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Preface to "Metabolomic Applications in Animal
Science”

Metabolomics has been a useful method for various study fields. However, its application in
animal science does not seem to be sufficient. Metabolomics will be useful for various studies in
animal science: Animal genetics and breeding, animal physiology, animal nutrition, animal products
(milk, meat, eggs, and their by-products) and their processing, livestock environment, animal
biotechnology, animal behavior, and animal welfare. More application examples and protocols for
animal science will promote more motivation to use metabolomics effectively in the study field.

Therefore, in this Special Issue, we introduced some research and review articles for
“Metabolomic Applications in Anmal Science”. The main methods used were mass spectrometry
or nuclear magnetic resonance spectroscopy. Not only a non-targeted, but also a targeted, analysis
of metabolites is shown. The topics include dietary and pharmacological interventions and protocols

for metabolomic experiments.

Shozo Tomonaga
Editor
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CE-TOFMS between High and Low Intramuscular Fat
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Abstract: The amount of intramuscular fat (IMF) present in the loin eye area is one of the most
important characteristics of high-quality pork. IMF measurements are currently impractical without a
labor-intensive process. Metabolomic profiling could be used as an IMF indicator to avoid this process;
however, no studies have investigated their use during the fattening period of pigs. This study
examined the metabolite profiles in the plasma of two groups of pigs derived from the same Duroc
genetic line and fed the same diet. Five plasma samples were collected from each individual the day
before slaughter. Capillary electrophoresis-time of flight mass spectrometry (CE-TOFMS) was used to
analyze the purified plasma from each sample. Principle component analysis (PCA) and partial least
squares (PLS) were used to find the semi-quantitative values of the compounds. The results indicate
that branched-chain amino acids are significantly associated with high IMF content, while amino
acids are associated with low IMF content. These differences were validated using the quantification
analyses by high-performance liquid chromatograph, which supported our results. These results
suggest that the concentration of branched-chain amino acids in plasma could be an indicative
biomarker for the IMF content in the loin eye area.

Keywords: biomarker; CE-TOFMS; intramuscular fat; meat quality; metabolomics; porcine

1. Introduction

Pork consumers depend primarily on meat quality when making purchasing decisions.
Intramuscular fat (IMF) content in the loin eye muscle, also known as marbling, is a particularly
valuable trait of high-quality pork and is associated with the meat’s flavor. IMF content may vary
by breed types, muscle types, genders, ages, feeding conditions, and final slaughter weight [1-3].
The heritability of IMF content in Duroc breed pigs has been estimated to be moderate to high (0.39
to 0.69) [4-11]. This has led to improvements in the phenotypic value of livestock in recent decades,
despite that IMF is recognized as a polygenic trait [1,12].

Pigs grown on energy restricted diets accumulate significantly more IMF content when their
gene expression profiles in relation to protein, glycogen and lipid turnover are altered [13]. Dietary
regulation, particularly of lysine, has also resulted high amounts of IMF in pork [14]. A better
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understanding of the molecular and biological mechanisms underlying adipocytes development within
muscle tissue could help to create effective nutritional controls during the fattening period of livestock,
however few studies have been conducted to date.

Metabolomics are of particular interest in animal production as postmortem aging of meat can
be predicted using time course analysis of capillary electrophoresis-time of flight mass spectrometer
(CE-TOFMS) metabolomics. Such findings can contribute to the improvement of pork meat
quality checks prior to slaughter [15]. More recently, Muroya et al. [16] proposed a novel concept,
“MEATabolomics”, which combines the muscle biology and meat metabolomics of domestic animals.
Additionally, metabolomics data can be defined as intermediate phenotypes, as metabolites are found
between the genome level and the external phenotype level, such as growth rate, fat deposition and
other economic traits. Metabolomics could lead to “next-generation phenotyping” approaches that
improve the prediction of breeding values and selection schemes [17]. Furthermore, Suravajhala et
al. [18] reported that high-throughput omics technologies have contributed to our understanding of
complex biological phenomena, disease resistance, and holistic production improvements. Hence,
metabolomics data may have a potential to improve prediction accuracy of genomic selection and
to enhance the impact of breeding schemes for traits related to animal production by incorporating
multiple layers of the high-throughput omics approach. In this context, development of non-invasive
measurement technologies to obtain the metabolomics data is key for precise evaluation of target traits.

The objective of this study was to analyze and compare metabolite profiles in high and low
IMF content pigs, in order to identify metabolites that could be used as IMF content indicators in
pigs. To achieve this goal, we used a CE-TOFMS as our primary metabolomics technology due to its
highly-sensitive, broad-range detection ability. We used the CE-TOFMS system to screen for candidate
metabolites via a semi-quantitative method, then used an absolute quantification method to identify
which candidate metabolites are associated with IMF content. We concluded that branched-chain
amino acids (BCAA), glycine (Gly), anserine, and carnosine could be used as potential non-invasive
biomarkers to estimate IMF content in the loin eye muscle of pigs before slaughter.

2. Results

2.1. Phenotypic Characteristics

Pigs were separated into low and high IMF groups at two locations of the National Livestock
Breeding Center (NLBC), based on IMF (%) content in the loin eye muscle. The mean proportion
of IMF content in pigs at the Miyazaki (MIY) station were 3.1% and 8.7%, respectively. The mean
proportion of IMF content in pigs at the Ibaraki station (IBR) were 2.9% and 5.4%, respectively (Table 1).
The differences were highly significant at both stations. Moisture (%) measured in the muscle tissues of
low IMF pigs were significantly higher than in the high IMF pigs at both stations. At the MIY station,
protein (%) and loin eye area (cm?2) in low IMF pigs were significantly 8% and 11% higher than in high
IMF pigs, respectively. At the IBR station, cooking loss (%) was significantly 15% higher than those of
high IMF pigs.
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Table 1. Comparison of growth performance and carcass characteristics between high and low
intramuscular fat (IMF) groups at two stations.

Growth Performance and Miyazaki (MIY) Station Ibaraki (IBR) Station
Carcass Characteristics L-IMF MIY H-IMF MIY p L-IMF IBR H-IMF IBR p#
IMF (%) 3.101 + 0.255 8.699 = 1.441 P <0.001 2.868 = 0.550 5.447 + 0.797 p <0.001
Days old at slaughter 1492+ 9.99 1522 + 13.64 N.S. 1544 + 8.357 169.8 + 6997 <005
Moisture (%) 73.96 = 0.339 69.98 = 0.966 p < 0.001 73.81 +0.978 71.48 + 0.444 p<001
Crude protein (%) 2182 +0.173 2023 +0.917 p<001 2235 +0.149 22,02 +0.350 N.S.
Cooking loss (%) 24.68 + 1548 2652 + 1823 NS. 28.04 = 1.966 24.38 + 2.269 p<0.05
WHC (%) 2 6830 + 5.489 72.30 + 4,511 NS. 68.14 = 5.824 68.94 + 4199 N.S.
WBSF (kg) * 2392 +0.338 2.048 +0.489 NS. 2,963 = 0.550 2.838 + 0.478 N.S.
Tenderness (kg/cmz) 38.09 + 5.586 34.81 +2.010 N.S. 46.45 + 6.442 44.82 + 6.710 N.S.
Pliability 1497 £ 0.0918 1.375 + 0.0609 NS. 1.527 + 0.0442 1.494 + 0.0679 N.S.
Toughness (kg/cm? X cm) 8.163 + 1.474 8.054 + 1.082 NS. 10.27 +1.900 10.15 + 1.888 N.S.
Brittleness 1.631 % 0.0750 1.662 + 0.0864 N.S. 1,568 + 0.0880 1.632 £ 0.110 N.S.
Average daily gain (g/day)  1141.3 + 62.70 1035.9 + 188.8 NS. 1006.7 + 5391 1008.8 + 46.73 N.S.
Loin eye area (cm?) 35.06 + 1.318 3145 +2.059 p<0.05 35.10 = 3.369 3429 +3219 N.S.
Back fat thickness (cm) 2597 + 0.547 3.376 = 0.548 N.S. 2,044 = 0.568 2,476 + 0.661 N.S.
Statue height (cm) 63.16 = 1.895 6122 % 0722 NS. 65.48 = 1.001 64.16 + 2.330 N.S.
Body length (cm) 107.6 + 3.855 105.28 +2.285 N.S. 89.7 +39.35 106.5 + 5.040 N.S.

*1 Statistical significance is defined when p < 0.05. N.S. denotes no significance (p > 0.05). *> WHC: Water-holding
capacity (%) by centrifugation at 10,000x g. *> WBSF: Warner-Bratzler Shear Force value (Kg) measured after cooling
of the carcass.

2.2. Screening of Differential Metabolomics Profiles with CE-TOFMS

The total number of metabolites detected in the MIY samples were 201 (144 cations and 57
anions), which were used as the semi-quantitative values (relative area based on the internal standard).
Likewise, the IBR metabolites detected were 152 (104 cations and 48 anions). The mean detection rates
of metabolites, which are defined as the proportion of metabolites identified among either 201 (MIY)
or 152 (IBR), were 82.0% and 88.6%, respectively. The mean detection rate of metabolites at IBR was
greater than at MIY, despite the fact that more metabolites were detected at MIY than IBR.

Principal component analysis (PCA) was carried out based on the semi-quantitative values
(relative area) of all detected metabolites. At MIY, the high IMF group tended to be in the PC1 positive
and PC2 negative regions, while the low IMF group showed higher variability (Figure S1 PCA (A)).
The high IMF group at IBR was found in the PC3 and PC4 positive regions, but high and low IMF
groups were neither separated by PC1 nor PC2 (Figure S1 PCA (B and C)).

Partial least squares (PLS) was then used to identify possible relationships between IMF content
and metabolite profiles at MIY and IBR (Figure 1. Tables S1 and S2). Since the PLS was performed
between two groups (low or high IMF), we only considered PLS1 separation. All high IMF pigs and
low IMF pigs were clearly in the positive and negative PLS1 scores. Therefore, we considered that
positive loading values were associated with high IMF and negative loading values were associated
with low IMF (Table 2). Statistically significant metabolites with positive loading values at MIY
were leucine (Leu), O-acetylhomoserine/2-aminoadipic acid, 1-methylnicotinamide, choline, and
phosphorylcholine, while all 10 metabolites detected with negative loading values were significant.
Statistically significant metabolites with positive loading values at IBR were urea and gluconic
acid, while those of the negative loading values were threonine (Thr) and diethanolamine. At both
stations a BCAA, valine (Val) was identified from the positive loading metabolites. At MIY, Leu
and isoleucine (Ile) were also identified from the positive loading metabolites. However, as we
observed in the PCA analysis, BCAAs (Leu, Ile, and Val), tryptophan (Trp) and amino acid metabolites
(O-acetylhomoserine/2-aminoadipic acid, N,N-dimethylglycine) were also detected in the list of positive
PLS1 loading metabolites at MIY. Negative PLS1 loading metabolites at MIY included amino acids (Gly
and beta-alanine (3-Ala)), amino acid metabolites (N-acetylornithine, N-acetyllisyne, 5-oxoproline,
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Nb-ethylglutamine), peptides (anserine-divalent, carnosine) and organic acids (creatine, cis-aconitic
acid). AtIBR, urea, 3-hydroxybuyric acid, nicotinamide, mucic acid and homocitrulline were commonly
observed in the top positive loading metabolites on PCA3 and PCA4, While negative PLS1 loading
metabolites consisted of several amino acids (Thr, Asn, Arg, Lys, methionine (Met), and Tyr) and amino
acid metabolites (5-hydroxylysine and hydroxyproline).

PLS1 for MIY

H-MIY5 e—
H-MIY4 no—
H-MIY3  e—
H-MIY2
H-MIY 1 —
m— | _\[Y5

m— | MIY4
m—_-MY2
m— V1] 1

-10.0 -5.0 0.0 5.0 10.0
PLS1 forIBR

H-IBR5
H-IBR4
H-IBR3
H-IBR2
H-IBR1
mmm | -|BR5
= | -|[BR4
s | -|[BR3
e | -|BR2
| -|BR1

-10.0 -5.0 0.0 5.0 10.0

Figure 1. Partial least squares (PLS) analysis by the metabolites detected from pig plasma samples
showing the difference in the intramuscular fat contents at the two stations. Blue and red bars indicate
low and high IMF pigs, respectively. Top and bottom panes show the results of PLS in MIY and IBR
stations, respectively.
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Table 2. Top 10 metabolites with positive and negative high loading values in partial least square at
two stations.

MIY Station IBR Station
Metabolites PLS1 Metabolites PLS1
R* » R* p
Positive loading
Leu 0.731 1.6 x 1072 Urea 0.729 1.7 %1072
2:}2?:‘33:;‘;‘1’:??; 0.727 1.7 %1072 Gluconic acid 0.654 40% 102
1-Methylnicotinamide 0.711 21x1072  3-hydroxybutyric acid 0.544 1.0x 107!
Choline 0.645 44 %1072 Isethionic acid 0.505 1.4 x 107!
Phosphorylcholine 0.637 48x1072 Nicotinamide 0.494 1.5x 107!
Ile 0.609 6.1x1072 Val 0.493 1.5%x 107!
Creatine 0.603 6.5x1072 Taurine 0.488 1.5%x 107!
Val 0.582 78%x 1072 Mucic acid 0.476 1.6x 107!
N,N-dimethylglycine 0.569 8.6 x1072 Homocitrulline 0.475 1.7 x 107!
Trp 0.470 1.7x 1071 Sarcosine 0.452 1.9x 107!
Negative loading
Gly -0.861 14 %1073 Thr -0.716 2.0 x 1072
Anserine_divalent —0.840 23%x1073 Diethanolamine —0.705 23 %1072
N-acetylornithine —-0.834 27 %1073 Thymidine —-0.611 6.0 x 1072
N-acetyllysine —-0.796 59x107° 5-hydroxylysine —0.589 7.3 %1072
5-oxoproline -0.753 1.2x1072 Asn -0.566 8.8 x 1072
Carnosine -0.741 1.4 x 1072 Arg -0.533 1.1x 107!
Creatinine -0.707 22x1072 Lys —-0.521 1.2x 107!
NP-ethylglutamine -0.705 2.3x1072 Hydroxyproline -0.514 13x 107!
cis-Aconitic acid —-0.685 29x1072 Met —-0.505 14x 1071
B-Ala -0.683 29 x 1072 Tyr -0.459 1.8x 107!

*1 R indicates correlation coefficient between PLS score and each metabolite levels. Since O-acetylhomoserine/
2-aminoadipic acid were detected within the identical single peaks having the consistent 171/z (molecular mass/electric
charge of ions) and MT/RT (migration time/retention time) by the CE-TOFMS system employed in this study, the values
in the table indicated the combination of two compounds: The 1/z and MT/RT for O-acetylhomoserine/2-aminoadipic
acid is 162.076 and 12.10, respectively.

2.3. Integrated Analysis of Metabolomics Data Using Absolute Quantification

With the CE-TOFMS metabolomics analysis system, the concentration in micro molar (mM) of
110 metabolites was calculated using a standard curve method. We then focused on the differences
in these selectively quantified metabolites between the low and high IMF groups at the two stations.
Consequently, the total number of metabolites detected in any of the eight samples from MIY and
IBR was 59 mM. The mean number of cations detected at MIY was 38.7, and the mean number of
anions at MIY was 34.6. At IBR, cations were 13.7, while anions were 11.9. The mean detection ratios
of quantified metabolites at MIY were 88.8% and 78.9% at IBR. This indicates that there were a greater
number of quantified metabolites identified at MIY than IBR. For the 59 quantified metabolites, we
analyzed relationships between IMF content and the metabolites.

We used PLS to further determine which metabolites are definitively associated with IMF content.
The PLS score plot showed that the low and high IMF groups at both stations were more separated
by PLS2 than PLS1 or PLS3 (Figure 2), while the two stations themselves were clearly separated by
PLS1 (Figure 2). We then extracted the top five metabolites with both positively and negatively high
loading of PLS2 (Table 3, Table S3). Positively loading PLS2 metabolites included the BCAAs Leu,
Ile, and Val, and creatine, which were found to be significant metabolites with relatively moderate
correlation coefficient (R). Comparison of these BCAAs and creatine concentrations at MIY indicated
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that the high IMF group displayed a significantly higher amount or tended to show greater amounts
of the metabolites than those in the low IMF group. Basically, these same metabolites, BCAAs and
creatine in the high IMF group at IBR also showed a greater amount than those of low IMF, although
the difference was not as large as at MIY.
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Figure 2. Integrated analyses of partial least squares by the metabolites detected from pig plasma
samples showing the difference in the intramuscular fat contents at the two stations. Blue and red
dots indicate low and high IMF pigs from MIY station, respectively. Cyan and magenta dots indicate
low and high IMF pigs from IBR station, respectively. Top and bottom panes show the results of PLS
analyses with PLS1 and 2 and with PLS2 and 3, respectively.

All metabolites from the negatively loading PLS2 metabolites were determined significant with
slightly higher correlation coefficients as compared to those in the positively loading metabolites.
Similar to the positive loading metabolites, the differences in the negatively loading PLS2 metabolites
concentrations between the high and low IMF groups at MIY were clearer and more significant than
those at IBR. Consequently, all metabolites identified by PLS2 factor loadings were commonly found in
the list of metabolites which were identified with the one-factor PLS analysis at MIY and IBR (Table 2).
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2.4. Comparison of Amino Acids and Related Metabolites

Since several amino acids and their related metabolites were identified as the differential
metabolites between IMF groups, we next focused our analysis on those metabolites derived from
BCAAs such as 3-methyl-2-oxovaleric acid (2K3MVA)/4-methyl-2-oxovaleric acid (2-oxoleucine),
2-oxoisovaleric acid (2-KIV) (Figure 3). The combined amount of Ile and Leu in the high IMF group at
MIY was significantly higher than in the low IMF group. The amount of Ile and Leu at IBR, and Val at
both stations showed a similar tendency, although the difference was not significant. Likewise, the
amount of 2K3MVA/2-Oxoleucine and 2-KIV in the high IMF groups at both stations were greater than
in the low IMF groups. There was no significant difference in the total free amino acid contents between
the low and high IMF groups. The mean concentrations and standard deviations were 3428 + 240 (uM)
and 3258 + 182 (uM), respectively.
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Figure 3. Comparisons of branched-chain amino acids and their degraded metabolites detected from
pig plasma samples showing the difference in the intramuscular fat contents at the two stations. Blue
and red bars indicate low and high IMF pigs, respectively. Total shows the sum of MIY and IBR. Y-axis
indicate the relative area of each metabolites normalized by the internal standard. 3-methyl-2-oxovaleric
acid (2K8MVA) and 4-methyl-2-oxovaleric acid (2-oxoleucine), which are the degraded metabolites of
Ile and Leu, respectively, could not be separately detected by the capillary electrophoresis-time of flight
mass spectrometer (CE-TOFMS). Statistical significance is defined as * (p < 0.05).

2.5. Amino Acid Content Analysis in the Muscle Tissue of Pig Carcass

Per our CE-TOFMS metabolomics results, we concluded that BCAAs were associated with high
IMF content in loin eye muscle. We examined the free amino acid contents of 20 amino acids with
taurine, carnosine and anserine (Asn) in the muscle tissues of pig carcasses in order to better understand
the mechanism by which high IMF content had either resulted from or was caused by high BCAAs in
plasma (Table 4).

At MIY, high IMF pigs had significantly higher concentrations of Asn in loin eye muscle tissue
than low IMF pigs, while Gly, carnosine and Asn in high IMF pigs were significantly lower than low
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IME. The results of Gly and Carnosine matched the results shown in Tables 2 and 3. At IBR, low IMF
pigs had greater concentrations of Asp, His, Met, Trp, phenylalanine (Phe), Ile, and Leu in loin eye
muscle tissues than those of high IMF pigs. The BCAA contents of loin eye muscles in low IMF pigs
were significantly higher than those of high IMF pigs. This result is quite opposite from the results
obtained from the plasma metabolomics. As seen in the plasma metabolomics, the total free amino
acid content of loin eye muscle tissues displayed no difference between the low and high IMF groups.

3. Discussion

This study sought to identify the metabolites associated with IMF content in pork loin eye muscle
using CE-TOFMS metabolomics data detected in pig plasma before slaughter. We selected five castrated
boars with low IMF content, and five castrated boars with high IMF content in the loin eye muscle from
two NLBC stations in Japan (IBR and MIY), for a total of 20 pigs. The difference in IMF content in the high
IMF pigs was 2.8 times greater than the low IMF pigs at MIY. At IBR, the difference in IMF content in high
IMF pigs was 1.9 times greater than the low IMF pigs. In contrast the moisture content (%), crude protein
content (%), and loin eye area (cm?) in both high IMF groups were either significantly less or tended to
be less than those of the low IMF groups. Most of the growth-related traits and the eating-quality traits
displayed no differences between the groups. The metabolites differentially identified between the IMF
content levels were therefore considered to be primarily associated with IMF content, and secondly with
moisture content. Possible partial relationships may have occurred between the candidate metabolites for
IMF content, crude protein content, loin eye area or cooking loss (Table 1).

Plasma samples from each pig were profiled using semi-quantification results derived from
CE-TOFMS metabolomics. As indicated in the PCA analysis results, large variations were observed,
particularly in the low IMF groups at both stations, although the high IMF groups had relatively close
PCAs plots. No nutritional controls or genetic factors were used to generate these differences. Since
no obvious separation was observed in the IMF content differences from either station, it can also be
concluded that none of these factors were involved in samples obtained during this study and it is
natural to see such vague separations (Figure S1).

Next, we conducted the PLS analysis. Our results clearly depicted variations in the candidate
metabolites in the first PLS1 screening; more specifically, that high IMF groups had positive PLS1
values, while low IMF groups had negative PLS1 values (Figure 1). The metabolites with high positive
loading values of PLS1 consistently included BCAAs and amino acid metabolites. This led us to
conclude that BCAAs are potential biomarkers for IMF content in pork loin eye muscles. Metabolites
with negative loading values of PLS1 included several kinds of amino acids and amino acid metabolites,
which suggests that an increased amount of amino acids and amino acid metabolites in plasma may
represent lower IMF content (i.e., leaner meat) (Table 2).

We used the quantification results from the CE-TOFMS to validate these findings. We applied
the integrated PLS analysis using quantification data from the four groups (Figure 2). Although the
PLS1 accounted for 60.4% of the total IMF variability, it appeared to obviously discriminate station
differences, which was not the original purpose of this study. The PLS2 showed the comprehensible
separation between the IMF content groups. Even though the number of metabolites quantified in the
integrated analysis was 59 out of 201 at MIY and 152 at IBR during the screening analysis, BCAAs
were commonly extracted from the list of metabolites with high loading PLS2 values (Table 3).

According to the correlation coefficients estimated in Tables 2 and 3, metabolites with higher
R values showed clear differences between the high and low IMF groups. Additionally, metabolite
concentration differences between the two IMF groups at MIY were more obvious than those at IBR.
Nevertheless, the concentration of metabolites in the high IMF groups was consistently greater at both
stations, with the opposite holding true for metabolites with negative loading PLS2 values.

Since BCAAs were indicated to correspond to IMF content, we examined the potential
BCAA-related metabolites closer (namely 2K3MVA, 2-oxoleucine, and 2-KIV) (Figure 3). Since 2K3MVA
and 2-oxoleucine could not be separately identified by the CE-TOFMS system, additional amounts of
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2K3MVA and 2-oxoleucine and their original BCAAs (Ile and Leu) were applied (Figure 3). The relative
amount of metabolites degraded from BCAAs (2K3MVA, 2-oxoleucine, and 2-KIV) indicated a tendency
similar to the original BCAAs. Even if the differences were not statistically significant, all of these
metabolites follow the patterns of “low in low IMF”, and “high in high IMF”. One explanation for this
may be that the baseline amount of BCAAs in high IMF pig plasma is greater than in low IMF pigs,
which means that the amount of metabolized BCAAs might follow the same pattern. If this is the case,
then it is quite important to analyze the amino acid content in tissues that metabolize amino acids.
Post slaughter amino acid analysis was conducted on the loin eye muscle tissues (Table 4). Results
of this analysis were inconsistent with the metabolomic plasma analysis, that is, the amino acid tissue
analysis showed that high IMF pigs at MIY had significantly lower amounts of Gly, Car, and Ans
than low IMF pigs. This suggests that the amount of Gly, Car, and Ans (divalent) detected in the
plasma of high IMF pigs might be correlated with the intake of those metabolites into muscle tissues.
The amino acid analysis at IBR indicated that the amount of Asp and Met in the low IMF group were
significantly greater than those in the high IMF group, which matched our plasma screening results. It
is interesting that the amount of BCAA in the muscle tissues of the low IMF group were significantly
greater than in the high IMF group. Additionally, the BCAA differences at MIY were not as obvious
as in the plasma samples (N.S.), although the same trend was observed in both the plasma and the
muscle tissues. These results suggest that the amount of BCAA in plasma is positively associated with

high IMF content in the loin eye muscle.

Table 4. Analysis of amino acid contents in the loin eye muscle tissues from two stations.

Amino Acid <! MIY Station IBR Station
Low IMF High IMF p*? Low IMF High IMF p*?
Asp 9.6x107% +8.1x 107 9.5x 1072 £2.1 x 1072 N.S. 81x1072+33x1072 32x1072 £1.0 x 1072 *
Glu 55%1071 1.0 x 107! 62x1071£12x107" N.S. 68%x1071 £15x107" 57% 1071 £9.3x1072 N.S.
Asn 1.6x107' £28x 1072 23 %107 £5.0x 1072 * 26107 £6.9x 1072 24x107' £1.7 x 1072 N.S.
Ser 49x1071£9.1x1072 48%x1071 £9.9x1072 N.S. 55x107' £1.2x 107" 45x107 5.1 x 1072 N.S.
Gln 1.658 + 0.250 1.490 + 0.144 N.S. 1.485 + 0.438 9.9x107' £14x 107! tnd.
His 17x 107" 2.0 x 1072 17x107" £2.6 x 1072 N.S. 19%x 107! +23x 1072 15x107" £23x 1072 *
Gly 1.62 +0.26 1.213 + 0.0966 * 1.852 + 0.498 1.789 + 0.481 N.S.
Thr 34x107 £59x 1072 3.6x107! +6.2x1072 N.S. 39x107' £7.5x 1072 33x1071 £3.1x1072 N.S.
B-Ala 67x107' +23x 107! 44%x107' +1.0x 107! N.S. 51x 107" +83x 1072 56x1071 +1.6x 107! N.S.
Arg 3.6x1071 £59 x 1072 35x107! + 6.6 x 1072 N.S. 40x107" £83x 1072 29x107! +3.5x 1072 tnd.
Ala 2,143 +0.325 2.329 + 0.397 N.S. 2,643 + 0,472 2.170 £ 0.293 N.S.
Tau 2.341 + 0.441 2.16 = 0.289 N.S. 2,404 £ 0.772 1.829 + 0.920 N.S.
Car 26.41 £1.56 20.99 +2.35 e 28.95 + 1.65 27.60 + 2.20 N.S.
Ans 8.5x 107" £6.0x 1072 6.6 x 107! +8.4 %1072 o 71x107 £5.7x 1072 73x107 £12x 107! N.S.
Tyr 28%1071 +47x 1072 27x1071 +4.8x 1072 N.S. 3.0x 1071 £58x 1072 25%x1071 £23x 1072 N.S.
Val 39x107' +6.1x1072 48x107! £5.7 x 1072 tnd. 53x107" £8.0x 1072 44 %107 £5.6 x 1072 N.S.
Met 25x107! £4.1x 1072 2.7 x 107! +4.6 x 1072 N.S. 3.0x107! £3.4x 1072 23x1071 +£2.1 x1072 o
Trp 8.8x1072£78x 1073 9.9x1072 £5.9 x 1073 tnd. 12x 107" +9.8x 1073 1.0x 107" £52x 1073 s
Phe 33x1071 44 %1072 35% 1071 £4.1x1072 N.S. 3.9% 107 £4.0x 1072 34x1071 £12x1072 *
Ile 3.1x107 £57x 1072 34x107' £5.1x1072 N.S. 3.8x107 £4.9x 1072 31x107! £2.5x 1072 *
Leu 70%x1071 £1.2x 107! 63%x1071 £1.0x1072 N.S. 73%1071 £1.1x 107" 55% 107 £62x1072 *
Lys 44x1071 +81x 1072 42x 1071 +81x 1072 N.S. 45%1071 +8.1x 1072 35%x1071 £35%x 1072 tnd.
Hyp 3.142 +0.253 2.897 + 1.630 N.S. 2,099 +0.198 2,054 + 0.0751 N.S.
Pro 9.6x 107! 8.9 x 1072 2.790 +3.31 N.S. 54x107' £1.04x 107" 37x107' +1.3x 107! tnd.
FAA® 14.42 +0.732 15.67 + 3.60 N.S. 1526 +2.76 12,40 + 1.87 N.S.

The unit of amino acid concentration is represented in pmol/g. *! This list includes analysis result of amino acids
together with Taurine, Carnosine and Anserine. * Statistical significance is defined as tnd. (p < 0.10), * (p < 0.05),
** (p < 0.01). N.S. indicates no significance. ** FAA denotes total amount of free amino acids.

Recently, it was demonstrated that surplus dietary Ile, one of BCAAs, increased the IMF content
in skeletal muscle via the upregulation of lipogenic genes by stimulating lipogenesis in skeletal muscle
tissue of finishing pigs [19]. In the previous study, Luo et al. clearly showed the effect of extra Ile in the
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diet on lipogenesis in the muscle tissue, serum cholesterol levels, and fatty acid composition without
affecting growth performance. However, it is not possible to further discuss whether Ile (BCAA) intake
into the muscle cells affected lipid synthesis due to the lack of Ile level in muscle tissue [19]. In contrast,
it has been well known that BCAA are effective amino acids to regulate protein synthesis because of a
greater increase in protein synthesis than degradation [20-22].

Therefore, one possible explanation for this is that the availability of BCAA and/or the intake of
BCAA in the muscle tissue of low IMF pigs are more effective than in high IMF pigs, which results in
the pig building more muscle mass. It is possible, therefore, that the availability of BCAA in the muscle
tissue of high IMF pigs is relatively low, which would mean that some kind of molecular mechanism(s)
could be triggered that could enhance the preadipocytes near the muscle cells.

The Duroc pigs used for this study were derived from the one previously established to improve
IMF content at NLBC. The heritability of IMF in the Duroc genetic line established at NLBC has been
previously determined to be 0.52 [23]. Although there were certain differences in the metabolite profiles
between MIY and IBR by the PLS1 (Figure 2), these observed differences may be due to environmental
factors only, since the genetic Duroc line and the feeding regimes were nearly identical at each location.

Previously, Katsumata et al. [14] reported that a low lysine diet fed to finishing pigs increased
IMF content, although the authors recognized that the influence of restrictive amino acid nutrition
on IMF content needs to be researched further. Restricted amino acid diets may increase stress
sensitivity in pigs, since it has been indicated to do so in other animals [14,24,25]. In the case of beef
marbling improvements, vitamin A restriction in the diet of beef steers increased IMF content due to
hyperplasia of the adipocytes, although subcutaneous fat depth was not affected [26,27]. This method
of feeding beef cattle diets with low vitamin A is well-known and used worldwide. In addition to the
vitamin A restriction, it is suggested that a genotype of alcohol dehydrogenase 1C (ADH1C) has an
interactive effect with vitamin A on IMF content, because of the differential transcriptional regulation
that potentially occurs in this genotype [28]. It is plausible that nutritional control combined with
certain genetic backgrounds may increase or decrease the IMF content in meat animals. However,
there is still an inevitable phenotypic variation in IMF content, as is the nature of quantitative traits.
Therefore, a non-invasive method, such as plasma metabolomics by CE-TOFMS, could be of benefit to
determine the physiological status of meat producing animals, since it can measure a broader range of
compounds than other metabolomics systems.

In conclusion, in this study we found that pigs with high IMF content in the loin eye muscle
also had an increased amount of BCAA in their blood plasma. We also found that pigs with low IMF
content in the loin eye muscle had an increased amount of Gly, Ans, and Car in their blood plasma.
We suggest, therefore, that BCAA, Gly, Ans, and Car are potential biomarkers that could be used to
estimate IMF in the loin eye muscle before slaughter. Further study of these biomarkers is required,
since their amounts were not always consistently demonstrated in this study.

4. Materials and Methods

4.1. Animals

This study used castrated boars from the Duroc breed, which has been genetically bred for high
IMF content as reported in the previous study [23]. All pigs used in this study were fed identical diets
based on the Japan Nutrition Standards (NILGS 2016) and were raised at two locations of the NLBC
(IBR and MIY) in Japan.

At each location, five high IMF content pigs and five low IMF content pigs were chosen from
among the herd, for a total of 20 animals. Other than IMF content, growth performance and carcass
characteristics of pigs were compared (Table 1). Aside from the fact that low IMF pigs took longer
to gain slaughter weight, there were no significant phenotypic variables between any of the four
IMF groups.
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Blood samples were collected in a vacuum blood collection tube with EDTA/2Na from the jugular
vein of each pig after fasting overnight. After blood samples were collected, the pigs were slaughtered
at the abattoir located at each station. The blood collection tube was kept on ice and centrifuged with
3000x g at 4 °C for 10 min. Plasma was removed from the blood collection tube and placed into a
new sample tube, then snap frozen, and stored in —80 °C freezer until use. All procedures involving
animals were performed in accordance with the National Livestock Breeding Center’s guidelines for
care and use of laboratory animals.

4.2. Semi-Quantitative Metabolomics (Basic Scan) by Capillary Electrophoresis-Time of Flight Mass
Spectrometry (CE-TOFMS)

Preprocessing was initiated by adding 50 uL pig plasma to 450 uL methanol containing 50 uM
Internal Standard Solution 1 (H3304-1002, Human Metabolome Technologies (HMT), Tsuruoka,
Yamagata, Japan) followed by mixing. To the mixture, 500 uL chloroform and 200 uL ultrapure water
were added and then mixed. After centrifugation at 2300x g, in 4 °C for 5 min, 400 uL supernatant
of the mixture was removed to ultrafiltration using UltraFree MC PLHCC (HMT) and centrifuged
at 9100x g at 4 °C for 120 min. The filtrate was once frozen-dried and dissolved in 50 uL ultrapure
water just before applying to Agilent CE-TOFMS system (Agilent Technologies, Santa Clara, CA, USA).
Metabolome analysis was performed by Basic Scan package of HMT using the CE-TOFMS based on the
methods described previously [29,30]. Briefly, CE-TOFMS analysis was carried out using an Agilent
CE capillary electrophoresis system equipped with an Agilent 6210 time-of-flight mass spectrometer
(Agilent Technologies, Santa Clara, CA, USA). CE-TOFMS was operated using Agilent G2201AA
ChemStation software version B.03.01 (Agilent Technologies, Santa Clara, CA, USA), compounds were
detected using the cation or anion modes. Briefly, the compounds were electrophoresed through fused
silica capillaries (50 uM x 80 cm, Agilent Technologies, Santa Clara, CA, USA) with 30 kV under
50 mbar and 10 s pressure injections. The electrophoresed compounds were ionized with either ESI
Positive or Negative MS ionization. The scan range for the compounds was between 50 and 1000
m/z. Detected peaks from the CE-TOFMS system were processed by MasterHands ver2.17.1.11 [31].
Signal peaks corresponding to isotopomers, adduct ions, and other product ions of known metabolites
were excluded, and remaining peaks were annotated according to the HMT metabolite database library,
which includes 900 metabolites, based on their m/z values with the MTs determined by TOFMS. Areas
of the annotated peaks were then normalized based on internal standard levels and sample amounts to
obtain relative levels of each metabolite.

4.3. Absolute Quantification of 110 Target Metabolites for CE-TOFMS Analysis

Based on the same preprocessing and the analysis system, primary 110 metabolites involved in the
pathways of glycolytic/gluconeogenesis, TCA cycle, pentose phosphate, lipid metabolites, and nucleic
acid metabolites were absolutely quantified based on one-point calibrations using their respective
standard compounds.

4.4. Measurement of Free Amino Acids, Peptides, and Carcass Traits in Muscle Tissues

The procedure used to analyze the free amino acids and peptides was carried out using the exact
same method described in [32]. Briefly, 0.10 g samples of loin eye muscle tissues were drawn from
minced raw meat (about 15 g in total). Samples were homogenized with 4.24 mL of ultrapure water,
4 mL of N-hexane and 0.16 mL of internal standard solution mixed with norvaline (5 nmol/uL) in
ultrapure water, and then centrifuged at 1750x g for 5 min. The underlayer was mixed with 4 mL
of N-hexane and centrifuged at 1750 g for 5 min. The resultant underlayer was then mixed with
3.6 mL of acetonitrile and centrifuged at 1750 g for 10 min. The resulting supernatant was filtered
through a 0.45-pum microfilter (Millex-LH; Merck Millipore, Billerica, MA, USA), and the filtrate was
then mixed with 45% acetonitrile solution and analyzed for free amino acids and peptides using an
Agilent 1260 infinity high performance liquid chromatograph equipped with an Agilent 1260 Binary
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Pump, 1260 HiP Degasser, 1260 HiP ALS autosampler, 1290 thermostat, 1260 Thermostatted column
compartment control module, 1260 diode array detector and a Poroshell 120 EC-C18 column (3.0 x 100
mm, 2.7 um; Agilent). The eluents used were: (i) 20 mmol/L disodium hydrogen phosphate (pH 7.6);
and (ii) acetonitrile/methanol/water (5:5:1, v/v/v). Amino acids and peptides were identified through
the comparison of their retention times with those of established standards. The concentrations of
each were calculated using internal and external standard solutions and expressed as pmol per g of
meat and pumol per 1% of moisture in meat, respectively. The internal standard solutions were used to
account for matter lost during analysis, and the external standard solutions (1, 10, 50, and 100 pmol/uL)
were used to plot a calibration curve for each amino acid and peptide. Carcass traits were analyzed
according to the methods described previously [32,33]. Moisture content was determined in duplicates
by drying 2 g samples of meat drawn from the minced raw meat (approximately 30 g in total) for 24 h
at 105 °C. IMF content was determined by Soxhlet extraction of the dried samples with diethyl ether
for 16 h. Crude protein content was determined using 1 g samples of meat drawn from the minced raw
meat (approximately 30 g in total) by the Kjeldahl method using a nitrogen distillation titration device
(2400 Kjeltec auto sampler system, FOSS, Hillerod, Denmark). Cooking loss was determined by the
weight difference of meat samples (approximately 50 g) before and after heating at 70 °C for 1 hin a
water bath. After cooking loss measurement, the meat sample was then used for WBSF measurement
with crosshead speed of 200 mm/min using Instron (model 5542; Instron, University Avenue Norwood,
MA, USA). WHC was determined using meat samples (approximately 0.5 g) drawn from the minced
raw meat which were centrifuged by 10,000x g for 30 min. Determination of tenderness, pliability,
toughness, and brittleness were performed using meat samples prepared for the same as the WBSF
using Tensipresser (model TTP-50BX II, Takemoto Electric Inc., Tokyo, Japan).

4.5. Data Analysis

Metabolomics data acquired by the CE-TOFMS system were normalized and the semi-quantitative
and absolute quantification data were then analyzed by PCA and PLS [34] using MATLAB (The MathWorks,
Natick, MA, USA) and R programs [35] developed by HMT Co. Ltd. Differences between high and low
IMF groups were examined by Welch'’s t-test. Significant difference was defined by p < 0.05.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/8/322/s1,
Figure S1. Principal component analysis by the metabolites detected from pig plasma samples showing the
difference in the intramuscular fat contents at the two stations. Blue and red dots indicate low and high IMF pigs,
respectively. (A) The PCA performed with PC1 and PC2 for pigs from MIY station; (B) The PCA performed with
PC1 and PC2 for pigs from IBR station; (C) The PCA performed with PC3 and PC4 for pigs from IBR station.
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Abstract: To clarify the relationship between the fiber type composition and meat quality,
we performed metabolomic analysis using porcine longissimus dorsi (LD) muscles. In the LD
of pigs raised outdoors, the expression of myosin heavy chain (MyHC)1 (slow-twitch fiber marker
protein) was significantly increased compared with that of MyHC1 in pigs raised in an indoor pen,
suggesting that rearing outdoors could be considered as an exercise treatment. These LD samples
were subjected to metabolomic analysis for examining the profile of most primary and secondary
metabolites. We found that the sex of the animal and exercise stimulation had a strong influence on
the metabolomic profile in the porcine skeletal muscles, and this difference in the metabolomic profile
is likely in part due to the changes in the muscle fiber type. We also examined the effects of cooking
(70 °C for 1 h). The effect of exercise on the metabolomic profile was also maintained in the cooked
muscle tissues. Cooking treatment resulted in an increase in some of the metabolite levels while
decreasing in some other metabolite levels. Thus, our study could indicate the effect of the sex of the
animal, exercise stimulus, and cooking on the metabolomic profile of pork meat.

Keywords: pork; meat; skeletal muscle; fiber type; cooking

1. Introduction

Free amino acids stimulate taste and can modify the palatability of foods depending on the
concentrations at which they are present in the foods [1-4]. To date, free amino acids are considered as
the most important taste components of meat. In addition to free amino acids, purine nucleotides,
such as inosine monophosphate (IMP), are also thought to be important components of taste in meat,
thereby considerably potentiating the taste responses of free amino acids [5]. The presence of IMP
suggests the existence of taste modifiers, as well as the tastants in food and the complexity in the
induction of the taste stimuli. Although these free amino acids and purine nucleotides are undoubtedly
important components of meat taste, we think there are more substances that affect meat taste and
flavor. For example, taurine was not thought to be a taste substance because it is tasteless; however,
taurine has been reported to show a positive correlation with umami intensity and is thought to
impart full-bodied taste in meat taste or flavor by an unknown mechanism [6]. Thus, metabolomic
substances as well as taurine could have the potential to affect meat taste and flavor. One-by-one
analysis of each substance contained in meat will take a long time, but it is possible to depict the whole
metabolite profiling of meat as the combination and association of these metabolites form the overall
taste and flavor.

Metabolites 2020, 10, 10; d0i:10.3390/metabo10010010 17 www.mdpi.com/journal/metabolites
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Metabolomics in food analysis is the study of the metabolites present in the foods to describe and
predict the properties of the food palatability and taste. Analytical methods have been developed to
elucidate the profile of the components responsible for the overall food taste and flavor. For example,
metabolomic analysis is performed for the metabolite profiling of strawberries and for identifying
fruit attributes influencing hedonics and sensory perception based on consumer ratings [7]. A few
metabolomic applications have been reported in meat. Metabolomic analysis has been performed to
clarify the sensory characteristics and flavor of beef [8,9], the effect of finishing forage on beef [10],
the effect of storage condition of ground beef [11], and the key metabolites during the postmortem
aging of beef [12] or pork [13]. The approach to find a novel biomarker that indicates meat quality in
relation to the water-holding capacity has also been reported [14]. However, more analyses need to be
performed to clarify the relationship between various meat characteristics and metabolites.

Skeletal muscle tissues are composed of slow-twitch (type 1) and fast-twitch (type 2) muscle fibers.
Metabolically, slow-twitch fibers have abundant mitochondria and myoglobin and rely on oxidative
metabolism, whereas fast-twitch fibers have less mitochondria and myoglobin and mainly rely on the
glycolytic pathway. In addition to these metabolic traits, the muscle fiber composition affects various
meat properties, such as the color, pH, water-holding capacity, tenderness, and nutritional value of
meat [15]. In our previous study, we confirmed that there was a strong positive correlation between
myosin heavy chain (MyHC)1 (slow-twitch fiber marker protein) composition and total free amino
acid concentrations in bovine muscles, thereby suggesting that a high content of slow-twitch fibers
contributes to the intense flavor of meat derived from amino acids [16]. In fact, in a tasting panel
evaluation of lamb, which is a red meat rich in slow-twitch fibers, the lamb meat was classed as having
a more intense flavor than white meat, which is assumed to be rich in fast-twitch fibers [17].

Thus, we thought that meat rich in slow-twitch fibers may have a different composition of
metabolites from that in the fast-twitch predominant meat and this composition may not consist of
only free amino acids. The aim of this study was to provide an insight into the profiling of pork
meat metabolites under two conditions known to affect muscle fiber types: sex of the animal and
exercise treatment. In humans, the proportion of slow-twitch fibers in women has been reported
to be higher than that in men [18-20]. This greater proportion of the slow-twitch fibers in women
could partially explain their higher oxidative capacity. The adaptive benefits of exercise training are
commonly attributed to the fast-to-slow fiber type transition and increased mitochondrial energetic
capacity [21]. Moreover, we also examined the alterations in the metabolite profiling induced by the
cooking of pork meat. Although the sample size in this study was limited, the obtained results were
remarkable, and these findings will contribute to the progress in the analysis of taste and flavor of
meat in the future.

2. Results and Discussion

First, we measured the muscle fiber type compositions in the longissimus dorsi (LD) muscle tissue
samples from barrows (castrated males) and gilts (females), which were raised indoors (sedentary)
and outdoors (exercising animals). MyHC1 (slow-twitch fiber marker) and MyHC?2 (fast-twitch fiber
marker) isoform compositions were measured by SDS-PAGE. The percentage of MyHC1 isoforms in
the barrows and gilts was similar but it was slightly higher in the gilts (18.0% vs. 22.3% in sedentary
pigs, 30.6% vs. 33.4% in exercising pigs) (Figure 1). We found that the exercise treatment increased
the slow-type MyHC1 composition significantly in the outdoor animal group of the barrow and
gilt compared to that in the sedentary group of the barrow and gilt (20.2 + 2.2% vs. 32.0 + 1.4%,
p < 0.05 by t-test, n = 2 for each group). It is well-known that prolonged exercise training could
induce fast-to-slow fiber type transition. In this study, the pigs reared outdoors exercised voluntarily.
Voluntary wheel running has been widely used as a model of non-interventional exercise training that
induces adaptive changes in the skeletal muscle fiber type from fast-twitch to slow-twitch fibers. More
specifically, the fiber type transition among fast-twitch subtypes (types 2A, 2X, and 2B) is commonly
induced by endurance exercise; shift from type 2B/2X toward type 2X/2A. It is reported that voluntary
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wheel running induced fiber type transition of 2B/2X-to-2A in mice [22] or 2B-to-2A/2X in rats [23].
However, a shift from type 2-to-type 1 fibers may occur in limited muscle tissues under longer duration,
higher volume endurance type events. For example, voluntary wheel running for four weeks induced
type 2-to-type 1 fiber type conversion in rat plantaris muscle but not in soleus muscle [24]. Similarly,
type 2-to-type 1 fiber type conversion in pigs also occurred during voluntary exercise although the
muscle tissue was LD in our experiment. In this study, the proportion of slow-twitch fibers was slightly
higher in gilts, which is in accordance with that reported previously in humans, although the effects of
castration on the porcine muscle fiber type have still not been elucidated.

sedentary exercise

barrow gilt barrow gilt

MyHC2 (fast) » . . o

MyHC1 (slow) » . e
L
Figure 1. Separation of myosin heavy chain (MyHC) isoforms of the porcine longissimus dorsi (LD)
muscles from sedentary or exercising barrows and gilts by using SDS-PAGE.

In this study, we performed global CE-TOFMS analysis to target metabolites involved in primary
and secondary metabolism, such as sugars, amino acids, nucleotides, and other ionic metabolites in
porcine LD muscles of sedentary barrow and gilt, exercising barrow and gilt, and cooked gilts. In this
analysis, 130 peaks were detected. The analyzed metabolite profile of the LD muscles, i.e., pork loin,
showed notable changes in each experimental condition: sex, exercise, and cooking. A principle
component analysis (PCA) was performed to visualize the condition-related effects on the metabolites
in LD muscles (Figure 2). Overall, the PCA demonstrated clear clustering in sex and cooking conditions.
The peaks of the exercising barrow and gilt showed a slight separation from each other but they were
still clustered together. Surprisingly, the separation was profound between the sedentary barrow and
gilt, suggesting that the exercise stimulus decreased the sex differences seen in sedentary animals.
Exercise is known to increase oxidative capacity. Hence, the alteration of oxidative capacity might be
attenuated in gilts because females have higher oxidative capacity intrinsically.

The hierarchical clustering analysis (HCA) of the metabolites in the LD muscles showed a
remarkably different pattern in the different experimental conditions (Figure 3). The results of the HCA
classification were very similar to those of the PCA analysis. The sedentary barrow sample showed a
different metabolite pattern from that of the sedentary gilt muscles or the exercising barrow muscle.
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Figure 2. Principal component analysis (PCA) of the porcine longissimus dorsi (LD) muscle metabolomic
profiles of sedentary or exercising barrows and gilts. We also analyzed cooked gilt LD muscles.
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Figure 3. Hierarchical clustering analysis (HCA) of the porcine longissimus dorsi (LD) muscle
metabolomic profiles of sedentary or exercising barrows and gilts. We also analyzed cooked gilt

LD muscles.

Table 1 shows the changes in the metabolite ratios under the three different conditions. There was
a notable increase in the sugars of fructose-6-phosphate and glucose-6-phosphate in the meat of the
sedentary gilt compared to that in the meat of the sedentary barrow. Interestingly, the levels of these
two sugars were also markedly increased by the exercise stimulus. The ratio of the gilt/barrow and
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exercise/sedentary seems to have common metabolic features. Since both conditions are known to show
higher oxidative metabolism, the substrates in the glycolytic pathways might be spared. The exercise
did not evoke marked alterations in the metabolites in gilts, while the metabolites in barrows showed
various differences due to exercise. These findings indicate that there may be sex differences in the

response to exercise.

Table 1. Metabolite ratios in the three different conditions. Numbers in the red boxes are a ratio of >2

and those in blue boxes are a ratio of <0.5. The intensity of the color corresponds to the magnitude of

the ratio <0.1 or >10.

Compound Gilt/Barrow Exercise/Sedentary Cooked/Uncooked
Name Sedentary Exercise Barrow Gilt Sedentary Exercise
1-Methylhistidine,

3-Me thzlhis tidine 0.59 1.09 0.80 1.46 0.64 0.64
2-(Creatinine-3-yl) propionic acid N.D. N.D. N.D. N.D. N.D. N/A
2-Aminoisobutyric acid,

2—AminobuWrgacid 0.78 1.10 0.58 0.81 0.65 0.73
2-Hydroxybutyric acid 1.10 Zero Zero Zero 0.79 N.D.
2-Hydroxyvaleric acid 2.38 0.67 1.76 0.49 0.87 0.96
3-Hydroxybutyric acid 1.28 1.90 0.92 1.37 1.00 0.73
3-Methyladenine N/A 1.25 N/A 1.05 zero zero
4-Methylpyrazole 1.18 Zero 0.89 zero Zero N/A
5’-Deoxy-5’-methylthioadenosine N.D. N.D. N.D. N.D. N.D. N/A
5-Oxoproline 0.71 1.10 0.42 0.65 0.67 2,39
Adenosine N.D. N.D. N/A N.D. N.D. N/A
ADMA 0.96 1.22 0.63 0.81 zero 1.67
ADP 0.93 zero 3.11 zero 3.96 N/A
ADP-ribose N/A 0.66 N/A 0.84 0.40 0.53
Ala 0.73 0.84 0.73 0.84 0.70 0.82
AMP 093 010 RN 163 7.84 5.90
Anserine_divalent 1.03 1.60 0.83 1.29 0.72 0.63
Arg 0.84 1.42 0.60 1.01 1.28 1.38
Argininosuccinic acid Zero N.D. Zero N.D. N.D. N.D.
Asn 0.72 1.39 0.51 0.99 1.09 1.15
Asp 0.45 0.93 0.58 1.20 1.05 1.07
ATP N.D. N.D. N.D. N.D. N/A N/A
Betaine 1.33 1.44 0.96 1.04 0.90 0.76
Butyrylcarnitine 0.36 1.49 0.19 0.79 0.67 0.74
Carnitine 0.94 1.24 0.67 0.88 0.72 0.63
Carnosine 1.33 1.26 1.01 0.96 0.96 0.84
Choline 0.43 0.87 0.35 0.70 0.40 0.48
Citrulline 0.71 1.26 043 0.76 0.74 0.65
Creatine 1.06 1.13 0.91 0.98 091 0.78
Creatinine 1.33 1.34 0.82 0.82 1.25 3.68
Cys 4.65 1.53 3.22 1.06 1.47 1.02
Cysteine glutathione disulfide 0.21 N/A Zero 0.56 Zero 0.55
Cystine _ N.D. zero zero Zero N.D.
Cytidine 1.05 1.12 0.78 0.84 0.83 0.96
Daminozide

Ala-Ala N/A N/A N.D. 1.14 1.90 1.42
Diethanolamine 1.06 Zero 1.24 zero Zero N.D.
Dyphylline 2.69 0.83 2.88 0.89 0.99 0.90
Ethanolamine 0.91 1.01 0.87 0.97 0.56 0.50
Ethanolamine phosphate 0.80 0.84 1.04 1.09 Zero 0.68
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Table 1. Cont.

Compound Gilt/Barrow Exercise/Sedentary Cooked/Uncooked
Name Sedentary Exercise = Barrow Gilt Sedentary Exercise
Fructose 6-phosphate BEE o2 ISl 00 1.55 0.98
GABA 1.13 1.16 0.76 0.78 Zero Zero
Gln 0.87 0.77 0.88 0.78 0.50 0.66
Glu 0.62 1.79 0.36 1.04 1.06 0.94
Glu-Glu 2.20 1.90 1.38 1.19 1.27 1.00
Gluconic acid 2.48 2.10 1.35 1.14 0.88 0.49
Gluconolactone N/A 1.50 N/A 1.15 1.14 zZero
Glucose 1-phosphate N/A 0.51 N/A 0.85 1.15 0.72
Glucose 6-phosphate B 03 Il o7 0.81 0.54
Glutathione (GSH) 0.97 0.89 1.09 1.00 0.78 0.65
Glutathione (GSSG)_divalent 0.25 0.81 0.21 0.68 0.17 0.26
Gly 0.83 1.14 0.63 0.87 0.75 0.75
Gly-Asp Zero N.D. Zero N.D. N.D. N/A
Gly-Gly N.D. N/A N.D. N/A N.D. zero
Gly-Leu N.D. N.D. N.D. N.D. N/A N.D.
Glyceric acid N/A 2.59 N/A 0.81 0.40 0.65
Glycerol 1.34 0.63 1.87 0.88 0.94 0.95
Glycerol 3-phosphate 0.97 1.24 0.57 0.73 0.51 0.93
Glycerophosphocholine 1.00 0.64 1.58 1.01 0.61 0.71
GMP 1.12 1.30 1.05 1.22 1.06 0.89
Guanine 0.45 1.03 0.35 0.80 0.74 1.13
Guanosine 0.91 0.84 0.76 0.70 0.93 1.04
His 0.73 1.15 0.62 0.99 1.06 0.89
His-Glu N.D. N.D. N.D. N.D. N.D. N/A
Homocarnosine 1.41 1.28 1.18 1.07 0.94 0.81
Hydroxyproline 0.79 0.96 0.62 0.76 0.48 0.70
Hypotaurine 0.43 0.70 0.66 1.06 0.46 0.60
Hypoxanthine 0.46 1.15 0.33 0.83 1.00 1.23
Ile 0.84 1.24 0.60 0.88 1.31 1.47
IMP 1.50 1.63 1.03 1.12 0.94 0.93
Inosine 1.24 1.02 1.03 0.85 0.97 0.98
ISObqunC. acid 0.84 N/A Zero 1.46 zero zero
Butyric acid

Isoglutamic acid 0.71 Zero 0.41 zero Zero N.D.
Lactic acid 1.43 1.23 1.14 0.98 0.82 0.77
Leu 0.86 1.43 0.59 0.99 1.38 1.39
Lys 0.74 1.38 0.53 0.99 1.18 1.26
Malic acid 0.46 1.63 0.34 1.20 0.76 0.41
Malonylcarnitine N/A N.D. N.D. zero Zero N.D.
Met 1.07 1.62 0.63 0.96 1.81 1.83
Methionine sulfoxide N.D. N.D. N.D. N.D. N/A N/A
myo-Inositol 1-phosphate

mgo-lnositol 3-ghosghate ND. N/A N-D. N-D. N/A 1.00
N-Acetyllysine 1.81 1.57 1.20 1.04 1.95 1.88
N-Acetylneuraminic acid N.D. N.D. N.D. N.D. N/A N/A
N-Acetylornithine 1.43 2.00 0.86 1.20 2.11 1.82
N-Methylalanine 0.76 1.22 0.56 0.89 0.57 0.60
N°-Ethylglutamine 0.44 0.94 0.65 1.39 0.72 0.75
N®,N® NO-Trimethyllysine 1.80 1.21 1.92 1.29 0.74 0.65
NO-Methyllysine 0.66 0.73 1.04 1.15 1.00 0.95
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Table 1. Cont.

Compound Gilt/Barrow Exercise/Sedentary Cooked/Uncooked
Name Sedentary Exercise = Barrow Gilt Sedentary Exercise
NADH 0.89 243 0.28 0.76 1.21 1.02
Nicotinamide 2.27 0.89 2.16 0.85 0.79 1.05
O-Acetylcarnitine 0.83 1.72 0.32 0.67 143 151
O-Acetylhomoserine 0.73 0.88 057 069 0.50 0.69
2-Aminoadipic acid

Ornithine 0.89 2.10 0.40 0.94 0.76 0.79
Pantothenic acid 0.71 1.20 0.57 0.96 zero 0.81
Phe 1.01 1.27 0.71 0.90 1.54 1.62
Phosphorylcholine 0.36 0.77 0.45 0.98 0.81 1.09
Pro 0.68 1.05 0.53 0.82 0.75 0.84
Putrescine 0.91 0.99 1.00 1.09 Zero zero
Ribulose 5-phosphate 1.40 1.34 1.07 1.03 143 1.45
S-Adenosylhomocysteine 1.07 0.84 1.26 1.00 1.16 1.35
S-Adenosylmethionine 1.45 1.12 1.38 1.06 0.59 0.67
S-Methylcysteine 0.90 1.43 0.79 1.25 0.87 0.57
Saccharopine N/A 0.70 N/A 1.17 0.75 0.60
Sedoheptulose 7-phosphate Zero Zero 0.40 N.D. N.D. N.D.
Ser 0.68 1.34 0.51 1.01 1.14 1.09
Spermidine 0.82 1.01 0.69 0.85 0.66 0.86
Spermine 292 1.35 1.82 0.84 1.08 1.14
Stachydrine 1.52 N/A Zero 0.78 0.83 091
Succinic acid 0.67 0.62 0.89 0.82 0.54 0.76
Taurine 0.50 0.89 0.61 1.08 0.51 0.67
Terephthalic acid N.D. N.D. N.D. N.D. N.D. N/A
Thiamine 1.08 1.72 0.52 0.84 1.04 1.00
Thiamine phosphate 1.31 1.17 1.21 1.09 Zero Zero
Thr 0.69 1.35 0.50 0.98 1.07 1.03
Thr-Asp 1.10 N.D zero zero 1.52 N/A
Ser-Glu : . :

Trigonelline 1.08 1.58 0.59 0.86 0.98 0.70
Trp 0.92 1.24 0.74 0.99 1.32 1.36
Tyr 0.92 1.60 0.60 1.05 1.50 1.55
gggzgi‘gﬁ;e N.D. zero ND.  ND. N.D. N.D.
UDP-N-acetylgalactosamine

UDP—N—acetzlglucosamine N.D. N/A INHE: I N.D. Zero
UMP 1.77 1.97 1.11 1.24 0.99 0.74
Urea 0.99 091 0.73 0.67 0.76 0.76
Uridine 1.14 0.85 0.97 0.73 0.83 0.99
Val 0.74 1.24 0.55 0.92 1.09 1.14
B-Ala 0.89 0.96 0.76 0.82 0.82 0.64
B-Ala-Lys 1.98 1.44 1.41 1.02 0.66 0.74
y-Butyrobetaine 1.06 1.44 0.61 0.83 0.81 0.76
v-Glu-Cys N.D. N/A N.D. N/A N.D. zero

N.D. denotes it could not be detected in both conditions. N/A denotes it could not be calculated due to “the division
by zero”. The “zero” denotes its numerator was not detected.

As expected, the cooked LD muscles contained a completely different profile of the substances
compared with that in the respective uncooked muscles. Even after the cooking treatment, there were
still clear differences between the sedentary and exercised samples. In fact, the differences in the
profile of the metabolites in the uncooked muscles was maintained even after heating at 70 °C for
1 h. Cooking treatment increased the levels of N-acetylornithine, ribulose 5-phosphate, N-acetyl
lysine, N-acetylneuraminic acid, ATP, methionine sulfoxide, methionine, phenylalanine, tryptophan,
and tyrosine compared with those in the four uncooked samples. In particular, ATP, N-acetylneuraminic
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acid, and methionine sulfoxide were detected only in the cooked samples, thereby suggesting that these
substances are unique in cooked meat. It was interesting to note that ATP emerged after cooking because
ATP is thought to be an unstable molecule. Conversely, the cooking treatment decreased the levels of
diethanolamine, isoglutamic acid, succinic acid, glutamine, reduced glutathione, thiamine phosphate,
gamma-aminobutyric acid, ethanolamine, putrescine, and ethanolamine phosphate compared with
those in the four uncooked samples. In particular, thiamine phosphate, gamma-aminobutyric acid,
and putrescine were not detected in the cooked samples, thereby suggesting that these substances
were degraded or metabolized by cooking.

The levels of volatile aroma compounds were not measured in this study because the adopted
CE-TOFMS is not optimized for the identification of these compounds. Flavor is an important factor
for determining the palatability of food and the taste formed by the cooking of food. For example,
the sugars in the meat are likely the precursors of the flavor components produced by the Maillard
reaction, which is one of the most important pathways occurring primarily between the amino acids
and the reducing monosaccharides for flavor formation in cooked foods [25]. Meinert et al. reported
that glucose and glucose-6-phosphate increased the flavor-related volatile components more than ribose
and ribose 5-phosphate in minced pork [26]. In our analysis, lipids were not targeted, although they are
responsible for the volatile components of the meat flavor after cooking [27]. It should be emphasized
that a comprehensive analysis of the volatile aroma compounds responsible for the flavor of meat
would contribute to the understanding of whole meat palatability in the future.

The sex of the animal and exercise stimulation influence the type of metabolites contained in
porcine skeletal muscles. The metabolic profile of sedentary gilt was already similar to exercised
barrow even though MyHC1 expressions were increased in both the gilt and barrow. We thought that
the regulation of metabolism and that of MyHC expression are independent although these two factors
are closely related. In fact, adaptations in muscle metabolic capacity to prolonged exercise training
can occur without fiber type alterations [28]. Thus, we assumed the change in the metabolic profile
was partly attributed to the changes in the muscle fiber type, and partly attributed to other factors
such as upregulation of metabolic enzyme expression. The effect of exercise is also maintained in the
cooked muscle tissues. It is necessary to verify whether the changes observed in this study were not
just individual differences. In the future, we will try to elucidate the relationship between metabolite
profiles and taste (flavor) of meat by integrating sensory evaluation and metabolome analysis.

3. Materials and Methods

3.1. Meat Sample

The pork loins of Large White were obtained from a local meat shop. The pigs were reared
in a farm located in the Fukuoka Agriculture and Forestry Research Center (Chikushino, Japan).
The pigs were slaughtered in an approved slaughterhouse and dressed according to Japanese standard
commercial procedures, then distributed to the meat shop. We chose the entire pork loins from one
barrow and one gilt raised indoors in a 1.9 m X 3.5 m (6.7 m?) pen or raised outdoors where they were
allowed to graze over a total area of 369 m? (12.3 m x 30 m) during daytime for 6 h (9:30 to 15:30) for
32 days in finishing period. From the entire pork loins chilled for 120 h since slaughter (normal storage
period in Japan), we excised the LD muscles. The excised middle LD muscle blocks were vacuum
packed and frozen at =30 °C until preparation. We used the single sample for each treatment (n = 1).

3.2. Sample Preparation

Muscle samples were thawed overnight at 4 °C. The small portion of the middle LD muscle tissue
was ground to powder with a mortar and pestle, cooled with liquid nitrogen, and stored at —20 °C for
metabolomic analysis or at —80 °C for protein assay. For obtaining cooked samples, the small block
(about 4 g) of thawed LD was vacuum packed and heated in a water bath at 70 °C for 1 h and cooled
under running tap water for 30 min. The cooked muscle tissue was snap frozen in liquid nitrogen and

24



Metabolites 2020, 10, 10

ground to powder with a mortar and pestle, cooled with liquid nitrogen, and stored at —20 °C until
metabolomic analysis.

3.3. MyHC Isoform Content Determination

A motor-driven small pestle was used to homogenize each thawed uncooked sample of the muscle
(~50 mg) in an SDS solution (10% SDS, 40 mM DTT, 5 mM EDTA, and 0.1 M Tris-HClI buffer (pH 8.0)) on
ice. The SDS solution contained the Protease Inhibitor Cocktail for Use with Mammalian Cell and Tissue
Extracts (Nacalai Tesque, Inc., Kyoto, Japan) in a 1:100 ratio. The sample homogenates were heated in
boiling water for 3 min. The total protein concentrations were assayed using the Pierce BCA Protein
Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA), with bovine serum albumin as the standard.
The samples were diluted in 2x sample buffer (100 mM DTT, 4.0% SDS, 0.16 M Tris-HCl (pH 6.8),
43% glycerol, and 0.2% bromophenol blue) and dH,O to give final protein concentrations of 20 ng/uL
in 1x sample buffer. These protein samples were subjected to high-resolution SDS-polyacrylamide gel
electrophoresis for assessing the MyHC isoform composition, as described in detail previously [29].
The gel contained 8% acrylamide (acrylamide/bisacrylamide ratio = 99:1) and 35% (v/v) glycerol. After
loading the samples (100 ng protein), electrophoresis was performed at a constant voltage of 140 V for
22 h at 4 °C. The gels were stained with Silver Stain Kanto III (Kanto Chemical Co. Inc., Tokyo, Japan)
and dried. The bands were captured on an imager (Fusion SL-4, Vilber Lourmat), and the relative
contents of the MyHC isoforms were quantified by densitometry using the Image]J 1.34s software
(Rasband W, National Institutes of Health, Bethesda, MD, USA). MyHC isoforms were identified
according to their different migration rates (MyHC1 > 2).

3.4. Sample Pretreatment for Metabolome Analysis

Metabolome measurements were performed through a facility service at Human Metabolome
Technologies (HMT) Inc., Tsuruoka, Japan. Briefly, approximately 30 mg of frozen uncooked or cooked
LD samples was plunged into 1200 uL of 50% acetonitrile/Milli-Q water containing internal standards
(Solution ID: 304-1002, Human Metabolome Technologies, Inc., Tsuruoka, Japan) at 0 °C to inactivate
the enzymes. The tissue was homogenized 4 times at 1500 rpm for 120 s by using a tissue homogenizer
and then the homogenate was centrifuged at 2300x g at 4 °C for 5 min. Subsequently, 400 uL of the
upper aqueous layer was centrifugally filtered through a Millipore 5-kDa cutoff filter at 9100x g at 4 °C
for 120 min to remove the proteins. The filtrate was centrifugally concentrated and re-suspended in
50 pL of Milli-Q water for CE-MS analysis.

3.5. CE-TOFMS Analysis

CE-TOEMS was performed using an Agilent CE Capillary Electrophoresis System equipped with
an Agilent 6210 Time of Flight mass spectrometer, Agilent 1100 isocratic HPLC pump, Agilent G1603A
CE-MS adapter kit, and Agilent G1607A CE-ESI-MS sprayer kit (Agilent Technologies, Waldbronn,
Germany). The systems were controlled by the Agilent G2201AA ChemStation software version B.03.01
for CE (Agilent Technologies, Waldbronn, Germany). The metabolites were analyzed using a fused
silica capillary (50 um i.d. x 80 cm total length), with a commercial electrophoresis buffer (Solution ID:
H3301-1001 for cation analysis and H3302-1021 for anion analysis, HMT) as the electrolyte. The sample
was injected at a pressure of 50 mbar for 10 s (approximately 10 nL) for the cation analysis and 25 s
(approximately 25 nL) for the anion analysis. Spectrometry was performed by scanning from m/z 50 to
1000. Other conditions were as described previously [30].

3.6. Data Analysis

Peaks were extracted using the automatic integration software MasterHands (Keio University,
Tsuruoka, Japan) in order to obtain peak information, including /z, migration time for CE-TOFMS
measurement (MT), and peak area [31]. Signal peaks corresponding to isotopomers, adduct ions,
and other product ions of known metabolites were excluded, and the remaining peaks were annotated
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with putative metabolites from the HMT metabolite database based on their MTs and m1/z values
determined by TOFMS. The tolerance range for the peak annotation was configured at +0.5 min for MT
and +10 ppm for m/z. In addition, peak areas were normalized against those of the internal standards
and then the resultant relative area values were further normalized by the sample amount. HCA and
PCA were performed using HMT’s proprietary software, PeakStat and SampleStat, respectively.
The detected metabolites were plotted on metabolic pathway maps by using the VANTED (Visualization
and Analysis of Networks containing Experimental Data) software [32].

3.7. Statistics

Results of MyHC analysis are expressed as means + SE. We used a two-tailed t-test calculated by
Excel 2016 for Mac (Microsoft), and significance was set at p < 0.05.
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Abstract: Metabolites represent the ultimate response of biological systems, so metabolomics is
considered the link between genotypes and phenotypes. Feed efficiency is one of the most important
phenotypes in sustainable pig production and is the main breeding goal trait. We utilized metabolic
and genomic datasets from a total of 108 pigs from our own previously published studies that
involved 59 Duroc and 49 Landrace pigs with data on feed efficiency (residual feed intake (RFI)),
genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets
derived from LC-MS system). Utilizing these datasets, our main aim was to identify genetic variants
(single-nucleotide polymorphisms (SNPs)) that affect 45 different metabolite concentrations in plasma
collected at the start and end of the performance testing of pigs categorized as high or low in their
feed efficiency (based on RFI values). Genome-wide significant genetic variants could be then used
as potential genetic or biomarkers in breeding programs for feed efficiency. The other objective
was to reveal the biochemical mechanisms underlying genetic variation for pigs’ feed efficiency.
In order to achieve these objectives, we firstly conducted a metabolite genome-wide association
study (mGWAS) based on mixed linear models and found 152 genome-wide significant SNPs
(p-value < 1.06 x 107°) in association with 17 metabolites that included 90 significant SNPs annotated
to 52 genes. On chromosome one alone, 51 significant SNPs associated with isovalerylcarnitine
and propionylcarnitine were found to be in strong linkage disequilibrium (LD). SNPs in strong LD
annotated to FBXL4, and CCNC consisted of two haplotype blocks where three SNPs (ALGA0004000,
ALGAO0004041, and ALGA0004042) were in the intron regions of FBXL4 and CCNC. The interaction
network revealed that CCNC and FBXL4 were linked by the hub gene N6AMT1 that was associated
with isovalerylcarnitine and propionylcarnitine. Moreover, three metabolites (i.e., isovalerylcarnitine,
propionylcarnitine, and pyruvic acid) were clustered in one group based on the low-high RFI pigs.
This study performed a comprehensive metabolite-based genome-wide association study (GWAS)
analysis for pigs with differences in feed efficiency and provided significant metabolites for which there
is significant genetic variation as well as biological interaction networks. The identified metabolite
genetic variants, genes, and networks in high versus low feed efficient pigs could be considered as
potential genetic or biomarkers for feed efficiency.

Keywords: feed efficiency; biomarkers; SNPs; GWAS; metabolomics; RFI; pigs; pathways

1. Introduction

Large populations are generally essential for genome-wide association study (GWAS) to
obtain sufficient statistical power for the identification of genetic polymorphisms [1]. However,
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some intermediate phenotypes like metabolites could potentially avoid this problem, as they are
directly involved in metabolite conversion modification [2,3]. As the end products of cellular regulatory
processes, metabolites represent the ultimate response of biological systems associated with genetic
changes, so metabolomics is considered the link between genotypes and phenotypes [4]. Metabolomics
refers to the measurements of all endogenous metabolites, intermediates, and products of metabolism
and has been applied to measure the dynamic metabolic responses in pigs [5,6] and dairy cows [7,8].
Additionally, metabolites could provide details of physiological state, so genetic variant-associated
metabolites are expected to display larger effect sizes [9]. Gieger et al. (2008) firstly used metabolite
concentrations as quantitative traits in association with genotypes and found their available applications
in GWAS [9]. Do et al. (2014) [10] conducted GWAS using residual feed intake (RFI) phenotypes to
identify single-nucleotide polymorphisms (SNPs) that explain significant variation in feed efficiency for
pigs. Our previous study found two metabolites (i.e., x-ketoglutarate and succinic acid) in a RFl-related
network of dairy cows which could represent biochemical mechanisms underlying variation for
phenotypes of feed efficiency [8].

In this study, we aimed to identify genetic variants (SNP markers) affecting concentrations of
metabolites and to reveal the biochemical mechanisms underlying genetic variation for pigs’ feed
efficiency. Our study is based on two of our previously published papers and datasets used therein [6,11].
Briefly, the experiment consisted of 59 Duroc and 49 Landrace pigs with data on feed efficiency (RFI),
genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets derived
from liquid chromatography-mass spectrometry (LC-MS) system). While our previous studies only
looked at metabolome-phenotype associations [6], we report an integrated systems genomics approach
to identify quantitative trait loci (QTLs) or SNPs affecting metabolite concentration via metabolite
GWAS methods (mGWAS), where each metabolite is itself a phenotype. To the best of our knowledge,
this is the first study to link the genomics with metabolomics to identify significant genetic variants
associated with known metabolites that differ in pigs with different levels of feed efficiency. Main aims
of our study are as follows:

1. Find significant SNP markers associated with all the metabolites in the metabolomics dataset
using mGWAS method and then reveal the biochemical mechanisms underlying genetic variation
for porcine feed efficiency using 108 Danish pigs in low and high RFI conditions, genotyped by
68K PorcineSNP80 BeadChip array.

2. Annotate identified significant SNP markers to porcine genes.

3. Annotate metabolites and identify enriched metabolic pathways and gene-metabolite networks
to find the potential biomarkers that were strongly associated with feed efficiency.

2. Results

2.1. First Component Score and Significant Metabolic Pathways of 45 Metabolites

The partial least squares-discriminant analysis (PLS-DA) results revealed that the first component
score (component 1) explained more than 75% variation of all 45 metabolites (Figure 1A). It showed that
metabolite values of Duroc were higher than those of Landrace, the same as metabolites from second
sampling time higher than those from first sampling time. In addition, the Duroc and Landrace pigs
were clearly stratified, especially using the metabolite values between Duroc from first sampling time
and Landrace from second sampling time (Figure 1A). The most significant metabolic pathways were
the aminoacyl-tRNA biosynthesis; following by the arginine biosynthesis; the arginine and proline
metabolism; and the alanine, aspartate, and glutamate metabolism (Figure 1B). As the pathway impact
of the aminoacyl-tRNA biosynthesis was zero, we discarded this significant pathway and only used the
metabolites enriched in the other three significant pathways for GWAS (Table 1). Thus, the metabolite
means for 5 compounds in the arginine biosynthesis (arginine, aspartic acid, citrulline, glutamic acid,
and ornithine); 5 compounds in the arginine and proline metabolism (arginine, glutamic acid, ornithine,
proline, and pyruvic acid); and 4 compounds in the alanine, aspartate, and glutamate metabolism
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(alanine, aspartic acid, glutamic acid, and pyruvic acid) metabolites were calculated and shown in
Table 1.
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Figure 1. (A) Partial least squares-discriminant analysis (PLS-DA) of 45 metabolites. Note: D/L with
first/second indicates the sampling time of Duroc/Landrace pigs. (B) Metabolic pathways for
45 metabolites using Homo sapiens as the library. Note: The size and color of the circles for each pathway
indicate the matched metabolite ratio and the —log (p-value), respectively.

2.2. Genome-Wide Significant SNPs and Gene Annotation

Metabolite based GWAS for first, second, and combined two sampling times revealed
152 genome-wide significant SNPs (Supplementary Table S1) in association with 17 metabolites
(Supplementary Table S2). Unfortunately, no significant SNP was detected in association with first
component scores (p-values > 2.78 X 107°) and metabolites enriched in the significant metabolic
pathways (p-values > 1.74 x 107%); thus, GWAS results of these two scenarios were not listed.
Manhattan plots of genome-wide association for isovalerylcarnitine and propionylcarnitine are shown
in Figure 2, and Manhattan plots for the other 43 metabolites are shown in the Supplementary
Figure S1. Along the whole genome, significant SNPs associated with isovalerylcarnitine and
propionylcarnitine from the second sampling time were mainly located on the chromosome one
(Figure 2). The overlapped significant SNPs associated with more than two different metabolites
were shown in Table 2, where 57 significant SNPs on genome level were associated with
isovalerylcarnitine and propionylcarnitine from the second sampling time. In addition, another 3
metabolites (1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine,
lysoPC (16:0)) were also significantly associated with 10 SNPs (Table 2).
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A Isovalerylcarnitine B Propionylcarnitine

Chri4

Figure 2. Manhattan plots of genome-wide association for (A) isovalerylcarnitine and (B) propionylcarnitine.
Note: Y-axis indicates the logyg (p-value). Blue dotted and red solid lines indicate the genome-wide
threshold of 0.05 and 0.01 after Bonferroni multiple testing, respectively. The three tracks indicate the

metabolites from first sampling time, second sampling time, and combined two sampling times from
outside to inside.

After annotation of significant SNPs to the neighboring genes and gene components
(Sscrofal0.2/susScr3), we found that 90 significant SNPs were within a 500-kb window of 52 neighboring
genes (Supplementary Table S1) and that 6 significant SNPs were directly located in the gene components
of 5 genes (Table 3). For example, if we only consider the SNPs on chromosome one, we found
29 significant SNPs were near 9 genes (Supplementary Table S1), whereas ALGA0004000, ALGA0004041,
and ALGA0004042 were located in the introns of FBXL4 and CCNC (Table 3). These results show
that these genes may be involved in regulating abundance of the metabolites that are significantly
different between high and low RFI pigs. Between using porcine RefSeq database of Sscrofal0.2/susScr3
and Sscrofall.l/susScr1l, the results of significant SNPs annotated to the genes overlapped greatly,
but SNPs had different distances to the annotated genes between two versions (Supplementary Table S1).
In Table 3, we found that the annotations of ALGA0004042 and ALGA0061605 to CCNC and MTRF1
were changed from 9th intron and 5th intron to 8th intron and 9th intron, respectively, when we used
the Sscrofall.1l/susScr11 database.
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The linkage disequilibrium (LD) pattern for all significant SNPs is shown in the Supplementary
Figure S2. From the LD results for 58 significant SNPs on chromosome one, we found that
51 significant SNPs associated with isovalerylcarnitine (p-value = 2.79 x 1078) and propionylcarnitine
(p-value = 8.32 x 1071%) from second sampling time were in strong LD (Figure 3). Among the
58 significant SNPs, five of them were not in LD with the other 53 significant SNPs (Supplementary
Figure S2), so they were excluded in the haplotype visualization in the Figure 3. In detail,
SNPs annotated to LOC780435 (NM_001078684), FHL5 (NM_001243314), FBXL4 (NM_001171752),
CCNC (NM_001190160)/MCHR2 (NM_001044609), and SIM1 (NM_001172585) were in block 2, block 4,
block 6, block 8, and block 9/10, respectively. Furthermore, ALGA0004000 in the 6th intron of FBXL4
was in LD of block 6, together with another five SNPs (INRA0002726, MARC0075306, ALGA0003995,
ALGA0004002, and ALGA0004005) that were located in the intergenic regions of FBXL4. Especially,
three SNPs in strong LD consisted of block 8 with two SNPs (ALGA0004041 and ALGA0004042) located
in the second and ninth intron of CCNC (Figure 3, Table 3, and Supplementary Table S1). The number
of significant SNPs in strong LDs of the other chromosomes was less than the significant SNP number
on chromosome one (Supplementary Figure S2). Notably, MARC0110390 in the 7th intron region of
SFXN1 (NM_001098602) on chromosome two and ALGA0061605 in the 5th intron region of MTRF1
(NM_001243580) on chromosome eleven were not in the LD with other SNPs. However, ASGA0093565
in the 8th intron region of DNAJC6 (NM_001145378) was in strong LD with WU_10.2_6_135312468 that
was annotated to LEPROT (NM_001145388) (Supplementary Table S1 and Supplementary Figure S2).

Figure 3. Linkage disequilibrium (LD) pattern for 53 significant SNPs on chromosome one.
Note: the solid line triangle indicates LD. One square indicates LD level (r2) between two SNPs,
and the squares are colored by the D" & LLOR standard scheme. D’ & LLOR standard scheme is that
red indicates LLOR > 2, D’ = 1; pink indicates LLOR > 2, D < 1; blue indicates LLOR <2, D" = 1;
and white indicates LLOR < 2, D’ < 1. LLOR is the logarithm of likelihood odds ratio and the reliable
index to measure D’.

2.3. Gene and Metabolite Interaction Network

The most significantly enriched gene-based pathways were the human papillomavirus infection
(ssc05165) with five genes (i.e., CCND2, CTNNBI, JAK1, LAMCI1, and NFKBI), followed by
the PI3K-Akt signaling pathway (ssc04151) with five genes (i.e., CCND2, F2R, JAK1, LAMCI,
and NFKBI) and the hepatitis C (ssc05160) with four genes (i.e., CLDNS8, CTNNBI1, JAKI,
and NFKBI) (Figure 4A). Based on the gene—gene interaction network analysis, CCNC was in good
connection with CDK8, CDK3, and N6AMT1 whereas N6AMT1 was linked to FBXL4 (Figure 4B).
Unfortunately, no gene-metabolite interaction network was found in this study. After the clustering
of the SNP-related gene component-associated metabolites (Table 3), we found that aspartic acid,
1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine, and lysoPC(16:0)
were clustered in the lower cluster while the upper cluster included the metabolites of isovalerylcarnitine,
propionylcarnitine, and pyruvic acid (Figure 4C). Results show that metabolites from Duroc pigs
have higher values in the upper cluster than those from lower cluster, but the metabolite values of
Landrace pigs are higher in the lower cluster (Figure 4C). Afterwards, we investigated the metabolite
values of aspartic acid, isovalerylcarnitine, propionylcarnitine, and pyruvic acid for which the
associated significant SNPs were in the introns of MTRF1, FBXL4/CCNC, SFXN1 (Table 3). Generally,
propionylcarnitine from the low RFI group had higher values while other three metabolite values in
the high RFI group seemed higher, but they are not significantly different between low and high RFI
groups (p-value > 0.05) (Figure 4D).
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Figure 4. Gene pathway, metabolite cluster, and the interaction network: (A) Pathway for significant
SNP-related genes. (B) Network for the genes in which significant SNPs were annotated to
gene components. (C) Heatmap cluster for the metabolites that were associated with significant
SNPs annotated to gene components. (D) Metabolites (i.e., aspartic acid, isovalerylcarnitine,
propionylcarnitine, and pyruvic acid) values in high and low residual feed intake (RFI) pigs associated
with the genes in which significant SNPs annotate to gene components. Note: The high RFI pigs and
low RFI pigs were from left and right parts of all the pigs (n = 108) with one SD of actual RFI values.

3. Discussion

3.1. Metabolites in the PLS-DA and Metabolic Pathways of Pigs

The previous study reported that different breed types performed differently in RFI variation [8],
so RFI-related metabolomics could be breed specific. Therefore, different breeds tend to exhibit different
metabolite abundance values, for example, in studies involving the colostrum of pigs [12,13], the milk
and plasma of cattle [8,14], the yolk and albumen of chickens [15,16], the plasma of dogs [17], and the
fruit metabolite content of tomatoes [18]. In pigs, the heritability and genetic correlation of production
traits of Duroc, Landrace, and Yorkshire pigs vary. Duroc pigs showed lower heritability of feed
efficiency but greater performance of growth traits [19,20]. The metabolomics of this study showed that
metabolite values vary between two pig breeds and between the sampling times (Figures 1A and 4C),
as the metabolite profiles would change according to the breeds and time points [6]. Metabolites of
Duroc from first sampling time and Landrace from second sampling time were apparently stratified,
probably because metabolite values of these two groups and their metabolite profiles were different.
However, metabolites of Duroc from second sampling time and Landrace from first sampling time
were very close, probably because metabolite values of these two groups and their metabolite profiles
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were very similar (Figure 1A). Hence, the breed differences between Duroc and Landrace pigs were
driven both by genetic and metabolic factors.

The arginine biosynthesis pathway (ssc00220), where arginine, aspartic acid, citrulline, glutamic
acid, and ornithine were significantly enriched in our study (Table 1), plays a crucial role in amino
acid metabolism, particularly in the synthesis of citrulline and proline in pigs [21]. By linking arginine,
glutamate, and proline in a bidirectional way, the arginine and proline metabolism pathway (ssc00330)
biosynthesizes arginine and proline by glutamate. It is observed that proline metabolism is associated
with metastasis formation of breast cancer [22]. In dairy cattle, the alanine, aspartate, and glutamate
metabolism (ssc00250) identified in the gene-based pathways of our study (Table 1) is the potential
metabolic biomarker between the low and high feed efficient conditions [8].

3.2. Genome-Wide Significant SNP-Related Genes Associated with Metabolites

The previous GWAS for Duroc pigs identified two pleiotropic QTLs on chromosome one and
seven for feed efficiency [20]. Do et al. (2014) [10] revealed 19 significant SNPs located on several
chromosomes (e.g., one, three, seven, eight, nine, ten, fourteen, and fifteen) that were highly associated
with feed efficiency in Yorkshire pigs. In addition, other studies also found significant SNPs associated
with RFI on other chromosomes, for example, SNPs on chromosome five in the growing Piétrain-Large
White pigs [23], on chromosome two in a crossed populations [24], on chromosome six in Large White
pigs [25], etc. [26,27].

In this study, significant SNPs were mainly located on chromosome one (58/152),
but the associated metabolites only mapped to 1-hexadecyl-sn-glycero-3-phosphocholine (1.7%),
1-myristoyl-sn-glycero-3-phosphocholine (1.7%), isovalerylcarnitine (47.0%), isoleucyl proline
(0.9%), propionylcarnitine (47.0%), and lysoPC(16:0) (1.7%). Obviously, isovalerylcarnitine and
propionylcarnitine primarily derived from amino acid catabolism were the major metabolites that
associated with nine significant SNP-related genes (i.e., CCNC, FBXL4, FHL5, LOC780435, MAT2B,
MCHR?2, PNISR, RRAGD, and SIM1) on chromosome one (Supplementary Table S1). A previous study
indicated that the amount of isovalerylcarnitine could decrease in the plasma and liver tissues but
greatly increased in the muscle tissue, as a byproduct of leucine catabolism [28]. The isovalerylcarnitine
compound was reported to be found in high amounts in the colostrum and milk of sows [29]. As a key
role in the mitochondrial fatty acid transport and high-energy phosphate exchange, propionylcarnitine
could improve cardiac dysfunction by reducing myocardial ischaemia [30].

3.3. Gene and Metabolite Interaction Network

Based on the gene interaction node N6AMT1, one gene—gene interaction was found to connect
CCNC with FBXL4 (Figure 4B), in which significant SNPs were annotated to gene components and
associated with isovalerylcarnitine and propionylcarnitine (Table 3). As the members of CDK8 mediator
complex that can regulate 3-catenin-driven transcription, CCNC encodes the cell cycle regulatory
protein cyclin C and results in the protein dysfunction due to the mutations of CCNC [31,32]. CCNC is
also believed to increase the quiescent cells to maintain CD34 expression after knocking down CCNC
expression in human cord blood [33], while the amplification of CCNC was in a relationship with
the unfavorable prognosis [34]. FBXL4 is considered to participate in oxidative phosphorylation,
mitochondrial dynamics, cell migration, prostate cancer metastasis, circadian GABAergic cyclic
alteration, etc. [35-39]. The association results in pigs found that blood and immune traits were
associated with the SNPs of FBXL4 [40]. The node N6AMT1 is responsible for DNA 6mA methylation
modification as the first glutamine-specific protein methyltransferase characterized in mammals; thus,
glutamine could be regulated by the genes that promote porcine growth performance [41,42].

3.4. Associations Linking SNP Genotypes, Metabolites, and RFI

To investigate the direct association between SNP genotypes and RFIs, we also conducted GWAS
for RFI (i.e., where the GWAS model included RFI as phenotype and SNPs as fixed effect/explanatory
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variable) in the mixed linear model. Unfortunately but as expected due to small sample size, the results
showed that no genome-wide significant associations were found between SNPs and RFI values
(p-values > 2.09 x 10~4). However, the top SNP was DRGA0008061 (p-values = 2.09 X 107%), and we
found five genes (ANGPTL2, AUTS2, GRIFIN, PTRH1, and SIRT5) in which the top ten SNPs
were annotated (Supplementary Table S3). In our previous studies, Banerjee et al. (2020) [11]
also revealed that DRGA0008061 was one of the top significant SNPs associated with RFI after
genome-wide epistatic interaction network analysis for feed efficiency using the same genotypes
and pig populations as used in our current study. Meanwhile, Carmelo et al. (2020) [6] used
Kolmogorov-Smirnov test to identify the significant metabolites associated with feed efficiency traits at
two time points in Duroc and Landrace pigs. They found that 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine, isovalerylcarnitine, lysoPC(16:0), and phosphocholine were
significantly (p-value < 0.05) associated with RFI and other feed efficiency traits [6]. By matching
the results from Carmelo et al. (2020) [6] with our results, we found that these five metabolites
were also our main significant SNP-associated findings in GWAS (Table 3). Therefore, the triangular
association of genotypes (SNP), metabolomics (metabolite), and feed efficiency (RFI) is established
via our mGWAS (SNPs affecting metabolites) and GWAS (SNPs affecting RFI) and is linked with the
previous studies [6,11].

4. Materials and Methods

4.1. Animals, Metabolites, and Genotypes

A total of 108 pigs were involved in this study including 59 Duroc and 49 Landrace pigs that
were part of our own previous published studies [6,11]. The detailed description of the animal
experiment and phenotype, metabolite, and genotypes data collection are available from our previously
published studies, and all data used in this study were derived from our datasets that were already
made public. Metabolite data [6] were accessed using MetaboLights accession ID MTBLS1384 with
a link: https://www.ebi.ac.uk/metabolights/MTBLS1384. Genotype data [11] were accessed from
National Center for Biotechnology Information (NCBI) GEO accession number: GSE144064 with the
following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE144064. The genotype data
was sequenced using GeneSeek-Neogen PorcineSNP80 BeadChip containing 68,528 loci based on the
version Sscrofal0.2/susScr3 [11].

As in Carmelo et al. (2020) [6], all the pigs were purebred uncastrated males derived from
sixteen-sire families in four generations and fed on the same diets. They had RFI values calculated for
each pig as the difference between the observed daily feed intake (DFI) and the predicted daily feed
intake (pDFI) [6] following the method of Nguyen et al. (2001) [43]. Nguyen et al. (2001) [43] firstly
corrected the DFI for batch and sex and their interaction effects (i.e., fixed effects) and then estimated
the pDFI from different regression models including growth rate and back fat after adjustments for
above fixed effects; hence, Carmelo et al. (2020) [6] could compute RFIs in the same way by correcting
fixed effects in their study. Finally, our study directly used RFIs together with other phenotypes by
accessing the public dataset with a link: https://www.ebi.ac.uk/metabolights/MTBLS1384. The range of
actual RFI values of Duroc were from —10 to 14, while Landrace’s RFI value range was from —14 to
17 (Figure 5). The previous study conducted the metabolite-trait association analysis for RFI, so it
was suggested that fatness or other factors should be adjusted in the calculation of RFI to achieve
more accurate association results in their study [6]. As similar means of RFI for Duroc and Landrace
pigs were observed in Figure 5 of our study, we assumed that fatness was adjusted in the calculation
of RFI, but we cannot determine it. In this study, we selectively chose the extreme left and extreme
right tails of distribution of feed efficiency (i.e., actual RFI values) distribution of all the pigs (n = 108)
with one standard deviation (SD) from the mean [11,44] of actual RFI values. Then, they were defined
as high RFI pigs (RFI < —5.23, n = 11) and low RFI pigs (RFI > 5.23, n = 16), respectively (Figure 5).
The overview of the analysis workflow is shown in Figure 6 and included five scenarios of phenotypes
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in the GWAS analysis based on different transformations of metabolites. The five types of phenotypes
were (1) the metabolites from first sampling time, (2) the metabolites from second sampling time,
(3) the metabolites from combined two sampling times (i.e., metabolite values from first and second
sampling times were combined as an integrated dataset, where each pig had two metabolic values
for one metabolite, but genotypes were same for the metabolite values between first and the second
sampling times from the same pig), (4) the first component score (component 1) from partial least
squares-discriminant analysis (PLS-DA), and (5) the metabolites enriched in the significant metabolic
pathways (Figure 6).
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Figure 5. Distribution of actual RFI values of Duroc (n = 59) and Landrace (n = 49) pigs.
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Figure 6. Overall analysis workflow.

Metabolite data was downloaded by accessing MetaboLights accession ID MTBLS1384 with
a link, https://www.ebi.ac.uk/metabolights/MTBLS1384, and were collected in two sampling times
(i.e., the first sampling time was at the age when pig weighted approximately 28 kg, and the
second sampling time was 45 days after the first sampling time) for each pig by the previous
study [6]. Finally, 45 metabolites were used in this study (Figure 7) including 16 annotated
metabolites (i.e., 1-hexadecyl-sn-glycero-3-phosphocholine, 1-myristoyl-sn-glycero-3-phosphocholine,
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(3-Carboxypropyl)trimethylammonium, 5-methyl-5,6-dihydrouracils, acetaminophen, acetylcarnitine,
benzoic acid, cotinine, creatinine, indoleacrylic acid, isoleucyl proline, isovalerylcarnitine,
leucyl methionine, lysoPC(16:0), manNAc, and propionylcarnitine) and 29 identified metabolites
(i.e., 4-aminobenzoic acid, alanine, arginine, aspartic acid, carnitine, citrulline, cytidine, disaccharide,
glutamic acid, guanine, guanosine, hypoxanthine, inosine, isoleucine, lactic acid, methionine,
monosaccharide, nicotine amide, ornithine, phenylalanine, proline, pyruvic acid, riboflavine, sorbitol,
thiamine, threonine, thymidine, uridine, and xanthine).

Statistical description of metabolites
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Figure 7.  Statistical description of 45 metabolites from combined two sampling times.
Note: The red solid circle indicates the limit of detection (LOD) relative value of each
metabolite. LOD refers to the lowest value of a metabolite that the LC-MS method
can detect. M1 to M45 indicate the metabolites of 1-hexadecyl-sn-glycero-3-phosphocholine,
1-myristoyl-sn-glycero-3-phosphocholine, (3-Carboxypropyl)trimethylammonium, 4-aminobenzoic
acid, 5-methyl-5,6-dihydrouracils, acetaminophen, acetylcarnitine, alanine, arginine, aspartic acid,
benzoic acid, carnitine, citrulline, cotinine, creatinine, cytidine, disaccharide, glutamic acid, guanine,
guanosine, hypoxanthine, indoleacrylic acid, inosine, isoleucine, isoleucyl proline, isovalerylcarnitine,
lactic acid, leucyl methionine, lysoPC(16:0), manNAc, methionine, monosaccharide, nicotine amide,
ornithine, phenylalanine, proline, propionylcarnitine, pyruvic acid, riboflavine, sorbitol, thiamine,
threonine, thymidine, uridine, and xanthine, respectively.

The genotype data was downloaded from NCBI GEO database with accession number: GSE144064
with a link, https://www.ncbinlm.nih.gov/geo/query/acc.cgi?acc=GSE144064, that was issued by the
previous study [11]. After removing the markers with duplicated SNP positions (i.e., coordinates)
(n = 274), unannotated SNP positions (n = 2618), and no genotypes (n = 3903) from GeneSeek-Neogen
PorcineSNP80 BeadChip (68,516 SNP markers here), 61,721 SNP markers remained. Afterwards,
we performed the imputation for missing markers using pedigree (i.e., all the pigs were derived from
sixteen-sire families in four generations) by FImpute software (version 3) [45], as the closer relatives
usually share longer haplotypes; therefore, pedigree information could contribute towards the Fimpute
software, achieving more accurate imputation [45,46]. Quality control (QC) for the imputed genotypes

41



Metabolites 2020, 10, 201

was conducted based on the criteria of Hardy-Weinberg equilibrium (HWE > 10~7) and minor allele
frequency (MAF > 0.001) by PLINK software (version 1.9) [47].

In this study, we also combined the metabolite values from the first sampling time and the second
sampling time as an integrated dataset, so each pig had two values in one metabolite. However, the
genotypes for two metabolite values were the same if one metabolite value was from the first sampling
time of one pig while the other metabolite value was from the second sampling time of the same pig.
In other words, each pig had two different metabolite values but the same genotypes; thus, QC results
of the integrated dataset (n = 206) were different from the unintegrated dataset (n = 108), especially for
HWE but not for MAF. Finally, the genotypes for the first sampling time and the second sampling time
retained 47,109 SNP markers after removing unqualified 9337 (HWE < 1077) and 5275 (MAF < 0.001)
markers, while the genotypes for the combined two sampling times retained 42,393 SNP markers after
removing unqualified 14,053 (HWE < 1077) and 5275 (MAF < 0.001) markers.

4.2. Partial Least Squares-Discriminant Analysis and Metabolic Pathway Enrichment for 45 Metabolites

The partial least squares-discriminant analysis (PLS-DA) and metabolic pathway analysis for the
45 metabolites were performed by MetaboAnalyst software (version 4.0) [48] using Homo sapiens as
the library. Fishers’ exact test and relative betweenness centrality were used for the overrepresented
analysis and the pathway impact value calculation (i.e., sum of importance measures of the matched
metabolites divided by the sum of the importance measures of all the metabolites), respectively [49].
The first component scores (component 1) and metabolites enriched in the significant metabolic
pathways after false discovery rate (FDR) correction of multiple hypothesis testing (FDR < 0.1)
were selected as phenotypes of the transformed metabolites for GWAS. The mean calculated for the
metabolites enriched in each significant metabolic pathway was considered as transformed metabolite
values; thus, each pathway had one transformed metabolite value (i.e., the mean).

4.3. Mixed Linear Model Based Association Analysis

In this study, we considered other environmental factors (e.g., age) the same among all the pigs,
so we only used breed and RFI as the fixed effects to directly link metabolites with genotypes. GWAS for
45 single metabolites and transformed metabolites (i.e., component 1 and enriched metabolites) was
conducted by mixed linear model based association analysis in GCTA software (version 1.93.0) [50].
The mixed linear model is as follows:

y =Xb+g+e, (1)

where y is the vector of phenotypes (i.e., metabolites from the first, second, and combined two sampling
times and the transformed metabolites); b is the vector of fixed effects including intercept, breed effects
(i.e., Duroc and Landrace pigs), RFI effects (i.e., actual RFI values included as covariates), and SNP
effects (i.e., candidate SNPs included as covariates) to be tested; X is the design matrix for fixed effects
that includes SNP genotype indicators (i.e., 0, 1, or 2); g is the vector of polygenic effects as random
effects that are the accumulated effects of all SNPs; and e is the vector of residual effects. The polygenic
and residual variances are Var[g] = Ga§ and Var[e] = Io2, where G and I are the genetic relationship
matrix (GRM) calculated using all SNPs and identity matrix, respectively.

4.4. Significant SNPs and Their Annotated Genes

The significant SNPs for GWAS were defined when the p-values were less than the threshold after
Bonferroni correction for multiple hypothesis testing on genome level. The threshold for metabolites
from the first and second sampling times was 1.06 x 107° (i.e., 0.05/47109), while the threshold for
combined two sampling times was 1.18 x 107° (i.e., 0.05/42393). Then, the significant SNPs were
annotated to the genes and gene components (i.e., promoters, exons, and introns) of porcine RefSeq
database (Sscrofal0.2/susScr3) downloaded from University of California Santa Cruz (UCSC) genome
browser (https://genome.ucsc.edu/cgi-bin/hgTables), where a window of 500 kb was used for the
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annotation of intergenic regions to neighboring genes. In addition, we used the reference SNP (rsfSNP)
ID (i.e., specific rs number) of significant SNPs to annotate them to the genes and gene components of
latest porcine RefSeq database (Sscrofall.l/susScrll).

Linkage disequilibrium (LD) analysis to display the potential haplotypes for the significant SNPs
was performed using Haploview software (version 4.2) [51]. SNPs with a distance larger than 500 kb
were ignored in the pairwise comparisons for LD analysis.

4.5. Gene-Based Pathway Enrichment Analysis and Gene—Metabolite Interaction Network

We used R package KEGG.db (version 3.2.3) of Sus scrofa species to annotate SNP-related genes
in the gene-based pathway enrichments. Based on the adjusted p-values (p.adjust) < 0.2 under FDR
control, the gene-based pathways were finally realized by R package clusterprofiler (version 3.12.0) [52].
The gene—gene interaction networks were created by GeneMANIA server [53,54] with default settings
using Homo sapiens as the library. Then, the gene-metabolite networks for interactions between
SNP-related genes and phenotype-related metabolites were created by MetaboAnalyst tool [55] with
default settings using the same library of Homo sapiens. Significant SNP-associated metabolites based
on the low-high RFI pigs were hierarchically clustered by Ward’s method in Euclidean distance [56].
Then, a heat map for averaged metabolite clustering was visualized by MetaboAnalyst tool [48].

5. Conclusions

We utilized metabolic and genomic datasets from a total of 108 pigs that were made available for
this study from our own previously published studies [6,11] in publicly available data repositories.
These studies involved 59 Duroc and 49 Landrace pigs and consisted of data on feed efficiency
(RFI), genotype (PorcineSNP80 BeadChip) data, and metabolomic data (45 final metabolite datasets
derived from LC-MS system). Utilizing these datasets, our main aim was to identify genetic variants
(SNPs) that affect 45 different metabolite concentrations in plasma collected at the start and end of the
performance testing of pigs categorized as high or low in their feed efficiency, as measured by RFI
values. Genome-wide significant genetic variants could be then used as potential genetic or biomarkers
in breeding programs for feed efficiency. In order to achieve this main objective, we performed GWAS
in the mixed linear model-based association analysis and found 152 genome-wide significant snps
(p-value < 1.06 x 107°) in association with 17 metabolites that included 90 significant SNPs annotated
to 52 genes. On chromosome one alone, we found SNPs in strong LD that could be annotated to FBXL4
and CCNC; it consisted of two haplotype blocks, where three SNPs (ALGA0004000, ALGA0004041,
and ALGA0004042) were in the intron regions of FBXL4 and CCNC. The interaction network analyses
revealed that CCNC and FBXL4 were linked to each other by N6AMT1 gene and were associated with
compounds isovalerylcarnitine and propionylcarnitine. The identified genetic variants and genes
affecting important metabolites in high versus low feed efficient pigs could be considered as potential
genetic or biomarkers, but we recommend that these results are validated in much higher sample size.
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Supplementary Table S1. All the significant SNPs of genome-wide association with chromosome, position,
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Manbhattan plots of genome-wide association for 43 metabolites. Supplementary Figure S2. Linkage disequilibrium
(LD) pattern for all significant SNPs.
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Abstract: Feed efficiency (FE) is an economically important trait. Thus, reliable predictors would
help to reduce the production cost and provide sustainability to the pig industry. We carried out
metabolome-transcriptome integration analysis on 40 purebred Duroc and Landrace uncastrated
male pigs to identify potential gene-metabolite interactions and explore the molecular mechanisms
underlying FE. To this end, we applied untargeted metabolomics and RNA-seq approaches to the
same animals. After data quality control, we used a linear model approach to integrate the data and
find significant differently correlated gene-metabolite pairs separately for the breeds (Duroc and
Landrace) and FE groups (low and high FE) followed by a pathway over-representation analysis.
We identified 21 and 12 significant gene-metabolite pairs for each group. The valine-leucine-isoleucine
biosynthesis/degradation and arginine-proline metabolism pathways were associated with unique
metabolites. The unique genes obtained from significant metabolite-gene pairs were associated with
sphingolipid catabolism, multicellular organismal process, cGMP, and purine metabolic processes.
While some of the genes and metabolites identified were known for their association with FE, others are
novel and provide new avenues for further research. Further validation of genes, metabolites,
and gene-metabolite interactions in larger cohorts will elucidate the regulatory mechanisms and
pathways underlying FE.

Keywords: feed efficiency; linear model; metabolomics; pigs; transcriptomics

1. Introduction

Feed represents about 60-70% of total pork production costs in modern pig production. Thus,
to decrease costs and increase profitability, it is pivotal to identify feed efficient (FE) animals [1].
However, due to the polygenic architecture of FE, individual pigs in a herd exhibit considerable
variation in FE despite belonging to similar genetic background and environment [2]. Considering this
variation, different methods have been proposed and widely used to measure the FE, including feed
conversion ratio (FCR) and residual feed intake (RFI) [1,3]. FCR is the ratio of feed intake (FI) per
unit body weight gain and is affected by many factors such as breed, sex, diet, and environmental
conditions [4,5]. Pigs with low FCR are considered high FE and vice-versa. RFI estimates the difference
between actual and expected FI predicted on production traits as average daily gain (ADG) [6].
Since FCR considers both FI and weight gain, and FCR is also one of the critical predictors of FE,
it suggests that feed efficient pigs may possess different physiological-biochemical profiles compared
to the inefficient ones [2].

Based on the advances in omics technologies, several approaches have been adopted to shed light
on the genetic mechanisms underlying FE in pigs. Among these omics technologies, transcriptomics
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and metabolomics have provided tools to elucidate the molecular basis of FE. While transcriptomics
allows us to have a transcriptional snapshot of genes underpinning the phenotype under investigation,
metabolomics bridges the gap between genotype and phenotype. Recently, an increasing number
of metabolomic studies have reported the role of metabolites in economically important traits [7],
such as meat quality [8,9], pre-slaughter stress [10], and FE [3]. Likewise, several transcriptomic studies
have pointed out candidate genes underpinning FE and other related-traits such as immune response,
growth, and metabolism in pigs [11-13].

Recently, we have investigated RNA-seq data on the 41 Danish production pigs that underwent
feed efficiency and performance testing trials to identify differentially expressed genes and gene
networks and reported 13 genes as potential biomarkers for feed efficiency [14]. Despite the new
insights into key genes and molecular mechanisms reported in these studies, these approaches rely
solely on data from a single biological layer. It has been shown that the integration of transcriptomics
datasets with genomic and other omics datasets (systems genomics) increases the power to detect
causal and regulatory factors and molecular pathways underlying complex phenotypes or diseases in
animals [15,16].

To gain further insights into biochemical aspects of complex traits, data integration analysis
has emerged as a fruitful tool, unveiling potential biomarkers via integration of metabolomics and
transcriptomics [17]. By the development of analytical technologies for data integration, the assessment
of system-wide changes of transcript levels as surrogate measurements of metabolic rearrangements
can be widely assessed. Metabolite-transcript co-responses using combined profiling can yield vital
information on the complex biological regulation of the trait. Transcriptome-metabolome integration
is a powerful combination as the metabolome is affected by the phenotypic measurements to which
the global measures of transcriptome can be anchored [18]. Therefore, herein, we integrated data
from metabolome-transcriptome approaches to unveil the unique gene-metabolite pairs. To this end,
we adopted a two-step framework, as follows: (1) we first employed the numerical integration of
gene-metabolite levels to identify gene-metabolite interaction pairs separately for the breeds (Duroc
and Landrace) and FE groups (low and high FE) using IntLIM R-package; (2) next, a knowledge-based
integration approach based on pathway over-representation analysis was used to reveal the underlying
pathways in each group (breed-specific and FE-specific). To the best of our knowledge, this is the first
study of its kind to ever combine high throughput metabolomics data with RNA sequence based gene
expression data in pigs to unravel the missing links between genes and metabolites and to shed light
on the molecular basis that characterizes the specific differences based on breed and feed efficiency.

2. Results

2.1. Descriptive Statistics and Linear Model Analysis for genes and Metabolites

The data on 749 metabolites and 25,880 genes from 40 samples were generated using untargeted
metabolomics and transcriptomic approaches, respectively. We utilized data of 405 annotated
metabolites (see methodology) for further analysis. For the transcriptomic data generated on
25,880 genes, we analyzed the data for each of the two groups (breed-specific and FE-specific),
as described in the methodology. The genes with a gene count <1 were removed, resulting in 20,233 genes
for both the groups. The gene count data for each group (breed-specific and FE-specific) was normalized,
and the linear model was fitted into the data as given in the methodology. The genes were also
screened for their chromosomal information from the Ensembl Sus scrofa database. After normalization,
removal of values < 0 and obtaining the gene chromosomal location information, 17,726 (breed-specific),
and 17,697 (FE-specific) genes were retained in each group. As a quality control for IntLIM, we filtered
out genes with the lowest 5% of the variation, which gave 16,839 genes (breed-specific) and 16,812 genes
(FE-specific) that were subjected to IntLIM analysis. A schematic representation of the study design
and analysis steps are given in Figure 1. We performed the PCA analysis (Figure S1) on the filtered
metabolome-transcriptome data, which included 405 metabolites, and 16,839 genes (breed-specific),
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and 16,812 genes (FE-specific). The results of PCA analysis for the metabolites-genes based on breed
and FE groups are shown in Figure S1.
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Figure 1. Schematic representation of the study design and analysis steps.
2.2. Gene Metabolite Interaction of Breed-Specific and FE-Specific Groups

From the IntLIM analysis, we identified gene-metabolite pairs that have a strong association
with respect to the breed (Duroc and Landrace) and FE (low and high FE) groups. For the
breed-specific groups, all possible combinations of gene-metabolite pairs (6,819,795 model runs)
were evaluated, using Duroc and Landrace as the breed-group. Based on this approach, we identified
21 gene-metabolite associations (false discovery rate—FDR adjusted p-value < 0.1 and correlation
difference effect size > 0.1) (Table 1). Clustering these pairs by the direction of association (positive
and negative correlations) within each breed group revealed two major clusters (Figure 2a) in each
breed. First, the Duroc correlated/Landrace anti-correlated cluster consists of seven gene-metabolite
pairs (three unique metabolites and five unique genes) with a high positive correlation in Duroc
and low or negative correlation in Landrace (Figure 2a). Second, the Duroc anti-correlated/Landrace
correlated cluster consists of 14 gene-metabolite pairs (10 unique metabolites and nine unique
genes) with relatively high negative correlations in Duroc and positive correlations in Landrace.
The two top-ranked gene-metabolite pairs (ranked in descending order of absolute value of Spearman
correlation difference between Duroc and Landrace) in the Duroc correlated and anti-correlated
clusters were ENSSSCG00000028124 (SNRPN)—Rhodamine B (Figure 2b) and ENSSSCG00000000401
(GLS2)—cystathionine ketimine (Figure 2c) respectively. SNRPN and Rhodamine B are positively
correlated in Duroc (r = 0.7) but negatively correlated in Landrace (r = —0.5) (Figure 2b). GLS2 and
cystathionine ketimine are negatively correlated in Duroc (r = —0.9), but positively correlated in
Landrace (r = 0.2) (Figure 2c).

Similarly, we used IntLIM for the FE-specific group and evaluated all possible combinations of
gene-metabolite pairs (6,808,860 models), with low and high FE as a binary phenotype. With this
approach, we identified 12 FE-specific gene-metabolite correlations (FDR adjusted interaction
p-value < 0.1, and a Spearman correlation difference > 0.1) involving eight unique gene and metabolites
each (Table 2). The heat map with gene-metabolite Spearman correlation for low and high FE group
showed a clear separation between the two groups (Figure 3a). The high FE-correlated cluster of
12 gene-metabolite pairs (eight unique genes and metabolites with high correlations in high-FE
groups) were negatively correlated with the low-FE group. The two gene-metabolite pairs (ranked in
descending order of absolute value Spearman correlation difference between high and low FE group)
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in high-FE correlated clusters were ENSSSCG00000025106 (THNSL2)—pyrocatechol (Figure 3b) and
ENSSSCG00000036609 (TBXT)—ketoleucine (Figure 3c), respectively. Both pairs showed a positive
correlation in high-FE group (r = 0.6, r = 0.5) while showed a negative correlation in the low-FE group
(r=-0.7, r = —0.3) (Figure 3b,c).

Rhodamine B

95 9 0 w0
(b) ENSSSCC00000028124

Duroc Landrace *

5
ENSSSCG00000000401

a5 o oes (c)
vao

—2 Llandrace

Figure 2. Results of IntLIM applied to breed-specific groups. (a) Clustering of 21 identified
gene-metabolite pairs (FDR adjusted p-value of interaction coefficient < 0.1, Spearman correlation
difference > 0.1 in Duroc and Landrace breeds, (b) Gene-metabolite difference in ENSSSCG00000028124
(SNRPN)—rhodamine B (FDR adjusted p-value = 0.1, Duroc Spearman correlation = 0.7,
Landrace Spearman correlation = —0.5), (¢) Gene-metabolite difference in ENSSSCG00000000401
(GLS2)—cystathionine ketimine (FDR adjusted p-value = 0.01, Duroc Spearman correlation = —0.9,
Landrace Spearman correlation = 0.2).

Low High ENSSSCG00000036609
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Figure 3. Results of IntLIM applied to FE-specific groups. (a) Clustering of 12 identified gene-metabolite
pairs (FDR adjusted p-value of interaction coefficient < 0.1, Spearman correlation difference > 0.1 in high
and low FE groups, (b) Gene-metabolite difference in ENSSSCG00000025106 (THNSL2)—Pyrocatechol
(FDR adjusted p-value = 0.06, High-FE Spearman correlation = 0.6, Low-FE Spearman correlation =
—0.7), (c) Gene-metabolite difference in ENSSSCG00000036609 (TBXT)—ketoleucine (FDR adjusted
p-value = 0.08, High-FE Spearman correlation = 0.5, Low-FE Spearman correlation = —0.3).
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2.3. Pathway and Gene Ontology Over-Representation Analysis

We identified the pathways associated with the unique metabolites in each cluster identified
from breed-specific (21) and FE-specific (12) interactions. The three unique metabolites from Duroc
correlated/Landrace anti-correlated clusters were associated with arginine and proline metabolism
(p-value = 0.02). Furthermore, the ten unique metabolites from Duroc anti-correlated/Landrace
correlated cluster were associated with valine-leucine-isoleucine biosynthesis (p-value = 0.01) and
valine-leucine-isoleucine degradation (p-value = 0.07) along with arginine and proline metabolism
(p-value = 0.07). The eight unique metabolites from high-FE correlated/low-FE anti-correlated
cluster were associated with valine-leucine-isoleucine biosynthesis (p-value = 0.01) and degradation
(p-value = 0.07). The pathways associated with the metabolites in breed-specific and FE-specific
clusters for unique metabolites are given in Supplementary Table Sla.

Unique and mappable genes from each group (breed-specific—each cluster, and FE-specific)
were screened by using GeneMania to generate a composite functional association network that
includes all the evidence of co-functionality. From the breed-specific group, unique genes (4 genes)
from Duroc correlated/Landrace anti-correlated cluster (Table 1) mapped to 20 genes based on
co-functionality from GeneMania (Table S1b). The gene-ontology enrichment analysis of the
identified 24 genes (unique genes from Table 1 and co-functional genes from GeneMania) revealed
enrichment of the regulation of hemopoiesis, response to thyroid hormone, and the sphingolipid
catabolic process (Table Slc). These genes were enriched for the sphingolipid metabolism KEGG
pathway (adjusted p-value corrected with Bonferroni step down < 0.05) (Supplementary Table S1d).
Unique and mappable genes (6 genes) identified from Duroc anti-correlated/Landrace correlated
cluster (Table 1) were co-functional with 20 genes based on GeneMania (Table S1b). The gene ontology
enrichment analysis of these 26 genes (unique genes from Table 1 and co-functional genes from
GeneMania) revealed the ER to Golgi vesicle-mediated transport and membrane fusion (Table Slc)
as an enriched biological process. Butanoate metabolism, alanine-aspartate-glutamate metabolism,
and valine-leucine-isoleucine degradation were significantly enriched KEGG pathways from the Duroc
anti-correlated/Landrace correlated cluster (Supplementary Table S1d). Similarly, from the FE-specific
group, unique mapped genes (7 genes) from high-FE correlated/low-FE anti-correlated clusters (Table 2)
were co-functional with 20 genes identified from GeneMania (Table S1b). These genes were involved
with the cGMP metabolic process, purine nucleotide biosynthesis, and phosphorus-oxygen lyase
activity pathways (Table Slc). The top significant KEGG pathway enriched was the cGMP-PKG
signaling pathway (Supplementary Table S1d).

3. Discussion

FE is an important quantitative trait, which quantifies the efficiency of nutrient conversion from
the feed to a tissue that is of nutritional and economic significance [19]. Understanding the molecular
mechanisms underlying FE will be advantageous in the efficient selection of pigs and benefit the pig
producers. In the Danish pig industry, Duroc is the most popularly used terminal sires in combination
with crossbred Landrace X Yorkshire breeds [20], so the selection pressures for FE in Duroc is higher
as compared to Landrace. Thus, in the current study, we attempted to identify the gene-metabolite
interactions specific to each breed. FE is a complex trait influenced by environmental and health factors
and involves many organs. Skeletal muscle, being the largest organ in the body, is an essential location
for the metabolism of carbohydrates and lipids [21,22]. It plays a significant role in the utilization
and storage of energy acquired from the feed. Thus, understanding the difference in the regulatory
processes from a divergent FE group will add a layer of knowledge to the understanding of biological
mechanisms involved with this complex trait.

A plethora of metabolome and transcriptome studies for FE in pigs are reported [3,9,10,12].
However, to the best of our knowledge, markers from the integration of metabolome and transcriptome
in Duroc and Landrace pigs has not been done before. Herein, we unveiled the gene-metabolite
relationships that are phenotype dependent. This approach highlighted molecular functions and
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pathways that are strongly evidenced by the integration study. Evaluating phenotype-specific
relationships between metabolites and genes assists us to elucidate novel co-regulation patterns
that would not be identified by single approaches. In the current study, we integrated untargeted
metabolomic and transcriptomic data. We used a numerical data integration approach that employed
the integration of a linear model (IntLIM package) to predict metabolite levels from gene-expression in
a phenotype dependent manner [23].

We attempted to identify the breed-specific and FE-specific gene-metabolite pairs in the current
study. The PCA analysis showed a difference in the expression of genes in Duroc and Landrace.
However, PCA for the FE group did not exhibit significant clusters between groups, which may be
due to the small sample size evaluated here. With our current metabolome-transcriptome analysis,
we identified 21 gene-metabolite breed-specific pairs and 12 gene-metabolite FE-specific pairs.

3.1. Breed-Specific Pathway Analysis

In the breed-specific analysis, two clusters were identified between Duroc and Landrace
breeds. The Duroc correlated/Landrace anti-correlated cluster associated L-glutamic acid 5-phosphate
metabolite with the FAM160A2, ENSSSCG00000040110, ETS2, and SGPL1 genes; cystathionine ketimine
metabolite with ENSSSCG00000040110 and SGPL1 genes and Rhodamine B with the SNRPN genes.
The arginine and proline metabolism pathways were associated with the unique metabolites from this
cluster. The gene ontology enrichment analysis of the unique genes identified from this cluster with the
co-functional genes found enrichment for the multicellular organismal process, sphingolipid catabolic
process, regulation of hemostasis, and coagulation pathways. Sphingolipid metabolism associated with
the SGPLI and GBA genes was identified as the top KEGG pathway. SGPLI (sphingosine-1-phosphate)
catalyzes the final step of the sphingolipid pathway by irreversibly converting sphingosine-1-phosphate
(S1P) to its by-products [24], thereby regulating S1P. SIP plays a role as a muscle trophic factor
by activating quiescent muscle stem cells (satellite cells) for efficient skeletal muscle repair and
regeneration [25]. The role of FE on skeletal muscle mass was well established from previous studies
wherein the improvement of muscle properties and an increase in muscle mass is attributed by
selection for low RFIin pigs [26]. S1P is also reported to trigger glutamate secretion and potentiates
depolarization-evoked glutamate secretion [27]. Glutamic acid has been found to play a crucial role in
FE as it improves the FE of weaned piglets [28]. This supports the results in the current study where
SGPL1 was associated with L-glutamic acid 5-phosphate as a significant gene-metabolite pair. A brief
overview of the role of SGPL1 in sphingolipid-metabolism regulating FE is given in Figure 4. Therefore,
further investigation of SGPLI-L-glutamic acid 5-phosphate gene-metabolite pair, which was positively
correlated with Duroc while negatively correlated with Landrace concerning FE traits, could be a major
avenue for breed-specific research and its effect on FE and meat quality traits.
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Figure 4. Biological mechanism showing the involvement of SGPLI-L-glutamic acid 5-phosphate
gene-metabolite pair underlying sphingolipid metabolism identified from Duroc correlated/Landrace
anti-correlated cluster.

We also identified the SNRPN gene and Rhodamine B relation in the Duroc correlated cluster.
A previous study showed the SNRPN gene (small nuclear ribonucleoprotein polypeptide N) was
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ubiquitously expressed in pigs [29]. Small nuclear ribonucleoproteins and heterogeneous small nuclear
riboproteins play roles in nucleolar ribosomal RNA (rRNA) and messenger RNA (mRNA) synthesis
in conjunction with spliceosome activity responsible for cleaving on introns from the pre mRNA
molecule [30]. Furthermore, in a study of FE in broiler chickens, a high FE phenotype exhibited
enrichment of ribosome assembly including small nuclear ribonucleoprotein, as well as nuclear
transport and protein translation processes than low FE phenotype [31].

The Duroc anti-correlated/Landrace correlated cluster identified aloesol—ZC2HCIB,
Proanthocyanidin  a2—ZDHHC22; fenamiphos metabolite with ENSSSCG00000040467,
ENSSSCG00000018649 gene; ganoderenic acid e metabolite with ENSSSCG00000037595 and
SEC22C genes; FAM163B gene with taraxacolide 1-0-b-d-glucopyranoside, theogallin, and ketoleucine
metabolites; LRRTM2 gene with cystathionine ketimine and L-glutamic acid 5-phosphate metabolites
and GLS2 gene with L-glutamic acid 5-phosphate, cystathionine ketimine, and paracetamol sulfate
metabolites. One of the significant pathways in Landrace correlated cluster was valine, leucine,
and isoleucine degradation which included the ABAT and ACADS genes (co-functional genes)
identified in the current study. Valine, leucine, and isoleucine are branched-chain amino acids (BCAA)
and have a crucial role in protein synthesis and energy production [32]. The degradation of BCAA can
be glucogenic (valine), ketogenic (leucine and isoleucine), or both (isoleucine). The end products from
their degradation, succinyl-CoA and/or acetyl-CoA can enter the tricarboxylic acid (TCA) cycle for
energy generation and gluconeogenesis or may act as precursors for lipogenesis and ketone body
production through acetyl-CoA and acetoacetate [33]. Glucose metabolism and the TCA pathway in
the skeletal muscle is a key pathway regulating FE traits in pigs [34]. In an interesting proteomic
study involving glucose metabolism and the TCA cycle reported earlier, the proteins catalyzing the
conversion of glucose to pyruvate and oxaloacetate were up-regulated in high-FE pigs while those
involved in the conversion of pyruvate to lactate or acetyl-CoA were down-regulated in high-FE
pigs [34]. This resulted in inhibition of the TCA cycle in high-FE pigs due to the down-regulation of
key catalytic proteins [34]. Thus, the pathway identified with BCAA in the current study may cause
differences in FE concerning specific breed as evident from the indirect link with TCA and FE (Figure 5).
The BCAA also affects protein synthesis, as reported earlier in a study with reduced degradation of
rat skeletal muscle proteins [35]. Additionally, leucine activates mTOR signaling, one of the central
regulators of cell growth and metabolism along with an increase in fatty acid oxidation. With all
these supporting facts of BCAA regulating cellular metabolism, protein, and fatty acid degradation,
which are also key factors influencing FE, the role of the valine-leucine-isoleucine pathway in FE
cannot be overlooked. Furthermore, this pathway has been found over-represented in a GWAS study
for RFI in beef cattle [36] and pigs [3].
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Figure 5. Biological mechanism showing the involvement of genes identified from Duroc
anti-correlated/Landrace correlated clusters underlying feed efficiency.
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We identified the alanine-aspartate-glutamate metabolism KEGG pathway involving the GLS2
and ABAT genes within the Duroc anti-correlated/Landrace correlated cluster. GLS2 is a mitochondrial
glutaminase that catalyzes glutamine to glutamate which is further converted to a-ketoglutarate,
an important substrate for the citric acid cycle to produce ATP in mitochondria. Glutamate is also a
precursor of reduced glutathione (GSH), an important antioxidant molecule, and a scavenger for ROS
(Reactive oxygen species) [37]. ROS are regulated by FE related traits as reported from the previous
studies, higher levels of ROS production and oxidized mitochondrial proteins have been found in
the muscle of low FE chickens [38] while in pigs, ROS production in mitochondria was higher in
semitendinosus muscle of less efficient pigs selected for high RFI compared to high efficient pigs (low
RFI) [39]. GLS2 interacted with L-glutamic acid 5-phosphate and cystathionine ketimine metabolites as
identified from Duroc anti-correlated/Landrace correlated clusters (Figure 5).

The unique metabolites identified in the breed-specific clusters were also previously reported
in another study for the metabolomic analysis of FE related traits in Duroc and Landrace [3].
The breed-specific unique metabolites such as aloesol and ketoleucine affected FE in Duroc [3].
In contrast, rhodamine B, taraxacolide 1-0-b-d-glucopyranoside, and ganoderenic acid were underlying
testing daily gain (TDG) in Duroc [3]. Theogallin and ketoleucine were involved with TDG and daily
gain (DG) in Duroc and Landrace and RFI in Duroc [3]. L-glutamic acid 5-phosphate, cystathionine
ketimine, and paracetamol sulfate were associated with FE and RFI in Landrace [3]. It is worth
highlighting the interaction of metabolites L-glutamic acid 5-phosphate and cystathionine ketimine
identified in this study. While these metabolites interact with the SGPL1 gene as identified in the Duroc
correlated cluster, on the contrary, they interact with the GLS2 gene in the Landrace correlated cluster.
Both SGPL1 and GLS2 were in the top significant pathways in their respective cluster. Therefore,
these gene-metabolite interactions which are highly specific to breed differences open up the avenues
for further research to extrapolate differences in FE related traits concerning breeds.

3.2. ¢cGMP-PKG Pathway Involved with FE-Specific Analysis

In the FE-specific analysis, we found 12 significant gene-metabolite pairs. The gene-metabolite pairs
in high-FE correlated/low-FE anti-correlated cluster were TBXT gene with theogallin and ketoleucine
metabolites; THNSL2 gene with pyrocatechol, 2-pyrocatechuic acid, ketoleucine, and theogallin
metabolites; TUBAL3 gene with neodispyrin metabolite, RNF145 gene with ketoleucine metabolite,
ENAM gene and U2 snRNA with proanthocyanidin a2 metabolite, ENSSSCG00000038441 gene
with adrenochrome metabolite, and PRKG2 gene with levulinic acid metabolite. The pathway
analysis with the unique metabolites identified from high-FE correlated/low-FE anti-correlated
clusters was over-represented for valine-leucine-isoleucine biosynthesis and degradation pathway.
The unique mapped genes and co-functional genes were enriched for the following biological processes:
lyase activity, cGMP metabolic process, phosphorus-oxygen lyase activity, and cyclic purine nucleotide
metabolic process. cGMP-PKG, purine metabolism, and renin secretion were the KEGG pathways
identified in this cluster. The cGMP pathways were also identified in the studies reported earlier with
FE related traits with pigs [40] and beef cattle [41]. The PRKG2 gene, one of the main predictors for
c¢GMP pathways and also identified in this study, encodes the serine/threonine-protein, which binds to
inhibits the activation of several receptor tyrosine kinases and is a regulator of the intestinal secretion,
bone growth, and renin secretion (https://www.ncbi.nlm.nih.gov/gene/5593). PRKG2 encodes for CGKII
(guanosine 3,5-cyclic monophosphate (cGMP)-dependent protein kinase II) and is abundantly expressed
in intestinal epithelium. CGKII relays signaling through a membrane-associated, cGMP-producing
enzyme, guanylyl cyclase (GC). The catalytic activity of this receptor-enzyme is triggered by two
locally produced ligands, the peptides guanylin and uroguanylin [42]. The GC is activated by nitric
oxide (NO) and catalyzes the conversion of intracellular guanosine-5’-triphosphate (GTP) to cyclic
guanosine-3’,5-monophosphate (cGMP). This enzyme has two forms: a membrane protein and a
soluble form with specific kinetic properties and tissue distributions. The soluble GC (sGC) form is
a heterodimeric protein consisting of « (x; and «,,) and 3 (31 and ;) subunits encoded by distinct
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genes [43]. An alpha subunit of guanylyl cyclase, GUCY1A2 and a beta subunit GUCY1B3 was
identified as co-functional genes in the current study and were involved with cGMP, phosphorus
metabolic process, nitrogen metabolic process pathways as identified in the current study. Uroguanylin
is a gastrointestinal hormone primarily involved in fluid and electrolyte handling. It has recently
been reported that prouroguanylin, secreted postprandially, is converted to uroguanylin in the brain
and activates the receptor guanylate cyclase-C (GC-C) to reduce food intake in mice [44]. Reduced
Fl is a characteristic feature for the selection of the pigs known for high FE [1]. The overview of the
mechanism involving the cGMP-PKG pathway and its role in FE is given in Figure 6.
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Figure 6. An overview of gene-metabolite pairs affecting the cGMP-PKG pathway involved with
feed efficiency.

A positive correlation between FI and plasma cholesterol levels is previously established in
pigs [45]. RNF145, which was positively correlated in the high-FE cluster participates in key signaling
pathways of cholesterol homeostasis [46]. RNF145 expression is induced in response to LXR activation
and high-cholesterol diet feeding [46]. Transduction of RNF145 into mouse liver inhibits the expression
of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. On the other hand,
its inactivation increases cholesterol levels both in the liver and plasma [46]. In this study, RNF145 was
identified with ketoleucine as a significant gene-metabolite pair in this cluster (Figure 6). Ketoleucine is
an abnormal metabolite that arises from the incomplete breakdown of branched-chain amino acids
(https://hmdb.ca/metabolitess/ HMDB0000695). Ketoleucine is regulated by branched-chain x-keto acid
dehydrogenase. Studies reported that the branched-chain «-keto acid dehydrogenase catalyzes the
irreversible oxidative decarboxylation of all three branched-chain keto acids (BCKA) derived from
branched-chain amino acids (BCAA), i.e., a-ketoisocaproate (ketoleucine) [47]. They demonstrated
changes in BCKA activity that showed a significant alteration in BCAA and protein metabolism during
starvation in rats [47]. BCAA also plays a crucial role in FE by regulating energy homeostasis in
addition to lipid and protein metabolism as reported in pigs [48].

Apart from RNF145, gene-metabolite interaction of ketoleucine with TBXT and THNSL2 was
also identified in this study. THNSL2 was reported among the top 40 significantly differentially
expressed genes of characterized proteins between high- and low-ADG steers from a liver transcriptome
profiling of beef cattle [49]. This gene has also been associated with abdominal and visceral fat in
humans based on GWAS [50]. An interaction of proanthocyanidin a2 with ENSSSCG00000019329
(U2 snRNA) was also identified with low but positive correlation with high-FE cluster while a
negative correlation with the low-FE cluster. U2 spliceosomal snRNAs are the molecules found in
the major spliceosomal machinery of all eukaryotic organisms and affect their gene expression [51].
U2 snRNA plays a central role in the splicing of mRNA precursors by regulating a dynamic set of
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RNA-RNA base-pairing interactions [52]. From the previously reported studies, the role of precursor
mRNA in gene expression has been established as it removes the intronic sequence from immature
RNA, leading to a production of mature mRNA that might differ in function [53]. Regulation of
pre-mRNA splicing by nutrients modulates the carbohydrate and lipid metabolism [53]. U2 interacts
with proanthocyanidin a2 in the current study. Proanthocyanidin a2 is an antioxidant and has a
broad spectrum of biologic properties against oxidative stress [54]. Proanthocyanidin significantly
increased the activity of antioxidant enzymes such as superoxide dismutase, glutathione peroxidase,
and catalase [54]. The role of antioxidant activity with FE was reported earlier in beef cattle as low
feed efficient steers had greater superoxide dismutase and glutathione peroxidase activity than the
high feed efficient ones, potentially using a greater proportion of energy [55]. Thus, as evident from all
these facts, the potential role of proanthocyanidin a2-U2 interaction in high-FE pigs identified in the
current study might be interesting to explore.

The gene-metabolite pairs identified in the present study over-represented some pathways that
have been reported to have a role in FE related traits. Some of the genes identified are novel and
were not included in the pathway analysis. Since these gene-metabolite pairs selected have a highly
significant correlation with respect to each study group, a detailed study of these genes and metabolites
are needed to better understand their role in FE related-traits. Further studies on the identified
gene-metabolite pairs may assist in the discovery of biomarkers as these significant pairs identified
directly reflect the phenotype as revealed by the candidate gene-expression with the downstream
metabolite differences in pigs with low and high FE groups.

4. Materials and Methods

4.1. Data Resource and Phenotype Generation

The pigs used in this experiment were raised at the pig testing station “Begildgard” operated
by SEGES within Landbrug and Fodevarer (L&F: Danish Agriculture and Food Council). Pigs were
ad libitum fed and free water supplied. The authors of this study were not responsible for animal
husbandry, diet, and care as the testing station is a facility within the Danish breeding program run by
SEGES. The initial bodyweight of the pigs before the testing period was approximately 7 kg, followed
by a 5-week acclimatization phase. For the phenotypic traits, we calculated FCR and RFI, as reported
in our previous study [40]. We considered the same classification of animals in this study as efficient
and inefficient (low and high FCR, respectively), as previously reported [40]. The classification was
done by selecting pigs that were one standard deviation above or below the mean FCR for each breed
as previously reported.

4.2. Gene Expression Profile, Metabolite Profile, and Data Analyses

For transcriptome analysis, we collected psoas major muscle from 40 purebred uncastrated male
pigs from two breeds comprising of 12 Danbred Duroc and 28 Danbred Landrace. The tissue samples
were preserved in RNAlater (Ambion, Austin, TX, USA) immediately post-slaughter and stored at
—25 °C until subsequent analysis. Total RNA isolation and sequencing were carried out by BGI
Genomics. Paired-end sequencing (100 bp) was performed on the BGISEQ-500 platform after Oligo dT
library preparation. Read quality control, mapping, and gene counts were reported elsewhere [14].
Lowly expressed genes were filtered out, and the gene counts normalization was carried out by
applying the variance stabilizing transformation (VST) function from DeSeq2 [56].

To identify significant gene-metabolite pairs, we analyzed the data considering two approaches,
i.e., breed-specific (Duroc-Landrace) and FE-specific (low-high FE groups). Thus, we fitted a linear
model for adjusting the read counts with the covariates using the Limma R package [57]. For adjusting
the data to identify breed-specific differences, we adopted the following model:

Yija = 4+ Fi + Rj+ A + P+ &
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where y;jy: is the normalized read counts; i is the intercept; F;: is the fixed effect of the FE group
(two levels, high and low); R jiis the covariate for the RIN values; Ay: is the covariate for the animal’s
slaughter age, in days; P: is the fixed effect of the pen (8 levels); ¢;j: is the random residual effect
associated with each observation.
To identify differences between high and low FE groups, the breed effect was added in the linear
model, as follows:
Yijg = g+ Bi + Rj + Ax + P + €

where y;j: is the normalized read counts; : is the intercept; B;: is the fixed effect of the breed (two
levels, Duroc and Landrace); R jiis the covariate for the RIN values; Ay: is the covariate for the animal’s
slaughter age, in days; P;: is the fixed effect of the pen (eight levels); ¢;: is the random residual effect
associated with each observation.

Regarding the identification of the metabolites, we used an untargeted metabolomic approach,
as reported elsewhere [3]. In summary, 5mL of blood samples at two-time points were collected
from jugular venipuncture of each non-fasted pig into the EDTA tubes and immediately placed on
ice. The plasma samples extracted from 109 animals (59 Duroc and 50 Landrace) were subjected to
metabolomics analysis, as described in a previous study [3]. The metabolite data from this study were
accessed using MetaboLights accession ID MTBLS1384 with a link: https://www.ebi.ac.uk/metabolights/
MTBLS1384. Due to the need for paired data to carry the integrative analysis, only those samples with
both metabolite and RNA-Seq data were used herein. The metabolite data from time-point two in
40 pigs were log-normalized before fitting into a linear model. Only those with the relative standard
deviation > 0.15 were used based on the raw counts. As proposed for the RNA-seq, we adjusted
the log-normalized metabolite data considering both approaches. First, the following model was
employed for the breed-specific analysis:

mijg = L+ Fi + Dj+ Ag + P + €ij

where m;j: is the is the log-normalized concentration of each metabolite (1 = 749); u: is the intercept;
F;: is the fixed effect of the FE group (two levels, high and low); D it is the fixed effect of the batch for
metabolomic analysis (two levels); Ay: is the covariate for the sampling age, in days; P;: is the fixed
effect of the pen (8 levels); ¢;j;: is the random residual effect associated with each observation.

For the FE-specific group approach, we fitted the data as follows:

Mijg = ‘u+Bi+D]‘+Ak+P] +‘Si]'kl

where Miji: is the is the log-normalized concentration of each metabolite (1 = 749); u: is the intercept;
B;: is the fixed effect of the breed (two levels, Duroc and Landrace); D;: is the fixed effect of the batch
for metabolomic analysis (two levels); Ay: is the covariate for the sampling age, in days; P;: is the fixed
effect of the pen (8 levels); ¢;: is the random residual effect associated with each observation.

The metabolites were annotated with HMDB (Human metabolome database) based on library
search of the masses in HMDB with a mass uncertainty of 0.005 Da or 5 ppm. Those metabolites that
did not correspond to HMDB entries were left unannotated and removed from the analysis.

4.3. Integration of Transcriptomic and Metabolomic Data Based on the Linear Model

To uncover the complex relationship between metabolites and genes, we adopted a linear model
framework using the IntLIM (Integration of Linear model) R-package (version 0.1.0) (https://github.com/
mathelab/IntLIM) [23]. The IntLIM approach allows us to integrate the metabolomic-transcriptomic
data considering a case-control design. Thus, as initially proposed, we compared the breeds (Duroc
vs. Landrace) and the FE groups (low and high FCR animals). As a quality control step from IntLIM,
we filtered out genes with the lowest 5% of the variation. Gene and metabolite exploratory analyses
were performed by applying Principal Component Analysis to identify breed- and FE-specific clusters.
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The linear model for data integration is given as described in the following equation:

m =1+ pag+pPap+pa(g:p) +¢

where m: is the log-normalized metabolite abundance; f; : is the intercept; fog: is the normalized and
adjusted gene expression level; fap: is the phenotype (FE group—high and low FE; or breed—Duroc and
Landrace); B4(g : p) : is the interaction between gene expression and phenotype; ¢: is the residual effect
associated with each observation (¢ = N(0, 0)).

A statistically significant two-tailed p-value of the gene-phenotype (g-p) interaction indicates the
difference in the phenotype of FE groups (high and low) or breed (Duroc and Landrace) calculated by
the slope relating gene-expression and metabolite abundance [23]. The two-tailed p-value indicates
that the slope relating gene-expression and metabolite abundance is different from one phenotype
compared to the other. Thus, it was used to identify gene-metabolite associations that are specific to a
particular phenotype (breed—Duroc and Landrace, FE—low and high). We calculated the absolute
difference in the Spearman correlation identified from IntLIM between the FE and breed groups to find
the significant (p < 1077) gene-metabolite pairs. The absolute difference between the FE group was
estimated as ("Low_cor — "High_cor) Where (rHigh_wy) is the correlation given for a gene-metabolite pair
in high-FE group (Table 2) while (710 cor) is the correlation given for a gene-metabolite pair in the
low-FE group (Table 2). The absolute difference in the correlation between the breeds was estimated as
(Landrace_cor = "Duroc_cor), Where, (rDuroc_cor) 18 the correlation for a given gene-metabolite pair in Duroc
(Table 1) while (7L4udrace_cor) is the correlation for a gene-metabolite pair in Landrace (Table 1).

4.4. Pathway Over-Representation Analysis

In the breed-specific and FE-specific group, the same metabolite can be related to more than
one gene and vice-versa. So, we screened for the common metabolites and genes in the group
and referred them as unique metabolites and unique genes respectively in this study. We analyzed
the unique metabolites in each group (breed-specific and FE-specific) using Metaboanalyst 4.0
(www.metaboanalyst.ca) [58]. We used three parameters for the pathway analysis: the pathway
library, algorithm for pathway over-representation analysis, and algorithm for topological analysis.
For the current study, we selected the Homo sapiens (KEGG) pathway library to estimate the importance
of the compound in a given metabolic pathway. For pathway over-representation and topology
analysis, we used the hypergeometric test and relative-betweenness centrality algorithm, respectively,
to measure the connections with the other nodes, including the number of shortest paths going through
the node of interest.

Regarding the unique mapped (with chromosomal location information) genes, we carried out
a co-functionality analysis using GeneMANIA [59] (www.genemania.org). GeneMANIA considers
our query list of unique genes identified in each cluster (breed-specific and FE-specific) and
allows us to predict the co-functional genes underlying similar functions. Thus, we analyzed
the unique genes in each cluster (breed-specific—Duroc correlated cluster, and Duroc anti-correlated
cluster, FE-specific—High-FE correlated cluster) to identify the co-functional genes in each cluster.
Next, we used the unique genes, as well as the co-functional genes in each cluster of each group,
to identify the GO terms using GOrilla (Gene ontology enrichment analysis and visualization tool)
(http://cbl-gorilla.cs.technion.ac.il/) [60]. To this end, the Homo sapiens were used as the reference,
and the entire set of identified and annotated genes in this study (1 = 15,187 genes) was used as a
background. Over-representation KEGG pathway analysis with the unique and co-functional genes
in each cluster was performed using ClueGO version 2.5.4 [61] to cluster redundant terms with a
kappa score of 0.4 and S. scrofa annotation as the background. The pathways were selected after
filtering for group p-value corrected with Bonferroni step down < 0.05 and those with at-least two
over-represented genes.
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5. Conclusions

This study applied a novel approach for metabolome-transcriptome data integration using the
linear model unveiling potential gene-metabolite pairs affecting the biological processes related to FE
in pigs. To the best of our knowledge, this is the first study to report the gene-metabolite interaction
mechanisms that may determine nutrient partitioning and energy utilization and hence affect FE in pigs.
The approach followed here provided many interesting genes and metabolites with significant p-values.
While some of the metabolites and genes identified were known with their association for FE, others are
novel and provide new avenues for further research. The unique metabolites were associated with
valine-leucine-isoleucine biosynthesis/degradation and arginine-proline metabolism. The unique genes
enriched for sphingolipid metabolism, valine-leucine-isoleucine degradation, alanine-aspartate-glutamate
pathway (breed-specific), and cGMP-PKG signaling pathway (FE-specific). Further validation of genes,
metabolites, and gene-metabolite interactions in a cohort with more animals with additional features
such as alteration in dietary components, farm variations, and other environmental effects would help
to establish a framework for future FE prediction using metabolomics biomarker profiles that could be
practical to use in large populations other than genomic profiling. More data would also make it possible
to model the complex relations in gene-metabolite profiles over time more accurately and will help to
elucidate the regulatory mechanisms affecting the pathways underlying FE.
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Abstract: The use of anabolic steroid hormones as growth promoters in feed for farm animals has
been banned in the European Union since 1988 on the basis of Council Directive 96/22/EC. However,
there is still ongoing monitoring and reporting of positive findings of these banned substances in
EU countries. The aim of this work was to investigate the efficacy and discriminatory ability of
metabolic fingerprinting after the administration of 173-testosterone esters to pigs. Plasma and urine
samples were chromatographically separated on a Hypersil Gold C18 column. High resolution mass
spectrometry metabolomic fingerprints were analysed on a hybrid mass spectrometer Q-Exactive.
Three independent multivariate statistical methods, namely principal component analysis, clustre
analysis, and orthogonal partial least squares discriminant analysis showed significant differences
between the treated and control groups of pigs even 14 days after the administration of the hormonal
drug. Plasma samples were also analysed by a conventional quantitative analysis using liquid
chromatography with tandem mass spectrometry and a pharmacokinetic curve was constructed
based on the results. In this case, no testosterone residue was detected 14 days after the administration.
The results clearly showed that a metabolomics approach can be a useful and effective tool for the
detection and monitoring of banned anabolic steroids used illegally in pig fattening.

Keywords: metabolomic; anabolic practices; testosterone; plasma; urine; pigs

1. Introduction

The use of hormones as growth promoters for fattening purposes in livestock has been banned in
the European Union since 1988 by Council Directive 96/22/EC. However, the banned substances are still
reported as positive in the European residue monitoring plans [1]. One of these banned substances is the
anabolic and androgenic steroid testosterone, which naturally occurs in animal organisms. Testosterone
is endogenously secreted by Leydig cells (testes) and is able to accelerate muscle growth (anabolic
effect) and improve the development of male characteristics (androgenic effect). Testosterone is then
secreted into the bloodstream where it primarily (98%) binds to a specific protein beta-globulin termed
sex hormone binding globulin (SHBG) and to a lesser extent to albumin. By this binding, testosterone
is biologically protected from inactivation in the liver, and is subsequently transported to the target
tissues via the bloodstream. A small amount of circulating testosterone is converted to estradiol,
but the greater part of free testosterone is converted to 17-ketosteroids, particularly androsterone
and its isomer etio-cholanolone (androsterone metabolites) [2]. In some target tissues, testosterone is
reduced to 5a-dihydrotestosterone (DHT) by the cytochrome P45y enzyme 5x-reductase, an enzyme

Metabolites 2020, 10, 307; doi:10.3390/metabo10080307 67 www.mdpi.com/journal/metabolites



Metabolites 2020, 10, 307

highly expressed in male sex organs, skin, and hair follicles. The inactivation and degradation of
testosterone and its metabolites in cattle and pigs occurs mainly in the liver and, to a lesser extent,
in the kidneys. These mechanisms of inactivation and degradation of testosterone occur with the
participation of specific enzymes involved in the catalytic action of the partially transformed steroid
molecule. Inactivation and degradation include the following: addition of two hydrogens (reduction)
to a double bond or ketone group; removal of two hydrogens (oxidation) from a hydroxyl group;
addition of a hydroxyl group (hydroxylation) to a carbon in the steroid molecule; and conjugation
of testosterone by reaction of sulfuric acid or glucuronic acid with a hydroxyl group on the steroid
molecule, forming testosterone sulphates and glucuronides, respectively. The sulfated or glucuronide
conjugated form of testosterone is then excreted in the urine [3].

Testosterone (a natural steroid) is illegally administered to animals in the form of synthetic
steroid esters, but these are rapidly hydrolysed to a natural steroid in vivo. For example, after
oral administration of testosterone undecanoate, unchanged ester was found in athletes’ plasma
for only 6 h [4]. In analytical practice, it is difficult to distinguish between metabolites of natural
endogenous testosterone, which is always present in body fluids (plasma, urine), and metabolites
of identical exogenous testosterone derived from hydrolysed synthetically prepared esters [5].
In human doping control, this problem is usually solved by determining the urinary ratio of
173-testosterone/17x-testosterone levels (T/EpT ratio) or by using gas chromatography with isotopic
mass spectrometry (GC-IRMS) and application of the Bc2c isotope ratio [6]. The World Anti-Doping
Agency (WADA) has established a decision limit if a T/E ratio is equal to or greater than 4, or an
epitestosterone (17a-testosterone) concentration is greater than 200 ng mL~! which would require a
testing procedure to confirm doping [7,8]. Although important in humans, these analytical parameters
have failed in animals because of differences in their metabolism [9]. In food safety practices, relatively
high or low levels of 173-testosterone and 17 «-testosterone in urine are often ignored due to a lack
of statistically valid reference data on naturally occurring endogenous background levels in animals.
However, the EU Community Reference Laboratories (CRLs) for analytical methods recommended
in the national monitoring control plans to limit concentrations for plasma (CCy for confirmatory
methods) to 0.5 pg L~! for heifers 18 months old, 10 ug L' for bullocks six months old, and 30 pg L~!
for bulls 6-18 months old [10]. For other animals, no such recommendations exist for 173-testosterone
in plasma or urine.

Over time, a number of targeted analytical methods for the determination of testosterone in
various biological samples (plasma, urine, muscles and hair) have been developed and described in
the literature. In the 1990s, testosterone measurements were often performed by radioimmunoassay
(RIA) [11] and immunoassays (ELISA) [12]. Immunological methods are fast, easy-to-perform, cheap,
and have a short time to result for a large number of samples, so today they are preferably used in
many laboratories primarily for screening. However, cross-reactivity and sensitivity in these assays is
a common problem, so these methods are no longer good enough for the detection and quantitative
determination of testosterone.

Gas chromatography (GC) and liquid chromatography (LC) are other alternatives for the targeted
analysis of testosterone and its esters. GC methods coupled with mass spectrometry (MS) are usually
applied for the determination of anabolic steroid levels ranging from micrograms to nanograms in
biological samples [13]. The detection of testosterone esters at 1 ng mL~! in human plasma by GC/MS
has been reported [14]. However, GC-MS methods require a complicated, time-consuming, and
expensive step of sample derivatization for steroid analysis. In general, these derivatives are unstable
and are susceptible to thermal degradation during analysis, which, in particular, significantly affects
the reproducibility of the method [15]. In contrast, LC-MS is a good solution for quantitative analysis of
steroids because the included sample preparation step is easy, fast, economical and requires no further
derivatization step. The high performance liquid chromatography with mass spectrometry (HPLC-MS)
used for the analysis of steroid esters in plasma showed greater sensitivity than GC-MS [16]. HPLC
is also a commonly used separation technique for the determination of testosterone and its esters in
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body fluids due to its sufficient sensitivity, good resolution, robustness and short analysis time [17].
Ultra-high performance liquid chromatography (UHPLC) coupled with tandem mass spectrometry
(MS/MS) or today with high-resolution (HR) mass spectrometry is another powerful approach to
significantly improve peak resolution, selectivity, sensitivity and speed of the analysis [18-20]. It should
be noted that an interesting alternative to inconclusive urine analyses (endogenous testosterone vs.
synthetic testosterone) at veterinary inspection may be the analysis of intact natural steroid esters in
the hair by UHPLC-MS/MS [21,22] or DESI-MS (desorption ionizing mass spectrometry) [5].

Recently, new synthetic xenobiotic growth promoters have been designed and new ways of
application employed, such as the administration of low dose cocktails. However, metabolomics
approaches to non-targeted screening for the detection of anabolic practices with natural steroid
hormones might change this situation in the future [9,23]. Indeed, several scientific studies have
demonstrated the efficiency of mass spectrometry with high resolution based on urinary fingerprinting
to discriminate anabolised animals from control ones. Rijk et al. [24] in their work showed the use of a
novel untargeted metabolomics based strategy for the measurement of the anabolic steroid DHEA
(dehydroepiandrosterone) and pregnenolone in bovine urine with liquid chromatography coupled
with time-of-flight mass spectrometry (LCT Premier). In the same year, Kieken et al. [25] presented
a metabolomics strategy involving the characterization of global metabolomic fingerprints in urine
samples of non-treated and reGH (recombinant equine growth hormone)-treated horses by LC-HRMS
(LTQ-Orbitrap) as a new screening tool for growth hormone abuse in horseracing.

Anizan et al. [26] presented in their study a metabolomics approach to 4-androstenedione (AED)
detection after its administration to heifers. Using untargeted profiling by GC-MS, they identified
5x-androst-2-en-17-one in urine as a new biomarker of anabolic AED abuse. From 2011 to the present,
several studies have been conducted in cattle in relation to the administration of banned substances for
fattening, which have confirmed the correctness of the research focus on non-targeted analyses based
on metabolomic approaches [27-32]. However, all these studies were in all cases carried out only in
cattle, although in many European countries, for example, pork was consumed significantly more than
beef. The only metabolomic study published so far for another animal species was conducted in 2017
in pigs to which a banned beta-agonist substance, ractopamine, was administered [33].

The present study aimed to investigate the efficacy of metabolomic profiling of pig plasma and
urine samples by high resolution mass spectrometry (HRMS) to discriminate between the testosterone
ester group and the control group. The experiment was performed in two independent groups of pigs,
where individual animals were assigned to groups based on randomization. Plasma and urine samples
were continuously collected at specified time intervals, prepared and subsequently measured on a
high-resolution hybrid tandem mass spectrometer (QExactive). The obtained metabolomic fingerprints
were processed and statistically analyzed using principal component analysis (PCA) and orthogonal
partial least squares discriminant analysis (OPLS-DA) multivariate methods. Furthermore, the results
of the non-targeted metabolomic analysis obtained in this way were compared with the results of the
targeted determination of 17(3-testosterone in the same plasma and urine samples. All pigs in the
experiment were weighed at weekly intervals and the anabolic effect of testosterone was studied based
on the body weight gain.

2. Results

2.1. Anabolic Effect of 17p-Testosterone (Esters)

All animals from both groups were weighed at regular weekly intervals during the treatment
experiment, and the body weight gain (BW) in kg is shown in Tables 1 and 2. The anabolic effect
was expressed in a graphical form of the dependence of the body weight of experimental pigs on
the time interval for both treatment and control groups. Two linear regression models were used to
highlight the growth trends of both groups of pigs and the statistical assessment of the anabolic effect of
17p3-testosterone (Figure 1). The average weekly body weight gains were calculated from the detected
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BW data for each group of pigs and are shown in Supplementary Materials Table S1 and Figure S1.
All animals were clinically monitored during the experiment and were in good health until slaughter
at the end of the experiment. The treatment experiment was performed without any problems.

Table 1. Body weight of the individual pigs treated with a hormone preparation containing a testosterone
ester combination.

N; Ear Number Sex BW (kg)/Week
1 2 3 4 5 6 7
1 1 J 28.1 35.0 41.3 45.0 52.1 58.0 69.0
2 2 J 29.4 334 36.9 43.8 52.1 53.8 63.6
3 4 J 341 40.5 442 51.6 58.8 64.2 74.0
4 5 J 26.0 30.8 36.6 45.5 52.0 60.5 66.5
5 7 J 23.5 27.0 29.5 33.7 39.2 41.8 50.2
6 11 ? 19.9 23.2 247 30.0 35.6 38.6 47.0
7 13 ? 29.6 33.9 37.3 45.0 50.2 54.6 63.5
8 14 ? 374 434 455 55.0 59.2 65.8 75.0
9 16 Q 30.4 35.3 37.4 44.8 51.2 56.7 66.0
10 25 Q 32.7 32.0 38.0 40.0 45.0 52.0 56.0
11 26 Q 22.5 46.0 54.0 59.0 67.5 73.0 81.0
12 27 J 19.9 34.0 38.0 40.5 47.0 54.0 60.0
13 28 J 26.7 36.5 42.0 46.0 52.5 60.0 66.0
Female
Average 26.8 33.9 38.4 43.7 50.5 56.1 64.2
CvV 20.1 182 23.3 30.5 36.7 53.0 57.2
SD 45 43 48 55 6.1 7.3 7.5
CI (95%) lower 22.7 30.0 33.9 38.6 449 49.3 57.2
CI (95%) upper 31.0 37.8 42.8 48.8 56.1 62.8 71.2
Median 26.7 34.0 38.0 45.0 52.1 58.0 66.0
SDm 3.6 34 3.7 4.6 5.0 57 6.1
Male
Average 28.8 35.6 39.5 45.6 51.5 56.8 64.7
CvV 42.3 67.7 95.4 108.7 122.4 140.5 152.8
SD 6.5 8.2 9.8 10.4 11.1 119 124
CI (95%) lower 21.9 27.0 29.2 34.7 39.8 443 51.8
CI (95%) upper 35.6 443 49.7 56.6 63.1 69.2 77.7
Median 30 34.6 37.7 449 50.7 55.7 64.8
SDm 45 5.8 7.5 74 8.1 8.8 8.7

Table 2. Body weight of the individual pigs in the control group.

N; Ear Number Sex BW (kg)/Week

1 2 3 4 5 6 7
1 8 d 26.1 31.1 36.0 43.0 49.0 51.9 57.0
2 9 d 26.3 30.2 34.6 38.6 442 48.1 54.5
3 12 ? 28.8 33.9 37.5 43.5 50.4 52.6 58.9
4 15 ? 29.2 33.8 36.1 43.5 50.0 54.2 60.5
5 21 ? 29.4 33.1 38.0 42.5 48.0 52.1 58.6
6 22 Q 304 36.0 43.0 45.5 51.0 55.0 60.0
7 23 e 309 345 40.5 440 48.0 52.5 60.5
8 24 d 249 35.0 39.5 42.0 445 51.5 58.1
Average 28.3 33.5 38.2 42.8 48.1 52.2 58.5

Cv 4.8 3.8 7.5 4.0 6.6 42 4.1

SD 22 1.9 2.7 2.0 2.6 2.1 2.0
CI (95%) lower 26.4 31.8 35.9 41.1 46.0 50.5 56.8
CI (95%) upper 30.1 35.1 40.4 44.5 50.3 54.0 60.2
Median 29.0 33.9 37.8 43.3 48.5 52.3 58.8

SDp 15 1.5 21 1.8 1.7 1.8 1.5
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Figure 1. A combined diagram of two regression models for testosterone treated pigs (male and female)
and the control group of pigs.

2.2. Targeted Analysis of 17 B-Testosterone in Plasma

2.2.1. Identification of Analytes

Standards of 173-testosterone, testosterone propionate, testosterone isocaproate, testosterone
decanoate, and 17f3-testosterone-D, internal standard were always identified on the basis of the
retention time (see Figure 2) obtained from the chromatogram and mass accuracy (MA) parameters
calculated from mass spectra for precursor and product ions of each analyte by comparing the
theoretical mass m/z with the measured experimental mass /z. The obtained results and the calculated
MA values determined by the standards are presented in Supplementary Materials Table S3 and in
the diagrams showing the detected experimental mass spectra of the analyte standards, always in
comparison with the theoretical mass spectra (Supplementary Materials Figures S2 and S3).
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Figure 2. Chromatogram of the analysed plasma samples fortified with standards at 10 ug L™! (ppb),
RT indicates retention time, AA indicates the peak area, SN indicates signal to noise ratio, black
chromatogram represents 17(3-testosterone, red chromatogram represents IS 173-testosterone-D2, green
chromatogram represents 173-testosterone propionate, blue chromatogram represents 173-testosterone
decanoate and the yellow chromatogram represents 173-testosterone isocaproate.
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2.2.2. Study Validation

The targeted quantitative method was in-house validated complies with model-dependent
performance characteristic covering specificity, selectivity, precision, repeatability, within-laboratory
reproducibility, the calibration curve, detection limit (LOD), limit of quantification (LOQ), decision
limit (CCo), detection capability (CCf), and ruggedness according to the recommendation defined in
Commission Decision 2002/657 / EC [34] and the reference guidelines in VICH GL49 [35].

The linearity of the quantitative method was determined for testosterone and testosterone ester
analytes that were fortified into real pig plasma samples with increasing concentrations. The model
samples were prepared according to the procedure described in Section 4.5. A matrix calibration curve
was constructed based on the measured peak area ratios (Std. area/IS area) and the corresponding
concentration levels. The parameters of the linear regression models were calculated by the least
squares method (with a weight coefficient w = 1/2) based on ISO 11843: 2 [36]. Correlation coefficients
(r), linear regression model parameters (y = a + bx) and critical curve limits (LOD, LOQ) were calculated
and reported in Table 3. The calibration curve for 173-testosterone, which was used to back-estimate the
results of real plasma samples obtained during the experiment, was shown graphically (Supplementary
Materials Figure S4). The complete standard area and internal standard area data that was used to
calculate the 173-testosterone calibration curve are presented in Supplementary Materials Table S4.

To determine the precision and repeatability (within-laboratory reproducibility) of the targeted
analysis method, the standard deviation (SD) and variation coefficient (CV, %) were determined
and calculated by repeated measurement of fortified plasma samples at two concentration levels.
The calculated CV (1 = 12) was less than 3.09% for a concentration level of 5 ng mL~! 17B-testosterone
in plasma, demonstrating the good precision and repeatability required for confirmatory residual
analyses by the Commission Decision 2002/657/EC. The results of the validation study for precision,
repeatability, and other calculated statistics are shown in Supplementary Materials Table S5.

Table 3. Regression parameters of matrix calibration curves in the concentration range 0 to 80 ng mL 1.

SD of the Correlation LOD LOQ

Analyte Intercept (a)  Slope (b) Slope Coefficientr (ngmL1)  (ng mL1)
17p3-testosterone 0.0518 0.0690 0.00096 0.9982 0.32 0.63
173-testosterone propionate 0.0291 0.0482 0.00086 0.9991 0.19 0.52
173-testosterone decanoate 0.0115 0.0713 0.00089 0.9979 0.21 0.54
173-testosterone isocaproate 0.0248 0.0448 0.000073 0.9996 0.17 0.43

Note: LOD and LOQ were estimated according to TUPAC (Direct Signal Method) methodology.

2.2.3. Pharmacokinetic Profile of 17-Testosterone

The experiment included targeted analysis of the primary testosterone metabolite in porcine
plasma after a single i.m. administration and subsequent determination of the pharmacokinetic curve.
Plasma concentrations of free 17p-testosterone for individual pigs were determined based on an
estimation from the matrix calibration curve (see Supplementary Materials Table S6). The resulting
plasma concentrations of 173-testosterone were used to construct a pharmacokinetic curve, and a graph
of concentration versus time is shown in Figure 3.
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Figure 3. Plasma concentrations in pigs—time profile of testosterone after a single i.m. administration
of 0.6 mL Sustanon 250 mg/mL inj.; the points on the curve represent the detected 17-testosterone
plasma concentrations in individual pigs.

2.3. Metabolomic Study of Blood Plasma and Urine

The obtained plasma and urine samples were processed in the laboratory as described in Section 4.2.
The metabolomic profiles of the individual samples on day 14 after the administration of the hormonal
preparation SUSTANON were measured as described in Section 4.4. Both groups of plasma and urine
metabolomic profiles were processed for a comparison in XCMS software and, alternatively, using the
SIEVE company software. Both variants of data processing identified the approximately corresponding
number of ions (1/z) of peaks or metabolites: 2500 ions were found in plasma and 1400 ions were
found in urine. In both cases, the original number of ions in these data sets was further reduced
based on a p-volume < 0.05 for further statistical processing. The source data of sets X (n x m) after
reduction each contained 7 = 21 rows (animal objects) and m = 254 columns of statistically significant
identified peak areas or metabolites for plasma and m = 213 columns for urine, respectively. Datasets
were transformed using two different methods, i.e., column centering [37] and probabilistic quotient
normalization (PQN) [38], and a natural logarithm was applied for their scaling before the subsequent
multivariate statistical analysis. The hotelling T? test criterion did not identify any outlier in both data
sets (Supplementary Materials Figures S5 and S6).

Multidimensional statistical methods such as principal component analysis (PCA), clustering
analysis (CA) and orthogonal partial squares discriminant analysis (OPLS-DA) were applied for
finding relationships between metabolomics datasets of plasma and urine. PCA score plots for plasma
and urine samples (Figure 4) and a dendrogram from CA (Figure 5) visibly differentiated between
the control group and the treated group of pigs after 17 beta-testosterone administration. The main
graphical results from the OPLS-DA analysis of data matrix of X mass spectra of plasma and urine
samples versus data matrix Y for binary variables (1 = group of treated pigs, 2 = control group) were
generated by the proposed statistical model and are shown in Figure 6. Furthermore, the coefficients
R2(X) = 0.616, R*(Y) = 0.987 for the fit and Q*(Y) = 0.898 for prediction of the model (according to
cross validation) were calculated by OPLS-DA analysis for plasma and the coefficients R%(X) = 0.469,
R%(Y) = 0.997 and Q?(Y) = 0.879 for urine data. The OPLS-DA permutation tests further confirmed that
the proposed statistical models are correct and robust (Supplementary Materials Figures S7 and S8).
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A volcano plot and variable importance in the projection (VIP) plot and S-plot from OPLS-DA were
employed to determine the most discriminating metabolites between the treatment group and the
control group (Figure 7).
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Figure 4. PCA Score plots for plasma (A) and urine (B) data matrix, blue ellipse, and blue point
descriptions (K) represent statistically significantly different samples from the control group of pigs
versus the treated (T) group of pigs; added urine labelling: M—male and F—female (Centering,
STATISTICA).
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Figure 5. CA dendrogram of matrix data objects for plasma (A) and urine (B), labels: K—control group,
T—treated group and M—male, F—female (by Euclidean distance method, STATISTICA).
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Figure 6. The OPLS-DA score plots for plasma (A) and urine (B) data matrix demonstrate robust
discrimination between the control group of pigs marked with red colour and the group of treated pigs
marked with blue colour (PQN scaling, R package). The control group indicated by red Pig number 8,
9,12,15,21, 22,23, and 24. The treated group indicated by blue Pig number 1, 2,4, 5,7, 11, 13, 14, 16,
25,26, 27, and 28.
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Figure 7. The OPLS-DA Vulcano plots for plasma (A) and urine (B) data matrix, only metabolites with
the VIP scores above 2 were considered significant. A list of specific numbers of metabolites is given in
Table 4.
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2.4. QC Samples

To control the quality of the metabolic profile (fingerprint) measurement, a constant amount of
the internal 173-testosterone-D2 standard was added to each plasma and urine sample (Figure 8),
and pooled QC samples were included in each measured acquisition. The RT (deviation up to 10%),
peak area (deviation up to 10%) and MA (Appm < 3) were checked in each measured metabolomic profile.
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Figure 8. Pooled urine QC sample, control chromatogram for internal standard and corresponding
mass spectrum (experimental m/z = 291.22879, Appm = 0.1).

3. Discussion

The experimental study was carried out in pigs with the main aim of demonstrating the suitability
or unsuitability of metabolomic approaches and techniques for detecting the use of banned androgenic
anabolic steroids in animal feed and food of animal origin in European countries. All experimental data
obtained from the performed study were statistically evaluated using interactive computer-oriented
approaches and specialized statistical software with the main emphasis on the correct interpretation of
results and endeavour for obtaining a more comprehensive view of the analyzed and assessed topics
of our study. The results were presented primarily in a graphical form, as opposed to the mathematical
evaluation of the performed statistical analyses, because they generally have a higher predictive ability
for the overall evaluation of the achieved effect.

3.1. Anabolic Effect of 17p-Testosterone (Esters)

From the obtained experimental data of BW measurements in a weekly time interval, estimates of
standard univariate statistics (mean, variance, standard deviation, median, median standard deviation
and 95% confidence interval) were calculated for each time period, separately for the treated pigs
and the control group (Tables 1 and 2). The mean BW of pigs from the treated group was lower
(mean = 27.7 kg, CI = [24.5; 30.9]) 1 week after 173-testosterone administration than the mean BW of
pigs from the control group (mean = 28.3 kg, CI [26.4; 30.1]). At the end of the weighing at week 7
after the administration, this situation was reversed. The mean BW of pigs from the treated group
(mean = 64.4 kg, CI = [58.6; 70.2]) was 9% higher than the mean BW of pigs from the control group
(mean = 58.5 kg, CI = [56.8; 60.2]) and averages differed significantly (t-test, p < 0.05).

Two linear regression models of BW growth versus time were designed to test the anabolic
effect, each model especially for the group of treated pigs and the data of the control group (Figure 1).
Both models were tested by regression diagnostics. Testing of the regression triplet (data + model
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+ method) showed that the proposed linear models were significant and correct. Estimates of the
regression parameters of both linear models are given in Supplementary Materials Table S2. Statistical
testing of a comprehensive comparison of both models over the whole-time interval was performed.
The Chow test [39] was used to test equality between sets of coefficients in two linear models, using
the Fisher-Snedecor distribution with m and r degrees of freedom as statistics. The calculated statistic
Fch = 13.583 was greater than the critical value of Fyg52.62) = 3.150. It could be concluded that the
hypothesis Hy was rejected at the significance level & = 0.05 and both models were not equal. Applying
the conclusion of the Chow test, it can be concluded that the results of BW growth detected in pigs
in relation to the time interval can be considered different for both groups of pigs, e.g., the effect of
the anabolic effect of testosterone was demonstrated. Since the initial weights of the two groups of
pigs did not differ significantly, it can be stated that in this case the slope of the two linear models
compared is statistically significantly different. This partial conclusion of the study is also evident
from the graphical comparison of the linear curves of both groups of pigs (see Figure 1). The anabolic
effect, but in this case of nandrolone (19-nor 173-testosterone), a synthetic analogue of testosterone,
has recently been similarly demonstrated in treated barrows vs. control barrows [40].

3.2. Targeted Determination of 17p-Testosterone in Plasma

An analytical method for the targeted determination of 17(3-testosterone in pig plasma based
on LC-MS/(HR)MS was developed as part of this study to estimate the pharmacokinetic curve.
The quantitative method of analysis was developed and validated as a confirmatory method as
required by the European Directive for residues [34]. The correct identification of targeted analytes
using the mass accuracy (MA) criterion [41,42] and quantification based on a matrix calibration curve
with parameter estimates for precision and repeatability were part of the validation of the confirmation
method; the results are given in Section 2.2. A detailed description of the methodology used for the
identification and validation of targeted analytes has been previously described by Stastny et al. [43].

All calculated MA values (Supplementary Materials Table S2) ranged from 0.1 to 1.9 (Appm) for the
individual analytes determined, and these calculated values were lower than the allowed instrumental
tolerance < 3 ppm for the QExactive mass spectrometer used. The tolerance of retention times (RT)
was below + 10% in all cases. Furthermore, a very good chromatographic separation of the analytical
method from the chromatogram shown in Figure 2 is evident, where the signal-to-noise ratio (SN) value
shown is significantly higher than the generally recommended value (SN > 3), e.g., for 173-testosterone,
the ratio was SN = 2987:1. Correlation coefficients (r) estimated for the target analytes were >0.9991
(17B-testosterone), >0.9979 (173-testosterone propionate) and 0.9996 (173-testosterone decanoate)
in plasma (Table 4). The obtained regression models showed good linearity. The sensitivity of the
method was determined by the critical values LOD = 0.32 ng mL~! and LOQ = 0.63 ng mL~! for
173-testosterone based on estimated from the matrix calibration curve model. The precision of the
method as a simple repeatability, expressed as the value of the relative standard deviation (RSD),
was 3.09% for 17(-testosterone to a concentration level of 5 ng mL~!. Based on the results obtained
from the validation study, it was possible to conclude that the developed analytical method is suitable
for the identification and quantification of free 173-testosterone in pig plasma in the range of matrix
calibration 0.5 to 80 ng mL™.

The pharmacokinetic curve of free 17p-testosterone in pig plasma after the administration
of 0.6 mL/pig of the hormonal preparation SUSTANON 250 was constructed on the basis of the
results of detected concentrations in selected time intervals (Figure 3). The application dosage of the
hormonal drug used was calculated on the basis of the recommended dosage for this drug in human
medicine. The pharmacokinetic curves for castrated boars and sows were identical. The maximum
Cmax concentration (29.31 ng mL~! ~ 102 nmol L™ for castrated pigs, 31.73 ng mL~! ~ 110 nmol
L! for sows) was reached tmax 24 h after the administration. Plasma testosterone levels returned
to the mean endogenous testosterone levels in castrated boars and sows in approximately 21 days.
The PK results for pigs corresponded to the pharmacokinetic properties of i.m. administration of
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testosterone in men listed in the summary of product characteristics (SPC) of the hormonal drug used
(Crmax = 70 nmol L1, tay = 24-48 h, elimination time approximately 21 days). Although there are a
number of published results on PK testosterone levels in human medicine, the authors of this study of
testosterone pharmacokinetics could not compare their results with other authors because such results
in animals (pigs) have not been yet published in veterinary medicine.

The determined concentrations of endogenous free 173-testosterone in the plasma of castrated
boars of the hybrid Lage White/Czech White breed (50/50) ranged from 0.55 to 2.58 ng mL!
(mean = 1.56 ng mL~!). These determined concentrations for endogenous testosterone corresponded to
the values reported in the literature: White composite breed 4.0 ng mL~! [44], Yorkshire 2.5-5.1 ng mL ",
and Duroc 0.7-3.1 ng mL™1 [45]. The determined concentrations of endogenous free 173-testosterone
in sow plasma were below the limit of detection (<LOD) of the analytical method.

The individual testosterone esters contained in SUSTANON 250 hydrolyzed very rapidly in the
bloodstream of pigs and were no longer detecable 24 h after application, the concentration was <LOD
of the targeted quantitative method. Authors Rejtharova et al. [46] describes the methodology of
targeted analysis of testosterone esters in model samples of bovine and porcine serum by LC-MS/MS.
On the contrary, as the results of our study show, the targeted determination of testosterone esters in
pig serum samples to directly demonstrate the illegal use of banned testosterone is not very suitable
for a very short hydrolysis time after application in a real biological system.

3.3. Metabolomic Profiling of Changes in Plasma and Urine

The matrices of metabolomics data X obtained from an experiment performed in pigs and
measured on a high-resolution mass spectrometer contain data of the same type mj/z, ie., they
are homogeneous matrices (low molecular weight compounds, metabolites). To search for latent
structure and reveal interrelationships in characters (X-variables) and mainly in objects, cases (pigs)
in metric scale, two generally used multivariate statistical methods for character reduction to latent
variables were used: principal component analysis (PCA) and cluster analysis (CA). To investigate
the dependences between the independent matrix X of metabolomics data and the second dependent
variable matrix Y (single-column matrix with binary data, treated group = 1 and control group = 2),
another powerful statistical method, partial least squares projection to latent structures PLS was used
in the form of differential PLS-DA analysis and in the orthogonal variant O-PLS-DA. Unsupervised
PCA and supervised OPLS-DA are today the most widely used multidimensional statistical methods
in metabolomics for non-targeted monitoring of changes in biochemical pathways in various biological
samples, for their ability to reduce data dimensions or reduce large numbers of variables without much
loss of information contained in their first few principal components (most often 2-3).

The metabolomics study was performed in a total of 21 pigs (objects), which were allocated into
two groups: a treated group (1 = 13) and a control group (1 = 8). The problem of the first metabolomics
studies in the field of food safety and illegal use of prohibited substances in livestock fattening
performed and published between 2009 and 2010 was mainly the small number of experimental
animals [24-26]. The authors of these first metabolomic studies were aware of this problem and
subsequent studies carried out and published since 2011 have already been performed in an adequate
number of animals (1 > 10), for example [28-31].

The main results of the PCA method were score plots for plasma and urine data matrix (Figure 4),
which showed significant discrimination of all objects (pigs) into two large clusters for both cases
of biological matrices. A compact cluster of control group pigs (indicated by a blue ellipse) against
two clearly separated clusters (point descriptions marked in red) of pigs from the treated group was
found. In the treated group of pigs after testosterone administration, there was another incomplete
discrimination according to the characteristics of the sex. However, in the case of plasma, two sows
(objects 25 and 25) remained assigned to a cluster of castrated boars, which means that they correlated
more with this group. The above results lead to a significant partial conclusion that the built PCA
models were able to clearly differentiate the group of tested pigs from the control group.
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A CA dendrogram of matrix data objects for plasma and urine (Figure 5) were constructed based
on the average Euclidean distance and also showed a reliable distinction between the group of tested
pigs and the control group, so CA analysis confirmed the previous partial conclusion from PCA.
The following graphical outputs from the third supervised OPLS-DA method (Figure 6) scatter plots
also confirmed the previous conclusions and were able to significantly differentiate the group of control
pigs (marked in blue) from the group of tested pigs (descriptions marked in red). The R? (X), R? (Y) and
Q? (Y) statistics for the OPLS-DA models were calculated. Multiple correlation R? and cross-validated
coefficient Q for control vs. treated group R? (X) = 0.616, R? (Y) = 0.987 and Q? (Y) = 0.898 for plasma
and R? (X) = 0.469, R? (Y) = 0.997 and Q? (Y) = 0.879 for urine, confirmed good class separation and a
high predictive ability. Coefficients Q? (Y) expressing the predictive abilities of the proposed model
were calculated for 75% cross-validation.

The group of tested pigs, analogously as in the PCA and CA models, was further divided in the
plane t1 and tol into two clusters according to their sex. Therefore, the OPLS-DA model for urine was
further designed and tested, where in matrix Y (two-column matrix with binary data; treated group =1,
control group = 2 and male group = 1, female group = 2) there was a differentiation according to gender
(Figure 9). Statistics R? (X) = 0.417, R% (Y) = 0.973, and Q? (Y) = 0.85 also showed good separation and
high prediction. The observed differentiation of groups of pigs by sex in all three models used after
testosterone administration brings a whole new dimension to the whole issue of using metabolomics
profiling to prove illegal use of banned substances. This genetic factor will have to be taken into
account and further investigated in additional metabolomics studies in pigs.
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Figure 9. The OPLS-DA score plots for urine data matrix demonstrate discrimination between the
control group of pigs and secondary discrimination by sex, objects (pigs) marked with: K—control
group, T—treated group, M—male and F—female (PON scaling, R package). A list of specific numbers
of pigs is given in Tables 1 and 2.

All three used multivariable statistical methods, PCA, CA, and OPLS-DA, mathematically
independent, were able to significantly differentiate the use of synthetic exogenous testosterone from
naturally occurring (endogenous) testosterone in pigs of the same breed. This conclusion is in contrast
to the findings published in the only study performed to date on ractopamine (a group of banned
{3-agonists) in 2017 [33]. Here, the authors of this study state that no significant difference between the
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samples from the control group and the ractopamine treated group was observed in the PCA analysis
when all features were used. The use of metabolomics approaches and techniques also seems to be
very promising from the point of view of the time of detection of banned anabolic steroids. Synthetic
exogenous 17-testosterone was demonstrably detected in plasma and urine in the treated group of
pigs 14 days after administration. A similar conclusion was reached by the authors of a metabolomics
study performed in cattle with $-agonists [31], when urine samples taken on days 27 and 48 after the
administration could no longer be distinguished from the control group using PCA and OPLS-DA
statistical models.

Supervised OPLS-DA models for urine and plasma, as one of the important practical results of
this work, will be used for further testing of real samples to verify their predictive abilities. The models
will be supplemented with other banned anabolic steroids and, especially, with increased numbers
of test (training) data. Subsequently, the models will be verified by screening real plasma and urine
samples taken as part of the monitoring of foreign substances in the Czech Republic. This is in line
with the findings of other metabolomics studies [28,30-32], which also suggest increasing the number
of samples used in statistical models and testing the proposed models on real samples obtained from
national monitoring of contaminants in other EU countries (e.g., France, The Netherlands, Spain).

3.4. Metabolomic Profiling for Identification of Biomarkers

In the sequence of metabolomics multivariate statistical analysis, the last and often the most
time-consuming step is to identify the most discriminating metabolites which are essential from the
point of view of elucidating metabolomics pathways. A volcano plot with variable importance in
projection plot (VIP) and S-plot from OPLS-DA were used to determine the most discriminating
metabolites between the treatment group and control group (Figure 7 and Supplementary Materials
Figure S9). The most discriminating compounds found were compared with the METLIN database,
and their list and characteristics are shown in Table 4. Some very discriminating compounds have
been identified with known human testostrone metabolites and confirmed against standards based on
RT and MA criteria, such as M290T13_1 which corresponds to 5x-dihydrotestosterone. Nevertheless,
further work needs to be done to identify the compounds and gain detailed explanation of their
chemical structure.

4. Materials and Methods

4.1. Animal Experiment and Urine/Plasma Sampling

The animal experiments were performed at the Veterinary Research Institute in Brno, Czech
Republic. Twenty clinically healthy 90-day-old male and female pigs (approximately 28 kg body
weight) were randomly assigned to test (13 animals) and control (8 animals) groups. Animals
from the test group were treated with an i.m. injection (0.6 mL/pig) of the hormonal preparation
(30 mg mL~! 17B-testosterone propionate, 60 mg mL~! 17p-testosterone phenylpropionate, 60 mg mL~!
17B-testosterone isocaproate, 100 mg mL ™! 17f3-testosterone decanoate; Sustanon 250, N.V. Organon,
CZ Reg.56/357/91-C). Experimental animals were grower pigs (hybrids of Large White x Landrace
(sow) x Duroc (boar)) which were fed twice a day with a standard commercial diet according to the
weight category. Pigs were housed in two separate pens (one pen/treatment and one pen/control) of
2.80 x 2.00 m.

The animals were injected on day 12 after the start of the experiment and were euthanized on
day 90 of the experiment. Urine samples were collected from both groups 14, 28, 42 and 90 days after
treatment and all samples were kept frozen until analysis at —20 °C. Plasma samples were collected
from day 1, 2, 3, 4, 5, 7, 14, and 28 after treatment to day 90. After blood clotting and 10 min of
centrifugation at 6000x g of the samples, serum was removed and kept frozen until analysis at —20 °C.
All pigs were weighted every week within the experiment. All pigs were slaughtered at a body weight
of 90-110 kg and the treated animal carcasses were destroyed. The study was performed in compliance
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with Act No. 246/1992 Coll. of the Czech National Council for the protection of animals against cruelty
and with the agreement of the Branch Commission for Animal Welfare of the Ministry of Agriculture
of the Czech Republic (permission no. MZe 17214).

4.2. Reagents and Materials

Reference analyte standards (173-testosterone, 173-testosterone-D2 as isotopically labeled internal
standards) were purchased from Sigma-Aldrich, Prague, Czech Republic. The standards were dissolved
in methanol, diluted to a low concentration (mg mL~") and used as working solutions. The organic
solvents used were obtained from Merck (Darmstadt, Germany) and were in the SupraSolv® class.
Used water prepared in an ultrapure water system of Golgman’s water (Prague, Czech Republic).
Centrifugal membrane filters Vivacon 500, cut off at 10 kDa, were obtained from Sartorius, Prague,
Czech Republic.

4.3. Sample Preparation

4.3.1. Plasma Samples for Targeted Analysis

Each defrosted plasma sample (500 L) was transferred to a 15 mL centrifuge tube. After adding
a methanol solution of 50 uL of 173-testosterone-D2 internal standard and 5 mL of ethyl acetate,
the samples were shaken vigorously for 3 min on a vortex and then centrifuged at 4000x g for
10 min. The supernatant (ca. 4 mL) was subsequently transferred to evaporator tubes. The samples
were evaporated to dryness at 25 °C using a gentle stream of nitrogen (99.99% Nj). The samples
were reconstituted with 200 uL in mobile phase solution (methanol: water, 70:30, v/v) and filtered
through a 0.45 pm (Hydrophilic PTFE) membrane centrifuge filter. The resulting samples were
transferred to the insert in chromatography vials (250 pL). Then, 10 pL samples were injected directly
the LC-MS/MS system.

4.3.2. Samples for Metabolomics Profiling

Plasma samples were defrosted at room temperature, homogenized and normalized by the
creatinine concentration (Chemistry Analyzer BS-200, MINDRAY, Nanshen, China). Subsequently,
200 pL of each sample was filtered through centrifugal devices (Vivacon 500, cut-off at 10 kDa, 14,000 g,
4 °C, 30 min) to remove high molecular weight proteins. Filtrates (120 uL) were mixed with 30 uL of
internal standard (testosterone-D; in methanol at the concentration of 1 ng mL™1). After thorough
shaking, 5 uL of each sample was injected into the chromatographic system.

Urine samples were defrosted at room temperature and normalized by specific density
adjustment [47]. The specific density of the samples was measured using a refractometer
(digital refractometer 30GS, Mettler-Toledo, Prague, Czech Republic) and, if necessary, adjusted
to approximately 1.010-1.030 kg m~3 by dilution with deionized water. The urine samples (500 L)
were then centrifuged through a centrifugal membrane filter (Vivacon 500, cut-off 10 kDa) at 14,000x g,
4 °C for 30 min to remove high molecular weight proteins. To the sample filtrate (ca. 450 uL),
50 uL of 17p3-testosterone-D2 internal standard was added. The urine samples were transferred to
chromatographic vials and subsequently analysed.

QC samples for quality control of metabolomics profiling were prepared by the pool method
so that they have the same or very similar (bio)-chemical varieties in the same range as individual
samples of the study. The QC sample was prepared as a pool of all individual plasma or urine samples
that were included in the study. Each QC sample was generated by mixing 20 uL of the filtrate (cut-off)
of each individual sample and was analysed at the same time as the study samples as part of the overall
measurement sequence.
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4.4. Targeted Quantitative Analytical Method

4.4.1. LC Condition

Plasma samples were injected directly into a Thermo Fisher Scientific, (Waltham, MA, USA)
LC system Accela 1200 equipped with an autosampler with a temperature controlled tray and
column. Chromatographic separation was performed on Waters C18 XTerra MS analytical columns
(150 x 2.1 mm, size 3.5 um) with a Waters C18 XTerra MS guard column (10 X 2.1 mm, size 3.5 um).
The column and autosampler tray temperatures were set at 35 °C. The mobile phase consists of 0.1%
formic acid in water: methanol (95:5, v/v) A and 0.1% formic acid in water: methanol (5:95, v/v) B, the
flow rate was constant 300 uL min~!. Gradient elution of 0-2 min with mobile phase 95% A and 5% B
was started, 2.1-20 min linear gradient from 5% to 90% B, 20.1-25 min 10% A and 90% B, 25.1-30 min
linear gradient from 5% to 95% A and 30.1-35 min 95% A and 5% B. The runtime of the method was
35 min.

4.4.2. MS/MS Parameters

The tandem hybrid mass spectrometer Q Exactive (Thermo Fisher Scientific, (Massachusetts,
USA) equipped with a heated electrospray ionisation probe measured in a positive mode (H-ESI+).
For targeted quantification analysis, the mass spectrometer worked in the parallel reaction monitoring
mode PRM (corresponding to the selected reaction monitoring mode SRM) with high resolution
RP = 17,500 (FWHM) at 200 m/z. Before the start of each acquisition series, the mass spectrometer
was externally calibrated to the mass accuracy with the positive ion calibration solution and the
negative ion calibration solution (both Thermo Fisher Scientific). The “lock-mass” calibration was
set to the molecular mass of [M+Na]* = 64.01577 g mol~! and [Mp+H]* = 83.06037 g mol~! for the
acetonitrile ion, and was run continuously during the acquisition. Instrument and collision cell (HCD)
parameters were optimised by direct syringe infusion of working solutions of 50 ng mL™! of each
targeted compound with a 5 uL. min~! flow-rate. The mass spectrometer setting was as follows:
sheath gas flow rate 30 (unit), aux gas flow rate 5 (unit), spray voltage 4.0 kV, capillary temperature
320 °C, heater temperature 220 °C, S-lens RF level 50, AGC target of 5 x 10°, collision energy 35 eV,
and a maximum injection time of 100 ms.

The precursor ions and the four most intense product ions for each analyte were measured for
quantification and identification (confirmation), respectively. The whole LC-(HR) MS system was
controlled and the acquired data were stored and processed using Xcalibur 3.1 software, and then
evaluated using Mass Frontier v. 7.0 for the identification.

4.4.3. Method Validation

The targeted quantitative method for the determination of 173-testosterone and its esters in
plasma has been validated to the extent required by European Directive 657/2002/EC [34] used for
the determination of residues of foreign substances in biological matrices and according to the VICH
GLA49 [35] reference guide for validation method. To determine the validation characteristics of
the matrix calibration curve, critical values detection limit (LOD), limit of quantification (LOQ),
decision limit (CCy), detection capability (CCp) and calibration range 0.5-80 ng mL~! was used for
173-testosterone and its esters. Samples of pig plasma (blank) were supplemented with the standards
of 173-testosterone and its esters at concentration corresponding to 0.5, 1, 5, 10, 20, 40, and 80 ng mL1.
The concentrations of the internal standards were constantly 10 ng mL~!. For each concentration level,
two model samples were prepared and each sample was measured two times. Linear regression was
carried out by plotting the peak area ratios of the analyte against the internal standard (dependent
variable Y) versus the analyte concentration (independent variable X). To evaluate the precision of
the method, repeatability and within-laboratory reproducibility, standard deviation (SD), and the
coefficient of variation (CV, %) were determined. Six model samples of pig plasma (n = 6) were
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prepared at concentrations of 5 and 80 ng mL~! for all standards and measurements which were
repeated two times for each sample on three different days (3 x 6, n = 18).

4.5. Metabolomic Profiling

4.5.1. LC Separation

Plasma and urine samples prepared for non-targeted analysis (fingerprinting) were injected
directly into the Accela 1200 LC system with a mass spectrometer. Chromatographic separation was
performed on a C18 Hypersil GOLD (50 x 2.1 mm, 1.9 pm size) analytical column equipped with a
C18 Hypersil GOLD (10 x 2.1 mm, 1.9 um size) guard column, both from Thermo Fisher Scientific.
The temperatures of the column and the autosampler tray were set at 35 °C and 20 °C, respectively.
The flow rate through the column was constantly set at 200 pL. min~!. The injection volume of the
sample was 5 pL. The mobile phase consists of 0.1% formic acid in water: methanol (95:5, v/v) A and
0.1% formic acid in water: methanol (5:95, v/v) B, the flow rate was constant 300 uLmin~!. Gradient
elution of 0-2 min with mobile phase 95% A and 5% B was started, 2.1-20 min linear gradient from 5%
t0 90% B, 20.1-25 min 10% A and 90% B, 25.1-30 min linear gradient from 5% to 95% A and 30.1-35 min
95% A and 5% B. The runtime of the method was 35 min.

4.5.2. Non-Targeted Mass Spectrometry

For non-targeted metabolomic analysis, the tandem hybrid mass spectrometer Q Exactive worked
in the positive full scan mode with resolving power (PR) = 70,000 (FWHM) at 200 1/z in the range 50 to
750 m/z and in the centroid mode. Before the start of each acquisition series, the mass spectrometer was
externally calibrated to the mass accuracy with a positive ion calibration solution and a negative ion
calibration solution (both Thermo Fisher Scientific (Massachusetts, USA). The “lock-mass” calibration
was set to the molecular mass of [M+Na]* = 64.01577 g mol~! and [M+H]* = 83.06037 g mol~!
for the acetonitrile ion, and was run continuously during the acquisition. The mass spectrometer
setting was as follows: sheath gas flow rate 30 (unit), aux gas flow rate 5 (unit), spray voltage 4.5 kV,
capillary temperature 320 °C, heater temperature 180 °C, S-lens RF level 50, AGC target of 6 X 10° and
a maximum injection time of 200 ms. The whole LC-(HR)MS system was controlled and the obtained
data were stored and processed using Xcalibur 3.1 software.

4.6. Data Processing

The generated metabolomics profiling data sets were processed by the control software of the
Xcalibur® mass spectrometer and saved in a specific data format (*.raw). The first step was to convert
data from Excalibur-specific raw files to open format files (*.mzXML) using MS Convertor software
(ProteoWizard) [48]. Subsequently, metabolomics data were processed using the XCMS Online web
version platform [49]. All results and images for processing were downloaded as zip files for offline
analysis, including putative METLIN identities for each metabolite.

4.7. Statistical Data Analysis

Univariate and multivariate statistical analysis was performed in an interactive manner using
statistical software Statistica (Version 13.3, TIBCO Software, Palo Alto, CA, USA) and R-statistic
software in the Metabol package [50]. The data for processing was exported in the form of data
matrix X (n X m) from an Excel file (output from data processing) to individual statistical programs.
Before the application of multivariate statistical analysis, exploratory data analysis was conducted [51].
This included the assessment of primarily found outlier objects (or features thereof), assuming linear
relationship and verifying the data provided (normality, non-correlation, homogeneity). Subsequently,
the data matrices were standardized by two different methods. In the first case, the data were
transformed by mean centering [37], and in the second case, they were transformed by probabilistic
quotient normalization PQN [38,52] and a natural logarithm was applied for their scaling before
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subsequent statistical analysis. Multidimensional statistical methods, such as principal component
analysis (PCA), cluster analysis (CA), and orthogonal partial least squares discriminant analysis
(OPLS-DA), were used to statistically evaluate data obtained from non-targeted metabolomics analyses.

5. Conclusions

The present study confirmed the ability of metabolomics approaches and techniques to significantly
differentiate pigs administered an androgenic anabolic steroid which is on the list of banned substances
(17B-testosterone) in EU countries from control pigs. Using metabolomics profiling for plasma
and urine samples, it was possible to differentiate the used synthetic exogenous testosterone from
naturally occurring (endogenous) testosterone based on the results from three statistical models PCA,
CA and OPLS-DA. The metabolomics workflow was designed with widely used multivariate statistical
methods, analytical techniques, and equipment so that, based on the results of our study, it will be
possible to develop validated methodologies for routine screening to prove the illegal use of prohibited
substances in pig fattening. Furthermore, the anabolic effect of testosterone in pigs was demonstrated
by comparing BW gains during the fattening period, and the targeted analysis of plasma testosterone
levels provided data for the pharmacokinetic curves.
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Abstract: Japanese Black cattle (Wagyu) beef is characterized by high intramuscular fat content and
has a characteristic sweet taste. However, the chemical components for characterizing the sweet
taste of Wagyu beef have been unclear. In this experiment, we conducted a metabolomic analysis
of the longissimus muscle (sirloin) in Wagyu and Holstein cattle to determine the key components
associated with beef taste using gas chromatography-mass spectrometry (GC-MS). Holstein sirloin
beef was characterized by the abundance of components such as glutamine, ribose-5-phosphate,
uric acid, inosine monophosphate, 5-oxoproline, and glycine. In contrast, Wagyu sirloin beef was
characterized by the abundance of sugar components (maltose and xylitol). Dietary fat is known to
increase the intensity of sweet taste. These results suggest that the sweet taste of Wagyu beef is due to
the synergetic effects of higher sugar components and intramuscular fat.

Keywords: metabolome; beef; Wagyu; Holstein

1. Introduction

Food quality, especially the taste of food, is affected by numerous chemical components.
Metabolomic analysis has been used to select biomarkers from numerous metabolites. Therefore,
the relationship between metabolomic profiling and food quality has been investigated to identify
quality-related components. Previous reports showed that the metabolomic profiles of foods such as
fermented alcoholic beverages [1], soybeans [2], and tomatoes [3], strongly affect their taste.

Metabolomic analyses of meat have also been conducted to identify quality-related components.
The relationships between metabolomic profiles and processing conditions of hams [4], the muscle type
of pork [5], and the sensory perceptions of pork [6] have been reported. In addition, metabolome studies
of beef have shown that metabolomic profiles were affected by geographical origin [7], breed [8,9],
storage conditions [10], and aging periods [11].

Japanese Black cattle, also called Wagyu, are characterized by their great capacity for intramuscular
adipose tissue accumulation [12,13]. The high intramuscular adipose tissue content of beef, called
marbling, improves the texture, juiciness, and tenderness of Wagyu beef [13]. In sensory tests, Wagyu
beef had significantly higher sensory characteristic scores than beef from other cattle breeds [14,15].
Interestingly, Wagyu beef has a characteristic sweet aroma and sweet taste that are not detected in other
cattle breeds in sensory tests [15-17]. Previous reports indicated that the sweet aroma of Wagyu beef
was affected by the lactone and decenal components [18,19]. However, the metabolomic biomarkers
discerning the breed differences in beef, especially the characteristic sweet taste of Wagyu beef, have
remained unclear. Holstein cattle are categorized as a dairy breed, and Holstein beef is characterized
as lean meat [20,21]. Previous sensory test results have indicated breed differences between sensory
characteristic scores of Wagyu and Holstein beef [14,15]. Therefore, to elucidate the breed differences
in beef taste, a comparison of Wagyu and Holstein is thought to be the optimal model. In the present
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study, we conducted a metabolomic analysis of longissimus muscle (sirloin) samples from Wagyu
and Holstein cattle to identify the metabolomic biomarkers characterizing the breed differences in
beef taste.

2. Results

Gas chromatography-mass spectrometry (GC-MS) analysis detected 67 metabolites in the sirloin
samples of Wagyu and Holstein. Full results are shown in Supplementary Table S1. The principal
component analysis (PCA) score plots showed that the metabolomic profile was divided into Wagyu
and Holstein groups (Figure 1). The heatmap of metabolites also showed a difference between Wagyu
and Holstein groups (Figure 2). Metabolites contributing to cluster 7, which characterized the Holstein
sample, were mainly composed of amino acids (proline and glycine), amino compounds (succinic
acid, amino propanoic acid, creatinine, and pyruvic acid), and nucleic acid metabolites (inosine and
ribose). In contrast, cluster 1, which characterized the Wagyu sample, was mainly composed of
sugar components (maltose and xylitol) and fatty acids (stearic acid, palmitic acid and nonanoic
acid). Table 1 shows the differences in the relative quantity of the main metabolite compounds
in Wagyu and Holstein samples. The amount of glutamine, ribose-5-phosphate, uric acid, inosine
monophosphate, 5-oxoproline, and glycine in Holstein samples was significantly higher than in Wagyu
samples. In contrast, the amount of maltose and xylitol in Wagyu samples was significantly higher
than that in Holstein samples.
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Figure 1. Principal component analysis (PCA) of metabolome data from Japanese Black Wagyu (JB)
and Holstein (HO) sirloin samples. o: JB (1 = 4), o: HO (1 = 4).
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Figure 2. Heatmap of metabolites in Japanese Black Wagyu (JB) and Holstein (HO) sirloin samples.

The upregulated metabolites are shown in red, and the downregulated metabolites are presented in

green. Cluster 1, which characterized the Wagyu sample, was mainly composed of maltose, xylitol,

stearic acid, palmitic acid, and nonanoic acid. Cluster 7, which characterized the Holstein sample, was

mainly composed of proline, glycine, succinic acid, amino propanoic acid, creatinine, pyruvic acid,

inosine, and ribose. B1-B4: Japanese Black Wagyu (n = 4); H1-H4: Holstein (1 = 4).

Table 1. Main metabolite compounds in Japanese Black Wagyu and Holstein sirloin samples.

Relative Area

Comparative Analysis

Change
8 Compound Name I8 Ho JB/Ho
Mean S.D. Mean S.D. Ratio p-Value
Increase Maltose 7.1 % 10* 14 x 10* 4.0 x 10* 1.5 x 10* 1.8 0.022*
Xylitol 2.7 x 10* 44x10° 1.8 x 10* 2.3 %103 15 0.022 *
Palmitic acid 8.8 x 10* 3.6 x 10 6.0 x 10* 8.8 x 10° 15 0.221
Stearic acid 6.7 x 10* 4.0 x 10* 52x10* 1.3 x 10* 13 0.513
Ribose 43x10° 1.2 x10° 3.5 x 10° 5.6 x 10* 1.2 0.264
Sedoheptulose7-phosphate 7.9 x 10* 3.2x 10* 6.5 x 10* 2.3 x10* 12 0.513
Mannose 1.1 x 10° 2.7 x 10° 8.9 x 10° 2.8 x10° 1.2 0.406
Glycerol 3-phosphate 24 x10* 79 x10° 2.1 x10* 33x10° 1.1 0.623
Decrease Glycine 1.6 x 10° 1.1 x10° 2.6 x 100 2.4 x10° 0.6 0.001 **
Ornithine 3.9 x 10* 6.3 x 10° 6.7 x 10* 2.3 x 10* 0.6 0.094
5-Oxoproline 9.2 x 10* 9.2 x 10° 1.7 x 10° 32x10* 0.6 0.014 *
Inosine monophosphate 1.8 x 10° 7.9 x 10* 33 x10° 1.4 x 10 0.5 0.030 *
Uric acid 1.1 x10* 1.4 x10% 22 x10* 4.8x10° 0.5 0.014 *
2-Hydroxyglutaric acid 58x10°  20x103 13x10*  53x10° 0.5 0.075
Ribose 5-phosphate 3.2 x 10* 5.4 x10% 6.9 x 10* 12 % 10* 0.5 0.004 **
Glutamine 3.5 x 10* 3.8 x 10° 9.8 x 10* 3.1x10* 0.4 0.026 *

Values are expressed as means and S.D. ratio: fold intensity of metabolite compounds (JB/Ho). Annotation and
relative quantification of metabolites was measured by each peak using the gas chromatography-mass spectrometry
(GC-MS) solution (Shimadzu) and GC/MS Metabolite Database Ver. 2 (Shimadzu). Japanese Black Wagyu (JB, n = 4),
Holstein (HO, n = 4) * p < 0.05, ** p < 0.01.

3. Discussion

In the present study, we showed that the Holstein sirloin samples were characterized by amino
acids, amino compounds and nucleic-acid metabolites. We also showed that the relative amount
of glutamine, ribose-5-phosphate, uric acid, inosine monophosphate, 5-oxoproline, and glycine in
the Holstein sirloin samples was significantly higher than in the Wagyu samples. The abundance of
amino acids, amino compounds, and nucleic-acid metabolites clearly reflects the lean meat content of
Holstein beef. Previous studies also showed the relationship between metabolomic profiling and beef
quality [7-11]. These results indicate that metabolomic analysis is an optimum approach to identify
quality-related chemical components of beef. The cooking of meat forms a characteristic taste via
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numerous chemical reactions. The Maillard reaction is one of the major chemical reactions of cooked
meat that produces many flavoring components [22]. Amino acids and nucleic-acid metabolites are
main meat-flavor precursors for the Maillard reaction [23]. Therefore, a higher amount of amino acid
and nucleic-acid metabolites in Holstein beef indicates the abundance of a Maillard reaction substrate.
These results suggest that breed differences in beef metabolomic profiles affect the taste of cooked
meats. The elucidation of metabolomic profile differences between Wagyu and Holstein cooked meat
is an important subject for further study.

We showed that the Wagyu sirloin samples were characterized by sugar components and fatty
acids. The present study also showed that the relative amount of maltose and xylitol in Wagyu sirloin
samples was significantly higher than that in Holstein samples. Ueda et al. reported that the relative
amount of malic acid, maltose, trehalose, arabitol, isomaltose, n-acetylserine, and inositol in Wagyu
beef was significantly higher than that in Holstein beef [9]. The aging periods of beef affect the meat
quality and metabolomic profile [11]. The difference between the results of our study and those of
Ueda et al. would be attributed to meat aging conditions. The meat aging period in the present study
was at 4 °C for 7 days after slaughter. In contrast, the aging in Ueda et al. was at 4 °C for 20 days [9].
On the other hand, results showing a higher amount of maltose in Wagyu beef than in Holstein beef
were common to both experiments. These results suggest that a higher maltose concentration is a
primary feature of Wagyu beef, independent of the aging period. The causative substance of the sweet
taste of Wagyu beef remains unclear. Amino acids have different taste properties depending upon
their chemical structure [24]. Glycine is categorized as a “sweet” amino acid [24]. The present results
showed that glycine was abundant in the Holstein sirloin samples. Therefore, the possibility that
amino acids contribute to the sweet taste of Wagyu beef would be excluded. In contrast, the present
study showed that maltose and xylitol, categorized as sugar components, are abundant in Wagyu beef.
Wagyu is characterized by higher intramuscular fat content than Holstein [12,13]. Previous reports
indicated that dietary fat increased the intensity of sweet taste [25,26]. These results suggest that the
sweet taste of Wagyu beef is affected by the synergetic interaction between higher sugar components
and intramuscular fat. Threshold sweetness concentrations of maltose and xylitol have been reported
using sensory test methods [27,28]. Kearsley et al. reported that the threshold sweetness concentration
of maltose was 1.07% (w/v), and that of xylitol was 0.51% (w/v) [27]. In molar volumes, Birch et al.
showed that the threshold sweetness concentration of maltose was 21.0 mM/1, and that of xylitol was
also 21.0 mMy/1[28]. However, the effect of dietary fat on the threshold sweetness concentration of sugar
components has not been reported. The slaughter age of Wagyu (aged 29-30 months) and Holsteins
(aged 21-22 months) in this study was defined in accordance with the commonly applied fattening
periods of each breed in Japan. Ueda et al. also analyzed beef samples of Wagyu (aged 31-32 months)
and Holsteins (aged 21 months) that were similar to the age of cattle used in this study [9]. Previous
studies have shown that the slaughter age affects meat quality and sensory traits of beef [29,30]. To
our knowledge, there are no previous studies examining the effects of slaughter age on metabolomic
profiling of beef. Therefore, the differences between fattening periods of Wagyu and Holsteins in
this study may affect the metabolomic profiling of beef. In addition, there is a possibility that other
metabolites, which we could not detect in this study, might affect the sweetness of beef. Further studies
are needed to clarify the effects of metabolites on the sweet taste of Wagyu beef.

4. Materials and Methods

4.1. Animals

Wagyu steers (aged 29-30 months, n = 4) and Holstein steers (aged 21-22 months, n = 4) were
used in this study. They received a concentrate (78% total digestible nutrients and 13% crude protein)
and orchard grass hay (56% total digestible nutrients and 8% crude protein) ad libitum from 10 months
of age until they were slaughtered. Longissimus muscle (sirloin) samples were collected at slaughter.
The sirloin samples (1.5 kg) were collected between the third and fourth lumbar vertebrae from the left
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side of the carcass. Samples were vacuum-packed and wet-aged at 4 °C for 7 days and then stored at
—80 °C for later metabolome analysis. All animals received humane care as outlined in the Guide for
the Care and Use of Experimental Animals (No.1631B004, National Agriculture and Food Research
Organization).

4.2. GC-MS Analysis

Frozen sirloin samples were powdered with liquid nitrogen and weighed (100 mg) in the frozen
state. Frozen samples were plunged into 80% methanol and homogenized using zirconia beads
and an ultrasonic homogenizer for 5 min. The samples were centrifuged at 15,000 rpm for 5 min.
The supernatant was filtered using a Mono-Spin C18 column (GL Science, Tokyo, Japan), and then
the filtration (50 uL) was dried by a nitrogen gas flow. Methoxyamine hydrochloride solubilized
with pyridine (20 mg/mL, 50 uL) was added to each sample, and oxime formation was achieved by
reacting at 30 °C for 90 min. Trimethylsilyl-trifluoroacetamide (50 pL) was then added to each sample,
and trimethylsilylation was carried out by reacting at 37 °C for 30 min. Analyses were performed on
a gas chromatography-mass spectrometer (GC-MS, QP2010Ultra, Shimadzu, Kyoto, Japan) using a
DB-5 column (Agilent Technologies, Santa Clara, CA, USA) at the Kazusa DNA Research Institute.
The carrier gas was helium in a flow of 1.1 mL/min. The injection temperature was 280 °C, and the
injection volume was 0.5 pL. The temperature program was isothermal for 4 min at 100 °C, then raised
atarate of 4 °C/ min to 320 °C and held for 8 min. The ion source temperature and scan speed were set
to 200 °C and 2500 u/sec, respectively. Sample peaks were recorded over the mass range of 45-600 1/z.
The retention time correction of peaks was carried out based on the retention time of a standard alkane
series mixture (C-7 to C-33). Annotation and relative quantification of metabolite was measured by
each peak using the GC-MS solution (Shimadzu) and GC/MS Metabolite Database Ver. 2 (Shimadzu).
The relative area was calculated using the peak area of each metabolite relative to the analyzed sample
weight at Kazusa DNA Research Institute.

4.3. Statistical Analysis

Principal component analysis (PCA) was conducted using SampleStat software (Human Metabolome
Technologies, Japan). Hierarchical cluster analysis (HCA) was performed and heatmap formation
analyzed using PeakStat software (Human Metabolome Technologies). Differences between the relative
quantity of metabolites in Wagyu and Holstein samples were evaluated using Welch's t-test. Results
are presented as means, and S.D. values of p < 0.05 were considered significant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/3/95/s1,
Table S1: Metabolites of Wagyu and Holstein Beef.
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Abstract: Most livestock metabolomic studies involve relatively small, homogenous populations of
animals. However, livestock farming systems are non-homogenous, and large and more diverse
datasets are required to ensure that biomarkers are robust. The aims of this study were therefore
to (1) investigate the feasibility of using a large and diverse dataset for untargeted proton nuclear
magnetic resonance (\H NMR) serum metabolomic profiling, and (2) investigate the impact of fixed
effects (farm of origin, parity and stage of lactation) on the serum metabolome of early-lactation dairy
cows. First, we used multiple linear regression to correct a large spectral dataset (707 cows from
13 farms) for fixed effects prior to multivariate statistical analysis with principal component analysis
(PCA). Results showed that farm of origin accounted for up to 57% of overall spectral variation,
and nearly 80% of variation for some individual metabolite concentrations. Parity and week of
lactation had much smaller effects on both the spectra as a whole and individual metabolites (<3%
and <20%, respectively). In order to assess the effect of fixed effects on prediction accuracy and
biomarker discovery, we used orthogonal partial least squares (OPLS) regression to quantify the
relationship between NMR spectra and concentrations of the current gold standard serum biomarker
of energy balance, 3-hydroxybutyrate (BHBA). Models constructed using data from multiple farms
provided reasonably robust predictions of serum BHBA concentration (0.05 < RMSE < 0.18). Fixed
effects influenced the results biomarker discovery; however, these impacts could be controlled using
the proposed method of linear regression spectral correction.

Keywords: NMR; metabotype; metabolomics; transition; ketosis; cattle; chemometrics;
spectral correction

1. Introduction

Modern metabolomic techniques such as proton nuclear magnetic resonance ('H NMR)
spectroscopy allow high-throughput, synchronous characterization of the small metabolites present
in biological matrices [1]. In dairy cows, the metabolome gives a snapshot of the complex
interactions between host genetics, the rumen microbiome, and the environment at a given time
point. 'H NMR-based metabolomics therefore offers exciting opportunities to better understand and
characterize the complex physiological and biochemical challenges facing cows in the transition period
(defined as the three weeks before and after calving [2,3]) which is the period of greatest disease
risk [4]. This in turn can facilitate identification of new molecular phenotypes (metabotypes) for genetic
selection for improved animal health. These “intermediate phenotypes,” so-termed because they sit
between the genome and external phenotype [5], can then be integrated with genomic data to improve
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genomic prediction accuracies of complex traits [6,7]. The aim of metabotype identification is therefore
to identify biomarkers that represent inter-animal variation free of confounding environmental factors.

Another aim of dairy cattle metabolomic studies is to identify biomarkers which enable early
identification of health disorders in the transition period such as ketosis [8,9], hypocalcemia [10] and
displaced abomasa [11]. Of particular interest are studies that have identified biomarkers that are
predictive of transition period disorders, such as that by Hailemariam et al. [12], who identified a
panel of three metabolites that could predict the occurrence of peri-parturient disease up to four weeks
before calving. If robust, such predictive biomarkers would enable producers and veterinarians to
implement preventive nutritional, management and/or veterinary interventions before the onset of
disease.Unlike metabotype biomarkers used for genetic selection, the aim of biomarkers used for
management purposes is to predict the external phenotype, and these must therefore capture all
sources of phenotypic variation (i.e., host genetics, rumen microbiome, and the environment).

To date, most serum "H NMR-based metabolomic studies of livestock have involved relatively
small numbers of animals, often of a single breed, and often located on a single farm. In their
review, Goldansaz et al. [13] identified limited sample size and diversity as limitations of many
livestock metabolomics studies and highlighted the need for larger and more diverse datasets to ensure
models and biomarkers are robust. However this needs to be balanced against the need for careful
experimental design to account for potential confounding from systematic environmental effects such
as diet/nutritional management, parity and stage of lactation, which are known to affect the metabolic
status of cows [13]. However, in order to achieve large datasets, it may be necessary to obtain samples
from multiple different farms, especially when the prevalence of the condition being investigated is
low (e.g., displaced abomasa). Previous studies have reported differences in the milk metabolome of
animals from different geographical regions [14], farms [15], and of different breeds [16]. However,
given that there is not a strong relationship between blood and milk metabolomes [17,18], these findings
cannot be extrapolated to the blood serum/plasma metabolome. More information is therefore needed
on the impact of systematic environmental effects on the serum metabolome of livestock.

Linear models are routinely used by quantitative geneticists to account for the influence of
systematic environmental effects (also known as fixed effects) known to have significant effects
on phenotypic variation [19], and thus disentangle genetic from non-genetic effects. Frequently
used fixed effects include stage of lactation, parity, and herd-year-season. Similar approaches have
recently been applied to metabolomic data, for example Wanichthanarak et al. [20], who used linear
mixed-effects models and patient metadata to account for biological variation in metabolomics data,
and Laine et al. [21], who used linear models to study the effect of pregnancy on mid-infrared spectral
data derived from cows’ milk.

The aim of this study was therefore to investigate the feasibility of using of large and diverse
datasets in livestock metabolomics studies by examining the effects of fixed environmental and
physiological effects on the 'H NMR serum metabolome of clinically healthy dairy cows in early
lactation. We propose a method that uses linear models to correct spectra for fixed effects and
demonstrate its potential utility by quantifying the relationship between 'H NMR spectra and the
current gold-standard serum biomarker of energy balance, 3-hydroxybutyrate (BHBA) [22,23].

2. Results

2.1. Dataset

Serum samples were collected from 707 early lactation cows (<30 d in milk) from 13 farms located
in southeastern Australia. Descriptive statistics of the animals included in the experiment, including
herd of origin, stage of lactation (reported as days in milk, or the number of days post-calving), parity
and serum BHBA concentrations and are summarized in Table 1. Of particular interest were the BHBA
results obtained from Farm 1, which had a greater mean and standard deviation than observed in
other farms.
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Table 1. Descriptive statistics of dataset used in this experiment, including farm details, number of
cows (N), mean and standard deviation (shown in parentheses) of parity, days in milk (DIM), and serum
B hydroxybutyrate (BHBA) concentrations obtained from dairy cows in the first 30 days of lactation
from 13 farms in south eastern Australia.

Farm N Location Parity DIM BHBA
1 129 Sth Gipp 1 29(1.1) 19.4 (7.2) 1.25 (0.69)
2 11 Sth Gipp 2.6 (1.2) 20.4 (8.1) 0.34 (0.12)
3 12 W Gipp 2 2.6 (1.4) 22.8(5.7) 0.33 (0.10)
4 11 W Gipp 3.1(1.2) 17.9 (10.2) 0.54 (0.15)
5 18 MID 3 29 (1.1) 22.6 (5.1) 0.61 (0.25)
6 248 W Gipp 2.1(1.0) 16.7 (6.0) 0.55 (0.21)
7 9 Gv# 2.6 (1.0) 13.9 (6.7) 0.53 (0.27)
8 24 MID 24(12) 17.7 (8.2) 0.38 (0.09)
9 33 Sth Gipp 2.5(1.2) 18.3 (7.2) 0.55 (0.33)
10 27 Sth Gipp 1.8 (1.1) 13.1(7.7) 0.50 (0.14)
11 50 Tas ® 2.6 (1.3) 18.6 (7.3) 0.42 (0.17)
12 123 MID 2.8(1.2) 15.8 (8.6) 0.38 (0.15)
13 12 Tas 2.7 (0.8) 16.0 (7.6) 0.58 (0.22)
ALL 707 - 2.5(1.2) 17.4 (7.3) 0.63 (0.46)
! South Gippsland Region, 2 West Gippsland Region, 3 Macalister Irrigation District, * Goulburn Valley Region,
5 Tasmania.

2.2. TH NMR Spectroscopy of Serum Samples

'H NMR spectra were complex; however, more than 20 metabolites could be identified.
Spectra were dominated by organic acids, amino acids, glucose and phospholipid intermediates
(Figure S1 and Table S1).

2.3. Preliminary Data Analysis Using Principal Component Analysis

Preliminary data analysis and outlier identification was performed using principal component
analysis (PCA). Plots of the first 2 principal components (PCs) identified several samples located
outside the 95% confidence level. These spectra were manually inspected, and a single outlier with
erroneous phasing was identified and removed from subsequent analyses.

PCA was repeated after outlier removal. The first 13 PCs explained greater than 90% of the
variation in the spectra. Scores plots of the first three PCs, which explain 47.64%, 15.59%, and 7.45%
of variation, respectively, are shown in Figure la—c. There was obvious clustering of samples by
herd of origin. Samples from Farm 1 showed greater variation than those from the other farms.
The separation between farm clusters was most obvious along PC1 and PC2. Visual comparisons
based on stage of lactation (defined as weeks in milk (WIM)) and parity were also performed, but no
obvious clustering or separation was observed. Loadings plots of the first three PCs show that energy
metabolites BHBA, lactate, acetate and glucose, have the largest influences on spectral differences
(Figure 1d—f), with smaller influences from the branched chain amino acids, lipoproteins, glycine,
creatine, and betaine.
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Figure 1. Results of principal component analysis (PCA) of 707 proton nuclear magnetic resonance
(H NMR) spectra of serum obtained from dairy cows in early lactation; (a) principal component (PC)
1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings,
and (f) PC 3 loadings plots. Scores plots are colored by farm of origin. The 4 6.5 to 8.5 region of loadings
plots have been magnified for clarity purposes. «-Glu = « glucose, Ace = acetate, Ala = alanine, 3-Glu
= B glucose, Bet = betaine, BHBA = 3 hydroxybutyrate, Cr = creatine, Glu = glucose, Gly = glycine,
Hip = hippurate, Ile = isoleucine, Lac = lactate, Leu = leucine, Val = valine, VLDL/LDL = Very low
density lipoprotein and low density lipoprotein.

2.4. Principal Component Analysis of Spectra Corrected for Fixed Effects

Principal component analysis (PCA) was repeated on spectra that had been corrected for (1) WIM,
(2) Parity, (3) Herd, and (4) WIM, Parity and Herd simultaneously (hereafter referred to as all fixed
effects) (Models 1 to 4). Results derived from spectra corrected separately for WIM and Parity are
nearly identical to uncorrected spectra (Figures S2 and S3). By contrast, scores plots derived from
PCA of spectra corrected for Herd (Figure S4), and spectra corrected for all fixed effects (Figure 2a—c),
show no obvious clustering of samples by Herd, WIM or Parity. There is, however, still considerable
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separation of samples along all three PC axes, suggesting that significant inter-animal variation in the
serum metabolome exists after accounting for fixed effects. Compared to the uncorrected data; (1) more
PCs were required to explain >90% of spectral variation (24 vs. 13), (2) the percentage of variation
captured by PC1 was lower (25.70% vs. 47.64%), and (3) the percentage of variation captured by PC2
and PC3 was higher (16.92% vs. 15.59% and 11.79% vs. 7.45%, respectively). Loadings plots are shown
in Figure 2d-f. Interestingly, separation of samples along PC1 (25.70%) is due almost entirely to lactate.
Loadings on PC2 and PC3 are similar to uncorrected data.
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Figure 2. Results of PCA of 707 '"H NMR spectra of serum, corrected for herd of origin, week of
lactation, and parity obtained from dairy cows in early lactation; (a) PC 1 vs. PC 2 scores, (b) PC 1 vs.
PC 3 scores, (¢) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings plots.
Scores plots are colored by farm of origin. The 5 6.5 to 8.5 region of loadings plots have been magnified
for clarity purposes. «-Glu = « glucose, Ace = acetate, Ala = alanine, 3-Glu = 3 glucose, Bet = betaine,
BHBA = 3 hydroxybutyrate, Cr = creatine, Glu = glucose, Gly = glycine, Ile = isoleucine, Lac = lactate,
Leu = leucine, Val = valine, VLDL/LDL = Very low density lipoprotein and low density lipoprotein.
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2.5. Effect of Stage of Lactation, Parity, and Herd Effects on 'H NMR Spectra

In order to quantify the effect of each fixed effect on NMR spectra, we calculated Pearson’s
correlations between scores for the first three PCs from the previously described PCAs (Figure 3).
The largest differences (i.e., lowest correlations) were seen between uncorrected spectra, and spectra
corrected for Herd (r = 0.43). This suggests that there are significant differences between those 2 spectral
datasets, and that Herd, therefore, has a significant effect on the serum NMR metabolome. This is
consistent with the clustering of samples by farm in the original PCA (Figure 1a—c). By comparison,
the correlations between PC scores derived from uncorrected spectra, and spectra corrected for WIM
and Parity, were high (0.99 and 0.97, respectively). This suggests that these spectra are nearly identical,
and that these fixed effects have minimal influence on the serum metabolome. Correlations between

PC2 scores were consistent with those observed between PC1 scores, and correlations between PC3
scores were all high (>0.89).

PC2 PC3
= > = > = >
f:f 3.tz Eozos iz
s 3 & = <« 5 =2 & = < S5 =2 & == <«

Uncor.

Figure 3. Pearson’s correlations between scores derived from PCA of uncorrected 'H NMR spectra
of bovine serum, and the same spectra corrected using linear regression for week of lactation (WIM),

parity, herd of origin, and WIM, parity, and herd simultaneously (All). Color map shows strength of
Pearson’s correlation.

To test the statistical significance of fixed effects on "H NMR spectra, we used conditional Wald
F statistics derived from multiple linear regression models on the first three PC scores (Model 5).
The higher the F statistic, the greater the effect of that variable on the PC score, and the lower the P
value, the greater the statistical significance. Results derived from these models are summarized in
Table 2. PC1 results were consistent with the results of Pearson’s correlations, showing that Herd had
the greatest effect. Interestingly, results for PC2 and PC3 differed slightly from Pearson’s correlations.
While Herd had a relatively large and significant (P < 0.001) impact on both PC2 and PC3, the effect of
Parity was nearly as great on PC2 scores and greater on PC3 scores.

Table 2. Results of multiple linear regression models of principal component (PC) scores derived from
PCA of 'H NMR spectra, against weeks in milk (WIM), parity, and herd of origin. Conditional Wald F
statistics (F-con) and corresponding P values describe the magnitude and statistical significance of each
fixed effect, respectively.

PC1 (47.64%) PC2 (15.59%) PC3 (7.45%)
Fixed Effect F-con P Value F-con P Value F-con P Value
WIM 2.66 0.047 5.42 0.001 2.14 0.094
Parity 2.78 0.041 20.39 <0.001 15.19 <0.001
Herd 158.29 <0.001 26.78 <0.001 6.66 <0.001
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R? values obtained from models 1-4 were used to investigate which regions of the NMR spectra
were most strongly influenced by the fixed effects. As the signal intensity at each chemical shift was
treated as a separate response variable, the R? values from Models 1, 2, and 3 describe the effect
of WIM, parity, and herd on each of the 24,349 chemical shifts, respectively. These R? values were
color-coded, and overlaid on an average NMR spectrum. Plots showing the effects of WIM and Parity
were unremarkable (all R? < 0.2, Figure S5), however R? values obtained from Model 2 showed that
approximately 10-20% of the variation in glucose and acetate concentration could be explained by
parity. The plot showing the effect of herd is shown in Figure 4. The strongest effect was seen in the
downfield region of the spectrum, with close to 80% of variation in the concentration of some phenolic
compounds being explained by Herd. Of these, hippurate could be clearly identified. Peaks at § 7.31
and 7.39 were tentatively assigned to 3-phenyllactate, but the peak at 4 7.22 could not be identified.
Lactate, acetate, BHBA, betaine, pyruvate, glycine, and glucose concentrations were also strongly
influenced by herd effect.
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Figure 4. Average 'H NMR spectrum of bovine serum. Color coding represents the percentage of
variation in the signal at each chemical shift intensity that can be explained by herd of origin. The &
6.5 to 8.5 region has been magnified for clarity purposes. Ace = acetate, Bet = betaine, BHBA =
hydroxybutyrate, Gly = glycine, Hip = hippurate, Lac = lactate, Pla = 3-phenyllactate, Pyr = pyruvate,
U = unidentified peak. * indicates tentative identification.

The results of ANOVA-simultaneous component analysis (ASCA) were consistent with results of
linear regression spectral correction and are shown in Table S2. Herd had the greatest effect (43.99,
P = 0.02), followed by parity (4.10, P = 0.02) and WIM (1.37, P = 0.02). When ASCA was performed on
corrected spectra, the effect of the fixed effect(s) was reduced to zero. For example, when ASCA was
performed on spectra corrected for Herd, the effect of herd was zero (P = 1.00), but the effects of WIM
(1.68, P = 0.02) and parity (3.30, P = 0.02) were retained.

2.6. Robustness of 'TH NMR Predictions of Serum BHBA

Our results show that 'H NMR spectra can be used to predict serum BHBA concentration with
good accuracy. This result is expected, as BHBA is directly quantifiable from NMR spectra. The overall
robustness of our approach was assessed using a “leave-one-farm-out” external validation of OPLS
models built using uncorrected data. This involved iteratively setting aside data from one farm,
training models using data from the remaining 12 farms, then using the withheld data for external
validation. R? results were variable (0.30 < R? < 0.99), however RMSE values remained relatively
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low (< 0.18) (Table 3). Interestingly, RMSE values were considerably higher when Farm 1 data were
withheld for validation.

Table 3. Results of leave-one-farm out external validation of orthogonal partial least squares (OPLS)
regression models predicting serum BHBA concentration from uncorrected 'H NMR spectra. Validation
farm specifies the identity of the data used for validation, N the number of animals used in calibration
and validation datasets. The coefficient of determination (R?) and root mean square error (RMSE) are
reported for each calibration/validation subset.

Calibration Cross Validation External Validation
Validation Farm P LV N R? RMSE R? RMSE N R?  RMSE

- <0.05 3 707 0.95 0.10 0.95 0.10 - - -

1 <0.05 5 578 0.87 0.08 0.85 0.08 129 0.96 0.18
2 <0.05 3 696 0.95 0.10 0.95 0.10 11 0.59 0.10
3 <0.05 4 695 0.96 0.09 0.96 0.10 12 0.78 0.06
4 <0.05 3 696 0.95 0.10 0.95 0.10 11 0.93 0.09
5 <0.05 3 689 0.96 0.10 0.95 0.10 18 0.99 0.09
6 <0.05 3 459 0.96 0.11 0.96 0.11 248 0.87 0.10
7 <0.05 3 698 0.95 0.10 0.95 0.10 9 0.98 0.05
8 <0.05 3 683 0.95 0.10 0.95 0.10 24 0.30 0.07
9 <0.05 3 674 0.95 0.10 0.95 0.10 33 0.95 0.11
10 <0.05 3 680 0.95 0.10 0.95 0.10 27 0.85 0.09
11 <0.05 3 657 0.95 0.10 0.95 0.10 50 0.82 0.08
12 <0.05 3 584 0.97 0.09 0.96 0.09 123 0.52 0.12
13 <0.05 3 695 0.95 0.10 0.95 0.10 12 0.98 0.05

2.7. Influence of Fixed Effects on Interpretation of 'lH NMR Metabolomic Data

The impact of fixed effects on the interpretation of 'H NMR metabolomic data was determined
by comparing the results of OPLS models built using (1) data from Farm 1 only (used as a control),
(2) uncorrected data from all farms, and (3) data from all farms corrected for all fixed effects. Fixed
effects appeared to have minimal effect on the predictive ability of models. We observed similar 10-fold
cross validation prediction accuracies for all 3 datasets (Table 4). Interestingly, RMSE results were quite
close to the results of the leave-one-farm out external validation (0.05 < RMSE < 0.18).

Table 4. Results obtained from 10-fold cross validation of OPLS regression models predicting serum
BHBA concentration from 'H NMR spectra using data from Farm 1 only, uncorrected data from all
farms, and data from all farms corrected for the effect of herd. Number of cows (N), number of latent
variables included in each mode (LV), coefficient of determination (R2) and root mean square error
(RMSE) of calibration (C) and 10-fold cross validation (CV) are shown.

Dataset N LVs P Value! R?%c RMSEc  R?%cy RMSEcy
Farm 1 Uncorrected 129 4 <0.001 0.98 0.10 0.97 0.12
All Data Uncorrected 707 4 <0.001 0.96 0.09 0.96 0.10
All Data Corrected for Herd 707 4 <0.001 0.93 0.09 0.93 0.09

1 P-value derived from permutation testing (50 iterations) and pairwise Wilcoxon signed rank test.

The influences of fixed effects on biomarker discovery were investigated by comparing loadings
on LV1. Results obtained using only Farm 1 data were used as a reference and show a strong positive
correlation between BHBA concentration and acetate, and strong negative correlations with lactate
and glucose (Figure 5a,b). Loadings from the complete dataset corrected for all fixed effects were
very similar (Figure 5e,f). Results from uncorrected data, however, were quite different (Figure 5c,d),
with BHBA being positively correlated with lactate and glycine. Examination of scores plots shows
obvious clustering and separation by herd (especially Farm 1) when uncorrected data are used
(Figure S6a), but not when corrected data are used (Figure S6b). Results from the original PCA showed
that samples from Farm 1 clustered at the positive end of PC1, and that lactate and glycine both had
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strong positive influences on PC1 loadings. Therefore, it is possible that OPLS results are confounded

by a strong herd effect when uncorrected data are used.
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Figure 5. Results of OPLS regressions of serum BHBA concentration against 'H NMR spectrum of
bovine serum: (a) Farm 1 (N = 179) LV1 vs. LV2 scores and (b) LV1 loadings, (c) all farms (N = 707)
uncorrected data LV1 vs. LV2 scores and (d) LV1 loadings, and (e) all farms data LV1 vs. LV2 scores
and (d) LV1 loadings.

3. Discussion

To the best of the authors” knowledge, this is the first large-scale serum metabolomics study
to investigate the impact of systematic environmental and physiological fixed effects on the 'H
NMR serum metabolome of clinically healthy dairy cattle. Our results indicate that herd-specific
environmental factors have much greater effects on the serum metabolome of early lactation dairy
cows than physiological factors such as WIM and parity. We demonstrate that, while confounding
from herd effects can significantly influence the results of biomarker discovery, models built using
data collected from multiple farms can give robust predictions of external phenotypes such as BHBA.
In order to overcome the potential confounding of fixed effects on biomarker discovery, we propose a
method to correct 'H NMR spectra prior to multivariate analysis using multiple linear regression.

3.1. Differences in 'H NMR Spectra Between Herds

Our results clearly demonstrate that there are significant differences in the serum metabolomes
of animals from different herds. The fact that energy metabolites BHBA, lactate, acetate and glucose
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dominated PCA loadings (Figure 2d—f), and that herd effect accounted for a large percentage of the
variation seen in lactate, acetate, pyruvate, glucose, and BHBA concentrations, (Figure 4) suggests that
metabolic state, in particular energy balance, varied significantly between farms.

The importance of lactate was particularly interesting. Lactate was one of the most abundant
metabolites identified in this experiment. This is very different to the findings of Sun et al. [8],
who reported that lactate was one of the weakest signals in serum "H NMR spectra obtained from
early-lactation cows fed a total mixed ration. One possible explanation for the very high concentrations
of lactate seen in our dataset could be ruminal lactate production. During spring, dairy cows in pastoral
farming systems of southeastern Australia are typically fed rations high in fermentable carbohydrate,
and low in neutral detergent fiber. As a consequence, ruminal acidosis is common [24]. Serum
concentrations of lactate, and in particular D-lactate from microbial fermentation, have been shown
to increase following experimental induction of ruminal acidosis [25,26]. Without the use of a shift
reagent and specialized experiments it is not possible to differentiate between the different lactate
isomers by '"H NMR [27]. We therefore plan to quantify the relative contributions of L- and D- lactate
to better understand the cause of high lactate concentrations in our dataset.

The strong influence of Herd on the concentration of phenolic compounds could also be consistent
with ruminal acidosis. Signal intensities in the downfield region of 2D spectra were weak, meaning clear
identification of some of the phenolic peaks in our dataset was not possible. Our tentative identification
of 3-phenyllactate is consistent with the findings of Yang et al. [26], who demonstrated that beef steers
fed high starch (corn) diets had higher plasma concentrations of phenyllactate compared to those fed
low starch diets. This study also identified L-phenyllalanine biosynthesis and metabolism as important
metabolic pathways in high starch feeding. We plan to (1) enrich samples and repeat 2D analyses and
(2) perform LCMS-based metabolomics on a subset of samples to identify these compounds.

Nearly 80% of the variation seen in hippurate concentration could be explained by herd effect
(Figure 4). Hippurate is formed by the conjugation of glycine and benzoic acid, and has been associated
with microbial degradation of dietary compounds [28]. Concentrations of hippurate increase with
increased consumption of phenolic compounds [13], which are present in relatively high concentrations
in pasture species. Milk hippurate concentration has been proposed as a biomarker of pasture/forage
intake in goats [29], and it is possible that our results represent differences in feeding regimens between
farms. Hippurate has also been proposed as a biomarker for gut microbiome diversity in humans [30],
and our results may indicate differences in the gastrointestinal health of animals from different farms
(i.e., ruminal acidosis). Detailed information of ration formulations is very difficult to define in grazing
systems as pasture quality and intake vary considerably within and between herds. This information
was therefore not available for the herds in our dataset and more data are required to further investigate
this finding.

Results of the initial PCA showed that data from Farm 1 were significantly different to, and showed
more variation than, data from the other farms. The reasons for these differences are hard to determine
from our dataset, as Farm 1 differed in environment/management, breed and reference BHBA
concentrations (and therefore it is assumed animal metabolic status). Given that we also observed
clustering and separation of the 12 Holstein-Friesian herds in the initial PCA (Figure 2), it appears
that herd-specific environmental factors have a larger effect on the serum metabolome than breed.
However, Liao et al. [31] recently reported clear differences in the serum metabolomes (GC-MS) of
three different breeds of beef steers, all the same age, fed the same ration, and managed under the
same conditions. Further data are therefore required to investigate if there are differences between the
serum metabolomes of different dairy breeds.

Pre-analytical sample handling and processing have been shown to have significant effects on
human metabolomic data [32], and considerable efforts are made to streamline and standardize sample
collection and processing protocols [33-35]. Standardizing protocols in livestock studies provides its
own challenges, when relatively large number of samples are being taken at once, often in diverse,
challenging and remote locations. While all attempts were made to ensure consistency, there were
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some unavoidable differences in the way samples from different herds were handled (for example time,
between blood sample collection and centrifugation varied from approximately 2—4 h). It is therefore
possible that some of the variation between farms seen in our data could be due to pre-analytical
sample handling. However, overall our results suggest that metabolomic differences between animals
from different farms are due largely to differences in diet/nutritional management. We plan to collect
more samples from animals receiving different diets to investigate this further.

3.2. Effect of Lactation Stage and Parity on Serum Metabolome

Our results suggest that stage of lactation appeared to have a minimal effect on the NMR spectra.
This is consistent with the findings of Ilves et al. [17] who found that the mass spectrometry (MS)
based plasma metabolome of dairy cows was more heavily influenced by animal individuality than by
lactation stage. By contrast, several authors report that both the NMR and MS-derived milk metabolome
changes across lactation [17,36]. This suggests that blood-based metabolomics may be more suitable
for identification of individual animal-specific differences within a population, and therefore provide
more robust metabotypes for genetic selection.

Parity appeared to have a small but significant (P < 0.05) effect on the overall "H NMR serum
metabolome. We could find no other reports in the literature describing the effect of parity on the entire
serum metabolome. However, our results are consistent with other studies that showed parity has a
significant effect on the concentration of several metabolites in serum including glucose, creatinine,
urea and BHBA [37-39]. This suggests that parity should be taken into consideration when undertaking
metabolomic studies in dairy cows.

3.3. Accuracy of OPLS Models for Predicting Serum BHBA Concentration

Despite the significant influence of fixed effects on the serum metabolome, results obtained from
the leave-one-farm out external validation suggest that prediction models constructed with data from
multiple farms are quite robust. R? values varied significantly depending on which farm was used
for validation (0.30 < R? < 0.99); however, the R? is known to be affected by the range of the dataset,
and RMSE is often considered to be a better predictor of model performance [40]. Promisingly, external
validation RMSE results (0.05 < R? < 0.18) were close to those obtained from 10-fold cross validation of
models built using only Farm 1 data (RMSE = 0.12) and all data (RMSE = 0.10). The fact that prediction
errors were highest when Farm 1 data were withheld for validation suggests that the increased variation
observed in Farm 1 data represents valuable biological variation rather than confounding/noise.

Correcting data for fixed effects had very little impact on the predictive ability of OPLS models.
Furthermore, when corrected spectra were used, y-values also had to be corrected, making interpretation
of phenotypic values difficult. Interestingly, Wanichthanarak, et al. [20] found that “readjusting”
mass spectroscopy metabolite signals using patient metadata and linear mixed models improved the
sensitivity and specificity of classification of human tissue samples with and without colorectal cancer.
Conversely, Posma et al. [41] found that adjusting NMR data for confounding factors lead to a loss of
predictive power for cardiovascular risk in a large-scale human NMR metabolomic dataset. Whether
using NMR spectra corrected using linear regression will improve the performance of classification
models (as opposed to regression against a continuous variable as used in this study) requires further
investigation. Overall, our results suggest that models constructed using uncorrected data collated
from multiple farms may be appropriate for prediction of external phenotypes which are influenced by
both genetic and environmental factors.

3.4. Impact of Fixed Effects on the Interpretation of Metabolomic Data for Biomarker and Metabotype Discovery

Loadings from OPLS models built using uncorrected spectra from Farm 1, and spectra from all
farms corrected for fixed effects, were consistent with the literature. BHBA and glucose concentrations
have been shown to be negatively correlated in the serum of cows in early lactation dairy cows [42].
L-lactate is an important gluconeogenic substrate in dairy cows [43,44], so it follows that lactate
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concentration is also negatively correlated with BHBA concentration. Our results are also consistent
with the findings of Sun et al. [8] who showed that cows with subclinical (1.2 < BHBA < 2.9 mmol/L)
and clinical ketosis (BHBA > 2.9 mmol/L) had lower lactate and glucose concentrations and higher
BHBA and acetate concentrations than the healthy controls.

The fact that loadings were different when uncorrected spectra from all farms were used
demonstrates that herd-specific environmental effects can influence the results of biomarker discovery.
How significant this is ultimately depends on the research question being asked. If the study aim
is to identify biomarkers of external phenotypes (i.e., biomarkers that represent both genetic and
environmental factors which are used for management purposes such as disease prediction), then the
impact of environmental effects is important and must be captured. However, if the aim is to identify
biomarkers indicative of inter-animal differences free of environmental confounding, or to understand
biological processes, our results suggest that the influence of environmental effects could lead to
erroneous results. This is consistent with the findings of Posma et al. [41] who showed that differences in
fixed effects between subjects from the north and south of China explained some metabolite associations,
which had previously been attributed to cardiovascular disease risk. This study also reported that
adjusting metabolomic data for confounding using an algorithm called Covariate-Adjusted Projection
to Latent Structures (CA-PLS) improved model interpretability and led to the identification of more
robust biomarkers. Our results are also consistent with other studies that have explored the impacts of
data pretreatments on the interpretation of metabolomics data. For example, van den Berg et al. [45]
showed that pretreatment methods such as scaling, centering and transformations can greatly affect
the outcome of metabolomic analyses (including the biological ranking of important metabolites) and
have the potential to enhance biological interpretability. Similarly, Emwas et al. [46] concluded that the
choice of spectral processing and post-processing depended on many factors including the aim of the
experiment and the quality of data.

We believe that our approach has particular application in animal breeding, where the aim
is to understand the biological processes that underpin economically important traits [47] and
to identify metabotypes that represent inter-animal variation independent of confounding from
systematic environment effects. Even with the advent of genomic selection, livestock genetic studies
require relatively large numbers of animals to ensure there is adequate genetic variation in the study
population [48,49]. The same is likely to be true for metabotype discovery studies. Such large datasets
can be hard to compile, especially when the trait of interest is difficult and/or expensive to measure.
As well as collecting data from multiple farms, another potential solution is data sharing through
international collaboration. This is routinely done by geneticists; for example, de Haas et al. [50] used
data from Holstein cattle in Europe, North America and Australasia to improve genomic prediction
accuracies for feed intake. The ability to correct metabolomic data for factors such as experimental
batch, diet, herd, year and season should allow similar collaborations in metabotype studies.

4. Materials and Methods

All procedures undertaken in this study were conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical
Research Council, 2013). Approval to proceed was granted by the Agricultural Research and Extension
Animal Ethics Committee of the Department of Jobs, Precincts and Resources Animal Ethics Committee
(DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian Department of
Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and Welfare Branch,
13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval codes 2017-05
and 2018-07.

4.1. Sample Collection

A single 10 mL blood sample was taken from 708 clinical healthy cows, located on 13 farms in
south-eastern Australia between September 2017 and July 2019. All cows had been calved 30 days
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or less at the time of sampling. Cows on all farms except Farm 1 were Australian Holstein-Friesians,
while cows on Farm 1 were crossbred animals (including Holstein-Friesian, Jersey, and Australian
Red breeds). All farms operated a feeding system reliant on grazed pasture plus other forages,
and concentrates fed in the bail at milking time.

Blood samples were collected from the coccygeal vein into 10 mL serum clot activator vacutainer
tubes (Becton Dickinson, Franklin Lakes, NJ, USA). Samples were allowed to clot at room temperature,
before being centrifuged at 1000 g for 20 min at 20 °C. Sera were divided into two aliquots. The first
aliquot was refrigerated at 4 °C then shipped on ice to a commercial laboratory for BHBA analysis.
The second aliquot was stored at —20 °C until processing for NMR spectroscopy.

4.2. Reference BHBA Measurements

Serum BHBA concentrations were determined using a colorimetric enzymatic kinetic assay [51].
All assays were performed by Regional Laboratory Services (Benalla, Victoria, Australia) using a Kone
20 XT clinical chemistry analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The uncertainty of
measurement (at a 95% confidence level) was + 0.060 mmol/L at 0.85 mmol/L.

4.3. Chemicals

Methanol (>99.9% pure) and dipotassium hydrogen phosphate (anhydrous) were purchased
from Fisher Chemical (Fair Lawn, NJ, USA). Sodium 2,2-dimethyl- 2-silapentane-5-sulfonate (DSS-d6,
98%) and deuterium oxide (D,0O, 98%) were purchased from Cambridge Isotope Laboratories, Inc.
(Tewksbury, MA, USA).

4.4. Sample Preparation for NMR Spectroscopy

Serum samples were thawed at room temperature for one hour and were prepared for NMR
spectroscopy using a methanol protein precipitation method described by Nagana Gowda and
Raftery [52]. Briefly, 300 uL of serum was mixed with 600 uL of methanol, vortexed (Ratek multi tube
vortex mixer, MTV1), incubated at —20 °C for 20 min, then centrifuged to pellet proteins (11,360 g, 21 °C,
30 min). A 600 uL aliquot of supernatant was then transferred to a clean 2 mL microcentrifuge tube
and dried under vacuum at 21 °C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo
Fisher Scientific, Waltham, MA, USA). Dried extracts were then reconstituted in a D,O phosphate
buffer solution (100 mM K,;HPOy) containing 0.25 mM DSS-d6 as an internal standard. A 550 pL
aliquot was transferred to 5 mm NMR tube for analysis.

4.5. "H NMR Data Acquisition

Routine 1D proton spectra were obtained on a Bruker Ascend 700 MHz spectrometer equipped
with cryoprobe and SampleJet automatic sample changer (Bruker Biospin, Rheinstetten, Germany).
A Bruker noesyprld pulse sequence was used over —0.76 ppm to 10.32 ppm spectral range with
256 scans collected after eight dummy scans at 298K, with a total acquisition time of 2.11 seconds per
increment and a relaxation delay (D1) of 2.00 seconds. The overall number of data points was 32,768.
A line broadening of 0.3 Hz was applied to all spectra prior to Fourier transformation. Spectra were
manually phased then baseline corrected in Topspin v.3.6.1 (Bruker Biospin, Rheinstetten, Germany).
Samples were referenced to the internal standard (DSS-d6) at & 0.00.

4.6. '"H NMR Spectral Processing & Multivariate Statistical Analysis

NMR spectra were imported into MatLab v.R2017b (Mathworks, Natick, WA, USA) using the
ProMetab v.1.1 script [53]. Each raw spectrum consisted of 31,313 data points between —0.60 and
10.00 ppm.

Statistical analyses were performed in MatLab utilizing the PLS Toolbox v. 8.5.2 (Eigenvector
Research Inc., Manson, WA, USA). The spectral region containing the residual water peak (5 4.68-5.00)
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was removed. Spectra were aligned using the correlation optimized warping algorithm [54] to account
for chemical shift drift, then normalized to total signal area to account for inherent concentration
differences between samples. After normalization, spectral regions containing methanol (6 3.32-3.36)
and DSS-d6 (5 0.4——0.60) peaks, and the non-informative region beyond 9.00 ppm were removed.
Finally, spectra were baseline corrected using automatic weighted least squares, and scaled by mean
centering. After editing, a total of 24,349 chemical shift datapoints were included in subsequent
statistical analyses.

For multivariate analyses, unsupervised principal component analysis (PCA) was used. Peaks of
interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., Edmonton, AB,
Canada), comparison to the literature, and 2D NMR analysis.

4.7. Correction of 'H NMR Spectra for the Effects of Systematic Environemtal and Physiological Effects

In order to investigate the effects on spectra of systematic environmental effects (also known as
fixed effects) spectra were “corrected” using linear regression models. When correcting for a single
categorical fixed effect, this is equivalent to scaling data using the “class centering” pre-processing
step. Rather than mean centering, which involves subtracting the global mean from each variable,
class centering subtracts the mean of each class. This allows investigation of intra-class variation by
removing the effects of inter-class variation [55]. The advantage of using linear models rather than
class centering is that the effect of multiple fixed effects or classes can be modelled simultaneously.

The approach we took was based on the principals of quantitative genetic models, where

Phenotypic observation = environmental effects + genetic effects + residual effects 1)

In this study, we only want to remove the effect of environmental factors (as it is the variation
in NMR spectra under genetic influence that we are interested in), so the equation can be further
simplified to

Phenotypic observation = genetic effects + residual effects 2)

The “corrected phenotype” (i.e., the phenotypic observation with the effects of the environmental
effects removed) is defined as the residuals from the above model. For the purposes of this study each
chemical shift was treated as a separate phenotype, with the signal intensity at each chemical shift
being an individual phenotypic observation. The “corrected spectra” was a matrix of the residuals of
each model.

A 707 x 24,349 matrix of signal intensities of pre-processed spectra was imported into the R
statistical software package v 3.6.2 [56]. Each row in the matrix represented a single sample, and each
column represented 1 of the 24,349 chemical shifts between & 0.40 and & 8.99 that made up an individual
spectrum. The following 4 linear models were applied to each of the 24,349 columns in the matrix
(i.e., the signal intensity at each chemical shift was treated as the response variable in a separate
regression model):

yil = p+ WIM; + e;) (Model 1) 3)

yji =1+ Pj+ej (Model 2) (4)

Y =+ Hy + el (Model 3) (©)

yij = 1+ WIM; + Pj + Hy + e (Model 4) (6)

where y is the signal intensity at a given chemical shift, i1 is the mean, WIM is weeks in milk (4 levels,
defined as 1, 2, 3, or 4), P is parity (4 levels, defined as 1, 2, 3, or > 4), H is the effect of herd (13 levels,
with a range of 9 to 248 cows per herd), and e is the random error term. This resulted in four separate
707 x 24,349 matrices containing spectra corrected for the effects of WIM, parity, herd, and all fixed
effects, respectively.
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The R? values from each regression model were stored in a separate vector. This resulted in four
vectors each containing 24,349 R? values; each value representing the percentage of variation in signal
intensity explained by the fixed effect(s) at a given chemical shift.

4.8. Quantifying the Effect of Stage of Lactation, Parity and Herd on "H NMR Spectra

A separate PCA was performed on each of the 4 corrected spectral datasets (as described in 4.7).
Scores of the first three PCs were extracted for each model, and for the PCA model constructed using
uncorrected data. We then calculated Pearson’s correlations between scores derived from the 5 PCAs
using the corrplot package [57] in R v 3.6.2 [56]. This resulted in three correlation matrices (one for
each PC). The lower the Pearson’s correlation coefficient, the greater the differences between PC scores,
the greater the differences between the two spectral datasets and therefore the greater the significance
of the fixed effect(s).

An alternative approach to investigating the influence of fixed effects is to use multiple linear
regression on PC scores from uncorrected spectra. The advantage of this approach is that all fixed
effects can be fitted simultaneously, and the statistical significance of each fixed effect can be calculated.
The model used was

Yijkl = K + WIM; + Pj + Hy + €jjkl (Model 5) (7)

where y is the PC score (on either PC1, PC2, or PC3) and p, WIM, P, H, and e are the mean, fixed effect,
and error terms described previously. The statistical significance of each fixed effect was determined
using conditional Wald F statistics in ASReml v 4.2 (VSN International Ltd., Hemel Hempstead, UK).
Conditional F statistics are used in multiple linear regression to infer the significance of a given fixed
effect assuming that the effect of remaining predictor variables have been accounted for [58].

Finally, we validated our results using the analysis of variance (ANOVA) simultaneous component
analysis (ASCA) method in the PLS Toolbox [55]. ASCA is a generalization of ANOVA used to quantify
the variation induced by fixed experimental design factors on complex multivariate datasets [59].
ASCA was performed on all spectral datasets (corrected and uncorrected). Statistical significance was
determined using permutation testing (50 iterations).

4.9. The Relationships between 'H NMR Spectra and Existing Energy Balance Biomarker Concentrations

In order to assess the utility of large and diverse datasets in livestock metabolomics studies,
we used orthogonal partial least squares (OPLS) regression to compare 'H NMR spectra to serum
BHBA concentrations determined by colorimetric assay. The aims of this analysis were (1) to assess
the robustness of OPLS models built using uncorrected data and (2) investigate the influence of
systematic environmental effects on the interpretation of 'H NMR spectra when used for untargeted
metabolomic analyses.

4.9.1. Robustness of OPLS Models to Predict External Phenotypes Using Uncorrected Data

The robustness of OPLS models constructed using large and diverse datasets was assessed using
a leave-one-farm-out external validation. This involved setting aside data from one farm, training
OPLS models using data from the remaining 12 farms, then using the withheld data for external
validation. This process was repeated until data from each farm was used as an external validation
set once. Model performance was assessed using the R> and RMSE of calibration, cross validation
(venetian blind CV with 10 data splits, and one sample per split), and external validation. The statistical
significance of OPLS models was determined using permutation testing (cross validated, Wilcoxon
test). Only uncorrected data were used for this part of the analysis.

4.9.2. Influence of Fixed Effects on Interpretation of 'H NMR Metabolomic Data

To assess the impact of fixed effects on the results of untargeted metabolomic analyses we
compared the results of OPLS models constructed from (1) uncorrected data from Farm 1 only
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(N = 129), (2) uncorrected data from all farms, and (3) data from all farms corrected for all fixed effects
(Model 4). Farm 1 data was used to simulate a more “typical” metabolomics experiment in which
confounding from environmental effects is controlled through experimental design.

When corrected spectra were used, reference BHBA concentrations were corrected for the same
fixed effects (Model 4). The residuals of this model represent the “corrected BHBA” concentration,
which is the expected BHBA concentration of an individual accounting for differences in WIM,
Parity and Herd. This poses some challenges in terms of interpretation, as negative residual values
(i.e., negative BHBA concentrations) are possible. However, for the purposes of genetic evaluations,
the ranking of an animal, or the relative phenotypic value, is of more interest than an absolute value.
The corrected value can therefore be considered a “corrected phenotypic ranking.”

The impact of fixed effects on the ability of NMR spectra to predict external phenotypes
(i.e., to classify animals or predict biomarker concentrations for management purposes) was assessed
by comparing the predictive ability of OPLS models. The influences of fixed effects on biomarker
discovery were investigated using scores and loadings on LV1 which show the magnitude and direction
of relationships between BHBA concentration and 'H NMR spectral features. Variable importance of
projection (VIP) scores were used to identify the most statistically significant spectral features in each
model. Variables with VIP scores greater than one were considered significant [60].

5. Conclusions

In this study we investigated the feasibility of using large and diverse datasets for untargeted 'H
NMR serum metabolomic profiling of clinically healthy dairy cows in early lactation. In particular,
we investigated the effects of systematic environmental factors on the serum metabolome. We used
linear regression to correct spectra for (1) herd of origin; (2) parity; (3) WIM; and (4) herd, parity, and WIM
simultaneously. Corrected and uncorrected spectra were then analyzed using PCA. Comparison of
PCA results showed that herd of origin had a much greater impact on the serum metabolome than
either parity or WIM. In order to simulate the impact of these effects in untargeted metabolomics,
we used OPLS regression to quantify the relationship between both corrected and uncorrected NMR
spectra, and the current gold-standard biomarker of energy balance in dairy cows, BHBA. Our results
showed that (1) models constructed using uncorrected data from multiple farms provided reasonably
robust predictions of serum BHBA concentration, (2) environmental effects can alter the results of
biomarker discovery, and (3) that correcting spectra for environmental effects using linear regression
may be useful when the aim of analysis is to investigate phenotypic variation free of confounding from
environmental effects (e.g., identification of metabotypes for genetic selection).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/5/180/s1,
Table S1. 'H NMR chemical shifts (5) and multiplicity of metabolites in bovine serum run in deuterated water
(D20).; Table S2. Results of ANOVA-simultaneous component analysis (ASCA) of uncorrected "H NMR spectra
of bovine serum.; Figure S1. Representative 700MHz TH NMR spectrum (5 0.4 to 9.0) of serum obtained from a
Holstein-Friesian cow in early lactation.; Figure S2. Results of PCA of 707 'H NMR spectra of serum obtained
from dairy cows in early lactation, corrected for weeks in milk using linear regression; (a) PC 1 vs. PC 2 scores,
(b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings
plots.; Figure S3. Results of PCA of 707 "H NMR spectra of serum obtained from dairy cows in early lactation,
corrected for Parity using linear regression; (a) PC 1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3
scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings plots.; Figure S4. Results of PCA of 707 H
NMR spectra of serum obtained from dairy cows in early lactation, corrected for Herd using linear regression;
(a) PC 1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings,
and (f) PC 3 loadings plots.; Figure S5. Average TH NMR spectrum of bovine serum. Color-coding represents
the percentage of variation in the signal at each chemical shift intensity that can be explained by (a) WIM and
(b) Parity: Figure S6: Results of OPLS regressions of serum BHBA concentration against "H NMR spectrum of
bovine serum (n = 707): (a) LV1 vs. LV2 scores for uncorrected data (b) CV predicted vs. measured BHBA (c) LV1
vs. LV2 scores for corrected data (d) CV predicted vs. measured corrected BHBA ranking.
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Abstract: Disorders of energy metabolism, which can result from a failure to adapt to the period of
negative energy balance immediately after calving, have significant negative effects on the health,
welfare and profitability of dairy cows. The most common biomarkers of energy balance in dairy cows
are 3-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA). While elevated concentrations of
these biomarkers are associated with similar negative health and production outcomes, the phenotypic
and genetic correlations between them are weak. In this study, we used an untargeted 'H NMR
metabolomics approach to investigate the serum metabolomic fingerprints of BHBA and NEFA.
Serum samples were collected from 298 cows in early lactation (calibration dataset N = 248, validation
N =50). Metabolomic fingerprinting was done by regressing 'H NMR spectra against BHBA and
NEFA concentrations (determined using colorimetric assays) using orthogonal partial least squares
regression. Prediction accuracies were high for BHBA models, and moderately high for NEFA models
(R? of external validation of 0.88 and 0.75, respectively). We identified 16 metabolites that were
significantly (variable importance of projection score > 1) correlated with the concentration of one or
both biomarkers. These metabolites were primarily intermediates of energy, phospholipid, and/or
methyl donor metabolism. Of the significant metabolites identified; (1) two (acetate and creatine)
were positively correlated with BHBA but negatively correlated with NEFA, (2) nine had similar
associations with both BHBA and NEFA, (3) two were correlated with only BHBA concentration,
and (4) three were only correlated with NEFA concentration. Overall, our results suggest that BHBA
and NEFA are indicative of similar metabolic states in clinically healthy animals, but that several
significant metabolic differences exist that help to explain the weak correlations between them. We also
identified several metabolites that may be useful intermediate phenotypes in genomic selection for
improved metabolic health.

Keywords: metabolic profile; ketosis; transition period; livestock; methyl donor; one-carbon
metabolism; negative energy balance

1. Introduction

Most dairy cows experience a period of negative energy balance immediately after calving due to
both a reduction in feed intake preceding calving [1], and an increase in energy requirements for milk
production [2]. A successful transition from pregnancy to lactation requires a series of complex and
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coordinated changes in metabolism and nutrient partitioning, known as homeorhesis [3]. Failure of
these homeorhetic controls can lead to the development of metabolic disorders such as ketosis and fatty
liver [4]. These disorders can have significant negative effects on the health, welfare and profitability of
early-lactation dairy cows due to their (1) relatively high incidence [5,6], (2) demonstrated association
with other diseases [4,7] and (3) their significant economic costs [8,9].

Serum f-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) are biomarkers that
are commonly used to evaluate the energy balance of dairy cows in the transition period [6,10,11].
One of the main physiological responses to reduced energy intake is the mobilization of stored energy
from adipose tissue as NEFA. Serum NEFA concentration is a measure of the degree of lipolysis,
and therefore an indicator of the magnitude of negative energy balance [12]. Once released, NEFA are
transported via the bloodstream to the mammary gland for milk fat synthesis, or to the liver where
they undergo either (1) complete oxidation via the TCA cycle, (2) partial oxidation to ketone bodies
(BHBA, acetone and acetoacetate), or (3) re-esterification to form triglycerides which can either be
stored or exported as very low density lipoprotein (VLDL). BHBA is the most stable of the three ketone
bodies [13], and is commonly used as a biomarker of energy balance [14].

Mild elevations in serum BHBA and/or NEFA concentration during the transition period are
considered normal [15], but marked elevations are indicative of excessive negative energy balance
and/or perturbed metabolism [16]. Elevated concentrations of both BHBA and NEFA can be observed in
clinically healthy animals (i.e., showing no visible signs of illness), and are associated with (1) reduced
reproductive performance [11,17], (2) an increased incidence of clinical diseases such as displaced
abomasa and metritis [15,17,18], (3) decreased milk production [6,11,19] and (4) an increased risk of
culling [6,15,20]. However, despite these similarities, both the phenotypic [21,22] and genetic [23]
correlations between these two biomarkers are low. This is not necessarily important if biomarkers are
being used for management purposes (such as the identification of sick animals or the assessment of
nutritional status) but may be significant if the biomarkers are used as phenotypes for genetic selection
for improved animal health and resilience. There is therefore a need to better understand the metabolic
states represented by BHBA and NEFA.

Untargeted metabolomics combines high throughput molecular analytical techniques such as
proton nuclear magnetic resonance ("H NMR) spectroscopy with multivariate statistical modelling,
to characterize the metabolic response of a biological system to pathophysiological stimuli [24].
Examples in dairy cattle include studies of ketosis [25,26], fatty liver [27], hypocalcaemia [28] and
displaced abomasa [29]. The collective metabolic features of a given state or condition can be described
as its “metabolomic fingerprint”. As well improving our understanding of the biological processes,
metabolomic studies can uncover intermediate molecular phenotypes (metabotypes) associated with
complex animal health traits such as metabolic resilience. These metabotypes can then be integrated
with genomic data to (1) elucidate the genetic architecture of these traits, and (2) improve genomic
prediction accuracies [30,31].

The aim of this study was therefore to use an untargeted 'H NMR metabolomic approach to
investigate the metabolomic fingerprints of serum BHBA and NEFA concentrations in clinical healthy
dairy cows in early lactation, and in so doing (1) identify common and differential metabolic pathways,
and (2) identify novel metabotypes for application to genetic selection for improved metabolic health.

2. Results

2.1. Analysis of Experimental Metadata

Descriptive statistics of the datasets used in this experiment are shown in Table 1.
BHBA concentrations were significantly higher in Dataset 1 than in Dataset 2 (p < 0.001). The differences
in all other parameters were not statistically significant (p > 0.05). The correlation between BHBA and
NEFA concentrations was 0.45 in Dataset 1 and 0.40 in Dataset 2.
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Table 1. Descriptive statistics of the datasets used in this experiment, including number of animals (N),
stage of lactation defined as days in milk (DIM), age in years, and -hydroxybutyrate (BHBA) and
non-esterified fatty acid (NEFA) concentrations (mmol/L) in the serum obtained from clinically healthy

dairy cows.
Dataset 1 (N = 248) Dataset 2 (N = 50)
Variable pl
. Mean . Mean
Min Max (SD) Min Max (SD)
DIM (days) 4 30 16.7 (6.0) 4 30 18.6 (7.3) 0.09
Age (years) 2 12 3.7 (2.0) 2 9 3.9 (1.8) 0.22

BHBA (mmol/L) 022 186 055(021) 023 094  042(0.17)  <0.001
NEFA (mmol/L) 0.11 218 075(032)  0.14 191 0.67(036)  0.07

! Statistical significance of the differences between Datasets 1 and 2 were determined using paired t-test for DIM,
and a paired Wilcoxon signed-rank test for age, BHBA and NEFA.

2.2. '"H NMR Spectra

Twenty-four metabolites could be clearly identified from the 'H NMR spectra. Two metabolites,
cholate and 3-phenyllactate, were tentatively identified. Figure 1 shows representative spectra
from animals in Dataset 1 with (a) elevated BHBA concentration, (b) elevated NEFA concentration
and (c) normal BHBA and NEFA concentrations. Upfield regions of spectra were dominated by
branched-chain amino acids (leucine, isoleucine and valine), organics acids (BHBA, lactate, acetate) and
the methyl and methylene groups of low density (LDL) and very low density lipoproteins (VLDL) at
50.86 ppm and & 1.25 ppm, respectively [32]. We also observed a prominent peak at 6 2.03 ppm which
was consistent with the N-acetyl groups of glycoproteins [33]. The singlet at 6 3.14 ppm was identified
as dimethyl sulfone (DMSO,) [34,35]. The middle of the spectrum was complex and dominated by
glucose. Signal overlap and weak 2D signal strength meant that hippurate was the only compound
that could be clearly identified in the downfield region. Relative chemical shifts and the multiplicity of
identified peaks are available in the supplementary material (Table S1).

Unsupervised analysis of the data using PCA showed no obvious clustering of samples by dataset.
Results of ANOVA-simultaneous component analysis showed that fixed effects (cow age, herd of
origin and days in milk (DIM)) explained only 13.94% of the spectral variation (Table S2). Only the
effect of age was statistically significant (p < 0.05). This suggests that most spectral variation is due to
differences between individual animals.



Metabolites 2020, 10, 247

x 32

85 8.0 75 7.0 6.5 50 45 4.0 35 3.0 25 2.0 15 1.0 ppm

Figure 1. Representative 700 MHz 'H nuclear magnetic resonance spectra of serum samples from early
lactation dairy cows with (a) elevated 3-hydroxybutyrate (BHBA), (b) elevated non-esterified fatty acid
(NEFA), and (c) normal BHBA and NEFA concentrations. Downfield regions were vertically expanded
32 times for clarity. Legend: 1, cholate; 2, very low density lipoprotein/low density lipoprotein;
3, leucine; 4, isoleucine; 5, valine; 6, 3-hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl
glycoprotein; 11, pyruvate; 12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone
(DMSO,); 16, choline; 17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, 3-Glu;
23, a-Glu; 24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification.

2.3. Accuracy and Robustness of Prediction Models

The robustness of the orthogonal partial least squares (OPLS) regression models built using data
from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation
with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were
high for BHBA (R? = 0.88), and moderately high for NEFA (R? = 0.75). BHBA models were remarkably
robust, with external validation R?2 and RMSE results almost identical to cross-validation results.
Models predicting serum NEFA concentration were less accurate than those predicting BHBA (NRMSE
0.32 and 0.50, respectively), but external validation results indicated that these models were still quite
robust. p-values derived from permutation testing were < 0.001 for all models, indicating that models
were not over-fitted.
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Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum
B-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from "H NMR spectra,
built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs.
measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted
NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA.

2.4. Metabolomic Fingerprints of BHBA and NEFA

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS
regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both
BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features
contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). Spectral
features with positive loadings correspond to metabolites that are positively correlated with reference
biomarker concentrations, and vice-versa. Peaks with a variable importance of projection (VIP) score
greater than one were considered statistically significant [37] (Figure 52).
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Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum
BHBA and NEFA concentrations from 'H NMR spectra; (a) First latent variable (LV1) vs. second
latent variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA
prediction model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA
prediction model. Scores plots color-coded by reference biomarker concentration, loadings plots
by VIP score. a-Glu = « glucose, 3-Glu = 3 glucose, Ace = acetate, Ala = alanine, Bet = betaine,
BHBA = 3 hydroxybutyrate, Cr = creatine, DMSO, = dimethyl sulfone, Glu = glucose, Gly = glycine,
Ile = isoleucine, Lac = lactate, Leu = leucine, NAG = N-acetyl glycoprotein, ChoP = phosphocholine,
Pyr = pyruvate, Val = valine, LDL = low density lipoprotein; VLDL = very low density lipoprotein.
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2.4.1. Commonalities in the Metabolomic Fingerprints of BHBA and NEFA

The results of this study show that several metabolites showed similar co-variances with
both BHBA and NEFA concentrations. The largest effect we observed was from peaks assigned
to glucose, which were negatively correlated with both biomarkers. Other metabolites with
common co-variances included lactate, valine and alanine (negatively correlated), and glycine and
phosphocholine (positively correlated). Spectral regions attributed to lipoproteins (LDL and VLDL)
and glycoproteins were positively correlated with both BHBA and NEFA concentrations.

2.4.2. Differences between the Metabolomic Fingerprints of BHBA and NEFA

Figure 4 highlights the differences we observed between the metabolomic fingerprints of BHBA
and NEFA. Acetate and creatine were positively correlated with BHBA, and negatively correlated
with NEFA. A small number of metabolites showed significant co-variance with only one of the
biomarkers. BHBA concentration was positively correlated with betaine, and negatively correlated
with dimethyl sulfone (DMSO,), while NEFA concentration was positively correlated with isoleucine
and negatively correlated with leucine.
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Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares
(OPLS) regression of 'H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations
in early lactation dairy cows. Spectral regions between (a) 5 0.2 ppm to 2.9 ppm and (b) § 2.9 ppm
to 5.5 ppm are shown. Figure (b) has been for clarity purposes. Ace = acetate, Bet = betaine,
ChoP = Phosphocholine, Cr = creatine, DMSO, = dimethyl sulfone, Ile = isoleucine, Leu = leucine,
LDL/VLDL = low/very low-density lipoprotein, NAG = N-acetyl glycoprotein, Pyr = pyruvate.
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3. Discussion

3.1. Similarities between BHBA and NEFA

Not surprisingly, many of the metabolites identified as having common co-variance with both
BHBA and NEFA concentrations are involved in hepatic energy metabolism. These relationships
are summarized in Figure 5. Most obvious was the negative relationship between both biomarkers
and glucose. Hypoglycaemia has been widely reported in early lactation dairy cows due to the
massive demand for glucose for lactogenesis [3,38]. More recently, NMR metabolomics studies have
identified serum glucose concentration as being (1) directly correlated to energy balance (r = 0.84) [39],
and (2) lower in cows with clinical and subclinical ketosis [25] and fatty liver [27] when compared
to healthy controls. Our results offer further evidence of the pivotal role glucose plays in the early
lactation metabolic health in dairy cows.
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Figure 5. Summary of hepatic energy metabolism in early lactation dairy cows. Arrows indicate
the direction of the relationship between the metabolites and the reference BHBA (blue) and
non-esterified fatty acid (NEFA) (red) concentrations. BHBA = 3-hydroxybutyrate; OAA = oxaloacetate;
TAG = triglyceride, TCA = tricarboxylic acid, VLDL = very low density lipoprotein.

Lactate and alanine, important gluconeogenic substrates in ruminants [40,41], were also negatively
associated with both BHBA and NEFA, as was valine (another gluconeogenic amino acid). Interestingly,
Xu et al. [39] found no correlation between calculated energy balance in early lactation dairy
cows and the concentrations of any of the branched-chain amino acids or lactate. Conversely,
when compared to healthy controls, cows with fatty liver and displaced abomasa have been shown
to have lower serum alanine concentrations [27,29], and cows with ketosis have lower lactate and
alanine concentrations [25,42]. This suggests that alterations in glucogenic precursors, in particular
lactate and alanine, are indicative of a perturbed metabolism, not simply negative energy balance.
We previously showed that lactate concentration in pasture-fed dairy cows is heavily influenced by
herd-specific management factors [43], and as such may not be heavily influenced by genetic factors.
Alanine has been shown to be the most important glucogenic amino acid, and the most important
gluconeogenic precursor after lactate and propionate, in dairy cows [41]. Therefore, genetic selection for
cows with higher serum concentrations of alanine in early lactation may help to increase endogenous
glucose supply.

Spectral features attributed to VLDL and LDL were positively correlated with the concentrations
of both BHBA and NEFA. These results need to be interpreted with caution as the methanol extraction
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used in this study removed much of the protein from the samples and may have introduced
experimental artefacts. Interestingly, "H NMR spectroscopy has recently been shown capable of
providing high-throughput and accurate quantification of lipoprotein subclasses in human serum and
plasma samples [32,44]. It is important to note that these protocols used different pulse sequences and
involved the dilution of plasma/serum in a deuterated water/phosphate buffer solution without any
metabolite extraction, such as the one used in our study. The findings of these studies cannot, therefore,
be applied directly to our results. However, lipoprotein metabolism is central to early lactation health
in dairy cows, and impaired VLDL production in the liver can result in hepatic triglyceride (TAG)
accumulation (Figure 4) and the development of fatty liver [45]. Dyslipoproteinaemia is also an
important feature of metabolic syndrome in humans, and the quantification of lipoprotein subclasses is
considered critical to the better understanding of this disease [44]. We believe that the investigation of
serum lipoproteins using 'H NMR spectroscopy holds great promise in the research of early lactation
metabolic health in dairy cows, and we plan to validate the aforementioned protocols on bovine serum
and plasma samples.

The region of the spectrum associated with glycoproteins was also significantly positively
correlated with both NEFA and BHBA concentrations. Glycoproteins are acute phase proteins which
can be used as indicators of inflammation in cattle [46]. In dairy cattle, increased serum NEFA
concentrations in early lactation are associated with uncontrolled inflammation, and this inflammatory
dysfunction is hypothesized to be a central link between metabolic and infectious disorders [14,47].
'H NMR spectroscopy is showing promise for the quantification of glycoprotein A (GlcA) in human
research into metabolic diseases such obesity, diabetes mellitus and the metabolic syndrome [33].
Given that these syndromes have much in common with early lactation metabolic disease in dairy
cows (e.g., insulin resistance), we believe that further research into GlcA as a biomarker for early
lactation health is warranted. Overall, our results offer further evidence that inflammation plays an
important role in early lactation metabolic health of dairy cows.

Glycine was positively correlated with the concentrations of both BHBA and NEFA. Metabolomics
studies comparing healthy and ketotic dairy cows have reported (1) no change in glycine
concentrations [25], (2) increased glycine concentrations in cows with sub-clinical ketosis [26],
(3) increased glycine concentrations in cows with clinical ketosis [48] and (4) decreased glycine
concentrations in cows with clinical ketosis [26] and fatty liver [49]. Glycine concentration has also been
shown to increase in response to lipolysis [50]. These differing results suggest that changes in glycine
concentration may be dependent on the severity of the metabolic disorder (i.e., increased in mild cases,
and decreased in more severe cases). Most interesting are the findings of a recent metabolomics study
that showed that glycine concentrations in plasma and milk were strongly negatively correlated with
energy balance in early lactation dairy cows (r = —0.80 and r = —0.79, respectively) [39]. The authors of
this study hypothesized that this relationship was due to an increase in one-carbon or methyl donor
metabolism, specifically an increase in the conversion of choline to glycine. Given that all cows in our
study were clinically healthy, our results are consistent with glycine being an indicator of negative
energy balance, lipolysis, and/or sub-clinical ketosis. Further work is required to better understand the
role of glycine metabolism in clinical metabolic disease.

The positive correlations between phosphocholine and both BHBA and NEFA concentrations, and
between betaine and BHBA concentration, are consistent with an increase in methyl donor metabolism
in cows experiencing negative energy balance. Methyl donor metabolism and nutrition are receiving a
great deal of attention in dairy science due to links with early-lactation cow health (including fatty liver),
milk production and immune function [51]. Betaine, phosphocholine and glycine are intermediates in
several important one-carbon metabolic pathways including the folate and methionine cycles, and the
cytidine diphosphate (CDP)—choline pathway [51] (Figure 6a). The positive correlation between
NEFA and phosphocholine may be due to increased breakdown of phosphatidylcholine (Figure 6a).
This is consistent with the findings of Imhasly et al. [52] who showed that serum concentrations of
lyso-phosphatidylcholines and phosphatidylcholines increase in response to negative energy balance
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in post-partum dairy cows. The positive association observed between betaine and BHBA could be
due to increased oxidation of choline. A detailed description of these pathways is beyond the scope of
this study, however our results suggest that methyl donor metabolism has an important influence on
both BHBA and NEFA concentrations in early-lactation dairy cows.

NEB
Phosphatldylchohne Arginine Mitochondrion
+ Glycineﬁ
KIDNEY
I.lpoprotelnsn \
Guanidoacetate
] Phosphocholine
N\
TBetaine <+<— Choline CreatineI
LIVER
Mitochondrion
Homocysteine
DMG
Methionine S-adenosyl- — CreatineT
homocysteine = ATP XADP MUSCLE
Glycine” / ADP ATP I BHBA
S-adenosyl- Creatine Phosphate -== { NEFA
methionine \/
(a) (b)

Figure 6. Summary of (a) phospholipid and one-carbon/methyl donor metabolism [53,54],
and (b) creatine metabolism in early lactation dairy cows. Arrows indicate the direction of the
relationship between the metabolites identified using untargeted 'H NMR metabolomics, and reference
BHBA (blue) and non-esterified fatty acids (NEFA) (red) concentrations. ADP = adenosine diphosphate;
ATP = adenosine triphosphate; DMG = dimethylglycine; NEB = negative energy balance.

3.2. Differences between BHBA and NEFA

Despite many similarities, we observed some significant differences between the metabolomic
fingerprints of BHBA and NEFA. Most obvious was the difference in the direction of correlation between
acetate and the two biomarkers. Acetate is a volatile fatty acid produced by microbial fermentation of
feedstuffs in the rumen, and is an important energy source [55] (via oxidation or the partial oxidation
of acetyl-CoA in the liver) and substrate for de novo milk fat synthesis [56] in cows. The negative
relationship we observed between acetate and NEFA is consistent with the findings of Bielak et al. [57],
who reported a negative correlation (r = 0.44) between plasma NEFA and acetate concentrations in
early lactation dairy cows, possibly due to the down-regulation of the active transport of acetate across
the rumen wall. The positive association between acetate and BHBA is consistent with previously
discussed metabolomic studies of ketosis and fatty liver [25,27]. These results suggest that differences
in acetate metabolism may help to explain the weak correlation between serum BHBA and NEFA
concentrations in early lactation dairy cows.

The positive correlation between creatine and BHBA concentration is consistent with previous
reports that creatine is a potentially useful biomarker of ketosis and severe energy deficiency in dairy
cows [25,26,39]. Creatine is an important intermediate in energy metabolism, and this result may
represent increased breakdown of creatine phosphate in skeletal muscle and the release of high-energy
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phosphate for the conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP)
(Figure 6b). Interestingly, creatine concentration was negatively correlated with NEFA concentration
(albeit weakly and non-significantly (VIP < 1)). That mobilization of energy from skeletal muscle is
a feature of the BHBA metabolomic fingerprint, but not that of NEFA, suggests that elevated BHBA
concentrations are indicative of a more severe energy deficiency than are elevated NEFA concentrations.
However, the ability to rapidly mobilize energy from skeletal muscle may be advantageous to
early-lactation dairy cows, and we believe the role of creatine metabolism in transition cow health
warrants further investigation. We therefore plan to undertake genome-wide association studies to
better understand the genetic relationships between hepatic and skeletal muscle energy metabolism.

The significant negative correlation between DMSO, and BHBA concentration was an interesting
finding of this study. DMSO, concentration in the milk and rumen fluid of dairy cows has been shown
to vary according to feeding system; higher in pasture-fed cows managed outdoors than in cows fed a
total mixed ration indoors [58]. Maher et al. [59] showed that the concentrations of DMSQO, in milk and
plasma are highly correlated (r = 0.69), so serum DMSO, may also be an indicator of pasture intake.
Given that all animals in this experiment were fed pasture, the negative association we observed
between DMSO, and BHBA concentration may indicate that hyperketonemic cows are consuming
less feed.

4. Materials and Methods

All procedures undertaken in this study were conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical
Research Council, 2013). Approval to proceed was granted by the Agricultural Research and Extension
Animal Ethics Committee of the Department of Jobs, Precincts and Regions Animal Ethics Committee
(DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian Department of
Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and Welfare Branch,
13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval code 2017-05.

4.1. Animals and Datasets

A total of 298 Holstein-Friesian cows were used in this experiment. The calibration dataset (Dataset
1) was collected between August and September 2017 from 248 animals located at the Ellinbank Dairy
Research Centre, Ellinbank, Victoria, Australia. An independent validation dataset (Dataset 2) was
collected in September 2018, from 50 cows located on a commercial dairy farm in Smithton, Tasmania,
Australia. All cows were clinically healthy, and had been calved for between 4 and 30 days at the time
of sampling. Feeding systems on Australian dairy farms are diverse but can be classified into 5 main
feeding systems [60]. Both farms operated under feeding system 2; grazed pasture plus moderate to
high level concentrate feeding (>1.0 tonne of concentrate fed in the milking parlour per cow per year).

4.2. Blood Sample Collection and Reference Biomarker Measurements

A single serum sample was taken from each cow immediately after morning milking
(approximately 07:00) according to the protocol described in Luke et al. [43]. Cows were fed their
concentrate ration as soon as they entered the milking parlour, meaning that samples were collected
approximately 10 min after grain feeding.

An aliquot of each serum sample was shipped on ice to Regional Laboratory Services (Benalla,
Victoria, Australia) for BHBA and NEFA analyses. Colorimetric assays were performed using a Kone
20 XT clinical chemistry analyser (Thermo Fisher Scientific, Waltham, MA, USA); an enzymatic kinetic
assay for BHBA (McMurray et al., 1984) and enzymatic end point assay for NEFA (Randox Laboratories,
Crumlin, UK). The uncertainty of measurement (at a 95% confidence level) was +0.060 mmol/L at
0.85 mmol/L for BHBA, and +0.031 mM at 1.45 mM for NEFA. A second aliquot was stored at =20 °C
until processing for NMR spectroscopy.
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4.3. Sample Preparation for NMR Spectroscopy

Details of the sample preparation and metabolite extraction protocols used in this study can be
found in Luke et al. [43]. Briefly, 300 uL of serum was (1) mixed with 600 uL of methanol, (2) vortexed,
(8) incubated at —20 °C for 20 min, and (4) centrifuged at 11,360x g at 21 °C for 30 min to pellet
proteins. A 600 pL aliquot of the supernatant was then transferred to a clean 2 mL microcentrifuge
tube, dried under vacuum at 21 °C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo
Fisher Scientific, Waltham, MA, USA) then reconstituted in a DO phosphate buffer solution (100 mM
K,HPOy) containing 0.25 mM DSS-d6 as an internal standard. A 550 uL aliquot of reconstituted extract
was transferred to a 5 mm NMR tube for analysis.

4.4. TH NMR Data Acquisition and Pre-Processing

One-dimensional proton spectra were acquired using a Bruker Ascend 700 MHz
spectrometer equipped with cryoprobe and SampleJet automatic sample changer (Bruker Biospin,
Rheinstetten, Germany). A Bruker noesyprld pulse sequence was used over a —0.76-10.32 ppm
spectral range with the following acquisition parameters; (1) a temperature of 298 K, (2) 256 scans
after eight dummy scans (3) acquisition time per increment of 2.11 s, and (4) relaxation delay (D1)
of 2.00 s. This resulted in 32,768 data points. A line broadening of 0.3 Hz was applied to all spectra
prior to Fourier transformation. Spectra were manually phased, baseline corrected and referenced
to the internal standard (DSS-d6) at & 0.00 ppm using the Topspin v.3.6.1 software (Bruker Biospin,
Rheinstetten, Germany).

Data pre-processing was performed in MatLab v.R20017b (Mathworks, Natick, MA, USA).
Spectra were imported as a matrix of signal intensities using the ProMetab v.1.1 script [61].
Spectral pre-processing involved (1) deletion of the residual water peak region (5 4.68-5.00 ppm),
(2) spectral alignment using the correlation optimized warping algorithm [62], (3) normalization to
total signal area (area = 1), (4) deletion of methanol (5 3.32-3.36 ppm) and DSS-d6 (5 0.4-0.60 ppm)
peak regions, and the non-informative region beyond 9.00 ppm, (5) baseline correction using automatic
weighted least squares and (6) mean centering.

4.5. Statistical Analysis

Statistical analysis of experimental metadata was performed in R v3.6.2 [63]. Differences between
the 2 datasets were analysed using a paired f-test or a Wilcoxon signed-rank test depending on the
normality of the data.

Multivariate statistical analyses were performed using the PLS Toolbox v. 8.5.2 (Eigenvector
Research Inc., Manson, WA, USA). Preliminary data analysis and outlier detection was performed
using an unsupervised PCA. Examination of PC1 vs. PC2 scores plot showed 14 samples from Dataset 1
outside the 95% confidence level ellipse (Figure S1). These samples were individually examined, and a
single spectrum with poor water suppression and baseline correction was removed from subsequent
analyses. The influences of fixed effects (DIM, age and herd) on spectra were investigated using
ANOVA simultaneous component analysis with 1000 permutations [64]. Untargeted metabolomic
fingerprinting was done by regressing reference NEFA and BHBA concentrations against 'H NMR
spectra using supervised OPLS regression. Variable importance of projection (VIP) scores for the first
latent variable were used to identify the most statistically significant peaks in each model. Peaks of
interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., Edmonton, AB,
Canada), comparison to the literature, 2D NMR analysis (COSY, gHMBC and gHSQC), and statistical
total correlation spectroscopy [65].

OPLS models were constructed using data from Dataset 1. The robustness of models was assessed
using (1) cross-validation using a venetian blind technique (10 sample splits with 1 sample per blind)
and (2) external validation using data from Dataset 2. The prediction accuracy of OPLS models was
assessed using the coefficient of determination (R2) and root mean square error (RMSE). Normalized
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RMSE (NRMSE) values, calculated as external validation RMSE divided by the interquartile interval
of the observed data, were used to compare RMSE estimates for NEFA and BHBA predictions.
Permutation testing (50 iterations and statistical significance determined using a Wilcoxon signed-rank
test) was performed to ensure that models were not over-fitted.

5. Conclusions

In this study we used an untargeted 'H NMR metabolomics approach to investigate the serum
metabolic fingerprints of the two most common biomarkers of energy balance in dairy cows, BHBA
and NEFA. Our results suggest that while BHBA and NEFA are indicative of similar metabolic
states in early-lactation dairy cows, there are significant differences between the two biomarkers.
Metabolites with common co-variances were intermediates of energy, phospholipid, and methyl donor
metabolism. The most significant differences in the metabolomic fingerprints were related to acetate
and creatine metabolism. We also identified several intermediate metabotypes which, when combined
with genomic data, will enable further the investigation of the genetic architecture of metabolic health
in early lactation dairy cows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/247/s1,
Table S1: 'H NMR chemical shifts (5) and multiplicity of metabolites in bovine serum run in deuterated water
(D50O). Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; dd, doublet of a doublet; m,
multiplet; t, triplet. The right two columns show the direction of the relationship with serum B-hydroxybutyrate
(BHBA) and non-esterified fatty acid (NEFA) concentrations determined by colorimetric assays, Table S2: Results
of ANOVA-simultaneous component analysis (ASCA) of TH NMR spectra of bovine serum (N= 298). Effect
describes the relative influence of each variable (herd, age and days in milk (DIM)) on spectra. p-value is derived

from permutation testing (1000 iterations), Figure S1: Results of PCA of 'H NMR spectra of serum obtained from
298 dairy cows in early lactation from the Ellinbank research farm (Dataset 1, N = 248) and a commercial dairy
farm in Tasmania (Dataset 2, N = 50), Figure S2: VIP scores from OPLS regressions of 'H NMR spectra of serum
obtained from 298 dairy cows in early lactation against (a) BHBA concentration and (b) NEFA concentration.
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Abstract: Annual legumes from the Mediterranean region are receiving attention in Australia as
alternatives to traditional pasture species. The current study employed novel metabolic profiling
approaches to quantify key secondary metabolites including phytoestrogens to better understand
their biosynthetic regulation in a range of field-grown annual pasture legumes. In addition, total
polyphenol and proanthocyanidins were quantified using Folin-Ciocalteu and vanillin assays,
respectively. Metabolic profiling coupled with biochemical assay results demonstrated marked
differences in the abundance of coumestans, flavonoids, polyphenols, and proanthocyanidins in
annual pasture legume species. Genetically related pasture legumes segregated similarly from
a chemotaxonomic perspective. A strong and positive association was observed between the
concentration of phytoestrogens and upregulation of the flavonoid biosynthetic pathway in annual
pasture legumes. Our findings suggest that evolutionary differences in metabolic dynamics and
biosynthetic regulation of secondary metabolites have logically occurred over time in various species
of annual pasture legumes resulting in enhanced plant defense.

Keywords: pasture legumes; phytoestrogens; flavonoids; coumestans; polyphenols; proanthocyanidins;
metabolic profiling; biosynthesis

1. Introduction

Broadacre farming frequently occurs with livestock production throughout southeastern Australia,
with the pasture phase of crop rotation sustaining both lamb and cattle enterprises [1]. Lamb and beef
production account for the majority of livestock-related income in southeastern Australia (AU$22 billion
in 2017) and global demand is projected to dramatically increase over the next decade (Australian
Bureau of Statistics, 2018). Legumes are integral to livestock pasture production systems through
provision of high quality forage for grazing livestock. Establishment of pasture species that are
non-toxic, persistent, and high in nutritional quality is therefore critical for continued improvement of
livestock productivity.

Metabolites 2020, 10, 267; doi:10.3390/metabo10070267 135 www.mdpi.com/journal/metabolites
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Traditionally, subterranean clover (Trifolium subterraneum L.) and lucerne (Medicago sativa L.) are
the most widely utilized pasture species in prime lamb, wool, and cattle producing regions across
southeastern Australia. Subterranean clover is compatible across various soil types and is tolerant of
pH extremes [2,3]. Lucerne is a deep-rooted perennial species frequently established across diverse
rainfall regions and is suitable for neutral or mildly alkaline soils. Recently the establishment of
both pasture species has proven challenging to sustain livestock production due to a range of biotic
and abiotic factors. For example, lucerne, which contains high protein content, has been shown to
undergo rapid fermentation in the rumen resulting in increased incidence of bloat and potential loss of
nitrogen due to excretion [4]. In addition, ingestion of lucerne and subterranean clover is associated
with metabolic disorders including acute inflammation of both the small and large intestine (red gut),
sodium deficiency and pregnancy-related toxemia [5-7].

Increased risk of metabolic disorders, the significant cost of establishment, and low persistence of
traditional legume pastures in low-rainfall regions [8,9] has led to the introduction of novel annual
pasture legume species originating from Mediterranean regions of Europe and northern Africa to
Australia [3]. These include Biserrula pelecinus L. (biserrula), Ornithopus sativus Brot. (French serradella),
Ornithopus compressus L. (yellow serradella), Trifolium glanduliferum Boiss. (gland clover), Trifolium
spumosum L. (bladder clover), and Trifolium vesiculosum Savi. (arrowleaf clover). These accessions are
characterized by their adaptation to deep, acid and sandy soils, drought tolerance, weed suppressive
potential, and prolonged availability as feed for livestock [10,11]. While the nutritive value of traditional
pasture legumes has been studied in southeastern and Western Australia, a detailed investigation of the
phenolic chemistry of annual legumes has not been performed with respect to livestock production [2].

Legumes have evolved chemical defense mechanisms mediated by secondary metabolites,
including phytoestrogens, to deter herbivores and plant pests [12,13]. In terms of phenolic
chemistry and key secondary metabolites in pasture legumes, flavonoids represent a distinct class of
secondary products with both positive and negative impacts on plant-microbial and plant-livestock
interactions [14,15]. In general, they are classified by their chemical structure into subgroups including
anthocyanidins and anthoxanthins (flavanones, flavans, and flavanonols) [16].

Significant levels of phytoestrogens are produced in pasture legumes including lucerne as well
as various clover species and when present at significant levels can seriously reduce reproductive
efficiency and livestock fertility [15,17,18]. Coumestans and isoflavone phytoestrogens are stable,
non-steroidal secondary metabolites that mimic mammalian estrogen, an endogenous female sex
hormone [15,19]. The affinity of these phytoestrogens in binding estrogen receptor-f can result in
reproductive abnormalities during embryo development, and infertility in both sexes of grazing
livestock [20]. Isoflavone phytoestrogens are typically stored either as glycosides or aglycones in
pasture legumes [15,21].

Coumestans are non-flavonoid phytoestrogens, and include coumestrol and 4’-methoxycoumestrol,
first isolated from white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) in 1957 [22]. These
polycylic aromatic metabolites are closely related biosynthetically to flavonoids (Figure 1). Elevated
concentrations of phytoestrogens, including isoflavones, coumestrol, and related metabolites, from
ingestion of fodder or feedstock have been implicated in estrogenic clinical signs in livestock as
edematous vaginal and cervical tissue, hypertrophy of mammary glands, and milky secretions from
elongated teats. Phytoestrogens in forage may also cause adverse effects in ovarian function resulting
in loss of fecundity or early embryonic death [23]. Livestock grazing various Trifolium species exhibit
varying tolerance to coumestans, which typically range in concentration from 25 to 200 mg kg™! dry
matter (DM) [15]. The presence of coumestrol at concentrations greater than ~40 mg kg™! DM in plant
tissues is associated with reproductive inefficiency in sheep and cattle through disruption of several
endocrine mechanisms [24,25].
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Figure 1. Phytoestrogens found in abundance in lucerne (Medicago sativa) and subterranean clover
(Trifolium subterraneum).

Isoflavonoids are 3-phenylchromen-4-ones (3-phenyl-1,4-benzopyrone) and are important in
regulating numerous interactions in higher plants. The isoflavone biosynthetic pathway is one of the
most well elaborated pathways in plant secondary metabolism due to the importance of isoflavones as
chemoattractants for rhizobia and their involvement in plant defense. Isoflavones are mainly derived
from the phenylpropanoid pathway but can be generated through multiple pathways in many plant
species [26]. Legumes possess a unique enzyme, isoflavone synthase (IFS), which is a cytochrome P450
monooxygenase that catalyzes the 2, 3 migration of the B-ring of naringenin or liquiritigenin, resulting
in the production of various biologically active isoflavonoids [27]. The genes encoding enzymes
in this pathway are tissue specific and are regulated both spatially and temporally in legumes [28].
Such catalytic enzymes are induced by various stress factors influencing plant condition, including
climate, temperature, soil moisture availability, nutrient deficiency, and herbivory [29].

Polyphenolic compounds, including condensed tannins (proanthocyanidins), are another key
group of metabolites possessing a range of biological and nutritional properties in grazing livestock.
These compounds vary with regard to chemical structure, plant source, and target animal species [30].
For example, monomeric phenolic acids in forages are associated with enhanced milk production
and acid-base imbalance in the rumen following microbial degradation [31]. Traditionally, the
proanthocyanidins, which are