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Preface

This book, containing review articles from the 5th International Symposium for

Interface Oral Health Science held January 20–21, 2014, at Sakura Hall in Tohoku

University, Sendai, Japan, is being published in 2014 under the title of Interface
Oral Health Science 2014. I am very pleased and honored to deliver the book for

publication.

Interface oral health science is a new concept in dentistry, established by the

Tohoku University Graduate School of Dentistry in 2002, and is based on the

following principles: Normal oral function is maintained through harmony between

three biological and biomechanical systems: structure of the mouth, including teeth,

the mucous membrane, bones, and muscles; microorganisms in the mouth (para-

sites); and biomaterials. Tooth decay, periodontal disease, and other oral disorders

can be recognized as interface disorders, which are caused by the collapse of the

interface between the systems. This concept is shared not only by dentistry and

dental medicine but also by a variety of disciplines, including medicine, material

science, engineering, and others.

Since 2002, the Tohoku University Graduate School of Dentistry has regarded

interface oral health science as the main theme of dental research in the twenty-first

century. We are committed to advancing dental studies by implementing interface

oral health science, while promoting interdisciplinary research across a wide range

of related fields. Based on this concept, we have successfully organized interna-

tional symposia for Interface Oral Health Science four times, in 2005, 2007, 2009,

and 2011, including inspiring special lectures, symposium sessions, poster pre-

sentations, and other discussions. These presentations from the four international

symposia were published in a series of English monographs under the title Interface

Oral Health Science.

These achievements were praised, and, in 2007, “Highly Functional Interface

Science: Innovation of Biomaterials with Highly Functional Interface to Host and

Parasite” was adopted as a program for Research and Education Funding for the

Inter-University Research Project 2007–2011, Ministry of Education, Culture,

Sports, Science and Technology (MEXT), Japan. Subsequently, we have been
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developing the project with a broader and deeper concept: “Biosis–Abiosis

Intelligent Interface,” which also was adopted as a program for a Research Promo-

tion Project 2012–2015, MEXT, Japan. It is aimed at creating a highly functional

and autonomic intelligent interface by combining the highly functional interface

science established by the Tohoku University Graduate School of Dentistry and the

Institute for Materials Research, Tohoku University, with the technology of eval-

uation and control at the interface which was offered by the Graduate School of

Biomedical Engineering, Tohoku University. We firmly believe that the Biosis–

Abiosis Intelligent Interface project can contribute to solving various problems not

only in dentistry and medicine but also in other disciplines.

Therefore, the 5th International Symposium for Interface Oral Health Science

was held as the Innovative Research for Biosis–Abiosis Intelligent Interface Sym-

posium, organized by the Tohoku University Graduate School of Dentistry with the

aid of a Research Promotion Project Grant, MEXT, Japan. The symposium was

composed of four focus sessions and 90 poster presentations. We had 18 distin-

guished invited/keynote speakers for the focus sessions.

I hope that our project, including the symposium and the book, will accelerate

the progress of dental science and point the way for dental research for future

generations. Finally, I would like to thank all members of our school and partici-

pants of the symposium for their contributions. Our thanks go especially to the

authors of the excellent review papers for this book.

Keiichi Sasaki

President, The 5th International Symposium for Interface Oral Health Science

Innovative Research for Biosis–Abiosis Intelligent Interface Symposium

Director, Tohoku University Graduate School of Dentistry

Dean, Tohoku University School of Dentistry

Sendai, Japan
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Chapter 1

Biological Events Occuring on the Biosis–

Abiosis Interface: Cellular Responses

Induced by Implantable Electrospun

Nanofibrous Scaffolds

Xuliang Deng, Yan Wei, Xuehui Zhang, Ying Huang, and Mingming Xu

Abstract Electrospun nanofibers have tremendous potential as novel scaffolds for

tissue engineering of various soft and hard tissues because of thier high surface

area, surface functional groups, interconnected pores, and nano-scaled size. In this

chapter, we reviewed the types of the nanofibrous scaffolds that have been used as

implantable biomedical devices and used electrospun nanofibrous guided tissue

regeneration membrane as an example to illustrate how the physiochemical prop-

erties of nanofibrous scaffolds influenced the biological events occuring on the

scaffolds-host interface. It could be concluded that physical and chemical stimuli

caused by nanofibrous scaffold would support in vivo-like three-dimensional cell

adhesion and activate cell-signaling pathways. In terms of physical stimulus, the

process of mechanotransduction may play an important role in influencing cellular

behaviors. A result, biological events such as cell-interface recognition, cell pro-

liferation, and cell differentiation are altered. Nevertheless, the cellular and molec-

ular mechanisms by which cells sense and respond to nanofiberous scaffolds remain

poorly understood. More evidences are needed to reveal the underlying mecha-

nisms whereby environmental cues alternated the cellular responses to the
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physiochemical properties of nanofibrous scaffolds. These future studies may help

to design may help to design new generations of implantable biomedical devices

that possess controllable cellular responses.

Keywords Biosis–abiosis interface • Electrospun nanofibrous scaffolds

• Mechanotransduction • Mesenchymal stem cells

1.1 Electrospun Nanofibrous Scaffolds as Implantable

Biomedical Devices

The electrospinning technique is being used to fabricate fibrous scaffolds for tissue

engineering, with the aim of restoring and maintaining the biological function lost

in host tissues [1]. The electrospun fibrous matrices can provide an ultrahigh surface

for cell attachment with high porosity [2] for the exchange of nutrients, ions, and

regulatory molecules between cells. The electrospun fibrous matrix holds great

promise for tissue regeneration based on its morphology, which favors to support

and guide cell growth [3].

Formhals first introduced electrospinning or e-spinning in 1938 [4]. Recently,

numerous research groups have explored its use to generate fibrous scaffolds for

tissue regeneration. A typical electrospinning apparatus includes a polymer solution/

melt in a syringe, charged through a high voltage supply, and a grounded plate

positioned at a predetermined distance from the tip of the needle. The potential

difference overcomes the surface tension of the fluid droplet at the tip of the metal

needle, which in turns results in the formation of the so-called Taylor cone. The fluid

jet experience whipping instabilities and tends to dry and form fibers with an average

diameter ranging from several microns to tens of nanometers. Processing parameters

including voltage, distance from tip to collector, collector type (rotating or static),

solution properties (e.g., concentration, viscosity and conductivity) and flow rate

have significant influences on fiber formation andmorphology. The solutionmust be

sufficiently concentrated so that the polymer chains are continuous and entangled

and of suitable viscosity to maintain a droplet and be pumped through the syringe.

The resultant materials comprise biocompatible and degradable natural or synthetic

polymers or blends and normally resemble the arrangement of the native extracel-

lular matrix (ECM). The fibers can be collected at a random orientation when using a

static collector or with high degree of alignment by using a rotating mandrel.

Maintenance of wound stability is a key factor for a successful outcome in

regenerative periodontal surgery. Essentially, the three-dimensional (3D) structure

shown by these e-spun membranes, with a high surface area of improved hydrophi-

licity and wettability, endow the structure with mechanical support and cell

regulation functions that guide new bone formation into the defect. Li et al. have

cultured different cells such as fibroblasts, cartilage cells, and mesenchymal stem

cells on poly (lactic-co-glycolic acid) (PLGA) and poly-(caprolactone) (PCL)

nanofibrous scaffolds and demonstrated the ability of the nanofiber structure to

support cell attachment and proliferation.

4 X. Deng et al.



1.1.1 Categories of Electrospun Nanofibrous Scaffolds:
Classified by Chemical Components

1.1.1.1 Single Component Nanofibers

The choice of material for tissue engineering applications depends upon the type of

scaffold required. The correct material to fulfill the requirement of specific mechan-

ical properties and degradation times required for the particular application [5].

Polymer are the main source materials of electrospun nanofibers. Certain of the

synthetic and natural polymers have been introduced widely to electrospinning

technique for regenerative medicine. Aliphatic polyesters, such as PCL, poly

(lactide) (PLA), and their copolymers and blends, are some of the many biodegrad-

able synthetic polymers that have been electrospun. By adjusting electrospinning

parameters such as voltage, distance between the electrodes, and flow rate of the

solution during electrospinning, and polymer solution properties, such as viscosity

and conductivity, most of the biocompatible polymers can be electrospun (e.g. Poly

(L-lactic acid) (PLLA), PLGA).

Compared with synthetic polymers, natural biopolymers have good biocompat-

ibility and provide many of the instructive cues required by the cells for attachment

and proliferation; however, they tend to display poor processability, which needs to

be modified for better electrospinnability. For instance, Zhang et al. have tried to

improve the electrospun processability of gelatin by modifying the solubility of

gelatin at elevated temperature and the degree of cross-linking of the resultant

gelatin fibers [6].

Besides polymer nanofibers, ceramic nanofibers were also fabricated using

electrospinning. For example, Zhang et al. developed woven-bone-like β-TCP
fibers by sol–gel electrospinning [7]. Optimization studies were conducted in

terms of sol–gel synthesis and the electrospinning process, to fabricate electrospun

nanofibrous scaffolds with pure β-TCP fibers that mimic the mineralized collagen

fibrils in woven bone in size [7].

1.1.1.2 Composite Nanofibers

Organic/Organic Composite Nanofibers

The combination of synthetic and natural polymers is considered advantageous not

only for tuning the solubility of natural polymers but also for easy surface modifi-

cation. Many synthetic (e.g. aliphatic polyester) and natural polymers (e.g. proteins

and polysaccharides) have been reported to possess the tissue regenerative potential

[8]. However, the innate concerns associated with synthetic polymers are their poor

cell affinity [9], while biopolymers are rarely considered as scaffold materials for

tissue engineering applications without any special treatment (e.g. cross-linking,

or hydrophobic modification) [10, 11]. Mixing synthetic and natural polymers is a

1 Biological Events Occuring on the Biosis–Abiosis Interface: Cellular. . . 5



feasible approach to theoretically circumvent the shortcomings of the individual

materials and produce new biomaterials with good performances for tissue engi-

neering applications. Jiang et al. firstly reported the preparation of co-electrospun

composite membranes composed of PLGA and dextran [12]. After that, different

synthetic/natural polymer pairs were coelectrospun, including Poly(L-lactic acid)

(PLLA)/gelatin (GE), polycaprolactone (PCL)/GE and cellulose acetate/polyure-

thane, exhibiting desired cell behaviors and degradation properties [13–15].

Organic/Inorganic Composite Nanofibers

Recent efforts have focused on the development of composite nanofiber scaffolds

which can better mimic the composition and mechanical properties of natural bone.

Incorporating inorganic phase material (e.g. hydroxyapatite (HA) or β-tricalcium
phosphate (β-TCP)), which is one of the compositions of natural bone or bone

precursors, into an organic phase material (e.g. biodegradable polymeric

nanofibers) is generally used to enhance the mechanical property and osteocon-

ductivity of nanofiber scaffolds in recent years. Sui et al. developed a kind of

electrospun membranes composed of HA and PLLA and reported their applications

for periodontal tissue regeneration and guided bone regeneration [16, 17]. More

recently, Mei et al. developed a novel electrospinning nanofibrous membrane which

contained ceramic nano-HA, carbon nanotubes (CNTs), and PLLA matrix

[18]. Zhang et al. have fabricated gelatin/β-TCP composite nanofibers using

electrospinning technique, which could regulate Ca ions release by altering the

content of β-TCP nanoparticles in gelatin matrix [19]. These composite membranes

exhibited excellent biocompatibility, biodegradability, and mechanical properties.

1.1.2 Categories of Electrospun Nanofibrous Scaffolds:
Classified by Electrospinning Techniques

1.1.2.1 Coaxial Electrospinning

The formation of core/shell nanofibers by coaxial electrospinning was first reported

by [20]. This technique proved to be very versatile not only for the encapsulation of

biorelevant molecules and nanocomposites but also for modifying the surfaces of

electrospun fibers. The effect of nanofiber surface coatings on the cell-proliferation

behavior was studied by Zhang et al. studied the effect of nanofiber surface coatings

on cell-proliferation behavior the coaxial electrospinning technique [21]. They

produced collagen coated PCL nanofibers. Coatings of collagen on PCL were

shown to favor proliferation of human dermal fibroblasts and also encouraged

cell migration inside the scaffolds. Using a similar approach, biodegradable fibrous

scaffolds composed of gelatin coated PCL were prepared by Zhao et al. by coaxial

6 X. Deng et al.



electrospinning [22]. More recently, Sun et al. developed core–shell PAN–PMMA

nanofibers by coaxial electrospinning [23].

1.1.2.2 Coaxial or Emulsion Electrospray

Bioactive factors-loaded microparticles can generally be achieved by two different

electrospray approaches: coaxial or emulsion electrospray. Coaxial electrospray

was first reported by Loscertales et al. [24]. Two immiscible solutions are coaxially

and simultaneously electrosprayed through two separate feeding channels into one

nozzle. The eventual jet, by which the outer polymeric solution encapsulates the

inner proteinaceous liquid, breaks into droplets to generate microparticles with

core–shell structure. This technique is preferred for preparing protein-loaded

microcapsules, because it totally eliminates the emulsion step that is basically

unsuitable for sensitive biomacromolecules [25, 26]. Coaxial electrospray is

envisioned a promising approach to prepare biomacromolecule-loaded microcap-

sules for controlled drug delivery applications.

Emulsion electrospray involves mixing of an aqueous solution containing pro-

teins with immiscible polymeric solution by ultrasonication [27, 28]. Compared

with other conventional manufacture methods, the second emulsion or high

temperature is omitted in emulsion electrospray. It increases the drug-loading

efficiency and is suited for encapsulation of thermosensitive bioactive compounds.

1.1.3 Biofunctionalization of Nanofibrous Scaffolds

Electrospun nanofibrous membranes are considered to have great potential in the

field of tissue engineering because they can closely mimic the ECM architecture

[29, 30]. However, for some polymer nanofibers with the relative hydrophobicity

and surface inertia, such as poly (methyl methacrylate) (PMMA) and PLLA,

bioactive treatment will usually be needed to improve their cellular affinity and

facilitate osteogenesis.

1.1.3.1 Plasma Treatment

Low-temperature plasma treatment has been shown to be a convenient and effective

way to modify surfaces to improve the hydrophilicity of biomaterials, thus increas-

ing their biocompatibility and facilitate cell attachment [31, 32]. Wan et al. reported

that ammonia plasma treatment significantly increased the hydrophilicity of PLA

scaffolds and resulted in enhanced cell adhesion and proliferation of mouse 3T3

fibroblasts [33]. D’Sa et al. reported that improved hydrophilicity of PMMA

surfaces by plasma treatment increased adsorption of proteins and promoted actin

stress fiber formation [34]. Moreover, plasma technique was found to modify levels

1 Biological Events Occuring on the Biosis–Abiosis Interface: Cellular. . . 7



of chemical groups, such as –COOH, –OH, or –NH2 on scaffold surfaces, thereby

influencing the cell–substrate interactions. For example, human umbilical vein

endothelial cell (HUVEC) adhesion was improved by plasma treatment of PLA

through the control of carbon and oxygen concentration [35], and human embryonic

palatal mesenchyme (HEPM) cell proliferation was increased by plasma-treated

poly(ether ether ketone) (PEEK) through assembling amino groups on the surface

[36]. Amino-rich PLA surfaces created by plasma treatment were also reported to

promote osteogenic differentiation of MC3T3-E1 cells [32]. More recently, Liu

et al. investigated the effects of plasma treatment on the surface of PLLA

nanofibrous membranes, and the subsequent dose-dependent cellular response and

osteogenesis of MSCs were clarified preliminary [37]. These results support the

feasibility of plasma technology to regulate the biological functions of biomaterials.

1.1.3.2 Biomineralization

In addition to encapsulation of inorganic materials to improve the properties of

fibrous materials, depositing inorganic phase materials i.e. biomineralization on the

surface of polymeric nanofibers to form uniform coatings is an alternative methods.

Biomineralization on the nanofiber surface can not only enhance its mechanical

properties, but also provide a favorable substrate for cell proliferation and osteo-

genic differentiation. Ramakrishna and co-workers mineralized electrospun PLGA/

collagen fibrous scaffolds, and the presence of the functional groups of collagen

significantly hastened n-HA deposition in comparison with pure PLGA fibrous

scaffolds [38]. The use of simulated body fluid (SBF), a kind of solution with

ionic concentration closely resembling human blood plasma to biomimetically coat

the composite fibers with apatite layers should be a good choice.

In principle, the morphology and grain size of minerals deposited on the

nanofibers can be tailored by controlling the composition of the mineralized

solution, the surface charge of substrate and the surface chemical properties.

Recently, Cai et al. reported biomineralization of electrospun poly(L-lactic acid)/

gelatin composite fibrous scaffold by using a supersaturated simulated body fluid

with continuous CO2 bubbling [39]. They found that the mineralites could be

formed heterogeneously in the 5� SBF with CO2 bubbling.

1.1.3.3 Biomagnetism

Nature is a source of inspiration for scientists and engineers to design advanced

functional materials. Very weak local magnetic fields exist in living organisms and

various organs in humans. Earlier clinical research showed that the magnetic field

might be beneficial for enhancing bone tissue regeneration though mechanisms that

have not yet been clarified.

In recent years, interest in magnetic biomimetic scaffolds for tissue engineering

has increased considerably. Magnetic nanoparticles are of great interest owing to
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their potential biomedical applications [40, 41], such as cell expansion, cell sheets

construction, magnetic cell seeding, as drug delivery vehicles and for hyperthermia

treatment. For bone regenerative research, electrospinning technique has been used

successfully to fabricate magnetic fibrous scaffolds, including Fe3O4/PVA

nanofibers [42], Fe3O4/CNF, and FePt/PCL nanofibers. More recently, Wei

et al. fabricated magnetic biodegradable Fe3O4/CS/PVA nanofibrous membranes,

which promoted MG63 cells adhesion and proliferation on these membranes [43].

These results support the feasibility of incorporating magnetic nanoparticles into

polymer nanofibers to regulate the biological functions of biomaterials.

1.2 Cellular Responses Influenced by Electrospun

Nanofibrous Scaffolds

Electrospun nanofibrous scaffolds are able to recapitulate both the topographical

features of the ECM, and biochemical cues via various modifications to the fiber

material or surface. This type of artificial scaffold with enhanced biofunctionality

would comprise a more biomimetic microenvironment for ex vivo stem cell culture.

The cell/nanofibers interface exerts considerable influence on MSC functions and

differentiation.

1.2.1 Biological Events Occuring on the Biosis–Abiosis
Interface: The Role of Chemical Cues

The chemical matrix of nanofibers may create and maintain specialized functional

properties in the local microenvironment for cell function. Hybrid scaffolds com-

prising synthetic and natural organic polymers take advantage of the physical

properties of the synthetic components and the bioactivity of the natural constitutes

while minimizing the disadvantages of both, resulting in more favorable biocom-

patibility than those with a single component [16, 44]. The incorporated

nanoparticles in nanofibers could provide multiple binding-ligands for amino and

carboxyl groups of serum proteins to facilitate cell attachment [44] and bone matrix

deposition [16, 43], and introduce magneto-electrical effect (Fe3O4, r-Fe2O3,

BeTiO3. . ..) to benefit cell proliferation [43, 45]. The simultaneously incorporation

of multi-walled carbon nanotubes (MWCNTs) and HA nanoparticles in PLLA

nanofibers selectively increased adhesion of osteoblast cells and decreased the

adhesion of osteoblast competitive cell lines, which was a valuable feature for

GBR application [17]. The small trace amount of Mg [46, 47], Si [48–50], and Zn

ions [51, 52] integrated in nanofibrous scaffolds have been proved to accelerate cell

adhesion and proliferation by delivering the mitogenic stimuli and enhancing

channel sensitivity. In addition, chemical signal molecules in the form of growth
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and differentiation factors [53, 54] or plasmid DNA [55, 56] incorporated in the

nanofibers in a spatially defined manner could achieve corresponding bioactivity in

promoting specific differentiation to orchestrate the growth of new tissue.

Surface modification, including chemically grafted surface-functional-groups

and microcontact printed peptides or proteins, could initiate specialized cell-

nanofibers interactions. The enrichment of specific –OH, –NH3 or –COOH chem-

ical groups on nanofibers may lead to improved hydrophilicity and reversible

albumin adsorption, facilitating focal adhesion assembly and matrix deposition

[57–59]. Attachment of adhesion-promoting peptides, such as RGD, 52 GRGDS,

and GEFYFDLRLKGDK could increase the selective interactions between

nanofibers and cells in terms of adhesion, spreading, and proliferation

[60, 61]. The coated structural ECM proteins of collagen, fibronectin and laminin

may present cells with a myriad of recognition sites for binding integrins, heparin

sulfate proteoglycans, growth factors and cytokines, these biologically active

nanofibers can better support cell attachment and growth [24, 25]. Interaction of

these modified cell-nanofibers interaction could in turn exert a considerable influ-

ence on the osteogenic differentiation of mesenchymal stem cells (MSCs).

1.2.2 Biological Events Occuring on the Biosis–Abiosis
Interface: The Role of Topographical Features

Topography cues of electrospun nanofibers have been demonstrated to provide

actual osteogenic niches in various aspects. Their fibrous structure could mimic

the structure of ECM-derived scaffolds [50]. And, their dimension seems to simu-

late the structure of woven bone, which is the initial bone phenotype formed in the

healing procedure after a fracture [49]. The apparent porosity of nanofibers was

considered to favor efficient mass transportation of nutrients, oxygen, and waste

products [48]. Recent studies have indicated a powerful role of the nanotopographic

cues from nanofibers in regulating the osteogenic behavior of stem cells [51, 52].

1.2.2.1 Temporal Changes in the Osteogenic Behaviors on Diversely

Arranged Nanofibrous Scaffolds

Phenotype observation showed that the cell shape, nuclear morphology and focal

adhesion were modulated by nanofiber orientation; all these three aspects are

considered to be closely correlated with the differentiation state of stem cells

[62, 63]. The relatively isotropic random nanofibers may favor the growth of

human bone mensenchymal stem cells with a highly branched morphology with

spherical nuclei and large focal adhesion, while the aligned nanofibers result in a

polarized morphology with elongated oval nuclei and small focal adhesion. Such a

highly branched cell shape is thought to have an “osteocyte-like” morphology to
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push hBMSCs toward an osteogenic lineage [62]. The small and immature focal

adhesion (FA) of MSCs on aligned nanofibers was considered to represent a

migratory cell status, while the large and super-mature FA of MSCs on random

nanofibers indicated the cell status of sensing the mechanical properties to act on

cell lineage [54, 64]. The more osteogenic-specific fate of MSCs on random

nanofibers than those on aligned ones was corroborated by many studies. Hu

et al. reported that MSCs cultured on random PLLA nanofibers exhibit an enhanced

osteogenic differentiation phenotype involving higher bone sialoprotein (BSP) and

osteocalcin expression and increased alkaline phosphatase (ALP) activity [53]. Yin

et al. reported that randomly oriented nanofibers induce higher ALP activities and

more calcium deposition, which is related to integrin- and myosin-mediated

mechanotransduction [56]. Wang showed that ALP activity and the production of

collagen type I and osteocalcin all increased in MG63 cells cultured on random

PLLA nanofibers [55]. These observations demonstrated that the nanotopographic

features of electrospun nanofibers might provide essential niches to guide MSCs

osteogenic behavior.

To explore the biological mechanisms underlying the osteogenic behavior of

MSCs in response to nanofibrous scaffolds, full-scale, high-throughput and high-

efficient global microarray analyses were carried out [37]. The temporal gene

expression profiles demonstrated that the dynamic cellular behaviors of MSCs on

nanofibers occur in a time-dependent pattern. At day 4, genes representing in cell

adhesion molecules, extracellular matrix receptors, and integrin-mediated signal-

ing pathways were up-regulated. At day 7, expression of genes associated with

cytoskeletal organization and mechanical stimulation was observed to notably

increased. At day 14, osteogenic pathways, including TGF-β/BMP, MAPK, and

Wnt, were up-regulated. At day 21, genes associated with skeleton development,

ossification and mineralization were up-regulated. Taken together, a lower extent

but similar rhythm of dynamic cellular behavior was induced on random

nanofibers when compared with the osteogenic supplement condition. Further-

more, this temporal dynamic rhythm suggested that mechanotransduction might

be the underlying mechanism of nanofibrous topography driven osteogenic dif-

ferentiation of MSCs.

1.2.2.2 Mechanisms of Electrospun Nanofibrous Scaffolds-Induced

Cellular Responses

The Nanometer Effects of Nanofibrous Scaffolds on Cellular Responses

Nanofibers have distinct advantages over conventional scaffolds as its topographic

structure mimics the in vivo extracellular milieus. For example, the fiber diameters

of electrospun nanofibers are in the range about 100 nm. The mineralized type I

collagen fibrils, constituting �90 % of the bone structure, are nano-sized (50–

500 nm in diameter) [65], and may thus be well mimicked by the synthetic

nanofibers. In previous studies, it was demonstrated that the nanometer effects of
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nanofibrous scaffolds could induce up-regulated focal adhesion kinase signaling

and increased cellular elastic modulus for osteoblastic cells and enhanced fate

direction into osteogenesis for hBMSCs.

The Role of Focal Adhesion Formation and Cellular Cytoskeleton

Arrangement

Knowledge of cells-ECM interactions might help to understand the various cellular

responses to the diversely arranged electrospinning nanofibrous scaffolds (aligned

or randomly distributed). It is well known that cells anchored to the extracellular

matrix through focal adhesions, which allow the cells to “communicate” with the

ECM [66]. Thus, the properties of the ECM, including its mechanical character, are

transmitted via focal adhesions to the cytoskeletal network of a cell [67]. In general,

the cytoskeleton is composed of three distinct components: actin microfilaments,

microtubules, and intermediate filaments [68]. The organization of the cell cyto-

skeleton actively participate in the ability of cells to sense and convert mechanical

cues into biological responses. It cells display highly elongated cell morphologies

when growing on aligned nanofibers and spread cell morphologies when growing

on randomly distributed nanofibers [37, 65]. These phenomena might be associated

with the spatial distribution of the focal adhesion formation of the attached cells

which arises from the “communication” between cells and diversely arranged

nanofiber scaffolds. Cells on fiber networks, developed longer and more concen-

trated focal adhesion clusters compared with cells on flat control substrates [69]. In

addition, the highly elongated cell morphology also means the greater cytoskeletal

tension, and relevant signaling such as ROCK may be up-regulated in cells on

aligned nanofibers [65].

The Role of Mechanotransduction

Mechanotransduction describes the molecular mechanisms by which cells respond

to changes in their physical environment. Cells can sense mechanical stimulation

and changes in their physical environment through force-induced conformational

changes at the molecular level; however, of the molecular mechanisms are still

incompletely understood. Kris et al. [68] summarized that the underlying mecha-

nisms as: extracellular forces might stimulate stretch sensitive ion channels and

force-driven activation of transcription factors might stimulate the downstream

cellular pathways. For instance, opening of these ion channels could result in

changes in intracellular ion concentrations, which would have different down-

stream effects including activation of signaling pathways that leading to changes

in gene transcription [70]. Moreover, transcription factors, such as nuclear factor

NF-κB, translocate from the cytoplasm to the nucleus on mechanical stimulation,

and protein cascades such as the mitogenactivated protein kinase (MAPK) cascade

could be activated following molecular events.
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1.3 Future Prospective

In this review, we discussed the biochemical and biophysical cues given by the

nanofibrous scaffolds that could influence cellular behaviors on the biosis–abiosis

interface. These cues include the chemical composition of the nanofibers, the

surface biofunctionalization of the nanofiber scaffolds and the arrangement of the

nanofibers in three-dimension. Future studies are needed to fully understand

the molecular and biophysical basis of this direct form of nuclear

mechanotransduction and to understand how these processes are integrated with

chemical diffusion-based signaling mechanisms [68].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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Chapter 2

Updates in Treatment Modalities

and Techniques on Compromised Alveolar

Ridge Augmentation for Successful Dental

Implant Therapy

Myung-Jin Kim

Abstract Installation of dental implants is often hindered by compromised alveo-

lar ridge which requires augmentation. Several methods including autogenous bone

graft, guided bone regeneration, and distraction osteogenesis are implied to restore

the compromised alveolar ridge. This chapter reviews treatment modalities and

techniques of alveolar ridge augmentation. Recent development and updates in this

field are also presented.

Keywords Alveolar ridge augmentation • Autogenous block bone grafting • Bone

graft material • Distraction osteogenesis

2.1 Treatment Modalities for Augmentation

of the Compromised Alveolar Ridge

Edentulism often exists with concomitant alveolar ridge resorption. Consequently

implant installation is very often complicated with severely atrophic alveolar ridge.

Various efforts have been tried to overcome the problem of insufficient alveolar

bone for ideal implant installation. Alveolar bone augmentation which restores the

atrophic alveolar bone to its near intact state will exhibit ideal properties in both

functional and esthetic means for implant installation.

Alveolar bone resorption occurs in either a horizontal or vertical direction.

A composite defect is also common. Treatment options for the horizontal alveolar

bone defect include guided bone regeneration (GBR), veneer bone graft, ridge

splitting technique, and distraction osteogenesis. For the vertical defect, the options

are GBR, onlay bone graft, interpositional bone graft, and distraction osteogenesis.
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The composite defects can be restored by GBR, saddle bone graft, or distraction

osteogenesis (Fig. 2.1).

Bone restoration capability differs according to the method applied. Guided

bone regeneration is restricted in terms of small feasible bone regain amount.

When applied with resorbable membranes, the expected bone regeneration does

not exceed 3–4 mm vertically and 4 mm horizontally. Titanium mesh may enhance

the capability to 4–7 mm vertically and 5 mm horizontally. Onlay block bone graft

has similar capability with the latter of GBR technique. Interpositional bone graft is

capable of regaining 5–7 mm of vertical height. Distraction osteogenesis is the most

capable modality in terms of feasible bone regain amount which may exceed 10 mm

in vertical height and 6 mm in alveolar width.

2.2 Autogenous Block Bone Grafting

Autogenous bone graft had been the gold standard of bone grafting. It is the only

graft material that is considered to have osteoconductive, osteoinductive, and

osteogenetic properties all together. Furthermore when block bone is adapted

properly, it may contribute to initial stability of the implant fixture installed

Fig. 2.1 Schematic diagrams of alveolar ridge augmentation. (a) Veneer bone graft, (b) onlay

bone graft, (c) saddle bone graft, (d) interpositional bone graft, (e) ridge splitting technique
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simultaneously. This characteristic can increase the feasibility of simultaneous

bone grafting and implant installation.

2.2.1 Autogenous Bone Donor Sites

Autogenous bone is harvested from either an intraoral site or extraoral. Intraoral

donor sites include the chin bone, the ramal bone, the mandibular body window

bone, the mandibular torus bone, the maxillary torus bone, the sinus anterior wall

and the maxillary tuberosity bone. The chin bone is the most abundant source

among the listed (Figs. 2.2 and 2.3).

Extraoral donor sites include the anterior iliac crest bone, the proximal tibia

bone, and the calvarial bone. These sites may suffice any amount of requisite for an

alveolar augmentation.

2.2.2 Block Bone Grafting Techniques

The most intuitive form of autogenous block bone grafting is the onlay or veneer

grafting techniques (Fig. 2.4). These techniques directly replace the resorbed

alveolar bone in a vertical or horizontal direction, respectively. Both vertical and

horizontal augmentations are possible by the saddle bone graft technique. Khoury

demonstrated the method and results of sinus floor augmentation with mandibular

block bones where dental implants were installed simultaneously [1]. Cases with

severely atrophic alveolar ridge may require additional bone grafting. In the

atrophic maxilla, subnasal or subantral block bone graftings are applied in addition

of the onlay bone graft for this purpose.

Fig. 2.2 Schematic diagram of the intraoral donor sites of autogenous bone
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Vertical interpositional bone graft is an alternative to the conventional methods

described above, when the bone demand is large. This method has the advantage of

preserving the alveolar crest with intact nourished bone. Soft tissue management

and flap design is very important and should be done carefully with interpositional

bone graft procedures for preserving the vascularity.

2.2.3 The Fate of Autogenous Onlay Bone Graft

Resorption of grafted autogenous bone is always a matter of concern. Cordaro

et al. reported that when block bones harvested from the mandibular ramus or

symphysis are grafted in an onlay style, mean resorption rates during a graft healing

period of 6 months were 23.5 % for lateral grafts and 42 % for verticals

[2]. Proussaefs et al. suggested that vertical augmentation of the alveolar ridge

with autogenous block bone from the mandibular ramus is a viable treatment

option. They reported a vertical resorption rate of 16.34 % from an initial

6.12 mm of augmentation after 4–6 months of healing period [3]. Widmark

Fig. 2.3 Chin bone harvesting. (a) Window type block bone harvesting, (b) Barrier membrane

placed for bone healing of the donor site, (c and d) Mushed particulated bone block harvesting

with bone mill bur (Neobiotech®)
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et al. demonstrated that the horizontal resorption was 25 % after 4 months and 60 %

at the time of abutment connection when symphyseal block bone was grafted to the

anterior maxilla for single tooth implant installation [4].

In a clinical survey conducted in our department, 76 patients underwent simul-

taneous autogenous onlay bone graft and installation of total 256 dental implants

from 2000 to 2006. The amount of bone augmentation was 5.42 mm in average.

After a minimum follow up period of 2 years, average bone resorption at the mesial

and distal site of implant collar was 1.48 mm. About 27.3 % of the augmented bone

height was resorbed.

2.2.4 Drawbacks of Autogenous Bone Grafting

Although the autogenous bone is considered as the gold standard of bone grafting

for its osteogenic potential, drawbacks exist which limits its application. Donor site

morbidity is of the most concern. Bone harvesting procedures may put adjacent

anatomical structures at a risk of damage. For instance during chin bone harvesting,

the mental nerve may be pulled under undue traction and the incisive nerve may

become interrupted when the harvesting depth is inordinate. Ramal bone harvesting

can damage the inferior alveolar nerve.

Fig. 2.4 Case presentation of a veneer bone graft. (a) Edentulous state on the anterior maxilla

with atrophic and narrow alveolar ridge and the flap design, (b) Veneer bone graft positioned and

fixed with titanium screws, (c) Implant installation, (d) Final prosthetic outcome
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In addition some patients may be reluctant to the harvesting procedures, espe-

cially when extraoral donor sites are concerned. General anesthesia is mandatory

for these procedures. Gate problem could occur when autogenous bone is harvested

from the tibia or the iliac crest.

2.3 Biomaterials for Guided Bone Regeneration

Guided bone regeneration utilizes the principle concept of guided tissue regenera-

tion which is to separate a space from ingrowth of unintended tissues. Addition of

bone graft materials in the space can secure the space from collapsing and promote

the speed of bone regeneration. Bioengineering techniques may either enhance

osteoinductive properties or mimic osteogenesis in non-autogenous graft materials

(Fig. 2.5).

2.3.1 Bone Graft Materials

Bone graft materials can be classified according to their source of origin. Each class

possesses different capability for regeneration of bone. The most ideal graft mate-

rial in terms of regeneration potency is the autogenous bone graft which has

osteogenetic properties. However application of autogenous bone graft may be

restricted. Furthermore, in particular instances of graft material under constant

Fig. 2.5 A schematic

diagram of the guided bone

regeneration technique, (a)
Mucoperiosteal flap, (b)
GBR membrane, (c) Bone
graft material, (d ) Host
bone bed
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pressure, the autogenous bone graft may fail to secure the graft space. The rapid

turnover rate may be problematic. In summary, non-autogenous bone grafts are not

simply alternatives to autogenous but may be the best option we have for specific

cases.

In Korea, various non-autogenous graft materials are commercially available for

clinical use. These allogenic, xenogenic and alloplastic bone graft materials are

recommended for small minor bone defects in combination with the guided bone

regeneration technique.

2.3.1.1 Allogenic Bone Graft

Allogenic bone graft material originates from human individuals other than the

recipient individual, genetically. Bone banks typically accumulate allogenic bone

grafts from two donor sources, namely cadaveric and living donors who are

undergoing bone removal procedures. Three forms of allogenic bone graft are

available. Fresh or fresh-frozen allograft, freeze dried bone allograft and

demineralized freeze dried bone allograft. When applying allografts for bone

augmentation, the risk of disease transmission is of concern. Fortunately, according

to the Centers for Disease Control and Prevention, there have been no reports of

disease transmission when freeze-dried types of allograft are used for periodontal

procedures.

Advantage of the allogenic grafts over the other bone graft materials is that these

grafts can carry osteoinductive properties. Xenogenic and alloplastic bone graft

materials are only osteoconductive at the best, unless they are enhanced by bioen-

gineering techniques.

Allogenic bone graft materials available and currently in clinical use in Korea

are as in the following. Demineralized freeze-dried form of allografts are Grafton®,

Orthoblast II®, Tutoplast®, Regenafil®, and SureFuse®. Freeze-dried bones include

Puros®, OraGraft® and ICB®.

2.3.1.2 Xenogenic Bone Graft

Xenogenic bone grafts are harvested and processed from other species than human.

Bovine bone is the most representative. This class of bone graft materials is

accepted to have only osteoconductive properties. Commercially available products

include Bio-Oss®, BioCera®, Biogen®, Osteoplant ®, OSC-B®, and NuOss®.

Both allogenic and xenogenic bone graft materials can be applied for subantral

augmentation. Regardless of the residual alveolar bone height, if it provides

sufficient initial stability for the implant fixture, bone graft and implant installation

can be performed simultaneously. If initial stability is not obtained, implant instal-

lation should be delayed for a recommended period of 9 to 12 months after

subantral bone graft.
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2.3.1.3 Alloplastic Bone Graft

Alloplastic bone graft materials are usually synthetic in its origin and are known to

have only osteoconductive properties. Products consisting of sole or combinations

of hydroxyapatite, calcium carbonate and beta tricalcium phosphate are available.

Examples from Korean markets are Calcitite HA®, Osteon, Osteograft®, Frios®,

Algipore®, OsteoGen®, HA Resorb® for sole hydroxyapatite, CeraSorb®,

InduCera®, Biobase® for sole β-TCP, MBCP® for combination of hydroxyapatite

and β-TCP, and Biocoral®, Interpore®, SIC nature bone® for sole calcium

carbonate.

Alloplastic bone graft materials are often produced in combination with

osteoinductive substances in Korea and sold in the market. Hydroxyapatite mixed

with rhBMP-2 such as Novosis®, β-TCP mixed with rhBMP-2 such as Cowell

BMP®, and products containing biphasic calcium phosphate lyophilized with

rhBMP-2 materials are also available. β-TCP mixed with rhBMP-2 and

bio-degradable Hydrogel is produced as an injectable putty with a trade name

Exelos Inject®.

2.3.2 Bioengineering Techniques

Ideal bone graft materials should exhibit not only osteoconductive properties but as

well osteoinductive. They should also provide a favorable environment for the

invading blood vessels and bone forming cells. Recently various basic and clinical

researches on the effect of recombinant human bone morphogenetic protein

2 (rhBMP-2) and potential use of human multipotent mesenchymal stromal/stem

cells (MSC) are being reported and investigated.

2.3.2.1 rhBMP-2

Bone morphogenetic protein was first introduced by Urist in 1965 as a consisting

substance of a decalcified bone [5]. Several different types of the protein are

classified now with approval of products containing bone morphogenetic protein

2 and 7 for orthopedic application by the FDA.

Current focus of investigation concerning rhBMP-2 is concentrated on the

carrier of the growth factor. Carriers of rhBMP-2 are required to have properties

that will make possible to control the release of rhBMP-2 to the bone defect.

Uncontrolled release of rhBMP-2 not only diminishes its effectiveness but also

may induce concentration related side effects. Currently in our institute, both

combination of collagen hydrogel, nano-hydroxyapatite and rhBMP-2 coated on

dental implant surface and poloxamer based hydrogel with rhBMP-2 are under

investigation.
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2.3.2.2 Autologous Bone Marrow Mesenchymal Stem Cells

Bone graft materials can be enhanced by addition of stem cells which may improve

the rate and quality of defect repair. MSC can be isolated from the bone marrow or

the periosteum and may be cultured for expansion. They can differentiate into

several types of cell lines including fibroblast, chondroblast, endothelial cell, and of

our most concern osteoblast which may accelerate bone regeneration. Derivation of

mesenchymal stem cells from the bone marrow is the best characterized approach

for osteogenic differentiation. The iliac spine is an easily manipulated, abundant

store of autologous bone marrow MSC. Their use in combination with bone graft

materials as a scaffold has produced promising clinical results (Fig. 2.6).

2.4 Alveolar Ridge Augmentation by Distraction

Osteogenesis

In general, the available amount of soft tissue for wound closure restricts the

capacity of bone grafting. Soft tissue coverage is crucial. Otherwise infection

over the graft material may occur. Graft materials could be lost. At the best, the

attained bone augmentation will be far behind than required.

Alveolar distraction osteogenesis (DO) is the most recent approach for alveolar

ridge augmentation with promising results. Unlike any other approaches for alve-

olar ridge augmentation, DO is capable of lengthening both the hard and soft tissue.

This method has the advantage of preserving the transport part of alveolar crest with

intact vascularized nourished bone. This property permits the amount of alveolar

augmentation attained by DO to surpass what the conventional methods of bone

grafting would possibly do.

2.4.1 Distraction Techniques

Alveolar DO is capable to regenerate bone in both vertical and horizontal direction.

Vertical distraction is achieved by placing the osteotomy line in a horizontal

direction. By placing the osteotomy line at a more basal position of the alveolar

ridge, a greater amount of width of regenerated bone is achievable. Horizontal

distraction of the alveolar ridge utilizes the ridge splitting technique for the

osteotomy. Takahashi et al. developed a novel method of applying a titanium

mesh plate on the split transport segment and a rod for widening the gap which

was known ‘Alveo Wider’ [6] (Fig. 2.7).

The span of the edentulous alveolar ridge should be at least two teeth wide in

purpose to apply this technique. Otherwise the transport segment is under a risk of

resorption during distraction. When the span of the alveolar ridge that requires
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Fig. 2.6 A case presentation of an alveolar basal bone reconstruction. (a) Severe alveolar bone

defect following resection of adenomatous odontogenic tumor on the left anterior and pre-maxilla

depicted by an arrow, (b) First stage operation was done for reconstruction of basal part of the

alveolar bone defect by onlay bone graft, veneer bone graft, and xenogenic bone graft mixed with

chin bone, (c) X-ray finding shows Xenogenic bone graft mixed with autologous MSC at second

stage operation, (d) Implant installation 6 months after 2nd stage bone grafting procedure, (e)

Second stage operation was done for the reconstruction of alveolar part of the bone defect by a

combination of ramal bone graft and guided bone regeneration with xenogenic bone graft mixed

with autologous bone marrow MSC, (f) Barrier membrane placed over the graft, (g) Augmented

alveolar bone at the stage of implant installation, (h) Final outcome
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distraction becomes larger, it can be segmented according to the vector of distrac-

tion required.

The alveolar distraction timeline requires that the latency period be 3–5 days

postoperatively. The distraction velocity should be adjusted according to the span

of the transport segment. Short segments should be distracted slowly. This is

intended to minimize the resorption of the transport segment. Two times of

0.3 mm distraction per day will satisfy this intention. With larger transport seg-

ments, three times of 0.3 mm distraction or two times of 0.5 mm distraction per day

is allowed. After the distraction period, 3 months of consolidation period is required

before implant installation (Figs. 2.8, and 2.9).

2.4.2 Possible Amount of Bone Gain: Clinical Outcome

In a clinical study reported by Paeng et al. in 2006, 25 patients who have undergone

alveolar ridge augmentation by DO and subsequent installation of total 84 dental

implants were investigated. Average amount of augmentation was 9.8� 3.4 mm.

All of the implants installed survived for an average follow up period of

13.5 months. They suggested that DO may be acknowledged as a viable treatment

option for alveolar augmentation so far [7]. In another case series of four patients

who underwent alveolar distraction of the anterior atrophic mandible for dental

implants, Yeom et al. reported that an average of 11.38� 1.38 mm vertical gain was

obtained by distraction [8]. DO can also be applied for augmentation of a

reconstructed mandible with vascularized fibular free flap. Paeng et al. stressed

that despite a tendency of surgical site infection during distraction of the fibular

bone, undisturbed bone regeneration occurs for successful dental implant

installation [9].

Fig. 2.7 Schematic diagrams of alveolar DO. (a) Horizontal DO, (b) Vertical DO, (c) Vertical DO

for vertical and horizontal bone augmentation
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2.4.3 Consolidation Enhancement Factors

Current studies on DO of the alveolar bone are focused on the consolidation

enhancement factors. The purpose of these studies is to develop a novel method

to shorten the consolidation time and at the same time to enhance the mechanical

property of the newly distracted bone. Both biological and mechanical stimulations

are under research.

Kim et al. reported that significant amount of new bone volume was observed

when human mesenchymal stromal cells were injected to the distraction site one

day before distraction initiation in a rabbit mandibular distraction model. Human

mesenchymal stromal cells also increased bone mineral density [10].

Fig. 2.8 Case presentation of an alveolar DO of the anterior maxilla. (a) Preoperative atrophic

edentulous state of the anterior maxilla, (b) Installation of the distraction device, (c) Regenerated

bone by distraction osteogenesis after 4 months postoperatively, (d) After implant installation, (e)

Guided bone regeneration technique applied for the repair of bony fenestrations, (f) Final outcome
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Growth factors are also candidates. Floerkemeier et al. demonstrated that

percutaneous triple injection of rhBMP-2 improves trabecular microarchitecture

of the regenerated bone and in turn contributes to advanced mechanical integrity

[11]. Fugio et al. suggested that failure of high speed DO attributes to lack of bone

marrow endothelial cells and endothelial progenitor cells into the gap formed by

Fig. 2.9 Case presentation of a severe maxillo-mandibular atrophy. (a) Radiograph representing

severe atrophy of both the maxilla and the mandible, (b) After Le Fort 1 osteotomy and iliac bone

graft with simultaneous implant installation of the maxilla and distraction device installation on

the mandible, (c) After full activation of the distraction device, (d) After implant installation on the

mandible, (e) Clinical photographs of the operation. Maxilla was down fractured and moved

anteriorly and interpositional iliac bone graft was performed and fixed rigidly on the preplanned

position and implant installation was done simultaneously, (f) Activation trial of the distraction

device at the time of installation, (g) Regenerated bone on the distracted alveolar bone on the

mandible and implants were installed, (h) Final prosthetic outcome
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distraction. In their study, stromal cell derived factor 1 showed possibility to

overcome the resulting ischemic condition and facilitate acceleration of distraction

speed [12].

Mechanical means of consolidation enhancement include electric, laser, and

ultrasonic stimulations. Hwang et al. investigated the effect of pulsed electromag-

netic field stimulation on consolidation of the distracted callus with results of

enhanced bone formation. In their study, they applied the pulsed electromagnetic

field stimulation for 5 days at the beginning of the consolidation period [13]. Miloro

et al. studied the effect of low-level laser on DO. They found that lower-level laser

when applied after each activations of distraction device accelerates bone regener-

ation [14]. The effect of low-intensity pulsed ultrasound when applied during the

consolidation period had been reported by Shimazaki et al. They reported that not

only normal distraction protocol but also a rapid distraction protocol may benefit

from the application of low-intensity pulse ultrasound [15].

Acknowledgement The author would like to thank professor Jong-Ho Lee, Soon-Jung Hwang,

Soung-Min Kim and doctor Kang-Mi Pang, Ju-Hyun Kim and Seung-Ki Min of the School of

Dentistry, Seoul National University for their help provided in preparing this manuscript.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

References

1. Khoury F. Augmentation of the sinus floor with mandibular bone block and simultaneous

implantation: a 6-year clinical investigation. Int J Oral Maxillofac Implants. 1999;14(4):557.

2. Cordaro L, Amade DS, Cordaro M. Clinical results of alveolar ridge augmentation with

mandibular block bone grafts in partially edentulous patients prior to implant placement.

Clin Oral Implants Res. 2002;13(1):103–11.

3. Proussaefs P, Lozada J, Kleinman A, Rohrer MD. The use of ramus autogenous block grafts

for vertical alveolar ridge augmentation and implant placement: a pilot study. Int J Oral

Maxillofac Implants. 2002;17(2):238.

4. Widmark G, Andersson B, Ivanoff C-J. Mandibular bone graft in the anterior maxilla for

single-tooth implants: presentation of a surgical method. Int J Oral Maxillofac Surg. 1997;26

(2):106–9.

5. Urist MR. Bone: formation by autoinduction. Science. 1965;150(3698):893–9.

6. Takahashi T, Funaki K, Shintani H, Haruoka T. Use of horizontal alveolar distraction

osteogenesis for implant placement in a narrow alveolar ridge: a case report. Int J Oral

Maxillofac Implants. 2004;19(2):291.

7. Paeng JY, Myoung H, Hwang SJ, Seo BM, Choi JY, Lee JH, et al. Clinical evaluation of

alveolar distraction osteogenesis for implant installation. J Korean Assoc Maxillofac Plast

Reconstr Surg. 2006;28(4):329–38.

8. Yeom HR, Jeon SH, Kim YT, Paeng JY, Ahn KM, Myung H, et al. Implant installation using

vertical distraction osteogenesis at a severely atrophied edentulous mandible. J Korean Assoc

Maxillofac Plast Reconstr Surg. 2006;28(2):154–65.

30 M.-J. Kim



9. Paeng JY, Lee JY, Myoung H, Hwang SJ, Seo BM, Choi JY, et al. Vertical distraction

osteogenesis for implant installation on the reconstructed mandible with free fibular flap.

J Korean Assoc Maxillofac Plast Reconstr Surg. 2006;28(6):579–85.

10. Kim IS, Cho TH, Lee ZH, Hwang SJ. Bone regeneration by transplantation of human

mesenchymal stromal cells in a rabbit mandibular distraction osteogenesis model. Tissue

Eng Part A. 2013;19(1–2):66–78. doi:10.1089/ten.TEA.2011.0696.

11. Pastor MF, Floerkemeier T, Witte F, Nellesen J, Thorey F, Windhagen H, et al. Repetitive

recombinant human bone morphogenetic protein 2 injections improve the callus microarch-

itecture and mechanical stiffness in a sheep model of distraction osteogenesis. Orthop

Rev. 2012;4(1):e13. doi:10.4081/or.2012.e13.

12. Fujio M, Yamamoto A, Ando Y, Shohara R, Kinoshita K, Kaneko T, et al. Stromal cell-derived

factor-1 enhances distraction osteogenesis-mediated skeletal tissue regeneration through the

recruitment of endothelial precursors. Bone. 2011;49(4):693–700. doi:10.1016/j.bone.2011.

06.024.

13. Hwang KK, Cho TH, Song YM, Kim DK, Han SH, Kim IS, et al. Effect of pulsed electro-

magnetic field stimulation on the early bone consolidation after distraction osteogenesis in

rabbit mandible model. J Korean Assoc Maxillofac Plast Reconstr Surg. 2007;29(2):123–31.

14. Miloro M, Miller JJ, Stoner JA. Low-level laser effect on mandibular distraction osteogenesis.

J Oral Maxillofac Surg. 2007;65(2):168–76. doi:10.1016/j.joms.2006.10.002.

15. Shimazaki A, Inui K, Azuma Y, Nishimura N, Yamano Y. Low-intensity pulsed ultrasound

accelerates bone maturation in distraction osteogenesis in rabbits. J Bone Joint Surg.

2000;82(7):1077–82.

2 Updates in Treatment Modalities and Techniques on Compromised Alveolar. . . 31

http://dx.doi.org/10.1089/ten.TEA.2011.0696
http://dx.doi.org/10.4081/or.2012.e13
http://dx.doi.org/10.1016/j.bone.2011.06.024
http://dx.doi.org/10.1016/j.bone.2011.06.024
http://dx.doi.org/10.1016/j.joms.2006.10.002


Chapter 3

Surface Modification of Dental Implant

Improves Implant–Tissue Interface

Takashi Inoue and Kenichi Matsuzaka

Abstract The implant material must have optimum surface compatibility with the

host epithelial tissue, connective tissue, and bone tissue. Because, dental implants,

which are partially exposed to the oral cavity, must have firm contact with tissues to

prevent the bacterial infection. Such materials can be created under well-controlled

conditions by modifying the surfaces that contact these tissues. The rough and

grooved surfaced implant contributes to a more rapid cell migration and make

osseointegration during wound healing. A number of chemical and physical

methods for titanium and/or zirconium surface modification have already been

established. Recently, plasma treatment can control surface physiochemical prop-

erties and affect protein adsorption for bioengineering. Moreover, the “motif-

programming” methodology to “biologically” modify titanium and zirconium

surfaces has created interfacing artificial proteins that endowed those surfaces

with cell-binding activity. These technique should improve firm contact between

tissue and dental implant.

Keywords Dental implant • Surface modification • Tissue interface

3.1 Dental Implant–Tissue Interface

Dental implant therapy creates an open wound, and an epithelium-implant interface

which is always exposed to the possibility of inflammation is formed [1–3]. Peri-

implantitis is a risk factor for a number of age-related diseases, including diabetes,

arteriosclerosis, cardiac infarction and NASH (Fig. 3.1). It is important to create a

firm implant–tissue interface from such a viewpoint.

Implant–tissue interface formation occurs during the process of wound healing

[2, 3]. The oral mucosa is penetrated along the implant surface after the implanta-

tion and as a result, peri-implant epithelium is created (Fig. 3.2). Peri-implant

epithelium lack the junctional epithelium that are normally formed by
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Fig. 3.1 Peri-implantitis is a risk factor for a number of diseases

Fig. 3.2 Ground section of

the periimplant epithelium
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hemidesmosomes and the basal lamina, which connect enamel and epithelium of

natural tooth [4].

Fibroblast face to the implant surface differentiates into osteoblasts also during

the process of wound healing. The osteoblast deposits bone matrix on the implant

surface, becomes calcified, and completes osseointegration which is complicatedly

associated with the implant materials. It is known that a direct bond between

implant and surrounding bone has been demonstrated with implants made of

bioactive materials, i.e. bio-glasses and calcium phosphate ceramics [5, 6].

Titanium is known to have a greater ability than other metals to facilitate

osseointegration, which is defined as a close contact between bone tissues and

implant material such that there is no progressive relative motion of living bone and

implant under functional levels and loading for the life of the patient (Fig. 3.3).

Even when light microscopy confirms osseointegration of titanium implants, exam-

ination by electron microscope reveals that the bone and the implant are not

crystallographically continuous (Fig. 3.4). The thin amorphous structures between

the bone and the titanium implant, that is, there is no direct contact between

titanium and bone was also observed [7].

Fig. 3.3 Ground section of

osseointegration
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Generation of the titanium oxide film on the surface of titanium is one reason for

this ability and its high level of corrosion resistance. In addition, the degree of the

deposition of calcium phosphates in body fluid is greater on titanium than on other

metals. Presently, adsorption of osteogenic proteins such as osteocalcin (Oc) and

osteopontin (Op) to the titanium surface is a main function of the osseointegration of

titanium [2, 3]. There are two mechanisms involved in the adsorption of osteogenic

proteins. Titanium oxide has a similar number of isoelectric points (pI) at approx-

imately pH¼ 5 as those of pH¼ 4.7–4.9 on osteogenic proteins. Accordingly, at

around pH 7, both titanium oxide and osteogenic proteins are negatively charged.

The calcium ion-mediated mechanism caused by the positively charged calcium

ions, Ca2+. The hydration effect of terminal OH radicals which are positively

charged, is also considered as playing a role in protein adsorption (Fig. 3.5) [8].

In view of the direct bone-implant contact, it plays important roles of surface

geometry and surface chemistry of the implant material, and cell behavior sur-

rounding implant.

Fig. 3.4 Ultrastructural feature of Human gingival fibroblast titanium film (Ti) interface in vitro

Fig. 3.5 Hypothetical

osseointegration on

the titanium surface. Ti
Titanium, O Oxygen,

Op Osteopontin,

OC Osteocalcin, Ca
Calcium [2]
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3.2 Effect of the Surface Geometry

Brunette et al. [9] discuss that the grooved surface changes the cytoplasm by

offering a microenvironment and prepares a good condition for generating the

calcifying tissue, and that cells which are arranged along the groove help

the osteogenic cell differentiate to osteoblast (Fig. 3.6). Further, vinculins,

which is one of the proteins of attaching to the substrate, are also oriented to

the microgroove (Fig. 3.7). To support cellular attachment, spreading and

growth, and improve cellular function, a lot of reports have been published

about roughened implant surfaces (Fig. 3.8) [10–13], as well as on controlled

microtopography [9, 13–19]. We also explored how the fibroblast originated

from human gingiva reacts against the titanium discs of various surface geom-

etries. In the phase-contrast microscopic view of titanium disc with mechani-

cally polished grooves on the surface, it is observed that cells are surrounding

the disc. In the scanning electron microscopic view, cells are arranged along the

groove (Contact guidance (Fig. 3.9) [10]. On the other hand, in the phase-

contrast microscopic view of titanium disc with rough surface, cells are arranged

vertically to disc. In the scanning electron microscopic view, cells are arranged

in free directions to disc, and cell bridge is geometryed (Two center effect:

Fig. 3.10) [10].

Fig. 3.6 Scanning electron

microscopic findings of

fibroblast on microgrooved

surface
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3.3 Control of Surface Chemistry

Surface chemistry involves the adsorption of proteins and cells on biomaterials.

This adsorption reflects the affinity between two substances, and the strength of

adsorption follows the order: chemical adsorption including covalent bonds

and ionic bonds > electrostatic force found in electrokinetic potential or zeta

Fig. 3.8 Scanning electron microscopic findings of rough surface implant (SLA: Left) and

Immune-fluorescence microscopic findings of cells on the SLA

Fig. 3.7 Confocal scanning

microscopic findings of

osteoblast using vinculin on

microgrooved surface
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potential > hydrogen bonds involved in hydrophilic groups such as –OH, –COOH,

and –NH2 > hydrophobic interaction (i.e., adsorption of hydrophobic substances in

water) > van der Waals forces. Adsorption characteristics are primarily evaluated

by hydrophobicity (wettability), which can be determined by measuring the surface

energy (contact angle), and electrokinetic potential (zeta potential, isoelectric

point), which reflects surface electric charges and these affect creation of firm

integration between implant and cells.

3.4 Protein Application

As for the surface chemistry, methods of modifying the titanium surface

using adhesive proteins such as osteonectin, fibronectin or laminin-5 compatible

with the soft tissue/implant interface have been proposed. For the implant surface in

contact with subepithelial connective tissues, tresyl chloride treatment is used to

Fig. 3.10 The migration

of fibroblasts onto rough

surface and numerous

cellular bridges oriented

at right angle to the rim

of the disc (Two center

effect)

Fig. 3.9 Numerous cellular

bridges that extend from the

multilayer to the oriented

cell sheet and orientated

parallet to the grooves

(contact guidance)
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adhere the selected proteins such as fibronectin to the amino residues [20]. Thus the

gingival epithelium attached to dental implants through the formation of

hemidesmosomes using laminin-5 [21]. However, a stable coating and prevention

of protein denaturation at the time of implantation are necessary using motif-

programming or plasma treatment.

3.5 Application of Motif-Programming

Motif-programming is a method for creating artificial proteins by combining func-

tional peptide motifs in a combinatorial manner. This method is particularly well

suited for developing liaison molecules that interface between cells and inorganic

materials. Here we describe creation of artificial proteins through the programming

of two motiefs, a natural cell attachment motif (RGD) and an artificial Ti-binding

motif (Fig. 3.11). Although the interaction with Ti was not covalent, the proteins

recapitulated several functions of fibronectin, and thus, could serve as an artificial

ECM on Ti materials. Because the motif-programming system could be easily

extended to create artificial proteins having other biological functions and material

specificities, it should be highly useful for application to dental implant and tissue

Fig. 3.11 Schematic

representation of an artificial

protein intermediating

between the surface

of titanium and cells.

Artificial proteins are shown

as yellow containing Ti

binding motif (TBP: green)
and a cell binding motif

(RGD: red) [22]

40 T. Inoue and K. Matsuzaka



engineering [22, 23]. Yuasa et al. using an artificial fusion protein between bone

morphogenetic protein 2 and titanium-binding peptide and reported that this artifi-

cial protein accelerates osteogenesis in the muscle tissue and suggests its possible

use in dental implant for better osseointegration (Fig. 3.12) [24].

3.6 Plasma Treatment of Implant Surface

Plasma treatment is a well-established method of surface processing in the micro-

electronics industry for effective surface modification, exhibiting high surface

energies, good wettability and cleaning (Fig. 3.13). This technique can control

surface physicochemical properties and affect protein adsorption, and is of partic-

ular interest in biomedical engineering. Matsuzaka et al. reported that bone mor-

phogenetic protein-2(BMP-2) and fibronectin could be immobilized using oxygen

plasma treatment. Immobilization of GFG-2 on an implant using modified surface

topography might allow proliferation of periodontal ligament cells around the

implant [25, 26].

Fig. 3.12 Schematic image of the AFT between BMP-2 and TBP [24]

Plasama membrane

OH COOH

Target cells

Activate peptide
(FGF, BMP)

Titanium

NH2

Fig. 3.13 Plasma treatment was performed using the VEP-1000 system (right) and schematic

image shows the attachment of cells on the plasma treatment titanium surface (left)
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3.7 Calcium Phosphate (Ca-P) Coating by Plasma

Spraying

Ca-P implants, including hydroxyapatite (HA), are well known for good osteocon-

ductivity (the early stage of osteogenesis) as well as for direct binding to bone tissue

in vivo. Alkaline phosphatase expression and parathyroid hormone response were

higher in cultures grown inHA than in cultures grown in titanium [27] and the in vitro

formation of extracellular matrices was greater on Ca-P coatings than on titanium.

In spite of their rapid and strong bonds to living bone tissues and favorable

osteogenic ability, Ca-P ceramics alone cannot be used for implants because of their

lack of strength. Accordingly, Ca-P coatings on Ti implants produced by the plasma

spraying have frequently been used [28]. These Ca-P coated implants, however,

often develop fractures in their coatings as well as at the titanium interface after

implantation. The reason for this is thought to originate in the comparatively thick,

porous, non-uniform (crystalline surrounded by an amorphous mass), and poorly

adherent Ca-P layer produced by plasma spraying. These fragments of a certain size

cause phagocytosis by macrophages, leading to inflammation. It is therefore desir-

able for the materials to be rapidly and completely absorbed in the host tissues and

to be entirely replaced with bone tissue. When osteogenesis occurs at the site where

old bones are absorbed (remodeling of bones), the Ca-P coatings should be no

thicker than necessary.

3.8 Thin Ca-P Coatings

Attempts have recently been made to solve problems, the cold plasma, ion-plating

[29] and the ion sputtering [28], which are a kind of physical vapor deposition

(PVD), are used to produce implant materials consisting of a thin, homogeneous,

and adherent Ca-P coating. Ion beam dynamic mixing (IBDM) was also introduced

as a suitable technique for fabricating a thin and adherent ceramic layer [30]. This

method is a combination of ion implantation and PVD, and has the advantages of a

high deposition rate, producing defect-free transparent thin films, and excellent

adhesion compared to conventional thin-film deposition techniques.

3.9 Future of Dental Implant

The next generation should be the surface modification of any of the materials for

bio-functionalization of dental implants. Such materials can be created under well-

controlled conditions by modifying the surfaces of metals that contact those tissues.

“Tissue-compatible implants,” which are compatible with all host tissues, must

integrate with bone tissue, easily form hemidesmosomes, and prevent biofilm

accumulation.
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Chapter 4

Oral Microbiota in Crevices Around Dental

Implants: Profiling of Oral Biofilm

Takuichi Sato, Yoshiaki Kawamura, Keiko Yamaki, Naoko Ishida,

Lingyang Tian, Yasuhisa Takeuchi, Kazuhiro Hashimoto, Yuki Abiko,

Gen Mayanagi, Jumpei Washio, Junko Matsuyama, and

Nobuhiro Takahashi

Abstract Large numbers of bacteria (>106/mm2) generally inhabit the surface of

the oral cavity, particularly at the interface between teeth and gingiva, as an oral

biofilm (microbiota). The establishment of anaerobic bacterial culture and molec-

ular biological techniques has enabled us to isolate and detect various bacterial

species from oral biofilm. It has been estimated that more than 600 bacterial species
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inhabit the oral cavity. Nevertheless, the oral cavity is considered healthy when the

oral microbiota is composed of indigenous bacteria. Numerous environmental

changes in the oral cavity may lead to accumulation of dental caries-associated or

periodontitis-associated bacteria, resulting in the initiation of dental caries or

periodontitis, respectively. The environment in crevices around dental implants is

considered similar to that in subgingival sulcus, such as neutral pH, anaerobiosis

and rich nutrition (e.g., amino acids and peptides). The environment may be

supportive of anaerobic growth of the bacteria in microbiota in crevices around

implants, particularly at the interface between histocompatible artificial material

and mucosal epithelium. The microbiota may trigger inflammation in the tissue

around the implants. In this article, the current topics on the profiling of oral

microbiota in crevices around implants are reviewed.

Keywords Bacteria • Dental implant • Oral microbiota • Profiling

4.1 Introduction

Large numbers of bacteria (>106/mm2) generally inhabit the surface of the oral

cavity, particularly at the interface between teeth and gingiva, as an oral biofilm

(microbiota). The establishment of anaerobic bacterial culture and molecular bio-

logical techniques has enabled us to isolate and detect various bacterial species

from oral biofilm. Currently, it has been estimated that more than 600 bacterial

species inhabit the oral cavity. Nevertheless, the oral cavity is considered healthy

when the oral microbiota is composed of indigenous bacteria.

4.1.1 Quantitative and Qualitative Analyses of Oral Biofilm

For the past several decades, with the development of techniques for culturing

obligate anaerobes, in particular, adoption of the well-maintained anaerobic glove

box system permitted the efficient recovery of obligate anaerobes from oral cavities

and lesions. Importantly, all plates, media, buffer solutions and experimental

instruments are kept in an anaerobic glove box for at least 24 h before use. To

ensure strictly anaerobic conditions in the glove box, reduction of methyl viologen

(�446 mV) is carefully monitored whenever experimental procedures are carried

out. By adopting these exacting anaerobic techniques, the microbiota of oral biofilm

has been shown to consist mainly of obligate anaerobes [1–5].

At present, the identification of obligate anaerobes is generally performed

utilizing molecular biological techniques [6–12]. For instance, the bacterial 16S

ribosomal RNA gene sequences are amplified by PCR, and partial sequences are

then compared with those from the GenBank database using the BLAST search

program through the National Center for Biotechnology Information website.

Bacterial species are determined by percent sequence similarity (>97 %).
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4.1.2 Oral Ecology: Environmental Factors Affecting
Oral Biofilm

Numerous environmental changes in the oral cavity may lead to an accumulation of

dental caries-associated or periodontitis-associated bacteria, resulting in the initia-

tion of dental caries or periodontitis, respectively. The environment in crevices

around dental implants is considered similar to that in subgingival sulcus, such as

neutral pH, anaerobiosis and rich nutrition (e.g., amino acids and peptides). The

environment may be supportive of anaerobic growth in the crevices around

implants, particularly at the interface between histocompatible artificial material

and mucosal epithelium. The microbiota may trigger inflammation in the tissue

around the implants.

In this article, the current topics related to profiling of oral microbiota in crevices

around implants are reviewed.

4.2 Nutritional and Environmental Aspects

of Dental Implants

Nutrition for bacteria are supplied by the fluids around implants (PICF; peri-

implant crevicular fluids) and teeth (GCF; gingival crevicular fluids), thus, fluid

volume and contents, as well as pH, are considered to be critical to the health of

dental implants.

4.2.1 Fluid Volume

Fluid volume with healthy implants was 2.17� 2.09 μL (range of Periotron 22.6–

35.2 units) and that with healthy teeth was 3.49� 2.26 μL (36.3–56.6 units) (n¼ 7,

mean age, 54.2 years) [13]. Similarly, Apse et al. [14] reported that fluid volumes

were Periotron 57.1� 37.5 units and 54.8� 28.9 units, for healthy implants

(n¼ 28) and healthy teeth (n¼ 19), respectively. There were no significant differ-

ences between healthy implants and healthy teeth, suggesting similar conditions

between healthy implants and healthy teeth.

4.2.2 Fluid Constituents

In terms of profile of crevicular fluid constituents such as inflammatory markers in

healthy PICF andGCF are reportedly similar, e.g., α2-macroglobulin (17 and 16 ng/μ
g albumin), α1-antitrypsin (33 and 48), transferrin (34 and 47), lactoferrin (17 and 40)
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and immunoglobulin G against Porphyromonas gingivalis (82 and 102), respectively
[15]. These trends were also observed in inflamed status (peri-implantitis and

periodontitis), e.g., α2-macroglobulin (20 and 15 ng/μg albumin), α1-antitrypsin
(42 and 46), transferrin (35 and 31), lactoferrin (14 and 24) and immunoglobulin

G against Porphyromonas gingivalis (47 and 43), respectively [15].

4.2.3 Environmental Condition: Fluid pH

Fluid pH of healthy PICF was 6.82 (range 6.30–7.70) and that of healthy GCF was

6.90 (range 6.50–8.50). On the other hand, the ranges of fluid pH for peri-

implantitis and periodontitis were 5.63–8.50 and 7.20–7.70, respectively [16].

4.3 Microbiota Around Implants

4.3.1 Quantitative and Qualitative Analysis
of Microbiota in PICF

Bacterial counts in healthy PICF (n¼ 10) were (0.8� 2.0)� 106 [17], while those

in healthy GCF (n¼ 7) were (7.6� 8.6)� 108 [7]. In inflamed status, (7.5� 9.8)�
107 bacteria were recovered from plate crevices (n¼ 3) for orthodontic treatment

[7], while (5.8� 2.8)� 106 and (1.6� 1.5)� 107 bacteria were found in periodontal

pockets (n¼ 7 and n¼ 5 from [4] and [8], respectively).

The proportion of obligate anaerobes among the microbiota of healthy PICF

was 21 % [17], and that of healthy GCF was 31 % [7]. With regard to bacterial

composition, Actinomyces (17 %), Campylobacter (12 %), Fusobacterium (10 %),

Selenomonas (10 %), Streptococcus (8.2 %), Lepotrichia (7.6 %), Prevotella
(7.1 %), Neisseria (6.5 %), Veillonella (6 %), Dialister (3.3 %) and Haemophilus
(2.7 %) were predominant in healthy plate crevices, while Actinomyces (37 %),

Streptococcus (20 %), Veillonella (7.5 %), Olsenella (6.2 %), Prevotella (4.8 %),

Fusobacterium (2.7 %), Parvimonas (2.7 %), Selenomonas (2.1 %), Neisseria
(2.1 %), Capnocytophaga (2.1 %), Gemella (2.1 %), Rothia (2.1 %) and

Haemophilus (1.4 %) were predominant in healthy GCF [7]. Under the viewpoint

that major anaerobes were Campylobacter, Fusobacterium, Selenomonas,
Prevotella, Veillonella and Dialister, and major facultative anaerobes were

Actinomyces, Streptococcus, Neisseria and Haemophilus, a similarity were

suggested between healthy plate crevices and healthy GCF.

This suggests that the microbiota around implants is similar to that of gingival

sulcus with regard to bacterial density and proportion of anaerobes in microbiota.

Therefore, similarly to the maintenance of the teeth with periodontal pockets,

treatments with dental implants require strict self-oral care and regular professional

plaque control in order to prevent infection.
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4.3.2 Metagenome (Pyrosequencing) Analysis
of Microbiota in PICF

In contrast, inflammatory and immune responses of peri-implant mucosa to

microbiota around implants have not been reported in detail. Thus, it is possible

that particular microbiota may be formed around dental implants. Indeed, recent

pyrosequencing analyses have shown that microbiota in healthy PICF was distinct

from that in healthy GCF, and that the currently accepted theory on the transmission

from the tooth to the implant surface requires reexamination [18, 19]. More spe-

cifically, utilizing the pyrosequencing technique, Kumar et al. [18] reported that

Prevotella, Treponema, Leptotrichia, Streptococcus mutans, Butyrivibrio and

Lactococcus were significantly present in healthy PICF, while non-mutans strepto-

cocci, Fusobacterium, Actinomyces, Granulicatella, Dialister, Veillonella,
Neisseria, Corynebacterium, Synergistes and Arthrobacter were significantly pre-

sent in healthy GCF. In addition, Dabdoub et al. [19] reported that Actinomyces
gerencseriae, Actinomyces bovis, Veillonella dispar,Haemophilus influenza, Strep-
tococcus minor, Mycoplasma faucium, Streptococcus macedonicus, Streptococcus
pseudoporcinus, Unclassified Bacillales, Actinomyces radicidentis, Streptococcus
infantis, Actinomyces meyeri, Streptococcus ursoris and Veillonella spp. were

significantly present in healthy PICF, while Caulobacter spp., Peptostreptococcus
anaerobius, Unclassified Rs-045, Desulfobulbus spp. and Bulleidia spp. were

significantly present in healthy GCF.

With the improvement of materials and techniques of dental implants, the

environment around dental implants will possibly change markedly, and thus a

comprehensive analysis of microbiota, as well as the development of novel markers

in the environment, is required in order to elucidate the etiological role in peri-

implant diseases.
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Chapter 5

Biofunctionalization of Metallic Materials:

Creation of Biosis–Abiosis Intelligent

Interface

Takao Hanawa

Abstract Osseointegration, the first concept of biosis–abiosis intelligent interface,

is primarily explained, and researches on the elucidation of osseointegration mech-

anism and titanium-tissue interface observation are reviewed to understand a

concept to create biosis–abiosis intelligent interface. In addition, current status of

surface treatment of metallic materials is reviewed. In particular, a gap between

research level progress and commercialization in surface treatments is focused.

Mechanical property, durability, and manufacturing process of surface layer formed

on titanium by surface treatment, are significant to commercialize the treatment,

while most of researches focuses only evaluation of biocompatibility and

biofunction.

Keywords Bone formation • Mechanical anchoring • Osseointegration • Surface

treatment • Titanium

5.1 Introduction

Excellent biocompatibility and biofunction of ceramics and polymers are expected

to show excellent properties as biomaterials; in fact many devices consisting of

metals have been substituted by those consisting of ceramics and polymers. In spite

of this event, over 70 % of implant devices in medical field including dentistry,

especially over 95 % in orthopedics, still consist of metals, and this share is

currently maintained, because of their high strength, toughness, and durability.

On the contrary, a disadvantage of using metals as biomaterials is that they are

typically artificial materials and have no biofunction. Therefore, metal surface

naturally forms a clear interface against living tissue that works as a barrier to

conduct biofunctions. To add biocompatibility and biofunction to metals, in other

words, to create biosis–abiosis intelligent interface, surface treatment is essential,
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because biofunction cannot be added during manufacturing processes of metals

such as melting, casting, forging, and heat treatment. Surface treatment is a process

that changes a material’s surface composition, structure, and morphology, leaving

the bulk mechanical properties intact.

This chapter primarily reviews past researches on the interface between titanium

and tissue and change in the research trend with era that much help us to understand

a concept to create biosis–abiosis intelligent interface. In addition, current status of

surface treatment of metallic materials is reviewed to enhance new and superior

designs of biosis–abiosis intelligent interface.

5.2 Biosis–Abiosis Intelligent Interface

When a metallic material is implanted into a human body, immediate reaction

occurs between its surface and the living tissues. In other words, immediate reaction

at this initial stage straightaway determines and defines a metallic material’s tissue

compatibility. An artificial material usually makes clear interface against a biolog-

ical system, such as cell, bacterial and tissue: The interface works as a barrier for

transportation of molecules and conduction of biofunction, as shown in Fig. 5.1a.

On the other hand, if we could create unclear and graded interface at which

molecules smoothly transport, both material and tissue are integrated together,

and biofunctions are conducted, this interface may be defined as biosis–abiosis

Abiosis

Material

Biosis

Tissue
Cell

Bacteria

Interface
Barrier of transportation

and function

Abiosis

Material

Biosis

Tissue
Cell

Bacteria

Intelligent Interface
Smooth; Integrated; Functional 

a

b

Fig. 5.1 Clear interface

against cell, bacterial and

tissue: The interface works

as a barrier for

transportation of molecules

and conduction of

biofunction (a). Unclear

and graded interface at

which smooth

transportation of molecules

occurs, both material and

tissue are integrated

together, and biofunctions

are conducted (b)
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intelligent interface, as shown in Fig. 5.1b. In addition, this interface is expected to

be a field not only for chemically biofunctional conduction, but also for mechan-

ically stress conduction. If so, how to make this biosis–abiosis intelligent interface?

Of course, one of the solutions is surface treatment of materials. With surface

treatment, tissue compatibility of surface layer could be improved.

5.3 Osseointegration of Titanium

Osseointegration is the first definition of the interface between ametallicmaterial and

living tissue. The definition of osseointegration is as follows: The formation of a

direct interface between an implant and bone, without intervening soft tissue. No scar

tissue, cartilage or ligament fibers are present between the bone and implant surface.

The direct contact of bone and implant surface can be verified microscopically [1].

This “osseointegration” concept was immediately accepted by dentists and dental

materials researchers in the world to show biocompatible advantage of titanium

among metals that makes it possible that titanium occupies major position in dental

implant bodies. After percolating the concept of osseointegration, the elucidation of

osseointegration mechanism including the investigation on microscopic interface

structure between titanium and bone tissue has been actively studied.

5.4 Mechanism of Osseointegration in Titanium

From the viewpoint of the property of titanium surface, mechanism and process of

osseointegration has been discussed. Titanium and some of its alloys are known to be

among the best biocompatible materials, and commercially the materials have been

successfully used for orthopedic and dental implants. The question is why titanium

and its alloys show such good biocompatibility compared with other alloys. The

explanation to the question is generally believed to be that titanium passivates in

aqueous solutions and that passive film is stable even in a biological system.

Therefore, it was first thought that good hard tissue compatibility of titanium is

caused by its high corrosion resistance. This hypothesis was false. For example,

electric plating of platinum on titanium makes delay bone formation on itself, while

the corrosion resistance increased [2]. Therefore, good hard tissue compatibility of

titanium is caused not only by its high corrosion resistance but also other causes.

In this regard, the surface layer of titanium is essentially TiO2 before and after

autoclaving and anodic oxidation treatment [3, 4]. However, it is questionable

whether titanium oxide is stable and does not react with any electrolyte even in

biological system. In this question, themechanisms of passive dissolution of titanium

in a model physiological environment were revealed [5]. They explained that disso-

lution of titanium depends on solution ligands and the surface oxide characteristics.

They also revealed preferential molecular adsorption on titanium [6].
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Composition of surface oxide film varies according to environmental changes,

though the film is macroscopically stable. Passive surfaces co-exist in close contact

with electrolytes, undergoing a continuous process of partial dissolution and

re-precipitation from the microscopic viewpoint. In this sense, surface composition

is always changing according to the environment (Fig. 5.2). The composition and

properties of the oxide film regenerated in a biological environment may be

different from those in water. When titanium which has been surgically implanted

into the human jaw is characterized using Auger electron spectroscopy, its surface

oxide film reveals constituents of calcium, phosphorus, and sulfur [7, 8]. By

immersing titanium and its alloys in Hanks’ solution and other solutions [9–12]

(Fig. 5.3), preferential adsorption of phosphate ions occurs. Even during cell culture

on titanium, calcium phosphate is formed on it [13]. Extrapolating from here, it can

be assumed that bone formation is faster on titanium implanted in hard tissue

simply because the surface oxide film is titanium oxide. The surface oxide film

Surface oxide

Metal substrate

Partial
dissolution

Reprecipitation

Ions and molecules
Incorporated from
environment

Reconstructed
surface oxide

Fig. 5.2 Schematic model

of reconstruction of the

surface oxide film on

metallic biomaterials

CaCa2+2+ POPO4433--

TiO2

Ti substrate
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Body fluidCa2+ PO4
3-

Fig. 5.3 Calcium

phosphate formation on

titanium in a simulated body
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on titanium is not completely oxidized and is relatively reactive; neither calcium

nor phosphate stably exists alone on titanium, and calcium phosphate is naturally

formed on it; calcium phosphate formed on titanium is stable and protective [14].

Surface oxide films as passive films on valve metals such as Ti are almost amor-

phous and different from titanium oxide bulk and crystalline ceramics with regard

to its chemical property.

The surface oxide is always formed on conventional metallic biomaterials and

the surface of the surface oxide is active. Therefore, the oxide surface immediately

reacts with water molecules and hydroxyl groups are formed as shown in Fig. 5.4a.

The surface hydroxyl groups contain both terminal OH and bridge OH in the equal

amounts. Concentration of hydroxyl groups on the unit area of the surface is

determined with various techniques. Active surface hydroxyl groups dissociates

in aqueous solutions and forms electric charges as shown in Fig. 5.4b [15–18].

Positive or negative charge due to the dissociation is governed by pH of the

surrounding aqueous solution: positive and negative charges are balanced and

apparent charge is zero at a certain pH. This pH is the point of zero charge (pzc).

The pzc is the unique value for an oxide and an indicator which the oxide shows

acidic or basic property. For example, in the case of TiO2, the pzc of rutile is 5.3 and

that of anatase is 6.2 [15] (Fig. 5.4c). In other words, anatase surface is acidic at

smaller pH and basic at larger pH than 6.2. Active surface hydroxyl groups and

electric charges formed by the dissociation of the groups play important roles for

the bonding with polymers and immobilization of biomolecules. Therefore, the

Fig. 5.4 Formation of surface hydroxyl groups on titanium oxide by the adsorption of water

molecules (a), dissociation of hydroxyl groups in aqueous solutions including body fluid and

showing positive and negative charges according to the environmental pH (b), and point of zero

charge (pzc) of various oxide (c)
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concentration of surface hydroxyl group and pH is important factors for the bonding

with polymeric materials and immobilization of biomolecules.

Proteins adsorption influences cells adhesion. Likewise, proteins denaturaliza-

tion and fragmentation (which occur due to adsorption) may affect the function of

the host body. To characterize proteins adsorbed to metals and metal oxides,

various techniques can be used [19], especially that of ellipsometry [20]. To

predict proteins adsorption, the wettability test is used where a liquid droplet is

applied to the material [21]. Fibrinogen is much more naturally adsorbed on

titanium surface than on gold surface, because the dielectric constant, the factor

governing electrostatic force, of TiO2 is 80.1 and similar to that of water

[22]. Therefore, fibrinogen remains its conformation even after the adsorption

on titanium surface.

As described above, many researchers made their effort to elucidate the mech-

anism of osseointegration by characterization of titanium surface oxide (composi-

tion and change of it), surface hydroxyl groups, adsorption of proteins (amount,

speed, change in the conformation, and denaturalization), and adhesion, prolifera-

tion and differentiation of cells. However, the true mechanism of osseointegration

is still not clear.

5.5 Nanometer-Level Interface Structure

On the other hand, micrometer and nanometer-level observation of the interface

between titanium and tissue has been studied. The intact bone-to-titanium interface

consists of a fibrous tissue-free boundary zone with a 20–40 nm thick proteoglycan

coat immediately adjacent to titanium oxide are revealed [23, 24]. Bundles of

collagen appear at a minimum distance of 100–200 nm from the interface. Calcium

deposits were sometimes seen in direct contacted (resolution level 30–50 nm) with

the titanium oxide. The similar variation in interface ultrastructure within

50–100 nm of titanium surface [25]. The collagen fibrils did not reach the implant

surface but were separated from it by an amorphous layer, being 300–500 nm thick

which did not decrease in width with time [26]. An electron-dense lamina limitans-

like line containing mineral was observed between the amorphous layer and the bone

tissue. On the other hand, amorphous proteoglycan layer is not interposed at the

interface between bone and titanium was observed [27]. In addition, this lamina

limitans seems to consist of osteopontin and α2 HS-glycoprotein [28]. Recently,

osteoblast-like cells made direct contact with titanium via a 20–50 nm thin amor-

phous zone is shown [29]. A 20–50 nm thin amorphous zone, a slender cell layer,

and/or a poorly mineralized zone were interposed between bone and titanium. There

is apparently a 20–50 nm amorphous layer containing proteoglycan on titanium

oxide according to the above studies. Relatively high-resolutional observation using

transmission electron microscopy is feasible in the findings regarding structure of

the interface. However, it is difficult to make a tissue specimen with metallic

material for TEM observation. Therefore, a couple of studies [24, 25] employed a
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foil and sputter-coated film of titanium instead of bulk material to be easily sectioned

with a microtome. That is, the structure at the interface near titanium is unclear,

while the observation of the interface is currently continued [30].

5.6 Surface Treatment

5.6.1 Change of Research Trend

The above researches on the elucidation of osseointegration mechanism and char-

acterization of structure at the interface, now showed down and research trend

moved to surface treatment for bone formation on titanium. Tremendous amount of

surface treatment researches has been conducted, while some of the researches are

left important matters behind somewhere. In these researches, the control is usually

untreated titanium. Therefore, some researchers declare that “titanium is bioinert”

to demonstrate the effective results of their surface treatment. Origin of this

misunderstanding is that no apatite forms on titanium by SEM-level after immer-

sion in Kokubo’s simulated body fluid (SBF) [31, 32]. Where has the initial

definition of “osseointegration” of titanium gone? The true story is as follows:

Titanium shows the best bone conduction among metallic materials, while the

ability is much lower than bioactive ceramics.

5.6.2 Surface Treatment

Surface treatment is a process that changes a material’s surface composition,

structure, and morphology, leaving the bulk mechanical properties intact. With

surface treatment, the tissue compatibility of the surface layer can be improved, as

shown in Fig. 5.5. Surface treatment techniques by both dry and wet processes used

in research and industry are summarized in Fig. 5.6. Surface treatment techniques

are reviewed elsewhere [33, 34].

5.6.3 Surface Treatment for Bone Formation

Titanium and its alloys, which show good hard tissue compatibility, are used for

dental implants and artificial hip joints. However, the hard-tissue compatibility of

these materials is lower than that of bioactive ceramics, such as hydroxyapatite and

bioactive glasses. Therefore, numerous surface treatment techniques to improve the

hard tissue compatibility of titanium have been developed, and some have been

commercialized.
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In the stems of artificial hip joints and dental implants, the chemical bonding

of metal surfaces with bone is not expected. In other words, it is impossible for

metals as typical artificial materials to chemically and naturally bond with bone as

living tissue, especially in the human body with body fluid. Therefore, the surface

morphology is sometimes controlled, and rough and porous surface is formed in

titanium. Living tissue, such as bone, is expected to grow into the rough porous

surface, and the materials and bone are strongly connected as a result of the

so-called anchoring effect. Figure 5.7 shows chemical bonding and a mechanical

anchoring connection between bone and material.

5.6.4 Evolution of Surface Treatment for Bone Formation

Figure 5.8 shows the evolution of surface treatment techniques to improve hard

tissue compatibility at the research level:

First generation: Grind machining of the surface.

Second generation: Grooving, blast, acid etching, anodic oxidation, and laser

abrasion.

Third generation: Chemical treatment and hydroxyapatite coating.

Fourth generation: Immobilization of biofunctional molecules (collagen, bone

morphogenetic protein, and peptide).

Fifth generation: Coating of stem cells and tissues?

The bone formation of the materials surface is accelerated when biomolecules

concerning bone formation are immobilized on the material surface, such as in the

fourth generation in Fig. 5.8. Therefore, many studies have achieved good results in

this direction. However, to increase the popularity of the immobilization of

biofunctional molecules, it is necessary to ensure the safety, quality maintenance

during storage, and dry-conditioned durability of the immobilized layer. Therefore,

it is difficult for manufacturers to commercialize those research results. Most of

commercialized goods are categorized into the second generation, a few belong to

Material

Bone tissue

Bonding by ingrowth of bone
into porous material surface

Material

Chemical bonding
between bone and material

Bone tissue
a b

Fig. 5.7 Mechanical anchoring (a) and chemical bonding (b) between bone and material

5 Biofunctionalization of Metallic Materials: Creation of Biosis–Abiosis. . . 61



the third generation, and there is no prospect for the commercialization of the fourth

generation, at present. The commercialization went faster for the second than third

generation possibly because materials employing mechanical anchoring are more

practical than materials employing chemical bonding with bone.

On researches developing new surface treatment techniques, biocompatibility

and biofunction are usually focused, while sometimes mechanical properties,

durability, and manufacturing process are left behind, that may delays the utiliza-

tion of the technique. Most of researchers make the best effort to evaluate biological

effects with cell culture and animal test; they hesitate conduct the evaluation of

durability. They sometimes do not remember “materials engineering”, while

remind only materials chemistry and biological evaluation.

However, immobilization of biomolecules and biofunctional molecules as

shown as the fourth generation above is effective tool to add biofunction to metal

surface. This subject is reviewed somewhere [35].

5.7 Conclusions

Metallic materials are widely used in medicine not only for orthopedic implants and

dental implants, but also for cardiovascular devices and for other purposes. Metallic

biomaterials are always used in close contact with living tissues. Therefore,

interactions between material surfaces and living tissues must be well controlled.

Metal surface may be biofunctionalized by various surface treatment techniques.

These techniques make it possible to apply metals to a scaffold in tissue engineering.
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Fig. 5.8 The evolution of surface treatment techniques to improve hard tissue compatibility at the

research level
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22. Sundgren JE, Bodö P, Ivarsson B, Lundström I. Adsorption of fibrinogen on titanium and gold

surfaces studied by ESCA and ellipsometry. J Colloid Interface Sci. 1986;113:530–43.

23. Albrektsson T, Hansson HA, Ivarsson B. Interface analysis of titanium and zirconium bone

implants. Biomaterials. 1985;6:97–101.

24. Albrektsson T, Hansson HA. An ultrastructual characterization of the interface between bone

and sputtered titanium or stainless steel surfaces. Biomaterials. 1986;7:201–5.

25. Linder L, Obrant K, Boivin G. Osseointegration of metallic implants. II. Transmission electron

microscopy in the rabbit. Acta Orthop Scand. 1989;60:235–9.

26. Sennerby L, Thomsen P, Ericson LE. Early tissue response to titanium implants inserted in

rabbit cortical bone. J Mater Sci Mater Med. 1993;4:494–502.

27. Listgarten MA, Buser D, Steinemann SG, Donath K, Lang NP, Weber HP. Light and

transmission electron microscopy of the intact interfaces between non-submerged titanium-

coated epoxy resin implants and bone or gingiva. J Dent Res. 1992;71:364–71.

28. Nanci A, McCarthy GF, Zalzal S, Clokie CML, Warshawsky H, McKee MD. Tissue response

to titanium implants in the rat tibia: ultrastructural immunocytochemical and lectin-

cytochemical characterization of the bone-titanium interface. Cell Mater. 1994;4:1–30.

29. Murai K, Takeshita F, Ayukawa Y, Kiyoshima T, Suetsugu T, Tanaka T. Light and electron

microscopic studies of bone-titanium interface in the tibiae of young and mature rats. J Biomed

Mater Res. 1996;30:523–33.

30. Brunette DM, Tengvall P, Textor M, Thomsen P, editors. Titanium in medicine. Berlin:

Springer; 2001.

31. ISO23317:2007. Implants for surgery. In vitro evaluation for apatite-forming ability of implant

materials. Geneva: International Organization for Standardization; 2007.

32. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Bio-

materials. 2006;27:2907–15.

33. Hanawa T. An overview of biofunctionalisation of metals in Japan. J R Soc Interface. 2009;6:

S361–9.

34. Hanawa T. Biofunctionalization of titanium for dental implant. Jpn J Dent Sci Rev.

2010;46:93–101.

35. Hanawa T. Metal-polymer composite biomaterials. In: Dumitriu S, Popa V, editors. Polymeric

biomaterials Vol. 1, Structure and function. Boca Raton: CRC; 2013. p. 343–75.

64 T. Hanawa



Chapter 6

Evaluation of Photocatalytic Activity

of the TiO2 Layer Formed on Ti by Thermal

Oxidation

Takayuki Narushima, Shota Sado, Natsumi Kondo, Kyosuke Ueda,

Mitsuko Kawano, and Kouetsu Ogasawara

Abstract Two-step thermal oxidation was proposed for Ti and Ti alloys as a

surface-treatment process for preparing an anatase-containing TiO2 layer. This

process consisted of treatment in a CO-containing atmosphere (first step) and

subsequent treatment in air (second step). In this chapter, first, the current status

of TiO2 coating onto Ti and Ti alloys for biomedical applications is reviewed; then

our recent work on the phase and microstructure of TiO2 layers prepared on

commercially pure (CP) Ti, Ti-25mass%Mo alloy, and Ti-25mass%Nb alloy by

two-step thermal oxidation is described. The anatase fraction in the TiO2 layer was

controlled through process parameters such as the second-step temperature. Finally,

photocatalytic activity of TiO2 layers formed on the Ti and Ti alloys is evaluated,

including: results of water contact angle, decomposition of methylene blue, and

antibacterial effects.
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6.1 Introduction

Ti and Ti alloys are important metallic biomaterials as well as stainless steels and

Co-Cr alloys because of their excellent properties such as high specific strength,

high corrosion resistance, and low allergenicity [1, 2]. Since they can be directly

connected to living bone at an optical microscopic level, i.e., osseointegration [3,

4], they have been used as substitutes for hard tissues such as in the stems of

artificial hip joints and in dental implants, where implantation in bones for the long-

term is expected. However, a relatively long time is required for establishing

osseointegration, and fixation between Ti implants and bones can be influenced

by the state of the bones and by the implant/bone interfacial area. Surface modifi-

cation is a promising way to improve bone compatibility of Ti implants [5], while

leaving bulk mechanical properties intact.

Surface modification used to improve bone compatibility of Ti implants is

conducted from the point of view of the morphology and phase/composition of

their surfaces [6–8]. The aim of modifying surface morphology is to increase

adhesion between bones and implants by an anchorage effect, while the purpose

of phase/composition modification is to form either an apatite coating, or a

non-apatite coating that enhances the formation of apatite [7].

We have reported amorphous calcium phosphate coating using RF magnetron

sputtering [8–10], and TiO2 coating using thermal oxidation [11–13], as surface

modifications of Ti and Ti alloys for biomedical applications. In this chapter, first,

the current status of TiO2 coating of Ti and Ti alloys is reviewed, and then our

recent work on preparation and evaluation of photocatalytic activity of TiO2 layers

on Ti and Ti alloys formed by a two-step thermal oxidation process is described.

6.2 TiO2 Layers on Ti and Ti Alloys for Biomedical

Applications

TiO2 layers on Ti and Ti alloys are reported to be effective for improving

biological performance such as biomimetic growth of apatite [14], initial adhe-

sion of osteoblast-like cells [15], bone-bonding ability [16], and bone growth

[17]; in fact, Ti implants coated with a porous TiO2 layer through anodic oxida-

tion are clinically used [18]. It is known that TiO2 can exhibit photocatalytic

activity [19, 20]. Photo-induced superhydrophilicity and photocatalytic oxidation

of organic compounds are closely related to biological phenomena on the TiO2

surface such as cell response, removal of hydrocarbons, and antibacterial proper-

ties [21–23].

TiO2 has three polymorphic phases at atmospheric pressure: rutile, anatase, and

brookite. Rutile is a thermodynamically stable phase on the macroscale, with the

stability of these phases depending on particle size. Rutile and anatase are the

most stable phase for particles above 35 nm and below 11 nm, respectively, and
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brookite has been found to be the most stable for nanoparticles in the 11–35 nm

range [20, 24]. Anatase is considered to possess excellent bone compatibility [14,

16, 25], and the photocatalytic activities of anatase [19, 26], anatase + rutile

composite [27], and anatase + brookite composite [28] are reported to be high,

although the precise reason for different photocatalytic activities has not been

elucidated in detail [20].

Many processes for preparing TiO2 layers on Ti and Ti alloys have been

investigated including chemical vapor deposition [29], physical vapor deposition

[30], anodic oxidation/micro arc oxidation (MAO) [31, 32], and sol–gel [33]

methods. Thermal oxidation, which is based on the reaction between an oxidizing

gas and Ti at elevated temperatures, is a simple and low-cost method to prepare

TiO2 layers on Ti with excellent adherence and high crystallinity, and can be

applied to substrates with a complex geometry.

The thermal oxidation of commercially pure (CP) Ti in air and oxygen has been

reported since the 1950s [34]. Recently, the oxide layer on Ti and/or the oxygen-

dissolved and hardened layer of Ti prepared by thermal oxidation have been

utilized for improving corrosion and wear resistance [35–37]. Browne and Gregson

[38] showed that the air oxidation treatment at 673 K for 2.7 ks for Ti-6Al-4V

implants reduced metal ion dissolution into bovine serum, particularly in the

early stages.

The major product obtained in the thermal oxidation of Ti and Ti alloys has been

reported to be the thermodynamically stable rutile [37]. A few reports show

formation of the anatase phase in thermal oxidation of Ti and Ti alloys [39,

40]. Borgioli et al. [39] reported the formation of rutile + anatase in the oxide film

on a Ti–6Al–4V alloy after glow-discharge processing in air at a total gas pressure

of 0.01 atm. Lee and Park [40], using oxidation in a wet oxygen atmosphere for

10.8 ks at 683 K in combination with post-annealing in air at 773 K, showed

formation of a Ti5O7 + anatase layer on a magnetron-sputtered Ti thin film. In

these reports, however, the main oxidation products were rutile and Ti5O7 phases,

namely, not an anatase-rich TiO2 layer.

On the other hand, it is known that anatase is formed as a main product in

thermal oxidation of TiC [41, 42] and TiN [43]. Shabalin et al. [42] presented an

oxidation model of TiC, in which incorporation of carbon in TiO2 stabilized the

anatase phase. Meanwhile, Kao et al. [44] observed the reversible transformation

between TiO having an NaCl-type structure and anatase. They pointed out the

similarity between their structures: TiC and TiN exhibit NaCl type structure with a

lattice constant close to TiO; the anatase formation on TiC and TiN in thermal

oxidation would be related to this NaCl-type structure.

Based on the information on anatase formation on TiC and TiN under thermal

oxidation, we proposed and investigated a two-step thermal oxidation process

in which an anatase-rich TiO2 layer is formed on Ti and Ti alloys [11–13].

The preparation and photocatalytic evaluation of TiO2 layers formed on Ti

and Ti alloys by two-step thermal oxidation are described in Sects. 6.3 and 6.4,

respectively.
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6.3 Preparation of Anatase-Rich TiO2 Layer on Ti

and Ti Alloys

Figure 6.1 schematically shows the process of two-step thermal oxidation. This

process consists of treatment in CO-containing atmospheres such as Ar-CO [11]

and N2-CO [12] gas mixtures (first step) and subsequent treatment in air (second

step). A Ti(C,O) or Ti(C,N,O) phase is formed on the Ti and Ti alloys in the first

step and converted to TiO2 through air oxidation in the second step.

The α-2θ XRD patterns (α¼ 0.3�, Cu Kα) of the reaction layer on CP Ti,

Ti-25mass%Mo (Ti-25Mo) alloy, and Ti-25mass%Nb (Ti-25Nb) alloy after the

first-step treatment in Ar-1%CO at 1,073 K for 3.6 ks are shown in Fig. 6.2.

Reflections that are located close to but at a slightly higher angle than those of TiC

are observed. It is known that oxygen substitution in a carbon site decreases the lattice

parameter of TiC [42]; in fact, the reflections of the reaction layer are located between

those of TiC and TiO as shown in Fig. 6.2. In addition, chemical composition analysis

by X-ray photoelectron spectroscopy (XPS) revealed the presence of oxygen in the

reaction layer as well as carbon and Ti [11]. From these results, the phase of the

reaction layer is considered to be Ti(C,O). In the case of using an N2-CO

gas atmosphere in the first step, a Ti(C,N,O) reaction layer was formed [12]. Fig-

ure 6.3a, b depict potential diagrams of Ti-C-O and Ti-C-N-O systems respectively, at

1,100 K [11, 12]. The chemical composition of Ti(C,O) and Ti(C,N,O) phases

was arbitrarily chosen as TiC0.5O0.5 because of the lack of reliable thermodynamic

data for these phases. The relationship between carbon activity (aC) and oxygen partial
pressure (PO2

) suggests that the TiC0.5O0.5 phase is thermodynamically stable at a CO

partial pressure (PCO) of 0.01 atm, which corresponds to Ar-1%CO and N2-1%CO.

Figure 6.4 shows cross-sectional SEM images of the Ti(C,O) and Ti(C,N,O)

layers, which were formed in Ar-1%CO and N2-1%CO, respectively. From the

images, it was confirmed that the films were dense and uniform.

The phase fraction in TiO2 layers formed on CP Ti, Ti-25Mo alloy, and Ti-25Nb

alloy at different second-step temperatures and holding times are summarized in

0 ~ 86.4 ks

873 ~ 1123 K

1st step

Ar-CO or N2-CO
2nd step

Air

573 ~ 1073 K

0 ~ 86.4 ks

Ti • Ti alloy
TiC-based phase

[Ti(C,O), Ti(C,N,O)] TiO2 layer

Fig. 6.1 Schematic of the two-step thermal oxidation process
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Fig. 6.5a–c, respectively [13]. The first-step treatment was carried out in Ar-1%CO

at 1,073 K for 3.6 ks, and the reaction layer was confirmed to be Ti(C,O) single

phase after the first-step. The phase fractions of anatase and rutile in TiO2 layer

were calculated using the equation given by Spurr and Myers [45]. The anatase-rich

TiO2 layers were formed for second-step temperatures between 673 and 873 K. At a

lower temperature of 573 K, single-phase anatase was produced, but the Ti(C,O)

phase remained, indicating that the oxidation reaction from Ti(C,O) to TiO2 was not

completed in the second step. On the other hand, thermodynamically stable rutile

was a main phase in the TiO2 layers for the higher second-step temperatures of

973 and 1,073 K. At these higher temperatures, rutile single phase was detected on

CP Ti, while anatase was detected as a minor phase on Ti-25Mo and Ti-25Nb

alloys. Moreover, the anatase fraction in the TiO2 layer on Ti-25Mo and Ti-25Nb

alloys was higher than on CP Ti at mid-level temperatures of 773 and 873 K. The

formation window for anatase in two-step thermal oxidation of Ti alloys is wider

than that of CP Ti.

Anatase irreversibly transforms to rutile at high temperatures, and the larger the

valence number and ionic radius of dopants in TiO2, the more suppressed the

anatase-to-rutile transformation: the transformation is enhanced by relaxation of

the large oxygen sublattice through the increased presence of oxygen vacancies [46].
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Figure 6.6 shows the comprehensive valence/radius plot of the anatase-to-rutile

transformation, categorizing TiO2 dopants as inhibiting or promoting [46].

From this figure, Mo and Nb are likely inhibiting dopants. The incorporation of

Mo and Nb into the TiO2 layer during two-step thermal oxidation process may have

resulted in the presence of anatase on the Ti alloys at higher second-step tempera-

tures and the higher anatase fraction at mid-level temperatures.

The formation of the Ti(C,O) or Ti(C,N,O) single phase during the first step and

optimization of the second-step temperature are required for preparing an anatase-

rich TiO2 layer on Ti and Ti alloys. We varied CO partial pressures in the first-step

treatment between Ar- or N2-0.1%CO and 20%CO. The rutile phase tended to

form to a greater degree in the first-step treatment under higher partial pressures

(up to 20 %) of CO gas, because of its high oxidizing potential.
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Figure 6.7a, b show a cross-sectional TEM image and an electron diffraction

pattern, respectively, of the anatase + rutile TiO2 layer formed on CP Ti after a

second-step treatment at 673 K that was preceded by a first-step treatment at 1,073 K

in N2-1%CO [12]. Nanoscale crystallites of anatase and rutile are observed. The

thickness of the TiO2 layer formed in the second-step at 873Kwasmuch greater than

that formed in the 573–773 K range [12]. This result suggests that the formation of

the rutile phase at higher second-step temperatures is also caused by direct oxidation

of metallic Ti after completion of oxidation of the Ti(C,O) or Ti(C,N,O) layer.

Bonding strength of the anatase-rich TiO2 layer to the CP Ti substrate was

evaluated by a pulling test using an Al stud, and was greater than the strength of

the epoxy glue (60–70 MPa) used for bonding between the TiO2 layer and the

Al stud [14]. The high bonding strength is an advantage of the thermal oxidation

process over wet processes such as anodic oxidation.
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6.4 Evaluation of Photocatalytic Activity of TiO2 Layers

Formed by Two-Step Thermal Oxidation

The photocatalytic activity of TiO2 layers prepared on CP Ti, Ti-25Mo alloy, and

Ti-25Nb alloy was evaluated for water contact angle, decomposition of methylene

blue (MB), and antibacterial effect under UV irradiation. Figure 6.8 shows the

average water contact angle obtained for UV irradiation times of 3.6–7.2 ks with an

irradiance of 1 mW � cm�2 as a function of anatase fraction ( fA) in TiO2 layers [13].

The water contact angle decreased with increasing fA, and in particular, a water

contact angle less than 5� was achieved on TiO2 layers for an fA higher than 0.6.
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It is confirmed that anatase is effective for expression of superhydrophilicity.

Meanwhile, in the case of Ti-25Nb alloy, a low water contact angle was observed

even on TiO2 layers with lower fA values such as 0.2 and 0.4. The effect of Nb

doping on the photocatalytic activity of TiO2 was reported to be complex [47].

Further studies on the chemical state, concentration, and distribution of Nb in the

TiO2 layer are required. The water contact angle increased again under dark

condition after UV irradiation; however, the hydrophobization rate was reduced

in TiO2 layers with high fA.
Figure 6.9 shows the variation in concentration of MB with UV irradiation time

on TiO2 layers formed on CP Ti, Ti-25Mo alloy, and Ti-25Nb alloy. The values of
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fA in the TiO2 layers were controlled by varying the second-step temperature

between 673 and 1,073 K. The rate constants for degradation of MB can be

expressed by the gradients of the lines in Fig. 6.9. The anatase-containing TiO2

layers exhibited higher decomposition rates compared to the rutile single-phase

TiO2 layers. The maximum rate constant was obtained at the fA value of 0.78.

Bickley et al. [48] proposed a synergetic effect between anatase and rutile in order

to explain a greater photocatalytic activity of anatase + rutile + amorphous TiO2

particles. Su et al. [49] reported that porous TiO2 films with an fA value of 0.6

exhibited optimal performance of photocatalytic activity and suggested a synergetic

effect on photocatalytic activity: electrons excited in rutile can migrate to the

conduction band of anatase, thereby effectively suppressing recombination of

electrons and holes [49].

Antibacterial activities of a CP Ti plate coated with anatase single-phase TiO2

layer by two-step thermal oxidation (Anatase-coated, 10� 10� 1 mm) and an

as-polished CP Ti plate (Non-coated, 10� 10� 1 mm) were evaluated using

gram-positive E. coli (DH 5α). All specimens were ultrasonically cleaned and

sterilized in ethanol for 0.6 ks before the antibacterial tests. Solution (0.1 mL)

containing the bacteria at a concentration of 107 CFU �mL�1 diluted using 1/500

nutrient broth (NB) was dropped onto the specimen in a 24-well plate. The

specimen was exposed to UV with an irradiance of 0.25 mW � cm�2 at 298� 5 K

in a dark room. After 10.8 ks incubation, the dropped bacterial solution was washed

out from the specimen using 4.9 mL of phosphate buffered saline (PBS). The

washed-out solution (0.1 mL) including bacteria was inoculated onto a standard

NB agar culture plate (ϕ¼ 90 mm). The number of colonies resulting from the

growth of viable bacteria was counted after incubation for 64.8 ks at 310 K, and

the number of viable bacteria (Nsp) was calculated. The same protocol was

conducted with the well plate without specimen and the number of viable bacteria

(Nwell) was also calculated. A percentage of viable bacteria (Pv) was evaluated

using a following equation.

Pv ¼ Nsp=Nwell � 100 ð6:1Þ

Significant differences were statistically evaluated using Student’s t-test.
Figure 6.10 shows the percentage of viable bacteria for the Non-coated and

Anatase-coated specimens. The percentage of viable bacteria for Anatase-coated

was significantly lower than for Non-coated. This result indicates that the anatase

layer on Ti formed by two-step thermal oxidation is useful to improve the

antibacterial activity of Ti implants. Many research groups have reported

antibacterial activity of an anatase layer on Ti formed by anodic oxidation [50–52].

We have showed significant antibacterial activity of an anatase layer on Ti formed

by a dry process: two-step thermal oxidation.
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6.5 Summary

TiO2 layers formed by thermal oxidation can improve the biological properties of

Ti through their photocatalytic activity. Research and development of TiO2 coat-

ings on Ti implants for hard tissue replacement is continuing. In applications of

TiO2-coated Ti implants, it would be preferable if the photocatalytic response of

TiO2 layers were to visible light. Theoretical and experimental studies are needed to

further improve photocatalytic activity and clarify the detailed mechanism of

photocatalytic activity of TiO2 layers on Ti, which would relate to phase fraction,

defect structure, and dopants. In particular, precise microscopic analyses of the

structure and composition of TiO2 thin layers on Ti are needed to aid in under-

standing their photocatalytic properties.
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Chapter 7

Enhancing Functionalities of Metallic

Materials by Controlling Phase Stability

for Use in Orthopedic Implants

Masaaki Nakai, Mitsuo Niinomi, Ken Cho, and Kengo Narita

Abstract This chapter aims to review the recent trends pertaining to the enhanced

functionalities, including low Young’s modulus, self-tunable Young’s modulus,

and low magnetic susceptibility, of titanium and zirconium alloys for use in

orthopedic implants. These value-added functionalities can be realized by control-

ling the type of crystal structure and their lattice structure stabilities, which are

related to the phase stability of titanium and zirconium alloys.

Keywords Magnetic susceptibility • Metallic materials • Orthopedic implant

• Phase stability • Young’s modulus

7.1 Introduction

One of the most important factors concerning the use of orthopedic implants is to

ensure safety in usage, which is often associated with their mechanical reliability to

endure physiologically cyclic loading and unexpected large loads during treatment.

Given these considerations, metallic materials are advantageous over ceramic and

polymeric materials for use as implantable materials. Therefore, more than 80 % of

the implant devices used till date are made of metallic materials [1]. Another

important factor concerning the use of orthopedic implants is their toxicity toward

living tissues. In general, the human body inherently resists any incoming toxic

element. In other words, human body exhibits low permittivity to highly toxic

elements eluted from orthopedic implants [2]. That is, the toxicity of orthopedic

implants depends not only on the nature of the metallic elements but also on the

amount of them, which, in turn, strongly depends on the corrosion resistance of

each metallic material. Therefore, in the human body, a metallic material with high

corrosion resistance is highly imperative to ensure their safe usage as orthopedic

implants.
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Conventionally, industrial metallic materials with high corrosion resistance,

such as stainless steels (SUS316L), titanium (Ti) alloys (CP Ti and Ti–6Al–4V

ELI alloys), and cobalt (Co) alloys (Co–Cr alloys), have been widely used in

biomedical applications [3]. Among these materials, Ti alloys have recently

attracted considerable attention because of the feasibility of imparting improved

functionalities to orthopedic implants. For instance, Ti undergoes allotropic trans-

formation at 1,155 K, which is considered to be very important in terms of phase

stability to obtain various functions. In simple terms, Ti alloys can be tuned to

perform special functions by adept control of phase stability by varying the

chemical composition. In addition, zirconium (Zr), which is one of the congeners

of Ti, has also received considerable attention, and new Zr alloys for orthopedic

implants have been developed on the basis of phase stability.

In this chapter, we have reviewed the latest trends in the development of Ti and

Zr alloys for orthopedic implants with special functionalities, especially those

obtained by controlling phase stability.

7.2 Low Young’s Modulus

During orthopedic surgery, the use of metallic material with Young’s modulus

higher than that of the bone can lead to excess bone resorption due to the inhibition

of load transfer to the bone (stress shielding effect) [4, 5]. Among the different

metallic materials, Ti alloys exhibit high strength and relatively low Young’s

modulus. Furthermore, among the different Ti alloys, β-type Ti alloys consisting

of bcc-β phase generally exhibit Young’s modulus lower than those of α-type and
(α+ β)-type Ti alloys consisting of hcp-α and (hcp-α + bcc-β) phases, respectively.
This can be attributed specifically to their crystal structures, as shown in Fig. 7.1

[6]. Given this consideration, several studies have focused on the reduction of the

Young’s modulus of β-type Ti alloys closer to that of the bone [7–13].

The Young’s modulus of β-type Ti alloys is considered to be closely related to

the stability of the β-phase. For example, the Young’s modulus of Ti–Nb alloys,

which is quenched above the β transus temperature, depends on the niobium

(Nb) content [14, 15]. Depending on the chemical composition, Ti alloys exhibit

some intermediate phases, such as non-equilibrium hcp-α0, orthorhombic-α00, and
hexagonal- or trigonal-ω phases between the equilibrium α and β phases [17]. As a
function of the chemical composition, the Young’s modulus of Ti–Nb alloys shows

local maximum at the chemical composition in which the ω phase is formed by

quenching (Ti–30Nb). Conversely, the Young’s modulus of Ti–Nb alloys shows

local minimum at the chemical composition in which the lowest Nb content in the

range of the non-ω phase is formed by quenching (Ti–40Nb) [14, 15]. This implies

that the formation of the ω phase has to be suppressed in order to obtain low

Young’s modulus in β-type Ti alloys [16]. Furthermore, studies on the temperature

dependence of the Young’s moduli of Ti–Nb–Al [11] and Ti–Nb–Sn [9, 16] alloys

show that their Young’s moduli reduce close to their α00 martensitic transformation

temperature. Figure 7.2 [11] shows a typical example of this case in Ti–24Nb–3Al
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alloys (only the chemical composition of this alloy is expressed using mol% in this

chapter). Therefore, in order to obtain the lower Young’s modulus of β-type Ti

alloys closer to room temperature or body temperature, the chemical composition

of the alloys should be determined to be their α00 martensitic transformation
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temperatures just below these temperatures [16]. Newly developed β-type Ti alloys
such as Ti–Nb–Ta–Zr [7, 8], Ti–Nb–Sn [16, 9, 15], Ti–Nb–Al [11, 17], Ti–Nb–Ta

[18], and Ti–Nb–Zr–Sn [10] alloys are considered to satisfy the abovementioned

requirements for obtaining low Young’s modulus of the order of 40–60 GPa, which

is close to that of the bone (10–30 GPa) [19].

However, the mechanical reliability of these β-type Ti alloys with low Young’s

modulus is typically lesser than that of a common (α + β)-type Ti–6Al–4V ELI

alloy. Therefore, improvement in the mechanical reliability of β-type Ti alloys

with low Young’s modulus is currently under study [20, 21]. The static strength,

namely, the tensile strength and 0.2 % proof strength of β-type Ti alloys with

maintaining low Young’s modulus can be achieved to the level of those of

Ti–6Al–4V ELI alloy by severe cold working such as severe cold rolling, swaging

and forging, and severe plastic deformation such as high pressure torsion (HPT)

[5, 22, 23]. However, the dynamic strength, namely, the fatigue strength with

maintaining low Young’s modulus cannot be improved by severe cold working or

severe plastic deformation [24]. Therefore, to improve fatigue strength of β-type
Ti alloys, introducing the secondary phases such as α and ω phases, which are

formed by aging, in the β-phase matrix is effective, but increases the Young’s

modulus. Therefore, controlling the amount of the secondary phase should be

considered to maintain the Young’s modulus as low as possible. One of the way to

introduce a small amount of the secondary phase is short-time aging at a relatively

low temperature. In this case, the ω phase is attractive because it increases

remarkably the strength of β-type Ti alloys although increasing the Young’s

modulus. For example, as a result of introducing a small amount of the ω phase

by the sort-time aging, the fatigue strength of Ti–29Nb–13Ta–4.6Zr alloy, which

is one of the β-type Ti alloys with low Young’s modulus for biomedical applica-

tions, increases to a level of that of Ti–6Al–4V ELI alloy while maintaining its

Young’s modulus around 75 GPa [20]. Furthermore, introducing a small amount

of ceramics such as TiB and Y2O3 to the β-phase matrix is also effective to

improve the fatigue strength of β-type Ti alloys [21, 25]. Figure 7.3 [21] shows

maximum cyclic stress-fatigue life (the number of cycles to failure) curves,

namely, S-N curves of Ti–29Nb–13Ta–4.6Zr alloys with different Y2O3 additions

obtained from fatigue tests where the amounts of Y2O3 are expresses as Y

concentrations. The fatigue strength is highly improved by Y2O3 additions both

in low- and high-cycle-fatigue life regions, where the number of cycles to failure

is less than 105 cycles and exceeds 105 cycles, respectively. The fatigue limit

of the alloy with 0.1mass% Y is the greatest among the alloys with different

Y concentrations. Young’s moduli of Ti–29Nb–13Ta–4.6Zr alloys with different

Y2O3 additions are shown in Fig. 7.4 [21]. It indicates that Young’s moduli of

Ti–29Nb–13Ta–4.6Zr alloys with different Y2O3 additions are almost similar to

that of Ti–29Nb–13Ta–4.6Zr alloy without Y2O3 addition, which is around

60 GPa.
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7.3 Wear Properties of Low Young’s Modulus

Titanium Alloy

Some orthopedic implants consist of more than one component with metal-to-metal

contacts such as spinal fixation devices so that the wear properties of materials is

important for use in such the applications. A difference of wear behavior between
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Ti–6Al–4V ELI alloy and Ti–29Nb–13Ta–4.6Zr alloy was investigated [26, 27].

Volume loss of Ti–29Nb–13Ta–4.6Zr alloy was larger than that of Ti–6Al–4V ELI

alloy for both discs and balls (mating materials) in the ball-on-disc type wear testing

as shown in Fig. 7.5 [26]. According to wear track observations shown in Fig. 7.6

[27], continuous uniform groove and micro cutting, indicative of abrasion, and

oxide debris are observed on the worn surface of Ti–6Al–4V ELI alloy. On the

other hand, severe plowing, massive surface deformation, many cracks, and some

traces of spalling in the form of platelets, indicative of delamination, are observed

on the worn surface of Ti–29Nb–13Ta–4.6Zr alloy. These observation results

indicate that the resistance to plastic shearing of Ti–29Nb–13Ta–4.6Zr alloy is

lower than that of Ti–6Al–4V ELI alloy, which is intrinsically related to low

Young’s modulus, resulting in different wear behaviors between these two alloys.

7.4 Self-Tunable Young’s Modulus

In case of spinal fixation devices, high rigidity can increase the risks of stress

shielding effect and adjacent segment degeneration. Therefore, materials with low

Young’s modulus are often preferred to realize healthy spine formation [28, 29].

However, these devices also require high Young’s modulus as they are subjected to

bending during surgery to obtain the physiological curvature of the spine [30].

In this case, the device must be bent within a limited space inside the patient’s body.

Therefore, it is often difficult for the surgeon to make an intended curvature if the

spring-back of the spinal fixation devices is relatively large [31]. Furthermore, it has
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been reported that the bending tool used by a surgeon to bend the device often leads

to scratches on the device surface during the surgery. This, in turn, decreases the

mechanical reliability of the spinal fixation devices [32]. Large spring-back leads to

difficulty in bending, resulting in the repetition of contouring during operation. This

increases the risk of failure of spinal fixation devices [33]. The degree of spring-

back depends on both the strength and Young’s modulus of spinal fixation devices.

Given the same strength, it is the spinal fixation devices with higher Young’s

modulus that will exhibit a smaller spring-back. That is, these devices are often

preferred to suppress the spring-back [34]. Therefore, there is a conflicting require-

ment in Young’s modulus from the viewpoint of patients and surgeons, which

cannot be completely satisfied by β-type Ti alloys with low Young’s modulus

[31]. In order to overcome this issue, recent studies have proposed a novel concept

using a deformation-induced ω-phase transformation in β-type Ti alloys [31], such
as Ti–Cr [35], Ti–Mo [36], Ti–Zr–Mo [37], Ti–Zr–Mo–Cr [38], and Ti–Cr–O [39]

alloys. These materials exhibit novel functionality, wherein the deformed material

possesses high Young’s modulus, while the non-deformed part has low Young’s

modulus. This is made possible by the phenomenon of deformation-induced

Fig. 7.6 Scanning electron micrographs of worn surfaces of a β-type titanium alloy with

low Young’s modulus (Ti-29Nb-13Ta-4.6Zr alloy (mass%) (TNTZ)) and a conventional (α + β)-
type titanium alloy (Ti-6Al-4V ELI alloy (mass%) (Ti64)) after ball-on-disc wear tests; (a) Ti64

disc against Ti64 ball, (b) TNTZ disc against Ti64 ball, (c) Ti64 disc against TNTZ ball, and (d)

TNTZ disc against TNTZ ball [27]
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ω-phase transformation localized within the deformed part of the material,

which provides an opportunity to satisfy the conflicting requirement in terms of

Young’s modulus.

Figure 7.7 [31] shows the Young’s moduli of β-type Ti alloys, Ti–12Cr alloy

with self-tunable Young’s modulus and Ti–29Nb–13Ta–4.6Zr alloy with low

Young’s modulus, after being subjected to solution treatment and cold rolling.

The Young’s moduli of both Ti–12Cr and Ti–29Nb–13Ta–4.6Zr alloys subjected

to solution treatment are almost similar of the order of 60–70 GPa. After being

subjected to cold rolling, Ti–29Nb–13Ta–4.6Zr alloy, in which no phase transfor-

mation occurs during cold rolling, reveals Young’s modulus almost similar to that

subjected to solution treatment. Conversely, the Young’s modulus of Ti–12Cr alloy

is found to increase with cold rolling. The microstructure of Ti–12Cr alloy after

cold rolling, as observed using a transmission electron microscope, indicates the

formation of the ω phase. In general, the formation of the ω phase significantly

increases the Young’s modulus of β-type Ti alloys [24]. Therefore, the observed

increase in Young’s modulus of Ti–12Cr alloy as a result of cold rolling could be

attributed to the deformation-induced ω phase transformation [31, 35]. The increase

in Young’s modulus due to the deformation-induced ω phase transformation was

also confirmed experimentally, as shown in Fig. 7.8 [35], which indicates that

the spring-back of Ti–12Cr alloy could be suppressed in comparison to that of

Ti–29Nb–13Ta–4.6Zr alloy.

Ti-12Cr alloy Ti-29Nb-13Ta-4.6Zr alloy
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7.5 Low Magnetic Susceptibility

Conventionally, magnetic resonance imaging (MRI) is used for the diagnosis of

various diseases. However, when metallic orthopedic devices are implanted in the

human body, deficits and distortions are formed in the images of organs and tissues

around the implant (artifact), hindering the exact diagnosis performed using a MRI.

The artifacts formed by the metallic materials could be ascribed mainly to the

difference in magnetic susceptibilities between living tissues and metallic materials

[2]. The magnetic susceptibility of living tissues reveals diamagnetism, while that

of water being �9� 10�6 cm3g�1 [40]. On the other hand, Ti, being paramagnetic,

has the magnetic susceptibility of 3.2� 10�6 cm3g�1 [41]. This magnetic suscep-

tibility of Ti is much lower than that of ferromagnetic iron (Fe) and Co, but still

higher than that of water. Therefore, Zr, which is a congener of Ti, also exhibits a

smaller magnetic susceptibility of 1.3� 10�6 cm3g�1, [41]. This property has

gained significant attention, and it forms the genesis for the recent developments

of Zr alloys, such as Zr–Nb [41, 42] and Zr–Mo [43, 44] alloys. The dependence of

magnetic susceptibility on the Nb content in Zr–Nb alloys is shown in Fig. 7.9 [41].

As is seen, the magnetic susceptibility of Zr–Nb alloys varies as a function of Nb

content, showing a local minimum for the Nb content of 3–9 mass% [41]. As Zr

undergoes allotropic transformation similar to Ti, the concept of the phase stability

in Zr alloys is similar to that of Ti alloys. Therefore, the phase stability of Zr alloys

depends on the chemical composition. The allotropic transformation results in the

formation of some intermediate phases, such as non-equilibrium α0 and ω phases, in

addition to the equilibrium α and β phases [41–43]. In Zr–Nb alloys, the magnetic

susceptibility of Zr–(3–9)Nb alloys reveals local minimum with Zr–3Nb, Zr–6Nb,

and Zr–9Nb alloys consisting of single α0 phase, (α0 +ω + β) phases, and (ω + β)
phases, respectively. However, given the volume fractions of each phase, the ω
phase is considered to have the lowest magnetic susceptibilities among these phases
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[41]. Analogously, Zr–3Mo alloys consist of (ω+ β) phases, revealing the lowest

magnetic susceptibility of below 1.1� 10�6 cm3g�1 among both Zr–Nb and Zr–Mo

alloys [43].

7.6 Summary

Metallic materials used in orthopedic implants are required to have high mechanical

reliability and corrosion resistance. In addition to these conventional properties,

additional value-added functionalities are being considered beneficial for the suc-

cessful use of metallic materials in orthopedic implants. Therefore, in this chapter,

the authors have reviewed the recent topics pertaining to the improved functional-

ities (low Young’s modulus, self-tunable Young’s modulus, and low magnetic

susceptibility) of titanium and zirconium alloys via controlling the phase stability,

which imparts essential functionalities to the implants. This overview is expected to

facilitate a better understanding of biomedical metallic materials in potential future

applications.
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Chapter 8

Surface Improvement for Biocompatibility

of Ti-6Al-4V by Dealloying in Metallic Melt

Yuichi Fukuzumi, Takeshi Wada, and Hidemi Kato

Abstract Dealloying is known to be a powerful method to produce porous mate-

rials mainly with noble metals because the mechanism involves the selective

dissolution of specific element(s) by corrosion in acid/alkali aqueous solutions.

Recently, an alternative dealloying method has been developed by our research

group using a metallic melt in place of the corrosive aqueous solution. In this study,

using the novel dealloying method using a metallic melt, toxic Al element, was

successfully removed from the surface of Ti-6Al-4V, which has been used for

biomedical applications, for improving their biocompatibility. The toxic ion release

from the overall sample did not effectively decrease because of the substantial

surface area that developed using the dealloying method. By optimizing the

dealloying conditions to suppress surface area development, drastic improvement

in the biocompatibility of this Ti alloy is expected.

Keywords Biocompatibility • Dealloying • Surface improvement • Ti-6Al-4V

8.1 Introduction

Biomaterials are becoming more important for our better quality of life. When a

person temporally or permanently loses particular biofunction by illness or injury,

biomaterials are required to compensate it. The properties required for biomaterials

are mainly divided into mechanical conditions such as strength, toughness, elastic-

ity and the biological conditions such as toxicity, biodegradation and carcinoge-

nicity. The Ti-based alloys are promising biomedical material because they can

combine excellent mechanical and biological properties [1]. Among the various

Ti-based alloys, the Ti-6Al-4V alloy one of the most frequently used metallic

biomaterials. This alloy is two-phase alloy in which Al element acts as an
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α-phase (hexagonal close packed phase) stabilizer and V acts as a β-phase (body-

centered cubic phase) stabilizer. This two-phase alloy was originally developed as a

material for aircraft, therefore, this alloy combines high strength, high toughness

and low density. As for the biomedical use, the Ti-6Al-4V alloy is often used as a

load-bearing components such as artificial bone and dental implant [2]. Despite

excellent mechanical and biological properties from this alloy, the cytotoxicity

problem due to the release of V and Al ion in vivo remains unsolved [3]. To make

this alloy more biocompatible, extensive researches for developing two-phase alloy

without using V and Al [4] and also the establishing surface improvement technol-

ogy are ongoing [5]. Unlike these conventional works, our approach is to utilize a

dealloying method to dissolve toxic elements from an alloy by immersion into a

metallic melt [6–10]. In this study, we apply this dealloying method to remove toxic

elements from the surface of biomedical alloys and then investigate the resulting

effect on the biocompatibility.

8.2 Dealloying in a Metallic Melt

When we mix two elements, the free energy change due to this event is

ΔGmix ¼ ΔHmix � TΔSmix ð8:1Þ

where ΔHmix is the heat of mixing, ΔSmix is the entropy of mixing, and T is the

absolute temperature. Usually, the entropy increases after mixing. Therefore, if

ΔHmix< 0, the ΔGmix< 0, and the mixing reaction can occur spontaneously from a

thermodynamic point of view. On the other hand, if ΔHmix> 0 the sign (positive or

negative) of ΔGmix depends on the temperature. If the temperature is adequately

controlled to make the enthalpy term larger than the entropy term, then ΔGmix> 0,

and we can avoid the mixture of the two elements. Here we dip an A-B binary alloy

precursor into a metallic melt consisting of element C. If the heat of mixing between

elements B and C is negative, i.e.,ΔHmix, B�C< 0 and if the heat of mixing between

elements A and C is positive, i.e., ΔHmix, A�C> 0, then by controlling temperature

adequately only element B dissolves from the precursor into the C melt; since

element A is rejected from the C melt, it is expected to self-organize into a porous

structure by surface diffusion in the same manner as that of the ordinary dealloying

method in an aqueous solution [11]. Figure 8.1 shows a schematic of this novel

dealloying method that involves the selective dissolution of B atoms (orange) in the

C atom melt (pink) and surface diffusion of the remaining A atoms (yellowish

green). Figure 8.2 summarizes this “triangle” relationship in terms of the heat of

mixing among elements A, B, and C required for the dealloying reaction in a

metallic melt. We have to calculate the accurate value for the heat of mixing by

considering the temperature and chemical composition for designing the dealloying

reaction. However, this is sometimes complicated. The heat of mixing between the

transition metals, and the transition metals and metalloids can be obtained from the
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table in Boer and Perrifor [12], the values of which are approximately calculated by

the Miedema model, and that of other metals can be obtained from the table

constructed by Takeuchi et al. [13]. In our study, we first identify the candidates

for elements A, B, and C from the tables in Boer and Perrifor [12] and Takeuchi and

Inoue [13] and we then confirm the relationships A-B and B-C (mixture) and A-C

(separation) by the related binary phase diagrams. Here, we summarize the prepa-

ration procedures for nanoporous metals by dealloying in a metallic melt, as they

are schematically shown in Fig. 8.3.

1. Selection of A-B-C elements, which satisfy the triangle relationship of the heats

of mixing. (tables of values of heat of mixing and equilibrium phase diagrams

can be used).

2. Preparation of the A–B alloy precursor.

Fig. 8.1 Schematic of the dealloying method using a metallic melt, where atom B (orange)
dissolves into a melt composed of C atoms (pink), and the remaining atom A (yellowish green)
self-organizes into a porous structure by surface diffusion

Fig. 8.2 Triangle

relationship of the

enthalpies of mixing among

elements A, B, and C

for dealloying in

a metallic melt

Fig. 8.3 Schematic of the process of porous metal preparation using dealloying in a metallic melt
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3. Selective dissolution of element B from the A–B precursor into the C metal melt

(formation of the porous structure).

4. Removal of the C element by etching with an acid or alkaline solution (the

remaining A component must be inert in the solution).

8.3 Surface Improvement of Ti-6Al-4V Alloy by Dealloying

with a Metallic Melt [14]

8.3.1 Morphology and Composition Change by Dealloying

The Ti-6Al-4V alloy, which consists of both α-Ti and β-Ti phases, is one of the

promising biomedical materials among Ti alloys. However, the Al and V in this

alloy are known to be cytotoxic elements. We attempted selective removal of the

toxic element(s) from the surface of the Ti-6Al-4V alloy using dealloying with a

metallic melt. In this section, we demonstrate the selected removal of Al as the first

step for improving the biocompatibility of this alloy. Based on the triangle rela-

tionship of values of heat of mixing, the Mg melt can be used due to the negative

enthalpy of mixing with Al and the positive enthalpy of mixing with both Ti and

V. This relationship is illustrated in Fig. 8.4. Figure 8.5 and Table 8.1 exhibit SEM

images and the corresponding results of EDX analysis of the Ti-6Al-4V surface

dealloyed in a Mg melt at 1,148 K for 0.3–7.2 ks, respectively. An increasing

immersion time resulted in the coarsening of the porous structure on the surface.

Similarly, an increase in the immersion temperature from 1,048 to 1,148 K under

the fixed immersion time of 1.2 ks resulted in the coarsening of the porous structure

on the surface. It has been generally observed that the morphology and chemical

composition of the dealloyed sample depend on the immersion time and tempera-

ture of the melt during dealloying treatment [10]. An increased immersion time up

to 1.2 ks at 1,148 K resulted in a slight decrease in Al concentration. However, a

further increase in the immersion time resulted in an increase of Al content. This is

probably due to the dissolution of Ti into the Mg melt, which is suggested by the

observed concentration decrease in Ti with immersion time that became dominant

after 1.2 ks. To confirm dissolution of Ti, a cp-Ti rod was immersed into a Mg melt

at 1,184 K for 1.8 ks in a carbon crucible. The mass loss, which is defined by (mass

loss)¼ (mass of initial cp-Ti)� (mass of treated cp-Ti), was estimated to be ~6 mg

(Fig. 8.6). Therefore, dissolution of Ti was confirmed to occur in the Mg melt,

Fig. 8.4 Triangle

relationship of the

enthalpies of mixing among

Ti, V, Al, and Mg
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although the heat of mixing between them is positive. Interestingly, it is found that

the mass loss of cp-Ti is well suppressed when a Ti crucible is used, as shown in

Fig. 8.6. These results suggest that the crucible material affects the morphology and

composition. Here, we investigated effect of crucible materials composed of Mo, C,

Fig. 8.5 SEM images of the surface of Ti-6Al-4V disks immersed in a Mg melt at 1,148 K for 0 s

(reference) (a), 0.3 ks (b), 0.6 ks (c), 1.2 ks (d), 1.8 ks (e), and 7.2 ks (f) followed by leaching of

Mg phases in a nitric acid aqueous solution. Scratches shown in (a) are from the mechanical

polishing process

Table 8.1 EDX analysis

results for Ti, Al, and V

concentrations (wt.%) of the

dealloyed samples shown

in Fig. 8.5

Ti Al V

Reference 90.9 6.5 4.4

0.3 ks 88.8 6.8 4.4

0.6 ks 85.4 5.1 9.8

1.2 ks 88.9 5.0 6.2

1.8 ks 90.1 5.7 4.21

7.2 ks 83.9 11.1 5.1

Fig. 8.6 Dependence of

crucible material (carbon

and titanium) on mass loss

of a cp-Ti rod immersed

in a Mg melt at 1,148 K

for 1.8 ks
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and Ti, which are all immiscible with Mg according to the related phase diagrams.

Figure 8.7 and Table 8.2 exhibit SEM images and the corresponding results of EDX

analysis of the surface of Ti-6Al-4V dealloyed at 1,148 K for 1.2 ks using different

crucibles, together with an untreated sample for comparison. On the surface of the

untreated sample, only the linear scratches formed during the machining process are

observed. However, the dealloyed samples using C and Mo crucibles show a well-

developed porous structure on their surfaces. On the contrary, the sample dealloyed

in a Ti crucible shows a small number of isolated pores at the grain boundary on the

surface. Regardless of crucible materials, the Al concentration decreased after

the dealloying treatment. This result indicates that when Ti-6Al-4V is immersed

into Mg, a mass change occurs due to the dissolution of Ti, as schematically shown

in Fig. 8.8. If the Ti crucible is used, dissolution of Ti from the crucible

possibly occurs. The fact that the Al and V concentration on the surface decreased

Fig. 8.7 SEM images of the surface of Ti-6Al-4V dealloyed in a Mg melt at 1,148 K for 1.2 ks

using various crucibles: Ti (b), C (c), and Mo (d). Nondealloyed Ti-6Al-4V is shown in (a) for a

reference

Table 8.2 EDX analysis

results for Ti, Al, and V

concentrations (wt.%)

on the surface of the

samples shown in Fig. 8.7

Ti Al V

Reference 90.9 6.5 2.6

Ti crucible 93.1 3.4 3.6

C crucible 88.9 5.0 6.2

Mo crucible 93.1 4.2 5.2
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without developing a nanoporous structure suggests that Ti atoms dissolved from

Ti crucible into the Mg melt deposited onto the Ti-6Al-4V surface simultaneously

with dealloying.

8.3.2 Effect of Crucible Material on Ion Release
of Dealloyed Ti-6Al-4V

As described in the above section, the surface feature of the dealloyed Ti-6Al-4V

sample strongly depends on the crucible material. Such effect is expected to

significantly affect the ion release behavior of the dealloyed samples. Therefore,

the effects of crucible material on ion release of dealloyed Ti-6Al-4V were studied.

Figure 8.9 shows the results of ion release from Ti-6Al-4V dealloyed using

crucibles made of C, Mo, and Ti after 1 and 2 weeks in simulated body fluid

(SBF). The amount of Al ion release decreased for all cases because of the

Fig. 8.8 Schematic of

differences in the

dealloying using C and

Mo crucibles (left) and a

Ti crucible (right)

Fig. 8.9 Influence of crucible material for dealloying treatment on the amount of Ti (a), Al

(b), and V (c) ion release from the dealloyed Ti-6Al-4V disk in a simulated body fluid (SBF)

after 1 and 2 weeks
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dealloying effect. The amount of Ti and V ion release increased for the sample

dealloyed using C and Mo crucibles due to the increase of surface area owing to the

well-developed porous structure. In contrast, the amount of Ti and V ions released

from Ti-6Al-4V dealloyed using a Ti crucible decreased due to the formation of a

less porous surface composed of a Ti-rich phase. That the surface structure and

composition might depend on the crucible material was beyond our expectations;

however, this effect is potentially useful for controlling the ion release behavior as

well as the surface structure of the dealloyed sample.

8.4 Summary

Using the dealloying method in a metallic melt, selective removal of toxic Al

element from the surface of and Ti-6Al-4V alloys, which have been used as

biomedical metals, was attempted in order to improve their biocompatibility.

1. By immersing a Ti-6Al-4V alloy into a Mg melt, the surface Al concentration of

the Ti-6Al-4V alloy was successfully reduced.

2. The surface morphology and composition of the dealloyed Ti-6Al-4V was found

to depend strongly on the crucible materials used during the dealloying treat-

ment. When C and Mo crucibles were used, not only Al but Ti and V also

dissolved into the Mg melt, resulting in a well-developed porous surface layer.

On the other hand, when using a Ti crucible, the Al and V surface concentration

was successfully reduced by means of a less porous Ti rich surface layer that was

considered to have developed due to surface deposition of Ti dissolved from the

Ti crucible into the Mg melt.

Considering the crucible material, more research is required to optimize the

dealloying conditions that can realize a reduction of the surface concentration of a

toxic element without increasing the surface area.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 9

Chemical Vapor Deposition of Ca–P–O

Film Coating

Takashi Goto and Hirokazu Katsui

Abstract Ca–P–O system bio-ceramic films were coated by chemical vapor depo-

sition (CVD). CVD is a versatile technique for controlling crystal phase and

microstructure, which significantly affect bio-compatibility. By introducing auxil-

iary energy, laser and plasma, in CVD, much wider range of Ca–P–O coatings can

be synthesized. Hydroxyapatite regeneration of the Ca–P–O coatings prepared by

CVD techniques were evaluated in a simulated body fluid (SBF).

Keywords Apatite regeneration • Calcium phosphate • Crystal structure • Laser

and plasma CVD

9.1 Introduction

Metallic bio-materials, typically Ti and Ti alloys, can be used as artificial bones or

dental implants because they are non-allergenic, have good corrosion resistance in

the human body and possess comparable mechanical properties with bone. How-

ever, these metallic bio-materials do not have sufficient tissue compatibility;

therefore, they require a few months for bone-regeneration. Since human bone is

similar in makeup calcium hydroxyapatite (Ca10(PO4)6(OH)2) ceramics, materials

of the Ca–P–O system are commonly used as bio-ceramic coatings on metallic

bio-materials to accelerate the bone regeneration. Several coating techniques, such

as plasma spray, sol–gel, alkaline treatment and magnetron sputtering, have been

proposed [1]. Although chemical vapor deposition (CVD) has been widely used to

prepare various forms of materials, i.e., films, powders and bulks as electric devices

and anti-abrasive coatings [2], CVD has rarely been used to synthesize bio-ceramic

coatings. However, CVD has advantages in controlling crystal phase and micro-

structure, providing well-adhered coatings even on complex-shaped metal sub-

strates. CVD is a promising technique for the preparation of bio-ceramic coatings

because it can optimize their microstructure to enhance bio-compatibility.

The authors of this review have prepared Ca–Ti–O [3], Ca–Si–O [4] and Ca–P–O
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bio-ceramic coatings [5] by CVD. This review briefly describes the CVD

preparation of Ca–P–O bio-ceramic coatings and their bone (hydroxyapatite)

regeneration behavior in a simulated body fluid (SBF).

9.2 Chemical Vapor Deposition (CVD)

In CVD, various forms of materials (powder, amorphous, poly-crystalline, single-

crystal, film and bulk) are prepared through chemical reactions, such as thermal

decomposition, hydrolysis and hydrogen reduction. By controlling deposition

parameters, i.e., source gases, deposition temperature, gas pressure, geometry of

the CVD reaction chamber etc., wide-ranging oxide, nitride, carbide and boride

materials with different microstructures (fine grains, cauliflower grains and colum-

nar grains) can be prepared. Since source gases can be easily purified, deposited

materials can also be highly pure and dense or intentionally porous. Chemical

reactions in CVD take place usually by thermal energy. Therefore, conventional

CVD is called thermal CVD. Substrate materials may be degraded and corroded by

the high temperature of thermal CVD; auxiliary energy sources such as plasma and

laser can be introduced to enhance the chemical reactions and lower the deposition

temperature. These CVDs are called laser CVD (LCVD) [6] and plasma-enhanced

CVD (PECVD) [7]. Figure 9.1a–c schematically depict thermal CVD, PECVD and

LCVD, respectively. In thermal CVD, chemical reactions proceed on a substrate

surface, forming films via nucleation and grain growth on the atomic/molecular

level. The resulting films are generally well-adhered to the substrate with good step

coverage. By optimizing deposition parameters, high deposition rates of 1–2 mm/h

can be achieved, forming thick film or bulky materials [8]. Bio-ceramic oxide films

are not usually deposited at high deposition rate because precursor vapors and

oxygen gas are easily reacted in the gas phase to form powders and premature

reactions take place on CVD chamber walls. The deposition rates of oxide films by

thermal CVD are commonly around a few μm/h [9]. Thermal CVD can be

performed close to thermal equilibrium. The films can be synthesized according

to a phase diagram, producing thermally stable products.

PECVD (Fig. 9.1a) uses plasma as an auxiliary energy source. An electromag-

netic field with radio frequency (RF: 13.5 MHz) or micro-wave (2.45 GHz) can be

applied to a deposition zone to form the plasma. The gas can be discharged and

dissociated to activate ions, radicals and electrons. These activated species are

significantly reactive, even at low temperatures, forming non-equilibrium or

quasi-equilibrium films [10]. The authors first utilized PECVD for preparing

bio-ceramic coatings as shown later.

Lasers can be an auxiliary energy source of light and heat in CVD, and thus

LCVD (Fig. 9.1c) can be categorized into two types: photolytic LCVD and pyro-

lytic LCVD [6]. Since a source gas may absorb a specific laser wavelength,

photolytic LCVD can prepare films without substrate heating. The laser passes

through a gas phase, directly decomposing source gases. Photolytic LCVD using a
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high energy laser, typically an ultra-violet or Excimer laser, has the advantage of

low temperature deposition without thermal degradation of the substrate. However,

photolytic LCVD cannot create a wide-area coating at a high deposition rate. In

pyrolytic LCVD, infra-red lasers, such as CO2 and Nd:YAG lasers, are generally

used. Pyrolytic LCVD heats locally at a small area of the substrate by focusing the

laser beam; thus, source gases can easily access the heated area. The deposition rate

of pyrolytic LCVD can be significantly high, reaching several 100 m/h [6]. How-

ever, the deposition area is usually less than several mm2. Therefore, pyrolytic

LCVD are generally understood to not make large-area coatings on substrates with

Fig. 9.1 Schematic diagram of thermal CVD (a), plasma enhanced CVD (PECVD) (b) and laser

CVD (LCVD) (c)
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complicated shape. The authors first developed LCVD to prepare oxide and

non-oxide films at high deposition speeds (more than several 100 μm/h) on wide-

area substrates (around several cm2) by using a high power laser (several 100 W of

CO2, Nd:YAG and diode lasers), as shown later [11, 12].

9.3 CVD of Ca–P–O Films and Their Bio-Characteristics

Figure 9.2 depicts the phase diagram of a Ca–P–O system [13], which contains

various bio-ceramic materials. α- and β-Ca3P2O8 (TCP: tricalcium phosphate) have

been widely studied as bio-resorbable materials. Figure 9.3 depicts the crystal

structures of α- and β-TCP. The structure of α-TCP (Fig. 9.3a) is classified as a

glaserite-type structure, where Ca ions exhibit coordination numbers ranging from

five to nine and share edges with a PO4 group [14]. Ca and phosphate ions are

packed in columns along the c-axis in two ways; one contains only cations and the

other contains both cations and anions. While the α-TCP is thermo-dynamically

stable at 1,393–1,743 K and metastable at room temperature, β-TCP is stable below

1,393 K. The structure of β-TCP (Fig. 9.3b) is related to that of Ba3(VO4)2, although

β-TCP has lower symmetry due to site vacancies and distortions [15]. Ca ions

coordinated to six, seven, eight and nine oxygen ions share edges with PO4

tetrahedra. The major difference in crystal structure between α- and β-TCP is that

Fig. 9.2 A phase diagram of Ca–P–O system
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β-TCP has no cation–cation columns. Additionally, compared to that of β-TCP,
α-TCP has a higher internal energy because of its higher volume per formula unit,

which is consistent with α-TCP being the high-temperature phase [14].

α- and β-Ca2P2O7 (CPP: calcium pyrophosphate) have been scarcely studied.

The crystal structures of α- and β-CPP are illustrated in Fig. 9.4a, b, respectively.

Structures of both α- and β-CPP contain pyro-groups, P2O7, which consist of two

corner-shared PO4 tetrahedra with P–O–P angles of 130� for the α-phase and angles
of 131� and 135� for the β-phase [16, 17]. In α-CPP, Ca ions coordinates with eight
oxygen atoms and the chains of edge-shared Ca polyhedra form sheets parallel and

perpendicular to the ac plane. The coordination numbers of Ca in β-CPP are seven,

eight and nine; each pyrophosphate group is linked by commonly-shared Ca atoms,

forming infinite pyrophosphate-Ca chelate-like chains [17]. Allen et al. prepared an

α-CPP film by thermal CVD using Ca(dpm)2 (dpm: dipivaloylmethanate) and P2O5

at a total pressure (Ptot) of 1 kPa and a deposition temperature of 1,123 K.

The β-CPP film was heat-treated at 1,623 K and transformed to a β-TCP film [18].

Ca4P2O9 (TTCP: tetracalcium phosphate) would be more bio-resorbable than

TCP because of its greater P2O5 content. TTCP is also written as Ca4(PO4)2O

(tetracalcium diphosphate monooxide) since its structure contains Ca ions

coordinated with seven and eight oxygen atoms that share PO4 edges, and oxygen

ions strongly coordinated to four Ca ions, forming tetrahedra of OCa4, as oxide ions

(Fig. 9.5a) [19]. The Ca and P atoms lie near four sheets that contain two cation–

anion (Ca–PO4) columns and one cation–cation (Ca-Ca) column perpendicular

Fig. 9.3 Crystal structures of α- (a) and β-tricalcium phosphate (TCP) (b)
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to the b-axis. Because of these so-called ‘apatitic layers’, TTCP has a close

structural relationship with calcium hydroxyapatite (HAp: Ca10(PO4)6(OH)2) and

its dehydration product, calcium oxyapatite (OAp: Ca10(PO4)6O) [19–22].

Figure 9.5b depicts a crystal structure of HAp, which is illustrated by tetrahedra

of PO4 and polyhedra of Ca ions coordinated with seven and nine oxygen atoms.

Fig. 9.4 Crystal structures of α- (a) and β-calcium pyrophosphate (CPP) (b)

Fig. 9.5 Crystal structure of tetracalcium phosphate (TTCP) (a) calcium hydroxyapatite

(HAp) (b)
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HAp and OAp have ‘apatite layers’, composed of two Ca-PO4 columns and one

Ca-Ca column parallel to the ac plane, and hydroxyl ions in HAp and oxygen ions

in OAp are located at the center of Ca hexagons parallel to the ab plane. HAp or

OAp have been frequently studied because HAp is bio-active and similar to human

bones. Although many techniques including solid-state sintering, sol–gel and mag-

netron sputtering [23] have been employed to prepare OAp or HAp, Darr

et al. prepared fluorine-containing carbonated hydroxyapatite by thermal CVD

using Ca(tmhd)2 (where tmhd¼2,2,6,6,-tetramethylheptane-3,5-dione) and P2O5

[24]. The crystal structure of the film was not investigated, but the Ca/P content

of the film was about 1.3 which is different from that of HAp (Ca/P¼ 1.7). The

bio-compatibility of this film was not reported. Since OH is easily evaporated in a

vacuum, preparing OH-containing HAp by dry processes (vacuum processes), such

as CVD and sputtering, is difficult. OAp film prepared by magnetron sputtering did

not contain OH [25], whereas OAp film prepared by thermal CVD contained a

small amount of OH. In this review, the OAp film prepared by CVD containing a

small amount of OH is described as OAp film. The authors first prepared a

crystalline OAp film in as-deposited form.

By controlling deposition parameters, various bio-ceramic films of TCP, TTCP

and OAp films can be prepared by thermal CVD. Figure 9.6 represents the rela-

tionship between deposition parameters and crystal phases, i.e., the CVD phase

diagram, by thermal CVD using Ca(dpm)2 and (C6H5O3)PO as source materials [5].

α-TCP film in a single phase can be prepared at a high deposition temperature (Tdep)
and low Ca/P gas ratio (RCa/P), while OAp film in a single phase can be prepared at a

Fig. 9.6 Relationship between deposition parameters and crystal phases by thermal CVD
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high Tdep and intermediate RCa/P condition. Figure 9.7a, b depict the surface

morphologies of α-TCP and OAp films in a single phase, respectively. The

α-TCP film has uniform and smooth small grains, while the OAp film has a

cauliflower structure. Figure 9.8 shows the HAp regeneration behavior in Hanks’

solution on the α-TCP film [26]. A small amount of HAp embryo starts to form after

1 day of immersion, and the whole surface of the α-TCP film is covered by HAp

after 14 days. Figure 9.9 shows the HAp regeneration behavior in Hanks’ solution

on the OAp film. The HAp embryo formed within a 1 h, and the whole surface is

covered by HAp within 6 h. HAp regeneration is preferential at hollows in the

cauliflower-like grains. HAp and OAp have hexagonal structures as shown in

Fig. 9.5b. HAp regeneration is also preferred to c-axis on the c-plane. The prefer-
ential c-axis orientation of the OAp film can be obtained by controlling Tdep and
RCa/P in thermal CVD. The highly c-axis oriented OAp film exhibited the highest

regeneration of HAp in Hanks’ solution [27]. Since a few months are needed for

bone regeneration on Ti without bio-ceramic coatings, the OAp coating by thermal

CVD is the effective strategy to regenerate HAp.

Since lasers can photolytically or thermally activate source gases, more kinds of

Ca–P–O materials can be prepared by LCVD. Figure 9.10a, b depict the relation-

ship between deposition parameters and the crystal phases (CVD phase diagram) by

LCVD using Ca(dpm)2 and (C6H5O3)PO as source gases at a low (30 W) and high

(200 W) laser power, respectively [28]. At relatively low Tdep of 750–950 K. a

mixture film of OAp and β-TCP or OAp and TTCP can be obtained under a wide

range of conditions. OAp films in a single phase can be obtained at RCa/P¼ 0.5 to

0.6. At Tdep of 1,000–1,300 K, a mixture film of OAp and α-TCP can be prepared by

LCVD. α-TCP films can be prepared by thermal CVD, whereas both α- and β-TCP
films can be prepared by LCVD.

Fig. 9.7 Surface morphology of α-TCP (a) and OAp (b) films prepared by thermal CVD
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Plasma can electromagnetically activate source gases, and a greater variety of

Ca–P–O system materials can be synthesized by PECVD. Figure 9.11 depicts the

relationship between deposition parameters and crystal phases (the CVD phase

diagram) by PECVD using Ca(dpm)2 and (C6H5O3)PO as source gases. α- and
β-CPP films can both be prepared by PECVD. At a relatively high Tdep, a β-CPP
film in a single phase or a mixture film of β-CPP and α-TCP can be prepared. At a

low Tdep, a mixture of β- and α-TCP can be prepared. Figure 9.12 shows change in

surface morphology of a β-CPP film prepared at micro-wave power of 4 kW and

RCa/P¼ 0.7 after immersion in Hanks’ solution. A slightly smooth surface mor-

phology can be seen after immersion for 3 days, suggesting that β-CPP is

bio-resorbable. A small amount of HAp embryo can be observed after immersion

for 7 days.

Fig. 9.8 HAp regeneration behavior on α-TCP film in Hanks’ solution for 1 day (a), 3 days

(b), 7 days (c) and 14 days (d)
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Fig. 9.9 HAp regeneration behavior on OAp film in Hanks’ solution for 1 h (a), 3 h (b), 6 h (c) and

12 h (d)

Fig. 9.10 Relationship between deposition parameters and crystal phases by LCVD at a low (a)

and high (b) laser power
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9.4 Summary

CVD is a promising process for bio-ceramic coatings because it can provide well-

defined crystal phases and microstructures through the control of process parame-

ters. Auxiliary energy sources, such as laser and plasma, are particularly useful to

fabricate materials that cannot be synthesized by conventional thermal CVD. The

Ca–P–O system has many useful bio-ceramics, i.e., bio-inert, bio-active and

bio-resorbable materials. CVD and in particular LCVD and PECVD are promising

methods for the preparation of metastable or unstable bio-ceramic materials. Since

CVD has many process parameters, CVD can prepare optimized microstructures,

crystal phases and preferential orientations for HAp regeneration.

Fig. 9.11 Relationship

between deposition

parameters and crystal

phases by PECVD

Fig. 9.12 HAp regeneration behavior on CPP film in Hanks’ solution for 1 day (a), 3 days

(b), 7 days (c)
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Chapter 10

Importance of Visual Cues in Hearing

Restoration by Auditory Prosthesis

Tetsuaki Kawase, Yoko Hori, Takenori Ogawa, Shuichi Sakamoto,

Yôiti Suzuki, and Yukio Katori

Abstract Auditory prostheses, such as cochlear implant and auditory brainstem

implant, are used clinically to restore the hearing of patients with sensorineural

hearing loss. These devices can considerably improve the auditory information

conveyed to the auditory cortex, but proper rehabilitation process is usually neces-

sary to restore auditory communication to an adequate level. Therefore, improve-

ments in the auditory information provided by the prosthesis can be complemented

by better rehabilitation process.

Moreover, the complementary role of visual cues is also important. The “lip-

reading” phenomenon is well known in patients with degraded speech perception;

i.e., reduced speech perception in the presence of poor auditory conditions, such as

background noise and in patients with hearing loss, is improved by the combined

presentation of visual speech. In addition to such conventional lip-reading, audio-

visual speech has another beneficial role in the auditory rehabilitation process; i.e., the

visual cue enhances the auditory adaptation process to the degraded speech sound.

In the present paper, these two aspects of audio-visual speech in auditory

rehabilitation are reviewed.
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10.1 Introduction

Sound vibrations in the air are transmitted to the inner ear via the ear drum and

ossicular chain. The hair cell system, located in the inner ear, converts the sound

vibrations into the electrical spike signals of the cochlear nerves. Therefore, the

hair cell system is very important in the mechanism of electrical transduction in

the inner ear. However, this important transducer system never regenerates after

damage. Consequently, various types of auditory prostheses have been developed

to restore the hearing of patients with sensorineural hearing loss.

Generally speaking, auditory prostheses are classifiable into two types

depending on the fundamental concept of the device: some devices such as hearing

aids (HAs), bone-anchored hearing aids (BAHAs), and Vibrant SoundBridge mid-

dle ear implants (MEIs) increase the energy of the sound vibrations transmitted to

the damaged inner ear; whereas other devices such as cochlear implants (CIs),

auditory brainstem implants (ABIs), and auditory midbrain implants (AMIs) stim-

ulate the auditory system electrically (Fig. 10.1). Usually these latter devices

(CI, ABI, AMI, etc.) are used if the hearing loss is too severe to use the former

Fig. 10.1 Basic strategy for better speech intelligibility in auditory rehabilitation. Devices such as

the hearing aid (HA), bone-anchored hearing aid (BAHA, a type of HA based on bone conduction),

and middle ear implant (MEI, a direct-drive, implantable middle ear device, which mechanically

stimulates the ossicles, mimicking the natural hearing process) increase the energy of the sound

vibrations transmitted to the damaged inner ear. In contrast, the cochlear implant (CI), auditory

brainstem implant (ABI), and auditory midbrain implant (AMI) stimulate the auditory system

electrically. The CI restores hearing by direct electrical stimulation of the cochlear nerve, whereas

the ABI and AMI directly stimulate the auditory pathway at the cochlear nucleus and mid-inferior

colliculus, respectively. Auditory information can be considerably improved by these electrical

stimulation devices, but is usually insufficient. Therefore, rehabilitation and sometimes visual

information known as the lip-reading effect are usually necessary to restore auditory communi-

cation to an adequate level

120 T. Kawase et al.



devices (HA, BAHA, MEI, etc.). All these devices can considerably improve

auditory information conveyed to the auditory cortex, even in patients with severely

degraded hearing loss requiring CI and/or ABI, however, a suitable rehabilitation

process is usually necessary to restore a certain level of auditory communication.

The basic strategy for improving speech intelligibility by auditory rehabilitation is

presented in Fig. 10.1.

Therefore, it is important to improve both the quality of the auditory information

that can be provided by each prosthesis ((1) in Fig. 10.1), and the rehabilitation

process for individual patients ((2) in Fig. 10.1). Moreover, the complementary role

of visual cues is also important ((3) in Fig. 10.1). The “lip-reading” phenomenon is

well known in patients with degraded speech perception; i.e., reduced speech

perception in the presence of poor auditory conditions, such as background noise

and in patients with hearing loss, is improved by the combined presentation of

visual speech [12, 15]. If the degraded speech can be perceived as bimodal audio-

visual stimuli, the visual information from the speaker’s face can be effectively

utilized to compensate for the inadequate auditory information [2, 9, 13]. In addi-

tion to such conventional lip-reading, audio-visual speech has another beneficial

role in the auditory rehabilitation process; i.e., the visual cue enhances the auditory

adaptation process to the degraded speech sound [10].

Here, these two aspects of audio-visual speech in auditory rehabilitation are

reviewed.

10.2 Recruitment of Visual Cues in Degraded

Speech Conditions

Perception of external signals is followed by integration of the information from

multisensory modalities in the brain. Such multi-modal processing results in fast

and accurate recognition of the perceived signals. Speech perception effectively

utilizes the visual information from the speaker’s face not only in patients with

hearing loss but also in healthy subjects; i.e., speech perception in degraded

conditions such as background noise can be improved by visual information

obtained from the speaker’s face [12, 15]. Therefore, visual cues (speaker’s face)

presented with auditory cues (speech sound) will be utilized to complement the

auditory information in every situation. However, the degree of recruitment of

visual cues will depend on the degree of deterioration of speech perception [9].

Positron emission tomography (PET) was used to evaluate the effect of this

recruitment of visual cues on the activation of additional brain areas caused by

degradation of auditory input, as presented in Fig. 10.2. This PET study compared

brain activation caused by the presentation of a visual cue (facial movement at

speech) with control conditions (visual noise) under two different audio-conditions,

normal speech and degraded speech. Lip-reading for degraded speech caused more

activations than for normal speech in V2 and V3 of visual cortex as well as in the

right fusiform gyrus of the temporal lobe (see [9] for details). The right fusiform
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gyrus of the temporal lobe is a well-known brain area known as the fusiform face

area (FFA). The FFA, together with the inferior occipital gyri and the superior

temporal sulcus, is one of the three important brain regions in the occipitotemporal

visual extrastriate cortex related to human face perception [3–8, 11]. Therefore,

Fig. 10.2 Additional recruitment of brain areas caused by degradation of auditory input

(unpublished figure using our data published previously [9]). Positron emission tomography

(PET) was used to compare brain activation caused by the presentation of a visual cue (facial

movement at speech) with control conditions (visual noise) under two different audio-conditions,

normal speech and degraded speech. Significant brain activation is presented during lip-reading

under degraded speech compared with normal speech. Suprathreshold voxels (P< 0.001,

uncorrected for multiple comparisons, k> 20 voxels) superimposed on the 3D-rendered surface

image. Lip-reading for degraded speech caused more activations than for normal speech in V2 and

V3 of visual cortex as well as in the right fusiform gyrus of the temporal lobe (see Kawase

et al. 2005 [9] for details)
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activation of the FFA during auditory-visual speech perception is very likely. The

present study indicated that the degree of activation of FFA depends on the degree

of the degradation of auditory cues. This observation is consistent with the hypoth-

esis that more visual information than usual is recruited under conditions of

degraded auditory information.

10.3 Auditory Training with Bimodal Audio-Visual Stimuli

These investigations of perception of bimodal audio-visual stimuli under degraded

speech conditions show that visual information from the speaker’s face can be

effectively utilized to make up for inadequate auditory information. Therefore,

combined presentation of visual speech information is important in speech com-

munication in the presence of degraded auditory conditions, such as background

noise and in patients with hearing loss.

On the other hand, audio-visual speech cues have another beneficial role in the

auditory rehabilitation process; i.e., the visual cue enhances the auditory adaptation

process to the degraded speech sound [10]. In that study, auditory training was

examined in normal volunteers using highly degraded noise-vocoded speech sound

(NVSS), which is often used as a simulation of the effects of cochlear implant on

speech [1, 14]. NVSS is hardly intelligible at first listening, but adequate auditory

training can improve the intelligibility of NVSS. After the initial assessment of

auditory speech intelligibility (no visual cue), the subject underwent different

training sessions with combinations of presence/absence of visual cue and pres-

ence/absence of feedback of the correct answer. The training sessions used two

word lists consisting of the same 50 four-mora words in different orders which were

alternately presented ten times (five times each). The effects of these different

training sessions on auditory speech intelligibility (no visual cue) were assessed for

the trained words (in different order from those used in the training session) as well

as untrained words after the training session (see [10] for details).

The effects of the presence of visual cues during the training session on word

intelligibility after the training session are presented in Fig. 10.3 (feedback (�)

groups) and 4 (feedback (+) groups). Speech intelligibility after the training session

was significantly improved in all training groups but was significantly different

between the different training conditions. Visual cues simultaneously presented

with auditory stimuli during the training session significantly improved auditory

speech intelligibility compared to only auditory stimuli. Feedback during the

training session also resulted in significantly better speech intelligibility for trained

words (Fig. 10.4). In contrast, feedback resulted in lower scores compared to

without feedback in the post-training test for untrained words (Fig. 10.4), showing

over-training effects. However, facilitative visual effects on post-training auditory

performance were also observed regardless of the over-training effects. These

results indicate that combined audio-visual training has beneficial effects in audi-

tory rehabilitation.
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The effects of different training sessions on the intelligibility are presented in

Fig. 10.5, divided into each “mora” of the words. Basically, similar trends to

those found based on word intelligibility were also observed by this “mora”-based

analysis, although the intelligibility was different for the first, second, third, and

fourth moras.
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after training are presented along with those during the training (learning curves). Intelligibilities

during the training are those for training modalities; i.e. for only auditory speech (a) and audio-

visual speech (b), respectively. Intelligibilities after training are shown for trained words (intel-

ligibility for words used in the training session) and for untrained words (intelligibility for words

not used in the training session)

0

20

40

60

80

100

0

20

40

60

80

100

training session
Audio speech only

training session
Audio-Visual speech

1   2   3   4   5   6   7   8   9  10 1   2   3   4   5   6   7   8   9  10 pre-training
test

pre-training
test

post-training
test

post-training
test

trained 
wordstrained 

words

untrained 
words

untrained 
words

w
or

d 
in

te
lli

gi
bi

lit
y 

(%
)

intelligibility for
Audio-speech

intelligibility for
Audio-speech

intelligibility for
Audio-speech

intelligibility for
Audio-speech

intelligibility for 
Audio-speech

intelligibility for
Audio-Visual speech

Feedback (+)

ba
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after the training session (with feedback condition) (unpublished figure using our data published

previously [10]). (a) Training with auditory cue only (without visual cues), (b) training with

auditory + visual cues (lip-reading condition). Word intelligibilities (no visual cue) before and
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training effects. Facilitative visual effects on post-training auditory performance were also

observed regardless of the over-training effects
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Visual information is generally considered to complement insufficient speech

information in speech comprehension. However, the present results revealed

another beneficial effect of audio-visual training; i.e., the visual cue enhances the

auditory adaptation process to the degraded new speech sound. The present findings

suggest that the correct use of audio-visual bimodal training would facilitate the

auditory rehabilitation process of patients with auditory prostheses such as a CI

or ABI.

10.4 Summary

Visual information of audio-visual speech is known to complement degraded

speech information in rehabilitation after implantation of a CI or ABI. In addition

to this basic effect, audio-visual speech may also enhance the auditory adaptation

process, with as little as a few hours audio-visual training.
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Chapter 11

Designer Supersurfaces via Bioinspiration

and Biomimetics for Dental Materials

and Structures

David W. Green and Han-Sung Jung

Abstract The design of surfaces and interfaces gives rise to superior qualities and

properties to materials and structures. The interface between biology and materials

in nature is being closely examined at the smallest scales for a number of significant

reasons. It is recognised that the properties of surfaces have definite biological

effects that can be harnessed in clinical regeneration biology. Also the deeper

understanding of surface interactions between cells and matrices in human biology

is spurring the fabrication of biomimetic and bioinspired versions of these natural

designs. The new emerging science of bioinspired surface engineering is helping to

improve clinical performances for biomaterials and biostructures because it

resolves the problems necessary to optimise integration of implant biomaterials

and structures. One of the major developments is the use of surface topography,

which is now being exploited for microbial control, steering stem cell behaviours

in proliferation and differentiation and adhesive surfaces for better bonding

with tissues. In this Chapter we will explore the status of these super surfaces

and examine the possibilities for the next generation of dental biomaterials and

implants.
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11.1 Introduction

The structural and chemical details at surfaces of biomaterials and the meeting

between surfaces is vitally important in the mechanical design of organisms,

structural biomaterials, anti-wetting, self-cleaning properties, cell adhesion and

migration. These superior and sophisticated properties are what can be termed

super surfaces. Evolution has selected for adaptations that include various styles

of physical structuring, chemical coatings and molecular patterning to create

superior and sophisticated functions at surfaces. These are the best possible adap-

tations, in the design of surfaces that also apply to the same intrinsic problems faced

in applications for biology and medicine. They have been tried, tested and opti-

mized over millions of years of evolution. A result is that many of the adaptations

discovered in nature are often new to science and technology. Hence this is the

reason why biomimetic based researchers search across nature for new potent ideas

in solving materials based problems. There are added advantages in following

biomimetic approaches such as, learning how to reduce energy during the construc-

tion of materials and features at the surfaces [1]. There are now large catalogues

where this kind of innovation information can be easily accessed, interpreted and

used for the interrogators problem in hand [2]. An important distinction is to be

made between biomimetic and bioinspired approaches. In biomimetics the objec-

tive is to simulate or copy a structure, process or mechanism directly from nature.

Bioinspiration is the strategy where an influential component from biology is used

in the problem solving and its eventual solution. So with bioinspiration there is a

confluence of biological and human ingenuity. Each strategy has been used effec-

tively in biomedicine.

In this chapter, we focus on two biomedically significant topics where the design

of surfaces can be improved for better clinical outcomes. These topics are bacterial

and human cell adhesion and detachment. Specifically, the clinical problem at

biomaterial implant surfaces is to drive a strong yet stable biointegration and the

second is an effective control of pathogenic microbes at the outer surface of

implants. The construction and refinement by optimisation of the surfaces and

interfaces of traditional restoration dental materials is a large topic of research

but will not be included here. Material scientists are infact still grappling to control

these phenomena and having the ability to programme their surfaces to work in tune

with biology. The examples we will focus on in this chapter for developing

biomedical supersurfaces are mainly studies in bioinspiration.

A major quest for regeneration scientists is the ability to control cell behaviour

and activity for a variety of roles. Cell manipulation engineers have achieved some

success in defining the mechanisms for influencing cells in predictable ways. Cells

are influenced and guided by physical forces and contacts with surfaces. This

environment conditions the cells future role. This means that cells in tissue orga-

nizing collectives are ultimately programmed outside in than inside out. Consider-

able research has been underway to develop surface features that can be used to

sensitize and direct cell growth, proliferation and differentiation. More advanced
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surface engineering employs changes in the characteristics of topography, symme-

try, geometry, stiffness and elasticity of the underlying material all-together. It has

been challenging to systematize all of these elements into cause and effect relation-

ships. The desire is to produce a blueprint for designs that have predicted effects.

Programmable biomaterials with influential topography are a realistic prospect for

interplay with human cells and bacteria cells. There is tremendous array of data

showing the diverse pairings of nanotopography arrays with fibroblasts, endothe-

lial, epithelial, pluripotent, mesenchymal and embryonic [3–12]. There are numer-

ous instances of conflicting results but there are strong trends emerging. For

example, certain topographic structures induce clear differentiation responses

within contacting cells. The best example is osteogenesis by Mesenchymal Stem

Cells (MSCs) subject to disordered nanopits [13]. Significantly adding to this is

evidence of the molecular pathways involved in this process, the main one being

integrin-activated focal adhesion kinase (FAK). Another trend is that low aspect

ratio structures are favourable to attachment and spreading phenomena whereas

higher aspect ratio structures lead to cell sheets that self detach [14].

Eukaryotic and Prokaryotic cells are also influenced strongly by the chemistry of

the surface. The chemistry aspect and the physical features are interlinked. Each

influences the downstream effects of the other factor. A surface with a homogenous

chemistry on a smooth surface once modified with surface topography redistributes

the chemistry and introduces new heterogeneity. In the next section, we map the

surfaces and boundaries in and around the tooth organ and describe briefly their

biological and mechanical functions.

11.2 Materials Dentistry: A World of Surfaces

and Interfaces

Restoration and replacement of dental structures is intensively focused on surfaces

at boundaries and interfaces. The tooth organ is made up of a multiplicity of tissue

layers and interfaces (Fig. 11.1). These are necessary for the intricate biomechan-

ical functions of the tooth organ. Replacing them requires mastery of interface

engineering. Graded interface is the key to integration between layers consisting of

different compositions and structures. Many mechanisms are in play to stop or

contain cracks from forming. In traditional restorative dentistry the question of

bonding layers of different materials coherently has been studied in great depth.

The better design of surface structures and chemistry is imperative for every

material placed inside the body. Surfaces are also being used to control and

manipulate biology in rational ways.

In the regenerative sciences precise control of cell proliferation and differenti-

ation is unresolved and therefore remains of considerable future significance. In cell

engineering surface structures over large surface areas have been developed to

select, maintain, expand and invoke phenotype changes in cell populations with
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some important successes. Topography at the nanoscale is showing enormous

promise as a device to influence cell behaviours in predictable and useful ways

for benefits in cell therapy and tissue engineering. Research on surface continues to

be a crux in materials dentistry and regenerative dentistry. The major areas would

be surfaces for bacteria control and selectivity and surfaces for cell and tissue

integration. The basic work on programmed surfaces for cell selection, growth and

lineage specification also relate heavily to regenerative dentistry strategies and

offer new therapeutic routes. In the next sections of this chapter we hone in on

the programmed surfaces with topography for bacteria control, tissue adhesion and

biointegration.

11.3 Bactericidal and Antibacterial Surfaces

Bacterial biofilms are notoriously difficult to eradicate from surfaces such as

implants. There are different ways of preventing bacteria adhesion and colonisa-

tion. The first most extensively investigated is chemical and molecular engineering

of surfaces. In these approaches surfaces are built with adjuncts such as dendrimers,

Fig. 11.1 A histological

longitudinal slice through a

human molar tooth with

annotations to highlight

surfaces and junctions or

interfaces inside and around

the tooth organ. (1) Dentine
to Periodontal ligament

interface; (2)
PDL/cementum interface;

(3) Cementum/bone

junction; (4) Dentine/pulp
junction; (5) Gingiva
boundary; (6) Enamel

boundary; (7) Dentine/
enamel junction; (8)
Gingiva/enamel interface.

Image reproduced from:

http://www.uky.edu/

~brmacp/oralhist/module8/

lab/imgshtml/image02.htm

and http://www.am-

medicine.com/2013/12/an-

illustrative-note-

powerpoint.html
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cationic peptides, photoactivation, lysostaphin, deactivators of quorum sensing and

grafted antibiotics [15].

In dentistry, there is the added complexity by which the main aim is to selec-

tively control different bacterial populations and not to eradicate everything. The

mechanisms of attachment for bacteria are not fully understood. Surface roughness,

wettability and surface energy are known to influence bacteria attachment and

adhesion most profoundly. The range of limits for these properties has been difficult

to measure precisely. Surface roughness above 0.2 μm is known to promote plaque

formation. The influence of surface energy properties is complicated by the nature

of the bacterial cell wall charge properties. Hydrophobic interactions in bacteria are

common since adhesions located on pilli are themselves hydrophobic. According to

some evidence acquired in vitro hydrophobic processes drives attachment. How-

ever, the greatest task is to unravel the complexities of surface properties and

bacteria adhesion in living biological environments. Of greatest prominence is the

effect of serum proteins at the surface, which conditions all other biological

responses.

11.3.1 Controlling Oral Pathogens via Surface Structuring

The oral cavity is colonised by a whole community of microbes that include

bacteria, viruses and fungi. The ecology or interrelationships between the members

of the various microbial communities are highly intricate and under constant

investigation with new links in the network being uncovered regularly. It is thought

that changes in community structure invoke degenerative diseases that cause tissue

destruction of dentine, periodontal ligament, gingiva and bone. Once the environ-

ment and conditions favour the acceleration of pathogenic growth the disease and

tissue destruction is highly likely to occur. Effective ways must be sought to control

and eradicate pathogenic microbes from the mouth. A degree of control is often

required to reset the community structure of bacteria. There has been voluminous

research to effectively kill pathogenic outright. Antibiotics are the most effective

altogether. However, there is increasing evolved resistance to antibiotics and the

targeted delivery of antibiotics remains imperfect. Other main treatments imple-

ment chemical toxins, photodynamic elements and nanoparticles to destroy bacte-

rial biofilms and kill bacteria. There is also renewed interest in prospecting for new

antibacterial compounds from sessile invertebrates renowned for the complex

defensive chemistry, e.g. Marine sponges and Ascidians. As such there are many

examples in nature where evolution has selected for sophisticated adaptations to kill

microbes or prevent contact with the organism. A significant adaptation that has

emerged is structural devices at surfaces.

Nature has evolved countless interfaces precisely with anti-bacterial defences

using specific Nano topographies alone. And this is independent of the effects from

chemical secretions. Probably the first application of patterned surfaces of diamond

shaped micro-protuberances to hinder bacterial contamination is Sharklet inspired
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from the micron structure of scales or dermal denticles from shark-skin [16,

17]. The synthetically replicated surface hinders growth of a range of biomedically

significant bacteria species such as, Staphylococcus aureus and Escherichia coli
[16, 17]. The special nanostructure at the surface are deleterious to Pseudomonas
aeruginosa and lead to the shredding of other pathogenic species including:

B. catarrhalis, E. coli, P. aeruginosa, and P. fluorescens. Another recently discov-

ered bactericidal surface imported directly from nature is the Cicada wing surface

(Fig. 11.2).

The structure consists of nanometric pillars 200 nm tall, 100 nm in diameter at

the base and 60 nm at the tip spaced 170 nm apart in a highly regular and tight

pattern. This precision piece of Nano architecture being ten times smaller than the

cell itself punctured settling bacterial cells and killed them with 60 min from

attachment (Fig. 11.2). The killing power has been measured for this wing surface

and was described as being efficient with 6� 106 bacterial cells made inoperable in

every square centimeter after 30 min [18]. These initial results represent are of

supreme usefulness for control of clinical infections anchored onto biomaterial and

implant surfaces. However, the topography did not kill gram-positive species of

bacteria: B. subtilis, P. maritimus, and S. aureus species of bacteria. Other wing
topographies are being actively pursued as potential antibacterial and bactericidal

devices. It has been reported that Dragonfly wings Diplacodes bipunctata have

strong and rapid bactericidal effects on a broader range of bacteria classes-both

Fig. 11.2 Anti-bacterial and Bactericidal surfaces based on microstructure and nanostructure. (a)

Smooth surface covered in bacteria after 2 days; (b) Bacteria colonisation on a patterned micro-

structure surface translated from shark skin; (c) SEM of “skewered” bacteria; (d) Confocal image

showing dead bacteria sitting on top of Cicada nanopillar structure [18]
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gram negative and gram-positive types as well as bacterial spores. A synthetically

created surface with the exact same features of densely packed protruding

nanospikes as the Dragonfly wing demonstrated the same bactericidal effects. It

was estimated that 45,000 bacterial cells every minute in every cm squared were

killed. Black silicon is this equivalent and is generated using ion beam technology.

This is costly and cannot be transferred onto just any surface and specifically onto

the type of materials useful in biomedicine [19].

Surface roughness and structure influences human cells more acutely than

bacterial cells. This is because eukaryotic cells have a much more complicated

sensory apparatus than prokaryotes. It was first evidenced that human cells can

sense, detect and “react” to structures of >5 nm at very small distances of 3–15 nm

[20]. Physical attachments between cells and extracellular matrix (ECM) molecules

can only be made at such close distance. There is broad remit to harness the sensory

apparatus of the cell and influence their behaviour in many important aspects such

as, migration, alignment, polarity, differentiation and proliferation. Such

governability opens up many biotechnological and therapeutic avenues from tissue

regeneration to biosensing.

11.4 Cell Adhesive Surfaces Using Nanotopography

Material surfaces with higher and more potent capacities to encourage cell attach-

ment are required in a range of biomedical applications. This is achieved by

modulating the type of nanostructure and its dimensions. Nanopillars have recently

shown a degree of success in selectively adhering cells onto its structure with clear

effects on phenotype and proliferation (Fig. 11.3a, b). In many applications adhe-

sion and separation of different cell types is a desirable biological event

(Fig. 11.3c). For example in one study nanopillar structures of a specified aspect

ratio would favour endothelial cell adhesion while concomitantly preventing adhe-

sion of fibroblastic cells. This duality is ideal for vascular implants in, which

endothelial association is needed for coating and the fusion with existing vessels

without interference of fibroblasts involved in clotting reactions [4] (Fig. 11.3c).

Strong cell attachment on specialised cell adhesive nanotopographies is a vital

outcome that can promote tissue formation, remodelling and bonding at the bio-

material surface.

11.5 Tissue Adhesive Surfaces

Materials with surfaces that can adhere to living tissue and participate in regener-

ation, development and repair are important. In surgery tough, stretchable and tear

resistant tapes able to stick rigidly to tissues would be broadly revolutionary in the

treatment of wounds, reducing surgery and complications. Conceivably such a
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design could be used to replace sutures and staples. Bioglues have been developed

as potential candidates for wound closure and sealing. However, they have been

dogged by inflammation susceptibility. The reason is that the toughening of these

tissue adhesives requires strong chemical reactions to take place, and is the source

of biological irritation. Another point is to develop effective glues that bond in wet

conditions. In both cases natural ingenuity may offer prospects for success. Adhe-

sives derived from nature may offer a chemistry of bonding which is more

favourable to biological systems and less inflammatory. In this vein, analogues

(e.g. polydopamine) of the main active ingredient of mussel adhesive proteins,

3,4-dihydroxyphenylalanine (DOPA) have been broadly investigated.

The topic of bioadhesives is large and is focused upon chemical compounds

assimilated with potent chemical reactions—a necessity in making tough and

resilient materials for the task. This has the unintended consequence of eliciting

inflammation. In a bioinspired approach the idea has been to harness naturally

occurring surface structures for adhesion such as the Gecko foot pads; reproducing

them in a biocompatible elastomer in the role of a self-adhesive tissue tape

(Fig. 11.4a). Along these lines it was proposed that adhesion is largely based on

Fig. 11.3 Cell responses to nanopillar topography. Variations are apparent in responses regarding

different cell types and dimensions of the nanotopography. (a) MSCs growing on top of

nanopillars did not spread and the shape governing stress distribution increased production of

osteogenic matrix molecules; (b) Vinculin staining to highlight the focal adhesion portion inside

hTERT (fibroblasts) cells at cell periphery on flat and nanopillar array. The low count of focal

adhesions on nanopillars decreased proliferation; (c) Co-staining of hTERT and endothelial cells

to show the different growth and proliferation responses with increasing pillar size (aspect ratio)

from left to right. Endothelial cell growth and proliferation were preferentially selected on the high

aspect ratio nanopillar surfaces [4, 5]
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physical structure. The problem of wet adhesion has been solved in nature by Tree

frogs for example. The design blueprint has been unravelled in this organism and is

therefore accessible for technology transfer into a useful product [21]. In the Gecko

example wet adhesion property had to be introduced by additional chemical coating

(Fig. 11.4b). The bioinspired engineers developed a strongly adherent tissue tape

copied from the structure design of gecko foot pad surfaces. In tests the tape

performed well on porcine intestine tissue and rat abdominal subfascial in vivo

with strong forces of resistance to its separation from the living wet tissue

(Fig. 11.4c) [22].

11.6 Surfaces for Cell Proliferation and Differentiation

Structures at surfaces that elicit proliferation and/or differentiation responses are in

high demand especially those with high potency and precise reactions [11, 12]. A

principal property of the surface with biological implications is wettability feature

[23]. Still more information is needed to completely understand the effects of

wettability on cell attachment and tissue integration. Surprisingly for dental

Fig. 11.4 Nanotopography copied from the design of Gecko footpad setae were used to produce

an self-adhesive tape material. (a) High power SEM of nanoprotrusions made from elastomer; (b)

High power SEM of nanoprotrusions coated with a dextran coating to enhance tissue adhesion; (c)

Table showing the strength of attachment to porcine intestine tissue between non nanotextured and

textured with and without oxidised dextran [22]
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implants the wettability is usually not measured or considered in biological eval-

uation. The topic has been scrutinised most widely for implant osseointegration

[23]. Generally wettabilities of intermediate values can optimise favourable cell

interactions. An important contribution of wettability to biodynamics at the surface

is protein adsorption. Proteins are the first biomolecule to arrive at the surface

taking milliseconds. The nature of the protein assembly at the surface directs the

cell response. This has been studied mainly with osteoblasts as well as fibroblasts

and keratinocytes. Synergism between topography and chemical properties occurs

but the interrelationship is unpredictable.

One of the purposes is to discover and develop the most efficient platform of

expanding the numbers of stem cells in vitro into the population numbers needed

for therapeutic tissue regeneration. In addition the ability to specify cell lineages of

the expanded populations is another necessity to generate desired tissue types. Once

again platform cell-scale microgauged technologies that can achieve this accurately

and with high specificity are still needed. These base technologies are useful for the

study of basic processes and in modelling responses to new drugs and to build

phenotypically accurate populations of cells for tissue regeneration. Much work has

been carried out to unravel the mechanisms involved in surface contact and gene

expression. The principal contact point is the subcellular macromolecular focal

adhesion, which is joined between the cell cytoskeleton and extracellular matrices

[7]. The association and clustering of these objects with the matrix is an important

effect that allows sensing of mechanical forces. Others have discovered the molec-

ular circuits directly involved in transmitting topography influences into the cell

nucleus where it impinges on gene expression patterns.

To be truly biomimetic with the totality of biological functions the surface

patterns and design should ideally relate directly to the surfaces of the extracellular

matrix and structural biomaterials (Fig. 11.5). Cell function is strongly influenced

by active structures at nanometric sizes. Going beyond this, introduced nanoobjects

such as rods, particles and fibres interplay with cells at the nanoscale by influencing

extracellular micro-physiological events including protein adsorption and receptor-

ligand binding. In one good example the ultrastructure details of the extracellular

matrices were used to plan the design of synthetic topographies [24]. Thus this

strategy has a strong biological basis to it. Many ECM structures possess

nanogauged groove structures for example. In this study the researchers used the

structural density of nanofeatures whose features were replicated from model

tissues bone, nerve and skin. They found that processes such as adhesion, migration

and differentiation could be controlled directly via the spacing and density of

nanotopographic grooves [24]. The geometries of natural surface structures are

being increasingly assessed as potential platforms for MSC differentiation and

maintenance [13]. In nature the geometrical patterns are often more intricate than

regular grooves, pillars or pits [25]. In the first report of its kind disordered

arrangement of nanopits was found to stimulate osteogenic differentiation of

MSC’s. Recent similarity has been drawn between this geometry for MSC’s and

the nanofeature of collagen X on endochondral ossification because it shows a

hexagonal pattern (Fig. 11.5) [26].
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11.7 Conclusion

The interplay between cells and surfaces directs the future activity and behaviour of

the contacting cell population. This interaction can be designed or programmed by

physical and chemical patterning using sophisticated machines. Originally the

patterning geometries did not have equivalents in biological systems. Increasingly

cell engineering via surfaces is being lead by mimicking the patterned features on

ECM supramolecules and other structures. The physical characteristics used to

influence cells on contact include: topography, stiffness and elasticity. A lot of

promising results have emerged through the different shaping of nanotopography,

which cells can sense. We interpret this sensing feature to result from adaptations to

sense features of extracellular matrices that are constructed from nanogauge objects

and display nanofeatures in the final ECM product. We highlighted how

nanotopography is helping to control bacteria populations and to stimulate stem

and pluripotent cells into deliberate actions using natural Cicada wing structures.

Construction of a systematic order is needed to connect a feature by shape or

Fig. 11.5 Selection of biological models for nanotopography in new synthetic materials. (a)

Natural ECMs of bone, nerve and skin possess regular nanogroove architectures as shown in the

SEM images [24]; (b) In this highlighted study nanogrooves with similar dimensions to groove

structures in native tissues were printed onto artificial surfaces and tested for stem cell responses

[24]; (c–e) Native 2D surface environments are often disordered and not regular, or show chiral

patterns. (c) Periodicity in Type X collagen [26]; (d) Sinuosoidal capillary with disordered pore

arrangement [13]; (e) An artificial helical fibre with the same 63 nm periodicity of natural

collagen, which was discovered to induce osteogenesis in mesenchymal stem cells
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dimension with a single or collective response by a cell. We also highlighted the

utility of topography design on the physical attachment and biointegration with

different tissues. In one instance a group of bioengineers successfully demonstrated

the strong tissue attachment of a polymer membrane patterned with nanopillars, and

augmented with oxidised dextran, but inspired from the structure and adhesive

properties of small hairs on the Gecko footpad. Thus, bioinspiration methodology

could be the guide for the next design of plaster for wound healing inside the oral

cavity. Biomimetic and bioinspired nanotopographies mined from nature are

largely unexplored in these areas of dentistry.
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Chapter 12

Feeder Cell Sources and Feeder-Free

Methods for Human iPS Cell Culture

Guannan Yu, Yuya Kamano, Fangfang Wang, Hiroko Okawa,

Hirofumi Yatani, and Hiroshi Egusa

Abstract Induced pluripotent stem cells (iPSCs) hold great promise for regener-

ative medicine and disease modeling. The original methods to grow human iPSCs

utilized methods developed for human embryonic cells (ESCs), in which mitoti-

cally inactivated mouse-derived fibroblasts are mainly used as a “feeder” cell layer

to maintain the undifferentiated status of pluripotent stem cells. However, these

methods still require further consideration to facilitate cell expansion and to

maintain the undifferentiated state of human iPSCs and/or ESCs for a longer period

of time. In addition, the use of animal-derived feeders should be avoided for

eventual clinical application of iPSC therapies. Therefore, human-derived feeder

culture systems or feeder-free culture systems are currently being developed to

prevent exposure to animal pathogens. In this review, existing mouse and human

feeder culture systems for human ESCs and iPSCs are first introduced, and then

previously reported feeder-free culture methods using extracellular matrix-

associated products or synthetic biomaterials are outlined to discuss an appropriate

culture system for clinical application of iPSCs.
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12.1 Introduction

Human induced pluripotent stem cells (iPSCs) generated by the introduction of

defined factors from somatic cells exhibit pluripotency similar to that of human

embryonic stem cells (ESCs) [1]. The iPSC technology offers great promise for

regenerative therapies and disease modeling in both the medical and dental fields

[2]. iPSCs have pluripotency to differentiate into almost all cell types and superior

self-renewal capacity that enables unlimited expansion [3], which has prompted

researchers to apply them as a cell source for transplantation therapies to regenerate

various types of missing, diseased, or defective tissues/organs. However, before

iPSCs can be used in the transplantation therapy, several technical limitations of the

culture methods must be addressed. For instance, human ESCs and iPSCs cannot

sustain their original characteristics in monoculture on standard tissue culture plates

without supporting factors. In an in vitro culture system, human ESCs/iPSCs

typically require “feeder cells”, which produce specific stemness-supporting fac-

tors, to prevent spontaneous differentiation [4, 5]. Feeder cells also produce adhe-

sion molecules and extracellular matrix (ECM) to improve ESC/iPSC attachment,

thereby supporting the growth and survival of ESCs/iPSCs. The most commonly

used feeder cells are mitotically inactivated mouse-derived fibroblasts [4, 6–8];

however, these animal-derived feeder cells pose an increased risk of transferring

unknown viruses and zoonotic pathogens in addition to immune rejection. Alter-

natively, human-derived cells have also been shown to effectively function as

feeder cells for ESCs/iPSCs. Furthermore, “feeder-free” culture systems, such as

culture using cell-free ECM proteins or synthetic biomaterials as substrates, have

recently received increasing attention. This review assesses various ESC/iPSC

culture methods with regard to feeder cells and feeder-free methods to help identify

an appropriate culture condition for future clinical applications of iPSCs.

12.2 Feeder Cells for ESC/iPSC Culture

12.2.1 Mouse-Derived Feeder Cells

Since mouse ESCs were first established in 1981 [9, 10], mitotically inactivated

fetal mouse fibroblasts have been used as feeder cells for mouse ESC culture. This

feeder culture method developed for mouse ESCs was applied to human ESCs

when Thomson group first established human ESC lines in 1998 [4], showing that

mouse feeder cells could be used to facilitate proliferation and prevent differenti-

ation of human ESCs. Subsequently, several types of mouse-derived feeder cells

have been used in human ESC/iPSC studies, such as mouse embryonic fibroblasts

(MEFs), STO cells, and SNL 76/7 cells.

MEFs are the most commonly used feeder cells used to support the pluripotent

status of human ESC cultures [4, 11, 12]. Primary MEFs are not homogeneous, as
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they contain several types of cells other than fibroblasts [13]. To maintain ESC

proliferation and pluripotency, MEFs produce various proteins, including

transforming growth factor beta 1 (TGF-β1), activin A, bone morphogenetic protein

(BMP)-4 [14], and pleiotrophin (heparin-binding growth factor) [15]. When used as

in feeder cell layers, MEFs are proliferation-inactivated by chemical (mitomycin C)

treatment or gamma irradiation prior to seeding of ESCs/iPSCs. It should be noted

that the mitotic inactivation or irradiation of MEFs stimulates the expression of

several signaling proteins, such as Wnt-3 [16], which may participate in the

molecular mechanisms underlying the maintenance of pluripotency in co-cultured

human ESCs/iPSCs. The outbred mouse CF-1 strain may be the most widely used

donor for MEF feeder cells for ESC and iPSC culture [13, 17], as CF-1 MEFs have

been shown to produce TGF-β1, activin A, BMP-4, gremlin, and noggin [14, 18,

19] but not bFGF [14]. One disadvantage of using primary MEFs is their limited

proliferation capacity, which requires repeated isolation from embryonic mice to

supply feeder cells [20]. In addition, repeated passaging causes MEFs to lose their

capacity to support the proliferation of ESCs/iPSCs [21]. To solve this problem,

Choo et al. [22] generated an immortalized primary MEF line (ΔE-MEF) through

infection with retrovirus vectors encoding the E6 and E7 genes from human

papillomavirus (DNA tumor virus) and demonstrated the consistent and reproduc-

ible feeder capacity of these cells for hESC culture.

STO cells were isolated by Bernstein from Sandoz inbred mouse (SIM)-derived

fibroblasts as a thioguanine- and ouabain-resistant sub-line [13]. STO cells are more

easily maintained than MEFs for preparation of feeder layers because STO cells are

a spontaneously transformed cell line. In 1998, Shamblott et al. [23] showed that

STO cells can be used in a feeder layer for establishing of human embryonic germ

cells. In 2003, Park et al. [20] first demonstrated that STO cells have the potential to

support the establishment and maintenance of human ESC lines. Thereafter, STO

cells have been widely used as feeder cells for human ESC and iPSC culture

[24, 25]. Proteome analyses have revealed that STO cells produce unique protein

species, such as insulin-like growth factor binding protein 4 (IGFBP-4), pigment

epithelium-derived factor (PEDF) and secreted protein acidic and rich in cysteine

(SPARC, also known as osteonectin), which may be associated with differentiation

and cell growth [26]. Talbot et al. [17] showed from quantitative immunoassays that

STO cells express lower levels of activin A, interleukin-6, IGFBP-2, IGFBP-3,

IGFBP-4, and IGFBP-5 than CF-1 cells but higher levels of hepatocyte growth

factor (HGF) and stem cell factor (c-kit ligand). The difference in the growth factor

production among feeder cell types may result in different abilities to support the

growth of undifferentiated human ESCs/iPSCs. Indeed, conditioned media from

primary MEF cultures but not STO cell cultures support the undifferentiated status

of human ESCs on Matrigel- or laminin-coated culture plates [27]. One of the main

mechanisms by which STO cells support ESC/iPSC pluripotency appears to be

laminin expression because laminin on the STO cell surface interacts with specific

receptors (integrin α6, β1 dimer) on human ESCs to maintain their undifferentiated

status [20]. Therefore, compared to MEFs, STO feeder cells may require more

direct cell contact with human ESCs/iPSCs to support pluripotency.
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SNL76/7 cells were clonally derived by Bradley [28] from STO cells

transformed with neomycin resistance and murine leukemia inhibitory factor

(LIF) genes. SNL76/7 cells abundantly express the pleiotropic cytokine LIF,

which promotes long-term maintenance of mouse ESCs by suppressing spontane-

ous differentiation [29]. In contrast to the case with mouse ESCs, LIF does not

satisfactorily support the self-renewal of human ESCs [4]. Nonetheless, SNL76/7

cells basically inherit the nature of STO cells; therefore, SNL 76/7 cells can be used

as feeder cells for both mouse [6, 30, 31] and human [1, 28, 30] ESCs/iPSCs.

Bradley also established a puromycin-resistant derivative of SNL76/7 cells

(SNLP76/7-4 cell line: Fig. 12.1) that is useful for drug selection of transfected

ESCs/iPSCs [32]. An immortalized mouse fetal liver stromal cell line (KM3 cells)

was also reported to support the growth and maintenance of human ESCs when

co-cultured in with the ESCs in a feeder cell layer [33].

These feeder cell lines may be useful for laboratory experiments because they

enable large-scale expansion of human ESCs/iPSCs at low cost; however, it is

important to note that mouse feeder methods are associated with a high possibility

of contamination by the feeder cells during human ESC/iPSC isolation. Kim

et al. [34] described a unique and less labor-intensive method to reduce contami-

nation by feeder cells by culturing human ESCs on porous membranes of transwell

inserts that have mouse feeder cells attached to the other side of the membrane.

12.2.2 Human-Derived Feeder Cells

Although mouse feeder systems are convenient for laboratory experiments, such

xenobiotic support systems are associated with the risk of cross-transfer of animal

pathogens and are thus not favorable for future clinical application of iPSCs. To

solve this problem, many studies to date have demonstrated the utility of human-

derived cells as feeders for human ESCs and iPSCs (Table 12.1).

Fig. 12.1 (Left) Mouse-derived SNL76/7 cells. (Right) Undifferentiated human iPSC colonies on

the SNLP76/7-4 feeder cells

148 G. Yu et al.



Primary human foreskin fibroblasts (FFs), which can easily be prepared from

infant foreskin, are among the most frequently used human feeder cells for ESCs

and iPSCs [35, 37–44]. Similar to primary MEF cells, human FF feeder cells show

limited expansion in culture; therefore, fresh batches of FFs have to be prepared on

a routine basis. To overcome this drawback, Unger et al. [36] established a

conditionally immortalized human FF line that secreted bFGF and showed that

the generated cells could support the culture of both human ESCs and iPSCs.

Mesenchymal stem cells (MSCs) are easily accessible postnatal human cells that

include bone marrow-derived MSCs (BMSCs) [3]. Culture-expanded BMSCs can

support prolonged expansion of human ESCs in culture [37, 39, 45]. Adipose-

derived stromal cells (ASCs), which are another type of MSCs, also have the ability

to serve as feeder cells for human ESCs/iPSCs [46, 47]. Sugii et al. [58] showed that

ASCs express high levels of bFGF, TGFβ, fibronectin, and vitronectin and can thus
serve as feeder cells for both autologous and heterologous human iPSCs. Because

ASCs can be easily isolated by surgery or lipoaspiration from adults, their use as

feeder cells is expected to provide an important step toward establishing safe,

clinical-grade human iPSC lines.

Table 12.1 Summary of human feeder cells for human ESC/iPSC culture

Feeder cell sources Cells Culture medium References

Foreskin fibroblasts iPSCs KSR medium [35, 36]

ESCs KSR medium [35–42]

ESCs HEScGRO [43]

ESCs FBS-hES/KSR medium [44]

Bone marrow-derived MSCs ESCs KSR medium [37, 39, 45]

Adipose-derived stromal cells iPSCs mTeSR1 [46]

ESCs KSR medium [47]

iPSCs

Amniotic MSCs ESCs – [48]

Amniotic epithelial cells ESCs KSR medium [49]

ESCs DMEM [50]

iPSCs DMEM–F12 medium [51]

Placental fibroblasts ESCs KSR medium [37]

ESCs X-VIVO 10 [52]

Umbilical cord stromal cells ESCs KSR medium [53]

Transgenic fetal fibroblasts ESCs KSR medium [54]

Fetal muscle cells ESCs H1/H2 medium [55]

Fetal skin cells ESCs H1/H2 medium [55, 56]

Fetal liver stromal cells ESCs KSR medium [57]

MSCsmesenchymal stem cells, ESCs embryonic stem cells, iPSCs induced pluripotent stem cells,

KSR KnockOut™ Serum Replacement, HEScGRO medium animal-component-free medium

(Millipore), FBS fetal bovine serum, hES medium standard human ESC culture medium,

mTeSR1 chemically defined xeno-free human ESC culture medium (Stemcell Technologies),

DMEM Dulbecco’s modified Eagle medium, X-VIVO 10 chemically defined and serum-free

medium (Lonza)
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The amniotic fluid contains MSCs that are easily obtained and relatively exempt

from ethical problems. Zhang et al. [48] reported that human amniotic MSCs can be

used as feeder cells for effective growth of human ESCs. Human amniotic epithelial

cells (AECs) can be isolated from the surface membrane of fresh placentas, and

they express many growth factors including EGF, bFGF, TGF-β, and BMP-4 [49,

59, 60] in addition to stem cell markers such as Oct-4 and Nanog [50]. Additionally,

Liu et al. [51] recently showed that microRNA-145-mediated regulation of Sox2

expression in human AECs maintains the self-renewal and pluripotency of human

iPSCs. Human placental fibroblasts also showed comparable or superior efficacy to

MEFs as feeder cells for human ESCs [37, 52]. Because the human placenta and

amnion are discarded as medical waste, they may be promising tissue sources for

human feeder cells for iPSCs. Umbilical cord stromal cells, which can be obtained

through noninvasive procedures, also support the self-renewal of human ESCs in

serum-free conditions [53]; therefore, they may be still another promising source of

human feeder cells for iPSC culture.

Other previously reported human feed cells for ESC/iPSC culture include dermal

fibroblasts [61], adult fallopian tube epithelial cells [55], adult lung cells [56],

transgenic (puromycin resistant) fetal fibroblasts [54], fetal muscle cells [55],

fetal skin cells [55, 56], and fetal liver stromal cells [57]. However, although

these human feeder cells can be used in laboratory experiments, they are not

suitable for clinical use because the harvesting of the source tissue is invasive

and may pose ethical issues.

Nearly all human feeder cells require supplementation with bFGF to sustain

human ESC/iPSC potential; therefore a bFGF-dependent pathway may be crucial

for maintaining the pluripotency of human pluripotent stem cells. Park et al. [37]

evaluated the feeder ability of several types of human feeder cells (placental cells,

BMSCs, and FFs) and showed that these cells support the undifferentiated growth

of human ESCs through bFGF synthesis. In contrast, Bendall et al. [62] demon-

strated that human ESCs autologously produce fibroblast-like cells around their

colonies that act as a supportive niche for the survival and self-renewal of human

ESCs through IGF-II production in response to bFGF.

12.3 Feeder-Free Methods for ESC/iPSC Culture

To achieve reliable and safe production of human iPSCs, it is desirable to use

reagents that are defined, qualified, and preferably derived from a non-animal

source. Although the use of human feeder cells circumvents the use of animal-

derived feeder cells, the function of the feeder cells in the human iPSC co-culture

system is still not fully understood. In addition, the preparation of the feeder cells is

highly laborious, which limits the large-scale production of human iPSCs for future

clinical applications. Therefore, development of feeder-free human iPSC culture

systems has been an important focus of recent iPSC research.
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12.3.1 ECM-Related Materials

The ECM is a uniquely assembled three-dimensional (3-D) molecular complex that

varies in composition and diversity, and consists of basic components such as

laminin, fibronectin, vitronectin collagen, cadherin, elastin, hyaluronic acid, and

proteoglycans. In the absence of feeder cells, human ESCs/iPSCs require attach-

ment factors to promote their survival and proliferation. In this regard, the ECM and

its soluble factors support the adhesion, growth, and maintenance of ESCs/iPSCs.

To date, various ECM-related materials have been evaluated as a substitute for

feeder cells for human pluripotent stem cell culture (Table 12.2).

12.3.1.1 ECM Components

Matrigel™ [27, 63, 64], which is a commercially available protein mixture extracted

from the Engelbreth-Holm-Swarm mouse tumor [73], is one of the most frequently

used matrices for feeder-free growth of undifferentiated human pluripotent stem

cells. Matrigel™ contains a complex and poorly defined mixture of fibronectin,

laminin, type IV collagen, entactin, and heparan sulfate proteoglycans, in addition

to various growth factors such as bFGF, EGF, PDGF, NGF, and TGF-β. To

maintain human ESCs/iPSCs in an undifferentiated state, Matrigel™-coating

requires soluble stemness-supporting factors produced by MEFs or other feeder

cells (conditioned medium) [27]. Despite its availability and ease of use, Matrigel™

Table 12.2 Summary of extracellular matrix-related biomaterials for feeder-free human

ESC/iPSC culture

Matrix/biomaterial Cells Culture medium References

Matrigel™ ESCs hES medium [27, 63, 64]

MEF-CM

Human MSC-derived matrix ESCs SBX medium [65]

Human serum ESCs hES-dF-CM [66]

Laminin ESCs hES medium [27, 67]

MEF-CM

NC-SFM

Recombinant laminin E8 fragments ESCs/iPSCs mTeSR1 [68]

Fibronectin ESCs KSR medium [69]

Vitronectin ESCs mTeSR1 [70]

Collagen (type 1) ESCs mTeSR1 [71]

Hyaluronic acid hydrogels ESCs MEF-CM [72]

MSCsmesenchymal stem cells, ESCs embryonic stem cells, iPSCs induced pluripotent stem cells,

hES medium standard human ESC culture medium,MEF-CMmouse embryonic fibroblast-derived

conditioned medium, SBX medium chemically defined xeno-free medium, hES-dF-CM condi-

tioned medium of fibroblasts derived from differentiated human ESCs, NC-SFM non-conditioned

serum-free medium, KSRKnockOut™ Serum Replacement,mTeSR1 chemically defined xeno-free

human ESC culture medium (Stemcell Technologies)
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is not ideal for potential clinical application of human iPSCs because it is animal-

derived and xenogenic pathogens can be transmitted through culture even though

no feeder cells are present. However, Peiffer et al. [65] demonstrated that matrices

derived from human MSCs could advantageously replace MEF or hMSC feeder

cells. Furthermore, human serum can be also used as a matrix to support the

undifferentiated growth of human ESCs [66].

12.3.1.2 Recombinant ECM Products

Human ESCs express integrin receptors for major ECM proteins (laminin, fibro-

nectin, collagen, and vitronectin) and all of these receptors functionally mediate

cell adhesion [70]. Laminin, which is a major component of the ECM of all basal

laminae in vertebrates, can support the pluripotency of human ESCs when used

together with the conditioned medium of MEFs [27]. The MEF conditioned

medium can also be replaced, however, as the combination of a human laminin

coating with defined medium supplements, such as recombinant bFGF and the

additional growth factors flt3-L, SCF, and LIF, was shown to support the growth

and maintenance of undifferentiated human ESCs [67]. It has also been shown that

recombinant laminin E8 fragments (LM-E8s), which are truncated peptides com-

posed of the C-terminal regions of the α, β, and γ chains of laminin, enable robust

propagation of human ESCs and iPSCs in an undifferentiated state in cultures with

defined and xeno-free media [68]. We have confirmed that human gingiva-derived

iPSCs [30] can be maintained in an undifferentiated state on LM-E8-coated plates

after dissociation and passaging (Fig. 12.2).

Fibronectin, vitronectin, and gelatin (a hydrolyzed product of collagen) are rich

in arginine-glycine-aspartate (RGD) peptide sequences that are required for

integrin-mediated cell adhesion and growth through activation of cellular signaling

pathways [74]. Amit and Itskovitz–Eldor [69] reported that a human fibronectin

coating and medium supplementation with TGFβ and bFGF provide a feeder-free

and serum-free culture system for human ESCs. Vitronectin is the major ECM

protein but is not present in Matrigel™; thus, Braam et al. [70] reported that

recombinant vitronectin was a defined functional alternative to Matrigel™ for

supporting sustained self-renewal and pluripotency of human ESC lines. Liu

et al. [75] also demonstrated that nanofibrous gelatin substrates can provide an

alternative to Matrigel™ for long-term expansion of human ESCs.

Type 1 collagen is the most abundant structural protein of the human body.

Furue et al. [71] reported that a substrate composed only of type I collagen could be

combined with a defined medium supplemented with heparin, bFGF, insulin,

transferrin, and fatty acid-free albumin conjugated with oleic acid for culture of

human ESCs. E-cadherin, a cell adhesion molecule, is essential for intercellular

adhesion [76] and colony formation among mouse ESCs [77]. Nagaoka et al. [78]

generated a fusion protein consisting of human E-cadherin and the IgG Fc domain

and demonstrated that this protein could be substituted for Matrigel™ and could

support the pluripotency of human ESCs and iPSCs under completely defined
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culture conditions. Hyaluronic acid (HA) is an anionic, nonsulfated glycosamino-

glycan that is distributed widely throughout connective, epithelial, and neural

tissues. Gerecht et al. [72] demonstrated that HA-based hydrogels maintain the

undifferentiated state of human ESCs in the presence of conditioned medium

from MEFs.

12.3.2 Synthetic Materials

Although human-sourced and recombinant ECM materials can be used in animal-

component-free and effective culture systems for human ESCs/iPSCs, they are still

associated with high product cost and possible batch-to-batch variation. In contrast,

synthetic biomaterials and chemical coating technologies (Table 12.3) may offer a

fully defined culture system with lower cost and higher consistency.

Because most cells are cultured on tissue culture-treated polystyrene, the devel-

opment of a chemical treatment for standard tissue culture-treated polystyrene is

desirable for a 2-dimensional culture system for ESCs/iPSCs. Along these lines,

Mahlstedt et al. [79] demonstrated that oxygen plasma-etched tissue culture-treated

polystyrene could maintain the pluripotency of human ESCs in MEF conditioned

medium.

However, the 3-D microenvironment has recently been appreciated for its ability

to influence the behavior of pluripotent stem cells. For example, a 3-D porous

Fig. 12.2 Undifferentiated human gingiva-derived iPSC colonies on a recombinant laminin E8

fragment-coated plate (feeder-free culture)
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natural polymer scaffold prepared from a chitosan and alginate complex was

reported to sustain the self-renewal of human ESCs without the support of feeder

cells or conditioned medium [82]. Similarly, Carlson et al. [83] reported the

combination of poly-D-lysine, which is a synthetic positively charged amino acid

chain commonly used as a coating to enhance cell adhesion, with synthetic polymer

scaffolds with a 3-D fibrous architecture promote the adhesion, proliferation, and

self-renewal of human ESCs. Additionally, microcarrier particles have also been

used as substrates to amplify various types of adherent cells [84]. In particular,

Phillips et al. [80] showed that seeding on trimethyl ammonium-coated polystyrene

microcarriers enabled feeder-free 3-D suspension and-single cell culture for human

ESCs, thus providing a low-cost, practical feeder-free method for large-scale

human ESC/iPSC production. Furthermore, Siti-Ismail et al. [81] demonstrated

that human ESCs encapsulated in calcium alginate hydrogels could be maintained

in an undifferentiated state for more than 260 days without requiring feeder cells or

passaging.

12.4 Conclusions

Feeder methods and ECM-related/synthetic materials for human ESC culture are

relatively well established in the literature as outline above; however, the appro-

priate methods and materials for human iPSC culture, especially for clinical use,

still need to be established. Most previous ESC/iPSC studies of animal-component-

free methods focused on the growth and maintenance of iPSCs; however, few

studies have focus on the generation and expansion of human iPSCs. Because

iPSCs are generated from one reprogrammed somatic cell, xeno-free methods to

efficiently promote the clonal growth of single human ESCs are necessary. Bigdeli

et al. [85] reported that human ESC lines can be adapted to matrix-independent

growth, even on plastic plates, by using a specified conditioned medium derived

from human embryonic fibroblasts. This finding implies that it may be possible to

develop a more effective defined culture medium that eliminates the need for a

Table 12.3 Summary of synthetic materials for feeder-free human ESC/iPSC culture

Synthetic materials Cells

Culture

medium References

Oxygen plasma-etched tissue culture-treated polystyrene ESCs MEF-CM [79]

hES medium

Trimethyl ammonium-coated polystyrene microcarriers ESCs hES medium [80]

Calcium alginate hydrogels ESCs hES medium [81]

Chitosan and alginate scaffolds ESCs hES medium [82]

Polymer scaffolds/poly-D-lysine ESCs mTeSR1 [83]

ESCs embryonic stem cells, iPSCs induced pluripotent stem cells, MEF-CM mouse embryonic

fibroblast-derived conditioned medium, hES medium standard human ESC culture medium,

mTeSR1 chemically defined xeno-free human ESC culture medium (Stemcell Technologies)
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substrate and thus achieves a feeder-free and xeno-free culture system for iPSCs.

Investigators should therefore accumulate fundamental data for feeder- and xeno-

free culture technologies by using both synthetic substrates and defined culture

medium components. The establishment of cost-effective, easy-to-handle synthetic,

defined, and stable xeno-free culture systems for human iPSCs will expedite the use

of iPSCs in biomedical applications.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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Chapter 13

Hydrogel-Based Biomimetic Environment

for In Vitro Cell and Tissue Manipulation

Takuya Matsumoto

Abstract A biomimetic environment fabricated with synthetic material would be

an effective tool for reproducing the tissue-developmental process and even for

achieving tissue engineering in vitro. A hydrogel material is one candidate for this

tool, because a hydrogel normally shows harmless properties in regard to cells and

tissue, and it can be tuned chemically and physically to obtain the desired form.

Accordingly, fibrin gel was utilized to reproduce the 3D cellular orientations found

in muscle tissue, fabricate tendon-like mineralized tissue, and regulate vascular

formation. In this context, cell and tissue manipulations within the gel were led by

in vitro physical and chemical stimulations. In this chapter, the approach used for

manipulating cells and tissues using the designed hydrogel is discussed.

Keywords Biomimetic environment • Cell manipulation • Hydrogel • In vitro

tissue engineering

13.1 Introduction

Thanks to recent advances in cell and molecular biology, researchers have gradually

started to understand how molecules are concerned with the expression of cellular

functions. They have also started to understand how the surrounding molecules

guide cellular behavior. Engineers and chemists have also started to participate in

this in-vitro cellular guidance, develop methods for so-called “in-vitro cellular

guidance,” since they can design and construct an environment that is suitable for

manipulating cell functions. For example, Chen et al. used a microprinting system

that can control the cell-adhesion shape by applying the patterned coating of

fibronectin on two-dimensional tissue-culture substrates. They indicated that the

mesenchymal stem cells (MSCs) shape regulates the switch in lineage commitment

by modulating endogenous RhoA activity. Expressing dominant-negative RhoA

committed MSCs to become adipocytes, while constitutively active RhoA caused
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osteogenesis [1]. Discher and Mooney indicated that hydrogel with different

mechanical stiffnesses regulate cell proliferation, cell differentiation, and even the

uptakes of non-viral vectors [2–4]. Since the environment surrounding a cell can be

easily tuned by materials and devices according to our favorable design, a newly

developed research methodology (integrative biology) is now recognized as a

newcomer to find something new that cannot be found by conventional biological

methods [5, 6]. Here, we consider that reproducing the tissue-development process

in vitro is investigated as a robust tool for understanding cellular behavior in the

tissue-developmental stage so that in vitro tissue engineering becomes possible.

13.2 Cell and Matrix Patterning Using Hydrogel

with Static Mechanical Stimulation

Specific cellular and matrix patterning can be found in biological tissue develop-

ment and growth. For example, skeletal muscle tissue consists of cells aligned

parallel to the long axis of the muscle tissue. Osteoblasts adhered to the surface of

bone matrix align in a similar direction to the bone-tissue growth direction in

longitudinal bone. Reproduction of parallel cell alignment in three-dimensional

(3D) matrices is thus one of the interesting targets for in-vitro tissue engineering.

Hydrogel contains more than 80 % water, which is crucial for exchange of nutrition

between cells and has similar mechanical properties to those of biological tissue.

Fibrin, which is formed by mixing fibrinogen and thrombin purified from peripheral

blood, is found in wound-healing regions. Not only is it used therapeutically as

surgical glue but fibrin has also been investigated for its use as a biocompatible and

biodegradable material in biomedical-engineering applications (e.g., drug delivery

systems [7–9] and tissue engineering [10–12]). Fibrin gels, which are comprised of

hydrophilic cross-linked fibrils, are considered suitable for 3D cell culture. To

obtain 3D matrices having uniformly aligned fibrin fibers, surgical sutures fabri-

cated from poly (lactic-co-glycolic acid) (PLGA) were used to tether the fibrin gels.

Each fibrin gel was formed in a cylindrical silicone mold (length: 10 mm, diameter:

6 mm) with sutures inserted at both ends. The sutures were then clamped to a

custom-made device for generating continuous tensile strain (up to 200 %)

(Fig. 13.1a). The suture material possessed a highly rough texture due to its

woven structure, and it firmly attached to the fibrin matrices. Scanning electron

microscopy (SEM) images indicated that bundle-like structures were formed in the

strained gels; this structure comprised fibrin fibrils that were oriented parallel to the

strain direction (Fig. 13.1b, c). Highly magnified SEM images indicated that the

fibril alignment in the bundle-like structure depend on the amount of strain applied.

The fibrils were torn at the border of each bundle, suggesting that the displacement

of each set of fibrils in the strain direction facilitated the formation of bundle-like

structures in the fibrin gel. The cross-section of the generated bundle-like structures

exhibited a polygonal shape, not a complete circular shape, which is similar to the

cross-section of natural skeletal muscle tissue. The estimated diameter of each

bundle-like structure decreased with increasing strain [13].
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13.3 Three-Dimensional Patterning of Mineralized

Cell Groups in Hydrogel

The cell dynamics within the strained fibrin gel were investigated. The fibrinogen

solution containing myoblast (C2C12) was used to form a gel, which was contin-

uously subjected to 25 % strain. The cells in the fibrin gel display a specific

alignment, that is, parallel to the strain direction. Interestingly, the direction of

cell proliferation was identical to that of cell alignment (Fig. 13.1d). A single

seeded cell therefore divided multiple times, and the oriented cells subsequently

formed linear groups aligned parallel to the strain direction (Fig. 13.1e, f), in a

similar manner to the cellular organization found in a longitudinal section of native

Fig. 13.1 (a) Custom made device fabricated for tethering the strained fibrin gel. (b) The

representative SEM image of microstructure of fibrin gel without strain (Bar: 1 μm).

(c) The representative SEM image of strained fibrin gel (Bar: 5 μm). (d) The direction of cell

proliferation was also identical with strain direction of hydrogel (Bar: 100 μm). (e) Three-

dimensionally aligned cell groups formed in the strained fibrin gel (Green; actin, Blue; nucleus)
(Bar: 400 μm). (f) Three- dimensionally aligned cell groups formed in the strained fibrin gel

(Hematoxylin–Eosin staining) (Bar: 200 μm). (g) SEM images of aligned cells in the strained

fibrin gel (Bar: 100 μm)
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skeletal muscle tissue. It is assumed that the positions of the cells in the fibrin gel

are restricted to the spaces between the fibrin bundles such that they align and

proliferate parallel to the strain direction. This assumption is supported by a typical

SEM image (Fig. 13.1g), which shows cells positioned in the spaces between the

bundle-like structures of the fibrin gel.

In light of the above-described results, bone-marrow stromal cells (BMSCs) we

used instead of myoblasts to fabricate the aligned mineralized tissue. In a similar

manner to the cells in the above-described myoblast study, the cells in the strained

gel displayed a specific alignment, namely, parallel to the strain direction in the

gel. The direction of cell proliferation was identical to that of cell alignment.

Consequently, the oriented cells formed a number of linear cell groups aligned

parallel to the strain direction in the strained gel. In the strained fibrin gel, type-I

collagen deposition showed a specific orientation, namely, parallel to the strain

direction (Fig. 13.2a, b). The merged images with nuclear-stained cells in the

figure indicate that the matrix was deposited in identical positions to the cell

positions in the gel. When BMSCs were cultured in an osteogenic differentiation

medium, mineralization derived from the cells was observed in the fibrin gel.

Similar to the matrix deposition, mineral deposition was localized according to the

cell position and showed a specific alignment in the strained gel. X-ray-diffraction

(XRD) peak profiles revealed that the obtained mineral in the fibrin gel was

hydroxyapatite (HAp) (Fig. 13.2c). Additionally, a specific orientation of the

HAp crystals (namely, parallel to the strain direction) was confirmed from the

relative intensity of the (002) to (211) planes in the XRD profiles (Fig. 13.2c).

SEM images indicate that compared to those in the control gel, the mineralized

matrix vesicles were concatenated serially parallel to the strain direction in the

strained gel (Fig. 13.2d). EDS analysis revealed that the mineralized matrix

vesicles contain both calcium and phosphorus. The concentrations of phosphorus

in the mineralized vesicle regions are much higher than those of calcium in

that region.

To investigate the alternations of cellular functions in strained fibrin gel, the

cells were cultured in gels with different strain rates. At day eight, the gel subjected

to a higher strain rate had enhanced cell proliferation compared to the gel subjected

to a lower strain rate. The mRNA expressions of Opn and Oc, namely, osteogenic

differentiation markers, were investigated at day four. Both Opn and Oc expres-

sions decreased with the increasing strain rate from up to 50 %. These results

suggest that cell functions in the strained fibrin gel are regulated by the alteration of

strain rate. To confirm this suggestion, cell-derived mineralization in the gel

(subjected to varied strain rate during the culture period) was investigated. Miner-

alization caused by cell differentiation was detected only in the sample that was

subjected to strain rate decreased from 50 to 0 % at day 21 (III). In contrast, mineral

deposition was not detected in the gel that was subjected to strain rate reduced from

50 to 0 % at day 28 (II) or in the gel that was subjected to 50 % strain maintained for

50 days (I) (Fig. 13.2e) [14].
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13.4 Microvessel Patterning Using Fibrin Gel

with Dynamic Mechanical Stimulation

By here, the cells were cultured in the strained condition; however, the strain was

static and continuous. A device for applying dynamic strain against to cells in 3D

hydrogel was also designed. The device was used to investigate the formation of

Fig. 13.2 (a) SEM images of bundle-like structure formed in the strained fibrin gel (Bar: 20 μm).

(b) Aligned cell groups and precipitated type I collagen according to the cell group presence (Bar:

250 μm). (c) X-ray diffraction analysis of precipitated minerals within the strained fibrin gel.

(d) Connected minerals on aligned cells and fibers (Bar: 10 μm). (e) Mineralized area in strained

fibrin gel cultured with different strain conditions. (I) 50 % strain for 50 days, (II) 50 % strain for

28 days reduced to 0 % strain for another 22 days, and (III) 50 % strain for 21 days reduced to 0 %

strain for another 29 days (*: p< 0.05)
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vascular tissue under cyclic mechanical stimulations. Dextran beads coated with

human umbilical endothelial cells (HUVECs) were embedded in fibrin gels within a

custom 3D chamber and subjected to cyclic strain (Fig. 13.3a, b). HUVECs on the

beads started to invade the gels in a direction perpendicular to the strain direction

and formed sprout-like structures within 5 days (Fig. 13.3c). Each bead formed only

one or two of these structures, and they were aligned in a direction predominantly

perpendicular to the direction of strain application. There were no branches in these

structures formed in the strained condition. In contrast, single cells migrated,

proliferated, and formed multiple sprouts per bead in the static condition. These

sprouts had no consistent orientation, and the sprouts formed in this condition were

branched (Fig. 13.3d). Structures formed in the presence of cyclic strain were also

significantly thicker than those formed in the static condition. The structures formed

under cyclic strain contained wall cells with nuclei located toward the some

alternatives lumens, but the lumens also contain aligned cells. These cells were

likely proliferated inside the structures, while the wall cells migrated and prolifer-

ated to form the structures [15].

Fig. 13.3 (a) Original device for applying mechanical strain to cells in the 3D gel. (b) Chamber

for cell culture in 3D gel with strained condition. (c) Newly formed sprouts with well defined

lumens elongated perpendicular to the strain direction when subjected to cyclic strain

(Bar: 100 μm). (d) Cells in static culture sprouted in all directions equally (Bar: 100 μm)
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13.5 Conclusion

As mentioned here, the hydrogel system can be physically tuned by applying

mechanics. The cultured cells used in the physical stimulations show different

behavior according to the surrounding architectures or stimulation conditions.

Conventionally, the cell behavior was regulated only to confirm the effect of

soluble factors that were newly-cloned. However, recent studies aiming to modu-

late cells and tissue to fabricate cell-based functional materials, or even to achieve

biological tissue synthesis in vitro, have been performed [16–21]. In the present

study, as well as chemical stimulation, physical stimulation is also considered as a

promising candidate to modulate cell and tissue functions. Moreover, the trials on

these cell and tissue manipulations would be valuable to help understanding of the

biological unknown during the tissue-developmental process.
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Chapter 14

Trends in Periodontal Regeneration

Therapy: Potential Therapeutic Strategy

of Extracellular Matrix Administration

for Periodontal Ligament Regeneration

Masahiro Saito

Abstract Current strategy for the treatment of periodontal disease is to application

of stem cells or functional molecules that can reorganize tissue integrity, cellular

activities and extracellular matrix framework to recover peridontal tissue function.

The approach to be regeneration of periodontal ligament (PDL) that is a tooth

supporting connective tissue has made a progress for consideration of strategies in

regeneration therapy of periodontal tissue damaged by periodontitis. To realize the

achieving functional PDL regeneration, the application of stem cells and functional

molecules which are essential for PDL regeneration/developmentmust be developed.

The identification of stem cells/progenitors and functional molecules that contribute

PDL regeneration will substantial contribution for realization of the regeneration

therapy as a novel treatment of connective tissue disease. This review describes

current strategy of functional PDL regeneration based on development, stem cell

biology and tissue engineering after pathological degradation by periodontitis. The

present status of the hurdles to this technology are also described and discussed.

Keyword Extracellular matrix • Marfan syndrome • Microfibril • Periodontal

ligament • Regeneration therapy

14.1 Introduction

The current advances in future regenerative therapies have been influenced by

many previous studies of embryonic development, stem cell biology, and tissue

engineering technologies [1, 2]. To restore the partial loss of organ functions and to

repair damaged tissues, attractive concepts that have emerged in regenerative

therapy is stem cell transplantation into various tissues and organs [3] and cytokine
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therapy, which has the potential to induce the activation and differentiation of tissue

stem/progenitor cells [4]. PDL stem cells and the cytokine network that involved

PDL formation and dental follicle cell growth and differentiation, have been well

characterized at the molecular level [5–7]. Based on these results, regeneration of

periodontal tissues is being made clinically possible by the transplantation of

mesenchymal stem cells which can differentiate into PDL cells, cementoblasts

and osteoblasts, or through the local application of cytokines to stimulate the

proliferation and differentiation of these stem cells [8–10]. Although these thera-

pies are effective and contribute to periodontal tissue repair, these interventions will

likely be improved by an enhanced understanding of the development of periodon-

tal tissues, particularly those involved in the formation of PDL, cementum and

alveolar bone.

Fibrillin-1 comprises one of the major insoluble extracellular matrix components

in connective tissue microfibrils and provides limited elasticity to tissues through

microfibril formation [11]. Various mouse models revealed that Marfan syndrome

(MFS) is a severe, systemic disorder of connective tissue formation and can lead to

aortic aneurysms, ocular lens dislocation, emphysema, bone overgrowth and severe

periodontal disease [12]. MFS have been established via gene targeting or missense

mutations, with germline mutations in fibrillin-1 leading to progressive connective

tissue destruction due to fibrillin-1 fragmentation in association with an insuffi-

ciency of fibrillin-1 microfibril formation [13]. Hence, it is largely accepted that

MFS is caused by insufficient fibrillin-1 microfibril formation in various connective

tissues [14]. Fibrillin-1 has been shown to contribute to the formation and mainte-

nance of periodontal ligament. An abnormal PDL structure in association with the

progressive destruction of microfibrils has been observed in a Marfan’s syndrome

mouse model. These findings have strongly suggested that microfibril formation

through fibrillin-1 assembly provides a novel therapeutic strategy for the treatment

of periodontal disease.

We here review the present status of the periodontal tissue regeneration

technologies that focus on the molecular mechanisms underlying development,

regeneration and tissue engineering of periodontal tissue, and also discuss the poten-

tial of ECM administration therapy through the promotion of microfibril assembly as

a novel therapeutic strategy for the essential functional recovery of periodontal tissue.

14.2 Periodontal Ligament Development

The PDL has essential roles in tooth support, homeostasis, and repair, and is

involved in the regulation of periodontal cellular activities such as cell prolifera-

tion, apoptosis, the secretion of extracellular matrices, resorption and repair of the

root cementum, and remodeling of the alveolar bone [15]. To develop future

methods to regenerate damaged PDL, it will be important to understand the

molecular basis of PDL development and also how the destruction of the PDL

occurs during periodontal disease.

170 M. Saito



14.2.1 Developmental Process of Dental Follicle

The PDL is derived from the dental follicle (DF), which is located within the outer

mesenchymal cells of the tooth germ and can generate a range of periodontal

tissues including the PDL, cementum and alveolar bone 21. The DF is formed

during the cap stage of tooth germ development by an ectomesenchymal progen-

itor cell population originating from the cranial neural crest cells [16]. Given the

critical role that the progenitor cell population in the DF appears to play in the

development of periodontal tissue, the developmental processes in this tissue are

of considerable interest in terms of further understanding the biology of these cells

[17]. The differentiation of the DF proceeds as follows: (1) during the tooth root

forming stage, the Hertwig’s epithelial root sheath (HERS) comprising the inner-

and outer-dental epithelia that initiate tooth root dentin formation is fragmented

into the Mallasez epithelium resting on the tooth root surface; (2) the DF migrates

to the surface of the tooth root and differentiates into cementoblasts to form the

cementum matrix [18, 19]; (3) at almost the same time, the DF differentiates into

the PDL on the cementoblasts in order to insert collagen fibers, known as

Sharpey’s fibers, into the cementum matrix. Fiber insertion also takes place

along the alveolar bone; and (4) both bone- and PDL-derived fibers finally

coalesce in the PDL to form the intermediate plexus, which resembles tendinous

tissue [20].

14.2.2 Tendon/Ligament Related Molecules Involved
in DF Development

Although the molecular mechanisms of DF development and differentiation remain

to be determined, previous gene expression studies of mouse molar root develop-

ment have suggested that some growth factors, including bone morphogenetic

protein 4, growth and differentiation factors (GDFs)-5, 6, and 7 [21, 22], epidermal

growth factors [23], Shh [24], and insulin-like growth factor-1 [25], are involved in

the growth or differentiation of the DF. Transcriptional factors such as Scleraxis,

Gli, Msx1, Msx2 and Runx2 have also been shown to be involved in the differen-

tiation of the DF into cementoblasts and in the mineralization of cementum

[20, 26]. Among these factors, GDFs and scleraxis are the most well characterized

that are involved in tendon/ligament morphogenesis, suggesting that PDL devel-

opment shares similar molecular mechanisms to those of tendon/ligament morpho-

genesis [20, 27]. These observations strongly suggest that the tendon/ligament

related cytokines regulate induction of extracellular matrix (ECM) component to

the formation of the tendinous structure of the PDL. The mechanisms involving

fibrous ECM network formation may also have a role in formation of the DF

development.
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14.3 Microfibril is Essential for PDL Maintenance

and Formation

The ECM is a biologically active molecule composed of a complex mixture of

macromolecules that, in addition to serving a structural function, profoundly affect

the tendon/ligament formation [28]. Global gene expression analysis of PDL

forming stage have revealed that ECM components including type I collagen,

type III collagen, lumican, decorin, periostin, f-spondin, tenascin-N, fibrillin-1

and PLAP1/aspirin are highly expressed during PDL formation [29, 30].

14.3.1 Fibrillin-1 Regulate PDL Formation
and Maintenance

Among the ECM formations in the PDL, fibrillin-1, a major component of the

microfibrils that regulate tissue integrity and elasticity, has been shown to contrib-

ute to the formation and maintenance of PDL [31]. Various mouse models of

Marfan’s syndrome (MFS) have been established via gene targeting or missense

mutations, with germline mutations in fibrillin-1 leading to progressive connective

tissue destruction due to fibrillin-1 fragmentation in association with an insuffi-

ciency of fibrillin-1 microfibril formation [32–35]. Hence, it is largely accepted that

MFS is caused by insufficient fibrillin-1 microfibril formation in various connective

tissues. MFS have been shown to increase the susceptibility to severe periodontal

disease due to a dysfunction of the PDL through a microfibril insufficiency,

suggesting that fibrillin-1 microfibril formation plays a central role in PDL forma-

tion [36]. MFS patient have been shown that periodontal disease is progressed

severely compared with non MFS patient [37]. These findings have strongly

suggested that microfibril formation through fibrillin-1 assembly plays an important

role in PDL formation and function. However, the molecular mechanisms of

fibrillin-1 microfibril assembly remain unclear as the microfibril-associated mole-

cule that regulates or stabilizes fibrillin-1 microfibril formation has not yet been

identified.

14.3.2 Strategy of MFS Treatment

MFS is a severe, systemic disorder of connective tissue formation and can lead to

aortic aneurysms, ocular lens dislocation, emphysema, bone overgrowth and severe

periodontal disease. A variety of MFS therapies have been developed, including

surgical therapy for aortic root aneurysms that are life-threatening, traditional

medical therapies such as β-adrenergic receptor blockade for slow aortic growth

and to decrease the risk of aortic dissection [14]. It has been demonstrated also that
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systemic antagonism of Transforming Growth Factor-type beta (TGF-β) signaling
through the administration of a TGF-β neutralizing antibody or losartan, an angio-

tensin II type 1 receptor blocker, has been shown to have a beneficial effect on

alveolar septation and muscle hypoplasia in MFS [33, 38] However, another

potential therapeutic strategy which remains to be investigated is the reconstruction

of the microfibril in connective tissues through the expression or administration of a

microfibril-associated molecule that regulates or stabilizes fibrillin-1 microfibril

formation. To investigate this concept, it will be necessary to identify molecular

mechanisms of microfibril formation and an appropriate fibrillin-1 microfibril

associated molecule (Fig. 14.1).

b

Fig. 14.1 Schematic representation of the MFS and ECM administration therapy as a novel

therapeutic strategy for the treatment of MFS. Left panel: Fibrillin-1 comprises insoluble

extracellular matrix components in connective tissue microfibrils and provides limited elasticity

to tissues through fibrillin-1 microfibril formation. Missense mutations of fibrillin-1 leading to

progressive connective tissue destruction due to fibrillin-1 fragmentation in association with an

insufficiency of fibrillin-1 microfibril formation. ADAMTSL6β is essential for fibrillin-1 micro-

fibril formation and suggest a novel therapeutic approach to the treatment of MFS through the

promotion of ADAMTSL6β-mediated fibrillin-1 microfibril assembly. Right Panel: A variety of

MFS therapies have been developed, including surgical therapy for aortic root aneurysms that are

life-threatening, traditional medical therapies such as β-adrenergic receptor blockade for slow

aortic growth and to decrease the risk of aortic dissection, and novel approaches based on new

insights such as the deregulation of TGF-β activation. ECM reinforcement therapy which induces

restoration of properly formed microfibrils by ADAMTSL6β is essential not only for improvement

of the predominant symptoms of MFS, but also for the suppression of excessive TGF-β signaling

induced by microfibril disassembly. Image from published paper [39]
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14.4 Novel Approaches to Periodontal Tissue Regeneration

Using ECM Administration Therapy

ECM components organized in the PDL not only reflect the functional requirements

of this matrix such as mechanical stress and storage of signaling molecules, but also

regulate the tissue framework during development and regeneration [30]. In addi-

tion, a new therapeutic concept has proposed that a fibrillin-1 microfibril insuffi-

ciency can be corrected by the administration of ECM components.

14.4.1 ADAMTSL6β Serves as a Novel Molecules that
Regulate Microfibril Assembly

A disintegrin-like metalloprotease domain with thrombospondin type I motifs

(ADAMTS)-like, ADAMTSL, is a subgroup of the ADAMTS superfamily that

shares particular protein domains with the ADAMTS protease, including

thrombospondin type I repeats, a cysteine-rich domain, and an ADAMTS spacer,

but lacks the catalytic and disintegrin-like domains [40]. A recent study has

demonstrated that ADAMTSL2 mutations cause geleophysic dysplasia, an autoso-

mal recessive disorder similar to MFS, through the dysregulation of TGF-β signal-

ing [41]. A homozygous mutation in ADAMTSL4 also causes autosomal-recessive

isolated ectopia lentis, another disease similar to MFS which is characterized by the

subluxation of the lens as a result of disruption of the zonular fibers [42]. The novel

ADAMTSL family molecules ADAMTSL6α and 6β were recently identified by in

silico screening for novel ECM proteins produced from a mouse full-length cDNA

database (FANTOM). These proteins are localized in connective tissues, including

the skin, aorta and perichondrocytes. Among ADAMTSL6, ADAMTSL6β has

shown to associated with fibrillin-1 microfibrils through its direct interaction with

the N-terminal region of fibrillin-1 and promotes fibrillin-1 matrix assembly in vitro

and in vivo [43]. These findings suggest a potential clinical application of

ADAMTSL6β as a novel MFS therapy by promoting fibrillin-1 microfibril assem-

bly and regulating TGF-β activation.

It is also suggested that the administration of fibrillin-1 microfibrils provides a

novel therapeutic strategy for the treatment of periodontal disease.

14.4.2 ADAMTSL6β Regulates Microfibril Assembly

To investigate whether ADAMTSL6β plays a critical role in microfibril assembly in

connective tissues, we generated ADAMTSL6β transgenic mice (TSL6β-TG mice)

in which the transgene is expressed in the whole body. Since ADAMTSL6β has

shown to be expressed in the aorta and skin, we investigated microfibril assembly of

these tissues in the TSL6β-TG mice. Immunohistochemical analysis revealed that
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ADAMTSL6β positive microfibril assembly was barely detectable in WT mice but

strongly induced in the aorta of TSL6β-TG mice (Fig. 14.2). Histological analysis

revealed that microfibrils are clearly increased in the aorta and that microfibril

assembly is also induced in the skin and PDL of TSL6β�TG mice. This confirmed

that ADAMTSL6β induces fibrillin-1 microfibril assembly in connective tissue

such as the aorta, skin and PDL.

14.4.3 ADAMTSL6β Involved in PDL Formation and Repair

To investigate whether ADAMSL6β contributes to PDL formation, we first exam-

ined its expression patterns during PDL forming stage of DF in the developing tooth

germ. In situ hybridization analysis revealed that ADAMSL6β was strongly

expressed in the PDL forming stage of the DF however ADAMSL6β expression

was significantly downregulated in the adult PDL. Immunohistochemical analysis

further revealed that ADAMSL6β is detectable in assembled microfibril-like struc-

tures during the PDL forming stage of the DF, and in organized microfibrils in the

adult PDL. Because developmental processes involve similar mechanisms to

wound healing, we next determined whether ADAMSL6β is involved in PDL

microfibril assembly during wound healing using a tooth replantation model.

Histochemical analysis revealed that both fibrillin-1 and ADAMSL6β expressions

were found to be clearly induced during wound healing of PDL, but to decrease

again after healing. These findings suggested that ADAMSL6β was involved in

microfibril formation during PDL formation/regeneration.

Fig. 14.2 Immunohistochemical analysis of TSL6β-TG mice. Cryosections were prepared from

the aortas (left), skin (middle) or PDL (right) of wild type (upper panel) or TSL6β TG (lower
panel) littermates and subjected to double immunostaining with antibodies against ADAMTSL6β
(red) and fibrillin-1 (green). ADAMTSL6β and fibrillin-1-positive microfibrils (green yellow) was
markedly increased in the aorta and skin of TSL6β TGmice compared withWTmice. Bar¼ 50 μm
Image from published paper [39]

14 Trends in Periodontal Regeneration Therapy: Potential Therapeutic Strategy. . . 175



Since oxytalan fiber, a principal elastic fiber system of PDL is composed of

fibrillin-1 microfibrils and does not contain significant amounts of elastin [44, 45],

this composition suggests that PDL will have an increased susceptibility to break-

down in MFS compared with other elastic tissues composed of both elastin and

fibrillin-1 [46]. We demonstrated that ADAMSL6β is highly expressed in DF

during PDL forming stage. In addition, intense expression of ADAMTSL6β can

be seen in wound healing process of PDL, indicating that this protein involved in

recovery of damaged PDL. Using an animal model of MFS, we demonstrate that

local administration of ADAMSL6β can rescue fibrillin-1 microfibril formation

through the promotion of fibrillin-1 microfibril assembly in PDL (Fig. 14.3). These

results strongly indicate that ADAMTSL6β is essential for fibrillin-1 microfibril

formation and suggest a novel therapeutic approach to the treatment of periodontal

disease with MFS.

14.5 Conclusion

Regenerative therapy for the periodontal disease has been attempted to use of

patient’s own cells to recover periodontal defect. Predictable treatment for partial

regeneration of PDL damaged by local application of cytokines or stem cell trans

a

b

b

b

b

Fig. 14.3 ADAMSL6β improves microfibril disorder in PDL from an MFS model. (a) Schematic

representation of the local administration of recombinant ADAMSL6β into a PDL injury model

(b) After injury of PDL by dislocation, collagen gel-containing recombinant ADAMSL6β was

then injected into the injured PDL (left). Immunohistochemical analysis showed an improvement

in fibrillin-1 microfibril assembly (arrowheads) induced by the injection of recombinant

ADAMSL6β. WO: Without treatment of ADAMSL6β. Image from published paper [17]
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plantation has been established, thus regenerative medicine for PDL has made the

most useful study model and is feasible clinical study for the planning of stem cell-

and cytokine- therapies [47]. Although partial regeneration of the periodontal tissue

has been established, novel treatment must be developed corresponding to regen-

erate large defect destroyed by severe periodontal disease. To approach this criti-

cism, it is essential to understand the molecular mechanisms of PDL development

to identify the appropriate functional molecules of inducing differentiation of stem

cells into periodontal lineage cells for successful reconstruction of periodontal

tissue [17, 48, 49].

In this review, we proposed that fibrillin-1 associated protein such as

ADAMTSL6β, which induces microfibril assembly, should be considered as an

ECM administration agent for the treatment of periodontal disease and improve-

ment of connective tissue disorders such as MFS. The exogenous application of

recombinant ADAMTSL6β improves fibrillin-1 microfibril assembly, indicating

the reinforcement of fibrillin-1 microfibrils by ADAMTSL6β may represent a new

treatment for periodontal disease which is accessible from oral cavity in MFS

patients. Since elastolysis occurs continuously in aortic aneurysms arising in

MFS cases, the chronic administration of ADAMTSL6β may be required for the

stabilization of microfibrils to prevent progressive tissue destruction. It will also be

necessary to develop methodologies for the systemic administration of

ADAMTSL6β to induce fibrillin-1 microfibril assembly in connective tissue for

the treatment of life-threatening conditions such as an aortic aneurysm (Fig. 14.4).

Fig. 14.4 ECM administration therapy as a novel therapeutic strategy of MFS syndrome. ECM

administration therapy using ADAMTSL6β which induces microfibril assembly, should be con-

sidered in the development of future mechanism-based therapeutics for the improvement of

connective tissue disorders such as MFS. Image from published paper [17]
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Hence, an ECM administration therapy involving ADAMTSL6β has the capacity to
facilitate drug discovery for treating periodontal diseases, and MFS-associated

disorders.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 15

Histochemical Characteristics

of Glycoproteins During Rat Palatine

Gland Development

Zaki Hakami, Hideki Kitaura, Shiho Honma, Satoshi Wakisaka,

and Teruko Takano-Yamamoto

Abstract Lectin histochemistry has been used to investigate glycosylation modi-

fication and glycoprotein expression that occurs during development and under

different physiological and pathological conditions. Several lectin histochemical

studies have been performed on the palatine gland of different species, which have

described the heterogeneity of complex glycoconjugates present in these structures.

However, no study has been conducted with regard to the relationship between

glycoproteins and palatine gland development in mammals. Therefore, we

conducted a study to test the hypothesis that a considerable modification in the

expression of carbohydrates occurs in the palatine gland during developmental

differentiation and maturation. Histochemical changes of glycoconjugates were

observed during prenatal and postnatal development of the rat palatine gland.

Qualitative and quantitative differences for the binding of lectins to palatal epithe-

lium sections were determined. All lectins showed general progressive staining

during development that was basally extended from the apical cytoplasm of mucous

cells. The distribution of glycoproteins during palatine gland development and the

heterogeneous distribution of glycoproteins observed between posterior and ante-

rior sides expand our knowledge of the role of salivary glands in oral function. In
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this review, we describe and discuss glycohistochemical observations of the devel-

oping rat palatine gland.

Keywords Glycoprotein • Lectin • Palatine gland • Rat

15.1 Introduction

In humans, the oral cavity and oropharynx are lined by around 600–1,000 minor

salivary glands [1, 2]. These glands are distributed throughout the mouth except in

the gingiva and along the midline and in the anterior part of the hard palate. They

consist predominantly of mucous cells that release their secretions through a short

ductal system into the oral cavity [3]. Palatine glands are mixed glands of predom-

inantly mucus acini and a few serous demilunes. They are located at the deep

termination of secretory units that irregularly grow by pouching [4–6]. In humans

they develop from the 11th week of gestation from solid epithelial cord arising from

the epithelium lining the soft palate. Thereafter, they undergo lumenization,

branching and acinar differentiation [7]. In rats, several thickenings in the palatal

epithelium appear at embryonic day 17 (E17). At E18 these have extended as

epithelial cords that progressively lumenize and branch to form acini at E20 [8].

Minor salivary glands function semi-continuously throughout the day and night,

but only contribute up to 10 % of saliva produced [9]. In addition, they play a major

role in the physiological defense mechanism of oral cavity structures by producing

of up to two-thirds of mucus and half of the secretory IgA in the oral cavity [10,

11]. In addition, the most common site of minor salivary gland tumor occurrence is

the oral cavity [12–20]. Salivary mucus glycoproteins are numerous and have a

tremendous diversity of carbohydrate side chains that are linked to a polypeptide

backbone. The advent of lectin histochemistry has allowed such carbohydrate

moieties to be characterized. Lectins, which are proteins of plant or animal origin,

have been used to visualize glycosylation modification and glycoprotein expression

during development or under different physiological and pathological conditions

[21–28].

Conventional histochemical methods have revealed that the mucins of rat

palatine glands are rich in both acid and neutral glycoconjugates [29], and can

incorporate [35S]-sulfate [30]. Several lectin histochemical studies have been

reported for palatine glands of different species. These emphasize the heterogeneity

of the complex glycoconjugates present in these glands, for example α-fucose is

abundant in mammals, but is scarce or absent in birds [3, 31, 32]. Lectin histo-

chemistry has shown the quantity of glycoproteins to progressively increase during

postnatal development of the Magellanic penguin [31]. However, there is a scarcity

of information regarding the relationship between glycoproteins and palatine gland

development in mammals. Therefore, we hypothesized that a considerable modifi-

cation in the expression of carbohydrates could occur in the palatine glands during

developmental differentiation and maturation, which might coincide with the
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change in diet from milk to solid feeding. In this review, we describe and discuss

glycohistochemical observations of the developing rat palatine gland, according to

our previous report [33].

15.2 Palatine Gland During Developmental Differentiation

and Maturation

15.2.1 Prenatal Stage

Sprague–Dawley rats were used. The animals were deeply anesthetized with chloral

hydrate (600 mg/kg body weight, i.p.) and perfused transcardially with 0.02 M

phosphate-buffered saline (PBS; pH 7.2) followed by 4 % paraformaldehyde in

0.1 M phosphate buffer (PB; pH 7.4). For prenatal experiments, the day on which a

vaginal plug was recognized was considered as “embryonic day (E) 0”. Pregnant

mothers at E18, and E20 were sacrificed by an overdose injection of chloral hydrate

(800 mg/kg), and the fetuses were extracted by caesarian surgery. The whole heads

were fixed in 4 % paraformaldehyde in 0.1 M PB (pH 7.4) for 3 days. All postnatal

pups were decalcified with 7.5 % ethylene diamine tetraacetic acid (EDTA) for

1–4 weeks at 4 �C. After decalcification, the head was cut into exact halves along

the medial plane. For frozen sections two heads from each group were transferred to

PBS containing 20 % sucrose. For paraffin sections, two heads from each group

were post-fixed in 4 % paraformaldehyde in 0.1 M PB (pH 7.4) overnight or for

longer. Specimens were then dehydrated by ethanol, cleared in xylene and embed-

ded in paraffin. In accordance with previous reports [7, 8], at E18, gland buds and

epithelial cords with a terminal bulb at the distal end were elongated from the

epithelial basement membrane (ectoderm) into the stromal connective tissue (mes-

enchyme). At E20, branching and lumenization had taken place, and immature

acini and ducts were formed. We applied lectin histochemistry to frozen sections to

avoid false-negative errors. Parasagittal frozen sections were prepared at a thick-

ness of 14 μm, and mounted on MS-coated glass slides (Matsunami, Osaka, Japan),

rinsed with PBS, dried and processed for lectin histochemistry. For the identifica-

tion of specific carbohydrate residues, tissue sections were incubated for 30 min

with 0.3 % H2O2 in methanol to block endogenous peroxidase activity. The sections

were then incubated for 12–14 h with one of seven different biotinylated lectins,

Glycine max (SBA), Dolichos biflorus (DBA), Vicia villosa (VVA), Ulex

europaeus (UEA-1), Triticum vulgare (WGA), Succinyl WGA (sucWGA) or

Arachis hypogaea (PNA). Sections were then washed three times in PBS, followed

by incubation with ABC (Vector Laboratories) for 60 min and then washed again

three times with PBS. The horseradish peroxidase was visualized by incubating

slides with 0.05 M Tris–HCl buffer (pH 7.5) containing 0.08 % diaminobenzidine

and 0.003 % H2O2. Sections were then lightly counterstained with methyl blue,
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dehydrated and cover slips were mounted using Permount (Fisher, NJ, USA).

Sections were examined by light microscopy.

At the prenatal stage, particularly at E18, lectin histochemistry showed consid-

erable variety in the extent or presence of staining among different animals and

even among different buds in the same gland. In general, at E18,

N-acetylgalactosamine residues visualized by DBA, SBA and VVA showed het-

erogeneous staining that was negative to weakly positive in the terminal buds. At

E21 this staining became progressively more moderate, in the cytoplasm and lumen

of ducts, but VVA staining was confined to apical cytoplasm. PNA showed a

heterogeneously positive reaction to cell membranes in the epithelial cord but little

or no reaction to cells in the terminal buds. At E20, the PNA reaction was located

near the lumen. At E18, UEA staining was similar to that of PNA; however, at E20

UEA staining was moderate in the apical cytoplasm and cell membrane as well as

on the lumen surface of ducts. WGA reacted strongly at E18, while at E20 staining

was moderate on cell membranes and in apical cytoplasm. sucWGA did not show

any reaction at E18, but at E20 it stained the cell membrane but not the apical

cytoplasm, where secretory granules reside.

In prenatal developmental differentiation, our data showed the importance of

terminal sialic acid rather than N-acetylglucosamine, as indicated by intense bind-

ing of WGA to the cell membrane and stromal cells and the lack of sucWGA

binding [34]. sucWGA labeling appeared largely during postnatal development.

Other lectins showed heterogeneous patterns of staining with high affinity of PNA

and UEA-1 observed in the epithelial cord at the bud stage. This pattern of reaction

is similar to that of developing human labial and lingual minor salivary glands

[35]. The varieties in the reactivity of lectins during epithelial budding and bud

migration are indicative of a differentiation-dependent alteration in cell surface

carbohydrates [36].

15.2.2 Suckling Stage

Sprague–Dawley rats aged PN 0–7 were used. We used the same methods for

histological analysis and lectin histochemistry as for postnatal animals. The classi-

fication of the developmental periods used in this study is based upon the physio-

logical and nutritional stages of animal development [37]. Histological analysis of

suckling stage rats showed that the acini of newborns had the general overall

appearance of the adult; they contained basophilic nuclei located basally within

basal eosinophilic cytoplasm, and pale apical cytoplasm underlined by clear lumen.

At day 0, the secretory units of palatine glands consisted of immature acini and

ducts sparsely distributed in the connective tissue, and no extending epithelial cord

was observed. The nuclei were round in shape and flattened progressively with age.

Gradually with maturation, the glands arranged into lobules, and the number and

size of acini increased. Lectin histochemistry at the suckling stage showed that all

lectins examined, except PNA, bound to the luminal border and showed generally
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similar reaction patterns. The staining tended to be diffuse or reticular in the apical

cytoplasm and apical membrane, as well as in the basolateral membrane of acini in

newborns. Moreover, SBA and to a lesser extent PNA showed more positive

reactions at supranuclear membranes. The staining by all lectins progressively

increased to become moderately distributed. UEA reacted in a similar pattern but

was more intense and diffuse, particularly in the acini located on the anterior area of

the soft palate where the mother’s nipple sits during suckling.

Palatine glands of newborns exhibited the same general overall appearance as

those of the adult; therefore, unlike the parotid gland [37], and to a lesser extent the

submandibular gland [38], no dramatic histological or morphological changes

occurred during postnatal development. Lectin labeling in the newborn was located

in the apical portion of the cytoplasm, with slight variation, and with maturation

progressively increased and spread out basally corresponding with the progressive

enlargement of the apical eosinophilic cytoplasm where secretory granules exist.

15.2.3 Transitional Stage

Sprague–Dawley rats aged PN 10–14 were used. In this stage, both suckling and

feeding on solid food occur after eruption of teeth and before weaning. The

histological sections showed enlargement of the glandular lobules, while the

interlobular connective tissue was slightly reduced. Some acini had formed the

tubuloacinar and a few scattered serous cells were observed. Histochemically, the

distribution of lectin staining remained similar to that in the first week, although the

extent of reactions was slightly increased and a granular pattern of staining was

noticed in most acini. In addition to mucous cells, UEA showed high affinity to

serous cells. sucWGA, however, rarely reacted to serous cells.

15.2.4 Weaning Stage

Sprague–Dawley rats aged PN 21–28 were used. Histological analysis showed that

the general appearance of the gland remained unchanged at the weaning stage;

however, the whole gland at 4 weeks appeared more compact, the eosinophilic

cytoplasm of the mucous cells was enlarged and nuclei were further flattened and

displaced basally. Serous acinar cells were observed along the soft palate, predom-

inantly in the posterior part. Some were capped in the mucous acini and others were

isolated. Lectin histochemistry at the third week showed heterogeneous staining

among different animals; however, overall patterns similar to those of the preceding

stage were seen for WGA, sucWGA, UEA and PNA. SBA, sucWGA and UEA-1

showed affinity to serous cells, and the reactivity of DBA and VVA was expanded

to cover the basal region and supranuclear membrane of some acinar cells. Some

cells exhibited a similar pattern to that found in the adult. At the fourth week, the
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lectin staining patterns were mostly similar to those found in the adult, in which

reactivity was extended basally from the apical cytoplasm along the lateral surface

of acinar cells. DBA staining was strong, covering the entire cytoplasm. Staining

for VVA, WGA and UEA was weaker but there was no significant difference

between anterior and posterior regions. Surprisingly, the reactivity of PNA and

sucWGA was reduced by more than one-third and focal, moderate cytoplasmic

staining was observed more in the posterior glands. At the third week, strong, broad

distribution of lectin binding was observed; in particular, PNA and sucWGA

reached their peaks of reactivity. These additional mucous secretions might be

required as a lubricant for both chewing and swallowing solid food and may provide

a protective coating for the soft palate [39–41], and are thus consistent with forced

weaning.

15.2.5 Adult Stage

Sprague–Dawley rats aged PN 42 were used. The histological analysis of the adult

stage showed that the thickness of the glandular layer was increased, but the

thickness of the posterior portion was clearly smaller than the anterior oral one.

Glands appeared more dilated, and the faint apical cytoplasm was enlarged and

pressed the spindle-shaped nuclei against the basement membrane. Serous cells

with round nuclei and basophilic cytoplasm were observed along the soft palate,

mainly in the posterior portion, some of which were isolated while others were

capped with mucous cells. Lectin histochemistry at the adult stage showed a

dramatic heterogeneity of glycoproteins between the anterior and posterior por-

tions. DBA, VVA and WGA showed high affinity to all mucous cells, but their

staining patterns were more broadly and intensely distributed in the posterior

portion. The reactivity of SBA, however, was located in the apical cytoplasm in

the anterior portion and was more intense and broad in the posterior region.

Furthermore, less than one-third of cells showed binding to PNA and sucWGA,

most of which were located in the posterior portion. Finally, UEA-1 reacted

strongly and was evenly distributed along the palatine gland.

This study showed that the 4th week was the appropriate time for weaning, when

the histochemical distribution of lectins among mucous cells of palatine glands

behaved mostly like that of the adult. Our study showed that the mucins secreted

from the palatine gland changed in quality and quantity during growth. Moreover,

in the adult stage, a spectacular heterogeneous distribution of glycoconjugates was

observed in the soft palate between palatine glands located in the anterior and

posterior portions; the posterior side was rich in N-acetylglucosamine and galactose

compared with the anterior side as demonstrated by its positive reactivity with

sucWGA and PNA, respectively. N-acetylgalactosamine was also more abundant in

the posterior side as demonstrated by intense and broad distribution of DBA, VVA

and SBA. Heterogeneous distribution of glycoconjugates within an organ has been

previously described for the kidney of JDS mice; distal tubules showed binding to
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DBA, whereas proximal tubules did not [22]. Also, in the human large bowel,

UEA-1 bound to mucous goblet cells proximally but not distally [42]. Generally,

glycoproteins secreted by mucous cells contain both O-linked oligosaccharides,

which contribute to the protective physiochemical properties of the mucus coat, and

N-linked oligosaccharides. In the present study, N-linked oligosaccharides, as

indicated by mannose directed ConA lectin binding, were evenly distributed

throughout the soft palate. However, dramatic distinguishable differences were

revealed between anterior and posterior regions, where O-linked oligosaccharides

were highly expressed in the latter as indicated by DBA, VVA, SBA and PNA

staining [22]. An apocrine mechanism of secretion by mucous cells in the salivary

gland has been excluded [43]; therefore, two reasons may be speculated to explain

the abovementioned heterogeneity in the soft palate. First, the epithelium covering

the soft palate has fewer layers in the posterior portion, and the thickness of the

glandular layer of the palatine gland is obviously smaller, which strikingly corre-

lated with presence of more abundant glycoproteins in that area. This suggests that

palatine glands located in the posterior portion, as a functional compensation,

produce expanded and elongated mucin by over-secretion of glycoproteins with

O-linked oligosaccharides that change the physiochemical properties of the mucin

by making it more viscous, with lower solubility and higher elasticity and adhe-

siveness. This in turn provides additional integrity to the soft palate mucosa from

any mechanical or chemical injury [44, 45]. The second speculation is inspired from

the suggestion that serous demilunar and central acinar cells might be the pheno-

type of a single secretory-cell type [46]. Accordingly, we observed that SBA, PNA

and sucWGA sometimes reacted to serous cells in addition to mucous cells during

the stages examined, while in the adult samples they showed higher affinity to

serous cells of the von Ebner gland. Therefore, the more abundant serous cells in the

posterior portion probably could have contributed to the production of glycopro-

teins and were subsequently expressed by lectin binding in the main acinar cells due

to glycosylation continuation of demilunes to main mucous cells.

15.3 Conclusions

Lectin histochemistry has the ability of identifying oligosaccharide-specific resi-

dues in histological sections and delineating information about the structure of

carbohydrate-rich macromolecules. The method is useful for the analysis of

palatal gland development. The present observations revealed that glycoprotein

distribution during palatine gland development varies with age. This variation in

staining properties could be related to the maturation process in the secretory cycle

of the palatine mucous glands. Moreover, the heterogeneous distribution of

glycoconjugates between posterior and anterior glands, which is probably due to

different functional demands, expands our understanding of the role of salivary

glands in oral function. Further studies are needed to elaborate further

physiochemical and rheological differences.

15 Histochemical Characteristics of Glycoproteins During Rat Palatine Gland. . . 189



Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

References

1. Kitagawa K, Hayasaka S, Matsunou H, Nagaki Y. Presumed minor salivary gland secretion in

a patient with a history of oral mucous membrane graft. Am J Ophthalmol. 2003;136(2):374–5.

2. Sivarajasingam V, Drummond JR. Measurements of human minor salivary gland secretions

from different oral sites. Arch Oral Biol. 1995;40(8):723–9.

3. Hand AR, Pathmanathan D, Field RB. Morphological features of the minor salivary glands.

Arch Oral Biol. 1999;44 Suppl 1:S3–S10.

4. Leeson CR, Leeson TS. Fine structure and possible secretory mechanism of rat palatine glands.

J Dent Res. 1968;47(4):653–62.

5. Nakamura S, Takahashi S, Wakita M, Morita M. Postnatal growth of the rat palatine gland.

Tissue Cell. 2001;33(6):614–20.

6. Srivastava HC, Vyas DC. Postnatal development of rat soft palate. J Anat. 1979;128

(Pt 1):97–105.

7. Nielsen G, Westergaard E. The development of the palatine glands in human foetuses with a

crown-rump length of 32–145 mm. Acta Odontol Scand. 1971;29(2):231–50.

8. Shinzato K, Takahashi S, Wakita M, Morita M. Prenatal development of the palatine gland of

rats. Tissue Cell. 2004;36(2):115–20.

9. Eliasson L, Carlen A. An update on minor salivary gland secretions. Eur J Oral Sci. 2010;118

(5):435–42.

10. Crawford JM, Taubman MA, Smith DJ. Minor salivary glands as a major source of secretory

immunoglobin A in the human oral cavity. Science. 1975;190(4220):1206–9.

11. Dawes C, Wood CM. The contribution of oral minor mucous gland secretions to the volume of

whole saliva in man. Arch Oral Biol. 1973;18(3):337–42.

12. Buchner A, Merrell PW, Carpenter WM. Relative frequency of intra-oral minor salivary gland

tumors: a study of 380 cases from northern California and comparison to reports from other

parts of the world. J Oral Pathol Med. 2007;36(4):207–14.

13. Carrillo JF, Maldonado F, Carrillo LC, Ramirez-Ortega MC, Pizano JG, Melo C,

et al. Prognostic factors in patients with minor salivary gland carcinoma of the oral cavity

and oropharynx. Head Neck. 2011;33(10):1406–12.

14. Chuiwa H, Sakamoto K, Umeno H, Nakashima T, Suzuki G, Hayafuchi N. Minor salivary

gland carcinomas of oral cavity and oropharynx. J Laryngol Otol Suppl. 2009;31:52–7.

15. Hyam DM, Veness MJ, Morgan GJ. Minor salivary gland carcinoma involving the oral cavity

or oropharynx. Aust Dent J. 2004;49(1):16–9.

16. Kakarala K, Bhattacharyya N. Survival in oral cavity minor salivary gland carcinoma.

Otolaryngol Head Neck Surg. 2010;143(1):122–6.

17. Lee SY, Shin HA, Rho KJ, Chung HJ, Kim SH, Choi EC. Characteristics, management of the

neck, and oncological outcomes of malignant minor salivary gland tumours in the oral and

sinonasal regions. Br J Oral Maxillofac Surg. 2013;51(7):e142–7.

18. Matsuzaki H, Yanagi Y, Hara M, Katase N, Asaumi J, Hisatomi M, et al. Minor salivary gland

tumors in the oral cavity: diagnostic value of dynamic contrast-enhanced MRI. Eur J Radiol.

2012;81(10):2684–91.

19. Spiro RH. Salivary neoplasms: overview of a 35-year experience with 2,807 patients. Head

Neck Surg. 1986;8(3):177–84.

20. Spiro RH, Thaler HT, Hicks WF, Kher UA, Huvos AH, Strong EW. The importance of clinical

staging of minor salivary gland carcinoma. Am J Surg. 1991;162(4):330–6.

190 Z. Hakami et al.



21. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Annu Rev Biochem.

1988;57:785–838.

22. Spicer SS, Schulte BA. Diversity of cell glycoconjugates shown histochemically: a perspec-

tive. J Histochem Cytochem. 1992;40(1):1–38.

23. Ferrari MC, Parini R, Di Rocco MD, Radetti G, Beck-Peccoz P, Persani L. Lectin analyses of

glycoprotein hormones in patients with congenital disorders of glycosylation. Eur J

Endocrinol. 2001;144(4):409–16.

24. Goodarzi MT, Turner GA. A lectin method for investigating the glycosylation of nanogram

amounts of purified glycoprotein. Glycoconj J. 1997;14(4):493–6.

25. Hayes CA, Doohan R, Kirkley D, Leister K, Harhen B, Savage AV, et al. Cross validation of

liquid chromatography-mass spectrometry and lectin array for monitoring glycosylation in

fed-batch glycoprotein production. Mol Biotechnol. 2012;51(3):272–82.

26. Kottgen E, Hell B, Muller C, Tauber R. Demonstration of glycosylation variants of human

fibrinogen, using the new technique of glycoprotein lectin immunosorbent assay (GLIA). Biol

Chem Hoppe Seyler. 1988;369(10):1157–66.

27. Patwa TH, Zhao J, Anderson MA, Simeone DM, Lubman DM. Screening of glycosylation

patterns in serum using natural glycoprotein microarrays and multi-lectin fluorescence detec-

tion. Anal Chem. 2006;78(18):6411–21.

28. Zhou Y, Lu K, Pfefferle S, Bertram S, Glowacka I, Drosten C, et al. A single asparagine-linked

glycosylation site of the severe acute respiratory syndrome coronavirus spike glycoprotein

facilitates inhibition by mannose-binding lectin through multiple mechanisms. J Virol.

2010;84(17):8753–64.

29. Okamoto K, Takada K, Ikeda R, Aiyama S. Changes in the properties of secretory granules in

the palatine gland acinar cells of the postnatally developing rat. Okajimas Folia Anat Jpn.

2008;85(2):49–56.

30. Green DR, Embery G. Isolation, chemical and biological characterization of sulphated glyco-

proteins synthesized by rat buccal and palatal minor salivary glands in vivo and in vitro. Arch

Oral Biol. 1987;32(6):391–9.

31. Samar ME, Avila RE, De Fabro SP, Porfirio V, Esteban FJ, Pedrosa JA, et al. Histochemical

study of magellanic penguin (Spheniscus magellanicus) minor salivary glands during postnatal

growth. Anat Rec. 1999;254(2):298–306.

32. Samar ME, Avila RE, Esteban FJ, Olmedo L, Dettin L, Massone A, et al. Histochemical

and ultrastructural study of the chicken salivary palatine glands. Acta Histochem. 2002;104

(2):199–207.

33. Hakami Z, Kitaura H, Honma S, Wakisaka S, Takano-Yamamoto T. Lectin histochemistry of

palatine glands in the developing rat. Acta Histochemica. 2014;116(4):596–605.

34. Monsigny M, Roche AC, Sene C, Maget-Dana R, Delmotte F. Sugar-lectin interactions: how

does wheat-germ agglutinin bind sialoglycoconjugates? FEBS. 1980;104(1):147–53.

35. Adi MM, Chisholm DM, Waterhouse JP. Histochemical study of lectin binding in the human

fetal minor salivary glands. J Oral Pathol Med. 1995;24(3):130–5.

36. Sato M, Yonezawa S, Uehara H, Arita Y, Sato E, Muramatsu T. Differential distribution of

receptors for two fucose-binding lectins in embryos and adult tissues of the mouse. Differen-

tiation. 1986;30(3):211–9.

37. Redman RS, Sreebny LM. Morphologic and biochemical observations on the development of

the rat parotid gland. Dev Biol. 1971;25(2):248–79.

38. Jacoby F, Leeson CR. The postnatal development of the rat submaxillary gland. J Anat.

1959;93(2):201–16.

39. Tabak LA. In defense of the oral cavity: structure, biosynthesis, and function of salivary

mucins. Annu Rev Physiol. 1995;57:547–64.

40. Klein PB, Weilemann WA, Schroeder HE. Structure of the soft palate and composition of the

oral mucous membrane in monkeys. Anat Embryol. 1979;156(2):197–215.

41. Lambert R, Pansu D, Berard A, Vitani C, Dechelette MA. Histochemical studies on human

mucous secreting glands in the soft palate, uvula and esophagus. Digestion. 1973;8(2):110–9.

15 Histochemical Characteristics of Glycoproteins During Rat Palatine Gland. . . 191



42. Yonezawa S, Nakamura T, Tanaka S, Sato E. Glycoconjugate with Ulex europaeus agglutinin-

I-binding sites in normal mucosa, adenoma, and carcinoma of the human large bowel. J Natl

Cancer Inst. 1982;69(4):777–85.

43. Tandler B. Structure of mucous cells in salivary glands. Microsc Res Tech. 1993;26(1):49–56.

44. Tabak LA, Levine MJ, Mandel ID, Ellison SA. Role of salivary mucins in the protection of the

oral cavity. J Oral Pathol. 1982;11(1):1–17.

45. Amerongen AV, Bolscher JG, Veerman EC. Salivary mucins: protective functions in relation

to their diversity. Glycobiology. 1995;5(8):733–40.

46. Triantafyllou A, Fletcher D, Scott J. Glycosylations in demilunar and central acinar cells of the

submandibular salivary gland of ferret investigated by lectin histochemistry. Arch Oral Biol.

2004;49(9):697–703.

192 Z. Hakami et al.



Chapter 16

The Role of NFIC in Regulating

Odontoblastic Differentiation of Human

Molar Stem Cells from Apical Papilla

Yuming Zhao, Shuo Gao, and Lihong Ge

Abstract Objective: The objective of this study was to investigate the regulating

role of NFIC in odontoblastic differentiation of human stem cells from apical

papilla (hSCAPs).

Materials and methods: The expression of NFIC in young permanent tooth was

observed by immunohistochemical (IHC) staining and its expression levels both in

young and mature permanent teeth were detected by western blot. hSCAPs were

transplanted into the dorsum of immunocompromised mice, and immunohisto-

chemical analysis was performed after 8 weeks. Real-time polymerase chain

reaction and western blot were used to explore the expression pattern of NFIC

and other odontogenic related genes during in vitro hSCAPs osteogenic

differentiation.

Results: During molar root formation, NFIC expression was restricted within the

odontoblasts and preodontoblasts of human molars. The expression of NFIC in

apical papilla was at a very low level, and the amounts of NFIC protein in coronal

pulp were more than that in root pulp in both young and mature permanent teeth.

Odontoblast-like cells were positive to NFIC immunohistochemistry staining in

dentin-pulp complexes formed after hSCAPs transplantation. NFIC expression was

concomitant to dentin sialoprotein (DSP) at early stage of osteogenic differentiation

of hSCAPs.

Conclusion: Our results suggest that NFIC is involved in the regulation of

hSCAPs differentiation into odontoblasts during root development of the young

permanent teeth and could be used as an early marker of odontoblast differentiation.
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16.1 Introduction

The formation of a dental root is the result of the interaction between the

epithelial root sheath, dental papilla and dental follicle. Dental ectomesenchymal

cells from the dental papilla differentiate into odontoblasts to produce a dentin

layer that forms the bulk of the tooth. However, the molecular mechanisms

underlying ectomesenchymal cells differentiation into odontoblast are not well

understood.

The nuclear factor I (NFI) family of transcription-replication factors [1]

encodes four members (Nfia, Nfib, Nfic, Nfix) in mammals, which are expressed

in almost every tissue and organ [2]. However, mice with disruptions in each of

the NFI genes have been found to display distinct phenotypes and developmental

defects primarily in the nervous system (Nfia) [3], lung and brain (Nfib) [4, 5],
and brain and skeleton (Nfix) [6], indicating different functions for each NFI

subtype. Specifically, loss of Nfic is the first mouse mutation to affect the

development of dental roots. Studies have demonstrated that Nfic null mice

exhibit abnormal roots of molar teeth containing aberrant odontoblasts and

abnormal formation of dentin, but normal crowns. NFIC should be necessary

for root development [7–10]. However, the mechanism by which disruption of

the Nfic gene leads to abnormal root formation remains unclear. Also, the

relationship between NFIC and the formation of human dental roots has not

been reported.

In present study, we focused on the root development of human molars and the

differentiation of stem cells from the apical papilla (SCAPs). We sought to deter-

mine NFIC expression in young permanent human teeth and in the mineralization

of human SCAPs.

16.2 Materials and Methods

16.2.1 Ethical Approval of the Study Protocol
and Acquisition of Samples

The procedure to obtain healthy extracted teeth was approved by the Ethical

Committee of the Health Science Center of Peking University (Beijing, China)

(IRB00001052-11060). Patients provided written informed consent. Normal human

impacted third molars with an open apical foramen and closed apical foramen were

collected at a clinic in Peking University School and Hospital of Stomatology. The

study protocol of animal experimentation was approved by the Animal Ethics

Committee of Peking University (LA2012-58).
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16.2.2 Cell Culture and Induction of Mineralization

Apical papilla tissues separated gently from the end of human teeth were digested in

a solution of 3 mg/mL collagenase type I (Sigma-Aldrich, USA) and 4 mg/mL

dispase (Sigma-Aldrich) for 1 h at 37 �C. Cultures were maintained in α-modified

Eagle’s minimum essential medium (α-MEM; Gibco, USA) supplemented with

10 % fetal bovine serum (FBS; Hyclone, USA) in 5 % carbon dioxide at 37 �C. The
cells used were at passages 1–4.

Seventy to eighty percent confluent hSCAPs were cultured in differentiation

medium supplemented with 10 % FBS, 10 mmol/L β-glycerolphosphate, 50 mg/mL

ascorbate phosphate, 10 nmol/L dexamethasone, and 10 nmol/L 1,25-

dihydroxyvitamin D3 for 3 weeks. Cultures were fixed in 4 % paraformaldehyde.

Calcium deposition of the extracellular matrix was evaluated by staining with 1 %

alizarin red-S (Sigma-Aldrich).

16.2.3 Transplantation

Approximately 2.0� 106 in vitro-expanded hSCAPs mixed with 40 mg hydroxy-

apatite ceramic particles (Bio Osteon, China) were transplanted subcutaneously

into the dorsal surfaces of 10-week-old immunodeficient mice (CB-17/SCID;

Vitalriver, China) according to a method reported previously [11]. Transplants

were harvested 8 weeks after transplantation.

16.2.4 Immunohistochemical Staining
and Immunocytochemistry

Samples were fixed in 4 % paraformaldehyde, then decalcified in 10 % EDTA and

processed for embedding in paraffin. Immunohistochemical staining was under-

taken on 4 μm-thick tissue sections, which were deparaffinized and subsequently

hydrated to water, then quenched endogenous peroxidase activity. Sections were

incubated with anti-NFIC primary antibody (1:400 dilution. Abcam, UK), follow-

ing by consecutive incubations with a Polymer Detection System for IHC Staining

kit (Zhongshan Golden Bridge Biotechnology, China). Subsequently, sections were

visualized with a 3,30-diaminobenzidine tetrahydrochloride substrate kit

(Zhongshan Golden Bridge Biotechnology). The same passage of hSCAPs grown

to 80 % confluence on slides were immunocytochemically strained as described

above.
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16.2.5 RT-PCR Analysis

Tissues and cells were harvested and total RNA was isolated using TRIzol reagent

(Invitrogen), according to the manufacturer’s protocol. Isolated RNA was purified

by removing genomic DNA with a DNase I, RNase-free kit (Fermentas, Glen

Burnie, MD, USA). One microgram of total RNA from each group was used for

synthesis of cDNA using the AMV Reverse Transcriptase kit (Fermentas),

according to the manufacturer’s protocol. Semiquantitative real-time PCR was

performed using the ABI Prism 7000 Sequence Detection System (Applied

Biosystems, Carlsbad, CA, USA) with SYBR Green (Roche). All samples were

run in triplicate in 96-well plates, with each well containing 1.0 μL of cDNA diluted

1 in 20 to give a total reaction volume of 20 μL. Reactions were performed at 50 �C
for 2 min and then at 95 �C for 10 min, followed by 40 cycles of 15 s at 95 �C and

1 min at 60 �C. Primers were designed (Table 16.1). For data analysis, the levels of

target gene expression in samples relative to the level of expression in the control

samples were calculated using the comparative cycle threshold method (ΔΔCT).
The expression levels of target gene expression were normalized to the expression

of the reference gene GAPDH.

16.2.6 Western Blotting

The expression level of of NFIC and DSP proteins were measured by western blot.

Total protein was extracted from tissues and cells using radioimmunoprecipitation

assay (RIPA) lysis buffer containing a protease inhibitor cocktail (Applygen,

Beijing, China), according to the manufacturer’s instructions. Protein levels were

calculated using a bicinchoninic acid (BCA) protein assay kit (Thermo Scientific,

Table 16.1 Real-time PCR primer sequences

Gene symbol Primer sequence

GAPDH Forward 50-GGAGCGAGATCCCTCCAAAAT-30

Reverse 50-GGCTGTTGTCATACTTCTCATGG-30

NFIC Forward 50-ACCTGGCATACGACCTGAAC-30

Reverse 50-TCCATCGAGCCCGATTTGTG-30

DMP1 Forward 50-CACTCAAGATTCAGGTGGCAG-30

Reverse 50-TCTGAGATGCGAGACTTCCTAAA-30

ALP Forward 50-ATGGGATGGGTGTCTCCACA-30

Reverse 50-CCACGAAGGGGAACTTGTC-30

OCN Forward 50-CACTCCTCGCCCTATTGGC-30

Reverse 50-CCCTCCTGCTTGGACACAAAG-30

COLLA I Forward 50-GTGCGATGACGTGATCTGTGA-30

Reverse 50-CGGTGGTTTCTTGGTCGGT-30
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Beijing, China). Equal amounts of protein samples were separated by electropho-

resis through a 12 % SDS polyacrylamide gel and transferred onto polyvinylidene

difluoride (PVDF) membranes (Millipore, Billerica, MA, USA). Blots were

blocked with 5 % skim milk, followed by incubation with the following primary

antibodies: mouse anti-NFIC (Abcam, Cambridge, UK), goat anti-DSP (Santa Cruz

Biotechnology, CA), and mouse anti-GAPDH (Abmart, Shanghai, China). Blots

were then incubated with goat anti-mouse or anti-goat secondary antibodies con-

jugated to horseradish peroxidase (Origene, Beijing, China) and visualized by

enhanced chemiluminescence (Applygen).

16.3 Results

16.3.1 NFIC Expression in Tooth Tissue

To determine the expression pattern of NFIC during molar root formation, we

conducted immunohistochemical staining for human molar root. NFIC expression

was restricted within odontoblasts and preodontoblasts of the developing root

(Fig. 16.1).

In order to quantify NFIC expression in different parts of human dental pulp, the

coronal pulp, root pulp and apical papilla of young permanent teeth, as well as

crown pulp and root pulp of mature permanent teeth were isolated and western blot

was performed. The results showed that NFIC expressed in apical papilla at a very

low level, and the amounts of NFIC protein in coronal pulp were more than that in

root pulp in both young and mature permanent teeth. The expression of NFIC in

coronal pulp of young permanent teeth was extremely strong (Fig. 16.2).

Fig. 16.1 Immunohistochemistry shows NFIC expression in developing root of a human third

molar (a). Figure (b) is a higher magnification of the boxed region of Fig (b). D dentin, Od
odontoblasts, PD predentin, P pulp
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16.3.2 NFIC Expression in hSCAPs Transplantation

To study the expression of NFIC during odontoblast differentiation in vivo, the

hSCAPs with hydroxyapatite carrier were transplanted into immunocompromised

mice. Eight weeks after transplantation, the hSCAPs generated dentin-like struc-

tures. The odontoblast-like cells lined a layer along the surface of dentin-like

structures and displayed protruding cytoplasmic processes into the dentinal matrix,

which interfaced with a pulp-like interstitial tissue infiltrated with blood vessels.

Odontoblast-like cells were positive to NFIC immunohistochemistry straining in

dentin-pulp complex formed ex vivo (Fig. 16.3).

Fig. 16.2 Quantification of NFIC expression in coronal pulp, root pulp and apical papilla by

western blot. (a) Young permanent teeth. (b) Mature permanent teeth

Fig. 16.3 Immunohistochemical straining of NFIC in dentin-pulp complex ex vivo at 8 weeks

after hSCAPs transplantation into the dorsum of immunocompromised mice (brown indicated

positive staining). (a) The dentin-like structure (d) surfaces are lined with a layer of odontoblast-

like cells (od), surrounding pulp-like tissue with blood vessels (bv). (b) Odontoblast-like cells

displayed protruding cytoplasmic processes into the dentinal matrix
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16.3.3 The Expression of NFIC and Odontogenic Related
Genes During Osteogenic Differentiation of hSCAPs

During tooth development, SCAPs differentiate into odontoblasts and form root

dentin. In order to determine how the related genes express when hSCAPs differ-

entiate in vitro and gain insight into the mechanism of differentiation, the cells were

cultured in mineralization medium for up to 3 weeks and the expression of

odontoblast differentiation markers were analyzed by western blot and real-time

polymerase chain reaction (PCR). The formation of mineralized nodules was

evaluated by alizarin red-S staining.

Alizarin red-S staining revealed the presence of small, round mineralized nod-

ules from days 6 to 21 after the induction of differentiation (Fig. 16.4a). Expression

of NFIC increased from days 6 to 12 then decreased at day 14, and the expression of

dentin sialoprotein (DSP) showed similar pattern as NFIC by western blot

(Fig. 16.4b). The results of our real-time PCR analysis revealed that the expression

levels of ALP, OCN increased significantly from days 12 and continued to increase

through day 25. The expression of DMP-1 increased significantly at day 6 and kept

at high level throughout the process, while the expression level of COLLA I

increased significantly after days 21 (Fig. 16.4c).

Fig. 16.4 Osteogenic differentiation of hSCAPs. (a) Alizarin red-S staining showed mineralized

nodule formation from days 6 to 21 after the induction of differentiation. (b) The expression of

NFIC and DSP were evaluated by western blot analysis. (c) The expression of ALP, OCN, COLLA
I and DMP1 were evaluated by real-time PCR.*P< 0.05. GAPDH used as a loading control
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16.4 Discussion

Previous studies showed that disruption of Nfic caused major defects in postnatal

murine tooth development, the most striking defect being loss of molar root

formation. It is generally believed that NFIC is one of the molecules known to be

required for root formation-the key late event in tooth morphogenesis [12–

14]. However most studies obtained conclusions based on experiments with other

non-molar root tissues (such as jaw, incisor) or cell lines of mice [11]. In order to

further explore the function of Nfic on root development, we use human young

molar stem cells from apical papilla (SCAPs) as our research objectives, which can

differentiate into the odontoblasts located in root portion to generate root dentin.

In this study, we found that NFIC in situ expression in tooth tissues showed

interesting pattern. NFIC expression appeared most strongly within the odonto-

blasts and preodontoblasts though can be seen in a wide range of tissues, including

ameloblasts, periodontal ligament and weakly in the pulp. Moreover the level of

NFIC protein in coronal pulp was higher than in root pulp. However it is well

known that the main tooth defect of Nfic null mice existed not in the crown but in

abnormal roots of molar teeth. Therefore, we speculate that developmental mech-

anism maybe different between root and crown in human molar, and NFIC is

probably essential for root development even though it is not the site of the highest

NFIC expression. Moreover, it was predicted that osteodentin formation during

dentin repair may be the result of pulp cells that do not express Nfic gene, given the
morphological similarities of repair dentin with the abnormal roots dentin found in

Nfic-deficient mice [13]. Thus, we proposed that primary dentin and secondary or

reparative dentin may have different formational mechanisms.

To study the expression of NFIC during odontoblast differentiation ex vivo,

hSCAPs with hydroxyapatite carriers were transplanted into immunocompromised

mice. After eight weeks the hSCAPs generated dentin-like structures. Odontoblast-

like cells aligned in a layer along the surface of dentin-like structures were positive

to NFIC immunohistochemical straining, which conceivably imply that NFIC

participates in the hSCAPs differentiation ex vivo and the generation of

osteodentin. It’s well established that HERS regulates the formation of organized

root dentin through epithelial-mesenchymal interactions. The absence of HERS

during the formation of dentin-like structures would cause odontoblast progenitor

cells to form osteodentin without organized dentinal tubules, that resembled repair

dentin [15]. The mechanisms behind the osteodentin formation and odontoblast-

like cells differentiation remain uncertain. In summary, NFIC may work in the

common molecular regulation mechanism sharing by the development and repair of

dentin. Further research will be required to identify these different pathways at

various stages of dentin formation and the relationship between the expression and

function of NFIC.

It has previously been reported that Nfic-deficient mice showed abnormal

odontoblasts with a round shape, no odontoblastic processes and no polarity [16]

and the ectomesenchymal cells (EM) near the abnormal root showed no expression
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of DSPP mRNA [13]. The odontoblasts of mice incisors exhibited a decreased level

of DSP expression that is a product of DSPP-a dentin-specific gene. In the present

study, NFIC and DSP had consistent expression pattern, both increased at early

stage of hSCAPs osteogenic differentiation, and decreased at late stage. While the

expression of osteogenic differentiation markers Alp, OCN and the main compo-

nent of the dentin collagenous protein framework COLLA I, were gradually

increased during later period of differentiation. The marker gene of odontoblast

differentiation DMP-1 showed sustained high expression. Based on these findings,

we suggest that NFIC and DSPP are likely to have a more compact expression and

functional relationship, and NFIC may be another dentin-specific marker during

human odontoblast differentiation.

In conclusion, NFIC expression was restricted to the odontoblasts,

pre-odontoblasts and predentin of human molars. NFIC is involved in the regulation

of hSCAPs differentiation into odontoblasts during root development of the young

permanent teeth in a stage- and tissue-specific manner and could be regarded as an

early marker of odontoblast differentiation.
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Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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Chapter 17

Microbicidal Activity of Artificially

Generated Hydroxyl Radicals

Hong Sheng, Keisuke Nakamura, Taro Kanno, Keiichi Sasaki,

and Yoshimi Niwano

Abstract The hydroxyl radical, one of the reactive oxygen species, has one

unpaired electron in the structure, so that it tends to deprive other substances of

an electron which is so-called oxidation. It is known that hydroxyl radicals pro-

duced by immunological response kill invading microorganisms by the oxidation.

Besides the immune system, it has been demonstrated that hydroxyl radicals play an

important role in the bactericidal action of antibiotics. In this context, we have

conducted a research to develop disinfection techniques utilizing artificially gen-

erated hydroxyl radicals. We adopted photolysis of H2O2, sonolysis of water and

the other photo-chemical reaction as generators of hydroxyl radicals. A series of

studies demonstrated that the microbicidal activity of hydroxyl radicals was suffi-

cient to kill bacteria in an experimental biofilm as well as planktonic bacteria and

fungi within a short-treatment time. In addition, the safety aspect is confirmed by an

in vivo study and a literature review. Thus, it is suggested that disinfection

treatment utilizing artificially generated hydroxyl radicals can be applicable to

medical/dental therapy as novel disinfection treatments.

Keywords Antimicrobial activity • H2O2 • Hydroxyl radicals • Oxidation • Pho-

tolysis • Sonolysis
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17.1 Introduction

Dental caries and periodontitis, two major dental diseases, are infectious diseases

caused by pathogenic bacteria found in dental plaque [1, 2]. Thus, effective removal

of the dental plaque (i.e. bacterial biofilm) and maintaining oral hygiene are the

keys in prevention and treatment. In dental practice, mechanical removal of dental

plaque from the lesion site is the primary treatment modality because the effect of

chemical disinfection is rather weak against biofilm in which bacteria are protected

from such chemicals by a matrix [3, 4]. However, it is sometimes difficult to

mechanically remove the dental plaque properly at narrow or anatomically complex

lesion sites in oral cavity. Thus, an adjunctive treatment with antiseptics as well as

local and systemic antimicrobial chemotherapy is performed in some cases. How-

ever, these treatments possess a risk of adverse effect caused by e.g. leakage of

chemical solution and induction of bacterial drug resistance [5, 6]. Therefore, it is

expected to develop a novel disinfection treatment which can be used in combina-

tion with conventional mechanical treatment with minimum adverse effect.

Application of antibiotics and antiseptics to the treatment and the prevention of

dental infectious diseases has been studied. For example, it has been reported that

systemic administration of metronidazole and amoxicillin together with scaling and

root planing (SRP) improves the periodontal condition than SRP alone [7, 8].

However, the systemic administration of antibiotics is limited to a treatment of

severe periodontitis because of the risk of adverse effect. Local application

of antibiotics known as local drug delivery system (LDDS) has also been studied

to treat periodontitis. The antibiotics in the form of gel, such as doxycycline and

minocycline, are delivered to periodontal pockets after SRP. However, since there

is a contradiction in the clinical benefit of LDDS [9–13], the clinical application is

also limited to specific cases.

Besides the antibiotics, antiseptics have also been studied for periodontal ther-

apy. For instance, mouthrinse with chlorhexidine (CHX) is a most widely studied as

an adjunctive treatment for periodontitis [14]. It has been reported that CHX can

effectively prevent plaque accumulation [15]. However, repeated use of CHX

results in the discoloration of the teeth as well as the tongue, and in the taste

perturbation [16, 17]. Thus, mouthrinse with CHX is limited to the case where

meticulous plaque control is required, such as plaque control during treatment of

severe periodontitis or after periodontal surgery [18]. Accordingly, although CHX

has been proven effective as a preventive agent, it has not been recommended as a

therapeutic agent in periodontal therapy [14]. The other example of disinfectant

used as a mouthrinse is hydrogen peroxide (H2O2) which is widely used as a

disinfectant for skin wound at a concentration of �3 %. Based on the clinical

studies, mouthrinse with H2O2 apparently prevents plaque accumulation [19–21]

though its plaque prevention effect is weaker than that of CHX [22]. Thus,

mouthrinse with H2O2 is rarely used in dental therapy.

Photodynamic therapy (PDT), a newly developed chemical disinfection treat-

ment, has been applied to the treatment of periodontitis over the last decade
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[23]. The PDT consists of light, oxygen and a photosensitizer. Once the photosen-

sitizer is irradiated with light of a specific wavelength, it absorbs photons and

transfers the excitation energy to molecular oxygen which is in turn metamor-

phosed to its diamagnetic form, singlet oxygen [24]. Since singlet oxygen is

unstable and has high reactivity, it oxidizes bacterial cell components resulting in

cell death [23, 25]. The advantage of PDT is that it exerts bactericidal activity only

when a photosensitizer is irradiated with light. Without irradiation, photosensitizer

does not exert cytotoxic effect, indicating that residual toxicity after the treatment is

negligible. Furthermore, it is suggested that the PDT does not induce bacterial

resistance because singlet oxygen oxidize bacterial cell components non-selectively

[26, 27]. This is a major advantage in comparison with antibiotics. Based on the

bactericidal activity of PDT demonstrated by in vitro studies [28–31], the thera-

peutic effect of PDT following SRP has been studied expecting an additional effect.

However, the clinical results are controversial between the studies [32–35]. Thus,

clinical benefit of using PDT as an adjunctive treatment in periodontal therapy is

still unclear.

To solve the problems of chemical disinfection treatment, novel disinfection

treatment techniques in which artificially generated hydroxyl radicals kill bacteria

have been developed in our laboratory. Our recent study demonstrated that

hydroxyl radicals would not induce bacterial resistance as singlet oxygen does

not [36]. In addition, hydroxyl radicals have higher oxidation power than singlet

oxygen [25], resulting in higher antimicrobial activity. In this chapter, the genera-

tion systems of hydroxyl radicals and their microbicidal activity are discussed

based on our recent works.

17.2 Application of Hydroxyl Radicals to Disinfection

Treatment

The hydroxyl radical is one of the reactive oxygen species (ROS). Since the

hydroxyl radical has one unpaired electron in the structure, it tends to deprive

other substances of an electron which is so-called oxidation [37]. It is well-known

that hydroxyl radicals are involved in various biochemical reactions, and hydroxyl

radical-induced oxidative damage on cells and tissues leads to specific diseases if

hydroxyl radicals are generated chronically [38, 39]. On the other hand, the

cytotoxic effect of hydroxyl radicals is also used in a positive way. For instance,

hydroxyl radicals are produced by immunological response to kill invading micro-

organisms [40, 41]. Besides the immune system, it has been demonstrated that

ROS, especially hydroxyl radicals would play an important role in the mechanism

of bacterial cell death induced by antibiotics via the reaction with primary target

followed by Fenton like reaction [42, 43]. In this context, we have conducted

research to develop novel disinfection techniques utilizing artificially generated

hydroxyl radicals.
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The key for the use of hydroxyl radicals as a disinfectant in vivo is to control the

yield and the exposure time. Otherwise hydroxyl radicals will kill not only bacteria

but also normal cells causing adverse reactions to the body. These factors are

largely dependent on the generation systems of hydroxyl radicals. Hydroxyl radi-

cals are generated basically by either one-electron reduction of H2O2 or homolytic

fission of chemical bond [37]. Representative examples are summarized in

Table 17.1.

To control the yield of hydroxly radicals, the reaction of hydroxyl radical gener-

ation system should be terminated appropriately when necessary. From this view-

point, reaction involving homolytic fission is advantageous because the reaction can

be terminated by cessation of irradiation of γ-ray, ultraviolet ligh or ultrasound. Since
hydroxyl radicals have a very short lifetime (approximately 10�9 s) [44, 45, 25],

residual toxicity would be negligible after the termination of reaction. On the

other hand, it might be difficult to control the reaction of one-electron reduction of

H2O2 during the disinfection treatment. The chemicals involved in the reaction

of homolytic fission are basically safe because they are only H2O and H2O2. Indeed,

a subcommittee of the US Food and Drug Administration concluded that H2O2 as a

disinfectant is safe at concentrations of up to 3 % [46]. Although H2O2 is also one of

ROS, it is expected that hydroxyl radicals can kill bacteria more effectively than

H2O2 because hydroxyl radicals have much higher reactivity and oxidative power

[47]. Considering the safety aspect of reaction energy, exposure of normal tissue to

γ-ray should be avoided. Thus, radiolysis of H2O cannot be applied to disinfection

treatment in vivo. The irradiation of ultraviolet light (UV), which is electromagnetic

wave with a wavelength of <400 nm, to normal tissue would also cause adverse

effect especially when UV light with a short wavelength known as UVB (280–

315 nm) and UVC (100–280 nm) is used [48]. Besides UV light, we have found

that visible blue light (wavelength: around 400 nm) can also photolyze H2O2 and it

will probably be used without adverse effects as long as the treatment time is not so

long. As for ultrasound irradiation, ultrasound device with a frequency of <5 MHz

has been utilized in medical diagnostic imaging. Thus, the frequency of ultrasound

itself is supposed to be safe. Therefore, we have been studying photolysis ofH2O2 and

sonolysis of H2O to develop new disinfection techniques to treat infectious diseases.

Table 17.1 Hydroxyl radical generation systems [37]

One-electron reduction of H2O2

Fenton reaction Fe2 + +H2O2!Fe3+ + ·OH+OH�

Harber–Weiss reaction O2
·�+H2O2! (metal catalyst)!O2+

·OH+OH�

Reaction with

semiquinone

tetrachlorosemiquinone +H2O2! tetrachloroquinone + ·OH+OH�

Homolytic fission

Radiolysis of water H2O+ γ� ray!H· + ·OH

Photolysis of H2O2 H2O2 +UV! 2·OH

Sonolysis of water H2O+ ultrasound!H· + ·OH
・OH hydroxyl radical, O2

・� superoxide anion radical, UV ultraviolet light
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17.2.1 Photolysis of H2O2

In dental and medical fields, the bactericidal activity of 3 % H2O2 is well recog-

nized and used as a disinfectant. However, the bactericidal effect is not sufficient to

treat periodontal diseases as discussed above. To improve the bactericidal activity,

we studied the effect of visible blue light irradiation of H2O2 (i.e. photolysis of

H2O2). Ikai et al. used a laser with a wavelength of 405 nm at an irradiance of

940 mW/cm2 and demonstrated that the yield of hydroxyl radicals generated by

photolysis of H2O2 increased with laser irradiation time [49]. The laser irradiation

of bacterial suspensions in 1 M H2O2 (corresponds to approximately 3 % H2O2)

resulted in a >4-log reduction of the viable counts of bacteria, such as Staphylo-
coccus aureus, Aggregatibacter actinomycetemcomitans, Streptococcus mutans
and Enterococcus faecalis, within 3 min of treatment [49]. Furthermore, treatment

of S. mutans in an experimental biofilm also resulted in a>5-log reduction of viable

counts within 3 min [49]. Concerning the periodontal pathogens other than

A. actinomycetemcomitans, Ikai et al. also investigated the bactericidal effect of

photolysis of H2O2 on Porphyromonas gingivalis. It was demonstrated that pho-

tolysis of 500 mM H2O2 killed P. gingivalis in an experimental biofilm with a >5-

log reduction of viable counts within 30 s [50]. As for H2O2 solution, Oyamada

et al. compared the bactericidal activity of photoysis of oxydol products (2.5–3.0 %

H2O2 solution), which is an over-the-counter drug with quality guaranteed by

Japanese Pharmacopoeia, to substitute them for H2O2 of reagent grade [51]. It

was demonstrated that any of the oxydol products that have been already approved

by an authority can be used for the disinfection technique in terms of bactericidal

activity. Thus, based on these findings, we have been developing a therapeutic

device for the treatment of periodontitis, and a clinical trial will be conducted in the

near future. In the therapeutic device, H2O2 is released from the forefront of scaler

tip of the device to the lesion site concomitantly with laser irradiation through an

optical fiber during ultrasound scaling (Fig. 17.1).

Nakamura et al. conducted a kinetic analysis and demonstrated that hydroxyl

radicals generated by photolysis of H2O2 directly reacted with microorganisms

[52]. In addition, it was demonstrated that the catalase activity of microorganisms

influenced the microbial resistance to oxidative stress induced by photolysis of

H2O2. Nonetheless, Candida albicans, a catalase positive yeast-like fungus whose
catalase activity is more potent than that of catalase positive bacteria such as

S. aureus could also be killed with a >4-log reduction of viable counts within

10 min when treated with the photolysis of 250 mM H2O2 using LEDs at an

irradiance of 80 mW/cm2. This finding suggests that photolysis of H2O2 can

effectively kill not only bacteria but also fungi. Shirato et al. evaluated the effect

of thermal energy on the yield of and the bactericidal action of hydroxyl radicals

generated by photolysis of H2O2 [53]. The results demonstrated that thermal energy

accelerated the generation of hydroxyl radicals by photolysis of H2O2, which in turn

resulted in a synergistic bactericidal effect of hydroxyl radicals and thermal energy.

When photolysis of H2O2 was performed at 55 �C, S. aureus and E. faecalis were
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killed with a >5-log reduction of viable counts within 1 min even though the

irradiance of light was 110 mW/cm2 and the concentration of H2O2 was 500 mM.

This synergistic effect will be beneficial especially when it comes to cleaning of

medical instruments or dental prostheses which can tolerate the temperature of

55 �C. Based on these findings, Kanno et al. applied photolysis of H2O2 to cleaning

of removable dentures and conducted a clinical test [54]. They demonstrated that

microorganisms in denture plaque were reduced by approximately 7-log within

20 min. In addition to the in vitro tests, in vivo antibacterial effect of photolysis of

H2O2 was proven effective. Hayashi et al. evaluated antibacterial activity of

photolysis of H2O2 on skin infection [55]. Infection of S. aureus was established
in the full-thickness skin wounds of immunosuppressed rats. Then, the wound was

treated by photolysis of 1 M H2O2. Two minutes treatment resulted in significant

reduction in viable counts in comparison with the treatment by H2O2 alone. Thus,

the disinfection technique based on photolysis of H2O2 is expected to be applied to

a wide range of fields other than treatment for periodontitis.

Besides the bactericidal activity, it was demonstrated that photolysis of H2O2

caused lag of regrowth of the surviving bacteria after the disinfection treatment,

known as the postantiboitic effect (PAE). Odashima et al. demonstrated that

photolysis of 250 mM H2O2 with a treatment time of 10 s significantly delayed

the regrowth of S. aureus colony on agar plate [56]. The PAE would be beneficial

because it contributes to giving time for host immune defense system to overcome

the infection. More importantly, it has been demonstrated that repeated treatment

by photolysis of H2O2 does not induce bacterial resistance to this disinfection

technique. Ikai et al. evaluated the risk of inducing bacterial resistance to disinfec-

tion treatment with photolysis of H2O2 using S. aureus, E. faecalis, Escherichia
coli, Streptococcus salivarius, Pseudomonas aeruginosa, S. mutans, and

Fig. 17.1 Schematic illustration of the therapeutic device for the treatment of periodontitis.

Mechanical removal of dental plaque by ultrasound scaling and chemical disinfection by hydroxyl

radical generated by photolysis of 3 % H2O2 are performed at the same time
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A. actinomycetemcomitans [36]. The antibacterial activity against any of the bac-

terial species tested was not affected by repeated exposure to the disinfection

treatment up to 40 times suggesting that the repeated treatment does not induce

bacterial resistance.

Regarding the safety aspect of the disinfection system, Yamada et al. conducted

an animal study in which histological analyses of oral mucosa and the full-thickness

skin wounds in rats treated by the disinfection technique with photolysis of 1 M

H2O2 were performed [57]. Since topical treatment had no detrimental effect on the

oral mucosa and the healing process of full thickness skin wounds, it is expected

that the acute locally injurious property of the disinfection technique is low.

Moreover, Kanno et al. assessed the risk of carcinogenicity by using the hydroxyl

radical for the treatment of oral infections by reviewing the literatures [58]. The

reviewed studies reported possible involvement of hydroxyl radicals in some sort of

chemically-induced mutagenicity and carcinogenicity. However, manifestation of

carcinogenicity requires chronic exposure to the carcinogens that generate hydroxyl

radicals, such as heavy metals. Thus, it was concluded that there is little or no risk of

carcinogenicity as long as the hydroxyl radical is used as a disinfectant for the short-

term treatment of oral cavity. Therefore, the disinfection treatment with photolysis

of H2O2 is expected to be a novel alternative to antiseptics and antibiotics.

17.2.2 Sonolysis of Water

The antimicrobial effect of ultrasound has been studied in various fields, such as

water treatment, food decontamination and medical disinfection [59]. The mecha-

nism of killing microorganisms is mainly due to cavitation effect in which tiny gas

bubbles formed in liquid medium by alternating compression and expansion collide

violently, creating shock waves in a localized region with high temperature

(5,500 �C) and pressure (50 MPa) [60]. When water is used as a liquid medium,

the shock wave produced by the cavitation effect fragments the molecules of H2O

into hydroxyl radicals and hydrogen atoms, which is so-called sonolysis of water

[61]. Then, the localized heating and pressure together with the free radicals

damage microorganisms resulting in cell death [60].

In this context, we examined fungicidal effect of ultrasound irradiation at a

frequency of 1.6 MHz [62] to develop a treatment of onychomycosis (i.e. fungal

nail infections). It was demonstrated that the ultrasound irradiation killed the

dermatophytes, such as Trichophyton mentagrophytes and Trichophyton rubrum,
with a yield of hydroxyl radicals that is proportion to ultrasound duration. In

particular, when the treatment was performed at 50 �C, the fungi were killed with

a 5-log of viable counts within 10 min. Thus, it is suggested that the ultrasound

irradiation and heat treatment exerted a combination effect in fungicidal activity.

This finding was in accordance with previous studies which evaluated the combi-

nation effect of heat and ultrasound on bactericidal activity [63, 64].
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As for application of sonolysis of water to dentistry, other research groups have

conducted studies. For instance, it has been demonstrated that ultrasound irradiation

of 1.5 % (450 mM) H2O2 using a device for endodontic treatment generates

hydroxyl radicals resulting in killing of E. faecalis [65]. However, the reduction

of bacterial number within the treatment time of 90 s was less than 1-log. Thus, the

clinical benefit of this treatment is still unclear. The other example is the ultrasonic

scaler used for periodontal therapy. It has been reported that hydroxyl radicals are

generated during scaling around ultrasonic scaler tip [66–68]. However, the role of

hydroxyl radicals generated by ultrasonic scaler is still unknown.

The microbicidal activity of ultrasound irradiation varies dependently on the

type of microorganisms treated (i.e. Gram-positive or negative bacteria, spore

forming bacteria, and fungi). In addition, it has been reported that the microbicidal

activity of ultrasound irradiation alone is relatively low (<1-log) and/or requires

extended irradiation time (~60 min) unless it is used at high intensity [69]. There-

fore, as suggested by Piyasena et al. [60], it would be beneficial to use ultrasound in

conjunction with other disinfection techniques, such as heat treatment, antiseptics

and antibiotics.

17.2.3 Other Hydroxyl Radical Generation Systems

More recently, we found that photo-irradiated polyphenolic compounds could

generate hydroxyl radicals as well as H2O2. Since it has been reported that

polyphenolic compounds exert antimicrobial effect via production of H2O2 by

auto-oxidation in a liquid medium [70, 71], we tried to enhance the antimicrobial

activity by means of exposure of polyphenolic compounds to blue light, which

enhances the H2O2 production through photo-oxidation of the compounds resulting

in hydroxyl radical production via photolysis of the resultant H2O2 (Fig. 17.2).

Nakamura et al. demonstrated that hydroxyl radicals were generated when gallic

acid, a polyphenolic compound, was irradiated with blue light (wavelength:

400 nm) at an irradiance of 80 mW/cm2 [72]. It was also demonstrated that S. aureus

Fig. 17.2 Schematic illustration of the mechanism of bacterial cell death induced by photo-

irradiation of polyphenolic compound
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was killed by the photo-irradiation of gallic acid with a >5-log reduction of viable

counts within 15 min. Since the bactericidal activity was attenuated by adding

hydroxyl radical scavengers, such as dimethyl sulfoxide and sodium formate, it is

suggested that the hydroxyl radical is the main contributor to the bactericidal effect.

Later, they showed similar bactericidal activity of photo-irradiated proantho-

cyanidin which is also a type of polyphenolic compounds [73]. The advantage of

this disinfection technique is that polyphenols are supposed to be safe for humans

because they are edible compounds naturally occurring in fruits, vegetables, nuts,

seeds, and flowers. In addition, since those polyphenolic compounds are notewor-

thy for its antioxidative activity [74, 75], they might alleviate the oxidative damage

in the tissue after the disinfection treatment. Therefore, it is expected that this

disinfection technique is applicable to the fields of medical and food sanitation.

Based on the findings described above, we studied the combination effect of

photolysis of H2O2 and photo-irradiation of proanthocyanidin. Since both disinfec-

tion techniques utilize the same light source (wavelength: around 400 nm), they can

be performed at once if the liquid contains H2O2 and proanthocyanidin. Ikai

et al. demonstrated that combination of H2O2 and proanthocyanidin worked syner-

gistically to kill S. mutans when photo-irradiated [76]. This synergistic effect would
probably contribute to shortening the treatment time and/or to reducing the con-

centration of H2O2 for more safety.

17.3 Summary

In the present review, we described our recent works on microbicidal effect of the

artificially generated hydroxyl radicals. As discussed above, the microbicidal

activity of hydroxyl radicals is sufficient to kill bacteria in an experimental biofilm

as well as planktonic bacteria and fungi within a short-treatment time. At the same

time, the safety aspect is also confirmed by an in vivo study and a literature review.

Therefore, they can be applicable as novel disinfection treatments in medical/dental

therapy. Further studies are in progress to understand the bactericidal mechanism of

each disinfection system and also of a combination of each system for the more

sophisticated medical devices.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 18

High Levels of Saturated Fatty Acids may
Exacerbate the Pathogenesis of Primary
Sjögren’s Syndrome

Yosuke Shikama, Naozumi Ishimaru, Yasusei Kudo, Rieko Arakaki,
Yukiko Bando, Nanako Aki, Yoshio Hayashi, and Makoto Funaki

Abstract Obesity and type 2 diabetes (T2D) are characterized by decreased insulin

sensitivity and higher concentrations of free fatty acids (FFAs) in the serum.

Among FFAs, saturated fatty acids, such as palmitate, have been reported to play

a role in obesity-associated inflammation. Primary Sjögren’s syndrome (SS) is an

autoimmune disease characterized by infiltration of inflammatory mononuclear

cells and destruction of epithelial cells in salivary and lacrimal glands. Although

epidemiological studies have suggested a link between primary SS and

dyslipidemia or T2D, little is known about the clinical significance of elevated

serum level of FFAs in primary SS. In salivary gland epithelial cells of patients with

primary SS, interleukin (IL)-6 production and α-fodrin degradation are increased.

IL-6 is one of the pro-inflammatory cytokines, and the cleavaged α-fodrin serves as
an auto-antigen. In this study, we demonstrate that palmitate, but not unsaturated

fatty acids, induces IL-6 production and α-fodrin degradation in human salivary

gland epithelial cell lines. However, palmitate did not induce these responses in

keratinocytes. Taken together, these results suggest that higher levels of saturated

fatty acids may promote the severity of primary SS.
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18.1 Introduction

Obesity is rapidly prevailing and is one of the major threats to global health these

days. The epidemic of obesity has resulted in dramatic increases in the prevalence

of obesity-associated diseases including type 2 diabetes (T2D) [1]. It has been

known that the level of free fatty acids (FFAs) in the blood is elevated in T2D

patients as well as animal models of T2D [2], which is attributable to enhanced

lipolysis in adipocytes and increased consumption of dietary lipids [3]. It has been

demonstrated that saturated fatty acids (SFAs), such as palmitate and stearate,

induce inflammatory responses presumably activation of Toll-like receptor (TLR)

4 and its downstream signaling pathway [4–6]. TLRs are one of the pattern

recognition receptors that play a key role in induction of innate and adaptive

immune response through recognition of pathogen-associated molecular patterns

(PAMPs) of microbes [7]. Furthermore, excess amount of FFAs in the blood can

lead to proinflammatory response and intracellular lipid accumulation, which could

also result in cellular dysfunction, so-called ‘lipotoxicity’. Lipotoxicity has been

reported in pancreatic β cells, hepatocytes, cardiomyocytes, and skeletal muscle

cells [8], but hardly reported in epithelial cells such as epithelial cells in exocrine

glands.

Primary Sjögren’s syndrome (SS) is an autoimmune disorder that is character-

ized by chronic dysfunction and destruction of exocrine glands, mainly the salivary

and lacrimal glands associated with chronic lymphocytic infiltrating lesions, that

leads to persistent dryness of eyes and mouth. Emerging evidence suggests that

salivary gland epithelial cells also actively participate in the inflammatory process

of SS [9]. For instance, interleukin (IL)-6, which is one of proinflammatory

cytokines known to serve as a B cell growth factor and a vital factor for plasma

cell survival [10], is upregulated in salivary gland epithelial cells of SS patients

[11–13]. IL-6 production is induced by activation of intracellular signaling cas-

cades including the mitogen-activated protein kinase (MAPK) pathways and the

nuclear factor-κB (NF-κB) pathway [14]. It has been also reported that α-fodrin,
which is a ubiquitously-expressed heterodimeric calmodulin-binding protein, is

cleaved during apoptosis by caspase-3 or μ-calpain to produce 120 kDa fragments

in salivary gland ductal epithelial cells. These α-fodrin-derived 120 kDa

fragments have been shown to serve as an auto-antigen in murine and human

primary SS [15, 16].

An association between obesity-related metabolic disorders and SS was first

reported in “pseudo-Sjögren syndrome” [17, 18], which was followed by an

experimental study in mice that reported a link between SS and diabetes [19].

Moreover, it was recently reported that primary SS patients had significantly higher

incidence of metabolic disorders, such as T2D [20, 21]. These observations

described above led us to hypothesize that SFAs may induce IL-6 secretion,

lipotoxicity, and α-fodrin degradation in human salivary gland epithelial cells. In

this report, we provide evidence that SFAs, but not unsaturated fatty acids, induce

IL-6 secretion mediated by activation of p38 MAPK and NF-κB activation.
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Palmitate also induces intracellular lipid accumulation and apoptosis, and α-fodrin
degradation. However, these SFAs-dependent responses observed in salivary gland

epithelial cells are not common among epithelial cells in other type of tissues.

These observations implicate that salivary gland epithelial cells are susceptible to

palmitate-induced IL-6 secretion, lipotoxicity, and α-fodrin degradation, which

could exacerbate the pathogenesis of primary SS in salivary glands.

18.2 Materials and Methods

18.2.1 Reagents

Fetal bovine serum (FBS) and penicillin/streptomycin were purchased from Life

Technologies (Carlsbad, CA). Dulbecco’s modified Eagle’s medium (DMEM),

FFAs, SP600125, SB203580, and BAY11-7082 were obtained from Sigma-Aldrich

(St. Louis, MO). FFA-free bovine serum albumin (BSA) was obtained from Merck

(Darmstadt, Germany). A stock solution of FFA was prepared and conjugated with

BSA as described previously [22] with slight modifications as follows; FFA was

dissolved at a concentration of 100 mM in 0.1 mol/L NaOH at 90 �C for 20 min,

which was then diluted 10-fold with 10 % BSA solution pre-incubated at 55 �C. The
solution was vortexed for 10 s and incubated at 55 �C for additional 10 min. FFA

solution of 10 mmol/L FFA with 10 % BSA and 10%BSA control solutions were

prepared just before experiments. FFA preparations were checked for LPS contam-

ination using Limulus Color KY Single Test (Wako).

18.2.2 Antibodies

Anti-glyceraldehyde-3-phosphate dehydrogenase (GAPDH), anti-IκBα,
antiphospho-IκBα (Ser32/36), anti-p38 MAPK, antiphospho-p38 MAPK (Thr180/

Tyr182), anti-SAPK/JNK, antiphospho-SAPK/JNK (Thr183/Tyr185), anti-

caspase-3, and anti-calpain1 (μ-type) antibodies were purchased from Cell Signal-

ing Technology (Danvers, MA). Anti-α-fodrin was obtained from Enzo Life Sci-

ences (Plymouth Meeting, PA).

18.2.3 Cells and Cell Culture

A human parotid gland ductal epithelial cell line HSY and a human submandibular

gland ductal epithelial cell line HSG were developed as described previously

[23, 24]. A human oral squamous carcinoma cell line HSC-2 was provided by
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Japanese Collection of Research Bioresources Cell Bank (Osaka, Japan). An

immortalized human keratinocyte cell line HaCaT was obtained from Dr. Norbert

E. Fusenig (German Cancer Research Center, Heidelberg, Germany). Cells were

cultured in DMEM supplemented with 10 % FBS, 100 U/mL penicillin and 100 μg/
mL streptomycin at 37 �C with a humidified atmosphere of 5 % CO2. Cells were

serum starved (0.1 % BSA) overnight for experiments.

18.2.4 RNA Isolation and RT-PCR

Cells were lysed in 1 mL of ISOGEN (Nippon Gene, Tokyo, Japan), and total RNA

was extracted as described in the manufacturer’s instructions. One μg of total

RNA was reverse transcribed into cDNA with a first-strand cDNA synthesis

kit (Roche Diagnostics, Indianapolis, IN). Primers used were as follows:

TLR4 (forward) 50-TGGATACGTTTCCTTATAAG-30 and (reverse)

50-GAAATGGAGGCACCCCTTC-30; IL-6 (forward) 50-AAGCCAGAGCTGTG
CAGATGAGTA-30 and (reverse) 50-TGTCCT GCAGCCACTGGTTC-30;
GAPDH (forward) 50-GCCACATCGCTCAGACAC-30 and (reverse) 50-CTCGC
TCCTGGAAGATGG-30. PCR products were then subjected to agarose gel elec-

trophoresis and analyzed with an LAS-3000 UV Lumino-image analyzer (Fujifilm,

Tokyo, Japan).

18.2.5 Measurement of IL-6 Production

Cells were seeded into 96-well plates at a concentration of 1� 105 cells/well

(Orange Scientific, Braine-l’Alleud, Belgium) and incubated overnight. After

treating the cells as described in the figure legends, the medium was collected.

The amount of IL-6 in the medium was determined using a human IL-6 ELISA kit

(Thermo Scientific, Rockford, IL) according to the manufacturer’s instructions.

18.2.6 Immunoblotting

After treating the cells as described in the figure legends, cells were rinsed three

times with ice-cold phosphate-buffered saline (PBS) and lysed in radio-

immunoprecipitation assay buffer [50 mM Tris, 150 mM NaCl, 1 % sodium

deoxycholate, 1 % Triton X-100, 0.1 % sodium dodecyl sulfate, 1 mM sodium

orthovanadate, and 1 % protease inhibitor cocktail (Sigma) (pH 7.5)]. Cell lysates

obtained by centrifugation at 15,000� g and 4 �C for 10 min were subjected to

SDS-PAGE and transferred to polyvinylidene diflouride (PVDF) membranes as

described previously [25]. In some experiments, antibodies were diluted in Can Get
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Signal (Toyobo, Osaka, Japan). Immunoblotting was performed with an ECL PLUS

system according to the manufacturer’s instructions, and analyzed by a LAS-3000

UV Lumino-image analyzer (Fujifilm).

18.2.7 Oil Red O Staining

To evaluate intracellular lipid accumulation, cells were stained with Oil Red O as

described previously [26]. Briefly, after treating the cells, cells were washed three

times with iced PBS and fixed with 4 % paraformaldehyde. Fixed cells were washed

again with PBS and stained with Oil Red O solution (1.8 mg/mL Oil Red O in 60 %

ethanol) for 15 min at room temperature. After cells were washed again with PBS,

cells were observed on a phase contrast microscope (Olympus, Tokyo, Japan).

18.2.8 Cell Viability Assay

Cell viability was assessed by measuring a mitochondrial activity in reducing

2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazo-
lium monosodium salt (WST-8) to formazan using a Cell Counting Kit-8 (Dojindo,

Kumamoto, Japan) according to the manufacturer’s instructions. The amount of

formazan was quantified using a microplate reader (BioRad, Hercules, CA).

18.2.9 Annexin V-FITC/Propidium Iodide (PI) Staining

Palmitate-induced apoptosis of salivary gland cells was evaluated by an Annexin

V-FITC/PI staining with a TACS Annexin V-FITC Apoptosis Detection Kit (R and

D systems, Minneapolis, MN) according to the manufacturer’s instructions.

After treating the cells as described in the figure legends, fluorescent-positive

cells were detected by FACSVerse and analyzed by FACSuite (BD Biosciences,

San Diego, CA).

18.2.10 DAPI Staining

For detecting apoptosis in HSY cells, they were seeded on Lab-Tek chamber slides

(Nunc, Thermo Fisher Scientific, Rochester, NY). After treating the cells as

described in the figure legends, cells were washed three times with iced PBS and

fixed with 4 % paraformaldehyde followed by staining with 40,6-diamidino-2-

phenylindole (DAPI) (Invitrogen, Carlsbad, CA). Stained cells were visualized on
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a laser scanning confocal microscope (Carl Zeiss, Gottingen, Germany). Apoptotic

cells were morphologically defined as cells with nuclear shrinkage, condensation,

and fragmentation.

18.2.11 Data Analysis

To confirm the reproducibility of the results, all experiments were conducted at

least twice. Experimental values are given as mean� standard deviation (SD). The

statistical significance of differences was evaluated using a Student’s unpaired t-test
or Dunnett’s multiple-comparison test after an analysis of variance (ANOVA) with

IBM SPSS Statistics software 19.0 (IBM, Armonk, NY). P values less than 0.05

were considered to be significant.

18.3 Results and Discussion

We obtained results as described below. (a) Palmitate treatment induces IL-6

secretion in HSY and HSG cells, but not HaCaT cells. (b) In salivary gland

epithelial cells, saturated fatty acids, but not unsaturated fatty acids, induces IL-6

secretion presumably through activation of NF-κB and p38 MAPK. (c) It has been

documented that lipotoxicity causes apoptosis, which is featured by some morpho-

logical changes such as cell shrinkage, cell rounding, and lipid accumulation [8,

27]. Thus, we investigated whether or not palmitate treatment induces morpholog-

ical changes. Palmitate treatment induced morphological changes which are cell

rounding and lipid accumulation in HSY and HSG cells. On the other hand, HSC-2

and HaCaT cells failed to accumulate lipid droplet after palmitate treatment despite

their tendency to round up (Fig. 18.1). (d) Palmitate treatment increases apoptosis

of HGY and HSG cells. (e) Palmitate induces a-fodrin degradation and caspase-3

activation in salivary gland epithelial cells. Details were already shown in our

report [28]. Moreover, we recently confirmed that, when model mice of primary

SS were fed with high-fat diet to elevate the serum level of saturated fatty acids,

their salivary glands and lacrimal glands exhibited inflammation significantly more

advanced than those observed in model mice fed with normal diet (data not shown).

Taken together, these results suggest that higher levels of saturated fatty acids may

promote the severity of primary SS.

In conclusion, our data indicate that palmitate may exacerbate the pathogenesis

of primary SS. Results presented in this report should encourage further investiga-

tions on relationship between metabolic-related disorders and autoimmune diseases

such as primary SS.
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Chapter 19

Effects of Carbon Addition on Mechanical

Properties and Microstructures of Ni-Free

Co–Cr–W-Based Dental Alloys

Kenta Yamanaka, Manami Mori, and Akihiko Chiba

Abstract We investigated the effects of carbon concentration on the microstruc-

tures and tensile properties of Ni-free Co–29Cr–9W–1Si–C (mass%) alloys used as

disk materials in dental technology based on computer-aided design and computer-

aided manufacturing (CAD/CAM). The alloy specimens, which contained carbon

in different concentrations, were prepared by conventional casting. The precipitates

changed from intermetallic compounds in the low-carbon alloys, e.g., the σ and

Laves phases, to M23C6-type carbide (M: metal) with increasing bulk carbon

concentration. M23C6 dramatically enhanced the 0.2 % proof stress, which then

gradually increased with increasing carbon content in the alloys. The elongation-to-

failure also increased with increasing carbon content. The coarse M23C6 particles

formed by higher concentrations of carbon were detrimental to ductility, however,

and a maximum elongation-to-failure was obtained at a carbon concentration of

~0.1 mass%. In addition, we applied hot-deformation processing to the cast-alloy

specimens and revealed that compared to as-cast alloys, the hot-rolled alloys with

added carbon showed an excellent combination of high strength and high ductility.

The current study can thus aid in the design of biomedical, carbon-containing,

Co–28Cr–9W–1Si-based alloys.

Keywords Biomedical Co–Cr–W alloy • Carbon addition • Mechanical properties

• Microstructures • Precipitation

K. Yamanaka (*) • A. Chiba

Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku,

Sendai 980-8577, Japan

e-mail: k_yamanaka@imr.tohoku.ac.jp

M. Mori

Department of Materials and Environmental Engineering, Sendai National College

of Technology, 48 Nodayama, Medeshima-Shiote, Natori 981-1239, Japan

© The Author(s) 2015

K. Sasaki et al. (eds.), Interface Oral Health Science 2014,
DOI 10.1007/978-4-431-55192-8_19

225

mailto:k_yamanaka@imr.tohoku.ac.jp


19.1 Introduction

Computer-aided design and computer-aided manufacturing (CAD/CAM) have

been accepted in dentistry as advanced techniques that accelerate the production

of dental restorations. Although several methods have been introduced, CAD/CAM

facilitate rapid, low-cost, and precise fabrication of custom-made dental restora-

tions for patients. In particular, CAD/CAM-based milling [1–3] produces dental

restorations from block disks or pellets of ceramics, composite resins, or metallic

materials. An all-ceramic system is currently a primary choice, although zirconia-

based ceramic materials commonly used in restorative applications have poorer

milling performance than metallic materials. In contrast, metal–ceramic systems

show a good combination of aesthetics, mechanical rigidity, and machinability

owing to the ceramic veneer and metallic framework [3, 4]. For example, Co–Cr

alloys are suitable restorative materials because they have excellent corrosion

resistance and their components are less expensive than those of conventionally

used Au-based alloys.

Recently, extensive research and development have been conducted on high-

strength Co–Cr-based dental alloys [5–7]. This may be partly because their higher

strength basically yields higher fatigue strength, which then improves the mechan-

ical reliability of restorations that are subjected to occlusal forces. In addition,

materials used in this application should consist of small grains because chipping

failure occurs in machined components with coarse grain structures, reducing the

precision of the fit of a restoration. Thus, a grain-refinement process is necessary to

improve the fatigue strength, mechanical reliability, and machinability. Although a

high-strength Co–Cr–W-based alloy that meets ISO 22674 Type 5 (yield stresses

higher than 500 MPa [8]) requirements has been commercialized, it is made by

utilizing powder metallurgy, which is generally a high-cost process.

We have recently proposed a strategy for designing a new class of Ni-free

Co–Cr–W-based alloys with excellent mechanical properties [9–14]. By employing

thermodynamic calculations, we examined the alloying elements, namely, Si and C,

to modify and further strengthen the commercial Co–28Cr–9W (mass%) alloy

[9]. In particular, this review reports the effects of carbon on the relationship

between the microstructures and mechanical properties of Ni-free Co–Cr–W-

based alloys [9–12]. In addition to systematically investigating the carbon-

concentration-dependence of the phase distributions, precipitates, and tensile

properties of the alloys, we carried out a preliminary evaluation of the effects

of thermomechanical processing to further improve the alloys’ mechanical

performance.
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19.2 Effects of Carbon on Microstructural Evolution

19.2.1 Phase Diagram of Co–28Cr–9W–1Si–C System

The equilibrium constituent phases were investigated using Thermo-Calc software.

Figure 19.1 shows a vertical section of the calculated phase diagram of the Co–

28Cr–9W–1Si–xC (0� x� 0.3, mass%) system [11]. The face-centered-cubic (fcc)

γ phase is stable in the high-temperature region above ~1,150 K, while the

equilibrium-matrix phase at lower temperatures and ultimately room temperature

is the ε phase with hexagonal close-packed structures. The thermodynamic calcu-

lation also suggests that increasing carbon concentration suppresses the formation

of the σ phase and replaces it with the Laves phase, while further carbon addition

leads to the formation of M23C6-type carbide.

19.2.2 Refinement of Solidification Microstructures
by Carbon Addition [10]

The changes in solidification microstructures resulting from carbon addition in the

Co–Cr–W-based alloys were investigated experimentally for a wide range of

carbon concentrations [10]. Four kinds of Co–28Cr–9W–1Si–xC (mass%) alloys,

where x¼ 0.005–0.33, were prepared in a high-frequency induction furnace in an

argon atmosphere.

Figure 19.2 shows maps of the inverse pole figure (IPF) obtained by measuring

the electron-backscatter diffraction (EBSD) of the as-cast Co–28Cr–9W–1Si–xC
alloy specimens with different carbon content. The cellular dendritic microstruc-

tures were almost in the γ phase in all of the specimens, although the carbon

Fig. 19.1 Vertical section

of calculated phase diagram

of Co–28Cr–9W–1Si–xC
(mass%, 0� x� 0.3)

system obtained using

Thermo-Calc software [11]
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addition stabilized the γ phase (the black area in Fig. 19.2 corresponds to the ε
phase). Increasing the carbon concentration from 0.005 to 0.33 mass% decreased

the grain size from ~100 μm to ~30 μm (Fig. 19.3).

The mechanism of how carbon addition reduced the grain size of the cast

microstructures was revealed by scanning electron microscopy (SEM) and electron

probe microanalysis (EPMA). Figure 19.4 shows SEM backscattered-electron

(SEM-BSE) images and the corresponding EPMA elemental maps of the as-cast

alloy specimens. These figures clearly indicate solidification segregation of Cr, W,

Si, and C, while Co was depleted in the interdendritic regions. The increase in bulk

carbon concentration enhanced such inhomogeneous elemental distributions.

Although the intermetallic compounds, in particular the σ phase, were identified

in the low-carbon alloys [11], carbon-rich precipitates were clearly identified in the

intergranular regions, especially when the carbon concentration was higher than

0.1 mass% (see the C maps in Fig. 19.4). The interdendritic precipitates in the high-

carbon alloys corresponded to M23C6 in the high-carbon alloys [10, 11], which

agrees well with the calculated phase diagram (Fig. 19.1). Figure 19.5 shows the

relationship between the area fraction of the precipitates, which was analyzed using

the BSE maps in Fig. 19.4, and the bulk carbon concentration in each alloy; the

amount of the precipitates increased with increasing carbon concentration.
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and (d) 0.33 mass% [10]
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These results indicate that the segregation and resulting precipitation of the carbide

phase refined the solidification microstructures.

19.2.3 Effect of Hot-Deformation Processing
on Microstructures [12]

We then prepared hot-rolled Co–28Cr–9W–1Si–C alloys with carbon concentra-

tions up to 0.33 mass% to investigate the effect of hot-deformation processing on

the microstructural evolution. The cast ingots were subjected to a homogenizing

heat treatment at 1,473 K for 21.6 ks (6 h) and then directly processed by multi-pass

Fig. 19.4 SEM-BSE images and corresponding EPMA elemental maps of as-cast alloys with

carbon concentrations of (a) 0.005, (b) 0.11, (c) 0.25, and (d) 0.33 mass% [10]
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hot-caliber rolling (initial temperature: 1,473 K; φ: 15 mm! 9.6 mm), followed by

water quenching.

The microstructures of the hot-rolled alloy specimens were investigated by

EBSD analysis. The IPF maps in Fig. 19.6a–d reveal fully equiaxed γ grain

structures with a considerable number of annealing twins. Table 19.1 shows that

the average γ grain sizes decreased after hot rolling and further decreased as carbon
was added. The phase maps in Fig. 19.6e–h suggest that these were duplex grain

structures consisting of the γ and ε phases (the fraction of the ε phase is also shown
in Table 19.1). We believe the plate-like ε phase formed during cooling after hot

rolling (i.e., athermal martensitic transformation), and its fraction decreased with

increasing carbon concentration, as confirmed in the as-cast alloys.

Figure 19.7 shows the SEM-BSE images of the hot-rolled alloys. Very fine

precipitates (0.01–1 μm in diameter) were identified in all of the hot-rolled alloys;

they were enriched with tungsten, as shown by their bright contrast in the

SEM-BSE images. Figure 19.8a–d show transmission electron microscopy (TEM)

bright-field images of the submicron-sized precipitates observed in the low-carbon

Fig. 19.6 (a–d) IPF maps and (e–h) phase maps of hot-rolled alloys with carbon concentrations of

(a, e) 0.02, (b, f) 0.05, (c, g) 0.11, and (d, h) 0.33 mass% [12]

Table 19.1 Average γ grain sizes and fractions of εmartensite of hot-rolled Co–28Cr–9W–1Si–C

alloys with different carbon concentrations [12]

Carbon content (mass%) γ grain size (μm) Fraction of ε martensite (%)

0.02 24.6 30.9

0.05 26.1 11.5

0.11 16.8 4.9

0.33 12.7 3.8
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Fig. 19.7 SEM-BSE images of hot-rolled alloys with carbon concentrations of (a, e) 0.02,

(b, f) 0.05, (c, g) 0.11, and (d, h) 0.33 mass% [12]

c

f

a b

d e

Fig. 19.8 TEM bright-field image of hot-rolled (a) Co–28Cr–9W–1Si–0.02C alloy and

(d) Co–28Cr–9W–1Si–0.33C alloy. The SAD patterns obtained from the precipitates in (a)

and (d) are shown in (b) and (e), respectively. The corresponding EDS spectra of the precipitates

in (a) and (b) are shown in (c) and (f), respectively [12]
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(0.02 mass%) and high-carbon (0.33 mass%) alloys, respectively. The

corresponding selected-area diffraction (SAD) pattern obtained for each precipi-

tate, revealed to be the C14-Laves phase and M23C6, is shown in Fig. 19.8b, e,

respectively. The TEM and energy-dispersive X-ray spectroscopy (TEM-EDS)

analyses confirmed that both the Laves-phase and carbide particles were enriched

with W and Si (Fig. 19.8c, f). In addition, the particles whose diameters were

approximately 2–5 μm are shown in Fig. 19.7a and coarse gray particles can also be

seen in Fig. 19.7d (0.33 mass%), as indicated by arrows in each figure. Our previous

study indicated that the particles formed in the low-carbon alloy are the σ phase

[13]. On the other hand, Fig. 19.9 shows an SEM-BSE image and the corresponding

EPMA elemental maps of the hot-rolled alloy with 0.33 mass% of carbon. The

black particles in the image correspond to SiO2 or Cr2O3 inclusions, which were

also observed in other specimens and were not related to the carbon addition. The

precipitates with diameters of a few micrometers were enriched with Cr, W, and C

but were depleted of Co and Si. Therefore, we believe that these precipitates were

M23C6. It should also be noted that the matrix phase exhibited a homogeneous

elemental distribution similar to that obtained by powder metallurgy.

The obtained results indicate that the microstructures of the as-cast and

hot-rolled, carbon-doped, Co–Cr–W-based dental alloys are in good agreement

with those predicted by thermodynamic calculations. Adding carbon to this alloy

system tended to stabilize the γ matrix and cause the precipitation of M23C6,

effectively reducing their grain size.

Fig. 19.9 SEM-BSE image and EPMA elemental maps of hot-rolled Co–28Cr–9W–1Si–0.33C

alloy [12]
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19.3 Effect of Carbon Concentration on Tensile

Properties [11, 12]

Finally, we investigated the effect of carbon on room-temperature tensile properties

of the as-cast and hot-rolled Co–28Cr–9W–1Si–C alloys.1 All of the stress–strain

curves obtained in tensile testing for both types of alloys showed uniform elonga-

tion followed by sudden fractures without macroscopic necking [11, 12]. This type

of tensile deformation is typically observed in Co–Cr–Mo-based alloys [15–18].

Figure 19.10 summarizes the tensile properties as functions of carbon concen-

tration. The 0.2 % proof stress of the as-cast alloys gradually increased with

increasing carbon concentration. The strengthening effect, which was deduced

from the slope of the plot of 0.2 % proof stress versus carbon concentration, was

determined to be 623 MPa/mass% for alloys containing >0.04 mass% C. The cast

alloys with carbon concentrations of 0.17 and 0.27 mass% showed strengths that

were standardized to the Type 5 criteria in ISO 22764 for dental restorations

(>500 MPa [8]). On the other hand, the 0.2 % proof stress of the hot-rolled alloys

did not change significantly when �0.05 mass% C was added, but it began to

increase when the carbon concentration exceeded ~0.1 mass%. The strengthening

effect of carbon in the hot-rolled alloys was determined to be 822 MPa/mass% for

alloys with >0.05 mass% C. Accordingly, a much higher yield stress (851 MPa)

was obtained by adding 0.33 mass% C.

Our previous studies [9, 19] showed that solid-solution strengthening of carbon

was negligible, as theoretically predicted; therefore, the precipitates would have

1 The casting and hot-rolling conditions are the same as those described in the previous sections.
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dominated the strengthening of the present alloys. The amount of M23C6 precipi-

tates that formed in the alloys, which varied with their carbon concentration

(Fig. 19.5f), was actually consistent with the variations in the alloys’ 0.2 % proof

stress (Fig. 19.2a). Increasing the fraction of M23C6 should have increased the

strength of the alloys. The higher strength of the hot-rolled alloys than that of the

as-cast counterparts partly originated from the precipitation size because finer

precipitates dramatically increase the strength [20].

The elongation-to-failure of the as-cast and hot-rolled alloy specimens also

showed similarly strong dependence on the carbon concentration (Fig. 19.10b): it

increased initially, peaking at ~0.1 mass% C, and then gradually decreased with

further increase in carbon concentration. Similar results were reported for Co–Cr–

Mo-based alloys [19].

Figure 19.11 shows typical fracture surfaces of the tensile-tested specimens of

the as-cast and hot-rolled alloys with high carbon content. The as-cast alloy

(Fig. 19.11a) exhibited interdendritic fractures where carbide formed, and the

ε-martensite-related quasi-cleavage or intergranular fractures [15–18] were not

dominant. The hot-rolled counterpart (Fig. 19.11b) showed M23C6 particles on

the fracture surface. Therefore, we conclude the fractures in the as-cast and

hot-rolled tensile specimens were triggered by the coarse M23C6 particles.

Until now, C-free Co–Cr–W-based alloys have been used for dental restorations.

However, the current results revealed that the high-carbon-content alloys

containing a considerable amount of M23C6 still showed sufficient ductility even

in the as-cast condition. Therefore, adding carbon to the alloys is a promising

strategy for developing high-strength alloys that show acceptable tensile ductility.

The hard Cr-rich M23C6carbide phase may deteriorate the milling properties and the

corrosion resistance of the alloys, however. Thus, the optimal concentrations of

carbon in the as-cast Co–28Cr–9W–1Si–C alloys were estimated to be just above

0.1 mass%. On the other hand, the hot-rolled alloys exhibited much better mechan-

ical properties than those in the as-cast counterparts because homogeneous micro-

structures with fine precipitates were obtained. As the production cost is considered

Fig. 19.11 Fracture surfaces of (a) as-cast and (b) hot-rolled Co–28Cr–9W–1Si-based alloys with

high carbon concentration (~0.3 mass%) [11, 12]
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to be not as significant as powder metallurgy, the hot-deformation processing is a

potential route to fabricate disk materials for CAD/CAM-based milling

applications.

19.4 Conclusions

We systematically investigated the effects of carbon on the room-temperature

tensile properties and microstructures of dental Co–28Cr–9W–1Si alloys in

as-cast condition and after thermomechanical processing. The microstructural

development and tensile properties of alloys prepared under both processing con-

ditions showed similar dependence on the carbon concentration, although the

hot-rolled alloys showed much better mechanical properties. Adding carbon

suppressed the formation of the hcp ε martensite phase and stabilized the fcc γ
phase. The σ phase was identified in the low-carbon-content alloys, but it was

replaced by M23C6 particles when the carbon concentration was increased. Adding

carbon to the alloys dramatically strengthened them, and the 0.2 % proof stress of

the alloys increased with increasing carbon concentration. However, the

elongation-to-failure reached a maximum when the carbon concentration was

~0.1 mass% and then remarkably decreased with increasing carbon content there-

after. Therefore, the variation in tensile properties resulting from carbon addition to

the alloys originated from the precipitation of M23C6.
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Chapter 20

Periodontal Disease as a Possible Risk Factor

for Alzheimer’s Disease

Naoyuki Ishida, Yuichi Ishihara, Kazuto Ishida, Hiroyuki Tada,

Yoshiko Kato, Ryutaro Isoda, Makoto Hagiwara, Makoto Michikawa,

Toshihide Noguchi, and Kenji Matsushita

Abstract Periodontal disease is a localized infectious disease caused by periodon-

tal disease-related bacteria, such as Porphyromonas gingivalis. Recently, Periodon-
tal disease is known to cause systemic spread of chronic inflammation and

exacerbate lifestyle-related diseases such as ischemic heart disease, diabetes

mellitus, and obesity, while the inflammatory response plays a large role in the

development of neurodegenerative conditions such as Alzheimer’s disease (AD).
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Mild systemic inflammation has been reported to increase an individual’s risk of

AD. Inflammation has been thought to spread through the circulatory system and

CNS. The increased amounts of inflammatory mediators in the blood are transmit-

ted to the brain and may activate the microglia in the brain. Chronic inflammation in

periodontal disease and periodontal disease-related bacteria are transmitted and

spread to the brain via a certain mechanism, which might then exacerbate the

AD. Periodontal infections are treatable, and thus this may be relevant for

preventing and delaying the progression of AD. In this super-aging society, peri-

odontal disease measures will become increasingly important.

Keywords Alzheimer’s disease • Amyloid β protein • Chronic inflammation

• Cognitive impairment • Lipopolysaccharide • Porphyromonas gingivalis
• Proinflammatory cytokine • Senile plaque

20.1 Introduction

Rather than systemic diseases being the risk factors for periodontal disease, peri-

odontal disease has been shown to cause systemic diseases, including lifestyle-

related diseases. To date, periodontal disease has been reported as a risk factor for

diabetes mellitus (DM), cardio- and cerebrovascular disease, aspiration pneumonia,

premature and low birth weight infants, bacterial endocarditis, glomerulonephritis,

arthritis, and palmoplantar pustulosis [1–5]. The following three pathways are

assumed to be the mechanism of the systemic spread of periodontal disease: direct

action of bacterial body and toxin of periodontal disease-related bacteria at the local

periodontal site that spread to target organs through the hematogenous route or

respiratory tract [4]; the action of inflammation-inducing substances such as cyto-

kines, which are produced by the inflammatory response within periodontal tissue

or immune response that spread hematogenously to the target organs [5]; and a

pathway that results in intracerebral spread through the nervous system [6, 7]. There

are various data on intravascular infiltration of periodontal disease-related bacteria

and its spread to target organs thus far, but its mechanism of affecting diseases is not

fully understood. On the other hand, the inflammatory response has been known to

play a large role in the progression of cerebrovascular disorder and dementia,

conditions that often occur in the elderly [8–10]; however, the effect of periodontal

disease is not fully understood.

Taking other published studies into consideration, here we discuss our most

recent analytical results of the correlation between periodontal disease and

Alzheimer’s disease (AD) in a mouse model in this study.
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20.2 Current Status of AD in Japan

More than 30 million people in Japan are >65 years old. In a study group of the

Ministry of Health, Labour and Welfare (2013), the number of patients with

dementia was 4,620,000 people, while another four million people in the general

population are estimated to have it. This number is expected to increase in the

future. Among them, 60–70 % patients have AD, which becomes an urgent issue in

an advancing aging society such as that in Japan. The current situation of AD

involves the absence of an effective prevention method as well as a fundamental

treatment method [11].

20.3 Inflammation and AD

In addition to aging and genetic mutation, AD is affected by accumulation of

amyloid β protein (Aβ) caused by intracerebral inflammation [12]. Further, Aβ
deposits also cause inflammation, which results in the progression of synapse

disorders and neuronopathy. In recent years, mutations of the TREM2 gene,

which controls the inflammatory response, has been found in patients with AD,

renewing the importance of the inflammatory response in the development of AD

[13]. Chronic inflammation is also thought to play an important role in the devel-

opment of central nervous system (CNS) diseases. The long-term use of

non-steroidal anti-inflammatory drugs is known to prevent the occurrence of neu-

rodegenerative disease. Its effect in delaying the progression has been observed in

an epidemiologic study and animal experiment [14]. The immune system of the

CNS is extremely simple and is not acquired. Accordingly, the immune response is

served by the innate immune system.

Microglia are cells of the macrophage system that possesses a phagocytic capac-

ity that plays a central role in the intracerebral innate immune response. The

microglia digest the accumulated Aβ in the brain and remove it from the brain.

These cells produce cytokines such as active oxygen, interleukin (IL)-1, IL-6, tumor

necrosis factor-α (TNF-α), i.e., inflammatory response promoting molecules that are

known to promote neurodegeneration in AD [15, 16]. On the other hand, they also

produce anti-inflammatory molecules such as IL-4 and IL-10, which are thought to

provide a neuroprotective role in addition to controlling the inflammatory response

[17]. Therefore, microglia are important cells in the control of AD status.

Separately from the exacerbation of AD status due to intracerebral inflammation,

mild systemic inflammation has been reported to reduce cognitive function and

hippocampal capacity and increase the risk of AD [18–20]. Inflammation has been

thought to spread through the circulatory system and CNS. The increased amounts

of inflammatory mediators in the blood are transmitted to the brain and may activate

the microglia in the brain. The TNF-α level is increased in the blood of patients with
AD and reportedly correlates with reduced cognitive function [21, 22].
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20.4 Periodontal Disease and AD

As mentioned earlier, chronic inflammation within peripheral organs might play a

role in the exacerbation of the molecular pathogenesis of AD. One such inflamma-

tory condition is periodontal disease. The inflammatory response that occurs in

periodontal disease has been known to involve the development of various diseases,

such as arteriosclerotic disease, DM, and obesity, and the incidence of premature

and low birth weight infants [1–5, 23, 24]. In addition, periodontal disease has been

reported to involve cerebral abscess formation [25]. Periodontal disease-related

bacteria are spread systemically through the blood vessels and respiratory tract,

suggesting its possible direct effect on the target organs. In addition, inflammatory

mediators such as cytokines, which are produced in the local periodontal tissue, are

carried hematogenously to the target organ and thought to worsen the inflammatory

response.

There have been interesting reports on the correlation between AD and peri-

odontal disease. Porphyromonas gingivalis, a periodontal disease-related bacteria,

was found at high frequency in the autopsied brain tissue of patients who died of

AD; however, it is not found in normal human brain tissue [26]. This result suggests

that said bacteria spread hematogenously into the brain. P. gingivalis is a gram-

negative anaerobic bacillus that possesses various toxins including lipopolysaccha-

ride. Accordingly, it is known to cause a strong inflammatory response. In addition,

the interesting finding is that a periodontal disease-related bacteria of the Trepo-
nema genus was found in the trigeminal ganglion, brainstem, and cerebral cortex;

its frequency is said to be high in patients with AD in particular [6]. This finding

suggests that periodontal disease-related bacteria can be directly transmitted into

the brain and cause inflammation. The mechanism (hypothesis) of AD exacerbation

due to periodontal disease is explained in Fig. 20.1. It will be important to analyze

its detailed mechanism in the future. However, it is difficult to believe that AD is

induced only by an inflammatory response due to periodontal disease and peri-

odontal disease-related bacteria. Inflammatory responses are thought to aggravate

the molecular level of AD, cause an earlier onset, worsen the degree of cognitive

disorders, and cause faster progression, suggesting its action in modifying the

disease status. The long-term use of anti-inflammatory drugs has been suggested

to reduce the risk of AD onset [27].

Periodontal disease is the main cause of tooth loss; however, some reports have

identified a correlation between tooth loss and AD. Tooth loss may be a risk factor

for AD [28, 29]. Tooth loss reduces chewing function, which results in reduced

cerebral blood flow and might lead to reduced cognitive function. However, tooth

loss itself often does not accompany chronic inflammatory response, which sug-

gests that the effects of tooth loss are not necessarily identical to those of periodon-

tal disease. Oue et al. found that cognitive function was reduced by tooth removal in

AAP transgenic mice, but there was no effect on the molecular pathology of AD

[30]. On the other hand, when we induced periodontal disease in the same mouse,

we found that intracerebral Aβ deposits increased and the intracerebral
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inflammatory response was enhanced in addition to the reduced cognitive function.

Both periodontal disease and tooth loss reduce cognitive function, but their molec-

ular mechanisms are thought to differ.

20.5 Conclusion

All organisms survive by consuming food; the chewing function is therefore very

important. This function not only supports life but could be important to the

maintenance of cognitive function. In this modern aging society, preventing peri-

odontal disease and maintaining oral cavity function will become increasingly more

important.
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Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 21

Measurement of Skin Elasticity Using High
Frequency Ultrasound Elastography
with Intrinsic Deformation Induced
by Arterial Pulsation

Ryo Nagaoka, Kazuto Kobayashi, and Yoshifumi Saijo

Abstract Mechanical property of the skin is one of the important factors for

diagnosis of human skin diseases. In this paper, we proposed a novel method for

estimation of shear wave velocity from deformation induced by an arterial pulsa-

tion. The induced deformation was measured by high frequency ultrasound. The

elasticity of the in vivo human skin is evaluated based on the calculated parameters.

P(VDF-TrFE) transducer with the central frequency of 100 MHz was used for

imaging. The aperture diameter of the transducer was 2 mm, and the focal length

was 4 mm. The repetition rate was 2,600 Hz. The sampling rate was 1 GS/s with

8 bit. The velocity induced by pulsation was measured by 1-D cross-correlation

method at each depth. The shear wave velocity was estimated from the measured

velocity. The shear wave velocity at the epidermis was 0.14 m/s, and the velocity at

the dermis was 0.06 m/s. Because the stiffness of the skin was proportional to the

shear wave velocity, the elasticity of the epidermis was higher than that of the

dermis. These estimated elasticity well conformed to the histology of the skin and

the past reports.

Keywords Elasticity • High frequency Ultrasound • Shear wave velocity • Skin

21.1 Introduction

Mechanical properties of human skin are the important factors not only in medicine

field but also in cosmetic field. Especially, viscoelasticity of human skin is closely

related to collagen and elastin of human skin. Also, it’s considered that the
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viscoelasticity is linked to microstructures within the dermis, which are sebaceous

glands, hair follicles, and capillary blood vessels. Flexibility and retractility of

human skin may change with the changes in these combinations.

High frequency ultrasonography (HFUS) enables to achieve high-resolution

measurement because the resolution is equal to one-half wavelength of ultrasound.

An axial resolution of 20 μm is acquired at 75 MHz, and a penetration depth of

75 MHz ultrasound is about 2.0 mm at most. HFUS with a center frequency of

100 MHz is much suitable for in vivo measurement of human skin because it’s

possible to observe not only the microstructures but also whole area of human

skin. The microstructures of the human skin have been observed by HFUS at the

central frequency of 100 MHz [1]. The hair follicles were reported as hypo echoic

and the dermis was reported as echo-rich. Also, the human skin was observed

using spherical focused single-element transducer with a center frequency of

20 MHz, [2] and the elasticity of the skin was assessed by applying suction to

the skin surface with a stepwise increase in vacuum [3]. Additionally, the nevus

inside the dermis was observed by strain imaging. In our previous study [4], the

human skin structures, especially the sebaceous glands deeper in dermis, were

observed by three-dimensional ultrasound microscopy with a central frequency of

120 MHz. This study revealed that the sebaceous glands also act as a cushion of

the skin in addition to their classical role of secreting sebum and some hormones

[5]. Additionally, viscoelasticity of the skin was estimated from displacements

measured by Cutometer (MPA580, Courage and Khazaka, Köln, Germany) and

Voigt model [6].

Elastography is a common technique that estimates mechanical properties of the

tissue. Especially, viscoelasticity is a key parameter for a diagnosis of cancer and

fibrosis. There are several kinds of elastography: strain elastography [7–11], acous-

tic radiation force impulse (ARFI) imaging [12–17], shear wave elastography [18–

22] and transient elastography [23, 24]. The difference among these techniques is

difference of what induces the deformation inside tissues. Recently, passive

elastography [25, 26] has been attracted attention. This passive elastography is

based on Green’s function retrieval and utilize periodic physical motions, which are

induced by heartbeats, breathing and so on. In our research group, deformations

inside in vivo skin due to arterial pulsation were measured by HFUS with 100 MHz,

and the viscoelasticity of human skin was evaluated based on measured deforma-

tion itself.

Our goal is to develop high frequency ultrasound elastography using intrinsic

deformation induced by pulsation to reveal the origin of the skin viscoelasticity. In

this paper, we proposed a novel method for estimation of elasticity the arterial

pulsation as an intrinsic deformation. The induced deformation is measured by high

frequency ultrasound, and the velocity is calculated from the displacements at

several points. The elasticity of the in vivo human skin is evaluated based on the

calculated parameters.
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21.2 Method

21.2.1 Data Acquisition Setup

Figure 21.1 shows a schematic of an experiment system. An electric impulse was

generated by a high speed switching semiconductor. The start of the pulse was

within 400 ps, the pulse width was 2 ns and the pulse voltage was 40 V. The

frequency of the impulse covered up to 500 MHz. The electric impulse was used to

excite a vinylidene fluoride and trifluoroethylene P(VDF-TrFE) transducer. The

aperture diameter of the transducer was 2.0 mm, and the focal length was 4 mm.

The central frequency was 100 MHz, the bandwidth (�6 dB) was 40–120 MHz, and

the pulse repetition rate was 2,800 Hz. First, the transducer was mounted on the

X-Y scanner with two linear servo motors that were controlled by X-Y scan

controller connected to the serial port of the PC. The scan area was 2� 2 mm

with 100� 100 pixels. Four pulse echo sequences with 4,096 sampling points along

the depth z were averaged for each scan point in order to increase the S/N ratio.

Consecutive 100 B-mode images were produced from the RF data by a conven-

tional image processing algorithm of echography. Next, the measured positions

were decided from the B-mode images. Figure 21.2 shows a schematic of an

elasticity measurement. In this paper, a deformation induced by the pulsation was

used as a source. With the position of the transducer fixed, the reflections from the

skin in a forearm were received by the transducer and were introduced into a

Windows-based personal computer (PC; Pentium 4, 3.40 GHz, 1 GB RAM, and

250 GB HDD) with a high-speed digitizer card (Acqiris DP 1400, Geneva, Swit-

zerland). The sampling rate was 1 GS/s. The duration of the measurement was 2.5 s.

Fig. 21.1 Block diagram of 3D ultrasound microscope system
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The received data were converted to M-mode images. Obtained RF signals of each

scanning line was converted to B-mode image by a conventional image processing

algorithm of echography.

21.2.2 Subject

Subject is one 24-year-old healthy male. A measurement area is skin in his forearm.

21.2.3 Velocity Measurement

The velocity induced by the pulsation was measured from the RF echo data of the

fixed position by implementing a 1-D cross correlation method. RF signal of time t

at depth z was defined as rt(z). Analytical signal gt(z) was obtained by applying the

Hilbert transform to the RF signal rt(z). Pulse waves with angular frequency

ω0¼ 2πf0 were transmitted at a time interval of ΔT. Analytical signal of time

t and t + ΔT at depth z can be modeled as

gt zð Þ ¼ u zð Þexp �i ω0

2f s
c0

z� θ0

� �� �
, ð21:1Þ

forearm

pulsation
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Fig. 21.2 Schematic of elasticity measurement
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gtþΔT zð Þ ¼ u zð Þexp �i ω0

2f s
c0

z� zτð Þ � θ0

� �� �
, ð21:2Þ

where u(z) was the envelope of the analytical signal, fs was the sampling frequency,

c0 was the sound speed, θ0 was the initial phase, and zτ was the true displacement

induced by the pulsation. The complex cross-correlation function γ(zlag) at lag zlag
was defined as

γ zlag
� 	 ¼

Pz¼N
2

z¼�N
2

g�t zð ÞgtþΔT zþ zlag
� 	

Xz¼N
2

z¼�N
2

g�t zð Þ



 


 Xz¼N

2

z¼�N
2

gtþΔT zþ zlag
� 	


 


 ð21:3Þ

where N was 1-D cross correlation window of 256 pixels, corresponding to 195 μm
depth window with 91 % overlap using hamming window. An index at maximum

value of the real part of the Eq. (21.3) corresponded to the index of bzlag. In this

paper, fs was 1 GHz, and the temporal resolution was enough high to observe the

deformation with HFUS of 100 MHz. Additionally, the received RF signal was

up-sampled to 4 GHz before implementing the 1-D cross-correlation. Because of

these reasons, the estimated displacement bzlag was almost equal to the true

displacement zlag. The velocity, denoted by vt+ΔT/2(z), of the skin in his forearm

between the interval was given as follows:

vtþΔT=2 zð Þ ¼ c0bzlag
2f sΔT

: ð21:4Þ

The acceleration was calculated from the measured velocity. The acceleration was

calculated by differentiating the measured velocity as

at zð Þ ¼ vtþΔT=2 zð Þ � vt�ΔT=2 zð Þ
ΔT

: ð21:5Þ

21.2.4 Shear Wave Measurement

By comparing an acceleration at reference depth with an acceleration at interest

depth, a velocity of shear wave propagating from an artery toward a skin surface

can be calculated from a relationship between the depth and the arrival time of shear

wave at the depth. The relationship φ(z) can be expressed as

φ zð Þ ¼
Xt¼Nα

2

t¼�Nα
2

a�t z0ð Þ � at zð ÞXt¼Nα
2

t¼�Nα
2

a�t z0ð Þ










 Xt¼Nα
2

t¼�Nα
2

at zð Þ











, ð21:6Þ

where Nα was an estimation window of 50 pixels, corresponding to a 50 ms time.

A hamming window was used for the estimation. A variable z0 was a reference
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depth, and a variable z was an interest depth. A time lag between the reference

depth and the interest depth was expressed as follows:

δτ zð Þ ¼ φ zð Þ
2πf c

ð21:7Þ

The center frequency fc was obtained from the power spectrum calculated by

applying the Fourier transform to the acceleration signals. Figure 21.3 shows the

relationship between the depth z and the time lag. A regression line can be obtained

by applying the least square method to the relationship. A slope a1 of the regression
line can be obtained by minimizing a least mean square error e as follows:

e ¼
Xz¼ZN

z¼0

δτ zð Þ � a1zþ a2ð Þj j2 ð21:8Þ

A variable ZN is a total number of the region of interest. The velocity Cs of shear

wave was given by dividing the depth distance Δz by the estimated slope value ba1:
Cs ¼ Δzba1 ð21:9Þ

21.3 Results

21.3.1 Measurement of Deformation

Figure 21.4 shows a B-mode image of the skin. In the B-mode image, an epidermis

and a dermis were clearly distinguished. A scan line for an M-mode image was

decided from the B-mode image (a red line). Figure 21.5 shows an M-mode image

O

Experimental
data

time lag 

z +

Fig. 21.3 Relationship

between depth and time lag.

Dots: experiments data, and

line: regression line

calculated by least square

method
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of the scan line in the skin. In the M-mode image, each layer was slightly pulsating.

Figure 21.6 shows a result of a velocity measurement. Figure 21.6a shows a

velocity waveform, and Fig. 21.6b shows the velocity at each depth (surface,

0.20, 0.40, 0.60, and 0.80 mm). Figure 21.7 shows a result of an acceleration

measurement. Figure 21.7a shows an acceleration waveform, and Fig. 21.7b

shows the acceleration at each depth (surface, 0.20, 0.40, 0.60, and 0.80 mm).

Fig. 21.4 B-mode image of

human skin of forearm

Fig. 21.5 M-mode image

of scan line in human skin
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21.3.2 Estimated Shear Wave Velocity

Figure 21.8 shows the acceleration waveform map. 3 regions of interest (ROI I, II,

and III) were set in the M-mode image. ROI I corresponded to an area of the

epidermis, ROI II corresponded to an area of border between the epidermis and

dermis, and ROI III corresponded to an area of the dermis. Figure 21.9a shows a

close-up image of ROI I, and Fig. 21.9b shows a relationship between time and

depth with a regression line. In the region of the epidermis, the shear wave velocity

was 0.14 m/s. Figure 21.10a shows a close-up image of ROI II, and Fig. 21.10b

shows a relationship between time and depth with a regression line. In the region of

the border, the shear wave velocity was 0.04 m/s. Figure 21.11a shows a close-up

image of ROI II1, and Fig. 21.11b shows a relationship between time and depth

with a regression line. In the region of the dermis, the shear wave velocity was

0.06 m/s.

Fig. 21.7 Measured acceleration of scan line; (a) acceleration waveform, and (b) acceleration at

each depth (skin surface, 0.20, 0.40, 0.60, and 0.80 mm, respectively)

Fig. 21.6 Measured velocity of scan line; (a) velocity waveform, and (b) velocity at each depth

(skin surface, 0.20, 0.40, 0.60, and 0.80 mm, respectively)
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Fig. 21.8 Measured

acceleration map. ROI I:

area of epidermis, ROI II:

area of border between

epidermis and dermis, and

ROI III: area of dermis

Fig. 21.9 (a) Close-up image of ROI I, and (b) relationship between time and depth with

regression line

Fig. 21.10 (a) Close-up image of ROI II, and (b) relationship between time and depth with

regression line
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21.4 Discussion

The measured shear wave velocity of ROI I was higher than that of ROI II, and this

results conformed to the past researches that the elasticity of the epidermis is higher

than that of the dermis. Due to use of low frequency in analysis of acceleration, the

measured shear wave velocity was lower.

21.5 Conclusion

The deformation induced by arterial pulsation were measured with high frequency

ultrasound. The acceleration and the shear wave velocity were calculated from the

measured velocity. These estimated parameters well conformed to the histology of

the skin and the past reports. We believe this proposed method is very useful to

evaluate the elasticity of the human skin.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 22

Effect of Macrophage Colony-Stimulating

Factor Receptor c-Fms Antibody

on Lipopolysaccharide-Induced Pathological

Osteoclastogenesis and Bone Resorption

Keisuke Kimura, Hideki Kitaura, Masahiko Ishida, Zaki Hakami,

Jafari Saeed, Haruki Sugisawa, and Teruko Takano-Yamamoto

Abstract Lipopolysaccharide (LPS) is a major component of Gram-negative bac-

teria cell walls and is a well-known potent inducer of inflammation and pathogens

of inflammatory bone loss. Formation of osteoclasts is highly dependent on the

presence of macrophage colony-stimulating factor (M-CSF) and receptor activator

of nuclear factor kappa-B ligand (RANKL). Recent reports indicate that biological

preparations, including anti-RANKL antibody and anti-tumor necrosis factor-α
antibody, positively influence rheumatoid arthritis and osteoporosis. In this study,

we aimed to investigate whether the M-CSF receptor c-Fms antibody would inhibit

the formation of osteoclasts. C57BL6/J mice were injected with either LPS, LPS

and anti-c-Fms antibody, anti-c-Fms antibody, or PBS into the supracalvariae.

Animals were sacrificed and calvariae fixation and demineralization were

performed. Histological sections of calvariae were stained for tartrate-resistant

acid phosphatase (TRAP). In mice administered with both LPS and the anti-c-

Fms antibody, osteoclast numbers were lower than those in mice administered with

LPS alone. Moreover, levels of TRACP-5b, a bone resorption marker in mice

serum, were lower in mice administered with both LPS and the anti-c-Fms antibody

than in mice administered with LPS alone. These results suggest that M-CSF and its

receptor are potential therapeutic targets in LPS-induced osteoclastogenesis, and

that the anti-c-Fms antibody might be useful for inhibition of inflammation-induced

bone erosion. In this study, we describe and discuss the effect the anti-c-Fms

antibody has on pathological osteoclastogenesis and bone resorption.
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22.1 Biological Effect of Macrophage Colony-Stimulating

Factor (M-CSF)

Macrophage colony-stimulating factor (M-CSF) is a known hematopoietic growth

factor and regulator of key functions of macrophages and monocytes. M-CSF

mediates the survival and proliferation of precursors of the monocyte and macro-

phage lineage and their differentiation into mature phagocytes [1, 2]. Macrophages,

in relation to the immune response, exist as phagocytes and antigen-presenting cells

[3, 4]. Furthermore, the activity of macrophages is associated with the regulation of

many biological processes and is dependent on the actual macrophage phenotype

induced under various inflammatory conditions [1]. Macrophages play an important

role in homeostasis, autoimmunization, and first defense during infection. Macro-

phages react to tissue damage through non-specific activation followed by

overproduction of proinflammatory factors within the pathological condition

[5]. Furthermore, allergen or self-antigen presentation on macrophages induces a

chronic inflammatory response and stultification of immunity. Primitive macro-

phages develop from hematopoietic cells and then differentiate into fetal macro-

phages. Monocytes are also differentiated from hematopoietic cells in the bone

marrow and fetal hematopoietic organs. Macrophages contribute as effectors of

metabolism and the host defense. When macrophages are depleted, bilirubin pro-

duction and host resistance to infection are severely reduced. Macrophage growth

factors induce macrophage differentiation and function. M-CSF-deficient mice are

deficient in monocytes, tissue macrophages, and osteoclasts and show osteopetrotic

phenotypes [6]. It has been reported that macrophages incorporate chemically

modified, low-density lipoprotein (LDL) and differentiate into foam cells in the

arterial wall [7]. When oxidized LDL binds to liver X receptor α, this upregulates
expression of its target genes and acts to remove cholesterol from macrophages.

Inflammatory signals downregulate the expression of liver X receptor α and

enhance lipid accumulation [7]. Therefore, macrophages play a pivotal role in

metabolism and host defense. Thus, the macrophage/monocyte growth factor,

M-CSF, plays an important role in these events.

22.2 The Role of M-CSF in Osteoclast Formation

and Bone Remodeling

Many cytokine contribute to osteoclast formation [8–12]. M-CSF is one of the

essential cytokine for osteoclastgenesis. M-CSF plays an important role in bone

remodeling and mediates osteoclast differentiation and the survival and prolifera-

tion of osteoclast precursors [13, 14]. The osteoclast, which is a unique bone

resorptive cell, is a member of the macrophage family. Osteoclastogenesis is

dependent on M-CSF and receptor activator of nuclear factor kappa-B ligand

(RANKL) [15]. Osteoclasts play a role in bone resorption and maintain bone
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homeostasis. This event was confirmed by the observation that osteopetrotic

(op/op) mutant mice, deficient in expression of M-CSF, show an osteopetrotic

phenotype [14]. Additionally, administration of soluble M-CSF to op/op mice

rescues their osteoclast formation potential and occurrence of osteoporosis

[6]. The functional relationship between M-CSF and its receptor is established in

mice lacking c-fms, which display the same phenotype as the op/op mouse. These

mice have decreased tissue macrophages and severe osteopetrosis owing to a lack

of osteoclasts [16–19]. Mice homozygous for the osteopetrosis mutation are char-

acterized by defective differentiation of osteoclasts, monocytes, and tissue macro-

phages, owing to the lack of M-CSF activity. It has been reported that the bone

marrow cavities were filled with spongious bone in young op/op mice. Conversely,

the bone marrow cavities were reconstructed and marrow hematopoiesis was

increased in old op/op mice [7]. Osteoclast and bone marrow macrophage cell

numbers were also increased in old op/op mice. However, many of the osteoclasts

were mononuclear not multinuclear cells and showed insufficiently developed

ruffled borders. Furthermore, in old op/op mice, lysosomes of bone marrow mac-

rophages were laden with abundant crystalloid materials, which was not observed

in young op/op mice. Although the number of Kupffer cells in the liver was not

increased in the old op/op mice, cell ultrastructural maturation was absent and some

crystalloid structures were observed [7]. M-CSF administration to old op/op mice

increased the number of Kupffer cells and induced lysosome formation in the

Kupffer cells. Furthermore, M-CSF administration reduced crystalloid structures

in the lysosomes of the Kupffer cells and permitted development of atypical ruffled

border in the osteoclasts [7]. These results suggest that the M-CSF-independent

mechanisms for macrophage and osteoclast development in old op/op mice are

restricted to the bone marrow. M-CSF plays important roles in the differentiation of

macrophages and osteoclasts and the production and function of lysosomes. Bind-

ing of M-CSF to c-Fms activates the receptor tyrosine kinase and induces auto-

phosphorylation of the dimer on selected tyrosine residues. The M-CSF/c-fms

signaling pathway leads to activated phosphorylation of Pl3K, cSrc, and ERK,

which are critical for proliferation and survival of osteoclast precursors [20, 21].

Rheumatoid arthritis (RA) is a highly complex condition, the pathogenesis of

which results from a host of cytokines produced by a variety of cells. While

RANKL and interleukin (IL)-1 are important participants in the development of

focal bone erosions, which eventuate in joint collapse, tumor necrosis factor (TNF)-

α is the principal and rate-limiting culprit, whose blockade dampens both the

inflammatory and osteoclastogenic components of the disease [22]. However,

blockade of TNF-α alone is insufficient to optimize arrest of inflammatory joint

disease, as coordinated treatment with IL-1 receptor antagonist (IL-1Ra) is more

effective [23]. Added to the potential complications attending TNF-α inhibition,

these observations underscore the importance of identifying new therapeutic can-

didates in this disease, a goal which can be achieved only by gaining insight into the

means by which TNF-α impacts target cells.

While M-CSF is constitutively produced by a range of mesenchymal cells, its

regulated secretion has pathological consequences in the context of the osteoclast.
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Thus, absence of estrogen, the cause of postmenopausal osteoporosis, is because of

enhanced bone resorption caused, at least in part, by increased production of

M-CSF by bone marrow stromal cells [24]. Similarly, the enhanced osteoclas-

togenesis observed following deletion of the β3 integrin gene is due to stimulated

M-CSF expression [25]. Regarding inflammatory osteolysis, the cytokine is

increased in the serum of patients with RA [26] and those with severe ankylosing

spondylitis [27], as well as in the synovial fluid around loose joint prostheses [28].

22.3 Biological Antibody Therapy for Bone Disease

Recently, biological preparations, including anti-RANKL antibody and anti-TNF-α
antibody, have been reported to positively influence RA, osteoporosis, and cancer

bone metastasis [29]. These antibodies act as decoys to prevent receptor binding

and therefore inhibit osteoclastogenesis. Denosumab, an anti-bone resorptive drug,

is a complete human-type monoclonal antibody for RANKL [30, 31]. Denosumab

has been shown to elicit an inhibitory effect on bone resorption in patients with

osteoporosis and RA. However, in patients with massive renal dysfunction,

denosumab administration increases the risk of hypocalcemia. Denosumab binds

to a specific loop structure on the RANKL molecule and inhibits its interaction with

its receptor, RANK [32]. When labeled with radioactivity, denosumab was detected

in the lymph nodes and spleen after subcutaneous administration, indicating posi-

tive RANKL binding of the drug within those tissues. Therefore, researchers and

clinicians are interested in the inhibitory effects of denosumab on bone resorption,

as well as its mode of action. Biological therapy by blocking the TNF-α receptor

is an efficacious RA treatment. TNF-α is produced primarily by activated macro-

phages and induces osteoclast formation via activated phosphorylation of P38,

JNK, and AP-1. This cytokine likely plays a key role in RA pathogenesis [11, 32,

33]. Infliximab is a chimeric monoclonal IgG1 antibody against TNF-α [34].

It neutralizes TNF-α biological activity and inhibits bone distraction [35]. However,
one side-effect of infliximab includes immunodeficiency, therefore it needs to be

use cautiously.

22.4 The Inhibitory Effect of the Anti-c-Fms Antibody

in Pathological Osteoclast Formation and Bone

Resorption

In this review, we describe and discuss the effect of the anti-c-Fms antibody on the

pathology of osteoclastogenesis and bone resorption. M-CSF is produced by mes-

enchymal cells and its regulated secretion has physiological and pathological

consequences for osteoclasts. M-CSF promotes the survival and longevity of
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osteoclast precursors and organizes osteoclast cytoskeletons [15]. The absence of

estrogen in post-menopausal osteoporosis is because of enhanced bone resorption

caused by increased production of M-CSF by marrow stromal cells [24]. The level

of M-CSF is increased in the serum of patients with RA who have severe ankylos-

ing spondylitis [36] and in the synovial fluid around loose joint prostheses

[28]. These observations suggest that stromal cell-produced M-CSF may be an

important mediator of inflammation-induced osteoclastogenesis. Indeed, it has been

reported that TNF-α induces M-CSF gene expression in stromal cells and increases

the number of osteoclast precursors in vivo [37]. Stromal cell-produced M-CSF

may be an important mediator of TNF-stimulated osteoclastogenesis. In fact,

TNF-α has been shown to induce M-CSF gene expression in vivo and only in the

presence of stromal cell-residing TNFRs. The capacity of TNF-α to increase

osteoclast precursor numbers in vivo, corresponds with the pro-proliferative and

pro-survival properties of abundant levels of M-CSF. The fact that TNF-α enhances

osteoclast precursor numbers in the presence of only constitutive levels of M-CSF,

suggests that, like its interaction with RANKL, this inflammatory cytokine

synergizes with M-CSF to enhance osteoclast precursor numbers. In fact, mice

treated with carrier or anti-c-Fms mAb developed equivalent periarticular inflam-

mation, while those receiving the antibody were completely free of pathological

osteoclastogenesis and bone resorption. This observation reflects, to a substantial

degree, the arrest of TNF signaling, as similar results were obtained in

TNF-α-injected mice also receiving the anti-c-Fms antibody.

Mechanical force loading exerts important effects on the skeleton by controlling

bone mass and strength. Orthodontic tooth movement is a good model for exploring

the mechanism of mechanical loading-induced bone remodeling. In a mouse model

of orthodontic tooth movement, TNF-α was expressed and osteoclasts appeared on

the compressed side of the periodontal ligament. In TNF-receptor-deficient mice,

there was less tooth movement and osteoclast numbers were lower than in wild-type

mice. These results suggest that osteoclast formation and bone resorption are

caused by mechanical loading-induced TNF-α secretion and that TNF-α is

concerned with orthodontic tooth movement [38]. However, the relationship

between orthodontic movement and TNF-α is not fully understood as yet. Blocking

M-CSF with an anti-c-Fms antibody was shown to inhibit osteoclast formation and

tooth movement [39]. These results suggest that control of M-CSF could regulate

osteoclast formation and subsequent orthodontic tooth movement. Root resorption

often occurs following orthodontic treatment and is a serious problem for the

orthodontist and patient. During one study, the anti-c-Fms antibody was locally

injected adjacent to the first molar every other day during the experimental period.

The anti-c-Fms antibody was found to inhibit odontoclastogenesis and root resorp-

tion during orthodontic tooth movement [39].

M-CSF and/or its receptor is therefore a potential therapeutic target in mechan-

ical stress-induced odontoclastogenesis, and injection of the anti-c-Fms antibody

might be useful for inhibition of mechanical stress-induced root resorption during

orthodontic tooth movement.
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Bacterial infection and lipopolysaccharide (LPS) are reported to induce osteo-

clast formation and inflammatory bone loss, as seen in periodontal diseases [40,

41]. LPS is major component of bacteria and is reported to be an inducer of

inflammation and pathological bone resorption. We therefore, aimed to examine

the effect of LPS on osteoclastogenesis and the anti-c-Fms antibody. We assumed

that the M-CSF receptor c-Fms antibody would inhibit LPS-induced osteoclast

formation. In our study, we showed that LPS induced M-CSF expression in vivo.

The anti-c-Fms antibody has been previously reported to inhibit RANKL-induced

osteoclastogenesis in vitro and completely block pathological osteoclastogenesis

and bone resorption, induced by inflammatory arthritis and direct injection of

TNF-α [42]. In the present study, we administered LPS with and without the anti-

c-Fms antibody into mouse supracalvariae to analyze the effect of the anti-c-Fms

antibody on LPS-induced osteoclastogenesis in vivo. In the LPS-administered

group, increased numbers of osteoclasts were observed. In comparison, the number

of osteoclasts was significantly reduced in the group administered with both LPS

and the anti-c-Fms antibody, which was dependent on the concentration of the anti-

c-Fms antibody. Levels of both cathepsin K and tartrate-resistant acid phosphatase

mRNAs were also significantly lower in the group administered with both LPS and

the anti-c-Fms antibody compared with the LPS-administered group. These results

showed that anti-c-Fms antibody inhibited LPS-induced osteoclast formation

[43]. To examine whether the anti-c-Fms antibody inhibited LPS-induced

osteolysis, we used three-dimensional reconstruction images of calvariae obtained

by microfocal computed tomography (μ-CT). Many radiolucent spots on calvariae

were observed in the μ-CT images in the LPS-administered group but not in the

group administered both LPS and the anti-c-Fms antibody. Furthermore, the level

of TRACP-5b, a bone resorption marker, was lower in the serum of the group

administered both LPS and the anti-c-Fms antibody compared with the

LPS-administered group. The results suggest that the anti-c-Fms antibody can

inhibit LPS-induced osteolysis by inhibition of osteoclast formation [43]. Our

results showed that osteoclasts were induced in calvariae in the presence of LPS.

Several previous studies have indicated that LPS induces the expression of inflam-

matory cytokines, such as TNF-a, IL-1, and IL-6, in vitro and in vivo. Furthermore,

it has been reported that TNF-α induces M-CSF expression in stromal cells in vivo

[42, 44]. In our study, we found that LPS induced M-CSF expression in vivo. It has

been reported that M-CSF induces RANK expression by bone marrow macro-

phages in vitro [42]. We therefore investigated whether LPS-induced RANK

expression in vivo was dependent on M-CSF. We found LPS-induced RANK

gene and protein expression were inhibited by the anti-c-Fms antibody in vivo

[43]. These results suggest that RANK expression induced by LPS in vivo might be

dependent on LPS-induced M-CSF levels. Taken together, the inhibition of

LPS-induced RANK expression might be one factor behind the inhibitory effect

of the anti-c-Fms antibody on osteoclastogenesis.
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22.5 Conclusions

M-CSF has an important role within the immune system and bone remodeling,

representing one of many cytokines involved in the pathogenesis of inflammatory

osteolysis. Although M-CSF-signaling is initiated at the induction of the arthritic

process, the profundity of its effect on osteoclasts, as compared with macrophages,

enhances its therapeutic appeal. The potential of M-CSF inhibition as a means of

treating RA is underscored by the development of c-Fms-selective small molecules

[45] and the capacity of the tyrosine kinase inhibitor drug, imatinib, to target the

receptor [46]. Given the significant complications encountered with other forms of

anti-cytokine therapy, however, the therapeutic targeting of M-CSF must be

approached with caution [47]. M-CSF and/or its receptor are potential therapeutic

targets for the treatment of bacterial infection-induced osteolysis caused by LPS.

The injection of an anti-c-Fms antibody might be useful for the inhibition of

pathological bone resorption during bacterial infection.

Taken together, these data indicate that M-CSF is a key cytokine that plays a

central role in inflammatory osteolysis and might be a therapeutic target. However,

M-CSF accelerates formation of osteoclasts by increasing their precursor pool, the

majority of which fail to become bone resorptive polykaryons, but host defense

mononuclear phagocytes. Thus, the coincident immunosuppressive effect of

inhibiting macrophage proliferation and survival as a means of arresting inflamma-

tory periarticular erosion, is a potential limitation of M-CSF blockade. Further

studies are necessary to clarify this aspect.
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Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 23

The Role of Th1 Cytokines on Mechanical

Loading-Induced Osteoclastogenesis

and Bone Resorption

Hideki Kitaura, Keisuke Kimura, Masahiko Ishida, Zaki Hakami,

Jafari Saeed, Haruki Sugisawa, Haruka Kohara, Masako Yoshimatsu,

and Teruko Takano-Yamamoto

Abstract Mechanical loading exerts important effects on the skeleton by control-

ling bone mass and strength. Osteoclasts are required for bone resorption and

remodeling. Two cytokines are required for osteoclast formation: macrophage

colony-stimulating factor and receptor activator of nuclear factor kappa-B ligand

(RANKL). Tumor necrosis factor-α (TNF-α) has also been recognized as an

important factor for osteoclastogenesis. It has previously been reported that inter-

leukin (IL)-12 and IL-18, and interferon gamma (IFN-γ), which are type 1T helper

cell (Th1) cytokines, inhibited RANKL- and TNF-α-mediated osteoclastogenesis.

It also been reported that TNF-α plays an important role in mechanical loading-

induced osteoclastogenesis and bone resorption. Orthodontic tooth movement is a

good model for exploring the mechanism underlying mechanical loading-induced

bone changes. Orthodontic tooth movement in a mouse model was established, and

we investigated whether Th1 cytokines such as IL-12 and IFN-γ inhibit osteoclas-
togenesis and bone resorption upon mechanical loading. The number of tartrate-

resistant acid phosphatase (TRAP)-positive cells increased at the pressure side of

the first molar. Conversely, the amount of tooth movement and the number of

TRAP-positive cells at the pressure side in IL-12- and IFN-γ-injected mice was less

than that of non-injected mice. The results suggested that IL-12 and IFN-γ might

have an inhibitory effect on mechanical loading-induced osteoclastogenesis. In this

review, we describe and discuss the effect of Th1 cytokines on mechanical loading-

induced osteoclastogenesis and bone resorption.
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23.1 Osteoclast Differentiation

Bone resorption is controlled by osteoclasts. Osteoclasts differentiate from hema-

topoietic stem cells [1]. Several important factors for osteoclast differentiation have

been recognized. The receptor activator of nuclear factor kappa-B ligand (RANKL)

[2], also known as osteoclast differentiation factor (ODF) [3], osteoprotegerin

ligand (OPGL) [4], and tumor necrosis factor (TNF)-related activation-induced

cytokine (TRANCE) [5] have been found to be essential in osteoclast differentia-

tion. Macrophage colony-stimulating factor (M-CSF) is also identified as essential

for the proliferation and differentiation of osteoclast precursors [6]. Op/op mice,

which lack functional M-CSF, show osteopetrosis and have no osteoclasts. This

deficiency can be cured by injection of M-CSF [7]. RANKL has been identified as a

ligand of the receptor activator of nuclear factor kappa-B (RANK), which is an

immunoresponsive receptor on dendritic cells [2]. RANKL-deficient mice have

severe osteopetrosis and show a complete deficiency of osteoclasts [8]. Conversely,

it has been reported that TNF-α also mediates osteoclast formation in vitro [9–11]

and in vivo [12, 13]. TNF-α can also form osteoclasts independent of RANKL in the

presence of transforming growth factor beta (TGF-β) [14]. However, it has been
reported in another group that TNF-α failed to induce the differentiation of osteo-

clasts without RANKL [15]. They suggested that a constitutive level of RANKL

was necessary for TNF-α-mediated osteoclast formation. Further studies are nec-

essary to clarify this aspect.

23.2 TNF-α-Mediated Osteoclast Formation

TNF-α is pleiotropic and has a variety of biological effects in a cell-specific

manner. TNF-α is known to play a major role in host defense, and exerts

proinflammatory activities through various cells, including mononuclear phago-

cytes, in which it is responsible for the activation of bactericidal and cytocidal

systems [16, 17]. It has been reported that TNF-α induces osteoclast formation

from M-CSF-dependent bone marrow-derived macrophages in vitro [10]. TNF-α
induced osteoclast recruitment might be central to the pathogenesis of inflammatory

disorders [18]. TNF-α is a known contributor to rheumatoid arthritis [19], peri-

odontal diseases [20, 21], and postmenopausal osteoporosis [22]. The findings that

TNF-α recognizes two receptors on cell surfaces, type 1 or p55 (TNFR1) and type

2 or p75 receptors (TNFR2), and that each receptor is capable of distinct intracel-

lular signaling [23], has substantially deepened our understanding of the complex

activities of this cytokine. Analysis of TNFR1- and TNFR2-deficient mice revealed

that TNFR1 induces osteoclast differentiation, while TNFR2 inhibits osteoclast
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differentiation [24]. The role of TNF-α signaling in osteoclastogenesis remains

poorly understood, and further studies are needed to clarify the relationship

between TNF-α and osteoclast differentiation.

23.3 Mechanical Force Loading-Induced Osteoclast

Formation and Bone Resorption

Mechanical loading force affects the skeleton by controlling bone mass and strength

[25]. Several in vivo experimental models have been reported that evaluate the effect

of mechanical loading on bone metabolism. The following experimental animal

models have been established: jumping [26, 27], treadmill running [26, 28], squat-

ting [29], and swimming [30]. Assessing an orthodontic tooth movement model

in vivo is beneficial to understand the mechanism of mechanical loading-induced

bone remodeling [31–34]. The animal models used for orthodontic tooth movement

were usually rats and mice [35–43]. Opportunities for the use of various gene-

mutated mice including those with genes that regulate bone metabolism have

increased, because molecular biology techniques have progressed. Therefore, the

mice tooth movement models can provide an understanding of the molecular

mechanisms involved not only in tooth movement but also in mechanical loading-

induced bone remodeling. A nickel-titanium (Ni-Ti) coil spring to obtain a contin-

uous force for tooth movement is suitable for exerting continuous orthodontic force

in mice models [44, 45]. The process of orthodontic tooth movement occurs by

repeated alveolar bone resorption on the pressure side and bone formation on the

tension side of teeth [46]. In orthodontic tooth movement, there is an association

between osteoclasts and bone resorption on the pressure side [47]. In mice models,

bone resorption was recognized on the pressure side and tartrate-resistant acid

phosphatase (TRAP)-positive multinuclear cells also appeared on this side.

Mechanical force is relevant to tooth movement via the biological responses of

cells in the periodontal ligament, alveolar bone, and other periodontal tissues

[48]. Several factors, specifically cytokines and hormones, are related to this

process. An increase in the level of TNF-α in the gingival sulcus during orthodontic

tooth movement in humans has been reported [49, 50]. TNF-α has been shown to be

expressed in rat periodontal tissue during excessive orthodontic force application

[51]. When tooth movement was applied to TNFR1- and TNFR2-deficient mice, the

amount of tooth movement observed in TNFR2-deficient mice was less than that in

the wild-type mice [44]. These results suggested that TNFR2 is important for

orthodontic tooth movement. However, it has been reported that the analysis of

the reaction to TNF-α using TNFR1- or TNFR2-deficient mice showed the induc-

tion of osteoclastogenesis in TNFR1-deficient mice, whilst the inhibition of

osteoclastogenesis was observed in TNFR2-deficient mice [20]. These results are

controversial. In the evaluation of the role of TNFR1 in osteoclast formation during

orthodontic tooth movement, the number of osteoclasts in TNFR1-deficient mice
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was found to be lower than that in wild-type mice [52]. To further investigate the

role of TNFRs, tooth movement experiments using double-mutated mice for both

TNFR1 and TNFR2 were performed. The experiment showed significant decreases

in the amount of tooth movement in the double-mutated mice [45]. These results

suggested that TNF-α is associated with orthodontic tooth movement. However, the

relationship between orthodontic movement and TNF-α is not yet completely

understood.

23.4 Effect of Interleukin (IL)-12 on Osteoclast Formation

IL-12 is one of the type 1T helper cell (Th1) cytokines. IL-12 has been recognized

as playing an important role in host defense. It induces differentiation of native T

cells into IFN-γ-producing Th1 cells that are resistant to infection [53]. IL-12 is a

heterodimeric disulfide-linked 70-kDa protein consisting of 35- and 40-kDa sub-

units. It has previously been shown that IL-12 plays an important role in attaining

the optimal level of cell-mediated immune response against intracellular pathogens

[54]. IL-12 is produced by osteoblasts infected with Staphylococcus aureus, which
is the most prevalent causative microorganism in osteomyelitis, a bone resorption

disorder [55].

It has been shown that IL-12 inhibits osteoclast formation in the spleen cells of

mice treated with M-CSF and RANKL [56]. It was found that the inhibitory effect

of IL-12 depends on the presence of T cells among spleen cells. However, it has

been reported that osteoclastogenesis induced by RANK/RANKL interaction

decreased in the presence of IL-12 by a T-cell-independent mechanism in vitro

[57], and TNF-α-induced osteoclastogenesis was also inhibited through induction

of apoptosis mediated by the interaction of the IL-12-induced Fas ligand (FasL) and

TNF-α-induced Fas in vitro [58]. IL-12 and IL-18 inhibited TNF-α-mediated

osteoclastogenesis by up-regulating FasL synergistically [59]. IL-18 is also an

important Th1 cytokine. It has been reported that IL-18 can also inhibit osteoclast

formation in spleen cell cultures in vitro and that the IL-18-mediated inhibition of

osteoclast formation is also T cell dependent [56].

The target cells of IL-12 have been shown to be T cells [54], natural killer

(NK) cells [60], natural killer T cells, B cells [61], dendritic cells [62], and

macrophages [63]. It has been reported that IL-12 influences non-adherent cells

in bone marrow cell cultures and induces FasL expression in non-adherent cells.

The results suggested that adherent cells, such as dendritic cells and macrophages,

are not target cells [54]. In addition, when bone marrow macrophages were

co-cultured with T cells isolated from among spleen cells in the presence of

M-CSF, TNF-α, and IL-12 in vitro, apoptotic alterations were not observed

[58]. In the study, when whole bone marrow cells from T-cell-deficient nude

mice were cultured in the presence of M-CSF, TNF-α, and IL-12, the cells

underwent apoptosis similar to those of wild-type mice [58]. These results also
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suggest that T cells may not be target cells for IL-12 in this case. However,

additional experiments are necessary to clarify the target cells for IL-12.

The effect of IL-12 on mechanical tooth movement in mice has been reported.

Mechanical tooth movement, in which a Ni-Ti closed coil spring was inserted

between the upper incisors and the first molar in mice, was used. IL-12 was injected

into a local site adjacent to an upper molar during tooth movement. After 12 days,

the distance of tooth movement was measured. The number of osteoclasts, which

are TRAP-positive cells, were counted in a histological section. Tooth movement

was inhibited when IL-12 was localized. The number of TRAP-positive cells was

reduced in IL-12-treated mice [64].

Root resorption is a disagreeable phenomenon of orthodontic treatment, which

may present at the dentinal and cemental areas of the tooth root surface, and is a

serious problem for the orthodontist [65]. Even under normal conditions, it is

possible to cause root resorption during orthodontic tooth movement [66–68]. Inhi-

bition of root resorption is hopeful for orthodontists. In recent years, there have

been studies investigating the use of medicine for future clinical application to

prevent root resorption. It has been reported that bisphosphonates inhibit root

resorption [69, 70]. In addition, it has been shown that osteoprotegerin inhibits

root resorption more effectively than bisphosphonates [71]. Furthermore, the inhib-

itory effect on root resorption by amelogenin [72], bisphosphonates, and anti-c-Fms

antibodies has also been reported [73, 74]. Root resorption was recognized in this

tooth movement model. The root resorption area was measured using a scanning

electron microscope. The root resorption area was reduced in IL-12-treated mice.

In TdT-mediated dUTP-biotin nick end-labeling (TUNEL) assays, many apoptotic

cells were seen on the pressure side in IL-12-treated mice. These findings

indicate that IL-12 inhibits mechanical tooth movement and root resorption in

orthodontic tooth movement. These results might be the outcome of apoptosis

induced by IL-12.

23.5 Effect of IFN-γ on Osteoclast Formation

and Bone Resorption

IFN-γ contributes to T-cell-mediated regulation of immune responses and is

secreted by Th1 cells, cytotoxic T cells, dendritic cells, and NK cells [75]. In

addition, IFN-γ has been recognized as an activator of macrophages because of

the induction both of nitric oxide production and major histocompatibility complex

presentation in macrophages, and exhibits antiviral and antibacterial activity [76].

The effect of IFN-γ has been recognized as suppression of osteoclast formation

by inhibition of RANKL signaling via degradation of TNF receptor-associated

factor 6 [77]. Furthermore, the bone resorption in collagen-induced arthritis was

enhanced in IFN-γ-deficient mice [78]. These data indicated that IFN-γ inhibited

osteoclast formation and bone resorption. However, it has been reported that IFN-γ
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indirectly stimulates osteoclast formation via antigen-driven T-cell activation [79].

Therefore, the role of IFN-γ in osteoclast formation is still unclear.

It has been reported that IFN-γ directly inhibits osteoclastogenesis induced by

TNF-α stimulation and accelerates apoptosis mediated by Fas/FasL signals. IFN-γ
directly interrupted TNF-α-induced osteoclast formation as revealed with a

decreased number of osteoclasts and messenger ribonucleic acid (mRNA) levels

of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1), which is a gene

essential for osteoclast formation, in cultured bone marrow macrophages. Apo-

ptotic findings of cultured cells were evaluated by accelerated nuclear fragmen-

tation in osteoclast precursor cells. Fas mRNA levels in bone marrow cells were

stimulated by TNF-α. FasL mRNA levels in a bone marrow culture with IFN-γ
was increased. Furthermore, IFN-γ inhibited osteoclastogenesis in response to

TNF-α treatment in vivo. IFN-γ inhibited TNF-α-induced osteoclastogenesis in

mice with T cells blocked by anti-CD4 and anti-CD8 antibodies [80]. These

results suggested that IFN-γ directly inhibits osteoclastogenesis, and induces

cell apoptosis by Fas/FasL signaling, leading to the indirect regulation of bone

resorption. This might occur as a protective role against bone destruction at an

inflammation site.

The cellular responses in periodontal tissue, including the alveolar bone,

periodontal ligament, and other periodontal tissues, during mechanical force-

driven tooth movement are mediated by interactions between various factors

such as cytokines and hormones [48, 81]. In a rat tooth movement model, IFN-γ
is expressed on the pressure side of teeth [82]. IFN-γ, which increases trabecular

bone volume, has been evaluated histomorphometrically during orthodontic tooth

movement in rats [83]. Therefore, these results suggest that IFN-γ plays an

important role in orthodontic tooth movement. However, there are few studies

on the effect of IFN-γ on tooth movement. The effect of IFN-γ on mechanically

loaded tooth movement in a mouse model has been reported. A Ni-Ti closed coil

spring was inserted between the upper anterior alveolar bone and the upper left

first molars in mice. The relationship between local IFN-γ mRNA levels and

orthodontic tooth movement was evaluated. In other experiments, IFN-γ was

injected to each first molar every other day during tooth movement. After

12 days, the amount of tooth movement was measured. The number of osteoclasts

at the pressure side of each experimental tooth was assessed. Local IFN-γ mRNA

expression increased with orthodontic tooth movement in mice. The number of

osteoclasts increased on the pressure side of the first molar. In contrast, the

distance of tooth movement and the number of osteoclasts on the pressure side

in IFN-γ-injected mice were less than those of control mice. IFN-γ expression was
increased in experimental tooth movement. Furthermore, IFN-γ could inhibit

mechanical force-induced osteoclast formation and tooth movement. These results

suggest that IFN-γ might be useful in controlling orthodontic tooth movement,

because IFN-γ inhibited the action of progressive osteoclast formation during

orthodontic tooth movement [84]. These results lead us to conclude that IFN-γ
induction is able to inhibit mechanical force-loaded osteoclast formation, conse-

quently inhibiting orthodontic tooth movement.
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23.6 Conclusions

It has been reported that many types of cytokines are expressed during mechanical

loading of the periodontal ligament. TNF-α is an important molecule in mechanical

loading force-induced osteoclast formation in the periodontal ligament during

orthodontic tooth movement. Therefore, it is important to study the relationship

between TNF-α-induced osteoclast formation and the cytokines expressed during

mechanical loading. Th1 cytokines inhibited osteoclast and odontoclast formation

during mechanical loading in the periodontal ligament. There is a possibility that

local injection of Th1 cytokines might be a useful tool to enhance the anchorage site

and control the rate of tooth movement during orthodontic treatment, as well as

prevent relapse after orthodontic treatment. Moreover, local injection of Th1

cytokines might be a useful tool in reducing root resorption, particularly for high-

risk teeth. However, further studies are required to fully understand the relationship

between mechanical loading-induced osteoclast formation and the effect of

cytokines.
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Chapter 24

The Ventral Primary Somatosensory Cortex

of the Primate Brain: Innate Neural Interface

for Dexterous Orofacial Motor Control

Takashi Toda and Tada-aki Kudo

Abstract Studies using nonhuman primates have made marked contributions to

our understanding of the anatomy and function of the primary somatosensory cortex

(SI). Its ventral or inferolateral part (vSI) represents orofacial structures, such as the

lips, periodontium, tongue, palate, chewing musculature, etc. This brain region is

neurally interconnected with the ventral part of the primary motor cortex that

executes voluntary orofacial movements. Also within the vSI, regions representing

different orofacial structures are interconnected with each other. Therefore, in self-

generated actions, the vSI plays a crucial role in coordinating motor control of a set

of structures that are functionally related: the vSI serves as an interface not only

between orofacial structures and the external environment but also between the

orofacial structures themselves. In this article, we will chiefly review the neuroan-

atomical and neurophysiological studies on the monkey vSI from the viewpoint of

motor control or stereognostic ability. Future physiological studies that analyze the

spatiotemporal spiking pattern of vSI neurons during various behaviors in monkeys

should reveal the principles of information coding and might significantly benefit

future applications of brain-machine-brain interface (BMBI) technology.

Keywords Monkey • Motor control • Neuronal receptive field • Primary somato-

sensory cortex • Tongue

24.1 Introduction

The primary somatosensory area (SI) of primates is located in the anterior-most part

of the parietal lobe; i.e., the postcentral gyrus in Old World monkeys and humans.

Its ventral or inferolateral part (vSI; Fig. 24.1a, b) represents orofacial structures

and the larynx and plays a crucial role in the motor coordination of those structures.

Its highly sophisticated form allows for speech motor control in humans.
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Neuroimaging studies of voice and speech production have consistently reported

activation of the vSI, as well as the primary motor cortex, in both hemispheres (for

review see [1, 2]). For example, the vSI was activated bilaterally even in the

simplest speech task, such as overt speaking of a single syllable [3]. Similar results

were reported in singing, another sophisticated orofacial and laryngeal function in

humans (for review see [4]): the vSI is activated bilaterally in a simple singing

condition where subjects were asked to produce bisyllabic words melodically

intoned at a certain pitch, and even during humming [5]. Moreover, several lines

of evidence suggest that trained singers may rely more on somatosensory feedback

than auditory feedback to make sure that notes are produced properly [4]. In one

study, professional opera singers and vocal students showed increased activation in

the bilateral vSI compared to laymen (medical students), but not in the auditory

cortex [6]. The investigators interpreted this to mean that somatosensory feedback

via the vSI towards the motor cortex might play a particularly important role in the

development of classical singing skills. Chewing, a more vital orofacial function,

was also reported to activate the vSI bilaterally [7, 8]. This suggests that chewing

also requires information processing in the vSI to control or monitor a series of

movements despite its semi-automatic nature.

Non-invasive brain imaging techniques have made significant contributions to

our understanding of the brain mechanisms involved in orofacial functions, partic-

ularly those specific to humans. However, because of the limitation in spatial and

temporal resolution, these techniques are unable to address finer anatomical and

physiological details; e.g., the precise location of regions representing each

orofacial structure and their neural interconnections, the principles of information

coding by individual neurons, and populations of neurons, etc. Therefore, animal

studies using nonhuman primates are also of tremendous value as complements to

human brain imaging studies, and will continue to be so. In the following sections,

we chiefly review the neuroanatomical and neurophysiological studies of the

monkey vSI and some relevant neuroimaging studies in humans. Readers may

also refer to a related review published recently by another group [9].

Fig. 24.1 Overview of the ventral or inferolateral part of the primary somatosensory cortex (vSI).

(a) (b) Lateral view of the cerebral hemisphere of humans (a) and macaques (b). The dark-shaded
area roughly indicates the location of the vSI that represents the orofacial structures. The solid line
in b corresponds to the section in c. (c) Cytoarchitectonic areas (Brodmann areas 3a, 3b, 1, 2) are

shown in a parasagittal section. The broken line indicates layer IV. Dotted lines indicate the

boundaries of cytoarchitectonic areas. CS central sulcus, LS lateral sulcus
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24.2 Representation of Orofacial Structures in Area 3b

The primary somatosensory area (SI) consists of three cytoarchitectonic areas, as

shown in Fig. 24.1c: Brodmann areas 3 (3a, 3b), 1, and 2. Area 3 is regarded as the

primary somatosensory area in a strict sense and is called the “SI proper”, because

this area receives the densest projection from the specific somatosensory relay

nuclei of the thalamus. Area 3b chiefly represents the contralateral body surface

in a mediolaterally elongated band of the cortex. Along this mediolateral axis, the

tail, lower limb (foot), trunk, upper limb (hand), face, and oral structures are

represented in a somatotopical manner. Our current knowledge of the neuroanat-

omy of the vSI is based largely on studies performed by Professor Jon H. Kaas (see

review [10]) and those of Professor Edward G. Jones. The representations of the

hand and face are separated by a histologically visible border in both New [11, 12]

and Old World monkeys [13–15]. This “hand-face border” can be detected as a

myelin-light septum in brain sections cut parallel to the cortical surface. Further

laterally, myelin-dense ovals were shown to indicate anatomical modules that

correspond to representations of different orofacial structures in both New [16,

17] and Old World monkeys [13, 15]. In New World monkeys, the myelin-dense

ovals are arranged in a rostrocaudal direction and extend to the ventral frontal lobe.

There, the lips or chin, teeth (periodontal receptors), and tongue are represented in a

caudorostral sequence. Further rostrally, the ipsilateral side of the teeth and tongue

are represented. In Old World monkeys, the lips (cheek mucosa), teeth, and tongue

are represented in a mediolateral sequence. Further anterolaterally, the ipsilateral

side of the teeth and tongue are represented. The ipsilateral representation is a

distinctive feature of oral structures, such as the teeth and tongue and each side of

the oral structure is represented in area 3b of both hemispheres. This was confirmed

in a wide range of primates: prosimian primates, such as the African galago [10],

New World monkeys, such as the squirrel monkey and owl monkey [16, 18], Old

World monkeys, such as macaques [15, 19, 20], and humans (see review [21]). Such

corepresentation of the contralateral and ipsilateral sides of oral structures may

facilitate the convergence of input from functionally related portions of both sides

(bilateral integration described in the next section).

Dense neural interconnections between representations of different orofacial

structures have been documented in both New [17] and Old World monkeys

[15]. For example, a recent neuroanatomical study of macaques [15] demonstrated

that the tongue representation received dense projections from regions representing

the lower and upper teeth and tissue lining the inside of the cheek and lips. Such

interconnections may partly explain the presence of neurons having composite

receptive fields covering different orofacial structures (described later). In contrast,

the hand representation, located medially to the orofacial representation, provided

little to no input to either the face or mouth representations in both New [12] and

Old World monkeys [14, 15] and it follows that the anatomical hand-face border

mentioned earlier is also regarded as a functional border. Another interesting

observation may be the relation between the tongue representation and the
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gustatory related regions [15]: the tongue representation uniquely received pro-

jections from areas in the anterior upper bank of the lateral sulcus and anterior

insula that may include the primary gustatory area (area G) and other taste-related

areas. Also in that study, the tongue representation was likely to receive an additive

projection from the lateral surface of the frontal operculum near the lateral sulcus,

although the investigators did not particularly emphasize this. This region may

presumably correspond to the precentral extension of area 3, which was also

implicated in gustatory function [22, 23].

24.3 Neuronal Receptive Fields (RFs) as an Indicator

of Hierarchical Information Processing in the vSI

Hierarchical information processing in the vSI was summarized in a previous

review [24]. As shown in Fig. 24.2, spatial convergence of somesthetic information

arising from orofacial structures proceeds across three cytoarchitectonic areas; i.e.,

areas 3, 1, and 2 [20, 25], in a manner established in the hand representation (see

review [26]). Along this rostrocaudal stream, neuronal receptive fields (RFs)

become larger and more complex so that the RFs cover functionally related portions

of orofacial structures (composite RFs). The patterns of spatial convergence can be

classified into three types (Fig. 24.2): bilateral convergence, intermaxillary conver-

gence, and inter-structural convergence. Furthermore, the spatiotemporal integra-

tion also proceeds along this stream: the relative incidence of neurons exclusively

responsive to light stroking stimuli (movement-specific neurons) increases moving

caudally towards area 2 [27]. Of these, the majority responded with directional

selectivity, that is, they responded exclusively to stimuli moving in a particular

direction. Most of the movement-specific neurons had ordinally uninterrupted RFs

and the remaining had composite RFs discretely covering different structures. The

relative incidences of neurons with composite RFs in area 2 were significantly

higher in movement-specific neurons than in other neurons, suggesting that the

spatiotemporal integration for representing moving objects is accompanied by the

convergence of inputs from discrete, but functionally related, oral portions. Such a

hierarchical scheme in the vSI might be a prerequisite neural process for dexterous

orofacial function and oral stereognosis. The spatial convergence found in awake

macaque monkeys was indirectly supported in a subsequent human study using

functional MRI [28]. Although neuronal RFs could not be studied in humans, the

investigators inspected the degree of activation overlaps between the representa-

tions of different oral structures, such as the lips, teeth, and tongue. They showed

that the overlap in the middle and caudal portions of the postcentral gyrus was

significantly greater than in the rostral portion of the postcentral gyrus.

The SI receives not only somesthetic inputs arising from the periphery, but also

signals from the frontal lobe related to motor command. It is therefore important to

determine the activity of vSI neurons during self-generated orofacial movements.
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The laboratory of Professor B.J. Sessle has played a pioneering role and is making

tremendous contributions to this field (for review, see [9]). Their studies on the vSI

(chiefly in areas 3b and 1) documented in a trilogy of papers revealed the relations

between the neuronal RF properties and neuronal activity during self-generated

movements [29–31]. In the first paper [29], monkeys were trained to perform a

tongue-protrusion task and biting task. In the tongue protrusion task, a significant

alteration of firing rate was observed in ~80 % of tongue RF neurons and 60 % of lip

RF neurons. Of note here is that a substantial proportion of neurons did not change

their activity during the task, despite apparent orofacial RFs. Moreover, among the

task-related neurons, adaptation characteristics of RFs (slowly adapting or rapidly

adapting) could not predict the patterns of neuronal activities during the task. For

example, task-related neurons with a slowly adapting type of RF did not necessarily

fire in a tonic manner during the task: rather, four types of activity patterns; i.e.,

phasic, tonic, phasic-tonic, and decreased, were detected during the task. In the

second paper [30], the monkeys were required to protrude their tongue in each of

three directions: the target was positioned at 0�, 30� to the left, or 30� to the right

from the midsagittal plane. Again, laterality of a neuronal RF could not predict the

preferred tongue-protrusion direction of the neuron. The results of these two papers

strongly suggest that neurons with various RF properties are recruited simulta-

neously even in a simple self-generated orofacial movement. In the third paper [31],

electrical or mechanical stimulations were applied to the RFs of each neuron

(except to the lingual nerve for tongue RF neurons) when the monkeys were

performing the task. Almost all of the neurons tested showed a decrease in evoked

activity during the tongue-protrusion task. This finding indicates that disturbing

somesthetic inputs arising from the periphery are gated out during self-generated

movements. To summarize, the passive properties of neuronal RFs are indeed a

reliable indicator for evaluating the flow of sensory information across different

brain regions, but those properties alone cannot explain the actual neuronal behav-

ior during self-generated movements.

The bidirectional neural interconnection between the vSI and the ventral primary

motor area (vMI) was established in neuroanatomical studies of New [17] and Old

World monkeys [15, 32]. In one study on the vMI, most neurons respond to light

tactile stimulation rather than stimulation to deep tissues, such as the muscle and

joint, which suggests the particular importance of tactile input in motor control

[33]. Another important finding in this study was that neurons with RFs on different

orofacial structures were intermingled. This may be partly explained by the pres-

ence of neurons with composite RFs in the aforementioned vSI and the direct neural

projection from the vSI to the vMI. As has been suggested, such complex organi-

zation in the vMI may be a prerequisite neural basis for the motor coordination of

various structures. The manner of neuroplastic changes in the vMI, as well as vSI,

should also be addressed, because such changes permit the acquisition of newmotor

skills or adaptation to an altered orofacial environment. Studies on this subject were

reviewed in detail by Professor B.J. Sessle and colleagues [9, 34].

From the viewpoint of dental pain, vSI neurons that receive input from the tooth-

pulp are also important targets of study [35, 36]. In one study, monkeys were trained
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Fig. 24.2 Schematic drawing showing the convergence of somesthetic information across areas

of the vSI and adjacent somatosensory-related cortices. Each circle corresponds to a single neuron
and its receptive field (RF, drawn in black). Neurons in area 3b are arranged on the left side. Hand,
face, and oral structures are represented in a mediolateral sequence. In at least area 3b, the “hand-

face border” limits the interconnection between the hand and orofacial representations. Note that

actual RF sizes in area 3b neurons are often considerably smaller than depicted here. On moving

286 T. Toda and T. Kudo



to detect changes in tooth-pulp stimulus intensity [36]. Some of the neurons

examined were implicated in the sensory-discriminative aspect of tooth-pulp sen-

sation, because their discharge rates were correlated with the detection latency of

the monkey.

24.4 Hand-Mouth Motor Coordination in Self-Feeding

Behavior

Motor coordination of the hand and mouth is essential for self-feeding behavior in

primates. There should be neurons that integrate somesthetic information arising

from both of the body parts somewhere in the brain; however, this subject is not

currently well studied with regard to the vSI. In addition, at least in area 3b, such

convergence is considered to be rare, because of the presence of the hand-face

border. An earlier study of the vSI reported that several neurons in areas 3b or 1 had

discrete RFs on both the radial hand and the lateral part of the face [37]. Since those

neurons had face RFs that were remote from the oral slit, they are unlikely to relate

to feeding behavior. Rather, neuronal activity related to hand-mouth coordination

during self-feeding was documented in higher order cortical areas other than the vSI

(Fig. 24.2). We review those articles for reference purposes, although this may be

beyond the scope of the present paper regarding the SI. The laboratory of Professor

A. Iriki has made important contributions to this field. In one study, they explored

the inferior parietal cortex (area 7b), which is posteriorly adjacent to the vSI, and

found “face-hand neurons” [38]. These neurons had discrete RFs on the lower face

(mostly around the mouth or in the oral cavity) and hand, of which about half

responded to the specific behavior with synergism between the face and hand

movements. That is, these neurons responded more strongly when the animal

executed face-hand coordinated behavior (e.g., self-feeding behavior) than when

the monkey executed identical movements of the face and hand separately. Some

neurons in their sample showed an especially strong response when pinching food

or holding it with the mouth during self-feeding, which was suggestive of their role

in monitoring a sequence of actions or an entire course of behavior. Based on these

observations, they assumed that area 7b is related to the integration and construc-

tion of actions. In another study, they reported the presence of similar neurons

⁄�

Fig. 24.2 (continued) caudally from area 3b to area 2, neuronal RFs on the hand and orofacial

structures become larger and more complex. The patterns of convergence in orofacial neurons can

be classified into three types: bilateral convergence, intermaxillary convergence (e.g., upper and

lower lips, palate and tongue dorsum), and inter-structural convergence (e.g., tongue tip and

anterior teeth). Further caudally in the inferior parietal cortex (area 7b) or laterally in the secondary

somatosensory cortex (SII), RFs often cover both the hand and orofacial structures. These neurons

in higher-order brain regions are closely related to self-feeding behavior. For further explanation,

see the text
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(“hand-mouth neurons”) in the secondary somatosensory area (SII) lying laterally

to the vSI in the upper bank of the lateral sulcus [39]. These neurons also showed

activity during both food retrieval with the hand and eating. However, the investi-

gators rarely encountered neurons that fired during self-generated feeding but were

inactive during passive feeding separated from food retrieval with the hand: the

synergism in area 7b neurons was not detected in SII neurons. Another interesting

observation from this study was that the hand-mouth neurons showed activity

irrespective of the hand used in retrieving food, which suggests the goal-coding

nature of these neurons. In other words, it does not matter for these neurons which

part of the body is used to bring food to the mouth.

24.5 Temporal Analysis of Spiking Activities in Neuronal

Populations and Individual Neurons

The neural activity (the train of action potentials) of a single neuron is quite variable

across trials even when the same stimulus is repeatedly applied. Therefore, simul-

taneous recording from different single neurons is necessary to analyze the func-

tional neural circuits in a local brain locus or to study the dynamics of information

coding by neuronal ensembles. The introduction of such a technique, especially in

the past 10–15 years, has led to numerous achievements in various cortical regions.

However, there are only a limited number of analogous studies in the vSI. In one

study, we evaluated the difference in temporal profiles between spike trains

recorded simultaneously from a pair of nearby vSI neurons [40]. A numerical

method was adopted that evaluates the difference in the gross temporal profiles

over several hundreds of milliseconds or more during sustained tactile stimulation

[41]. There were significant temporal discrepancies in the activity of some pairs of

putative pyramidal neurons. We speculated that this might help the brain to monitor

the time course of stimulation, such as the onset, duration, and offset. Another

recent study [42], using a much larger scale of data, examined whether the popu-

lation activities of neurons in the vSI and vMI could represent the direction of

tongue movement. The investigators adopted the mutual information as a measure

of the strength in the relationship between spiking activity and direction of tongue

protrusion. They showed that the direction of tongue protrusion was accurately

predicted on a trial-by-trial basis from the spiking activity of populations of vSI and

vMI neurons by using a discrete decoder.

In addition to the population activity of neurons, the temporal structure of spike

trains (firing pattern) of individual neurons is an important subject of study. One of

the metrics that evaluates firing pattern, the metric of local variation (LvR), is

superior in that the temporal structures can be quantified independently of the firing

rate [43]. In this study, the investigators clearly showed dissimilarities in firing-

pattern across many cortical areas based on LvR scores: spiking patterns are regular

in the motor areas, random in the visual areas, and bursty in the prefrontal area.

Such numerical analysis is also needed in future studies of the vSI.

288 T. Toda and T. Kudo



The temporal analysis of neural activities could conceivably lead to future

improvement of a brain-machine-brain interface (BMBI). This technology, which

was developed to restore normal sensorimotor function in the upper limb, consists

of two major elements: one is the neural population recording from motor-related

areas that permits subjects to move prosthetic arms or a virtual hand on a screen; the

other is intracortical microstimulation (ICMS) of the SI giving rise to artificial

tactile sensation [44, 45]. Neurophysiological studies of the monkey vSI will play

an important role in determining the optimal ICMS conditions in BMBI for

orofacial function and contribute to the future treatment of patients suffering

from orofacial sensorimotor disorders.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 25

Possible Roles of IL-33 in Periodontal

Diseases: Porphyromonas gingivalis Induced
IL-33 in Human Gingival Epithelial Cells

Hiroyuki Tada, Hidetoshi Shimauchi, Haruhiko Takada,

and Kenji Matsushita

Abstract In the oral mucosa, epithelial cells work not only as a physical barrier to

pathogens, but also play a pivotal role in initiating immune responses to microbes.

Interleukin (IL)-33, a member of the IL-1 family, is constitutively expressed in

epithelial cells and amplifies Th2-type inflammatory immune responses. We found

that IL-33 was detected in the inflamed gingival epithelium from chronic periodon-

titis patients, and periodontopathic Porphyromonas gingivalis strongly increased

expressions of IL-33 mRNA and molecules in human gingival epithelial cells. In

contrast, fimbriae, a lipopeptide and lipopolysaccharide derived from P. gingivalis
were not active in this respect. Protease inhibitors specific for gingipains efficiently

inhibited the induction of IL-33 mRNA by stimulation with P. gingivalis. Further-
more, P. gingivalis KDP136, a gingipains-null mutant, did not increase IL-33

mRNA expression. We also demonstrated that P. gingivalis upregulated IL-33

mRNA expression through protease-activated receptor-2, phospholipase C,

mitogen-activated protein kinase p38 and NF-κB. IL-33 is suggested to negatively

regulate antimicrobial peptide LL-37, resulting in attenuation of innate immune

responses of gingival epithelial cells in chronic periodontitis. Possible roles of

IL-33 in inflammation in the oral mucosa are discussed.
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25.1 Introduction

In mucosal immune systems, including the oral mucosa, epithelial cells work not

only as a physical barrier to bacterial pathogens, but also play a pivotal role in

initiating and amplifying Th2-type immune responses in response to bacterial

components [1, 2]. Epithelial cells produce interleukin (IL)-33, IL-25, and thymic

stromal lymphopoietin, which may be involved in the development and regulation

of Th2-type inflammatory responses. IL-33 is a member of the IL-1 cytokine

family, and is constitutively expressed in epithelial cells, endothelial cells and

fibroblasts [3]. IL-33 consists of two domains: a non-classical homeodomain-like

helix-turn-helix DNA-binding domain, which consists of a chromatin-binding

motif (CBM) and a nuclear localization sequence (NLS), and an IL-1-like domain

[4] (Fig. 25.1a). IL-33 localizes in the nuclei of resting epithelial cells and acts as an

alarmin when released from necrotic cells (Fig. 25.1b). IL-33 has a protective role

in inflammatory bowel disease [7] and in the initiation of Toxoplasma infection that
polarizes adaptive responses towards a Th2-biased response, which is protective in

this disease [8]. In contrast, a lot of evidence suggests that IL-33 is also involved in

the development of chronic inflammatory diseases such as arthritis [9]. IL-33

signals through the IL-33 receptor (IL-33R), which consists of heterodimers of

ST2 and IL-1 receptor accessory protein (IL-1RAcP) [5, 6] (Fig. 25.2). IL-33 upon

binding to ST2 induces the recruitment of IL-1RAcP and myeloid differentiation

primary-response protein 88 (MyD88) to the Toll/IL-1R (TIR) domain in the

a

b

Fig. 25.1 (a) Structure of IL-33 protein. IL-33 is a 30-kDa protein that consists of 270 amino

acids. IL-33 consists of two domains: a helix-turn-helix domain and an IL-1-like domain. The

helix-turn-helix domain contains a chromatin-binding motif (CBM) and a nuclear localization

signal (NLS). (b) Release of IL-33. Active form of IL-33 is thought to be released by necrosis.

IL-33 is inactivated by cleaving with caspase-3 or caspase-7 during apoptosis. Based on Martin,

Oboki et al. and Palmer and Gabay [4–6]
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cytoplasmic region of ST2. The MyD88 and TRAF6 complex activates NF-κB- and
MAP kinase-mediated signaling pathways [5, 6].

Porphyromonas gingivalis is a periodontopathic pathogen in chronic periodon-

titis and has a variety of virulence factors that induce proinflammatory cytokines

leading to chronic inflammation, resulting in destruction of periodontal tissues. In

the dental/oral field, only limited information on IL-33 is available (see Table 25.1).

TNF-α induces IL-33 expression in human gingival fibroblasts [12], although

whether IL-33 expression is increased in the periodontal tissues in chronic peri-

odontitis patients and the functions of IL-33 in the modulation of chronic periodon-

titis remain unelucidated. This review article shows possible regulation of IL-33

TIR domain

ST2
(IL-33Rα)

IL-1RAcP
(IL-33Rβ)

MyD88

IR
A

K
1

IR
A

K
4

TRAF6

NF-κB MAPK

IL-33Fig. 25.2 IL-33 signaling

pathways. IL-33 signaling

through the IL-33 receptor

(IL-33R), which consists

ST2 and IL-1 receptor

accessory protein

(IL-1RAcP) dimers and

myeloid differentiation

primary-response protein

88 (MyD88) to the Toll/IL-

1R (TIR) domain in the

cytoplasmic region of ST2.

The MyD88 and TRAF6

complex activates NF-κB-
and MAP kinase-mediated

signaling pathways. Based

on Martin, Oboki et al. and

Palmer and Gabay [4–6]

Table 25.1 Articles on IL-33 in oral/dental science

Finding Reference

IL-33 mRNA and protein expressions are enhanced by P. gingivalis
LPS in human monocytes

Nile et al. 2010 [10]

IL-33 protein expressions are not differentiated from human gingival

crevicular fluid, saliva, or plasma in chronic periodontitis

Buduneli et al. 2012 [11]

IL-33 protein expression is enhanced by TNF-α in human gingival

fibroblasts

Beklen et al. 2013 [12]

IL-33 protein expression is not detected from human gingival

crevicular fluid in gingivitis or periodontitis

Papathanasiou

et al. 2014 [13]
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expression in human gingival epithelial cells in response to P. gingivalis based on

our recent studies, and discusses possible roles of IL-33 expressed in gingival

epithelial cells in relation to the pathogenesis of chronic periodontitis.

25.2 Expression of IL-33 in Periodontal Tissues

from Chronic Periodontitis Patients

We first examined whether inflamed gingival tissues from chronic periodontitis

patients expressed IL-33 by immunohistochemical studies using an anti-human

IL-33 monoclonal antibody (mAb). As expected, IL-33 was strongly expressed in

the cytoplasm of the inflamed gingival epithelium from chronic periodontitis

patients, but only weakly detected in the normal gingival epithelium from

healthy individuals. Unlike the expression of IL-33 in the gingival epithelium,

IL-33 expression in the lamina propria of gingival tissues was only weakly

observed. IL-33 expression is possibly upregulated in epithelial, mesenchymal,

and myeloid cells in response to proinflammatory stimuli, pathogen-associated

molecular patterns, and pathogens [5]. These findings suggest that gingival

epithelial cells are capable of inducing IL-33 expression upon infection with

periodontal pathogens.

25.3 Possible Induction of IL-33 by Gingipains from

P. gingivalis in Gingival Epithelial Cells

25.3.1 P. gingivalis Induces IL-33 mRNA Expression
in Human Gingival Epithelial Cells in Culture

As P. gingivalis is implicated as a major pathogenic bacteria for chronic periodon-

titis [14], we examined the effect of P. gingivalis infection on IL-33 mRNA

expression in human gingival epithelial cells in culture. The IL-33 mRNA expres-

sion was increased 20-fold at 48 h after stimulation with P. gingivalis W83 in

Ca9-22 cells, which is a human gingival epithelial cell line established from

squamous cell carcinoma. Pretreatment of the cells with cycloheximide, a protein

synthesis inhibitor, blocked the induction of IL-33 mRNA levels, suggesting that de
novo protein synthesis was required for P. gingivalis-mediated IL-33 mRNA

induction. Nile et al. [10] reported that P. gingivalis LPS induced IL-33 expression

in human monocytes. Therefore, we examined the possible IL-33 mRNA-inducing

capacity of P. gingivalis-related specimens; fimbriae (Toll-like receptor (TLR)

2 ligand [15]) and LPS (TLR2 and 4 ligand [16]) prepared from P. gingivalis,
and synthetic P. gingivalis-type lipopeptide PGTP2-RL (TLR2/1 ligand [17]).

Unlike P. gingivalis whole cells, fimbriae and lipopeptide were completely
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inactive, and LPS specimens were only weakly active in this respect. These results

suggest that gingival epithelial cells respond to P. gingivalis rather than TLR

ligands for induction of IL-33 mRNA.

25.3.2 Involvement of Gingipains in the Induction of IL-33
mRNA Expression in Human Gingival Epithelial
Cells by P. gingivalis

P. gingivalis produces two types of arginine-specific cysteine proteinases

(Arg-gingipains, RgpA and RgpB) and a lysine-specific cysteine proteinase

(Lys-gingipain, Kgp) [18]. Gingipains are localized to a cell-associated form, a

soluble form, and released as outer membrane blebs [18]. We next examined

whether enzymatic activities of gingipains are involved in the IL-33-inducing

capacity in Ca9-22 cells and primary oral epithelial cells. The induction of IL-33

mRNA expression by P. gingivalis W83 in the two types was completely and

significantly inhibited by FPR-cmk (Rgp inhibitor) and KYT-36 (Kgp inhibitor),

respectively. Furthermore, P. gingivalis KDP136, a gingipains-null mutant, unlike

P. gingivalis ATCC 33277, a wild-type parent strain of KDP136, did not induce

IL-33 mRNA expression in either cell type. P. gingivalis-induced IL-33 mRNA

expression was abolished by heat treatment (70 �C, 1 h) to inactivate enzymatic

activities of P. gingivalis. We confirmed intact proteolytic activities for Rgps and

Kgp in the whole cells of P. gingivalis W83 and ATCC 33277, but not in those of

P. gingivalis KDP136. These observations suggest that the proteolytic activity of

gingipains is essential for the induction of IL-33 mRNA expression by P. gingivalis
in human gingival epithelial cells.

25.3.3 Induction of the IL-33 Molecule by P. gingivalis
in Human Gingival Epithelial Cells

Next, we examined whether P. gingivalis induced IL-33 expression in human

gingival epithelial cells using an immunoblot analysis. IL-33 expression in

Ca9-22 cells was increased tenfold with a peak at 4 days by stimulation with

whole cell preparations of P. gingivalis. Epithelial cells constitutively express

IL-33 in their nuclei under resting conditions [19]. IL-33 is a nuclear protein that

is also released into the extracellular environment. To further determine whether

P. gingivalis-induced IL-33 was accumulated in the nuclei or the cytoplasm, we

analyzed the location of IL-33 protein in Ca9-22 cells after stimulation with

P. gingivalis using immunocytochemical analysis. Although IL-33 was constitu-

tively expressed in the resting cells, IL-33 molecules accumulated in the cytoplasm

of the cells when they were stimulated with P. gingivalis for 4 days. However, the
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released IL-33 level was quite low (approximately 30 pg/mL), even after stimula-

tion with P. gingivaliswhole cells. IL-33 is not detected in viable human monocytic

cells, even upon stimulation with P. gingivalis LPS [10]. Furthermore, IL-33 levels

in gingival crevicular fluid (GCF) are not different between chronic periodontitis

patients and healthy controls [11]. In fact, IL-33 is not detected in the GCF of

inflamed regions from chronic periodontitis patients [13]. Further studies are

required to elucidate the fate of IL-33 induced by P. gingivalis in gingival epithelial
cells, which may modulate the innate immune functions of the cells in infected

periodontal lesions.

25.4 PAR-2-p38/NF-κB-Mediated Signals in IL-33

Induction

25.4.1 Role of PAR-2 in the Induction of IL-33 by Gingipains

Proteinase-activated receptor-2 (PAR-2) is a seven-transmembrane domain recep-

tor family which couples to G-proteins [20]. Rgps are capable of activating PAR-2

expressed on human gingival epithelial cells, which produce proinflammatory

cytokines [21]. We examined the possible involvement of PAR-2 in P. gingivalis-
induced IL-33 mRNA expression. Ca9-22 cells constitutively expressed PAR-1,

�2,�3, and �4 mRNA. PAR-2 mRNA expression was increased upon stimulation

with P. gingivalis W38 in Ca9-22 cells. Next, we performed inhibition of PAR-2

mRNA expression by RNA interference using a PAR-2-specific small interference

RNA (siRNA). The induction of IL-33 mRNA by P. gingivalis W83 was partially

inhibited in PAR-2 siRNA-transfected cells. PAR-2 is activated by a tethered ligand

when cleaved by protease. A PAR-2 agonist peptide based on the tethered ligand

sequences can activate PAR-2 in a proteolysis-independent manner. However, the

PAR-2 agonist peptide was not able to induce IL-33 mRNA in Ca9-22 cells.

Pretreatment of the cells with cytochalasin D, a particle internalization inhibitor,

inhibited the IL-33 mRNA induction by P. gingivalis. These findings suggested that
both proteolytic activation of PAR-2 by gingipains and the endocytosis of

P. gingivalis are required for the up-regulation of IL-33 expression induced by

P. gingivalis in oral epithelial cells. P. gingivalis enters gingival epithelial cells by
endocytosis, which mediates binding of Rgp to the cells [22]. It must be noted that

gingipains are required for maturation of P. gingivalis fimbriae [23], which is

essential for internalization of the bacterium into epithelial cells [24]. However,

endocytosis of both PAR-2 and P. gingivalis are probably required for the

up-regulation of IL-33 in gingival epithelial cells.
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25.4.2 Involvement of PLC in the Induction of IL-33
by Gingipains

Because PAR-2 has been reported to be coupled to G protein, leading to activation

of phospholipase C (PLC) [25, 26], we examined whether or not the PLC pathway

is involved in P. gingivalis-induced IL-33 mRNA expression in Ca9-22 cells. The

cells were pretreated with U-73122, a PLC inhibitor, and then stimulated

P. gingivalis W83 for 48 h. The pretreatment significantly inhibited the

P. gingivalis-induced IL-33 mRNA expression. In contrast, a protein kinase C

(PKC) inhibitor, GF-109203X, did not inhibit either the basal level of IL-33 or

the P. gingivalis-induced increase in IL-33. These findings suggest that

P. gingivalis-induced up-regulation of IL-33 expression is mediated via a PAR-2-

PLC-signaling pathway.

25.4.3 Involvement of p38 and NF-κB in the Induction
of IL-33 by Gingipains

As p38 and NF-κB are implicated in PAR-2 signaling [27], we first confirmed p38

phosphorylation in Ca9-22 cells stimulated with P. gingivalis W83. Then, we

demonstrated that p38 signaling is involved in P. gingivalis-induced IL-33

mRNA expression using SB203580, a p38 inhibitor. In contrast, the P. gingivalis
IL-33 mRNA expression was not inhibited by PD98059, an ERK1/2 inhibitor, or

SP600125, a JNK inhibitor. Further, we demonstrated that gingipains are respon-

sible for p38 activation caused by whole cells of P. gingivalis because p38 phos-

phorylation induced by P. gingivalis W83 was completely inhibited when

P. gingivalis was treated with Rgp inhibitor FPR-cmk plus Kgp inhibitor

KYT-36. In addition, p38 phosphorylation was not observed in the cells stimulated

with P. gingivalis KDP136, a gingipains-null mutant.

Next, we demonstrated NF-κB activation in Ca9-22 cells stimulated with

P. gingivalis W83 using a luciferase reporter assay. We demonstrated that NF-κB
signaling is involved in P. gingivalis-induced IL-33 mRNA expression because

pretreatment of cells with PDTC, an NF-κB inhibitor, significantly inhibited

P. gingivalis-induced IL-33 mRNA expression. The NF-κB activities induced by

P. gingivalis W83 were markedly diminished by FPR-cmk plus KYT-36, and the

NF-κB activation was attenuated in the cells stimulated with P. gingivalis KDP136,
indicating that gingipains are responsible for NF-κB activation caused by whole

cells of P. gingivalis. Taken together, we demonstrated that the P. gingivalis-
derived gingipain-mediated IL-33 increase was dependent on PAR-2-PLC-p38/

NF-κB signaling (Fig. 25.3).
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25.5 Future Prospects: Possible Roles of IL-33 in Gingival

Epithelial Cells in Chronic Periodontitis

Gingival epithelial cells play integral roles in innate immune defense by sensing

periodontal pathogens, maintaining a physical barrier, and expressing antimicrobial

peptides (AMPs) [28]. AMPs constitute an important component in the innate

immune response. In humans, two main classes of cationic AMPs, the cathelicidins

and the defensins, are expressed in a various type of cells, such as epithelial cells,

neutrophils, and macrophages. LL-37, a 37-residue mature antimicrobial peptide

with two leucine residues, is a 37 amino acid peptide derived from human

cathelicidin, a cationic antimicrobial peptide of 18-kDa (CAP18). The peptide is

mainly produced by epithelial cells and neutrophils [29] and detected in GCF [30].

Human β-defensin-2 (hBD-2), an antimicrobial peptide of the β-defensin family, is

induced by gingipains through PAR-2 in gingival epithelial cells [31]. It has been

reported that hBD-2 production is down-regulated by pretreatment with IL-33 in

human foreskin keratinocytes [32]. Endogenous expression of LL-37 plays an

important role in intracellular killing of mycobacteria in macrophages [33].

To address whether development of chronic periodontits is attributable to IL-33,

we examined the influence of P. gingivalis-mediated IL-33 production on the

induction of LL-37 in human gingival epithelial cells. Indeed, we found that

P. gingivalis-induced CAMP (LL-37 gene) mRNA expression was up-regulated

in IL-33 siRNA-transfected Ca9-22 cells. LL-37 is capable of proteolytically

degradation by gingipains secreted by P. gingivalis; however, the antibacterial

activity of LL-37 is still intact in the presence of P. gingivalis proteases [34].

P. gingivalis

NF-κB p38

IL-33

PLC

Gingipains

PAR-2

Fig. 25.3 Role of

gingipains in the induction

of IL-33 via PAR-2-p38/

NF-κB-mediated signals

300 H. Tada et al.



These findings indicate that IL-33 may attenuate antimicrobial immune responses

by epithelial cells against bacterial mucosal infections.

In this study, we revealed that P. gingivalis induced IL-33 via PAR-2-PLC-p38/

NF-κB signaling pathways and that the IL-33 down-regulated LL-37 expression in

human gingival epithelial cells. These findings suggest evasion of innate immune

responses by P. gingivalis is due to inhibition of antimicrobial peptide expression

(Fig. 25.4). Further studies are necessary to elucidate the role of intracellular IL-33

in maintaining host defense mechanisms in gingival epithelial cells against peri-

odontal diseases.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.
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Chapter 26

Prospects for Liposome-Encapsulated Nisin

in the Prevention of Dental Caries

Hideaki Tsumori, Yoshitaka Shimizu, Kohei Nagatoshi, Yutaka Sakurai,

and Kazuo Yamakami

Abstract Dental caries is a common oral bacterial infectious disease. Its preven-

tion requires the control of the causative pathogens, such as Streptococcus mutans,
that exist within dental plaque. Nisin is a proteinaceous bacteriocin produced by

Lactococcus lactis that is used to suppress bacterial infections. It has an inhibitory

mode of action on a wide range of gram-positive bacteria. Improvements in the

medical benefits of antibacterial agents can be achieved if they can be retained in

liposomes for a long period after administration. Liposome systems can increase the

ability of the encapsulated compounds, which have been widely used to encapsulate

many kinds of compounds in various scientific settings. Liposomes can release

labile molecules at a moderate rate. Liposome technologies that effectively protect

the encapsulated molecules from decomposition have the potential to improve their

preventive and therapeutic effects. Therefore, the use of liposomes to administer

antimicrobial agents has spurred research into their utility in preventive medicine.

The encapsulation of nisin in liposomes can provide means of improving the

stability of nisin and its antibacterial effect against S. mutans. The present chapter
will review the prospects for liposome-encapsulated nisin for the prevention of oral

infectious diseases.

Keywords Dental caries • Liposome • Nisin • Preventive medicine • Streptococcus
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26.1 Introduction

Oral diseases related to cariogenic microorganisms, such as dental caries, affect

majority of the world’s populations [1]. Dental caries results from interaction of

specific bacteria with dietary carbohydrates in the oral cavity. Streptococcus
mutans is a key contributor to the formation of cariogenic glucan biofilms. Nisin

is an effective bactericidal agent against gram-positive bacteria [2]. It is a bacteri-

ocin with a molecular mass of 3,354 and is produced by certain strains of

Lactococcus lactis subsp. lactis [3]. The bactericidal activity of nisin against

cariogenic streptococci was investigated in vitro and the findings indicated that

nisin acts as an inhibitor of typical cariogenic streptococci [4, 5]. It may be possible

to use liposomes as a carrier for the effective administration of nisin. Liposomes are

artificial spherical vesicles that can be created from lipids. They have been devel-

oped and evaluated as carriers to deliver encapsulated molecules to target organs

and specific cells in vitro and in vivo [6–9]. Investigations on liposomes have led to

their use with many substances, and the encapsulated agents are pharmacodynam-

ically and pharmacokinetically much more efficient than the naked compounds.

Liposome-encapsulated substances have been used in various applications such as

to retain and control the release of antibacterial compounds [10, 11]. They have

been used to deliver pharmaceuticals, and their recent application in the preserva-

tion of foods by the encapsulation of nisin has spurred further research into their use

with food materials [12, 13]. With regard to liposome formulations, a variety of

factors, such as lipid composition, cholesterol content, the presence of a charge on

the lipid bilayer, and the size of the vesicle, affect the effectiveness of liposomes as

preventive and therapeutic agents [6]. Oral delivery of liposomal bacteriocins is a

useful for the treatment to prevent dental caries [5]. Encapsulation technologies,

which may shield substances such as nisin from degradation by digestive enzymes,

and effectively deliver the encapsulated contents at the same time, could be an

advancement in the field of preventive medicine [10].

This review article provides brief background information on liposomal nisin

and explores its possible applications with a focus on factors affecting its effec-

tiveness and the advantages it offers for human health by preventing dental caries.

26.2 Cariogenic Microorganisms and Dental Caries

The oral cavity harbors many microorganisms that together constitute a complex

micro-ecological environment [14]. Dental caries, a chronic infectious disease, is

induced by cariogenic microorganisms such as Streptococcus spp. The key viru-

lence factors of the microorganisms, insoluble glucans, can be identified when they

colonize dental plaque on the surface of the teeth [4, 15]. S. mutans in particular has
been recognized as a decisive factor in dental caries. Insoluble glucans provide

specific binding sites for oral bacterial colonization of the tooth surface and confer
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structural integrity on the extracellular matrix, and therefore they are essential for

the formation and accumulation of dental glucan biofilms [16]. Because insoluble

glucans are synthesized by glucosyltransferases of S. mutans and these glucans

provide a matrix for dental plaque biofilm, the streptococcus is considered to

contribute to the formation of cariogenic biofilms [16, 17]. The streptococcus

tenaciously adheres to the glucan and is highly acidgenic and acid-tolerant; these

are critical virulence properties in the pathogenesis of dental caries [18]. Therefore,

dental caries results from the interaction of S. mutans with dietary carbohydrates in
the oral cavity; the formation of insoluble glucan biofilms on the tooth surface is a

key result of the diet-bacterium interaction [19].

26.3 Nisin as a Tool for Preventive Medicine

Nisin is approved for use in foods and is employed as a food preservative in more

than 50 countries [20]. It belongs to a group of bactericidal peptides called type A

lantibiotics [21]. Two main natural variants of nisin, nisin A and nisin Z, have been

discovered [3]. Nisin Z is widely distributed and contains asparagine instead of

histidine at position 27 of the amino acid sequence of nisin A. The two variants have

nearly equal bactericidal activity, membrane insertion, and pore-forming ability.

Nisin is bactericidal against a broad range of gram-positive microorganisms, such

as Staphylococcus aureus and Listeria monocytogenes, and prevents the outgrowth

of many Clostridium spp. and Bacillus spp. [11, 13]. However, stability issues such
as proteolytic degradation and oxidation result in reduced bioactivity. It is soluble

and stable at acidic pH, but at alkaline pH values its solubility decreases and it

becomes biologically inactive [22]. Nisin is a peptide composed of 34 amino acids,

including one lanthionine, four β-methyl-lanthionine, one dehydrobutyrine, and

two dehydroalanine residues. The internal thioester rings formed by lanthionine

are responsible for the conformation of nisin [23]. The lanthionine rings act as

conserved binding motifs for the recognition of specific targets and create segments

of defined spatial structures in the nisin molecule [24]. The bactericidal activity of

nisin has been suggested to be a result of electrostatic interaction of the positively

charged carboxylterminal end of the molecule with negatively charged bacterial

membrane lipids [25].

Nisin antagonizes a broad spectrum of gram-positive bacteria [26, 27]. It has

dual activity against spore-forming bacteria, it inhibiting the outgrowth of spores

and killing cells in the vegetative state. The didehydro amino acid residues in nisin

interact with the membrane sulfhydryl groups of germinating spores [26]. Mem-

brane disruption is considered to be the result of incorporation of nisin into the

membrane and subsequent ion channel or pore formation [25]. Membrane potential

is abolished in sensitive gram-positive cells as a result of the efflux of K+, amino

acids and ATP through the membrane pores [28]. Subsequent leakage of ions

causes catastrophic changes in transmembrane potential and internal pH. Nisin

interacts with high-affinity pyrophosphate binding sites on the membrane-bound
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cell wall precursor Lipid II, leading to more effective formation of pores and

inhibition of cell wall peptidoglycan biosynthesis [25, 29]. From these investiga-

tions, it is evident that nisin should be an effective antibacterial agent [30, 31].

26.4 Nisin Against Cariogenic Streptococci

Some antimicrobial agents, such as chlorohexidine, triclosan, xylitol, and

cetylpyridinium chloride, have attracted interest as agents for prophylaxis against

dental caries by inhibiting the multiplication of cariogenic microorganisms in the

oral cavity [4]. However, these agents may cause some side effects such as

discoloration of the teeth and tongue, drug resistance, and low solubility

[4]. Because nisin is a lanthibiotic, unlike antibiotics, it does not produce drug

resistance or chiasmatic resistance [21]. The bactericidal ability of nisin against

cariogenic streptococci, such as S. mutans, has been investigated as a means of

preventing dental caries [4]. Findings suggest that nisin has a potential to be used as

a bactericidal agent to prevent dental caries. Liposomal nisin was shown to inhibit

S. mutans [5]. In addition, nisin did not appear to be toxic to normal human gingival

fibroblast and epithelial cells [32]. Therefore, nisin plays a role in inhibiting the

viability of cariogenic streptococci.

26.5 Liposomes as a Tool for Preventive Medicine

Liposomes are formulated from phospholipid bilayers and consist of colloidal

dispersions of lipids in aqueous buffers [33, 34]. Their formation is based on the

interactions between phospholipids and water molecules in which the polar

headgroups of phospholipids are exposed to the inner and outer aqueous phases

and the hydrophobic carbohydrate tails are forced to face each other in a bilayer

[12, 35]. Liposomal encapsulation has been shown to stabilize the encapsulated

compound against enzymatic degradation and chemical modification [36]. Lipo-

somes can encapsulate hydrophobic and hydrophilic molecules, prevent the

decomposition of the encapsulated molecules, and release the compound at desig-

nated target organs [37, 38]. The bioactivity of encapsulated molecules can be

maintained by the phospholipid vesicle until it is delivered to the target organ or

cells, where the contents will be released [9, 39]. Liposomes can range in size from

40–50 nm to 1–2 μm, depending on the method of formulation, lipid components,

and intended use [40]. One of the aims of liposome encapsulation in medicine is to

increase the therapeutic index of the bioactive material [36, 41]. Encapsulation

techniques have been developed in many fields because of the biocompatibility of

liposomes, i.e., its ability to encapsulate both hydrophilic and lipophilic molecules,

and its ability to deliver these molecules to target sites [42, 43]. In the food

industry, liposomes have been used to deliver antibiotics, peptides, vitamins, and
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flavors [44, 45]. The encapsulation of bacteriocins, such as nisin in liposomes

represents an alternative to overcome problems related to the exploitation of

bactericidal activities [5, 40]. Liposomes have been developed and used as carriers

for therapeutic agents to improve the delivery of many anticancer and antibiotic

compounds [46–48].

The usefulness of conservative therapeutics is restricted by their inability to

deliver compounds to target sites. Attempts have been made to overcome this

difficulty by providing selective delivery and release of encapsulated compounds.

Hydrophobic compounds can be directly encapsulated into liposomes during ves-

icle formation, and retention is governed by interactions between the compound and

lipid. Passive encapsulation of soluble compounds depends on the ability of lipo-

somes to trap aqueous buffer containing dissolved compounds during vesicle

formation [49]. The applications of liposomes in medicine and pharmacology can

be divided into therapeutic and preventive uses of liposomes composed of various

substances [9, 50, 51]. Advances in liposome design lead to applications for the

delivery of new technology products such as nucleotides involved in numerous

biological functions [48, 52]. There have been many studies on the viability of a

range of conservative chemicals formulated in liposomes, frequently resulting in

improved biological activity compared with that of the naked form. Many antibi-

otics are orally available and liposome encapsulation can be developed for labile

chemicals with minimal loss of utility. Therefore, liposomes are used in pharma-

ceutical applications and the encapsulated substances have enhanced efficacy

compared with the naked substances. Liposomes are achieving medical acceptance

because of the effective shelf life of labile molecules, slow and steady release of the

molecules, and delivery of the molecules to required locations [46]. In pharmaceu-

tical applications, liposomes offer drug delivery systems for therapeutic and pre-

ventive strategies [53].

26.6 Characteristics of Liposomes

The design of liposomal delivery systems accelerates the treatment on human

health [6]. The strategy for liposomes is the development of carrier systems with

the ability to deliver and release encapsulated compounds [54]. The characteristics

of liposomes in this regard depend on their lipid composition, surface charge, and

vesicular size. Because bilayer fluidity and rigidity can affect the release of

liposomal compounds, studies have been carried out on the effects of phospholipids

of different phase transition temperatures on fluidity and the effects of lipid

composition on rigidity of liposomes [55, 56]. Liposomes with many different

lipid compositions exist, and those that include phospholipids provide efficient

vesicles for individual applications [57].

The aim of lipid selection for liposomes is to provide stabilizing and encapsu-

lation abilities. Phosphatidylcholines have been selected for the preparation of

liposome vesicles in many settings. The amount of encapsulated content released
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from vesicles is proportional to the acyl chain length of the phosphatidylcholine.

Dimyristoylphosphatidylcholine (DMPC), dipalmitoylphosphatidylcholine (DPPC)

and distearoylphosphatidylcholine (DSPC) have longer saturated acyl chains

(14, 16, and 18 carbons, respectively) and their phase transition temperature

increases with increasing chain length [58]. The trend in the release of encapsulated

compounds from vesicles is in the order of DMPC>DPPC>DSPC, which reflects

the fluidity of vesicles composed of DMPC, DPPC, and DSPC with a phase

transition temperature of 23, 41, and 55 �C respectively [57]. For example, the

configuration of DPPC is a highly ordered gel phase at room temperature; however,

above 41 �C the lipid forms a liquid crystalline phase characterized by greater

packing disorder because of temperature-induced changes in acyl chain composition

[58]. Unsaturated phospholipid species show more permeable and fluidic bilayers,

but saturated phospholipids with long acyl chains form a rigid, rather impermeable

bilayer structure [33, 37].

The cholesterol in phosphatidylcholine-based liposomes can reduce liposome

permeability, because membrane permeability is dependent on fluidity and rigidity

[59]. Cholesterol interacts with fatty acids in liposomes by hydrogen bonding,

increasing the cohesiveness and mechanical strength of the vesicular membrane

[60]. For example, a comparison of nisin-containing phosphatidylcholine lipo-

somes and phosphatidylcholine plus cholesterol showed that cholesterol reduced

the release of nisin [38, 61]. The permeability of liposomes can be altered by

modifying the cholesterol concentration according to the intended application of

the liposomes [57, 62]. Sphingomyelin also increases the rigidity of the bilayer [6].

Therefore, the modification of liposomal composition enables the preparation of

preferred kinds of liposomes for various scientific settings.

The effect of charge on lipid behavior is governed by the surface charge density

of the liposomes, lipid head groups, and interactions between the encapsulated

content and lipid [63, 64]. Liposomes composed of charged polar lipids with higher

electrical charges are more stable than those composed of neutral polar lipids. A

surface charge on liposomes increases repulsive interactions and reduces the

frequency of liposome collisions [65]. With regard to control of the release of

encapsulated compounds from liposomes, the charge has been observed to affect

vesicle permeability [63]. The use of negatively charged liposomes containing

phosphatidylglycerol led to greater effectiveness of the encapsulated molecules

compared with the use of neutral or positively charged liposomes. Therefore,

potency of the release of encapsulated compounds has been shown to be regulated

by polymer size, lipid composition, and surface charge [65].

Liposomes can be used as carriers of many different kinds of compound, such as

peptides and nucleotides, because liposomes are spherical vesicles whose mem-

branes are composed of one or more phospholipid bilayers [66]. Phospholipid

vesicles are capable of encapsulating labile molecules, and the lipids that they are

composed are biodegradable and safe in vivo [67]. Liposome encapsulation of

therapeutic and cosmetic agents can extend their activity by improving their

stability and permeability and by providing targeted and timed release [68].

Labile compounds that are susceptible to proteolytic degradation, such as insulin,
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calcitonin, parathyroid hormone, and erythropoietin, were shown to have

improved pharmacological effects after oral administration when encapsulated in

liposomes [69]. Oral delivery of liposomal compounds is useful for preventive and

therapeutic treatments.

26.7 Characteristics of Liposome-Encapsulated Nisin

Nisin is a cationic, amphiphilic antimicrobial peptide that inhibits gram-positive

bacteria [30]. The encapsulation efficacy of nisin is higher in liposomes composed

of neutral zwitterionic phospholipids, such as phosphatidylcholine, compared

with liposomes composed of anionic phospholipids, such as phosphatidylglycerol

[40, 61]. The highest nisin encapsulation efficacy was achieved in liposomes having

low contents of negatively charged phospholipids and high contents of zwitterionic

phospholipids [70]. Encapsulation of positively charged nisin in anionic phospho-

lipids should result in association because of attractive electrostatic interactions,

whereas encapsulation in neutral liposomes should result in association because of

hydrophobic interactions [71]. The electrostatic interaction of nisin with negatively

charged membrane phospholipids is more pronounced than its interaction with

neutral phospholipids [25]. Cationic vesicles containing stearylamine showed

lower encapsulation efficiency when compared with other kind of vesicles, which

could result from electrostatic repulsion between positively charged nisin and

cationic vesicles [35]. The functional properties of liposomal nisin depend on the

interaction of nisin with the liposome membrane and with the bacterial cell mem-

brane. Such electrostatic interactions are considered to be the initial step in the

series of events leading to membrane pore formation [72]. Nisin proved to have

high penetration ability for anionic phospholipids and low penetration ability for

neutral phospholipids [71]. Nisin in liposomes composed of phosphatidylcholine

demonstrated the slowest release of nisin, whereas liposomes composed of phos-

phatidylcholine plus phosphatidylglycerol appeared to release efficiently [65].

Because nisin is positively charged at neutral pH, electrostatic interaction with

negatively charged phosphatidylglycerol was attractive and should have led to the

formation of unstable pores because of binding to the charged phospholipid head

groups of phosphatidylglycerol [25]. The activity of the encapsulated nisin is

expressed by providing relatively short-term effects by release of the encapsulated

nisin and long-term effects by deposition of lipid-membrane-immobilized nisin,

i.e., bactericidal activity [28]. Therefore, encapsulated nisin and membrane-

immobilized nisin provide a tool for inhibiting pathogenic microbes.

Regarding the applications of nisin, various studies have shown the efficiency of

liposome-encapsulated nisin in food models [12]. The encapsulation of nisin

improves its antimicrobial activity as a food preservative and for the prevention

of oral infectious diseases [73]. Liposomal nisin should be able to provide effective

long-term inhibition of the target microbe, S. mutans, and therefore preventing

dental caries [5]. The surface charge of the liposome influences the interaction
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between liposomal nisin and bacteria [63]. As the bacterial cell has a negative

charge, electrostatic repulsion is induced between the cell surface and liposomes

composed of phosphatidylglycerol, preventing direct contact of the liposome with

the microbes, and the subsequent release of nisin [61]. This assumption supports the

idea that interaction between liposomes and microbes improves membrane

fusion [73].

26.8 Liposome-Encapsulated Nisin as a Preventive

Agent for Oral and Dental Health

There are relatively few published data regarding liposome-encapsulated nisin for

the prevention of oral infectious diseases. There is a report that liposomal nisin

inhibited the viability of S. mutans in vitro [5]. The inhibition of streptococcal

viability led to the suppression of insoluble glucan formation by the streptococcus

[5]. Previous studies have reported the synergistic antibacterial effects of combi-

nations of antimicrobials, such as nisin plus ethylenediaminetetraacetic acid

(EDTA), against gram-negative pathogens [74]. The ability of EDTA to destabilize

the outer membrane of gram-negative bacteria by sequestering ions such as Ca2+

and Mg2+ is considered to enable nisin to access the cell membrane, thereby

increasing its inhibitory effect [74]. The feacibility of encapsulating nisin plus

EDTA in vesicles for the inhibition of L. monocytogenes and Escherichia coli
O157:H7 was investigated [43, 65]. Coencapsulation of nisin plus EDTA increased

the inhibitory potential of liposomes against gram-positive S. mutans and gram-

negative Porphyromonas gingivalis [40, 74]. These findings indicate that the

liposomal nisin plus EDTA can inhibit the both of which could prevent dental

caries and periodontitis.

26.9 Prospects for Liposome-Encapsulated Nisin

Encapsulation of nisin in liposome carrier provides long-lasting inhibition of the

oral pathogen S. mutans. The appropriate balancing of the lipid components of the

vesicles allows the construction of stable liposomal nisin that provides predictable

release of the bactericidal agent. The results obtained so far encourage the study of

liposomal nisin with the aim of developing potential tools for the prevention of

dental caries. We are focusing on the application of liposomal technology in order

to ascertain the bactericidal potential of liposomes as an effective carrier of nisin for

oral health in humans.
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Chapter 27

Clinical Chipping of Zirconia All-Ceramic

Restorations

Shoko Miura, Shin Kasahara, Momoko Kudo, Yayoi Okuyama,

Akio Izumida, Masanobu Yoda, Hiroshi Egusa, and Keiichi Sasaki

Abstract Advancements in CAD/CAM systems employed in dentistry have made

possible the application of yttria tetragonal zirconia polycrystal (Y-TZP) in

zirconia-based all-ceramic restorations. Y-TZP has excellent flexural strength and

fracture toughness and is used in molar crowns as well as frameworks of fixed

partial dentures (FPDs). The use of Y-TZP in clinics has increased over the past

several years, and it is now used in implant abutments and denture frameworks.

While the demand for Y-TZP is increasing, chipping of porcelain used in the

zirconia framework has been noted as a problem in zirconia-based all-ceramic

restorations from a clinical point of view. We have previously used Cercon®

smart ceramics with Y-TZP frames in clinics but have noticed the chipping of

porcelain in a large number of cases over time. This review article focuses on the

chipping of zirconia all-ceramic restorations by taking into account the following

aspects: (1) clinical performance of zirconia all-ceramic restorations, (2) influence

of frame thickness and porcelain firing schedules, and (3) reduction in porcelain

chipping.
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27.1 Introduction

Porcelain fused to metal restorations, which in recent years have been commonly

used in clinical practice as esthetic restorations show several problems caused by

the metal [1]. The metal component used in porcelain fused to metal restorations

may be eluted because of corrosive changes caused by saliva, food debris, and the

like, trigging harmful biological effects such as metal allergies. Recovery of

esthetics in porcelain fused to metal restorations also has limitations such as the

occurrence of a black margin caused by gingival recession or when the labiobuccal

gingiva is thin, or discoloration of the gingiva in the cervical region of the tooth due

to metal elution. However, owing to the development of dental CAD/CAM sys-

tems, there has been implementation of all-ceramic restorations using yttrium-

doped partially stabilized zirconia or yttria tetragonal zirconia polycrystal

(Y-TZP). Y-TZP has excellent flexural strength and fracture toughness [2], and

has been used as a framework for crowns and FPDs for the posterior teeth.

Applications of Y-TZP for implant abutments as well as for denture frameworks

have recently become possible, and the use of Y-TZP has become widespread in

clinical practice [3]. It is regarded that zirconia all-ceramic restorations do not pose

the problems caused by metal restorations owing to their excellent esthetics and

biocompatibility. However, with the increasing demand for zirconia all-ceramic

restorations, chipping of porcelain fired onto the zirconia frame has been noted as a

clinical problem [4]. We therefore here discuss chipping of porcelain in zirconia

all-ceramic restorations, and the prevention of the chipping, which is one of the

challenges faced in clinical practice.

27.2 Clinical Performance of Zirconia All-Ceramic

Restorations

Table 27.1 shows the clinical results for zirconia all-ceramic restorations as

reported from 2010 to 2013. Reports based on implants are excluded here. Ther-

apeutic methods for zirconia all-ceramic restorations have been established for the

past 10 years or more. Further, reports with a follow-up period greater than

10 years have had widely ranging sample numbers in one compilation by Sax

et al., at 11 to 1,132 cases, with few reports that have exceeded 100 cases.

Numerous reports have made references to porcelain fracturing, with a rate of

occurrence of 0.9–29.1 %.

Clinical reporting on porcelain fracturing in zirconia all-ceramic restorations has

shown a high rate of occurrence of short-term cohesive failure of porcelain, a rate of

occurrence that is significantly higher than that in the case of porcelain fused to

metal restorations. In one report, a chipping rate of 0–88.9 % in a one- to eight-year

follow-up period has been mentioned [28]. Moreover, the most common

form of clinical failure is porcelain chipping [29], and prevention of the fracturing
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of porcelain fired onto the zirconia frame has become a clinical challenge.

In particular, the parameters of occlusion are a factor and the usage of a night

guard or press ceramics has been proposed [28, 29].

27.3 Influence of Frame Thickness and Porcelain

Firing Schedules

It is thought that owing to differences in the physical properties of metal frames,

zirconia frames might more readily experience chipping from thermal factors

during porcelain firing. The reason for this is that the thermal conductivity of

zirconia is about 1/100 that of gold [30]. Porcelain firing is thus thought to proceed

gradually inward starting not from the frame side but rather from the porcelain

surface layer, which more readily conducts heat, and the fired porcelain interior is

possibly more susceptible to partially incomplete firing or distortion. In addition,

Table 27.1 Clinical performance of zirconia all-ceramic restorations

Authors [Ref] (Year)

Mean

time

(years)

Sample

size Type of restorations

Veneer

porcelain

fracture (%)

Rinke et al. [5] (2013) 7 80 3–4 unit FPDs 28.8

Burke et al. [6] (2013) 5 33 3–4 unit FPDs 24.2

Monaco et al. [7] (2013) 5 1,132 Single crowns Unknown

Vavřičková et al. [8] (2013) 3 102 Single crowns Unknown

Rinke et al. [9] (2013) 3 52 Single crowns 5.8

Raiqrodski et al. [10] (2012) 5 23 3 unit FPDs 21

Ortorp et.al. [11] (2012) 5 143 Single crowns 3

Vigolo et.al. [12] (2012) 5 39 Single crowns 7.7

Schmitter et.al. [13] (2012) 5 30 4–7 unit FPDs 26.7

Schmitt et.al. [14] (2012) 5 25 3–4 unit FPDs 28

Kern et.al. [15] (2012) 5 20 3–4 unit FPDs Unknown

Sorrentino et.al. [16] (2012) 5 48 3 unit FPDs 6.3

Sagirkaya et.al. [17] (2012) 4 107 Single crowns 0.9

Peláez et.al. [18] (2012) 4 20 3 unit FPDs 10

Salido et.al. [19] (2012) 4 17 4 unit FPDs 29.1

Ohlmann et.al. [20] (2012) 2 11 3–4 unit FPDs 18.2

Poggio et.al. [21] (2012) 1 102 Single crowns 2.0

Sax et.al. [22] (2011) 10 57 3–5 unit FPDs 28.0

Tartaglia et.al. [23] (2011) 3 463 Single or multiple-unit Unknown

Roediger et.al. [24] (2010) 4 99 3–4 unit FPDs 13

Beuer et.al. [25] (2010) 3 68 Single or multiple-unit 7.4

Schmitt et.al. [26] (2010) 3 17 Single crowns 5.9

Tsumita et.al. [27] (2010) 2 21 3 unit FPDs 14.3
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the heat capacity of the zirconia is about 3.5 times that of gold [30]. For this reason,

a temperature gradient is believed to possibly occur in the process of cooling after

firing, creating a shrinkage difference between the inner and outer surfaces of the

sintered body and triggering cracking and other defects. The presence of the frame

and thermal factors is thus expected to be a significant factor that triggers partially

incomplete firing and defects. Modeling all-ceramic crowns mimicking clinical

forms, Benetti et al. measured the temperature differences in porcelain interiors

because of the differences between zirconia frames and metal frames and differ-

ences in cooling rates after firing. They noted that the specific heat, heat capacity,

and thermal expansion rate of a material impacts early fracturing of all-ceramic

crowns [31]. Nonetheless, though their research investigated temperature changes

during sintering and cooling, there was no assessment of physical properties of

porcelain caused by this. We have investigated how differences in the firing

conditions of porcelain and frame material impact the fracture toughness of porce-

lain, in order to study how these factors impact the mechanical properties of

porcelain. Our results showed that under conditions of faster heating rates, the

fracture toughness decreases than that under manual conditions [32]. Regarding the

thermal expansion coefficients of porcelain and zirconia, a zirconia frame has a

slightly (about 10 %) greater thermal expansion coefficient than porcelain

[33]. Owing to thermal expansion, the porcelain side experiences a compressive

stress during the cooling process after porcelain firing and there is little possibility

for cracking to occur.

27.4 Prevention of Porcelain Chipping

One factor causing chipping is the support of porcelain by a non-uniform frame

thickness. In porcelain fused to metal restorations, which have been fully

established, the metal frame is adjusted so that porcelain is given a uniform

thickness by cutting back and waxing up, depending on the anatomical form [34].

A design with excessively thick porcelain or too thin frame is also a factor for

errors, and porcelain supported by a frame with an anatomical form is reported to

have little chipping [35]. It has also been reported that spontaneous cracking

increases under conditions of firing with a higher cooling rate in a thicker layer of

porcelain [36]. Accordingly, to prevent the occurrence of cracking in porcelain, it is

desirable that the frame and porcelain have a favorable relationship of thermal

expansion, the frame design results in the porcelain having a uniform thickness, and

the cooling rate after firing is low.

If a restoration is considered structurally with a composite of porcelain and

frame, however, then designing the frame with a color imparted to the lingual-side

margin from the adjacent surface has been reported as being important for improv-

ing the strength of the restoration [37]. The molars in particular can possibly

experience a large bite load in the lingual-side cervical region of the teeth. How-

ever, because this is a region that matters little in terms of esthetics, it seems best for
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the lingual-side margin to be given a form where the zirconia frame is exposed, in

order to prevent chipping. In our clinical studies, chipping did not occur in the front

teeth area but did occur in bicuspids and molars [38], and mechanical problems

such as occlusion could possibly be factors responsible for chipping. It seems

important that the frame design also take occlusion factors, habits, and the like

into consideration as well.

27.5 Conclusions

There are numerous reports that point to the prevention of porcelain chipping as a

clinical challenge for zirconia all-ceramic restorations. Causes of chipping, clini-

cally speaking, include occlusion factors; physically, they include the cooling rate

after porcelain firing, excessively large porcelain thickness arising because of poor

frame design, and the like. A prospective study should be carried out in the future

that takes these factors into consideration.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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Chapter 28

Dentin Hypersensitivity: Etiology,

Prevalence and Treatment Modalities

M. Kanehira, H. Ishihata, and M. Saito

Abstract Dentin hypersensitivity is a very common clinical symptom, which

consists of sharp pain arising from exposed dentin in response to various types of

stimuli and thus can cause considerable concern for patients. This condition is

frequently encountered by periodontists, dentists and hygienists. The management

of this condition requires good understanding of the complexity of the problem, as

well as knowledge of the variety of treatment options available. Clinical trials on

dentin hypersensitivity have been numerous and protocols varied. However, the

entire body of clinical research literature is far from being unequivocal in

suggesting one superior strategy. This paper reviews the etiology, prevalence and

treatment modalities of dentinal hypersensitivity and describes a new approach to

in-office treatment of dentin hypersensitivity using new biocompatible materials.

Future treatment modalities for dentin hypersensitivity are currently under devel-

opment that might combine the benefits of being both non-invasive and permanent,

yet cost effective for both dentist and patients.

Keywords Dentin hypersensitivity • Etiology • Prevalence • Treatment modalities

28.1 Dentin Hypersensitivity

28.1.1 Definition

The definition of dentin hypersensitivity is a “short, sharp pain arising from exposed

dentin in response to stimuli typically thermal, evaporative, tactile, osmotic or

chemical and which cannot be ascribed to any other form of dental defect or

disease” according to the Canadian Advisory Board on Dentin Hypersensitivity [1].
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28.1.2 Diagnosis

The diagnosis of this disease is often based on the subject’s self-report of pain

and requires exclusion of other dental and periodontal conditions that might cause

pain [2]. Therefore, dentin hypersensitivity is characterized as a diagnosis of

exclusion [3, 4]. Differential diagnosis is indispensable in order to exclude other

conditions with similar symptoms where dentin is exposed and sensitive, such as

chipped teeth, fractured cusps, cracked teeth, caries, and restorations with poor

marginal adaptation [5, 6]. A correct differential diagnosis requires careful clinical

and radiographic examinations and a complete dental history [5].

28.1.3 Physiology

The number of tubules per unit area varies depending on location because the

diameter of dentin tubule increases in pulpal direction. The presence of patent

dentinal tubules renders dentin permeable to fluid movement [7]. Dentinal tubules

follow a sinuous channel from the enamel dentin junction and from the cement-

dentin junction. The tubules are conical and wider at the pulpal end than in the

periphery.

Morphological changes occur in dentin as a result of age or injury. Secondary

dentin is deposited throughout life, and the formation of peritubular dentin or

deposition of intratubular crystals may result in partial or complete obturation of

the dentinal tubules at last, producing dead tracts and areas of sclerotic dentin [8].

Traumatic injuries to the tooth such as cavity preparation may result in the depo-

sition of an irregular layer of tertiary dentin that has fewer tubules [9]. As these

newly deposited tubules are not continuous with those in primary dentin, they

provide an effective barrier to rapid fluid movements and contribute to the reduc-

tion of dentin hypersensitivity [8].

The essential characteristics for appearance of dentin hypersensitivity are pres-

ence of exposed dentin surfaces, open tubule orifices on the exposed dentin surface

and open tubules leading to a vital pulp [10]. The short, sharp pain arising from

exposed dentin is a result of minute inward or outward movement of dentinal fluid

inside tubules that stimulate pulpal nerve fibers.

Occlusion of dentin tubular orifices by a smear layer created during tooth

brushing or by inorganic particles in a toothpaste results in reduction of fluid

movements within the dentinal tubules. This physical blockade may partially

account for the effectiveness of desensitizing toothpastes. On the other hand

tooth-brushing is considered one of the main reasons for dentin wear and dentin

hypersensitivity [11].
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28.1.4 Mechanism of Action

Brännström’s hydrodynamic theory of pain is globally accepted for the mechanism

of dentin hypersensitivity [12]. This theory assumes that stimuli applied on dentin

tubules, patent at the pulp and the oral surface, cause rapid movements of the dentin

fluid and excite mechanoreceptors, thus eliciting pain (Fig. 28.1). The hydrody-

namic theory suggests that changes in the flow of the fluid present in the dentinal

tubules can trigger receptors present on nerves located at the pulpal side thereby

deriving a pain response. Dentin tubules can be exposed as a result of enamel loss

due to mechanical attrition, erosion and abfraction or after gingival recession due to

periodontal disease or surgery. When dentinal tubules in vital teeth are exposed due

to erosion, abrasion, dental manipulation, or a tooth defect, fluid within the dentinal

tubules may flow in either an inward or outward direction depending on pressure

differences in the surrounding tissue. A cold stimulus causes the tubular fluid

volume to shrink slightly, and heat causes it to expand. Strongly osmotic sugar or

sour solutions cause fluid to be drawn out of the tubules. An air blast on the tooth

evaporates a tiny portion of fluid at the end of the tubule, causing a significant

outward flow of fluid in the tubule. Touching the tooth with a dental instrument or

disinfectants forces a small amount of fluid into the tubule. The exact mechanism of

dentin hypersensitivity is still under research.

Fig. 28.1 Brännström

presumed that stimuli move

fluid in or out of dentin and

that this fluid activates

intradental or pulpal nerves

to cause pain
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28.1.5 Etiology

The most important factor in the etiology of dentin hypersensitivity is exposed

dentin as a result of loss of enamel associated with tooth wear or trauma and/or as a

result of gingival recession associated with exposure of root surfaces [13]. Tooth

wear refers to the irreversible loss of tooth structure and includes conditions such as

abrasion, erosion, attrition, and abfraction. Occurrence of wedge-shaped cervical

lesions is often associated with abrasion and occlusal hyperfunction. Although there

are many causes for non-carious cervical lesions of dentin, improper brushing is

considered one of the major causes.

28.1.6 Prevalence

The prevalence of dentin hypersensitivity has been reported over the years in a variety

of ways. Dentin hypersensitivity is a common condition with a reported prevalence

between 4 and 69 % in the adult population [14]. Another research reported the

prevalence of dentin hypersensitivity varies, but averages about 57 % and peaks

between 20 to 40 years of age [15]. It has been reported that more than 40 million

people in the U.S. are affected, 14.3 % of all dental patients, between 8 and 57 % of

adult dentate population, and up to 30 % of adults at some time during their lifetime

[16]. Among periodontal patients, the prevalence is even higher (60–98 %). Dentinal

hypersensitivity occurs with a first peak in 20 to 30 year olds and then with another

peak later in the 50s. The condition involves mainly the facial cervical surfaces of

teeth and is mostly found in premolars and canines [17, 18]. Patients who have

received periodontal treatment are particularly sensitive to this condition because of

the loss of cementum following periodontal therapy. In addition periodontal disease

and improper brushing can also cause gingival recession accompanied by sensitive

teeth [17]. Dentinal hypersensitivity has been researched extensively through the

years and many authors express an agreement that dentinal hypersensitivity is either

under-reported by the dental patient population or misdiagnosed [19].

28.1.7 Treatment

Logical treatment regimens attempt (1) to occlude dentin tubules or (2) to block the

pulpal nerve activity by increasing the potassium ion concentration, typically with

potassium nitrate or potassium chloride. A variety of methods with tubule blocking

agents is available for management of dentinal hypersensitivity comprising resins,

glass-ionomers, primers, dentin adhesives, protein precipitants, oxalates and laser

treatment [20–24]. According to a recent survey in the USA, 45 % of dental

practitioners regularly use oxalates and approximately 60 % use glutaraldehyde/

328 M. Kanehira et al.



HEMA as topically applied agents to treat dentinal hypersensitivity [21, 25].

Although the mechanisms of pain transmission across dentin are not fully under-

stood, both dentin permeability and hypersensitivity are reduced when the dentinal

tubules are occluded. Therefore, hypersensitivity treatment strategies have mainly

focused on tubular occlusion.

28.1.8 Permeability

According to the hydrodynamic theory, dentinal hypersensitivity is related to the

movement of intertubular fluid. Several studies have demonstrated the relationship

between open tubules on the exposed cervical surface and hypersensitivity [12, 26].

In vitro studies investigating dentin desensitizers have focused on dentin perme-

ability and hydraulic conductance as measures for effectiveness of these agents.

One of the laboratory methods that has been frequently used and that focuses

directly on dentin fluid flow is a dentin disc model for assessment of permeability

and hydraulic conductance [12, 27]. This model or modifications thereof have been

used to assess both professional desensitizers and dentin adhesives [28–32], and the

method is commonly considered a good and reliable model for in vitro screening

and testing of the potential of desensitizing agents [33].

Ishihata et al. [34] have designed a modified split-chamber device using a

chemiluminescence reaction to evaluate the liquid permeability of dentin discs.

This test is also considered a suitable and reliable screening method for assessment

of topical desensitizing agents efficacy in reducing or eliminating dentin perme-

ability, irrespective of the tubular blocking mechanism used [35].

28.1.9 Clinical Trials

Clinical trials on dentin hypersensitivity should as a rule use randomized

group assignments, be double-masked and contain a placebo product that is identical

to the test product except that it does not contain the active ingredient [36, 37]. It is

critical to evaluate the placebo effect, which can be very strong in such studies.

Conclusions derived from early studies on dentin hypersensitivity using single-

masked methods, or inappropriate stimuli should be viewed with caution.

Limited evidence indicates that tooth brushing without toothpaste decreases

hypersensitivity scores while brushing with toothpaste increases dentin hypersen-

sitivity scores unless the toothpaste contains a potassium-containing desensitizing

agent. Although a recent meta-analysis of six clinical trials using potassium-

containing desensitizing toothpaste demonstrated reductions in the symptoms of

patients’ dentin hypersensitivity compared to control toothpaste [38], the scientific

evidence supporting the use of potassium salts to reduce nerve activity is based

mostly on in vivo animal studies and one recent human in vivo trial [39].
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28.1.10 New Approach

Desensitizing products may be in the form of topically applied agents such as

resins, primers, dentin bonding agents and others [40–43]. Recently there has been

an increasing interest in calciumphosphate-containing materials [34, 44–48]. Such

calcium phosphate-containing materials are potentially transformed to hydroxyap-

atite as a final product, which is the principal mineral in teeth. The proximity of

hydroxyapatite to the natural tooth structure and its biocompatibility makes these

materials useful in a variety of dental applications. The development of the next

generation calcium phosphate cement materials is expected to have greater efficacy

in a wide range of clinical applications.

A spin-off from calcium-phosphate cement developments is a topically applied

desensitizer, claimed to precipitate hydroxyapatite as biocompatible mineral on

dentin and inside the openings of dentinal tubules. This material showed outstand-

ing characteristics in dentinal tubule occlusion and favorable reduction in dentin

permeability (Fig. 28.2).

Human saliva contains an abundance of calcium and phosphate ions too. The

supersaturation of salivary fluid is expected to contribute to further apposition and

growth in size of hydroxyapatite crystals formed in the oral environment [49].

Petrou described a breakthrough technology based upon arginine and calcium

carbonate that provides clinically proven benefits with respect to rapid and lasting

relief of dentin hypersensitivity [50]. Arginine and calcium are found naturally in

Fig. 28.2 SEM photograph of dentin surface after application of calcium-phosphate containing

compound. A layer of precipitated crystals (hydroxyapatite and other apatite species) covered the

dentin surface and occluded the dentinal tubules
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saliva, and they work together to accelerate the natural mechanisms of occlusion to

deposit a dentin-like mineral, containing calcium and phosphate, within the dentin

tubules and in a protective layer on the dentin surface. Sodium calcium

phosphosilicate has been shown in laboratory studies to rapidly occlude dentin

tubules through the deposition of particles that react to form a protective layer on

the dentin surface [51]. This material was originally developed as a bone regener-

ative material and is highly biocompatible.

Preliminary studies have shown that topical application of a combination of

amorphous calcium phosphate (ACP) and casein phosphopeptide (CPP) can cause

blockage of dentin tubules [52].

In this way the search for a natural desensitizing agent has led to the observation

that calcium phosphate minerals obstruct dentinal tubule orifices mimicking the

natural process of sclerosis.

28.2 Conclusion

Dentinal hypersensitivity is a common and significant dental problem with the

symptoms, measurement and oral factors that contribute to dentinal hypersensitiv-

ity having been well characterized. Several theories have been developed to explain

the mechanisms with respect to the structure of the dentin and pulp. This has lead to

the development of treatments that may be permanent and non-invasive in nature.

Future treatment modalities for dentin hypersensitivity are currently under

development that might combine the benefits of being both non-invasive and

permanent yet cost effective for both dentist and patients.
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Chapter 29

Preventing Aspiration Pneumonia Among

the Elderly: A Review Focused on the Impact

of the Consistency of Food Substances

Reiko Sakashita, Miho Takami, Hiroshi Ono, Tomoko Nishihira,

Takuichi Sato, and Misao Hamada

Abstract Aspiration pneumonia is the leading cause of death among the elderly.

Modified-texture foods, i.e., foods with altered consistency, are recommended in

order to maintain both normal swallowing and adequate nutrition, which is also

expected to reduce aspiration pneumonia, when elderly people are suspected to

suffer from disorders of eating and/or swallowing. However, it is reported that

overly-restrictive diets have been provided to most residents given modified-texture

diets. Furthermore, there is scant empirical evidence of the medical effectiveness of

food texture-modification. Little attention has been paid to the effect of the consis-

tency of food substances, as well as the ability of mastication, on general health.

Our cross-sectional studies showed that eaters of regular foods have lower inci-

dences of pneumonia and fever, while those eating modified-texture, i.e., softer and

finer, foods have higher incidences of pneumonia and fever. In this review, the

effects of interventions for prevention of aspiration pneumonia were overviewed

then the impact of the consistency of food substances on the health of the elderly

and the direction of further research was discussed.
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29.1 Pneumonia and its Causes in the Elderly

Pneumonia is the leading cause of death among the elderly in many countries

including Japan [1, 2]. The overall mortality rate ranges from 20 to 50 %, with a

rate as high as 80 % reported in some studies [3–6]. It is also the most serious

common infection that occurs in nursing homes, with a high case-fatality rate and

considerable mortality among survivors. The reported incidence of nursing

home-acquired pneumonia has ranged from 0.3 to 2.5 episodes per 1,000 days

of resident care [7, 8]. Pneumonia can be classified in several ways, most

commonly by where it was acquired (hospital-acquired, nursing home-acquired

and community-acquired pneumonia), but may also be classified by the cause

(Bronchiolitis obliterans organizing, eosinophilic, aspiration, Dust pneumonia

and so on) or the area of lung that is affected [9]. Among these causes, aspiration

is an important pathogenic mechanism for pneumonia among the elderly and the

management of patients with pneumonia with aspiration factors is a major

medical problem [10].

29.2 Risk Factor Cause of Aspiration Pneumonia

A large number of studies of the bacteriology of aspiration pneumonia suggest that

the combination of colonization of the oropharynx with bacterial pathogens and

microaspiration of saliva containing these bacteria may be the most common source

of aspiration pneumonia [11–13].

Mylotte [1] reviewed risk factors for pneumonia included poor functional status

[14, 15], difficulties swallowing [15, 16], dementia and stroke [17, 18], poor oral

hygiene or inadequate oral care [19, 20], presence of a nasogastric tube [14], use of

sedatives [21], occurrence of an unusual event defined as confusion, agitation,

falls, or wandering [15], chronic lung disease [22], tracheostomy [22], increasing

age [16], and male sex [16]. Mitchell et al. [23] showed that advanced age and

significant cognitive impairment increased the risk of aspiration. The most com-

mon causes of difficulties in swallowing among the elderly are dementia and

stroke [24].

Logistic regression analyses identified the significant predictors of aspiration

pneumonia. The best predictors, in one or more groups of subjects, were depen-

dency for feeding, dependency for oral care, number of decayed teeth, tube feeding,

more than one medical diagnosis, number of medications, and smoking [25].

Aspiration pneumonia is a multifactorial phenomenon and no single predictor can

cause this disease. Langmore [19] concluded that dysphagia and aspiration are

necessary but not sufficient conditions for development of pneumonia.
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29.3 Interventions Aimed at Preventing Aspiration

Pneumonia

29.3.1 Overview of Interventions

To reduce risk of aspiration pneumonia, several interventions have been tried

clinically. However, a systematic review assessed the effectiveness of the following

interventions for prevention of aspiration pneumonia in the elderly: compensatory

strategy/positioning changes, dietary interventions, pharmacological therapies, oral

hygiene and tube feeding, and it concluded that insufficient data exist to determine

the efficacy of positioning strategies, modified-texture foods, oral hygiene, feeding

tube placement, or delivery of food in preventing aspiration pneumonia [26].

Though meaningful studies have been carried out, it was suggested that larger,

high-quality randomized controlled trials (RCTs) on the efficacy of preventive

interventions are warranted [26].

Individuals with dementia often present feeding difficulties and are susceptible

to aspiration pneumonia. Interventions can include behavioural strategies [27],

modification of food consistencies [28], postural manoeuvres (for example, chin

tuck) [29], pharmaceutical interventions [30], environmental modification [31] or

enteral feeding [32]. Still insufficient data exist to determine the efficacy of those

interventions. Popular interventions and studies are described below.

29.3.2 Oral Hygiene

Aspiration of oropharyngeal flora into the lung is the major route of pathogenesis of

aspiration pneumonia [33], and colonization of dental plaque and oral mucosa

represents a reservoir of potential pathogens that can reach the lung, so it was

hypothesized that poor oral hygiene increases the rate of colonization of dental

plaque and oral mucosa to cause aspiration pneumonia [34]. A study carried out in

Japanese nursing homes demonstrated that residents randomly selected to follow an

intensive oral care regimen had a significantly lower proportion of episodes

of pneumonia than did residents following a standard oral care regimen [35].

A systematic review indicates three oral hygiene care intervention studies involving

470 participants resulted in improved oral hygiene in patients and reduced the

incidence of pneumonia amongst the intervention group in a stroke ward [36].

29.3.3 Dietary Intervention

Since modifications in dietary textures and fluid viscosities are common dysphagia

interventions, they are also expected to be effective in reducing aspiration pneu-

monia. Increasing the viscosity of a fluid can lead to a reduced rate of liquid bolus
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transit and increased sensory awareness [37, 38]. It can also influence opening of

the upper oesophageal sphincter [39]. This reduced rate of bolus movement and

increase in sensory awareness may enhance the safety and efficiency of swallowing,

thus reducing the risk of aspiration or penetration of fluid into the airway. It is

believed that increasing the viscosity of the fluid bolus by altering its consistency

allows individuals a better opportunity to swallow with a reduced risk of airway

compromise.

Similarly, altering the consistency of foods is thought to lead to physiological

changes which can reduce an individual’s risk of aspiration. Foods are often

modified according to a patient’s oral motor control [20]. Reduced incidence of

aspiration pneumonia was noted in a study where the participants were randomized

to a soft mechanical diet and thickened liquids [40, 41]. However, it was summa-

rized there is scant empirical evidence of its medical effectiveness by a systematic

review [42]. This topic is discussed in later section (Sect. 29.5).

29.3.4 Swallowing Therapy

Most speech-language therapists have traditionally focused their therapy on teach-

ing swallowing maneuvers, postural changes or instituting dietary alterations, so as

to minimize pneumonia by making the swallow more effective. A systematic

review of all RCTs with patients recovering from stroke and dysphagia [42] identify

two RCTs which assessed the effectiveness of swallowing treatment programmes

[43, 44]. Foley et al. [42] concluded that the evidence from these trials is weakened

by small sample sizes, the lack of a control group, insufficient statistical compar-

isons, or inability to achieve clinically significant treatment effects.

29.3.5 Controlling Gastroesophageal Reflux

Gastroesophageal reflux has been estimated to occur in one-third of the elderly

population. Aspiration of material from the stomach can damage the trachea in those

with gastroesophageal reflux. Postural changes include the chin tuck position, upright

position during and aftermeals to prevent gastroesophageal reflux, and semirecumbent

position in bed. However, few data exist to support any of these strategies [26].

29.3.6 Improvement of Nutrition

The prevalence of malnutrition has been estimated to be between 40 and 60 % for

patients aged 65 and older who are hospitalized in short-term units or convales-

cence and rehabilitation units and 13–50 % in institutions [45]. Infectious risk is
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increased in the case of malnutrition [46], and hypoalbuminemia is associated with

an increased risk of mortality [17]. Most studies on pneumonia have demonstrated a

role of malnutrition in the development of the infection, but the results are some-

what contradictory [47]. Two RCTs evaluate that supplementation may improve

survival rate [27, 48]. On the other hand, there was no difference for case fatality, or

death or dependency, with fluid supplementation and nutritional supplementation,

although nutritional supplementation was associated with reduced pressure sores,

increased energy intake and protein intake [49]

29.3.7 Enteral Tube Feeding

One of the primary reasons given for the use of feeding tubes is to reduce the risk of

aspiration among adults with swallowing disturbances. Non-oral feeding is

believed to prevent aspiration pneumonia, improve function, promote physical

comfort and prolong life. However, the evidence does not support (or refute)

these assumptions. Several studies of tube-fed patients who are taking no foods or

liquids by mouth have shown that tube feeding is associated with a higher rate of

pneumonia than in patients who are eating [19, 50–57].

In one study, aspiration pneumonia was diagnosed in 44 % of the tube-fed

patients with acute stroke [58]. Other studies showed incidence of aspiration

pneumonia vary from 7 to 62 % in patients fed by feeding tube [59]. Nakajoh

et al. [60] found that the incidence of pneumonia was significantly higher in post-

stroke patients on oral feeding than in those with nasogastric tubes (NGT) feeding

during a one-year follow-up period (54.3 % versus 13.2 %, p< 0.001). As there are

some evidence that patients with a very short life expectancy [61, 62], there appears

to be a limited role for tube feeding among adults with swallowing disturbances,

and some have suggested that their use should be discouraged [50].

29.3.8 Pharmacologic Therapies

From a systematic review [26], two RCTs were found to address pharmacological

interventions. Use of amantadine prevented pneumonia in one trial among nursing

home residents [63]. The antithrombotic agent cilostazol prevented aspiration

pneumonia in another trial but resulted in excessive bleeding [64]. However the

use of these agents (amantadine and cilostazol) for reducing aspiration pneumonia

is unlikely to be accepted in practice. Amantadine is known to cause gastrointes-

tinal and neurological side effects, and it has a propensity to interact with psycho-

tropic medications [26]. Treatment with antibiotics can be difficult among the

elderly because of an inability to identify the pathogen, altered drug metabolism,

and associated medication side effects [65]. The efficacy of pneumococcal vaccine

in the elderly population has been the subject of considerable debate as a result of
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the lack of prospective, RCTs [66, 67]. Despite this limitation, experts recommend

vaccination of all elderly people because the vaccine is safe, inexpensive, and cost

effective [68, 69].

29.4 Benefits of Oral Ingestion

As mentioned in the previous paragraph, several studies have shown that a tube

feeding is associated with a higher rate of pneumonia than that among patients who

are eating [19, 50–57]. Some studies suggest that an enteral tube feeding may

actually increase mortality and morbidity, and reduce QOL [70, 71]. It was shown

by a study in animal models [72] and in children [73] that a gastrostomy tube

placement may reduce lower oesophageal sphincter pressure and increase the risk

of gastroesophageal reflux, with a change in the gastroesophageal angle as the

suspected mechanism.

A tube feeding may worsen urinary and faecal incontinence, which is associated

with an increased risk of pressure ulcers and also increase gastric secretions [74].

A percutaneous endoscopic gastrostomy (PEG) is an invasive surgical procedure

with significant risks. Postoperative complications include aspiration pneumonia,

oesophageal perforations, migrations of the tube, haemorrhage and wound infec-

tions [75]. Moreover, Leibovitz et al. [76] found that there is a high prevalence of

oropharyngeal colonisation with gram-negative bacteria in patients with a tube

feeding (both NGT and PEG) compared to orally-fed patients.

In addition, there are ethical issues. Low et al. [77] reported that 69 % of

respondents would not agree to fed via a tube.

It is recommended that an artificial feeding should only be considered if dys-

phagia is thought to be a transient phenomenon and should not generally be used in

people with severe dementia for whom dysphagia or disinclination to eat is a

manifestation of disease severity [78, 79]. As a result of these guidelines, modified

consistency food and fluids are used increasingly with people presenting with

dysphagia due to dementia.

29.5 Food Modification and Pneumonia

29.5.1 Ways of Food Modification

Altering the consistency of foods is thought to lead to physiological changes which

can reduce an individual’s risk of aspiration. The consistency of foods can be

altered from a regular texture to ‘extensively modified-texture’

The terminology and definitions of different food and fluid consistencies vary

and there is currently no international consensus regarding the terminology that
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should be used for different consistencies of foods and fluids [80]. For instance, the

National Dysphagia Diet is comprised of four levels of food modification with

specific food items recommended at each level, namely (1) homogeneous, cohe-

sive, and pudding like, (2) moist, semi-regular, (3) soft-solids, (4) regular [81].

Japan’s Ministry of Health Labor and Welfare sets the following 6 levels. Level 0:

Smooth jelly foods without protein, Level 1 Smooth jelly foods with protein, Level

2: Jelly foods with protein, Level 3: Paste containing meat/fish, Level 4: Soft foods,

Level 5: Normal diet [80]. However, the International Dysphagia Diet Standardi-

zation Initiative (IDDSI) aims to develop global standardized terminology and

definitions for modified-texture foods for individuals of all ages with dysphagia,

in all care settings and for all cultures by December 2014 [37].

29.5.2 A Review of Food Modification and Pneumonia

The authors searched MEDLINE, the Cochrane Library and CINAHL, through

April 2014, using the key words modification/modified, food/diet, consistency and

pneumonia. The authors also hand-searched papers from Dysphagia, Stroke, Phys-
ical Medicine and Rehabilitation, Clinical Infectious Diseases, the Journal of the
American Geriatric Society and Age and Aging from 1995 to 2014. Reference lists

of relevant primary and review articles were searched. Among 59 citations identi-

fied, ten articles mentioned the relation between food modification and pneumonia

in adults (Table 29.1), while others didn’t provide any information about such

relations. Of ten studies, five articles were RCTs, two were systematic review, one

was quasi-experimental study, and two were just protocols without results.

The benefit of texture-modified foods and/or alteration of fluid viscosity was

evaluated in five RCT [40, 84–87] and one quasi-experimental study [82]. Although

four [40, 84, 85, 87] of five RCT studies evaluated pneumonia, it was difficult to

meta-analyze the overall benefit due to heterogeneity of interventions, timing and

duration of therapy and conditions of study population. Sample sizes across studies

Table 29.1 Reviewed studies about the impact of modified foods on pneumonia

Study Study design N of subjects

Flynn 2014 [80] Protocol only –

Karagiannis 2014 [82] Quasi-experimental study 16

Steele 2013 [83] Protocol only –

Karagiannis 2011 [84] RCT 76

Foley 2008 [42] Systematic review (4 studies)

Loeb 2003 [26] Systematic review (2 studies)

Whelan 2001 [85] RCT 24

Goulding 2000 [86] RCT 46

Garon 1997 [87] RCT 17

Groher 1987 [40] RCT 56
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were small, ranging from 20 [87] to76 [84] and the event rates for pneumonia were

low. In one trial [40], the simultaneous manipulation of solid textures and fluid

viscosities makes it difficult to establish which component (solid or liquid) was

associated with pulmonary benefit. In summary, although modifications in dietary

textures and fluid viscosities are common interventions there is scant empirical

evidence of their medical effectiveness.

29.6 Impact of the Consistency of Food Substances

on Aspiration Pneumonia

29.6.1 A Prompt Report from our Study

The importance of oral intake versus enteral tube feeding is widely understood from

the physical, mental, social and ethical aspects. It is recognized that oral intake can

improve the organic response to stress and thus facilitate the recovery of patients

after surgery [88]. Recently, clinicians have been attempting to promote oral intake.

However, once oral intake is achieved, less attention has been paid to the consis-

tency of food and to returning from modified-texture foods to regular solid food. It

is hypothesized that regular food which requires mastication should promote

masticatory function, salivary secretion and lower risk of dental diseases, and

consequently promotes nutritional status and development of resistance against

infections. Thus, a study considering the relationship between the consistency of

food substances and the incidence of pneumonia in elderly people living in a

welfare facility was conducted and presented briefly [89].

The subjects were 154 residents (29 males and 125 females; age, mean

87.9 years, range, 69–102 years). The following data were obtained from the

facility’s records: consistency of food substances, their caloric intake, their general

health status (BMI and history of pneumonia), oral health (number of teeth, oral

function, dental diseases, and amounts of ten specific microorganisms in the oral

cavity). As results, solid food eaters were found to have a lower incidence of

pneumonia (11.4 %) than paste food eaters (44.4 %) and those fed liquids through

a gastrostomy tube (55.6 %) (χ2, P< 0.001). This may be because of the higher

calorific intake (mean� SD; 1513.0� 135.3 kcal) of regular food eaters compared

to paste food eaters (1362.2� 178.8 kcal) and those receiving nutrition through a

gastrostomy tube (9056.6� 176.5 kcal) (ANOVA, P< 0.001). Regular food eaters

had better oral function (χ2, P< 0.001) and fewer microorganisms (ANOVA,

P< 0.001). Since this was a cross-sectional study, it was not possible to ascertain

causal relationships. However, the results suggest that the consistency of food

substances which require mastication has some influence in lowering the incidence

of aspiration pneumonia among the elderly.
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29.6.2 Advantage of Mastication of Food

29.6.2.1 Promoting Physical Activity

Saliva Production Mastication promotes the production of saliva. Saliva plays a

vital role in food oral processing and antimicrobial function [90]. Human saliva

consists of electrolytes, mucus, glycoproteins, enzymes, and antibacterial com-

pounds such as secretory IgA and lysozyme [91]. Functions are protection and

lubricant (coating oral mucosa to protect from trauma), digestion (moistening

foods and helping to create a food bolus, containing enzymes to digest starches

and fats), antimicrobial function (a mechanical cleansing action and a specific,

e.g., IgA, and a non-specific immunologic action e.g., lysozyme, lactoferrin and

myeloperoxidase), pH maintenance (containing various ions which act as a buffer),

remineralization of teeth, a taste mediation [91]. Promoting saliva production

results in better oral hygiene and improvement of digestions.

Oral Health Physiologically, oropharyngeal colonization by pathogenic organ-

isms is prevented by the mechanical clearance provided by chewing and

swallowing [92].

Helping Enzymes for Digestion Mastication breaks the food into smaller pieces,

increasing efficiency of the digestive enzymes by creating more surface area on

food particles for attachment of enzymes.

Oral Function Using organs, disuse syndromes can be prevented. A physical can

prevent disuse syndrome. Physical inactivity predictably leads to deterioration of

many body functions. Regular food requires more chewing time than modified-

texture foods, thus it is expected to activate related organs. Though there is

insufficient evidence concerning the elderly, gum chewing decreases time to flatus

and first defecation after surgery [93] and chewing and a fiber rich diet is suggested

to help development in children [94].

Cognitive Impairment Although this theory is not confirmed in humans, the

relationship between mastication and cognitive impairment has been studied in

various animal models [95, 96]. Three mechanisms explaining these animal studies

were proposed to relate to a neurogenesis in the part of the brain that is associated

with cognition: an increase in corticosterone and a decrease of hippocampal

glucocorticoid associated with stress, a disruption of cholinergic neurotransmitter

system associated with learning ability, and spatial memory [97]. In humans,

though several studies have been undertaken, there is insufficient substantial evi-

dence to demonstrate the relationship [97].
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29.6.2.2 Better Nutrition

Although it is widely believed that altering the consistency of foods and fluids can

help individuals with dementia and swallowing difficulty more safely and more

efficiently, the use of modified-texture foods, particularly pureed diets, has been

implicated in the high prevalence of undernutrition [98]. There is little clinical

evidence to explain how the use of modified-texture foods causes undernutrition,

but previous studies have found that modified-texture foods, specifically pureed

types, offer poor nutritional value compared with regular foods [99–101]. The

modified-texture foods may also lead to dehydration and malnutrition. It can be

unpalatable and the choice of food that is recommended may be limited [102, 103].

One study reported that if the consistency of food was changed from paste to soft

solid food which requires mastication, people improved through the intervention

(n¼ 13) by gaining weight [104].

29.6.3 QOL

A result of satisfaction survey among residents in long-term care indicates that food

is the topic with the most variability, reflecting not only a high level of interest in

this important daily activity, but also a range in satisfactions [105]. They may resist

consuming modified texture foods instead of appealing the texture and taste

because they are often unappealing in their appearance, texture, and taste [106].

Some studies have shown that patients may be embarrassed eating pureed foods in

front of other people, resulting in their social isolations [107]. Niezgoda et al. [108]

reported several issues and challenges in relation to modified-texture foods.

29.6.4 Consideration of Modified-Texture Foods
for the Elderly

Assessment of eating ability and adapting modified-texture foods has not been

standardized in clinical settings [108]. One study indicated that among nursing

home residents, 91 % of nursing home residents with modified-texture foods were

placed on overly restrictive diets [109]. Only 5 % of these patients were identified to

be on an appropriate diet level matching their swallowing ability and 4 % of

patients were placed on diets above their clinically measured swallowing ability.

Furthermore, low acceptability and resulting poor adherence to modified-texture

food/liquids can contribute to increased risk of inadequate nutrition in elderly

patients with dysphagia.

The phenomenon of elderly persons not eating is observed daily in clinical

practice. However, assessment of the causes is highly complex and providing
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proper care is difficult. If caused by dysphasia from stroke or dementia, the risk

from diseases and comorbidity should be carefully taken into consideration and

provide medical treatment. If caused by poor oral conditions such as losing teeth or

edentulism [110, 111], dental treatment should be the first choice. If caused by the

physiological changes that occur with aging, such as decreased sense of taste,

hunger, and appetite, or fatigue after hospitalization, promoting functions may be

taken into consideration to avoid disuse syndromes. Thus, it is important to keep

personal history records and watch individuals carefully as well as to carry out

further researches which will develop standardized care.

29.7 What Further Research Needs to be Done?

Review articles referred in this part concluded that there is a clear and pressing need

for high-quality research to identify effective treatments. In the hierarchy of

research designs [112], ‘high-quality research’ may indicate high-quality RCTs,

which are considered to be evidence of the highest grade as “gold standard”.

However, is sufficient evidences provided by RCTs for better clinical practice?

The demerits of RCTs are well-known, as well as their advantages. Black [113]

discussed many limitations and explained the necessity of observational studies.

The issues of limitations of external validity is important. The RCTs are designed to

maximize their internal validity to produce similar groups by random allocation.

Usually, participants have been selected using strict inclusion and exclusion

criteria, consequently characteristics of a study population were limited. In addi-

tion, other issues include difficulty in studying rare events, ethical problem,

narrowing of the studied question, costs and time [113].

Two studies published in The New England Journal of Medicine in 2000 found

that observational studies (with either a cohort or a case–control design) do not

overestimate the magnitude of the effects of treatment as compared with those in

RCTs [114, 115]. In addition, the range of the point estimates for the effect was

wider for RCTs than for the observational studies, possibly due to the limitations of

external validity.

As to compensate for the RCTs, comparative effectiveness research (CER) is

proposed. CER is the direct comparison of existing health care interventions to

determine which work best for which patients and which pose the greatest benefits

and harms in the real world. Horn and Gassaway [116] extend the concept to

develop practice-based evidence for clinical practice improvement (PBE-CPI)

study methodology. PBE-CPI incorporates natural variation within data from

routine clinical practice to determine what works, for whom, when, and at what

costs. It uses the knowledge of front-line caregivers, who develop study questions

and define variables as part of a transdisciplinary team. Its comprehensive mea-

surement framework provides a basis for analyses of significant bivariate and

multivariate associations between treatments and outcomes, incorporating patient

differences, such as severity of illness [116]. PBE-CPI studies can uncover better
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practices more quickly than RCTs or sophisticated statistical methods, while

achieving many of the same advantages [116].

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in
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