1Q and PD2Q are nonsingular and the sum
is A.

(x) If P and Q are unitary n× nmatrices then PQ as well as QP are unitary matrices.
(xi) If the determinant of A, that is, |A| = a + ib then |A∗| = a − ib which means that
|A| is real if A = A∗ (Hermitian).
(xii) Complex eigenvalues appear in pairs. If a+ ib is an eigenvalue of a givenmatrix
A then a − ib is also an eigenvalue of A.

Example 4.4.3. Express A as a sum of a symmetric and a skew symmetric matrix and
B as the sum of a Hermitian and a skew Hermitian matrix, where

A = [[
[

1 2 −2
3 1 5
2 4 −2

]]

]

, B = [[
[

2 + 3i 1 − i 2 + i
1 + 2i 3 + i 1 + 2i
2 − i 2 + 5i 7i

]]

]

.

Solution 4.4.3. Let

A1 =
1
2
[A + A′] = 1

2
[[

[

1 2 −2
3 1 5
2 4 −2

]]

]

+ 1
2
[[

[

1 3 2
2 1 4
−2 5 −2

]]

]

= [[

[

1 5
2 0

5
2 1 9

2
0 9

2 −2

]]

]

= A′1 .

Let

A2 =
1
2
[A − A′] = 1

2
[[

[

1 2 −2
3 1 5
2 4 −2

]]

]

−
1
2
[[

[

1 3 2
2 1 4
−2 5 −2

]]

]

= [[

[

0 − 12 −2
1
2 0 1

2
2 − 12 0

]]

]

= −A′2, A = A1 + A2.
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Let

B1 =
1
2
[B + B∗]

= 1
2
[[

[

2 + 3i 1 − i 2 + i
1 + 2i 3 + i 1 + 2i
2 − i 2 + 5i 7i

]]

]

+ 1
2
[[

[

2 − 3i 1 − 2i 2 + i
1 + i 3 − i 2 − 5i
2 − i 1 − 2i −7i

]]

]

= [[

[

2 1 − 32 i 2 + i
1 + 32 i 3 3

2 −
3
2 i

2 − i 3
2 +

3
2 i 0

]]

]

= B∗1 .

Let

B2 =
1
2
[B − B∗] = [[

[

3i 1
2 i 0

1
2 i i − 12 +

7
2 i

0 1
2 +

7
2 i 7i

]]

]

= −B∗2 , B = B1 + B2.

Example 4.4.4. Write the followingmatrices as the sumof two nonsingularmatrices:

A = [[
[

1 0 1
2 1 −1
0 1 2

]]

]

, B = [[
[

1 0 1
2 1 −1
3 1 0

]]

]

.

Solution 4.4.4. By inspection |A| ≠ 0, |B| = 0. That is, A is nonsingular and B is sin-
gular. Then A can always be written as

A = A1 + A2, A1 = αA, A2 = (1 − α)A, α ≠ 0,

where both A1 and A2 are nonsingular. Hence we look at B. One way of doing it is
to look for a representation B = QDQ−1 where Q is a matrix of eigenvectors. For this
procedure we need the eigenvectors and we cannot tell in advance whether Q will
be nonsingular. Hence consider pre and post multiplications by elementary matrices.
This process will always produce two nonsingular matrices. Let

F1 =
[[

[

1 0 0
−2 1 0
0 0 1

]]

]

, F−11 =
[[

[

1 0 0
2 1 0
0 0 1

]]

]

,

F1B =
[[

[

1 0 1
0 1 −3
3 1 0

]]

]

, F2 =
[[

[

1 0 0
0 1 0
−3 0 1

]]

]

,

F−12 =
[[

[

1 0 0
0 1 0
3 0 1

]]

]

, F2F1B =
[[

[

1 0 1
0 1 −3
0 1 −3

]]

]

F3 =
[[

[

1 0 0
0 1 0
0 −1 1

]]

]

, F−13 =
[[

[

1 0 0
0 1 0
0 1 1

]]

]

,
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F3F2F1B =
[[

[

1 0 1
0 1 −3
0 0 0

]]

]

,

F4 =
[[

[

1 0 −1
0 1 0
0 0 1

]]

]

, F−14 =
[[

[

1 0 1
0 1 0
0 0 1

]]

]

,

F3F2F1BF4 =
[[

[

1 0 0
0 1 −3
0 0 0

]]

]

, F5 =
[[

[

1 0 0
0 1 3
0 0 1

]]

]

,

F−15 =
[[

[

1 0 0
0 1 −3
0 0 1e

]]

]

,

F3F2F1BF4F5 =
[[

[

1 0 0
0 1 0
0 0 0

]]

]

= D.

Then

B = F−11 F−12 F−13 DF−15 F−14 .

Let

P = F−11 F−12 F−13 =
[[

[

1 0 0
2 1 0
0 0 1

]]

]

[[

[

1 0 0
0 1 0
3 0 1

]]

]

[[

[

1 0 0
0 1 0
0 1 1

]]

]

= [[

[

1 0 0
2 1 0
3 1 1

]]

]

,

Q = F−15 F−14 =
[[

[

1 0 0
0 1 −3
0 0 1

]]

]

[[

[

1 0 1
0 1 0
0 0 1

]]

]

= [[

[

1 0 1
0 1 −3
0 0 1

]]

]

.

Here P and Q are nonsingular since they are products of the basic elementary matri-
ces. But D can be written in many ways as the sum to two nonsingular matrices. For
example,

D = D1 +D2, D1 =
[[

[

3 0 0
0 2 0
0 0 4

]]

]

, D2 =
[[

[

−2 0 0
0 −1 0
0 0 −4

]]

]

.

Then

B = B1 + B2, B1 = PD1Q, B2 = PD2Q.
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Example 4.4.5. Show that one eigenvalue of a singly stochastic matrix (Markov ma-
trix) is 1 and illustrate it by computing the eigenvalues of

A = [[
[

0.2 0.5 0.3
0.5 0 0.5
0.4 0.2 0.4

]]

]

.

Solution 4.4.5. Consider the equation |A − λI| = 0. Add all the columns of A − λI to
the first column, the determinant remains the same. The first column becomes 1 − λ
repeated. Take out 1 − λ. [If the columns have this property then add all rows to the
first row. Then take out 1 − λ from the first row.] Thus, in general, when the matrix is a
Markov matrix one eigenvalue is 1. For the example above

|A − λI| = ||
|

0.2 − λ 0.5 0.3
0.5 −λ 0.5
0.4 0.2 0.4 − λ

||

|

= ||

|

1 − λ 0.5 0.3
1 − λ −λ 0.5
1 − λ 0.2 0.4 − λ

||

|

= (1 − λ) ||
|

1 0.5 0.3
1 −λ 0.5
1 0.2 0.4 − λ

||

|

.

Add −0.5 times the first column to the second column and −0.3 times the first column
to the third column. Then

|A − λI| = (1 − λ) ||
|

1 0 0
1 −λ − 0.5 0.2
1 −0.3 0.1 − λ

||

|

= (1 − λ) |−λ − 0.5 0.2
−0.3 0.1 − λ

|

= (1 − λ)[(−λ − 0.5)(0.1 − λ) − (−0.3)(0.2)]

= (1 − λ)(λ2 + 0.4λ + 0.01).

The roots are λ1 = 1, λ2 = −0.2 +√0.03, λ3 = −0.2 −√0.03. Note that |λ2| < 1, |λ3| < 1.

(xiii) One eigenvalue of a singly stochastic matrix (Markov matrix) is 1.

Note that the sum of the eigenvalues equals the trace. But the diagonal elements of
a Markov matrix are non-negative and less than or equal to 1. The maximum value
attainable for the trace of an n × nmatrix is n, out of which one eigenvalue is 1. Hence
the maximum value for the sum of the remaining eigenvalues is only n − 1. We can
show by using the property that powers of Markov matrices are also Markov matrices
that the remaining roots satisfy the condition |λj| ≤ 1 for all j.
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4.4.2 Definiteness of matrices

So far we have given three definitions for the definiteness of a real symmetric matrix,
one definition in terms of quadratic forms, another in terms of determinants of the
leading submatrices and a third in terms of the eigenvalues. Are these three definitions
equivalent? For example an n×nmatrixAwith real elements and symmetric is positive
definite if
(1) the quadratic formX′AX remainspositive for all possible non-nullX (definition 1);
(2) the leading or principal minors of A are all positive (definition 2);
(3) the eigenvalues are all positive (definition 3).

Are definitions (1) and (3) equivalent?WhenA is real symmetric it is trivial to show that
there exists a full set of orthonormal eigenvectors (part of it is established in property
(x) of Section 4.2 and for the remaining part see Exercise 4.4.6 (7)) so that

A = PDP′, PP′ = I , P′P = I

and D is a diagonal matrix with the diagonal elements being the eigenvalues of A.
Then

X′AX = X′PDP′X = Y′DY
= λ1y21 +⋯+ λny2n, Y = P′X,

D = diag(λ1,… ,λn).

For arbitrary real X which means for arbitrary real Y if X′AX > 0 then

λ1y21 +⋯+ λny2n > 0

for all Y′ = (y1,… ,yn). Put y1 = 0,… ,yj−1 = 0,yj+1 = 0,… ,yn = 0. Then λjy2j > 0. Since yj
is real, this means that λj > 0, j = 1,… ,n. By retracing the steps the converse is true.
Note that the matrix appearing in the quadratic form can be taken as symmetric with-
out any loss of generality.

Now let us look at the definitions (1) and (2). Assume that X′AX > 0 for all possible
non-nullX,A = (aij) = A′. LetX′ = (x1,… ,xn). Put x2 = 0 =⋯ = xn. Then a11x21 > 0. Then
a11 > 0 since x21 > 0 for real nonzero x1. Now put x3 = 0 =⋯ = xn. Then

[x1,x2] [
a11 a12
a12 a22

][
x1
x2
] > 0

for all x1 and x2. This means

A2 = [
a11 a12
a12 a22

]
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is positive definite. Then by definition (3) the eigenvalues of A2 must be positive and
hence its determinant is positive, |A2| > 0. Continuing like this the determinants of all
the leading sub-matrices are positive.

When looking at negative definiteness note that when all the eigenvalues of ama-
trix are negative product of an odd number of them will be negative and the product
of an even number of them will be positive. We will be looking at the eigenvalues of
the leading sub-matrices A1,A2,… ,An when following through the above arguments
to show the equivalence of all the definitions for negative definiteness.

(xiv) If an n × n matrix A = A′ = (aij) is real and positive definite then aii > 0, i =
1,… ,n.
(xv) When the n × n matrix A is real symmetric then there exist a full set of n or-
thonormal eigenvectors or there exists a matrix P such that P′AP = Λ, PP′ = I,
P′P = I where Λ is diagonal with the diagonal elements being the eigenvalues of A.
(xvi) When the n × n matrix A is Hermitian there exists a full set of n orthonormal
eigenvectors or there exists a matrix Q such that Q∗AQ = Λ, QQ∗ = I, Q∗Q = I .
(xvii) Eigenvectors corresponding to real eigenvalues of a real matrix are real.

Observe that when the elements in a matrix are real one can have the eigenvalues
real, rational, irrational or complex. Then the eigenvectors corresponding to irrational
eigenvalues will be irrational and eigenvectors corresponding to complex eigenvalues
will be complex. When a matrix has complex elements then also the eigenvalues can
be real, rational, irrational or complex.

Definition 4.4.1 (Hermitian definiteness). A Hermitian matrix is said to be (1) posi-
tive definite, (2) positive semi-definite, (3) negative definite, (4) negative semi-definite,
(5) indefinite if the eigenvalues are (1) all positive, (2) non-negative, (3) negative, (4)
negative or zero, (5) some are positive and some are negative and at least one in each
set. [Remember that the eigenvalues of a Hermitian matrix are real.]

Example 4.4.6. Reduce the following real quadratic form u = x21 − 2x1x2 + 2x22 to its
canonical form (linear combination of squares) through the eigenvalues as well as
through a different method.

Solution 4.4.6. Writing the quadratic form with a symmetric matrix, we have

u = X′AX = [x1,x2] [
1 −1
−1 2
][

x1
x2
] ,

A = [ 1 −1
−1 2
] .
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Let us evaluate the eigenvalues and eigenvectors of A. Consider the equation

|A − λI| = 0 ⇒ (1 − λ)(2 − λ) − 1 = 0
⇒ λ2 − 3λ + 1 = 0

⇒ λ1 =
3
2
+
√5
2
, λ2 =

3
2
−
√5
2

are the eigenvalues. An eigenvector corresponding to λ1 is given by

(A − λ1I)X = O ⇒ [
1 − ( 32 +

√5
2 ) −1

−1 2 − ( 32 +
√5
2 )
][

x1
x2
] = [

0
0
]

⇒ X1 = [
1

− 12 (1 +√5)
]

with ‖X1‖ = α, say, is an eigenvector. Then thenormalizedX1 isY1 =
1
αX1. Aneigenvector

corresponding to λ2 is given by

(A − λ2I)X = O ⇒ X2 = [
1

− 12 (1 −√5)
]

is an eigenvector. The normalized vector is Y2 =
1
βX2 where β = ‖X2‖. Let

Q = (Y1,Y2).

Since Y′1 Y2 = 0, Y′1 Y1 = 1, Y′2Y2 = 1 the matrix Q is orthonormal and its inverse is its
transpose. Also

A = QΛQ′ ⇒ Q′AQ = Λ = diag(λ1,λ2).

Writing

u = X′AX = X′QΛQ′X = Z′ΛZ, Z = Q′X, Z′ = (z1, z2).
u = λ1z21 + λ2z22

= (3 +
√5
2
)z21 + (

3 −√5
2
)z22 .

This is one representation through the eigenvalues. Let us consider another procedure.
Since A is symmetric try to reduce A to a diagonal form by elementary operations:

[
1 0
1 1
][

1 −1
−1 2
][

1 1
0 1
] = [

1 0
0 1
] ⇒

[
1 −1
−1 2
] = [

1 0
−1 1
][

1 0
0 1
][

1 −1
0 1
] .
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Let

Y = [1 −1
0 1
]X

= [
1 −1
0 1
][

x1
x2
] = [

x1 − x2
x2
] .

Then

u = X′AX = Y′DY , D = (1 0
0 1
) ⇒

u = y21 + y22 , y1 = x1 − x2, y2 = x2.

Note that the two representations are not the same.

4.4.3 Commutative matrices

One property, repeatedly used inmany branches of statistics, econometrics, engineer-
ing and other areas is the simultaneous reduction of two matrices to diagonal forms.
Let A and B be two n × nmatrices. If there exists a Q such that

QAQ−1 = D1 and QBQ−1 = D2,

where D1 and D2 are diagonal, that is, the same matrix Q diagonalizes both A and B,
then what should be the conditions on A and B? We will investigate this aspect a little
bit further. If there exists a Q then

(QAQ−1)(QBQ−1) = D1D2 = D2D1

⇒ QABQ−1 = D1D2

⇒ AB = Q−1D2D1Q = (Q−1D2Q)(Q−1D1Q) = BA.

ThatmeansA and B commute. Now, supposeA and B commute, that is,AB = BA. Does
there exist aQ such thatQAQ−1 = D1 andQBQ−1 = D2? For simplicity let us assume that
the eigenvalues of A are distinct so that there exists a full set of linearly independent
eigenvectors forAwhichmeans there exists aQwith its regular inverseQ−1. [The result
can also be proved without this restriction, the steps will be longer.] Then

QAQ−1 = D1.

Let λ1 be an eigenvalue of A with X1 a corresponding eigenvector. Then

AX1 = λ1X1 ⇒ BAX1 = λ1BX1.
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But BA = AB which means

ABX1 = λ1BX1 ⇒ A(BX1) = λ1(BX1).

This shows that X1 and BX1 are eigenvectors of A for the same eigenvalue λ1. By as-
sumption the eigenvalues are distinct. Then the null space of (A− λ1I)X = O has rank 1
which means X1 and BX1 are scalar multiples of each other or BX1 = μ1X1. This shows
that A and B have the same eigenvectors. Thus the same Q will diagonalize B also.
Hence we have a very important result.

(xviii) There exists a Q such that QAQ−1 is diagonal and QBQ−1 is diagonal simulta-
neously if and only ifA andB commute, that is, iffAB = BA. IfA andB are symmetric
then Q−1 = Q′ the transpose of Q. If A and B are Hermitian then Q−1 = Q∗ the conju-
gate transpose of Q.
(xix) If the eigenvalues of amatrixA are all distinct then thenull spaceof (A−λjI)X =
O has rank 1 where λj is any eigenvalue of A.

Chisquaredness and independence of quadratic forms in real Gaussian random vari-
ables are the two fundamental results in statistical inference problems connectedwith
regression analysis, analysis of variance, analysis of covariance, model building and
many related areas. Without the statistical terminology we will illustrate the results
here.

Example 4.4.7. Let A = A′ be a real n × n matrix. Consider the real quadratic form
X′AX. Then show that X′AX can be written as

X′AX = y21 +⋯+ y2r , r ≤ n,

that is as a sum of squares, if and only if A is idempotent of rank r. [This corresponds
to the result on chisquaredness in statistics.]

Solution 4.4.7. When A = A′ there exists an orthonormal matrix P such that

P′AP = D = diag(λ1,… ,λn)

where λ1,… ,λn are the eigenvalues of A. Let P′X = Y , Y′ = (y1,… ,yn). Then

X′AX = X′PDP′X = Y′DY = λ1y21 +⋯+ λny2n. (a)

If A = A2 (idempotent) of rank r then r of the λj ’s are 1 each and the remaining ones
are zeros. Then

X′AX = y21 +⋯+ y2r .
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Now, assume that X′AX = y21 +⋯+y2r holds. Then from (a) it follows that r of the eigen-
values are 1 each and the remaining are zeros. Since A is symmetric eigenvalues being
1’s and zeros imply that A is idempotent. [If A is not symmetric then eigenvalues being
1’s and zeros need not imply that A is idempotent.]

Example 4.4.8. Let A and B be real symmetric n × nmatrices. Let X′AX and X′BX be
two real quadratic forms. Then show that

X′AX = λ1y21 +⋯+ λry2r and
X′BX = λr+1y2r+1 +⋯+ λky2k , r < n, k ≤ n,

(where the yj ’s appearing in X′AX do not appear in X′BX) iff AB = O. [This result cor-
responds to the result on statistical independence of quadratic forms.]

Solution 4.4.8. Assume that AB = O. Then (AB)′ = B′A′ = BA = O. That is, AB = BA.
Since both matrices are real symmetric and since they commute there exists an or-
thonormal matrix P such that

P′AP = D1, P′BP = D2

where D1 and D2 are diagonal. But

AB = O ⇒ P′ABP = O ⇒ P′APP′BP = O ⇒ D1D2 = O.

That is, if there is a nonzero diagonal element in D1 the corresponding diagonal ele-
ment in D2 is zero and vice versa. Let Y = P′X. Then

X′AX = Y′D1Y

a linear function of y2j ’s for r of the yj ’s if r is the rank of A. Writing them as y21 ,… ,y2r
we have

X′AX = λ1y21 +⋯+ λry2r . (a)

If s is the rank of B then s of the yj ’s, which are not in the X′AX representation, will be
present in X′BX. That is, X′BX will be of the form

X′BX = λr+1y2r+1 +⋯+ λr+sy2r+s. (b)

For convenience, all the nonzero diagonal elements are denoted as λ1,… ,λr+s. This
establishes one part. Now if we assume that the physical separation of the variables
as in (a) and (b) above then by retracing the steps we can show that AB must be null
when A = A′ and B = B′ and real. [The statistical property of independence need not
imply physical separation of the variables as in (a) and (b) above. Hence the converse,
that is, to show that AB = O from the property of independence involves a few more
steps from the implications of statistical independence. Therefore we will not discuss
the proof here. For a proof see [7].]
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(xx) Let A1,… ,Ak be n × n matrices so that AiAj = AjAi for all i and j. Then there
exists the same matrix Q such that Q−1AjQ = Dj, j = 1,… ,k where Dj is diagonal.

Definition 4.4.2 (A Hermitian form). Let X be an n × 1 vector and A an n × n matrix
whose elements are in the complex field. Further, let A = A∗ (Hermitian). Then u =
X∗AX is called a Hermitian form, analogous to a quadratic form in the real case.

A Hermitian form is always real since u is 1 × 1 and further

u∗ = (X∗AX)∗ = X∗A∗(X∗)∗ = X∗AX = u.

If u = a + ib then u∗ = a − ib. If u = u∗ then b = 0 or u is real.

Example 4.4.9. Reduce the following Hermitian form to its canonical form.

u = 2xc1 x1 + (1 − i)xc3x1 + 2xc2x2 + (1 − i)xc3x2
+ (1 + i)xc1 x3 + (1 + i)xc2x3 + xc3x3.

Solution 4.4.9. Writing in the standard form X∗AX we have

X∗AX = [xc1 ,xc2 ,xc3]
[[

[

2 0 1 + i
0 2 1 + i
1 − i 1 − i 1

]]

]

[[

[

x1
x2
x3

]]

]

.

Let us find the eigenvalues of A. Consider

|A − λI| = 0 ⇒ ||
|

2 − λ 0 1 + i
0 2 − λ 1 + i
1 − i 1 − i 1 − λ

||

|

= 0

⇒ λ1 = 2, λ2 =
3
2
+
√17
2
, λ3 =

3
2
−
√17
2
.

Let us compute the eigenvectors.

(A − λ1I)X = O ⇒
[[

[

0 0 1 + i
0 0 1 + i
1 − i 1 − i −1

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X1 =
[[

[

1
−1
0

]]

]
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is one eigenvector. Consider

(A − λ2I)X = O ⇒
[[[

[

1
2 −
√17
2 0 1 + i

0 1
2 −
√17
2 1 + i

1 − i 1 − i − 12 −
√17
2

]]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X2 =
[[

[

(1 + i) (1+√17)8
(1 + i) (1+√17)8

1

]]

]

is one such vector. From (A − λ3I)X = O an X3 is given by

X3 =
[[[

[

(1 + i) (1−√17)8

(1 + i) (1−√17)8
1

]]]

]

.

Note that X∗1 X2 = 0, X∗1 X3 = 0, X∗2 X3 = 0. Let α = ‖X1‖, β = ‖X2‖ and γ = ‖X3‖ be the
lengths. Let the normalized vectors be

Y1 =
1
α
X1, Y2 =

1
β
X2, Y3 =

1
γ
X3 and Q = (Y1,Y2,Y3).

Then

A = QΛQ∗, Q∗Q = I , QQ∗ = I .

Let

Y = Q∗X = [[[
[

1
α (1, −1,0)

1
β ((1 − i)

(1+√17)
8 , (1 − i)

(1+√17)
8 , 1)

1
γ ((1 − i)

(1−√17)
8 , (1 − i)

(1−√17)
8 , 1)

]]]

]

[[

[

x1
x2
x3

]]

]

⇒

y1 =
1
α
(x1 − x2),

y2 =
1
β
[(1 − i) (1 +

√17)
8
(x1 + x2) + x3],

y3 =
1
γ
[(1 − i) (1 −

√17)
8
(x1 + x2) + x3].

Then

X∗AX = 2|y1|2 +
1
2
(3 +√17)|y2|2 +

1
2
(3 −√17)|y3|2.

Verifications of the various steps are left to the student.
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Definition 4.4.3 (The canonical form). The canonical form of a Hermitian form is
given by

X∗AX = λ1|y1|2 +⋯+ λn|yn|2

where |yj| denotes the absolute value of yj, j = 1,… ,n, Y′ = (y1,… ,yn) and λ1,… ,λn are
scalars.

Example 4.4.10. Reduce the Hermitian form in Example 4.4.9 to its canonical form
by a sweep-out process (by elementary operations).

Solution 4.4.10. Consider the following elementary matrices. F1,F∗1 ,F2,F∗2 where

F1 =
[[

[

1 0 0
0 1 0
− 12 (1 − i) 0 1

]]

]

⇒ F−11 =
[[

[

1 0 0
0 1 0

1
2 (1 − i) 0 1

]]

]

,

F2 =
[[

[

1 0 0
0 1 0
0 − 12 (1 − i) 1

]]

]

⇒ F−12 =
[[

[

1 0 0
0 1 0
0 1

2 (1 − i) 1

]]

]

.

Since A in this case is Hermitian we operate on the left of A by F1 and on the right by
F∗1 , the conjugate transpose of F1. (In the real symmetric case we operate on the right
with the transpose of the elementary matrix. In the complex case we operate on the
right with the conjugate transpose.) Thus

F1AF∗1 =
[[

[

1 0 0
0 1 0
− 12 (1 − i) 0 1

]]

]

[[

[

2 0 1 + i
0 2 1 + i
1 − i 1 − i 1

]]

]

[[

[

1 0 1
2 (1 + i)

0 1 0
0 0 1

]]

]

= [[

[

2 0 0
0 2 1 + i
0 1 − i 0

]]

]

.

Now let B = F2F1AF∗1 F∗2 then

B = [[
[

1 0 0
0 1 0
0 − 12 (1 − i) 1

]]

]

[[

[

2 0 0
0 2 1 + i
0 1 − i 0

]]

]

[[

[

1 0 0
0 1 − 12 (1 + i)
0 0 1

]]

]

= [[

[

2 0 0
0 2 0
0 0 −1

]]

]

= D, say.

Then

A = F−11 F−12 D(F−11 F−12 )
∗ = QDQ∗

= [[

[

1 0 0
0 1 0

1
2 (1 − i)

1
2 (1 − i) 1

]]

]

[[

[

2 0 0
0 2 0
0 0 −1

]]

]

[[

[

1 0 1
2 (1 + i)

0 1 1
2 (1 + i)

0 0 1

]]

]

.
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By straightmultiplicationof thematrices on the rightwe canverify the result. Consider
the transformation Y = Q∗X. That is,

Y = [[
[

y1
y2
y3

]]

]

= [[

[

1 0 1
2 (1 + i)

0 1 1
2 (1 + i)

0 0 1

]]

]

[[

[

x1
x2
x3

]]

]

⇒

y1 = x1 +
1
2
(1 + i)x3, y2 = x2 +

1
2
(1 + i)x3, y3 = x3.

Then

X∗AX = Y∗DY = 2|y1|2 + 2|y2|2 − |y3|2.

For example,

|y1|2 = y1yc1 = [x1 +
1
2
(1 + i)x3][xc1 +

1
2
(1 − i)xc3]

= x1xc1 +
1
2
(1 + i)x3xc1 +

1
2
(1 − i)x1xc3 +

1
4
(1 + i)(1 − i)x3xc3

= |x1|2 +
1
2
|x3|2 +

1
2
(1 + i)x3xc1 +

1
2
(1 − i)x1xc3 .

Similarly computing |y2|2, |y3|2 and substituting in 2|y1|2 + 2|y2|2 − |y3|2 we can easily
verify that we get back the Hermitian form given in Example 4.4.9.

Note that if a real quadratic form in a real symmetric matrix A or if a Hermitian
form in a Hermitian matrix A is to be reduced to a linear function of squares (canoni-
cal form),with the coefficients of the squares not necessarily the eigenvalues ofA, then
the easier method would be to use elementary operations on the left and on the right
of A (pre and post multiplications by elementary matrices) rather than going through
the eigenvalues of A. In the Hermitian case if A is premultiplied by G1, a product of the
basic elementary matrices, then A is to be postmultiplied by G∗1 , the conjugate trans-
pose of G1. (In the real symmetric case we postmultiply by G′1 only.) Such successive
multiplications will reduce a Hermitian form into the following form:

X∗AX = X∗QDQ∗X = Y∗DY ,
Y = Q∗X, D = diag(d1,… ,dn),

X∗AX = d1|y1|2 +⋯+ dn|yn|2

where |yj| is the absolute value of yj, Q is the product of all elementary matrices used
on the left. By definition, Q will be nonsingular. But in this case QQ′ or QQ∗ need not
be an identity matrix. In other words the linear transformation Y = Q∗X need not be
an orthogonal or unitary transformation. The procedure through eigenvalues will give
an orthogonal transformation when A is real symmetric and a unitary transformation
when A is Hermitian.
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(xxi) If A = A∗ then X∗AX is real for all X. [Take the conjugate transpose. A 1 × 1
matrix with its conjugate transpose equal to itself is real.]
(xxii) If A = A′ and real and if A = PΛP′, Λ = diag(λ1,… ,λn) then

A = λ1P1P′1 +⋯+ λnPnP′n

where P1,… ,Pn are the columns of P.
(xxiii) If A = A∗ and if A = QΛQ∗ then

A = λ1Q1Q∗1 +⋯+ λnQnQ∗n

where Q1,… ,Qn are the columns of Q.
(xxiv) If A is Hermitian then iA is skew Hermitian.

Definition 4.4.4 (Definiteness of Hermitian forms). A Hermitian form X∗AX, A = A∗

is positive definite if for all possible non-null X, X∗AX > 0, positive semi-definite if
X∗AX ≥ 0, negative definite if X∗AX < 0, negative semi-definite if X∗AX ≤ 0 and indef-
inite if for some X, X∗AX > 0 and for some other X it is negative.

Note that when A = A∗ we have X∗AX a real quantity. Also we know that when
A = A∗ all the eigenvalues of A are real. It is easy to show that all definitions of defi-
niteness of a Hermitian form are equivalent. The proofs are parallel to those in the real
symmetric case.

Example 4.4.11. Show that the followingHermitian formcanbewrittenas aquadratic
form in real variables.

h = [xc1 ,xc2 ][
3 2 + i

2 − i 5
][

x1
x2
]

= 3xc1 x1 + 5xc2x2 + (2 + i)xc1 x2 + (2 − i)xc2x1.

Solution 4.4.11. Let x1 = u + iv, x2 = x + iy where u, v,x,y real and i = √−1. Then

xc1 x1 = (u − iv)(u + iv) = u2 + v2, xc2x2 = x2 + y2,
xc1 x2 = (u − iv)(x + iy) = ux + vy + i(uy − vx),

(2 + i)xc1 x2 + (2 − i)xc2x1 = (2 + i)[ux + vy + i(uy − vx)]
+ (2 − i)[ux + vy + i(xv − yu)]
= 4(ux + vy) + 2(−uy + vx).

Hence the Hermitian form

h = 3(u2 + v2) + 5(x2 + y2) + 4ux + 4vy − 2uy + 2vx
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= [u, v,x,y]
[[[[

[

3 0 2 −1
0 3 1 2
2 1 5 0
−1 2 0 5

]]]]

]

[[[[

[

u
v
x
y

]]]]

]

= [u, v] [3 0
0 3
][

u
v
] + [x,y] [5 0

0 5
][

x
y
]

+ 2[u, v] [2 −1
1 2
][

x
y
] .

This, in fact, is a general result.

(xxv) A Hermitian form in n complex variables is equivalent to a quadratic form in
2n real variables or equivalent to two quadratic forms in n real variables each plus
two bilinear forms in n real variables each.

This result is frequently used when extending the theory of real Gaussian multivari-
ate statistical distribution to the corresponding multivariate Gaussian distribution in
complex random variables.

Another result which is frequently used in various applications involving a real
quadratic form, or a Hermitian form in complex variables, is a representation of the
matrix of the quadratic or Hermitian form in terms of a square root when the matrix
is positive definite or positive semi-definite. Consider a real quadratic form u and a
Hermitian form v where

u = X′AX, A = A′ and v = Z∗BZ, B = B∗

where X is an n × 1 real vector and Z is an n × 1 vector in the complex space. We have
already seen that there exist a full set of orthonormal vectors, and orthogonal and
unitary matrices P and Q such that

P′AP = Λ and Q∗BQ = μ

whereΛ = diag(λ1,… ,λn), μ = diag(μ1,… ,μn)with the λj ’s the eigenvalues ofA and the
μj ’s the eigenvalues of B. If A and B are positive definite then λj > 0, μj > 0, j = 1,… ,n.
We can write λj = √λj√λj and μj = √μj√μj . Define

Λ
1
2 = diag(√λ1,… ,√λj) and μ

1
2 = diag(√μ1,… ,√μn).

Then

A = PΛP′ = PΛ
1
2Λ

1
2 P′ = PΛ

1
2 P′PΛ

1
2 P′

= A21 , A1 = PΛ
1
2 P′

and similarly

B = B21 , B1 = Q∗μ
1
2Q
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where A1 is called the positive definite square root of the positive definite matrix A
and B1 is called the Hermitian positive definite square root of the Hermitian positive
definite matrix B. Note that if A and B are positive definite or positive semi-definite
one can express both A and B as A = A2A′2 and B = B2B∗2 for some matrices A2 and B2
by following through the above procedure. What about the converses? If a real matrix
A can be written as A = CC′ where Cmay be n×m, n need not be equal tom, is A going
to be at least positive semi-definite? Let us consider an arbitrary quadratic form

X′AX = X′CC′X = Y′Y , Y = C′X

= y21 +⋯+ y2m ≥ 0, Y′ = (y1,… ,ym)

for all real non-null X and A. This means that the matrix A is either positive definite
or positive semi-definite. If C is of full rank (rank is m if m ≤ n or n if n ≤m) then A is
positive definite. The Hermitian case is parallel. If any matrix B can be written in the
form B = GG∗ then the Hermitian form

Z∗AZ = Z∗GG∗Z = Y∗Y , Y = G∗Z

= |y1|2 +⋯+ |ym|2 ≥ 0.

That is, B is at least positive semi-definite.

(xxvi) Any positive definite or positive semi-definite (or Hermitian positive definite
or Hermitian positive semi-definite) matrix A can be written as A = CC′ (or A = CC∗)
and conversely, any matrix A which can be written as A = CC′ (or A = CC∗), where
C may be rectangular, is at least positive semi-definite.

Definition 4.4.5 (Square roots). A symmetric positive definite (or Hermitian positive
definite) square root of a symmetric positive definite (or Hermitian positive definite)
matrix A is C = PΛ

1
2 P′ (or C = PΛ

1
2 P∗) where P is the matrix of normalized eigenvec-

tors of A,Λ is the diagonal matrix of the eigenvalues of A andΛ
1
2 denotes the diagonal

matrix with the diagonal elements being the positive square roots of the diagonal ele-
ments in Λ.

Exercises 4.4

4.4.1. Compute the eigenvalues and eigenvectors of

A = [[
[

1 1 + i −2i
1 − i 2 + i 2 − i
2i 2 + i 3

]]

]

, B = [[
[

1 1 + i −2i
−1 + i 3 1 − i
−2i −1 − i 4

]]

]

.
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4.4.2. Write the followingmatrices as the sum of symmetric and skew symmetric ma-
trices:

A = [1 5
3 7
] , B = [[

[

2 1 −1
1 0 2
3 1 1

]]

]

, C =
[[[[

[

3 2 −2 1
4 1 −1 2
1 −1 0 4
5 0 −1 6

]]]]

]

.

4.4.3. Write the matrices in Exercise 4.4.2 as the sum of two nonsingular matrices.

4.4.4. Write the following matrices as the sum of Hermitian and skew Hermitian ma-
trices:

A = [[
[

2 − i 1 + 2i 3i
2i 3 − i 2 + 5i
1 + i 4i 2 − i

]]

]

,

B =
[[[[

[

1 + 2i 2 − i 3 + 2i 1 + i
1 − i 3 + 2i 4i −5i
2 + i 2 + 5i 1 − i 1 + i
3 + 5i 2 − i 1 + i 5i

]]]]

]

.

4.4.5. Compute the eigenvalues and eigenvectors of the following stochastic matri-
ces:

A = [[
[

0.1 0.7 0.2
0.3 0.5 0.2
0.3 0.2 0.5

]]

]

, B =
[[[[

[

0.2 0.4 0.2 0.2
0.3 0.1 0.4 0.2
0.2 0.4 0.1 0.2
0.3 0.1 0.3 0.4

]]]]

]

.

4.4.6. Are the following statements true, give a counter example if false and prove the
results if true.
(1) If the eigenvalues are real then the matrix is symmetric or Hermitian.
(2) If the eigenvalues are all purely imaginary then the matrix is skew symmetric or

skew Hermitian.
(3) If the eigenvalues are 1’s and 0’s then the matrix is idempotent.
(4) If the eigenvalues are ±1 then the matrix is orthonormal.
(5) If the eigenvalues are such that λλc = 1 then the matrix is unitary.
(6) Since the eigenvalues of A are the eigenvalues of A′ then the eigenvalues of A and
(A + A′)/2 are the same.

(7) If A is n × n and real symmetric then there is a full set of n mutually orthogonal
eigenvectors whether some eigenvalues are zero or repeated.

(8) If λ is an eigenvalue andX a normalized eigenvector corresponding to λ of amatrix
A then λ = X′AX if X is real, λ = X∗AX is X is in the complex space.

(9) If the eigenvalues of a matrix are real then the eigenvectors are also real.
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4.4.7. Let

A =
[[[[

[

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

]]]]

]

, B =
[[[[

[

−1 −1 1 1
−1 0 0 1
1 0 0 −1
1 1 −1 −1

]]]]

]

.

If possible, reduce A and B simultaneously to diagonal forms. Compute that orthonor-
mal matrix which will achieve this.

4.4.8. Repeat Exercise 4.4.7 if A and B are n × nmatrices where

A = I − C, C = 1
n
[[

[

1 1 … 1
⋮ ⋮ … ⋮
1 1 … 1

]]

]

.

4.4.9. Let A1,A2 be n × n real symmetric idempotent matrices such that A1 + A2 =
In. Show that (1) both A1 and A2 can be simultaneously reduced to diagonal forms,
(2) rank of A1 plus rank of A2 is n, (3) A1 and A2 commute.

4.4.10. LetA1 andA2 be n×n real symmetricmatrices so thatA1+A2 = I withA1A2 = O.
Show that A1 and A2 commute.

4.4.11. Let A1 and A2 be n× n real symmetric matrices so that A1 +A2 = I and the rank
ofA1 plus the rank ofA2 is n. Show that (1)A1A2 = O, (2)A1 andA2 are both idempotent.

4.4.12. Generalize Exercises 4.4.9, 4.4.10 and 4.4.11 and establish the corresponding
results if k such n × nmatrices are involved, k ≥ 2 such that A1 +⋯+ Ak = I . Orthogo-
nality condition to be interpreted as AiAj = O for all i ≠ j.

4.4.13. Reduce the following Hermitian forms to their canonical forms by using ele-
mentary operations:

(a) 2x1xc1 + 3x2xc2 + 2x3xc3 + (1 + i)xc1 x3 + (1 + i)xc2x1 + (2 − i)xc2x3
+ (1 − i)xc3x1 + (2 + i)xc3x2 + (1 − i)xc1 x2,

(b) 3x1xc1 + 4x2xc2 + 2x3xc3 + ixc1 x2 + 2ixc1 x3 − ixc2x1
+ (1 − i)xc2x3 − 2ixc3x1 + (1 + i)xc3x2.

4.4.14. Repeat Exercise 4.4.13 by using the procedure through eigenvalues.

4.4.15. Check the definiteness of the Hermitian forms in Exercise 4.4.13.

4.4.16. Heisenberg’s uncertainty principle in quantummechanics. Consider the
position matrix P, which is symmetric, and momentum matrix Q which is skew sym-
metric. These P and Q satisfy the equation QP − PQ = I . By using Cauchy–Schwartz
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inequality, or otherwise, show that

1 ≤ 2 ‖QX‖
‖X‖
‖PX‖
‖X‖
.

Hint: ‖X‖2 = X′X = X′IX.

4.4.17. If A is a real skew symmetric or skew Hermitian matrix then show that the
determinant of A is either zero or positive.

4.4.18. Compute the symmetric positive definite square root of A and the Hermitian
positive definite square root of B where

A = [2 1
1 3
] , B = [ 2 1 + i

1 − i 3
] .

4.4.19. For the Kronecker product defined in Exercise 2.6.8 where A = (aij) and p × p,
B = (bij) and q × q, and the Kronecker product denoted by A ⊗ B, show that

(1) |A ⊗ B| = (
p
∏
i=1

λi)
q

(
q
∏
j=1

νj)
p

where the λi and the νj ’s are the eigenvalues of A and B respectively;
(2) The eigenvalues of A ⊗ B are λiνj for all i and j;
(3) What are the eigenvectors of A ⊗ B in terms of the eigenvectors of λi and νj?

4.4.20. Let A be skew symmetric. Construct a matrix B in terms of I + A and I − A so
that B is orthonormal.

4.4.21. Show that the characteristic polynomial of the matrix

A = [A1 A2
O A3
]

is the product of the characteristic polynomials of A1 and A3.

4.4.22. Show that the eigenvalues of A and A′ coincide whereas the eigenvalues of A
and A∗ are complex conjugates of each other.

4.4.23. Similar matrices. Square matrices A and B are said to be similar (notation:
A ∼ B) if there exists a nonsingular matrix Q such that A = QBQ−1. If A ∼ B then show
that
(i) A′ ∼ B′

(ii) Ak ∼ Bk

(iii) A − λI ∼ B − λI
(iv) |A| = |B|
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(v) rank(A) = rank(B)
(vi) P(A) ∼ P(B)

where P(λ) is a polynomial in λ.

4.4.24. Show that the following two matrices are similar. That is,

[
B1 O
O B2
] ∼ [

B2 O
O B1
] .

4.4.25. If A ∼ B then show that tr(A) = tr(B).

4.4.26. If A ∼ B then show that (i) if A is idempotent then B is idempotent, (ii) if A is
nilpotent of degree r then B is also nilpotent of degree r.

4.4.27. Kernel of thematrix A. Notation: Ker(A). Consider the homogeneous system
of linear equations AX = O. Then the set of all solutions {X} is the null space or the
right null space of A. This right null space is also called the kernel of A.
Image of the matrix A. Notation: Im(A). Let A be an m × n matrix. Consider the set
of all m × 1 vectors Y such that Y = AX for some n × 1 vector X. This set is called the
image or range of A. That is, Im(A) = {Y ∶ Y = AX for some X}. If the matrix product AB
is defined then show that

Ker(AB) ⊃ Ker(B)

with equality if A−1 exists, and

Im(AB) ⊂ Im(A)

with equality if B−1 exists.
The following are some problems on ranks posed by Dr R. B. Bapat of the Indian

Statistical Institute, New Delhi, India.

4.4.28. Let A,B be n × nmatrices. Show that

rank[A + B A
A A
] = rank(A) + rank(B).

4.4.29. Let A be m × n and suppose A = [ B C
O D ]. Show that rankA ≥ rank(B) + rank(D)

and that the inequality may be strict.

4.4.30. LetA be n×n nonsingularmatrix of rank n− 1 and suppose that each row sum
and each column sum of A is zero. Show that every submatrix of A of order (n − 1) ×
(n − 1) is nonsingular.

4.4.31. Let A and B be n×n nonsingularmatrices. Show that rank (A−B) = rank(A−1 −
B−1).
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4.4.32. Let A be n × n of rank 1. Show that |I + A| = 1 + tr(A).

4.4.33. Let A be m × n, where the elements could be complex also. Show that rank
(A) = rank(AA∗) = rank(A∗A). Is it true that rank (A) = rank(AA′)?

4.4.34. Let A and B be n × n where B is positive semidefinite. Show that rank (AB) =
rank(AB

1
2 ).

4.4.35. Let A and B be n × n. Show that rank [A I
I B ] = n if and only if B = A

−1.

4.4.36. Show that rank [O A
B In ] = n + rank(AB).

4.4.37. Let A be n × n. If rank (A) = rank(A2) then show that rank (A) = rank(Am) for
allm ≥ 1.

4.4.38. Let A be n × n and let rank (A) = 1. Show that rank (A2) = 1 if and only if
tr(A) ≠ 0.

4.4.39. Let A be n × n. If rank (Ak) = rank(Ak+1), then show that rank (Ak) = rank(Am)
for allm ≥ k.

4.4.40. Let A be n × n. Show that A = A2 if and only if rank (A) = rank(I − A) = n.



5 Some applications of matrices and determinants

5.0 Introduction

A few applications in solving difference and differential equations, applications in
evaluating Jacobians of matrix transformations, optimization problems, probability
measures and Markov processes and some topics in statistics will be discussed in this
chapter.

5.1 Difference and differential equations

In order to introduce the idea of how eigenvalues can be used to solve difference and
differential equations a few illustrative examples will be done here.

5.1.1 Fibonacci sequence and difference equations

The famous Fibonacci sequence is the following:

0, 1, 1, 2,3,5,8, 13, 21,…

where the sum of two consecutive numbers is the next number. Surprisingly, this se-
quence appears in very many places in nature. Consider a living micro organism such
as a cell which is reproducing in the following fashion: To start with there is one
mother. The mother cell needs only one unit of time to reproduce. Each mother pro-
duces only one daughter cell. The daughter cell needs one unit of time to grow and
then one unit of time to reproduce. Let us examine the population size at each stage:

stage1 number = 1 one mother at the first unit of time
stage 2 number = 1 1 mother only
stage 3 number = 2 1 mother +1 young daughter
stage 4 number = 3 1 mother, 1 mature and 1 young daughters
stage 5 number = 5 2 mothers, 1 mature and 2 young daughters

and so on. The population size follows the sequence 1, 1, 2,3,5,8,… the famous Fi-
bonacci sequence.

If you look at the capitulum of a sunflower the florets, or the seeds when the flo-
rets become seeds, seem to be arranged along spirals starting from the periphery and
going inward. Youwill see one set of such radial spirals going in one direction and an-
other set of radial spirals going in the opposite direction. These numbers are always
two successive numbers from the Fibonacci sequence. In a small sunflower it may be
(3,5), in a slightly larger flower it may be (5,8) and so on. Arrangement of florets on

OpenAccess.©2017ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562507-005
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a pineapple, thorns on certain cactus head, leaves on certain palm trees, petals in
dhalias and in very many such divergent places onemeets Fibonacci sequence. A the-
ory of growth and forms, explanation for the emergence of Fibonacci sequence and
a mathematically reconstructed sunflower head and many other details can be seen
from the paper [5]. Incidently the journal,Mathematical Biosciences, has adapted the
above mathematically reconstructed sunflower model as its cover design from 1976
onward.

If the Fibonacci number at the k-th stage is denoted by Fk then the number at the
(k + 2)-th stage is

Fk+2 = Fk+1 + Fk . (5.1.1)

This is a difference equationof order 2. Fk+1−Fk is a first order difference and Fk+2−Fk+1
is again a first order difference. Then going from Fk to Fk+2 is a second order difference.
That is, (5.1.1) is a second order difference equation. One way of computing Fk for any
k, k may be 10 385, is to go through properties of matrices. In order to write a matrix
equation let us introduce dummy equations such as Fk = Fk , Fk+1 = Fk+1 and so on.
Consider the equations

Fk+2 = Fk+1 + Fk
Fk+1 = Fk+1 (5.1.2)

and

Vk = [
Fk+1
Fk
] ⇒ Vk+1 = [

Fk+2
Fk+1
] .

Then the two equations in (5.1.2) can be written as

Vk+1 = AVk , A = [1 1
1 0
] . (5.1.3)

Let us assume F0 = 0 and F1 = 1 which means V0 = [ 10 ]. Then from (5.1.3) we have

V1 = AV0, V2 = AV1 = A(AV0) = A2V0, … , Vk = AkV0.

In order to compute Vk we need to compute only Ak since V0 is known. Straight mul-
tiplication of Awith A for a total of 10 385 times is not an easy process. We will use the
property that the eigenvalues of Ak are the k-th powers of the eigenvalues of A, shar-
ing the same eigenvectors of A. Let us compute the eigenvalues and the eigenvectors
of A.

|A − λI| = 0 ⇒ |1 − λ 1
1 −λ

| = 0

⇒ λ2 − λ − 1 = 0

⇒ λ1 =
1 +√5
2
, λ2 =

1 −√5
2
.
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An eigenvector corresponding to λ1 =
1+√5
2 is given by

[
1 − (1+√5)2 1

1 − (1+√5)2
][

x1
x2
] = [

0
0
] ⇒

x1 =
1 +√5
2
, x2 = 1, or

X1 = [
1+√5
2
1
] = [

λ1
1
]

is an eigenvector. Similarly an eigenvector corresponding to λ2 =
1−√5
2 is given by

X2 = [
1−√5
2
1
] = [

λ2
1
] .

Let

Q = (X1,X2) = [
λ1 λ2
1 1
] ⇒

Q−1 = 1
(λ1 − λ2)

[
1 −λ2
−1 λ1

] .

Therefore

A = [λ1 λ2
1 1
][

λ1 0
0 λ2
]{ 1
(λ1 − λ2)

[
1 −λ2
−1 λ1

]} .

Since A and Ak share the same eigenvectors we have

Ak = 1
(λ1 − λ2)

[
λ1 λ2
1 1
][

λk1 0
0 λk2
][

1 −λ2
−1 λ1

]

= 1
(λ1 − λ2)

[
λk+11 − λk+12 −λ2λk+11 + λ1λk+12
λk1 − λk2 −λ2λk1 + λ1λk2

] .

Hence

Vk = AkV0 =
1
(λ1 − λ2)

[
λk+11 − λk+12
λk1 − λk2

]

= 1
√5
[
λk+11 − λk+12
λk1 − λk2

] , Vk = [
Fk+1
Fk
] .

Therefore

Fk =
1
√5
(λk1 − λk2 ) =

1
√5
{( 1 +
√5
2
)
k
− ( 1 −
√5
2
)
k
}.
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Since | 1−√52 | < 1, λ
k
2 will approach zero when k is large.

lim
k→∞

Fk+1
Fk
= λ1 =

1 +√5
2
≈ 1.618. (5.1.4)

Evidently, one has to take only powers of λ1 when k is large. That is, Fk ≈
1
√5λ

k
1 for

large k. This number 1+√5
2 is known as the “golden ratio” which appears in nature at

many places.
One general observation that can be made is that we have an equation of the type

Vk = AkV0 = QΛkQ−1V0

for an n × n matrix A where Λ = diag(λ1,… ,λn) and Q is the matrix of eigenvectors of
A, assuming |Q| ≠ 0. Then setting Q−1V0 = C, C′ = (c1,… , cn) we have

ΛkC = (λk1 c1,… ,λkncn)
′.

If X1,… ,Xn are the eigenvectors of A, constituting Q = (X1,… ,Xn), then

Vk = Q(ΛkQ−1V0) = (X1,… ,Xn)
[[

[

λk1 c1
⋮
λkncn

]]

]
= c1λk1X1 +⋯+ cnλknXn

which is a linear function of λki Xi, i = 1,… ,n or a linear combination of the so called
pure solutions λki Xi .

Example 5.1.1. Suppose that a system is growing in the following fashion. The first
stage size plus 3 times the second stage size plus the third stage size is the fourth stage
size. Let F0 = 0, F1 = 1, F2 = 1 be the initial conditions. Then

F3 = 0 + 3(1) + 1 = 4, F4 = 1 + 3(1) + 4 = 7,
F5 = 1 + 3(4) + 7 = 19,

and so on. Then for any k we have

Fk + 3Fk+1 + Fk+2 = Fk+3.

Compute Fk for k = 100.

Solution 5.1.1. Consider the following set of equations:

Fk + 3Fk+1 + Fk+2 = Fk+3
Fk+2 = Fk+2
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Fk+1 = Fk+1 ⇒

[[

[

1 3 1
1 0 0
0 1 0

]]

]

[[

[

Fk+2
Fk+1
Fk

]]

]

= [[

[

Fk+3
Fk+2
Fk+1

]]

]

.

Let Uk = [
Fk+2
Fk+1
Fk
] and A = [ 1 3 1

1 0 0
0 1 0
]. Then we have

AUk = Uk+1 and U0 =
[[

[

F2
F1
F0

]]

]

= [[

[

1
1
0

]]

]

;

AU0 = U1, U2 = A2U0, … .

Then

Uk = AkU0.

Let us compute the eigenvalues of A. Consider the equation

|A − λI| = 0 ⇒ ||
|

1 − λ 3 1
1 −λ 0
0 1 −λ

||

|

= 0

⇒ −λ3 + λ2 + 3λ + 1 = 0.

Obviously λ = −1 is one root. Dividing −λ3 + λ2 + 3λ + 1 by λ + 1 we have −λ2 + 2λ + 1. The
other two roots are [1 ± √2]. Then λ1 = −1, λ2 = 1 + √2, λ3 = 1 − √2 are the roots. Let us
compute some eigenvectors corresponding to these roots. For λ = −1

(A − λ1I)X = O ⇒

[[

[

2 3 1
1 1 0
0 1 1

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X1 =
[[

[

1
−1
1

]]

]

is one vector. For λ2 = 1 +√2

(A − λ2I)X = O ⇒

[[

[

−√2 3 1
1 −1 −√2 0
0 1 −1 −√2

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒

X2 =
[[

[

3 + 2√2
1 +√2
1

]]

]
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is one vector. For λ3 = 1 −√2

(A − λ3I)X = O ⇒

[[

[

√2 3 1
1 −1 +√2 0
0 1 −1 +√2

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒

X3 =
[[

[

3 − 2√2
1 −√2
1

]]

]
is one vector. Let

Q = (X1,X2,X3) =
[[

[

1 3 + 2√2 3 − 2√2
−1 1 +√2 1 −√2
1 1 1

]]

]

,

Q−1 = 1
4
[[

[

2 −4 −2
√2 − 1 2 −√2 3 − 2√2
−√2 − 1 2 +√2 3 + 2√2

]]

]

.

Therefore

Uk = AkU0

= Q[[
[

(−1)k 0 0
0 (1 +√2)k 0
0 0 (1 −√2)k

]]

]

Q−1[[
[

1
1
0

]]

]

.

But

Q−1[[
[

1
1
0

]]

]

= 1
4
[[

[

−2
1
1

]]

]
and

Uk =
1
4
[[

[

2(−1)k+1 + (3 + 2√2)(1 +√2)k + (3 − 2√2)(1 −√2)k

2(−1)k+2 + (1 +√2)k+1 + (1 −√2)k+1

2(−1)k+1 + (1 +√2)k + (1 −√2)k
]]

]

= [[

[

Fk+2
Fk+1
Fk

]]

]

.

When k→∞ we have (1 − √2)k → 0. Thus for k large a good approximation to Uk is
the following:

Uk ≈
1
4
[[

[

2(−1)k+1 + (3 + 2√2)(1 +√2)k

2(−1)k+2 + (1 +√2)k+1

2(−1)k+1 + (1 +√2)k
]]

]

= [[

[

Fk+2
Fk+1
Fk

]]

]

.
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Hence for k = 100

F100 ≈
1
4
[−2 + (1 +√2)100], F101 ≈

1
4
[2 + (1 +√2)101],

F102 ≈
1
4
[−2 + (3 + 2√2)(1 +√2)100].

5.1.2 Population growth

Consider, for example competing populations of foxes and rabbits in a given region. If
there is no rabbit available to eat the foxesdie out. If rabbits are available then for every
kill the population of foxes has a chance of increasing. Suppose that the observations
aremade at the endof every sixmonths, call themstages 0, 1, 2,…where stage 0means
the starting number. Let Fi and Ri denote the fox and rabbit populations at stage i.
Suppose that the growth of fox population is governed by the difference equation

Fi+1 = 0.6Fi + 0.2Ri .

Left alone the rabbitsmultiply. Thus the rabbit population is influenced by the natural
growthminus the ones killed by the foxes. Suppose that the rabbit population is given
by the equation

Ri+1 = 1.5Ri − pFi

where p is some number. We will look at the problem for various values of p. Suppose
that the initial populations of foxes and rabbits are 10 and 100 respectively. Let us
denote by

X0 = (
F0
R0
) = (

10
100
) , Xi = (

Fi
Ri
) .

Then the above difference equations can be written as

(
Fi+1
Ri+1
) = (

0.6 0.2
−p 1.5

)(
Fi
Ri
) or

Xi+1 = AXi , A = (0.6 0.2
−p 1.5

) .

Thus

X1 = AX0, X2 = AX1 = A2X0, … , Xk = AkX0.

For example, at the first observation period the population sizes are given by

X1 = AX0 = (
0.6 0.2
−p 1.5

)(
10
100
) .
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For example, for p = 1, the numbers are

F1 = (0.6)(10) + (0.2)(100) = 26

and

R1 = −1(10) + 1.5(100) = 140.

Let us see what happens in the second stage with the same p, that is for k = 2, p = 1.
This can be computed either from the first stage values and by using A or from the
initial values and by using A2. That is,

(
F2
R2
) = A2 (F0

R0
) = A(F1

R1
)

= (
0.6 0.2
−1 1.5

)(
26
140
) = (

43.6
184
) , F2 ≈ 44, R2 = 184.

Note that for p = 1 the fox population and the rabbit population will explode eventu-
ally. Let us see what happens if p = 5. Then

X1 = AX0 = (
0.6 0.2
−5 1.5

)(
10
100
) = (

26
100
) , F1 = 26, R1 = 100.

X2 = A2X0 = AX1 = (
35.6
20
) , F2 = 35.6, R2 = 20.

Note that at the next stage the rabbits will disappear and from then on the fox popu-
lation will start decreasing at each stage.

Growths of interdependent species of animals, insects, plants and so on are gov-
erned by difference equations of the above types. If there are three competing pop-
ulations involved then the coefficient matrix A will be 3 × 3 and if there are n such
populations then Awill be n× n, n ≥ 1. The long-term behavior of the populations can
be studied by looking at the eigenvalues of A because when A is representable as

A = QDQ−1, D = diag(λ1,… ,λn) ⇒ Ak = QDkQ−1

where λ1,… ,λn are the eigenvalues of the n× nmatrix A. Then λk → 0 as k→∞when
|λ| < 1 and λk →∞ for λ > 1 as k →∞. Thus the eventual extinction or explosion or
stability of the populations is decided by the eigenvalues of A.

5.1.3 Differential equations and their solutions

Consider a system of total differential equations of the linear homogeneous type with
constant coefficients. Suppose that a supermarket has barrels of almonds and pecans
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(two competing types of nuts as far as demand is concerned). Let u denote the amount
of stock, in kilograms (kg) of almonds and v that of pecans. The store fills up the bar-
rels according to the sales. The store finds that the rate of change of u over time is a
linear function of u and v, so also the rate of change of v over time t. Suppose that the
following are the equations.

du
dt
= 2u + v

dv
dt
= u + 2v

which means

dW
dt
= AW , W = [u

v
] , A = [2 1

1 2
] . (5.1.5)

At the start of the observations, t = 0, suppose that the stock is u = 500 kg and v =
200 kg. IfW is the vectorW = [ uv ] then we say that the initial value ofW , denoted by
W0, isW0 = [ 500200 ]. Wewant to solve (5.1.5) with this initial value. The differential equa-
tions in (5.1.5) are linear and homogeneous in u and v with u and v having constant
(free of t) coefficients. Themethod that wewill describe here will work for n equations
in n variables u1,… ,un, where each is a function of another independent variable such
as t, ui = ui(t), i = 1,… ,n, and when the right sides are linear homogeneous with con-
stant coefficients. For simplicity we consider only a two variables case.

If there was only one equation in one variable of the type in (5.1.5) then the equa-
tion would be of the form

du
dt
= au

where a is a known number. Then the solution is

u = eatu0 if u = u0 at t = 0 (initial value). (5.1.6)

Then in the case of two equations as in (5.1.5) we can search for solutions of the type
in (5.1.6). Let us assume that

u = eλtx1 and v = eλtx2,

W = (u
v
) = (

eλtx1
eλtx2
) = eλtX,

X = (x1
x2
) (5.1.7)

for some unknown λ, the same λ for both u and v, x1 and x2 are some parameters free
of t. Substituting these in (5.1.5) we obtain

λeλtx1 = 2eλtx1 + eλtx2,
λeλtx2 = eλtx1 + 2eλtx2. (5.1.8)
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Canceling eλt and writing the equations in matrix form we have

AX = λX, A = [2 1
1 2
] , X = [x1

x2
] . (5.1.9)

The problem reduces to that of finding the eigenvalues and eigenvectors of A. The
eigenvalues are given by

|A − λI| = 0 ⇒ |2 − λ 1
1 2 − λ

| = 0

⇒ λ2 − 4λ + 3 = 0
⇒ λ1 = 1, λ2 = 3.

An eigenvector corresponding to λ = 1 is given by

[
2 − 1 1
1 2 − 1

][
x1
x2
] = [

0
0
] ⇒ x1 = −x2 ⇒ X1 = [

1
−1
]

is one vector. Corresponding to λ2 = 3,

[
2 − 3 1
1 2 − 3

][
x1
x2
] = [

0
0
] ⇒ X2 = [

1
1
]

is one vector. For λ = λ1 = 1 a solution forW is

W1 = eλtX = etX1 = et [
1
−1
] . (5.1.10)

For λ = λ2 = 3 a solution forW is

W2 = eλtX = e3tX2 = e3t [
1
1
] . (5.1.11)

Any linear function ofW1 andW2 is again a solution forW . Hence a general solution
forW is

W = c1W1 + c2W2 = c1et [
1
−1
] + c2e3t [

1
1
] (5.1.12)

where c1 and c2 are arbitrary constants. Let us try to choose c1 and c2 to satisfy the
initial condition,W0 = [ 500200 ] for t = 0. Letting t = 0 in (5.1.12) we have

c1 [
1
−1
] + c2 [

1
1
] =W0 = [

500
200
]

⇒ c1 + c2 = 500, −c1 + c2 = 200
⇒ c2 = 350, c1 = 150.



5.1 Difference and differential equations | 335

Then the solution to the equation in (5.1.5) is

W = [u
v
] = 150et [ 1

−1
] + 350e3t [1

1
] ⇒

u = 150et + 350e3t , v = −150et + 350e3t .

Since the exponents are positive, ebt →∞ as t→∞when b > 0, u and v both increase
with time. In fact, the eigenvalues λ1 = 1 and λ2 = 3, appearing in the exponents, mea-
sure the rate of growth. This can be noticed from the pure solutions in (5.1.10) and
(5.1.11). A mixture of these pure solutions is what is given in (5.1.12). If an eigenvalue λ
is positive, as in (5.1.10) and (5.1.11), then eλt →∞ as t→∞. In this case we say that
the equations are unstable. If λ = 0 the equations are said to be neutrally stable. When
λ < 0,eλt → 0 as t →∞. In this case we say that the equations are stable. In our ex-
ample above, the pure solutions for both λ1 = 1 and λ2 = 3, as seen from (5.1.10) and
(5.1.11), are unstable.

A slightly more general situation arises if there are some constant coefficients for
du
dt and

dv
dt in (5.1.5).

Example 5.1.2. Solve the following systemof differential equations if u and v are func-
tions of t and when t = 0,u = 100 = u0 and v = 200 = v0:

2du
dt
= 2u + v,

3dv
dt
= u + 2v. (5.1.13)

Solution 5.1.2. Divide the first equation by 2 and the second equation by 3. Then the
problem reduces to that in (5.1.5). But if we want to avoid fractions at the beginning
stage itself of solving the system, or to solve the system as they are in (5.1.13), then we
look for a solution of the type

u = eλtx1, v = eλtx2

for some λ and for some constants x1 and x2. [Observe that if the original system of
equations has some fractional coefficients then multiply the system by appropriate
numbers to make the coefficients non-fractional. Then the following procedure can
be applied.] Then the equations in (5.1.13) reduce to the following form:

2λeλtx1 = 2eλtx1 + eλtx2,
3λeλtx2 = eλtx1 + 2eλtx2.

Canceling eλt and writing

X = (x1
x2
) ⇒ W = (u

v
) = eλtX,
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we have,

[
2λ 0
0 3λ
]X = [2 1

1 2
]X ⇒ [2 − 2λ 1

1 2 − 3λ
]X = O.

If this equation has a non-null solution then

|
2 − 2λ 1
1 2 − 3λ

| = 0 ⇒ 6λ2 − 10λ + 3 = 0

⇒ λ1 =
5 +√7
6
, λ2 =

5 −√7
6
.

Let us compute X corresponding to λ1 and λ2. For λ1 =
5+√7
6

[
2 − 2( 5+√76 ) 1

1 2 − 3( 5+√76 )
][

x1
x2
] = [

0
0
] .

One solution for X is

X1 = [
1
− 13 +
√7
3
] .

Similarly for λ2 =
5−√7
6 one solution is

X2 = [
1
− 13 −
√7
3
] .

For λ = λ1 one solution forW is

W1 = eλ1tX1 = e(
5+√7
6 )t [

1
− 13 +
√7
3
]

and for λ = λ2 the solution forW is

W2 = eλ2tX2 = e(
5−√7
6 )t [

1
− 13 −
√7
3
] .

Thus a general solution for W is W = c1W1 + c2W2 where c1 and c2 are arbitrary con-
stants. That is,

W = c1e(
5+√7
6 )t [

1
− 13 +
√7
3
] + c2e(

5−√7
6 )t [

1
− 13 −
√7
3
] ⇒

u = c1e(
5+√7
6 )t + c2e(

5−√7
6 )t
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and

v = c1(−
1
3
+
√7
3
)e(

5+√7
6 )t + c2(−

1
3
−
√7
3
)e(

5−√7
6 )t .

But for t = 0, u = u0 = 100 and for t = 0, v = v0 = 200. That is,

100 = c1 + c2

200 = c1(−
1
3
+
√7
3
) + c2(−

1
3
−
√7
3
).

Solving for c1 and c2 we have

c1 = 50(1 +√7) and c2 = 50(1 −√7).

Hence the general solution is,

u = 50(1 +√7)e(
5+√7
6 )t + 50(1 −√7)e(

5−√7
6 )t

v = 50(1 +√7)(− 1
3
+
√7
3
)e(

5+√7
6 )t − 50(1 −√7)( 1 +

√7
3
)e(

5−√7
6 )t

= 100e(
5+√7
6 )t + 100e(

5−√7
6 )t .

Note that the same procedure works if we havem-th order equations of the type

b1
dmu1
dtm
= a11u1 +⋯+ a1kuk

⋮ = ⋮

bk
dmuk
dtm
= ak1u1 +⋯+ akkuk (5.1.14)

where b1,… ,bk and aij ’s are all constants and uj , j = 1,… ,k are functions of t. In this
case look for a solution of the type uj = eμtxj , j = 1,… ,k with the same μ and xj ’s are
somequantities free of t. Then the left sides of (5.1.14)will contain μm. Put λ = μm. Then
the problem reduces to the one in Example 5.1.2.

Higher order differential equations canalsobe solvedbyusing the same technique
as above. In order to illustrate the procedure we will do a simple example here.

Example 5.1.3. Let y be a function of t and let y′,y″,y‴ denote the first order, second
order and third order derivatives respectively. Solve the following differential equation
by using eigenvalue method:

y‴ − 4y″ + 3y′ = 0.
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Solution 5.1.3. The classical way of doing the problem is to search for an exponential
solution of the type y = eλt . Then we get the characteristic equation

λ3 − 4λ2 + 3λ = 0 ⇒ λ1 = 0, λ2 = 1, λ3 = 3

are the solutions of this characteristic equation. Hence the three pure exponential so-
lutions are e0t = 1, et , e3t . Now let us do the same problem by using eigenvalues. Let

u = y′, v = y″ = u′, v′ = 4v − 3u and

W = [[
[

y
u
v

]]

]

⇒ W′ = [[
[

y′

u′

v′
]]

]

= [[

[

y′

y″

y‴
]]

]

.

Writing the above three equations in terms of the vectorW and its first derivative we
have

dW
dt
=W′ = [[
[

0 1 0
0 0 1
0 −3 4

]]

]

[[

[

y
u
v

]]

]

= AW ,

A = [[
[

0 1 0
0 0 1
0 −3 4

]]

]

. (5.1.15)

Now, compare with (5.1.5). We have a first order system in W . Let y = eλtx1, u = eλtx2,
v = eλtx3 for some x1,x2,x3 free of t. Then substituting in (5.1.15) and canceling eλt the
equationW′ = AW reduces to the form

AX = λX, X = [[
[

x1
x2
x3

]]

]

(5.1.16)

or the problem reduces to an eigenvalue problem. The eigenvalues of A are λ1 = 0,
λ2 = 1, λ3 = 3. Some eigenvectors corresponding to these eigenvalues are the following:

X1 =
[[

[

1
0
0

]]

]

, X2 =
[[

[

1
1
1

]]

]

, X3 =
[[

[

1
3
9

]]

]

which gives

W1 = eλ1tX1 =
[[

[

1
0
0

]]

]

, W2 = eλ2tX2 =
[[

[

et

et

et
]]

]

,

W3 = eλ3tX3 =
[[

[

e3t

3e3t

9e3t
]]

]

.
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Thus the pure solutions for y are 1,et and e3t . A general solution for y is then

y = c1 + c2et + c3e3t (5.1.17)

where c1, c2, c3 are arbitrary constants.

Exercises 5.1
5.1.1. Suppose that a population of bacteria colony increases by the following laws. If
the population at the k-th stage is ak then

ak + 2ak+1 = ak+2.

Compute the population size at the 100-th stage (k = 100) if the initial numbers are
a0 = 1, a1 = 1.

5.1.2. Prove that every third Fibonacci number is even, starting with 1, 1.

5.1.3. Show that the Fibonacci sequence Fk +Fk+1 = Fk+2 with F0 = 0,F1 = 1 is such that

lim
k→∞

Fk+1
Fk
= 1 +
√5
2
= golden ratio.

5.1.4. Consider a sequence Fk + Fk+1 = Fk+2 with F0 = 0,F1 = a > 0. Show that

lim
k→∞

Fk+1
Fk
= 1 +
√5
2
= golden ratio.

5.1.5. Find the limiting value, limk→∞Wk = limk→∞ (
uk
vk ) for the following systems:

(a) uk+1 =
1
2
uk +

1
2
vk , u0 = 2,

vk+1 =
1
2
uk +

1
2
vk , v0 = 1;

(b) uk+1 = 0.4uk + 0.3vk , u0 =
1
2
,

vk+1 = 0.6uk + 0.7vk , v0 =
2
3
.

5.1.6. For the sequence Fk+2 =
1
2 [Fk + Fk+1] compute limk→∞ Fk .

5.1.7. Solve the following systems of differential equations by using matrix methods:

(a) du
dt
= 2u + v, dv

dt
= u + 2v −w, dw

dt
= −v + 2w.

(v) du
dt
= u + 2v −w, dv

dt
= 2u + 3v + 2w, dw

dt
= 3u + 2v +w.
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5.1.8. In physics, an oscillating system with unequal masses m1 and m2 is governed
by the following system of differential equations:

m1
d2u
dt2
= −2u + v, m2

d2v
dt2
= u − 2v

where u and v are functions of t. Solve the system form1 = 1, m2 = 2 andwith the initial
conditions, at t = 0, u = u0 = −1 and v = v0 = 1.

5.1.9. A system of differential equations governing the diffusion of a chemical in two
different concentrations is the following:

du
dt
= (v − u) + (0 − u)

dv
dt
= (0 − v) + (u − v)

where u = u(t) and v = v(t) denote the concentrations. Solve the system when u0 and
v0 are the concentrations at t = 0 respectively.

5.1.10. Let

W = (u
v
) , dW

dt
= (

du
dt
dv
dt
).

Solve the following systems of differential equations:

(a) dW
dt
= [
−1 1
1 −1
]W , W0 = [

2
1
]

(b) dW
dt
= [

1 −1
−1 1
]W , W0 = [

2
1
] .

5.1.11. Solve the following system of differential equations by using eigenvalue
method, if possible, where y is a function of t and primes denote the derivatives.
(a) y”’-5y”+4y’=0;
(b) y”+y=0;
(c) y”=0;
(d) y”+ay’+by=0,

where a and b are constants.

5.1.12. A biologist has found that the owl population u and themice population v in a
particular area are governed by the following system of differential equations, where
t denotes time:

du
dt
= 2u + 2v

dv
dt
= u + 2v.
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(a) Solve the system if the initial values are u0 = 2, v0 = 100. (b) Is the system, stable,
neutrally stable, or unstable? (c) What will be the proportions of mice and owl in the
long run, that is, when t→∞?

5.1.13. In Exercise 5.1.12 suppose that the inventory of owl population u and the mice
population v are taken at the beginning of every year. At the i-th year let these be ui
and vi respectively. At the beginning of the observation period let the population sizes
be u0 = 5,V0 = 60, that is, for i = 0. Suppose that it is found that the population growth
is governed by the following difference equations

ui+1 = 4ui − 2vi and vi+1 = −5ui + 2vi .

Compute ui and vi for i = 1, 2,3,∞.

5.1.14. Suppose that two falcons are introduced into the same region of the owl and
mice habitat of Exercise 5.1.13. Thus the initial population sizes of falcon, owl andmice
are f0 = 2, u0 = 5, v0 = 60. The falcons kill both owl andmice and the owls killmice and
not falcons. Suppose that the difference equations governing the population growth
are the following:

fi+1 = fi + 2ui − 2vi ,
u1+1 = 2fi + 3ui − 3vi ,
vi+1 = −2fi − 3ui + 3vi .

Compute the population sizes of falcon, owl and mice at i = 1, 2,3,4,∞.

5.1.15. In Exercise 5.1.14 if the observation period t is continuous and if the rate of
change of the falcon, owl andmice populations, with respect to t, are governed by the
differential equations

df
dt
= f + u + v, du

dt
= −f + u + 2v, dv

dt
= f − u − 2v

with the initial populations, at t = 0, respectively f0 = 2, u0 = 5, v0 = 60, then compute
the eventual, t→∞, population sizes of falcon, owl and mice in that region.

5.2 Jacobians of matrix transformations and functions of matrix
argument

This field is very vast and hence we will select a few topics on Jacobians and intro-
duce some functions of matrix argument for the purpose of illustrating the possible
applications of matrices and determinants.



342 | 5 Some applications of matrices and determinants

5.2.1 Jacobians of matrix transformations

Jacobians in some linear and non-linear transformations are discussed in Section 3.3.3
of Chapter 3. One linear transformation appearing as Exercise 3.3.7 will be restated
here because it is concernedwith a real symmetricmatrix. LetX = X′ be a real symmet-
ric p × p matrix of functionally independent (distinct) p(p + 1)/2 real scalar variables
and let A be a p× p nonsingular matrix of constants. Then, ignoring the sign, we have
the following result:

(i)
Y = AXA′ ⇒ dY =

{
{
{

|A|p+1dX, for X = X′, |A| ≠ 0
|A|2pdX, for a general X, |A| ≠ 0.

The second part for a general X of p2 distinct elements follows as a particular case of
the multi-linear transformation of Section 3.3.3.

Example 5.2.1. Let X be a p× 1 vector of real scalar variables, V a p×p real symmetric
positive definite matrix of constants. Consider the function

f (X) = c e−
1
2 (X−μ)

′V−1(X−μ)

where μ is a p × 1 vector of constants and c is a constant. If f (X) is a statistical density
then evaluate c.

Solution 5.2.1. For f (X) to be a density, two conditions are to be satisfied: (1) f (X) ≥ 0
for all X; (2) ∫X f (X)dX = 1 where ∫X denotes the integral over X and dX = ⋀pj=1 dxij . Let
us check the conditions. Since the exponential function cannot be negative, condition
(1) is satisfied if c > 0. Let us look for the total integral. Since V = V′ > O (positive
definite) we can write V−1 in the form V−1 = BB′ for some nonsingular matrix B. Then

(X − μ)′V−1(X − μ) = (X − μ)′BB′(X − μ).

Let

Y = B′(X − μ) ⇒ dY = |B′|d(X − μ) = |B′|dX

since μ is a constant vector, d(X−μ) = dX, and |B′| = |B| fromproperty (i) of Section 3.3.
But

|V−1| = |BB′| = |B| |B′| = |B|2 = |V−1|
1
2 = |V |−

1
2 .

Now, consider the integral

∫
X
f (X)dX = c∫

X
e−

1
2 (X−μ)

′V−1(X−μ)dX

= c|V |
1
2 ∫

Y
e−

1
2Y
′YdY
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where Y = B′(X −μ),V−1 = BB′. But Y′Y = y21 +⋯+ y2p where yj is the j-th element in Y .
Thus, the integral reduces to the form

∫
Y
e−

1
2Y
′Ydy =

p
∏
j=1
∫
∞

−∞
e−

1
2 y

2
j dyj

=
p
∏
j=1
√2π = (2π)p/2.

This integral is evaluated by using a gamma integral

∫
∞

−∞
e−u2du = 2∫

∞

0
e−u2du

due to the property of an even function, provided ∫∞0 e−u2du is convergent. u2 = z ⇒
u = z

1
2 since u > 0 and du = 1

2z
− 12 dz. From gamma integral, one has

∫
∞

0
xα−1e−xdx = Γ(α), ℜ(α) > 0

and Γ( 12 ) = √π. Hence ∫
∞
−∞

e−
1
2 y

2
j dyj = √2π. That is,

p
∏
j=1
∫
∞

−∞
e−

1
2 y

2
j dyj = (2π)p/2.

For f (X) to be a statistical density, the total integral has to be unity which means that
for

c = 1
(2π)p/2|V |1/2

this f (X) is a density. Then

f (X) = e
− 12 (X−μ)V

−1(X−μ)

(2π)p/2|V |1/2
, V > O

is a density and it called the p-variate nonsingular normal or Gaussian density, for
−∞ < xj <∞,−∞ < μj <∞,X′ = (x1,… ,xp),μ′ = (μ1,… ,μp),V > O. It is usually written
as X ∼ Np(μ,V). [X is distributed as a p-variate real Gaussian or normal density with
the parameters μ (the mean value vector) and V (the covariance matrix).] This is the
fundamental density in multivariate statistical analysis.

Example 5.2.2. Show that if X ∼ Np(μ,V),V > O then the mean value of X or the ex-
pected value of X or E(X) is μ and V is the covariance matrix of X.
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Solution 5.2.2. The real nonsingular p-variate Gaussian density is given by

f (X) = e
− 12 (X−μ)

′V−1(X−μ)

(2π)p/2|V |1/2
.

Then the expected value of X, denoted by E(X), is given by the integral

E(X) = ∫
X
Xf (X)dX.

For convenience, let uswrite X = (X −μ)+μ and Y = B′(X −μ),V−1 = BB′. Then (X −μ) =
(B′)−1Y ,dY = |B|dX = |V |−

1
2 dX. That is

E(X) = μ∫
X
f (X)dX + (B

′)−1

|V |
1
2
∫
Y
Ye−

1
2Y
′YdY .

But from Example 5.2.1, ∫X f (X)dX = 1 and each integral in the second term is zero
because each element in Ye−

1
2Y
′Y is an odd function of the type yje−

1
2Y
′Y where Y =

[
y1
⋮
yp
]. Then the integral over yj will be of the following form, for example, for j = 1:

∫
Y
y1e−

1
2Y
′YdY = {∫

∞

−∞
y1e−

1
2 y

2
1dy1}{

p
∏
j=1

e−
1
2 (y

2
2+⋯+y2p)dy2 ∧⋯∧ dyp}. (a)

But the integral over y1 is zero due to y1e−
1
2 y

2
1 being odd and the integral existing. The

second factor in (a) above is only a finite constant, namely √2πp−1. Thus, the integral
over each element in Y will be zero. Hence E(X) = μ. Now, consider the covariance
of X. By definition

Cov(X) = E{[X − E(X)][X − E(X)]′} = E[(X − μ)(X − μ)′]

= E{(B′)−1YY′B−1}

for Y = B′(Xμ) ⇒ dY = |V |−
1
2 dX.

Cov(X) = (B′)−1{∫
Y

(YY′)
(2π)p/2

e−
1
2Y
′Y}B−1, |V |

1
2 is canceled.

YY′ = [[
[

y1
⋮
yp

]]

]

[y1,… ,yp]

= [[

[

y21 ... y1yp
⋮ ⋮ ⋮
ypy1 ... y2p

]]

]

.

Integrals for the diagonal elements, say the first diagonal element, is of the form

∫
∞

−∞
y21e−

1
2 y

2
1dy1 × ∫

y2
⋯∫

yp
e−

1
2 (y

2
2+⋯+y2p)dy2 ∧⋯∧ dyp. (i)
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Consider,

∫
∞

−∞
y21e−

1
2 y

2
1dy1 = 2∫

∞

0
y21e−

1
2 y

2
1dy1 (ii)

since y21e−
1
2 y

2
1 is and even function. Put u = 1

2y
2
1 ⇒ √2

1
2u
− 12 du = dy1 because y1 in the

integral on the right in (ii) is positive. Now, the right side of (ii) becomes

√2∫
∞

0
u

1
2−1e−udu = √2Γ( 1

2
) = √2√π = √2π.

This means the first diagonal element in the integral in (i), namely,

∫
Y
y21e−

1
2Y
′YdY = √2π ×

p
∏
j=2
[∫
∞

−∞
e−

1
2 y

2
j dyj] = (2π)

p
2

since ∫∞
−∞

e−
1
2 y

2
j dyj = √2π for each j = 2,… ,p. Thus, all diagonal elements in

∫Y (YY
′)e−

1
2Y
′YdY are of the form (2π)

p
2 . Now, consider one non-diagonal element,

say the first row second column element. This will be of the form

∫
Y
(y1y2)e−

1
2Y
′YdY = A∫

∞

−∞
∫
∞

−∞
y1y2e−

1
2 (y

2
1+y22)dy1 ∧ dy2 (iii)

where

A =
p
∏
j=3
∫
∞

−∞
e−

1
2 y

2
j dyj . (iv)

In (iii) the integrand for each of y1 and y2 is an odd function and since ∫
∞
0 yje−

1
2 y

2
j dyj <

∞ (finite) the integrals over y1 and y2 in (iii) are zeros due to odd function property.
Note that (iv) only produces a finite quantity, namely, (√2π)p−2. Thus, each non-
diagonal element in the integral ∫Y YY

′e−
1
2 (Y
′Y)dY is zero, or one can write

1
(2π)

p
2
∫
Y
(YY′)e−

1
2 (Y
′Y)dY = I

where I is the identity matrix of order p. Then the covariance matrix becomes

Cov(X) = (B′)−1IB−1 = (B′)−1B−1 = (BB′)−1 = V

or the parameter V in the density is the covariance matrix there.

Example 5.2.3. If the following function f (X), where X ism × nmatrix ofmn distinct
real scalar variables, A ism ×m and B is n × n real positive definite constant matrices:

f (X) = c e− tr(AXBX′)

for X = (xij), −∞ < xij < ∞, i = 1,… ,m, j = 1,… ,n where tr(⋅) denotes the trace of the
matrix (⋅), is a statistical density then evaluate c.
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Solution 5.2.3. Since A = A′ > O,B = B′ > O we can write A = CC′, B = GG′ where C
and G are nonsingular matrices. Then

tr(AXBX′) = tr(CC′XGG′X′) = tr(C′XGG′X′C)
= tr(YY′), Y = C′XG.

In writing this we have used the property that for two matrices P and Q, whenever PQ
andQP aredefined, tr(PQ) = tr(QP)wherePQneednot be equal toQP. FromSection 3.3
we have

Y = C′XG ⇒ dY = |C′|n |G|mdX.

Note that |A| = |CC′| = |C| |C′| = |C|2 or |C| = |A|
1
2 . Similarly, |G| = |B|

1
2 . Therefore

dY = |A|
n
2 |B|

m
2 dX. (i)

But for any matrix Z, tr(ZZ′) = sum of squares of all elements in Z. Hence

tr(YY′) =
m
∑
i=1

n
∑
j=1

y2ij

or

∫
Y
e−

1
2 tr(YY

′)dY =
m
∏
i=1

n
∏
j=1
∫
∞

−∞
e−

1
2 y

2
ijdyij = (√2π)mn.

The total integral in f (X) being one implies that

c = |A|
n
2 |B|

m
2

(2π)
mn
2

or

f (X) = |A|
n
2 |B|

m
2

(2π)
mn
2

e−
1
2 tr(AXBX

′)

forX = (xij), −∞ < xij <∞ for all i and j,A > O,B > O, is knownas the realmatrix-variate
Gaussian or normal density. In the above case E(X) = O (null). If we replaceX byX−M,
whereM is anm × n constant matrix then E(X) =M and there will be three parameter
matrices A,B,M.

Jacobians in one non-linear transformation in the form of a triangular reduction
was considered in Section 3.3. Now let us consider a few more non-linear transfor-
mations. A very important non-linear transformation is the nonsingular matrix going
to its inverse. Let X be a nonsingular p × p matrix and let Y = X−1 be its regular in-
verse. Then what is the relationship between dY and dX? This can be achieved by the
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following procedure. Let X = (xij). We have XX−1 = I, the p × p identity matrix. If we
differentiate both sides with respect to some θ we get

O = ( 𝜕
𝜕θ

X) + X( 𝜕
𝜕θ

X−1)

⇒ ( 𝜕
𝜕θ

X−1) = −X−1( 𝜕
𝜕θ

X)X−1.

Hence if we consider the differentials dxij and the matrix of differentials, denoted by
(dX) = (dxij) then we have the relationship

(dX−1) = −X−1(dX)X−1.

Let V = (vij) = (dX−1) and U = (uij) = (dX) then we have

V = −X−1UX−1. (a)

Noe that in (a) only U and V contains differentials and X−1 does not contain any dif-
ferential or X−1 acts as a constant matrix. Now, by taking the wedge product of these
differentials and using property (iv) of Section 3.3 we have

dV =
{
{
{

|X|−2pdU for a general real X
|X|−(p+1)dU for X = X′ and real.

Thus we have the following result:

(ii)
Y = X−1 ⇒ dY =

{
{
{

|X|−2pdX for a general real X
|X|−(p+1)dX for X = X′ and real.

Example 5.2.4. A real p × pmatrix-variate gamma density is given by

f (X) =
{
{
{

|X|α−
p+1
2 e− tr(X)
Γp(α)

, X = X′ > O, ℜ(α) > p−1
2

0, elsewhere
(5.2.1)

where the real matrix-variate gamma function is given by

Γp(α) = π
p(p−1)

4 Γ(α)Γ(α − 1
2
)⋯Γ(α − p − 1

2
), ℜ(α) > p − 1

2
. (5.2.2)

Evaluate the density of Y = X−1.

Solution 5.2.4. Here X = X′ > O and hence dY = |X|−(p+1)dX or dX = |X|p+1dY =
|Y |−(p+1)dY . Since the transformation X to X−1 is one-to-one if the density of Y is
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denoted by g(Y) then g(Y)dY = f (X)dX. That is,

g(Y) = f (Y−1)|Y |−(p+1)

= |Y |
−α− p+12 e− tr(Y−1)

Γp(α)
, ℜ(α) > p − 1

2

=
{
{
{

|Y |−α−
p+1
2 e− tr(Y−1)
Γp(α)

, Y = Y′ > O, ℜ(α) > p−1
2

0, elsewhere.

5.2.2 Functions of matrix argument

A real matrix-variate gamma function was introduced in Section 3.3.4 of Chapter 3.
A corresponding gamma function in the complex space is defined in terms of a Her-
mitian positive definite matrix. [A Hermitian positive definite matrix means a matrix
X̃ which is Hermitian, X̃ = X̃∗ where X̃∗ denotes the conjugate transpose of X̃ and all
the eigenvalues of X̃ are positive. Note that Hermitian means that all eigenvalues will
be real.] Let X̃ be Hermitian positive definite and p × p, denoted by X̃ > O.

Definition 5.2.1 (A complex matrix-variate gamma). Notation Γ̃p(α): It is defined as

Γ̃p(α) = π
p(p−1)

2 Γ(α)Γ(α − 1)⋯Γ(α − p + 1),ℜ(α) > p − 1 (5.2.3)

and it has the integral representation

Γ̃p(α) = ∫
X̃>O
|X̃|α−pe− tr(X̃)dX̃. (5.2.4)

A complex matrix-variate gamma density is associated with a complex matrix-variate
gamma and a Hermitian positive definite matrix random variable.

Definition 5.2.2 (A complex matrix-variate gamma density).

f (X̃) =
{
{
{

|B|αe− tr(BX̃)
Γ̃p(α)
, X̃ > O, ℜ(α) > p − 1

0, elsewhere

where B = B∗ > O is a constant matrix, free of X̃, and all matrices are p × p.

Another basic matrix-variate function is the beta function. They are associated
with type-1, and type-2 (also known as inverted) beta integrals.
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Definition 5.2.3 (A p × pmatrix-variate beta in the real case). Notation Bp(α,β): It is
defined as

Bp(α,β) =
Γp(α)Γp(β)
Γp(α + β)

, ℜ(α) > p − 1
2
, ℜ(β) > p − 1

2
. (5.2.5)

It has the following two types of integral representations:

Bp(α,β) = ∫
O<X<I
|X|α−

p+1
2 |I − X|β−

p+1
2 dX (type-1 beta integral),

Bp(α,β) = ∫
Y>O
|Y |α−

p+1
2 |I + Y |−(α+β) (type-2 beta integral).

Here ∫O<X<I means the integral over all p × p matrices X such that X > O, I − X > O or
the symmetric matrix X is positive definite and I −X is also positive definite, where I is
the p × p identity matrix. This also means that all the eigenvalues of X are in the open
interval 0 < λ < 1 where λ is an eigenvalue. When X is symmetric or Hermitian we can
show that all eigenvalues are real.

Definition 5.2.4 (A p × pmatrix-variate beta density, real case).

f1(X) =
{
{
{

|X|α−
p+1
2 |I−X|β−

p+1
2

Bp(α,β)
, ℜ(α) > p−1

2 ,ℜ(β) >
p−1
2 ( type-1)

0, elsewhere;
(5.2.6)

f2(Y) =
{
{
{

|Y |α−
p+1
2 |I+Y |−(α+β)
Bp(α,β)

, Y > O,ℜ(α) > p−1
2 ,ℜ(β) >

p−1
2 ( type-2)

0, elsewhere.
(5.2.7)

Corresponding densities in the complex case can also be defined analogous to
the real case. More on Jacobians of matrix transformations and functions of matrix
argument can be read from the books [3, 2].

Example 5.2.5. Show that the two types of integrals defining the p× pmatrix-variate
beta functions in the real case give rise to the same quantity.

Solution 5.2.5. Consider the type-1 beta integral. Call it I1. Then

I1 = ∫
O<X<I
|X|α−

p+1
2 |I − X|β−

p+1
2 dX.

Make the transformation

X = (I + Y)−
1
2 Y(I + Y)−

1
2 = (I + Y−1)−

1
2 (I + Y−1)−

1
2 = (I + Y−1)−1
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where Y
1
2 and (I +Y)

1
2 denote the symmetric positive definite square roots of the sym-

metric positive definite matrices Y and I + Y respectively. Note that for defining defi-
niteness thematrix has to be symmetricwhen real andHermitianwhen in the complex
domain. The word “symmetric” is repeated in order to stress the point. [There are no
non-symmetric positive definite matrices.] Applying the Jacobian in (ii) above twice
we have

X = (I + Y−1)−1 ⇒ dX = |I + Y−1|−(p+1)|Y |−(p+1)dY
= |I + Y |−(p+1)dY .

Note that

|X|α−
p+1
2 = |I + Y−1|−α+

p+1
2 = |Y |α−

p+1
2 |I + Y |−α+

p+1
2

|I − X|β−
p+1
2 = |I − (I + Y−1)−1|β−

p+1
2

= |(I + Y−1)−1[I − (I + Y−1)]|β−
p+1
2

= |I + Y |−β+
p+1
2 .

Therefore

|X|α−
p+1
2 |I − X|β−

p+1
2 dX = |Y |α−

p+1
2 |I + Y |−(α+β)dY .

Hence

I1 = ∫
Y>O
|Y |α−

p+1
2 |I + Y |−(α+β)dY = I2

and hence the result.

We can also see two results by making the transformations U = I − X and V =
(I + Y)−1 in I2. These are the following:

∫
O<X<I
|X|α−

p+1
2 |I − X|β−

p+1
2 dX

= ∫
O<U<I
|U |β−

P+1
2 |I −U |α−

p+1
2 dU

= Bp(α,β), ℜ(α) >
p − 1
2
, ℜ(β) > p − 1

2

or the parameters α and β are interchanged. Similarly

∫
Y>O
|Y |α−

p+1
2 |I + Y |−(α+β)dY

= ∫
V>O
|V |β−

p+1
2 |I + V |−(α+β)V

= Bp(α,β), ℜ(α) >
p − 1
2
, ℜ(β) > p − 1

2
.
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Another very important Jacobian is obtained when a general real p × n matrix X,
n ≥ p, is uniquely represented in terms of a lower triangular matrix with positive diag-
onal elements T = (tij), tij = 0, i < j, tjj > 0, j = 1,… ,p and a semi-orthonormal matrix U
where U is p × n, UU′ = Ip. That is,

X = TU , n ≥ p.

It can be shown, going through the steps in establishing property (ii) above, that:

(iii) X = TU ⇒ dX = {
p
∏
j=1

tn−jjj }dT dG, n ≥ p

where

dG =
p
⋀
i=1

n
⋀
i<j=1

u′i (duj)

where (duj) is the j-th column vector of the differentials of U and ui is the i-th col-
umn vector of U .

Here U is an element of the Stiefel manifold Vp,n,n ≥ p, of all semi-orthonormal p × n
matrices U , such that UU′ = Ip.

Example 5.2.6. Evaluate ∫Vp,n
dG.

Solution 5.2.6. Let X be a p × nmatrix of np distinct real scalar variables, n ≥ p. Con-
sider the integral ∫X e

− tr(XX′)dX. Note that tr(XX′) is the sum of squares of all the np
elements in X. Then integrating directly we have

∫
X
e− tr(XX′)dX =

p
∏
i=1

n
∏
j=1
∫
∞

−∞
e−x2ijdxij = π

np
2 . (a)

Let us apply the transformation in (iii). Note that XX′ = TUU′T′ = TT′ and

X = TU ⇒ dX = {
p
∏
j=1

tn−jjj }dT dG.

Then

∫
X
e− tr(XX′)dX = ∫

T
{

p
∏
j=1

tn−jjj }e
−∑pi≥j=1 t2ijdT ∫

Vn,p

dG. (b)

But

∫
∞

0
tn−jjj e−t2jjdtjj =

1
2
∫
∞

0
y

n−j+1
2 −1

j e−yjdyj , yj = t2j
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= 1
2
Γ(n − j + 1

2
), ℜ(n − j + 1

2
) > 0;

∫
∞

−∞
e−t2ijdtij = √π ⇒ ∏

i>j
∫
∞

−∞
e−t2ijdtij = π

p(p−1)
4 .

Then

∫
T
{

p
∏
j=1

tn−jjj }e− tr(TT
′)dT = 1

2p
π

p(p−1)
4

p
∏
j=1
Γ(n − j + 1

2
)

= 1
2p
Γp(

n
2
)

see the notation from (5.2.2). Comparing (a) and (b) above we have the following re-
sult:

(iv) ∫
Vp,n

dG = 2
pπ

np
2

Γp(
n
2 )
,n ≥ p. (5.2.8)

Thus, the integral of dG, the volumeelements, over theStiefelmanifold gives the result
in (iv). This is a very important result in the theory of functions of matrix argument
where the integral is over the full Stiefel manifold (not in any subset there). When
n = pwe have the full orthogonal group denoted by O(p). Then putting n = p in (iv) we
have another very important result:

(v) ∫
O(p)

dG = 2
pπ

p2
2

Γp(
p
2 )
. (5.2.9)

Exercises 5.2
5.2.1. Show that a real symmetric positive definite matrix A can be written as A = BB′

where B is nonsingular.

5.2.2. Show that a real symmetric positive semi-definite matrix A can be written as
A = CC′, where C is a rectangular matrix, and that if C is of full rank then A is positive
definite.

5.2.3. Show that a Hermitian positive definite matrix A can be written as A = BB∗

where B is nonsingular.

5.2.4. Construct the positive definite square root of (a) a positive definite matrix A,
(b) a Hermitian positive definite matrix A.

5.2.5. For real positive definite or Hermitian positive definite matrices A and B show
that, denoting the positive definite square roots by A

1
2 and B

1
2 ,

|I − AB| = |I − BA| = |I − A
1
2 BA

1
2 | = |I − B

1
2AB

1
2 |.
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5.2.6. Let X1 and X2 be p × p matrix-variate real gamma variables having densities
in (5.2.1) with parameters α1 and α2 respectively. Let X1 and X2 be statistically inde-
pendently distributed (the joint density of X1 and X2 is the product of the individual
densities of X1 and X2). Then show that

Y = X1 + X2 (a)

is a matrix-variate gamma with parameter α1 + α2;

Y1 = Y−
1
2 X1Y−

1
2 (b)

has a matrix-variate type-1 beta density;

Y2 = Y−
1
2 X2Y−

1
2 (c)

has a matrix-variate type-1 beta density;

Y3 = X
− 12
2 X1X

− 12
2 and Y4 = X

− 12
1 X2X

− 12
1 (d)

have matrix-variate type-2 beta densities;

Y and Y1 as well as Y and Y2 (e)

are independently distributed.

5.2.7. Let X be a p × 1 real vector random variable and T a p × 1 vector of parameters
(free of X). Then

X′T = T′X = t1x1 +⋯+ tpxp

where X′ = (x1,… ,xp) and T′ = (t1,… , tp). Then the expected value of eT′X , denoted
byMX (T), that is,

MX (T) = E[eT
′X] = ∫

X
eT′X f (X)dX

where f (X) is the density of X, is called themoment generating function ofX whenX is
continuous. Evaluate the moment generating function of X when X ∼ Np(μ,V),V > O
of Example 5.2.1.

5.2.8. Consider a p×p real positive definitematrix randomvariableX with the density
f (X). Let T = ( ̂tij) = T′ > O, ̂tii = tii , ̂tij =

1
2 tij , i ≠ j, tij = tji for all i and j, be p × p parameter

matrix. T is free of X. Then the moment generating function of X, denoted byMX (T),
is given by

MX (T) = E[eT
′X] = ∫

X>O
etr(T′X)f (X)dX.

Evaluate MX (T) for (a) the real matrix-variate gamma variable of (5.2.1); (b) the real
type-2 matrix-variate beta variable of (5.2.7). Does this exist?
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5.2.9. Consider a p × n matrix X,n ≥ p, with the columns of X independently dis-
tributed as Np(O, I) of Example 5.2.1. Independently distributed means the den-
sity of X, denoted by f (X), is available by taking the product of the densities of
Xj ∼ Np(O, I), j = 1,… ,n. Let Y = XX′. With the help of (iii), or otherwise, show that
the density of Y is a particular case of a matrix-variate gamma density given in (5.2.1).

5.2.10. Repeat Exercise 5.2.9 if the columns of X are independently distributed as
Np(O,V),V > O.

5.2.11. By using moment generating function show that if the p × p matrix X has a
matrix-variate gamma density of (5.2.1) then every leading sub-matrix of X also has a
density in the same family of gamma densities.

5.2.12. By partitioning matrices and integrating out the remaining variables (not us-
ing the moment generating function) establish the same result in Exercise 5.2.11.

5.2.13. Let X = X′ and T = T′ be two p × pmatrices. Show that

tr(XT) = tr(TX) ≠
p
∑
i=1

p
∑
j=1

tijxij .

5.2.14. For X = X′ and p × p construct a p × p matrix T such that T = T′ and tr(XT) =
∑pi=1∑

p
j=1 tijxij so that E[e− tr(TX)] can act as the Laplace transformof a real-valued scalar

function f (X) of X > O where T > O.

5.3 Some topics from statistics

In almost all branches of theoretical and applied statistics involving more than one
random variable (real or complex) vectors, matrices, determinants and the associated
properties play vital roles. Here we will list a few of those topics for the sake of illus-
tration.

5.3.1 Principal components analysis

In a practical experimental study a scientist maymakemeasurements on hundreds of
characteristics of a given specimen. For example, if the aim is to identify the skeletal
remains of 10 individuals and classify them as coming from the some groups (ethnic,
racial or other) then all characteristicswhichmayhave some relevance to the study are
measuredon each skeleton. Initially the experimenter doesnot knowwhich character-
istics are relevant. If the experimenter hasmademeasurements on 100 characteristics
such as the length of thighbone, dimension of the skull (severalmeasurements), nasal
cavity and so on then with 100 such characteristics the analysis of the data becomes
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too involved. Then the idea is to cut down the number of variables (characteristics on
which measurements are already made). If the aim is classification of a skeleton into
one of k racial groups then variables which do not have much dispersion (variation)
are not that important. One of such variables may be sufficient. Hence the variables
which have more scatter in them (squared scatter is measured in terms of variances)
are very important. Thus one way of reducing the number of variables involved is to
look for variables that have larger variances. These are very important variables as far
as classification is concerned. Since linear functions also contain individual variables
it is more convenient to look at linear functions (all possible linear functions) and
select that linear function with maximum variance, second largest variance and so
on. Such an analysis of variable reduction process is called the principal components
analysis.

Let x1,… ,xp be p real scalar random variables with mean value zero. Since vari-
ance is invariant under relocation of the variables the assumption that themean value
is zero can be made without any loss of generality. Consider an arbitrary linear func-
tion:

u = a1x1 +⋯+ apxp = a′X = X′a,

a =(
a1
⋮
ap
), X =(

x1
⋮
xp
) (5.3.1)

where a1,… ,ap are constants (free of x1,… ,xp). Then the variance of u, denoted by
Var(u), is given by

Var(u) = Var(a′X) = E(a′X)2 = E(a′X)(a′X)′

= E(a′XX′a) = a′[E(XX′)]a = a′Va (5.3.2)

where E denotes the expected value, V is the covariance matrix of the p × 1 vector
random variable X. [Note that since a′X is a scalar quantity its square (a′X)2 can also
bewritten as it times its transpose or (a′X)2 = (a′X)(a′X)′.] Here V = (vij), vii = Var(xi),
vij = Cov(xi ,xj) = the covariance between xi and xj . Note that (5.3.2) with unrestricted
a can go to +∞ since a′Va ≥ 0 and then maximization does not make sense. Let us
restrict a to the boundary of a p-sphere of unit radius, that is, a′a = 1. Going through
Lagrangian multiplier let

ϕ = a′Va − λ(a′a − 1) (5.3.3)

where λ is a Lagrangian multiplier. Differentiating ϕ partially with respect to a (see
vector derivatives from Chapter 1) we have

𝜕ϕ
𝜕a
= O ⇒ 2Va − 2λa = O ⇒ Va = λa. (5.3.4)
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Thus a vector a maximizing a′Va must satisfy (5.3.4). A non-null a satisfying (5.3.4)
must have its coefficient matrix singular or its determinant zero or |V − λI| = 0. That is,
a is an eigenvector of V corresponding to the eigenvalue λ. The equation

|V − λI| = 0

has p roots, λ1 ≤ λ2 ≤⋯ ≤ λp. When the variables x1,… ,xp are not linearly dependent
(no experimenter will include a variable which is linearly dependent on other vari-
ables under study because no additional information is conveyed by such a variable)
V is real symmetric positive definite and we have taken a′a = 1. Then from (5.3.4)

λ1 = α′1Vα1, Vα1 = λα1, α′1α1 = 1, α1 =(
α11
⋮
αp1
)

where α1 is the eigenvector corresponding to the largest eigenvalue of V . Thus the first
principal component is

u1 = α′1X = α11x1 + α21x2 +⋯+ αp1xp

with variance, Var(u1) = α′1Vα1 = λ1. Now take the second largest eigenvalue λ2 and a
corresponding eigenvector α2 such that α′2α2 = 1. Then

u2 = α′2X = α12x1 + α22x2 +⋯+ αp2xp

is the second principal component with the variance λ2 and so on. Since V = V′, real
symmetric, the eigenvectors for different eigenvalues will be orthogonal. Thus the
principal components constructed at the r-th stage will be mutually orthogonal to all
others (the coefficient vectors are mutually orthogonal).

Example 5.3.1. Show that the following V can represent a covariance matrix and
compute the principal components where

V = [[
[

2 0 1
0 2 1
1 1 2

]]

]

.

Solution 5.3.1. In order for V to be the covariance matrix of some 3 × 1 real vector
randomvariable,V must be symmetric and at least positive semi-definite. Let us check
the leading minors.

2 > 0, |2 0
0 2
| = 4 > 0, ||

|

2 0 1
0 2 1
1 1 2

||

|

= 4 > 0

and V = V′. Hence V = V′ > 0 (symmetric positive definite). In order to compute the
principal components one needs to compute the eigenvalues of V . Consider
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|V − λI| = 0 ⇒ ||
|

2 − λ 0 1
0 2 − λ 1
1 1 2 − λ

||

|

= 0

⇒ (2 − λ)(λ2 − 4λ + 2) = 0
⇒ λ1 = 2 +√2, λ2 = 2, λ3 = 2 −√2

are the three roots. Now, consider the largest one, namely λ1 = 2 +√2. An eigenvector
corresponding to λ1 is given by

(A − λ1I)X = O ⇒
[[

[

−√2 0 1
0 −√2 1
1 1 −√2

]]

]

[[

[

x1
x2
x3

]]

]

= [[

[

0
0
0

]]

]

⇒ X1 =
[[

[

1
1
√2

]]

]

.

Normalizing it we have

α1 =(

1
2
1
2
√2
2

), α′1α1 = 1

is the normalized X1. Hence the first principal component is

u1 = α′1X =
1
2
x1 +

1
2
x2 +
√2
2
x3.

Now take λ2 = 2. (A − λ2I)X = O gives an

X2 =(
1
−1
0
) and then α2 =(

1
√2
− 1
√2
0
)

and therefore the second principal component is

u2 = α′2X =
1
√2

x1 −
1
√2

x2.

Now take the third eigenvalue λ3 and consider (A − λ3I)X = O. This gives

X3 =(
1
1
−√2
) and then α3 =(

1
2
1
2

−√22

).

Therefore the third principal component is

u3 = α′3X =
1
2
x1 +

1
2
x2 −
√2
2
x3.

Note that α′1α2 = 0, α′1α3 = 0, α′2α3 = 0, α′i αi = 1, i = 1, 2,3. Var(u1) = α′1Vα1 = λ1 = 2 +√2,
Var(u2) = 2, Var(u3) = 2 −√2. Var(u1) > Var(u2) > Var(u3).
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Observe that if one or more eigenvalues are zeros then the corresponding princi-
pal components need not be calculated since when λ = 0, variance = 0 and then the
variable is degenerate (a constant) having no scatter. No λ can be negative since the
covariance matrix is at least positive semi-definite. Computations need be carried out
only as long as there are positive eigenvalues above a preassigned threshold number.
The variance falling below which (eigenvalues below the threshold number) may not
be of any interest to the experimenter. In practice what is done is to have a cutoff point
for λj = Var(uj), j = 1,… ,p and include all principal components with λj bigger than or
equal to the cutoff point in the study.

When theoretical knowledge about the variables x1,… ,xp is not available then in-
stead of V we consider the sample covariance matrix S which is an estimate of V and
work with S. We get estimates of the principal components and their variances. One
drawback of the procedure of principal components analysis is that our initial aimwas
to reduce the number of variables p when p is large. In order to apply the above pro-
cedure we need the eigenvalues and eigenvectors of a p×pmatrix with p large. Hence
it is questionable whether computation-wise anything tangible is achieved unless the
eigenvalues are so far apart that the number of principal components is only a handful
when p, in fact, is really large. Since the problem is relevant only when p is large an
illustrative example here is not feasible. What is done in Example 5.3.1 is to illustrate
the steps.

5.3.2 Regression analysis and model building

One of the frequent activities in applied statistics, econometrics and other areas is to
predict a variable by either observing other variables or by prefixing other variables.
Let us call the variable to be predicted as the dependent variable y and the variables
which are used, say x1,… ,xk , to predict y as free (not a proper term in this respect)
variables. As examples would be (1) y =market price of the stock of a particular prod-
uct, x1 = market demand for that product, x2 = price of a competing product, x3 =
amount demanded of the company through law suits against the company, and so
on or x1,x2,… are factors which have some relevance on y, (2) y = rate of inflation,
x1 = unit price of gasoline, x2 = unit price of staple foods, x3 = rent, and so on, (3) y =
weight of a beef cow, x1 = the age, x2 = amount of food item 1 consumed, x2 = amount
of green fodder consumed, and so on.

We can prove that the best predictor, best in the minimum mean square sense,
is the conditional expectation E(y|x1,… ,xk) where y is the variable to be predicted
and x1,… ,xk are the free variables or the variables to be preassigned. For obtaining
the best predictor, one needs the conditional distribution of y at given x1,… ,xk and
the conditional expectation E(y|x1,… ,xk) existing. If we do not have the conditional
distribution then what one can do is only to guess the nature of E(y|x1,… ,xk) and as-
sume a functional form. Then try to estimate that function. If we donot have the condi-
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tional distribution and if we suspect that the conditional expectation is a linear func-
tion of the conditioned variables x1,… ,xk then we may take a model E(y|x1,… ,xk) =
a0 + a1x1 +⋯+ akxk a general linear function.

Suppose we assume that the expected value of y at preassigned values of x1,… ,xk
is a linear function of the type,

E(y|x1,… ,xk) = a0 + a1x1 +⋯+ akxk (5.3.5)

where E(y|(⋅)) denotes the conditional expectation of y given (⋅), x1,… ,xk are preas-
signed, and hence known, and the unknowns are the coefficients a0,… ,ak . Hence if
(5.3.5) is treated as a model that we are setting up then linearity or nonlinearity are
decided by the linearity of the unknowns, a0,a1,… ,ak in the model. If it is treated
as a predictor function of x1,… ,xk then linearity or nonlinearity is decided as a func-
tion of x1,… ,xk . This is the essential difference between a predictor function and a
model set up to estimate the predictor function. Since the equation (5.3.5) is linear in
the unknownswe say that we have a linearmodel for y in (5.3.5). If we had a regression
function (conditional expectation of y given x1,… ,xk , which is the best predictor of y,
best in the minimummean square sense) of the form

E(y|x1,… ,xk) = a0a
x1
1 e−(a2x2+⋯+akxk) (5.3.6)

then we have a nonlinear predictor of y since the right side in (5.3.6) is nonlinear in
x1,… ,xk and if (5.3.6) is treated as a model set up to estimate a regression function
then the model is nonlinear because it is nonlinear in the unknowns a0,… ,ak .

Consider a linear model of the regression type such as the one in (5.3.5). Our first
aim is to estimate the unknowns a0,… ,ak . One distribution-free method (a method
that does not depend on the statistical distributions of the variables involved) that is
frequently used is themethod of least squares. This needs some data points, observa-
tions or preassigned values on (x1,… ,xk) and the corresponding observations on y.
Let the j-th preassigned value on (x1,… ,xk) be (x1j ,… ,xkj) and the corresponding ob-
servation on y be yj . Since (5.3.5) is not a mathematical equation we cannot expect
every data point (x1j ,… ,xkj) substituted on the right to give exactly yj . (The model is
simply assumed. There may or may not be such a linear relationship.) Write

yj = a0 + a1x1j +⋯+ akxkj + ej

where ej is the error in using a0 + a1x1j +⋯+ akxkj to estimate yj . Then

ej = yj − a0 − a1x1j −⋯− akxkj , j = 1,… ,n

if there are n data points. Since k + 1 parameters are to be estimated we will take n to
be at least k + 1, n ≥ k + 1. In matrix notation we have
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e = Y − Xβ,

e = [[
[

e1
⋮
en

]]

]

, Y = [[
[

y1
⋮
yn

]]

]

, β = [[
[

a0
⋮
ak

]]

]

,

X = [[
[

1 x11 … xk1
⋮ ⋮ … ⋮
1 x1n … xkn

]]

]

where e and Y are n × 1, X is n × (k + 1) and β is (k + 1) × 1. The error sum of squares is
then

e21 +⋯+ e2n = e′e = (Y − Xβ)′(Y − Xβ). (5.3.7)

If the parameters in β are estimated by minimizing the error sum of squares then the
method is called the method of least squares. Differentiating (5.3.7) with respect to β
and equating to a null vector we have (see the vector derivatives from Chapter 1)

𝜕
𝜕β

e′e = O ⇒ −2X′(Y − Xβ) = O

⇒ X′Xβ̂ = X′Y (5.3.8)

where β̂ denotes the estimated β. In the theory of least square analysis theminimizing
equation in (5.3.8) is called the normal equation (nothing to do with Gaussian or nor-
mal distribution). If X′X is nonsingular which happens when X is of full rank, that is,
the rank of X is k + 1 ≤ n, then

β̂ = (X′X)−1X′Y . (5.3.9)

In a regression type model the final model is going to be used at preassigned points
(x1,… ,xk). Naturally, one would not be taking linearly dependent rows for X. Even
if x1,… ,xk are not linear functions of each other when actual observations are made
on (x1,… ,xk) there is a possibility of near singularity for X′X. In a regression type
model, more or less one can assume X′X to be nonsingular. There are other models
such as design models where by the nature of the design itself X′X is singular. Since
X′Y in (5.3.8) is a linear function of the columns of X′ and since X′X is also of the same
type the linear system in (5.3.8) is always consistent when n ≥ k + 1. The least square
minimum from (5.3.9), usually denoted by s2, is given by

s2 = (Y − Xβ̂)′(Y − Xβ̂) = Y′(Y − Xβ̂)

since −X′(Y − Xβ̂) = O, normal equations;

s2 = Y′Y − Y′X(X′X)−1X′Y = Y′[I − X(X′X)−1X′]Y . (5.3.10)

Note that the matrices

A = I − X(X′X)−1X′, B = X(X′X)−1X′
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are idempotent, A = A2 and B = B2, and further, AB = O, that is, they are orthogonal to
each other. If β = O then the least square minimum is

s20 = Y′Y .

Thus

s20 − s2 = Y′Y − Y′[I − X(X′X)
−1X′]Y = Y′X(X′X)−1X′Y

is the sum of squares due to the presence of the parameter vector β. Comparing the
relative significance of s20 − s2 with s2 is the basis of testing statistical hypotheses on β.

If the parameter a0 is to be separated then we can consider the vector

[[

[

y1 − ȳ
⋮

yn − ȳ

]]

]

= [[

[

x11 − ̄x1 … xk1 − ̄xk
⋮ … ⋮

x1n − ̄x1 … xkn − ̄xk

]]

]

[[

[

a1
⋮
ak

]]

]

+[[

[

e1 − ē
⋮

en − ē

]]

]

(5.3.11)

where ȳ = 1
n (y1 + ⋯ + yn), ̄xi =

1
n ∑

n
j=1 xij, ē =

1
n (e1 + ⋯ + en) where ē can be taken to

be zero without much loss of generality. The least square estimate of β in this case,
where β′ = (a1,… ,ak), will have the same structure as in (5.3.9) but the Y and X are to
be replaced by Y − Ȳ and X − X̄ respectively, where

Ȳ = [[
[

ȳ
⋮
ȳ

]]

]

, X̄ = [[
[

̄x1 ̄x2 … ̄xk
⋮ ⋮ … ⋮
̄x1 ̄x2 … ̄xk

]]

]

.

Example 5.3.2. If the expected value of y at preassigned values of x1 and x2 is sus-
pected to be a function of the form a0 + a1x21 + a2x1x2 estimate the prediction function
by themethod of least squares and estimate y at (x1,x2) = (2, 1) and at (5,7) respectively
by using the following data points:

x1 0 1 1 −1 2 0 1
x2 0 1 −1 1 0 2 2
y 2 4 1 1 5 2 5

Solution 5.3.2. Writing in matrix notation we have

Y =

[[[[[[[[[[[

[

2
4
1
1
5
2
5

]]]]]]]]]]]

]

, β = [[
[

a0
a1
a2

]]

]

, X =

[[[[[[[[[[[

[

1 0 0
1 1 1
1 1 −1
1 1 −1
1 4 0
1 0 0
1 1 2

]]]]]]]]]]]

]
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where the columns of X correspond to 1,x21 ,x1x2;

X′X = [[
[

7 8 1
8 20 1
1 1 7

]]

]

,

(X′X)−1 = 1
521
[[

[

139 −55 −12
−55 48 1
−12 1 76

]]

]

,

X′Y = [[
[

20
31
12

]]

]

, (X′X)−1X′Y = 1
521
[[

[

931
400
703

]]

]

.

Therefore

̂a0 =
931
521
, ̂a1 =

400
521
, ̂a2 =

703
521

and the estimated model is

y = 931
521
+ 400
521

x21 +
703
521

x1x2.

The predicted y at (2, 1), denoted by ŷ, is given by

ŷ = 931
521
+ 400
521
(2)2 + 703

521
(2)(1) ≈ 7.5566.

Since the point (5,7) is too far out of the range of observations, based on which the
model is constructed, it is not reasonable to predict at (5,7) by using this model un-
less it is certain that the behavior of the function is the same for all points on the
(x,y)-plane.

When the model is linear in the parameters (unknowns) the above procedure can
be adopted but when the model is nonlinear in the parameters one has to go through
a nonlinear least squares procedure. Many such algorithms are available in the litera-
ture. One such algorithm may be seen from [6].

5.3.3 Design type models

Various types of models appear in the area of statistical design of experiments. A spe-
cial case of a two-way analysiswith fixed effectmodel, applicable in randomized block
designs is the following: Suppose that a controlled experiment is conducted to study
the effects of r fertilizers on s varieties of corn, for example 2 fertilizers on 3 varieties
of corn. Suppose that rs experimental plots of land of the same size which are homo-
geneous with respect to all known factors of variation are selected and each fertilizer
is applied to randomly assigned s plots where a particular variety of corn is planted.
Suppose we have one observation yij (yield of corn) corresponding to each (fertilizer,
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variety) combination. Then yij can be contributed by some general effect, deviation
from the general effect due to the i-th fertilizer and the j-th variety, and a randompart.
The simplest model of this type is

yij = μ + αi + βj + eij , i = 1,… , r, j = 1,… , s (5.3.12)

where μ is the general effect, αi is the deviation from the general effect due to the i-th
fertilizer, βj is the deviation from the general effect due to the j-th variety and eij is
the random part which is the sum total contributions from all unknown factors which
could not be controlled through the design. The model in (5.3.12), when μ, αi ’s and
βj ’s are fixed, but unknown, and eij ’s are random, is known as a linear, additive, fixed
effect two-way classification model without interaction (one of the simplest models
one can consider under this situation). Writing (5.3.12) in matrix notation we have

Y = Xβ + e,

where

Y =

[[[[[[[[[[[[[[[[[[

[

y11
⋮
y1s
y21
⋮
y2s
⋮
yr1
⋮
yrs

]]]]]]]]]]]]]]]]]]

]

, β =

[[[[[[[[[[[

[

μ
α1
⋮
αr
β1
⋮
βs

]]]]]]]]]]]

]

, e =

[[[[[[[[[[[[[[[[[[

[

e11
⋮
e1s
e21
⋮
e2s
⋮
er1
⋮
ers

]]]]]]]]]]]]]]]]]]

]

,

X =

[[[[[[[[[[[[[[[[[[

[

1 1 0 … 0 1 0 … 0
1 1 0 … 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 1 0 … 0 0 0 … 1
1 0 1 … 0 1 0 … 0
1 0 1 … 0 0 1 … 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 1 … 0 0 0 … 1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 0 0 … 0 1 0 … 1

]]]]]]]]]]]]]]]]]]

]

.

Since the sum of the last r + s columns is equal to the first column the matrix X is not
of full rank. This is due to the design itself. The matrix X here is called the design ma-
trix. Thus X′X is singular. Hence if we apply matrix method we could only come to an
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equation corresponding to (5.3.8) and then go for other methods of solving that equa-
tion or compute a g-inverse (generalized inverse) (X′X)− of X′X so that one solution
of the equation corresponding to (5.3.8) is

β̂ = (X′X)−X′Y .

The theory of g-inverses is already available for dealing with such problems. But in
the fields of design of experiments, analysis of variance and analysis of covariance,
matrix methods will be less efficient compared to computing the error sum of squares
as a sum, computing the derivatives directly and then solving the resulting system of
normal equations one by one. Hence we will not elaborate on this topic any further.

5.3.4 Canonical correlation analysis

In Section 5.3.2 we dealt with the problem of predicting one real scalar variable by
using one set of variables. We generalize this problem here. We would like to predict
real scalar variables in one set by using another set of real scalar variables. If the set to
be predicted contains only one variable then it is the case of Section 5.3.2. Instead of
treating them as two sets of variables we consider all possible linear functions in each
set. Thenuse a principle ofmaximizing ameasure of scale-free joint dispersion known
as correlation (nothing to do with relationships, does not measure relationships) for
constructing such predictors. Let all the variables in the two sets be denoted by

X = [X(1)
X(2)
] , X(1) =

[[

[

x1
⋮
xp1

]]

]

, X(2) =
[[

[

xp1+1
⋮

xp1+p2

]]

]

, p = p1 + p2.

For convenience let us assume that p1 ≤ p2. The covariancematrix of X, denoted by V ,
is

V = E{[X − E(X)][X − E(X)]′}.

Let us partition V conformally with X. That is,

V = [V11 V12
V21 V22

]

where V11 is p1 × p1, V21 = V′12 since V is symmetric. Let us consider arbitrary linear
functions of X(1) and X(2). Let u = α′X(1), w = β′X(2) where α′ = (α1,… ,αp1 ) and β′ =
(βp1+1,… ,βp1+p2 ) are arbitrary constants. Since correlation is invariant under scaling
and relocation of the variables involvedwe can assume,without any loss of generality,
that Var(u) = 1 and Var(w) = 1. That is,

1 = Var(u) = α′V11α, 1 = Var(w) = β′V22β.
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The correlation between u and w is

Cov(u,w)
[Var(u)Var(w)]

1
2
= Cov(u,w) = α′V12β

since Var(u) = 1 and Var(w) = 1. Then the principle of maximizing correlation reduces
to maximizing α′V12β subject to the conditions α′V11α = 1 and β′V22β = 1. Using La-
grangian multipliers − 12λ and −

1
2μ the function to be maximized is given by

ϕ = α′V12β −
1
2
λ(α′V11α − 1) −

1
2
μ(β′V22β − 1).

The partial derivatives equated to null give,

𝜕ϕ
𝜕α
= O, 𝜕ϕ
𝜕β
= O ⇒

V12β − λV11α = O, (a)
−μV22β + V21α = O. (b)

Since α′V11α = 1 = β′V22β we have λ = μ = α′V12β. Then (a) and (b) reduce to

[
−λV11 V12
V21 −λV22

][
α
β
] = O.

For a non-null solution we must have the coefficient matrix singular or the determi-
nant zero. That is

|
−λV11 V12
V21 −λV22

| = 0. (c)

Thedeterminant on the left is a polynomial of degreep = p1+p2. Let λ1 ≥ λ2 ≥⋯ ≥ λp1+p1
be the roots of the determinantal equation (c). Since λ = α′V12β = correlation between
u andw, themaximum correlation is available for the largest root λ1. With this λ1 solve
(a) and (b) for α and β. Let the solution be α(1), β(1). Normalize by using α′(1)V11α(1) = 1
and β′(1)V22β(1) = 1 to obtain the corresponding normalized vectors, denoted by α(1) and
β(1). Then the first pair of canonical variables is

(u1,w1) = (α(1)
′X(1),β(1)

′X(2)).

Note that α(1) and β(1) are not only the solutions of (a) and (b) but also satisfy the
conditions α(1)′V11α(1) = 1 and β(1)′V22β(1) = 1. Thus β(1)

′X(2) is the best predictor, in
the sense of maximum correlation, for predicting the linear function α(1)′X(1) and vice
versa. When looking for the second pair of canonical variables we can impose the ad-
ditional conditions that the second pair (u,w) should be such that u is non-correlated
with u1 and w1 and w is non-correlated with u1 and w1 and at the same time u and
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w have the maximum correlation between them, subject to the normalization condi-
tions u′V11u = 1 and w′V22w = 1. We can continue requiring the new pair to be non-
correlated with each of the earlier pairs as well as with maximum correlation and
normalized. Using more Lagrangian multipliers the function to be maximized at the
(r + 1)-st stage is,

ϕr+1 = α′V12β −
1
2
λ(α′V11α − 1) −

1
2
μ(β′V22β − 1)

+
r
∑
i=1

νiα′V11α(i) +
r
∑
i=1

θiβ′V22β(i).

Then

𝜕ϕr+1
𝜕α
= O, 𝜕ϕr+1

𝜕β
= 0 ⇒

V12β − λV11α +
r
∑
i=1

νiV11α(i) = O, (d)

V21α − μV22β +
r
∑
i=1

θiV22β(i) = O. (e)

Premultiplying (d) by α(j)′ and (e) by β(j)′ we have

0 = νjα(j)
′V11α(j) = νj

and

0 = θjβ(j)
′V22β(j) = θj .

But α(j)′V11α(j) − 1 = 0 and β(j)
′V22β(j) − 1 = 0. Thus the equations go back to the origi-

nal equations (a) and (b). Therefore take the second largest root of (c), take solutions
α(2) and β(2) from (a) and (b) which will be such that α(2)′V11α(2) = 1, β(2)

′V22β(2) = 1,
α(2)′V11α(1) = 0, α(2)

′V12β(1) = 0, β(2)
′V22β(1) = 0, β(2)

′V21α(1) = 0. Then

(u2,w2) = (α(2)
′X(1),β(2)

′X(2))

is the second pair of canonical variables and so on. For more properties on canonical
variables and canonical correlations see books on multivariate statistical analysis.

When computing the roots of the determinantal equation (c) the following obser-
vations will be helpful. From (a) and (b) for λ = μ, we can eliminate one of the vectors
α or β and write separate equations, one in α alone and one in β alone. For example,
multiply (b), with μ = λ, by λ and (a) byV−111 V21 when |V11| ≠ 0 and add the two to obtain

(V21V−111 V12 − λ2V22)β = O ⇒
|V21V−111 V12 − λ2V22| = 0 ⇒
|V−122 V21V−111 V12 − λ2I| = 0 (f)
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and similarly

(V12V−122 V21 − λ2V11)α = O ⇒

|V−111 V12V−122 V21 − λ2I| = 0. (g)

From (f) and (g) note that λ2 can be taken as the eigenvalues of V−122 V21V−111 V12 or of
V−111 V12V−122 V21, or as the roots of the determinantal equations (f) and (g), and α and
β the corresponding eigenvectors. Thus the problem again reduces to an eigenvalue
problem.

Example 5.3.3. (1) Show that the following matrix V can be the covariance matrix
of the real random vector X′ = (x1,x2,x3,x4). (2) Let X′(1) = (x1,x2) and X′(2) = (x3,x4).
Suppose we wish to predict linear functions of x1 and x2 by using linear functions of
x3 and x4. Construct the best predictors, best in the sense of maximizing correlations.

V =
[[[[

[

1 1 1 1
1 2 −1 0
1 −1 6 4
1 0 4 4

]]]]

]

.

Solution 5.3.3. Let us consider the leading minors of V . Note that

1 > 0, |1 1
1 2
| = 1 > 0,

||

|

1 1 1
1 2 −1
1 −1 6

||

|

= 1, |V | > 0.

V is symmetric and positive definite and hence can represent a covariance matrix. Let

V = [V11 V12
V21 V22

] , V11 = [
1 1
1 2
] ,

V12 = V′21 = [
1 1
−1 0
] , V22 = [

6 4
4 4
] ,

X(1) = (
x1
x2
) , X(2) = (

x3
x4
) ,

V−111 = [
2 −1
−1 1
] , V−122 = [

1
2 −

1
2

− 12
3
4
] .

We are looking for the pairs of canonical variables. Consider the equation

|V21V−111 V12 − νV22| = 0, ν = λ2, ⇒

|[
1 −1
1 0
][

2 −1
−1 1
][

1 1
−1 0
] − ν[6 4

4 4
]| = 0 ⇒
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|[
5 3
3 2
] − ν[6 4

4 4
]| = 0 ⇒

8ν2 − 8ν + 1 = 0 ⇒ ν = 1
2
± 1
4
√2.

Let ν1 =
1
2 +
√2
4 and ν2 =

1
2 −
√2
4 . For ν1 consider the equation

[V21V−111 V12 − ν1V22]β = O ⇒

[(
5 3
3 2
) − ( 1

2
+
√2
4
)(

6 4
4 4
)][

β1
β2
] = [

0
0
] ⇒

[
2 − 32√2 1 −√2
1 −√2 −√2

][
β1
β2
] = [

0
0
] ⇒

b1 = (
−2 −√2

1
)

is one solution. Let us normalize through the relation 1 = b′1V22b1. That is,

(−2 −√2, 1) [6 4
4 4
][
−2 −√2

1
] = 4(2 +√2)2 = d.

Then

β(1) = b1
√d
= 1
2(2 +√2)

[
−(2 +√2)

1
] = [
− 12
1

2(2+√2)
] .

Now consider

(V12V−122 V21 − ν1V11)α = O ⇒

[[
1 1
−1 0
][

1
2 −

1
2

− 12
3
4
][

1 −1
1 0
] − ( 1

2
+
√2
4
)[

1 1
1 2
]][

α1
α2
] = [

0
0
] ⇒

[
1 +√2 2 +√2
2 +√2 2(1 +√2)

][
α1
α2
] = [

0
0
] ⇒

a1 = (
−√2
1
)

is one solution. Consider

a′1V11a1 = [−√2, 1] [
1 1
1 2
][
−√2
1
] = 4 − 2√2.

Then

α(1) = 1
√(4 − 2√2)

(
−√2
1
) .
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The first pair of canonical variables is then

(u1,w1), u1 = α(1)
′X(1) =

1
√(4 − 2√2)

(−√2x1 + x2),

w1 = β(1)
′X(2) = −

1
2
x3 +

1
2(2 +√2)

x4.

w1 is the best predictor of u1 and vice versa, best in the sense of maximum correlation.
Now let us look for the second pair of canonical variables. This is available from the
second root ν2 =

1
2 −
√2
4 . Consider the equation

(V21V−111 V12 − ν2V22)β = O ⇒

[[
5 3
3 2
] − ( 1

2
−
√2
4
)[

6 4
4 4
]][

β1
β2
] = [

0
0
] ⇒

b2 = (
√2 − 2

1
)

is one solution. Let us normalize. Consider

b′2V22b2 = [√2 − 2, 1] [
6 4
4 4
][
√2 − 2

1
]

= [2(2 −√2)]2 ⇒

β(2) = 1
2(2 −√2)

(
√2 − 2

1
) = (

− 12
1

2(2−√2)
).

Let us look for α(2). Consider the equation

(V12V−122 V21 − ν2V11)α = O ⇒

[[
1 1
−1 0
][

1
2 −

1
2

− 12
3
4
][

1 −1
1 0
] − (

1
2
−
√2
4
)[

1 1
1 2
]][

α1
α2
] = [

0
0
] ⇒

[
−1 +√2 −2 +√2
−2 +√2 −2 + 2√2

][
α1
α2
] = [

0
0
] ⇒

a2 = (
√2
1
)

is one such vector. Let us normalize it. Consider

a′2V11a2 = (√2, 1)(
1 1
1 2
)(
√2
1
) = 4 + 2√2.

Then

α(2) = 1
√(4 + 2√2)

(
√2
1
) .
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The second pair of canonical variables is then

(u2,w2) = (α(2)
′X(1),β(2)

′X(2)),

u2 =
1

√(4 + 2√2)
(√2x1 + x2), w2 = −

1
2
x3 +

1
2(2 −√2)

x4.

It is easy to verify that Cov(u1,u2) = 0, Cov(u1,w2) = 0, Cov(w1,w2) = 0, Cov(w1,u2) = 0.
Here w1 is the best predictor of u1 and w2 is the best predictor of u2, (w1,w2) is the best
predictor of (u1,u2) and vice versa.

It is worth noting that the maximum number of such pairs possible is p1 if p1 ≤ p2
or p2 if p2 ≤ p1.

Factor analysis is another topic which is widely used in psychology, educational
testing problems and applied statistics. This topic boils down to discussing some
structural properties of matrices. In a large variety of testing problems of statistical
hypotheses on the parameters of one or more multivariate Gaussian distributions the
likelihood ratio test statistics reduce to ratios of determinants which often reduce
to functions of eigenvalues of certain matrices. Thus the testing problem reduces
to the determination of the null and non-null distributions of ratios of determi-
nants or functions of eigenvalues. Generalized analysis of variance problems and
generalized linear model problems essentially reduce to the study of certain determi-
nants.

Exercises 5.3
5.3.1. Evaluate the principal components inX′ = (x1,x2,x3)with the covariancematrix

V = [[
[

2 0 1
0 2 2
1 2 4

]]

]

.

5.3.2. Checkwhether the followingV can represent a covariancematrix. If so evaluate
the principal components in the corresponding vector, X′ = (x1,x2,x3).

V = [[
[

1 −1 1
−1 2 0
1 0 3

]]

]

.

5.3.3. If the regression of y on x1 and x2 is of the form

E(y|x1,x2) = a0 + a1x21 + a2x1x2 + a3x22

estimate the regression function based on the following data:

y 1 5 1 2 4 4 5
x1 0 1 −1 1 2 0 0
x2 0 1 1 −1 0 2 −2
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5.3.4. If the regression of y on x is

E(y|x) = b0 + b1x + b2x2 + b3x3

estimate the regression function based on the following data:

x 0 1 −1 2 −2 3
y 1 5 1 16 −5 40

and estimate y at x = 1.5 and at x = 2.5.

5.3.5. Three groups of students are subjected to 3 different methods of teaching. The
experiment is conducted according to a completely randomized design so that the
grades obtained by the j-th student under the i-th method, xij, can be written as

xij = μ + αi + eij , i = 1, 2,3, j = 1,… ,ni

where ni is the size of group i, μ is a general effect, αi is the deviation from the general
effect due to the i-th method and eij is the random part. Evaluate the least square es-
timates of α1,α2,α3 and the sum of squares due to the αj ’s based on the following data
where μ,α1,α2,α3 are constants. Grades obtained by the students are the following:
Method 1: (grades 80,85,90,70,75,60,70);
Method 2: (grades 90,90,85,80,85,70,75,60,65,70);
Method 3: (grades 40,50,70,60,65,50,60,65).

5.3.6. Compute the canonical correlation between {x1,x3} and {x2,x4} if the covariance
matrix V of X′ = (x1,x2,x3,x4) is given by the following:

V =
[[[[

[

1 −1 1 1
−1 4 0 −1
1 0 2 1
1 −1 1 3

]]]]

]

.

5.3.7. Check whether the following matrix can be a covariance matrix of the vector
random variable X′ = (x1,x2,x3,x4). If so compute the canonical correlations between
{x1,x4} and {x2,x3}.

V =
[[[[

[

3 1 −1 1
1 2 0 −1
−1 0 2 1
1 −1 1 3

]]]]

]

.

5.4 Probability measures and Markov processes

In many areas of measure theory, geometrical probability and stochastic processes,
matrices, determinants and eigenvalues play important roles. Two such typical exam-
ples will be presented here, one from invariance properties of probability measures,
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applicable in geometrical probability problems, and another one from discrete time
Markov processes.

5.4.1 Invariance of probability measures

A random plane in an Euclidean k-space Rk can be given in Cartesian coordinates
x1,… ,xk as follows:

u1x1 +⋯+ ukxk + 1 = 0. (5.4.1)

This plane does not pass through the origin. When the coefficients u1,… ,uk are real
random variables we call (5.4.1) a random plane. We can write the plane in vector no-
tation as

U′X + 1 = 0, U′ = (u1,… ,uk), X′ = (x1,… ,xk). (5.4.2)

Let us consider a rotation of the axes of coordinates. A rotation of the axes can, in
general, be represented by an orthonormal matrix Q, QQ′ = I ,Q′Q = I where I is the
identity matrix. Let A′ = (a1,… ,ak) be a translation of U . Let the new point X be de-
noted by X1. Then

X1 = Q(X −Q′A) ⇒ Q′X1 +Q′A = X, Q−1 = Q′

and then

U′X + 1 = 0 ⇒ U′[Q′X1 +Q′A] + 1 = 0

⇒ U′Q′X1
U′Q′A + 1

+ 1 = 0 (5.4.3)

whereU′Q′A+1 ≠ 0 almost surely (a.s). If the plane in (5.4.3) is denoted byU′1X1 +1 = 0
then

U′1 =
U′Q′

U′Q′A + 1
. (5.4.4)

An event B on this plane is a function of the parameter vector U . Let a measure on B,
denoted bym(B), be given by the integral

m(B) = ∫
B
f (U)dU , dU = du1 ∧⋯∧ duk .

Under a translation and rotation let the resulting f (U) and B be denoted by f1(U1) and
B1 respectively. Let the corresponding measure bem1(B1). Then

m1(B1) = ∫
B1
f1(U1)dU1.
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Invariance property of the measure under Euclidean motion implies that m(B) and
m1(B1) are the same. What should be the condition so that m(B) =m1(B1)? Let us ex-
amine this a little further.

U′1 =
U′Q′

U′Q′A + 1
= V′

V′A + 1
,

V′ = U′Q′ = (v1,… , vk).

Then the first element in this row vector is v1
V ′A+1 and its partial derivativeswith respect

to v1,… , vk yield

(1 + V′A − v1a1, −v1a2,… ,−v1ak)(1 + V′A)
−2.

Then the Jacobian is the following determinant:

(1 + V′A)−(2k)

×
||||

|

(1 + V′A) − v1a1 −v1a2 … −v1ak
−v2a1 (1 + V′A) − v2a2 … −v2ak
⋮ ⋮ … ⋮
−vka1 −vka2 … (1 + V′A) − vkak

||||

|

= (1 + V′A)−(k+1).

Then

f (U) = f1(U1)|
𝜕U1
𝜕U
| = f1(U1)(1 + V′A)

−(k+1); (5.4.5)

U′1U1 =
U′U
[1 + V′A]2

, (1 + V′A)−(k+1) = [U
′
1U1
U′U
]

k+1
2
.

Therefore

f (U)
f1(U1)
= [

U′1U1
U′U
]

k+1
2
.

But

(U′U)−
(k+1)
2 = (u21 +⋯+ u2k)

− (k+1)2 .

Thus f (U) is proportional to (u21 +⋯+ u2k)−
(k+1)
2 . Therefore the invariant measure is

m(B) = ck ∫
B

1
(u21 +⋯+ u2k)

k+1
2
dU (5.4.6)

where ck is a constant.
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Example 5.4.1. Compute the invariant measure in Cartesian coordinates, invariant
under Euclidean motion, the invariant density and the element of the invariant mea-
sure for a plane in 3-space R3.

Solution 5.4.1. From (5.4.6) for k = 3 we have the invariant measure for a set B given
by

m(B) = c3 ∫
B

1
(u21 + u22 + u23)2

du1 ∧ du2 ∧ du3

where c3 is a constant. The invariant density is then

f (u1,u2,u3) = c3(u21 + u22 + u23)
−2

where c3 is a normalizing constant so that the total volume under f is unity. Therefore
the element of the invariant measure, denoted by dm, is given by

dm = c3(u21 + u22 + u23)
−2du1 ∧ du2 ∧ du3

where (u1,u2,u3) ≠ (0,0,0) a.s.

For more onmeasures, invariance and other topics such as random areas and vol-
umes in higher dimensional Euclidean space where matrices and determinants play
dominant roles see the book [4].

5.4.2 Discrete time Markov processes and transition probabilities

In Example 2.2.6 of Section 2.2 in Chapter 2wehave considered a transition probability
matrix which is singly stochastic in the sense that all elements are non-negative and
further, either the sum of the elements in each row is 1 or the sum of the elements in
each column is 1. If this property holds for both rows and columns then the matrix is
called a doubly stochastic matrix. For example

A = [
1
2

1
2

1
2

1
2
]

is doubly stochastic whereas

B = [0.8 0.2
0.5 0.5

] and C = [0.3 0.4
0.7 0.6

]

are singly stochastic.
Consider a problem of the following type: Consider a fishing spot in a river such as

a pool area in the river. Some fish move into the pool area from outside and some fish
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from the pool move out every day. Suppose that the following is the process every day.
70% of fish who are outside stay outside and 30%move into the pool. 50% of the fish
in the pool stay there and 50% move out of the pool. If stage 1 is “outside” and stage
2 is “inside” then we have the following transition proportion matrix, if the columns
represent the transitions:

outside = 1 inside = 2

outside = 1 0.7 0.5
inside = 2 0.3 0.5

, A = (aij) = (
0.7 0.5
0.3 0.5

) ,

aij = transition proportion from the j-th stage to the i-th stage. [If aij represents the
transition proportion from the i-th stage to the j-th stage then we have the transpose
of the above matrix A.] For convenience of other interpretations later on we take aij
to denote the transition from the j-th stage to the i-th stage so that the sum of the
elements in each column is 1 in the above singly stochastic matrix. If this process is
repeated every day then at the end of the first day A is the situation, by the end of the
second day A2 is the situation (see the details of the argument in Example 2.2.6) and at
the end of the k-th day the situation is Ak . What is Ak in this case? In order to compute
Ak let us compute the eigenvalues and thematrix of eigenvectors. Consider |A−λI| = 0.
That is,

|
0.7 − λ 0.5
r0.3 0.5 − λ

| = 0 ⇒ λ1 = 1, λ2 = 0.2.

If we add all the rows to the first row then the first row becomes 1 − λ, 1 − λ. Then 1 − λ
can be taken out. Then λ1 = 1 is an eigenvalue for any singly stochastic matrix.

(i) One eigenvalue of any singly stochastic matrix is 1.

Computing the eigenvectors for our matrix A we have for λ1 = 1,

(A − λ1I)X = O ⇒ [
0.7 − 1 0.5
0.3 0.5 − 1

][
x1
x2
] = [

0
0
]

⇒ X1 = [
1
0.6
]

is one eigenvector. For λ2 = 0.2,

(A − λ2I)X = O ⇒ X2 = [
1
−1
]
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is an eigenvector. Let

Q = (X1,X2) = [
1 1
0.6 −1

] ⇒

Q−1 = 1
1.6
[
1 1
0.6 −1

] .

Then

A = QΛQ−1, Λ = [1 0
0 0.2
] .

Therefore

Ak = (QΛQ−1)⋯(QΛQ−1) = QΛkQ−1

= [
1 1
0.6 −1

][
1k 0
0 (0.2)k

] 1
1.6
[
1 1
0.6 −1

] .

If k→∞ then (0.2)k → 0. Then

Ak →[ 1 1
0.6 −1

][
1 0
0 0
] 1
1.6
[
1 1
0.6 −1

]

= 1
1.6
[
1 1
0.6 0.6

] .

A∞ = limk→∞ Ak represents the steady state. Suppose there were 10 000 fish outside
the pool and 500 inside the pool to start with. Then at the end of the first day the
numbers will be the following:

[
0.7 0.5
0.3 0.5

][
10000
500
] = [

7 250
3250
] .

That is, 7 250 fish outside the pool and 3 250 inside the pool. At the end of the second
day the numbers are

[
0.7 0.5
0.3 0.5

]
2

[
10000
500
] = [

0.64 0.60
0.36 0.40

][
10000
500
]

= [
6700
3800
] .

That is, 6 700 fish outside the pool and 3 800 inside the pool. Evidently, in the long
run the numbers will be

A∞ [10000
500
] = 1

1.6
[
1 1
0.6 0.6

][
10000
500
] = [

6562.5
3937.5
] .
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Even though 0.5 fish does not make sense this vector is the eventual limiting vector
with 6 562.5 outside and 3 937.5 inside.

Let us look at the general situation. Let P = (pij) be the transition probability ma-
trix.

P = [[
[

p11 p12 … p1n
⋮ ⋮ … ⋮
pn1 pn2 … pnn

]]

]

with the sum of the elements in each column 1, that is, ∑ni=1 pij = 1 for each j = 1,… ,n.
Then, as we have already seen, one eigenvalue of P is 1. What about the other eigen-
values of P? Note that the sum of the eigenvalues of P is the trace of P. That is,

tr(P) = p11 +⋯+ pnn = λ1 +⋯+ λn

where λ1,… ,λn are the eigenvalues of Pwith λ1 = 1. But P2,P3,… being transition prob-
ability matrices, all have the same property that the sum of the elements in each col-
umn is 1. Hence tr(Pk) cannot exceed n because p(k)11 ,… ,p(k)nn are all probabilities,where
p(k)11 ,… ,p(k)nn are the diagonal elements in Pk . Note that p(k)ii ≠ pkii . But the eigenvalues
of Pk are λk1 = 1, λk2 ,… ,λkn . Then

λk2 +⋯+ λkn ≤ n − 1 (5.4.7)

where n is fixed and k could be arbitrarily large. But (5.4.7) can hold only if |λj| ≤ 1 for
all j = 1,… ,n.

(ii) The eigenvalues of a singly stochastic matrix are all less than or equal to 1 in
absolute value.

Example 5.4.2. Suppose that a flu virus is going around in a big school system. The
children there are only of 3 types, healthy (unaffected), infected, seriously ill. The
probability that a healthy child remains healthy at the end of the day is 0.2, becomes
infected is 0.5, becomes seriously ill is 0.3 and suppose the following is the transition
probability matrix:

P = [[
[

0.2 0.1 0.1
0.5 0.5 0.6
0.3 0.4 0.3

]]

]

.

Suppose that this P remains the same from day to day. Compute the following: (1) The
transition probability matrix after 10 days; (2) The transition probability matrix even-
tually; (3) If there are 1 000 children in the healthy category, 500 in the infected cate-
gory and 100 in the seriously ill category at the start of the observation period (zeroth
day) what will be these numbers eventually?
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Solution 5.4.2. In order to answer all the above questions we need the eigenvalues
and eigenvectors of P. Consider |P − λI| = 0. That is,

0 = ||
|

0.2 − λ 0.1 0.1
0.5 0.5 − λ 0.6
0.3 0.4 0.3 − λ

||

|

= (1 − λ) ||
|

1 1 1
0.5 0.5 − λ 0.6
0.3 0.4 0.3 − λ

||

|
= (1 − λ)[λ2 − (0.1)2].

The roots are λ1 = 1, λ2 = 0.1, λ3 = −0.1. For λ1 = 1,

(P − λ1I)X = O ⇒ X1 =
[[

[

2.2/7
10.6/7
1

]]

]

.

For λ2 = 0.1 and for λ3 = −0.1 we have

X2 =
[[

[

−2
1
1

]]

]

, X3 =
[[

[

0
1
−1

]]

]

.

Let

Q = [[
[

2.2/7 −2 0
10.6/7 1 1
1 1 −1

]]

]

.

Then

P = QΛQ−1, Λ = [[
[

1 0 0
0 0.1 0
0 0 −0.1

]]

]

,

Q−1 = 1
39.6
[[

[

14 14 14
−17.6 2.2 2.2
−3.6 16.2 −23.4

]]

]

.

Now we can answer all the questions.

P10 = QΛ10Q−1

= Q[[
[

1 0 0
0 (0.1)10 0
0 0 (−0.1)10

]]

]

Q−1, (±0.1)10 ≈ 0,

≈ 14
39.6
[[

[

2.2
7

2.2
7

2.2
7

10.6
7

10.6
7

10.6
7

1 1 1

]]

]

= P∞.
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If the initial vector is X′0 = (1000,500, 100) then the eventual situation is P∞X0. That
is,

P∞X0 =
14
39.6
[[

[

2.2
7

2.2
7

2.2
7

10.6
7

10.6
7

10.6
7

1 1 1

]]

]

[[

[

1000
500
100

]]

]

= [[

[

1600/9
53(1600)/99
35(1600)/99

]]

]

≈ [[

[

177.78
856.57
565.65

]]

]

.

Thus, eventually one can expect 178 children in the healthy category, 856 in the in-
fected category and 566 in the very ill category according to the transition probability
matrix P.

In the two examples above, we have noted that the steady state or the eventual
state of the initial vector X0, that is P∞X0, is nothing but a scalarmultiple of the eigen-
vector corresponding to the eigenvalue λ1 = 1, that is X1 in our notation.

P∞X0 = (sum of the elements in X0)X1.

This, in fact, is a general result if all the elements in P are strictly positive, that is, no
element in P is zero. Then all other eigenvalues will be strictly less than 1 in absolute
value also.

(iii) If all the elements in a singly stochastic matrix P are strictly positive then one
eigenvalue of P is 1 and all other eigenvalues of P are less than 1 in absolute value.
Then the steady state is the sum of the elements in the initial vector multiplied by
X1, the eigenvector corresponding to the eigenvalue λ1 = 1.

Exercises 5.4
5.4.1. Show that a plane in 3-space R3 can be given by the equation

x sinϕcosθ + y sinϕ sinθ + z cosϕ = ρ,

for 0 ≤ θ ≤ 2π, 0 ≤ ϕ ≤ π, 0 ≤ ρ <∞ where ρ is the perpendicular distance of the plane
from the origin, and θ and ϕ are the polar angles.

5.4.2. Compute the Jacobian in the transformation

x = ρ sinϕcosθ
y = ρ sinϕ sinθ
z = ρ cosϕ.
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5.4.3. Show that the element of the invariant density in R3 in polar coordinates is
given by

dm = λ| sinϕ|dθ ∧ dϕ ∧ dρ, λ a constant.

5.4.4. Consider the following general polar coordinate transformation:

x1 = ρ sinθ1 sinθ2⋯ sinθk−2 sinθk−1
x2 = ρ sinθ1 sinθ2⋯ sinθk−2 cosθk−1
x3 = ρ sinθ1 sinθ2⋯cosθk−2
⋮

xk−1 = ρ sinθ1 cosθ2
xk = ρ cosθ1

for 0 < θj ≤ π, j = 1,… ,k − 2, 0 < θk−1 ≤ 2π, 0 ≤ ρ < ∞, (1) Compute the Jacobian;
(2) Show that the invariant density, invariant under Euclidean motion, is given by

f (ρ,θ1,… ,θk−1) = λk
k−1
∏
j=1
| sinθj|k−j−1, λk a constant.

5.4.5. Mr. Good’s job requires frequent travels abroad onbehalf of his company in Cal-
ifornia. If he is in California the chance that he will stay in California on the same day
is only 10% and the chance that he will be outside California is 90%. If he is outside
California the chance that he will stay outside on the same day is 80% and that he will
come to California is 20%. This is the daily routine. (1) Compute the transition prob-
ability matrix, P, for any given day; (2) Compute the transition probability matrix for
the 10-th day of observation, P10; (3) Compute the eventual behavior of the transition
probability matrix, P∞.

5.4.6. For a terminally ill patient suppose that there are only two possible stages of
transition, dead or terminally ill for any given day. Suppose that the chance that the
patient is still ill the next day is 0.5. Compute (1) the transition probability matrix P;
(2) Compute P5; (3) Compute P∞.

5.4.7. For the following transition probabilitymatrices compute the steady state if the
initial state vector is X0:

P1 = [
0.4 0.7
0.6 0.3

] , P2 =
[[

[

0.2 0.4 0.3
0.3 0.5 0.2
0.5 0.1 0.5

]]

]

, P3 =
[[

[

1 0.5 0.2
0 0 0.4
0 0.5 0.4

]]

]

.

5.4.8. Let P be a transition probability matrix with the sum of the elements in each
column 1. Let PX = λX. Show that if λ ≠ 1 then the sum of the elements in X is zero, that
is, if Xj is an eigenvector corresponding to λj ≠ 1 then J′Xj = 0, J′ = (1,… , 1).
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5.4.9. Compute the steady states for thematrices P1,P2,P3 in Exercise 5.4.7 if the initial
states are the following:

(i) X0 = (
1
0
) , (ii) X0 = (

0
1
) for P1;

(i) X0 =
[[

[

1
0
0

]]

]

, (ii) X0 =
[[

[

0
1
0

]]

]

, (iii) X0 =
[[

[

0
0
1

]]

]

for P2;

(i) X0 =
[[

[

20
30
10

]]

]

, (ii) X0 =
[[

[

10
10
10

]]

]

for P3.

5.4.10. In a particular township there are 3 grocery stores. The number of households
in that township is fixed, only 200. Initially the three stores have 100,50,50 house-
holds respectively as customers. The stores started weekly sales. Depending upon the
good sales the customers startedmoving from store to store. Suppose that the chances
of customer of store 1 to remain ormove to store 2 or 3 are respectively 0.7,0.2,0.1. Sup-
pose the weekly transition probability matrix is

A = [[
[

0.7 0.5 0.6
0.2 0.4 0.2
0.1 0.1 0.2

]]

]

.

What will be the numbers in column one of the transition matrix after 3 weeks? When
can we expect store 3 to close if less than 20 customers is not a viable operation?

5.4.11. Suppose there are four popular brands of detergents in the market. These
brands have initially 40%,30%, 20%, 10% of the customers respectively. It is found
that the customers move from brand to brand at the end of every month. Answer the
following questions if (1) A and (2) B is the transition matrix for every month:

A =
[[[[

[

0.4 0.5 0.4 0.4
0.2 0.4 0.4 0.5
0.2 0.1 0.1 0.0
0.2 0.0 0.1 0.1

]]]]

]

, B =
[[[[

[

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

]]]]

]

.

What will be the percentages of customers after (i) twomonths, (ii) three months, and
(iii) eventually, for each A and B?

5.5 Maxima/minima problems

The basic maxima/minima problems were already discussed in earlier chapters. Here
we will consider a unified way of treating the problem and then look into some more
applications.
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5.5.1 Taylor series

From elementary calculus the student may be familiar with the Taylor series expan-
sion for one real variable x. The expansion of a function f (x) at x = a is given by

f (x) = f (a) + (x − a)
1!

f (1)(a) + (x − a)
2

2!
f (2)(a) +⋯

where f (r)(a) denotes the r-th derivative of f (x) with respect to x and then evaluated
at x = a. Let us denote Dr

0 as the r-th derivative operator evaluated at a given point so
that Dr

0f will indicate f (r)(a). Then consider the exponential series

e(x−a)D0 = (x − a)0D0
0 +
(x − a)
1!

D0 +
(x − a)2

2!
D2
0 +⋯

so that e(x−a)D0 operating on f (x) gives

f (a) + (x − a)
1!

f (1)(a) + (x − a)
2

2!
f (2)(a) +⋯

where (x − a)0D0
0f = D0

0f = f (a). This is the expansion for f (x) at x = a. For a function
of two real variables, f (x1,x2), if the Taylor series expansion is needed at the point
(x1,x2) = (a1,a2) we can achieve it by considering the operators Di(0) = partial deriva-
tive operator with respect to xi evaluated at the point (a1,a2) for i = 1, 2, and the linear
form

δ = (x1 − a1)D1(0) + (x2 − a2)D2(0).

Consider the exponential series

eδ = [δ0 + δ
1

1!
+ δ

2

2!
+⋯].

Then this operator, operating on f (x1,x2) is given by

f (a1,a2) +
1
1!
[(x1 − a1)

𝜕
𝜕x1

f (a1,a2) + (x2 − a2)
𝜕
𝜕x2

f (a1,a2)]

+
1
2!
[(x1 − a1)2

𝜕2

𝜕x21
f (a1,a2) + (x2 − a2)2

𝜕2

𝜕x22
f (a1,a2)

+ 2(x1 − a1)(x2 − a2)
𝜕2

𝜕x1𝜕x2
f (a1,a2)]

+ 1
3!
[⋯] +⋯ = f (x1,x2),

where, for example, 𝜕
r

𝜕xrj
f (a1,a2) indicates the r-th partial derivative of f with respect to

xj, evaluated at the point (a1,a2). If we have a function of k real variables, f (x1,… ,xk),
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and if a Taylor series expansion at (a1,… ,ak) is needed then it is available from the
operator

eδ , δ = (x1 − a1)D1(0) +⋯+ (xk − ak)Dk(0)

operating on f . Denoting a = (a1,… ,ak) we have

f (x1,… ,xk) = f (a)

+
1
1!
[(x1 − a1)

𝜕
𝜕x1

f (a) +⋯+ (xk − ak)
𝜕
𝜕xk

f (a)]

+ 1
2!
[(x1 − a1)2

𝜕2

𝜕x21
f (a) +⋯+ (xk − ak)2

𝜕2

𝜕x2k
f (a)

+ 2(x1 − a1)(x2 − a2)
𝜕2

𝜕x1𝜕x2
f (a) +⋯

+ 2(xk−1 − ak−1)(xk − ak)
𝜕2

𝜕xk−1𝜕xk
f (a)]

+ 1
3!
[⋯] +⋯

If a = (a1,… ,ak) is a critical point for f (x1,… ,xk) then
𝜕
𝜕xj
f (a) = 0, j = 1,… ,k. Then

in the neighborhood of the point a, that is, xi − ai = Δxi, i = 1,… ,k, where Δxi ’s are
infinitesimally small, we have

f (x1,… ,xk) − f (a1,… ,ak) =
1
2!
α + 1

3!
[⋯]

≈ 1
2!
α

where

α = (Δx1)2
𝜕2

𝜕x21
f (a) +⋯+ 2(Δxk−1)(Δxk)

𝜕2

𝜕xk−1𝜕xk
f (a).

But α is the following quadratic form:

α = [Δx1,… ,Δxk]
[[[

[

𝜕2
𝜕x21

f (a) … 𝜕2
𝜕x1𝜕xk

f (a)
⋮ ⋱ ⋮
𝜕2
𝜕xk𝜕x1

f (a) … 𝜕2
𝜕x2k

f (a)

]]]

]

[[

[

Δx1
⋮
Δxk

]]

]

.

This term decides the sign of f (x1,… ,xk) − f (a1,… ,ak) in the neighborhood of a =
(a1,… ,ak). This term will remain positive for all Δx1,… ,Δxk if the matrix of this
quadratic form, namely,

A0 =
𝜕
𝜕X
𝜕f (a)
𝜕X′
=
[[[

[

𝜕2f (a)
𝜕x21
… 𝜕2f (a)
𝜕x1𝜕xk

⋮ … ⋮
𝜕2f (a)
𝜕xk𝜕x1

… 𝜕2f (a)
𝜕x2k

]]]

]
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is positive definite. That is, in the neighborhood of a = (a1,… ,ak) the function is in-
creasing or a corresponds to a local minimum. Similarly if A0 is negative definite then
a corresponds to a local maximum. If A0 is indefinite or semi-definite then we say that
a is a saddle point.Wehave already given three definitions for the definiteness of a real
symmetric or Hermitianmatrix. The one in terms of the leading determinants (leading
minors) of A0 is the most convenient one to apply in this case. Thus at the point a we
have a

local minimum if all the leading minors of A0 are positive,
local maximum if the leading minors of A0 are alternately negative, positive, negative,
…

Example 5.5.1. Check for maxima/minima of f (x,y) = 2x2 + y2 + 2xy − 3x − 4y + 5.

Solution 5.5.1. Consider the equations 𝜕f𝜕x = 0 and
𝜕f
𝜕y = 0.

𝜕f
𝜕x
= 0 ⇒ 4x + 2y − 3 = 0

𝜕f
𝜕y
= 0 ⇒ 2x + 2y − 4 = 0

⇒ x = − 1
2
, y = 5

2
.

There is only one critical point (x,y) = (− 12 ,
5
2 ). Now, consider thematrix of secondorder

derivatives, evaluated at this point.

A0 = [
[

𝜕2f
𝜕x2

𝜕2f
𝜕x𝜕y

𝜕2f
𝜕y𝜕x

𝜕2f
𝜕2y

]

]
= [

4 2
2 2
] .

In this case since the second order derivatives are free of the variables there is no need
to evaluate at the critical point. The leadingminors of thismatrixA0 are the following:

4 > 0, |4 2
2 2
| = 8 − 4 > 0.

Hence the point (− 12 ,
5
2 ) corresponds to a minimum.

In this example f (x,y) is of the form of a quadratic form 2x2 + y2 + 2xy plus a linear
form −3x − 4y plus a constant 5. When the matrix of the quadratic form is positive
definite then we can devise a general procedure without using calculus. Consider a
quadratic expression of the type

u = X′AX − 2b′X + c (a)
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where A = A′ ≥ 0, b, c are known and X′ = (x1,… ,xn), b′ = (b1,… ,bn). Let us minimize
u without using calculus. In order to illustrate the method let us open up a quadratic
form of the following type where β is an n × 1 vector:

(X − β)′A(X − β) = X′AX − 2β′AX + β′Aβ. (b)

Comparing (b) with (a) we note that for β′ = b′A−1 we can write

u = (X − A−1b)′A(X − A−1b) − b′A−1b + c. (c)

But b′A−1b and c are free of X. Hence maxima/minima of u depends upon the max-
ima/minima of the quadratic form (X − A−1b)A(X − A−1b) which is positive definite.
Hence the maximum is at +∞ and a minimum is achieved when

X − A−1b = O ⇒ X = A−1b.

In Example 5.5.1 this point A−1b is what we got since in that example

A = [2 1
1 1
] , b = [3/2

2
] , c = 5.

Then

A−1b = [ 1 −1
−1 2
][

3/2
2
] = [
−1/2
5/2
] .

This type of a technique is usually used in a calculus-free course on model building
and other statistical procedures.

Example 5.5.2. n measurements x1,… ,xn are made on an unknown quantity a. Es-
timate a by minimizing the sum of squares of the measurement errors, and without
using calculus.

Solution 5.5.2. The measurement errors are x1 − a,… ,xn − a. The sum of squares of
the measurement errors is then ∑ni=1(xi − a)

2. What should be a so that ∑ni=1(xi − a)
2 is

the minimum? If we are using calculus then we differentiate with respect to a, equate
to zero and solve. Without using calculus we may proceed as follows:

n
∑
i=1
(xi − a)2 =

n
∑
i=1
(xi − x̄ + x̄ − a)2, x̄ = x1 +⋯+ xn

n

=
n
∑
i=1
(xi − x̄)2 + n(x̄ − a)2

since for any set of numbers
n
∑
i=1
(xi − x̄) =

n
∑
i=1

xi −
n
∑
i=1

xi = 0.
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But for real numbers

n
∑
i=1
(xi − x̄)2 ≥ 0 and n(x̄ − a)2 ≥ 0.

Only the term n(x̄ − a)2 contains a. Hence the minimum is achieved when n(x̄ − a)2 =
0 ⇒ a = x̄. This, in fact, is a special case of a general result.

(i) The mean squared deviations is least when the deviations are taken from the
mean value.

This same procedure of completing a quadratic form can be used for general model
building also. Consider the general linear model of the regression type considered in
Section 2.7.5 of Chapter 2. There the error sum of squares, denoted by e′e, can be writ-
ten in the form

e′e = (Y − Xβ)′(Y − Xβ)

where Y is an n × 1 vector of known observations, X is n ×m, n ≥m, and known, and
β is m × 1 and unknown. This parameter vector β is to be estimated by minimizing
the error sum of squares. A calculus-free procedure, using onlymatrix methods, is the
followingwhen X is of full rank, that is, the rank of X ism or when X′X is nonsingular:
Note that

e′e = Y′Y − 2β′X′Y + β′X′Xβ.

Among terms on the right, Y′Y does not contain β. Hence write

β′X′Xβ − 2β′X′Y = [β − (X′X)−1X′Y]′(X′X)[β − (X′X)−1X′Y]

− Y′X(X′X)−1X′Y .

The only term on the right containing β is the quadratic form where the matrix of
the quadratic form, namely X′X, is positive definite. Hence the minimum is achieved
when this part is zero or when

β − (X′X)−1X′Y = O ⇒ β = (X′X)−1X′Y .

This is the least square solution obtained through calculus in Section 2.7.5 and the
least square minimum, denoted by s2, is then

s2 = Y′Y − Y′X(X′X)−1X′Y = Y′[I − X(X′X)−1X′]Y .
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5.5.2 Optimization of quadratic forms

Consider a real quadratic form q = X′AX, A = A′ where X is n × 1 and A is n × n. We
have seen that there exists an orthonormal matrix P such that A = PΛP′ where Λ =
diag(λ1,… ,λn) with λ1,… ,λn being the eigenvalues of A. Then

q = X′AX = X′PΛP′X = Y′ΛY , Y = P′X
= λ1y21 +⋯+ λny2n, Y′ = (y1,… ,yn). (5.5.1)

If λj ≥ 0, j = 1,… ,n then q = λ1y21 + ⋯ + λny2n, q > 0, represents a hyperellipsoid in
r-space where r is the number of nonzero λj ’s. If λj = 1, j = 1,… , r, λr+1 = 0 = ⋯ = λn
then q is a hypersphere in r-space with radius √q.

Definition 5.5.1 (Hyperellipsoid). The equationX′AX ≤ cwhen c > 0, A = A′ > 0 (pos-
itive definite) represents all points inside and on a hyperellipsoid.

Its standard form is available by rotating the axes of coordinates or by an orthog-
onal transformation Y = P′X, PP′ = I, P′P = I where

A = PΛP′ = diag(λ1,… ,λn)

where λ1,… ,λn are the eigenvalues of A. When A > 0 all λj ’s are positive. The standard
form of a hyperellipsoid is

c = X′AX = λ1y21 +⋯+ λny2n

where √c/λ1,… ,√c/λn are the semi-axes.
If there are no conditions or restrictions on X and A in q = X′AX then from (5.5.1)

we can see that q can go to +∞ or −∞ or to an indeterminate form depending upon
the eigenvalues λ1,… ,λn. Hence the unrestricted maxima/minima problem is not that
meaningful. Let us restrict X to a hypersphere of radius unity, that is X′X = 1, or,

x21 + x22 +⋯+ x2n = 1, X′ = (x1,… ,xn).

Let us try to optimize q = X′AX subject to the condition X′X = 1. Let λ be a Lagrangian
multiplier and consider the function

q1 = X′AX − λ(X′X − 1).

Since X′X − 1 = 0 we have not made any change in q, q1 = q, where λ is an arbitrary
scalar. Using the vector derivative operator 𝜕𝜕X (see Chapter 1)

𝜕
𝜕X

q1 = O ⇒
𝜕
𝜕X
[X′AX − λ(X′X − 1)] = O

⇒ 2AX − 2λX = O
⇒ AX = λX (5.5.2)
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(see the results on the operator 𝜕𝜕X operating on linear and quadratic forms fromChap-
ter 1). From (5.5.2) it is clear that λ is an eigenvalue ofA and X the corresponding eigen-
vector. Premultiply (5.5.2) by X′ to obtain

X′AX = λX′X = λ when X′X = 1.

Therefore themaximumvalue of X′AX is the largest eigenvalue ofA and theminimum
value of X′AX is the smallest eigenvalue of A. We can state these as follows:

(ii) max
X′X=1
[X′AX] = λn = largest eigenvalue of A.

(iii) min
X′X=1
[X′AX] = λ1 = smallest eigenvalue of A.

If we did not restrictA to a hypersphere of radius 1 let us seewhat happens if we simply
say that X′X <∞ (the length is finite). Let X′X = c for some c <∞. Then proceeding
as before we end up with (5.5.2). Then premultiplying both sides by X′ we have

X′AX
X′X
= λ.

Therefore we have the following results:

(iv) max[X
′AX
X′X
] = λn = largest eigenvalue of A if X′X <∞.

(v) min[X
′AX
X′X
] = λ1 = smallest eigenvalue of A if X′X <∞.

(vi) λ1 ≤
X′AX
X′X
= λ1y

2
1 +⋯+ λny2n
y21 +⋯+ y2n

≤ λn for X′X <∞

where Y = P′X, PP′ = I , P′P = I , Y′ = (y1,… ,yn).

For convenience, λ1 is taken as the smallest and λn the largest eigenvalue of A. The re-
sults in (iii) and (iv) are known as Rayleigh’s principle and X′AX

X′X the Rayleigh’s quotient
in physics.

Example 5.5.3. Evaluate the Rayleigh’s quotient for the quadratic form X′AX,
A = (aij) if (a) X′ = (1,0,… ,0), (b) X′ = (0,0,… , 1,0,… ,0), j-th element is 1.

Solution 5.5.3. (a) When X′ = (1,0,… ,0), X′AX = a11x21 and X′X = x21 . Then

X′AX
X′X
= a11.

Similarly for (b)

X′AX
X′X
= ajj .
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5.5.3 Optimization of a quadratic form with quadratic form constraints

Let us generalize the above problema little further. Supposewewish to optimizeX′AX
subject to the condition X′BX = c <∞. Consider

ϕ = X′AX − λ(X′BX − c)

where λ is a Lagrangian multiplier.

𝜕ϕ
𝜕X
= O ⇒ AX = λBX. (5.5.3)

This means that for a non-null solution X we must have

|A − λB| = 0 ⇒ |B−1A − λI| = 0 if |B| ≠ 0 or
|A−1B − (1/λ)I| = 0 if |A| ≠ 0.

Thus the maximum value of X′AX occurs at the largest root, λn, of the determinantal
equation |A−λB| = 0which is also the largest eigenvalue ofB−1A if |B| ≠ 0. From (5.5.3),

X′AX = λX′BX = λc

and thus we have the following results:

(vii) max
X′BX=c
[X′AX] = λnc, λn = largest root of |A − λB| = 0.

(viii) min
X′BX=c
[X′AX] = λ1c, λ1 = smallest root of |A − λB| = 0.

Observe that if A and B are at least positive semi-definite then we are looking at the
slicing of the hyperellipsoid X′BX = c with an arbitrary hyperellipsoid X′AX = q for
all q. Note also that the above procedure and the results (vii) and (viii) correspond to
the canonical correlation analysis when B = B′ > 0 and A = A′ > 0.

Example 5.5.4. Optimize 2x21 + 3x22 + 2x1x2 subject to the condition x21 + 2x22 + 2x1x2 = 3.

Solution 5.5.4. Writing the quadratic forms in matrix notation we have

2x21 + 3x22 + 2x1x2 = [x1,x1] [
2 1
1 3
][

x1
x2
]

= X′AX, A = A′ = [2 1
1 3
] , X = [x1

x2
] ;

x21 + 2x22 + 2x1x2 = [x1,x2] [
1 1
1 2
][

x1
x2
]

= X′BX = 3, B = B′ = [1 1
1 2
] .
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Consider the determinantal equation

|A − λB| = 0 ⇒ |[2 1
1 3
] − λ[1 1

1 2
]| = 0

⇒ (2 − λ)(3 − 2λ) − (1 − λ)2 = 0
⇒ λ2 − 5λ + 5 = 0

⇒ λ1 =
5 +√5

2
, λ2 =

5 −√5
2
.

Therefore the maximum value of X′AX is

λ1c = (3)(
5 +√5

2
) = 3

2
(5 +√5)

and the minimum value of X′AX is

λ2c =
3
2
(5 −√5).

5.5.4 Optimization of a quadratic form with linear constraints

Consider the optimization of X′AX subject to the condition X′b = c where b is an n× 1
known vector and c is a known scalar. If A = A′ > 0 then q = X′AX with q > 0 a con-
stant, is a hyperellipsoid and this ellipsoid is cut by the plane X′b = c. We get another
ellipsoid in a lower dimension. For example if the ellipsoid is

q = 3x21 + x22 + x23 − 2x1x2

= [x1,x2,x3]
[[

[

3 −1 0
−1 1 0
0 0 1

]]

]

[[

[

x1
x2
x3

]]

]

= X′AX,

X = [[
[

x1
x2
x3

]]

]

, A = [[
[

3 −1 0
−1 1 0
0 0 1

]]

]

and if the condition is

x1 + x2 + x3 = 1 ⇒ X′b = 1,

b = [[
[

1
1
1

]]

]

, c = 1,

then from the condition we have x3 = 1 − x1 − x2. Substituting in X′AX we have
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q = 3x21 + x22 + (1 − x1 − x2)2 − 2x1x2
= 4x21 + 2x22 − 2x1 − 2x2 + 1

= 4(x1 −
1
4
)
2
+ 2(x2 −

1
2
)
2
+ 1
4
.

It is an ellipse with the center at ( 14 ,
1
2 ) and the semi-axes proportional to 1

2 and
1
√2 . For

example if q − 1
4 = 1 then the semi-axes are 1

2 and
1
√2 . Then the critical point is ( 14 ,

1
2 )

and the maximum value is 1
2 +

1
√2 and the minimum value is 1

2 −
1
√2 .

But our original aim was to optimize X′AX and then q is a function of x1,x2, say
q(x1,x2). Then

q(x1,x2) = 4(x1 −
1
4
)
2
+ 2(x2 −

1
2
)
2
+ 1
4
.

Then going through the usual maximization process we see that there is a minimum
at ( 14 ,

1
2 ) for finite X and the minimum value is 1

4 .
Substitution may not be always convenient and hence we need a general proce-

dure to handle such problems. Consider the method of Lagrangian multipliers and
consider

ϕ = X′AX − 2λ(X′b − c)

where 2λ is a Lagrangian multiplier. Then

𝜕ϕ
𝜕X
= O ⇒ 2AX − 2λb = O ⇒ AX = λb.

If |A| ≠ 0 then

X = λA−1b ⇒ X′AX = λX′b = λc,

⇒ λ = c
b′A−1b

⇒ X′AX = c2

b′A−1b
.

When A is positive definite the maximum is at∞ and then for finite X we have only a
minimum for X′AX and the minimum value is c2

b′A−1b . We can verify this result for our
example above. In our illustrative example

A−1 = 1
2
[[

[

1 1 0
1 3 0
0 0 2

]]

]

and then b′A−1b = 4. Since c = 1 we get the minimum value as 1
4 which is what is seen

earlier.
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(ix) min
X′b=c
[X′AX] = c2

b′A−1b
when A = A′ > 0.

5.5.5 Optimization of bilinear forms with quadratic constraints

Consider a bilinear formX′AY whereX is p×1, Y is q×1 andA is p×q. For convenience
let p ≤ q. Consider the positive definite quadratic form constraints in X and Y . Without
loss of generality the constraints can be written as X′BX = 1, Y′CY = 1, B = B′ > 0, C =
C′ > 0. Our aim is to optimize X′AY subject to the conditions X′BX = 1 and Y′CY = 1.
Let

ϕ = X′AY − 1
2
λ1(X′BX − 1) −

1
2
λ2(Y′CY − 1)

where 1
2λ1 and

1
2λ2 are Lagrangian multipliers. Then

𝜕ϕ
𝜕X
= O ⇒ AY − λ1BX = O

⇒ AY = λ1BX

⇒ X′AY = λ1X′BX = λ1.

For taking the partial derivative with respect to Y write X′AY = Y′A′X.
𝜕ϕ
𝜕Y
= O ⇒ A′X − λ2CY = O

⇒ A′X = λ2CY

⇒ Y′A′X = λ2Y′CY = λ2.

That is, λ1 = λ2(= λ, say). The maximum or minimum is given by λ. Writing the equa-
tions once again we have

−λBX + AY = O and A′X − λCY = O

⇒ [
−λB A
A′ −λC

][
X
Y
] = O.

In order for this to have a non-null solution for ( XY ) the coefficient matrix must be
singular. That is,

|
−λB A
A′ −λC

| = 0.

Evaluating the left side with the help of partitioned matrices (see Section 2.7 in Chap-
ter 2) we have
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| − λB| | − λC − A′(−λB)−1A| = 0 ⇒

| − λC + 1
λ
A′B−1A| = 0 ⇒

|A′B−1A − λ2C| = 0. (α)

There ν = λ2 is a root of the determinantal equation (α) above. Thus we have the fol-
lowing results:

(x) max
X′BX=1, Y ′CY=1
B=B′>0, C=C′>0

[|X′AY |] = |λp|,

where λ2p is the largest root of the equation (α).
(xi) min

X′BX=1, Y ′CY=1
B=B′>0, C=C′>0

[|X′AY |] = |λ1|,

where λ21 is the smallest root of the equation (α).

Note that λ2 can also be written as an eigenvalue problem. Equations can be written
as

|C−1A′B−1A − λ2I| = 0 or

|C−
1
2A′B−1AC−

1
2 − λ2I| = 0

where C
1
2 is the symmetric positive definite square root of C = C′ > 0. Either λ2 can be

looked upon as an eigenvalue of C−1A′B−1A or of C−
1
2A′B−1AC−

1
2 . From symmetry it

follows that λ2 is also an eigenvalue of B−1AC−1A′ or of B−
1
2AC−1A′B−

1
2 .

(xii) max
X′BX=1, Y ′CY=1
B=B′>0, C=C′>0

[|X′AY |] = |λp|

where λ2p is the largest eigenvalue of C−1A′B−1A or that of B−1AC−1A′ or of
C−

1
2A′B−1AC−

1
2 or of B−

1
2AC−1A′B−

1
2 or the root of the determinantal equations

|A′B−1A − λ2C| = 0

or of

|AC−1A′ − λ2B| = 0.

(xiii) min
X′BX=1, Y ′CY=1
B=B′>0, C=C′>0

[|X′AY |] = |λ1|

where λ21 is the smallest eigenvalue of the matrices or the smallest root of the deter-
minantal equations as in (xii) above.
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An important application of the results in (xii) and (xiii) is already discussed in con-
nection with the canonical correlation analysis and a particular case of which is the
multiple correlation analysis. The structure in partial correlation analysis in statistics
is also more or less the same.

Example 5.5.5. Look for maxima/minima of

x1y1 + 2x1y2 − x1y3 + x2y1 + x2y2 + x2y3

subject to the conditions

x21 + 2x22 + 2x1x2 = 1 and 2y21 + y22 + y23 + 2y1y3 = 1.

Solution 5.5.5. Writing these in matrix notations, the quantity to be optimized is

X′AY , A = [1 2 −1
1 1 1

] , X = [x1
x2
] , Y = [[

[

y1
y2
y3

]]

]

and the conditions are

X′BX = 1, B = [1 1
1 2
] and

Y′CY = 1, C = [[
[

2 0 1
0 1 0
1 0 1

]]

]

, C−1 = [[
[

1 0 −1
0 1 0
−1 0 2

]]

]

.

Since the order of B is 2 or B is 2 × 2 whereas C is 3 × 3 we consider the determinantal
equation

|AC−1A′ − λ2B| = 0,

AC−1A′ = [1 2 −1
1 1 1

][[

[

1 0 −1
0 1 0
−1 0 2

]]

]

[[

[

1 1
2 1
−1 1

]]

]

= [
9 1
1 2
] ;

|AC−1A′ − λ2B = 0 ⇒

|[
9 1
1 2
] − ν[1 1

1 2
]| = 0, ν = λ2

⇒ |
9 − ν 1 − ν
1 − ν 2 − 2ν

| = 0

⇒ (1 − ν)(17 − ν) = 0.

Therefore ν1 = 17 and ν2 = 1 are the roots. The largest λ is√17 and the smallest positive
value of λ = 1. Hence themaximum value of X′AY is√17 andminimum absolute value
of X′AY is 1.
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In other problems in statistics especially in conditional distributions and when
searching for minimum variance estimators in a conditional space the problem
is something like to maximizing a bilinear form of the type X′AY , where one of
the vectors, either X or Y , is fixed (given by the conditionality assumption), sub-
ject to a quadratic form condition involving the other vector, usually something
like the variance of a linear function in that vector is 1 which reduces to the form
Y′CY = 1, C = C′ > 0 if Y is the variable vector. For achieving such a maximization
we can use a different approach based on Cauchy–Schwartz inequality also. Suppose
we wish to maximize X′AY subject to the condition Y′CY = 1, C = C′ > 0 and X fixed.
Then

X′AY = (X′AC−
1
2 )(C

1
2 Y) ≤ √X′AC−1A′X√Y′CY

= √X′AC−1A′X

since Y′CY = 1, by Cauchy–Schwartz inequality, where C
1
2 is the symmetric positive

definite square root of C. Thus we have the following result:

(xiv) max
Y ′CY=1,C=C′>0,X fixed

[X′AY] = √X′AC−1A′X.

(xv) max
X′BX=1,B=B′>0,Y fixed

[X′AY] = √Y′A′B−1AY .

Example 5.5.6 (Best linear predictors). A farmer suspects that the yield of corn, y, is
a linear function of the amount of a certain fertilizer used, x1, and the amount of water
supplied x2. What is the best linear function of x1 and x2, u = a1x1 + a2x2, to predict y,
best in the sense that the variance of u is 1 and the covariance of uwith y is maximum.
Evaluate this best linear predictor as well as the maximum covariance if the follow-
ing items are available from past experience. Var(x1) = 2, Var(x2) = 1, Cov(x1,x2) = 1,
Cov(y,x1) = 1, Cov(y,x2) = −1, Var(y) = 3 where Var(⋅) and Cov(⋅) denote the variance
of (⋅) and covariance of (⋅) respectively.

Solution 5.5.6. Let

a = [a1
a2
] , X = [x1

x2
]

where a is an arbitrary coefficient vector for an arbitrary linear function u = a′X =
a1x1 +a2x2. Since we are dealing with variances and covariances, assumewithout loss
of generality, that the mean values are zeros. Then

Var(u) = [a1,a2] [
Var(x1) Cov(x1,x2)

Cov(x2,x1) Var(x2)
][

a1
a2
]

= a′Ba, B = [2 1
1 1
] ,
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Cov(y,u) = Cov(y,a′X) = a′ Cov(y,X)

= a′ [Cov(y,x1)
Cov(y,x2)

] = a′ [ 1
−1
] = a1 − a2.

Our problem is to maximize Cov(y,u) subject to the condition Var(u) = 1. For conve-
nience let

V21 = [
1
−1
] , V22 = [

2 1
1 1
] ,

then

Var(u) = a′V22a = 1

and

Cov(y,u) = a′V21 = (a′V
1
2
22)(V
− 12
22 V21)

≤ √a′V22a√V′21V−122 V21

= √V′21V−122 V21
since a′V22a = 1. Hence the maximum covariance is

√V′21V−122 V21 = {[1, −1] [
2 1
1 1
]
−1

[
1
−1
]}

1
2

= √5.

FromCauchy–Schwartz inequality themaximum is attainedwhen (a′V
1
2
22) and (V

1
2
22V21)

are linear functions of each other. That is,

a′V
1
2
22 = k1V

− 12
22 V21 + k2

where k1 is a scalar and k2 is a vector and the best predictor is

a′X = V−
1
2

22 [k1V
− 12
22 V21 + k2]X.

With the help of the conditions that E(X) = O, Var(a′X) = a′V22a = 1 and themaximum
covariance is Cov(y,u) = √V′21V−122 V21 we have k1 = 1 and k2 = O. Thus the best predictor
is given by

u = a′X = V−122 V21X

and the maximum covariance is given by √V′21V−122 V21.

Exercises 5.5
5.5.1. Look for maxima/minima of the following functions:

f (x,y) = 3x2 + 2y2 + 2xy − 4x − 5y + 10,
g(x,y) = 2x2 + y2 − 2xy − x − y + 5.
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5.5.2. Repeat Exercise 5.5.1 without using calculus.

5.5.3. Look for maxima/minima of the following functions:

(a) 3x21 + x22 + 2x23 − 2x1x3
subject to x21 + x22 + x23 = 1,

(b) 3x21 + x22 + 2x23 − 2x1x3
subject to 2x21 + x22 + 2x23 = 1.

5.5.4. Let x1,… ,xn be n real numbers and α an unknown quantity. What is α so that
∑ni=1 |xi − α| is a minimum? [This principle can be stated as “the mean absolute devia-
tions is least when the deviations are taken from (?)”.]

5.5.5. Let U1,… ,Uk and V be n × 1 vectors of real numbers. Let there exist an X such
that U′j X ≥ 0 for j = 1,… ,k. Then show that the necessary and sufficient condition that
V′X ≥ 0 for all X such that U′j X ≥ 0 is that V can be written as V = ∑kj=1 ajUj , aj ≥ 0.
[This is known as Farka’s lemma.]

5.5.6. Gramian matrix. Any matrix A which can be written as A = B′B is called a
Gramian matrix. For a Gramian matrix A and n × 1 real vectors X and Y show that

(X′AY)2 ≤ (X′AX)(Y′AY)

with equality when X is proportional to Y , and

(X′Y)2 ≤ (X′AX)(Y′A−1Y)

if A−1 exists, with equality when X is proportional to A−1Y .

5.5.7. Let X′ = (x1,… ,xn) and Y′ = (y1,… ,yn) then show that

(
n
∑
j=1

x2j )(
n
∑
j=1

y2j ) −(
n
∑
j=1

xjyj)
2

=∑
i<j
(xiyj − xjyi)2.

[This is known as Lagrange identity.]

5.5.8. For a nonsingular n × nmatrix A = (aij) show that

|A| ≤ 1, if
n
∑
j=1

a2ij = 1, i = 1,… ,n

and that

|A| ≤ δnnn/2 if |aij| ≤ δ for all i and j.
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5.5.9. Let A = (aij) be an n × n real symmetric positive definite matrix. Show that

|A| ≤ a11(cof(a11))

where (cof(a11)) denotes the cofactor of a11, and

|A| ≤ a11a22⋯ann.

5.5.10. Let A be an n × n real symmetric positive definite matrix and U and X be
n-vectors. Show that

max
X

(U′X)2

X′AX
= U′A−1U .

5.5.11. Let A be as in Exercise 5.5.10 and B any n × nmatrix. Then show that

max
X

(U′BX)2

X′AX
= U′BA−1B′U .

5.5.12. Let X1,… ,Xk bemutually orthogonal n× 1 vectors and A = A′ a real symmetric
matrix. Then show that

max
X1,…,Xk

k
∑
i=1

X′i AXi
X′i Xi
=

k
∑
i=1

λi

where λ1 ≥ λ2 ≥⋯ ≥ λn are the eigenvalues of A.

5.6 Linear programming and nonlinear least squares

In the previous sectionswedealtwith optimizations of nonlinear functionswith linear
or nonlinear constraints. Suppose we wish to optimize (maximize/minimize) a linear
function with linear constraints. Obviously methods based on calculus fail here. Ge-
ometrically a linear function represents a line in a 2-dimensional space (plane) or a
plane or hyperplane in n-dimensional Euclidean space, n ≥ 3. A line or plane stretch
from −∞ to∞ and hence there is no optimum value if the whole line or plane is taken
into consideration. But if we confine to a convex region in a plane or space in our
search for an optimum then there is always a maximum and a minimum for an ar-
bitrary line or plane passing through that region. For example, let us try to look for
maxima/minima of the linear function x + y in the region bounded by the following
constraints: x ≥ 0, y ≥ 0, x − 3y ≤ −3, 3x + y ≤ 6.

The conditions x ≥ 0, y ≥ 0 imply non-negative values or we are in the first quad-
rant. x − 3y ≤ −3 means below the line x − 3y = −3 and 3x + y ≤ 6 means below the line
3x + y = 6. Thus we are looking for maxima/minima of x + y in the shaded region in
Figure 5.6.1. Consider the equation x + y = c for various values of c or move the line
x + y = 0 parallel to itself. A few positions are shown in Figure 5.6.1. It is obvious that
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Figure 5.6.1: Optimization of a linear function.

themaximumorminimumvalue of c is obtained at one of the corner points of our con-
vex region, the shaded region in Figure 5.6.1. This, in fact, is a general property when
the region is convex. The corner points are (0,0), (0, 1), (1.5, 1.5), (2,0). The values of
x + y at these points are 0 + 0 = 0, 0 + 1 = 1, 1.5 + 1.5 = 3, 2 + 0 = 2 respectively. Hence
the minimum value of x + y is zero and the maximum value is 3.

In the above problem suppose we had one more condition that 3x + y ≤ 2. Note
that our region remains the same or in other words this new condition is superfluous
in our problem.

Example 5.6.1. A lunch counter in an office building plans to prepare two types of
sandwiches for a particular day. Let x1 and x2 be the numbers. Then x1 ≥ 0 and x2 ≥ 0.
The profit from the first type is $2 per sandwich and that from the second type is $3
per sandwich. It costs $1 and $2 each respectively to make these sandwiches and the
operator does not want to allocate more than $100 for these two types of sandwiches
for that day. That is, x1 +2x2 ≤ 100. It takes 2minutes each to prepare these sandwiches
and the operator does not want to spend more than 2 hours in preparing them. That
is, 2x1 + 2x2 ≤ 120. What should be the numbers x1 and x2 so as to maximize the profit
assuming that all the sandwiches will be sold.

Solution 5.6.1. The region where we want to maximize 2x1 + 3x2 is the shaded region
in Figure 5.6.2.



400 | 5 Some applications of matrices and determinants

Figure 5.6.2: Linear function with linear constraints.

The values of 2x1 + 3x2 at the corner points (0,0), (60,0), (20,40), (0,50) are re-
spectively 0, 120, 160, 150, and thus themaximumvalue is 160 occurring at (20,40) and
hence the operator should make 20 of type 1 and 40 of type 2 for that day.

From the above examples it is clear that if only two variables are involved then the
optimization problem can be solved graphically. But if we are in an n-space, n > 3 or if
more than 3 variables are involved then a graphical solution is not feasible. Even for
n = 3 it is quite difficult to see graphically. Hence we need other methods. One such
method, based on matrix considerations, is called a simplex method. This optimiza-
tion problem involving linear functions with linear constraints is called a linear pro-
gramming problem, nothing to do with any special computer programme or computer
language. There are many ways of explaining the simplex method. First, observe that
an inequality of the type x − y ≥ 2 is the same as saying −x + y ≤ −2. The inequality is
reversed bymultiplyingwith (−1) on both sides. Hence in some of the constraints if the
inequality is the other way around it can be brought to the pattern of the remaining
inequalities by the above procedure.

5.6.1 The simplex method

Let us consider a problem of the following type: Maximize

f = c1x1 +⋯+ cnxn = C′X = X′C, C′ = (c1,… , cn), X′ = (x1,… ,xn)

subject to the conditions

a11x1 + a12x2 +⋯+ a1nxn ≤ b1
a21x1 + a22x2 +⋯+ a2nxn ≤ b2 (5.6.1)
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⋮

am1x1 + am2x2 +⋯+ amnxn ≤ bm
x1 ≥ 0, x2 ≥ 0,… ,xn ≥ 0

where cj ’s, bj ’s, aij ’s are all known constants. For convenience, we may use the fol-
lowing standard notation. The inequalities in (5.6.1) will be written in matrix notation
as

AX ≤ b, X ≥ O, b′ = (b1,… ,bm), A = (aij). (5.6.2)

Note that earlier we used a notation of the type G > 0 or G ≥ 0 to denote positive def-
initeness and positive semi-definiteness of a matrix G. In (5.6.2) we are not talking
about definiteness but only a convenient way of writing all the inequalities in (5.6.1)
together. Thus the problem can be stated as follows:

Maximize f = C′X subject to AX ≤ b, X ≥ O. (5.6.3)

Note that an inequality can be made to an equality by adding or subtracting a certain
amount to the inequality. For example,

a11x1 +⋯+ a1nxn ≤ b1 ⇒ a11x1 +⋯+ a1nxn + y1 = b1, y1 ≥ 0.

Thus by adding a positive quantity y1 to the inequality an equality is obtained. Note
that y1 is an unknown quantity. Thus by adding y1,y2,… ,ym, the quantities may all be
different, to the inequalities in (5.6.1) we getm linear equations:

a11x1 +⋯+ a1nxn + y1 = b1
a21x1 + a22x2 +⋯+ a2nxn + y2 = b2

⋮

am1x1 + am2x2 +⋯+ amnxn + ym = bm.

That is,

[[[[

[

a11 ... a1n 1 0 ... 0
a21 ... a2n 0 1 ... 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
am1 ... amn 0 0 ... 1

]]]]

]

[[[[[[[[[[[[[[

[

x1
x2
⋮
xn
⋮
y1
⋮
ym

]]]]]]]]]]]]]]

]

= [[

[

b1
⋮
bm

]]

]

.

This can be written in partitioned form as follows, augmenting the equation f = C′X:

[
A Im
C′ O
][

X
Y
] = [

b
f
] , Y = [[

[

y1
⋮
ym

]]

]

, X ≥ O, Y ≥ O. (5.6.4)
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Note that

f = C′X = c1x1 +⋯+ cnxn = c1x1 +⋯+ cnxn + 0y1 +⋯+ 0ym.

Now, it is amatter of solving the system of linear equations in (5.6.4) for X,Y and f . We
have considered many methods of solving a system of linear equations. Let us try to
solve the system in (5.6.4) by elementary operations on the left, that is, operating on
the rows only. For this purpose we write only the coefficient matrix and the right side
separated by dotted lines. We may also separate the sub-matrices in the coefficient
matrix by dotted lines. Write

A ⋮ Im ⋮ b
… … … … …
C′ ⋮ O ⋮ f

(5.6.5)

For the time being, letm ≤ n. In doing elementary operations on the rows our aim will
be to reduce the above matrix format to the following form:

A ⋮ Im ⋮ b
… … … … …
C′ ⋮ O ⋮ f

⇒
B, Im ⋮ G ⋮ b1
… … … … …
−C′1 ,O ⋮ −C′2 ⋮ f − d

(5.6.6)

In the original position of A there is a matrix B which may or may not be null and an
m ×m identity matrix or of the form Im,B. Remember that the original A was m × n,
m ≤ n. In the original position of Im there is anm×mmatrix G. In the original position
of the row vector C′ there is a row vector −C′1 augmented with the null vector O or
the other way around. In the original position of the null vector there is a vector −C′2
where the elements in C1 and C2 are non-negative. Original f has gone to f − d where
d is a known number. Original vector b has changed to the known vector b1 where the
elements in b1 are non-negative. We will show that the maximum value of C′X is d
and the corresponding solution of X is such that the first n−m elements are zeros and
the last m elements are the last m elements of b1. If the final form is Im,B instead of
B, Im then take the last n −m elements in X zeros and the first m as that of b1. Before
interpreting the form in (5.6.6) let us do a numerical example.

Example 5.6.2. Redo the problem in Example 5.6.1 by using matrix method and by
reducing to the format in (5.6.6).

Solution 5.6.2. Our problem is to maximize 2x1 + 3x2 subject to the conditions

x1 + 2x2 ≤ 100 and x1 + x2 ≤ 60.

Writing in matrix notations, we want to maximize

f = C′X = 2x1 + 3x2, C′ = (2,3), X′ = (x1,x2)
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subject to the conditions

AX ≤ b, A = [1 2
1 1
] , b = [100

60
] .

Introduce the dummy variables y1 and y2 to write

x1 + 2x2 + y1 = 100
x1 + x2 + y2 = 60
2x1 + 3x2 = f .

Writing the coefficient matrix and the right side we have

1 2 ⋮ 1 0 ⋮ 100
1 1 ⋮ 0 1 ⋮ 60
… … … … … … …
2 3 ⋮ 0 0 ⋮ f

=
A ⋮ I2 ⋮ b
… … … … …
C′ ⋮ O ⋮ f

Wewill denote the elementary rowoperationswith the help of our usual notation. Add
(−1) times the first row to the second row, (−2) times the first row to the third row. That
is,

−(1) + (2); −2(1) + (3) ⇒

1 2 ⋮ 1 0 ⋮ 100
0 −1 ⋮ −1 1 ⋮ −40
… … … … … … …
0 −1 ⋮ −2 0 ⋮ f − 200

Now, add (−1) times the second row to the third row, 2 times the second row to the first
row and then multiply the second row by (−1). That is,

−(2) + (3); 2(2) + (1); −(2) ⇒

1 0 ⋮ −1 2 ⋮ 20
0 1 ⋮ 1 −1 ⋮ 40
… … … … … … …
0 0 ⋮ −1 −1 ⋮ f − 160

=
I2 ⋮ G ⋮ b1
… … … … …
O ⋮ −C′2 ⋮ f − d

Writing back in terms of the original variables we have

x1 − y1 + 2y2 = 20
x2 + y1 − y2 = 40
−y1 − y2 = f − 160.
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A feasible solution is x1 = 20, x2 = 40, y1 = 0, y2 = 0, f − 160 = 0 ⇒ f = 160. Thus the
maximum is attained at x1 = 20 and x2 = 40 and the maximum value of f is 160. This
is exactly what we had seen in Example 5.6.1. We may also observe that C′2b = 160 = f
also.

Note that the form in (5.6.5) is brought to the form in (5.6.6) by elementary opera-
tions on the left then d is themaximumvalue for f = C′X. In general, we can show that
the maximum of f = C′X subject to the conditions AX ≤ b, X ≥ O is also the same as
the minimum of g = b′Y subject to the condition A′Y ≥ C, Y ≥ O. These two are called
duals of each other. That is, for m × n matrix A, n × 1 vector X, m × 1 vector b, n × 1
vector C,m× 1 vector Y , with non-negative components in X and Y , the following two
problems are equivalent:

Maximize f = C′X subject to AX ≤ b, X ≥ O

is equivalent to

minimize g = b′Y subject to A′Y ≥ C, Y ≥ O

and the

maximum of f = minimum of g.

Theproof of this result aswell as other properties of the simplexmethodor other linear
programming methods will not be pursued here. We will do one more example on
linear programming and then look at some non-linear least squares problems before
concluding this section.

In the above two examples we could easily achieve the format in (5.6.6) by row
operations without taking into account any other factor. The problem is not as simple
as it appears from the above examples. One way of keeping all elements in b1 of (5.6.6)
non-negative, when possible, is to adopt the following procedure. Do not start operat-
ingwith the first row and do not interchange rows to start with. Divide each element in
b of (5.6.5) by the corresponding elements in the first column ofA. Look at the smallest
of these. If this occurs at the i-th row element of A then operate with the i-th row of
A first and reduce all elements in the first column of (5.6.5) to zeros. Now look at the
resulting b and the resulting elements in the second column of A. Repeat the above
process to reduce the second column elements in the resulting (5.6.5) to zeros, except
the one we are operating with. Repeat the process with the resulting third, fourth,…,
last columns of A. Thismay produce the elements of b1 non-negative. Still this process
may not guarantee the elements in C′1 and C′2 of (5.6.6) to be non-negative. Let us do
an example to verify the above steps.
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Example 5.6.3. Minimize g = 3y1 + 2y2 subject to the conditions y1 ≥ 0, y2 ≥ 0 and

2y1 + y2 ≥ 8
y1 + y2 ≥ 5
y1 + 2y2 ≥ 8.

Solution 5.6.3. In order to bring the problem to the format of (5.6.5) let us consider
the dual problem: Maximize f = 8x1 + 5x2 + 8x3 subject to the conditions x1 ≥ 0, x2 ≥ 0,
x3 ≥ 0, and

2x1 + x2 + x3 ≤ 3
x1 + x2 + 2x3 ≤ 2.

Form the sub-matrices as in (5.6.5) to obtain the following:

A ⋮ Im ⋮ b
… … … …
C′ ⋮ O ⋮ f

=

2 1 1 ⋮ 1 0 ⋮ 3
1 1 2 ⋮ 0 1 ⋮ 2
… … … … … … … …
8 5 8 ⋮ 0 0 ⋮ f

Divide each element of the last column by the corresponding element in the first col-
umn of A. That is, 3

2 and
2
1 . The smaller one is 3

2 which occurs at the first row. Hence
we operate with the first row to start with. Do the following operations to reduce the
first column elements to zeros:

1
2
(1); −(1) + (2); −8(1) + (3) ⇒

1 1
2

1
2 ⋮

1
2 0 ⋮ 3

2
0 1

2
3
2 ⋮ −

1
2 1 ⋮ 1

2
… … … … … … … …
0 1 4 ⋮ −4 0 ⋮ f − 12

Divide each element of the last column by the corresponding element in the second
column of the resulting A. That is, 3

2 /
1
2 = 3 and

1
2 /

1
2 = 1. The smaller one occurs at the

second row and hence we operate with the second row.

−(2) + (1); −2(2) + (3); 2(2) ⇒

1 0 −1 ⋮ 1 −1 ⋮ 1
0 1 3 ⋮ −1 2 ⋮ 1
… … … … … … … …
0 0 1 ⋮ −3 −2 ⋮ f − 13

Now it appears that a solution is reached because the last column, b1, has non-
negative elements, −C′2 is such that C′2 has non-negative elements but −C′1 = 1 and
hence the conditions are not met yet. Now divide the elements in the last columnwith
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the third column elements of the resulting A. The smaller one occurs at the second
row, and now operate with the second row.

1
3
(2); −(2) + (1); (2) + (3) ⇒

1 1
3 0 ⋮ 2

3 −
1
3 ⋮

4
3

0 1
3 1 ⋮ − 13

2
3 ⋮

1
3

… … … … … … … …
0 − 13 0 ⋮ − 83 −

8
3 ⋮ f − 403

Now all elements are in the proper order as in (5.6.6) and hence the maximum of f =
8x1 + 5x2 +8x3, our dual problem, occurs at x1 =

4
3 , x2 = 0 and x3 =

1
3 and themaximum

is

8(4
3
) + 5(0) + 8( 1

3
) = 40

3
.

The minimum for our starting problem occurs at y1 =
8
3 = y2 and the minimum value

of g = 3y1 + 2y2 is given by the following:

Minimum of g = 3(8
3
) + 2(8

3
) = 40

3
= maximum of f .

The student may start with our problem in Example 5.6.3 and try to reduce to the for-
mat in (5.6.6) without going through the above procedure and see what happens and
may also construct examples where even after going through the above procedure a
solution is not reached. Thus, many more points are involved in solving a linear pro-
gramming problem. What is given above is only an introductory exposure to matrix
methods in linear programming problems.

5.6.2 Nonlinear least squares

The method of least squares is already discussed in connection with regression and
othermodel building problems. The problem is to predict a variable y such as the rain-
fall in a particular region during a particular month. This amount y depends on vari-
ous factors such as the wind, pressure, temperature and such atmospheric conditions
which can vary, and fixed quantities such as the topographic parameters. Let x1,… ,xm
be the variables which may have some relevance in predicting y and let the value of y
that we can expect, E(y), for a preassigned set of values of x1,… ,xm be denoted by

E(y) = f (x1,… ,xm,a1,… ,ak) (5.6.7)

where a1,… ,ak are fixed but unknown parameters and x1,… ,xm are observable vari-
ables. If the function f is linear in the unknowns a1,… ,ak thenwe have a linearmodel
and if f is nonlinear in the parameters then it is called a nonlinear model. What will
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happen to themethod of least squareswhen f is nonlinear in the unknowns a1,… ,ak?
This is what we will investigate here. As examples of linear, nonlinear models and the
corresponding least square problem when there are n data points, consider the fol-
lowing:

E(y) = a + bx1 + cx2 ⇒ min
a,b,c

n
∑
i=1
(yi − a − b x1i − c x2i)2, (a)

E(y) = abx ⇒ min
a,b

n
∑
i=1
(yi − a bxi )

2, (b)

E(y) = ae−(b x1+c x2) ⇒ min
a,b,c

n
∑
i=1
(yi − a e−(b x1i+c x2i))2, (c)

E(y) = a + bx1x2 + cx22 ⇒ min
a,b,c

n
∑
i=1
(yi − a − bx1ix2i − cx22i)

2. (d)

In (a) and (d) we have linear models whereas in (b) and (c) the models are nonlinear
since they are nonlinear functions of the parameters. How to carry out the minimiza-
tion over the parameters is what we will investigate here. If there are n data points in
(5.6.7) then we have the following:

Y = [[
[

y1
⋮
yn

]]

]

, X =
[[[[

[

x11 x21 … xm1
x12 x22 … xm2
⋮ ⋮ ⋱ ⋮
x1n x2n … xmn

]]]]

]

, a = [[
[

a1
⋮
ak

]]

]

where the quantity to be minimized is

ψ =
n
∑
i=1
[yi − f (x1i ,x2i ,… ,xmi ,a1,… ,ak)]

2. (5.6.8)

The usual approach in minimizing ψ with respect to the parameters a1,… ,ak and
when f is nonlinear in a1,… ,ak is to reduce the problem into a linear one. Let α′ =
(α1,… ,αk) be a value of a for which ψ is a minimum. Let α + δ, δ′ = (δ1,… ,δk) be a
neighborhood of α. Expanding yi around α by using a Taylor series we have

f (x1i ,… ,xmi ,α1 + δ1,… ,αk + δk) ≈ f (x1i ,… ,xmi ,α1,… ,αk)

+
k
∑
j=1

𝜕fi
𝜕αj

δj = ⟨yi⟩, say

fi = f (x1i ,… ,xmi ,α1,… ,αk).

Then

⟨y⟩ = f0 + Pδ (5.6.9)
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where

δ = [[
[

δ1
⋮
δk

]]

]

, f0 =
[[

[

f1
⋮
fn

]]

]

, P = [[[
[

𝜕f1
𝜕α1
, 𝜕f1𝜕α2 , … ,

𝜕f1
𝜕αk

⋮ ⋮ ⋱ ⋮
𝜕fn
𝜕α1
, 𝜕fn𝜕α2 , … ,

𝜕fn
𝜕αk

]]]

]

.

Hence
n
∑
i=1
|yi − ⟨yi⟩|2 = (Y − f0 − Pδ)′(Y − f0 − Pδ) = ⟨ϕ⟩, say. (5.6.10)

Now (5.6.10) can be looked upon as a linear least squares problem of minimizing ⟨ϕ⟩
to estimate δ. Differentiating partially with respect to the vector δ we have

𝜕
𝜕δ
⟨ϕ⟩ = O ⇒ P′(Y − f0 − Pδ) = O.

That is,

Aδ = g (5.6.11)

where

A = P′P, g′ = (g1,… ,gk), gj =
n
∑
i=1
(yi − fi)

𝜕fi
𝜕αj
.

The classical Gauss method is to use (5.6.11) for successive iterations. This method is
also often known as the gradient method.

5.6.3 Marquardt’s method

Marquardt’s modification to the gradient method is to minimize ⟨ϕ⟩ on the sphere
‖δ‖2 = a constant. Under this minimization the modified equations are the following:

(A + λI)δ = g for λ > 0 (5.6.12)

where λ is an arbitrary constant to be chosen by the algorithm. Various authors have
suggested modifications to Marquardt’s method. One modification is to replace the
various derivatives by the correspondingfinite differences in forming equation (5.6.12).
Anothermodification is to consider weighted least squares. Anothermodification is to
take the increment vector in the iterations as an appropriate linear combination of δ
and g.

Example 5.6.4. Illustrate the steps in (5.6.12) if the problem is to fit the model y =
a1(a2)x based on the following data:

x = 0 1 2 3
y = 3 5 12 22
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Solution 5.6.4. Let α = ( α1α2 ) be the point for a = (
a1
a2 )where the least square minimum

is obtained. Then according to the notations in (5.6.12), observing that (x1,y1) = (0,3),
(x2,y2) = (1,5),…, (x4,y4) = (3, 22), we have the following:

f1 = α1α02 = α1 ⇒
𝜕f1
𝜕α1
= 1, 𝜕f1
𝜕α2
= 0,

f2 = α1(α2)1 = α1α2 ⇒
𝜕f2
𝜕α1
= α2,

𝜕f2
𝜕α2
= α1,

f3 = α1(α2)2 = α1α22 ⇒
𝜕f3
𝜕α1
= α22 ,

𝜕f3
𝜕α2
= 2α1α2,

f4 = α1(α2)3 = α1α32 ⇒
𝜕f4
𝜕α1
= α32 ,

𝜕f4
𝜕α2
= 3α1α22 .

Then

g1 = (3 − α1)(1) + (5 − α1α2)(α2)
+ (12 − α1α22)α22 + (22 − α1α32)α32 ,

g2 = (3 − α1)(0) + (5 − α1α2)(α1)
+ (12 − α1α22)(2α1α2) + (22 − α1α32)(3α1α22).

The matrices P and A are given by the following:

P =
[[[[

[

1 0
α2 α1
α22 2α1α2
α32 3α1α22

]]]]

]

,

A = P′P = [ 1 + α22 + α42 + α62 , α1(α2 + 2α32 + 3α52)
α1(α2 + 2α32 + 3α52), α21(1 + 4α22 + 9α42 )

] .

From (5.6.12) we have

δ = (A + λI)−1g.

For Gauss’ procedure λ = 0 and take a trial vector α, say α(0). Compute g,A and δ(0) =
A−1g for this trial vector. Then α(1) = α(0) +δ(0) is the new trial value of α. The success of
the iterative procedure depends upon guessing the first trial value of α(0) very close to
the true α because our expansion is valid only in the neighborhood of the true α. For
applying Marquardt’s procedure start with a trial value of λ also. Various techniques
are available for selecting a λ0 as well as an α(0) and making adjustments at each it-
eration so that a convergence to the true optimal point is reached. Both the gradient
method and Marquardt’s method fail in many of the standard test problems in this
field.
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5.6.4 Mathai–Katiyar procedure

Here the equation for iteration is the following:

(A + λB)δ = g

where A = P′P and B = g′gI − gg′. Here A is the same matrix as in Gauss’ and Mar-
quardt’s procedure and B is obtained by incorporating the condition that the angle
between the increment vector δ and the gradient vector g is zero when a minimum is
reached, and then proceeding with the minimization as before. For the details and a
flow-chart for executing the algorithm the interested reader may see [6]. It is shown
that the algorithm always produce convergence to the optimal points at least in all the
standard test problems in the field.

Exercises 5.6
Solve Exercises 5.6.1–5.6.4 graphically as well as by using matrix methods. Form the
dual problem and solve by simplex method when a minimization is involved.

5.6.1. Maximize x1 + 2x2 subject to the conditions x1 ≥ 0, x2 ≥ 0 and

x1 − x2 ≥ 4
x1 + x2 ≤ 5
x1 − x2 ≤ 2.

5.6.2. Minimize x1 + 2x2 subject to the conditions x1 ≥ 0, x2 ≥ 0 and

2x1 + x1 ≥ 8
x1 + x2 ≥ 6
x1 + 2x2 ≥ 9.

5.6.3. Maximize 8x1 + 15x2 subject to the conditions x1 ≥ 0, x2 ≥ 0 and

2x1 + 3x2 ≥ 2
2x1 + 5x2 ≥ 3.

5.6.4. Use simplex method to maximize 2x1 + x2 + 6x3 + x4 subject to the conditions
x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0 and

x1 + x3 + 2x4 ≤ 5
x2 + x3 ≤ 2

x1 + 3x2 + x3 + x4 ≤ 4.
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5.6.5. A carpentry firm manufactures desks, tables and shelves. Each table requires
one hour of labor, 10 square feet of wood and 4 quarts of varnish. Each desk requires
3 hours of labor, 35 square feet of wood and 1 quart of varnish. Each shelf needs
45 minutes of labor, 15 square feet of wood and one quart of varnish. At the firm’s
disposal there are at most 25 hours of labor, at most 350 square feet of wood and at
most 55 quarts of varnish. Each table produces a profit of $5, each desk $4 and each
shelf $3. How many of each item be produced so that the firm’s profit is a maximum
from this operation and what is that maximum profit?

5.6.6. A dealer packages and sells three types of mixtures of nuts. The dealer has
8 kg (kilograms) of cashews, 24 kg of almonds and 36 kg of peanuts. Mixture type 1
consists of 20% of cashews, 20% almonds and 60% peanuts and brings a profit of
$2 per kg. Mixture type 2 contains 20% cashews, 40% almonds and 40% peanuts
and brings a profit of $4 per kg. Mixture type 3 is of 10% cashews, 30% almonds
and 60% peanuts and brings a profit of $3 per kg. How many kg of each mixture the
dealer shouldmake tomaximize the profit from this operation?What is themaximum
profit?

5.6.7. A farmer requires at least 4 000 kg (kilograms) of nitrogen, 2 000 kg of phos-
phoric acid and 2 000 kg of potash. The farmer can buy 50 kg bags of three types of
fertilizers, types 1, 2, 3. Each type 1 bag contains 20 kg nitrogen, 15 kg phosphoric acid
and 5 kg potash and costs $20 per bag. Each type 2 bag contains 10 kg nitrogen, 20 kg
phosphoric acid and 25 kg potash and costs $30 per bag. Each type 3 bag contains
15 kg phosphoric acid and 20 kg potash and no nitrogen and costs $20 per bag. How
many bags of each type of fertilizer should the farmer buy so that the farmer’s cost is
minimized, what is the minimum cost?

5.7 A list of some more problems from physical, engineering and
social sciences

In order to do a real problem in one of the engineering areas or physical sciences it re-
quires the knowledge of the technical terms and a clear understanding of the problem
itself. This needs a lot of discussion and explanations but the reader may not be inter-
ested to invest thatmuch time into it. Hencewewill only indicate someof the problems
where matrices, determinants and eigenvalues play vital roles in simplifying matters.

5.7.1 Turbulent flow of a viscous fluid

Analysis of turbulent flow of a viscous fluid through a pipe requires what is known as
a dimensional matrix of the following form:
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F L T t

P 1 −2 0 0
D 0 1 0 0
V 0 1 0 −1
ρ 1 −4 0 2
μ 1 −2 0 1

where P = the resistance per unit area, D = diameter of the pipe, V = fluid velocity, ρ =
fluid density, μ = fluid viscosity, F = force, L = length, T = temperature, t = time. The
above matrix is formed from the table of dimensions of gas-dynamic quantities.

5.7.2 Compressible flow of viscous fluids

When the velocity of gas flow is greater than one-half the speed of sound, or when
thermal effects are appreciable, compressibility must be accounted for. In this case
the dimensional matrix for the solution of this problem is the following:

F L T t

ρ 1 −4 0 2
L 0 1 0 0
V 0 1 0 −1
μ 1 −2 0 1
g 0 1 0 −2
a 0 1 0 −1
P 1 −2 0 0

where g = gravitational constant, a = acoustic velocity and other items remain as in
the case of turbulent flow of Section 5.7.1.

5.7.3 Heat loss in a steel rod

In studying heat loss of a steel rod the dimensional matrix becomes the following,
again constructed from the table of dimensions of gas-dynamic quantities:

H L T t

Q 1 0 0 −1
Ts − Ta 0 0 1 0

l 0 1 0 0
d 0 1 0 0
ks 1 −1 −1 −1
ka 1 −1 −1 −1
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where H = thermal energy, L = length, T = temperature, t = time, d = diameter of the
rod, l = length of the rod, Q = amount of heat rejected per unit time, Ta = tempera-
ture of steel, Ta = temperature of air, ks = thermal conductivity of steel, ka = thermal
conductivity of air.

5.7.4 Small oscillations

Oscillations of mechanical systems or current or voltage in an electrical system
and many such problems fall into this category. Suppose that the displacement
from an equilibrium position of the system can be described by the n × 1 vector X,
X′ = (x1,… ,xn) so that the equilibrium position is X = O. When the system performs
small oscillations its kinetic energy T is represented by a quadratic form of the type

T = 1
2
X̃′AX̃

where A = (aij) is a real symmetric positive definite matrix, that is, T > 0 for all non-
null X,

X̃′ = ( d
dt
x1,… ,

d
dt
xn) =

d
dt
X′

the derivative of the components in X with respect to the time variable t. The poten-
tial energy V for small oscillations from the equilibrium position can be shown to be
represented by the quadratic form

V = 1
2
X′BX

where B = B′ is positive definite or at least positive semi-definite, that is, V ≥ 0 for all
non-null X. Equations of motion for the system, with no external forces acting, can be
shown to give rise to the differential equation

AX∗ + CX = O (5.7.1)

where

X∗ = d2

dt2
X.

If a solution of the type X = eiμtY , μ real, i = √−1, is assumed for (5.7.1) then from (5.7.1)
we obtain the equation (see Section 5.5)

(−λA + C)Y = O (5.7.2)
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where λ = μ2. Note that (5.7.2) is an eigenvalue problem where λ will represent the nat-
ural frequencies of vibration. The largest frequency is then the largest eigenvalue λn.
Writing (5.7.2) in the form

(λI − A−1C)Y = O (5.7.3)

the λ’s are the eigenvalues of the matrix A−1C or that of A−
1
2 CA−

1
2 = G where A

1
2 is

the real symmetric positive definite square root of the real symmetric positive definite
matrix A. Simultaneous diagonalizations of A and C lead to the determination of the
normal mode of the system. The Rayleigh quotient in this connection is given by

R1(X) =
Z′CZ
Z′AZ
, Z = A−

1
2 X

and then

λn =max
X≠O

R1(X),

see Section 5.5. If Xj is an eigenvector of G then Zj = A−
1
2 Xj is a normal mode vector for

the small vibration problem. If external forces are taken into account then (5.7.1) will
be modified with a function of t sitting on the right side. We will not elaborate on this
problem any further.

5.7.5 Input–output analysis

Another important set of problems fall in the category of input–output analysis.
Input–output type situations arise in a wide variety of fields. Let X, X′ = (x1,… ,xn) be
the input variables. Suppose that these go through a process, denoted by a matrix of
operators M, and the resulting quantity is the output, say, Y , Y′ = (y1,… ,ym). Then
the system can be denoted by

Y =MX.

IfM is a matrix of partial differential operators then the output is a system of differen-
tial equations. For example let

M = [
2 𝜕𝜕x1 −

𝜕
𝜕x2

5 𝜕𝜕x3
𝜕
𝜕x1

4 𝜕𝜕x2 −
𝜕
𝜕x3

]

then

MX = [
2 𝜕𝜕x1 (x1) −

𝜕
𝜕x2
(x2) + 5

𝜕
𝜕x3
(x3)

𝜕
𝜕x1
(x1) + 4

𝜕
𝜕x2
(x2) −

𝜕
𝜕x3
(x3)
] = [

6
4
] = Y .
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IfM is a linear operator, designated by a constant matrix, then the output is the result
of a linear transformation. For example if k = 4 = n and if

M =
[[[[

[

1 −2 3 1
0 1 −1 2
2 1 1 −1
2 0 2 3

]]]]

]

then the output is Y =MX where

y1 = x1 − 2x2 + 3x3 + x4, y2 = x2 − x3 + 2x4,
y3 = 2x1 + x2 + x3 − x4, y4 = 2x1 + 2x3 + 3x4.

If x1,x2,x3 are quantities of 3 items shipped by a firm to two different shops and if M
represents the per unit sales prices of these items in these shops then the output is the
vector of revenues from these two shops on these three items. Suppose that the unit
price matrix is the following:

M = [$3 $2 $1
$2 $2 $2

] .

Then the output or the revenue vector is given by

Y =MX = [ 3x1 + 2x2 + x3
2x1 + 2x2 + 2x3

] .

For example, if x1 = 10 kilograms (kg), x2 = 5 kg, x3 = 20 kg then the revenue vector is

Y = [$60
$70
] .

If M is a transition probability matrix and if X0 is the initial vector (see Chapters 2
and 5) then the eventual behavior of the system is given by the output vector

Y =M∞X0.

Several such input–output situations arise in different fields. The input X can be
in the form of a vector or matrix, the operatorM can also be in the form of a vector or
matrix so that MX is defined then the output will be scalar, vector or matrix as deter-
mined byMX. Further analysis of such an input–output model will require properties
of matrices and the nature of the problem in hand.





6 Matrix series and additional properties of matrices

6.0 Introduction

The ideas of sequences, polynomials, series, convergence and so on in scalar variables
will be generalized tomatrix variables in this chapter.We startwith somebasic proper-
ties of polynomials and then seewhat happens if the scalar variable in the polynomial
is replaced by a square matrix.

6.1 Matrix polynomials

Here a “matrix polynomial” does not mean a matrix where the elements are polyno-
mials in a scalar variable such as

B = [ 1 + x 2x + x2

2 − x + x2 x3
] .

Such a matrix will be called a matrix of polynomials. The term “matrix polynomial”
will be reserved for the situation where to start with we have a polynomial in a scalar
variable andweare replacing the scalar variable by a squarematrix to obtain a polyno-
mial in a square matrix. For example, consider a polynomial of degreem in the scalar
variable x,

p(x) = a0 + a1x +⋯+ amxm, am ≠ 0 (6.1.1)

where a0,… ,am are known constants. For example,

p1(x) = 4 + 2x − 3x2, a polynomial in x of degree 2;
p2(x) = 2 + 5x, a polynomial in x of degree 1;
p3(x) = 7, a polynomial in x of degree 0.

Let

A = [[
[

1 0 0
0 1 1
1 1 1

]]

]

.

Let us try to construct polynomials p1(A),p2(A),p3(A) in the matrix A, corresponding
to the scalar polynomials p1(x),p2(x),p3(x) above. When x in (6.1.1) is replaced by the
matrix A then the constant term a0 will be replaced by a0I, I the identity matrix. That
is,

p(A) = a0I + a1A +⋯+ amAm, am ≠ 0. (6.1.2)

OpenAccess.©2017ArakM.Mathai, Hans J. Haubold, publishedbyDeGruyter. Thiswork is licensed
under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
https://doi.org/10.1515/9783110562507-006
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Thus for our illustrative examples we have

p1(A) = 4
[[

[

1 0 0
0 1 0
0 0 1

]]

]

+ 2[[
[

1 0 0
0 1 1
1 1 1

]]

]

− 3[[
[

1 0 0
0 1 1
1 1 1

]]

]

2

= [[

[

3 0 0
−3 0 −4
−4 −4 0

]]

]
which is again a 3 × 3 matrix. The following results are obviously true for matrix poly-
nomials.

(i) If p1(x), p2(x), q1(x) = p1(x) + p2(x), q2(x) = p1(x)p2(x) are polynomials in the
scalar x then for any square matrix A,

p1(A) + p2(A) = q1(A), p1(A)p2(A) = q2(A).

We can note that the factorization properties also go through.

(ii) If

p(x) = (x − a)(x − b)

where x,a,b are scalars, a and b free of x, then for any square matrix A,

p(A) = (A − aI)(A − bI)

where I is the identity matrix.

Consider the characteristic polynomial of an n × nmatrix A. That is,

p(λ) = |A − λI| = (λ1 − λ)(λ2 − λ)⋯(λn − λ)

where λ1,… ,λn are the eigenvalues of A and p(λ) = 0 is the characteristic equation.
Then it is easy to see that p(A) = O. That is,

(iii) every n × nmatrix A satisfies its own characteristic equation or

(λ1I − A)(λ2I − A)⋯(λnI − A) = O.

6.1.1 Lagrange interpolating polynomial

Consider the following polynomial where λ1,… ,λn are distinct quantities free of λ and
a1,… ,an are constants:
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p(λ) = a1
(λ − λ2)(λ − λ3)⋯(λ − λn)
(λ1 − λ2)(λ1 − λ3)⋯(λ1 − λn)

+ a2
(λ − λ1)(λ − λ3)⋯(λ − λn)
(λ2 − λ1)(λ2 − λ3)⋯(λ2 − λn)

+⋯+ an
(λ − λ1)⋯(λ − λn−1)
(λn − λ1)⋯(λn − λn−1)

=
n
∑
j=1

aj{
n
∏
i=1,i≠j

(λ − λi)
(λj − λi)

} (6.1.3)

which is a polynomial of degree n− 1 in λ. Put λ = λ1 in (6.1.3). Then we have p(λ1) = a1.
Similarly p(λj) = aj, j = 1,… ,n. Therefore

p(λ) =
n
∑
j=1

p(λj){
n
∏
i=1,i≠j

(λ − λi)
(λj − λi)

}. (6.1.4)

The polynomial in (6.1.4) is called Lagrange interpolating polynomial. A more general
polynomial in this category, allowing multiplicities for λ1,… ,λn is Hermite interpolat-
ing polynomial which we will not discuss here. From (6.1.4) we have, for any square
matrix A, and p(λ) satisfying (6.1.4),

p(A) =
n
∑
j=1

p(λj){
n
∏
i=1,i≠j

(A − λiI)
(λj − λi)

}. (6.1.5)

An interesting application of (6.1.5) is that if λ1,… ,λn are the distinct eigenvalues of
any n×nmatrix A and p(λ) is any polynomial of the type in (6.1.4) then thematrix p(A)
has the representation in (6.1.5). Let us do an example to highlight this point.

Example 6.1.1. Compute e5A where

A = [1 0
1 4
] .

Solution 6.1.1. The eigenvalues of A are obviously λ1 = 1, λ2 = 4. Let p(λ) = e5λ . Then
from (6.1.4)

p(λ) = e5λ = p(λ1)
λ − λ2
λ1 − λ2
+ p(λ2)

λ − λ1
λ2 − λ1

= −
e5

3
(λ − 4) + e

20

3
(λ − 1).

Therefore from (6.1.5)

p(A) = −e
5

3
(A − 4I) + e

20

3
(A − I)

= −e
5

3
(
−3 0
1 0
) + e

20

3
(
0 0
1 3
)

= (
e5 0

e20−e5
3 e20

) = e5A.
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6.1.2 A spectral decomposition of a matrix

We will consider the spectral decomposition of a matrix A when the eigenvalues are
distinct. The results hold when some of the eigenvalues are repeated also. In the re-
peated case we will need Hermite interpolating polynomials to establish the results.
When the eigenvalues of A are distinct we have the representation in (6.1.5) where
p(λ) is a polynomial defined on the set of distinct eigenvalues of A (spectrum of A). Let
(6.1.5) be written as

p(A) = A1 +⋯+ An. (6.1.6)

Let us consider the product A1A2. Excluding the constant parts, A1 and A2 are given by

A1 → (A − λ2I)(A − λ3I)⋯(A − λnI)

and

A2 → (A − λ1I)(A − λ3I)⋯(A − λnI).

Then

A1A2 → (A − λ1I)(A − λ2I)(A − λ3I)2⋯(A − λnI)2.

But from property (iii),

(λ1I − A)(λ2I − A)⋯(λnI − A) = O

and hence A1A2 = O. Similarly AiAj = O for all i and j, i ≠ j. Thus A1,… ,An aremutually
orthogonalmatrices andhence linearly independent. Taking p(λ) = 1 in (6.1.6)we have
the relation

I = B1 +⋯+ Bn (6.1.7)

where

Bj =
(A − λ1I)⋯(A − λj−1I)(A − λj+1I)⋯(A − λnI)
(λj − λ1)⋯(λj − λj−1)(λj − λj+1)⋯(λj − λn)

and

BiBj = O for all i ≠ j.

Then multiply both sides of (6.1.7) by Bj we have Bj = B2j for each j, j = 1,… ,n.
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(iv) In the spectral decomposition of an identity matrix, as given in (6.1.7), the Bj ’s
are mutually orthogonal and each Bj is an idempotent matrix.

Taking p(λ) = λ or p(A) = A in (6.1.6) we have the following spectral decomposition
for A:

(v) For any n × nmatrix A with distinct eigenvalues λ1,… ,λn,

A = λ1B1 +⋯+ λnBn (6.1.8)

where the Bj ’s are defined in (6.1.7).

This can be observed from property (iii) and (6.1.7). Note that

ABj = (A − λjI + λjI)Bj = (A − λjI)Bj + λjBj = λjBj

since (A − λjI)Bj = O by property (iii). Hence

λ1B1 +⋯+ λnBn = A(B1 +⋯+ Bn) = A

since B1 +⋯ + Bn = I by (6.1.7). We can also notice some more interesting properties
from (6.1.8):

BiBj = O = BjBi , i ≠ j

as well as

BjA = ABj = λjB2j = λjBj .

Thus the matrices A,B1,… ,Bn commute and hence all can be reduced to diagonal
forms by a nonsingular matrix Q such that

D = λ1D1 +⋯+ λnDn (6.1.9)

where QAQ−1 = D, QBjQ−1 = Dj for all j, DiDj = O for all i ≠ j. The matrices B1,… ,Bn in
(6.1.8) are also called the idempotents of A, different from idempotent matrices.

Example 6.1.2. For the matrix A = [ 1 32 2 ] verify (6.1.7) and (6.1.8).

Solution 6.1.2. The eigenvalues are λ1 = 4 and λ2 = −1. Two eigenvectors correspond-
ing to λ1 and λ2 are

X1 = (
1
1
) , X2 = (

3
−2
) .
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Let

Q = (X1,X2) = [
1 3
1 −2
] ,

Q−1 = 1
5
[
2 3
1 −1
] ,

QDQ−1 = 1
5
[
1 3
1 −2
][

4 0
0 −1
][

2 3
1 −1
] = [

1 3
2 2
] = A.

B1 =
A − λ2I
λ1 − λ2
= 1
5
[
2 3
2 3
] ,

B2 =
A − λ1I
λ2 − λ1
= − 1

5
[
−3 3
2 −2
] ;

B1 + B2 =
1
5
[
5 0
0 5
] = I ;

λ1B1 + λ2B2 =
4
5
[
2 3
2 3
] + 1

5
[
−3 3
2 −2
]

= [
1 3
2 2
] = A.

Example 6.1.3. For the matrix A in Example 6.1.2 compute Q such that Q−1AQ = diag-
onal. Also establish (6.1.9).

Solution 6.1.3. By straight multiplication

Q−1B1Q = [
1 0
0 0
]

and

Q−1B2Q = [
0 0
0 1
] .

Taking the linear combination (6.1.9) is established.

(vi) In the spectral representation of any n × n matrix A with distinct eigenvalues,
as in (6.1.8), the rank of Bj for each j cannot exceed 1.

6.1.3 An application in statistics

In the spectral decomposition of an n× nmatrix A, as given in (6.1.8), each Bj is idem-
potent. IfA is real symmetric thenBj, j = 1,… ,n are also real symmetric since the eigen-
values of a real symmetric matrix are real. If the eigenvalues of A are all distinct then
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each Bj is of rank 1. Consider X an n × 1 real Gaussian vector random variable having
a standard Gaussian distribution. In our notation X ∼ Nn(O, I) where I is an identity
matrix. Consider the quadratic form X′AX. Then

X′AX = λ1X′B1X +⋯+ λnX′BnX.

Since B1 = B′j = B2j and since X ∼ Nn(O, I) it follows that X′BjX ∼ χ21 , that is, X′BjX is a
real chisquare random variable with one degree of freedom. Since BiBj = O, i ≠ j these
chisquare random variables are mutually independently distributed. Thus one has a
representation

X′AX = λ1y1 +⋯+ λnyn

where the y1,… ,yn are mutually independently distributed chisquare random vari-
ables with one degree of freedom each when the λj ’s are distinct. One interesting as-
pect is that in each Bj all the eigenvalues of A are present.

Exercises 6.1
6.1.1. If A is symmetrically partitioned to the form

A = [A11 A12
O I

]

then show that for any positive integer n,

An = [A
n
11 p(A11)A12
O I

]

where

p(x) = (x
n − 1)
x − 1
.

6.1.2. Compute e−2A where

A = [1 2
3 5
] .

6.1.3. Compute sinA where

A = π
4
[[

[

2 0 0
4 1 0
−2 5 −2

]]

]

.

6.1.4. SpectrumofamatrixA. The spectrumof amatrix is the set of all distinct eigen-
values of A. If B = QAQ−1 and if f (λ) is a polynomial defined on the spectrum of A then
show that

f (B) = Qf (A)Q−1.
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Prove the result when the eigenvalues are distinct. The result is also true when some
eigenvalues are repeated.

6.1.5. If A is a block diagonal matrix, A = diag(A1,A2,… ,Ak), and if f (λ) is a polyno-
mial defined on the spectrum of A then show that

f (A) = diag(f (A1), f (A2),… , f (Ak)).

6.1.6. If λ1,… ,λn are the eigenvalues of an n × n matrix A and if f (λ) is a poly-
nomial defined on the spectrum of A then show that the eigenvalues of f (A) are
f (λ1), f (λ2),… , f (λn).

6.1.7. For any square matrix A show that ekA, where k is a nonzero scalar, is a nonsin-
gular matrix.

6.1.8. If A is a real symmetric positive definite matrix then show that there exists a
unique Hermitian matrix B such that A = eB.

6.1.9. By using the ideas from Exercise 6.1.3, or otherwise, show that for any n × n
matrix A

eiA = cosA + i sinA, i = √−1.

6.1.10. For the matrix A = ( 3 0
7 2 ) compute lnA, if it exists.

6.2 Matrix sequences and matrix series

Wewill introducematrix sequences andmatrix series and concepts analogous to con-
vergence of series in scalar variables. A few properties of matrix sequences will be
considered first. Then we will look at convergence of matrix series and we will also
introduce a concept called “norm of amatrix”, analogous to the concept of “distance”
in scalar variables, for measuring rate of convergence of a matrix series.

6.2.1 Matrix sequences

Let A1,A2,… be a sequence ofm×nmatrices so that the k-th member in this sequence
of matrices is Ak . Let the (i, j)-th element in Ak be denoted by a

(k)
ij so that Ak = (a

(k)
ij ),

k = 1, 2,…. The elements a(k)ij are real or complex numbers.

Definition 6.2.1 (Convergence of a sequence of matrices). For scalar sequences we
say that the limit of a(k)ij , as k → ∞, is aij if there exists a finite number aij such
that a(k)ij → aij when k →∞. Convergence of a matrix sequence is defined through
element-wise convergence. Thus if a(k)ij → aij for all i and j when k→∞we say that Ak
converges to A = (aij) as k→∞.
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Example 6.2.1. Check for the convergence of the sequence A1,A2,… as well as that of
the sequence B1,B2,… where

Ak = [
1
2k

k
1+k

−2 + 1
k e−k
] , Bk = [

(−1)k 0
ek 2k

1+k
] .

Solution 6.2.1. Let us check the sequence A1,A2,…. Here

a(k)11 =
1
2k
, a(k)12 =

k
1 + k
, a(k)21 = −2 +

1
k
, a(k)22 = e−k .

lim
k→∞

a(k)11 = limk→∞

1
2k
= 0, lim

k→∞
a(k)12 = limk→∞

k
1 + k
= 1,

lim
k→∞

a(k)21 = limk→∞
[−2 + 1

k
] = −2, lim

k→∞
a(k)22 = limk→∞

e−k = 0.

Hence

lim
k→∞

Ak = A = [
0 1
−2 0
]

and the sequence is a convergent sequence. Now, consider B1,B2,…. Here

b(k)11 = (−1)k , b(k)12 = 0, b(k)21 = ek , b(k)22 =
2k
1 + k
.

Evidently

lim
k→∞

b(k)12 = limk→∞
0 = 0, lim

k→∞
b(k)22 = limk→∞

2k
1 + k
= 2.

But (−1)k oscillates from −1 to 1 and hence there is no limit as k →∞. Also ek →∞
when k→∞. Hence the sequence B1,B2,… is divergent.

(i) For any sequence A1,A2,… where Ak = (a
(k)
ij ) we say that the sequence is diver-

gent if for at least one element inAk either the limit does not exist or the limit is ±∞.

The following properties are evident from the definition itself.

(ii) Let A1,A2,… and B1,B2,… be convergent sequences of matrices where Ak → A
and Bk → B as k→∞. Then

Ak + Bk → A + B, AkBk → AB,
QAkQ−1 → QAQ−1, diag(Ak ,Bk) → diag(A,B),

αkAk → αA

when αk → α, where α1,α2,… is a sequence of scalars.
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By combining with the ideas of matrix polynomials from Section 6.1 we can establish
the following properties: Since we have only considered Lagrange interpolating poly-
nomials in Section 6.1 wewill state the results when the eigenvalues of the n×nmatrix
A are distinct. But analogous results are available when some of the eigenvalues are
repeated also.

(iii) Let the scalar functions f1(λ), f2(λ),… be defined on the spectrum of an n × n
matrix A and let the sequence A1,A2,… be defined as Ak = fk(A), k = 1, 2,…. Then
the sequence A1,A2,… converges, for k →∞, if and only if the scalar sequences
{f1(λ1), f2(λ1),…}, {f1(λ2), f2(λ2),…},… , {f1(λn), f2(λn),…} converge, as k →∞, where
λ1,… ,λn are the eigenvalues of A.

Example 6.2.2. For the matrix A show that

etA = ( cos t sin t
− sin t cos t

) , where A = ( 0 1
−1 0
) .

Solution 6.2.2. The eigenvalues of A are ±i, i = √−1. Take p(λ) = eλt and apply (6.1.5)
of Section 6.1. Then

etA = eit (A + iI)
2i
+ e−it (A − iI)

−2i

= e
it

2i
(
i 1
−1 i
) − e
−it

2i
(
−i 1
−1 −i
)

= (
eit+e−it

2
eit−e−it

2i
−eit+e−it

2i
eit+e−it

2
) = (

cos t sin t
− sin t cos t

) .

6.2.2 Matrix series

Amatrix series is obtained by adding up thematrices in amatrix sequence. For exam-
ple if A0,A1,A2,… is a matrix sequence then the corresponding matrix series is given
by

f (A) =
∞

∑
k=0

Ak . (6.2.1)

If the matrix series is a power series then we will be considering powers of matrices
and hence in this case the series will be defined only for n × n matrices. For an n × n
matrix A consider the series

g(A) = a0I + a1A +⋯+ akAk +⋯ =
∞

∑
k=0

akAk (6.2.2)
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where a0,a1,… are scalars. This is a matrix power series. As in the case of scalar se-
ries, convergence of a matrix series will be defined in terms of the convergence of the
sequence of partial sums.

Definition 6.2.2 (Convergence of a matrix series). Let f (A) be a matrix series as in
(6.2.1). Consider the partial sums S0,S1,… where

Sk = A0 + A1 +⋯+ Ak .

If the sequence S0,S1,… is convergent then we say that the series in (6.2.1) is conver-
gent. [If it is a power series as in (6.2.2) then Ak = akAk and then the above definition
applies.]

Example 6.2.3. Check the convergence of the series f1(A) and f2(B) where

f1(A) =
∞

∑
k=0

Ak , Ak = [
yk 2−k
xk
k! (−1)

k θ2k
(2k)!
]

and

f2(B) =
∞

∑
k=0

Bk , Bk = [sinkπ cos kπ
2 ] .

Solution 6.2.3. The sum of the firstm + 1 terms in f1(A) is given by

Sm =
m
∑
k=0

Ak = [
∑mk=0 y

k ∑mk=0 2
−k

∑mk=0
xk
k! ∑

m
k=0
(−1)kθ2k
(2k)!
] .

Convergence of the series in f1(A) depends upon the convergence of the individual
elements in Sm asm→∞. Note that

∞

∑
k=0

yk = 1 + y + y2 +⋯

= (1 − y)−1 if |y| < 1 and +∞ if y ≥ 1;
∞

∑
k=0

2−k = 1
1 − 1

2
= 2;

∞

∑
k=0

xk

k!
= 1 + x

1!
+ x

2

2!
+⋯ = ex ;

∞

∑
k=0

(−1)kθ2k

(2k)!
= 1 − θ

2

2!
+ θ

4

4!
−⋯ = cosθ.

Hence the series in f1(A) is convergent for |y| < 1 and diverges if y ≥ 1. Now, consider
f2(B). The partial sums are, form = 0, 1,…,

Sm =
m
∑
k=0

Bk = [
m
∑
k=0

sinkπ,
m
∑
k=0

cos kπ
2
].
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But∑mk=0 sinkπ = 0 for allmwhereas∑mk=0 cos
kπ
2 oscillates between 0 and 1 and hence

the sequence of partial sums for this series is not convergent. Thus the series in f2(B)
is not convergent.

Example 6.2.4. Check for the convergenceof the following series in the n×nmatrixA:

f (A) = I + A + A2 +⋯.

Solution 6.2.4. Let λ1,λ2,… ,λn be the eigenvalues ofA. Let us consider the casewhen
the eigenvalues of A are distinct. Then there exists a nonsingular matrix Q such that

Q−1AQ = D = diag(λ1,… ,λn)

and

Q−1AmQ = Dm = diag(λm1 ,… ,λmn ), m = 1, 2,… .

Then

Q−1f (A)Q = I +D +D2 +⋯.

The j-th diagonal element on the right is then

1 + λj + λ2j +⋯ = (1 − λj)−1 if |λj| < 1, j = 1,… ,n

which are the eigenvalues of (I − A)−1. Then if |λj| < 1 for j = 1, 2,… ,n the series is con-
vergent and the sum is (I − A)−1 or

I + A + A2 +⋯ = (I − A)−1 for |λj| < 1, j = 1,… ,n.

We can also derive the result from (6.1.5) of Section 6.1. The result also holds good
even if some eigenvalues are repeated.We can state the exponential and trigonometric
series as follows: For any n × nmatrix A,

sinA =
∞

∑
k=0

(−1)kA2k+1

(2k + 1)!
, cosA =

∞

∑
k=0

(−1)kA2k

(2k)!
,

sinhA =
∞

∑
k=0

A2k+1

(2k + 1)!
, coshA =

∞

∑
k=0

A2k

(2k)!
,

eA =
∞

∑
k=0

Ak

k!
(6.2.3)

and further, when the eigenvalues λ1,… ,λn of A are such that |λj| < 1, j = 1,… ,n then
the binomial and logarithmic series are given by the following:

(I − A)−1 =
∞

∑
k=0

Ak , ln(I + A) =
∞

∑
k=1

(−1)k−1Ak

k
. (6.2.4)
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6.2.3 Matrix hypergeometric series

A general hypergeometric series pFq(⋅) in a real scalar variable x is defined as follows:

pFq(a1,… ,ap;b1,… ,bq ;x) =
∞

∑
r=0

(a1)r⋯(ap)r
(b1)r⋯(bq)r

xr

r!
(6.2.5)

where, for example,

(a)m = a(a + 1)⋯(a +m − 1), (a)0 = 1, a ≠ 0.

For example,

0F0( ; ;x) = ex , 1F0(α; ;x) = (1 − x)−α for |x| < 1.

In (6.2.5) there are p upper parameters a1,… ,ap and q lower parameters b1,… ,bq .
The series in (6.2.5) is convergent for all x if q ≥ p, convergent for |x| < 1 if p = q + 1,
divergent if p > q + 1 and the convergence conditions for x = 1 and x = −1 can also be
worked out. A matrix series in an n × n matrix A, corresponding to the right side in
(6.2.5) is obtained by replacing x by A. Thus we may define a hypergeometric series in
an n × nmatrix A as follows:

pFq(a1,… ,ap;b1,… ,bq ;A) =
∞

∑
r=0

(a1)r⋯(ap)r
(b1)r⋯(bq)r

Ar

r!
(6.2.6)

where a1,… ,ap, b1,… ,bq are scalars. The series on the right in (6.2.6) is convergent
for all A if q ≥ p, convergent for p = q + 1 when the eigenvalues of A are all less than 1
in absolute value, and divergent when p > q + 1.

Example 6.2.5. If possible, sum up the series

I + 3A + 1
2
{(3)(4)A2 + (4)(5)A3 +⋯}

where

A = [[
[

1
2 0 0
1 − 13 0
2 3 − 12

]]

]

.

Solution 6.2.5. Consider the scalar series

1 + 3x + 1
2
[(3)(4)x2 + (4)(5)x3 +⋯]

= 1 + 3x + (3)(4)x
2

2!
+ (3)(4)(5)x

3

3!
+⋯

= (1 − x)−3 for |x| < 1.

In our matrix A, the eigenvalues are λ1 =
1
2 , λ2 = −

1
3 , λ3 = −

1
2 and therefore |λj| < 1,

j = 1, 2,3. Hence the series can be summed up into a 1F0 type hypergeometric series or
a binomial series and the sum is then
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(I − A)−3 = [[
[

1
2 0 0
1 4

3 0
2 3 3

2

]]

]

−3

.

But

(I − A)−1 = [[
[

2 0 0
− 32

3
4 0

1
3 −

3
2

2
3

]]

]

and

(I − A)−3 = [(I − A)−1]3 = [[
[

2 0 0
− 32

3
4 0

1
3 −

3
2

2
3

]]

]

3

= [[

[

8 0 0
− 29132

27
64 0

4153
432 −

217
96

8
27

]]

]

.

6.2.4 The norm of a matrix

For a 1 × 1 vector or a scalar quantity α the absolute value, |α|, is a measure of its mag-
nitude. For an n × 1 vector X, X′ = (x1,… ,xn),

‖X‖ = {|x1|2 +⋯+ |xn|2}
1
2 , (6.2.7)

where |xj| denotes the absolute value of xj, j = 1,… ,n, and this can be taken as a mea-
sure of its magnitude. Equation (6.2.7) is its Euclidean length also. This Euclidean
length satisfies some interesting properties:

(a) ‖X‖ ≥ 0 for all X and ‖X‖ = 0 if and only if X = O (null);
(b) ‖αX‖ = |α| ‖X‖ where α is a scalar quantity;
(c) ‖X + Y‖ ≤ ‖X‖ + ‖Y‖, the triangular inequality. (6.2.8)

If (a), (b), (c) are taken as postulates or axioms to define a norm of the vector X,
denoted by ‖X‖, then one can see that, not only the Euclidean length but also other
items satisfy (a), (b), (c).

Definition 6.2.3 (Norm of a vector and distance between vectors). For X and n × 1
vector, or an element in a general vector subspace S where a norm can be defined, a
measure satisfying (a), (b), (c) above will be called a norm of X and it will be denoted
by ‖X‖. Note that X replaced by X − Y and satisfying (a), (b), (c) is called a distance
between X and Y .
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It is not difficult to show that the followingmeasures are alsonormsof the vectorX:

‖X‖1 =
n
∑
j=1
|xj|;

‖X‖2 = [
n
∑
j=1
|xj|2]

1
2

= (X∗X)
1
2 (the Euclidean norm)

where X∗ denotes the complex conjugate transpose of X

‖X‖p = [
n
∑
j=1
|xj|p]

1
p

, p ≥ 1 (the Hölder norms)

‖X‖∞ =max
1≤j≤n
|xj| (the infinite norm). (6.2.9)

Example 6.2.6. Show that ‖X‖1 satisfies the conditions (a), (b), (c) in (6.2.8).

Solution 6.2.6. |xj| being the absolute value of xj cannot be zero unless xj itself is
zero. If xj ≠ 0 then |xj| > 0 by definition whether xj is real or complex. Thus condition
(a) is obviously satisfied. Note that for any two scalars α and xj, |αxj| = |α| |xj|. Hence
(b) is satisfied. Also for any two scalars xi and yj the triangular inequality holds. Thus
‖X‖1 satisfies (a), (b), (c) of (6.2.8).

The following properties are immediate from the definition itself:
(a) |‖X‖ − ‖Y‖| ≤ ‖X + Y‖ ≤ ‖X‖ + ‖Y‖.
(b) ‖−X‖ = ‖X‖.
(c) If ‖X‖ is a norm of X then k‖X‖, k > 0 is also a norm of X.
(d) |‖X‖ − ‖Y‖| ≤ ‖X − Y‖.
(e) ‖U‖2 = ‖X‖2 where U = AX, A is a unitary matrix (orthonormal if real).
(f) ‖X‖1 ≥ ‖X‖2 ≥⋯ ≥ ‖X‖∞.

Now let us see howwe can define a norm of a matrix as a single number which should
have the desirable properties (a), (b), (c) of (6.2.8). But there is an added difficulty
here. If we consider two matrices, an n × n matrix A and an n × 1 matrix X, then AX
is again an n × 1 matrix which is also an n-vector. Hence any definition that we take
for the norm of a matrix must be compatible with matrix multiplication. Therefore an
additional postulate is required.

Definition 6.2.4 (A norm of a matrix A). A single number, denoted by ‖A‖, is called a
norm of the matrix A if it satisfies the following four postulates:
(a) ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A is a null matrix.
(b) ‖cA‖ = |c| ‖A‖ when c is a scalar.
(c) ‖A + B‖ ≤ ‖A‖ + ‖B‖ whenever A + B is defined.
(d) ‖AB‖ ≤ ‖A‖ ‖B‖ whenever AB is defined.
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It is not difficult to see that the following quantities qualify to be the norms of the
matrix A = (aij):

‖A‖(p) = (
n
∑
i,j=1
|aij|p)

1
p

, 1 ≤ p ≤ 2 (6.2.10)

(Hölder norm, not a norm for p > 2),

‖A‖2 = (
n
∑
i,j=1
|aij|2)

1
2

(Euclidean norm), (6.2.11)

‖A‖3 = nmax
i,j
|aij|, (6.2.12)

‖A‖4 =max
i
∑
j
|aij|, (6.2.13)

‖A‖5 =max
j
∑
i
|aij|, (6.2.14)

‖A‖6 = s1, (6.2.15)

where s1 is the largest singular value of A;

‖A‖7 = sup
X≠O

‖AX‖
‖X‖

(6.2.16)

where ‖AX‖ and ‖X‖ are vector norms, the same norm;

‖A‖8 = max
X,‖X‖=1
‖AX‖ (6.2.17)

same vector norm is taken in each case. As a numerical example let us consider the
following matrix:

A = [1 + i 0
1 −1
] .

Then

‖A‖1 = |(1 + i)| + |(0)| + |(1)| + |(−1)| = √2 + 0 + 1 + 1 = 2 +√2;

‖A‖2 = [2 + 0 + 1 + 1]
1
2 = 2;

‖A‖3 = 2max[(√2,0, 1, 1)] = 2√2;
‖A‖4 =max[|(1 + i)| + |(−1)|, |(0)| + |(−1)|] = 1 +√2;
‖A‖5 =max[|(1 + i)| + |(0)|, |(1)| + |(−1)|] = 2.

For computing ‖A‖6 we need the eigenvalues of A∗A:

A∗A = [1 − i 1
0 −1
][

1 + i 0
1 −1
] = [

3 −1
−1 1
] .

The eigenvalues of A∗A are 2 ±√2 and then the largest singular value of A is

[(2 +√2)]
1
2 = ‖A‖6.
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Note that there are several possible values for ‖A‖7 and ‖A‖8 depending upon which
vector norm is taken. For example, if we take the Euclidean norm and consider ‖A‖8
then it is a matter of maximizing [Y∗Y]

1
2 subject to the condition X∗X = 1 where Y =

AX. But Y∗Y = X∗A∗AX. The problem reduces to the following:

Maximize X∗A∗AX subject to the condition X∗X = 1.

This is already done in Section 5.5 and the answer is the largest eigenvalue of A∗A and
hence, when this particular vector norm is used,

‖A‖8 = s1 = largest singular value of A.

Note that for a vector norm ‖X‖, k‖X‖ is also a vector norm when k > 0. This property
need not hold for a matrix norm ‖A‖ due to condition (d) of the definition.

Example 6.2.7. For an n × n matrix A = (aij) let α =maxi.j |aij|, that is, the largest of
the absolute values of the elements. Is this a norm of A?

Solution 6.2.7. Obviously conditions (a), (b), (c) of Definition 6.2.4 are satisfied. Let
us check condition (d). Let B = (bij) and AB = C = (cij). Then

cij =
n
∑
k=1

aikbkj ⇒

max
i,j
|cij| =max

i,j
|
n
∑
k=1

aikbkj|.

Suppose that the elements are all real and positive and that the largest ones in A and
B are a11 = a and b11 = b. Then

max
i,j
|aij| = a, max

i,j
|bij| = b, max

i,j
|aij|[max

i,j
|bij|] = ab

whereas

max
i,j
|
n
∑
k=1

aikbjk| = ab + δ, δ ≥ 0.

Hence condition (d) is evidently violated. Thus α cannot be a norm of the matrix A. It
is easy to note that β = nα is a norm of A, or

β = nα = n max
i,j
|aij| = ‖A‖3. (6.2.18)

Example 6.2.8. Let μA =maxi |λi| where λ1,… ,λn be the eigenvalues of an n × n ma-
trix A. Evidently μ is not a norm of A since condition (a) of Definition 6.2.4 is not sat-
isfied by μ. [Take a non-null triangular matrix with the diagonal elements zeros. Then
all eigenvalues are zeros.] Show that for any matrix norm ‖A‖,

‖A‖ ≥ μA. (6.2.19)

This μA is called the spectral radius of the matrix A.
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Solution 6.2.8. Let λ1 be the eigenvalue of A such that μA = λ1. Then, by definition,
there exists a non-null vector X such that

AX1 = λ1X1.

Consider the n × nmatrix

B = (X1,O,… ,O).

Then

AB = (AX1,O,… ,O) = (λ1X1,O,… ,O) = λ1B.

From conditions (a) and (d) of Definition 6.2.4

|λ1| ‖B‖ ≤ ‖A‖ ‖B‖ ⇒ ‖A‖ ≥ |λ1|

since ‖B‖ ≠ 0 due to the fact that X1 is non-null. This establishes the result. The result
in (6.2.19) is a very important result which establishes a lower bound for norms of a
matrix, whatever be the norm of a matrix.

6.2.5 Compatible norms

For any n×nmatrix A and n× 1 vector X if we take anymatrix norm ‖A‖ and any vector
norm ‖X‖ then condition (d) of the definition, namely,

‖AX‖ ≤ ‖A‖ ‖X‖ (6.2.20)

need not be satisfied.

Definition 6.2.5. For any matrix A and any vector X, where AX is defined, if (6.2.20)
is satisfied for a particular norm ‖A‖ of A and ‖X‖ of X then ‖A‖ and ‖X‖ are called
compatible norms.

It is not difficult to show that the following are compatible norms:

Matrix norm Vector norm

‖A‖4 of (6.2.13) ‖X‖∞ of (6.2.9)
‖A‖5 of (6.2.14) ‖X‖1 of (6.2.9)
‖A‖6 of (6.2.15) ‖X‖2 of (6.2.9)

‖A‖7 with any vector norm ‖X‖v ‖X‖v
‖A‖8 with any vector norm ‖X‖ ‖X‖

Example 6.2.9. Show that ‖A‖4 of (6.2.13) and ‖X‖∞ of (6.2.9) are compatible norms.
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Solution 6.2.9. Let X be an n × 1 vector with ‖X‖∞ = 1. Consider the vector norm

‖AX‖∞ =max
i
|
n
∑
j=1

aijxj| ≤max
i

n
∑
j=1
|aij| |xj| ≤ ‖X‖∞‖A‖4

which establishes the compatibility.

6.2.6 Matrix power series and rate of convergence

Let A be an n × nmatrix and consider the power series

f (A) = I + A + A2 +⋯. (6.2.21)

We have already seen that the power series in (6.2.21) is convergent when all the eigen-
values of A are less than 1 in absolute value, that is, 0 < |λj| < 1, j = 1,… ,n where the
λj ’s are the eigenvalues of A. If ‖A‖ denotes a norm of A then evidently

‖Ak‖ = ‖AA⋯A‖ ≤ ‖A‖k .

Then from (6.2.21) we have

‖I + A + A2 +⋯‖ ≤ 1 + ‖A‖ + ‖A‖2 +⋯

= 1
1 − ‖A‖

if ‖A‖ < 1.

Therefore if the power series in (6.2.21) is approximated by taking the first k terms, that
is,

f (A) ≈ I + A +⋯+ Ak−1 (6.2.22)

then the error in this approximation is given by

Ak + Ak+1 +⋯ = Ak[I + A + A2 +⋯] ⇒

‖Ak + Ak+1 +⋯‖ ≤ ‖A‖
k

1 − ‖A‖
if ‖A‖ < 1. (6.2.23)

Thus a measure of an upper bound for the error in the approximation in (6.2.22) is
given by (6.2.23).

6.2.7 An application in statistics

In the field of design of experiments and analysis of variance, connected with two-
way layoutswithmultiple observations per cell, the analysis of the data becomes quite
complicated when the cell frequencies are unequal. Such a situation can arise, for ex-
ample, in a simple randomized block experiment with replicates (the experiment is
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repeated a number of times under identical conditions). If some of the observations
are missing in some of the replicates then in the final two-way layout (blocks versus
treatments) the cell frequencies will be unequal. In such a situation, in order to esti-
mate the treatment effects or block effects (main effects) one has to solve a singular
system of a matrix equation of the following type: (This arises from the least square
analysis.)

(I − A)α̂ = Q (6.2.24)

where α′ = (α1,… ,αp) are the block effects to be estimated, α̂ denotes the estimated
value, A is a p × pmatrix

A = (ars), ars =
q
∑
j=1

(nrjnsj)
nr.n.j
,

nr. =∑
k
nrk , n.j =∑

k
nkj ,

and Q is a known column vector. The matrix A is the incidence matrix of this design.
From the design itself αj ’s satisfy the condition

α1 + α2 +⋯+ αp = 0. (6.2.25)

Observe thatA is a singularmatrix (the sumof the elements in each row is 1). Obviously
we cannot write and expand

α̂ = (I − A)−1Q = [I + A + A2 +⋯]Q

due to the singularity of A. Let k1,… ,kp be the medians of the elements in the first,
second,…, p-th rows of A and consider a matrix B = (bij), bij = (aij − ki) for all i and j.
Evidently (I − B) is nonsingular. Consider

(I − B)α̂ = (I − A − K)α̂ = (I − A)α̂ + Kα̂

where K is a matrix in which all the elements in the i-th row are equal to ki, i = 1,… ,p.
Then with (6.2.25) we have Kα = O and hence

(I − A)α̂ = (I − B)α̂ = Q ⇒
α̂ = (I − B)−1Q = (I + B + B2 +⋯)Q.

Take the norm ‖B‖4 of (6.2.13). That is,

‖B‖4 =max
i

p
∑
j=1
|bij − ki|.

Since the mean deviation is least when the deviations are taken from the median ‖B‖4
is the least possible for the incidence matrix A so that the convergence of the series
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I +B +B2 +⋯ is made the fastest possible. In fact, for all practical purposes of testing
statistical hypotheses on αj ’s a good approximation is available by taking

α̂ ≈ (I + B)Q

where inversion or taking powers of B is not necessary. For an application of the above
procedure to a specific problem in testing of statistical hypothesis see [1].

Exercises 6.2
6.2.1. If p(λ) is a polynomial defined on the spectrum of an n × nmatrix A then show
that p(A′) = [p(A)]′.

6.2.2. For any n × n matrix A show that there exists a skew symmetric matrix B such
that A = eB if and only if A is a real orthogonal matrix with its determinant 1.

6.2.3. For the matrix A = [
1
2

1
2

1
2 −

1
2
] sum up the following matrix series, if possible:

I + A + A2 +⋯.

6.2.4. For the same matrix in Exercise 6.2.3 sum up the series

I + 2A + 3A2 + 4A3 +⋯.

6.2.5. For the same matrix in Exercise 6.2.3 sum up the series

I + 1
2
A + 3

4
A2

2!
+ (3)(5)

8
A3

3!
+⋯.

6.2.6. Show that the norms ‖X‖p and ‖X‖∞ in (6.2.9) satisfy all the conditions in
(6.2.8).

6.2.7. Prove that the norm defined in (6.2.17) is a matrix norm, and from there prove
that (6.2.16) is also a matrix norm.

6.2.8. For any n × nmatrix A consider the Euclidean matrix norm ‖A‖2 of (6.2.11). Let
λ1,… ,λn be the eigenvalues of A and let ℜ(λj) = real part of λj and ℑ(λj) = imaginary
part of λj . Then show that

n
∑
i=1
|λi|2 ≤ ‖A‖2

n
∑
i=1
|ℜ(λi)|

2 ≤ ‖B‖2, B = 1
2
(A + A∗)

n
∑
i=1
|ℑ(λi)|

2 ≤ ‖C‖2, C = 1
2
(A − A∗)

and that the equality in any one of these implies equality in all the three above and
equality occurs if and only if A is a normal matrix.
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6.2.9. For any n × nmatrix A = (aij) let λ be any eigenvalue of A. Then show that

|λ| ≤ nρ, |ℜ(λ)| ≤ nσ, |ℑ(λ)| ≤ nγ

whereℜ(⋅) and ℑ(⋅) denote the real part and the imaginary part of (⋅) respectively, and

ρ =max
i,j
|aij|,

σ =max
i,j
|bij|, B = (bij) =

1
2
(A + A∗),

γ =max
i,j
|cij|, C = (cij) =

1
2
(A − A∗).

6.2.10. For any n × nmatrix A = (aij) and for any eigenvalue λ of A show that

|ℑ(λ)| ≤ α√n(n − 1)/2, α = 1
2
max
i,j
|aij − aji|.

6.2.11. For any n × nmatrix A let

B = [ I A
A∗ I
] .

Show that B is positive definite if and only if ‖A‖6 < 1 where ‖A‖6 is the norm defined
in (6.2.15).

6.2.12. IfB is positive definite andA is positive semi-definite then show that the eigen-
values λj ’s of (A + B)−1A are such that 0 ≤ λj ≤ 1.

6.2.13. For an arbitrary n × nmatrix A let B = [ O iA
−iA∗ O ], i = √−1, then show that ‖B‖6 =

‖A‖6, see equation (6.2.15) for the norms.

6.2.14. For an arbitrary n × nmatrix A show that |A| ≤min(‖A‖n4, ‖A‖n5 ), see equations
(6.2.13) and (6.2.14) for the norms.

6.3 Singular value decomposition of a matrix

For the sake of readers who are interested in further results on matrices, a few more
technical terms will be listed here. Recalling our standard notations, let A′ be the
transpose and A∗ the conjugate transpose of a matrix A. Two matrices A and B are
said to be similar if there exists a nonsingular matrix Q such that

A = QBQ−1.

If Q is an n × n orthonormal matrix then QQ′ = I, Q′Q = I thereby Q−1 = Q′. If Q is
unitary, that is, QQ∗ = I, Q∗Q = I then Q−1 = Q∗. If A and B are such that

A = UBU∗
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for a unitary matrix U then A and B are said to be unitarily similar. If a square matrix
is unitarily similar to a diagonal matrix, that is,

A = UDU∗

where U is unitary and D is diagonal, then A is called a normal matrix. If

A = UDU′

where U is an orthonormal matrix, UU′ = I, U′U = I, and D is a diagonal matrix then
A is called an orthogonally similar matrix. If there exists a nonsingular matrix P such
that

A = PBP∗

then A and B are said to be congruent. Then if P is unitary then A and B are unitarily
similar also. It is not difficult to establish the following results:

(i) An n × nmatrix A is normal if and only if A∗ is normal. If A is normal then Ap is
also normal for any positive integer p or for any integer p if |A| ≠ 0.
(ii) Any square matrix is unitarily similar to an upper triangular matrix.
(iii) An n × nmatrix A is normal if and only if AA∗ = A∗A.
(iv) A normal matrix A is Hermitian if and only if its spectrum lies on the real line
(eigenvalues are real).
(v) A matrix A is normal if and only if its real part and imaginary part commute,
that is, when A = A1 + iA2, i = √−1, A1, A2 real matrices, then A1A2 = A2A1.
(vi) A real symmetric matrix A is positive definite (or positive semi-definite) if and
only if it has a positive definite (or positive semi-definite) square root B, that is,
A = B2, and further, rank(A) = rank(B).

Definition 6.3.1 (Singular values). Consider an arbitrary m × n rectangular matrix A.
Then A∗A is n × n and A∗A is nonnegative definite (positive definite or positive semi-
definite). Then there exists a nonnegative square root B such thatA∗A = B2. The eigen-
values s1,… , sn of B = (A∗A)

1
2 are called the singular values of the rectangularmatrix A.

Thus the singular values are the eigenvalues of (A∗A)
1
2 thereby they are nonnegative

real numbers.

Example 6.3.1. Evaluate the singular values of the matrix

A = [1 1 1
1 0 0

] .

Solution 6.3.1. Since A is real, A∗A = A′A. That is,

A′A = [[
[

1 1
1 0
1 0

]]

]

[
1 1 1
1 0 0

] = [[

[

2 1 1
1 1 1
1 1 1

]]

]

.
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The characteristic equation |A′A − λI| = 0 gives

λ(λ2 − 4λ + 2) = 0.

The solutions are λ1 = 2 +√2, λ2 = 2 −√2, λ3 = 0. Hence the singular values of A are

s1 = (2 +√2)
1
2 , s2 = (2 −√2)

1
2 , s3 = 0.

Let us see the eigenvalues of AA∗.

AA∗ = AA′ = [1 1 1
1 0 0

][[

[

1 1
1 0
1 0

]]

]

= [
3 1
1 1
] .

The eigenvalues of AA′ are λ1 = 2 +√2, and λ2 = 2 −√2. Thus the nonzero eigenvalues
of AA∗ and A∗A coincide. This, in fact, is a general result.

(vii) For any rectangular m × n matrix A the nonzero eigenvalues of A∗A and AA∗

coincide.

As a practical procedure, consider the eigenvalues of AA∗ if A is m × n with m ≤ n or
the eigenvalues of A∗A if n ≤m so that the square roots of these nonzero eigenvalues
provide all the nonzero singular values ofA. If there are r suchnonzero singular values
then the remaining singular values are zeros and there are n− r such zeros if thematrix
A ism × n.

6.3.1 A singular value decomposition

A very interesting representation of an arbitrary m × n matrix A is a decomposition
in terms of the singular values of A. There exist an m ×m unitary matrix U , U∗U = I,
UU∗ = I (orthonormal if real), and an n × n unitary matrix V , V∗V = I, VV∗ = I (or-
thonormal if real), such that

A = UDV∗ (6.3.1)

with D an m × n matrix having s1,… , sr at the leading diagonal positions and zeros
elsewhere, where s1,… , sr are the nonzero singular values of A with r denoting the
rank of A. The representation in (6.3.1) is known as the singular value decomposition
of A.

It is not difficult to prove the result in (6.3.1). Let A be an m × nmatrix. Since A∗A
and AA∗ are both real andHermitian symmetric we can always construct an orthonor-
mal system of eigenvectors for each. Let X1,… ,Xn and Y1,… ,Ym be orthonormal sys-
tems of eigenvectors of A∗A and AA∗ respectively. Let λi be a nonzero eigenvalue of
A∗A corresponding to Xi . Then
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A∗AXi = λiXi ⇒ X∗i A∗A = λiX∗i
⇒ X∗i A∗AXi = λi ,

where λi > 0 since A∗A is at least Hermitian positive semi-definite. But

X∗i A∗AXi = (AXi)∗(AXi) = ‖AXi‖2 ⇒ ‖AXi‖ = √λi

where ‖AXi‖ is the Euclidean length of the vector AXi . Let

Yi =
1
‖AXi‖

AXi ⇒ AA∗Yi =
1
‖AXi‖
(AA∗)AXi

= A(A
∗A)Xi
‖AXi‖

= λi
AXi
‖AXi‖
= λiYi .

Therefore (AA∗)Yi = λiYi . Thus Yi is an eigenvector of AA∗ corresponding to the same
eigenvalue λi, and from the starting point above,

AXi = ‖AXi‖Yi = √λiYi = siYi (6.3.2)

where si is the i-th singular value of A. Now, let

U = (Y1,… ,Ym) and V = (X1,… ,Xn).

Then from (6.3.2)

AV = (s1Y1, s2Y2,… , srYr ,O,… ,O) = UD (6.3.3)

where

U = (Y1,… ,Ym)

and D is an m × n matrix with the leading diagonal positions having s1,… , sr with r
being the rank of A. Postmultiply (6.3.3) with V∗ to obtain

A = UDV∗

and the result is established.

Example 6.3.2. Obtain the singular value decomposition of the matrix

A = [1 0 −1
0 1 1

] .

Solution 6.3.2. Since A is 2 × 3 we consider the matrix AA∗ = AA′:

AA′ = [1 0 −1
0 1 1

][[

[

1 0
0 1
−1 1

]]

]

= [
2 −1
−1 2
] .
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The eigenvalues of AA∗ are evidently λ1 = 3, λ2 = 1 and hence the nonzero singular
values of A are s1 = √3, s2 = 1.

A∗A = A′A = [[
[

1 0
0 1
−1 1

]]

]

[
1 0 −1
0 1 1

]

= [[

[

1 0 −1
0 1 1
−1 1 2

]]

]

.

The singular values of A are therefore s1 = √3, s2 = 1, s3 = 0. Let us compute the eigen-
vectors of A∗A = A′A:

(A′A − λ1I)Z1 = O, λ1 = 3, ⇒ Z′1 = (1, −1, −2).

X1 =
Z1
‖Z1‖
= 1
√6
(

1
−1
−2
)

Corresponding to λ2 = 1 and λ3 = 0 we have the normalized eigenvectors of A′A given
by

X2 =
1
√2
(
1
1
0
), X3 =

1
√3
(

1
−1
1
).

These are the normalized eigenvectors of A∗A and forming an orthonormal system.
Then

V = (X1,X2,X3) =
[[[

[

1
√6

1
√2

1
√3

− 1
√6

1
√2 −

1
√3

− 2
√6 0 1

√3

]]]

]

.

Consider AX1,AX2,AX3:

AX1 =
1
√6
(
1 0 −1
0 1 1

)(
1
−1
−2
)= 3
√6
(
1
−1
) ,

AX2 =
1
√2
(
1
1
) ,

AX3 = O.

Therefore

Y1 =
AX1
‖AX1‖
= 1
√2
(
1
−1
) , Y2 =

AX2
‖AX2‖
= 1
√2
(
1
1
)
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and hence

U = (
1
√2

1
√2

− 1
√2

1
√2
)

and

A = UDV∗

= [
1
√2

1
√2

− 1
√2

1
√2
][
√3 0 0
0 1 0

][[[

[

1
√6 −

1
√6 −

2
√6

1
√2

1
√2 0

1
√3 −

1
√3

1
√3

]]]

]

.

Note that equation (6.3.1) provides away of defining unitary equivalence of rectangular
matrices. Two m × n matrices A and B are said to be unitarily equivalent if there exist
unitary matrices U and V such that

A = UBV∗ (6.3.4)

and the matrix D in (6.3.1) is called the canonical form of the rectangular matrix A. It
is not difficult to establish the following result:

(viii) Two m × n matrices are unitarily equivalent if and only if they have the same
singular values.

6.3.2 Canonical form of a bilinear form

One interesting application of (6.3.1) is the reduction of a bilinear form in real or com-
plex vectors. Let X be anm×1 and Y be an n×1 vectors andA anm×nmatrix. Consider
the bilinear form

α = X∗AY (6.3.5)

where α is linear in X as well as in Y , A = (aij) is free of X and Y . Consider the singular
value decomposition of A as given in (6.3.1). Then

α = X∗UDV∗Y , D = [S O
O O
]

where S = diag(s1, s2,… , sr), with s1,… , sr being the nonzero singular values of A, r
indicating the rank of A. Consider the unitary transformations (orthogonal transfor-
mations when U and V are orthonormal)

X∗U = T∗ =(
t∗1
⋮
t∗m
) and V∗Y =W =(

w1
⋮
wn

).
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Then

α = T∗DW = s1t∗1 w1 +⋯+ srt∗r wr . (6.3.6)

This form in (6.3.6) is the canonical form of the bilinear form α. Several applications
of bilinear forms may be found in [8].

Exercises 6.3
6.3.1. Construct a 3 × 3 nonsymmetric matrix A with positive eigenvalues for which
there exists a non-null 3 × 1 vector X such that (1) X′AX = 0, (2) X′AX < 0, thereby
showing that definiteness of amatrix cannot be associatedwith nonsymmetric or non-
Hermitian matrices.

6.3.2. For any rectangular matrix A show that AA∗ and A∗A are nonnegative definite
(positive definite or positive semi-definite), where A∗ denotes the conjugate transpose
of A.

6.3.3. If A is a positive definite matrix then show that there exists a unique lower tri-
angular matrix T with positive diagonal elements such that A = TT∗. [This is known
as the Cholesky factorization of A.]

6.3.4. Show that any n × n Hermitian matrix A is congruent to the matrix

D = [[
[

Ir O O
O −Is−r O
O O On−s

]]

]

where s is the number of nonzero eigenvalues and r is the number of positive eigen-
values of A.

6.3.5. Show that a Hermitian matrix A is positive definite if and only if it is congruent
to the identity matrix.

6.3.6. Show that two n × n Hermitian matrices A and B are congruent if and only if
rank(A) = rank(B) and thenumber of positive eigenvalues of bothmatrices is the same.

6.3.7. Compute the singular values of the following matrices:

A = [1 0 −1
1 1 2

] , B = [[
[

1 −1 1
1 1 1
1 0 −1

]]

]

, C = [1, 1, −1].

6.3.8. Show that the singular values of square matrices are invariant under unitary
transformations.

6.3.9. Obtain the singular value decompositions of the matrices in Exercise 6.3.7.
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6.3.10. Show that two m × n matrices A and B are unitarily equivalent if and only if
the matrices A∗A and B∗B are similar.

6.3.11. For any n × n matrix A show that there exists a unitary matrix U and an up-
per triangular matrix T whose diagonal elements are the eigenvalues of A, such that
U∗AU = T .

6.3.12. For n × nmatrices A and B where A is positive definite and B is positive semi-
definite show that there exists a nonsingular matrix Q such that

A = QQ′ and B = QDQ′

where D is a diagonal matrix.

6.3.13. Let A be positive definite and B positive semi-definite, where A + B is defined.
Then show that |A + B| ≥ |A| and equality if and only if B = O.

6.3.14. Let A and B be positive definite matrices then show that A − B is positive defi-
nite if and only if B−1 − A−1 is positive definite.

6.3.15. If A and B are positive definite and A − B is positive semi-definite then show
that |A| ≥ |B| with equality if A = B.

6.3.16. IfA is positive definite and I −A is positive semi-definitewith |A| = 1 then show
that A = I .

6.3.17. If A is positive definite then show that A + A−1 − 2I is positive semi-definite.

6.3.18. Show that (I − AB)−1 = I + A(I − BA)−1A whenever the inverses exist.

6.3.19. Show that

(αI − A)−1 − (βI − A)−1 = (β − α)(βI − A)−1(αI − A)−1

whenever the inverses exist, where α and β are scalars.

6.3.20. Let A be a positive definite matrix and α a positive scalar then show that
|B| ≤ α|A| where

B = [A b
b′ α
] , b a vector.
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