
Deep Learning 
in Medical Image 
Analysis 

Printed Edition of the Special Issue Published in Journal of Imaging

www.mdpi.com/journal/jimaging

Yudong Zhang, Juan Manuel Gorriz and Zhengchao Dong
Edited by

 Deep Learning in M
edical Im

age Analysis   •   Yudong Zhang, Juan M
anuel Gorriz and Zhengchao Dong



Deep Learning in Medical 
Image Analysis





Deep Learning in Medical 
Image Analysis

Editors

Yudong Zhang

Juan Manuel Gorriz

Zhengchao Dong

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editors

Yudong Zhang

University of Leicester

UK

Juan Manuel Gorriz

University of Granada

Spain

Zhengchao Dong

Columbia University,

USA

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Journal of Imaging (ISSN 2313-433X) (available at: https://www.mdpi.com/journal/jimaging/

special issues/dlmia).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-1469-7 (Hbk)

ISBN 978-3-0365-1470-3 (PDF)

© 2021 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Preface to ”Deep Learning in Medical Image Analysis” . . . . . . . . . . . . . . . . . . . . . . . xi

Yudong Zhang, Juan Manuel Gorriz and Zhengchao Dong

Deep Learning in Medical Image Analysis
Reprinted from: J. Imaging 2021, 7, 74, doi:10.3390/jimaging7040074 . . . . . . . . . . . . . . . . . 1

Johannes Leuschner, Maximilian Schmidt, Poulami Somanya Ganguly, Vladyslav

Andriiashen, Sophia Bethany Coban, Alexander Denker, Dominik Bauer, Amir Hadjifaradji,

Kees Joost Batenburg, Peter Maass and Maureen van Eijnatten

Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for
Low-Dose and Sparse-Angle CT Applications
Reprinted from: J. Imaging 2021, 7, 44, doi:10.3390/jimaging7030044 . . . . . . . . . . . . . . . . . 5

Boris Shirokikh, Alexey Shevtsov, Alexandra Dalechina, Egor Krivov, Valery Kostjuchenko,

Andrey Golanov, Victor Gombolevskiy, Sergey Morozov and Mikhail Belyaev

Accelerating 3D Medical Image Segmentation by Adaptive Small-Scale Target Localization
Reprinted from: J. Imaging 2021, 7, 35, doi:10.3390/jimaging7020035 . . . . . . . . . . . . . . . . . 55

Image Segmentation:
Penghao Zhang, Jiayue Li, Yining Wang and Judong Pan 
Domain Adaptation for Medical 
A Meta-Learning Method
Reprinted from: J. Imaging 2021, 7, 31, doi:10.3390/jimaging7020031 . . . . . . . . . . . . . . . . . 65

Antonella Nannavecchia, Francesco Girardi, Pio Raffaele Fina, Michele Scalera and

Giovanni Dimauro

Personal Heart Health Monitoring Based on 1D Convolutional Neural Network
Reprinted from: J. Imaging 2021, 7, 26, doi:10.3390/jimaging7020026 . . . . . . . . . . . . . . . . . 79

Pedro Furtado

Testing Segmentation Popular Loss and Variations in Three Multiclass Medical Imaging
Problems
Reprinted from: J. Imaging 2021, 7, 16, doi:10.3390/jimaging7020016 . . . . . . . . . . . . . . . . 97

Tomohiro Shimizu, Ryo hachiuma, Hiroki Kajita, Yoshifumi Takatsume, and Hideo Saito

Hand Motion-Aware Surgical Tool Localization and Classification from an Egocentric Camera
Reprinted from: J. Imaging 2021, 7, 15, doi:10.3390/jimaging7020015 . . . . . . . . . . . . . . . . . 113

Sami Bourouis, Abdullah Alharbi and Nizar Bouguila

Bayesian Learning of Shifted-Scaled Dirichlet Mixture Models and Its Application to Early
COVID-19 Detection in Chest X-ray Images
Reprinted from: J. Imaging 2021, 7, 7, doi:10.3390/jimaging7010007 . . . . . . . . . . . . . . . . . 127

Catarina Andrade, Luı́s F. Teixeira, Maria João M. Vasconcelos and Luı́s Rosado

Data Augmentation Using Adversarial Image-to-Image Translation for the Segmentation of
Mobile-Acquired Dermatological Images
Reprinted from: J. Imaging 2021, 7, 2, doi:10.3390/jimaging7010002 . . . . . . . . . . . . . . . . . 141

Ibrahem Kandel, Mauro Castelli and Aleš Popovič
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Preface to ”Deep Learning in Medical Image

Analysis”

In recent years, deep learning (DL) has established itself as a powerful tool across a broad

spectrum of domains in imaging, e.g., classification, prediction, detection, segmentation, diagnosis,

interpretation, reconstruction, etc. While deep neural networks initially found their place in the

computer vision community, they have quickly spread over medical imaging applications.

The purpose of this book “Deep Learning in Medical Image Analysis” is to present and highlight

novel algorithms, architectures, techniques, and applications of DL for medical image analysis. This

book is a reliable resource for researchers, teachers, PhD students, and clinicians.

This book called for papers from April/2020. It received more than 60 submissions from over 30

different countries. After strict peer reviews, only 22 papers from 19 different countries were accepted

and published. Eighteen papers are research articles and the other 4 are review papers.

All the three Book Editors—Yu-Dong Zhang, Juan M Gorriz, Zhengchao Dong—hope that

this book “Deep Learning in Medical Image Analysis” will benefit the scientific community

and contribute to the knowledge base, and would like to take this opportunity to applaud the

contributions of all the authors of this book. The contributions and efforts of the reviewers to enhance

the quality of the manuscripts are also much appreciated. It is also necessary to acknowledge the

assistance given by the MDPI editorial team who make our editors’ tasks much easier.

Yudong Zhang, Juan Manuel Gorriz, Zhengchao Dong

Editors
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Over recent years, deep learning (DL) has established itself as a powerful tool across
a broad spectrum of domains in imaging—e.g., classification, prediction, detection, seg-
mentation, diagnosis, interpretation, reconstruction, etc. While deep neural networks
were initially nurtured in the computer vision community, they have quickly spread over
medical imaging applications.

The accelerating power of DL in diagnosing diseases will empower physicians and
speed-up decision making in clinical environments. Applications of modern medical instru-
ments and digitalization of medical care have led to enormous amounts of medical images
being generated in recent years. In the big data arena, new DL methods and computational
models for efficient data processing, analysis, and modeling of the generated data are
crucial for clinical applications and understanding the underlying biological process.

The purpose of this Special Issue (SI) “Deep Learning in Medical Image Analysis” is
to present and highlight novel algorithms, architectures, techniques, and applications of
DL for medical image analysis.

This SI called for papers in April 2020. It received more than 60 submissions from
over 30 different countries. After strict peer reviews, only 22 papers were accepted and
published. A total of 18 papers are research articles and the remaining 4 are review papers.

Leuschner and Schmidt (2021) [1] from Germany, the Netherlands, and Canada present
the results of a data challenge that the authors organized, bringing together algorithm
experts from different institutes to jointly work on quantitative evaluation of several
data-driven methods on two large, public datasets during a ten-day sprint.

Shirokikh and Shevtsov (2021) [2] from Russia propose a new segmentation method
with a human-like technique to segment a 3D study. Their method not only reduces the
inference time from 10min to 15s, but also preserves state-of-the-art segmentation quality.

Zhang and Li (2021) [3] from China and the USA propose a meta-learning algorithm
to augment the existing algorithms with the capability to learn from diverse segmentation
tasks across the entire task distribution. The authors conduct experiments using a diverse
set of segmentation tasks from the Medical Segmentation Decathlon and two meta-learning
benchmarks.

Nannavecchia and Girardi (2021) [4] from Italy present a system able to automatically
detect the causes of cardiac pathologies in electrocardiogram (ECG) signals from personal
monitoring devices, with the aim to alert the patient to send the ECG to the medical
specialist for a correct diagnosis and proper therapy.

Furtado (2021) [5] from Portugal takes on three different medical image segmentation
problems: (i) segmentation of organs in magnetic resonance images, (ii) liver in computer
tomography images, and (iii) diabetic retinopathy lesions in eye fundus images. The author
quantifies loss functions and variations, as well as segmentation scores of different targets.
The author concludes that dice is the best.

J. Imaging 2021, 7, 74. https://doi.org/10.3390/jimaging7040074 https://www.mdpi.com/journal/jimaging
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Shimizu and Hachiuma (2021) [6] from Japan combine three modules for localization,
selection, and classification for the detection of the two surgical tools. In the localization
module, the authors employ the Faster R-CNN to detect surgical tools and target hands, and
in the classification module, the authors extract hand movement information by combining
ResNet-18 and long short-term memory (LSTM) to classify two tools.

Bourouis and Alharbi (2021) [7] from Saudi Arabia and Canada introduce a new
statistical framework to discriminate patients who are either negative or positive for
certain kinds of virus and pneumonia. The authors tackle the current problem via a fully
Bayesian approach based on a flexible statistical model named shifted-scaled Dirichlet
mixture models.

Andrade and Teixeira (2021) [8] from Portugal present a technique to efficiently
utilize the sizable number of dermoscopic images to improve the segmentation capacity of
macroscopic skin lesion images. The quantitative segmentation results are demonstrated
on the available macroscopic segmentation databases, SMARTSKINS and Dermofit Image
Library.

Kandel and Castelli (2020) [9] from Portugal and Slovenia study an appropriate
method to classify musculoskeletal images by transfer learning and by training from scratch.
The authors apply six state-of-the-art architectures and compare their performances with
transfer learning and with a network trained from scratch.

Comelli (2020) [10] from Italy presents an algorithm capable of achieving the volume
reconstruction directly in 3D by leveraging an active surface algorithm. The results confirm
that the active surface algorithm is superior to the active contour algorithm, outperforming
an earlier approach on all the investigated anatomical districts with a dice similarity
coefficient of 90.47 ± 2.36% for lung cancer, 88.30 ± 2.89% for head and neck cancer, and
90.29 ± 2.52% for brain cancer.

The methodology proposed by Ortega-Ruiz and Karabağ (2020) [11] from Mexico and
the United Kingdom is based on traditional computer vision methods (K-means, watershed
segmentation, Otsu’s binarization, and morphological operations), implementing color
separation, segmentation, and feature extraction. The methodology is validated with the
score assigned by two pathologists through the intraclass correlation coefficient.

The main aim of Kandel and Castelli (2020) [12] from Portugal and Slovenia is to im-
prove the robustness of the classifier used by comparing six different first-order stochastic
gradient-based optimizers to select the best for this particular dataset. Their results show
that the adaptative-based optimizers achieved the highest results, except for AdaGrad,
which achieved the lowest results.

La Barbera and Polónia (2020) [13] from Italy and Portugal employ a pipeline based
on a cascade of deep neural network classifiers and multi-instance learning to detect the
presence of HER2 from haematoxylin–eosin slides, which partly mimics the pathologist’s
behavior by first recognizing cancer and then evaluating HER2.

Khoshdel and Asefi (2020) [14] from Canada employ a 3D convolutional neural net-
work, based on the U-Net architecture, that takes in 3D images obtained using the contrast-
source inversion method and attempts to produce the true 3D image of the permittivity.

Dupont and Kalinicheva (2020) [15] from France proposes a DL architecture that can
detect changes in the eye fundus images and assess the progression of the disease. Their
method is based on joint autoencoders and is fully unsupervised. Their algorithm has been
applied to pairs of images from time series of different eye fundus images of 24 age-related
macular degeneration patients.

Almeida and Santos (2020) [16] from Brazil propose a strategy for the analysis of
skin images, aiming to choose the best mathematical classifier model for the identification
of melanoma, with the objective of assisting the dermatologist in the identification of
melanomas, especially towards an early diagnosis.

Tang and Kumar (2020) [17] from the USA propose a deep multimodal model that
learns a joint representation from two types of connectomic data offered by fMRI scans.
Their multimodal training strategy achieves a classification accuracy of 74% and a recall of

2
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95%, as well as an F1 score of 0.805, and its overall performance is superior to that of using
only one type of functional data.

In the work of Pintelas and Liaskos (2020) [18] from Greece, an accurate and inter-
pretable machine learning framework is proposed for image classification problems able to
make high quality explanations. Their results demonstrate the efficiency of the proposed
model since it managed to achieve sufficient prediction accuracy, which is also interpretable
and explainable in simple human terms.

Kieu and Bade (2020) [19] from Malaysia and the United Kingdom present a taxonomy
of the state-of-the-art DL-based lung disease detection systems, visualize the trends of
recent work on the domain and identify the remaining issues and potential future directions
in this domain.

In the survey of Debelee and Kebede (2020) [20] from Ethiopia and Germany, several
DL-based approaches applied to breast cancer, cervical cancer, brain tumor, colon and
lung cancers are studied and reviewed. The result of the review process indicates that
DL methods are the state-of-the-art in tumor detection, segmentation, feature extraction
and classification.

Aruleba and Obaido (2020) [21] from South Africa provide a concise overview of past
and present conventional diagnostics approaches in breast cancer detection. Further, the
authors give an account of several computational models (machine learning, deep learning,
and robotics), which have been developed and can serve as alternative techniques for
breast cancer diagnostics imaging.

Singh and Sengupta (2020) [22] from Canada present a review of the current appli-
cations of explainable deep learning for different medical imaging tasks. The various
approaches, challenges for clinical deployment, and the areas requiring further research are
discussed in this review from a practical standpoint of a deep learning researcher designing
a system for the clinical end-users.

The 22 accepted papers in this SI are from 19 countries: Brazil, Canada, China, Ethiopia,
France, Germany, Greece, Italy, Japan, Malaysia, Mexico, Netherlands, Portugal, Russia,
Saudi Arabia, Slovenia, South Africa, the UK, and the USA.

All the three Guest Editors hope that this Special Issue “Deep Learning in Medical
Image Analysis” will benefit the scientific community and contribute to the knowledge
base, and would like to take this opportunity to applaud the contributions of all the authors
in this Special Issue. The contributions and efforts of the reviewers to enhance the quality
of the manuscripts are also much appreciated. It is also necessary to acknowledge the
assistance provided by the MDPI editorial team who make our GE tasks much easier.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: The reconstruction of computed tomography (CT) images is an active area of research.
Following the rise of deep learning methods, many data-driven models have been proposed in recent
years. In this work, we present the results of a data challenge that we organized, bringing together
algorithm experts from different institutes to jointly work on quantitative evaluation of several data-
driven methods on two large, public datasets during a ten day sprint. We focus on two applications
of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods
using standardized settings. As a general result, we observe that the deep learning-based methods are
able to improve the reconstruction quality metrics in both CT applications while the top performing
methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM). We further discuss a number of other important criteria that should be taken into
account when selecting a method, such as the availability of training data, the knowledge of the
physical measurement model and the reconstruction speed.

Keywords: computed tomography (CT); image reconstruction; low-dose; sparse-angle; deep learning;
quantitative comparison

1. Introduction

Computed tomography (CT) is a widely used (bio)medical imaging modality, with
various applications in clinical settings, such as diagnostics [1], screening [2] and virtual
treatment planning [3,4], as well as in industrial [5] and scientific [6–8] settings. One of
the fundamental aspects of this modality is the reconstruction of images from multiple
X-ray measurements taken from different angles. Because each X-ray measurement exposes
the sample or patient to harmful ionizing radiation, minimizing this exposure remains an
active area of research [9]. The challenge is to either minimize the dose per measurement or
the total number of measurements while maintaining sufficient image quality to perform
subsequent diagnostic or analytic tasks.
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To date, the most common classical methods used for CT image reconstruction are
filtered back-projection (FBP) and iterative reconstruction (IR) techniques. FBP is a sta-
bilized and discretized version of the inverse Radon transform, in which 1D projections
are filtered by the 1D Radon kernel (back-projected) in order to obtain a 2D signal [10,11].
FBP is very fast, but is not suitable for limited-data or sparse-angle setups, resulting in
various imaging artifacts, such as streaking, stretching, blurring, partial volume effects, or
noise [12]. Iterative reconstruction methods, on the other hand, are computationally inten-
sive but are able to incorporate a priori information about the system during reconstruction.
Many iterative techniques are based on statistical methods such as Markov random fields
or regularization methods where the regularizers are designed and incorporated into the
problem of reconstruction mathematically [13]. A popular choice for the regularizer is
total variation (TV) [14,15]. Another well-known iterative method suitable for large-scale
tomography problems is the conjugate gradient method applied to solve the least squares
problem (CGLS) [16].

When classical techniques such as FBP or IR are used to reconstruct low-dose CT
images, the image quality often deteriorates significantly in the presence of increased
noise. Therefore, the focus is shifting towards developing reconstruction methods in
which a single or multiple component(s), or even the entire reconstruction process is
performed using deep learning [17]. Generally data-driven approaches promise fast and/or
accurate image reconstruction by taking advantage of a large number of examples, that is,
training data.

The methods that learn parts of the reconstruction process can be roughly divided into
learned regularizers, unrolled iterative schemes, and post-processing of reconstructed CT
images. Methods based on learned regularizers work on the basis of learning convolutional
filters from the training data that can subsequently be used to regularize the reconstruction
problem by plugging into a classical iterative optimization scheme [18]. Unrolled iterative
schemes go a step further in the sense that they “unroll” the steps of the iterative scheme
into a sequence of operations where the operators are replaced with convolutional neural
networks (CNNs). A recent example is the learned primal-dual algorithm proposed
by Adler et al. [19]. Finally, various post-processing methods have been proposed that
correct noisy images or those with severe artifacts in the image domain [20]. Examples are
improving tomographic reconstruction from limited data using a mixed-scale dense (MS-D)
CNN [21], U-Net [22] or residual encoder-decoder CNN (RED-CNN) [23], as well as CT
image denoising techniques [24,25]. Somewhat similar are the methods that can be trained
in a supervised manner to improve the measurement data in the sinogram domain [26].

The first fully end-to-end learned reconstruction method was the automated trans-
form by the manifold approximation (AUTOMAP) algorithm [27] developed for magnetic
resonance (MR) image reconstruction. This method directly learns the (global) relation
between the measurement data and the image, that is, it replaces the Radon or Fourier
transform with a neural network. The disadvantages of this approach are the large mem-
ory requirements, as well as the fact that it might not be necessary to learn the entire
transformation from scratch because an efficient analytical transform is already available.
A similar approach for CT reconstruction was iRadonMAP proposed by He et al. [28],
who developed an interpretable framework for Radon inversion in medical X-ray CT.
In addition, Li et al. [29] proposed an end-to-end reconstruction framework for Radon
inversion called iCT-Net, and demonstrated its advantages in solving sparse-view CT
reconstruction problems.

The aforementioned deep learning-based CT image reconstruction methods differ
greatly in terms of which component of the reconstruction task is learned and in which
domain the method operates (image or sinogram domain), as well as the computational
and data-related requirements. As a result, it remains difficult to compare the performance
of deep learning-based reconstruction methods across different imaging domains and
applications. Thorough comparisons between different reconstruction methods are further
complicated by the lack of sufficiently large benchmarking datasets, including ground truth
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reconstructions, for training, validation, and testing. CT manufacturers are typically very
reluctant in making raw measurement data available for research purposes, and privacy
regulations for making medical imaging data publicly available are becoming increasingly
strict [30,31].

1.1. Goal of This Study

The aim of this study is to quantitatively compare the performance of classical and
deep learning-based CT image reconstruction methods on two large, two-dimensional
(2D) parallel-beam CT datasets that were specifically created for this purpose. We opted
for a 2D parallel-beam CT setup to facilitate large-scale experiments with many example
images, whereas the underlying operators in the algorithms have straightforward general-
izations to other geometries. We focus on two reconstruction tasks with high relevance and
impact—the first task is the reconstruction of low-dose medical CT images, and the second
is the reconstruction of sparse-angle CT images.

1.1.1. Reconstruction of Low-Dose Medical CT Images

In order to compare (learned) reconstruction techniques in a low-dose CT setup, we
use the low-dose parallel beam (LoDoPaB) CT dataset [32]. This dataset contains 42,895
two-dimensional CT images and corresponding simulated low-intensity measurements.
The ground truth images of this dataset are human chest CT reconstructions taken from the
LIDC/IDRI database [33]. These scans had been acquired with a wide range of scanners
and models. The initial image reconstruction for creating the LIDC/IDRI database was
performed with different convolution kernels, depending on the manufacturer. Poisson
noise is applied to the simulated projection data to model the low intensity setup. A more
detailed description can be found in Section 2.1.

1.1.2. Reconstruction of Sparse-Angle CT Images

When using X-ray tomography in high-throughput settings (i.e., scanning multiple
objects per second) such as quality control, luggage scanning or inspection of products on
conveyor belts, very few X-ray projections can be acquired for each object. In such settings,
it is essential to incorporate a priori information about the object being scanned during
image reconstruction. In order to compare (learned) reconstruction techniques for this
application, we reconstruct parallel-beam CT images of apples with internal defects using
as few measurements as possible. We experimented with three different noise settings:
noise-free, Gaussian noise, and scattering noise. The generation of the datasets is described
in Section 2.2.

2. Dataset Description

For both datasets, the simulation model uses a 2D parallel beam geometry for the
creation of the measurements. The attenuation of the X-rays is simulated using the Radon
transform [10]

Ax(s, ϕ) :=
∫
R

x
(

s
[

cos(ϕ)
sin(ϕ)

]
+ t

[− sin(ϕ)
cos(ϕ)

])
dt, (1)

where s ∈ R is the distance from the origin and ϕ ∈ [0, π) the angle of the beam (cf.
Figure 1). Mathematically, the image is transformed into a function of (s, ϕ). For each
fixed angle ϕ the 2D image x is projected onto a line parameterized by s, namely the
X-ray detector.

A detailed description of both datasets is given below. Their basic properties are also
summarized in Table 1.

7



J. Imaging 2021, 7, 44

ϕ

s

X-
ra

y
so

ur
ce

de
te

ct
or

Figure 1. Parallel beam geometry. Adopted from [34].

Table 1. Settings of the low-dose parallel beam computed tomography (LoDoPaB-CT) and Apple
CT datasets.

Property LoDoPaB-CT Apple CT

Subject Human thorax Apples
Scenario low photon count sparse-angle
Challenge 3678 reconstructions 100 reconstructions
Image size 362 px × 362 px 972 px × 972 px
Angles 1000 50, 10, 5, 2
Detector bins 513 1377
Sampling ratio ≈3.9 ≈0.07–0.003

2.1. LoDoPaB-CT Dataset

The LoDoPaB-CT dataset [32] is a comprehensive collection of reference reconstruc-
tions and simulated low-dose measurements. It builds upon normal-dose thoracic CT scans
from the LIDC/IDRI Database [33,35], whereby quality-assessed and processed 2D recon-
structions are used as a ground truth. LoDoPaB features more than 40,000 scan slices from
around 800 different patients. The dataset can be used for the training and evaluation of all
kinds of reconstruction methods. LoDoPaB-CT has a predefined division into four parts,
where each subset contains images from a distinct and randomly chosen set of patients.
Three parts were used for training, validation and testing, respectively. It also contains a
special challenge set with scans from 60 different patients. The ground truth images are
undisclosed, and the patients are only included in this set. The challenge set is used for
the evaluation of the model performance in this paper. Overall, the dataset contains 35,820
training images, 3522 validation images, 3553 test images and 3678 challenge images.

Low-intensity measurements suffer from an increased noise level. The main reason is
so called quantum noise. It stems from the process of photon generation, attenuation and
detection. The influence on the number of detected photons Ñ1 can be modeled, based on
the mean photon count without attenuation N0 and the Radon transform (1), by a Poisson
distribution [36]

˜ 1(s, ϕ) ∼ Pois(N0 exp(−Ax(s, ϕ))). (2)

The model has to be discretized concerning s and ϕ for the simulation process. In
this case, the Radon transform (1) becomes a finite-dimensional linear map A : Rn → Rm,
where n is the number of image pixels and m is the product of the number of detector
pixels and the number of discrete angles. Together with the Poisson noise, the discrete
simulation model is given by

Ax + (Ax) = δ, (Ax) = −Ax − ln( ˜ 1/N0), ˜ 1 ∼ Pois(N0 exp(−Ax)). (3)

A single realization yδ ∈ Rm of δ is observed for each ground truth image, x = x† ∈ Rn.
After the simulation according to (3), all data pairs (yδ, x†) have been divided by
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μmax = 81.35858 to normalize the image values to the range [0, 1]. In the following sections,
θ , yδ and x† denote the normalized values.

The LoDoPaB ground truth images have a resolution of 362 px × 362 px on a domain
of size 26 cm × 26 cm. The scanning setup consists of 513 equidistant detector pixels s
spanning the image diameter and 1000 equidistant angles ϕ between 0 and π. The mean
photon count per detector pixel without attenuation is N0 = 4096. The sampling ratio
between the size of the measurements and the images is around 3.9 (oversampling case).

2.2. Apple CT Datasets

The Apple CT datasets [37] are a collection of ground truth reconstructions and
simulated parallel beam data with various noise types and angular range sampling. The
data is intended for benchmarking different algorithms and is particularly suited for use in
deep learning settings due to the large number of slices available.

A total of 94 apples were scanned at the Flex-Ray Laboratory [8] using a point-source
circular cone-beam acquisition setup. High quality ground truth reconstructions were
obtained using a full rotation with an angular resolution of 0.005 rad and a spatial resolution
of 54.2 μm. A collection of 1D parallel beam data for more than 70,000 slices were generated
using the simulation model in Equation (1). A total of 50 projections were generated over
an angular range of [0, π), each of size 1 × 1377. The Apple CT ground truth images have
a resolution of 972 px × 972 px. In order to make the angular sampling even sparser, we
also reduced the data to include only 10, 5 and 2 angles. The angular sampling ranges are
shown in Figure 2.

c) 5 anglesa) 50 angles b) 10 angles d) 2 angles
Figure 2. The angular sampling ranges employed for sparse image reconstructions for (a) 50 (full), (b) 10 (subset of
50 angles), (c) 5 (subset of 50 angles) and (d) 2 angles (subset of 10 angles). The black arrows show the position of the X-ray
source (dot) and the position of the detector (arrowhead). For the sparse-angle scenario, the unused angles are shown in
light gray.

The noise-free simulated data (henceforth Dataset A) were corrupted with 5% Gaus-
sian noise to create Dataset B. Dataset C was generated by adding an imitation of scattering
to Dataset A. Scattering intensity in a pixel u′ is computed according to the formula

S(u′) =
∫

u∈R2
G(u) exp

[
− (u − u′)2

2σ1(u)2

]
+ H(u) exp

[
− (u − u′)2

2σ2(u)2

]
, (4)

where |u − u′| is a distance between pixels, and scattering is approximated as a combi-
nation of Gaussian blurs with scaling factors G and H, standard deviations σ1 and σ2.
Scattering noise in the target pixel u′ contains contributions from all image pixels u as
sources of scattering. Gaussian blur parameters depend on the X-ray absorption in the
source pixel. To sample functions G(u), H(u), σ1(u) and σ2(u), a Monte Carlo simulation
was performed for different thicknesses of water that was chosen as a material close to
apple flesh. Furthermore, scaling factors G(u) and H(u) were increased to create a more
challenging problem. We note that due to the computational complexity required, the
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number of slices on which the scattering model is applied is limited to 7520 (80 slices per
apple), meaning the scattering training subset is smaller.

The Apple CT datasets consist of apple slices with and without internal defects.
Internal defects were observed to be of four main types: bitter pit, holes, rot and browning.
A reconstruction of a healthy apple slice and one with bitter pit is shown in Figure 3 as
examples. Each Apple CT dataset was divided into training and test subsets using an
empirical bias elimination method to ensure that apples in both subsets had similar defect
statistics. This process is detailed in [38].

For the network training, the noise-free and Gaussian noise training subsets are further
split into 44,647 training and 5429 validation samples, and the scattering training subset is
split into 5280 training and 640 validation samples.

From the test subsets, 100 test slices were extracted in a similar manner like for the
split in training and test subsets. All evaluations in this paper refer to these 100 test slices
in order to keep the reconstruction time and storage volume within reasonable limits. Five
slices were extracted from each of the 20 test apples such that in total each defect type is
occurring with a pixel count ratio similar to its ratio on the full test subset. Additionally,
the extracted slices have a pairwise distance of at least 15 slices in order to improve the
image diversity. The selected list of slices is specified in the supplementing repository [39]
as file supp_material/apples/test_samples_ids.csv.

Figure 3. A horizontal cross-section of a healthy slice in an apple is shown on the left, and another
cross-section with the bitter pit defects in the same apple on the right.

3. Algorithms

A variety of learned reconstruction methods were used to create a benchmark. The
selection is based on methods submitted by participants for the data challenge on the
LoDoPaB-CT and Apple CT datasets. The reconstruction methods include unrolled archi-
tectures, post-processing approaches, and fully-learned methods. Furthermore, classical
methods such as FBP, TV regularization and CGLS were used as a baseline.

3.1. Learned Reconstruction Methods

In this section, the learned methods included in the benchmark are presented. An
overview of the hyperparameters and pseudocode can be found in Appendix A. All
methods utilize artificial neural networks FΘ, each in different roles, for the reconstruc-
tion process.

Learning refers to the adaption of the parameters Θ for the reconstruction process
in a data-driven manner. In general, one can divide this process into supervised and
unsupervised learning. Almost all methods in this comparison are trained in a supervised
way. This means that sample pairs (yδ, x†) of noisy measurements and ground truth
data are used for the optimization of the parameters, for example, by minimizing some
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discrepancy DX : X × X → R between the output of the reconstruction model TFΘ and the
ground truth

min
Θ

DX

(
TFΘ(yδ), x†

)
. (5)

Supervised methods often provide excellent results, but the number of required
ground truth data can be high [34]. While the acquisition of ground truth images is
infeasible in many applications, this is not a problem in the low-dose and sparse-angle
case. Here, reconstructions of regular (normal-dose, full-angle) scans play the role of the
reference.

3.1.1. Post-Processing

Post-processing approaches aim to improve the reconstruction quality of an existing
method. When used in computed tomography, FBP (cf. Appendix B.1) is often used to
obtain an initial reconstruction. Depending on the scan scenario, the FBP reconstruction
can be noisy or contain artifacts. Therefore, it functions as an input for a learned post-
processing method. This setting simplifies the task because the post-processing network
FΘ : X → X maps directly from the target domain into the target domain

x̂ := [FΘ ◦ TFBP](yδ).

Convolutional neural networks (CNN) have successfully been used in recent works to
remove artifacts and noise from FBP reconstructions. Four of these CNN post-processing
approaches were used for the benchmark. The U-Net architecture [40] is a popular choice
in many different applications and was also used for CT reconstruction [20]. The details
of the network used in the comparison can be found in Appendix A.2. The U-Net++ [41]
(cf. Appendix A.3) and ISTA U-Net [42] (cf. Appendix A.6) represent modifications of this
approach. In addition, a mixed-scale dense (MS-D)-CNN [21] is included, which has a
different architecture (cf. Appendix A.4). Like for the U-Net, one can consider to adapt
other architectures originally used for segmentation, for example, the ENET [43], for the
post-processing task.

3.1.2. Fully Learned

The goal of fully learned methods is to extract the structure of the inversion process
from data. In this case, the neural network FΘ : Y → X directly maps from the measurement
space Y to the target domain X. A prominent example is the AUTOMAP architecture [27],
which was successfully used for reconstruction in magnetic resonance imaging (MRI). The
main building blocks consist of fully-connected layers. This makes the network design
very general, but the number of parameters can grow quickly with the data dimension. For
example, a single fully-connected layer mapping from Y to X on the LoDoPaB-CT dataset
(cf. Section 2.1) would require over 1000 × 513 × 3622 ≈ 67 × 109 parameters.

Adapted model designs exist for large CT data. They include knowledge about the
inversion process in the structure of the network. He et al. [28] introduced an adapted
two-part approach, called iRadonMap. The first part uses small fully-connected layers
with parameter sharing to reproduce the structure of the FBP. This is followed by a post-
processing network in the second part. Another approach is the iCT-Net [29], which
uses convolutions in combination with fully-connected layers for the inversion. An ex-
tended version of the iCT-Net, called iCTU-Net, is part of our comparison and a detailed
description can be found in Appendix A.8.

3.1.3. Learned Iterative Schemes

Similar to the fully learned approach, learned iterative methods also define a mapping
directly from the measurement space Y to the target domain X. The idea in this case is
that the network architecture is inspired by an analytic reconstruction operator T : Y → X
implicitly defined by an iterative scheme. The basic principle of unrolling can be explained
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by the example of learned gradient descent (see e.g., [17]). Let J(·, yδ) : X → R be a smooth
data discrepancy term and, possibly an additional regularization term. For an initial value
x[0] the gradient descent is defined via the iteration

x[k+1] = x[k] − ωk∇x J
(

x[k], yδ

)
,

with a step size ωk. Unrolling these iteration and stopping after K iterations, we can write
the K-th iteration as

T (yδ) := (ΛωK ◦ . . . ◦ Λω1)(x[0])

with Λωk := id − ωk∇x J(·, yδ). In a learned iteration scheme, the operators Λωk are
replaced by neural networks. As an example of a learned iterative procedure, learned
primal-dual [19] was included in the comparison. A description of this method can be
found in the Appendix A.1.

3.1.4. Generative Approach

The goal of the statistical approach to inverse problems is to determine the conditional
distribution of the parameters given measured data. This statistical approach is often linked
to Bayes’ theorem [44]. In this Bayesian approach to inverse problems, the conditional
distribution p(x|yδ), called the posterior distribution, is supposed to be estimated. Based on
this posterior distribution, different estimators, such as the maximum a posterior solution
or the conditional mean, can be used as a reconstruction for the CT image. This theory
provides a natural way to model the noise behavior and to integrate prior information
into the reconstruction process. There are two different approaches that have been used
for CT. Adler et al. [45] use a conditional variant of a generative adversarial network
(GAN, [46]) to generate samples from the posterior. In contrast to this likelihood free
approach, Ardizzone et al. [47] designed a conditional variant of invertible neural networks
to directly estimate the posterior distribution. These conditional invertible neural networks
(CINN) were also applied to the reconstruction of CT images [48]. The CINN was included
for this benchmark. For a more detailed description, see Appendix A.5.

3.1.5. Unsupervised Methods

Unsupervised reconstruction methods just make use of the noisy measurements. They
are favorable in applications where ground truth data is not available. The parameters of
the model are chosen based on some discrepancy DY : Y × Y → R between the output of
the method and the measurements, for example,

min
Θ

DY
(
ATFΘ(·), yδ

)
. (6)

In this example, the output of TFΘ plays the role of the reconstruction x̂. However,
comparing the distance just in the measurement domain can be problematic. This applies
in particular to ill-posed reconstruction problems. For example, if the forward operator
A is not bijective, no/multiple reconstruction(s) might match the measurement perfectly
(ill-posed in the sense of Hadamard [49]). Another problem can occur for forward operators
with an unstable inversion, where small differences in the measurement space, for example,
due to noise, can result in arbitrary deviations in the reconstruction domain (ill-posed in
the sense of Nashed [50]). In general, the minimization problem (6) is combined with some
kind of regularization to mitigate these problems.

The optimization Formulation (6) is also used for the deep image prior (DIP) approach.
DIP takes a special role among all neural network methods. The parameters are not
determined on a dedicated training set, but during the reconstruction on the challenge data.
This is done for each reconstruction separately. One could argue that the DIP approach is
therefore not a learned method in the classical sense. The DIP approach, in combination
with total variation regularization, was successfully used for CT reconstruction [34]. It is
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part of the comparison on the LoDoPaB dataset in this paper. A detailed description is
given in Appendix A.7.

3.2. Classical Reconstruction Methods

In addition to the learned methods, we implemented the popularly used direct and
iterative reconstruction methods, henceforth referred to as classical methods. They can
often be described as a variational approach

T (yδ) ∈ arg min
x

DY(Ax, yδ) + αR(x),

where DY : Y ×Y → R is a data discrepancy and R : X → R is a regularizer. In this context
T : Y → X defines the reconstruction operator. The included methods in the benchmark
are filtered back-projection (FBP) [10,51], conjugate gradient least squares (CGLS) [52,53]
and anisotropic total variation minimization (TV) [54]. Detailed description of each classical
method along with pseudocode are given in Appendix B.

4. Evaluation Methodology

4.1. Evaluation Metrics

Two widely used evaluation metrics were used to assess the performance of the methods.

4.1.1. Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is measured by a log-scaled version of the mean
squared error (MSE) between the reconstruction x̂ and the ground truth image x† . PSNR
expresses the ratio between the maximum possible image intensity and the distorting noise

PSNR
(

x̂, x†
)

:= 10 log10

(
L2

MSE(x̂, x†)

)
, MSE

(
x̂, x†

)
:=

1
n

n

∑
i=1

∣∣∣x̂i − x†
i

∣∣∣2. (7)

In general, higher PSNR values are an indication of a better reconstruction. The
maximum image value L can be chosen in different ways. In our study, we report two
different values that are commonly used:

• PSNR: In this case L = max(x†)−min(x†), that is, the difference between the highest
and lowest entry in x†. This allows for a PSNR value that is adapted to the range of the
current ground truth image. The disadvantage is that the PSNR is image-dependent
in this case.

• PSNR-FR: The same fixed L is chosen for all images. It is determined as the maximum
entry computed over all training ground truth images, that is, L = 1.0 for LoDoPaB-CT
and L = 0.0129353 for the Apple CT datasets. This can be seen as an (empirical) upper
limit of the intensity range in the ground truth. In general, a fixed L is preferable
because the scaling of the metric is image-independent in this case. This allows for a
direct comparison of PSNR values calculated on different images. The downside for
most CT applications is, that high values (=̂ dense material) are not present in every
scan. Therefore, the results can be too optimistic for these scans. However, based on
Equation (7), all mean PSNR-FR values can be directly converted for another fixed
choice of L.

4.1.2. Structural Similarity

The structural similarity (SSIM) [55] compares the overall image structure of ground
truth and reconstruction. It is based on assumptions about the human visual perception.
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Results lie in the range [0, 1], with higher values being better. The SSIM is computed
through a sliding window at M locations

SSIM
(

x̂, x†
)

:=
1
M

M

∑
j=1

(
2μ̂jμj + C1

)(
2Σj + C2

)
(

μ̂2
j + μ2

j + C1

)(
σ̂2

j + σ2
j + C2

) . (8)

In the formula above μ̂j and μj are the average pixel intensities, σ̂j and σj the variances
and Σj the covariance of x̂ and x† at the j-th local window. Constants C1 = (K1L)2 and
C2 = (K2L)2 stabilize the division. Following Wang et al. [55] we choose K1 = 0.01 and
K2 = 0.03 and a window size of 7 × 7. In accordance with the PSNR metric, results for the
two different choices for L are reported as SSIM and SSIM-FR (cf. Section 4.1.1).

4.1.3. Data Discrepancy

Checking data consistency, that is, the discrepancy DY(Ax̂, yδ) between the forward-
projected reconstruction and the measurement, can provide additional insight into the
performance of the reconstruction methods. Since noisy data is used for the comparison,
an ideal method would yield a data discrepancy that is close to the present noise level.

Poisson Regression Loss on LoDoPaB-CT Dataset

For the Poisson noise model used by LoDoPaB-CT, an equivalent to the negative log-
likelihood is calculated to evaluate the data consistency. It is conventional to employ the
negative log-likelihood for this task, since minimizing the data discrepancy is equivalent
to determining a maximum likelihood (ML) estimate (cf. Section 5.5 in [56] or Section 2.4
in [17]). Each element �δ,j, j = 1, . . . , m, of a measurement �δ, obtained according to (3)
and subsequently normalized by μmax, is associated with an independent Poisson model
of a photon count �̃1,j with

E(�̃1,j) = E
(

N0 exp(−�δ,jμmax)
)
= N0 exp(−yjμmax),

where yj is a parameter that should be estimated [36]. A Poisson regression loss for y
is obtained by summing the negative log-likelihoods for all measurement elements and
omitting constant parts,

−�Pois(y | yδ) = −
m

∑
j=1

N0 exp(−yδ,jμmax)(−yjμmax + ln(N0))− N0 exp(−yjμmax), (9)

with each yδ,j being the only available realization of �δ,j. In order to evaluate the likelihood-
based loss (9) for a reconstructed image x̂ given yδ, the forward projection Ax̂ is passed
for y.

Mean Squared Error on Apple CT Data

On the Apple CT datasets we consider the mean squared error (MSE) data discrepancy,

MSEY(y, yδ) =
1
m
‖y − yδ‖2

2. (10)

For an observation yδ with Gaussian noise (Dataset B), this data discrepancy term is
natural, as it is a scaled and shifted version of the negative log-likelihood of y given yδ. In
this noise setting, a good reconstruction usually should not achieve an MSE less than the
variance of the Gaussian noise, that is, MSEY(Ax̂, yδ) ≥ [0.05 1

m ∑m
j=1(Ax†)j]

2. This can be
motivated intuitively by the conception that a reconstruction that achieves a smaller MSE
than the expected MSE of the ground truth probably fits the noise rather than the actual
data of interest.

In the setting of yδ being noise-free (Dataset A), the MSE of ideal reconstructions would
be zero. On the other hand the MSE being zero does not imply that the reconstruction
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matches the ground truth image because of the sparse-angle setting. Further, the MSE can
not be used to judge reconstruction quality directly, as crucial differences in image domain
may not be equally pronounced in the sinogram domain.

For the scattering observations (Dataset C), the MSE data discrepancy is considered,
too, for simplicity.

4.2. Training Procedure

While the reconstruction process with learned methods usually is efficient, their
training is more resource consuming. This limits the practicability of large hyperparameter
searches. It can therefore be seen as a drawback of a learned reconstruction method if they
require very specific hyperparameter choices for different tasks. As a result, it benefits a
fair comparison to minimize the amount of hyperparameter searches. In general, default
parameters, for example, from the original publications of the respective method, were
used as a starting point. For some of the methods, good choices had been determined for
the LoDoPaB-CT dataset first (cf. [34]) and were kept similar for the experiments on the
Apple CT datasets. Further searches were only performed if required to obtain reasonable
results. More details regarding the individual methods can be found in Appendix A. For
the classical methods, hyperparameters were optimized individually for each setting of the
Apple CT datasets (cf. Appendix B).

Most learned methods are trained using the mean squared error (MSE) loss. The
exceptions are the U-Net++ using a loss combining MSE and SSIM, the iCTU-Net using
an SSIM loss for the Apple CT datasets, and the CINN for which negative log-likelihood
(NLL) and an MSE term are combined (see Appendix A for more details). Training curves
for the trainings on the Apple CT datasets are shown in Appendix D. While we consider
the convergence to be sufficient, continuing some of the trainings arguably would slightly
improve the network. However, this mainly can be expected for those methods which are
comparably time consuming to train (approximately 2 weeks for 20 epochs), in which case
the limited number of epochs can be considered a fair regulation of resource usage.

Early stopping based on the validation performance is used for all trainings except for
the ISTA U-Net on LoDoPaB-CT and for the iCTU-Net.

Source code is publicly available in a supplementing github repository [39]. Further
records hosted by Zenodo provide the trained network parameters for the experiments on
the Apple CT Datasets [57], as well as the submitted LoDoPaB-CT Challenge reconstruc-
tions [58] and the Apple CT test reconstructions of the 100 selected slices in all considered
settings [59]. Source code and network parameters for some of the LoDoPaB-CT experi-
ments are included in the DIVα� library [60], for others the original authors provide public
repositories containing source code and/or parameters.

5. Results

5.1. LoDoPaB-CT Dataset

Ten different reconstruction methods were evaluated on the challenge set of the
LoDoPaB-CT dataset. Reconstructions from these methods were either submitted as part
of the CT Code Sprint 2020 (http://dival.math.uni-bremen.de/code_sprint_2020/, last
accessed: 1 March 2021) (15 June–31 August 2020) or in the period after the event (1
September–31 December 2020).

5.1.1. Reconstruction Performance

In order to assess the quality of the reconstructions, the PSNR and the SSIM were cal-
culated. The results from the official challenge website (https://lodopab.grand-challenge.
org/, last accessed: 1 March 2021) are shown in Table 2. The differences between the
learned methods are generally small. Notably, learned primal-dual yields the best perfor-
mance with respect to both the PSNR and the SSIM. The following places are occupied
by post-processing approaches, also with only minor differences in terms of the metrics.
Of the other methods, DIP + TV stands out, with relatively good results for an unsuper-
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vised method. DIP + TV is able to beat the supervised method iCTU-Net. The classical
reconstruction models perform the worst of all methods. In particular, the performance
of FBP shows a clear gap with the other methods. While learned primal-dual performs
slightly better than the post-processing methods, the difference is not as significant as one
could expect, considering that it incorporates the forward operator directly in the network.
This could be explained by the beneficial combination of the convolutional architectures
used for the post-processing, which are observed to perform well on a number of image
processing tasks, and a sufficient number of available training samples. Otero et al. [34]
investigated the influence of the size of the training dataset on the performance of different
learned procedures on the LoDoPaB-CT dataset. Here, a significant difference is seen
between learned primal-dual and other learned procedures when only a small subset of
the training data is used.

Table 2. Results on the LoDoPaB-CT challenge set. Methods are ranked by their overall performance. The highest value for
each metric is highlighted. All values are taken from the official challenge leaderboard https://lodopab.grand-challenge.
org/evaluation/challenge/leaderboard/ (accessed on 4 January 2021).

Model PSNR PSNR-FR SSIM SSIM-FR Number of Parameters
Learned P.-D. 36.25 ± 3.70 40.52 ± 3.64 0.866 ± 0.115 0.926 ± 0.076 874,980
ISTA U-Net 36.09 ± 3.69 40.36 ± 3.65 0.862 ± 0.120 0.924 ± 0.080 83,396,865
U-Net 36.00 ± 3.63 40.28 ± 3.59 0.862 ± 0.119 0.923 ± 0.079 613,322
MS-D-CNN 35.85 ± 3.60 40.12 ± 3.56 0.858 ± 0.122 0.921 ± 0.082 181,306
U-Net++ 35.37 ± 3.36 39.64 ± 3.40 0.861 ± 0.119 0.923 ± 0.080 9,170,079
CINN 35.54 ± 3.51 39.81 ± 3.48 0.854 ± 0.122 0.919 ± 0.081 6,438,332
DIP + TV 34.41 ± 3.29 38.68 ± 3.29 0.845 ± 0.121 0.913 ± 0.082 hyperp.
iCTU-Net 33.70 ± 2.82 37.97 ± 2.79 0.844 ± 0.120 0.911 ± 0.081 147,116,792
TV 33.36 ± 2.74 37.63 ± 2.70 0.830 ± 0.121 0.903 ± 0.082 (hyperp.)
FBP 30.19 ± 2.55 34.46 ± 2.18 0.727 ± 0.127 0.836 ± 0.085 (hyperp.)

5.1.2. Visual Comparison

A representative reconstruction of all learned methods and the classical baseline
is shown in Figure 4 to enable a qualitative comparison of the methods. An area of
interest around the spine is magnified to compare the reproduction of small details and
the sharpness of edges in the image. Some visual differences can be observed between
the reconstructions. The learned methods produce somewhat smoother reconstructions
in comparison to the ground truth. A possible explanations for the smoothness is the
minimization of the empirical risk with respect to some variant of the L2-loss during
the training of most learned methods, which has an averaging effect. The convolutional
architecture of the networks can also have an impact. Adequate regularization during
training and/or inference can be beneficial in this case (cf. Section 6.2.2 for a suitable class
of regularizers). Additionally, the DIP + TV reconstruction appears blurry, which can be
explained by the fact that it is the only unsupervised method in this comparison and thus
has no access to ground truth data. The U-Net and the two modifications, U-Net++ and
ISTA U-Net, show only slight visual differences on this example image.
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Figure 4. Reconstructions on the challenge set from the LoDoPaB-CT dataset. The window [0, 0.45] corresponds to a HU
range of ≈[−1001, 831] .

5.1.3. Data Consistency

The mean data discrepancy of all methods is shown in Figure 5, plotted against
their reconstruction performance. The mean difference between the noise-free and noisy
measurements is included as a reference. Good-performing models should be close to this
empirical noise level. Values above the mean can indicate a sub-optimal data consistency,
while values below can be a sign of overfitting to the noise. A data consistency term is only
explicitly used in the TV and DIP + TV model. Nevertheless, the mean data discrepancy
for most of the methods is close to the empirical noise level. The only visible outliers are
the FBP and the iCTU-Net. A list of all mean data discrepancy values, including standard
deviations, can be found in Table 3.
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Figure 5. Mean data discrepancy −�Pois between the noisy measurements and the forward-projected
reconstructions, respectively the noise-free measurements. Evaluation is done on the LoDoPaB
challenge images.

Table 3. Mean and standard deviation of data discrepancy −�Pois. Evaluation is done on the LoDoPaB
challenge images.

Method −�Pois(Ax̂ | yδ)/109

Learned Primal-Dual −4.022182 ± 0.699460
ISTA U-Net −4.022185 ± 0.699461
U-Net −4.022185 ± 0.699460
MS-D-CNN −4.022182 ± 0.699460
U-Net++ −4.022163 ± 0.699461
CINN −4.022184 ± 0.699460
DIP + TV −4.022183 ± 0.699466
iCTU-Net −4.022038 ± 0.699430
TV −4.022189 ± 0.699463
FBP −4.021595 ± 0.699282

−�Pois(Ax† | yδ)/109

Ground truth −4.022184 ± 0.699461

5.2. Apple CT Datasets

A total of 6 different learned methods were evaluated on the Apple CT data. This
set included post-processing methods (MS-D-CNN, U-Net, ISTA U-Net), learned iterative
methods (learned primal-dual), fully learned approaches (iCTU-Net), and generative
models (CINN). As described in Section 2.2, different noise cases (noise-free, Gaussian
noise and scattering noise) and different numbers of angles (50, 10, 5, 2) were used. In total,
each model was trained on the 12 different settings of the Apple CT dataset. In addition
to the learned methods, three classical techniques, namely CGLS, TV, and FBP, have been
included as a baseline.

5.2.1. Reconstruction Performance

A subset of 100 data samples from the test set was selected for the evaluation (cf.
Section 2.2). The mean PSNR and SSIM values for all experiments can be found in Table 4.
Additionally, Tables A3–A5 in the appendix provide standard deviations and PSNR-FR
and SSIM-FR values.
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Table 4. Peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) (adapted to the data range of each ground truth
image) for the different noise settings on the Apple CT datasets. Best results are highlighted in gray. See Figures A7 and A8
for a visualization.

Noise-Free PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 38.72 35.85 30.79 22.00 0.901 0.870 0.827 0.740
ISTA U-Net 38.86 34.54 28.31 20.48 0.897 0.854 0.797 0.686
U-Net 39.62 33.51 27.77 19.78 0.913 0.803 0.803 0.676
MS-D-CNN 39.85 34.38 28.45 20.55 0.913 0.837 0.776 0.646
CINN 39.59 34.84 27.81 19.46 0.913 0.871 0.762 0.674
iCTU-Net 36.07 29.95 25.63 19.28 0.878 0.847 0.824 0.741
TV 39.27 29.00 22.04 15.95 0.915 0.783 0.607 0.661
CGLS 33.05 21.81 12.60 15.25 0.780 0.619 0.537 0.615
FBP 30.39 17.09 15.51 13.97 0.714 0.584 0.480 0.438

Gaussian Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 36.62 33.76 29.92 21.41 0.878 0.850 0.821 0.674
ISTA U-Net 36.04 33.55 28.48 20.71 0.871 0.851 0.811 0.690
U-Net 36.48 32.83 27.80 19.86 0.882 0.818 0.789 0.706
MS-D-CNN 36.67 33.20 27.98 19.88 0.883 0.831 0.748 0.633
CINN 36.77 31.88 26.57 19.99 0.888 0.771 0.722 0.637
iCTU-Net 32.90 29.76 24.67 19.44 0.848 0.837 0.801 0.747
TV 32.36 27.12 21.83 16.08 0.833 0.752 0.622 0.637
CGLS 27.36 21.09 14.90 15.11 0.767 0.624 0.553 0.616
FBP 27.88 17.09 15.51 13.97 0.695 0.583 0.480 0.438

Scattering Noise PSNR SSIM

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 37.80 34.19 27.08 20.98 0.892 0.866 0.796 0.540
ISTA U-Net 35.94 32.33 27.41 19.95 0.881 0.820 0.763 0.676
U-Net 34.96 32.91 26.93 18.94 0.830 0.784 0.736 0.688
MS-D-CNN 38.04 33.51 27.73 20.19 0.899 0.818 0.757 0.635
CINN 38.56 34.08 28.04 19.14 0.915 0.863 0.839 0.754
iCTU-Net 26.26 22.85 21.25 18.32 0.838 0.796 0.792 0.765
TV 21.09 20.14 17.86 14.53 0.789 0.649 0.531 0.611
CGLS 20.84 18.28 14.02 14.18 0.789 0.618 0.547 0.625
FBP 21.01 15.80 14.26 13.06 0.754 0.573 0.475 0.433

The biggest challenge with the noise-free dataset is that the measurements become
increasingly undersampled as the number of angles decreases. As expected, the recon-
struction quality in terms of PSNR and SSIM deteriorates significantly as the number of
angles decreases. In comparison with LoDoPaB-CT, no model performs best in all scenarios.
Furthermore, most methods were trained to minimize the MSE between the output image
and ground truth. The MSE is directly related to the PSNR. However, minimizing the MSE
does not necessarily translate into a high SSIM. In many cases, the best method in terms
of PSNR does not result in the best SSIM. These observations are also evident in the two
noisy datasets. Noteworthy is the performance of the classical TV method on the noise-free
dataset for 50 angles. This result is comparable to the best-performing learned methods,
while the other classical approaches show a clear gap.

Noisy measurements, in addition to undersampling, present an additional difficulty
on the Gaussian and scattering datasets. Intuitively, one would therefore expect a worse
performance compared to the noise-free case. In general, a decrease in performance can be
observed. However, this effect depends on the method and the noise itself. For example,
the negative impact on classical methods is much more substantial for the scattering
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noise. In contrast, the learned methods often perform slightly worse on the Gaussian
noise. There are also some outliers with higher values than on the noise-free set. Possible
explanations are the hyperparameter choices and the stochastic nature of the model training.
Overall, the learned approaches can reach similar performances on the noisy data, while
the performance of classical methods drops significantly. An additional observation can be
made when comparing the results between Gaussian and scattering noise. For Gaussian
noise with 50 angles, all learned methods, except for the iCTU net, achieve a PSNR of at
least 36 dB. In contrast, the variation on scattering noise with 50 angles is much larger.
The CINN obtains a much higher PSNR of 38.56 dB than the post-processing U-Net with
34.96 dB.

As already observed on the LoDoPaB dataset, the post-processing methods (MS-D-
CNN, U-Net and ISTA U-Net) show only minor differences in all noise cases. This could
be explained by the fact that these methods are all trained with the same objective function
and differ only in their architecture.

5.2.2. Visual Comparison

Figure 6 shows reconstructions from all learned methods for an apple slice with bitter
pit. The decrease in quality with the decrease in the number of angles is clearly visible. For
2 angles, none of the methods are able to accurately recover the shape of the apple. The
iCTU-Net reconstruction has sharp edges for the 2-angle case, while the other methods
produce blurry reconstructions.
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Figure 6. Visual overview of one apple slice with bitter pit for different learned methods. Evaluated on Gaussian noise. The
quality of the reconstruction deteriorates very quickly for a reduced number of angles. For the 2-angle case, none of the
methods can reconstruct the exact shape of the apple.

The inner structure, including the defects, is accurately reconstructed for 50 angles
by all methods. The only exception is the iCTU-Net. Reconstructions from this network
show a smooth interior of the apple. The other methods also result in the disappearance of
smaller defects with fewer measurement angles. Nonetheless, a defect-detection system
might still be able to sort out the apple based on the 5-angle reconstructions. The 2-angle
case can be used to assess failure modes of the different approaches. The undersampling
case is so severe that a lot of information is lost. However, the iCTU-Net is able to produce
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a smooth image of an apple, but it has few similarities with the ground truth apple. It
appears that the models have memorized the roundness of an apple and produce a round
apple that has little in common with the real apple except for its size and core.

5.2.3. Data Consistency

The data consistency is evaluated for all three Apple CT datasets. The MSE is used
to measure the discrepancy. It is the canonical choice for measurements with Gaussian
noise (cf. Section 4.1.3). Table A6 in the appendix contains all MSE values and standard
deviations. Figure 7 shows the results depending on the number of angles for the noise-free
and Gaussian noise dataset.

Figure 7. Mean squared error (MSE) data discrepancy between the measurements and the forward-projected reconstructions
for the noise-free (left) and Gaussian noise (right) dataset. The MSE values are plotted against the number of angles used
for the reconstruction. For the Gaussian dataset, the mean data discrepancy between noisy and noise-free measurements is
given for reference. Evaluation is done on 100 Apple CT test images. See Table A6 for the exact values.

In the noise-free setup, the optimal MSE value is zero. Nonetheless, an optimal
data consistency does not correspond to perfect reconstructions in this case. Due to the
undersampling of the measurements, the discretized linear forward operator A has a non-
trivial null space, that is, x̃ ∈ X, apart from x̃ = 0, for which Ax̃ = 0. Any element from
the null space can be added to the true solution x† without changing the data discrepancy

A
(

x† + x̃
)
= Ax† + Ax̃ = Ax† + 0 = Ax† = y.

In the Gaussian setup, the MSE between noise-free and noisy measurements is used
as a reference for a good data discrepancy. The problem from the undersampling is also
relevant in this setting.

Both setups show an increase in the data discrepancy with fewer measurement an-
gles. The reason for the increase is presumably the growing number of deviations in the
reconstructions. In the Gaussian noise setup, the high data discrepancy of all learned
methods for 2 angles coincides with the poor reconstructions of the apple slice in Figure 6.
Only the TV method, which enforces data consistency during the reconstruction, keeps a
constant level. The main problem for this approach are the ambiguous solutions due to the
undersampling. The TV method is not able to identify the correct solution given by the
ground truth. Therefore, the PSNR and SSIM values are also decreasing.

Likewise, the data consistency was analyzed for the dataset with scattering noise. The
MSE values of all learned methods are close to the empirical noise level. In contrast, FBP
and TV have a much smaller discrepancy. Therefore, their reconstructions are most likely
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influenced by the scattering noise. An effect that is also reflected in the PSNR and SSIM
values in Table 4.

6. Discussion

Among all the methods we compared, there is no definite winner that is the best on
both LoDoPaB-CT and Apple CT. Learned primal-dual, as an example of a learned iterative
method, is the best method on LoDoPaB-CT, in terms of both PSNR and SSIM, and also
gives promising results on Apple CT. However, it should be noted that the differences in
performance between the learned methods are relatively small. The ISTA U-Net, second
place in terms of PSNR on LoDoPaB-CT, scores only 0.14 dB less than learned primal-dual.
The performance in terms of SSIM is even closer on LoDoPaB-CT. The best performing
learned method resulted in an SSIM that was only 0.022 higher than the last placed learned
method. The observation that the top scoring learned methods did not differ greatly in
terms of performance has also been noted in the fastMRI challenge [61]. In addition to the
performance of the learned methods, other characteristics are also of interest.

6.1. Computational Requirements and Reconstruction Speed

When discussing the computational requirements of deep learning methods, it is
important to distinguish between training and inference. Training usually requires signifi-
cantly more processing power and memory. All outputs of intermediate layers have to be
stored for the determination of the gradients during backpropagation. Inference is much
faster and less resource-intensive. In both cases, the requirements are directly influenced
by image size, network architecture and batch size.

A key feature and advantage of the learned iterative methods, post-processing meth-
ods and fully-learned approaches is the speed of reconstruction. Once the network is
trained, the reconstruction can be obtained by a simple forward pass of the model. Since
the CINN, being a generative model, draws samples from the posterior distribution, many
forward passes are necessary to well approximate the mean or other moments. Therefore,
the quality of the reconstruction may depend on the number of forward passes [48]. The
DIP + TV method requires a separate model to be trained to obtain a reconstruction. As
a result, reconstruction is very time-consuming and resource-intensive, especially on the
972 px × 972 px images in the Apple CT datasets. However, DIP + TV does not rely on a
large, well-curated dataset of ground truth images and measurements. As an unsupervised
method, only measurement data is necessary. The large size of the Apple CT images is also
an issue for the other methods. In comparison to LoDoPaB-CT, the batch size had to be
reduced significantly in order to train the learned models. This small batch size can cause
instability in the training process, especially for CINN (cf. Figure A14).

Transfer to 3D Reconstruction

The reconstruction methods included in this study were evaluated based on the
reconstruction of individual 2D slices. In real applications, however, the goal is often to
obtain a 3D reconstruction of the volume. This can be realized with separate reconstructions
of 2D slices, but (learned) methods might benefit from additional spatial information.
On the other hand, a direct 3D reconstruction can have a high demand on the required
computing power. This is especially valid when training neural networks.

One way to significantly reduce the memory consumption of backpropagation is to
use invertible neural networks (INN). Due to the invertibility, the intermediate activations
can be calculated directly and do not have to be stored in memory. INNs were successfully
applied to 3D reconstructions tasks in MRI [62] and CT [63]. The CINN approach from our
comparison can be adapted in a similar way for 3D data. In most post-processing methods,
the U-Net can be replaced by an invertible iUnet, as proposed by Etmann et al. [63].

Another option is the simultaneous reconstruction of only a part of the volume. The
information from multiple neighboring slices is used in this case, which is also referred
to as 2.5D reconstruction. Networks that operate on this scenario usually have a mixture
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of 2D and 3D convolutional layers [64]. The goal is to strike a balance between the speed
and memory advantage of the 2D scenario and the additional information from the third
dimension. All deep learning methods included in this study would be suitable for 2.5D
reconstruction with slight modifications to their network architecture.

Overall, 2.5D reconstruction can be seen as an intermediate step that can already be re-
alized with many learned methods. The pure 3D case, on the other hand, requires specially
adapted deep learning approaches. Technical innovations such as mixed floating point
precision and increasing computing power may facilitate the transition in the coming years.

6.2. Impact of the Datasets

The type, composition and size of a dataset can have direct impact on the performance
of the models. The observed effects can provide insight into how the models can be
improved or how the results translate to other datasets.

6.2.1. Number of Training Samples

A large dataset is often required to successfully train deep learning methods. In order
to assess the impact of the number of data pairs on the performance of the methods, we
consider the Apple CT datasets. The scattering noise dataset (Dataset C), with 5280 training
images, is only about 10% as large as the noise free dataset (Dataset A) and the Gaussian
noise dataset (Dataset B). Here it can be noted that the iCTU net, as an example of a fully
learned approach, performs significantly worse on this smaller dataset than on dataset
A and dataset B (26.26 dB PSNR on Dataset C with 50 angles, 36.07 dB and 32.90 dB on
Dataset A and Dataset B with 50 angles, respectively). This drop in performance could
also be caused by the noise case. However, Baguer et al. [34] have already noted in their
work that the performance of fully learned approaches heavily depends on the number of
training images. This could be explained by the fact that fully learned methods need to
infer most of the information about the inversion process purely from data. Unlike learned
iterative methods, such as learned primal-dual, fully learned approaches do not incorporate
the physical model. A drop in performance due to a smaller training set was not observed
for the other learned methods. However, 5280 training images is still comprehensive.
Baguer et al. [34] also investigated the low-data regime on LoDoPaB-CT, down to around
30 training samples. In their experiments, learned primal-dual worked well in this scenario,
but was surpassed by the DIP + TV approach. The U-Net post-processing lined up between
learned Primal-Dual and the fully learned method. Therefore, the amount of available
training data should be considered when choosing a model. To enlarge the training set, the
DIP + TV approach can also be used to generate pseudo ground truth data. Afterwards, a
supervised method with a fast reconstruction speed can be trained to mimic the behavior
of DIP + TV.

6.2.2. Observations on LoDoPaB-CT and Apple CT

The samples and CT setups differ greatly between the two datasets. The reconstruc-
tions obtained using the methods compared in this study reflect these differences to some
extent, but there were also some effects that were observed for both datasets.

The sample reconstructions in Figures 4 and 6 show that most learned methods
produce smooth images. The same observation can be made for TV, where smoothness
is an integral part of the modeling. An extension by a suitable regularization can help to
preserve edges in the reconstruction without the loss of small details, or the introduction
of additional noise. One possibility is to use diffusion filtering [65], for example, variants
of the Perona-Malik diffusion [66] in this role. Diffusion filtering was also successfully
applied as a post-processing step for CT [67]. Whether smoothness of reconstructions is
desired depends on the application and further use of the images, for example, visual or
computer-aided diagnosis, screening, treatment planning, or abnormality detection. For
the apple scans, a subsequent task could be the detection of internal defects for sorting them
into different grades. The quality of the reconstructions deteriorates with the decreasing
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number of measurement angles. Due to increasing undersampling, the methods have to
interpolate more and more information to find an adequate solution. The model output is
thereby influenced by the training dataset.

The effects of severe undersampling can be observed in the 2-angle setup in Figure 6.
All reconstructions of the test sample show a prototypical apple with a round shape
and a core in the center. The internal defects are not reproduced. One explanation is
that supervised training aims to minimize the empirical risk on the ground truth images.
Therefore, only memorizing and reconstructing common features in the dataset, like the
roundness and the core, can be optimal in some ways to minimize the empirical risk on
severely undersampled training data. Abnormalities in the data, such as internal defects,
are not captured in this case. This effect is subsequently transferred to the reconstruction of
test data. Hence, special attention should be paid to the composition of the training data.
As shown in the next Section 6.2.3, this is particularly important when the specific features
of interest are not well represented in the training set.

In the 5-angle setup, all methods are able to accurately reconstruct the shape of the
apple. Internal defects are partially recovered only by the post-processing methods and
the CINN. These approaches all use FBP reconstructions as a starting point. Therefore,
they rely on the information that is extracted by the FBP. This can be useful in the case of
defects but aggravating for artifacts in the FBP reconstruction. The CINN approach has
the advantage of sampling from the space of possible solutions and the evaluability of the
likelihood under the model. This information can help to decide whether objects in the
reconstruction are really present.

In contrast, Learned Primal-Dual and the iCTU-Net work directly on the measure-
ments. They are more flexible with respect to the extraction of information. However, this
also means that the training objective strongly influences which aspects of the measure-
ments are important for the model. Tweaking the objective or combining the training of
a reconstruction and a detection model, that is, end-to-end learning or task-driven recon-
struction, might be able to increase the model performance in certain applications [68,69].

6.2.3. Robustness to Changes in the Scanning Setup

A known attribute of learned methods is that they can often only be applied to
data similar to the training data. It is often unclear how a method trained in one setting
generalizes to a different setting. In CT, such a situation could for example arise due to
altered scan acquisition settings or application to other body regions. Switching between
CT devices from different manufacturers can also have an impact.

As an example, we evaluated the U-Net on a different number of angles than it was
trained on. The results of this experiment are shown in Table 5. In most setups the PSNR
drops by at least 10 dB when evaluated on a different setting. In practice, the angular
sampling pattern may change and it would be cumbersome to train a separate model for
each pattern.

Table 5. Performance of a U-Net trained on the Apple CT dataset (scattering noise) and evaluated on different angular
samplings. In general, a U-Net trained on a specific number of angles fails to produce good results on a different number of
angles. PSNR and SSIM are calculated with image-dependent data range.

Training
Evaluation 50 Angles 10 Angles 5 Angles 2 Angles

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

50 angles 39.62 0.913 16.39 0.457 11.93 0.359 8.760 0.252
10 angles 27.59 0.689 33.51 0.803 18.44 0.607 9.220 0.394
5 angles 24.51 0.708 26.19 0.736 27.77 0.803 11.85 0.549
2 angles 15.57 0.487 14.59 0.440 15.94 0.514 19.78 0.676
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6.2.4. Generalization to Other CT Setups

The LoDoPaB-CT and Apple CT datasets were acquired by simulating parallel-beam
measurements, based on the Radon transform. This setup facilitates large-scale experi-
ments with many example images, whereas the underlying operators in the algorithms
have straightforward generalizations to other geometries. Real-world applications of CT
are typically more complex. For example, the standard scanning geometries in medical
applications are helical fan-beam or cone-beam [36]. In addition, the simulation model
does not cover all physical effects that may occur during scanning. For this reason, the
results can only be indicative of performance on real data.

However, learned methods are known to adapt well to other setups when retrained
from scratch on new samples. It is often not necessary to adjust the architecture for this
purpose, other than by replacing the forward operator and its adjoint where they are
involved. For example, most learned methods show good performance on the scattering
observations, whereas the classical methods perform worse compared to the Gaussian
noise setup. This can be explained by the fact that the effect of scattering is structured,
which, although adding to the instability of the reconstruction problem, can be learned to
be (partially) compensated for. In contrast, classical methods require the reconstruction
model to be manually adjusted in order to incorporate knowledge about the scattering.
If scattering is treated like an unknown distortion (i.e., a kind of noise), such as in our
comparison, the classical assumption of pixel-wise independence of the noise is violated by
the non-local structure of the scattering. Convolutional neural networks are able to capture
these non-local effects.

6.3. Conformance of Image Quality Scores and Requirements in Real Applications

The goal in tomographic imaging is to provide the expert with adequate information
through a clearly interpretable reconstructed image. In a medical setting, this can be an
accurate diagnosis or plan for an operation; and in an industrial setting, the image may be
used for detection and identification of faults or defects as part of quality control.

PSNR and SSIM, among other image quality metrics, are commonly used in publica-
tions and data challenges [61] to evaluate the quality of reconstructed medical images [70].
However, there can be cases in which PSNR and SSIM are in a disagreement. Although
not a huge difference, the results given in Table 4 are a good example of this. This often
leads to the discussion of which metric is better suited for a certain application. The PSNR
expresses a pixel-wise difference between the reconstructed image and its ground truth,
whereas the SSIM checks for local structural similarities (cf. Section 4.1). A common issue
with both metrics is that a local inaccuracy in the reconstructed image, such as a small
artifact, would only have a minor influence on the final assessment. The effect of the artifact
is further downplayed when the PSNR or SSIM values are averaged over the test samples.
This is evident in some reconstructions from the DIP + TV approach, where an artifact
was observed on multiple LoDoPaB-CT reconstructions whereas this is not reflected in
the metrics. This artifact is highlighted with a red circle in the DIP + TV reconstruction in
Figure A9.

An alternative or supporting metric to PSNR and SSIM is visual inspection of the
reconstructions. A visual evaluation can be done, for example, through a blind study
with assessments and rating of reconstructions by (medical) experts. However, due to
the large amount of work involved, the scope of such an evaluation is often limited. The
2016 Low Dose CT Grand Challenge [9] based their comparison on the visibility of liver
lesions, as evaluated by a group of physicians. Each physician had to rate 20 different
cases. The fastMRI Challenge [61] employed radiologists to rank MRI reconstructions. The
authors were able to draw parallels between the quantitative and blind study results, which
revealed that, in their data challenge, SSIM was a reasonable estimate for the radiologists’
ranking of the images. In contrast, Mason et al. [71] found differences in their study
between several image metrics and experts’ opinions on reconstructed MRI images.
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In industrial settings, PSNR or related pixel-based image quality metrics fall short
on assessing the accuracy or performance of a reconstruction method when physical
and hardware-related factors in data acquisition play a role in the final reconstruction.
These factors are not accurately reflected in the image quality metrics, and therefore the
conclusions drawn may not always be applicable. An alternative practice is suggested
in [72], in which reconstructions of a pack of glass beads are evaluated using pixel-based
metrics, such as contrast-to-noise ratio (CNR), and pre-determined physical quantification
techniques. The physical quantification is object-specific, and assessment is done by
extracting a physical quality of the object and comparing this to a reference size or shape.
In one of the case studies, the CNR values of iterated reconstructions suggest an earlier
stopping for the best contrast in the image, whereas a visual inspection reveals the image
with the “best contrast” to be too blurry and the bead un-segmentable. The Apple CT
reconstructions can be assessed in a similar fashion, where we look at the overall shape of
a healthy apple, as well as the shape and position of its pit.

6.4. Impact of Data Consistency

Checking the discrepancy between measurement and forward-projected reconstruc-
tion can provide additional insight into the quality of the reconstruction. Ground truth
data is not needed in this case. However, an accurate model A of the measurement process
must be known. Additionally, the evaluation must take into account the noise type and
level, as well as the sampling ratio.

Out of all tested methods, only the TV, CGLS and DIP + TV approach use the discrep-
ancy to the measurements as (part of) their minimization objective for the reconstruction
process. Still, the experiments on LoDoPaB-CT and Apple CT showed data consistency on
the test samples for most of the methods. Based on these observations, data consistency
does not appear to be a problem with test samples coming from a comparable distribu-
tion to the training data. However, altering the scan setup can significantly reduce the
reconstruction performance of learned methods (cf. Section 6.2.3). Verification of the data
consistency can serve as an indicator without the need for ground truth data or continuous
visual inspection.

Another problem can be the instability of some learned methods, which is also known
under the generic term of adversarial attacks [73]. Recent works [74,75] show that some
methods, for example, fully learned and post-processing approaches, can be unstable. Tiny
perturbations in the measurements may result in severe artifacts in the reconstructions.
Checking the data discrepancy may also help in this case. Nonetheless, severe artifacts
were also found in some reconstructions from the DIP + TV method on LoDoPaB-CT.

All in all, including a data consistency objective in training (bi-directional loss), could
further improve the results from learned approaches. Checking the discrepancy dur-
ing the application of trained models can also provide additional confidence about the
reconstructions’ accuracy.

6.5. Recommendations and Future Work

As many learned methods demonstrated similar performance in both low-dose CT
and sparse-angle CT setups, further attributes have to be considered when selecting a
learned method for a specific application. As discussed above, consideration should also
be given to reconstruction speed, availability of training data, knowledge of the physical
process, data consistency, and subsequent image analysis tasks. An overview can be found
in Table 6. From the results of our comparison, some recommendations for the choice and
further investigation of deep learning methods for CT reconstruction emerge.
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Table 6. Summary of selected reconstruction method features. The reconstruction error ratings reflect the average per-
formance improvement in terms of the evaluated metrics PSNR and SSIM compared to filtered back-projection (FBP).
Specifically, for LoDoPaB-CT improvement quotients are calculated for PSNR and SSIM, and the two are averaged; for the
Apple CT experiments the quotients are determined by first averaging PSNR and SSIM values within each noise setting over
the four angular sampling cases, next computing improvement quotients independently for all three noise settings and for
PSNR and SSIM, and finally averaging over these six quotients. GPU memory values are compared for 1-sample batches.

Model

Reconstruction

Error (Image Metrics)

Training

Time

Recon-
Struction

Time
GPU

Memory

Learned

Para-
Meters

Uses DY
Discre-
Pancy

Operator

Required

Learned P.-D. � � � � � � � � � � � � � � � no � � �

ISTA U-Net � � � � � � � � � � � � � � no � �

U-Net � � � � � � � � � � � no � �

MS-D-CNN � � � � � � � � � � � � no � �

U-Net++ � � - � � � � � � � � � � no � �

CINN � � � � � � � � � � � � � � no � �

DIP + TV � � � - - � � � � � � 3+ yes � � � �

iCTU-Net � � � � � � � � � � � � � � � � no �

TV � � � � � � - � � � � 3 yes � � � �

CGLS - � � � � - � � 1 yes � � � �

FBP � � � � � � � � - � � 2 no � � � �

Legend LoDoPaB Apple CT Rough values for Apple CT Dataset B
Avg. improv. over FBP (varying for different setups and datasets)

� � � � 0% 0–15% >2 weeks >10 min >10 GiB >108 Direct
� � � 12–16% 25–30% >5 days >30 s >3 GiB >106 In network
� � 17–20% 40–45% >1 day >0.1 s >1.5 GiB >105 For input
� 50–60% ≤0.02 s ≤1 GiB ≤105 Only concept

Overall, the learned primal-dual approach proved to be a solid choice on the tested
low photon count and sparse-angle datasets. The applicability of the method depends
on the availability and fast evaluation of the forward and the adjoint operators. Both
requirements were met for the 2D parallel beam simulation setup considered. However,
without adjustments to the architecture, more complicated measurement procedures and
especially 3D reconstruction could prove challenging. In contrast, the post-processing
methods are more flexible, as they only rely on some (fast) initial reconstruction method.
The performance of the included post-processing models was comparable to learned
primal-dual. A disadvantage is the dependence on the information provided by the
initial reconstruction.

The other methods included in this study are best suited for specific applications due
to their characteristics. Fully learned methods do not require knowledge about the forward
operator, but the necessary amount of training data is not available in many cases. The
DIP + TV approach is on the other side of the spectrum, as it does not need any ground
truth data. One downside is the slow reconstruction speed. However, faster reconstruction
methods can be trained based on pseudo ground truth data created by DIP + TV. The CINN
method allows for the evaluation of the likelihood of a reconstruction and can provide
additional statistics from the sampling process. The invertible network architecture also
enables the model to be trained in a memory-efficient way. The observed performance
for 1000 samples per reconstruction was comparable to the post-processing methods. For
time-critical applications, the number of samples would need to be lowered considerably,
which can deteriorate the image quality.

In addition to the choice of model, the composition and amount of the training data
also plays a significant role for supervised deep learning methods. The general difficulty
of application to data that deviate from the training scenario was also observed in our
comparison. Therefore, the training set should either contain examples of all expected
cases or the model must be modified to include guarantees to work in divergent scenarios,
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such as different noise levels or number of angles. Special attention should also be directed
to subsequent tasks. Adjusting the training objective or combining training with succes-
sive detection models can further increase the value of the reconstruction. Additionally,
incorporating checks for the data consistency during training and/or reconstruction can
help to detect and potentially prevent deviations in reconstruction quality. This potential is
currently underutilized by many methods and could be a future improvement. Further-
more, the potential of additional regularization techniques to reduce the smoothness of
reconstructions from learned methods should be investigated.

Our comparison lays the foundation for further research that is closer to real-world
applications. Important points are the refinement of the simulation model, the use of
real measurement data and the transition to fan-beam/cone-beam geometries. The move
to 3D reconstruction techniques and the study of the influence of the additional spatial
information is also an interesting aspect. Besides the refinement of the low photon count
and sparse-angle setup, a future comparison should include limited-angle CT. A first
application of this setting to Apple CT can be found in the dataset descriptor [38].

An important aspect of the comparison was the use of PSNR and SSIM image quality
metrics to rate the produced reconstructions. In the future, this assessment should be
supplemented by an additional evaluation of the reconstruction quality of some samples
by (medical) professionals. A multi-stage blind study for the evaluation of unmarked
reconstructions, including or excluding the (un)marked ground truth image, may provide
additional insights.

Finally, a comparison is directly influenced by the selection of the included models.
While we tested a broad range of different methods, there are still many missing types,
for example, learned regularization [18] and null space networks [76]. We encourage
readers to test additional reconstruction methods on the datasets from our comparison and
submit reconstructions to the respective data challenge websites: (https://lodopab.grand-
challenge.org/, last accessed: 1 March 2021) and (https://apples-ct.grand-challenge.org/,
last accessed: 1 March 2021).

7. Conclusions

The goal of this work is to quantitatively compare learned, data-driven methods
for image reconstruction. For this purpose, we organized two online data challenges,
including a 10-day kick-off event, to give experts in this field the opportunity to benchmark
their methods. In addition to this event, we evaluated some popular learned models
independently. The appendix includes a thorough explanation and references to the
methods used. We focused on two important applications of CT. With the LoDoPaB-
CT dataset we simulated low-dose measurements and with the Apple CT datasets we
included several sparse-angle setups. In order to ensure reproducibility, the source code
of the methods, network parameters and the individual reconstruction are released. In
comparison to the classical baseline (FBP and TV regularization) the data-driven methods
are able to improve the quality of the CT reconstruction in both sparse-angle and low-
dose settings. We observe that the top scoring methods, namely learned primal-dual
and different post-processing approaches, perform similarly well in a variety of settings.
Besides that, the applicability of deep learning-based models depends on the availability
of training examples, prior knowledge about the physical system and requirements for the
reconstruction speed.

Supplementary Materials: The following are available online at https://zenodo.org/record/446005
5#.YD9IiIsRVPZ; https://zenodo.org/record/4459962#.YD9IqIsRVPZ; https://zenodo.org/record/
4459250#.YD9GtU5xdPY.
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Appendix A. Learned Reconstruction Methods

Appendix A.1. Learned Primal-Dual

The Learned Primal-Dual algorithm is a learned iterative procedure to solve inverse
problems [19]. A primal-dual scheme [77] is unrolled for a fixed number of steps and the
proximal operators are replaced by neural networks (cf. Figure A1). This unrolled architec-
ture is then trained using data pairs from measurements and ground truth reconstructions.
The forward pass is given in Algorithm A1. In contrast to the regular primal-dual algorithm,
the primal and the dual space are extended to allow memory between iterations:

x = [x(1), . . . , x(Nprimal)
] ∈ XNprimal ,

h = [h(1), . . . , h(Ndual)
] ∈ YNdual .

For the benchmark Nprimal = 5 and Ndual = 5 was used. Both the primal and
dual operators were parameterized as convolutional neural networks with 3 layers and
64 intermediate convolution channels. The primal-dual algorithm was unrolled for K = 10
iterations. Training was performed by minimizing the mean squared error loss using the
Adam optimizer [78] with a learning rate of 0.0001. The model was trained for 10 epochs
on LoDoPaB-CT and for at most 50 epochs on the apple data, whereby the model with the
highest PSNR on the validation set was selected. Batch size 1 was used. Given a learned
primal-dual algorithm the reconstruction can be obtained using Algorithm A1.

29



J. Imaging 2021, 7, 44

Algorithm A1 Learned Primal-Dual.
Given learned proximal dual and primal operators Γθd

k
, Λθ

p
k

for k = 1, . . . , K the reconstruction
from noisy measurements yδ is calculated as follows.

1. Initialize x[0] ∈ XNprimal , h[0] ∈ YNdual

2. for k = 1 : K

3. h[k] = Γθd
k

(
h[k−1], A(x[k−1]

(2) ), yδ

)
4. x[k] = Λθ

p
k

(
x[k−1],

[
A(x[k−1]

(1) )
]∗
(h[m]

(1) )
)

5. end

6. return x̂ = x[K]
(1)

Figure A1. Architecture of the learned primal dual algorithm unrolled for K = 5 iterations. We used
a zero initialization for h[0] and the FBP reconstruction for x[0]. Adapted from [19].

Appendix A.2. U-Net

The goal of post-processing methods is to improve a pre-computed reconstruction.
For CT, the FBP is used to obtain an initial reconstruction. This reconstruction is then used
as an input to a post-processing network. For the enhancement of CT reconstructions,
the post-processing network is implemented as a U-Net [20]. The U-Net architecture,
as proposed by Ronneberger et al. [40], was originally designed for the task of semantic
segmentation, but has many properties that are also beneficial for denoising. The general
architecture is shown in Figure A2. In our implementation we used 5 scales (4 up- and
downsampling blocks each) both for the LoDoPaB-CT and the Apple CT datasets. The skip
connection between same scale levels mitigates the vanishing gradient problem so that
deeper networks can be trained. In addition, the multi-scale architecture can be considered
as a decomposition of the input image, in which an optimal filtering can be learned for
each scale. There are many extensions to this basic architecture. For example, the U-Net++
(cf. Appendix A.3) extends the skip connections to different pathways.

The used numbers of channels at the different scales are 32, 32, 64, 64, and 128. For all
skip connections 4 channels were used. The input FBPs were computed with Hann filtering
and no frequency scaling. Linear activation (i.e., no sigmoid or ReLU activation) was used
for the network output. Training was performed by minimizing the mean squared error
loss using the Adam optimizer. For each training, the model with the highest PSNR on the
validation set was selected. Due to the different memory requirements imposed by the
image sizes of LoDoPaB-CT and the Apple CT data, different batch sizes were used. While
for LoDoPaB-CT the batch size was 32 and standard batch normalization was applied,
for the Apple CT data a batch size of 4 was used and layer normalization was applied
instead of batch normalization. On LoDoPaB-CT, the model was trained for 250 epochs
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with learning rate starting from 0.001, reduced to 0.0001 by cosine annealing. On the Apple
CT datasets, the model was trained for at most 50 epochs with fixed learning rate 0.001.

Figure A2. Architecture of the mutli-scale, post-processing U-Net. The general architecture of a U-Net
consists on a downsampling path on the left and a upsampling path on the right with intermediate
connection between similar scales. Adapted from [40].

Appendix A.3. U-Net++

The U-Net++ was introduced by Zhou et al. [41], the network improves on the original
U-Net [40] architecture by incorporating nested and dense convolution blocks between
skip connections. In U-Net, the down-sample block outputs of the encoder are directly
input into the decoder’s up-sample block at the same resolution. In U-Net++, the up-
sampling block receives a concatenated input of a series of dense convolutional blocks at
the same resolution. The input to these dense convolutional blocks is the concatenation
of all previous dense convolutional blocks and the corresponding up-sample of a lower
convolutional block.

The design is intended to convey similar semantic information across the skip-pathway.
Zhou et al. suggest that U-Net’s drawback is that the skip connections combine semantically
dissimilar feature maps from the encoder and decoder. The results of these dissimilar
semantic feature maps can limit the learning of the network. As a result, they proposed
U-Net++ to address this drawback in the U-Net architecture. The purpose of the network
is to progressively gain more fine-grained details from the nested dense convolutional
blocks. Once these feature maps are combined with the decoder feature maps, it should, in
theory, reduce the dissimilarity between the feature maps [41]. U-Net++ has shown to be
successful in nodule segmentation of low-dose CT scans.

For our comparison on the LoDoPaB-CT dataset, we adopted a U-Net++ architecture
with five levels, four down-samples reduced by a factor of 2 and four up-samples. The
numbers of filters per convolutional block were 32, 64, 128, 256, 512 for the different levels,
respectively. Each convolutional block contained two convolutional layers, each followed
by batch normalization and ReLU activation. Input FBPs computed with Hann filtering
and no frequency scaling were used. Linear activation (i.e., no sigmoid or ReLU activation)
was used for the network output.

The loss function was chosen as a combination of MSE and SSIM,

α MSE(x̂, x†) + (1 − α)(1 − SSIM(x̂, x†)).

Empirically, the mixed loss function with weighting of 0.35 and 0.65 for MSE and
SSIM, respectively, provided the best results.

The optimizer used for this task was RMSprop [79] with a weight decay of 1 × 10−8

and momentum of 0.9. The model was trained for 8 epochs with a learning rate of 1 × 10−5

using a batch size of 4, and the model with the lowest loss on the validation set was selected.
Source code and model weights are publicly available in a github repository (https:

//github.com/amirfaraji/LowDoseCTPytorch, last accessed: 1 March 2021).
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Appendix A.4. Mixed-Scale Dense Convolutional Neural Network

The Mixed-Scale Dense (MS-D) network architecture was introduced by
Pelt & Sethian [21]. The main properties of the MS-D architecture are mixing scales
in every layer and dense connection of all feature maps. Instead of downscaling and
upscaling, features at different scales are captured with dilated convolutions, and multiple
scales are used in each layer. All feature maps have the same size, and every layer can
use all previously computed feature maps as an input. Thus, feature maps are maximally
reused, and features do not have to be replicated in multiple layers to be used deeper in
the network. The output image is computed based on all layers instead of only the last one.

The authors show that MS-D architecture can achieve results comparable to typical
DCNN with fewer feature maps and trainable parameters. This enables training with
smaller datasets, which is highly important for CT. Furthermore, accurate results can usu-
ally be achieved without fine-tuning hyperparameters, and the same network architecture
can often be used for different problems. A small number of feature maps leads to less
memory usage in comparison with typical DCNN and enables training with larger images.

Figure A3. Architecture of the MS-D neural network for width of 1 and depth of 3, feature maps are
drawn as light blue squares. Colored lines represent dilated convolutions, different colors correspond
to different dilation values. Black lines represent 1 × 1 convolutions that connect the input and all
feature maps to the output image. Adapted from [21].

The networks used equally distributed dilations with intervals from 1 to 10. The
depth was 200 layers for the LoDoPaB-CT dataset and 100 layers for the Apple CT datasets.
For the input FBPs, Hann filtering and no frequency scaling were used. The training was
performed by minimizing MSE loss using the Adam optimizer with a learning rate of 0.001,
using batch size 1. The model was trained for 15 epochs on LoDoPaB-CT and for at most
50 epochs on the apple data, whereby the model with the highest PSNR on the validation
set was selected. Data augmentation consisting of rotations and flips was used for the
apple data, but not for LoDoPaB-CT.

Appendix A.5. Conditional Invertible Neural Networks

Conditional invertible neural networks (CINN) are a relatively new approach for
solving inverse problems [47,80]. Models of this type consist of two network parts (cf.
Figure A4). An invertible network F represents a learned transformation between the
(unknown) distribution X of the ground truth data and a standard probability distribution
Z , e.g., a Gaussian distribution. The second building block is a conditioning network C,
which includes physical knowledge about the problem and encodes information from the
measured data as an additional input to F.

A CINN was successfully applied to the task of low-dose CT reconstruction by
Denker et al. [48]. Their model uses a multi-scale convolutional architecture as proposed
in [81] and is built upon the FrEIA (https://github.com/VLL-HD/FrEIA, last accessed:
1 March 2021) python library. For the experiments in this paper, several improvements
over the design in [48] are incorporated. The structure of the invertible network F and the
conditioning network C are simplified. Using additive coupling layers [82] with Activation
Normalization [83] improves stability of the training. Replacing downsampling operations
with a learned version from Etmann et al. [63] prevents checkerboard artifacts and enhances
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the overall reconstruction quality. In addition, the negative log-likelihood (NLL) loss is
combined with a weighted mean-squared error (MSE) term

min
Θ

[
log pZ

(
FΘ

(
x†, CΘ(yδ)

))
+ log

∣∣∣det
(

JFΘ

(
x†, CΘ(yδ)

))∣∣∣+ α MSE
(

F−1
Θ (z, CΘ(yδ)), x†

)]
.

The applied network has 5 different downsampling scales, where both spatial dimen-
sions are reduced by factor 2. Simultaneously, the number of channels increases by a factor
of 4, making the operation invertible. After each downsampling step, half the channels are
split of and send directly to the output layer. In total, the network has around 6.5 million
parameters. It is trained with the Adam optimizer and a learning rate of 0.0005 for at most
200 epochs using batch size 4 (per GPU) on LoDoPaB-CT and for at most 32 epochs using
batch size 3 on the apple data. The best model according to the validation loss is selected. A
Gaussian distribution is chosen for Z . The MSE weight is set to α = 1.0. After training, the
reconstructions are generated as a conditioned mean over K = 1000 sample reconstructions
from the Gaussian distribution (cf. Algorithm A2).

Figure A4. Architecture of the conditional invertible neural network. The ground truth image x is
transformed by FΘ to a Gaussian distributed z. Adapted from [48].

Algorithm A2 Conditional Invertible Neural Network (CINN).
Given a noisy measurement, yδ, an invertible neural network F and a conditioning network C. Let
K ∈ N be the number of random samples that should be drawn from a normal distribution N (0, I).
The algorithm calculates the mean and variance of the conditioned reconstructions.
1. Calculate FBP: c0 = TFBP(yδ).

2. Calculate outputs of the conditioning: c = CΘ(c0)

3. for k = 1 : K

4. z[k] ∼ N (0, I)

5. x̂[k] = F−1
(

z[k], c
)

6. end

7. Calculate mean: x̂ = 1
K ∑k x̂[k]

8. Calculate variance: σ̂ = 1
K ∑k

(
x̂[k] − x̂

)2

Appendix A.6. ISTA U-Net

The ISTA U-Net [42] is a relatively new approach based on the encoder-decoder
structure of the original U-Net. The authors draw parallels from the supervised training
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of U-Nets to task-driven dictionary learning and sparse coding. For the ISTA U-Net the
encoder is replaced by a sparse representation of the input vector and the decoder is
linearized by removing all non-linearities, batch normalization and additive biases (cf.
Figure A5). Given a data set of measurements and ground truth pairs {yδ i, x†

i }M
i=1 the

training problem can be formulated as a bi-level optimization problem

min
{θ,γ},λ>0

1
M

M

∑
i=1

1
2
‖Dγαyδ i ,θ − x†

i ‖2
2

where αyδ i ,θ = arg min
α≥0

1
2
‖Dθα − yδ i‖2

2 + ‖λ  α‖1,

where  denotes the Hadamard product. Using an encoder dictionary Dθ the correspond-
ing sparse code αθ can be determined with the iterative thresholding algorithm (ISTA, [84])
with an additional non-negativity constraint for the sparse code. Liu et al. [42] use a learned
variant of ISTA, called LISTA [85], to compute the sparse code. LISTA works by unrolling
ISTA for a fixed number of K iterations

α
[k]
yδ ,θ = ReLU

(
α
[k−1]
yδ ,θ + ηDT

κ

(
yδ − Dθα

[k−1]
yδ ,θ

)
− ηλ

)
,

with k = 1, . . . , K. In their framework they additionally untie the parameters for Dκ and
Dθ , although both dictionaries have the same structure. The forward pass of the network is
given in Algorithm A3.

For all experiments, K = 5 unrolled ISTA iterations were used. On LoDoPaB-CT, five
scales with hidden layer widths 1024, 512, 256, 128, 64 were used and the lasso parameters
λ were initialized with 10−3. For the Apple CT datasets, the network appeared to be
relatively sensitive with respect to the hyperparameter choices. For the noise-free data
(Dataset A), five scales with hidden layer widths 512, 256, 128, 64, 32 were used and λ was
initialized with 10−5. For Datasets B and C, six scales, but less wide hidden layers, namely
512, 256, 128, 64, 32, 16, were used and λ was initialized with 10−4. In all experiments,
input FBPs computed with Hann filtering and no frequency scaling were used. A ReLU
activation was applied to the network output. The network was trained by minimizing
the mean squared error loss using the Adam optimizer. For LoDoPaB-CT, the network
was trained for 20 epochs with a learning rate starting from 2 × 10−4, reduced by cosine
annealing to 1 × 10−5, using batch size 2. For the Apple CT datasets, the network was
trained for at most 80 epochs with a learning rate starting from 1 × 10−4, reduced by cosine
annealing to 1 × 10−5, using batch size 1, whereby the model with the highest PSNR on the
validation set was selected.

Source code is publicly available in a github repository (https://github.com/liutianlin0
121/ISTA-U-Net, last accessed: 1 March 2021). A slightly modified copy of the code used
for training on the Apple CT datasets is also contained in our github repository (https:
//github.com/jleuschn/learned_ct_reco_comparison_paper, last accessed: 1 March 2021).

Sparse code

Figure A5. Architecture of the ISTA U-Net adapted from [42]. The sparse code α replaces the
downsampling part in the standard U-Net (cf. Figure A2).
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Algorithm A3 ISTA U-Net.
Given a noisy input yδ, learned dictionaries Dκ , Dθ , Dγ and learned step sizes η and λ the recon-
struction using the ISTA U-Net can be computed as follows.
1. Calculate FBP: x̂ = TFBP(yδ)

2. Initialize α
[0]
yδ = 0

3. for k = 1 : K

4. α
[k]
yδ

= ReLU
(

α
[k−1]
yδ

+ ηDT
κ

(
x̂ − Dθα

[i−1]
yδ

)
− ηλ

)
5. end

6. return x̂ = Dγα
[K]
yδ

Appendix A.7. Deep Image Prior with TV Denoising

The deep image prior (DIP) [86] takes a special role among the listed neural network
approaches. In general, a DIP network F is not previously trained and, therefore, omits
the problem of ground truth acquisition. Instead, the parameters Θ are adjusted iteratively
during the reconstruction process by gradient descent steps (cf. Algorithm A4). The main
objective is to minimize the data discrepancy of the output of the network for a fixed
random input z

min
Θ

DY(AFΘ(z), yδ). (A1)

The number of iterations have a great influence on the reconstruction quality: While
too few can result in an overall bad image, too many can cause overfitting to the noise of
the measurement. The general regularization strategy for this problem is a combination
of early stopping and the architecture itself [87], where the prior is related to the implicit
structural bias of the network. Especially convolutional networks, in combination with
gradient descent, fit natural images faster than noise and learn to construct them from low
to high frequencies [86,88,89].

The loss function (A1) can also be combined with classical regularization.
Baguer et al. [34] add a weighted anisotropic total variation (TV) term and apply their
approach to low-dose CT measurements. The method DIP + TV is also used for this
comparison. The network architecture is based on the same U-Net as for the FBP U-Net
post-processing (cf. Appendix A.2). It has 6 different scales with 128 channels each and
a skip-channel setup of (0, 0, 0, 0, 4, 4). The data discrepancy DY was measured with a
Poisson loss (see Equation (9)) and the weight for TV was chosen as α = 7.0. Gradient
descent was performed for K = 17, 000 iterations with a stepsize of 5 × 10−4.

Algorithm A4 Deep Image Prior + Total Variation (DIP + TV).

Given a noisy measurement yδ, a neural network FΘ with initial parameterization Θ[0], forward
operator A and a fixed random input z. The reconstruction x̂ is calculated iteratively over a number
of K ∈ N iterations:
1. for k = 1 : K

2. Evaluate loss: L = D
(
AFΘ[k−1] (z), yδ

)
+ α TV

(
FΘ[k−1] (z)

)
3. Calculate gradients: ∇Θ[k−1] = ∇ΘL

4. Update parameters: Θ[k] = Optimizer
(

Θ[k−1],∇Θ[k−1]

)
5. Current reconstruction: x̂[k] = FΘ[k] (z)

6. end
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Appendix A.8. iCTU-Net

The iCTU-Net is based on the iCT-Net by Li et al. [29], which in turn is inspired by the
common filtered back-projection. The reconstruction process is learned end-to-end, that is,
the sinogram is the input of the network and the output is the reconstructed image. The
full network architecture is shown in Figure A6.

First, disturbances in the raw measurement data, such as excessive noise, are sup-
pressed as much as possible via 3× 3 convolutions (refining layers). The corrected sinogram
is then filtered using 10 × 1 convolutions (filtering layers). The filtered sinogram maintains
the size of the input sinogram. Afterwards, the sinogram is back-projected into the image
space. This is realized by a d × 1 convolution with N2 output channels without padding,
where d is the number of detectors in the sinogram and N is the output image size. This
convolution corresponds to a fully connected layer for each viewing angle, as it connects
every detector element with every pixel in the image space. The results for each view are
reshaped to N × N sized images and rotated according to the acquisition angle. A 1 × 1
convolution combines all views into the back projected image. Finally, a U-Net further
refines the image output.

To significantly lower the GPU memory requirements, an initial convolutional layer
with stride 1 × 2 was added, to downsample the LoDoPaB sinograms from 1000 to 500 pro-
jection angles. For the apple reconstruction the number of detector elements d and the
output image size N were halved. After reconstruction the image size was doubled again
using linear interpolation. Training was performed using the Adam optimizer with a
learning rate of 0.001 and batch size 1. For LoDoPaB-CT the mean squared error loss and
for Apple CT the SSIM loss function was used. The network was trained for 2 epochs on
LoDoPaB-CT and for at most 60 epochs on the Apple CT datasets, without validation based
model selection (i.e., no automated early stopping).

Figure A6. Architecture of the iCTU-Net.

Appendix B. Classical Reconstruction Methods

Appendix B.1. Filtered Back-Projection (FBP)

The Radon transform [10] maps (or projects) a function x(u), u = (u1, u2), defined
on a two-dimensional plane to a function Ax(s, ϕ) defined on a two-dimensional space of
lines, which are parameterized by distance to the origin, s and the angle ϕ of the normal.
The Radon transform is given by

Ax(s, ϕ) :=
∫
R

x
(

s
[

cos(ϕ)
sin(ϕ)

]
+ t

[− sin(ϕ)
cos(ϕ)

])
dt,

A simple inversion idea consists in back-projecting the intensities Ax(s, ϕ) to those
positions u in the image x(u) that lie on the corresponding lines parameterized by s and ϕ,
that is, those positions that contribute to the respective measured intensity. Mathematically,
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the back-projection is described by the adjoint Radon transform A∗, also provided in [10].
To obtain an inversion formula, the projections Ax need to be filtered before the back-
projection (see e.g., [36] for a derivation and an alternative formula applying a filter after
obtaining the back-projection A∗Ax). A generic FBP reconstruction formula reads

x̂ =
1
2
A∗F−1| · |WF yδ,

where F denotes the one-dimensional Fourier transform along the detector pixel dimension
s, | · | denotes the Ram-Lak filter, which multiplies each frequency component with the
absolute value of the frequency, and W is a low-pass filter (applying a window function).
While from perfect projections Ax(s, ϕ) exact recovery of x(u) is possible by choosing a
rectangular window function for W, in practice W is also used to reduce high frequency
components. This stabilizes the inversion by reducing the impact of noise present in
higher frequencies. Typical choices for W are the Hann or the Cosine window. Sometimes
the resulting weighting function is additionally shrunk along the frequency axis with a
frequency scaling factor, which leads to removal of all frequency components above a
threshold frequency.

For all experiments the implementation of ODL [90] was used in conjunction with
the ASTRA toolbox [91]. Suitable hyperparameters have been determined based on the
performance on validation samples and are listed in Table A1. The FBPs used for post-
processing networks were computed with the Hann window and without frequency
scaling. The Hann window thereby serves as a pre-processing step for the network and the
frequency scaling was omitted in order to keep all information available.

Table A1. Hyperparameters for filtered back-projection (FBP).

Window Frequency Scaling

LoDoPaB-CT Dataset Hann 0.641

Apple CT Dataset A
(Noise-free)

50 angles Cosine 0.11
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset B
(Gaussian noise)

50 angles Cosine 0.08
10 angles Cosine 0.013
5 angles Hann 0.011
2 angles Hann 0.011

Apple CT Dataset C
(Scattering)

50 angles Cosine 0.09
10 angles Hann 0.018
5 angles Hann 0.011
2 angles Hann 0.009

Appendix B.2. Conjugate Gradient Least Squares

The Conjugate Gradient Least Squares (CGLS) method is the modification of the
well-known Conjugate Gradient [52] where the CG method is applied to solve the least
squares problem AT Ax̂ = ATyδ. Here, A ∈ Rm×n is the geometry matrix, yδ ∈ Rm×1 is the
measured data and x̂ ∈ Rn×1 is the reconstruction. CGLS is a popular method in signal
and image processing for its simple and computationally inexpensive implementation and
fast convergence. The method is given in Algorithm A5, codes from [92].

Our implementation also includes a non-negativity step (negative pixel values equal
to zero), applied to the final iterated solution. There is no parameter-tuning done for
this implementation since the only user-defined parameter is the maximum number of
iterations, K.
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Algorithm A5 Conjugate Gradient Least Squares (CGLS).

Given a geometry matrix, A, a data vector yδ and a zero solution vector x̂[0] = 0 (a black image) as
the starting point, the algorithm below gives the solution at kth iteration.

1. Initialise the direction vector as d[0] = ATyδ.

2. for k = 1 : K

3. q[k−1] = Ad[k−1], α = ‖d[k−1]‖2
2/‖q[k−1]‖2

2

4. Update: x̂[k] = x̂[k−1] + αd[k−1], b[k] = b[k−1] − αq[k−1]

5. Reinitialise: q[k] = ATq[k−1], β = ‖q[k]‖2
2/‖d[k−1]‖2

2, d[k] = q[k] + βd[k−1]

6. end

Appendix B.3. Total Variation Regularization

Regularizing the reconstruction process with anisotropic total variation (TV) is a com-
mon approach for CT [93]. In addition to the data discrepancy D, a weighted regularization
term is added to the minimization problem

TTV(yδ) ∈ arg min
x

D(Ax, yδ) + α(‖∇hx‖1 + ‖∇vx‖1), (A2)

where ∇h and ∇v denote gradients in horizontal and vertical image direction, respectively,
and can be approximated by finite differences in the discrete setting. TV penalizes variations
in the image, e.g., from noise. Therefore, it is often applied in a denoising role. A number of
optimization algorithms exist for minimizing (A2) [54]. The choice and exact formulation
depend on the properties of the data discrepancy term.

For our comparison, we use the standard DIVα� implementation of TV. Adam gradient
descent minimizes (A2), whereby the gradients are calculated by automatic differentiation
in PyTorch [94] (cf. Algorithm A6).

Algorithm A6 Total Variation Regularization (TV).

Given a noisy measurement yδ, an initial reconstruction x̂[0], a weight α > 0 and a maximum
number of iterations K.
1. for k = 1 : K

2. Evaluate loss: L = D
(
Ax̂[k−1], yδ

)
+ α

(∥∥∥∇hx̂[k−1]
∥∥∥

1
+

∥∥∥∇vx̂[k−1]
∥∥∥

1

)
3. Calculate gradients: ∇x̂[k−1] = ∇xL

4. Update: x̂[k] = Optimizer
(

x̂[k−1],∇x̂[k−1]

)
5. end

For the data discrepancy D, a Poisson loss (see (9)) was used for LoDoPaB-CT, while
the MSE was used for the Apple CT datasets. Suitable hyperparameters have been deter-
mined based on the performance on validation samples and are listed in Table A2. For
lower numbers of angles, a very high number of iterations was found to be beneficial,
leading to very slow reconstruction (≈17 min per image for K = 150,000 iterations, which
we chose to be the maximum). In all cases an FBP with Hann window and frequency
scaling factor 0.1 was used as initial reconstruction.
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Table A2. Hyperparameters for total variation regularization (TV).

Discrepancy Iterations Step Size α

LoDoPaB-CT Dataset −�Pois 5000 0.001 20.56

Apple CT Dataset A
(Noise-free)

50 angles MSE 600 3 × 10−2 2 × 10−12

10 angles MSE 75,000 3 × 10−3 6 × 10−12

5 angles MSE 146,000 1.5 × 10−3 1 × 10−11

2 angles MSE 150,000 1 × 10−3 2 × 10−11

Apple CT Dataset B
(Gaussian noise)

50 angles MSE 900 3 × 10−4 2 × 10−10

10 angles MSE 66,000 2 × 10−5 6 × 10−10

5 angles MSE 100,000 1 × 10−5 3 × 10−9

2 angles MSE 149,000 1 × 10−5 4 × 10−9

Apple CT Dataset C
(Scattering)

50 angles MSE 400 5 × 10−3 1 × 10−11

10 angles MSE 13,000 2 × 10−3 4 × 10−11

5 angles MSE 149,000 1 × 10−3 4 × 10−11

2 angles MSE 150,000 4 × 10−4 6 × 10−11

Appendix C. Further Results

Table A3. Standard deviation of PSNR and SSIM (adapted to the data range of each ground truth image) for the different
noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.51 1.63 1.97 2.58 0.022 0.016 0.014 0.022
ISTA U-Net 1.40 1.77 2.12 2.13 0.018 0.018 0.022 0.037
U-Net 1.56 1.61 2.28 1.63 0.021 0.019 0.025 0.031
MS-D-CNN 1.51 1.65 1.81 2.09 0.021 0.020 0.024 0.022
CINN 1.40 1.64 1.99 2.17 0.016 0.019 0.023 0.027
iCTU-Net 1.68 2.45 1.92 1.93 0.024 0.027 0.030 0.028
TV 1.60 1.29 1.21 1.49 0.022 0.041 0.029 0.023
CGLS 0.69 0.48 2.94 0.70 0.014 0.027 0.029 0.039
FBP 0.80 0.58 0.54 0.50 0.021 0.023 0.028 0.067

Gaussian Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.56 1.63 2.00 2.79 0.021 0.018 0.021 0.022
ISTA U-Net 1.70 1.76 2.27 2.12 0.025 0.021 0.022 0.038
U-Net 1.66 1.59 1.99 2.22 0.023 0.020 0.025 0.026
MS-D-CNN 1.66 1.75 1.79 1.79 0.025 0.024 0.019 0.022
CINN 1.53 1.51 1.62 2.06 0.023 0.017 0.017 0.020
iCTU-Net 1.98 2.06 1.89 1.91 0.031 0.032 0.039 0.027
TV 1.38 1.26 1.09 1.62 0.036 0.047 0.039 0.030
CGLS 0.78 0.49 1.76 0.68 0.014 0.026 0.029 0.037
FBP 0.91 0.58 0.54 0.50 0.028 0.023 0.028 0.067

39



J. Imaging 2021, 7, 44

Table A3. Cont.

Scattering Noise Standard Deviation of PSNR Standard Deviation of SSIM

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.91 1.80 1.71 2.47 0.017 0.016 0.016 0.060
ISTA U-Net 1.48 1.59 2.05 1.81 0.023 0.019 0.019 0.038
U-Net 1.76 1.56 1.81 1.47 0.015 0.021 0.027 0.024
MS-D-CNN 2.04 1.78 1.85 2.03 0.023 0.022 0.015 0.020
CINN 1.82 1.92 2.32 2.25 0.019 0.024 0.029 0.030
iCTU-Net 1.91 2.09 1.78 2.29 0.030 0.031 0.033 0.040
TV 2.53 2.44 1.86 1.59 0.067 0.076 0.035 0.062
CGLS 2.38 1.32 1.71 0.95 0.020 0.020 0.026 0.032
FBP 2.23 0.97 0.80 0.68 0.044 0.025 0.023 0.058

Table A4. PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the different noise settings
on the 100 selected Apple CT test images. Best results are highlighted in gray.

Noise-Free PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 45.33 42.47 37.41 28.61 0.971 0.957 0.935 0.872
ISTA U-Net 45.48 41.15 34.93 27.10 0.967 0.944 0.907 0.823
U-Net 46.24 40.13 34.38 26.39 0.975 0.917 0.911 0.830
MS-D-CNN 46.47 41.00 35.06 27.17 0.975 0.936 0.898 0.808
CINN 46.20 41.46 34.43 26.07 0.975 0.958 0.896 0.838
iCTU-Net 42.69 36.57 32.24 25.90 0.957 0.938 0.920 0.861
TV 45.89 35.61 28.66 22.57 0.976 0.904 0.746 0.786
CGLS 39.66 28.43 19.22 21.87 0.901 0.744 0.654 0.733
FBP 37.01 23.71 22.12 20.58 0.856 0.711 0.596 0.538

Gaussian Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 43.24 40.38 36.54 28.03 0.961 0.944 0.927 0.823
ISTA U-Net 42.65 40.17 35.09 27.32 0.956 0.942 0.916 0.826
U-Net 43.09 39.45 34.42 26.47 0.961 0.924 0.904 0.843
MS-D-CNN 43.28 39.82 34.60 26.50 0.962 0.932 0.886 0.797
CINN 43.39 38.50 33.19 26.60 0.966 0.904 0.878 0.816
iCTU-Net 39.51 36.38 31.29 26.06 0.939 0.932 0.905 0.867
TV 38.98 33.73 28.45 22.70 0.939 0.883 0.770 0.772
CGLS 33.98 27.71 21.52 21.73 0.884 0.748 0.668 0.734
FBP 34.50 23.70 22.12 20.58 0.839 0.711 0.596 0.538

Scattering Noise PSNR-FR SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2
Learned Primal-Dual 44.42 40.80 33.69 27.60 0.967 0.954 0.912 0.760
ISTA U-Net 42.55 38.95 34.03 26.57 0.959 0.922 0.887 0.816
U-Net 41.58 39.52 33.55 25.56 0.932 0.910 0.877 0.828
MS-D-CNN 44.66 40.13 34.34 26.81 0.969 0.927 0.889 0.796
CINN 45.18 40.69 34.66 25.76 0.976 0.952 0.936 0.878
iCTU-Net 32.88 29.46 27.86 24.93 0.931 0.901 0.896 0.873
TV 27.71 26.76 24.48 21.15 0.903 0.799 0.674 0.743
CGLS 27.46 24.89 20.64 20.80 0.896 0.738 0.659 0.736
FBP 27.63 22.42 20.88 19.68 0.878 0.701 0.589 0.529
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Table A5. Standard deviation of PSNR-FR and SSIM-FR (computed with fixed data range 0.0129353 for all images) for the
different noise settings on the 100 selected Apple CT test images.

Noise-Free Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.49 1.67 2.03 2.54 0.007 0.006 0.010 0.019
ISTA U-Net 1.37 1.82 2.21 2.21 0.005 0.010 0.020 0.034
U-Net 1.53 1.66 2.33 1.68 0.006 0.012 0.019 0.026
MS-D-CNN 1.46 1.71 1.90 2.15 0.006 0.011 0.021 0.015
CINN 1.35 1.65 2.09 2.21 0.004 0.007 0.023 0.025
iCTU-Net 1.82 2.54 2.03 1.91 0.014 0.017 0.020 0.023
TV 1.54 1.32 1.28 1.36 0.006 0.023 0.026 0.018
CGLS 0.71 0.51 2.96 0.56 0.009 0.029 0.033 0.045
FBP 0.77 0.46 0.38 0.41 0.011 0.015 0.029 0.088

Gaussian Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.52 1.68 2.04 2.83 0.006 0.008 0.013 0.016
ISTA U-Net 1.65 1.78 2.36 2.17 0.008 0.010 0.018 0.034
U-Net 1.61 1.62 2.05 2.24 0.007 0.012 0.019 0.024
MS-D-CNN 1.62 1.80 1.84 1.84 0.008 0.011 0.015 0.014
CINN 1.50 1.59 1.65 2.09 0.007 0.016 0.017 0.019
iCTU-Net 2.07 2.12 1.93 1.90 0.020 0.021 0.026 0.024
TV 1.30 1.26 1.15 1.50 0.014 0.027 0.030 0.019
CGLS 0.63 0.45 1.76 0.53 0.012 0.028 0.034 0.043
FBP 0.83 0.46 0.38 0.41 0.014 0.015 0.029 0.088

Scattering Noise Standard Deviation of PSNR-FR Standard Deviation of SSIM-FR

Number of Angles 50 10 5 2 50 10 5 2

Learned Primal-Dual 1.92 1.85 1.81 2.51 0.005 0.007 0.014 0.038
ISTA U-Net 1.56 1.68 2.17 1.89 0.010 0.014 0.014 0.035
U-Net 1.72 1.63 1.91 1.59 0.010 0.012 0.024 0.024
MS-D-CNN 2.02 1.84 1.96 2.08 0.008 0.012 0.016 0.019
CINN 1.74 1.97 2.41 2.21 0.005 0.011 0.016 0.022
iCTU-Net 1.96 2.14 1.79 2.32 0.016 0.023 0.022 0.030
TV 2.43 2.35 1.80 1.49 0.048 0.074 0.040 0.051
CGLS 2.28 1.24 1.67 0.83 0.016 0.021 0.030 0.035
FBP 2.14 0.87 0.66 0.55 0.028 0.016 0.020 0.078
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Figure A7. PSNR and SSIM depending on the number of angles on the Apple CT datasets.

Figure A8. PSNR and SSIM compared for all noise settings and numbers of angles.
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Table A6. Mean and standard deviation of the mean squared difference between the noisy measurements and the forward-
projected reconstructions, respectively the noise-free measurements, on the 100 selected Apple CT test images.

Noise Free MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 0.083 ± 0.027 0.405 ± 0.156 1.559 ± 0.543 2.044 ± 1.177
ISTA U-Net 0.323 ± 0.240 0.633 ± 0.339 2.672 ± 1.636 17.840 ± 12.125
U-Net 0.097 ± 0.093 1.518 ± 0.707 5.011 ± 3.218 31.885 ± 17.219
MS-D-CNN 0.117 ± 0.088 0.996 ± 0.595 3.874 ± 2.567 20.879 ± 12.038
CINN 0.237 ± 0.259 1.759 ± 0.348 3.798 ± 2.176 33.676 ± 16.747
iCTU-Net 2.599 ± 3.505 6.686 ± 8.469 14.508 ± 16.694 18.876 ± 12.553
TV 0.002 ± 0.000 0.001 ± 0.000 0.000 ± 0.000 0.001 ± 0.000
CGLS 1.449 ± 0.299 29.921 ± 6.173 752.997 ± 722.151 22.507 ± 13.748
FBP 12.229 ± 3.723 89.958 ± 9.295 159.746 ± 15.596 273.054 ± 114.552
Ground truth 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000

Gaussian Noise MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 19.488 ± 5.923 19.813 ± 5.851 20.582 ± 5.690 32.518 ± 4.286
ISTA U-Net 19.438 ± 5.943 20.178 ± 6.060 21.167 ± 6.052 32.435 ± 9.782
U-Net 19.802 ± 6.247 22.114 ± 6.364 23.645 ± 6.527 38.895 ± 17.211
MS-D-CNN 19.348 ± 5.921 20.056 ± 5.930 23.080 ± 5.959 47.625 ± 18.133
CINN 19.429 ± 5.891 21.069 ± 5.663 29.517 ± 7.296 42.876 ± 15.471
iCTU-Net 25.645 ± 9.602 25.421 ± 9.976 38.179 ± 22.887 41.956 ± 15.942
TV 18.760 ± 5.674 18.107 ± 5.395 20.837 ± 5.510 18.514 ± 5.688
CGLS 87.892 ± 23.312 71.526 ± 17.600 262.616 ± 151.655 98.520 ± 18.245
FBP 31.803 ± 9.558 109.430 ± 14.107 179.260 ± 19.744 292.692 ± 109.223
Ground truth 19.538 ± 6.029 19.505 ± 6.019 19.551 ± 6.028 19.483 ± 6.086

Scattering Noise MSE ×109

Number of Angles 50 10 5 2

Learned Primal-Dual 541.30 ± 311.82 579.14 ± 317.59 549.30 ± 328.41 435.07 ± 260.02
ISTA U-Net 553.64 ± 355.14 557.03 ± 342.67 575.94 ± 338.82 522.33 ± 365.58
U-Net 629.62 ± 353.54 635.91 ± 343.31 550.54 ± 340.27 642.20 ± 295.46
MS-D-CNN 579.86 ± 332.39 585.18 ± 331.93 533.35 ± 331.21 606.55 ± 365.25
CINN 638.80 ± 355.24 619.47 ± 353.47 603.53 ± 362.96 649.30 ± 409.83
iCTU-Net 622.51 ± 348.32 622.63 ± 335.28 652.18 ± 359.00 573.46 ± 324.00
TV 3.35 ± 5.02 3.19 ± 4.83 2.96 ± 4.47 2.55 ± 6.33
CGLS 6.40 ± 6.39 34.71 ± 8.16 286.20 ± 205.42 19.92 ± 14.01
FBP 12.48 ± 6.88 73.53 ± 10.19 144.70 ± 15.82 221.79 ± 59.71
Ground truth 610.47 ± 355.25 610.40 ± 355.16 611.23 ± 354.51 620.11 ± 386.79

Figure A9. Example of an artifact produced by DIP + TV, which has only minor impact on the evaluated metrics (especially
the SSIM). The area containing the artifact is marked with a red circle.
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Appendix D. Training Curves

Figure A10. Training curves of Learned Primal-Dual on the Apple CT dataset. Dashed lines: average
validation loss computed after every full training epoch; solid lines: running average of training loss
since start of epoch. Duration of 20 epochs on full dataset: ≈10–17 days, varying with the number
of angles.
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Figure A11. Training curves of ISTA U-Net on the Apple CT dataset. Dashed lines: average validation
PSNR in decibel computed after every full training epoch; marks: selected model. Duration of
20 epochs on full dataset: ≈10 days for hidden layer width 32+ and 5 scales, respectively ≈5.5 days
for hidden layer width 16+ and 6 scales.
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Figure A12. Training curves of U-Net on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss since start of
epoch. Duration of 20 epochs on full dataset: ≈1.5 days.
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Figure A13. Training curves of MS-D-CNN on the Apple CT dataset. Dashed lines: average validation
loss computed after every full training epoch; solid lines: running average of training loss since start
of epoch. Duration of 20 epochs on full dataset: ≈20 days.
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Figure A14. Training curves of CINN on the Apple CT dataset. Dashed lines: average validation loss
computed after every full training epoch; solid lines: running average of training loss (at every 50-th
step) since start of epoch. For some of the trainings, the epochs were divided into multiple shorter
ones. Duration of 20 epochs on full dataset: ≈2.5 days (using 2 GPUs).
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Figure A15. Training curves of iCTU-Net on the Apple CT dataset. Opaque lines: loss for a validation
sample (after every 500-th step); semi-transparent lines: training loss (at every 500-th step). Duration
of 20 epochs on full dataset: ≈3 days.

References

1. Liguori, C.; Frauenfelder, G.; Massaroni, C.; Saccomandi, P.; Giurazza, F.; Pitocco, F.; Marano, R.; Schena, E. Emerging clinical
applications of computed tomography. Med. Devices 2015, 8, 265.

2. National Lung Screening Trial Research Team. Reduced lung-cancer mortality with low-dose computed tomographic screening.
N. Engl. J. Med. 2011, 365, 395–409. [CrossRef]

3. Yoo, S.; Yin, F.F. Dosimetric feasibility of cone-beam CT-based treatment planning compared to CT-based treatment planning. Int.
J. Radiat. Oncol. Biol. Phys. 2006, 66, 1553–1561. [CrossRef]

4. Swennen, G.R.; Mollemans, W.; Schutyser, F. Three-dimensional treatment planning of orthognathic surgery in the era of virtual
imaging. J. Oral Maxillofac. Surg. 2009, 67, 2080–2092. [CrossRef]

49



J. Imaging 2021, 7, 44

5. De Chiffre, L.; Carmignato, S.; Kruth, J.P.; Schmitt, R.; Weckenmann, A. Industrial applications of computed tomography. CIRP
Ann. 2014, 63, 655–677. [CrossRef]

6. Mees, F.; Swennen, R.; Van Geet, M.; Jacobs, P. Applications of X-ray Computed Tomography in the Geosciences; Special Publications;
Geological Society: London, UK, 2003; Volume 215, pp. 1–6.

7. Morigi, M.; Casali, F.; Bettuzzi, M.; Brancaccio, R.; d’Errico, V. Application of X-ray computed tomography to cultural heritage
diagnostics. Appl. Phys. A 2010, 100, 653–661. [CrossRef]

8. Coban, S.B.; Lucka, F.; Palenstijn, W.J.; Van Loo, D.; Batenburg, K.J. Explorative Imaging and Its Implementation at the FleX-ray
Laboratory. J. Imaging 2020, 6, 18. [CrossRef]

9. McCollough, C.H.; Bartley, A.C.; Carter, R.E.; Chen, B.; Drees, T.A.; Edwards, P.; Holmes, D.R., III; Huang, A.E.; Khan, F.; Leng,
S.; et al. Low-dose CT for the detection and classification of metastatic liver lesions: Results of the 2016 Low Dose CT Grand
Challenge. Med Phys. 2017, 44, e339–e352. [CrossRef] [PubMed]

10. Radon, J. On the determination of functions from their integral values along certain manifolds. IEEE Trans. Med Imaging 1986,
5, 170–176. [CrossRef]

11. Natterer, F. The mathematics of computerized tomography (classics in applied mathematics, vol. 32). Inverse Probl. 2001,
18, 283–284.

12. Boas, F.E.; Fleischmann, D. CT artifacts: Causes and reduction techniques. Imaging Med. 2012, 4, 229–240. [CrossRef]
13. Wang, G.; Ye, J.C.; Mueller, K.; Fessler, J.A. Image Reconstruction is a New Frontier of Machine Learning. IEEE Trans. Med.

Imaging 2018, 37, 1289–1296. [CrossRef] [PubMed]
14. Sidky, E.Y.; Pan, X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimiza-

tion. Phys. Med. Biol. 2008, 53, 4777. [CrossRef]
15. Niu, S.; Gao, Y.; Bian, Z.; Huang, J.; Chen, W.; Yu, G.; Liang, Z.; Ma, J. Sparse-view X-ray CT reconstruction via total generalized

variation regularization. Phys. Med. Biol. 2014, 59, 2997. [CrossRef] [PubMed]
16. Hestenes, M.R.; Stiefel, E. Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand. 1952, 49, 409–436.

[CrossRef]
17. Arridge, S.; Maass, P.; Öktem, O.; Schönlieb, C.B. Solving inverse problems using data-driven models. Acta Numer. 2019, 28, 1–174.

[CrossRef]
18. Lunz, S.; Öktem, O.; Schönlieb, C.B. Adversarial Regularizers in Inverse Problems. In Advances in Neural Information Processing

Systems; Bengio, S., Wallach, H., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R., Eds.; Curran Associates, Inc.: Red
Hook, NY, USA, 2018; Volume 31, pp. 8507–8516.

19. Adler, J.; Öktem, O. Learned Primal-Dual Reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332.
TMI.2018.2799231. [CrossRef]

20. Jin, K.H.; McCann, M.T.; Froustey, E.; Unser, M. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE
Trans. Image Process. 2017, 26, 4509–4522. [CrossRef]

21. Pelt, D.M.; Batenburg, K.J.; Sethian, J.A. Improving Tomographic Reconstruction from Limited Data Using Mixed-Scale Dense
Convolutional Neural Networks. J. Imaging 2018, 4, 128. [CrossRef]

22. Chen, H.; Zhang, Y.; Zhang, W.; Liao, P.; Li, K.; Zhou, J.; Wang, G. Low-dose CT via convolutional neural network. Biomed. Opt.
Express 2017, 8, 679–694. [CrossRef]

23. Chen, H.; Zhang, Y.; Kalra, M.K.; Lin, F.; Chen, Y.; Liao, P.; Zhou, J.; Wang, G. Low-dose CT with a residual encoder-decoder
convolutional neural network. IEEE Trans. Med. Imaging 2017, 36, 2524–2535. [CrossRef]

24. Yang, Q.; Yan, P.; Kalra, M.K.; Wang, G. CT image denoising with perceptive deep neural networks. arXiv 2017, arXiv:1702.07019.
25. Yang, Q.; Yan, P.; Zhang, Y.; Yu, H.; Shi, Y.; Mou, X.; Kalra, M.K.; Zhang, Y.; Sun, L.; Wang, G. Low-dose CT image denoising using

a generative adversarial network with Wasserstein distance and perceptual loss. IEEE Trans. Med. Imaging 2018, 37, 1348–1357.
[CrossRef]

26. Feng, R.; Rundle, D.; Wang, G. Neural-networks-based Photon-Counting Data Correction: Pulse Pileup Effect. arXiv 2018,
arXiv:1804.10980.

27. Zhu, B.; Liu, J.Z.; Cauley, S.F.; Rosen, B.R.; Rosen, M.S. Image reconstruction by domain-transform manifold learning. Nature
2018, 555, 487–492. [CrossRef]

28. He, J.; Ma, J. Radon inversion via deep learning. IEEE Trans. Med. Imaging 2020, 39, 2076–2087. [CrossRef] [PubMed]
29. Li, Y.; Li, K.; Zhang, C.; Montoya, J.; Chen, G.H. Learning to reconstruct computed tomography images directly from sinogram

data under a variety of data acquisition conditions. IEEE Trans. Med Imaging 2019, 38, 2469–2481. [CrossRef]
30. European Society of Radiology (ESR). The new EU General Data Protection Regulation: What the radiologist should know.

Insights Imaging 2017, 8, 295–299. [CrossRef] [PubMed]
31. Kaissis, G.A.; Makowski, M.R.; Rückert, D.; Braren, R.F. Secure, privacy-preserving and federated machine learning in medical

imaging. Nat. Mach. Intell. 2020, 2, 305–311. [CrossRef]
32. Leuschner, J.; Schmidt, M.; Baguer, D.O.; Maass, P. The LoDoPaB-CT Dataset: A Benchmark Dataset for Low-Dose CT

Reconstruction Methods. arXiv 2020, arXiv:1910.01113.
33. Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.; Henschke, C.I.;

Hoffman, E.A.; et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed
Reference Database of Lung Nodules on CT Scans. Med. Phys. 2011, 38, 915–931. [CrossRef]

50



J. Imaging 2021, 7, 44

34. Baguer, D.O.; Leuschner, J.; Schmidt, M. Computed tomography reconstruction using deep image prior and learned reconstruction
methods. Inverse Probl. 2020, 36, 094004. [CrossRef]

35. Armato, S.G., III; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Zhao, B.; Aberle, D.R.;
Henschke, C.I.; Hoffman, E.A.; et al. Data From LIDC-IDRI; The Cancer Imaging Archive: Frederick, MD, USA,
2015.10.7937/K9/TCIA.2015.LO9QL9SX. [CrossRef]

36. Buzug, T. Computed Tomography: From Photon Statistics to Modern Cone-Beam CT; Springer: Berlin/Heidelberg, Germany, 2008.
[CrossRef]

37. Coban, S.B.; Andriiashen, V.; Ganguly, P.S. Apple CT Data: Simulated Parallel-Beam Tomographic Datasets; Zenodo: Geneva,
Switzerland, 2020. [CrossRef]

38. Coban, S.B.; Andriiashen, V.; Ganguly, P.S.; van Eijnatten, M.; Batenburg, K.J. Parallel-beam X-ray CT datasets of apples with
internal defects and label balancing for machine learning. arXiv 2020, arXiv:2012.13346.

39. Leuschner, J.; Schmidt, M.; Ganguly, P.S.; Andriiashen, V.; Coban, S.B.; Denker, A.; van Eijnatten, M. Source Code and
Supplementary Material for “Quantitative comparison of deep learning-based image reconstruction methods for low-dose and
sparse-angle CT applications”. Zenodo 2021. [CrossRef]

40. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Heidelberg, Germany, 2015; pp. 234–241.

41. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. Unet++: A nested u-net architecture for medical image segmentation. In
Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Heidelberg, Germany, 2018;
pp. 3–11.
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Abstract: The prevailing approach for three-dimensional (3D) medical image segmentation is to use
convolutional networks. Recently, deep learning methods have achieved human-level performance
in several important applied problems, such as volumetry for lung-cancer diagnosis or delineation for
radiation therapy planning. However, state-of-the-art architectures, such as U-Net and DeepMedic,
are computationally heavy and require workstations accelerated with graphics processing units
for fast inference. However, scarce research has been conducted concerning enabling fast central
processing unit computations for such networks. Our paper fills this gap. We propose a new
segmentation method with a human-like technique to segment a 3D study. First, we analyze the
image at a small scale to identify areas of interest and then process only relevant feature-map patches.
Our method not only reduces the inference time from 10 min to 15 s but also preserves state-of-the-art
segmentation quality, as we illustrate in the set of experiments with two large datasets.

Keywords: deep learning; medical image segmentation; computed tomography (CT); magnetic
resonance imaging (MRI)

1. Introduction

Segmentation plays a vital role in many medical image analysis applications [1]. For
example, the volume of lung nodules must be measured to diagnose lung cancer [2], or
brain lesions must be accurately delineated before stereotactic radiosurgery [3] on Magnetic
Resonance Imaging (MRI) or Positron Emission Tomography [4]. The academic community
has extensively explored automatic segmentation methods and has achieved massive
progress in algorithmic development [5]. The widely accepted current state-of-the-art
methods are based on convolutional neural networks (CNNs), as shown by the results of
major competitions, such as Lung Nodule Analysis 2016 (LUNA16) [6] and Multimodal
Brain Tumor Segmentation (BraTS) [7]. Although a gap exists between computer science
research and medical requirements [8], several promising clinical-ready results have been
achieved (e.g., [9]). We assume that the number of validated applications and subsequent
clinical installations will soon grow exponentially.
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The majority of the current segmentation methods, such as DeepMedic [10] and 3D U-
Net [11], rely on heavy 3D convolutional networks and require substantial computational
resources. Currently, radiological departments are not typically equipped with graphics
processing units (GPUs) [12]. Even when deep-learning-based tools are eligible for clinical
installation and are highly demanded by radiologists, the typically slow hardware renewal
cycle [13] is likely to limit the adoption of these new technologies. The critical issue is low
processing time on the central processing unit (CPU) because modern networks require
more than 10 min to segment large 3D images, such as a Computed Tomography (CT) chest
scan. Cloud services may potentially resolve the problem, but privacy-related concerns
hinder this solution in many countries. Moreover, the current workload of radiologists is
more than 16.1 images per minute and continues to increase [14]. Though slow background
processing is an acceptable solution for some situations, in many cases, nearly real-time
performance is crucial even for diagnostics [15].

Scarce research has been conducted on evaluating the current limitations and acceler-
ating 3D convolutional networks on a CPU (see the existing examples in Section 2). The
nonmedical computer vision community actively explores different methods to increase
the inference speed of the deep learning methods (e.g., mobile networks [16] that provide
substantial acceleration at the cost of a moderate decrease in quality). This paper fills this
gap and investigates the computational limitations of popular 3D convolutional networks
in medical image segmentation using two large MRI and CT databases.

Our main contribution is a new acceleration method that adaptively processes regions
of the input image. The concept is intuitive and similar to the way humans analyze 3D
studies. First, we roughly process the whole image to identify areas of interest, such as
lung nodules or brain metastases, and then locally segment each small part independently.
As a result, our method processes 3D medical images 50 times faster than DeepMedic and
3D U-Net with the same quality and requires 15 s or less on a CPU (see Figure 1). Our
idea is simple and can be jointly applied with other acceleration techniques for additional
acceleration and with other architecture improvements for quality increase. We have
released (https://github.com/neuro-ml/low-resolution, accessed on 29 December 2020)
our code for the proposed model and the experiments with the LUNA16 dataset to facilitate
future research.

Figure 1. Time-performance trade-off for different convolutional neural network models under
8 GB of RAM and eight central processing unit thread restrictions. We evaluate models on two
clinically relevant datasets with lung nodules (LUNA16) and brain metastases in terms of the average
object-wise recall (LUNA16 competition metric [17]). Our model spends less than 15 s per study on
processing time while preserving or even surpassing the performance of the state-of-the-art models.

2. Related Work

Many different CNN architectures have been introduced in the past to solve the se-
mantic segmentation of volumetric medical images. Popular models, such as 3D U-Net [11]
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or DeepMedic [10], provide convincing results on public medical datasets [7,18]. Here,
we aim to validate the effective and well-known models without diving into architecture
details. Following the suggestion of [19], we mainly focus on building a state-of-the-art
deep learning pipeline arguing that the architecture tweaks will have a minor contribution.
Moreover, we address that the majority of the architecture tweaks could be applied to
benefit our method as well (see Section 7). However, all of these methods are based on 3D
convolutional layers and have numerous parameters. Therefore, the inference time could
be severely affected by the absence of GPU-accelerated workstations.

2.1. Medical Imaging

Several researchers have recently studied ways to accelerate CNNs for 3D medical
imaging segmentation. The authors of [20] proposed a CPU-GPU data swapping approach
that allows for training a neural network on the full-size images instead of the patches.
Consequently, their approach reduces the number of iterations on training, hence it reduces
the total training time. However, the design of their method can hardly be used to reduce
the inference time. The design does not change the number of network’s parameters and
moreover introduces additional time costs on the CPU-GPU data swapping process in the
forward step alone. In [21], the authors developed the M-Net model for faster segmentation
of brain extraction from MRI scans. The M-Net model aggregates volumetric information
with a large initial 3D convolution and then processes data with a 2D CNN; hence, the
resulting network has fewer parameters than the 3D analogies. However, the inference
time on the CPU is 5 min for a 256 × 256 × 128 volume, which is comparable to that
of DeepMedic and 3D U-Net. The authors of [22] proposed a TernaryNet with sparse
and binary convolutions for medical image segmentation. It tremendously reduces the
inference time on the CPU from 80 s for the original 2D U-Net [23] to 7 s. The additional
use of proposed weight quantization can significantly reduce the segmentation quality.
In general, 2D networks perform worse than their 3D analogous in segmentation tasks
with volumetric images [11,24]. The simple and natural reason for it is the inability of 2D
networks to capture the objects’ given volumetric information. Hence, in our work, we
focus the attention on the 3D architectures.

Within our model, we use a natural two-stage method of regional localization and
detailed segmentation (see Section 3). The similar approaches were proposed by [25,26]. In
both papers, the first part of the method roughly localized the target anatomical region in
the study. Then, the second part provided the detailed segmentation. However, the authors
did not focus on the inference time and suggested using the methods to improve the
segmentation quality. In addition, these architectures use independent networks, whereas
we propose using weight-sharing between the first and second stages to achieve more
effective inference. A similar idea of increasing the segmentation quality using multiple
resolutions was studied by [27].

2.2. Nonmedical Imaging

The most common way to reduce the model size and thus increase inference speed is to
use mobile neural network architectures [16], which are designed to run on low-power devices.
For example, E-Net [28] replaces the standard convolutional blocks with asymmetric con-
volutions that could be especially effective in our 3D tasks. Additionally, MobileNetV2 [29]
uses inverted residual blocks with separable convolutions to reduce the computationally
expensive convolutions. Unfortunately, most mobile architectures suffer from a loss in
quality due to the achieved speed gain, which could be crucial for medical tasks.

3. Method

The current state-of-the-art segmentation models spend equal computational resources
on all parts of the input image. However, the fraction of the target on the images is often
very low (e.g., 10−2 or even 10−3) for lung-nodule segmentation (see the distribution of the
lesions diameters in the Figure 2). Moreover, these multiple small targets are distinct. With
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our architecture, LowRes (Figure 3), we aim to use the human-like approach to delineate
the image. First, we solve the simpler task of target localization, modeling a human expert’s
quick review of the whole image. Then, we apply detailed segmentation to the proposed
regions, incorporating features from the first step. A similar idea was proposed in [30]
where low resolution image was used to localize a large object prior to further segmentation
to reduce GPU memory consumption.

Figure 2. Diameter distribution of tumors in the chosen datasets. On both plots, the distribution is
presented separately for each subset for which we split the data. The median value is highlighted
with orange. In addition, medical studies [31,32] recommend choosing a 10 mm threshold for the
data that contain lung nodules and 5 mm threshold for multiple brain metastases, when classifying
the particular component of a target as small.

Figure 3. The proposed architecture is a two-stage fully convolutional neural network. It includes
low-resolution segmentation (blue), which predicts the 83 times downsampled mask, and detailed
segmentation (red), which iteratively and locally aggregates features from the first stage and predicts
the segmentation map in the original resolution. Speedup comes from two main factors: the lighter
network with early downsampling in the first stage and the heavier second part that typically
processes only 5% of the image.

We demonstrate the effectiveness of the method without delving into the architecture
details. Our architecture is the de-facto 3D implementation of U-Net [23]. We use residual
blocks (ResBlocks) [33], apply batch normalization, and ReLU activation [34] after every
convolution except the output convolution. The number of input and output channels is
shown for every convolution and ResBlock in the legend of Figure 3. We apply the sigmoid
function to the one-channel output logits to obtain the probabilities of the foreground class.
Note that our architecture could be trivially extended to solve the multiclass segmenta-
tion task by changing the number of output layers and replacing the sigmoid function
with softmax.
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3.1. Target Localization

The current approach to localizing targets is neural networks for object detection [35].
Nevertheless, classical object detection tasks often include multi-label classification and
overlapping bounding box detection and are sensitive to a set of hyperparameters: intersec-
tion over union threshold, anchor sizes, and so on. We consider it to be overly complicated
for our problem of semantic segmentation. Hence, we use the CNN segmentation model
to predict the 8 × 8 × 8 times downsampled probability map (x8O output in Figure 3).
Processing an image in the initial resolution is the main bottleneck of the standard segmen-
tation CNNs. We avoid this by downsampling an image before passing it to the model.
For our tasks, we downsample an input image only twice in every spatial dimension.
Applying downsampling with a factor of 4 gives us significantly worse results. We train
the low-resolution part of our model via standard backpropagation, minimizing the loss
function between the output probability map and the ground truth downsampled with
8 × 8 × 8 kernels of max pooling. It is detailed in Figure 3 in green.

Early downsampling and lighter modeling allow us to process a 3D image much faster.
Moreover, the model can solve a “simpler” task of object localization with higher object-
wise recall than the standard segmentation models. The U-Net-like architecture allows us
to efficiently aggregate features and pass them to the next stage of detailed segmentation.

3.2. Detailed Segmentation

The pretrained first part of our model predicts the downsampled probability map,
which we use to localize the regions of interest. We binarize the downsampled prediction
using the standard probability threshold of 0.5. We do not use any fine-tuning of the
threshold and also use this standard value to obtain a binary segmentation map for every
model. After binarization, we divide the segmentation map into the connected components.
Then, we create bounding boxes with a margin of 1 voxel (in low resolution) for every
component. We apply the margin to correct the possible drawbacks of the previous rough
segmentation step in detecting boundaries. The larger margins will sufficiently increase
the inference time, hence we use the minimum possible margin.

The detailed part of our model predicts every bounding box in the original resolution.
It processes, aggregates, and upsamples features from the first stage, similar to the original
U-Net, but with two major differences: (i) the model uses features corresponding only to
the selected bounding box and (ii) iteratively predicts every proposed component. The
process is detailed in Figure 3 in red. The outputs are finally inserted into the prediction
map with the original resolution, which is initially filled with zeros. Although the detailed
part is heavier than the low-resolution path, it preserves the fast inference speed because it
typically processes only 5% of the image.

We train the model through the standard backpropagation procedure, simply mini-
mizing the loss function between the full prediction map and the corresponding ground
truth. We use the pretrained first part of our model and freeze its weights while training
the second part. The same training set is used for both stages to ensure no leak in validation
or hold-out data, which could lead to overfitting.

4. Data

We report our results based on two large datasets: a private MRI dataset with multiple
brain metastases and a publicly available CT chest scan from LUNA16 [17]. The dataset
with multiple brain metastases consists of 1952 unique T1-weighted MRI of the head with a
0.94× 0.94× 1 mm image resolution and 211× 198× 164 typical shape. We do not perform
any brain-specific preprocessing, such as template registration or skull stripping.

LUNA16 includes 888 3D chest scans from the LIDC/IDRI database [18] with the
typical shape 432 × 306 × 214 and the largest at 512 × 512 × 652. To preprocess the image,
we apply the provided lung masks (excluding the aorta component). In addition, we
exclude all cases with nodules located outside of the lung mask (72 cases). Then, we
clip the intensities to between −1000 and 300 Hounsfield units. We average four given
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annotations [18] to generate the mean mask for the subsequent training. Finally, we scale
the images from both datasets to reach values between 0 and 1.

We use the train-validation setup to select hyperparameters and then merge these
subsets to retrain the final model. The results are reported on a previously unseen hold-out
set. Furthermore, LUNA16 is presented as 10 approximately equal subsets [17] so we
use the first six for training (534 images), the next two for validation (178 images), and the
last two as hold-out (174 images). Multiple metastases datasets are randomly divided into
training (1250 images), validation (402 images), and hold-out (300 images). The diameters
distribution of the tumors on these three sets for both datasets is given in Figure 2.

5. Experiments and Results

5.1. Training

We minimize Dice Loss [36] because it provides consistently better results on the
validation data for all models. The only exception is the first stage of LowRes—we use
weighted cross-entropy [23] to train it. We train all models for 100 epochs consisting of 100
iterations of stochastic gradient descent with Nesterov momentum (0.9). The training starts
with a learning rate of 10−2, and it is reduced to 10−3 at epoch 80. During the preliminary
experiments, we ensure that both training loss and validation score reach a plateau for
all models. Therefore, we assume this training policy to be enough for the representative
performance and the further fine-tuning will result only in the minor score changes.

We also use validation scores of the preliminary experiments to determine the best
combination of patch size and batch size for every model. The latter represents a memory
trade-off between a larger batch size for the better generalization and a sufficient patch
size to capture enough contextual information. We set the patch size of 64 × 64 × 64 for
all models except the DeepMedic. DeepMedic has a patch size of 39 × 39 × 39. The batch
size is 12 for the 3D U-Net, 16 for DeepMedic, and 32 for the LowRes and mobile networks.
Sampled patch contains a ground truth object with the probability of 0.5, otherwise it
is sampled randomly. This sampling strategy is suggested to efficiently alleviate class-
imbalance [10].

We use the DeepMedic and 3D U-Net architectures without any adjustments. Mobile
network architectures [28,29] are designed for 2D image processing, hence we add an
extra dimension. Apart from the 3D generalization, we use the vanilla E-Net architecture.
However, MobileNetV2 is a feature extractor by the design, thus we complete it with
a U-Net-like decoder preserving the speedup ideas.

5.2. Experimental Setup

We highlight two main characteristics of all methods: inference time and segmentation
quality. We measure the average inference time for 10 randomly chosen images for each
dataset. To ensure broad coverage of the possible hardware setups, we report time at 4,
8, and 16 threads on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.60 GHz. Models running
on a standard workstation have random-access memory (RAM) usage constraints. Hence,
during the inference step, we divide an image into patches to iteratively predict them and
combine them back into the full segmentation map. We operate under the upper boundary
of 16 GB of RAM. We also noted that the inference time does not heavily depend on the
partition sizes and strides, except the cases with a huge overlap of predicting patches.

The most common method to measure segmentation performance is the Dice Score [7].
However, averaging the Dice Score over images has a serious drawback in the case of
multiple targets because large objects overshadow small ones. Hence, we report the average
Dice Score per unique object. We use the Free-response Receiver Operating Characteristic
(FROC) analysis [37] to assess the detection quality. Such a curve illustrates the trade-off
between the model’s object-wise recall and average false positives (FPs) per image. The
authors of [37] also extracted a single score from these curves—the average recall at seven
predefined FP rates: 1/8, 1/4, 1/2, 1, 2, 4, and 8 FPs per scan. We report more robust values
averaged over FP points from 0 to 5 with a step of 0.01. Hence, the detection quality is
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measured similarly to the LUNA16 challenge [17]. This is our main quality metric because
the fraction of detected lesions per case is an important clinical characteristic, especially for
lung-cancer screening [38].

5.3. Results

The final evaluation of the hold-out data of the inference time and segmentation
quality is given in Table 1 for LUNA16 and in Table 2 for multiple metastase datasets.
Moreover, LowRes achieves a comparable inference speed with the fastest 3D mobile
network E-Net. The maximum inference time is 23 s with four CPU threads on LUNA16
data. Our model achieves the same detection quality using the state-of-the-art DeepMedic
and 3D U-Net models, outperforming them in terms of speed by approximately 60 times.
The visual representation of the time-performance trade-off is given in Figure 1.

Table 1. Comparative performance of segmentation models on LUNA16 data. Standard deviation
for every measurement is given in brackets. The best values for each column are emphasized in bold.
The quality metrics definitions are given in the last paragraph of Section 5.2.

Inference Time ∗(CPU Threads) Quality Metrics

4 Threads 8 Threads 16 Threads Avg Recall Obj DSC

3D U-Net 1293 (100) 880 (61) 828 (62) 0.77 (0.02) 0.82 (0.16)
DeepMedic 1139 (162) 872 (138) 840 (127) 0.78 (0.02) 0.78 (0.20)

3D MobileNetV2 108 (14) 89 (12) 74 (10) 0.68 (0.02) 0.75 (0.22)
3D E-Net 11 (1.2) 9.5 (1.2) 9.2 (1.0) 0.62 (0.02) 0.70 (0.22)

LowRes 23 (2.9) 15 (1.9) 13 (1.7) 0.80 (0.02) 0.75 (.18)
∗ in seconds.

Table 2. Comparative performance of segmentation models on Multiple Metastases data. Standard
deviation for every measurement is given in brackets. The best values for each column are emphasized
in bold. The quality metrics definitions are given in the last paragraph of Section 5.2.

Inference Time ∗(CPU Threads) Quality Metrics

4 Threads 8 Threads 16 Threads Avg Recall Obj DSC

3D U-Net 342 (36) 225 (20) 202 (16) 0.71 (0.01) 0.72 (0.21)
DeepMedic 381 (74) 254 (50) 226 (46) 0.70 (0.02) 0.69 (0.23)

3D MobileNetV2 33 (4.6) 23 (3.0) 21 (2.4) 0.65 (0.01) 0.69 (0.22)
3D E-Net 3.2 (0.3) 1.7 (0.2) 1.9 (0.3) 0.47 (0.01) 0.59 (0.23)

LowRes 6.1 (0.7) 4.3 (0.6) 3.7 (0.6) 0.68 (0.01) 0.64 (0.22)
∗ in seconds.

6. Discussion

To our knowledge, the proposed method is the first two-stage network that utilizes
local feature representation from the first network to accelerate a heavy second network.
We carefully combined well studied DL techniques with the new final goal to speed up CPU
processing time significantly without minor quality loss (see Section 1, the last paragraph).
De-facto, our method can indeed be considered two separate networks as far as they are
trained separately. However, we highlight that our work is one of the first accelerated DL
methods for medical images, so it opens up a curious research direction of simultaneous
learning of both CNN parts, among other ideas.

The “other ideas” mean the key concepts proposed to reduce the inference time or
increase the segmentation and detection quality in many recent papers, which can be
applied to our method. However, the research direction for medical image segmentation
is naturally biased towards addressing the segmentation and detection quality, so these
papers’ results are of particular interest. We can not address all of them here and provide
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comparison only to the well-known baseline methods like 3D U-Net and DeepMedic
on the open-source LUNA16 dataset for the two main reasons. First, researchers can
easily compare their great methods with ours and elaborate on this curious research
direction. Second, most of the best practices from the recent methods can be adapted
to ours without restriction. For example, one can modify skip connections by adding
Bi-Directional ConvLSTM [39] or add a residual path with deconvolution and activation
operations [40]. However, applying these improvements will likely preserve the time gap
between the particular method and ours, modified correspondingly. Note that our pioneer
work proposes the general idea of the speed up on CPU, so we treat such experiments as a
possible way to work on in future, which is a common practice.

7. Conclusions

We proposed a two-stage CNN called LowRes (Figure 3) to solve 3D medical image
segmentation tasks on a CPU workstation within 15 s for a single case. Our network uses a
human-like approach of a quick review of the image to detect regions of interest and then
processes these regions locally (see Section 3). The proposed model achieves an inference
speed close to that of mobile networks and preserves or even increases the performance of
the state-of-the-art segmentation networks (Tables 1 and 2).
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
BraTS Multimodal Brain Tumor Segmentation
CNN Convolutional Neural Network
CPU Central Processing Unit
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CT Computed Tomography
DSC Dice Score
FP False Positive
FROC Free-response Receiver Operating Characteristic
GPU Graphics Processing Unit
LUNA16 Lung Nodule Analysis 2016
MRI Magnetic Resonance Imaging
RAM Random Access Memory
ReLU Rectified Linear Unit
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Abstract: Convolutional neural networks (CNNs) have demonstrated great achievement in increasing
the accuracy and stability of medical image segmentation. However, existing CNNs are limited by the
problem of dependency on the availability of training data owing to high manual annotation costs and
privacy issues. To counter this limitation, domain adaptation (DA) and few-shot learning have been
extensively studied. Inspired by these two categories of approaches, we propose an optimization-
based meta-learning method for segmentation tasks. Even though existing meta-learning methods
use prior knowledge to choose parameters that generalize well from few examples, these methods
limit the diversity of the task distribution that they can learn from in medical image segmentation.
In this paper, we propose a meta-learning algorithm to augment the existing algorithms with the
capability to learn from diverse segmentation tasks across the entire task distribution. Specifically,
our algorithm aims to learn from the diversity of image features which characterize a specific tissue
type while showing diverse signal intensities. To demonstrate the effectiveness of the proposed
algorithm, we conducted experiments using a diverse set of segmentation tasks from the Medical
Segmentation Decathlon and two meta-learning benchmarks: model-agnostic meta-learning (MAML)
and Reptile. U-Net and Dice similarity coefficient (DSC) were selected as the baseline model and the
main performance metric, respectively. The experimental results show that our algorithm maximally
surpasses MAML and Reptile by 2% and 2.4% respectively, in terms of the DSC. By showing a
consistent improvement in subjective measures, we can also infer that our algorithm can produce a
better generalization of a target task that has few examples.

Keywords: medical image segmentation; domain adaptation; meta-learning; U-Net

1. Introduction

Image segmentation is often the first and the most critical step in the analysis of
medical images for computer-aided diagnosis and therapy. Medical image segmentation
is a challenging and complex task due to the intrinsic nature of images. For instance, it is
difficult for experienced experts to accurately identify multiple sclerosis lesions in MRIs
due to the variability in lesion location, size, and shape, and the anatomical variability
across patients [1]. Manual segmentation has been gradually replaced by automatic seg-
mentation because of the high costs and time consumption [2]. Among existing automatic
segmentation methods, Convolutional neural networks (CNNs) have demonstrated great
achievement in increasing segmentation accuracy and stability [3–8]. However, existing

J. Imaging 2021, 7, 31. https://doi.org/10.3390/jimaging7020031 https://www.mdpi.com/journal/jimaging

65



J. Imaging 2021, 7, 31

CNNs are limited by the problem of dependency on the availability of training data owing
to high manual annotation costs and privacy issues.

To counter that limitation, domain adaptation (DA) and few-shot learning have been
extensively studied in semantic segmentation. DA focuses on using some data from the
target domain to quickly adapt a model trained in the source domain [9–14]. Few-shot
learning aims to learn the patterns of new concepts unseen in the training data, given only a
few labeled examples [15–19]. Inspired by previous works on DA and few-shot learning, we
have a question: can we adjust an optimization algorithm so that the segmentation model
can be good at learning with only a few examples? In order to solve this question, we take
an optimization-based meta-learning method to DA. The meta-learning method learns to
align source and target data in a domain-invariant discriminative feature space [20–22]. Ex-
isting optimization-based meta-learning algorithms such as model-agnostic meta-learning
(MAML) [23] and Reptile [24] aim to search for the optimal initialization state to quickly
adapt a base-learner to a new task. MAML is compatible with any model trained with
gradient descent. It is also applicable to a variety of different learning problems, including
classification, regression, and reinforcement learning. MAML provides a good initialization
of model parameters which achieve optimal fast learning toward a new task with only a
small number of gradient steps. In the meantime, MAML can avoid the overfitting that
may happen when using a small dataset. In MAML, source tasks are split into support and
query sets for support-training and query-testing purposes, respectively. In the inner loop
of MAML, a model is trained to solve each support set in turn based on a few examples
and gradient steps. Fast domain adaptation is achieved by training the source model with
the query set in the outer loop. Unlike MAML, which uses a support-query scheme to
quickly adapt a model to a new task, in the inner loop of Reptile, the model is iteratively
trained on a sampled task by multiple gradient steps. The model is then updated towards
the gradients learned from the sampled task in the outer loop. Reptile does not require
differentiating through the optimization process, making it more suitable for optimization
problems where many update steps are required.

Even though MAML and Reptile use prior knowledge to choose parameters that gen-
eralize well from few examples, both algorithms limit the diversity of the task distribution
that they can learn from in medical image segmentation. Specifically, MAML updates the
initial parameter vector towards the direction of a query-testing phase, which limits the
capability of updating the initial parameter vector by learning from the tasks in the support-
training phase. Reptile limits the ability of updating the model parameters since it does not
learn from diverse tasks in the inner loop. In order to counter the limitations in MAML and
Reptile, we propose to augment both algorithms with the capability to learn from diverse
segmentation tasks across the entire task distribution. Specifically, our algorithm aims to
learn from the diversity of image features which characterize a specific tissue type while
showing diverse signal intensities. The reason that the proposed idea can benefit from
signal intensities is described as follows. In MRI, the terms low, intermediate, and high
signal intensities are used. Depending on the scan protocol, a tissue type is imaged as
white if it has high signal intensities, as gray if it has intermediate signal intensities, and
as dark gray/black if it has low signal intensities. We focus on a class of tissue types which
move often: the heart is moving as it beats, the colon is moving as it digests, etc. Due to
the movement, these tissue types show diverse image features regarding location, size,
shape, and impact on the surrounding area. The image features are described by diverse
signal intensities, such as high, intermediate, and low. The learning capability is therefore
enhanced if we can learn from the diversity of image features which characterize a specific
tissue type while showing diverse signal intensities. Figure 1 displays two example tissue
types; each one shows diverse image features regarding location, size, shape, and impact
on the surrounding area.
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(a) (b)

Figure 1. The diversity of image features in two example tissue types: heart (left) and spleen (right). The image features are
segmented by green and red lines in the heart and spleen, respectively. (a) Heart; (b) spleen.

Our algorithm is briefly introduced as follows: In the inner loop, we first iteratively
train the initial parameter vector on a batch of support sets via multiple gradient steps.
Based on the parameter vector learned from the support batch, we then adapt the parameter
vector to a batch of query sets via one gradient step in the outer loop. After that, we update
the model towards the parameter vector learned from the query batch. Both support and
query batches are sampled from the entire task distribution. To demonstrate the effective-
ness of our method, we conducted experiments using a diverse set of segmentation tasks
from the Medical Segmentation Decathlon and two meta-learning benchmarks: MAML
and Reptile. U-Net [25] and Dice similarity coefficient (DSC) were selected as the baseline
model and the main performance metric, respectively. The experimental result shows that
our algorithm maximally surpasses MAML and Reptile by 2% and 2.4% respectively, in
terms of the DSC. By showing a consistent improvement in subjective measures, we can
also infer that our algorithm can produce a better generalization of a target task that has
few examples. The contributions of our algorithm focus on two points:

• Unlike existing meta-learning algorithms which limit the capability of learning from
diverse task distributions, we studied the feasibility of learning from the diversity of
image features which characterizes a specific tissue type while showing diverse signal
intensities.

• We propose an algorithm which can nicely learn from diverse segmentation tasks
across the entire task distribution. The effectiveness of our algorithm is illustrated by
showing consistent improvements in DSC and subjective measures.

2. Related Work

2.1. Convolutional Neural Networks

The concept of deep learning originates from the research of hierarchical artificial
neural networks. Unlike traditional segmentation methods that only utilize low-level
information such as pixel color, brightness, and texture, deep learning methods perform
better on extracting semantic information. One of the deep learning methods is CNN. CNN
is a kind of neural network with a special connective structure in hidden layers. With its
rich feature extractors, some classic models such as AlexNet [26], VGG [27], GoogleNet [28],
and ResNet [29] have been widely used in most computer vision tasks.

In the field of medical image processing, the fully convolutional network (FCN) [30]
and U-Net [25] are commonly used. Since FCN is a pixel-wise classification model, it
does not perform as well as U-Net for exploiting the relationship between pixels and
boundary information of the up-sampling results. U-Net consists of a contraction path
(encoder) and a symmetrical extension path (decoder) connected by a bottleneck. The
encoder gradually reduces the spatial size of feature maps, which captures the context
information and transmits it to the decoder. The decoder recovers the image details and
spatial dimensions of the object through up-sampling and skip connections. Even though
there has been a collection of variations of U-Net produced to improve segmentation
accuracy, it still appears to be inadequate for a segmentation task which needs to learn from
a limited amount of training data. Considering its satisfactory performance in medical
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image segmentation, we selected U-Net as the baseline model and applied the proposed
meta-learning method to it.

2.2. Optimization-Based Meta-Learning Methods

The inspiration of meta-learning comes from the human learning process, which can
adapt new tasks quickly according to a few examples [31]. The proposed meta-learning
method in this paper is optimization-based. This category of methods like MAML [23] and
Reptile are closely related to our method.

MAML aims to learn from a number of tasks T sampled from a distribution p(T ).
These tasks are composed of a support set τs and a query set τq. MAML requires that
τs and τq do not have any overlapping class. The algorithm attempts to find a desirable
parameter vector θ for a given model. In each inner loop of MAML, as shown in Figure 2a,
the model is learned from a support batch τs sampled from T s with a loss function
Lτs(θ, τs). A transitional parameter vector θs is obtained by updating θ through a number
of gradient steps. In the outer loop of MAML, a query batch τq sampled from T q is then
used to update θs to θq based on a query loss Lτq(θs, τq). After that, θq is applied to the
update of θ. In Figure 2a, we use arrows to represent the direction of update. The arrow
directed from θs to θq is parallel to the arrow directed from θ to θ∗, where the entire
updating process ends with θ∗.

(a) (b) (c)

Figure 2. Optimization-based meta-learning algorithms. We use black and red arrows to represent
the gradient steps in the inner loop and the outer loop, respectively. The blue arrow represents the
direction of model update. (a) MAML; (b) Reptile; (c) our algorithm.

Instead of using a support-query scheme, as shown in Figure 2b, in each inner loop,
Reptile updates θ by learning from the same batch τ through multiple gradient descent
steps. The direction of update in the outer loop is determined by θ and θ′, where θ′ is the
transitional parameter vector obtained from the inner loop. Reptile focuses on learning
from the same batch and improving generalization with a particular number of gradient
descent steps. The entire updating process ends with θ∗.

Differently from MAML and Reptile, as shown in Figure 2c, in the inner loop of our
algorithm, we first train the model parameters on a support batch τs with multiple gradient
steps. In the outer loop, we then adapt the model parameters to a query batch τq by one
gradient step. In Figure 2c, both τs and τq are sampled from the entire task distribution.
Figure 3 displays how MAML and our algorithm select τs and τq in the meta-training
phase. Each training task (1 or 2) mimics the few-shot scenario, which includes three
classes with two support examples and one query example. Each example in either the
support set or the query set is randomly selected from a set of training examples, which
is displayed in different colors. Each example includes three classes: H, S, and P which
represent the MRI images from THE heart, spleen, and prostate, respectively. We can
observe from Figure 3a that the examples for support and query purposes are split into
two partitions. in our algorithm, as shown in Figure 3b, the examples in each training task
are selected from diverse examples across the entire example distribution. MAML updates
the initial parameter vector towards the direction of query-testing phase, which limits the
capability of updating the initial parameter vector by learning from the examples in the
support-training phase. Unlike MAML, our algorithm avoids the limitation by removing
the boundary between support and query examples. By doing so, the parameter vector is
updated by learning from the diversity of support and query examples. The capability of
learning is therefore enhanced. The diversity can be interpreted as: for any tissue type in a
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set of examples, this tissue type shows diverse image features over location, size, shape,
and impact on the surrounding area (as shown in Figure 1). The direction of update in the
outer loop is determined by θ and θ′. The entire updating process ends with θ∗.
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Figure 3. The selection of examples in the meta-training phase. Left: MAML. Right: Our algorithm.
H, S, and P represent the MRI images from the heart, spleen, and prostate, respectively. Each example
is displayed by a particular color. (a) MAML; (b) ours.

3. Methodology

In this study, we used U-Net [25] as the baseline model and learned the initialization
of U-Net from multiple source tasks. Based on the parameter vector learned from the
source tasks, we fine-tuned the model on the target task. We aimed to train a U-Net that
can produce good generalization performance on the target task. In this section, we first
present the general form of our algorithm. After that, we provide some theoretical analysis
to better explain why the proposed algorithm works.

3.1. Meta-Learning Domain Adaptation

As shown in Algorithm 1, let θ denote the initial parameter vector, and we use
a parametrized function fθ to represent the baseline model. For any batch of tasks τs

sampled from p(T ), when fθ adapts to τs, the parameter vector θ becomes θ′i . The updated
parameter vector θ′i is computed using i gradient steps on τs. Let fθ′i

denote the updated
model; the update on the gradient at the ith step is described as

θ′i = θ′i−1 − α∇θ′i−1
Lτs( fθ′i−1

), (1)

where α is a fixed hyper-parameter and represents the learning-rate in the inner loop.
Lτs( fθ′i−1

) represents the loss function of model fθ′i−1
on τs. θ′i can be obtained by optimizing

fθ′i−1
with respect to θ′i−1 on the same batch of tasks sampled from p(T ). The meta-objective

can be described as
min
θ′i−1

Lτs( fθ′i
) = Lτs( fθ′i−1−α∇θ′i−1

Lτs ( fθ′i−1
)). (2)

The optimization on the entire meta-learning process is performed over parameters θ.
We can obtain θ′ by updating θ′i based on another batch of tasks τq which is also sampled
from p(T ). The optimization process is therefore described as

θ ← θ + β[θ′i − α∇θ′i
Lτq( fθ′i

)− θ], (3)

where β is a fixed hyper-parameter on step size in the outer loop. Table 1 shows all the
symbols associated with the proposed algorithm.
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Algorithm 1 Our meta-learning algorithm.
Require: p(T ): distribution over tasks
Parameter: α, β: step size hyperparameters

1: Initialize θ randomly

2: while not done do
3: Sample a batch of tasks τs ∼ p(T )

4: θ′0 = θ

5: for i = 1, 2, .., k do
6: Compute θ′i = θ′i−1 − α∇θ′i−1

Lτs ( fθ′i−1
)

7: end for

8: Sample another batch of tasks τq ∼ p(T )

9: Compute θ′ = θ′k − α∇θ′k
Lτq ( fθ′k

)

10: Update θ ← θ + β (θ′ − θ)

11: end while

3.2. Algorithm Analysis

In this subsection, we provide some analysis to better understand why the proposed
algorithm works. We first used a Taylor series to approximate the update performed by
our algorithm. Then, the effectiveness of our algorithm is shown via the computation of
the expected gradient over task and batch sampling.

Table 1. All the symbols associated with the proposed algorithm.

Symbol Description

θ The initial parameter vector
θ′ Updated parameter vector (out loop)
α Learning rate (inner loop)
β Step size (outer loop)

p(T ) The source training set
τs Support batch
τq Query batch
L Loss function
f The parametrized function
∇ Gradient descent steps

Suppose we perform two stochastic gradient descent (SGD) steps on Lτs and one step
on Lτq . Let φ0 denote the initial parameter vector. The updated parameter after two steps
can be described as

φ0 = θ (4)

φ1 = φ0 − αL′
τs(φ0) (5)

φ2 = φ0 − αL′
τs(φ0)− αL′

τq(φ1) (6)

The Taylor expansion of L′
τq(φ1) can be described as

L′
τq(φ1) = L′

τq(φ0) + L′′
τq(φ0)(φ1 − φ0) + O(α2) (7)

= L′
τq(φ0)− αL′′

τq(φ0)L′
τs(φ0) + O(α2). (8)

The gradient of our algorithm after two gradient steps is defined as

gours = (φ0 − φ2)/β = L′
τs(φ0) + L′

τq(φ1) (9)

= α/βL′
τs(φ0) + α/βL′

τq(φ0)− α2/βL′′
τq(φ0)L′

τs(φ0) + O(α2). (10)
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For any sampled task τ, let Eτ,τs [L′
τs(θ)] and Eτ,τq [L′

τq(θ)] denote the expected losses
with Lτs and Lτs , respectively. The expected losses with Lτq after the generalization on τs

is denoted as Eτ,τs ,τq [L′′
τs(θ)L′

τq(θ)]. The expectation of gours is therefore described as

E[gours] = Eτ,τs [L′
τs(θ)] +Eτ,τq [L′

τq(θ)]− α ·Eτ,τs ,τq [L′′
τs(θ)L′

τq(θ)] + O(α2), (11)

if the ratio between α and β is a constant. From Equation (11), we could find out that the
expected loss is minimized over tasks; then the higher-order Eτ,τs ,τq [L′′

τs(θ)L′
τq(θ)] enables

fast learning.

4. Experiments

In this section, we evaluate the proposed meta-learning algorithm by establishing two
medical image segmentation scenarios. We first introduce the dataset for evaluation and
the architecture of the baseline model. Then, we discuss the setup for implementation. Af-
ter that, we compare the proposed algorithm with two existing meta-learning benchmarks:
MAML and Reptile. In the final subsection, we study the hyper-parameter.

4.1. Dataset and the Baseline Model

We evaluated the proposed algorithm based on a public dataset from the Medical
Segmentation Decathlon. This dataset contains ten segmentation tasks, and each task
contains diverse scans on a specific tissue type. All the scans have been labeled and verified
by an expert human rater, and with his best attempt to mimic the accuracy required for
clinical use. We reshaped each scan to 256 × 256 and simplified the multi-value annotation
to a binary segmentation task. Among all the tasks, we randomly selected eight tasks for
evaluation owing to computational overheads and memory issues. Six tasks are randomly
selected as source tasks, which were the heart from King’s College London, the liver from
IRCAD, the prostate from Nijmegen Medical Centre, and the pancreas, spleen, and colon
from the Memorial Sloan Kettering Cancer Center. The remaining two tasks, colon and liver,
were selected as target tasks. Two medical image segmentation scenarios were established
based on these two tasks. For comparison purposes, the scans related to the source tasks
were divided into two groups. The source training set of the first group contained 2611
scans of prostate, pancreas, and spleen. The target training set of the first group consisted
of 214 scans which were randomly sampled for the task of the colon. The target testing set
contained the remaining 1070 scans. The source training set of the second group contained
2877 scans which were of the prostate, heart, and spleen. The target training set of the
second group consisted of 191 scans which were randomly sampled for the tasks of liver.
The target testing set contained the remaining 18,791 scans.

U-Net was selected as the baseline model, which is illustrated in Figure 4. This model
is composed of three partitions, which are the encoder, skip connections, and decoder. The
encoder consists of four down-sampling blocks. Each block consists of the repeated appli-
cation of two 3 × 3 convolutions, each followed by batch normalization (BN), a rectified
linear unit (ReLU), and a 2 × 2 max-pooling operation with stride 2 for down-sampling.
The 2 × 2 max-pooling operations are replaced with 2 × 2 transposed convolutions in the
decoder. Skip connections concatenate the feature maps before the max-pooling operation
in down-sampling blocks with the output of the transposed convolution in up-sampling
blocks, which corresponds to the associated depth.

256 x 256 x 1

256 x 256 x 32 128 x 128 x 64
64 x 64 x 128

Concatencate

256 x 256 x 1

32x32x256

16x16x512

Figure 4. U-Net architecture.
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4.2. Implementation

We used cross validation to randomly split either the target training set or the source
training set into two subsets. One was for training. The other one was for validation.
The volume of the training subset was four times that of the validation subset. Each
training set was shuffled in each epoch. We utilized data augmentation to reduce the risk of
overfitting. The data augmentation included 0∼180 degree random angle flipping, image
moving, cross cutting transformation, and image stretching. We applied the cross-entropy
function as a loss function. The batch size and the number of epochs were set to 8 and 300,
respectively. The batch size in the meta-training phase was set to 6. During meta-training
phase, we adopted SGD for each batch with category equipartitioning. The initial learning
rate α in algorithm 1 was set as 1 × 10−3. The step size β and the gradient step k were set as
0.4 and 3, respectively. We implemented the experiment with Keras. The implementation
was performed with an Ubuntu system which employed an NVIDIA GeForce 1080 Ti
graphics card which had an 11 Gigabyte memory.

The implementation of the proposed meta-learning algorithm and the two benchmarks
relates to pipeline III which is depicted in Figure 5c. In pipeline I, the baseline model is
trained directly on the target training set with random initialized parameters. The training
phase of pipeline II starts from the parameter vector obtained from the pre-training phase
on source domains. Pipeline III applies meta-learning algorithms on source training set.

Training Phase on 
Target Domain

Evaluation on 
Target Domain

Random 
Initialized 

Parameters

Target Training 
Set

Target Testing 
Set

DSC
T target
tr T target

te

(a)

Pre-training 
Phase on Source 

Domain

Random 
Initialized 

Parameters

Source Training 
Set

T source
tr

Training Phase on 
Target Domain

Evaluation on 
Target Domain

Target Training 
Set

Target Testing 
Set

DSC
T target
tr T target

te

(b)

Meta-training 
Phase on Source 

Domain

Random 
Initialized 

Parameters

Source Training 
Set

T source
tr

Training Phase on 
Target Domain

Evaluation on 
Target Domain

Target Training 
Set

Target Testing 
Set

DSC
T target
tr T target

te

(c)

Figure 5. The three pipelines. (a) Pipeline I; (b) pipeline II; (c) pipeline III.

For MAML, in either the colon or the liver task, we first equally split the source tasks
into two partitions where each partition contained all the three classes. The two partitions
were used for either support or query purposes. The support and query batches were
randomly selected from the support and the query sets, respectively. Each batch contained
two examples with three classes. For Reptile, in either the colon or the liver task, each batch
was randomly selected from the source tasks, which included two examples with three
classes. In our approach, we bring in the layer-freezing technique to optimize the whole
feature space. Specifically, when we transfer the initialized parameter vector generated by
source domain to target domain, we first train the baseline model on the target training
set T target

tr with the first two down-sampling blocks which has been frozen. We set the
learning rate at this phase as 1 × 10−3. Then, the second block is unfrozen and the target
training set T target

tr is utilized again. We set the learning rate and the decay rate at this
phase as 1 × 10−3 and 0.0077, respectively. For the third time, the target training set T target

tr
will be applied to the optimization process with entire trainable parameters adjustable.
The learning rate at this phase is set as 1 × 10−4.
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4.3. Experimental Results

Table 2 shows the experimental results of the established two segmentation scenarios.
The segmentation performance is described with Dice score (DSC), precision, and recall.
DSC is a method which measures the overlap between any two images. DSC has been
widely used to evaluate the performance of medical image segmentation when ground
truth is available. For binary segmentation of medical images, we set the ratio on target
area as 0.9. The ratio on background is 0.1.

Table 2. The results from two few-shot scenarios.

Source Domain Target Domain
Dice Coefficient Δ Precision Recall

Task (s) Method Task (s) Method

Null Null

Colon

SST 0.537 ± 0.356 - 0.573 ± 0.362 0.573 ± 0.396
Prostate Pre-training SST 0.591 ± 0.332 0.054 0.595 ± 0.326 0.655 ± 0.377
Pancreas Pre-training SST 0.590 ± 0.347 0.053 0.634 ± 0.338 0.622 ± 0.384
Slpeen Pre-training SST 0.591 ± 0.318 0.054 0.594 ± 0.313 0.663 ± 0.362

Multi-source I

Pre-training SST 0.611 ± 0.325 0.074 0.629 ± 0.318 0.661 ± 0.362
Layer-freezing 0.652 ± 0.303 0.115 0.653 ± 0.296 0.717 ± 0.335

MAML SST 0.615 ± 0.323 0.078 0.655 ± 0.327 0.659 ± 0.342
Layer-freezing 0.655 ± 0.306 0.118 0.658 ± 0.301 0.716 ± 0.308

Reptile SST 0.608 ± 0.336 0.071 0.652 ± 0.332 0.637 ± 0.367
Layer-freezing 0.651 ± 0.308 0.114 0.652 ± 0.305 0.714 ± 0.341

Our Algorithm SST 0.628 ± 0.323 0.091 0.644 ± 0.319 0.673 ± 0.358
Layer-freezing 0.675 ± 0.292 0.138 0.669 ± 0.288 0.741 ± 0.322

Null Null

Liver

SST 0.904 ± 0.169 - 0.891 ± 0.165 0.934 ± 0.172
Prostate Pre-training SST 0.903 ± 0.176 −0.001 0.902 ± 0.163 0.923 ± 0.184

Heart Pre-training SST 0.902 ± 0.176 −0.002 0.894 ± 0.172 0.928 ± 0.175
Slpeen Pre-training SST 0.905 ± 0.163 0.001 0.892 ± 0.174 0.935 ± 0.170

Multi-source II

Pre-training SST 0.905 ± 0.168 0.001 0.888 ± 0.170 0.942 ± 0.157
Layer-freezing 0.916 ± 0.157 0.012 0.904 ± 0.156 0.944 ± 0.152

MAML SST 0.905 ± 0.167 0.001 0.895 ± 0.172 0.936 ± 0.168
Layer-freezing 0.916 ± 0.158 0.012 0.905 ± 0.154 0.943 ± 0.160

Reptile SST 0.904 ± 0.175 0 0.896 ± 0.172 0.927 ± 0.190
Layer-freezing 0.917 ± 0.158 0.013 0.907 ± 0.156 0.943 ± 0.158

Our Algorithm SST 0.912 ± 0.159 0.008 0.896 ± 0.161 0.944 ± 0.150
Layer-freezing 0.926 ± 0.141 0.022 0.914 ± 0.143 0.952 ± 0.133

DSC can be calculated with the bottom equation

DSC =
K

∑
k

2ωk∑N
i p(k,i)g(k,i)

∑N
i p2

(k,i) + ∑N
i g2

(k,i)

, (12)

where N represents the pixel number. p(k,i) ∈ [0, 1] and g(k,i) ∈ {0, 1} denote the predicted
probability and the ground truth label of class k, respectively. K is the number of class
and ωk denotes the weight of class k. The task of semantic segmentation is to predict the
class of each pixel in an image. Precision effectively describes the purity of our positive
predictions relative to the ground truth. Recall describes the completeness of our positive
predictions relative to the ground truth. The bold values in Table 2 indicate that the most
suitable freezing depth is 2, since the DSC achieved by this setting is the best.

As shown in Table 2, in the segmentation scenario of colon, we first implemented
pipeline I, where the baseline model is trained on the target training set with standard
supervised training (SST) without the use of any source training sets. The DSC achieved by
this method was 0.537. Then, we implemented pipeline II by respectively pre-training the
baseline model on three different source training sets which were the tasks on the prostate,
pancreas, and spleen. After the pre-training phase on each task, we trained on the target
training set with the SST method. The DSCs of the three tasks were 0.591, 0.590, and 0.591,
respectively. We use Δ to represent the DSC improved upon the baseline method. We also
implemented pipeline II by pre-training on a batch that contained all the three tissue types;
we name this case multi-source I. The DSC achieved by this case was 0.611. The DSCs
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achieved by MAML, Reptile, and our proposed algorithm were 0.615, 0.608, and 0.628,
respectively. We also evaluated the performance of each method when the layer-freezing
technique was combined. On average, the layer-freezing technique improved DSC by
approximately 4.5% for pipeline II in the cases of multi-source I, MAML, Reptile, and our
proposed algorithm. Our proposed algorithm performed the best in terms of DSC, which
respectively surpassed pipeline II, MAML, and Reptile by 2.3%, 2%, and 2.4%. The bold
values in Table 2 represent the results achieved by our algorithm combined with the layer-
freezing technique. The DSC achieved is 0.675, which is an improvement of 0.138 upon the
baseline method, and it performed the best among all the methods.

In the segmentation scenario of liver, the DSC achieved by pipeline I was 0.904.
The DSCs achieved by pipeline II with single-source pre-training were 0.903, 0.902, and 0.905,
respectively. The DSC achieved by pipeline II with the case of multi-source II was 0.905.
The DSCs achieved by MAML, Reptile, and our proposed algorithm were 0.904 and 0.912,
respectively. On average, the layer-freezing technique improved DSC by approximately
1.2% for pipeline II in the case of multi-source II, MAML, Reptile, and our proposed algo-
rithm. Our proposed algorithm performed the best in terms of DSC, which respectively
surpassed pipeline II, MAML, and Reptile by 1%, 1%, and 0.9%. The DSC achieved by our
algorithm that used the layer-freezing technique was 0.926, which is 0.022 better than the
baseline method.

Figure 6 displays the convergence of loss function on the three approaches under the
segmentation scenario of colon. We use red, blue, purple, and green lines to represent our
algorithm, pipeline II with the case of multi-source I, MAML + layer-freezing, and Reptile
+ layer-freezing, respectively. The three approaches all trained on the target training set
of colon in the last phase of layer-freezing transfer. We found that all the methods were
almost converged in approximately 300 epochs. The computational cost of the proposed
framework is introduced by the number of Giga-bytes Floating-point Operations per
second (GFLOPs). We estimated the number of GFLOPs and parameters by calling the
THOP library function. The number of GFLOPs of the CNN model was 10.112532480.
The number of parameters was 4,320,609.

Figure 6. The convergence of three different approaches under the few-shot scenario of colon.

We also calculated the GFLOPs of the CNN model (U-Net) to introduce the compu-
tational costs behind the proposed framework. We called the THOP library function to
estimate the number of FLOPs and parameters. The GFLOPs of the model was 10.112532480.
The number of parameters was 4,320,609.

Figure 7 shows the subjective measures of different approaches in the two established
segmentation scenarios. We use green and red contours to represent the image features of
ground truth and generated images. For each tissue type, we selected the sample where its
segmented image feature was the most visually similar to the ground truth label. From a
subjective view, the image produced by our algorithm is visually more similar to the ground
truth label and more accurate than the images produced by the other three approaches.
For example, in the segmentation task of colon, pipeline II significantly under-estimated the
sizes of both the lumen and walls of colon compared to the ground truth labels, while our
algorithm reproduced ground truth labels reliably. Even though contour drawing using
MAML produced grossly similar results as ground truth, there is an apparent fusion of two
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adjacent bowel loops. In the segmentation task of the liver, the portal vein (the area circled
by an orange circle in raw scans) was mistakenly included as part of the liver parenchyma
in (c), (d), and (e), while the ground truth labels in (b) and our algorithm correctly excluded
it from liver parenchyma. MAML also generated sharp edges around the gallbladder.

Figure 7. Subjective measures of different approaches in the established segmentation scenarios
(top: colon, bottom: liver). Each row presents one typical task, from left to right: (a) raw scans;
(b) ground truth labels; (c) pipeline II (multi-source Training); (d) MAML + layer-freezing; (e) Reptile
+ layer-freezing; (f) ours + layer-freezing. White areas represent the image features of colon and liver.

4.4. An Ablation Study on the Hyper-Parameter

The initial freezing depth is an important hyper-parameter in layer-freezing, which
determines how many layers to be frozen during the training on the target domain. A shal-
low model will lead to a catastrophic forgetting problem which may destroy the experience
learned by meta-learning algorithms. More and more experiences could be obtained and
fine-tuned by using a deeper model, but this still cannot guarantee one to achieve a better
performance on segmentation, not to mention a higher computational cost. To address this
problem, we studied the initial freezing depth under the two few-shot segmentation tasks
with an ablation study.

In this study, we investigate the DSCs achieved under three different initial freezing
depths. The results are displayed in Table 3. In the case that the depth is one, the learning
rates of the first stage and the second stage are 1 × 10−3 and 1 × 10−4, respectively. In the
case that the depth is two, the learning rates of the first two stages and the third stage are
1 × 10−3 and 1 × 10−4, respectively. We set the decay rate of the second stage as 0.0077.
In the case that the depth is three, the learning rates of the first three stages and the fourth
stage are 1 × 10−3 and 1 × 10−4, respectively. We set the decay rate of the third stage
as 0.0077. By observing the results shown in Table 3, in the two established segmentation
scenarios, we found that the segmentation performance was the best when the depth was
set as 2. Although the DSC in the case that the depth was three was better than the case
when the depth was one, a deeper depth leads to a higher computational cost.

Table 3. The results on the two established segmentation scenarios under different initial freezing
depths. The bold values represent the most suitable depths that achieve the best DSCs.

Depths

DSC Target Domain
Colon Liver

1 0.660 ± 0.306 0.920 ± 0.160
2 0.675 ± 0.292 0.926 ± 0.141
3 0.671 ± 0.298 0.924 ± 0.148

In [24], the authors point out that using only one gradient descent is not effective
during the learning process. The reason is that it optimizes the expected loss over all
tasks. It turns out that the performance achieved by the two-step Reptile is worse than
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the performance achieved by two-step standard supervised learning. However, with more
inner loop steps, the performance of Reptile can be further improved and surpass the
standard supervised learning. The authors also show that the learning performance is the
best when the number of inner loops is four. We therefore set the number of inner loops
as four when we implemented Reptile. We set the number of inner loops as three for our
algorithm such that the number of gradient descent calculations was the same for each
time the parameter was updated.

5. Discussion

By observing the results shown in Table 2, we could find out that DSC can be improved
when pre-knowledge is used. In the meantime, a better DSC can be achieved when the
source training set is sampled from a diverse task distribution. The DSCs achieved by
MAML and Reptile are almost same as the result achieved by pipeline II with multi-source
training. What is more, the combination of our proposed algorithm and the layer-freezing
technique achieved the best performance in the two established scenarios among pipeline
I, pipeline II with single-source training, pipeline II with multi-source training, MAML,
and Reptile. Specifically, our algorithm achieved 13.8% and 2.4% better DSCs than pipeline
I and Reptile, respectively. All our results are reported as averages over five independent
runs and with 95% confidence intervals.

In Figure 6, we can see that the losses in the three approaches can be converged to
a smaller value in contrast to our algorithm. However, our algorithm achieved a higher
DSC than the other three approaches. This observation implies that our algorithm can do a
better job of alleviating the overfitting problem for few-shot segmentation tasks.

6. Conclusions

This paper proposes a novel meta-learning algorithm to adjust the optimization algo-
rithm so that the segmentation model is nicely learned from a target task which has few
examples. Specifically, this algorithm can learn from diverse segmentation tasks across
the entire task distribution. In contrast to existing meta-learning algorithms, the proposed
algorithm augments the capability to learn from the diversity of image features which
characterize a specific tissue type while showing diverse signal intensities. To demonstrate
the effectiveness of the proposed algorithm, extensive experiments were conducted by
using a diverse set of segmentation tasks on two optimization-based meta-learning bench-
marks. The experimental results show that our algorithm surpasses the two benchmarks
and brings consistent improvements to both DSC and subjective measures, which implies
that the proposed algorithm can produce a better generalization of the target task which
has few examples.
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Abstract: The automated detection of suspicious anomalies in electrocardiogram (ECG) recordings
allows frequent personal heart health monitoring and can drastically reduce the number of ECGs that
need to be manually examined by the cardiologists, excluding those classified as normal, facilitating
healthcare decision-making and reducing a considerable amount of time and money. In this paper,
we present a system able to automatically detect the suspect of cardiac pathologies in ECG signals
from personal monitoring devices, with the aim to alert the patient to send the ECG to the medical
specialist for a correct diagnosis and a proper therapy. The main contributes of this work are: (a) the
implementation of a binary classifier based on a 1D-CNN architecture for detecting the suspect
of anomalies in ECGs, regardless of the kind of cardiac pathology; (b) the analysis was carried
out on 21 classes of different cardiac pathologies classified as anomalous; and (c) the possibility to
classify anomalies even in ECG segments containing, at the same time, more than one class of cardiac
pathologies. Moreover, 1D-CNN based architectures can allow an implementation of the system on
cheap smart devices with low computational complexity. The system was tested on the ECG signals
from the MIT-BIH ECG Arrhythmia Database for the MLII derivation. Two different experiments
were carried out, showing remarkable performance compared to other similar systems. The best
result showed high accuracy and recall, computed in terms of ECG segments and even higher
accuracy and recall in terms of patients alerted, therefore considering the detection of anomalies with
respect to entire ECG recordings.

Keywords: ECG signal detection; portable monitoring devices; 1D-convolutional neural network;
deep learning

1. Introduction

The aging of the population is leading to an increase in patients suffering from cardiac
pathologies, therefore requiring electrocardiographic monitoring. An electrocardiogram
(ECG) is an easy, rapid, and non-invasive tool that traces the electrical activity of the
heart [1] revealing the presence of cardiac pathologies such as conduction disease, chan-
nelopathies, structural heart disease, and previous ischemic injury [2]. On the other hand,
investigating the altered acoustic characteristics of the cardiac tones, as an example, may
allow the early identification of valve malfunction [3].

Systems able to support the doctors’ work in the diagnosis of pathologies can facilitate
health care decision making reducing considerably expenditure of time and money [4–12].
The ECG has become the diagnostic procedure most commonly performed in clinical cardi-
ology [13–15] and the diffusion of wearable and portable devices has been enabling patients
to constantly monitor the cardiac activity, for example of elder people through wireless
sensor networks [16]. Cardiologists cannot examine millions of ECGs daily recorded from
portable devices. Thus, systems able to automatically detect suspicious anomalies in ECGs
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are required, in order to reduce the number of ECGs that need to be manually examined by
the cardiologists, identifying those that need a further examination and also the urgency of
such examination. For this reason, systems require high detection performance in order to
avoid that normal ECGs incorrectly detected as anomalous should be examined by a medi-
cal professional, and, even more important, that the presence of an electrocardiographic
alteration, which could be the indicator of cardiac pathology, is recognized and does not
escape the observation of the cardiologist. To make the anomalous ECGs be examined by
the medical specialist and that the proper therapy is administered, the detection system
should maximize recall for anomalous ECGs, which is to maximize the number of ECGs
correctly classified as anomalous, even losing accuracy.

The future of quick and efficient disease diagnosis lays in the development of reli-
able non-invasive methods [17] also through the use of artificial intelligence techniques.
Artificial neural networks and deep learning architectures have recently found broad
application [18] achieving striking success in different domains such as image classifica-
tion [19–24], speech recognition [25], intrusion detection systems [26,27], smart city [28], or
biological studies [29,30].

Therefore, high expectations are placed in the use of such techniques also for the
improvement of health care and clinical practice [31–36]. Furthermore, numerous portable
devices for personal and frequent monitoring of cardiac activity, such as Kardia [37],
D-hearth [38], and eKuore [39], are spreading.

The goal of this paper is to implement a system able to automatically detect the suspect
of cardiac pathologies in ECG signals to support personal monitoring devices. We propose
a 1D-CNN architecture optimized to detect anomalous ECG recordings, regardless of the
kind of cardiac pathology, including in the analysis 21 classes of anomalies.

The system here presented was designed to be implemented on devices for personal
use and with the aim to only send to the cardiologist ECGs detected with the suspect of a
cardiac alteration for further examination, thus no information about the specific class of
anomaly is detected. The proposed system is based on a binary classification model.

In fact, as of now, we want to make it clear that the main goal of our study is not to
classify different cardiac pathologies, but to make sure that the suspect of a pathology can
be detected and that patients are alarmed: then a correct diagnosis can be carried on with
specific tests and the intervention of medical staff. The cardiologist will examine all ECGs
detected as anomalous identifying the pathology and prescribing the proper treatment. The
system has been implemented with the aim to achieve high levels of recall for anomalous
ECGs in order to minimize the possibility that the presence of any kind of cardiac alteration
could escape the observation of the cardiologist.

This paper is organized as follows: Section 2 reports a wide background, Section 3
describes ECG signals; Section 4 illustrates material and methods; in Section 5 are pointed
out results and discussions; and Section 6 sets out conclusions.

2. Background

Many studies have proposed the implementation of artificial neural networks and
deep learning architectures for the development of automatic systems able to recognize the
suspect of cardiac anomalies [40–42]. In the literature the detection of cardiac anomalies
has been investigated analyzing both heart sounds acquired by digital stethoscopes and
ECG signals from portable devices.

Meintjes et al. [43] implemented continuous wavelet transform (CWT) scalograms
and convolutional neural networks for the correct classification of the fundamental heart
sounds in recordings of normal and pathological heart sounds. They implemented a
methodology in order to distinguish between the first and second heart sounds using
CWT decomposition and convolutional neural network (CNN) features. Results show
the high potential in the use of CWT and CNN in the analysis of heart sounds compared
to support vector machine (SVM), and k-nearest neighbors (kNN) classifiers. In [44]
authors propose the classification of heart sounds on short, unsegmented recordings and
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normalized spectral amplitude of 5 s duration phonocardiogram segments was determined
by fast Fourier transform and wavelet entropy by wavelet analysis. Spectral amplitude
and wavelet entropy features were then combined in a classification tree. They achieved
accuracy comparable to other algorithms obtained without the complexity of segmentation.
Redlarski et al. [17] presented a new heart sound classification technique combining linear
predictive coding coefficients, used for feature extraction, with a classifier built upon
combining support vector machine and the modified cuckoo search algorithm. It showed
good performance of the diagnostic system, in terms of accuracy, complexity [45–47] and
range of distinguishable heart sounds.

With the application of deep learning architectures, also the accuracy of ECG diagnos-
tic analysis has achieved new high levels. The systems implemented using such techniques
allow the automated interpretation of ECG signals from portable devices in real time. The
common deep learning networks for the analysis of ECG signals are mainly based on
recurrent neural networks (RNNs), convolutional neural networks (CNNs), and some other
architectures [1].

Chauhan et al. [48] investigated the applicability of deep recurrent neural network
architectures with long short term memory (LSTM) for detecting cardiac arrhythmias in
ECG signals. This approach is quite fast, does not require preprocessing of the data [49] or
hand coded features and do not need prior information about the abnormal signal. The
network was tested on the MIT-BIH Arrhythmia Database for the classification of four
different types of Arrhythmias showing that LSTMs may be a viable candidate for anomaly
detection in ECG signals.

Saadatnejad et al. [50] proposed an LSTM-based ECG classification algorithm for
continuous cardiac monitoring on wearable devices. They preprocessed data extracting
RR interval and wavelet features from ECG samples. The ECG signal along with the
extracted features were fed into multiple LSTM recurrent neural networks. The MIT-BIH
ECG Arrhythmia Database was used for the classification of six different types of anomalies.
The proposed algorithm achieved accurate LSTM-based ECG classification to wearable
devices with low computational costs.

Thill et al. [51] presented an unsupervised time series anomaly detection algorithm to
detect anomalies in ECG readings. They performed a recurrent LSTM network to predict
the normal time series behavior without the usage of the anomaly class labels building a
multivariate normal error model for the nominal data. Anomalous events were detected
with a high probability through a high Mahalanobis distance. They classified six anomaly
classes and obtained good performance achieving high levels of precision and recall.

Although RNN architectures are suitable to process time series data, they present
some limitations. The major drawbacks of RNNs are the vanishing gradient and gradient
exploding problems that make their training difficult, not allowing the processing of very
long sequences. Moreover, due to its recurrent nature, the computation is slow. For this
reason, some studies investigated the implementation of 1D-CNNs, with the main aim
to design low computational complexity systems to support portable devices. In fact,
Kiranyaz et al. [52] revised the state of the art techniques used in signal processing appli-
cations such as patient-specific ECG classification, structural health monitoring, anomaly
detection in power electronics circuitry, and motor-fault detection. In particular, they
highlighted how the implementation of adaptive and compact 1D-CNN can achieve higher
performance than deep conventional 2D with low computational complexity. Adaptive
and compact 1D-CNNs can be efficiently trained with a limited data set of 1D signals
instead of massive size data sets required by deep 2D CNNs. It can be performed directly
to the raw signal without any pre or post processing, such as features extraction, selection,
dimensionality reduction, etc., and it is able to extract features from shorter segments of
the overall data set. Moreover, due to the low computational requirements, 1D-CNNs are
well suited for real-time and low-cost applications, especially on smart mobile devices
that can be the proper tools for personal health monitoring [52,53]. Yıldırım et al. [54]
proposed a new 1D-convolutional neural network approach for the automatic classification
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of cardiac arrhythmia on long-duration electrocardiography (ECG) signal analysis. The
model was performed on 10-s fragments of ECG signals including 17 different classes
of cardiac arrhythmia. The model showed remarkable performance and could be imple-
mented with low computational complexity on mobile devices and cloud computing for
tele-medicine, e.g., patient self-monitoring and preventive health. Li et al. [55] proposed
a 1D-CNN based model to classify ECG signals. The model consisted of five layers and
realized the classification of five typical kinds of arrhythmia signals. It achieved promising
classification accuracy and significantly outperformed several typical ECG classification
methods. Zubair et al. [56] propose an ECG beat classification system using a 1D-CNN
model. The proposed classification system efficiently classified ECG beats into five different
classes. Results showed that the model achieved a significant classification accuracy and
superior computational efficiency than most of the state-of-the-art methods for ECG signal
classification. Avanzato et al. [57] proposed a new neural architecture based on 1D-CNN
for the development of automatic heart disease diagnosis systems using ECG signals. The
model was performed on 30 s segments and classified three different classes of anomalies.
It showed high performance and low complexity implementation. Kamaleswaran et al. [58]
introduced a novel deep learning architecture for detection of normal sinus rhythm, AF,
other abnormal rhythms, and noise. They proposed an optimal 13-layer 1D-CNN model
with identified normal, AF and other rhythms using single lead short ECG recordings.
The architecture was computationally fast and could also be used in real-time cardiac
arrhythmia detection applications.

3. ECG Signal

The mechanical pumping activity of the heart muscle is determined by the rhythmic
generation of an electrical impulse that originates at the level of the sinoatrial node and,
through specialized conduction pathways, spreads to all cardiac muscle cells causing cycles
of depolarization and repolarization underlying the contraction of single cells.

ECG is the graphic reproduction of the electrical activity of the heart during its
functioning, recorded at the surface of the body. The doctor, usually a cardiologist spe-
cialist, interprets the electrocardiographic recording by detecting the presence of cardiac
arrhythmias, structural changes in the cardiac cavities, atria and/or ventricles, ischemia,
myocardial infarction, and other cardiopathies, characterized by an alteration of electri-
cal conduction. A beat of ECG signals can be observed by five characteristic waves—P,
Q, R, S, and T [59], where each wave is related to a specific interval of the polarization–
depolarization cycle. The characteristic of the normal ECG is that varies only in the presence
of problems. The fundamental morphology of the ECG is given by three deflections (P,
QRS, and T), which represent the formation and diffusion of the cardiac electrical impulse
along the pathways of the conduction system (Figure 1).
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Figure 1. Tracing of a normal electrocardiogram (ECG) including P wave, QRS complex, and T wave.
Reproduced with permission from Gordon Betts et al., Anatomy and Physiology, Connexions Website.
http://cnx.org/content/col11496/1.6/; published by OpenStax, 19 June 2013.

4. Materials and Methods

4.1. Dataset

The proposed method was tested on the MIT-BIH Arrhythmia Database supplied by
PhysioNet, a web resource for complex physiologic signals databases [60]. The MIT-BIH
Arrhythmia Database contains 48 half-hour extracts of two-channel ambulatory ECG record-
ings, obtained from 47 subjects: 25 males aged between 32 and 89 years and 22 females
aged between 23 and 89 years. As described by the authors in [60], the database consists of
23 recordings randomly selected by a set of 4000 24-h ambulatory ECG recordings collected
from a mixed population of hospitalized (approximately 60%) and ambulatory (approx-
imately 40%) patients at Beth Israel Hospital in Boston. The remaining 25 recordings
were selected from the same set in order to include less common but clinically significant
arrhythmias that would not be well represented in a small random sample. The recordings
were digitized at 360 samples per second per channel with an 11-bit resolution over a
10-mV range. For our analysis, we used the same data published by Kaggle in txt and csv
format, since they were easier to process [61].

The database contains 22 classes, 1 for normal beat, and 21 for various kinds of
anomalies in ECG recordings.

4.2. Data Organization

Data were structured in a tabular form in order to be processed by the neural network.
The ECGs are two-channel recordings including main derivations, varied among subjects.
In most ECGs one channel is a Modified-Lead II (MLII) and the other channel is generally
V1, sometimes V2, V4, or V5, depending on the subject. For this reason, since the MLII is
almost present in every ECGs, we only considered this lead. Four ECG recordings, only
containing leads V1 and V5, were excluded from the analysis. The 30-min ECG recordings
were fragmented into segments of 15 s. Since the recordings were digitized at 360 samples
per second, each segment consisted of 5400 samples (Tables 1 and 2). Each segment was
included in the analysis and no data cleaning process was executed.
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Table 1. Example of one 30-min ECG recording digitized at 360 samples per second provided by
Kaggle. (a) Each row is a sample of Modified-Lead II MLII and V5 lead signals quantized with
11-bit resolution over a ±5 mV range. Sample values thus range from 0 to 2047 inclusive, with a
value of 1024 corresponding to zero volts; (b) only includes annotated samples f(N = normal or
A = anomalous) with a timestamp.

Sample MLII V5 Time Sample Type

0 995 1011 0:00.214 77 N

1 1000 1008 0:01.028 370 N

2 997 1008 0:01.839 662 N

. . . . . . . . . . . . . . . . . .

648,000 969 997 30:00.564 648,203 A

648,000 969 1003 30:01.325 648,477 N

(a) (b)

Table 2. Data organization of one 30-min ECG recording fragmented into segments. Columns from MLII_0 to MLII_539
represent samples contained in 15 s fragment. Each row is a different and consecutive fragment. Type N = normal,
A = anomaly.

MLII_0 MLII_1 MLII_2 MLII_3 . . . MLII_5396 MLII_5397 MLII_5398 MLII_5399 Type

995 1000 997 995 . . . 977 979 975 974 N

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

989 988 986 990 . . . 974 972 969 969 A

Based on the annotations assigned to the peaks present, each segment was labeled
as follows: if in the segment all peaks were annotated as normal then the entire segment
was labeled as normal; if in the segment at least one peak was annotated as anomalous,
presenting any kind of anomalies, then the entire segment was labeled as anomalous.

In the dataset, each row represented a segment of 15 s labeled as normal or anomalous.
Labeled as normal were 2105 segments and 3175 as anomalous. Since the dataset presented
clearly imbalanced classes showing a proportion bias, we undersampled the segments
labeled as anomalous in order to keep only a part of these data, thus balancing the training
set. The anomalous segments in excess were included in the test set.

As will be detailed later, we carried out two distinct experiments, preprocessing data
in different ways. In the first experimentation, segments were randomly included in the
training set, using an equal proportion of segments for the two classes. The training set
consisted of 2930 segments, 1465 labeled as normal, and 1465 labeled as anomalous. The
training set was split in 70% for training and 30% for validation, keeping the same pro-
portion of normal and anomalous segments. Segments contained in the test set presented
a different proportion of the two classes, including 640 labeled as normal (60%) and 426
as anomalous (40%). Examples of normal and anomalous ECG recording are shown in
Figure 2. Table 3 shows the number of ECG segments for each normal or anomalous class.
The segments classified as anomalous can include one or more types of anomalies.
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Figure 2. Examples of ECG recordings. (Top) Premature ventricular contraction (V). (Bottom) Normal record.

In the first experiment, as a widespread procedure used in literature and in the studies
we compared to our work, we randomly assigned segments extracted from the same ECG
recordings into training and test set. In the second experiment, we carried out a patient-
oriented analysis, assigning to the training set only segments extracted from the same
ECG recordings. This procedure was carried out for ECGs from 28 patients, since each
ECG is related to a single patient. Segments extracted from the remaining 16 ECGs were
assigned to the test set. In this way, segments of the same patient ECG recording are not
interleaved between the training and test set. The training set consisted of 3360 segments,
1594 normal, and 1766 anomalous and the test set included 1800 segments, 435 normal, and
1365 anomalous. With this selection procedure, every segment of ECG recordings included
in the test set had never been presented to the network during the training phase. Thus,
the evaluation is only done on ECG recordings of patients never seen by the model.

4.3. Model Architecture

Convolutional neural network is a special kind of artificial neural network developed
for image classification in which the model normally processes two-dimensional spatial
input data representing an image’s pixels, in a process called feature learning. The same
model can be used for one-dimensional sequence of data, such as an analysis of time series
data, signal data, or natural language processing. The architecture of the model is described
in [62]. The electrocardiogram signal is a time series data sequence that represents electrical
impulses from the myocardium [63]. Thus, we propose a 1D convolutional neural network
consisting of four convolutional blocks and one output block for the analysis of ECG signal
data, in order to automatically identify normal and anomalous ECG recordings.

The convolutional block, as represented in Figure 3, consists of a 1D convolutional
layer, a batch normalization layer, a 1D max pooling layer, and a rectified linear unit (ReLU)
layer, while the output contains a 1D average pooling, a flatten layer, a dense layer, and a
Softmax layer. We chose a four convolutional blocks architecture, since it showed a right
tradeoff between computational efficiency and results accuracy.

The 1D convolutional layer creates a convolution kernel that is convolved with the
input layer over a single dimension to produce a tensor of output. The kernel size was
set to 80 in the first layer and decreased to 4 in the subsequent layers, in order to reduce
computational costs (Table 4). The batch normalization standardized the input and it was
applied after each convolutional layer and before the level of pooling, in order to improve
performance and stabilize the learning process of the deep neural network [59]. The output
of the batch normalization layer was downsampled by means of a 1D max pooling layer
with a pool size of 4.
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Table 3. ECG segments for each ECG class in train and test sets for the first experimentation. Since
our goal is to detect any kind of anomaly, we considered both rhythm and beat alterations with
no difference. We also considered signal related annotations since a low quality noise signal could
represent an issue to medical diagnosis.

Type Class Train Test

Normal Normal beat 1465 640

Anomalous

Left bundle branch block beat 331 123

Right bundle branch block beat 330 131

Atrial premature beat 406 150

Aberrated atrial premature beat 49 29

Nodal (junctional) premature beat 5 2

Supraventricular premature beat 1 0

Premature ventricular contraction 1236 520

Fusion of ventricular and normal beat 165 74

Ventricular flutter wave 12 2

Atrial escape beat 12 4

Nodal (junctional) escape beat 45 14

Ventricular escape beat 5 4

Paced beat 151 86

Fusion of paced and normal beat 46 30

Non-conducted P-wave (blocked APB) 26 16

Unclassifiable beat 6 4

Isolated QRS-like artifact 55 30

Change in signal quality (qq) 253 115

Rhythm change 432 189

Start of ventricular flutter/fibrillation 5 1

End of ventricular flutter/fibrillation 5 1

Figure 3. Architecture of the proposed 1D-convolutional neural network (CNN) model.

The 1D max pooling resizes the input representation by taking the maximum value on
the window defined by pool size. The strides specify how much the pooling window moved
for each pooling step. The pooling level was placed before ReLU to reduce overfitting.
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Table 4. Detailed parameters of the proposed 1D-CNN model.

Input Shape (5400;1)–Sample of 5400 Samples

Type of Layer Output Shape Other Parameters

Conv1D (666;128) Kernel size = 80, Strides = 8, Filters = 128
Batch Normalization (666;128) -

Max Pooling 1D (166;128) Pool size = 4
Activation (166;128) ReLU activation

Conv1D (163;256) Kernel size = 4, Filters = 256
Batch Normalization (163;256) -

Max Pooling 1D (40;256) Pool size = 4
Activation (40;256) ReLU activation

Conv1D (37;256) Kernel size = 4, Filters = 256
Batch Normalization (37;256) -

Max Pooling 1D (9;256) Pool size = 4
Activation (9;256) ReLU activation

Conv1D (8;512) Kernel size = 4, Filters = 512
Batch Normalization (8;512) -

Max Pooling 1D (2;512) Pool size = 4
Activation (2;512) ReLU activation

AveragePooling 1D (1;512) Pool size = 2
Flatten (512) -

Dropout (512) Rate 0.6
Dense (2) Regularizer L2 (0.001), Softmax activation

In the output block, the 1D average pooling performed the same operation as the 1D
max pooling but took the average window value. After the average pooling, the network
had a flatten layer in order to transform multi-dimensional input feature vectors obtained
in the previous layer to the appropriate size, as the input of the subsequent layers of the
network. The output of the flatten layer is the input of a dense fully connected layer,
which uses the Softmax function to predict output classes. Moreover, we used a dropout
parameter to prevent overfitting. Dropout is a regularization technique that helps to reduce
interdependent learning amongst the neurons. At each training, a set of neurons randomly
chosen is dropped out of the net. We used dropout in the dense layer with a fraction
of 0.6. With the same aim of preventing overfitting, in the dense layer, we also used a
weight regularization approach. We used an L2 regularization penalty (sum of the squared
weights) with hyperparameter equal to 0.001 in order to keep small values of weight in the
dense layer. The architecture of the proposed 1D-CNN model is shown in Figure 3 and
Table 4.

4.4. Validation and Performance Metrics

In order to evaluate the performance of our model, the training set was split in 70% for
training and 30% for validation. Then to validate the stability of the model and generalize
results, a resampling procedure was performed on the training set. In particular, we
implemented k-fold cross-validation with k = 10. Data were split into 10 groups, then each
group at a time was used as a validation set and the remaining groups as the training set.
Data were split such that no observation could be included both in training and in test
sets. The network was fitted on the training set and evaluated on the validation set for
10 times. Results were summarized with mean and standard deviation values of the model
performance metrics. Finally, the testing set was used to verify the robustness of the neural
network on data not included in the training set.

To evaluate the performance of the neural network, we computed the confusion matrix
and the traditional classification metrics. In particular, given TP (true positive) and TN (true
negative) the number of events correctly classified, respectively, as successes or failures
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and FP (false positive) and FN (false negative) the number of events incorrectly classified,
respectively, as successes or failures, we calculated

Accuracy =
TP + TN

TP + TN + FN + FP
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 =
2TP

2TP + FP + FN
, (4)

5. Results and Discussion

We performed the proposed 1D convolution neural network on the MIT-BIH Arrhyth-
mia data processed as segments of 15 s consisting of 5400 samples including 21 different
classes of anomalies.

In the first experiment, we split the dataset basing on segments as explained in
Section 4.2. The network was trained on 70% of the set and was validated on the remaining
30% for 200 epochs. Results for the validation performed on the training set are shown in
Figure 4. The network stabilized in convergence in a training process of 200 epochs. The
learning curves of the training and validation loss stabilized below 0.5 and the learning
curves of the training and validation accuracy stabilized around 90%, both with a minimal
gap between the final values.

 
(a) (b) 

Figure 4. (a) Training and validation loss and (b) training and validation accuracy for the first experimentation. Accuracy
metric is defined in Equation (1). Epoch is commonly referred to as the number of a full training pass over the entire dataset.

In order to validate the stability of the proposed method, we used a k-fold cross
validation as explained in Section 4.4. The average accuracy of the model was 89.3 ± 0.26%
of standard deviation and the average loss was of 0.28 ± 0.06% and an average recall
85.6 ± 0.03%.

In order to assess the performance, the network was evaluated on the test set. The
confusion matrix and the related metrics were computed (Table 5). The network showed an
accuracy of 89.51%, and a recall of 91.09% for normal and 87.79% for anomalous segments,
the precision of 91.81% for normal and 86.78% for anomalous segments, and F1-score
91.45% for normal and 87.28% for anomalous segments.
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Table 5. Confusion matrix and related performance metrics for the test set in the first
experimentation.

Predicted Accuracy Recall Precision F1

Normal Anomalous (%) (%) (%) (%)

True
Normal 583 57

89.51
91.09 91.81 91.45

Anomalous 52 374 87.79 86.78 87.28

We compared the proposed network with the studies that, at the state of the art,
performed the same 1D convolutional neural network using the MIT-BIH Arrhythmia
Dataset with the aim to implement an automatic classification of cardiac pathologies based
on ECG signals. The results of this comparison are reported in Table 6.

Table 6. Comparison with studies performed using 1D-CNN on the MIT-BIH Arrhythmia Database.

Article Model Classes of Anomalies Accuracy Recall F1-Score

[54] 1D-CNN 17 classes 91.3% 83.9% 85.4%

[55] 1D-CNN 5 classes 97.5% - -

[56] 1D-CNN 5 classes 92.7% - -

[57] 1D-CNN 3 classes 98.33% 98.33% 98.33%

Proposed method 1D-CNN 1 class, including 21 kinds of anomalies 89.51% 87.79% 86.78%

Briefly summarizing, Yıldırım et al. [54] proposed a 1D-convolutional neural network
model for cardiac arrhythmia (17 classes) detection based on long-duration electrocar-
diography (ECG) signal analysis. They designed a complete end-to-end structure with
neither hand-crafted feature extraction of the signals nor feature selection at any stage
using a 16-layer deep network structure including standard CNN layers. The network
was tested on MIT-BIH Arrhythmia database considering 10 s ECG signal segments for
one lead (MLII) for a total of 1000 ECG signal segments from 45 persons. The network
achieved a detection accuracy of 17 cardiac arrhythmia disorders (classes) at a level of
91.33%. Li et al. [55] proposed a 1D-convolutional neural network to classify ECG signals.
The network consisted of five layers in addition to the input layer and the output layer,
in particular, two convolution layers, two down sampling layers and one full connection
layer. The model extracted the effective features from data and classified the features auto-
matically. The wavelet threshold method was used to filter the high frequency noise, while
the wavelet transform and reconstruction algorithm to correct the baseline drift, which is a
low-frequency noise. Subsequently, the segmentation of ECG signals and the reduction
of dimensions were performed by using R peaks that were located by the method of the
wavelet transform. The network achieved a detection accuracy of five typical kinds of
arrhythmia signals at a level of 97.5%. Zubair et al. [56] proposed an ECG beat classification
system based on a 1D-convolutional neural network. The model integrated feature extrac-
tion and classification of ECG pattern recognition and consisted of three convolution layers,
three pooling layers, a multilayer perceptron and Softmax layer. The classification was
performed in three main steps: ECG beat detection, sample extraction, and classification.
ECG beat detection stage involves the detection of the individual beat signal from 30 min
long ECG recording of each patient, using modified-Lead II signals. Equal numbers of sam-
ples (100) on both right and left sides from the Rpeak were extracted and downsampling
was performed to represent raw data of each beat by 128 samples. The network classified
five different kinds of anomalies with a detection accuracy of 92.7%. Avanzato et al. [57]
proposed an automatic heart disease diagnosis system using ECG signals based on the
direct application of a 1D-convolutional neural network. The network consisted of three
layers in addition to the input layer and the output layer. Unlike the classic CNN, which
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use fully connected neurons as their output layer, this network performed a single Average
pooling layer and then a Softmax followed by a natural logarithm. The structure of the
neural network input consisted of 30-s segments where every second of ECG recording
was equivalent to 360 samples, for a total of 10,800 samples. The paper evaluated the
performance of the network on three classes of anomalies with an accuracy of 98.33%.

Table 6 shows that the proposed method presents remarkable performance compared
to the other studies, considering that it is able to detect anomalies in an ECG recording
including 21 different classes. In addition, the proposed method is able to classify anomalies
even in presence of more than one kind of cardiac pathology in the same ECG segment. It
achieves recall and F1-score, respectively of 87.79% and 86.78%, improving results obtained
in [54], which considered only 17 classes of anomalies. These results were achieved with a
detection accuracy of 89.51%, slightly lower than the accuracy obtained using the method
proposed in [54], despite the increase in the number of different kinds of anomalies. The
high performance obtained for recall, in spite of a small loss for accuracy, is consistent with
the research goal to reduce the number of ECGs sent to the medical specialist for further
examination. At the same time, we need to ensure that anomalous ECGs could not escape
the medical examination and the prescription of the proper therapy. Although results
obtained in [54–56] showed higher performance, in those studies the analysis was carried
out including a lower number of anomalies. In particular, [55,56] included in the analysis
five classes and obtained an accuracy, respectively, of 97.5% and 92.7%. In [57] the analysis
was conducted using three classes with an accuracy of 98.33%. Note that the model in [54]
was based on 16 levels architecture (therefore with a large computational complexity to
deploy, as an example, on wearable devices) and the models in [55–57], although based on
four levels, operate only on a very small number of anomalies.

Analyzing the 52 segments containing anomalies and incorrectly classified as normal
(false negative, see Table 5), we observed that, for most of them, at least one of the segments
extracted from the same ECG recording was correctly classified as anomalous. Overall,
only five ECG recordings from patients affected by cardiac pathologies were not detected
at all.

In light of this, we carried out a second experiment, including in the training set only
segments extracted from the same ECG recordings, and for the test set, as explained in
Section 4.2. Thus, the proposed 1D-CNN was tested on segments extracted from ECG
recordings never presented to the network in the training process.

The training set consisted of 3360 segments, 1594 normal, and 1766 anomalous, ex-
tracted from 28 ECG recordings, whereas the remaining recordings were included in the
test set. In the test set, there were 1800 segments, 435 normal, and 1365 anomalous. To
evaluate the performance of the model, the network was trained on 70% of the set and
was validated on the remaining 30% for 200 epochs. Figure 5 shows the learning process
for training and validation loss and accuracy. The model stabilized in convergence in a
training process of 200 epochs. Additionally, in this case, the learning curves of the training
and validation loss stabilized around zero and the learning curves of the training and
validation accuracy stabilized around 90%.

In order to validate the stability of the proposed method, we used a k-fold cross
validation as explained in Section 4.4. The average accuracy of the model was 88.2 ± 0.28%
of standard deviation and the average loss was of 0.29 ± 0.07% and an average recall of
87.6 ± 0.03%.

The network was, then, evaluated on the test set. The resulting confusion matrix and
the related metrics are shown in Table 7.
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Figure 5. (a) Training and validation loss and (b) training and validation accuracy for the second experimentation.

Table 7. Confusion matrix and related performance metrics for the test set in the second experimen-
tation.

Predicted Accuracy Recall Precision F1

Normal Anomalous (%) (%) (%) (%)

True
Normal 241 194

84.94
55.40 75.79 64.01

Anomalous 77 1288 94.36 86.91 90.48

The network showed an accuracy of 84.94%, and a recall of 55.40% for normal and
94.36% for anomalous segments, the precision of 75.79% for normal and 86.91% for anoma-
lous segments, and F1-score 64.01% for normal and 90.48% for anomalous segments.

The model showed a higher recall for anomalous segments compared to the previous
test. Analyzing the 77 segments containing anomalies and incorrectly classified as normal,
we observed that, for all of them, at least one of the segments extracted from the same
ECG recording was correctly classified as anomalous. This result showed a remarkable
improvement in the performance of the proposed method since, thinking in terms of
patients rather than segments, the system was able to detect 100% of ECG recordings from
patients affected by cardiac pathologies.

Considering this performance, we believe that the unavoidable goal to detect anoma-
lous segments and minimize missed alarms was reached. This claim must be considered in
the operative context where the model was deployed, in which the cost of a false alarm
was considerably less than a missed one.

Moreover, we want to highlight that these results were achieved with the second
experiment whose settings represents a closer scenario in terms of model usage. In the
second experiment the model was validated on ECG records of different patients never
presented to the model during the training. This experiment design is not common since
validation is usually carried out with the usual holdout method, that is, segments from the
same ECG recordings could be interleaved between training and test sets. With holdout
there are chances that some signal patterns have been already presented to the model in
the training phase.

However, it should be noted that the system described here still presents a significant
false alarm rate. We are currently investigating different strategies to reduce the required
workload due to false alarms. One viable solution is to isolate and collect only anomalous
detected segments; when they occur in significant quantities can be sent remotely for
the expert verification. Looking only at some of the segments, just those classified as
anomalous by our model, can be a very quick job for an expert, certainly less demanding
than observing an entire ECG, even more so if referred to a Holter exam.
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This operational solution is well suited also for continual and active learning tech-
niques, that is to periodically retrain the model based on new annotations from an expert;
in this way, as new examples come into the system a probable gradual decrease in false
alarms events is expected, with more balanced performances.

6. Conclusions

The diffusion of personal portable monitoring devices could involve the reporting of
millions of ECG recordings every day. Systems able to support the cardiologists’ work in
the interpretation of ECGs for the diagnosis of cardiac pathologies are required to facilitate
health care decision making reducing considerably the expenditure of time and money. In
fact, the automated detection of suspicious anomalies in ECG recordings can drastically
reduce the number of ECGs that need to be manually examined by the cardiologists,
excluding those classified as normal.

In the present paper, we propose a system able to automatically detect the suspect of
cardiac pathologies in ECG signals from personal monitoring devices, using a 1D-CNN
architecture. The 1D-CNN model overcomes the problems of vanishing gradient and
gradient exploding related to recurrent neural networks, making their training difficult.
Moreover, the 1D-CNN model allows one to implement real-time and low-cost systems
and it is characterized by low computational complexity, feasible implementation on
smart devices, and cloud computing. The system was optimized to detect the suspect
of anomalies classifying normal and anomalous ECG, regardless of the kind of cardiac
pathology. The proposed model was tested on the MIT-BIH ECG Arrhythmia Database,
which included 21 different classes of ECG anomalies. Two different experimentations were
carried out showing remarkable performance compared to the other studies conducted
using the 1D-CNN architecture tested on the MIT-BIH ECG Arrhythmia Database. In
particular, the network achieved accuracy and recall, respectively, of 84.94% and 94.36%
computed with respect to the ECG signal segments and accuracy and recall of 100% when
computed with respect to the patients, therefore considering the detection of anomalies in
the entire ECG recordings.

We are now working on a possible personalization of the model, tunable toward a
single person. We expect that the performance of this kind of model could be much better
than a general one, with an additional cost of model calibration before the actual usage.

In the same study we are also investigating a model trained on “normal” segments of
healthy patients and abnormal segments of pathological patients (since it is not possible
to obtain abnormal segments from a healthy patient). This will allow us to observe if
the model trained on this new dataset presents different characteristics than the model
described in this paper. Here, we wanted to compare our study with studies that were as
homogeneous as possible, at least in the dataset used, so we did not introduce any further
changes regarding the training data.
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Abstract: Image structures are segmented automatically using deep learning (DL) for analysis and
processing. The three most popular base loss functions are cross entropy (crossE), intersect-over-
the-union (IoU), and dice. Which should be used, is it useful to consider simple variations, such as
modifying formula coefficients? How do characteristics of different image structures influence scores?
Taking three different medical image segmentation problems (segmentation of organs in magnetic
resonance images (MRI), liver in computer tomography images (CT) and diabetic retinopathy lesions
in eye fundus images (EFI)), we quantify loss functions and variations, as well as segmentation
scores of different targets. We first describe the limitations of metrics, since loss is a metric, then we
describe and test alternatives. Experimentally, we observed that DeeplabV3 outperforms UNet and
fully convolutional network (FCN) in all datasets. Dice scored 1 to 6 percentage points (pp) higher
than cross entropy over all datasets, IoU improved 0 to 3 pp. Varying formula coefficients improved
scores, but the best choices depend on the dataset: compared to crossE, different false positive vs.
false negative weights improved MRI by 12 pp, and assigning zero weight to background improved
EFI by 6 pp. Multiclass segmentation scored higher than n-uniclass segmentation in MRI by 8 pp.
EFI lesions score low compared to more constant structures (e.g., optic disk or even organs), but loss
modifications improve those scores significantly 6 to 9 pp. Our conclusions are that dice is best, it is
worth assigning 0 weight to class background and to test different weights on false positives and
false negatives.

Keywords: computers in medicine; segmentation; machine learning; deep learning; MRI

1. Introduction

Various medical imaging modalities are used in different settings to form images
of the anatomy and physiological processes of some part of the body. After acquisition,
segmentation is an image processing functionality useful for advanced computer-aided
analysis, measurements and visualizations related to medical procedures. Deep learning
has been applied increasingly in that context to automatically learn how to classify and
segment the images. Magnetic resonance imaging (MRI) and computer tomography
(CT) are most popular for analysis and diagnosis of multiple affections. Examples of deep
learning segmentation on those datasets include acute ischemic lesions [1], brain tumors [2],
the striatum [3], organs-at-risks in head and neck [4], polycystic kidneys [5], prostate [6]
and spine [7]. References [8,9] review applications in more detail. Analysis of eye-fundus
images (EFI) to detect lesions is a very different medical imaging context where precise
segmentation can help quantify lesions indicative of diabetic retinopathy [10]. In these,
and other medical imaging scenarios, segmentation is a very common operation.

Current state-of-the-art segmentation uses deep convolutional neural networks (DCNN).
These systems were first developed to classify images, with some popular architectures
being VGG [11] and Resnet [12]. The classification DCNN is made of a sequence of en-
coder convolution stages (convolutions, activations and pooling) that extract and compress
features from the image directly into a feature vector. Next, a fully-connected neural
network classifies the image based on the feature vector. The segmentation network is
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a modified DCNN architecture that classifies each pixel (with a segment label) instead
of the image. To achieve this the fully connected layers are replaced by a decoder that
successively de-convolves until the full image size is restored. The fully convolutional
network (FCN) [13] was one of the first well-structured segmentation network architec-
tures. It uses a DCNN as encoder (e.g., VGG) and replaces the final fully-connected layers
by up-sampling interpolation layers. U-Net introduced further innovations [14], with
de-convolution stages symmetric to the convolution stages (forming a U-shape) instead of
interpolation. DeepLab [15] is another highly accurate segmentation network architecture
that introduces important innovations. One such innovation is Atrous spatial pyramid
pooling (ASPP), which improves segmentation at multiple scales. Another innovation is
the use of conditional random fields (CRF) that applies probabilistic graphical models for
improved determination of objects boundaries.

Learning to segment automatically based on training images and groundtruth seg-
ments is a crucial step in segmentation DCNNs. In that process, loss is a fundamental
measure of the distance between the current quality of segmentation of training images
and the groundtruth segmentations that is used as the basis for backpropagation learning.
A loss function that fails to reveal deficiencies in segmentation of specific structures will
not learn to segment those structures well. Nevertheless, it is difficult to accurately reflect
the loss of different target structures, with different characteristics and occurrences, in a
single value (the loss). For that reason, it is common in current state-of-the-art to see a final
training validation loss of 1% or less at the same time that incorrections in segmentation
of some structures are still quite visible. Figure 1 illustrates this problem with a real case
segmentation of two MRI test slices (the groundtruth segments are the left images shown
on black background). In this example, the final validation loss was very low (less than 1%
cross entropy loss), but imperfections are quite visible, especially in the case of (b).

  
(a) (b) 

Figure 1. Example magnetic resonance image (MRI) segmentation of independent test images using DeepLabv3 segmenta-
tion network. The left of each image is the groundtruth on a black background, the right is the segmentation: (a) is a slice
showing the liver and spleen; (b) is another slice showing the kidneys and a small extremity of the liver.

The most popular loss functions are cross entropy (crossE), dice and sometimes also
IoU (a.k.a Jaccard index). However, given different segmentation contexts in medical
imaging, the question arises as to which network, loss function and loss function tuning
can optimize the results? In this work, we experiment segmentation in the three imaging
contexts (MRI, CT and EFI) to understand which of the three most popular loss functions
works better, and to evaluate how changing coefficients weights in the formulas might
modify the results. We also evaluate whether it would be preferable to always solve one
uniclass segmentation for each target structure or the single multiclass segmentation. In
order to reach conclusions we run the following experiments: (1) choose best performing
network; (2) compare the three loss functions and variations, such as different weights
to false positives and negatives and removal of background class from the formula (zero
weighting the background); and (3) evaluate also the alternative of simply replacing
multiclass by n uniclass segmentation problems. We observed the following: (1) DeeplabV3
was always better than UNet or FCN; (2) dice is the best in average over the three datasets,
followed by IoU and finally crossE; (3) variations were useful in different ways in different
datasets: while dice was the best in CT of the liver, IoU with specific weight modifications
was the best in the MRI dataset and dice without background was the best alternative in
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the EFI dataset. From those results, we conclude that: (1) dice is the best scoring alternative
in average over all datasets; (2) it is useful to consider different weights variations and to
tune for a specific context, because we obtained significant scores improvements; (3) the
single multiclass problem was preferable to expressing and solving n uniclass problems.

We also compare segmentation scores of larger and more constant classes, such as
the optic disk or organs. In addition, we compare with scores of small and very changing
targets, such as small microaneurysms in eye fundus images. We observe that the optic disk
(90%) and organs (77 to 86%) score much higher than the smaller, location and conformation
changing lesions (18 to 61%). Modifications to loss functions improved scores of the small
lesions by 5 to 15%.

Related Work

Deep learning revolutionized segmentation. Prior to the use of deep learning (DL),
segmentation of organs in MRI and CT would most frequently be based on multi-atlas
approaches (e.g., [16] uses 3D models of the liver and probability maps, [17] is based on
histograms and active contours to segment the liver, [18] applies watershed and active
contours). Since around 2014, deep learning-based segmentation gradually became the
norm. In what concerns recent works on segmentation of MR and CT, Zhou [19] achieved
top scores using a fully convolutional networks (FCN) by taking 3-D CT images and
applying a majority voting scheme on the output of segmentation of 2D slices taken from
different image orientations. Reference [20] applied a similar approach to segmentation of
the abdomen from MRI sequences, scoring (dice similarity coefficient = DSC) 0.93, 0.73,
0.78, 0.91, 0.56 for spleen, left and right kidney, liver and stomach respectively. Larsson [21]
proposed DeepSeg which segments abdominal organs using multi-atlas, Convolutional
Neural Networks (CNN) for pixel binary classification and thresholding to keep only
largest connected region (JI: 0.9; 0.87; 0.76; 0.84 for liver, spleen, right and left kidney).
Reference [22] proposed multi-slice 2D neural network designed in a way that considers
information of subsequent slices, plus augmented data and multiview training. Groza [23]
presents an ensemble of DL networks with voting, and [24] tests different architectures
(U-Net, deeper U-Net with VGG-19, a cascade of two networks). Loss is considered
in [25], where the authors proposed improving deep pancreas segmentation in CT and MRI
images via recurrent neural contextual learning and “direct” loss function. They propose
a Jaccard Loss (JACLoss): “It empirically works better than the cross-entropy loss or the
class-balanced cross-entropy loss when segmenting small objects”. Reference [24] also
replaced cross-entropy by the dice function to better deal with class imbalance.

Deep learning has also been applied extensively to detection of lesions in eye fundus
images. Works include Prentasic et al. [26], Gondal at al. [27], Quellec et al. [28] (exudates,
hemorrhages and microaneurisms), Haloi et al. [29], van Grinsven et al. [30], Orlando
et al. [31] and Shan et al. [32] (microaneurisms, hemorrhages or both). Some classify small
square windows to detect lesions, others extract lesion heat maps from the DCNN and yet
others apply segmentation networks directly. In terms of results evaluating segmentation
quality, reported sensitivities against one false positive per image (FPI) in some of those
works were (HA = hemorrhages, MA = micro-aneurisms, HE = hard exudates, SE = soft
exudates): Quellec [28] (HA = 47%; HE = 57%; SE = 70% and MA = 38%), Gondal [27]
(HA = 50%; HE = 40%; SE = 64% and MA = 7%) and Orlando [31] (HA:50%, MA: 30%).

The loss function is based on a metric, and the problem of metrics in general is
mentioned in [33]: “many scores are artificially high simply because the background is
huge and hence the term TN (true negatives) is also huge”. In what concerns study of the
loss function, the work in [34] compares alternative loss functions for the binary problem
only (one class). In a different context, [35] investigated a modified loss function that is
useful in our work as well. Ref. [36] investigates the use of prior information, which is
the use of information regarding acceptable shapes, conformations, textures or colors to
enhance loss function.

99



J. Imaging 2021, 7, 16

Comparing to all the related works we just reviewed, and considering the three
different contexts that we have chosen (MRI and CT of organs, and EFI lesions) we ask the
question of whether any of the three most popular loss functions has best results along the
three contexts, whether different weighting of formula coefficients might be worth and
how they compare.

2. Materials and Methods

In this section, we first introduce the MRI, CT and EFI data used in our experimental
work, then we describe our investigative methods. We analyze metrics and their limi-
tations, describing the loss function variations and alternatives based on that analysis.
Then we describe an experimental setup to evaluate the quality of segmentation with the
loss alternatives.

2.1. The Datasets

The three datasets used in this experiment are illustrated briefly in Figure 2. The
magnetic resonance imaging (MRI) data used in our experiments are a set of scans available
in [37]. The dataset in [37] includes 120 DICOM scans (40 T1-DUAL in phase, 40 T1-DUAL
out phase and 40 T2-SPIR), obtained from healthy patients (routine scans, no tumors,
lesions or any other diseases). These scans capture abdominal organs (liver, the two
kidneys and spleen). In this work, we report our results for 40 in-phase sequences of
the T1-DUAL fat suppression protocol. The sequences were acquired by a 1.5T Philips
MRI, which produces 12-bit DICOM images with a resolution of 256 × 256. The inter-slice
distance ISDs varies between 5.5–9 mm (average 7.84 mm), x-y spacing is between 1.36–
1.89 mm (average 1.61 mm) and the number of slices per scan is between 26 and 50 (average
36). Train, test and validation data independent from each other were always obtained by
dividing the patients into those subsets. To ensure independent testing, in each run the
patients sequences (dataset) were divided into training and testing sequences using a ratio
80%/20%. To obtain multiple runs, the patient sequences were divided randomly into five
folds such that each fold has 20% of all patients. In each run, one of the folds was assigned
to testing and the remaining folds were used for training. Data augmentation was also
added after we verified that it contributes to improved scores, by increasing diversity and
size of the dataset. Data augmentation was defined based on random translations of up
to 10 pixels, random rotations up to 10 degrees, shearing up to 10 pixels and scaling up
to 10%.

   

 

Figure 2. Illustrative examples from the three datasets used. Left: MRI segmentation of liver, spleen,
left and right kidneys (groundtruth + segmented); Center: computer tomography (CT) segmentation
of liver (groundtruth + segmented); Right: eye fundus image (EFI) with indication of some lesions
and example groundtruth.

We also use a computer tomography (CT) dataset composed of upper abdomen
sequences from 40 different patients [37]. The images were acquired using equipment—
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Philips SecuraCT (Phillips, Amsterdam, Netherlands), 16 detectors, Philips Mx8000, 64 de-
tectors, Toshiba AquilionOne, 320 detectors (equipped with spiral CT). Subjects were all
healthy (livers did not exhibit lesions or disease). A contrast agent was used, the abdomen
sequences obtained at hepatic phase, i.e., 70–80 s p.i. or 50–60 s after bolus tracking. In this
phase, the liver parenchyma enhances through blood supply by the portal vein, resulting
in some potential enhancement of the hepatic veins. The resulting 2874 slices have a
resolution of 512 × 512, XY spacing 0.7 to 0.8 mm and inter slice distance 3 to 3.2 mm.

The EFI dataset we used is IDRID [10], a dataset that is publicly available for the study
of automated detection of diabetic retinopathy and segmentation of characteristic lesions
(microaneurysms, hemorrhages, hard exudates, soft exudates), plus the optic disc. It has
groundtruth labelled data for each of 83 eye fundus images (EFI), where most images have
a large number of instances of each specific lesion, and the groundtruths represent the class
that should be assigned to each individual pixel. IDRID contains the pixel groundtruths for
micro-aneurisms, hemorrhages, exudates (hard and soft) and the optic disk. The equipment
used to acquire the images was a Kowa VX-10 alpha digital fundus camera with 50-degree
field of view (FOV), centered near the macula. Image resolution was 4288 × 2848, saved as
jpg. Experts validated the quality of the images and their clinical relevance.

2.2. Method
2.2.1. Discussing Metrics and Loss

Both segmentation evaluation metrics and loss function are expected to quantify the
difference (error) between the groundtruth (GND), representing a correct segmentation of
the image, and the segmentation output (SEG). The loss f(SEG, GND) is a single quantity
between 0 and 1, and the quality of segmentation is (quality = 1 − loss). SEG and GND are
labelmaps, i.e., each position (pixel) in the labelmap is a class label. In most bibliography,
metrics are defined considering a binary classification problem that classifies into two
classes: positive (P), with the meaning “is”, and negative (N), with the meaning “is not”.
The quantities TP, TN, FP and FN correspond to the number of pixels that are true positives,
true negatives, false positives and false negatives, respectively. Given those quantities,
some of the most frequently used metrics are:

Accuracy (ac) = (TP + TN)//TP + TN + FP + FN); (1)

Sensitivity (se) = recall = True Positive Rate (TPR) = TP/(TP + FN) (2)

Specificity (sp) = TN/(TN + FP) (3)

Precision (p) = TP/(TP + FP) (4)

False Positive Rate (FPR) = FP/(FP + TN) (5)

ROC, a plot of TPR vs. FPR, and AUC, the area under the curve of ROC (6)

IoU = JI = TP/(TP + FN + FP) (7)

Dice (dice) = DSC = 2TP/(2TP + FP + FN) = 2JI/(JI + 1), which is highly
correlated with JI

(8)

In multiclass problems, we can apply the same formulas, but considering the fol-
lowing quantities instead: a TP pixel is a pixel that belongs to one class c different from
background in groundtruth and also in the segmentation; a TN pixel is a pixel that belongs
to background in both groundtruth and segmentation; an FP pixel is a pixel that belongs to
background in groundtruth but is classified as some other class c in segmentation; an FN
pixel is a pixel that belongs to some class c different from background in groundtruth but
is then classified as background.

The following three observations are important reasons why the metrics defined
in Equations (1)–(8) can fail to evaluate segmentation correctly in many medical imag-
ing contexts:
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(1) The number TP is always huge in all metrics, because TP of background pixels is
huge. As a consequence, all metrics (1) to (8) report high scores regardless of the
actual quality of segmentation of individual classes if evaluated over all pixels;

(2) TN is also huge because it includes a huge number of background pixels that are
well classified. It means that specificity (SP), FPR, ROC and AUC do not evaluate the
quality of segmentation of individual classes well;

(3) Sensitivity (a.k.a recall or TPR), although useful because it quantifies the fraction
of organ pixels classified correctly as such, fails to capture very important possible
deficiencies, because it does not include FP (background classified as organ) in the
formula, a frequent occurrence.

The problems identified in (a) and (b) are a consequence not only of class imbalance,
but most importantly of the fact that background pixels are much easier to segment (score
much higher) than pixels of another target class, because they are more constant across
most slices and patients (since they include all pixels “framing” the image except the target
class itself). The issue identified in (a) means that it is necessary to use metrics that evaluate
each class separately instead of computing them over all pixels, requiring modifications to
how Equations (1)–(8) were defined above. Additionally, since (b) and (c) discard many
metrics that are inappropriate, the metrics that are left for use arejaccard index (JI), and
Dice Sorenson Coefficient (DSC) and precision (which should be used together with recall).
Given the observations in (a), these need to be evaluated separately for each class. That
means each quantity TP, TN, FP and FN must be replaced by TPc, TNc, FPc and FNc
respectively, where c is a class, and the metrics should be obtained and reported separately
for each class c.

However, while we can report a different value of JI or DSC for each class when
evaluating segmentation quality, the loss function needs to output a single value to be
used as delta in backpropagation learning. Therefore, the final loss must be averaged
over the loss of each class. This solution is still not perfect because the loss of class
“background” is in practice always almost zero (due to (a) and (b)), contributing to push
the average loss down, even if specific target classes are not very well segmented. Based
on these observations, we define the loss functions and variations to consider in the next
sub-section.

2.2.2. Defining Metrics and Variations for Use as Loss Function

Based on the previous analysis, we define a set of loss functions besides cross entropy,
and a set of variations and alternatives that may contribute to improve the quality of the
learning process. We also include the standard cross entropy as one of the options to
compare to.

Cross entropy (crossE, the default to compare with): cross-entropy is well-known and
the default loss function. Given the set of probabilities p of a single pixel of the segmentation
output to be of each possible class, and the real probabilities (one-hot encoding of the class),
cross entropy measures dissimilarity between p and q. If ti and si are the groundtruth and
the CNN score of each pixel for each class i respectively,

crossE = −∑ C
i ti log si (9)

By applying a class frequency inverse weight to the value for each pixel, we obtain
class-weighted cross-entropy, which is the variant we use and denote as “crossE”.

Intersect over the union (IoU): IoU is a convenient measure of the degree of overlap or
match between segmentation-obtained regions and the corresponding groundtruth regions.
Given the number of true positives (TP), false positives (FP) and false negatives (FN) in the
classification of pixels, loss is (1-IoU).

IoU(loss) = 1 − IoU = 1 − TP
TP + FP + FN

(10)
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However, since this IoU averages over all pixels and we identified the problem with
that measurement, IoU averaged over the classes is used instead,

IoU(loss) = 1 − ∑C
I=1 IoUi

C
, IoUi = 1 − TPi

TPi + FPi + FNi
(11)

Dice (dice): The dice or dice similarity coefficient (DSC) is a metric that is highly
correlated and can be obtained from IoU directly. The loss formula for the dice is:

dice(loss) = 1 − DSC = 1 − 2TP
2TP + FP + FN

(12)

As with IoU we use an average over classes,

dice(loss) = 1 − ∑C
I=1 dicei

C
, dicei = 1 − 2TPi

2TPi + FPi + FNi
(13)

Intersect over the union with penalties (IoUxy): IoUxy is similar to IoU but penalizes
differently FP and FN in the denominator of the formula. The resulting formula weighting
over classes is:

IoUxy(loss) = 1 − ∑C
I=1 IoUxyi

C
, IoUxyi = 1 − TPi

TPi + αFPi + βFNi
(14)

In these formulas, α and β are such that α + β = 2, α, β ≥ 0. The question to answer
is whether giving different weights to FN and FP (the two types of unwanted errors) will
allow the approach to better segment each organ, and how varying the combination of α
and β affects the result. We evaluate this by means of experimentation.

Loss without considering the background (dice noBK): Since the background is easier
to segment than the remaining classes and is also huge, dice noBK is an alternative that
removes the background from the loss formula (i.e., it averages loss over all classes except
the background). The objective is to try to emphasize the need to segment the other
classes well. An experimental approach is necessary to evaluate if this alternative improves
the outcome.

Uniclass segmentation: instead of a single multi-class problem with a single segmen-
tation network, we can have one specific segmentation network specializing in segmenting
each target class. The potential advantage is that we will be replacing a difficult multi-
objective optimization problem [38] (minimize loss of segmentation of each organ) by n
easier to optimize single objective uniclass problems (each one optimizes segmentation of
one organ). Note. however that, on the other hand, in uniclass versions all target classes
are marked as background except the one being segmented. An experimental approach
is necessary to reach conclusions regarding which alternative scores best, either a single
multiclass segmentation network or n uniclass segmentation networks, one for each class.

Summarizing the alternatives, they include the base loss formulas (crossE, IoU, dice),
plus versions of dice and IoU that weight false positives and false negatives differently
(exemplified here by IoUxy), dice or IoU with no background class (exemplified here
as dice noBK), and finally the uniclass variation. Additionally, we can specify different
combinations of α and β in the IoUxy case. To limit the size of comparisons, we do not test
alternatives dicexy and IoU noBK.

2.3. Experimental Setup

The segmentation network architecture is a relevant factor for the quality of seg-
mentation. For this work, we pick well-known segmentation networks, the U-NET [14],
FCN [13] and DeepLabV3 [15]. The U-Net uses a 58-layer segmentation network with
VGG-16 (7 stages, corresponding to 41 layers) for feature extraction (encoding). The FCN
tested here also uses VGG-16 as encoder, and its total network size is smaller than UNet
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(51 layers). The decoder stages of U-Net are symmetric to the encoder stages, while FCN
uses simple interpolation in the decoder stages. Both networks also include forward con-
nections feeding feature maps from encoder to decoder stages. The two networks (U-Net
and FCN) are the most-frequently used ones in segmentation of medical images. The
third network, DeepLabV3, is a well-known segmentation network often used in object
recognition applications that outperformed most competitors due to some innovations. It
is the deepest network tested in this work, with 100 layers and uses Resnet-18 as feature ex-
tractor (8 stages, totaling 71 layers). DeepLabV3 incorporates two important segmentation
quality enhancing improvements, the Atrous spatial pyramid pooling (ASPP) (improving
segmentation of objects at multiple scales) and fully connected conditional random fields
(CRF) for improved localization of object boundaries using mechanisms from probabilistic
graphical models. All segmentation networks were pre-trained versions based on object
recognition data.

The experiments reported in this work were preceded by a set of iterations tuning
configurations to the best possible results. The final network training parameters after
tuning, to be used in our experimental work, were: learning function stochastic gradient
descent with momentum (SGDM), with an initial learning rate = 0.005, piecewise learning
rate with drop period of 20 and learn rate drop factor of 0.9 (i.e., the learn rate would
decrease to 90% every 20 epochs). Training iterations were 500 epochs; minibatch sz = 32;
momentum = 0.9. The factor that most improved performance in our initial tuning prior to
experiments was data augmentation, which we described before. A machine with a GPU
NVIDIA G Force GTX1070 was used for the experiments.

Class balancing was applied in the pixel classification layer. Class balancing is a
common operation in machine learning for datasets where classes have very different
numbers of representatives (class imbalance). In medical images, class imbalance biases
the result of the iterative backpropagation learning process to favor background over the
target structures or organs. To illustrate the class imbalance problem, a classifier that
classifies every pixel as background will guess correctly 95% of times if the background
represents 95% of all pixels, yet it does not segment any structures or organs correctly. To
solve this problem, class balancing multiplies the contribution of each pixel or class in the
computation of the loss function by the inverse of its frequency in the whole dataset. Those
class weights are added to the last layer, the pixel classification layer.

The experiments were divided into two phases. The first phase chose the best per-
forming segmentation network among the three candidates, using the default cross entropy
loss function. Using the best performing chosen network (DeepLabV3), we then tested
the various loss functions. The loss functions used are cross entropy (crossE), IoU (IoU11)
and IoUxy with different configurations of x and y, dice and dice without considering
the background (dice noBK). In the case of IoUxy, we first test the following options:
IoU11 = IoUxy with α = 1, β = 1, IoU1505 = IoUxy with α = 1.5, β = 0.5, IoU0515= IoUxy
with α = 0.5, β = 1.5. Afterwards, we run a sensitivity experiment testing all combinations
of α and β with steps 0.25. Finally, we compare multiclass versus n-uniclass segmentations.
In what concerns metrics used to evaluate the quality of the resulting segmentations, we
focused mostly our analysis on per-class IoU (JI), since it allows us to assess the quality of
segmentation of each organ/lesion separately, and mean IoU over all classes.

3. Results

3.1. Choose Best-Performing Network

All experiments ran on independent test datasets after training and are the average
over 5 cross-validation runs. For MRI and CT data, patient sequences were divided
randomly into 5 folds such that each fold has 20% of all patients. This allowed us to run
5 experiments, each one considering one fold as containing the testing sequences and the
remaining folds as training sequences (80% training/20% testing). Table 1 shows the IoU
(JI) of UNet, FCN and DeeplabV3 (with cross-entropy crossE loss) for the MRI, CT and EFI
datasets (Table 4 details example cross-validation runs for the MRI dataset).
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Table 1. Intersect-over-the-union (IoU) of segmentation networks with base crossE loss (MRI, CT and EFI).

MRI Data DeepLabV3 FCN UNET CT Data DeepLabV3 FCN UNET EFI Data DeepLabV3 FCN UNET

Background 0.99 0.99 0.98 Background 0.97 0.89 0.75
Liver 0.86 0.86 0.74 Liver 0.86 0.77 0.75 Microaneurysms 0.13 0.02 0.01

Spleen 0.82 0.74 0.73 Hemorrhages 0.24 0.23 0.10
Rt Kidney 0.77 0.78 0.75 Hard Exudates 0.52 0.20 0.08
Lt Kidney 0.81 0.77 0.78 Soft Exudates 0.41 0.29 0.08

Optic Disc 0.90 0.83 0.26
Avg IoU 0.85 0.83 0.80 0.53 0.31 0.21

Table 2 shows the results of different loss variations for MRI and EFI data, and Table 3
shows the corresponding results for CT data. The base loss functions tested were crossE,
IoU and dice. Variants tested were no background (dice noBK) and different combinations
of weights in IoU (different weights α and β applied to false negatives and false positives).
Table 4 details cross-validation runs for the MRI dataset, to show that the difference of
scores is statistically relevant. We report the mean IoU of each fold, average mean (IoU)
over the 5 folds, the standard deviation, the 90% CI interval limits and the p-value (the
p-value evaluates the null hypothesis that the differences observed between each of the
loss functions and that of iou0515 might be purely by chance).

Table 2. IoU of segmentation network DeepLabV3 with diff. loss functions, two datasets (MRI, EFI).

MRI CrossE IoU IoU Iou Dice
Dice

noBK
EFI CrossE IoU Dice

Dice
noBK

α

β
- 1

1
1.5
0.5

0.5
1.5 - -

BackGround 0.99 0.99 0.99 1.00 0.99 0.99 Background 0.97 0.98 0.98 0.98
liver 0.86 0.84 0.69 0.88 0.87 0.84 Microaneurysm. 0.13 0.17 0.16 0.18

spleen 0.82 0.84 0.80 0.87 0.80 0.81 Hemorrhages 0.24 0.1 0.28 0.32
Rt kidney 0.77 0.82 0.77 0.88 0.81 0.82 Hard Exudates 0.52 0.61 0.61 0.61
Lt kidney 0.81 0.74 0.73 0.85 0.76 0.79 Soft Exudates 0.41 0.49 0.51 0.56

Optic Disc 0.90 0.91 0.91 0.90
avg 0.84 0.86 0.82 0.90 0.85 0.85 avg 0.53 0.53 0.57 0.59

Table 3. IoU of segmentation network DeepLabV3 on CT data.

CrossE Iou11 Iou0515 Dice Dice noBK

BackGround 0.98 0.96 0.98 0.99 0.98
liver 0.75 0.82 0.76 0.84 0.79
avg 0.86 0.89 0.87 0.91 0.89

Table 4. IoU of segmentation network DeepLabV3 for diff folds (CVi = cross validation fold) on MRI.

Mean
(IoU)

CV1 CV2 CV3 CV4 CV5 Avg stdev Avg − CI Avg + CI p-Value

CrossE 0.843 0.834 0.829 0.833 0.836 0.835 0.006 0.831 0.842 0.000007
dice 0.848 0.851 0.864 0.849 0.852 0.853 0.007 0.845 0.859 0.00015

iou11 0.836 0.875 0.855 0.876 0.857 0.860 0.019 0.838 0.876 0.007
iou0515 0.879 0.901 0.903 0.895 0.881 0.892 0.011 0.871 0.892 -

3.2. Loss Formula Weights: Sensitivity Run Using IoUxy Loss Function

Since variations of weights were useful for MRI data, in this experiment we vary the
alpha and beta coefficients of the denominator of IoU loss function (αFPi + βFNi) using a
step of 0.25 for the MRI dataset. Table 5 shows the evolution of the mean IoU for different
values of alpha in one run.
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Table 5. IoU of segmentation network DeepLabV3 for different values of alpha in MRI.

Alpha 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

MeanIoU 0.63 0.82 0.89 0.88 0.87 0.84 0.83 0.79 0.16

3.3. Would It Be Worth Running by n-Uniclass Problems Instead of One Multiclass Problem?

Table 6 compares the scores of the multiclass problem with those obtained for n
uniclass problems considering the MRI dataset (n = 4, one for each organ), and for the
EFI dataset (n = 5, one for each lesion). The objective is to evaluate whether running
n-uniclass segmentations, one for each organ/lesion, would improve or degrade scores. To
compare the two options, the next experiment reports results of two runs: (1) multiclass
segmentation (all organs/lesions in a single network); (2) uniclass segmentation for each
organ/lesion separately. For the MRI dataset, multiclass scores were higher for any loss
function: crossE, dice and IoU improved from (0.77, 0.73, 0.79) to (0.84, 0.86, 0.85) using
multiclass. Looking at the details per organ, only the liver scores the same (crossE, dice) or
better (IoU11) using the uniclass alternative. In the case of EFI, uniclass scores were also
similar or lower than multiclass scores in most cases, and the average IoU scores are higher
for the multiclass alternative as well.

Table 6. IoU achieved with multiclass vs. uniclass on MRI and EFI.

MRI Multiclass Uniclass EFI Multiclass Uniclass

CrossE IoU Dice CrossE IoU Dice CrossE Dice CrossE Dice

BackGround 0.99 0.99 0.99 - - - Background 0.97 0.98 - -
liver 0.86 0.84 0.87 0.86 0.89 0.87 Microaneurysm. 0.13 0.16 0.16 0.12

spleen 0.82 0.84 0.80 0.58 0.62 0.52 Hemorrhages 0.24 0.28 0.31 0.25
Rt kidney 0.77 0.82 0.81 0.72 0.50 0.79 Hard Exudates 0.52 0.61 0.43 0.60
Lt kidney 0.81 0.74 0.76 0.70 0.67 0.79 Soft Exudates 0.41 0.51 0.45 0.36

Optic Disc 0.9 0.91 0.87 0.91
avg 0.84 0.86 0.85 0.77 0.73 0.79 avg 0.53 0.57 0.45 0.45

4. Discussion

According to the results shown in Table 1, the best-performing network was DeepLabV3.
Since UNet is a popular network for medical imaging, this result was surprising. As part
of our future work, we are currently studying the details that contribute to this difference.
The use of Resnet residue-based encoder network, ASPP and CRF should be important
factors when compared with UNets’ VGG-16. In the same table, we can also see that MRI
organ scores are much better than EFI lesions scores. In EFI, the background and optic disk
score high (90% to 97%), but lesions score much lower (13 to 52% using crossE). Most of the
background is fairly constant, and the optic disk also has relatively constant location and
shape. In MRI, organs score reasonably high (77% to 86%). Organs in MRI are also located
in similar places and have similar conformations, although their shape varies between
different slices. Eye fundus lesions, on the other hand, are much smaller and/or have
varying conformations and sometimes also lack adequate contrast. In general, there are
also more errors near region borders in MRI and EFI, so that small/thin regions have
higher error rates relative to their area. By modifying the loss function, Table 2 shows that
scores of lesions in EFI improved from (13% to 52% using crossE) to (18% to 61% using
dice noBK).

From Table 2 (comparison of scores of loss alternatives for MRI and EFI data), and
Table 3 (same for CT data), we conclude that the best performing loss function differed
slightly depending on the dataset, but there were some common patterns. Dice was the
best for the liver CT dataset (91% versus 86% of crossE); IoU0515 (i.e., IoU with modified FP
and FN weights) was the best performing loss variant for the MRI dataset (90% versus 84%
of crossE); Finally, dice with no background was the top performing alternative for EFI data
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(59% versus 53% of crossE). Evaluating only the base loss functions (no variations) over the
three datasets, dice scores best (85% MRI, 57% EFI, 91% CT), followed by IoU (86% MRI,
53% EFI and 89% CT) and finally crossE (84% MRI, 53% EFI, 86% CT). This means that dice
loss improved scores by an average of one percentage point (pp), 4pp and 5pp for MRI, EFI
and CT datasets, respectively, when comparing with crossE. Considering weight variations
(different weights to false positives and negatives, zero weight on background = noBK) the
score improvement is larger. Tuning α and β weights of false positives vs. false negatives
improved scores further in MRI by 6 pp for a total of 12 pp, while assigning zero weight
to class background improved scores in EFI dataset by 4 pp for a total of 6 pp. The top
improvement per class considering the best variations were 11% for the right kidney in
MRI, 15% for soft exudates in EFI and 9% for the liver in the CT dataset.

Tables 4 and 5 show additional details. Table 4 details cross validation runs for the
MRI dataset, showing that the differences observed between for instance IoUxy and cross
entropy are statistically significant. Table 5 shows how scores varied in MRI as α and β
weights on false positives versus false negatives are modified in steps of 0.25. It shows that
values of α between 0.5 and 0.75 scored highest for the MRI dataset.

The last experiment (Table 6) concerned evaluating whether replacing the multiclass
problem by a set of n-uniclass problems, one for each non-background class, would improve
or worsen the results, using the MRI dataset and the EFI dataset as well. Multiclass scores
were better for any loss function: in the case of MRI, crossE, dice and IoU improved from
(0.77, 0.73, 0.79) to (0.84, 0.86, 0.85) using multiclass. Looking at the details per organ, only
the liver scores the same (crossE, dice) or better (IoU11) using the uniclass alternative. For
the EFI dataset, taking the example of dice loss, we have multiclass (0.16, 0.28, 0.61, 0.51,
0.91) and uniclass (0.12, 0.25, 0.60, 0.36, 0.91). The conclusion is that the multiclass problem
scored higher in general. The potential advantage of considering the uniclass problem
would be that loss would only have to optimize for one class. However, organs/lesions
that are not the target in each independent run can be more easily confounded with other
organs/lesions that are now part of the background in that run (e.g., in the case of MRI, left
and right kidney, or spleen with left kidney). The conclusion is that multiclass segmentation
was better.

The final conclusions from the previous experiments are: (1) dice is the best in average
over the three datasets when considering base loss functions without modifications, but
IoU has scores similar. Cross entropy (crossE) was worse than both; and variations were
useful in different ways in different datasets. While dice was the best in CT of the liver,
IoU with specific weight modification was the best in the MRI dataset and dice without
background was the best alternative in the EFI dataset. From those results, we conclude
that dice should be used, but also that it is useful to consider different variations (dicexy
and dice noBK), tuning for a specific context. Another important conclusion from our
experiments is that the single multiclass problem is preferable to expressing and solving n
uniclass problems.

In what concerns generalization of our conclusions, we were careful to run multiple
datasets and independent experiments, therefore, the results should be generalizable to
other multiclass medical imaging problems in general.

5. Comparison with Related Work on MRI

For completion, in this section we review briefly results obtained by other authors
segmenting MRI and CT scans (results for lesions segmentation on EFI images were
reviewed briefly in related work section). Tables 7 and 8 show the IoU reported by related
MRI and CT segmentation approaches by other authors. Table 8 compares our scores
with those of a few other approaches running on the same MRI dataset as ours (therefore,
directly comparable), where we can see that our best performing approach was superior
to those compared. Table 8 shows a broader picture of scores reported in other works,
which implemented enhanced networks with architectural modifications added to improve
segmentation quality of CT and MRI scans of abdominal organs. These works use different

107



J. Imaging 2021, 7, 16

datasets from ours, and many of them segment CT instead of MRI, therefore they are not
directly comparable to our results, however it is interesting to analyze their scores. In those
results [39,40], achieved highest scores in segmentation of MRI images, and Hu et al. [41,42]
obtained the best scores for CT. The results we obtained in this work, in spite of using only
a general-purpose segmentation network and not testing other architectural modifications
that were proposed in each of the works referenced in Table 8, are still “competitive”. Most
importantly, they can be experimented with in future work with any of those works. Note
also that, in general, in Table 8 segmentation of CT scans achieved better top scores than
segmentation of MRI scans.

Table 7. Comparing to IoU of related approaches (CHAOS dataset).

MRI JI = IoU Liver Spleen R Kidney L Kidney

teamPK [24]
U-Net 0.73 0.76 0.79 0.83

V19UNet 0.76 0.79 0.84 0.85
V19pUNet 0.85 0.83 0.85 0.86

V19pUnet1-1 0.86 0.83 0.86 0.87
deeplabV3 iou

0.5/1.5 0.88 0.87 0.88 0.85

Table 8. IoU as reported in some related approaches (MRI and CT).

MRI JI = IoU Liver Spleen R Kidney L Kidney

[20] 0.84 0.87 0.64 0.57
[40] 0.90(LiverNet) - - -
[39] 0.91 - 0.87 0.87

CT JI = IoU Liver Spleen R Kidney L Kidney

[43] 0.938 0.945
[44] 0.85 -
[19] 0.88 0.77
[41] 0.92 0.89
[42] 0.96 0.94 0.96 0.94
[45] 0.9 - 0.84 0.80
[23]

F-net 0.86 0.79 0.79 0.80
BRIEF 0.74 0.60 0.60 0.60
U-Net 0.89 0.80 0.77 0.78

[21] 0.90 0.87 0.76 0.84

6. Conclusions and Future Work

The loss function is an important part of optimization in deep learning-based seg-
mentation of medical images. It is important to analyze the effects of loss alternatives and
whether they differ depending on datasets. In this paper, we investigate how the most
popular loss functions (cross entropy, IoU and dice) and variations based on differently
weighting factors compare in three different datasets. The objective was to find common
patterns and to investigate if the variations that can be introduced in the base formulas can
contribute to improve segmentation scores.

We have discussed metrics, loss functions and variations. Taking three different
medical image segmentation problems we quantified the quality of loss, evaluating how the
three popular loss functions compare in different settings, and how a set of variations affect
the result. Experimentally, we firstly needed to choose the top-scoring network, considering
UNet, FCN and DeepLabV3. We have concluded that DeeplabV3 outperformed the other
two. Then we ran a set of experiments to explore how loss functions and their variations
influence scores. Dice was the best in average over the three datasets, but we also concluded
that variations were very useful in different ways in different datasets. In particular, we
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found that differently weighting of false positives and false negatives improved scores
significantly for the MRI data, while removing class background from the loss formula
improved scores significantly for the EFI dataset. However, these improvements were
dependent on the dataset, hence we conclude that it is worth tuning the loss function
taking into consideration these variations to adapt to the medical imaging context. We
also analyzed how characteristics of different structures influence scores and how loss
modifications can help overcome difficulties related to those characteristics. Finally, we
compared single multiclass problem versus n uniclass problems in the MRI data.

There are a number of open challenges for future work that result from this work:
one challenge is to determine why, based on architectural features, Deeplab3 outperforms
UNet and FCN. This involves understanding the contribution of using a residue-based
encoder (Resnet in DeepLabV3) versus VGG-16 (tested in UNet and FCN), as well as the
contribution of other architectural features (e.g., ASPP and CRF of DeepLabV3). Another
challenge is to understand what factors influence different scores of different variations in
different medical imaging contexts. A direct extension of the work presented in this paper
is to apply differentiated weights to other loss functions, and to extend the study to other
advanced loss functions. However, the most important future challenge is how to improve
quality of segmentation of the most difficult small and varying conformance targets, such
as lesions in eye fundus images.
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Abstract: Detecting surgical tools is an essential task for the analysis and evaluation of surgical
videos. However, in open surgery such as plastic surgery, it is difficult to detect them because there
are surgical tools with similar shapes, such as scissors and needle holders. Unlike endoscopic surgery,
the tips of the tools are often hidden in the operating field and are not captured clearly due to low
camera resolution, whereas the movements of the tools and hands can be captured. As a result that
the different uses of each tool require different hand movements, it is possible to use hand movement
data to classify the two types of tools. We combined three modules for localization, selection, and
classification, for the detection of the two tools. In the localization module, we employed the Faster
R-CNN to detect surgical tools and target hands, and in the classification module, we extracted hand
movement information by combining ResNet-18 and LSTM to classify two tools. We created a dataset
in which seven different types of open surgery were recorded, and we provided the annotation
of surgical tool detection. Our experiments show that our approach successfully detected the two
different tools and outperformed the two baseline methods.

Keywords: object detection; surgical tools; open surgery; egocentric camera

1. Introduction

Recording plastic surgeries in operating rooms with cameras has been indispensable
for a variety of purposes, such as education, sharing surgery technologies and techniques,
performing case studies of diseases, and evaluating medical treatments [1,2]. Due to the
development of mobile hardware, egocentric cameras such as GoPro [3] or Tobii [4] have
been introduced to many fields [5] to analyze activities from a first-person perspective
while not disturbing the action of the recorder [6].

From the recorded video of the surgery, many tasks have been proposed to analyze
surgery, such as workflow analysis [7], phase recognition [8], video segmentation [9], skill
assessment [10], and video summarization [11]. The presence and positions of surgical
tools are essential information for analyzing surgical procedures [7,8,10,12,13].

Predicting the objects’ rough positions, sizes, and classifications is known as the
object detection task. In the computer vision field, the task of object detection is well
studied [14,15]. However, these approaches have only been tested with common object
detection datasets, such as MS-COCO [16] or Pascal VOC [17], which include the images
captured in the daily-life for detecting variety of objects. As a result that there is a huge
domain gap between images from everyday life and those associated with plastic surgery,
the detection models which are trained on these datasets [16,17] have difficulty detecting
the detailed surgical tools with the category information. In the medical vision field, object
detection in endoscopic surgery is well studied. Endoscopic surgery is the surgery where
the surgeon sees the images through the endoscope camera. An example image of the
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endoscopic surgery is shown in Figure 1 (left). It can be seen that the surgical tools are
clearly seen in the image.

Figure 1. The comparison figure between the images of endoscopic surgery [18] (left) and open
surgery (right).

However, in the case of open surgery video captured with the egocentric camera,
there are several difficulties in detecting the surgical tools. The example image of open
surgery recorded with the egocentric camera is shown in Figure 1 (right). First, the surgical
tools are severely occluded by the surgeon’s hand or the other surgical tools. Second, even
though there is no occlusion of the tools, it is difficult to classify the tools because their
shapes and textures are similar. For example, the overall shapes of the scissors and needle
holders (Figure 2) are very similar. Only the tip of them and the grasping part are different,
but these parts are mostly occluded by hands or the surgical field.

Figure 2. The comparison figure between the scissors (left) and the needle holders (right).

This paper tackles the detection and classification task of surgical tools from egocentric
images for open surgery analysis. A naive approach for detecting the objects is applying
a recently proposed deep learning based model, such as Faster R-CNN [15], SSD [19] or
YOLO [14]. These methods simultaneously detect and classify the objects from RGB images
using their shape and texture information. However, as the textures of the tools are metallic
and shiny and shapes are similar among the surgical tools, it might be easy to detect but
difficult to classify.

Even though the shapes of the surgical tools are similar, the tools are used for com-
pletely different purposes. For example of the scissors and the needle holders, the function
of the scissors is to cut the object, but the function of the needle holders is to suture by
holding suture materials. However, it is difficult to predict the function of the tools from
the images so we assume that the hand motions of the surgeons are different when using
different surgical tools. We focus on the motion of the surgeon’s hand to classify surgical
tools instead of the textures and shapes of the tools. Figure 3 shows an example of the hand
motions associated with the scissors (a) and the needle holders (b). It can be seen that the
motion is completely different among tools according to their usage.

We present a framework for detecting and classifying similarly shaped surgical tools,
such as scissors and needle holders, from an egocentric video. In the first stage, we detect
surgical tools and hands in the image using Faster R-CNN [15]. In this stage, the surgical
tools are detected, but are classified as tools but not classified by tool type. In the second
stage, as multiple hands such as those belonging to assistants or that do not play a role
in the procedure are seen in the image, we select the surgeon’s hand using the maximum
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overlap ratio between the tools and hands. At the last stage, the sequentially selected hand
regions are classified into different tool categories using convolutional neural network
(CNN) and long short-term memory (LSTM) module [20].

Figure 3. The comparison of the hands’ motion between the surgical tools: (a) scissors, (b) nee-
dle holder.

As there is no dataset available to the public containing open surgery videos via
egocentric camera, we recorded our own dataset. The actual plastic surgeries were recorded
at our university’s school of medicine. We recorded seven different types of surgery with
Tobii cameras [4] attached to the surgeon’s head. We validate our proposed model with
this dataset, and we quantitatively evaluate our approach against two baseline methods
to verify the effectiveness of our approach. The experiments show that our approach can
detect the two surgical instruments separately.

In summary, our contributions are as follows: (1) To the best of our knowledge, this
is the first approach to improve the accuracy of surgical tool detection (localization and
classification) with similar shape in open surgical videos. (2) We employed hand motion
information for classifying surgical tools, instead of tool shape. (3) We created a dataset
of a variety of open surgeries recorded with egocentric cameras, we manually annotate
detection labels of surgical tools, scissors and needle holders. We conducted extensive
experimentation from qualitative and quantitative perspectives to verify the effectiveness
of the proposed method.

2. Related Work

2.1. Object Detection Using Hand Appearance

Many studies have been conducted to improve the accuracy of object detection using
information other than that of the target object. For example, Cue et al. [21] developed
object detection by estimating the location of target objects from hand segmentation results.
They detected hands, and cropped the area where the target object was estimated to be
located by using detected hands area. From the resulting cropped image, they classified
the target object by using CNN. That is, their method consisted of two modules: the part
that estimates the location of the target object and the part that classifies the target object.
Ren et al. [22] used optical flow to separate the background from the hand-held objects to
improve the accuracy of detection. Since the target videos were first person videos, the
calculation of optical flow was greatly influenced by the motion of the body and head.
Therefore, they normalized the optical flow by using background motion in the video.

Cue and Ren used hand information to estimate the location of the object, but not to
classify or label it. Our study differs from those studies because we used hand motion
information to classify tools rather than estimate the position of the target object. In
addition, although motion information can be obtained by using optical flow, for first-
person video it is necessary to normalize the optical flow as in Ren et al. [22]. However,
in our study, hand motion is used in the classification part of object detection, so it is not
appropriate to normalize or otherwise alter the raw data. Therefore, the motion information
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is not obtained by using optical flow; instead, CNN and LSTM [20] are used to extract
features from images.

2.2. Surgery Video Analysis and Surgical Tool Detection

Studies of surgical tool detection have been mainly focused on procedures in which
the surgeon sees the surgical field not directly but through a camera, such as cataract
and endoscopic surgery. There are some datasets for the surgical tool detection, such as
Cholec80 [23], ITEC [24], M2CAI2016 [18], CATARACT2017 [25] dataset. These datasets
cannot be applied to our task as the domain of the surgery in these datasets is different
from the domain of the open surgery.

Using these datasets, many methods have been proposed for detecting the surgical
tools of the cataract and endoscopic surgery [26–29] and generating the realistic surgery
images [30]. For example, Colleoni et al. [26] proposed a method for detecting the surgical
tools and estimating the articulation of the tools for the laparoscopic surgery analysis.
Du et al. [27] presented a fully-convolutional network-based articulated 2D pose estimation
of the surgical tools for microsurgery video analysis.

In addition, although there are studies about surgical tool detection using the edge and
texture information of surgical tools [31,32], many studies have used features obtained by
fine-tuning existing CNN algorithms that have been trained with the Imagenet dataset [33].
For example, Twinada et al. [23] fine-tuned Alexnet [34], Roychowdhury et al. [35] fine-
tuned Inception-v4 [36], ResNet-50 [37], and NASNet [38], and Raju et al. [39] fine-
tuned GoogleNet [40], VGG-16 [41], and Inception-v3. In addition, in the study by Ca-
dene et al. [42], the detection accuracy was improved by inputting the 15-frame presence
probability of each tool, obtained by fine-tuning ResNet-200 and Inception-v3, into a hidden
Markov process. Thus, there are many studies that take into account temporal information
in surgical tool detection. The reason for this is that information about which tools have
been used in previous frames helps in identifying which surgical tools are in the current
frame. Mishra et al. [43] used LSTM [20] for making it possible to classify tools with multi-
ple labels. In addition, Ai et al. [25] studied surgical tool detection while simultaneously
training the CNN and recurrent neural network (RNN) for cataract surgery. In this case,
the problem was that as they were simultaneously trained, the loss of the RNN across each
frame was not propagated back to the CNN. Therefore, by using the boosting algorithm,
they made it possible to train the CNN while and after training the RNN.

In summary, these studies focused on surgeries in which surgeons observed the
surgical field through a camera, such as cataract surgery or endoscopic surgery. The
relevant work is the work presented by Zhang et al. [44]. They applied RetinaNet [45],
which is trained with annotated Youtube open surgery videos, and Simple Online and
Realtime Tracking (SORT) algorithm to detect and track the hand during the open surgery.
They did not aim to localize and classify the surgical tools.

As this is the first study which aims to detect the surgical tools for open surgery video
analysis, we localize and classify the tools which have the similar shapes, scissors, and
forceps as seen in Figure 2. As the shapes and textures are similar between two surgical
tools, it is difficult to classify these tools using the conventional object detection methods
such as Faster R-CNN [15]. In our study, hand appearance features are extracted with
ResNet-18 for each frame. Hand motion information is then extracted with LSTM for
surgical tool detection labeling.

3. Proposed Framework for Surgical Tools Localization and Classification

Our task was to detect the surgical tools that have similar shapes and textures, such as
needle holders and scissors. The overview of our surgical tool detection and classification
framework is visualized in Figure 4, and the abstract of it is visualized in Figure 5. Our
proposed framework consists of three phases: surgical tool and hand localization, selection
of the target hand, and surgical tool classification from the motion of the target hand. First,
we employ Faster R-CNN to jointly detect the hands and the surgical tools. Note that
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surgical tools are detected as tools and the specific tool category is not labeled at this stage.
Second, as multiple hands can be seen in the image that are irrelevant to the surgical tool
classification, we use the overlap ratio between the bounding boxes of the hand operating
the tool and the tool itself, respectively, to select the appropriate single hand. Finally, the
surgical tool is classified from the sequentially selected target hand frames. We employ
ResNet-18 [37] to extract the visual context features for each frame. These features are
inputted to LSTM to aggregate the sequential features from which the surgical tool label is
predicted. The following explains the details of the proposed framework.

Figure 4. The overview of the proposed surgical tool detection and classification.

3.1. Surgical Tool and Hand Localization

First, we apply Faster R-CNN [15] to detect the surgical tools and hands in the image.
Faster R-CNN is one of the major two-staged object detectors. It predicts the object proposal
regions using a region proposal network from the image feature encoded with CNN. Then,
the refined bounding box and its category are predicted for each object proposal region.
Note that all of the surgical tools are detected as tools and each tool category is not predicted
in this stage.

3.2. Target Hand Selection

Second, we select the single hand which operates the surgical tool in the image. During
open surgery, multiple hands from multiple surgeons can be seen in the egocentric image.
To classify the category of the surgical tool, the hand which operates the target tool should
be selected among multiple detected hand bounding boxes. From the i-th hand multiple
bounding box bhand

i , we calculate the overlap ratio rik with the k-th target surgical tool
bounding box btool

k as follows:

rik(bhand
i , btool

k ) =
bhand

i ∩ btool
k

bhand
i ∪ btool

k
. (1)

To select the single hand bounding box i∗ which operates surgical tool k, the hand bounding
box with the maximum ratio is selected:

i∗ = arg max
i∈V

{rik(bhand
i , btool

k )}, (2)

where V denotes the set of bounding boxes labeled as the hand. We use the bounding box
i∗ to classify the surgical tool k.

3.3. Surgical Tool Classification from Hand Motion

To obtain the motion of the hand, we crop hand image It(0 ≤ t ≤ T) which is selected
at the previous step. T denotes the number of frames for inputting into the LSTM for
surgical tool classification. That is, only when the target hand is detected for T consecutive
frames, it is used as input data for classification.
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3.3.1. Network Architecture

First, from the hand-cropped images It, a visual feature is extracted from each cropped
image. In this paper, ResNet-18 [37] is employed as a visual feature extractor, and the
cropped image It is resized to 252 × 252 (pixels) to make the image size of ResNet-18 input
consistent. We extract the visual feature ψt ∈ R128 from each image It.

After extraction, the visual features of the hands are used as input for LSTM to
obtain hand motion information. Then, we aggregate the context features over time,
ψ̂1 . . . ψ̂t . . . ψ̂T = B(ψ1, . . . ψt . . . ψT), where B is a sequential feature aggregation module
that computes the sequential feature ψ̂t. In our experiments, we employ an LSTM recurrent
neural network with one hidden layer for B.

The output feature ψ̂1, . . . , ψ̂T is then fed to a multilayer perceptron (MLP) with one
hidden layer and rectified linear units (ReLU) activation function [46] to predict the label
probability p1, . . . , pT . The sigmoid activation function is applied to the output layer.

3.3.2. Loss Function

We formulate the task of surgical tool detection as the surgical tool and hand detection,
and surgical tool classification using the cropped hand images. At this stage, we employ
weighted cross-entropy loss for classifying the sequential hand images into the surgical
tools for considering the imbalance of images for surgical tool category in the training
dataset.

Figure 5. The abstract of the proposed method.

4. Experiment

4.1. Dataset

As there is no dataset available that contains open surgery recordings, we use Tobii
cameras to create our dataset. The surgeries are recorded at Keio University School of
Medicine. Video recording of the patients is approved by the Keio University School of
Medicine Ethics Committee, and written informed consent is obtained from all patients
or their parents. We record seven different types of surgery with Tobii cameras attached
to the surgeon’s head. Among the surgical videos, three glove colors, including green,
skin-colored, and white, were used, and three surgeons performed the surgery. Five videos
were for training and two were for testing. Patient diagnoses included Stahl’s ear, open
fracture, lipoma, skin tumor, nevus cell nevus, cryptotia, and cleft palate. Images from
each surgery video are shown in Figure 6. Each surgery video is about 20 min long, and
was recorded at 25 frames per second (FPS). The frame size of each video is 1920 × 1080
(pixels).
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Figure 6. Images of videos we used for the experiment: (a) Stahl’s ear, (b) lipoma, (c) skin tumor, (d)
cryptotia, (e) cleft palate, (f) open fracture, and (g) nevus cell nevus.

4.2. Faster R-CNN Training

In Phase 1, it is necessary to train the system to detect surgical tools and hands using
Faster R-CNN. Therefore, we randomly sampled 2000 images from five surgical videos for
training and annotated them with two labels: hand and tool, which did not distinguish
between needle holders and scissors, to create a dataset. Using this dataset, we performed
tool and hand localization by training in Faster R-CNN. We employ VGG-16 [41] as the
backbone of Faster R-CNN, and VGG-16 was pre-trained by using the Imagenet dataset.
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4.3. Network Training

For Phase 2, we employ an Adam optimizer [47] with a learning rate of 1.0 × 10−3.
When training the model, we randomly sample a data fragment of T = 50 frames. The
model converged after 15 epochs, which takes about 48 hours on a GeForce RTX 2080.
We apply dropout with probability 0.5 during training. We used Keras library (https:
//github.com/fchollet/keras) to implement the models. The weights of ResNet-18 are
initialized with the pretrained ImageNet dataset [33]. The number of frames for inputting
into the LSTM was set to 50 because the movie is at 25 fps and 50 frames is equivalent to 2 s.
Basic procedures, such as making incisions or suturing, are recognized by humans within
2 s, so 50 frames was appropriate. The number of dimensions of the output of LSTM is 128,
and an activation function we employed is the hyperbolic tangent function. We train the
model with batch size 5.

4.4. Baseline

As a result that there is no other study that has attempted detection of similarly shaped
tools in open surgical videos, we defined two baselines by ourselves and performed a
comparison experiment.

The first is Faster R-CNN. That is, we compare a method for surgical tool detection
that distinguishes two tools with only Faster R-CNN. In the experiment, the same dataset
as the proposed method was annotated with scissors and needle holders as separate tools
and trained from five surgical videos, and two surgical videos that were not used for
training were used for comparison. The detection result is based on whether or not the
intersection over union (IOU), with the threshold set to 0.5, is above the threshold. In
comparison to this baseline, we validate the effectiveness of using motion information for
tool classification.

Second, we distinguish two tools from the single hand-cropped image only. That is, in
Phase 3, we verify whether we can distinguish between needle holders and scissors using
visual features of the hands without time series information. ResNet-18 was fine-tuned
and compared with those pre-trained by the ImageNet dataset. In the experiments, the
same data set as the proposed method was annotated with scissors and needle holders as
separate tools and trained from five surgical videos, and two surgical videos that were not
used for training were used for comparison. Compared to this baseline, we verify that not
hand appearance but hand motion (but not appearance) is effective for classification.

4.5. Procedure Lengths

In this experiment, we verify the effectiveness of the proposed method by changing
the number of frames T. That is, we verify how many frames are appropriate as input data.
The comparison is made with 25 frames, 50 frames, 100 frames.

5. Results and Discussion

5.1. Localization and Selection Results

As mentioned earlier, our method is divided into three modules, localization, selection,
and classification. Therefore, the lower the accuracy of localization and selection, the lower
the accuracy of the proposed method. Using 300 test images from two videos, the test
results are shown in Tables 1 and 2. The correctness of the localization result is measured
by whether the IOU, whose threshold is set to 0.5, is above the threshold or not, and the
results of the target hand are whether the target hand is selected from detected hands.
As shown in Table 1, there are a few cases in which the tools are miss-classified, but the
probability of miss-classification over 50 consecutive frames is considered to be very low,
which indicates that the recognition of tools (scissors or needle holders) is accurate. As
shown in Table 2, the selection of target hand areas is also found to be accurate. As a result
that our localization and selection methods have been demonstrated to be accurate, we
expect a similar level of accuracy from our proposed classification method.
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Table 1. Results of localization.

AP

tools 0.925
hands 0.713

Table 2. Results of selection.

Method Accuracy Recall Precision F-Measure

target hand 0.943 0.996 0.946 0.971

5.2. Proposed Method

The proposed method and the baseline method were trained on five videos and tested
on two videos that were not used for training. The number of sequences of scissors were
756, and that of needle holders were 2894. The results are shown in Table 3 and Figure 7.
ROC curve and learning curve of the proposed method are shown in Figures 8 and 9.

Table 3. Results of the proposed method.

Method Accuracy Recall Precision F-Measure

proposed method 0.895 0.810 0.981 0.888
only Faster R-CNN 0.663 0.811 0.970 0.883
only hand 0.524 0.559 0.230 0.326

Figure 7. Examples of results.
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Figure 8. ROC curve.

Figure 9. Learning curve.

As show in Table 3, the proposed method is more accurate in detection than the
baseline method. Our task is a binary classification, so the chance rate is 0.5. Therefore, the
result of only hand means that it is difficult to detect two tools by only hand appearance.
Faster R-CNN alone can also make detection with greater accuracy than chance rate, but
the value is lower than the proposed method. That is, the proposed method effectively
detects scissors and needle holders.

5.3. Procedure Length

In this experiment, we verify the effectiveness of the proposed method by changing
the number of frames T. The comparison is made with 25 frames, 50 frames, and 100
frames. The results are shown in Table 4.

Table 4. Results using varying frame numbers in the input data.

Num of Frames Accuracy Recall Precision F-Measure

25 0.728 0.956 0.703 0.810
50 0.895 0.810 0.981 0.888

100 0.563 0.903 0.500 0.644

As shown in Table 4, the result of 50 frames has the highest accuracy. In the case of
25 frames, the accuracy is lower than that of 50 frames. The reason for this may be that
the surgeon sometimes does not finish suturing the thread with the forceps in one second,
and the hand rotation, which is a characteristic movement, may not occur. On the other
hand, in the case of 100 frames, the accuracy is close to a chance rate. The reason for this
may be that there were too much input data and the learning process was not successful.
Moreover, it is also possible that hand movements other than holding the scissors, such
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as rotational movements, were used by the surgeon for cutting multiple parts of the body
with the scissors.

6. Conclusions

In this paper, we proposed a method for object detection of similarly shaped tools
using hand motion information. The proposed method is divided into three modules,
localization, selection, and classification. Faster R-CNN is used for localization and ResNet-
18 and LSTM are used for classification. In the experiment, the two tools were detected
separately in open surgery videos with an accuracy of 89.5%. In this paper, we detect only
two tools by hand motion information. Therefore we would like to develop our method to
detect other tools, such as tweezers and forceps, in the future work.
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Abstract: Early diagnosis and assessment of fatal diseases and acute infections on chest X-ray
(CXR) imaging may have important therapeutic implications and reduce mortality. In fact, many
respiratory diseases have a serious impact on the health and lives of people. However, certain
types of infections may include high variations in terms of contrast, size and shape which impose
a real challenge on classification process. This paper introduces a new statistical framework to
discriminate patients who are either negative or positive for certain kinds of virus and pneumonia.
We tackle the current problem via a fully Bayesian approach based on a flexible statistical model
named shifted-scaled Dirichlet mixture models (SSDMM). This mixture model is encouraged by its
effectiveness and robustness recently obtained in various image processing applications. Unlike
frequentist learning methods, our developed Bayesian framework has the advantage of taking into
account the uncertainty to accurately estimate the model parameters as well as the ability to solve
the problem of overfitting. We investigate here a Markov Chain Monte Carlo (MCMC) estimator,
which is a computer–driven sampling method, for learning the developed model. The current work
shows excellent results when dealing with the challenging problem of biomedical image classification.
Indeed, extensive experiments have been carried out on real datasets and the results prove the merits
of our Bayesian framework.

Keywords: infection detection; COVID-19; X-ray images; image classification; bayesian inference;
shifted-scaled dirichlet distribution; MCMC; gibbs sampling

1. Introduction and Related Works

Pneumonia is a severe disease issue resulting in inflammation of the lungs where a
large number of people lose their lives every day. The causes of this infectious disease
could be attributed to viruses or bacteria. Today, the SARS-CoV-2 virus named COVID-19
pneumonia is causing a significant outbreak around the world, having a serious impact
on the health and life of several people. In particular, it causes pneumonia in humans
and carries severe infections between people. Patients with COVID-19 can have acute
symptoms and some may die of major organ failure. One of the critical steps in the fight
against this disease is the possibility to quickly detect and track contaminated persons
and place them under particular care. Early inspection of confirmed cases is of great
urgency because of its infectious nature. One of the many ways of detecting the disease is
by a chest radiographs of the patient. Recently, some studies have shown that studying
COVID-19 from Chest X-ray images may be considered as the quickest solution to diagnose
patients [1]. It is noteworthy that chest X-ray radiography is one of the interesting imaging
to diagnose several related chest diseases such as pneumonia, lung cancer, emphysema
and pulmonary edema [2,3]. However, sometimes this medical imaging can be subject
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to error for inexperienced radiologists, while being tedious for experienced ones. Visual
examination of these radiographs is generally restricted due to low infectious disease
specificity. In addition, the presence of noise, the contrast which is often insufficient
between the soft tissues and the overlap in appearance properties are often sources of
error for an accurate diagnosis [1,4]. These inconsistencies can result in important biased
decisions for clinicians.

To deal with these drawbacks and to detect infected patients, it is necessary to develop
effective and automated computerized support tools able to offer radiologists desirable
measures about the disease severity. These tools should also allow rapid detection and
prediction of any possible infection, in particular COVID-19. Nevertheless, performing
a precise analysis of big biomedical data is too difficult and time consuming because
these images contain various patterns and symptoms at different stages (early, middle,
advanced) [4,5]. For instance at the early stage, it is not easy at all to discover COVID-
19 symptoms having acute respiratory distress syndrome in chest X-ray (CXR) scans
because these symptoms can look similar to other viral infections like RSV pneumonia.
Consequently, it is important to consider such assumption and to take into account robust
features extraction techniques when implementing new systems.

Several promising algorithms have been implemented in the past decades to deal
especially with infection detection. Some traditional machine learning-based methods
are applied to support pneumonia diagnosis in children by classifying chest radiographs
into normal or pneumonia cases [6]. Haar wavelet transform is also investigated as an
effective feature extraction technique. Some classifiers such as FCM, DWT and WFT [2] and
K-nearest neighbor (k-NN) [3] were exploited in this context to detect pneumonia infection.
Nevertheless, these conventional methods fail to identify properly lung with lesions. It
is true that traditional methods helped the specialists in their diagnosis, but the resulting
accuracy was poor. Thus, other image processing-based systems have been proposed to
address the problems of infection localization and detecting malicious lesions using, for
example, SVM, Neural Networks (NN) and Deep NN (DNN) [5,7–9].

The Fully CN (FCN) method is also applied for segmenting lung in CXR [10]. Another
work which is conducted using deep learning method is proposed in [11] to classify CT scan
and chest X-ray into three classes: influenza-A viral pneumonia, COVID-19, and normal.
The obtained accuracy is 89.3%. As a result, the accuracy is 89.3% and the training process
takes a long time. After studing the related work, it is obvious that the success of supervised
CNN and deep learning methods to classify CXR images and detect COVID-19 relies mainly
on the size of training data. For smaller data set, these techniques are not suitable since
this size is responsible for poor performances and in many cases, it becomes too difficult to
generate more training data. Thus, it is important to look for other alternatives. Features
extraction methods are also exploited in conjuction with some classifiers in order to extrcat
ans select relevant visual features. For instance, the ResNet50 feature extractor is used with
SVM and CNN for detecting and classifying lung nodule disease in chest CT- images [12].
Other approaches such as registration and active shape models [13,14] are exploited with
pixel-based statistical classification methods in order find the boundary/region targets.
For example, the lung region is determined through a non-rigid registration step between
the chest radiograph of the image patient and a reference model [13].

The good results obtained from applying artificial intelligence and machine learning
models to some previous epidemics are motivating researchers to provide new perspective
for addressing this novel coronavirus outbreak. In particular, classifying non-Gaussian
data in an unsupervised way can be of great interest for automated medical applications.
Among the main existing methods to tackle this problem, statistical mixture models have
recently gained considerable interest from both the theoretical and practical points of
view [15–20]. This approach has led to the design of new more efficient tools. Our work is
mainly based on recent research findings that have shown modeling visual data (such as
images) effectively is very important for further applications such as image classification.
In particular, the taking into account of the distribution of Dirichlet is very interesting to
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deal with non-Gaussian data modelling [21]. Other derived models such as the scaled
Dirichlet mixture (a generalization of the Dirichlet) [16] have also been shown to be effective
for data grouping and classification. Further works have show that it is possible to improve
these last two models by introducing an additional parameter which leads to a more flexible
model. The resulting statistical mixture is called shifted-scaled Dirichlet mixture (SSDMM)
and is assumed to be a generalization of the scaled model (here the Shifted term mean a
perturbation in the simplex). This new model has been applied successfully for a variety of
applications [22].

2. Motivations

The work developed in [22] is based on a shifted-scaled Dirichlet mixture model
(SSDMM) and evaluated for data clustering and writer identification. Two important
issues arise when deploying mixture models which are calculating the parameters of the
mixture and determining the exact number of components that best describes the data
set. These issues have been tackled recently by learning the SSDMM via deterministic
Maximum Likelihood Estimator (MLE) [22]. Nevertheless, it is known that MLE has major
shortcomings linked to its sensitivity at the initialization step. Therefore, a better solution
especially for our case (i.e., when dealing with complex medical noisy data including
COVID-19 infection) is to develop a more robust alternative based on fully Bayesian
inference approach. We recall that Bayesian estimation has attracted a lot of attention
for many applications [23–33]. It is also known that the Bayesian approach may be more
practical due to the existance of powerful simulation techniques like MCMC [29]. Moreover,
the model complexity can be easily solved using for example the marginal likelihood-based
technique. Thus, our focus in this paper is to implement an effective Bayesian learning
method for SSDMM in order to take into account the complexity of medical data and to
overcome the drawbacks of frequentist (deterministic) approaches [34,35]. To the best of
our knowledge, such an approach has never been tackled before, especially for the problem
of chest x-ray images classification.

The rest of this paper is organized as follows. In next section, the finite shifted-scaled
Dirichlet mixture model and the Bayesian approach are exposed. Experimental results
and the merits of our approach are introduced in Section 4. Finally, we end this work and
provide some possible extensions to be treated in the future.

3. Bayesian Framework for the Shifted-Scaled Dirichlet Mixture Model

We start this section by revising both the Dirichlet and scaled Dirichlet distributions,
and then introduce a new generalization of these distributions named shifted-scaled Dirich-
let distribution (SSDD). The finite shifted-scaled Dirichlet mixture model is also presented.
Then, we develop a fully Bayesian framework for learning the parameters of this finite
mixture model.

3.1. Dirichlet and Scaled-Dirichlet Distributions

Definition 1 (Dirichlet distribution). Let us consider a random vector Y = (y1, . . . , yD) ∈ SD

(sample space), where ∑D
d=1 yd = 1. We say that Y has a D-variate Dirichlet distribution with

parameter�α = (α1, . . . , αD) ∈ RD
+ if its density function is:

Y ∼ DirD(�α)

f (�Y) = p(�Y|θ) = Γ(α+)

∏D
i=1 Γ(αi)

D

∏
i=1

yαi−1
i

(1)

where�α denotes a shape parameter, α+ = ∑D
i=1 αi and Γ indicates the Euler gamma function.

It is noted that the Dirichlet distribution with D parameters (Y ∼ DirD(�α)) is still
popular, especially when it comes to analyzing composition data, and this popularity is
due to its its conjugate property with the multinomial likelihood.
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Definition 2 (Scaled Dirichlet distribution). If Y follows a scaled Dirichlet distribution, then its
density function is given as:

Y ∼ SDirD(�α,�β)

f (�Y) = p(�Y|θ) = Γ(α+)

∏D
i=1 Γ(αi)

∏D
i=1 β

αi
i yαi−1

i

(∑D
i=1 βiyi)α+

(2)

�α = (α1, . . . , αD) and �β = (β1, . . . , βD) ∈ RD
+ are the parameters of this distribution. β is a

scale parameter.

The scaled Dirichlet distribution has 2D parameters and in this case we have Y ∼
SDirD(�α,�β). If the parameter β is fixed, then we obtain a Dirichlet model.

3.2. Finite Shifted-Scaled Dirichlet Mixture Model

Definition 3 (Shifted-Scaled Dirichlet distribution). Suppose that Y follows a shifted scaled
Dirichlet distribution with parameters�α = (α1, . . . , αD) ∈ RD

+, �λ = (λ1, . . . , λD) ∈ SD and
a ∈ R+. Then, the density probability of this distribution is given as:

Y ∼ pSDirD(�α,�λ, a)

f (�Y) = p(�Y|θ) = Γ(α+)

∏D
i=1 Γ(αi)

1
aD−1

∏D
i=1 λ

−(αi/a)
i y(αi/a)−1

i

(∑D
i=1(yi/λi)(1/a))α+

(3)

where�λ denotes a location parameter.

The shifted-scaled Dirichlet distribution has 2D parameters and in this case we have
Y ∼ pSDirD(�α,�λ, a). If the parameter a = 1, then we obtain a scaled Dirichlet model.

Now, suppose that we have a set of vectors Y = {�Y1,�Y2, . . . ,�YN}, where each vec-
tor �Yn = (yn1, . . . , ynD) follows a mixture of SSD, then the corresponding likelihood is
defined as:

p(Y|Θ) =
N

∏
n=1

K

∑
k=1

πk p(�Yn|θk) (4)

where the model’s parameters are defined by Θ = (�π, θ) and {πk} are positive mixing
parameters (∑k πk = 1). Each vector is supposed coming from one component as �Yn ∼
pSDirD(�α,�λ, a). The shape parameter has the role to describe the form of the shifted
SDMM. The scale (a) checks how the plotting of the density is distributed and�λ follows the
location of the data densities. In the next section, we will develop our Bayesian approach
based on the presented mixture of SSDD.

3.3. Fully Bayesian Learning Algotithm

In many cases, the deterministic approach (named also maximum likelihood-based
technique) via the well known EM algorithm [36] is used to estimate the parameters
of finite mixture models due to its simplicity. Deterministic approach assumes that
Z = (�Z1, . . . , �ZN), is a missing data. Thus, if �Yn ∈ j then Zij = 1, else Znj = 0. Be-
cause the likelihood-technique depends on initial values and is sensitive to local minima,
we propose here to overcome these limitations by developing an efficient way based on
Bayesian inference to better learn the Shifted-Scaled Dirichlet mixture model. More pre-
cisely, we propose to investigate one of the effective simulation techniques called Markov
Chain Monte Carlo (MCMC) via Gibbs sampler [37,38]. Thus, the complete likelihood is
defined as:

p(Y ,Z|Θ) =
N

∏
n=1

K

∏
k=1

(πk p(�Yn|θk))
Znk (5)
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Using Bayes formula, the likelihood and the priors will be expressed together to define
the posterior distribution like this:

p(Θ|Y ,Z) ∝ p(Y ,Z|Θ)p(Θ) (6)

The proposed Bayesian algorithm for SSDMM parameters’ learning is based on the
following steps :

1. Initialization
2. Step t: For t = 1,. . .

(a) Generate �Z(t)
i ∼ M(1; Ẑ(t−1)

i1 , . . . , Ẑ(t−1)
iM )

(b) Generate �π(t) from p(π|Z (t))

(c) Generate (θ)(t) from p(θ|Z (t),Y)

where M(1; Ẑ(t−1)
i1 , . . . , Ẑ(t−1)

iM ) is a multinomial distribution of order one with parame-
ters (p(1|�Yi)

(t−1), ..., p(M|�Yi)
(t−1)). Based on this algorithm, we have to evaluate p(π|Z)

and p(θ|Z ,Y).

3.3.1. Priors and Posteriors

The choice of priors is one of the most crucial steps in Bayesian modeling. These
priors reflect our belief about the the model’s parameters and are updated and enhanced
according to the observed data (see for example details in [39]). In the following, the choice
of the priors is addressed as well as the determining of the resulting posteriors for our fully
Bayesian approach.

Estimating the posterior will lead to have our parameters Θ ∼ p(Θ|Y ,Z). In order
to perform this step, we proceed with an elegant sampling technique called Gibbs sam-
pler. This method allows the use of conditional posterior distribution in order to update
each parameter.

Since no convenient conjugate prior exist for�αk and ak, we adopt a common choice for
them which is the Gamma distribution G(.) :

p(αkd) = G(αkd|ukd, vkd) (7)

p(ak) = G(ak|gk, hk) (8)

Then, we determine the posterior distributions according to these priors and by
considering the following:

p(�αk|Z ,Y) ∝ p(�αk) ∏
Zik=1

p(�Yi|θk) ∝
D

∏
d=1

p(αkd) ∏
Zik=1

p(�Yi|θk) (9)

p(ak|Z ,Y) ∝ p(ak) ∏
Zik=1

p(�Yi|θk) (10)

Regarding the parameter�λk, since it is defined in a simplex, therefore, it is a common
and classic choice in Bayesian inference to choose the Dirichlet distribution as prior with
parameters ηk = (ηk1, . . . , ηkD). So, it is expressed as:

p(�λk|ηk) =
Γ(∑D

j=1 ηkj)

∏D
j=1 Γ(ηkj)

D

∏
j=1

p
ηkj−1
kj (11)

Knowing this prior, we can estimate the posterior distribution using the follow-
ing equation:

p(�λk|Z ,Y) ∝ p(�λk|ηk) ∏
Zik=1

p(�Yi|θk) (12)
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For the prior of mixing weight �π, the common choice is the Dirichlet distribution
since ∑K

j=1 πj = 1. So, the mixing weight prior is expressed as:

p(�π|K, δ) =
Γ(∑K

j=1 δj)

∏K
j=1 Γ(δj)

K

∏
j=1

π
δj−1
j (13)

The selected prior of Z ( membership variable ) is defined as :

p(Z|�π, K) =
K

∏
j=1

π
nj
j (14)

where nj is the tiotal vectors in cluster j. Given the former equations Equations (13) and (14)
we have

p(�π| . . . ) ∝ p(Z|�π, K)p(�π|K, δ)

∝
K

∏
j=1

π
nj
j

Γ(∑K
j=1 δj)

∏K
j=1 Γ(δj)

K

∏
j=1

π
δj−1
j ∝

Γ(∑K
j=1 δj)

∏K
j=1 Γ(δj)

K

∏
j=1

π
nj+δj−1
j (15)

This posterior is proportional to the Dirichlet distribution (δ1 + n1, . . . , δK + nK). In ad-
dition, the posterior of the membership Z may be deduced as:

p(Zi = j| . . . ) ∝ πj p(�Yn|θj) (16)

Finally, we choose the uniform distribution as an appropriate prior for K. This value
can vary between 1 and Kmax (Kmax is a predefined value). We summarize the proposed
model in the following graphical representation Figure 1.

Figure 1. Graphical representation of our developed Bayesian finite shifted-scaled Dirichlet mixture
model. Fixed hyperparameters are indicated by rounded boxes and random variables by circles. Y
is the observed variable, Z represents the latent variable, the large box indicates repeated process,
and the arcs show the dependencies between variables.

3.3.2. Complete Bayesian Estimation-Algorithm

The Gibbs sampling technique is mainly based on alternating conditional distributions
for several steps. Indeed, for each iteration t , the resulted estimate Θt is sampled from its
previous approximate Θt−1. Having all these posterior probabilities in hand, the complete
MCMC-based Bayesian algorithm to learn the parameters of our finite mixture model and
especially the steps of our Gibbs sampler are as follows:

1. Initialization
2. Step t: For t = 1,. . .

(a) Generate Z(t)
i ∼ M(1; Ẑ(t−1)

i1 , . . . , Ẑ(t−1)
iK )

(b) Compute n(t)
k = ∑N

i=1 IZ(t)
ik =j

(c) Generate �π(t) from Equation (15)

(d) Generate �α(t)k , a(t)k , and �λ
(t)
k (k = 1, . . . , K) from Equations (9), (10) and (12),

respectively, using random-walk Metropolis-Hastings (M-H) algorithm [40,41].
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where M(1; Ẑ(t−1)
i1 , . . . , Ẑ(t−1)

iM ) is a multinomial distribution of order one with parameters
(p(1|�Yi)

(t−1), ..., p(M|�Yi)
(t−1)).

4. Experimental Results

The goal of this section is to evaluate and validate the developed statistical model
with the different inference techniques. We have considered several real data sets of images
including COVID-19 and different pneumonia types.

4.1. Data Sets

The first main COVID-19dataset (https://github.com/ieee8023/covid-chestxray-
dataset) for our experiments is the one developed by Cohen et al. [42]. It contains 542
Chest X-ray (CXR) images. A subset of 434 CXR images represent patients positive to
COVID-19 and the rest are COVID-19 negative. The image dimension is 4248 × 3480 pixels.
Main statistics of this dataset are given in Table 1. An illustrative sample of confirmed
Coronavirus Disease 2019 (COVID-19) is given in Figure 2. This image is from a 53-year-old
female who had a fever and cough for 5 days. Indeed, Multifocal patchy opacities can be
seen in both lungs (arrows) [43].

COVID-19 image Healthy image

Figure 2. Illustrative sample of Chest X-Rays image with COVID-19 [43].

Table 1. Data description.

Dataset Class Train Validation Test Total

CXR-COVID Non-COVID-19 70 20 18 108
COVID-19 328 80 26 434

CXR-Augmented-COVID Non-COVID-19 512 100 300 912
COVID-19 512 100 300 912

CXR-Pneumonia Normal 1341 8 234 1583
Pneumonia 3875 8 390 4273

We run also our implemented framework on another available dataset named Aug-
mented COVID-19 Dataset (https://data.mendeley.com/datasets/2fxz4px6d8/4). It is
collected from the previous dataset and the Kaggle one (kaggle.com/paultimothymooney/
chest-xray-pneumonia). It is made up of augmented radiographics with and without
COVID-19. Here, the number of images is larger than the previous dataset. Our aim is
to study the performance of our model when the size of the data increases. This dataset
contains 912 COVID-19 images and 912 non COVID-19 images. The augmentation process
takes into account some geometric transformations and other ones such as translation,
rotation, scaling, flipping, noising, bluring, etc. Some illustrative augmented images are
given in Figure 3.
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Original image Vertical flip

Rotated 90 Blur 1.0

Figure 3. Illustrative examples of augmented Chest X-Rays with COVID-19 from the dataset [44].

Finally, we use the chest-xray-pneumonia to evaluate the performance. Thus, we
rum our algorithm on big dataset (viral, bacterial infection, and normal) Kaggle (https:
//www.kaggle.com/paultimothymooney/chest-xray-pneumonia). It contains 5856 CXR
images where 1583 are normal and 4273 are infected with pneumonia. The image dimension
is 1024 × 1024 pixels. This dataset is structured into three folders: train, test and val. Some
samples are given in Figure 4. Statistics about this dataset are shown in Table 1.

Normal image Bacterial pneumonia Viral pneumonia

Figure 4. Illustrative samples of chest-xray-pneumonia from the dataset in [45].

4.2. Methodology

The developed model is applied to classify several images from different datasets
as normal or COVID-19 affected patients using CXR images. To deal with this objective,
we proceed with some preprocessing steps. After a pre-segmentation step of the lung
region, we extracted some relevant features based on texture analysis. Indeed, several
recently published works have shown that the lung is the basic organ which is affected by
the corona COVID-19 virus. The classification is performed into two classes: normal and
abnormal. Each image is modelled with a mixture of SSDDMM, then we apply the MCMC
algorithm to estimate the parameters of each component. Here, the classification problem
is presented in terms of assigning each image to the appropriate class using the Bayes rules.
In other word, each image is affected to the class that has the greatest posterior probability.
The pipeline of the proposed method is given in Figure 5.

It is noted that, in many cases, medical images such as chest x-rays are not easy to in-
terpret; thus, it is mandatory to identify important patterns to interpret better and improve
the decision. Feature extraction problem is the process of acquiring relevant information
such as texture. The step of feature extraction has the role to improve the performance
and accelerate the processing time. In particular, texture’s structures (e.g., fine, smooth,
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coarse or grained) characterize effectively visual patterns in the image. In the state of the
art, many texture extraction methods have been proposed such as statistical ones which are
based on different statistics order of the gray-level value. For complex images like medical
ones, the use of single feature value cannot lead to satisfactory results; thus, it is important
to consider more features to increase the expected performance [46]. In this work, we focus
on investigating the so-called Gray Level Co-occurrence Matrix (GLCM)-based features,
which has been shown to be efficient and offer interesting results in term of classification
accuracy. GLCM matrix provides a co-occurrence matrix of joint probability density of
the gray levels of two pixels. In this work, the second-order statistics are investigated
to compute some features in order to well-discriminate lung abnormalities. In particu-
lar, the following features [47] are calculated for each image: contrast (large differences
between neighboring pixels), correlation, energy, entropy, difference variance, difference
entropy, inverse difference normalized, information measure of correlation, information
measure of correlation. In our analysis, we focused on extracting the lungs area using image
thresholding and segmentation processing which leads to identify the left and right lungs
from CXR images. In order to remove noise, we applied the Gaussian filter. In Figure 6, we
illustrate the obtained segmented lung using the above method. After isolating the lungs,
we proceed with feature extraction step and then with classification using the proposed
statistical model. The required time for feature extraction for each image is a few seconds
and the model fitting taken between 20 to 30 min for the different data sets.

Visual Features 
Extraction

Texture-based

CXR 
Datasets

Abormal Normal

Preprocessing and 
Lung segmentation

Mixtures-based 
Modeling 

Scaled-Shifted 
Dirichlet distribution

Classification-based 
Bayesian inference

MAP criteria

Figure 5. The pipeline of the proposed method. First, the lungs are segmented, then robust visual
features are extracted. Features are modelled using the proposed mixture model (SSDDMM) and a
Bayesian framework is applied to estimate the parameters of the model. Finally, images are classified
on the basis of Bayes rule.

Figure 6. Process of lungs regions extraction applied on image sample from [42].

4.3. Results Analysis

In this section, we investigate our approach for COVID-19 detection. The ultimate
first goal is to prove the potential of our Bayesian learning algorithm as compared to
other learning method named maximum likelihood (ML) estimation. The second goal
is to compare the performance of the proposed shifted-scaled Dirichlet mixture model
with other methods which are Gaussian mixture-based, Gamma mixture-based, Dirichlet
mixture-based and scaled Dirichlet mixture-based method. For performance investigation,
we evaluate the performance of our Bayesian learning method and the rest of methods
in terms of overall accuracy (ACC), detection rate (DR), and false-positive rate (FPR).
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Tables 2–4, show the classification accuracies for the Test sets of each dataset when ap-
plying different generative approaches namely: Gaussian mixture model with maximum
likelihood (GMM-ML), with Bayesian inference (GMM-B), Gamma mixture model with
maximum likelihood (ΓMM-ML), Dirichlet mixture with maximum likelihood (DMM-

ML), with Bayesian inference (DMM-B), scaled Dirichlet mixture with maximum likeli-
hood (SDMM-ML), with Bayesian inference (SDMM-B), shifted scaled Dirichlet mixture
with maximum likelihood (SSDMM-ML), and our proposed method named as shifted
scaled Dirichlet mixture with Bayesian inference (SSDMM-B).

According to these tables, we can see clearly that, in general, all mixture models
provide encouraging results taking into account the difficulty of the unsupervised learning
problem. It is clear that our proposed Bayesian method for the shifted scaled Dirichlet
mixture outperforms, according to the used metrics, the rest of methods. Indeed, our
work has better accuracy as well as lowest false positive rate than both Dirichlet and
Gaussian mixtures. We can also see that Bayesian learning provides better results than
the ML approach for all models. As we can see, for CXR-COVID dataset, the SSDMM-B
outperforms other models with accuracy of 89.57% compared to 88.08% for SDMM-B,
88.04% for DMM and 82.44% for GMM. Our Bayesian model is slightly better than SSDMM-
MML [22]. Likewise, we came to the same conclusion for the other datasets and we reach
the highest accuracy of 93.03% with our model SSDMM-B for the CXR-Pneumonia dataset.
According to this last result, it is clear that the precision increases (and the false positive
decreases) as the dataset size increases. This is can be viewed for CXR-Augmented-COVID
and CXR-Pneumonia datasets which contain more images than CXR-COVID. On the basis
of the overall accuracy (ACC) for three datasets (CXR-COVID, CXR-Pneumonia, and CXR-
Augmented-COVID), it is obviously clear that the difference between the highest and
lowest accuracy is between 5.2% and 7.46% for each dataset. The difference between some
methods is about 2.26% which is also considered significant according to t-student test.
The obtain results confirm the merits of the fully Bayesian formalism for shifted-scaled
Dirichlet mixture which is more flexible (since it has more degrees of freedom) than the
Dirichlet and the scaled Dirichlet mixtures. Its flexibility also makes it possible to easily
integrate more knowledge and especially features selection mechanism into the proposed
framework. On the other hand, even a small improvement is worthwhile taking into
account the difficulty of the problem especially with the availability of strong machines to
do the processing and simulations. Concerning the modeling uncertainty quantification,
this is something that distinguishes our approach from deep learning models (black boxes).
We are currently working with clinicians to be able to quantify the uncertainty and extract
interpretations, as well as explanations from our models which is possible thanks to the
generative nature of the deployed model.

Table 2. Overall accuracy for chest x-ray (CXR)-COVID Dataset.

Approach/Metrics ACC(%) DR(%) FPR(%)

GMM-ML [48] 82.11 81.02 0.18
GMM-B [49] 83.44 82.14 0.17
ΓMM-ML [50] 85.22 83.76 0.16
DMM-ML [51] 87.99 87.88 0.14
DMM-B [52] 88.04 87.78 0.13
SDMM-ML [16] 88.08 87.84 0.13
SDMM-B [31] 88.22 88.07 0.13
SSDMM-ML [22] 89.13 88.24 0.12
SSDMM-B (our method) 89.57 88.61 0.12
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Table 3. Overall accuracy for CXR-Pneumonia Dataset.

Approach/Metrics ACC(%) DR(%) FPR(%)

GMM-ML [48] 87.66 85.80 0.13
GMM-B [49] 88.90 86.98 0.11
ΓMM-ML [50] 90.54 88.54 0.10
DMM-ML [51] 91.81 91.03 0.09
DMM-B [52] 92.01 91.33 0.09
SDMM-ML [16] 92.43 91.32 0.09
SDMM-B [31] 92.81 91.77 0.09
SSDMM-ML [22] 92.85 92.01 0.08
SSDMM-B (our method) 93.03 92.90 0.08

Table 4. Overall accuracy for CXR-Augmented COVID-19 Dataset.

Approach/Metrics ACC(%) DR(%) FPR(%)

GMM-ML [48] 85.13 83.99 0.14
GMM-B [49] 86.77 84.08 0.13
ΓMM-ML [50] 90.24 89.14 0.10
DMM-ML [51] 88.01 87.57 0.12
DMM-B [52] 88.44 87.96 0.12
SDMM-ML [16] 89.01 88.12 0.11
SDMM-B [31] 89.88 89.12 0.10
SSDMM-ML [22] 90.10 89.01 0.09
SSDMM-B (our method) 90.33 89.12 0.09

It is also noted that the lung segmentation step is difficult particularly when it includes
acute respiratory distress syndrome. This difficulty is due to the little contrast at the
boundary of the lung. Moreover, when the number of images in this dataset is too small,
the obtained results are lower than the case of big datasets. We can conclude that the
obtained results are considered very encouraging given that we approach the classification
problem in an unsupervised manner. In fact, the flexibility of the shifted-scaled mixture
model and the robustness of texture-based features lead to more stable results. For COVID-
19 identification through CXR images, the proposed fully Bayesian learning approach
for SSDMM has confirmed that it is capable to discriminate images according to texture
properties. In order to further improve these results, perhaps other descriptors are needed,
especially the consideration of a robust feature selection mechanism to filter out unreliable
features and keep only the most relevant ones. Please note that various studies have
been proposed in the state of the art [53] which show that textures are very promising for
many medical applications [54]. Here, the comparison between different feature-based
techniques is beyond the scope of this article. Instead, we investigated in this work one
robust texture-based descriptor to have interesting results for the classification of chest
x-ray (CXR) images and corona virus convid-19 detection.

5. Conclusions

In this paper, we have addressed the problems of modeling and classification of
multidimensional non-Gaussian data via a purely Bayesian learning approach based on a
shifted scaled Dirichlet mixture model. We have especially tackled the problems of chest
x-ray (CXR) images classification and COVID-19 detection. The flexibility and capability of
the proposed statistical framework is evaluated through three public datasets related to
COVID-19 and Pneumonia diseases. Unlike other statistical methods, which assume the
heavy assumption that input data are Gaussian, which is not always ture especially for real
medical applications, the treated data in our work are modelled via non-Gaussian model
and using finite mixtures of shifted scaled Dirichlet distributions that offer reasonable
explanations. Our framework has provided promising results and outperforms other
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methods. In particular, the Bayesian inference results are more interesting thanks to the
consideration of the joint posterior distribution. In this work we have investigated an effec-
tive MCMC-based approximation technique given that exact inference in fully Bayesian
methods is not easy to compute. Our implemented approach has also the advantage of
being more general and extensible enough to be applied for large scale data presenting
various infection’s type. Future works could be devoted to extending the proposed frame-
work via nonparametric approaches. Other promising future works include the integration
of feature selection mechanism into the statistical model to improve the generalization
capabilities. We hope also that many other real-world problems, including medical ones,
will be addressed within the proposed framework.
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Abstract: Dermoscopic images allow the detailed examination of subsurface characteristics of the skin,
which led to creating several substantial databases of diverse skin lesions. However, the dermoscope
is not an easily accessible tool in some regions. A less expensive alternative could be acquiring
medium resolution clinical macroscopic images of skin lesions. However, the limited volume of
macroscopic images available, especially mobile-acquired, hinders developing a clinical mobile-based
deep learning approach. In this work, we present a technique to efficiently utilize the sizable number
of dermoscopic images to improve the segmentation capacity of macroscopic skin lesion images.
A Cycle-Consistent Adversarial Network is used to translate the image between the two distinct
domains created by the different image acquisition devices. A visual inspection was performed
on several databases for qualitative evaluation of the results, based on the disappearance and
appearance of intrinsic dermoscopic and macroscopic features. Moreover, the Fréchet Inception
Distance was used as a quantitative metric. The quantitative segmentation results are demonstrated
on the available macroscopic segmentation databases, SMARTSKINS and Dermofit Image Library,
yielding test set thresholded Jaccard Index of 85.13% and 74.30%. These results establish a new
state-of-the-art performance in the SMARTSKINS database.

Keywords: convolutional neural network; CycleGAN; data augmentation; dermoscopic images;
domain transfer; macroscopic images; skin lesion segmentation

1. Introduction

Skin cancer is one of the most prevalent malignancy worldwide and has a reported
yearly growing incidence with no signs of plateauing. In 2018, almost three-hundred
thousand malignant melanoma (MM) were diagnosed worldwide and over a million non-
melanoma skin cancers (NMSC) [1]. However, this number excludes basal cell carcinoma,
the most frequent skin cancer, since most go unreported [2]. The majority of NMSC and
MM are highly curable if diagnosed in the early stages. The estimated 5-year survival rate
for MM drops from over 98% to 23% if detected when the metastases are distant from the
origin point [1]. Moreover, the effective diagnosis is compromised by the almost identical
clinical presentation of benign and malignant skin lesions. Therefore, timely and accurate
diagnosis is a paramount measure in controlling this pre-eminent global public health
problem.

The growing usage of smartphones added to the robustness of deep learning models
makes a mobile-based deep learning approach a well-suited possibility for the automatic
cutaneous cancer triage [3,4]. Notwithstanding, the limited volume of mobile acquired
images, such as macroscopic or close-up images, proves to be an obstacle in the devel-
opment of a robust model specific to the macroscopic image type. Dermoscopy is the
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standard procedure for skin cancer preliminary diagnosis, it allows the visualization of
inner layers of the skin which are not visible to the naked eye. This visualization method
added to the procedural algorithms, allowed an expert diagnostic accuracy of 75% to
84% [5–7], which compelled the generation of several sizeable databases of this type of
images. Yet, the direct inference between the two domains, macroscopic and dermoscopic,
is not advisable and may even prove to be a detriment for the robustness of the model [8,9].
These image acquisition formats generate images with very different characteristics and
challenges [10] and even for the clinical diagnosis, there are rules and methods specific for
each domain [11].

This work aims to evaluate the possibility of designing a deep learning algorithm for
the precise segmentation of lesion in macroscopic images capable to fully operate in the
mobile environment. To assemble such a model, we explore the capitalization of the sizable
dermoscopic databases by using a Cycle-Consistent Adversarial Network (CycleGAN) [12]
for the translation between the two domains, macroscopic and dermoscopic.

2. Related Work

One of the fundamental challenges of the medical imaging computer vision analysis
is to achieve satisfactory results with limited labelled datasets. Even in the era of Big
data, there are still some challenges for which the amount of available data is still severely
lacking. This is the case for the macroscopic segmentation challenge.

The lack of macroscopic images may be the reason for the few efforts into devel-
oping segmentation algorithms [10,13–18]. Examples of segmentation techniques used
are—thresholding [14,16,17], unsupervised dictionary learning methods [13] and support
vector machines [15]. Rosado et al. [16] used an adaptive thresholding technique with
strong pre and post-processing techniques. The usage of deep learning methods has also
been reported [10,18]. In Fernandes et al. [18], a convolution neural network (CNN),
with gossip blocks, combined with a backpropagation technique was used to improve the
segmentation masks by maximizing the expected quality. In the previous work [10] several
architectural modifications of two widely used segmentation CNNs, U-Net and DeepLab,
were tested to infer the best macroscopic segmentation CNNs. Here, two methodologies
were tested to attempt to mitigate the small size of the macroscopic databases: heavy classi-
cal augmentation and transfer learning. The highest reported segmentation performance
obtained, in a macroscopic database, was in Reference [10] with an 82.64% Jaccard index.

One of the techniques used to lessen the small datasets is data augmentation through
basic image manipulation such as flipping, rotating and addition of noise [10,18]. However,
with very small datasets extensive classical data augmentation may promote overfitting [19].
Another strategy used for data augmentation is the creation of artificial instances through
generative adversarial networks. This type of framework samples from simple distributions
and learn to transform it into the complex high dimensional distributions. For this purpose,
two networks are used: one generating network which creates real-looking images, and a
discriminator network which tries to distinguish between the real and fake images. Several
techniques have been attempted for the skin lesion generation [20–23] however most are
used for data augmentation applied to classification task, or to generate skin lesions from
random noise without little to no prior knowledge of the complexity of the lesion.

More recently, Gu et al. [9] used a CycleGAN to perform cross-domain skin diseases
classification between different disease databases. The CycleGAN algorithm performs
image-to-image translation without the need for paired training samples, where the re-
ferred work proved the suitability of this approach to reduce the domain shift between
different datasets. Thus, in this paper, we propose the CycleGAN to transform the der-
matoscopic images into macroscopic. This transformation would allow the use of the vast
amount of available dermatological images to increase the robustness of approaches in the
macroscopic domain, while maintaining structural information of the lesions and some of
their characteristics.
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3. Materials and Methods

3.1. Databases

The growing interest in computer-aided diagnosis systems for automated detection
and classification of skin lesions led to the creation of several databases. Most of these
have been used by researchers to develop algorithms for automated segmentation of lesion
borders.

3.1.1. Segmentation Databases

Macroscopic Segmentation Databases Although many databases provide matching
binary segmentation masks of cutaneous lesions only the Dermofit image Library [24]
and the SMARTSKINS database [25] are of the macroscopic domain. The Dermofit dig-
ital image database consists of 1300 high-quality colour skin lesions images taken with
standard cameras–with matching binary segmentation masks and class labels, the lesions
belong to 10 different diseases with 819 benign and 481 carcinogenic images, annotated by
individual disease classes. The SMARTSKINS database was obtained at the Skin Clinic
of the Portuguese Institute of Oncology of Porto [25]. This database was acquired with
mobile devices and it comprises several subsets captured in different years. One of the
subset consists of 80 melanocytic lesions together with the corresponding segmentation
masks, as well as medical annotations regarding ABCD score and overall risk.

Dermoscopic Segmentation Databases In terms of dermoscopic databases, we used
the three publicly available International Skin Imaging Collaboration (ISIC) challenges
datasets (2016 [26], 2017 [27] and 2018 [28,29]) , as well as the PH2 database [30] . The ISIC
database is a collection of multiple databases used in a recurrent challenge, which aims to
improve melanoma detection in dermoscopic images. The ISIC Challenge is broken into 3
tasks—lesion segmentation, lesion attribute detection and disease classification. The PH2
database was obtained at the Dermatology Service of Hospital Pedro Hispano. Each case
contains a dermoscopic image, the segmentation of the lesion provided by a doctor, as well
as clinical and histological diagnosis and the assessment of several dermoscopic criteria.

The splitting process performed on these databases is summarized in Table 1, which
is the same used in Reference [10]. Essentially, the Dermofit and PH2 databases suffer an
80/20 split, between the train and test subsets, and the SMARTSKINS a 50/50 split due to
its relative small size. For the three ISIC challenges, the images were merged and the ISIC
2017 test instances were reserved for the test subset. Figure 1 shows illustrative examples
of the macroscopic and dermoscopic segmentation databases in pairs A and B.

Table 1. Overview of available segmentation macroscopic and dermoscopic databases and separation
into train/validation and test subsets.

Set Database
No. Images

(Type)
No. Train/Val. No. Test

set M Dermofit 1300 (MD) 1036 264
SMARTSKINS 80 (MP) 39 41

set D ISIC 2594 (De) 1994 600
PH2 200 (De) 160 40

set M—set of macroscopic images; set D—set of dermoscopic images; No-Number of images, De-Dermoscopic
images, MD-Macroscopic images acquired with a digital camera, MP-Macroscopic images acquired with a
mobile phone.
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Figure 1. Illustrative examples of macroscopic (row above) and dermoscopic (below) skin lesions. (A) above: SMARTSKINS
(Set M); below: ISIC (set D); (B) above: Dermofit (Set M); below: PH2 (set D); (C) EDRA ; (D) SMARTSKINS 2014/2015.

3.1.2. Macroscopic and Dermoscopic Databases

The particular characteristic of these databases is that for each skin lesion it has both
macroscopic and dermoscopic image. Two databases were found that enter this category—
the EDRA database [31] and a subset of the SMARTSKINS database [25]. Figure 1 shows
illustrative examples of the two aforementioned databases in pairs C and D, each column
has above the macroscopic images and below the dermoscopic counterpart. The EDRA
database comprises over 1000 cases of skin lesions. Each clinical case is properly anno-
tated with the clinical data, histopathological results, diagnosis, level of difficulty and the
macroscopic and dermoscopic image of the lesion. The subset SMARTSKINS database
(SMARTSKINS 2014/2015) was acquired with two smartphones and classified by the
overall risk of the lesions. This subset contained over 170 cases of lesions, each of them had
one dermoscopic image and two macroscopic.

These databases were used to form the macroscopic and dermoscopic dataset. The di-
vision of these databases, into train and test subsets, was performed in a stratified manner
in accordance with the classification. Subsequently, it was added to the train subset the
ISIC macroscopic images [32] and the training and validation subsets of Set D and Set M.
The final configuration of the dermoscopic and macroscopic datasets can be seen in Table 2.

Table 2. Formation of dermoscopic and macroscopic datasets and separation into train and test
subsets.

Database
Train Test

MD\MP De MD\MP De

EDRA 802 802 209 209
SMARTSKINS
2014/2015 295 148 56 28

PH2 (Set D) - 160 - 40
ISIC (Set D) - 1994 - 600
Dermofit (Set M) 1036 - - -
SMARTSKINS
(Set M) 39 - - -

ISIC Archive 104 - - -

Total 2158 3057 242 869

De-Dermoscopic images, MD-Macroscopic images acquired with a digital camera, MP-Macroscopic images
acquired with a mobile phone.

3.2. Methodology
3.2.1. Generation of Macroscopic Images

CycleGAN was introduced in 2017 by Zhu et al. [12], this framework is a technique
used for the adversarial “unsupervised” training of image translation between two different
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domains. The most notable capacity is the ability to transform within two domains without
using paired data. This lack of pixel-to-pixel correspondence happens in the macroscopic
and dermoscopic images, even if images correspond to the same lesion as each acquisition
implies different illumination, resolution and distance to the lesion. The framework consists
of two mapping functions G : X− > Y and F : Y− > X in conjunction with the respective
adversarial discriminators, Dx and Dy, that distinguishes x from F(y) and y from G(x),
respectively. These duos are trained with an adversarial loss (LGAN) in association with a
cycle consistency loss (Lcyc).

In this work, the objective function used in the computation of the LGAN was a
combination of the sigmoid cross-entropy between the generated images and an array
of ones, and the L1 loss interpolated from the generated image and the target image.
Nevertheless, the LGAN alone is not enough to produce images of quality, since it imposes
the generated output to be in the desired domain, but does not promote the recognizability
between the source and target domain. To enable this mode of learning, Zhu et al. [12]
proposed Lcyc. This mechanism, which can be seen in Figure 2, relies on the expectation
that if an image is converted to another domain and back again it will be comparable to
the original image. This generates two cycle-consistency losses: the forward cycle and the
backward cycle.

Figure 2. CycleGAN framework and training strategy. Blue—Forward cycle-consistency loss; Red —
Backwards cycle-consistency loss.

The full loss is a weighted sum of the adversarial loss of both mapping functions
(LGAN(F, DX, Y, X)) and LGAN(G, DY, X, Y)) and the cycle consistent loss (Lcyc(G, F)),
where the Lcyc(G, F) was favoured by a λ = 10 as shown in (1).

L(G, F, DX , DY) = LGAN(F, DX , Y, X) + LGAN(G, DY, X, Y) + λLcyc(G, F). (1)

Generator Architecture The architecture adopted is based on the approach described
by Johnson et al. [33] in 2016, which was used for neural style transfer and superresolution.
This network can be divided into three sections: the encoder, the transformer and the de-
coder. The encoder is comprised of three sets of padding and convolutional layers followed
by instance normalization and the ReLU activation function. The first convolutional layer
has a 7 × 7 kernel and stride 1, and the last two have 3 × 3 kernels and stride 2. Afterwards,
more representative features are produced with the transformer, which encompasses a
series of twelve residual blocks of 3 × 3 kernels and stride 1, instead of the nine residual
blocks used in the Johnson et al. [33]. Lastly, the feature maps are expanded by the decoder,
which is comprised of two transposed convolutions, with 3 × 3 filters and stride 2, and one
output convolutional layer with 7 × 7 kernels and stride 1. This last layer has the typical
tanh activation function to produce the final image in RGB.

Discriminator Architecture For the discriminator, the PatchGAN [34] was used.
This CNN looks at a “patch” of the input image and ascertains the probability of be-
ing real. This fully connected network is comprised of five convolutional layers with 4 × 4
kernels and stride 2. Each layer is followed by an instance normalization and the Leaky
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ReLU activation function. The output layer uses a sigmoid function to perform the binary
classification between real and fake images.

Implemention Details The implementation of the CycleGAN was made with Ten-
sorflow API r1.15 in Python 3.7.3 on an NVIDIA Tesla V100 PCIe 32GB GPU. As training
protocol, the one proposed on the original paper [12] was followed. In short, we employ a
learning rate of 0.0002 with the weights initialized from a Gaussian distribution ranging
from 0 to 0.02. The stopping criteria took into consideration the stabilization of the loss
values of the generators, as well as the immutability of the TransMacro and TransDermo
images, which were visually analysed during training. In the limiting case in which none
of the criteria were satisfied, the CycleGAN model had the final criteria of 1000 epochs.
The dataset used in the training and testing of this network is described in Table 2.

3.2.2. Segmentation Network

The segmentation network employed was the optimized encoder-decoder network
selected in Reference [10], which used a modified DeepLabV3+ [35]. Initially, the encoder
was replaced by a MobileNetV2 [36] reduced with a width multiplier, which allows the
manipulation of the input width of a layer, of α = 0.35. Additionally, the last convolutional
layer was adjusted to a 1 × 1 convolutional layer with a sigmoid activation function, which
is more appropriate for a binary segmentation.

Before the training procedure, the images were scaled and resized to 512 × 512 pixels.
The following classic data augmentation procedure was applied: the images were randomly
flipped vertically and horizontally, randomly transposed, randomly modify brightness,
saturation, contrast and hue, and randomly add Gaussian noise. To optimize the network,
we followed the procedure from the previous work [10]: the stochastic optimization of the
model was performed with the soft Dice Loss (1 − Dice), with a batch size of 4, a 90/10
partition for the training/validation subsets and the Adam optimizer associated with a
cyclic learning rate [37].

3.2.3. Evaluation

Although the evaluation the generated images is still an active frontier of research [38],
they may be analysed by visual inspection, metrics of similarity and the impact of using
them in segmentation can also be calculated.

CycleGAN evaluation metrics The visual inspection was based on domain-specific
knowledge of intrinsic dermoscopic features, such as pigmented networks and diffused
pigmentation, the appearance of macroscopic artefacts, for instance, the surface glare and
reflections, and, lastly, the generation of the outward aspect of depth and the modification
of the background skin tonality.

To quantitatively evaluate the similarity between the generated and the real images,
the Fréchet Inception Distance (FID) [39] was used. This metric measures the distance
between the features spaces of specific CNN layer, typically the last pooling layer of
InceptionV3 [40], for the real and real and generated images. Since it is based on a distance
metric, a lower FID score means that the two analysed distributions are similar. FID is
considered a discriminative, robust metric, and evidence shows that it is consistent with
human judgement [39,41].

Segmentation evaluation metrics For the evaluation of the segmentation results,
the six metrics used in the ISIC challenge of 2018 [28] were adopted, namely: threshold
Jaccard coefficient (TJA), Jaccard coefficient (JA), dice coefficient (DI), accuracy (AC), sensi-
tivity (SE) and specificity (SP). The TJA is a metric created specifically for the skin lesion
segmentation, which introduces the measure of incorrectness. If the value of JA, on each
image, is below 65% threshold then JA is considered 0.
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4. Results and Discussion

4.1. Evaluation of the Generated Images
4.1.1. Visual Inspection

A visual assessment was performed to evaluate the outputs’ realism, by identifying
the loss or preservation of some dermoscopic structures. The datasets that had both
dermoscopic and macroscopic for the same skin lesion were used, namely the EDRA
and SMARTSKINS 2014/2015. The same analysis was carried out with images from the
ISIC and PH2 test subsets; these images were not used during the training phase of the
CycleGAN.

EDRA Figure 3a shows the results obtained from the trained CycleGAN in the test
subset of the EDRA dataset—It is possible to compare the macroscopic image to the dermo-
scopic image translated into the macroscopic domain (TransMacro) and the macroscopic
image translated into the dermoscopic domain (TransDermo). In the case of the dermo-
scopic to macroscopic translation, we can observe that the model was able to generate
plausible macroscopic images from dermoscopic images. In particular, several successful
transformations unique to the macroscopic domain were obtained, such as: (i) The genera-
tion of depth in the TransMacro images, that is, lesion images with nodular aspect from flat
dermoscopic images, shown in Figure 3a (row 1); (ii) The expected appearance of surface
glare and change of skin tonality due to the absence of polarized light in macroscopic
images, which can be seen in Figure 3a (rows 1, 2, and 3); and (iii) The loss of dermoscopic
characteristics such as specific pigmentations or diffuse borders, as illustrated in Figure 3a
(rows 1 and 2). It should be noted that failure cases occur when there is the presence of
gel or ruler markings and round black borders. These three characteristics never appear in
macroscopic images, so, understandably, the model could not learn how to address these
artefacts. Where there is gel in the lesion, the model only performed slight modifications to
the input, as shown in Figure 3a row 4.

(a) EDRA (b) SMARTSKINS 2014/2015

Figure 3. Examples of the translation between domains in EDRA (a) and SMARTSKINS 2014/2015 (b) tests subsets. For each
subfigure, from left to right: pair Dermo→TransMacro and pair Macro→TransDermo.
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However, the inverse transformation seems to lead to unsatisfactory results. One pos-
sible explanation is the incapacity of the model of extrapolating the greater details of
the dermoscopic images. Considering all the specific details normally obtained in the
dermoscopic image, the model was not able to capture sufficient features to solve this task.

SMARTSKINS 2014/2015 This dataset proved quite challenging for the model due to
the dark corners in all dermoscopic images. Figure 3b (row 1) shows this failure case, which
usually results in minimal to no changes in the TransMacro result. Since we suspected
that the cause of failure was the fact that macroscopic images never have these dark
borders, and consequently the generator does not learn how to deal with the characteristic,
the dark corners were removed, by cropping the image. This pre-processing step led to
a considerable improvement in the results. Figure 3b (row 2), shows the translation of
the same dermoscopic image, this time cropped. Here, the model was able to generate an
appearance of reflection and modify the skin tonality, which can be seen in Figure 3b (rows
2, 3, and 4). In this dataset, the generation of depth skin lesion can also be seen in Figure 3b
(row 4), however not as evidently as in the previous dataset.

In this dataset, an interesting result was obtained in the macroscopic to dermoscopic
translation. Figure 3b (row 4) shows the generation of a region with red colouration in
the left inferior area of the lesion of the TransDermo image. This colouration, which was
not present in the original macroscopic image, is also present in the original dermoscopic
image. Another transformation detected, in this image was the accentuation in the contrast
of the two brown tonalities of the lesion.

ISIC Figure 4 shows the results obtained from the trained CycleGAN in the ISIC test
subset. As expected, the best transformations occured in this subset, as the ISIC images
represented a large portion of the training dataset. For the most part, the conversions in
this dataset can be categorised into four main ones which are shown in Figure 4 in the
top row: (i) the appearance of surface glare and reflections; (ii) generation of depth; (iii)
loss of dermoscopic structures; and (iv) generation of squamous appearance. Regarding
the generation of surrounding skin with colourization and surface glared, typical of the
macroscopic domain (Figure 4, pair A, top row), this modification is usually accompanied
by the loss on any structure typical of the dermoscopic domain. This loss can be from
the diffuse borders, regression structure or pigmented networks (Figure 4, pairs A, B and
C, top row). Another frequent modification is the generation of squamous like plaque or
nodular appearance (Figure 4 pair D of the top row). The generation of an appearance of
depth in the image is also very prevalent (Figure 4, pairs A, B and C, top row).

Figure 4. Examples of successful (top row) and failure cases (bottom row) of translation from the dermoscopic domain to
the macroscopic domain in ISIC test subset. The letters A, B, C and D represent pairs of Dermo→TransMacro.

In the translation of dermoscopic to the macroscopic domain, there are several notice-
able limitations, as shown in Figure 4 (bottom row). The appearance of artefacts such as
black frames, dark corners, gel substances, intensive illuminations spots, ink marks and air
bubbles can lead to translations with no noticeable modifications (Figure 4, pairs A, B and
C, bottom row). Another main concern is the transformation to an uncharacteristic lesion
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which does not resemble any specific domain. Normally these translated images have a
reddish tone or complete loss of definition (Figure 4, pair D, bottom row).

PH2 Figure 5 shows the results obtained from the trained CycleGAN in the PH2 test
subset. In order to obtain reasonable results, it was necessary to crop the image to remove
the dark corners just as it was done in the SMARTSKINS 2014/2015 dataset. After this
pre-processing step, the most successful transformations were the change in the tonality
of the surrounding skin, the addition of reflections, the darkening of the lesion and some
elevation of the lesions. However, it should be noted that the results were not as satisfactory
as in the previous test subsets.

Figure 5. Examples of successful (column 1 and 2) and failure cases (column 3 and 4) of translation
from the dermoscopic domain to the macroscopic domain in the PH2 test subset. From Left to right:
pair Dermo→TransMacro, cropped pair Dermo→TransMacro.

4.1.2. Fréchet Inception Distance Results

The FID metric was used to ascertain the feasibility of using the CycleGAN to trans-
late between the macroscopic and dermoscopic domains. For this purpose, the distance
between three pairs of domains was analysed: (i) Macro/Dermo, between the macroscopic
and dermoscopic original images; (ii) Macro/TransMacro, between the original macro-
scopic image and the dermoscopic image translated into the macroscopic domain; (iii)
Dermo/TransDermo, between the original dermoscopic image and the macroscopic image
translated into the dermoscopic domain. Since the first pair, Macro/Dermo, compares
original images, it can be considered our reference value. If the FID value of the other pairs
is lower than the reference value, it means that the translation led to an approximation of
the translated images to the target domain, implying a transfer of characteristics between
domains.

This change can also be directly compared using the variation ratio (VR), VR =
ReferenceValue−Value

ReferenceValue , which will directly compare the change of similarity between the origi-
nal domains (reference value) and the translated domains. Table 3 presents the computed
FID scores, using the official implementation in TensorFlow [39], on the test subsets of
EDRA, SMARSTSKINS 2014/2015, PH2 (set D) and ISIC (set D). Since PH2 (set D) and ISIC
(set D) do not have a macroscopic image for each dermoscopic image, they were compared
with the macroscopic images of the train subset of Dermofit (set M) and SMARTSKINS
(set M).

Table 3. Fréchet Inception Distance (FID) and Variation Ratio (VR) results in the test subsets of EDRA, SMARTSKINS 2014/2015, PH2
and ISIC.

Domains EDRA
SMARTSKINS
2014/2015

ISIC (Set D) PH2 (Set D)

Uncropped Cropped Cropped

FID VR FID VR FID VR FID VR FID VR
Macro/Dermo

(reference value) 167.9 331.7 294.2 180.9 292.9

Macro/TransMacro 160.2 0.05 285.1 0.15 177.5 0.40 123.7 0.31 285.7 0.02
Dermo/TransDermo 186.4−0.11 285.6 0.14 263.6 0.10 - -
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When analysing the FID results, it is possible to confirm several findings reached
in the visual inspection. In the EDRA test subset, the FID score of 160.2 between the
domains Macro/TransMacro is lower than the value 167.9 between the Macro/Dermo.
This shows that the translations of the dermoscopic images to macroscopic was successful
and implies that the images gain specific macroscopic characteristic. In contrast, the value
between Dermo/TransDermo is much higher, reaching 186.4. When comparing to the
reference value, it leads to a negative VR, which indicates that translating the macroscopic
images into dermoscopic made the domains more dissimilar. This further corroborates the
conclusion of the visual analysis that the macroscopic to dermoscopic translation was not
successful.

In the SMARTSKINS 2014/2015 test subset, the macroscopic images were compared
with the uncropped and cropped dermoscopic images, as in the visual analysis. Con-
sidering that the decay between the reference FID score with the cropped dermoscopic
(Macro/TransMacro) is much higher than decay between the reference value using the
uncropped dermoscopic images, it can be stated that this preprocessing step improves
the results. In fact, the VR of the Macro/TransMacro with cropped dermoscopic is the
highest among test subsets. When analysing the other translation (Dermo/TransDermo),
the absolute value of the FID score with the cropped dermoscopic (263.6) is lower than
with the uncropped dermoscopic (285.6). However, the VR is also lower, which means that
the preprocessing did not improve as much the results.

In the ISIC (Set D) test subset, the dermoscopic images were compared with the train
images of Set M. Upon translation, the absolute FID score is the lowest of the test subsets
(123.7), validating the assessment made in the visual inspection—the best results were
obtained in this dataset.

The PH2 test subset was also compared with the train images of Set M. Here, the FID
value obtained was the highest absolute value with the lowest percentage of variation,
which is consistent with the small changes observed in the visual inspection.

Lastly, the CycleGAN was used to translate the training/validation images from Set
D to the macroscopic domain. This led to the creation of the Set Marti f icial to augment
the macroscopic images. Table 4 shows the results of the FID between the segmentation
training datasets set M and Set D and the new generated Set Marti f icial . The FID score
between Set M/set Marti f icial (102.4) is much lower than the reference value between Set
M/Set D (181.1). This drop leads to the most significant change in the variation ratio
between the reference value and the Macro/TransMacro domains. Considering also the
low absolute value of the FID score (102.4), it is possible to conclude that the images of Set
Marti f icial obtain several key features of the macroscopic domain.

Table 4. Fréchet Inception Distance (FID) and Variation Ratio (VR) results between set M, set D and
set Marti f icial .

Domains Segmentation Sets FID VR

Macro/Dermo (reference value) Set M/Set D 181.1
Macro/TransMacro Set M/set Marti f icial 102.4 0.43

4.2. Segmentation Results

The final objective of translating the images to the macroscopic domain was improving
the model’s segmentation capacity for macroscopic images. Thus, the reduced Mobile
DeepLab model was trained with two different datasets, first with the merging of Set M
and Set D and, after, with the combined Set M and Set Marti f icial . The first dataset (Set
M + Set D) serves to check if the performance improvement is due to more samples or
the addition of the translated images. The datasets had a total of 3230 samples: being Set
D + Set M composed of 2/3 of dermoscopic images, while the Set M + Set Marti f icial is
composed of 2/3 of macroscopic images artificially generated with the CycleGAN.

Table 5 compares the methods described in the related work [10,16,18], which exploit

150



J. Imaging 2021, 7, 2

the SMARTSKINS database, with the two aforementioned models. The addition of the
translated macroscopic images, Set M + Set Marti f icial (Table 5, row 6), outperforms the other
methods by a considerable margin. This augmentation technique leads to an improvement
even when compared to the classical augmentation methods (Table 5, row 3), to the transfer
learning technique (Table 5, row 4) and to the addition of the original dermoscopic images
(Table 5, row 5). With an 85.13% TJA and 86.69% JA, our method, that includes the translated
macroscopic images, sets a new state-of-the-art performance in the SMARTSKINS database.

Table 5. Comparison between the proposed methods and related studies using the SMARTSKINS database. The best result,
for each of the metrics in the present table, is identified in boldface.

Method TJA JA DI AC SE SP

Adaptive Thresholding [16] - 81.58 - 97.38 - -
Gossip Network [18] - - 83.36 - - -
Reduce Mobile DeepLab (Macroscopic) [10] 78.51 82.64 90.14 98.96 95.40 99.15
Reduce Mobile DeepLab (Transfer Learning) [10] 78.04 82.21 89.89 98.90 96.05 99.09
Our Method (Set M + Set D) 78.27 82.58 90.22 98.88 98.39 98.89
Our Method (Set M + Set Marti f icial) 85.13 86.69 92.74 99.18 96.36 99.32

For the Dermofit database, there was only one record of the use of this database for
segmentation [10], which is compared with our methods in Table 6. In the Dermofit test
subset, the addition of artificial macroscopic images (Table 6, row 4) has similar results
to the model trained with Set M + Set D (Table 6, row 3). In fact, both models, while
outperforming the classical data augmentation (Table 6, row 1), seem to underperform
when compared with the transfer learning method (Table 6, row 2) used in Reference [10].
However, it is only possible to make a distinction with the TJA metric, which features a
1.16% decrease. This underperformance means that only four more images were below the
65% threshold in the model trained with the artificial macroscopic images (Table 6, row 4)
than with the transfer learning method (Table 6, row 2).

Table 6. Comparison between the proposed methods and related studies using the Dermofit Image Library database. The
best result, for each of the metrics in the present table, is identified in boldface.

Method TJA JA DI AC SE SP

Reduce Mobile DeepLab (Macroscopic) [10] 72.97 80.26 88.26 93.51 87.56 96.86
Reduce Mobile DeepLab (Transfer Learning) [10] 75.46 81.03 88.79 93.78 89.68 96.13
Our Method (Set M + Set D) 74.42 80.88 88.75 93.53 90.74 95.14
Our Method (Set M + Set Marti f icial) 74.30 80.90 88.62 93.54 88.91 95.84

The fundamental reason behind this discrepancy in the results between the two
databases can be the melanocytic bias present in most of the databases. Since the past re-
search focused on the distinction between melanocytic lesions [29], almost all databases are
heavily biased towards this type of lesions. Nowadays, there has been an attempt to solve
this issue, however, this is mainly in dermoscopic datasets [28,29]. Since SMARTSKINS
database has this biased distribution of lesions it leads to a significant improvement. How-
ever, Dermofit Image Library has a high non-melanocytic percentage of images. Due to
this disparity with all other available databases the improvement is not as substantial.

It is of note that in Dermofit questionable ground truth segmentation masks were
found as depicted in Figure 6. Both these labels appear to be the result of a segmentation
method which over-segmented the lesion due to the hair artefacts present in the images,
which is a common occurrence when the removal of the hairs is ineffective [42].
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Figure 6. Examples of questionable segmentation labels of the Dermofit Database.

Figure 7a,b show various examples of the predicted segmentation mask of the model
trained with the addition of the artificial images, Set M + Set Marti f icial , compared with
the ground truth label. The juxtaposition of the predicted segmentation mask with the
ground truth originated a plot which makes it possible to ascertain the viability of the
segmentation by colour code. Fundamentally, the yellow represents where both masks
overlap (true positives), the red the over-segmented areas (false positives) and the green
the under-segmented areas (false negatives). Over the entire test subset, the normalized
value of false positive pixels is of 0.12 for the Dermofit and 0.032 for the SMARTSKINS
dataset and the normalized value of false negatives is of 0.04 and 0.007, respectively.

(a) SMARTSKINS test subset. (b) Dermofit test subset.

Figure 7. Segmentation results of the Set M + Set Marti f icial from the tests subsets. In the comparison images: yellow —true
positives; red —false positives; green —false negatives; black—true negatives.

When analysing the results in detail when using the model that includes generated
macroscopic images from each of the test subsets, it is possible to observe that all seg-
mentation results are almost identical in shape to the ground truth when dealing with
melanocytic lesions with high contrast with the surrounding skin and no artefacts present
(Figure 7a,b row 1). This high performance is maintained with lesions with low contrast
and uneven pigmentation (Figure 7a,b row 2). Furthermore, if we observe Figure 7a,b row
3, it is possible to see that the model is able to correctly segment in the proximity of regions
with the red colouration, with hairs and superimposed artefacts. However, the model
seems to underperform when the lesion presents a dysplastic form, with the hair artefact,
and with heavily porous skin and low contrast (Figure 7a,b row 4).
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5. Conclusions

Nowadays, with skin cancer’s ever-growing incidence, developing a robust system
capable of assisting physicians in cancer screening is of paramount importance. The ubiq-
uitous spread of smartphones combined with deep learning models’ robustness makes
mobile teledermatology a possible tipping point for the early diagnosis of skin lesions.
However, this has been hindered by the small size of macroscopic datasets available.

In this paper, we tackle the challenge of improving the macroscopic skin lesion seg-
mentation performance by effectively taking advantage of the large dermoscopic datasets
available. Using a CycleGAN, it was possible to translate between the two domains and
generate natural-looking artificial macroscopic skin lesions. Furthermore, we demonstrate
the quality of the generated images quantitatively using the FID score. This analysis
confirmed most of the visual inspection conclusions and demonstrated the artificial macro-
scopic images’ fidelity.

Regarding the use of macroscopic artificial images to improve the segmentation
capacity, it was demonstrated the overall effectiveness of this method. In both available
databases, there was an improvement when comparing with classical data augmentation
method. As future work, we should consider to examine the segmentation masks of the
Dermofit Image Library, in order to correct them, however it should be noted that this
segmentation should be done preferable by experts.

Undeniably, the assessment of the images by an expert dermatologist would be
interesting to further evaluate the relevance of the generated medical data. However, this is
not critical since the final objective is to improve the segmentation model’s performance.

Further work is needed to overcome the melanocytic bias of the databases. This could
begin with the collection of new non-melanocytic macroscopic images. However, when tak-
ing into consideration the arduousness of collecting healthcare data, the applications of
differentiated augmentation techniques should be studied. This can include the analysis of
loss functions that represent more faithfully our design goals, such as condition-specific
losses or texture-focused losses as in Reference [22]. Other improvements can also be made
to the generator architecture of the CycleGAN framework since its goal is the translation of
style, and it has limited translation capacity in form transfiguration.
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Abstract: The classification of the musculoskeletal images can be very challenging, mostly when it is
being done in the emergency room, where a decision must be made rapidly. The computer vision
domain has gained increasing attention in recent years, due to its achievements in image classification.
The convolutional neural network (CNN) is one of the latest computer vision algorithms that achieved
state-of-the-art results. A CNN requires an enormous number of images to be adequately trained,
and these are always scarce in the medical field. Transfer learning is a technique that is being
used to train the CNN by using fewer images. In this paper, we study the appropriate method to
classify musculoskeletal images by transfer learning and by training from scratch. We applied six
state-of-the-art architectures and compared their performance with transfer learning and with a
network trained from scratch. From our results, transfer learning did increase the model performance
significantly, and, additionally, it made the model less prone to overfitting.

Keywords: transfer learning; computer vision; convolutional neural networks; image classification;
musculoskeletal images; deep learning; medical images

1. Introduction

Bone fractures are among the most common conditions that are treated in emergency rooms [1].
Bone fractures represent a severe condition that could result from an accident or a disease like osteoporosis.
The fractures can lead to permanent damage or even death in severe cases. The most common way
of detecting bone fractures is by investigating an X-ray image of the suspected organ. Reading an
X-ray is a complex task, especially in emergency rooms, where the patient is usually in severe pain,
and the fractures are not always visible to doctors. Musculoskeletal images are a subspecialty
of radiology, which includes several techniques like X-ray, Computed Tomography (CT), and Magnetic
Resonance Imaging (MRI), among others. For detecting fractures, the most commonly used method
is the musculoskeletal X-ray image [2]. This process involves the radiologists, who are the doctors
responsible for classifying the musculoskeletal images, and the emergency physicians, who are the
doctors present in the emergency room where any patient with a sudden injury is admitted once
arrived at the hospital. Emergency physicians are not very experienced in reading X-ray images
like the radiologists, and they are prone to errors and misclassifications [3,4]. Image-classification
software can help emergency physicians to accurately and rapidly diagnose a fracture [5], especially in
emergency rooms, where a second opinion is much needed and, usually, is not available.

Deep learning is a recent breakthrough in the field of artificial intelligence, and it has demonstrated
its potential in learning and prioritizing essential features of a given dataset without being explicitly
programmed to do so. The autonomous behavior of deep learning makes it particularly suitable in the
field of computer vision. The area of computer vision includes several tasks, like image segmentation,
image detection, and image classification. Deep learning was successfully applied in many computer
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vision tasks, like in retinal image segmentation [6], histopathology image classification [7], and MRI
image classification [8], among others.

Focusing on image classification, in 2012, Krizhevsky et al. [9] proposed a convolutional neural
network CNN-based model, and they won a very popular image classification challenge called ILSVRC.
Afterward, CNNs gained popularity in the area of computer vision, and it is nowadays considered the
state-of-the-art technique for image classification. The process of training a classifier is time-consuming
and requires large datasets to be correctly trained. In the medical field, there is always a scarcity
of images that can be used to train a classifier, mainly due to the regulations implemented in the
medical field. Transfer learning is a technique that is usually used to train CNNs, when there are not
enough images available or when obtaining new images is particularly difficult. Transfer learning is
about training a CNN to classify large non-medical datasets and then use the weights of such a CNN
as a starting point for classifying other target images, in our case, X-ray images.

Several studies addressed the classification of musculoskeletal images using deep learning
techniques. Rajpurkar et al. [10] introduced a novel dataset called MURA dataset that contains 40,005
musculoskeletal images. The authors used DenseNet169 CNN to compare the performance of the
CNN against three radiologists. The model achieved an acceptable performance compared to the
predictions of the radiologists. Chada [11] investigated the performance of three state-of-the-art CNNs,
namely DenseNet169, DenseNet201, and InceptionResNetV2, on the MURA dataset. The author
fine-tuned the three architectures using Adam optimizer with a learning rate of 0.0001. Fifty epochs were
used with a batch size of eight images to train the model. The author reported that DenseNet201 achieved
the best performance for the humerus images, with a Kappa score of 0.764, and InceptionResNetV2
achieved the best performance for the finger images, with a Kappa score of 0.555.

To demonstrate the importance of deep learning in the emergency room for fracture detections,
Lindsey et al. [5] investigated the usage of CNNs to detect wrist fractures. Subsequently, they measured
the radiologists’ performance of detecting fractures with and without the help of CNN. The authors
reported that, by using a CNN, the performance of the radiologists increased significantly.
Kitamura et al. [12] studied the possibility of detecting ankle fractures with CNNs, using InceptionV3,
ResNet, and Xception networks for their experiments. The authors trained a CNN from scratch without
any transfer learning, and they used a private dataset and an ensemble of the three architectures and
reported an accuracy of 81%.

In this paper, we are extending the work of Rajpurkar et al. [10] and Chada [11] by investigating
the usage of transfer learning of a CNN to classify X-ray images to detect bone fractures. To do
so, we used six state-of-the-art CNN architectures that were previously trained on the ImageNet
dataset (an extensive non-medical dataset). To the best of our knowledge, this is the first paper that
performs a rigorous investigation on the use of transfer learning in the context of musculoskeletal
image classification. More in detail, we investigate the following:

1. The effect of transfer learning on image classification performance. To do that, we compare the
performance of six CNN architectures that were trained on ImageNet to classify fractures images.
Then, we train the same datasets with the same networks, but without the ImageNet weights.

2. The best classifier that achieves the best results on the musculoskeletal images.
3. The effect of the fully connected layers on the performance of the network. To do that, two fully

connected layers were added after each network, and then we recorded their performance.
Subsequently, the layers are removed, and the performance of the networks is recorded as well.

The paper is organized as follows: In Section 2, we present the methodology used. In Section 3,
we present the results achieved by training the MURA dataset on the considered CNNs. In Section 4,
we present a discussion about the results obtained, and we compare them to other state-of-the-art results.
In Section 5, we conclude the paper by summarizing the main findings of this work.
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2. Methodology

In this section, we briefly describe the main methods used in this paper.

2.1. Convolutional Neural Networks and Transfer Learning

A convolutional neural network is a feed-forward neural network with at least one convolution layer.
A convolution layer is a hidden neural network layer that has a convolution operation, where the
convolution operation is a mathematical operation that is used to make use of the spatial information
presented in images. Training a CNN requires a significant amount of images, and this is one of the
most severe limitations in deep learning. In particular, deep learning has a very strong dependence
on massive training data compared to traditional machine learning methods because it needs a large
amount of data to understand the latent patterns of data. Unfortunately, there are problems in which
insufficient training data are an inescapable issue. This may happen in domains in which obtaining new
observations are either expensive, time-consuming, or impossible. In these situations, transfer learning
provides a suitable way for training a CNN. More in detail, transfer learning is a technique used in the
deep learning field to make use of knowledge that can be shared by different domains. According to
Pan and Yang [13], transfer learning can be defined as improving the predictive function, fT(.) by using
the knowledge acquired from the source domain, DS, into the target domain, DT. Transfer learning
relaxes the hypothesis that the training data must be independent and identically distributed with the
test data. This allows us to use transfer learning for training CNNs in a given domain and to use them
to subsequently address a problem in which data scarcity is a significant limitation. For more details
on transfer learning, the interested reader is referred to Pan and Yang [13].

2.2. State-of-the-Art Architectures

Many CNNs were introduced to participate in the ILSVRC challenge. In this section, we present
different CNNs that are considered in this study.

2.2.1. VGG

Simonyan et al. [14] introduced the VGG network in 2014. The VGG was implemented in many
variations like VGG16 and VGG19, which only differ in the number of convolution layers used in each.
In this paper, we use VGG19 because it is the largest one, and it usually produces better performance
than VGG16. VGG19 consists of 19 convolution layers and one dense layer with 4096 neurons to classify
the ImageNet images. For more information, the reader is referred to the corresponding paper [14].

2.2.2. Xception

Chollet [15] introduced a novel architecture called Xception (extreme inception), where the
author replaced the conventional convolutional layers with depthwise separable convolutional layers.
These modified layers decreased the network parameters without decreasing its capacity, which yielded
a robust network with fewer parameters and so less computational resources needed for training.
For more information, the reader is referred to the corresponding paper [15].

2.2.3. ResNet

ResNet architecture was introduced by He et al. [16] in 2015. ResNet was developed by exploiting
the concept of residual connections. The authors introduced the concept of a residual connection
to minimize the effect of the vanishing gradient. The ResNet architecture comes in many variants.
In this paper, we use the ResNet50 network, which contains 50 layers. For more information, the reader
is referred to the corresponding paper [16].
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2.2.4. GoogLeNet

GoogLeNet architecture was introduced by Szegedy et al. [17] in 2014. The authors proposed a
novel idea called the inception module, which takes the aspect ratio of each image into account. There are
many variants for GoogLeNet architecture, and we use the InceptionV3 network. For more information,
the reader is referred to the corresponding paper [17].

2.2.5. InceptionResNet

Längkvist et al. [18] created a novel architecture called InceptionResNet, where the authors
combined the inception module idea from GoogLeNet architecture [17] with the residual idea from
ResNet architecture [16]. InceptionResNet is more computationally efficient than both ResNet and
Inception architectures and achieved higher results than both on the ImageNet dataset. For more
information, the reader is referred to the corresponding paper [18].

2.2.6. DenseNet

Huang et al. [19] introduced a novel architecture called DenseNet. In this architecture, the convolution
blocks are densely connected to each other, and the convolution blocks are concatenated to each other
instead of being added like in the ResNet network. For more information, the reader is referred to the
corresponding paper [19].

2.3. Evaluation Metrics

Two evaluation metrics are being used to assess the performance of each network. Accuracy and Kappa.
Below, we briefly summarize each metric:

2.3.1. Accuracy

This metric quantifies how accurate the classifier is. It is calculated as the number of correctly classified
data points divided by the total number of the data points. The formula is shown in Equation (1).

Accuracy =
TN + TP

TP + TN + FP + FN
(1)

where TP stands for true positive, TN stands for true negative, FP stands for false positive, and FN stands
for false negative. In the context of this study, images without fractures belong to the negative class,
whereas images with a bone fracture belong to the positive class.

2.3.2. Kappa

This is an evaluation metric that is usually used to take into account the probability of selecting
by chance, especially in cases of unbalanced datasets, and it was introduced by Cohen [20]. The upper
limit of the Kappa metric is 1, which means that the classifier classified everything correctly. At the
same time, the lower bound can go below zero, which indicates the classifier is just classifying by luck.
The Kappa formula is presented in Equation (2).

Kappa =
AgreementObserved −AgreementExpected

1− AgreementExpected
(2)

2.4. Statistical Analysis

A statistical analysis was performed to assess the statistical significance of the results. We considered
a confidence interval with a 95% error rate (95% CI) and a hypothesis test. Two hypothesis tests can
be used: ANOVA or Kruskal–Wallis test. The choice of the test mainly depends on the normality of
the data under observation. The ANOVA test is a parametric test that assumes that the data have a
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normal distribution. The null hypothesis of the ANOVA test is that the considered samples have the
same mean, and the alternative hypothesis is that the samples have a different mean.

The non-parametric test is the Kruskal–Wallis hypothesis test [21]. This test does not make any
assumption on the normality of the data, and it compares the medians of different samples. The null
and alternative hypotheses tested are the following:

Hypothesis 0 (H0). The populations medians are all equal.

Hypothesis 1 (H1). The populations medians are not all equal.

In this paper, we first tested the normality assumption by using the Shapiro–Wilk test. Considering that
the test does not allow to reject the alternative hypothesis (i.e., data not normally distributed),
the Kruskal–Wallis test was used to test the significance of the results obtained. To make the hypothesis
test and to report means and significance errors, each setting was repeated 30 times using different
seeds and different validation split. In this way, each approach’s stability can be assessed by also
mitigating the effect of lucky seeds [22].

2.5. Dataset

The dataset used in this paper is the publicly available MURA dataset [10]. The dataset consists of
seven different skeletal bones: elbow, finger, forearm, hand, humerus, shoulder, and wrist. Each category
has a binary label, indicating if the image presents a broken bone or not. The dataset contains a total of
40,005 images. The authors of the dataset split it into training and test sets. The train set included
21,935 images without fractures (54.83% of the dataset) and 14,873 images with fractures (37.17% of
the dataset), and the test set contained 1667 images without fractures (4.16% of the dataset) and 1530
images with fractures (3.84% of the dataset).

All in all, 92% of the dataset is used for training, and 8% of the dataset is used for testing the results.
The summary of the dataset is presented in Table 1. A sample of the MURA dataset is presented in
Figure 1.

Table 1. MURA dataset summary.

Category
Training Dataset Test Dataset

Normal Fractured Normal Fractured

Elbow 2925 2006 235 230
Finger 3138 1968 214 247
Hand 4059 1484 271 189

Humerus 673 599 148 140
Forearm 1164 661 150 151
Shoulder 4211 4168 285 278

Wrist 5765 3987 364 295
Total 21,935 14,873 1667 1530

    
Broken Forearm Normal Forearm Broken Wrist Normal Wrist 

Figure 1. A sample of the MURA dataset.
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3. Results

Throughout the experiments, all the hyperparameters were fixed. All the networks were either
fine-tuned completely or trained from scratch. Adam optimizer [21] was used in all the experiments.
As noted by studies [22,23], the learning rate should be low to avoid dramatically changing the
original weights, so we set the learning rate to be 0.0001. All the images were resized to 96× 96 pixels.
Binary cross-entropy was used as the loss function because the images are binary classified. An early
stopping criterion of 50 epochs would be used to stop the algorithms if no updates happened to the
validation score. The batch size was selected to be 64, and the training dataset was split into 80%
to train and 20% to validate the results during training. Four image augmentation techniques were
used to increase the training dataset’s size and make the network more robust against overfitting;
the augmentation techniques used are horizontal and vertical flips, 180 rotations, and zooming.

Additionally, image augmentation is performed to balancing the number of images in the two
target classes, thus achieving 50% of images without fractures and 50% of images with fractures
in the training set. After the training, each network’s performance was tested using the dataset
that was supplied by the owner and creator of the dataset. The test dataset was not used during
the training phase, but only in the final testing phase. The hyperparameters used are presented in
Table 2. In the following sections, Kappa is the metric considered for comparing the performance of
the different architectures.

Table 2. The hyperparameters were used for all the experiments.

Framework Keras with Python
Optimizer Adam

Learning Rate 0.0001
Loss Function Binary Cross-entropy

Early Stopping 50 epochs
Batch Size 64

Validation Split 20%

Image Augmentation

Horizontal flips
Vertical flips
180 rotations

Zooming

3.1. Wrist Images Classification Results

Two main sets of experiments were performed: the first consists of adding two fully connected
layers after each architecture to act as a classifier block. The second consists of adding only a sigmoid
layer after the network. Both the results of the first set and the second set are presented in Table 3.

In the first set of experiments, the fine-tuned VGG19 network had a Kappa score of 0.5989, while the
network that was trained from scratch had a score of 0.5476. For the Xception network, the transfer
learning score was higher than the one trained from scratch by a large margin. The ResNet50 network
performance improved significantly by using transfer learning rather than training it from scratch.
This indicates that transfer learning is fundamental for this network, that it could not learn the features
of the images from scratch. Both the fine-tuned InceptionV3, InceptionResNetV2, and DenseNet121
networks have a higher score than training them from scratch. Overall, fine-tuning the networks did
yield better results than training the networks from scratch. The best performance for the first set of
experiments was achieved by fine-tuning the DenseNet121 network.

In the second set of experiments, all the networks’ performance increased by fine-tuning than
by training from scratch. The ResNet network was the network with the highest difference between
fine-tuning and training from scratch. Overall, the best performance for the second set of experiments
was achieved by fine-tuning the Xception network. Comparing the first set of experiments to the
second set, we see that the best performance for classifying wrist images was the fine-tuned DenseNet121
network with fully connected layers. The presence of fully connected layers did not have any noticeable
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increase in performance; however, it is worth noting that the ResNet network with fully connected
layers did not converge when trained from scratch.

Table 3. Accuracy and Kappa scores of classifying wrist images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 80.45% ± 1.26% 0.5989 ± 2.39% 80.63% ± 1.64% 0.6035 ± 3.33%

Scratch 78.07% ± 0.94% 0.5476 ± 2.11% 79.89% ± 1.84% 0.5846 ± 3.74%

InceptionV3 TL 79.92% ± 2.07% 0.5886 ± 3.61% 79.94% ± 1.46% 0.5876 ± 2.77%
Scratch 77.01% ± 2.98% 0.5241 ± 6.49% 77.59% ± 1.51% 0.5389 ± 3.03%

ResNet
TL 78.76% ± 0.88% 0.5647 ± 2.04% 80.85% ± 1.70% 0.6046 ± 3.63%

Scratch 58.65% ± 8.70% 0.0836 ± 21.31% 70.99% ± 4.20% 0.4018 ± 8.27%

Xception TL 80.93% ± 0.88% 0.6098 ± 1.69% 81.18% ± 0.47% 0.6133 ± 0.94%
Scratch 77.44% ± 1.99% 0.5333 ± 4.41% 77.14% ± 1.86% 0.5318 ± 3.32%

DenseNet
TL 81.71% ± 0.94% 0.6245 ± 1.98% 78.76% ± 2.27% 0.5663 ± 4.29%

Scratch 76.40% ± 2.30% 0.5083 ± 5.17% 76.68% ± 3.62% 0.5214 ± 7.25%

InceptionResNet TL 80.1% ± 1.66% 0.5917 ± 3.32% 80.55% ± 1.06% 0.6010 ± 2.25%
Scratch 77.77% ± 1.59% 0.5450 ± 2.85% 78.55% ± 1.70% 0.5580 ± 3.48%

3.2. Hand Images Classification Results

As done with the wrist images, two sets of experiments were performed. Both the results of the
first set and the second set are presented in Table 4.

In the first set of experiments, for the VGG19 and the ResNet networks, fine-tuning the networks
resulted in significantly higher performance than training the networks from scratch. The networks
trained from scratch did not converge to an acceptable result. This fact highlights that the importance
of transfer learning for these networks, that are not able to learn the images’ features from scratch.
For the remaining networks, fine-tuning achieved significantly better performance than by training the
networks from scratch. Overall, all the fine-tuned networks achieved better results than by training
from scratch. The best performance of the first set of experiments was obtained with the fine-tuned
Xception network.

Table 4. Accuracy and Kappa scores of classifying hand images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 70.11% ± 9.23% 0.3089 ± 25.42% 73.04% ± 1.27% 0.3960 ± 3.23%

Scratch 58.91% ± 0% 0 ± 0% 63.22% ± 5.90% 0.1312 ± 15.90%

InceptionV3 TL 70.25% ± 1.34% 0.3261 ± 3.57% 72.10% ± 0.79% 0.3829 ± 2.15%
Scratch 66.38% ± 3.80% 0.2382 ± 9.76% 66.56% ± 2.48% 0.2361 ± 6.07%

ResNet
TL 72.25% ± 1.25% 0.3754 ± 3.55% 71.12% ± 1.94% 0.3503 ± 5.44%

Scratch 59.28% ± 0.93% 0.0103 ± 2.65% 62.10% ± 1.21% 0.0971 ± 3.26%

Xception TL 75.36% ± 2.56% 0.4621 ± 6.27% 72.50% ± 2.0% 0.3778 ± 5.41%
Scratch 66.74% ± 2.58% 0.2277 ± 7.20% 66.81% ± 3.60% 0.2334 ± 10.05%

DenseNet
TL 72.21% ± 1.69% 0.3746 ± 4.33% 70.22% ± 3.28% 0.3243 ± 9.03%

Scratch 63.33% ± 1.16% 0.1308 ± 3.47% 62.79% ± 1.50% 0.1231 ± 4.39%

InceptionResNet TL 71.96% ± 1.80% 0.3709 ± 4.33% 71.81% ± 1.91% 0.3670 ± 4.65%
Scratch 68.48% ± 1.53% 0.2788 ± 4.36% 69.09% ± 1.04% 0.3071 ± 2.43%

In the second set of experiments, the performance of all the networks increased by fine-tuning
than by training from scratch. The ResNet network was the network with the highest difference
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between fine-tuning and training from scratch. Overall, the best network was the VGG19 network.
Comparing the first set of experiments to the second set, we see that the best performance for classifying
hand images was the fine-tuned Xception network with fully connected layers. The presence of fully
connected layers did not significantly increase the performance; however, it is important to point out
that the VGG19 network with fully connected layers did not converge when it was trained from scratch.

3.3. Humerus Images Classification Results

For the humerus images, the results of both the first and second sets of experiments are presented
in Table 5. In the first set of experiments, fine-tuning VGG19 architecture did not converge to any
acceptable results, while training the VGG19 from scratch did yield higher performance. For the
rest of the networks, fine-tuning did achieve better results than training the networks from scratch.
The highest difference was between fine-tuning the ResNet network and training it from scratch.
Overall, the best network in the first sets of experiments was the fine-tuned DenseNet network, with a
Kappa score of 0.6260.

In the second set of experiments, fine-tuning did achieve better results for all the networks than
training the networks from scratch. The best-achieved network was the VGG19 network, with a
Kappa score of 0.6333. Comparing the first set of experiments to the second set, we see that the
best performance for classifying humerus images was the fine-tuned VGG19 network without fully
connected layers. Just as in the previous experiments, the fully connected layers’ presence did
not provide any significant performance improvement; however, fine-tuning the VGG19 with fully
connected layers did not converge compared to fine-tuning the same network without any fully
connected layers.

Table 5. Accuracy and Kappa scores of classifying humerus images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 51.39% ± 0% 0 ± 0% 81.66% ± 2.74% 0.6333 ± 5.43%

Scratch 62.04% ± 3.67% 0.239 ± 8.01% 69.44% ± 8.28% 0.3893 ± 16.77%

InceptionV3 TL 80.32% ± 2.74% 0.6070 ± 5.51% 80.56% ± 1.48% 0.6114 ± 2.94%
Scratch 67.77% ± 3.12% 0.3603 ± 6.08% 64.06% ± 3.51% 0.2879 ± 6.81%

ResNet
TL 80.38% ± 2.55% 0.6084 ± 5.03% 78.18% ± 2.20% 0.5647 ± 4.31%

Scratch 54.28% ± 7.46% 0.0849 ± 14.97% 65.63% ± 5.19% 0.3171 ± 10.26%

Xception TL 80.03% ± 1.92% 0.6010 ± 3.81% 79.75% ± 1.67% 0.5942 ± 3.40%
Scratch 66.55% ± 2.84% 0.3386 ± 5.46% 66.32% ± 4.72% 0.3334 ± 9.11%

DenseNet
TL 81.31% ± 1.88% 0.6260 ± 3.81% 77.84% ± 1.52% 0.5563 ± 3.16%

Scratch 70.54% ± 5.85% 0.4134 ± 11.37% 71.93% ± 2.74% 0.4406 ± 5.35%

InceptionResNet TL 78.41% ± 1.84% 0.5697 ± 3.61% 78.76% ± 2.56% 0.5761 ± 5.07%
Scratch 65.34% ± 3.89% 0.3135 ± 7.61% 65.34% ± 4.37% 0.3139 ± 8.47%

3.4. Elbow Images Classification Results

For the elbow images, we performed the same two sets of experiments performed with the
previously analyzed datasets. Both the results of the first set and the second set are presented in Table 6.
In the first set of experiments, the fine-tuned VGG19 score was less than training the same network
from scratch. For the rest of the networks, fine-tuning did achieve higher performance than training
the networks from scratch. The ResNet network achieved the highest difference between fine-tuning
and training from scratch. Overall, the best network was the fine-tuned DenseNet121, with a Kappa
score of 0.6510.

In the second set of experiments, no fully connected layers were added. For all the networks,
fine-tuning did achieve higher results than training from scratch. Overall, the best network was the
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fine-tuned Xception network, with a Kappa score of 0.6711. Comparing the first set of experiments
to the second set, we see that the best performance for classifying elbow images was the fine-tuned
Xception network without fully connected layers.

Table 6. Accuracy and Kappa scores of classifying elbow images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 71.36% ± 16.95% 0.4232 ± 13.01% 81.61% ± 1.56% 0.6316 ± 3.12%

Scratch 75.81% ± 34.45% 0.5136 ± 26.45% 76.52% ± 13.45% 0.5279 ± 27.33%

InceptionV3 TL 81.72% ± 0.91% 0.6339 ± 1.84% 80.93% ± 2.3% 0.6180 ± 4.6%
Scratch 77.96% ± 2.92% 0.5583 ± 5.84% 76.09% ± 4.29% 0.5208 ± 8.6%

ResNet
TL 81.79% ± 3.28% 0.6351 ± 6.61% 81.9% ± 2.22% 0.6374 ± 4.44%

Scratch 56.20% ± 9.60% 0.1161 ± 19.68% 71.04% ± 4.02% 0.4191 ± 8.09%

Xception TL 82.15% ± 1.21% 0.6425 ± 2.42% 83.58% ± 1.64% 0.6711 ± 3.31%
Scratch 78.21% ± 2.83% 0.5631 ± 5.70% 78.49% ± 1.88% 0.5690 ± 3.75%

DenseNet
TL 82.58% ± 1.97% 0.6510 ± 3.92% 81.08% ± 2.23% 0.6208 ± 4.47%

Scratch 75.38% ± 3.36% 0.5060 ± 6.82% 73.84% ± 4.70% 0.4754 ± 9.49%

InceptionResNet TL 80.82% ± 0.61% 0.6159 ± 1.21% 80.47% ± 1.68% 0.6087 ± 3.37%
Scratch 79.82% ± 1.45% 0.5955 ± 2.91% 78.49% ± 1.28% 0.5694 ± 2.58%

3.5. Finger Images Classification Results

As with the previous datasets, two main sets of experiments were performed. Both the results
of the first set and the second set are presented in Table 7. In the first set of experiments, fine-tuning
achieved better results than training the networks from scratch for all the networks. The best-achieved
network was the fine-tuned VGG19, with a Kappa score of 0.4379. In the second set of experiments,
fine-tuning produced better results than training from scratch for all the six networks. The best
network was the fine-tuned InceptionResNet network, with a Kappa score of 0.4455. Comparing the
first set of experiments to the second set, we see that the best performance for classifying finger
images was the fine-tuned InceptionResNet network without fully connected layers. Moreover, in this
case, the presence of the fully connected layers did not provide any significant advantage in terms
of performance.

Table 7. Accuracy and Kappa scores of classifying finger images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 71.4% ± 1.84% 0.4379 ± 3.59% 68.44% ± 2.76% 0.3847 ± 5.10%

Scratch 66.78% ± 2.83% 0.3505 ± 5.22% 66.16% ± 3.10% 0.3413 ± 5.26%

InceptionV3 TL 67.68% ± 2.15% 0.3686 ± 3.87% 68.55% ± 3.19% 0.3834 ± 5.97%
Scratch 63.52% ± 2.66% 0.2911 ± 4.82% 63.88% ± 2.15% 0.2916 ± 4.09%

ResNet
TL 70.17% ± 1.16% 0.4129 ± 2.17% 69.02% ± 2.52% 0.3900 ± 4.44%

Scratch 60.34% ± 8.07% 0.2341 ±13.90% 66.41% ± 2.98% 0.3431 ± 5.68%

Xception TL 71.37% ± 2.43% 0.4369 ± 4.42% 70.64% ± 2.27% 0.4234 ± 4.28%
Scratch 64.75% ± 2.79% 0.3109 ± 5.33% 64.57% ± 2.72% 0.3055 ± 5.31%

DenseNet
TL 66.78% ± 2.64% 0.3552 ± 4.66% 66.81% ± 1.92% 0.3512 ± 3.61%

Scratch 62.18% ± 2.10% 0.2692 ± 3.60% 64.32% ± 3.16% 0.3051 ± 5.64%

InceptionResNet TL 70.97% ± 2.05% 0.4294 ± 3.80% 71.8% ± 1.49% 0.4455 ± 2.88%
Scratch 64.64% ± 3.07% 0.3112 ± 5.70% 65.29% ± 3.09% 0.3204 ± 5.72%
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3.6. Forearm Images Classification Results

As with the previous datasets, two sets of experiments were performed on the forearm
images dataset. Both the results of the first set and the second set are presented in Table 8. In the first
set of experiments, fine-tuning all the networks produced better results than training from scratch.
Training of ResNet network from scratch did not yield any satisfactory results, which can imply
that fine-tuning this network was crucial for obtaining a good result. The best network was the
DenseNet121 network, with a Kappa score of 0.5851. Moreover, in the second set of experiments,
fine-tuning achieved better results than training from scratch. The best network was the fine-tuned
ResNet network, with a Kappa score of 0.5673. Comparing the first set of experiments to the second set,
we see that the best performance for classifying forearm images was the fine-tuned DenseNet network
with fully connected layers. As observed in other datasets, the presence of the fully connected layers
did not have any significant advantage in terms of performance.

Table 8. Accuracy and Kappa scores of classifying forearm images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 77.02% ± 1.27% 0.5408 ± 2.54% 76.3% ± 2.16% 0.5264 ± 4.31%

Scratch 64.29% ± 9.50% 0.2870 ± 18.91% 71.15% ± 6.41% 0.4237 ± 12.75%

InceptionV3 TL 76.52% ± 1.46% 0.5308 ± 2.91% 77.46% ± 1% 0.5496 ± 1.99%
Scratch 64.84% ± 5.50% 0.2973 ± 11.01% 65.84% ± 4.95% 0.3171 ± 9.89%

ResNet
TL 74.7% ± 1.20% 0.4943 ± 2.38% 78.35% ± 3.46% 0.5673 ± 6.92%

Scratch 50.11% ± 0.56% 0.0055 ± 1.11% 63.79% ± 3.58% 0.2764 ± 7.12%

Xception TL 75.08% ± 1.84% 0.5022 ± 3.69% 76.08% ± 1.66% 0.5222 ± 3.32%
Scratch 66.00% ± 2.54% 0.3204 ± 5.08% 65.73% ± 5.31% 0.3148 ± 10.64%

DenseNet
TL 79.24% ± 0.53% 0.5851 ± 1.05% 76.14% ± 2.32% 0.5232 ± 4.63%

Scratch 68.77% ± 3.75% 0.3755 ± 7.51% 69.66% ± 3.12% 0.3935 ± 6.25%

InceptionResNet TL 74.7% ± 2.64% 0.4945 ± 5.27% 74.86% ± 1.98% 0.4977 ± 3.95%
Scratch 65.45% ± 3.36% 0.3096 ± 6.69% 69.1% ± 6.07% 0.3824 ± 12.12%

3.7. Shoulder Images Classification Results

In the first set of experiments, the VGG19 network did not converge to an acceptable result by
using both methods. For the rest of the networks, fine-tuning the networks achieved better results than
training the networks from scratch. The best network was the fine-tuned Xception network, with a
Kappa score of 0.4543. Both the results of the first set and the second set are presented in Table 9. In the
second set of experiments, training the ResNet network from scratch achieved slightly better results
than fine-tuning. For the rest of the networks, fine-tuning achieved better results. The best network
was the fine-tuned VGG19, with a Kappa score of 0.4502. Comparing the first set of experiments to
the second set, we see that the best performance for classifying shoulder images was the fine-tuned
Xception network with fully connected layers. The presence of the fully connected layers did not show
any significant advantage in terms of performance. Anyhow, the VGG19 network with fully connected
layers did not converge to any satisfactory result compared to the same network without any fully
connected layers.

3.8. Kruskal–Wallis Results

We applied the Kruskal–Wallis test to assess the statistical significance of different settings.
The Kruskal–Wallis test yielded a p-value < 0.05 for all the results, which indicates to reject the null
hypothesis that the settings have the same median and to accept the alternative hypothesis that there is
a statistically significant difference between different settings (transfer learning “with and without
fully connected layers” vs. training from scratch “with and without fully connected layers”).
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Table 9. Accuracy and Kappa scores of classifying shoulder images with and without fully connected
layers (±95% CI).

With FC Without FC
Network Method Mean Accuracy Mean Kappa Mean Accuracy Mean Kappa

VGG19
TL 77.02% ± 1.27% 0.5408 ± 2.54% 76.3% ± 2.16% 0.5264 ± 4.31%

Scratch 64.29% ± 9.50% 0.2870 ± 18.91% 71.15% ± 6.41% 0.4237 ± 12.75%

InceptionV3 TL 76.52% ± 1.46% 0.5308 ± 2.91% 77.46% ± 1% 0.5496 ± 1.99%
Scratch 64.84% ± 5.50% 0.2973 ± 11.01% 65.84% ± 4.95% 0.3171 ± 9.89%

ResNet
TL 74.7% ± 1.20% 0.4943 ± 2.38% 78.35% ± 3.46% 0.5673 ± 6.92%

Scratch 50.11% ± 0.56% 0.0055 ± 1.11% 63.79% ± 3.58% 0.2764 ± 7.12%

Xception TL 75.08% ± 1.84% 0.5022 ± 3.69% 76.08% ± 1.66% 0.5222 ± 3.32%
Scratch 66.00% ± 2.54% 0.3204 ± 5.08% 65.73% ± 5.31% 0.3148 ± 10.64%

DenseNet
TL 79.24% ± 0.53% 0.5851 ± 1.05% 76.14% ± 2.32% 0.5232 ± 4.63%

Scratch 68.77% ± 3.75% 0.3755 ± 7.51% 69.66% ± 3.12% 0.3935 ± 6.25%

InceptionResNet TL 74.7% ± 2.64% 0.4945 ± 5.27% 74.86% ± 1.98% 0.4977 ± 3.95%
Scratch 65.45% ± 3.36% 0.3096 ± 6.69% 69.1% ± 6.07% 0.3824 ± 12.12%

4. Discussion

In this paper, we compared the performance of fine-tuning on six state-of-the-art CNNs to classify
musculoskeletal images. Training a CNN network from scratch can be very challenging, especially in
the case of data scarcity. Transfer learning can help solve this problem by initiating the weights with
values learned from a large dataset instead of initializing the weights from scratch. Musculoskeletal
images play a fundamental role in classifying fractures. However, these images are always challenging
to be analyzed, and a second opinion is often required, which will not always be available, especially in
the emergency room. As pointed out by Lindsey et al. [5], the presence of an image classifier in the
emergency room can significantly increase physicians’ performance in classifying fractures.

For the first research question, about the effect of transfer learning, we noted that transfer learning
produced better results than training the networks from scratch. For our second research question,
the classifier that achieved the best result for wrist images was the fine-tuned DenseNet121 with
fully connected layers; the classifier that achieved the best performance for elbow images was the
fine-tuned Xception network without fully connected layers; for finger images, the best classifier was
the fine-tuned InceptionResNetV2 network without fully connected layers; for forearm images, the best
classifier was the fine-tuned DenseNet network with fully connected layers; for hand images, the best
classifier was a fine-tuned Xception network with fully connected layers; the best classifier for humerus
images was the fine-tuned VGG19 network without fully connected layers; finally, the best classifier
for classifying the shoulder images was the fine-tuned Xception network with fully connected layers.
A summary of the best CNNs is presented in Table 10. Concerning the third research question, the fully
connected layers had a negative effect on the performance of the considered CNNs. In particular,
in many cases, it decreased the performance of the network. Further research is needed to study,
in more detail, the impact of fully connected layers, especially in the case of transfer learning.

The authors of the MURA dataset [10] assessed the performance of three radiologists on the
dataset and compared their performance against the one of a CNN. In Table 11, we present their results,
along with our best scores.

For classifying elbow images, the first radiologist achieved the best score, and our score was
comparable to other radiologists [10]. For finger images, our score was higher than the three radiologists.
For forearm images, our score was lower than the radiologists. For hand images, our score was the lowest.
For humerus images, shoulder images, and wrist images, our score was lower than the radiologists.
We still believe that the scores achieved in this paper are promising, keeping in mind that these scores
came from off-the-shelf models that were not designed for medical images in the first place and that the
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images were resized to be 96× 96 pixels due to hardware limitations. Nevertheless, additional efforts
are needed to outperform the performance of experienced radiologists.

Table 10. The best convolutional neural network (CNN) for each image category.

Fracture CNN

Wrist DenseNet
Elbow Xception
Finger InceptionResNetV2

Forearm DenseNet121
Hand Xception

Humerus VGG19
Shoulder Xception

Table 11. Kappa scores of three radiologists reported in Reference [10] compared to our results.

Fracture 1st Radiologist 2nd Radiologist 3rd Radiologist Our Score

Elbow 0.850 0.710 0.719 0.671
Finger 0.304 0.403 0.410 0.445

Forearm 0.796 0.802 0.798 0.585
Hand 0.661 0.927 0.789 0.462

Humerus 0.867 0.733 0.933 0.633
Shoulder 0.864 0.791 0.864 0.454

Wrist 0.791 0.931 0.931 0.625

On the other side of the spectrum, there is the study of Raghu et al. [24], where the authors
argued that transfer learning is not good enough for medical images and will be less accurate
compared to training from scratch or compared to novel networks explicitly designed for the
problem at hand. The authors studied the effect of transfer learning on two medical datasets, namely,
retina images and chest X-ray images. The authors stated that designing a lightweight CNN can be
more accurate than using transfer learning. In our study, we did not consider “small” CNNs trained
from scratch. Thus, it is not possible to directly compare the results obtained to the ones presented in
Raghu et al. [24]. Anyway, more studies are needed to better understand the effect of transfer learning
on medical-image classification.

5. Conclusions

In this paper, we investigated the effect of transfer learning on classifying musculoskeletal images.
We find that, out of the 168 results obtained that were performed by using six different CNN
architectures and seven different bone types, transfer learning achieved better results than training
a CNN from scratch. Only in 3 out of the 168 results did training from scratch achieve slightly
better results than transfer learning. The weaker performance of the training-from-scratch approach
could be related to the number of images in the considered dataset, as well as to the choice of the
hyperparameters. In particular, the CNNs taken into account are characterized by the presence of a large
number of trainable parameters (i.e., weights), and the number of images used to train these networks
is too small to build a robust model. Concerning the hyperparameters, we highlight the importance
of the learning rate. While we used a small value of the learning rate in the fine-tuning approach,
to avoid changing the architectures’ original weights dramatically, the training-from-scratch approach
could require a higher value of the learning rate. A complete study on the hyperparameters’ effect will
be considered in future work, aiming to fully understand the best approach to be used when dealing
with fracture images. Focusing on this study’s results, it is possible to state that transfer learning is
recommended in the context of fracture images. In our future work, we plan to introduce a novel CNN
to classify musculoskeletal images, aiming at outperforming fine-tuned CNNs. This would be the first
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step towards the design of a CNN-based system, which classifies the image and provides the probable
position of the fracture if the fracture is present in the image.
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Abstract: In order to tackle three-dimensional tumor volume reconstruction from Positron Emission
Tomography (PET) images, most of the existing algorithms rely on the segmentation of independent
PET slices. To exploit cross-slice information, typically overlooked in these 2D implementations,
I present an algorithm capable of achieving the volume reconstruction directly in 3D, by leveraging
an active surface algorithm. The evolution of such surface performs the segmentation of the whole
stack of slices simultaneously and can handle changes in topology. Furthermore, no artificial stop
condition is required, as the active surface will naturally converge to a stable topology. In addition,
I include a machine learning component to enhance the accuracy of the segmentation process. The
latter consists of a forcing term based on classification results from a discriminant analysis algorithm,
which is included directly in the mathematical formulation of the energy function driving surface
evolution. It is worth noting that the training of such a component requires minimal data compared
to more involved deep learning methods. Only eight patients (i.e., two lung, four head and neck,
and two brain cancers) were used for training and testing the machine learning component, while
fifty patients (i.e., 10 lung, 25 head and neck, and 15 brain cancers) were used to test the full 3D
reconstruction algorithm. Performance evaluation is based on the same dataset of patients discussed
in my previous work, where the segmentation was performed using the 2D active contour. The results
confirm that the active surface algorithm is superior to the active contour algorithm, outperforming
the earlier approach on all the investigated anatomical districts with a dice similarity coefficient of
90.47 ± 2.36% for lung cancer, 88.30 ± 2.89% for head and neck cancer, and 90.29 ± 2.52% for brain
cancer. Based on the reported results, it can be claimed that the migration into a 3D system yielded a
practical benefit justifying the effort to rewrite an existing 2D system for PET imaging segmentation.

Keywords: 3D segmentation; machine learning; active surface; discriminant analysis; PET imaging

1. Introduction

In oncological studies, the main motivation to image segmentation is to recognize the portions
of ill tissues so that treatment can be better directed (e.g., radio-therapy, [1–3]) and chances of
survival improved [4–7]. Furthermore, segmentation is a pre-requisite to advanced studies such as
radiomics feature extraction [8–10]. The present study discusses the segmentation of Positron Emission
Tomography images leveraging a fully 3D hybrid algorithm which combines traditional segmentation
(e.g., active surface) with machine learning (ML). Unlike several algorithms based on the segmentation
of independent Positron Emission Tomography (PET) slices, the present algorithm is capable of
segmenting all the slices in a PET data set simultaneously with the immediate advantage of exploiting
valuable cross-slice information which would be ignored otherwise (e.g., [11–13]). In addition, in order
to improve the accuracy of the final result, I included a machine learning component. A term based
on information from a classifier (i.e., discriminant analysis) is included in the formulation of the
energy function driving the surface evolution. The main advantage brought by artificial intelligence
is that these approaches are designed to “learn” a non-obvious input–output relation directly from
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data. In the clinical context, artificial intelligence is used to obtain the morphology of organs or for
the delineation of pathological tissue. Examples include the identification of cancer within the head
and the neck using deep learning [14,15], classification using a kernel support vector machine [16],
thyroid volume computation in 3D ultrasound imaging using random forest and convolutional neural
network (CNN) [17], etc. It could be observed that deep learning techniques are more efficient
than classical statistical approaches and, consequently, they are applied in many biomedical image
segmentation tasks [18]. Nevertheless, while such methods are commonly used in magnetic resonance
or computerized tomography imaging, their application on PET is still rather scarce and not much
is found in the literature [19]. The reason is that in order to be successful, deep learning approaches
require datasets containing hundreds of labelled examples, which is rarely the case in nuclear medicine.
Vice versa, deep learning is largely used to classify patients in terms of outcome based on quantitative
features extracted from previously delineated tumors for radiomics analyses of PET images [20].
Furthermore, to date, artificial intelligence algorithms are often employed as a stand-alone tool.
Conversely, such a class of algorithms can be leveraged to improve the performance of more traditional
approaches as well. For example, in [11], the k-means clustering technique was used to support
a random walk segmentation algorithm, while, in [21], a convolutional neural network was used
to obtain an initial delineation, successively refined by threshold segmentation and morphological
methods. Moreover, an enhanced active contour (AC) algorithm has been proposed to delineate tumor
in PET datasets in a semi-automatic way [22]. In detail, Comelli et al. [22] developed a 2D algorithm
based on an AC enhanced by the inclusion of tissue classification information [23–25]. In these studies,
authors reconstructed the 3D tumor shape by separately segmenting 2D PET slices because the main
goal was to obtain a delineation method capable of being efficient, repeatable and real time. The core
of such volume reconstruction was an active contour segmentation of PET images (i.e., 2D), performed
marching through the PET slices and where the converged segmentation of one slice was used to
initialize segmentation on the next. Nevertheless, the distance between consecutive PET slices is
typically much greater than their voxel size. This feature introduces a sort of preferential direction in
the data which may influence the reconstructed volume. In addition, the 2D contour evolution on one
PET slice does not retain memory of what actually happened in the previous slice, nor does it takes
into account what is the information in the slice that will come next.

Based on these considerations, the present study proposes a fully 3D active surface (AS) driven
by a 3D machine learning component (i.e., 3D tissue classification). Starting from a region placed
around the target, the AS deforms and moves to fit the target minimizing an “energy”, defined as a
multi-parameter function. In addition, the ML component, trained trough examples generated by
expert human operators, learns to classify the PET data (i.e., the voxels in the slices) and introduces
insight into the AS on which tissue portions are to be considered tumor or healthy. Therefore, to
some extent, the algorithm learns to “mimic” how a human would perform this complex task and to
avoid false positives. Although several classifiers were considered in previous publications (k-nearest
neighbors, Naive Bayes, and Discriminant Analysis [23–25]), it is worth noting that the discriminant
analysis provided consistently better performances [24]. As such, since a quite large comparative
work was performed in [23–25], and since a full investigation on which classification approach would
perform best within the new 3D framework is beyond the scope of the present study, the discriminant
analysis is the algorithm of choice for this publication as well.

Summarizing, the key aspect of the proposed study is the evolution of a 3D surface embedded
in the data volume, henceforth referred to as active surface, the evolution of which is driven by
the minimization of a cost function specifically built to take into account information contained in
the data and from 3D tissue classification. To evaluate the performance of the algorithm, fifty-eight
patient studies are considered. In detail, eight studies are used for training and testing of the artificial
intelligence component and fifty to test the full 3D reconstruction algorithm.
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2. Materials and Methods

2.1. Overview of the 3D as Proposed Method and Differences with the Previous 2D AC Method

This study proposes a re-engineering of the algorithm from my previous work and focuses on the
development of a 3D AS for the volume delineation augmented with the inclusion of a discriminant
analysis (DA) component for 3D tissue classification. Figure 1 compares the 2D DA system proposed
in [24] and the new 3D DA implementation discussed here to highlight differences and improvements.

 

Figure 1. Comparison of the Positron Emission Tomography (PET) system proposed in the previous
work (A) [24], and the implementation set out here (B). The proposed implementation substitutes
the ‘Slice Marching Segmentation’ block (A) with the fully “3D Segmentation” block (B). Therefore,
cross-slice information previously ignored is now being completely exploited. Moreover, the artificial
stopping condition (step i) is no longer necessary. Additionally, (steps b, c, f, and g) were modified in
order to provide a 3D sampling and training (step b1), a 3D tissue classification (step c1), 3D contour
initialization (step f1), and 3D AS (step g1).

Figure 1A describes the system from my previous work [24]. Here, the “Pre-processing” block
consisted of a pre-segmentation where the user draws, on a single PET slice, a contour roughly
encircling the cancer area. This input is required to minimize the risk of incurring in false positives.
Such an input was used to generate a user-independent mask which could be located on a different
slice from the one chosen by the operator. By construction, this mask belonged to the same anatomical
anomaly and included the radio-tracer maximum absorption area. After this step, the initial mask was
fed to the next block of the workflow (“Slice Marching Segmentation” step), where the segmentation
was obtained using a local region-based AC in which the contour evolved while minimizing its energy
function. Information from the “2D Sampling and training” block consisted of labels associated to
the PET image’s pixels which identified each pixel as “lesion”, “background”, or “border-line” tissue.
The different tissues in the PET slices were automatically identified using a 2D floating window
(3 × 3 voxels). Finally, this algorithm used a slice-by-slice marching strategy to obtain an accurate
segmentation, which began at the slice containing the user-independent mask and propagated upward
and downward. Every time a slice segmentation was completed, the contour was propagated to the
nearest adjacent slice until the stop condition was finally met. The final 3D shape consisted of the
union of all contours obtained on each slice.

The algorithm presented here (Figure 1B) inherits the same pre-segmentation workflow of [24],
although a 3D shape is required as the output of the pre-segmentation step. Specifically, to initialize the
AS (step “g1” in Figure 1B), the pre-segmentation step (step “f1” in Figure 1B) must output a 3D shape
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transforming the user independent mask (step “f” in Figure 1A) in an ellipsoid (the 3D shape needed to
start the 3D AS method). It is worth noting that the only requirement for the ellipsoid is that it envelops
a portion of the tumor, including the voxel with the maximum intensity value (requirement already
satisfied in [24] and naturally inherited from the ellipsoid). The energy function being minimized
depends on the shape of the curves generated by the intersection of the AS with the planes containing
the PET slices. Consequently, the ellipsoid around the tumor changes shape and moves towards the
tumor borders with the aim of minimizing the energy function. Information from the 3D classifier is
now included in the energy function in terms of labelled voxels combining, during the classification
process, information involving multiple slices. As in the previous 2D classifier [24], the proposed 3D
classifier labels the tissue as “lesion”, “background” or “border-line” and drives the 3D AS algorithm
(“3D Sampling and training” block), although the classification occurs now in terms of voxels and not
pixels. This task comprises the training and validation steps of the DA classifier. Different tissues (i.e.,
lesion, background, or border-line tissue) are automatically identified in the PET data volume using a
3D floating window (i.e., 3 × 3 × 3 voxels). The highlighted values are then arranged for every window
into 27-element vectors describing the volume sample being investigated. The “training and testing”
step needs to be performed only once. When completed, the classifier is capable of labelling new
tissue and, subsequently, this information will be used to guide the segmentation process. A thorough
explanation of this aspect will be provided in Section 2.1.1. The main advantage of leveraging a AS is
that it is free to intersect the whole volume of PET images (i.e., all slices) and therefore segments them
all at once, using cross-slice information, both in terms of data volume and tissue labels, that could not
be leveraged before (i.e., in the system of Figure 1A). Details of this part will be given in Section 2.1.2.
Finally, an operator-independent biological tumor volume (BTV) is obtained (step “m” in Figure 1B).

The following subsections will provide detailed discussion of the various components of
system 1-A.

2.1.1. The 3D Discriminant Analysis

The DA was used to classify PET tissues into three clusters: background, lesion, and border-line
tissues. The training needs to be done only once, after which DA is able to classify newly encountered
tissues and can be re-used at any time.

Three clinicians with different expertise segmented 58 patients [24] (see Section 2.2 for more
details). The STAPLE tool [26] was used to combine the three manual segmentations and to define a
consolidated reference to be used as gold standard. Only eight patients (considering multiple PET
slices for each study) were used for the training and testing of the 3D tissue classification algorithm.
These comprised 2 with brain metastases, 4 with head and neck cancers, and 2 with lung cancers,
respectively. The sampling process produced 13,762,560 vectors divided into 28,152 lesion vectors,
16,107 border-line vectors, and 13,718,301 background vectors. Specifically, in order to extract such
samples, each PET slice was processed using a 3D floating window (i.e., 3 × 3× 3 voxels). The values in
every window were arranged into 27-element vectors. Such a sample size was empirically determined
to provide the best results on the current data set.

Of the generated samples, 80% were used for the training step, while the remaining 20% were
used for the testing step (as stated by the Pareto principle, also known as the 80/20 rule). The K-Fold
cross-validation was used to obtain a robust classification and to eliminate over-fitting. Accordingly,
the dataset was split into K equal folds, and the holdout method repeated K times. Every time one
of the K folds was used as a validation set, and the remaining K-1 subsets were assembled to form
a training set. The variance of the resulting estimate decreased as K increased. Samples with no
more than 17 lesion voxels or totally outside the gold standard were labelled as “border-line” and
“background” tissue, respectively. In all other instances, the label “lesion” was assigned. Once the
training process was completed, a validation stage to test the efficiency of the classification followed.

174



J. Imaging 2020, 6, 113

2.1.2. The Active Surface Algorithm

Starting from the model proposed by Lankton et al. [27], which benefits purely local edge-based
active contours and more global region-based active contours, I propose a more efficient segmentation
technique that segments all slices simultaneously by developing a single surface inside the
corresponding 3D PET volume [28], and a new mathematical formulation of the active surface
energy including the 3D classifier information.

Summarizing, the obtained algorithm possesses the following novelty and improvements:

• A new active surface volumetric energy formulation.
• A full 3D development so leveraging cross-slice information.
• Inclusion of 3D tissue information.

These aspects are further detailed below.
First, a new formulation of the energy driving the AS by the inclusion of information from the 3D

classifier is introduced.
In view of the fact that the tumor and the background regions are not easily split into two distinct

regions, the energy was modified to include a new energy term based on tissue classes generated by
the 3D classifier:

χlesion(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when 3D DA(x) = lesion;

0 otherwise;
(1)

χborder−line (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when 3D DA(x) = borderline ;

0 otherwise;
(2)

χbackground(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 when 3D DA(x) = background;

0 otherwise;
(3)

where the characteristic functions χlesion(x), χborder−line(x) and χbackground(x) represent the 3D tissue’s
classification for lesion, border-line, and background, respectively.

In Functional Energy Equation (4), the first term is basically a prior term penalizing the overlap
between regions which are classified in a conflicting way by the 3D AS and the 3D classifier (in regions
classified as “border-line” no penalty is applied).

To integrate the standardized uptake value (SUV) and to insert this new prior term in the
mathematical model and formulate it in a fully 3D setup, the active surface energy to be minimized for
PET image segmentation is defined as:

E =
∫
S

λ

⎛⎜⎜⎜⎜⎜⎝ ∫
Rin

χl(x, s)Poutl(x) dx +
∫

Rout

χl(x, s)Pinl(x) dx

⎞⎟⎟⎟⎟⎟⎠+
(1− λ)

⎛⎜⎜⎜⎜⎜⎝ ∫
Rin

χl(x, s)(SUV(x) − ul(s))
2dx +

∫
Rout

χl(x, s)(SUV(x) − vl(s))
2dx

⎞⎟⎟⎟⎟⎟⎠dS
(4)

• λ ∈ R+ was chosen equal to 0.01, because such value proved to yield the best result;

• Pinl(x) and Poutl(x) indicate the 3D local mean DA classification within the portions of the local
neighborhood χl(x) inside and outside the surface, respectively (within Ω);

• S is the 3D AS and dS is the surface area measure;
• s is the 3D surface parameter;
• x is a point within the 3D volume and dx the volume measure;
• Rin and Rout are the corresponding 3D regions inside and outside the surface;
• χl(x, s) is the indicator function around the surface point S(s) of a local neighborhood.
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Such neighborhoods are spheres of radius l centered around each point of the surface S. It was
equal to 3 as proposed in [19].

Pinl(x) =

∫
Ω χl(x)χlesion(x) dx∫

Ω χl(x) dx
, Poutl(x) =

∫
Ω χl(x)χbackground(x) dx∫

Ω χl(x) dx
(5)

In practice, the 3D surface obtained after pre-segmentation is used as initialization to the AS and
evolved to minimize the energy E until it finally fits the tumor silhouette.

2.2. The Clinical Dataset

In order to compare the performance of this new algorithm to its 2D predecessor, I considered the
same dataset discussed in [24], which comprises 12 lung, 29 head and neck, and 17 brain cancers for a
total of 58 PET studies. Eight PET datasets (2 with brain metastases, 4 with head and neck cancers,
2 with lung cancers) were used to train and test the 3D DA classifier while the remaining fifty PET
datasets (i.e., 10 lung, 25 head and neck, and 15 brain cancers) were used to evaluate the performance
of the proposed segmentation method.

Segmentations were done off-line and the findings did not affect either the treatment plan or the
care of the patient. No personal information on patients has been released. Concerning the use of
dataset, written consent was released by patients.

The PET investigation protocol was approved by the institutional Hospital Medical Ethics Review
Board. Acquisitions were performed on a Discovery 690 PET/CT scanner with time of flight (General
Electric Medical Systems, Milwaukee, WI, USA) and produced PET images with resolution of 256 ×
256 voxels with grid spacing of 2.73 mm3, thickness of 3.27 mm3 and voxel size 2.73 × 2.73 × 3.27 mm3.

2.3. Framework for Performance Evaluation

The following parameters are used here for performance evaluation:

Sensitivity =
True Positive

True Positive + False Negative
(6)

Speci f icity =
True Negative

True Negative + False Positive
(7)

positive predictive value (PPV) =
True Positive

True Positive + False Positive
(8)

Accuracy(ACC) =
True Positive + True Negative

True Positive + False Positive + False Negative + True Negative
(9)

Dice similarity coe f f icient (DSC) =
2× True Positive

2× True Positive + False Positive + False Negative
(10)

Hausdor f f distance (HD) = max
{
d(A, B), d(B, A)

}
(11)

Pearson correlation coe f f icient (PCC) =
COV(X, Y)
σXσY

(12)

The PCC can take a value between +1 and −1, where +1 and −1 show total correlation (no
difference between two segmentations), while 0 means no correlation (totally difference between two
segmentations).

The proposed fully 3D DA segmentation method was implemented in Matlab R2019a and run on
MacBook Pro computer with a 2.5 GHz Intel Core i7 processor, 16 GB 1600 MHz DDR3 memory, and
OS X Sierra.
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3. Results

Segmentation Results

To train and test the classifier, tumor, background and border-line tissues were automatically
identified on PET images using the strategy described in Section 2.1.1. Starting from eight patient cases,
the sampling process produced 13,762,560 vectors divided into 28,152 lesion vectors, 16,107 border-line
vectors, and 13,718,301 background vectors. In total, 80% of the samples were used for training, while
the remaining 20% were used for testing. Concerning the K-Fold cross-validation, the optimal k value
was determined through the trial-and-error method (k ranged: 5–15, step size of 5), k = 5 corresponded
to the highest classification accuracy. The capability of the 3D DA classifier in discerning different
tissues achieved excellent result with a sensitivity of 99.09%, a specificity of 90.58%, a precision of
98.53%, and an accuracy of 96.46%. Figure 2 shows the receiver operating characteristic (ROC) analysis
performed to assess the efficiency of 3D DA classification after the training phase. The area under the
curve (AUC) is 0.99538. The maximum AUC is 1, which corresponds to the perfect classifier. After this
training, the classifier is able to label new tissues and is ready to be integrated in the segmentation
process (as described in Section 2.1.2).

Figure 2. Classification performance of the 3D DA classifier was evaluated by calculating the area
under the receiver operating characteristic (ROC) curve (AUC) using the ROC analysis.

To assess the performance of the segmentation method, ten patient studies with lung cancer
(18F-fluorodeoxyglucose PET), 25 with head and neck cancer (18F-fluorodeoxyglucose PET), and 15
with brain cancer (11C-methionine PET) were considered. Table 1 summarizes the results of the
three previous anatomical districts including the results from the previous study [24]. Since the 2D
slice-by-slice approach worked better than several other state-of-the-art approaches [24], I felt judged
comparison with additional approaches to be unnecessary.
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Table 1. Sensitivities, PPVs, DSCs and HDs for cancer studies using the 3D and 2D algorithms.

3D Active Surface with 3D Discriminant Analysis

Lung Head and Neck Brain

Mean ± std Mean ± std Mean ± std

Sensitivity 90.09 ± 6.50% 86.05 ± 5.70% 89.61 ± 4.29%
PPV 91.36 ± 3.89% 91.19 ± 5.30% 91.27 ± 4.52%
DSC 90.47 ± 2.36% 88.30 ± 2.89% 90.29 ± 2.52%
HD 1.40 ± 0.72 1.33 ± 0.57 1.04 ± 0.49

2D Active Contour with 2D Discriminant Analysis

Lung Head and Neck Brain

Mean ± std Mean ± std Mean ± std

Sensitivity 88.00 ± 5.41% 89.28 ± 5.70% 89.58 ± 3.40%
PPV 88.19 ± 4.73% 85.53 ± 5.13% 89.76 ± 3.31%
DSC 88.01 ± 4.23% 87.15 ± 3.23% 89.58 ± 2.37%
HD 1.53 ± 0.54 1.18 ± 0.39 1.07 ± 0.61

As confirmed by the analysis of variance (ANOVA) (see Table 2), the proposed 3D AS DA
algorithm generated better results than the previous 2D algorithm. This was further demonstrated
by the statistical difference (ANOVA p-value < 0.047) in the DSC comparison. In addition, Pearson
correlation coefficient (PCC) analysis has been performed to evaluate the similarity of the proposed
segmentation with the previous method [24], across all the fifty cases. The fully 3D AS DA approach,
with a mean DSC of 89.69 ± 1.21%, not only performed overall better than the old method (DSC =
87.24 ± 4.59%), but with PCC~0.53 provided significantly different results as well (p-value = 0.000044).

Table 2. ANOVA and PCC on the DSC showed statistical differences between 2D and 3D
segmentation methods.

Active Surface with
Discriminant Analysis

ANOVA
p-Value

Mean DSC
Difference

PCC
PCC

p-Value

2D vs. 3D 0.046 2.45% 0.53 0.000044

Figure 3 shows the qualitative comparison between the proposed method and the algorithm
proposed in [24].
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Figure 3. Three different tumors reported in the figure show the difference between 2D active contours
(a,d,g) [24] and 3D active surface (b,e,h) segmentations guided by the 3D classifier. The reconstructed
surfaces (green and red) and the gold standards (in yellow) are rendered partially transparent for better
comparison. In the last column, the overlap of both methods and the gold standard is shown (c,f,i).
Specifically, an over-segmentation of the 2D approach compared to 3D can be observed. (Color images
can be found on the electronic version of this article).

4. Discussion

In this study, I discuss the inclusion of 3D tissue labelling with in the energy to be minimized
during the 3D segmentation based on AS. The key improvement over the previous work [24] is a
new segmentation algorithm obtained by evolving a 3D active surface, not only according to the PET
data itself, but also leveraging information conveyed by a purposely-trained 3D DA classifier. Such
information is included directly in the energy formulation. Previously [24], the 3D shape reconstruction
challenge was addressed by using a reconstruction strategy based on a 2D approach, where the tumor
segmentation was performed on each slice independently, and marching from one slice to the next
until a stop condition is satisfied. While this represented an important step toward 3D delineation,
it introduced a preferential direction (the direction of the marching) in the algorithm. In addition,
the presence of a preferential direction is an embedded feature of PET data itself, being the distance
between pet slices much greater than their planar resolution. While this particular aspect did not
seem to influence the outcome of [24], it is nevertheless possible to conceive tumor topologies for
which the marching 2D algorithm could actually ignore part of the tumor. To remove such a risk,
I wanted to perform the shape reconstruction using an algorithm capable of handling any topology
and where no preferential direction is present, either implicitly or explicitly. For this reason, the BTV
delineation in this work is obtained through the evolution of a fully 3D surface. While some key
features of the present system remained unchanged with respect to the previous version [24], such as
(i) input is minimal and consist of just one manual delineation on one pet slice (see Section 2.1.), (ii)
conversion of PET images into SUV images (see Section 2.1.2), and (iii) an optimal mask is retrieved
during the pre-segmentation step, the core approach to segmentation, the initialization strategy and
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the DA labelling underwent consistent changes. In particular, initialization is now provided in form of
a 3D shape and the DA has been re implemented to handle voxels, as opposed to pixels.

Finally, for better comparison, I used the same PET dataset as in Comelli et al. [24] where
I demonstrated that the 2D approach already performed better than many commonly employed
delineation methods. My results clearly show that both the migration from assembled 2D to full
3D, and the inclusion of tissue classification contributed to improve performance regardless of the
anatomical district considered. In particular, in terms of DSC the improvement can be summarized as
follows: 90.47 ± 2.36% versus 88.01 ± 4.23% for lung cancer, 88.30 ± 2.89% versus 87.15 ± 3.23% for
head and neck cancer, and 90.29 ± 2.52% versus 89.58 ± 2.37% for brain cancer. Moreover, it is worth
noting that, with the active surface, no stopping condition is needed and any preferential direction is
removed. The converged active surface delivers a final, fully operator-independent 3D segmentation.
In addition, I included the tissue classification, which was implemented in 3D as well. In this way, both
the evolving shape and the tissue classification included in the energy, and consequently in the shape
evolution, exploit cross-slice information that has never been exploited before. Despite (from a surficial
search of the literature) the impression that the combination of ML with the active surface approach
has been investigated by many authors, most studies have instead kept active surface and ML as
independent entities. In contrast, I integrated ML directly in the energy of the active surface approach.

5. Conclusions

In this study, I discussed the inclusion of 3D tissue classification into fully 3D segmentation based
on the evolution of an active surface. The obtained algorithm outperforms my previous formulation
in which the tumor delineation was achieved using a 2D active contour approach. As an immediate
advantage, the active surface is capable of segmenting all volume at once. Additionally, I enriched
such an algorithm with the inclusion of a machine learning component, which consists of a 3D tissue
classification based on discriminant analysis and compared the results with previous work. Noteworthy,
both shape evolution and tissue classification can now leverage cross-slice information that was not
available before. Based on the reported results, I can claim that migrating the system into 3D yielded a
practical benefit justifying the effort to rewrite an existing 2D system for PET imaging segmentation.
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Abstract: This paper describes a methodology that extracts key morphological features from
histological breast cancer images in order to automatically assess Tumour Cellularity (TC) in
Neo-Adjuvant treatment (NAT) patients. The response to NAT gives information on therapy efficacy
and it is measured by the residual cancer burden index, which is composed of two metrics: TC and
the assessment of lymph nodes. The data consist of whole slide images (WSIs) of breast tissue stained
with Hematoxylin and Eosin (H&E) released in the 2019 SPIE Breast Challenge. The methodology
proposed is based on traditional computer vision methods (K-means, watershed segmentation,
Otsu’s binarisation, and morphological operations), implementing colour separation, segmentation,
and feature extraction. Correlation between morphological features and the residual TC after a
NAT treatment was examined. Linear regression and statistical methods were used and twenty-two
key morphological parameters from the nuclei, epithelial region, and the full image were extracted.
Subsequently, an automated TC assessment that was based on Machine Learning (ML) algorithms
was implemented and trained with only selected key parameters. The methodology was validated
with the score assigned by two pathologists through the intra-class correlation coefficient (ICC).
The selection of key morphological parameters improved the results reported over other ML
methodologies and it was very close to deep learning methodologies. These results are encouraging,
as a traditionally-trained ML algorithm can be useful when limited training data are available
preventing the use of deep learning approaches.

Keywords: neo-adjuvant treatment; digital pathology; tumour cellularity; machine learning

1. Introduction

Digital pathology has recently become a major player in Cancer research, disease detection,
classification, and even in outcome prognosis [1–4]. Perhaps the most common imaging technique
is Hematoxylin and Eosin (H&E), where H stains nuclei blue and E stains cytoplasm pink [5].
Additionally, other immunohistochemistry methods (IHC) that use antibodies to stain antigens
or proteins in the tissue are more specific and they can complement H&E [6]. For instance,
the cluster of differentiation 31 (CD31), which is commonly found on endothelial cells, is used as
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an indication of the growth of blood vessels in tumours, or angiogenesis [7–9]. CD34 is found on
hematopoietic cells, mesenchymal stem cells, and it is required in certain processes, like infiltration
of eosinophils into the colon [10], or the dendritic cell trafficking and pathology in pneumonitis [11],
Ki67 is normally associated with cell proliferation and it can be used as a prognostic factor for
gliomas [12], breast cancer [13], and colorectal adenocarcinomas [14]. Computer-assisted diagnosis
(CAD) [2] is based on the quantitative analysis to grade the level of the disease, but, recently, other
clinical-pathological relationships with the data have been explored [15,16]. For example, a better
understanding of mechanisms of the disease evolution process [1] and even prognosis information [3].

Breast Cancer is a common disease both in terms of incidence and deaths, with approximately
252,710 new cases and 40,610 deaths in 2017 in the United States alone [17]. In 2018, 30% of new
cases Cancer among females cases in the US were breast cancer, which placed it the second place in
mortality [18]. Numerous imaging analysis methods are employed in order to study these cancers [19].
Common treatments for breast cancer are surgery, radiation, chemotherapy, or targeted therapy.
Breast cancer neo-adjuvant treatment (NAT) is a therapy for advanced cases that provides useful
information for breast-conserving surgery [20]. NAT provides prognostic and survival information [21]
as well as a rate of local recurrence [22]. The efficacy of NAT is determined by means of the pathological
complete response (pCR) and this can be assessed by the Residual Cancer Burden (RCB) [23]. RCB is
supported by two metrics: residual Tumour Cellularity (TC) within the Tumour Bed (TB) and the
assessment of lymph nodes. RCB is scored in a continuous value, but it is further categorised in four
classes RCB-0 to RCB-III. Subsequently, TC, which is defined as the fraction of malignant cells within
the image patch, is a key parameter for RCB computation [24,25]. Currently, TC is manually assessed
by an eye-balling routine estimating the proportion of TB and this procedure is time-consuming and
requires an experienced pathologist.

Neo-adjuvant treatment (NAT) chemotherapy refers to a treatment that is administrated before
Cancer surgery [26–28]. The first successful results of NAT chemotherapy were demonstrated in the
1980s [29,30]. Some of the benefits of NAT are: tumour size reduction, better prognostics, and, even in
some cases, surgery can be avoided [31]. In addition, patients with large tumours could be eligible for
breast-conserving or a less tumour size surgery extraction.

TC assessment problem was first addressed by a hand engineering approach based on nuclei
segmentation and feature extraction. In the first step, nuclei segmentation needs to be implemented [1].
This is a challenging task and some common techniques are based on active contours [32], watersheds [33],
or graph cuts [34], which are either designed for nuclei [33] or lymphocytes segmentation. [32] Based on
the segmentation application, speed, accuracy, or automation level might be required [34]. In the present
study, automated segmentation is performed and, as it has been reported in some tissue classification
studies, accuracy nuclei segmentation does not guarantee better outcome assessment between benign
and malignant tissue [2]. When processing a high number of image files, speed constraint is preferable.
After segmentation, many features can be extracted, for instance, cell shape, size, and texture [33–35],
and also, features from regional and the global image can provide valuable information [36].
These parameters can be used for diagnostic purposes to classify tissue malignancy [36–39] and
also for grade disease level assignment. Ref. [33] For instance, a study conducted by Dong and
co-authors [40] categorised intraductal lesions in breast cancer by an adequate feature extraction and
machine learning (ML) classification.

ML algorithms are trained to learn from the parameters extracted [15]. Some supervised
algorithms are Support Vector Machines [41], Boosted Trees [42], and K-Nearest Neighbours [43].
Besides diagnosis, different new clinicopathological relationships with features have been discovered,
for example, [16] revealed the relation between stroma morphology and prognosis of breast cancer
patients and [44] studied quantification and distribution of tumour-infiltrating lymphocytes (TILs) as
prognostic and predictive biomarker.These type of digital pathology methodologies can also useful
for TC assessment. A full hand-engineering method for this task was proposed by Peikari [45].
This methodology was based on the extraction of a vector with 125 parameters [45].
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Separate to traditional ML techniques, another approach to estimate TC is by Deep Learning
(DL) techniques. In the last decade, there has been increased interest in DL methods. One of the
main architectures or models is based on the use of neural networks, and a particular case is a
Convolutional Neural Network (CNN) [46]. The main advantage of DL techniques is that they
do not require the extraction of features manually or by training, as the network learns a series
of parameters and weights by itself. However, to achieve this, the network requires a relatively
large number of training images with labels, and the number of training data can impact on the
performance. In many histopathology applications, labelled training data are still limited as compared
to other imaging applications, such as everyday images, like cats and dogs. With the spread use of
whole slide digital scanners [47], numerous histopathology images have become available for research
purposes. Some have been released to the research community in general in the form of challenges
(e.g., https://grand-challenge.org/challenges/) in order to encourage research groups globally to
work together, gather annotations, provide training, and testing data sets and benchmark algorithms.
The present work follows the 2019 SPIE-AAPM-NCI BreastPathQ: Cancer Cellularity Challenge with
the specific objective of “development of quantitative biomarkers for the determination of cancer
cellularity from whole slide images (WSI) of breast cancer hematoxylin and eosin (H&E) stained
pathological slides” ( https://breastpathq.grand-challenge.org/) and addresses the development of
quantitative biomarkers for the challenge.

CNNs have been used for different Histopathology tasks, like segmentation [48,49], detection of a
specific image properties [50] , and image grade classification [38,51]. Breast cancer tumour cellularity
has also been addressed by deep techniques. For instance, Ziang Pei [52] implemented a direct method
based on deep and transfer learning approach with the advantage of avoiding cell segmentation.
Akbar [20] presented a traditional hand-engineering approach and a deep neural network.

The methodology in this study is based on a hand-engineering approach similar to the one that
was described by [45] based on a 125 parameter vector size, but we selected 22 parameters after a
correlation analysis of extracted features with TC. Additionally, the methodology described here is
similar to Dong et al. parameters from nuclei; we also include parameters from the neighbourhood of
the nuclei and from the full image patch. The study by Fondon [36] also analysed regions around the
nuclei; however, our study includes morphology parameters from whole breast ducts region. Thus,
the main contributions of this paper in the methodology are the segmentation algorithm that is based
on the enhancement of the nuclei region, and an algorithm for breast ducts detection and the parameter
derivation and selection and its correlation to tumour cellularity. In the results, the correlation analysis
of the morphological parameters with cellularity revealed that stroma concentration has the strongest
correlation with TC, which is in agreement with the results that were presented by [16]. Finally,
the results were validated with the ICC and compared with similar studies [20,45] indicating an
increase in ICC. The methodology described only requires a reduced set of training parameters.
Therefore, the methodology described in this paper improves previous results and it may be useful in
cases when large training data sets, which are normally required for deep learning approaches, are
not available.

2. Materials and Methods

2.1. Materials

The data set used in this work consists of 2579 patches of tissue stained with H&E, which were
extracted from 64 different patients under Neo-adjuvant Treatment. The size of each patch is
512 × 512 pixels. As a reference, a breast tissue is formed of a connective tissue, named stroma,
as seen in pink. Lymphocytes can be seen as dark blue round objects and fat zones as white areas.
It also contains ducts,which are responsible for carrying milk, and sometimes arteries, which can be
seen as regular clusters of darker blue nuclei grouped into the region (Figure 1).
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(a) (b)

Figure 1. (a) Stroma region which shows several clusters, regions of fat as well as some lymphocytes.
(b) Graphical description of the elements that are analysed in this work. Within a stroma, the connective
tissue shown in pink region, ducts appear as clusters stained with haematoxylin and contain several
nuclei. Outside these ducts, regions of fat appear white and lymphocytes appear purple.

The residual cellularity of each patch was evaluated by 2 pathologists and this assessment was
considered to be the ground truth (GT) for this study. The data was released as part of the challenge
2019 and it was collected at the Sunnybrook Health Sciences Centre, Toronto. It comprises a set
of whole slide images (WSIs) that have been stained with H&E [45] from 64 patients with residual
invasive breast cancer on re-section specimens following NAT therapy. The specimens were handled
according to routine clinical protocols and WSIs were scanned at 20× magnification (0.5 μm/pixel).

The images were divided into a training and validation set of images. The cellularity value
distribution for the whole data-set is uneven, i.e., most of the patches correspond to cellularity zero
and fewer patches were available for higher cellularity. The training images were selected uniformly
distributed from cellularity zero to one in order to have an even amount of benign and malignant
nuclei. First, 212 images with selected cellularity values from 0 to 1 were processed and 4533 nuclei
cells from those selected images were extracted and its corresponding features computed and used
as a training set. The remaining 2367 patches were used for validation. Figure 2 shows the selected
patches with different levels of cellularity. A third set of test data of 1119 images was available for the
challenge contest. These three sets were used in this work.

2.2. Methodology

The proposed methodology consists of a sequence of traditional image processing routines,
computer vision, and machine learning algorithms that automatically process the full validation set.
A large amount of morphological parameters can be extracted and stored orderly in an output table
file. A master control routine is responsible for selecting one by one the corresponding image patch
to be processed. There are two operational modes. A manualmode useful to train machine learning
algorithms. In this mode, nuclei from the selected image with a known classification assignment are fed
to the algorithm and output features are saved in an output data file. Subsequently, an automated mode
processes the full validation set and gives a TC estimation. This mode is able to process thousands of
patch images. Figure 3 presents this process in a diagram.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 0.4 0.7 1.0

Figure 2. Graphical display of three selected morphological parameters against the cellularity: Global
stroma filtered region (o), minor axis (�) and Value concentration in region (x). Cellularity was
manually ranked by a pathologist and the parameters automatically extracted. The plots represent
average parameter value normalised with maximum value to be compared in the same graph.
The graph indicates an inverse relationship between respective parameter and cellularity. Thumbnails
show images with cellularity values from zero to one and magnified versions of cases with values 0,
0.4, 0.7, and 1, where the prevalence of cancerous cells can be clearly observed.

The methodology was implemented in Matlab® (The Mathworks™, Natick, MA, USA) 2019b
version, with functions from the digital image processing, statistical, and machine learning toolboxes.
Additionally, QuPath [53], an open source software for digital pathology image analysis, was used
to validate the segmentation results obtained by the methodology. Three regions of interest were
selected from each image patch, and more than 150 morphological parameters were extracted at inner
segmented cell region, neighbourhood around segmented cell, and the full image patch.
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Figure 3. Graphical illustration of the pipeline of the methodology. Under two operational modes
images are processed to extract features at nuclei, regional, cluster, and global image regions either to
classify and assign Cellularity or to extract same features in order to an archive output.

2.3. Segmentation of Nuclei

At the nuclei region, cells from the image patch are segmented by colour separation and
binarisation. The image is converted to HSV colour space and, by K-means clustering [54], three main
colour images are extracted, say Ip for pink, Ib for blue, and Iba for the remaining background
component image. A special procedure enhances Ib and weakens background region is calculated as:

In = K1(Io. ∗ Im) + K2 Io + γ(Im, 0.1) (1)

where Io is the RGB image converted to gray levels and Im is gray image after a median filter of
size 3 × 3 was applied. γ is the gamma correction Im of parameter 0.1 represented as γ(Im, 0.1).
This value was selected as low to start from a lighter background. K1 and K2 are constants that control
enhancement of nuclei and weaken background intensity, respectively, and they were experimentally
adjusted. First, both of the constants were fixed to 0.5 and, as K1 is increased and K2 is reduced,
the nuclei region is enhanced. The enhanced image In is binarised by Otsu’s algorithm [55] combined
with watershed [56] separation of touching nuclei. This segmentation procedure is seen in Figure 4
for three TC cases. A validation analysis of this procedure was done by means of Jaccard Index [57],
as shown in (e). The reference images were obtained by a manual segmentation while using the
QuPath platform. The results indicate an average Jaccard index of 0.73 after comparing cases of low,
medium, and high TC. Although this result might be improved, Peikari and co-authors [45] suggest
that cell segmentation accuracy does not have a significant effect in TC assessment.

2.4. Extraction of Morphological Parameters

Using the binary image, a set of morphological parameters has been obtained: area, perimeter,
roundness, eccentricity, centroid X, centroid Y, major axis, minor axis, and orientation angle.
Additionally, a sub region inside the segmented cell body was determined in order to compute
the texture and mean HSV values of the nuclei cell body.
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(a) (b) (c) (d) (e)

Figure 4. Enhancement of nuclei area. First row corresponds to a Tumour Cellularity (TC) value of
zero, second row is an example of TC= 0.5 and third row is TC= 1. Images in column (a) are the
original image, (b) gray level images, (c) enhanced images, notice that the nuclei region is darker whilst
background becomes lighter, (d) Binary image obtained with an adaptive threshold value estimated
directly from strongest correlated parameter, and (e) validation of nuclei segmentation by Jaccard index.
Reference image was manually segmented by using QuPath Platform.

The parameters were extracted from different window sizes surrounding the segmented cell:
30× 30, 60× 60, 90× 90, and 120× 120 pixels. The statistical analysis indicated that the best correlation
was obtained from the smallest window size. The parameters estimated are the four bins histogram
from HSV image and also the regional concentration R of Ip, Iba, and Ib from its binary image,
determined by the ratio of total white pixels TW by total pixels TP inside window neighbourhood
region, R = TW/TP. Figure 5 shows a sample patch image, with its corresponding pink, blue, binary,
and concentration image components. Brown areas indicate low concentration and white and yellow
areas are high concentration. Breast normal tissue images present ducts and sometimes arteries,
which are clearly seen as regular clusters of darker blue nuclei grouped into the region, see Figure 6.
These are detected based on set theory: let U be the full image, D be the cluster or duct, D⊆U �= ∅.
Subsequently, D regions are obtained by subtracting background image Iba from original image
U. The following morphological parameters can be extracted from these regions: total cluster area,
roundness, number of cells inside cluster, and distance from cells centroid to cluster centroid.

Concentration parameters from the complete full image patch were computed using original
RGB image and transformed to HSV. Additionally, a pink colour filter was implemented by means
of the Matlab® colour thresholder, which extracts stroma region from the image and computes its
mean value. A summary of the full set of features extracted is presented in Table 1; notice that regional
parameters are computed at the different window sizes.
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(a) (b) (c)

(d) (e)

(f) (g)

Figure 5. Regional analysis of the data. (a) Original image. (b) Ip, stroma region image obtained
from colour separation. (c) Binarised Ip image. (d) Ib nuclei image obtained from colour separation.
(e) Binarised Ib image. (f) Regional image concentration of Ip in which brown colour indicates
the lowest and white is the highest region concentration. (g) Regional density concentration of Ib.
This example was processed at 30 × 30 pixels window.

(a) (b)

(c) (d)

Figure 6. (a) The original patch with clear breast ducts. (b) Clusters detected by the methodology, every
duct or cluster is in yellow and cells inside are in red. Background is labelled in white. (c,d) Magnified
regions of (a,b).
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Table 1. Summary of extracted features. Features at regional level are computed at four different
window sizes. Features from the full image represent average values.

Nuclei Area Eccentricity Roundness Centroid x, y

Perimeter Orientation Major Axis Minor Axis

Mean Texture
Contrast 1

Mean Texture
Contrast 2

Mean Texture
Homogenity 1

Mean Texture
Homogenity 2

Mean H value
inside nuclei

Mean V value
inside nuclei

Mean S value
inside nuclei

Regional
Concentrations Stroma Ip Background Iba Nuclei Ib

Epithelial tissue
from Ib

Mean H
in window

Mean S
in window 2

Mean V
in window

Mean intensity
Histogram H 1

Mean intensity
Histogram H 2

Mean intensity
Histogram H 3

Mean intensity
Histogram H 4

Mean intensity
Histogram S 1

Mean intensity
Histogram S 2

Mean intensity
Histogram S 3

Mean intensity
Histogram S 4

Mean intensity
Histogram V 1

Mean intensity
Histogram V 2

Mean intensity
Histogram V 3

Mean intensity
Histogram V 4

Clusters
(ducts)

Cluster
area

Cluster
roundness

Cells inside
cluster

Distance to
centroid

Global Image
Concentrations Stroma Ip Background Iba Nuclei Ib

H value V Value S Value

2.5. Correlation Analysis of Morphological Parameters to TC

The full training set was processed to determine all of the morphological parameters at the three
region of interest and those corresponding to Cellularity values equal to (0, 0.1, 0.2, ..., 1.0) were selected,
and their mean, standard deviation, maximum, and minimum values were computed. Subsequently, a
linear regression and lasso analysis were determined from both analyses. Parameters of coefficient
above 0.80 from linear regression and in concordance with lasso selected parameters after redundant
removal yield 22 parameters that have the strongest correlation with TC. The plot in in Figure 2
illustrates three parameters with the strongest correlation with TC.

First, the morphological parameters related to segmented nuclei are: eccentricity, roundness,
major axis, minor axis, and perimeter. Subsequently, parameters computed at neighbourhood region
are: nuclei density concentration, Hue, Value, and Saturation histograms of the regional HSV colour
map image. Finally, parameters that are computed from the full image are: HSV average values from
HSV components, nuclei concentration, basement concentration, and stroma average concentration
determined at output of the pink colour filter. Some of these parameters are graphically displayed
in Figure 7.
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(a) (b)

Figure 7. Morphological relationship between the four strongest correlated parameters. (a) Global
value from HSV component and Stroma average Concentration. (b) Background Image Concentration
and Stroma Filtered Concentration. In both cases, the benign and malignant cells are highlighted with
different colours, which indicate a clear separation.

2.6. Training of Machine Learning Algorithms

Machine learning algorithms were trained with the parameter vector of size 22 determined by
the statistical correlation analysis. From the training set, 4533 segmented cells were processed and its
corresponding extracted parameters were used to generate a prediction function that classifies nuclei
cells between malignant and normal cells. Three algorithms were tested: Support Vector Machines,
Nearest K-Network, and AdaBoost. The accuracy of training process for every selected method
with the training data showed values up to 0.99 due to a high correlation selected features used for
training. TPR achieved are 0.97 for SVM, 0.95 for AdaBoost, and 0.97 for KNN (Figure 8). Support
Vector Machines (SVM) is a training algorithm for optimal margin classifier [41], and it is based on
a determination of a decision function of pattern vectors x of dimension n classifying in either A or
B, in our case benign or malignant cells. The input is a set of p examples of xi, i.e., the 22 strongest
correlated features extracted. K-Nearest Neighbour method [42] was also selected, because it is one
of the most well known algorithms within clustering and data classification, in our case between
benign and malignant classes. AdaBoost [43] is a decision tree type learning algorithm that starts from
observations of a certain item that is represented by branches and goes to conclusions about item target
value or leaves. It has a best performance on binary classification problems.

(a) (b) (c)

Figure 8. (a) Receiver operating characteristic (ROC) curves obtained during training phase for the
three selected algorithms. (a) Support Vector Machines (SVM), (b) AdaBoost , and (c) K-Nearest
Neighbour (KNN). The higher accuracy value achieved is obtained only with the training set that is
highly correlated with Tumour Cellularity (TC).
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2.7. Assessment of Tumour Cellularity

The methodology to estimate TC is illustrated in Figure 9, with three representative images
with increasing TC from top to bottom in each row. In Figure 9a the nuclei are segmented and their
corresponding parameters are extracted. Subsequently, the prediction function classifies every cell
in either benign (green) or malignant (red), as illustrated in Figure 9b. Next, an estimation of full
cell cytoplasm is done by morphological dilation drawn as the white circles around malignant cells
(Figure 9c). The full cellularity that is detected region is shown in Figure 9d. TC is computed as the
ratio of the area that is covered by cellularity (white in the figure) over the total area (white and black
in figure).

(a) (b) (c) (d)

Figure 9. Visual description of the method. Three TC cases are presented in each row: 0, 0.5 and 1.
(a) The original image, the image is segmented and key parameters are computed, then a classification
predictor estimates either malignant or benign cells, shown in red and green, respectively in (b).
A dilation of segmented malignant nuclei estimates full cytoplasm of every detected malignant cell (c)
and TB region is shown in white in (d). The cellularity metrics calculated by the proposed methodology
are: TC = 0.0113, TC = 0.5181 and TC = 0.9936.

3. Results

An automated estimation of TC was computed from two test data sets. Three prediction functions
that were trained by machine learning algorithms were determined to be used with the automated
processing software of breast cancer images that classifies cells and computes TC. The method was
tested with a training set of 2579 images that were already classified by a pathologist with a TC value.
Additionally, it was tested with the 1119 images for submission of SPIE Breast Challenge, with an
unknown TC value. Figure 10 shows the statistical behaviour of the method’s result for the training
set as boxplots.

Dispersion plot indicates the method for approximating to the pathologist classification
assignment. The results have a better approximation at higher cellularity values (TC > 0.70) and
performs well with KNN algorithm. Additionally, around the middle region (0.4 < TC < 0.6) has
a good approximation with AdaBoost. At low cellularity values (TC < 0.3), three methods present
deviation, with its higher at cellularity zero, which correspond to images with only benign nuclei cells.
According to Minimum Square Error (MSE), SVM performs better overall in the cellularity region.
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This result can be validated by a visual inspection of boxplots of Figure 10 in the three cases there is a
positive correlation between the actual cellularity (horizontal) and the estimated cellularity (vertical).
However, SVM shows less dispersion, especially in the lower values of cellularity as compared with
the other two techniques.

(a) (b)

Figure 10. Results of implementation on Training Data. Boxplots for the Cancer Cellularity Reference
Value against: (a) SVM estimation, (b) KNN estimation and (c) BT Estimation. It should be noted that
large boxplots correspond to large variations of the estimations and as such, SVM shows the lowest
variability

In order to analyse the limitations of the algorithm, the TC assessment outcomes with the highest
errors were analysed. Figure 11 presents three cases where the TC was incorrectly calculated. All three
cases in the figure are of benignant tissue with no cellularity; this means that most of the segmented
cells should be marked as benignant (green), but several of them are shown in red (b–d), which
corresponds to false-positive cases. The expanded area around the cell (e) yields a high TC value
instead of the correct value which should have been zero. We assume that this problem is because of
the limited amount of cells used to train the algorithm. This problem also explains some of the outliers
on the boxplots presented in Figure 10, which are mainly observed at low cellularity. Additionally, this
suggests that other classification algorithms should be evaluated.

(a) (b) (c) (d) (e)

Figure 11. Three cases where the TC was incorrectly calculated. Each row corresponds to a patch
with incorrect TC. Column (a) illustrates the original image, and columns (b–e) show the step by step
process to assess cellularity. (b) Corresponds to the segmented image and classified into benign (green)
and malignant (red). Columns (c,d) show expanded region of malignant cells. Column (e) corresponds
to cancer cell region in white, used to compute TC. Three worst cases correspond to a TC of zero;
this means there would not be any malignant cell and TC image must be completely black. Several
cells were miss classified which yields to a TC wrong assessment. Estimated TC values are: 0.75, 0.81,
and 0.75, instead of zero.
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Statistical analysis of the training set revealed 22 key parameters that have a strong correlation to
TC. The Stroma concentration (r = −0.9786), global Value of HSV component (r = −0.9728), regional
histogram bins (r = −0.9659), and minor axis (r = 0.8939) from nuclei morphology were the strongest
parameters, as shown in Figure 2.

This result revealed that the stroma region has a significant relation to TC, which is in agreement
with the results of the hand engineering method by [45] that was trained by a 125-dimensional feature
vector reported a 0.75 ICC (first column of Table 2). Lower and upper-bounds are shown in square
brackets. Our methodology is also a hand engineering, but trained with only 22 key morphological
parameters (second column of Table 2), indicates a 0.78 ICC. This result outperformed those that were
obtained by the method of Peikari. The results based on Deep Learning techniques like a combined
hand engineering Deep Neural Network reported by Akbar [20] is slightly above the proposed
methodology (third column of Table 2). Finally, the methodology proposed was used to process the test
set and the results were submitted to the challenge contest. The prediction probability result obtained
from contest was Pk = 0.76.

Table 2. Comparison of the Intra-class Correlation Coefficients (ICC) of the proposed methodology
against a Hand Engineering Methodology (Peikari [45]) and a combined deep learning and hand
engineering methodology (Akbar [20]). Lower and upper bounds are shown in square brackets. Notice
the closeness of the results of the proposed methodology against the Deep Learning approach.

Hand Engineering Key Parameters Combined Deep Network
(Peikari) (Our methodology) (Akbar)

ICC 0.75 0.78 0.79
[L,U] [0.71, 0.79] [0.75, 0.80] [0.76, 0.81]

4. Discussion

A computer methodology that automatically processes H&E histopathology digital images based
in the extraction of main morphological parameters at a cell, regional, and global level is presented in
this paper. The methodology processed a training set of breast cancer images under NAT treatment and
the results indicate 22 key morphological parameters are strongly correlated with cellularity. Interesting
results were revealed from the correlation analysis of the morphological parameters. The strongest
related parameter was stroma density, in agreement with Beck et al. [16], which is, the histology of
stroma correlates with prognostic in breast cancer. Three different machine learning algorithms for
cell classification were evaluated and compared in order to determine tumour regions. The best
result was obtained with Support Vector Machines (SVM) algorithm. The relevance of this paper
is a selection of a key parameters to train the algorithms, which results in a better performance of
similar techniques; however, the reported deep learning algorithms outperform this result, which is a
motivation to explore these techniques in the future.
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Abbreviations

The following abbreviations are used in this manuscript:

TC Tumour Cellularity
NAT Neo-Adjuvant treatment
WSIs Whole slide images
H&E Hematoxylin and Eosin
ICC Intraclass correlation coefficient
ML Machine Learning
IHC Immunohistochemistry
CAD Computer-assisted diagnosis
RCB Residual Cancer Burden
pCR Pathological complete response
TB Tumour Bed
GT Ground Truth
HSV Hue, Saturation, Value
RGB Red, Green, Blue
SVM Support Vector Machines
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1 Nova Information Management School (NOVA IMS), Campus de Campolide, Universidade Nova de Lisboa,
1070-312 Lisboa, Portugal; mcastelli@novaims.unl.pt

2 School of Economics and Business, University of Ljubljana, Kardeljeva Ploščad 17, 1000 Ljubljana, Slovenia;
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Abstract: The classification of histopathology images requires an experienced physician with years of
experience to classify the histopathology images accurately. In this study, an algorithm was developed
to assist physicians in classifying histopathology images; the algorithm receives the histopathology
image as an input and produces the percentage of cancer presence. The primary classifier used in this
algorithm is the convolutional neural network, which is a state-of-the-art classifier used in image
classification as it can classify images without relying on the manual selection of features from each
image. The main aim of this research is to improve the robustness of the classifier used by comparing
six different first-order stochastic gradient-based optimizers to select the best for this particular
dataset. The dataset used to train the classifier is the PatchCamelyon public dataset, which consists of
220,025 images to train the classifier; the dataset is composed of 60% positive images and 40% negative
images, and 57,458 images to test its performance. The classifier was trained on 80% of the images
and validated on the rest of 20% of the images; then, it was tested on the test set. The optimizers
were evaluated based on their AUC of the ROC curve. The results show that the adaptative based
optimizers achieved the highest results except for AdaGrad that achieved the lowest results.

Keywords: image classification; convolutional neural networks; deep learning; medical images;
transfer learning; optimizers

1. Introduction

To evaluate whether tissue is cancerous, a sample is taken from the suspicious area and then
evaluated, under an optical microscope, by the pathologist. This procedure is very time-consuming
and extremely complicated [1], and therefore, it requires an expert pathologist with years of experience.
Depending on the particular task, even an expert pathologist could make errors. This complicated
procedure often demands a second opinion or even assistance, which is where artificial intelligence
assumes a role. Artificial intelligence (AI) can provide significant help, whether through a lot it
is automation or to furnish the pathologist with a second opinion. AI can be defined as using a
computer to generate a prediction of each image by training a deep neural network model. The training
process consists of feeding the system labeled pathology images, after which the algorithm seeks; first,
to map a function between the input label and the prediction and second, measures the error and tries
to minimize it. The state-of-the-art algorithm used in the image classification is the convolutional
neural network.

In the context of image classification, deep learning may be defined as a computer program is said
to learn from experience E, like pathology images, concerning some task T, like image classification that
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differentiates between cancerous and non-cancerous images, and is capable of recognizing the relevant
image without being explicitly programmed to do so, and using a performance measure like the AUC
of the ROC curve. The algorithm’s performance on the image classifier, as measured by the AUC,
improves by adding more images. Practically speaking, machine learning is the task of recognizing
patterns from training images and applying these patterns to identify an image with an unknown label.

The convolutional neural network (CNN) has been used as an image classification algorithm
for nearly two decades [2]. The real power of CNN was rediscovered in the context of the
ImageNet competition, where millions of images, with thousands of labels, were classified with
85% accuracy; at that time, CNN resumed its former role as one of the most important algorithms
for image classification [3]. CNN has been applied in different image classification domains, such as
agriculture [4–6] and traffic detection [7,8]. With the rapid improvements in GPU cards and the
increasing size of datasets, many influential and robust architectures, like AlexNet [9], VGG16 [10],
VGG19 [10], ResNet50 [11], and InceptionV3 [12], were introduced. Transfer learning is a deep learning
technique, which allows the knowledge acquired during training on previous models to be applied to
new tasks. Transfer learning has many advantages. It saves time by starting from the end point of
the most recent training, instead of training the new model from scratch; it extends the knowledge
it acquired from previous models; transfer learning is particularly useful when the size of the new
training dataset is small. Transfer learning has made significant contributions to the fields of computer
vision, audio classification, and natural language processing.

The difference between the predicted label and the correct label is called the cost function; the whole
point of the algorithm is to minimize this cost function. As the algorithm most commonly used to
minimize the cost function, backpropagation is an iterative algorithm, where each of its iterations
consists of two passes: A forward pass throughout the entire network, where the inputs are propagated
from the input layer to the output layer. At this point, the cost function is be calculated to measure the
performance of the network; then there is the backward pass, where the weights are backpropagated
from the output to the input of the network. The optimizers are used to minimize this cost function.

This work evaluates different first-degree optimizers used to classify pathology images as
cancerous or non-cancerous. Each optimizer is evaluated based on its performance and convergence
time. Four CNN architectures will be used to compare the performance of each optimizer to those of
the others.

2. Related Works

Many works compared the performance of different optimizers in the context of different neural
network architectures; the reported approaches differ in relation to the network architecture, datasets,
and the optimizers under study.

In a study by Dogo et al. [13], the authors evaluated the performance of seven optimizers on
three image datasets: Natural Images dataset, Cats and Dogs dataset, and Fashion MNIST dataset.
The authors evaluated the performance of each optimizer based on accuracy achieved and the
convergence time, where convergence consists of reaching the minimum of the function. To determine
the performance quality of each optimizer, the authors proposed a simple CNN architecture, with three
convolutional layers, and one dense layer with 64 neurons. For the Cats and Dogs dataset, the Nadam
optimizer achieved the best performance, and the Adadelta optimizer produced the most mediocre
performance; the RMSProp represents the shortest convergence time, and the Nadam optimizer
achieved the longest convergence. For the Fashion dataset, the Adam optimizer achieved the highest
degree of accuracy, and the Adadelta optimizer displayed the lowest accuracy; the Adamax optimizer
achieved the shortest convergence time, and the Adadelta optimizer had the longest convergence time
was the Adadelta optimizer. For the Natural dataset, the Nadam optimizer was the best performer,
and the Adagrad optimizer exhibited the most inferior accuracy; the SGD algorithm achieved the
shortest convergence time, and the Adadelta algorithm had the longest convergence time. The authors

202



J. Imaging 2020, 6, 92

concluded that the Nadam optimizer was the best of all tested optimizer, due to its combined mastery
of the momentum and the adaptive gradient estimation.

The authors Prilianti et al. [14] compared the performance of seven optimizers on the digital
plant dataset. To evaluate each optimizer, the authors used three CNN architectures; the first was a
shallow network with only one convolutional layer and without any dense layers; the second CNN
architecture used was the LeNet architecture, which was introduced by Lecun et al., [15]; and the third
CNN architecture was the AlexNet [9]. The authors evaluated the performance of each optimizer on
each CNN architecture, based on the mean square error (MSE). The Adam optimizer achieved the
lowest MSE for the shallow net architecture, as well as the LeNet architecture, while the Adadelta
achieved the lowest MSE on the AlexNet architecture. The authors concluded that Adam optimizer
achieved the best performance.

Jangid and Srivastava [16] assessed the performance of three optimizers on handwritten Devanagari
characters. The optimizers tested were Adam, Adamax, and RMSProp. To evaluate each optimizer,
the authors introduced a CNN architecture with three convolutional layers and one dense layer with
1000 neurons. For this architecture, RMSProp achieved the best accuracy. Swastika et al. [17] evaluated
three optimizers to classify vehicle types: Adam, Adadelta, and SGD. The authors used three CNN
architectures to evaluate each optimizer: a shallow network, LeNet, and MiniVGGNet. The optimizers
were evaluated based on their accuracy, which meant that the Adadelta optimizer was the best for the
Mini VGGNet architecture.

This study uses four CNN architectures to perform a comparative evaluation of six first-degree
stochastic gradient descent optimizers: the optimizers tested are Nesterov gradient descent, Adagrad,
Adam, Adamax, Nadam, and RMSProp; and the CNN architectures tested are VGG16, InceptionV3,
DenseNet, and ResNet50. The optimizers are evaluated based on their AUC of the ROC curve and
their convergence time. All the optimizers’ default hyperparameters were kept constant throughout
the experiment, except the learning rate, which was set to three values 0.001, 0.0001, and 0.0001.
Fine-tuning was applied to each network to adjust its weight to the new dataset.

3. Methodology

3.1. Dataset

The public available PatchCamelyon dataset [18,19] was used in this study. The images represent
sentinel axillary lymph nodes to investigate the spread of breast cancer. The dataset was sampled
from two hospitals in the Netherlands, experienced pathologists from the Netherlands annotated the
dataset labels. The dataset was acquired from the Kaggle platform [20]. The dataset consists of 220,025
images to train the classifier; the dataset is composed of 60% positive images and 40% negative images,
and it includes 57,458 unlabeled images to test the classifier performance. All images have dimensions
of 96 × 96 pixels. Eighty percent of the dataset is used to train the classifier, which is subsequently
evaluated with the other 20% of the dataset images; the classifier is also tested on the online set of
57,458 images, and the results are uploaded to the Kaggle platform to detect the model performance.
A sample of images is presented in Figure 1.

Figure 1. Example of images available in the PatchCamelyon dataset [20].
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3.2. Convolutional Neural Networks

CNN is the most used algorithm in image classification, where it is understood to be a deep
learning algorithm that serves as a feed-forward neural network with more than one hidden layer.
The CNN for image classification was introduced by Fukushima [2] to mimic the biological visual
cortex of the brain. CNN combines sophisticated features obtained from the higher layers of the
network with the generic features obtained from the lower layers of the network. The most critical
layer of CNN is the convolution layer, which is responsible for capturing the temporal and spatial
information of each image; the convolutional layer must conduct the convolution operation, which
is a mathematical operation performed between the input and the filter to produce the feature map.
Equation (1) shows the convolution operation,

O[u, v] = F[m, n] ∗ I[u, v] =
∑

m

∑
n

F[m, n] ·I[u + m, v + n] (1)

where F[m, n] is the convolution filter, I[u, v] is the input image and O[u, v] is the output feature map.
A filter is convolved over the input image to produce a feature map. Another CNN layer is the

activation function, which is used to present non-linearity because usually, the image classification task
is highly non-linear. To reduce overfitting and to reduce the spatial footprint of each filter, two main
techniques can be used to extract the essential pixels and removing the noise. The first involves using
a stride value larger than 1, which reduces the output of each filter. The second technique is called
pooling, where a pooling layer usually follows the activation layer. Pooling layers can strengthen
network spatial invariance [21]. The two main types of pooling layers are the maximum pooling layer
and the average pooling layer.

Then, fully connected layers follow, usually defined at the end of the network, which takes
the output of the feature extraction layers. The primary purpose of the dense layer is to consider
all the features extracted from the previous layers and employ these features to classify the output.
The dense layers are followed by an activation function, which usually consists of a rectified linear unit
(ReLU) layer; finally, at the end of the network, a softmax or sigmoid function is used to output the
target probability.

3.3. Optimizers

The model learns (trains) on a given dataset by comparing the actual label of the input (available in
the training set) to the predicted label, thereby, minimizing the cost function. Hypothetically, if the cost
function is zero, the model has learned the dataset correctly. However, an optimization algorithm is
needed to achieve the minimum of a cost function. The next section discusses different optimization
algorithms, introduced in the literature, to minimize the cost function.

3.3.1. Vanilla Gradient Descent Optimizers

Gradient descent is the primary class of optimizers capable of finding the minimum value of the
cost function. The literature has introduced three versions of gradient descent.

Batch Gradient Descent

The first optimization algorithm was the batch gradient descent optimization algorithm (BGD),
which updates the network weights after scanning the whole training dataset; in the case of images,
convergence takes much time, as there may be millions of weights to optimize and the whole dataset
needs to be reevaluated at every step (i.e., epoch). For convex loss function, it is guaranteed that the
BGD will converge to the global minimum, while it converges to a local minimum for non-convex
functions. The weights are updated based on Equation (2):

wt+1 = wt − η
∂C
∂wt

(2)
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∂C
∂wt

= ∇w C(wt) (3)

where Equation (3) is the gradients update equation, and η is the learning rate hyperparameter. wt are
the weights at step t, C(.) is the cost function and ∇w C(wt) is the gradient of weight parameters wt.

Stochastic Gradient Descent

To overcome the shortcomings of BGD, stochastic gradient descent (SGD) was introduced. SGD
allows to update the network weights per each training image, that is why SGD is sometimes called
online training. However, such updates engender massive fluctuation in the loss function, due to the
high variance between different images, which can create much noise in the training phase:

wt+1 = wt − η
∂C
∂wt

(4)

∂C
∂wt

= ∇w C
(
wt; x(i); y(i)

)
(5)

The weights are updated based on Equation (4), where Equation (5) is the gradient update
equation, and η is the learning rate hyperparameter. wt are the weights at step t, C(.) is the cost function,
and ∇w C(wt) is the gradient of weight parameters wt for image x and its corresponding label y.

Mini-Batch Gradient Descent

Mini-batch gradient descent was introduced to overcome the shortcomings of the previous two
algorithms, because it allows for the weights to be updated per batch, and not per image. As such,
mini-batch gradient descent may be regarded as a particular case of SGD, where the number of samples
is more than one. In the literature and it follows, in this paper, the mini-batch is referred to as stochastic
gradient descent (SGD):

wt+1 = wt − η
∂C
∂wt

(6)

∂C
∂wt

= ∇w C
(
wt; x(i:i+n); y(i:i+n)

)
(7)

The weights are updated based on Equation (6), and Equation (7) is the gradient update equation.
η is the learning rate hyperparameter, wt are the weights at step t, n is the number of data points,
C(.) is the cost function and ∇w C(wt) is the gradient of weight parameters wt for image x and its
corresponding label y.

3.3.2. Momentum-Based Gradient Descent Optimizers

The main drawback of using mini-batch SGD is the presence of oscillations during the updating
of the weights. These oscillations usually result in a long time to reach convergence. Momentum, also
known as moving average gradients, was introduced, in order to overcome this issue and to fix the
gradients’ direction.

Momentum Gradient Descent

Understanding the right direction for the gradient avoids oscillations in the wrong directions,
and knowing the right direction relies on using the previous position for guidance. Considering the
previous position, the updating rule adds a fraction of the previous update, which gives the optimizer
the momentum needed to continue moving in the right direction. The weights are updated based on
Equation (10),

Vt = λVt−1 + η
∂C
∂wt

(8)
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∂C
∂wt

= ∇w C
(
wt; x(i:i+n); y(i:i+n)

)
(9)

wt+1 = wt −Vt (10)

where V is the velocity, and it is initialized to 0. λ is used to select the amount of information needed
from the previous update. η is the learning rate hyperparameter, wt are the weights at step t, n is the
number of data points, C(.) is the cost function, and ∇w C(wt) is the gradient of weight parameters wt

for image x and its corresponding label y.

Nesterov Momentum Gradient Descent

If the momentum is sufficiently high, close to the minimum, the optimizer may overshoot the
minimum. The previous optimization algorithms take the current and the previous gradients into
account for updating the weights. However, to make the optimization algorithm more robust, we must
take the future gradients into account as well, to approximate the gradients’ direction. The weights are
updated based on Equation (13),

Vt = λVt−1 + η
∂C
∂wt

(11)

∂C
∂wt

= ∇w C
(
wt − λVt−1; x(i:i+n); y(i:i+n)

)
(12)

wt+1 = wt −Vt (13)

where V is the velocity, and it is initialized to 0, λ is used to select the amount of information needed
from the previous update. While, η is the learning rate hyperparameter, wt are the weights at step t, n is
the number of data points, C(.) is the cost function, and ∇w C(wt) is the gradient of weight parameters
wt for image x and its corresponding label y. (wt − λVt−1) is the look-ahead position that is capable of
approximating the next gradient position, thereby allowing it to slow down if it threatens to overshoot
the minimum.

3.3.3. Adaptive Gradient Descent Optimizers

All the optimization mentioned above has a fixed learning rate, while, in practice, deep learning
algorithms are non-convex problems. That may be a problem, as we may face a sparse weight matrix,
where we require different updates for different weights, especially for infrequent weights, where
significant updates are needed to reach to avoid oscillating.

AdaGrad Optimizer

To scale the learning rate for each weight, the AdaGrad optimization algorithm [22] was introduced
to establish different updates for different weights. The learning rate is tuned automatically, by dividing
the learning rate by the sum of squares of all previous gradients. The weights are updated based on
Equation (14),

wi
t = wi

t−1 −
η√∑t

T=1

(
∇wC

(
wi
T

))2
+ ε

·∇wC
(
wi

t

)
(14)

where η is the learning rate hyperparameter, wt are the weights at step t, C(.) is the cost function,
and ∇w C(wt) is the gradient of weight parameters wt for image x and its corresponding label y.

The sum of squares
√∑t

T=1

(
∇wC

(
wi
T

))2
is used to scale the learning rate; it gives a high learning rate

for the least frequent gradients and a low learning rate for the more frequent gradients.

RMSProp Optimizer

The main drawback of AdaGrad is that the learning rate decreases monotonically because every
added term is positive. After many epochs, the learning rate is so small that it stops updating the
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weights. RMSProp was introduced to address the problem of the monotonically decreasing learning
rate [23]. The weights are updated based on Equation (17),

G = ∇wC(wt) (15)

E
[
G2

]
t
= λ E

[
G2

]
t−1

+ (1− λ)G2
t (16)

wi
t = wi

t−1 −
η√

E[G2]t + ε
·∇wC

(
wi

t

)
(17)

where η is the learning rate hyperparameter, wt are the weights at step t, C(.) is the cost function, and
∇w C(wt) is the gradient of weight parameters wt for image x and its corresponding label y. λ is used
to select the amount of information needed from the previous update. E

[
G2

]
t

is the running average
of the squared gradients, which has been used to avoid the monotonically decreasing gradients of the
AdaGrad optimizer.

Adam Optimizer

The Adam optimization [24] algorithm was introduced to combine the benefits of Nesterov
momentum, AdaGrad, and RMSProp algorithms. The weights are updated based on Equation (18):

wi
t = wi

t−1 −
η

√
v̂t + ε

·m̂t (18)

where:
m̂t =

mt

1− βt
1

(19)

v̂t =
vt

1− βt
2

(20)

mt = β1mt−1 + (1− β1)G (21)

vt = β2vt−1 + (1− β2)[G]2 (22)

G = ∇wC(wt) (23)

where η is the learning rate hyperparameter, wt are the weights at step t, C(.) is the cost function,
and ∇w C(wt) is the gradient of weight parameters wt for image x and its corresponding label y, βi is
used to select the amount of information needed from the previous update, where βi ∈ [0, 1], mt is the
running average of the gradients, also known as the first moment, vt is the running average of the
squared gradients, and known as the second moment. If the first and second moments get initialized
at zero, they are biased toward it, to solve this zero-biased problem, these moments are bias-corrected
by dividing them by their respective β.

Adamax Optimizer

Adamax [24] is the update of the Adam algorithm, where the uncentered variance tends to ∞.
The weights are updated based on Equation (24):

wi
t = wi

t−1 −
η

vt + ε
·m̂t (24)

where:
m̂t =

mt

1− βt
1

(25)

vt = max(β2·vt−1, |Gt|) (26)

mt = β1mt−1 + (1− β1)G (27)
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G = ∇wC(wt) (28)

where η is the learning rate hyperparameter, wt are the weights at step t, C(.) is the cost function, and
∇w C(wt) is the gradient of weight parameters wt for image x and its corresponding label y. βi is used
to select the amount of information needed from the previous update, where βi ∈ [0, 1]. mt is the first
moment, vt is the second moment.

Nadam Optimizer

Nadam [25] is an extension of the Adam algorithm by combining it with Nesterov momentum
gradient descent. The weights are updated based on Equation (29):

wi
t = wi

t−1 −
η

√
vt + ε

·m̃t (29)

where:
m̃t = β

t+1
1 m̂t +

(
1− βt

1

)
ĝt (30)

m̂t =
mt

1−
∏t

i=1 β
i
1

(31)

ĝt =
gt

1−
∏t

i=1 β
i
1

(32)

where η is the learning rate hyperparameter, and wt are the weights at step t. While, βi is used to select
the amount of information needed from the previous update, where βi ∈ [0, 1], mt is the first moment.

Fine-Tuning

According to [26,27] transfer learning can be formalized as follows: by having a domain D, where
D =

{
X, P(X)

}
, in which X is the feature space and P(X) is the marginal probability distribution and

task T =
{
Y, f (.)

}
, where Y is the label space and f (.) is the predictive function which models P(y

∣∣∣x)
for y ∈ Y and x ∈ X. By having a source domain Ds and learning task TS and a target domain DT

and learning task TT, by using weights from DS and TS, learning the target predictive function f (.)
in TT can be improved a lot, where DS � DT, TS � TT, or both. Fine-tuning is very important in
the classification of medical images, because the neural network usually needs many images to be
trained. However, in the medical field, for many reasons, labeled medical images are scarce. Instead of
initializing the weights from scratch, ImageNet weights can be used. In this paper, the networks were
trained on ImageNet dataset and all the networks blocks were fine-tuned using the PatchCamelyon
dataset [18,19].

3.3.4. VGG16 Network

VGG16 [10] was introduced in 2014 by the researchers at Oxford’s Visual Geometry Group. It was
one of the top algorithms involved in the ImageNet classification challenge, and it had an 8.1% error
rate. VGG16 consists of five convolution blocks, where the first block contains two convolution layers,
stacked together with 64 filters. The second block consists of two stacked convolution layers with
128 filters, where the second convolution block is separated from the first block by a max pool layer.
The third block consists of three convolution layers, stacked together with 256 filters and separated
from the second block by another max pool layer. The fourth and fifth layers have the same architecture,
but instead, have 512 filters. The convolution filter used throughout this network is of size 3 × 3
and stride of 1. Then, a flatten layer is added between the convolution blocks and the dense layers,
converting the 3D vector into a 1D vector. The last block consists of three dense layers, each of which
has 4096 neurons, to classify each image. The last layer is a softmax layer, which is used to ensure that
the probability summation of the output is one. ReLU was used as an activation layer throughout the
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network. This network was trained on the ImageNet dataset for three weeks on four GPUs to detect
the ImageNet classification task. A summary of VGG16 network is presented in Table 1.

Table 1. Number of layers and parameters of the CNNs used in this study.

Networks Number of Layers Number of Parameters

VGG16 16 14,714,688
InceptionV3 48 21,802,784

ResNet50 50 23,587,712
DenseNet121 121 7,037,504

3.3.5. InceptionV3 Network

The authors Szegedy et al. [28] introduced a novel architecture, called Inception, to participate in
the ImageNet competition in 2015; Inception had an accuracy rate of 92.2%. The architecture consists of
48 layers and total parameters of 22,000,000. This architecture has a concatenated layer of convolutions,
stacked in parallel to decrease the size of the architecture while maintaining its complexity. InceptionV3
network architecture is shown in Figure 2. A summary of InceptionV3 network is presented in Table 1.

 

Figure 2. InceptionV3 network architecture.

3.3.6. ResNet Network

The authors, He et al. [11], investigated the effect of increasing the depth of the convolutional
neural network and its impact on network performance. The authors noticed that increasing the depth
of the network decreases the generalizability of the network, which means that the test error of the
network is higher than a shallow network. This may be due to the vanishing gradients, where the
weights are not updated in deep layers. Therefore, He et al. [11] introduced a novel architecture called
ResNet, where Res signifies the application of a residual connection between the convolutional layers,
which is then passed to the ReLU activation layer. One of the main benefits of adding the residual
connection is that the weights learned from the previous layers can be carried to the next layers during
the backpropagation step. ResNet won the ImageNet competition in 2015 with Top-5 accuracy of
94.29%. It has a total of 23,587,712 parameters, and its ImageNet weights are available in the Keras
package. A summary of ResNet network is presented in Table 1.

3.3.7. DenseNet Network

DenseNet network [29] was inspired by the residual connection of the ResNet architecture. All the
layers are connected to all their subsequent layers, meaning that a residual connection is established
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between all the layers. Merging will be used instead of adding to combine the layers. DenseNet has
many variants depends on the number of layers; some of the variants are DenseNet 121, DenseNet169,
and DenseNet201. In this paper, we opted for the DenseNet121 network. A summary of DenseNet
network is presented in Table 1.

3.4. Overcoming Overfitting

Overfitting generally consists of memorization of the training dataset and usually leads to poor
performance on the test dataset. This means that the performance on the training set can be excellent,
but the performance on the test set is quite poor. The loss of the generalizability of the network may be
due to many issues, such as the capacity of the network or the nature of the training dataset itself. Many
measures have been introduced in the literature to overcome overfitting. Below are some techniques
that were used in this research to overcome overfitting.

3.4.1. Dropout

A regularization layer introduced by [30] can be applied to any layer in the network. During
network training, some neurons are disabled with a pre-defined dropout-rate probability P. This can
be understood as a sort of bagging for neural networks.

3.4.2. Image Augmentation

Increasing the size of the training set improves the performance of the network. For image
datasets, many duplicates can be created with simple changes to the original dataset, including rotation,
flipping, zooming, and cropping. These transformations make the network more robust in defending
against overfitting, and it enhances network performance as well. In our case, the original images
are flipped, rotated, zoomed, and shifted. The rotation range used was 180◦; and the images were
randomly flipped horizontally and vertically; the shifting range used was 25%; and the zoom range
used was 40%.

3.4.3. Early Stopping

Early stopping is a precautionary measure used to prevent the network from overfitting, which
may be defined as stopping the training phase of the network when the performance on the validation
set stops improving for a pre-defined number of epochs. This pre-defined number usually ranges from
10–50 epochs. In our case, the number of epochs is 10.

3.5. Evaluation Metrics

To assess the quality of the trained CNN, many measures have been developed. For classification
tasks, a confusion matrix is constructed to assess the model quality; it categorizes the model predictions,
according to whether they match the correct label of the image. It has four central values:

TP: True positive (A positive example, classified as a positive example)
TN: True negative (A negative example, classified as a negative example)
FP: False positive (A negative example, but classified as a positive example)
FN: False-negative (A positive example, but classified as a negative example)

To visualize the model performance, the ROC curve was introduced to examine the trade-off
between sensitivity and specificity visually. The main idea of the ROC curve is to plot the specificity
of the algorithms, which is the percentage of the correctly classified negatives against the sensitivity,
which is the percentage of the correctly classified positives of the algorithm [31]. The ROC curve has a
diagonal line, which represents a random guess model. It means that the model cannot differentiate
between true positives and false positives; this diagonal line can be considered as the baseline where
models can be judged. The best model has a curve that passes through the top left corner for “100%
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Sensitivity” and has a 0% false-positive rate. To measure the quality of the model using the ROC curve,
a statistic known as AUC or “Area under the ROC curve,” is used; this treats the ROC diagram as a
two-dimensional square and measures the area under the curve. AUC has a minimum value of 0.5 and
a maximum value of 1, where 0.5 represents a model with no predictive power, and 1 represents a
model with 100% predictive power. According to Vuk [32], the AUC is calculated by Equation (33):

AUC =

∫ 1

0

TP
P

d
FP
N

=
1

PN

∫ N

0
TP dFP (33)

where TP + FN = P and TN + FP = N .

4. Results

The following section details the results obtained from training the four network architectures
using the six selected optimizers with three learning rates, namely, 1 × 10−3, 1 × 10−4, and 1 × 10−5.
Many experiments have been conducted on this dataset, to determine the behavior of each optimizer
with each network architecture to determine the best combination. The performance of each optimizer
with the VGG16 architecture is presented in Table 2, with the InceptionV3 architecture in Table 3,
with the ResNet architecture in Table 4, and with the DenseNet architecture in Table 5. To test the
performance of each configuration, two types of evaluation were used; the first consists of splitting
the training dataset into 80%/20% to train and validate the dataset. After training, the model is used
to predict the class of the images in the test set, and the result is submitted to the Kaggle platform
to assess the performance of each model. The AUC of the ROC curve measured the performance.
The optimizers are ranked based on their test AUC that was acquired from the Kaggle platform.

In all the experiments, the default settings of each optimizer were chosen, except the learning
rate, and image augmentation used for rotating, flipping, and cropping all the images. The size of
the images was kept constant at 96 × 96; a batch size of 64 images was used, and early stopping was
applied with the number of epochs equal to 10.

4.1. VGG16 Architecture Result

Table 2 shows the results for the VGG16 architecture, which shows that the highest AUC was
achieved by Adam optimizer, which also took the shortest time to achieve convergence. At the same
time, the lowest test AUC was achieved by RMSProp and Adamax optimizers that did not converge at
all. For the highest learning rate (1 × 10−3) the highest AUC achieved was by the Adam optimizer,
and the lowest AUC achieved was by the RMSProp and Adamax optimizers. For the medium learning
rate (1× 10−4) the highest AUC achieved was by NAG optimizer, and the lowest AUC achieved was by
both AdaGrad and Adam optimizers. For the lowest learning rate (1× 10−5 The AdaGrad optimizer
achieved), the highest AUC achieved by the Adam optimizer and the lowest AUC. Overall, the medium
learning rate achieved the best results, followed by the lowest learning rate. Adam optimizer was the
most stable optimizer with high results and low variance between different learning rates.

211



J. Imaging 2020, 6, 92

Table 2. Results obtained with the VGG16 architecture. Where LR stands for learning rate; NAG
represents Nesterov momentum; AdaGrad represents the adaptive gradient optimizer; RMSProp
represents the root mean square propagation optimizer; Adam represents adaptive moment estimation
optimizer; AdaMax represents maximum adaptive moment estimation optimizer; and Nadam represents
Nesterov and Adam optimizer.

Optimizers LR = 10−3 LR = 10−4 LR = 10−5

NAG 89.45% 94.64% 94.25%
AdaGrad 88.50% 87.40% 88.07%
RMSProp 50.00% 94.33% 93.45%

Adam 90.88% 90.39% 95.01%
Adamax 50.00% 94.02% 94.20%
Nadam 85.00% 91.14% 94.33%

4.2. InceptionV3 Architecture Result

Table 3 shows the results for the InceptionV3 architecture, which shows that the highest AUC was
achieved by the RMSProp optimizer, which also took the shortest time to achieve convergence. At the
same time, the lowest test AUC was achieved by AdaGrad optimizer, which also took the longest
time to convergence. For the highest learning rate (1 × 10−3), the AdaGrad optimizer achieved the
highest AUC, while, the Adam optimizer achieved the lowest AUC. For the medium learning rate
(1× 10−4) the highest AUC achieved was by the RMSProp optimizer, and the lowest AUC achieved was
by the AdaGrad optimizer. For the lowest learning rate (1× 10−5 The AdaGrad optimizer achieved),
the highest AUC achieved by the AdaMax optimizer and the lowest AUC. Overall, the medium
learning rate achieved the best results, followed by the lowest learning rate. Adamax optimizer was
the most stable optimizer with high results and low variance between different learning rates.

Table 3. Results obtained with the InceptionV3 architecture. Where LR stands for learning rate; NAG
represents Nesterov momentum; AdaGrad represents the adaptive gradient optimizer; RMSProp
represents the root mean square propagation optimizer; Adam represents adaptive moment estimation
optimizer; AdaMax represents maximum adaptive moment estimation optimizer; and Nadam represents
Nesterov and Adam optimizer.

Optimizers LR = 10−3 LR = 10−4 LR = 10−5

NAG 93.18% 93.25% 90.81%
AdaGrad 93.64% 90.46% 86.32%
RMSProp 91.41% 94.91% 92.65%

Adam 90.44% 92.53% 93.22%
Adamax 93.44% 93.11% 93.95%
Nadam 91.97% 91.33% 92.46%

4.3. ResNet Architecture Result

Table 4 shows the results for the ResNet architecture, which shows that the best AUC was achieved
by the Nadam optimizer, while the AdaGrad optimizer achieved the lowest AUC. For the highest
learning rate (1× 10−3) the highest AUC achieved was by the AdaGrad optimizer, and the lowest AUC
achieved was by the RMSProp optimizer. For the medium learning rate (1× 10−4) the highest AUC
achieved was by the NAG optimizer, and the lowest AUC achieved was by the AdaGrad optimizer.
For the lowest learning rate (1× 10−5 The AdaGrad optimizer achieved), the highest AUC achieved
by the Nadam optimizer and the lowest AUC. Overall, the medium learning rate achieved the best
results, followed by the lowest learning rate. Adamax optimizer was the most stable optimizer with
high results and low variance between different learning rates.
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Table 4. Results obtained with the ResNet architecture. Where LR stands for learning rate; NAG
represents Nesterov momentum; AdaGrad represents the adaptive gradient optimizer; RMSProp
represents the root mean square propagation optimizer; Adam represents adaptive moment estimation
optimizer; AdaMax represents maximum adaptive moment estimation optimizer; and Nadam represents
Nesterov and Adam optimizer.

Optimizers LR = 10−3 LR = 10−4 LR = 10−5

NAG 90.07% 93.84% 89.00%
AdaGrad 93.04% 89.11% 83.46%
RMSProp 89.56% 89.62% 93.04%

Adam 90.24% 90.24% 93.84%
Adamax 90.24% 92.24% 93.70%
Nadam 91.91% 89.36% 93.85%

4.4. DenseNet Architecture Result

Table 5 shows the results for the DenseNet architecture, where the best AUC was achieved by
Adamax optimizer, while the Adam optimizer achieved the lowest AUC. For the highest learning rate
(1× 10−3) the highest AUC achieved was by the AdaGrad optimizer, and the lowest AUC achieved
was by the Adam optimizer. For the medium learning rate (1× 10−4) the highest AUC achieved was by
Adamax optimizer, and the lowest AUC achieved was by the Adam optimizer. For the lowest learning
rate (1 × 10−5 The AdaGrad optimizer achieved), the highest AUC was achieved by the RMSProp
optimizer and the lowest AUC. Overall, the medium learning rate achieved the best results, followed
by the lowest learning rate. Adamax optimizer was the most stable optimizer with high results and
low variance between different learning rates.

Table 5. Results obtained with the DenseNet architecture. Where LR represents learning rate; NAG
represents Nesterov momentum; AdaGrad represents the adaptive gradient optimizer; RMSProp
represents the root mean square propagation optimizer; Adam represents adaptive moment estimation
optimizer; AdaMax represents maximum adaptive moment estimation optimizer; and Nadam represents
Nesterov and Adam optimizer.

Optimizers LR = 10−3 LR = 10−4 LR = 10−5

NAG 93.08% 94.31% 91.64%
AdaGrad 93.89% 93.57% 87.70%
RMSProp 88.19% 93.98% 94.61%

Adam 84.18% 89.69% 94.43%
Adamax 90.62% 95.12% 93.91%
Nadam 86.77% 94.21% 93.77%

Overall, in terms of performance across all four networks, the highest results were achieved
by the adaptive learning optimizers, like Adam, Adamax, Nadam, and RMSProp. However, these
optimizers needed a lower learning rate to be able to converge, while the high learning rate did not
achieve good results. One exception was the AdaGrad optimizer that did not achieve high results
with a low learning rate; on the contrary, it needed a high learning rate to be able to converge to
an acceptable result. From our results and the results obtained by Prilianti et al. [14], it is apparent
that every combination of network and optimizer will produce a unique combination. However, the
general behavior of each optimizer can be noted, which can be concluded from the results. Overall,
NAG optimizer did achieve high results overall the four architectures and overall the three learning
rates used with the medium learning rate

(
1× 10−4

)
achieved the best results. The AdaGrad optimizer

did not achieve high results compared to other optimizers used, especially when trained using low
learning rates. RMSProp optimizer did achieve high results with a low learning rate but was unstable
with high learning rates. Adam optimizer needed a low learning rate to be able to converge to high
results. While, the AdaMax optimizer behaved similarly to the Adam optimizer, except for a high
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learning rate with the VGG16, where it did not converge at all, one reason may be the shallow depth of
the VGG16 network. Nadam optimizer did achieve high results with both the medium learning rate
and the low learning rate.

5. Discussion

Taking into account the results achieved from the experimental campaign, it is possible to draw
some interesting observations of the behavior of the CNNs and optimizers considered in this paper.
By focusing on the choice of the optimizer and its relation with the learning rate, the experimental results
confirm that the choice of the learning rate may result in an unstable behavior of the training process.
This is particularly evident, for some of the considered networks and optimizers, when considering the
smallest learning rate used in the experiments. As one can see, when LR = 10−3, the training process
of VGG16 with both RMSProp and Adamax optimizer result in a poor performance of the model.
As explained in the previous sections, this can be motivated by the fact that the weights of the network
change abruptly from one epoch to the next. Moving to lower LR values allows the convergence of
the training process in all the configurations that were investigated. Overall, the results match the
theoretical expectation: A lower LR value allows for a smoother convergence, but it requires more time
with respect to a greater LR value.

Another interesting observation relates to the importance of the hyperparameters. While this
is a topic of fundamental importance in the area of deep learning, it is particularly evident from the
results of the experimental phase. In particular, all the considered architecture produced a comparable
performance when the best configuration of the learning rate and optimizer (that is different for each
type of architecture) was considered. In other words, it seems that the choice of the hyperparameters
not only plays an essential role in determining the performance of the model, but the CNNs under
exam are indistinguishable in terms of performance. We believe that this is an interesting observation
that should further stress the importance of the tuning of the hyperparameters.

Focusing on the optimizers, AdaGrad produces the best performance with LR = 10−3 and, under
this aspect, it behaves differently with respect to the other optimizers under analysis. Conversely,
Adam, Adamax, and Nadam obtained the best performance on the considered CNNs when LR = 10−5

(except Adamax on the DenseNet architecture, where the best performance is obtained with LR = 10−4).
Globally, the best result on the considered dataset was achieved by Adamax optimizer and

DenseNet network. Anyway, the differences in terms of performance among the best configurations of
each network, are not statistically significant. Overall, every optimizer behaved differently according to
the particular architecture. For instance, for the deep architectures like ResNet, AdaGrad outperformed
Adam and Adamax. For the shallow architectures like VGG16, AdaMax and NAG had the same
performance. Given a specific network, each optimizer requires a different amount of time for
converging (i.e., concluding ten epochs). In particular, RMSProp was the fastest optimizer, whereas
training a CNN with AdaGrad resulted in the slowest training process. This result is coherent with
respect to the one discussed proposed by Dogo et al. [13], in which the authors investigated the effect of
different optimizers in terms of required time to reach. More in detail, training the VGG16 architecture
requires a minimum of 90 min (RMSProp optimizer and learning rate of 10−3) and a maximum of nine
hours (AdaGrad optimizer and learning rate of 10−5). InceptionV3 requires approximately one hour
more than VGG16; in this case, the use of RMSProp (with a learning rate of 10−3) resulted in the fastest
training process (approximately 150 min), while the use of AdaGrad (with a learning rate of 10−5)
required approximately 10 h to finish. An identical pattern was observed for ResNet and DenseNet,
that are requiring approximately two hours more than VGG16 for concluding the training process.

Finally, it is important to compare the results achieved with transfer learning against the ones
obtained with CNNs that were specifically built for classifying the images of the PatchCamelyon
dataset. The winner of the Kaggle competition obtained an AUC of 1, while the second-best performing
network obtained an AUC of 0.98. On the other hand, the best performing network obtained with
transfer learning (DenseNet architecture, with Adamax optimizer, and a learning rate of 10−4) was
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able to obtain an AUC of 0.95. This result confirms the suitability of transfer learning for the task at
hand. More in detail, we believe that, by considering deeper architectures and more epochs, it could
be possible to improve the results of this study, thus equaling the performance achieved by the winner
of the Kaggle competition. On the other hand, we highlight a fundamental difference between the best
performance reported in the present study and the best performance of the Kaggle competition: The
former was obtained using an existing network (used for addressing different computer vision tasks)
and by fine-tuning it, while the latter was achieved by designing an ad hoc CNN, a time-consuming
task that requires some expertise.

6. Conclusions

CNN represents an analysis of images created using current computation techniques. This is
mostly due to their ability to obtain a performance that is similar to, or better than, the one achieved
by human beings. Nevertheless, similarly to other deep learning models, training a CNN is a task
that usually requires a vast amount of images. This is an essential limitation in all the domains,
like the medical one, in which data are scarce and difficult to obtain. In such a situation, transfer
learning may provide a viable option. The idea of transfer learning is to use a model trained over
thousands of observations (i.e., images in this study) to provide an initial architecture and set of
weights for addressing a similar problem over a different domain. Motivated by the success of transfer
learning in the analysis of medical images, and for further studying this promising research area,
this paper compared the performance optimizers used in popular CNNs for the classification of
histopathology images. In particular, four network architectures were used in the evaluation process.
These networks were trained on the ImageNet dataset, which consists of millions of images, and their
weights were fine-tuned to suit the considered histopathology images dataset. The results obtained
from the experimental phase, in which different combinations of network, optimizer, and learning
rate were considered, corroborated the initial hypothesis on the importance of the optimizer and the
learning rate. While the choice of CNN is essential, it is clear that by fixing the value of the learning
rate, the results obtained using different optimizers could be significantly different. On the other
hand, once a particular optimizer is selected, the choice of the learning rate plays an essential role in
determining the final performance of CNNs.

Interestingly, for each of the different CNNs under exam, it is possible to notice that the best
performing configuration of optimizer and learning rate produces an AUC that is approximately 94%.
This result strengthens the importance of selecting the hyperparameters of the network, and, in a
future investigation, we will extend this work to include additional hyperparameters and datasets
aiming at providing formal guidelines for medical experts that want to use CNN models to support
their daily work.
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Abstract: Breast cancer is the most frequently diagnosed cancer in woman. The correct
identification of the HER2 receptor is a matter of major importance when dealing with breast cancer:
an over-expression of HER2 is associated with aggressive clinical behaviour; moreover, HER2 targeted
therapy results in a significant improvement in the overall survival rate. In this work, we employ
a pipeline based on a cascade of deep neural network classifiers and multi-instance learning to
detect the presence of HER2 from Haematoxylin–Eosin slides, which partly mimics the pathologist’s
behaviour by first recognizing cancer and then evaluating HER2. Our results show that the proposed
system presents a good overall effectiveness. Furthermore, the system design is prone to further
improvements that can be easily deployed in order to increase the effectiveness score.

Keywords: digital pathology; whole slide image processing; multiple instance learning;
convolutional neural networks; deep learning classification; HER2

1. Introduction

Breast cancer is the most frequently diagnosed cancer in women. As shown by Siegel et al. [1],
breast cancer in 2020 is expected to account for 30% of female cancer in United States. The diagnosis
of breast cancer, including its morphological subtypes, is that was carried out by a pathologist by
examining a microscope histologic slide obtained from a breast biopsy or from a surgical sample.
The slide is stained with a two-colors staining, called Haematoxylin-Eosin (HE), which enables
the recognition of morphological features of the cancer. Haematoxylin-Eosin (HE) is universally
used for histologic diagnosis. In addition to that, further sections are prepared and stained with
immunohistochemical techniques (IHC) to evidentiate the expression of specific proteins. In the case
of breast cancer, routine examination includes oestrogen and progesterone receptors, MIB2, and HER2.
Visually, HE-stained slides show blue (for nuclei) and pink (for cytoplasm), while IHC slides are brown
where the investigated protein is expressed, and counterstained in blue by means of haematoxylin.

According to current guidelines of the College of American Pathologists for HER2 testing in breast
cancer [2], Human Epidermal growth factor Receptor 2 (HER2) quantification must be routinely tested,
in invasive breast cancer, recurrences, and metastases. HER2 is a trans-membrane protein receptor
with tyrosine kinase activity; studies have shown that HER2 is amplified and/or over-expressed
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in about 25% of breast cancer cases [3]. The over-expression and/or amplification of the HER2
receptor have been associated with aggressive clinical behaviour; nevertheless, the accurate assessment
of the HER2 receptor has proven to be essential for identifying breast cancer patients who will
benefit from HER2-targeted therapy [4]. It has been demonstrated by many clinical trials that the
HER2-targeted therapy (both when administrated during and/or after chemotherapy) results in a
significant improvement in both disease-free and overall survival in patients who have shown either
an amplification or over-expression of the HER2 receptor [4]. Consequently, the correct identification
of the HER2 receptor lead to select patients who are expected to benefit from the targeted therapy;
this makes HER2 a helpful marker for the therapy decision making process.

Many researchers tried to develop IHC techniques that are able to identify HER2 with a sufficient
precision and therefore be able to help the pathologist with the characterization of breast cancer [5–13].
The current approach to HER2 testing consists in cutting an additional section for the IHC evaluation
of the positivity, negativity, or uncertain status of HER2 expression. In uncertain cases, a further
examination has to be done based on In-Situ Hybridization, increasing costs and time. This, in addition
to the HE stained slide, which is always prepared because needed for morphological diagnosis of cancer
and of its subtypes. In the context of digital pathology, there is an increasing interest in developing
Deep Learning (DL) techniques that can support the decision making process of the pathologist,
especially when dealing with cancer related topics [10]. The practical use of deep learning in the
context of breast cancer diseases is mainly due the performance achieved by deep learning algorithms
over the last decade in the field of image recognition [14–16].

The recent HEROHE challenge proposed a peculiar research question: is it possible to identify
HER2 from Hematoxylin–Eosin images of invasive breast cancer? In case of success, this would
allow obtaining HER2 status without the corresponding IHC image, thus reducing time and costs.
In fact, it is known that HER2 positivity is associated with aggressiveness of the tumour, which,
in turn, is associated with certain morphological features, such as high histological grade. Thus,
the idea is to exploit such morphological features as a proxy for HER2 status. For this, the Challenge
organizers provided a set of 400 digitized haematoxylin-eosin slides accompanied by their HER2
status, and subsequently 150 slides for testing.

The objective of our study is the same behind the HEROHE challenge: to find a method to
recognize the therapeutically useful HER2 status from the morphological aspects of the breast cancer
only, as recognisable in the HE slides that are already used for diagnosis.

More in detail, our approach is based on deep learning algorithms employed in the setting of
image recognition and Multiple Instance Learning (MIL) [17–21].

Digitized microscope slides, normally called digital slides or Whole Slide Images (WSI),
correspond to huge scanned images that are difficult to process with standard Machine Learning
(ML) or Deep Learning (DL) approaches due to hardware limitations [22]. A technique that is used
to overcome such limitations is represented by MIL [23,24]. Opposed to the classical ML and DL
classification setting where the learning algorithm receives in input a set of individually labelled
instances, in MIL the learning algorithm receives a set of labelled instances (in our case, each instance
is a WSI), each of these containing many unlabelled instances (in our case, the WSI is divided into
tiles). Subsequently, the final class for the instance (i.e., the WSI) is decided upon the predicted classes
of the unlabelled instances (i.e., the tiles). For example, in the simplest case, the main instance may be
labelled as negative if all its unlabelled instances in it are labelled as negative negative [25].

We now detail some work related to the work of this paper.
MIL has been proven to be effective in the setting of image recognition and, in particular, in the

context of cancer detection: Campanella et al. [26] used MIL to tackle the problem of prostate cancer
detection, basal cell carcinoma, and breast cancer metastases to axillary lymph nodes. Their approach
resulted in areas under the ROC curve (AUC) above 0.98 for the cancer types considered in the study.

MIL has also been used in the setting of breast cancer image detection. P J et al. [27] conducted
experiments on a public dataset of biopsy images of benign and malignant breast cancers; according
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to their findings, MIL provides better results than state-of-the-art approaches in the setting of the
detection of breast cancer in images. A more relevant work to our setting is the study conducted by
Couture et al. [28], which investigated a method to predict cancer subtypes from histologic images.
Couture et al. used MIL to model the problem and account for intra-cancer variations in cancer
subtypes, improving the correct classification of cancer subtypes with reference to the state of the art
approaches, and providing also insights about cancer heterogeneity.

Other researchers tried to detect HER2 from HER2 stained digital slides, using ML or not ML
methods [29–34]; we do not detail their methodology, since they are out of scope for this work.

Thus, our specific contribution is a pipeline based on a cascade of deep neural network classifiers
and multi-instance learning, which partly mimics the pathologist’ behaviour by first recognizing cancer
and then evaluating HER2, and able to currently provide state-of-the-art performance for the novel
problem of detecting HER2 from Haematoxylin–Eosin slides.

2. Materials and Methods

2.1. Dataset and Materials

In our study, we used the dataset made available from the Instituto de Investigação and Inovação
em Saúde and Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciência from Porto
University in Porto, Portugal, who together organized the HEROHE Grand Challenge for ECDP2020
(see https://ecdp2020.grand-challenge.org). The classification of this dataset used the latest American
Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) classification of breast
cancer (Focused Update 2018) [2]. The HEROHE training dataset is composed of 144 positive slides
(i.e., WSI of cases which are labelled as HER2 positive) and 216 negative slides (i.e., WSI of cases that
are labelled as HER2 negative). Figure 1 shows an example of positive and negative slides present in
the dataset.

A B C D

Figure 1. Example of tiles from the HEROHE dataset. The left-most two slides (A,B) have been labelled
as positive for HER2; The right-most two slides (C,D) have been labelled as negative.

After implementing the proposed solution (as detailed in the next section), we tested it on the
HEROHE Grand Challenge test set that is composed of 60 positive and 90 negative slides. The training,
validation, and testing phase has been carried out using either a Titan XP GPU or using the Google
Cloud Platform. The proposed solution has been implemented on the fast.ai Framework. Due to the
nature of the data used in this study, we cannot publicly release the images used to train our algorithms.
However, we release all of the code used to conduct the experiments as well as the trained models
(Supplementary Materials).

2.2. Our Approach: A Cascade of Deep Learning Classifiers

The idea behind this work is to build a system that mimics the actions a pathologist performs
when detecting the presence of the HER2 receptor. The actions include to divide each slide into tiles
under the “divide et impera” principle, filter the tiles in order to keep only the most informative ones
for the purpose of HER2 detection (i.e., only the tiles containing cancer), check for the presence of
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HER2 into the individual tiles, and finally aggregate the tile information at the slide level to perform
the decision whether the whole slide expresses or not the HER2 receptor.

To this aim, we developed a multi-stage pipeline as graphically represented in Figure 2.
We considered a multi-stage system because this architectural design allowed us to try different
techniques (or different variants of a single technique) for each stage, and then deploy to the final
version of the system using only the most effective combination of stages. Furthermore, a multi-stage
pipeline is the ideal scenario to test different approaches and compare single techniques at different
levels of the pipeline. The pipeline we implemented is composed, as follows: the first stage extracts
the tiles (Section 2.2.1), second stage considers either all tiles (Section 2.2.2), or a subset of them
(Section 2.2.3), third stage details the main classifier architecture (Section 2.2.4), fourth stage formalize
the features considered (Section 2.2.5), and fifth stage consider the post-training aggregation by means
of either majority voting (Section 2.2.6) or a Tabular learner (Section 2.2.7). In the following sections,
we discuss the role of each stage in detail.

Figure 2. Graphical overview of the multi-stage deep learning pipeline.

2.2.1. Stage 1: The Tiles Extractor

The first stage of our pipeline is devoted to extract the tiles from every WSI present in the dataset.
We consider each tile to be an instance necessary? (using the DL nomenclature) of our problem
formulation. Slides provided by the HEROHE challenge were scanned at 40× magnification (which
corresponds to a pixel size of 0.25 μm/pixel), with a 3DHistech Pannoramic 1000 scanner, and stored
in their proprietary format. For the present work, slides were subsampled to 20× magnification
(which has proven to reduce the computational complexity, but not decrease the overall accuracy with
reference to the 40× magnification [26]) and converted to TIFF format. Therefore, the pixel size of the
used slides corresponds to 0.50 μm/pixel.

After such process, each slide is then decomposed into squares (i.e., the tiles) of 512 × 512 pixels,
with no stride. Figure 3 shows an example of the decomposition of two slides into tiles. Note that the
slides in the dataset might have different dimensions, thus each of them is decomposed in a variable
number of tiles.

Subsequently, in order to increase the overall accuracy model and preserve salient features [35],
we dropped the tiles that have an average grey-scale value (i.e., the pixel value that represents the
brightness of the pixel; the lower the value, the darker the pixel) greater than 0.8. This allows to discard
background slides, including those presenting very small amounts of tissue.
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After this stage, we considered two different approaches: the former consists in passing
forward to the next stage all of the tiles; the latter in considering only an informative subset of
tiles. Such approaches are detailed respectively in Sections 2.2.2 and 2.2.3.

Figure 3. An example of slides from our dataset in which we applied a rectangular grid (shown with
the continuous black lines) to show the division of a slide in tiles.

2.2.2. Stage 2A: Using All the Tiles

This stage simply consists in keeping all the tiles, without discarding any, and forwarding them
without any modification to the next stage. The rationale behind this stage is that by maintaining all of
the tiles we do not discard any potentially useful information, and we delegate to (the classifier of) the
next stages the task to discern between relevant and not relevant information (i.e., noise) for all of the
tiles considered.

2.2.3. Stage 2B: Using a Subset of Tiles

This stage takes in input all of the tiles from Stage 1 (see Section 2.2.1) and filters them, under the
rationale that a subset of tiles is more informative for the model than the whole set of (potentially noisy)
tiles. Moreover, this process simulates the real case scenario; in fact, when looking for the presence
of HER2 in slides, the pathologist focus the search only in the part of slides (similar to our tiles)
containing cancer, and more specifically in the tiles containing invasive cancer. One additional reason
is that HER2 might also be expressed outside the cancer tissue, in normal ducts, or as extracellular
accumulation, or also as staining artifacts. While we might expect that DL is able to cope with
these situations too, we did not want to expose the network to spurious data, or at least to reduce
the amount of noise. We perform a pre-classification task, with the purpose of discerning between
the tiles that contain cancer and those that do not, in order to filter the input tiles. To this aim,
we developed a model based on a Convolutional Neural Network (CNN), relying on the model
detailed by Della Mea and Pilutti [36], which is based on the densenet-201 architecture [37–39]
pretrained on the ImageNet dataset [40]. However, the HEROHE data set did not include annotations
for identifying cancer areas inside the slides, which may as well contain normal tissue or tissue
representing other not tumoral diseases. Thus, although not optimal, we had to exploit a different set
of training images. For this aim, we fine-tuned the model on 400 images from the BACH Challenge Part
A (see https://iciar2018-challenge.grand-challenge.org/) [41] dataset. These images are 2048 × 1536;
by means of SlideJ [42] we extracted tiles of 512 × 512 size, with a stride of 256, obtaining 35 tiles per
image. Thus, we trained for three epochs to fine-tune the last layer, plus three epochs for the whole
network. We applied the default fast.ai data augmentation transforms, including random mixtures of
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flips, rotations, moderate zoom (up to 1.1×), warping, luminosity, and contrast variations. We collapsed
the original labels (i.e., “normal”, “benign”, “in situ carcinoma”, and “invasive carcinoma”, 100 images
for each class, corresponding to 3500 tiles) into two binary categories, as follows: we mapped the
original labels “normal” and “benign” into the label “no cancer”, and the labels “in situ carcinoma”
and “invasive carcinoma” into the label “cancer”. Note that we also consider tiles that contain in-situ
cancer because, at high resolution, it would be impossible to distinguish them from the ones with
invasive cancer.

After the training phase, we fed all of the tiles considered in this work to the fine-tuned classifier,
and we removed the tiles classified as not containing cancer. Overall, we fed the model with 90.068 test
tiles, and we removed 29.429 tiles (32.68%), maintaining 60.639 (67.32%). On average, we removed the
29.27% of tiles from each slide; more in detail, on average, we removed 32.02% of tiles from negative
slides and 25.16% from positive slides. Figure 4 shows an example of the classification outcome in
term of slides.

A B C D

Figure 4. Tiles identified by the cancer classifier as: positive (first two tiles, tile (A) is a true positive,
tile (B) is a false positive), and negative (last two tiles, tile (C) is a true negative, tile (D) is a
false negative).

2.2.4. Stage 3: The Main Classifier

After the second stage, we trained the main classifier, either with all tiles (from stage 2A) or with
the subset of tiles labelled as containing cancer (from stage 2B). Our main architecture is as follows.
We trained a classifier based on the ResNet152 architecture [43], a well-known architecture for image
recognition [43–46] based on the concept of residual learning [43]. Figure 5 provides a schema of
the model architecture and the block for residual learning. We fed the classifier each tile with the
associated HER2 status. We did not expect to obtain high accuracy, because in a positive slide HER2 is
not expressed everywhere; on the other side, in a negative slide, we expect HER2 not to be expressed,
although it is known that it could also be present in normal tissue, which is one reason why we wanted
to discard not cancer tiles. We trained the classifier using the HEROHE training set for three epochs
while using precision as loss function. For data augmentation, we applied the same transforms as the
first classifier. Learning rate has been set according the One-cycle policy developed by L.Smith [47].

Figure 6 shows an example of the classification outcome in terms of tiles.

Figure 5. The basic architecture of Resnet152 (left, from [48]), and the building block for the residual
learning (right, from [43]).
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A B C D

Figure 6. Tiles identified by the HER2 classifier as positive (first two tiles, tile (A) is a true positive,
tile (B) is a false positive), and negative (last two tiles, tile (C) is a true negative, and tile (D) is a
false negative).

2.2.5. Stage 4: Computing the Features

The classifier detailed in the previous stage returns as output, for each test instance, the probability
that the test instance belongs to a given class, for all of the classes. In our setting, the classifier returns a
probability value in the [0, 1] range that denotes the probability of each tile in be positive for the HER2
receptor. Those are the probabilities we will consider in this section. After training our main classifier
to determine for each tile its probability of containing the HER2 receptor, we aggregated the results
at the tile level to determine the overall classification outcome, which correspond to assess whether
the whole slide contains or not the HER2 receptor. To this aim, we used two strategies detailed in the
following, which take advantage of the features described in this section.

Suppose that we have S slides, and that each slide is divided into T tiles. We denote with pj
i is

the probability of the i-th tile (belonging to the j-th slide) to be tested positive for HER2.
Subsequently, in the first case we compute the binary positivity P1(si) of the slide si by considering

the simple arithmetic average of the probabilities pj
i for all of the tiles; formally:

P1(si) =

⎧⎪⎨
⎪⎩

1 if
1
T

T
∑
i=1

pj
i ≥ 0.5,

0 otherwise.

In the second case, we compute the binary positivity P2(si) of the slide si by considering the
simple arithmetic average of the probabilities pj

i for tiles having probability pj
i ≥ 0.5.; formally:

P2(si) =

⎧⎪⎨
⎪⎩

1 if
1
T

T
∑
i=1

pj
i · G(pj

i) ≥ 0.66,

0 otherwise,

where

G(pj
i) =

{
1 if pj

i ≥ 0.5,

0 otherwise.

In the third case, we compute the binary positivity P3(si) of the slide si by considering the slide
positive if at least the 35% of its tiles have a probability pj

i ≥ 0.5; formally:

P3(si) =

⎧⎪⎨
⎪⎩

1 if
1
T

T
∑
i=1

G(pj
i) ≥ 0.35,

0 otherwise.
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Apart from the three positivity indices P1(si), P2(si), and P3(si) of each slide, we consider,
as additional set of features, the frequency of the probabilities pj

i for each slide, for each interval
[h, h + 0.1), h ∈ {0.5, 0.6, 0.7, 0.8, 0.9}; formally,

Fh(si) =
1
T

T
∑
i=1

C(pj
i , h),

where

C(pj
i , h) =

{
1 if pj

i ∈ [h, h + 0.1),

0 otherwise.

After computing the positivity indices P1(si), P2(si), and P3(si), and the set of features Fh(si),
h ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, we aggregate such indices to compute the overall positivity of the i-th slide.
To do so, we adopt two strategies, detailed in the following.

2.2.6. Stage 5A: Post-Trainer Aggregation Using Majority Vote

The first strategy we adopt to compute the overall positivity of each slide is to simply compute
the majority vote of the P1(si), P2(si), and P3(si) indices. In this way, we assume that all of the features
are equally informative for the final decision.

2.2.7. Stage 5B: Post-Trainer Aggregation Using a Tabular Learner

The second strategy we adopt to the overall positivity of each slide consists in train a
classifier to learn the best weights for the indices. More in detail, in this phase, we use the
P1(si) probabilities not binarized, denoted as P∗

1 (si) (i.e., 1
T ∑T

i=1 pj
i), as well as the set of features

Fh(si), h ∈ {0.5, 0.6, 0.7, 0.8, 0.9} to build the feature matrix detailed in Table 1. Following this approach,
we delegate to the algorithm the task of learning how to combine the features in the best possible
way. We trained the Tabular learning while using an architecture with three layers composed by
respectively 500, 250, and 125 fully connected layers, and we used accuracy as loss function. We did
some experiments to include all the P1(si), P2(si), and P3(si) indices in the feature matrix, but we
found that the additional indices did not provide a significant increase in the effectiveness scores.

Table 1. Training matrix for the Tabular Learner. P∗
1 (si) represents the non binarized P1(si) probability.

P(si) represents the true positivity for the i-th tile (used only for the training phase).

P∗
1 F0.5 F0.6 F0.7 F0.8 F0.9 P

s1 P∗
1 (s1) F0.5(s1) F0.6(s1) F0.7(s1) F0.8(s1) F0.9(s1) P(s1)

s2 P∗
1 (s2) F0.5(s2) F0.6(s2) F0.7(s2) F0.8(s2) F0.9(s2) P(s2)

...
...

...
...

...
...

...
...

si P∗
1 (si) F0.5(si) F0.6(si) F0.7(si) F0.8(si) F0.9(si) P(si)

...
...

...
...

...
...

...
...

sS P∗
1 (sS ) F0.5(sS ) F0.6(sS ) F0.7(sS ) F0.8(sS ) F0.9(sS ) P(sS )

3. Results

Table 2 reports the effectiveness of our approach measured on the HEROHE Grand Challenge
test set. To the best of our knowledge, there are no other published results (up to current date) that
investigate our same problem or use the same test data as we do. For this reason, Table 2 reports the
effectiveness scores of our method and the leaderboard of the HEROHE challenge only. Note that the
leaderboard has been chosen by the organising committee of the HEROE challenge on the basis of the
F1 score alone.
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Table 2. Evaluation metrics for our two approaches and the leaderboard of the HEROHE challenge.
In bold we highlight the best result obtained for each evaluation metric.

All Tiles Subset of Tiles Best

Majority Vote Tabular Classifier Majority Vote Tabular Classifier HEROHE

Accuracy 0.687 0.673 0.667 0.707 -
Precision 0.570 0.560 0.580 0.603 0.5682
Recall 0.883 0.864 0.783 0.797 0.8333
F1-Score 0.693 0.680 0.667 0.687 0.6757

As we can see from the table, if we consider the variants of our approach separately, it is always
the case that our system outperforms the leaderboard of the HEROHE challenge, even though different
metrics are maximized by different algorithms. The only variant that outperforms the leaderboard of
the HEROHE challenge on all the considered metrics is the “All Tiles–Majority Vote” variant.

Turning to compare the different approaches that we propose, we see that it is not always the case
that employing the Tabular classifier lead to obtain higher effectiveness scores; more in detail, we see
that for precision oriented metrics (i.e., Accuracy and Precision) consider a subset of tiles lead to higher
effectiveness scores, and for the metrics affected by recall (i.e., Recall and F1) when considering all of
the tiles lead to higher effectiveness scores.

Investigating the most effective approach for each metric separately, we see that our approach
leads to obtain an accuracy score of about 0.7 and a precision score of about 0.6, suggesting that our
model is able to correctly identify positives in the majority of positive cases. We also see that our model
finds almost all positive cases in our dataset (recall of 0.88). When considering the metric used to rank
systems in the HEROHE challenge, we see that our model has an F1 score of about 0.7, indicating a
good overall balance between precision and recall.

4. Discussion and Conclusions

By looking at the results, we can draw different remarks. First, we see that recall (and F1
as result) is maximized when all the tiles are kept in the dataset; this an expected outcome. It is
natural that by keeping all of the tiles (i.e., by keeping more data) we obtain a higher recall score.
Nevertheless, this behaviour suggests that, when considering the effectiveness metrics all together,
it is not straightforward to choose whether to remove or not a subset of tiles, as some tiles might be
more informative than others for some metrics, but not for all of them. Finally, this behaviour can
be caused not only by the fact that we keep more data, but also by complex interactions between the
classification algorithm and some particular feature of the tile. We plan to address this matter in future
work. When considering that our problem is a high recall problem, we can say that the best variant of
our approach is the ”All Tiles–Majority Vote” one. In other terms, considering our setting we want
to find all of the patients that actually are positive for HER2, and we can accept a lower precision if
the effort to conduct a clinical test to detect HER2 is not significant, which we believe is a more than
reasonable assumption to make: we are willing to spend a little more in clinical testing but be able to
save more lives. Summarising the remarks drawn from the results section, we can state that our results
indicate that our multi-stage pipeline is indeed effective in detecting HER2. Furthermore, the results
indicate that our approach is not over- nor under-dimensioned, given that both the filtering of tiles
and the post classifier aggregation done with learners boost the results for some evaluation metric.
Finally, we remark that a multi-stage pipeline has the advantage of being easily maintainable, and the
accuracy of the single levels can be increased independently.

In this paper, we tackled the problem of classification of the HER2 status on HE slides of invasive
breast cancer. Our approach based on a cascade of deep learning classifiers and multi instance learning
shows good effectiveness scores for different evaluation metrics. We show that pre-filtering tiles lead
to remove potentially noisy tiles and overall leads to an improvement of some effectiveness metrics.
We also found that combining different predictors by means of a Tabular classifier is more effective
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than doing that by the means of a majority voting scores for precision oriented metrics, indicating that,
indeed, different predictors need to be weighted and provide signals of different importance for
the overall task. However, the overall effectiveness if far from being usable in clinical practice a
substitution of the traditional IHC- and ISH-based testing. While this could be due to the intrinsic
independency of the information provided by morphology and by HER2 expression, it is also surely
conditioned by the relatively low number of slides used for training. In fact, while the overall number
of images is high, they correspond to the about 400 cases provided by the Challenge, which are likely
too few for Multiple Instance Learning. While no direct comparison is possible about HER2 detection,
in other MIL-based related works on digital slides, larger data sets have been used with better results
than ours. In particular, in [26] a dataset of about 44,000 slides has been used; although not directly
comparable, they reached an AUC of 0.99. In the work of Couture et al. [28] the dataset is closer
in size (571 slides) to ours, but also measures of effectiveness, while higher, are not too dissimilar
(e.g., 0.80 accuracy for estrogen receptor status, which is a similar but not identical problem as HER2
status). Overall, we think that our work is an important step towards the development of a supervised
approach that can serve the purpose of helping medical experts in the delicate task of selecting the
appropriate treatment when dealing with clinical cases of breast cancer. For future work, we plan to
develop the presented pipeline in order to increase the effectiveness metrics by increasing the impact
and the effectiveness of the different stages of the pipeline. One way is to include further case details
in the last stage of the pipeline, e.g., the other IHC results, patient data, etc. The other relatively easy
enhancement will come from training the cancer classifier on slides acquired with the same setup as
the other classifier. In fact, as is the cancer classifier is sub-optimal. In this way, we can provide even
more information to the medical experts with the aim of providing a more sound and robust tool that
can be practically used in the clinical decision making process.

Supplementary Materials: The software and trained models are available online at https://github.com/MITEL-
UNIUD/HE2HER2/.
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Abstract: A deep learning technique to enhance 3D images of the complex-valued permittivity of
the breast obtained via microwave imaging is investigated. The developed technique is an extension
of one created to enhance 2D images. We employ a 3D Convolutional Neural Network, based on
the U-Net architecture, that takes in 3D images obtained using the Contrast-Source Inversion (CSI)
method and attempts to produce the true 3D image of the permittivity. The training set consists of
3D CSI images, along with the true numerical phantom images from which the microwave scattered
field utilized to create the CSI reconstructions was synthetically generated. Each numerical phantom
varies with respect to the size, number, and location of tumors within the fibroglandular region.
The reconstructed permittivity images produced by the proposed 3D U-Net show that the network is
not only able to remove the artifacts that are typical of CSI reconstructions, but it also enhances the
detectability of the tumors. We test the trained U-Net with 3D images obtained from experimentally
collected microwave data as well as with images obtained synthetically. Significantly, the results
illustrate that although the network was trained using only images obtained from synthetic data,
it performed well with images obtained from both synthetic and experimental data. Quantitative
evaluations are reported using Receiver Operating Characteristics (ROC) curves for the tumor
detectability and RMS error for the enhancement of the reconstructions.

Keywords: microwave breast imaging; image reconstruction; tumor detection; convolutional neural
networks; deep learning

1. Introduction

Microwave Imaging (MWI) techniques that have been applied to the detection of breast cancer
come in two forms: Radar-based techniques that attempt to detect tumors within the breast’s
interior [1], and inverse-scattering based methods that attempt to reconstruct complex permittivity
maps corresponding to the distribution of different breast tissues [2]. The quantitative techniques,
which are of interest herein, rely on the fact that different breast tissues (e.g., skin, adipose,
fibroglandular and cancerous tumors) have different dielectric properties in the microwave frequency
band [3,4].

Successfully implementing the inverse-scattering approach requires that one has a good numerical
electromagnetic field model for the MWI system being used to acquire scattered-field data, including
the antennas and the breast, but more importantly, requires that one solves a non-linear ill-posed
inverse scattering problem. This is usually accomplished using computationally expensive iterative
methods where the inversion model consists of a numerical solution of an electromagnetic forward
scattering problem [5]. One challenge in using MWI for breast imaging is that the breast is a
high-contrast object-of-interest (OI) having complicated internal structures and this produces unique
artifacts in the quantitative reconstructions of the complex-valued permittivity of the breast tissue.
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Both the non-linearity and the ill-posedness of the inverse scattering problem become more difficult
to deal with for high contrast OIs having such complicated internal structure because they lead to
multiple reflections within the OI.

The MWI technique we use in the work reported herein is the Contrast Source Inversion (CSI)
method [6–8]. Although this is a state-of-the-art MWI technique it still succumbs to artifacts even when
prior information is utilized to try to alleviate the non-linearity and ill-posedness of the problem [9,10].
Note that all MWI techniques, qualitative and quantitative alike, currently have difficulties with
imaging artifacts [1,2,5,11].

Recently, there has been intense interest in the use of deep learning techniques in a broad range
of applications such as natural language processing, computer vision and speech recognition [12].
In medical imaging, utilizing deep learning techniques for segmentation [13,14], as well as detection
and classification [15–17] has been well investigated, at least for the more common modalities.
Studies have shown that there is significant potential in applying deep learning techniques for the
purpose of removing artifacts from biomedical images generated using some common modalities.
Kang et al. proposed a deep Convolutional Neural Networks (CNNs) using directional wavelets
for low dose x-ray computed tomography (CT), and results illustrate that a deep CNN using
directional wavelets was more efficient in removing low dose-related CT noise [18]. Han et al. [19] and
Jin et al. [20] independently proposed multi-scale residual learning networks using U-Net to remove
these global streaking artifacts, In addition, domain adaptation from CT to MRI has been successfully
demonstrated [21].

MWI researchers are also trying to use machine learning techniques to improve the performance
of microwave imaging. For instance, researchers combined a neural network with microwave imaging
to learn the forward model for a complex data-acquisition system [22]. Rekanos et al. proposed radial
basis function neural network to estimate the position and size of proliferated marrow inside bone
tissue with microwave imaging [23]. Le et al. tried to take the benefit of a deep neural network to
enhance the constructed images [24]. Their deep neural network was trained to take microwave
images created using the back-projection (BP) method as an input and have the network output a
much-improved image. In fact, they tried to by-pass the use of iterative techniques for solving the full
nonlinear electromagnetic inverse problem. Most recently, we have investigated utilizing deep learning
techniques to improve 2D microwave imaging for the breast imaging application [25]. Researchers
employing radar-based techniques have also been investigating machine learning approaches for the
detection of breast lesions [26].

In this paper, we utilize a deep learning technique, based on CNNs, to enhance full 3D MWI
reconstructions obtained using a 3D CSI algorithm that uses the Finite Element Method (FEM) to
solve the electromagnetic forward problem [27]. The enhancement removes reconstruction artifacts
and improves the accuracy of the resulting images. We utilize a 3D 10-channel U-Net architecture
for the CNN where the input and output are both 3D images, and each channel corresponds to
the real and imaginary parts of the complex-valued permittivity images created using five different
microwave frequencies.

In Section 2 we start by providing a brief description of the CSI-based methodology that we use,
as well as the numerical phantoms and MWI parameters utilized to generate training images. We also
provide details of our chosen deep learning approach. In Section 3 we describe the training data set
as well as the parameters used for the network training. In the following, quantitative assessment
and assessment of robustness for numerical experiments are described. Section 4 provides a brief
description of our experimental setup and also the result of trained CNN for the experimental data.
Finally, in Section 5 we give our conclusion and explain our future work.

2. 3D CSI-Deep-Learning Methodology

In microwave data acquisition processes, electromagnetic fields scatter from, and propagate
through, the tissue in a three-dimensional (3D) space. However, to accelerate the image reconstruction
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process and reduce the computational complexity, researchers are trying to represent electromagnetic
waves in 3D space as a simplified 2D model. However, studies have shown that simplifying 3D
problems to 2D models can increase the level of artifacts in the recovered dielectric properties [28].
Moreover, in 2D imaging when the object of interest is small, there is a chance that it place between
two consecutive imaging slice, then the reconstruction algorithm would not discover the target
precisely. Hence, utilizing a viable 3D microwave image reconstruction will enhance the accuracy
and quality of reconstruction [29]. While iterative methods have improved dramatically over the
years, providing improved resolution and accuracy of the reconstructed properties, as well as more
efficient implementations, there are still many fundamental trade-offs between these three aspects due
to operational, financial, and physical constraints.

Lower resolution in comparison with other modalities, as well as the many reconstruction artifacts
that are related to the nonlinearity and ill-posedness of the associated inverse problem, are the main
reasons that MWI is not clinically accepted yet. Although it has been shown that using accurate
prior information will reduce the Root-Mean-Squared (RMS) reconstruction error over the whole
image [9,10,30–32], artifacts and reconstruction errors near the tumor can translate to poor tumor
detection results [33].

2.1. Microwave Imaging via Contrast Source Inversion

The first part of the proposed 3D CSI-Deep-Learning methodology consists of quantitatively
generating the complex-valued permittivity images using a MWI technique. Quantitative MWI
requires that one solve a non-linear ill-posed inverse scattering problem. A plethora of algorithms
have been developed during the past 40 years to solve this problem. They generally involve
computationally expensive iterative methods to locally minimize a specially designed functional
that incorporates a numerical inversion model approximating the relevant electromagnetic phenomena
of the problem [5,11]. In the past, different MWI techniques have utilized tailored optimization
algorithms with various functionals. Some of the most prominent techniques have been the Distorted
Born Iterative Method [34], Gauss–Newton Inversion [35], the Levenberg–Marquardt method [36]
and the Contrast Source Inversion technique [6]. Innovations on these foundational algorithms have
allowed improvements to the obtainable imaging accuracy and resolution, especially in the area of
breast imaging, e.g., [37,38]. Being an ill-posed problem, regularization techniques are required to
solve the inverse scattering problem [39,40].

As previously mentioned, to solve the electromagnetic inverse scattering problem associated
with microwave breast imaging we employ the CSI method. The numerical inversion model utilized
within the CSI algorithm is based on a full-vectorial 3D electromagnetic model of the MWI system
that includes a quasi-resonant flat-faceted chamber [41,42]. The 3D FEM-CSI algorithm is utilized
with prior information in the form of an inhomogeneous background as was done in [27]. Breast
images reconstructed from both synthetic and experimental scattered-field data are utilized in this
work. The experimental data is collected using the same air-based quasi-resonant imaging chamber
described in [27]. Thus, the forward model for creating the synthetic data and the inversion model,
both utilize a 3D finite element model of the same imaging chamber.

We consider both synthetic and actual experimental breast phantoms with three tissue types: fat,
fibroglandular and tumor. These breast phantoms are formed using a simple outer fat layer, and an
interior fibroglandular region that contains one or more embedded tumors. The breast phantoms are
positioned within the chamber as depicted in Figure 1.

The phantoms are interrogated using microwave energy with magnetic-field probes located on the
conductive chamber walls. The same probes are used as those in receivers. As described in [42], the 24
transmitters and receivers are φ-polarized. Data were collected at single frequencies and for every
transmitter, 23 magnetic fields were recorded at the receiver locations. Thus, 552 complex numbers
(magnitude and phase) were utilized to reconstruct the breast phantom that was located within the
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chamber. That is, the real and imaginary parts of the complex permittivity of the breast phantom were
reconstructed using the CSI algorithm.

The forward data were obtained using a 3D-FEM electromagnetic field solver. Before inverting
the data using the FEM-CSI algorithm, we added 5 % noise as is usual in creating synthetic
data [8]. This procedure was performed at individual frequencies and for the work considered herein,
the frequency band of 1.1 GHz to 1.5 GHz was used. It has been shown that reconstruction artifacts
appear at different locations of the imaging domain when different frequencies are used, whereas the
tumor is typically reconstructed at approximately the same location [27]. In that work, it was shown
that this feature can improve the tumor detection by using the intersection of thresholded images.

For the synthetically generated data and inversions, the permittivity was assumed to be constant
over frequency. The complex permittivity values that were used are given in Table 1. For the
experimental test case considered herein, the permittivities of the utilized tissue-mimicing liquids do
vary with frequency (see [27] for details).

Table 1. Complex permittivity for different tissues.

Permittivity

Air Fat Fibroglandular Tumor
1 − 0.001j 3 − 0.6j 20 − 21.6j 56.3 − 30j

It has been shown that successful CSI reconstructions can be obtained if one introduces a fat and
fibroglandular region as prior information in the CSI algorithm. This prior information is in the form
of an inhomogeneous numerical background against which the contrast is defined. That is, if εn(r)
and ε(r) represent the background information and the desired complex permittivity, as functions
of position, then the contrast χ(r) = (ε(r)− εn(r))/εn(r) is one of the variables solved for in the CSI
algorithm (the other variable being the contrast sources generated for each transmitter). Full details of
the CSI algorithm, used in this way, are provided in [9,10].

Introducing an inhomogeneous background in this way is a form of regularizing the inverse
problem, but as was already mentioned, various reconstruction artifacts are still present in the
CSI-reconstructed images. These artifacts increase the false-positive and reduce the true-positive
tumor detection rates. For the case of 2D imaging, it was recently shown that using a deep-learning
technique ameliorates this problem [25]. This has motivated the interest in using a similar deep-learning
technique to improve 3D MWI. However, in addition to artifacts, 3D MWI also suffers from the
problem of producing reconstructions that do not reach the maximum permittivity values of the true
phantom model. This was noted in [27] and therefore the detection threshold was based on 85% of
the maximum reconstructed value. Fortunately, the tumor permittivity values are at the extreme end
of the scale, so such a procedure is successful. Improving the CSI reconstructions by correcting the
reconstructed permittivity values, in addition to removing artifacts is the sought after goal of using a
deep learning technique.

Figure 1. Simulated Breast Model. Gray, blue, green, and red regions represent air, fat, fibroglandular,
and tumor, respectively.
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2.2. Machine Learning Approach to Reconstruction

Combining the CSI technique with a deep learning approach is accomplished by learning a
data-driven mapping, G, from a CSI reconstruction to the true permittivity (G : εCSI → εtrue).

In this study, we learn a mapping from the real and imaginary parts of the permittivities in CSI
reconstructions at several frequencies to a single real permittivity image. Thus, if the CSI complex
permittivity map is an L × M × N 3D image, and reconstructions at five frequencies are utilized,
then each of the learned functions maps 5 × L × M × N complex domain to L × M × N real domain
(e.g., GR : C5×L×M×N �→ RL×M×N). The complex output of CSI at the five selected frequencies can be
treated as a 10-channel image. We realized this mapping through a deep neural network as follows.

The desired mapping for our task at hand is an image-to-image transformation; there are multiple
neural architectures that can implement this mapping. For instance, a naive choice could be a
fully-connected single layer neural network which takes in CSI reconstruction as input and is trained
to output the ground truth permittivity. However, such an architecture would be very prone to
overfitting [12]. We, therefore, use a hierarchical convolutional neural network for our image-to-image
transformation task. A good template for such a task is the U-Net architecture which is one of the
most successful deep neural networks for image segmentation and reconstruction problems [13].
The architecture consists of successive convolutional and downsampling layers, followed by successive
deconvolutional and upsampling layers. Moreover, the skip connections between the corresponding
contractive and expansive layers keep the gradients from vanishing that helps in the optimization
process [13,43]. To use a U-Net for reconstruction, the original objective of the U-Net is replaced with
the sum of pixelwise squared reconstruction errors between the true real part of permittivity and
the output of U-Net [13]. In our problem, the network input is the 3D CSI reconstructed complex
images (after 500 iterations). Thus, there are two options for choosing the U-Net architecture, U-Net
with complex weights and U-Net with real weights. Very few studies have been done on the training
of U-Net with complex weights, although very recently Trabelsi et al. tried to train the neural
network with complex weights for convolutional architectures [44]. In this paper, we decided to
use a U-Net architecture having real-valued weights. A schematic representation of our architecture
is shown in Figure 2. The motivation for choosing the neural network parameters (the number of
convolutional layers, size and number of filters) is as follows. In a hierarchical multi-scale CNN,
the effective receptive field of the convolution filters is variable at each layer, i.e., through successive
sub-sampling it is possible to have a larger receptive field even by using filters of smaller kernel
size [12,45]. As mentioned above, the input to our neural network is L × M × N × 10; in particular,
for each frequency, the dimension of our input image volume is 64 × 64 × 64 (i.e., L = M = N = 64).
If we start with a 3D receptive field of 3 × 3 × 3, after four layers of successive convolutions and
subsampling (by a factor of 1/2), the receptive field would effectively span the entire image volume.
We, therefore, use four convolutional layers with a 3D filter kernel size of 3 × 3 × 3. Since after each
convolutional layer the size of the image volume is reduced, we can increase the number of filters at
each successive layer to enhance the representational power of the neural network [12]. In particular,
we start with 32 filters for the first layer and successively double the number of filters after each layer
(number of filters after the fourth layer is 512). This defines the encoder part of the U-net i.e., the part of
a neural network consisting of contractive convolutions. For the decoder part, we follow a symmetric
architecture consisting of expansive convolutions [13].
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Figure 2. Schematic for the proposed U-Net to reconstruct the real part of permittivity. The input to the
network is the 3D Contrast-Source Inversion (CSI) reconstruction, and the network is trained to output
the corresponding true 3D permittivity map.

3. Numerical Experiments

3.1. Datasets

While we tested our neural network on both experimental and synthetic data, for training we
only used a synthetically generated dataset. The training dataset consisted of 600 numerical breast
phantoms; tumors were randomly generated within the fibroglandular region of the phantom. Starting
from a random initial position, tumor pixels were grown randomly until the maximum diameter
reached a threshold. To have variability in the dataset, the threshold for the maximum diameter was
also randomly sampled from the range: 1.1–1.5 cm. One half the dataset consisted of breast phantoms
with one tumor, while the other half had phantoms with two tumors. We then employed a forward
solver [8] to generate the scattered field data corresponding to the phantoms. CSI reconstructions
were performed at five frequencies: 1.1, 1.2, 1.3, 1.4, and 1.5 GHz. These CSI reconstructions together
with the corresponding ground-truth permittivity values for the phantoms formed our training data
for the U-Net input and output respectively.

3.2. Network Training

All the CNNs were implemented using Python 3.6 and Keras 2.0.6 with Tensorflow backend.
We used a Windows 10 computer with a Tesla P100-PCIE-12GB graphic processor and Intel(R)
CPU(3.50 GHz). We used the popular Xavier initialization for the convolutional layer weights to obtain
an appropriate scale [46]. We trained with a batch size of 10, for 200 epochs with Adam optimization.
Four-fold cross-validation strategy has been utilized to evaluate the proposed deep neural network for
all experiments. The U-net wastrained using the real and imaginary parts for five different frequencies
as inputs. With 600 phantoms in our dataset, each fold in four-fold cross-validation consisted of
150 examples. For every fold, training was done using 450 cases, while the testing set consisted of the
held-out 150 examples. Thus all 600 cases featured as test examples when they were not part of the
training set. For the loss function, we use pixel wise mean squared error between the ground truth 3D
image and the CNN 3D reconstructed image as follows:

RMSError =
1

LMN

L

∑
x=1

M

∑
y=1

N

∑
z=1

(IGT
x,y,z − ICNN

x,y,z )2 (1)

where ICNN
x,y,z represents a 3D image reconstructed by the CNN and IGT

x,y,z represents a 3D ground
truth image.
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3.3. Quantitative Assessment

The CNN-enhanced reconstruction performance and the subsequent tumor segmentation based
on thresholding was evaluated quantitatively. The Root Mean Squared (RMS) reconstruction error
between the network output and the true permittivity values was used to evaluate the reconstruction
quality. The performance of a detection algorithm is often assessed in terms of two types of error
i.e., False Positive Rate (FPR) and False Negative Rate (FNR). FPR and FNR will vary depending on
the decision threshold used on the output score of the detection algorithm. To quantify the ability of the
output score to separate the two classes, we need to analyze the two errors for all possible thresholds.
In particular, we performed Receiver Operating Characteristics (ROC) analysis to assess the ability of
the reconstructed complex permittivity to distinguish between tumor and non-tumor pixels. The ROC
curve is a plot of True Positive Rate (TPR = TP

TP+FN ) against the False Positive Rate (FPR = FP
FP+TN ) for

all thresholds. The Area Under the Curve (AUC) for the ROC is a metric quantifying the separability
between tumor and non-tumor pixels [47]. For comparison we also computed RMS reconstruction
error and performed ROC analysis on CSI-only reconstructions. ROC carries information about the
relation of the true positives vs. the false positives. However, the information about the distributions
of thresholds at which the different ratios fall would be lost in this curve. Therefore, the distance from
any location on the ROC curve to the top-left corner of the plot is also an informative metric (we call
this the “Distance-to-MaxTD” or “DMTD” plot). We use the DMTD curve as a complementary metric
to display/analyze the relation between the true positive detection as well as the threshold at which
a certain true positive to negative ratio happens. This will especially help us better understand the
performance of the overlapping (or very similar) ROC curves for different scenarios. The depth of the
curve tells us about the quality of the reconstruction; the lower the dip, the better the performance of
the algorithm. The location of the dip carries information about the separation of the tumor relative
to the background; for instance, the further the dip of the DMTD curve is to the left, the higher the
separation between the background and tumor. Additionally, the width of the dip gives us information
about the robustness of the algorithm; the wider the dip of the curve, the higher the chances of having
a tumor with no artifacts (false positives) for the proper reconstruction of the tumor size and shape.
The results of this quantitative evaluation by using four-fold cross-validation strategy for all 600 images
are shown in Figure 3 and Table 2.

Figure 4 illustrates the performance of the trained U-Net in comparison with CSI reconstruction for
an arbitrary example with two tumors. Based on the AUC and RMS error metrics, it could be concluded
that the proposed CNN is successful in term of reconstruction and tumor detection. However, in a
previous study [27], it was shown that taking the intersection of multi-frequency thresholded 3D
images performs the best at detecting tumors. Therefore, we compared our trained CNN with the
intersection of multi-frequency thresholded 3D images in terms of detection. The superiority of the
trained CNN to CSI results as well as to multi-frequency thresholded results are shown in Figure 3.
For this same example, the CSI reconstructions at the remaining four other frequencies are shown
in Figure 5. The resulting images for the real and imaginary parts of the permittivity after taking
the intersection of the reconstructions that were thresholded at 85% of the maximum reconstructed
permittivity value are also shown in the figure. Note that results using a CNN trained to reconstruct
the imaginary part of the complex permittivity (not shown) are very similar to those using the CNN
trained to reconstruct the real part in terms of tumor detection (ROC Curve) and reconstruction
performance (RMS error). Thus, the ROC curve in Figure 3 and RMS error in Table 2, were computed
using only reconstructions of the real part of the permittivity.
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Figure 3. The detection performance using the reconstructed outputs of the Convolutional Neural
Network (CNN) and CSI as well as the intersection of CSI reconstructions at the five chosen frequencies.
(a) Receiver Operating Characteristics (ROC) curves derived from the reconstructions. (b) The
DMTD curve.

a b

c d

Figure 4. Reconstruction results for a particular example with two tumors. The real (a) and imaginary
(b) part of CSI reconstruction at 1.1 GHz. (c) CNN reconstruction. (d) Ground truth.

Table 2. Comparison of reconstruction and tumor detection performance.

RMS Error AUC

CSI CNN CSI CNN
Synthetic Data 1.4356 1.161 0.935 0.957

Exprimental Data 1.250 1.172 0.794 0.938
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a b

c d

e f

Figure 5. CSI reconstructions at four remaining frequencies for the same example as in Figure 4
and resulting images after intersecting images thresholded at 85% of the maximum reconstructed
permittivity. (a–d) The real part of CSI reconstructions at 1.2, 1.3, 1.4, and 1.5 GHz. (e) Intersection of
real part of CSI reconstructions. (f) Intersection of imaginary part of CSI reconstructions.

3.4. Assessment of Robustness

It is important to assess the robustness of our trained neural network when being tested on
images different from those used during training. We investigate four aspects of variation in test data
as compared to the training data: (i) changes in frequencies used to generate CSI reconstructions,
(ii) changes in breast phantom geometry, (iii) changes in prior-information, and (v) breast phantom
with no tumor.

3.4.1. Robustness to Changes in Frequency

First, given that the CNN was trained utilizing images created at 1.1 GHz, 1.2, 1.3, 1.4, and 1.5 GHz,
the performance of the trained network was checked qualitatively by testing with CSI reconstructions
that were created using data obtained at five arbitrarily chosen frequencies: 1.05, 1.15, 1.25, 1.35 and
1.45 GHz. Therefore, CSI reconstructions at chosen frequencies for five different breast phantoms have
been created. These tests indicated that the trained U-Net was indeed superior to the CSI-only case.
Results for one test example of the CSI and CNN outputs, from data obtained at 1.05 GHz, are shown in
Figure 6. This suggests that the CNN is robust to testing images reconstructed using frequencies in the
same bandwidth as used for training (one does not have to rely on using the exact same frequencies).
As will be seen shortly, however, this is not the case once much higher frequencies are used.

3.4.2. Robustness to Changes in Breast Phantom Geometry

The next test for the network’s robustess is to check against geometric changes of the breast
phantom model. Thus, a new model which has the same dimensions for the fat region but has a smaller
fibroglandular region (the height of fibroglandular region is decreased by 0.9 cm) was generated.
By using this new small model, five different breast phantoms with a random tumor have been
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generated to evaluate the trained CNN. Figure 7 demonstrates the performance of the trained CNN
for a particular example when the input images were CSI reconstructed images for this new model.
As can be seen, the CNN significantly alters the CSI reconstructions (row 1) to bring them closer to the
ground truth (row 2).

3.4.3. Robustness to Imperfections in Prior Information

In order to understand the U-Net’s ability to remove artifacts, the next test case artificially induces
artifacts into the CSI reconstructions by utilizing incorrect, or imperfect, prior information. Clearly,
using perfect prior information results in very good CSI reconstructions; however, perfect prior
information regarding the structural shape of the fibroglandular region as well as the permittivity of
the fibroglandular tissue is difficult to obtain in practical circumstances. It is well known that using
CSI with imperfect prior information produces various reconstruction artifacts. To evaluate this aspect
of robustness we introduced 10% error in the permittivity of the fibroglandular tissue used as prior
information. Figure 8 shows the performance of the CNN when tested with CSI reconstructions using
imperfect permittivity in a structurally perfect fibroglandular region. The ROC curves created from
the CSI and CNN outputs corresponding to this case shown in the plots of Figure 9. From the green
colored curves we see that the CNN-enhanced reconstructions do provide an improvement over the
CSI reconstructions. The distance-to-maxTD curve in Figure 9 clearly shows that the range in the
threshold that could be used for good detection for the CNN-enhanced reconstructions is much wider
than that could be used for the CSI reconstructions. When imperfect structural prior was used for a
test case it was found that neither the CSI nor the CNN reconstructions performed well. This is the last
test performed using synthetically generated images.

3.4.4. Robustness to Breast Phantom with No Tumor

Lastly, given that the CNN was trained only on breast phantom in presence of tumor, the last
test in this section has been done to check the performance of the trained CNN for breast phantom
with no tumor. Note that to prevent having zero scattered field data, we have to use imperfect prior
information. We introduced 5% error in the permittivity of the fibroglandular tissue used as prior
information. Figure 10 demonstrates the performance of the trained network when the input images
were CSI reconstructed images with no tumor.

a b

c d

Figure 6. Reconstruction results for a particular example with one tumor at 1.05 GHz. The real (a) and
imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.
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a b

c d

Figure 7. Reconstruction results for a particular example when the test images are CSI results for a
breast phantom having a smaller fibroglandular region than those of the training set. The (a) real and
(b) imaginary parts of the CSI reconstructions. (c) CNN reconstruction. (d) Ground truth.

a b

c d

Figure 8. Reconstruction results for a particular example with two tumor when the training images are
CSI results with perfect prior information, but the neural net was tested on imperfect prior information.
The real (a) and imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.
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Figure 9. Detection performance based on the reconstructed outputs of CNN and CSI. (a) ROC curves
derived from the reconstructed real part of the permittivity from CSI and CNN. (b) The DMTD.
test cases are: synthetic: imperfect permittivity prior, and true breast phantom with elongated
fibroglandular region. Experimental: using data within the frequency band and much higher than the
training frequency band.

a b

c d

Figure 10. Reconstruction results for a particular example when the training images are CSI results
with one or two tumors but the neural net was tested on a phantom with no tumor. The real (a) and
imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.

4. Experimental Tests and Results

The experimental setup described in [27,42] was used to collect data to test the described neural
network. A depiction of the imaging chamber and the breast phantom used in the experiment is shown
in Figure 11. This chamber has 44 facets and contains 24 magnetic field probes and the breast phantom
used in the chamber has three regions with similar sizes and properties to those of the numerical
breast phantom described earlier for the fat and fibro regions; a 2 cm spherical phantom was used as
the tumor region with properties similar to that of the tumor described in the numerical test cases.
To mimic the properties close to those of a realistic breast, the fat region was filled with canola oil while
a 20:80 ratio of water to glycerin is used to fill the fibroglanduar shell, and a 10:90 ratio of water to
glycerin is used to fill the spherical inclusion representing a tumor. For these ratios, the permittivities
of the canola oil and water/glycerin mixture are measured as 3.0 − j0.193, 23.3 − j18.1 and 50 − j25
respectively for fat, fibrogladular, and tumor at 1.1 GHz [27]. It is worth noting that this simplistic
phantom is used as a simple proof of concept target for inverting a high contrast multilayered medium
in an air background and not testing the system against realistic breast phantoms.
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Figure 11. The experimental system including the three region breast phantom (Diameter of fat,
fibroglanduar and tumor regions are 10 , 8 and 2 CM respectively).

In medical imaging, sometimes it is difficult to build a large experimental training data set.
Therefore, it is desirable that a neural network trained on synthetic data generalizes well when
tested on experimental data. To investigate this, we collected experimental data using a wide range
of frequencies (1.1 to 2.9 GHz). The performance of the trained network for experimental data is
evaluated and shown in Figure 12. Results illustrate that trained CNN improved the experimental CSI
reconstructed images when frequencies similar or close to those for training data were used. However,
when we tested the trained CNN with experimental images created with frequencies well beyond
the band of frequencies used to create the training data, it is observed that CNN is not able to detect
the tumor. Figure 13. One reason for this can be the significant change in the nature of the artifacts.
In general, for the results presented in this manuscript, the artifacts at almost all lower frequency
reconstructions have a lower permittivity compared to the value of the reconstructed tumor. However,
the permittivities of the reconstructed artifacts at higher frequencies are higher than those of the
reconstructed tumor.

245



J. Imaging 2020, 6, 80

a b

c d

Figure 12. CNN performance for experimental result when the neural net was trained on Synthetic data.
The real (a) and imaginary (b) part of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth.

a b

c d

e f

Figure 13. Reconstruction results for a particular example when the test images are CSI results in high
frequencies but the neural net was trained on low frequencies. The real (a) and imaginary (b) part
of CSI reconstruction. (c) CNN reconstruction. (d) Ground truth. (e) Intersection of real part of
CSI reconstruction at all frequencies.(f) Intersection of imaginary part of CSI reconstruction at all
frequencies(two intersection images are binary image).
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5. Conclusions

A deep learning technique using a 3D CNN was developed to improve the imaging performance of
3D MWI of the breast. The improvement manifests as the removal of artifacts in the 3D reconstructions
of the complex-valued permittivity of the breast being imaged. These reconstruction artifacts are
specific to the MWI system wherein the microwave scattered-field data is collected as well as to the
numerical inversion algorithm, in our case CSI, being used to create the images. Using synthetic 3D
images that take both these factors into account, a CNN was trained with the goal to reproduce the
true permittivity image of the breast from the artifact-laden 3D reconstructions. The trained CNN was
tested with synthetic images as well as with images created using experimentally obtained microwave
scattered-field data from an MWI system: the same MWI system for which a numerical model was
utilized in the creation of the synthetic 3D images.

The RMS error between the CNN-reconstructed images and the true images are improved over
the corresponding error between the CSI-only reconstructions and the true images. In addition,
tumor detection was evaluated using ROC-AUC metrics and these are much improved for the
CNN-reconstructed images over the ROC-AUC results for the CSI-only reconstructions. The results
show that this deep learning technique has the ability to improve 3D CSI reconstructions in three
interdependent ways. First, and foremost, the CNN has shown its ability to remove reconstruction
artifacts which are a great challenge for quantitative MWI. Secondly, the trained CNN successfully
corrects the permittivity values which tend to be undershot in the CSI reconstructions. Finally, from a
qualitative perspective, the tumor location is more accurately reconstructed with respect to its true
position and size.

There are several limitations of this work, but the most critical is that numerical phantoms with
a single, relatively simple, fibroglandular region were utilized for training and testing. This same
region was reproduced in the physical phantom utilized for the experimental results. Our experience
with utilizing a similar technique with 2D images showed that this limitation can be removed by
training with breast models having several types of fibroglandular regions. Similarly, this work
has shown that when the artifacts are due to reconstructions obtained from data generated with
MWI system parameters that were not utilized in the training set, for example artifacts generated
by using microwave frequencies that are much higher than what the MWI system was designed
for, then the trained CNN was not able to identify these as artifacts. In fact, some of these artifacts
were identified as tumors. This result limits the robustness of the trained CNN but this study has
provided a good understanding of that robustness. We further note that due to the significant level
of computational resources required during the generation of forward data and inverse 3D CSI
reconstructions, we generated only a moderately sized dataset consisting of 600 phantoms. Being
aware of the limited number of training examples, we made extensive use of cross-validation and
regularization techniques to avoid the possibility of model overfitting, which is evidenced by the
generalization our CNN demonstrates on unseen examples. That said, having more training data
would potentially help us to train a more robust CNN with better generalization properties. Techniques
for overcoming some of these limitations will be investigated in planned future work.
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Abstract: Age-Related Macular Degeneration (ARMD) is a progressive eye disease that slowly
causes patients to go blind. For several years now, it has been an important research field to try to
understand how the disease progresses and find effective medical treatments. Researchers have been
mostly interested in studying the evolution of the lesions using different techniques ranging from
manual annotation to mathematical models of the disease. However, artificial intelligence for ARMD
image analysis has become one of the main research focuses to study the progression of the disease,
as accurate manual annotation of its evolution has proved difficult using traditional methods even
for experienced practicians. In this paper, we propose a deep learning architecture that can detect
changes in the eye fundus images and assess the progression of the disease. Our method is based
on joint autoencoders and is fully unsupervised. Our algorithm has been applied to pairs of images
from different eye fundus images time series of 24 ARMD patients. Our method has been shown
to be quite effective when compared with other methods from the literature, including non-neural
network based algorithms that still are the current standard to follow the disease progression and
change detection methods from other fields.

Keywords: ARMD; change detection; unsupervised learning; medical imaging

1. Introduction

Dry age-related macular degeneration (ARMD or sometimes AMD), a degenerative disease
affecting the retina, is a leading cause of intractable visual loss. It is characterized by a centrifugal
progression of atrophy of the retinal pigment epithelium (RPE), a cellular layer playing a key role
in the maintenance of the photoreceptors. Blindness may occur when the central part of the eye,
the fovea, is involved. The disease may be diagnosed and monitored using fundus photographs:
ophthalmologists can observe pathologic features such as drusen that occur in the early stages of the
ARMD, and evaluate the geographic atrophic (GA) progression in the late stages of degeneration
(Figure 1).
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(a) Pair 1: before (b) Pair 1: after

(c) Pair 2: before (d) Pair 2: after

(e) Pair 3: before (f) Pair 3: after

Figure 1. 3 of pairs of images acquired six months apart, the GA corresponds to the bright areas.
The green arrow in (f) shows a new lesion.

Automatic analysis of fundus images with dry ARMD is of high medical interest [1] and this
has been an important research field for two decades, for diagnosis [2] or follow up [3,4] purposes.
Imaging modalities are most often color eye fundus images [5–7], fundus autofluorescence (FAF) [4,8,9],
and, to a lesser extent, confocal scanning laser ophthalmoscopy (cSLO) in infrared (IR), or optical
coherence tomography (OCT) [10]. In this work, we process cSLO images in IR: this modality is
comfortable for the patient, and it has higher resolution and higher contrast than color imaging,
an older technology. Our goal is to detect the appearance of new atrophic areas and quantify the
growth of GA from pairs of images acquired at regular time intervals to ultimately propose predictive
models of the disease progress.

Figure 1 shows three pairs of consecutive images, taken at 6-month intervals. The lesions (GA)
are the brighter regions in the fundus and around the optical disk. Automatic processing to follow
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up these areas is obviously very challenging given the quality of the images: uneven illumination,
saturation issues, illumination distortion between images, GA poorly contrasted with retinal structures
interfering (vessel, optical disk), blur, etc. The difficulty also lies in the high variability of the lesions in
terms of shape, size, and number. The lesion boundary is quite smooth in some cases (c and d) and
very irregular in others (a and b). At any time, new spots can appear (as shown by the green arrow
between e and f) and older lesions can merge. All these features make the segmentation task very
difficult, and especially long and tedious to perform manually. It is worth noting that even experts
cannot be sure of their manual delineation in all cases.

Modeling ARMD evolution from a series of eye fundus images requires segmenting the GA in
each image and/or to perform a differential analysis between consecutive images to get the lesion
growth. In this paper, we propose a differential analysis method based on a joint convolutional fully
convolutional autoencoder. Our model is fully unsupervised and does not require labeled images that
are difficult to come by in quantity and quality high enough to train a supervised neural network.
Our method is applied to pairs of images of a patient eye fundus time series and aims at efficiently
segmenting medically significant changes between the two images: meaningless differences caused by
image quality or lighting issues are ignored while changes related to GA lesion evolution are extracted.

The remainder of the paper is organized as follows: In Section 2, we review works dedicated to
automated processing of images of eye fundus with ARMD and we present approaches for change
detection applied to medical image analysis as well as other fields. In Section 3, we present briefly our
data and the way we process our images. Then, we detail our proposed method and the architecture
of our neural network (Section 4). Section 5 shows our experimental results. Finally, we draw some
conclusions in Section 6 and give some possible future perspectives of this work.

2. Related Works

This state-of-the-art section is split into three sections presenting methods closest to this work and
also based on the differential approach first. Then, we will introduce a few methods also developed for
the study of ARMD or other eye diseases but that rely on a segmentation based approach on individual
images. In addition, we will finish this state of the art with some examples of other change detection
methods from outside the field of medical imaging.

Before we start, we remind our readers that this work introduces a fully unsupervised method
for change detection in ARMD images. The main difference between supervised and unsupervised
learning is the following:

• In supervised learning, Machine Learning algorithms are trained using data that have been
pre-classified or annotated by human with the goal of building a model based on these data.
This model is then applied to new data with the goal of providing a classification for them.
While this type of Machine Learning is considered to be the most powerful, its main weakness is
that it cannot be used if no or not enough annotated data are available.

• In unsupervised learning, on the other hand, all data are provided raw and without any
annotation or classification, and the algorithm must find by itself different classes called clusters
of elements that are similar. Since the process is not guided, hence the name “unsupervised”,
the cluster found using this process may or may not match the classes expected by the users,
and the performances of unsupervised learning are expected to be lower than these of supervised
learning. Unsupervised Learning is usually used as an exploratory task or when there are no
available annotated data (or not enough), both of which are the case for our application to ARMD
image time series.

With this related work section, we hope to demonstrate that providing fully automated tools
reaching the required level of performance for medical application is a difficult task, especially in
an unsupervised context with few annotated images.
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2.1. Differential Approaches Applied to ARMD

The following works are most related to our proposed algorithm as they are unsupervised
algorithms applied to various eye disease images, including ARMD: In [11], Troglio et al. published
an improvement of their previous works realized with Nappo [12] where they use the Kittler and
Illingworth (K&I) thresholding method. Their method consists of applying the K&I algorithm on
random sub-images of the difference image obtained between two consecutive eye fundus images
of a patient with retinopathy. By doing so, they obtain multiple predictions for each pixel and can
then make a vote to decide the final class. This approach has the advantage that it compensates for the
non-uniform illumination across the image; however, it is rather primitive since it does not actually
use any Machine Learning and rely on different parameters of the thresholding method to then make
a vote. To its credit, even if it achieves a relatively weak precision, it is fully unsupervised like our
method. In [6], the authors tackle a similar problematic to ours where they correct eye fundus images
by pairs, by multiplying the second image by a polynomial surface whose parameters are estimated
in the least-squares sense. In this way, illumination distortion is lessened and the image difference
enhances the areas of changes. However, the statistical test applied locally at each pixel is not reliable
enough to get an accurate map of structural changes.

2.2. Segmentation First Approaches Applied to ARMD and Other Eye Diseases

Other works related with eye diseases take the different approach of segmenting lesions in
individual images instead of looking for changes in pairs of images. In [5], Köse et al. proposed
an approach where they first segment all healthy regions to get the lesions as the remaining areas.
This approach also requires segmenting separately the blood vessels, which is known to be a difficult
task. This method involves many steps and parameters that need to be supervised by the user.
In [4], Ramsey et al. proposed a similar but unsupervised method for the identification of ARMD
lesions in individual images: They use an unsupervised algorithm based on fuzzy c-means clustering.
Their method achieves good performances for FAF images, but it performs less well for color fundus
photographs. We can also mention the work of Hussain et al. [13] in which the authors are proposing
another supervised algorithm to track the progression of drusen for ARMD follow-up. They first use
U-Nets to segment vessels and detect the optic disc with the goal of reducing the region of interest for
drusen detection. After this step, they track the drusen using intensity ratio between neighbor pixels.

Using the same approach of segmenting the lesions first and then tracking the changes, there are
a few supervised methods available. We can, for instance, mention [14] in which the authors propose
another related work in which they use a pre-trained supervised neural network to detect ARMD
lesions with good results. In addition, in [15], the same team uses another supervised convolutional
neural network (CNN) to assess the stage of ARMD based on the lesions.

Other traditional more machine learning approaches have also been used for GA segmentation
such as the k-nearest neighbor classifiers [9], random forests [7], as well as combinations of Support
Vector Machines and Random Forests [16]. Feature vectors for these approaches typically include
intensity values, local energy, texture descriptors, values derived from multi-scale analysis and distance
to the image center. Nevertheless, these algorithms are supervised: they require training the classifier
from annotated data, which brings us back to the difficulty of manually segmenting GA areas.

Related to other medical images, in [17], the authors show that the quantization error (QE) of the
output obtained with the application of Self Organized Maps [18] is an indicator of small local changes
in medical images. This work is also unsupervised but has the defaults that the SOM algorithm
cannot provide a clustering on its own and must be coupled with another algorithm such as K-Means
to do so. Furthermore, since there is no feature extraction done, this algorithm would most likely
be very sensitive to the lighting and contrast issues that are present in most eye fundus time series.
Lastly, the use of SOM based methods on monochromatic images is discouraged since no interesting
topology may be found from a single attribute.
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Finally, the literature also contains a few user-guided segmentation frameworks [19,20] that are
valuable when it is possible to get a user input.

2.3. Change Detection Methods from Other Fields

Apart from medicine, change detection algorithms have been proposed for many different
applications such as remote sensing or video analysis. In [21], the authors reveal a method
combining principal component analysis (PCA) and K-means algorithm on the difference image. In [22],
an architecture relying on joint auto-encoders and convolutional neural networks is proposed to detect
non-trivial changes between two images. In [23], the authors propose an autoencoder architecture for
anomaly detection in videos.

Finally, as we have seen that quite a few methods rely on segmentation first and change detection
after, we can also mention a few noteworthy unsupervised segmentation algorithms used outside the
field of medicine: Kanezaki et al. [24] used CNN to group similar pixels together with consideration of
spatial continuity as a basis of their segmentation method. In addition, Xia and Kulis [25] developed
W-Net using a combination of two U-Nets with a soft Normalized-Cut Loss.

In Table 1, we sum up the main methods presented in this related work section. The first column
specifies if the method is supervised or unsupervised. The second column indicates if the method
uses the directly pairs of images (or their difference), or if it uses individual images to segment them
first and then compare the segmentations. The “Algorithm” column details which algorithm is used.
The last column gives the application field.

Table 1. Summary of the state-of-the-art methods for change detection that are mentioned in this work.

Authors Supervised Images Used Algorithm Application

Troglio, Napo et al. [11,12] No Pairs K&I Thresholding ARMD
Marrugo et al. [6] No Pairs Image correction ARMD

Köse et al. [5] semi Individual Raw segmentation ARMD
Ramsey et al. [4] No Individual Fuzzy C-Means ARMD

Hussain et al. [13] Yes Individual U-Nets ARMD
Burlina et al. [14,15] Yes Individual pre-trained CNN ARMD
Kanezaki et al. [24] No Individual CNN Image Processing
Sublime et al. [26] No Pairs Joint-AE & KMeans Remote Sensing

Celik et al. [21] No Pairs PCA & KMeans Remote Sensing
Our Method No Pairs Joint-AE ARMD

3. Dataset Presentation

In this section, we will provide some details on the image time series used in this work in terms
of their characteristics, flaws, and how we pre-processed them before comparing different methods for
change detection on them.

Our images whose main characteristics can be found in Table 2 were all acquired at the
Quinze–Vingts National Ophthalmology Hospital in Paris, in cSLO with IR illumination. This modality
has the advantage of being one of the most common and cheapest legacy method of image acquisition
for eye fundus images, thus allowing to have lots of images and to follow the patients for several
years. However, it is infrared only and therefore all images are monochromatic and may contain less
information than images acquired from other techniques with multiple channels (that are less common
for this type of exam and more difficult to find in numbers).
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Table 2. Description of the data.

Number of patients 15
Number of image time series 18

Average number of images per series 13
Total number of images 336

Acquisition period 2007–2019
Average time between two images 6 months

While some 3D OCT and 2D FAF images were available, the infrared light penetrates better
than blue light through media opacities and requires pupil dilation hence IR imaging is more robust
(and better supported by patients). Although OCT is becoming the preferred imaging modality to
appreciate the progression of GA, it requires a standard acquisition modality at each exam to ensure
comparability, hence a lot of data acquired during routine follow-up cannot be used. On the other hand,
the 30◦ IR imaging is the default mode of fundus image acquisition and hence most patients have such
image taken whatever the OCT protocol has been done. Thus, we stick to cSLO with infrared only so
that we could have longer and more homogeneous series, and therefore all images are monochromatic
and may contain less information than images acquired from other techniques with multiple channels
(that are less common for this type of exam and more difficult to find in numbers).

Patients have been followed-up during a few years, hence we have a series of retinal fundus
images, sometimes for both eyes (hence the number of series and patients being different in Table 2),
showing the progression of the GA. The average number of images in each series is 13. The images
are dated from 2007 for the oldest to 2019 for the most recent. All pictures are in grayscale and vary
greatly in size, but the most common size is 650 × 650 pixels.

As mentioned previously, we notice many imperfections such as blur, artifacts and, above all,
non-uniform illumination inside the images and between them (see Figure 2). All images were
spatially aligned with i2k software (https://www.dualalign.com/retinal/image-registration-montage-
software-overview.php). In every image, the area of useful data does not fill the entire image and is
surrounded by black borders. The automatic detection of these black zones in each image gives a mask
of the useful data, and the intersection of all masks the common retinal region where changes can be
searched for.

We also designed a new method to compensate for illumination distortion between the images
(not published yet). This algorithm is based on an illumination/reflectance model and corrects all
images of a series with respect to a common reference image. Uneven illumination generally remains
present in every processed image (Figure 2), but the smooth illumination distortions are compensated.
The calculus of the absolute value of the difference between two consecutive images demonstrates the
benefit of this algorithm (Figure 2, last column).

We used five different series of images to evaluate quantitatively our method of change detection:
they feature different characteristics in terms of disease progress, lesion shape and size. We developed
several user-guided segmentation tools to make the ground truth, based on classical segmentation
algorithms: thresholding applied locally on a rectangle defined by the user, parametric active contour
model initialized by the user, and simple linear interpolation between points entered by the user.
The user can use the most appropriate tool to locally delimit the lesion border, and thus progresses
step by step. Local thresholding or active contour algorithm makes it possible to obtain segmentations
that depend less on the user than the use of interpolation, which is applied when the two previous
methods fail. However, the segmentation remains mostly manual, user-dependent, and tedious.
An ophthalmologist realized all segmentation used in our experiments. Finally, the binary change
mask between two consecutive images was obtained by subtraction of the segmentation masks.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Example of Illumination correction. The three images on the top row represent the two
original consecutive images (a,b), and their raw difference in absolute value (c); on the bottom row: the
same images after illumination correction (d,e), and the new difference (f).

It is worth noting that the manual segmentation of a single image by expert ophthalmologists takes
on average 13 min for a single image, and that many disagreements as to what the ideal segmentation
should be arise when comparing the segmentations made by different experts for the same image:
In particular, many doctors disagree on which internal changes are interesting or not (and therefore
should or should not be in the ground truth), and they may also have different advice for the borders
of particularly difficult lesions. For these reasons, and because we kept the results of only a single
ophthalmologist, the ground-truth provided for our images have to be taken with caution as they
are not always reliable, and, as we will see in later sections, they may feature defects that will affect
dices’ indexes computed based on them. Furthermore, for the same reason that it takes a lot of time to
produce reliable change maps, our test set is relatively small in size compared to other applications
that features much larger data sets, and in particular larger test sets.

4. Description of Our Proposed Architecture

Our algorithm is inspired from earlier works from remote sensing [22,26], where the authors
applied an unsupervised deep autoencoder to automatically map non-trivial changes between pairs of
satellite images to detect meaningful evolutions such as new constructions or changes in landcover
while discarding trivial seasonal changes.

In our paper, we use the similarities between satellite images and our medical ARMD eye
fundus to adapt their method: both types of images may suffer from lighting issues, noise issues,
blurry elements, complex objects present in the images, various time gaps between two images of
the same series, and most importantly the common goal of detecting meaningful changes despite all
these issues.

While they share similarities, our medical images and satellite images are also quite different:
they do not have the same number of channels, they have very different sizes, and the nature of the
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objects and changes to detect is also quite different. For these reasons, the following subsection will
detail how we modified their architecture, and it will explain all steps of our algorithm.

4.1. Joint Autoencoder Architecture

As mentioned earlier, in this research, we use a fully convolutional autoencoder.
Autoencoders [27] are a type of neural networks whose purpose is to make the output as close as
possible to the input. During the learning process, the encoder learns some meaningful representation
of the initial data that is transformed back with the decoder. Hence, in a fully convolutional AE, a stack
of convolutive layers is applied to the input image in order to extract feature maps (FM) which will
then be used to reconstruct the input image.

Usually, AEs with dense layers are used to perform a dimensionality reduction followed by
a clustering or segmentation. However, in computer vision, fully convolutional AEs are preferred
for their ability to extract textures. Examples of such networks include fully convolutional networks
(FCNs) [28] or U-Nets [29]. However, in our case, we do not use Max-pooling layers, and so we keep
the same dimensions as the input and only the depth increases.

Our network (Figure 3) is made of four convolutional layers in the encoder of size 16, 16, 32, and 32,
respectively, and in the same way as four convolutional layers of size 32, 32, 16, and 16, respectively,
in the decoder side. We apply a batch normalization and a ReLU activation function at each step of the
network except for the last layer of the encoder where we only add the L2 normalization, and also for
the last layer of the decoder where we apply a Sigmoid function (see in Figure 3).

Figure 3. Autoencoder architecture for our algorithm.

4.2. Algorithm Steps

Our algorithm is made of four steps. We start by dividing the images into several patches.
Then, we build the joint autoencoder where it learns how to reconstruct the images, and after we tweak
the method by learning the autoencoder to reconstruct not the image itself but the precedent or the
future image. The neural networks will learn easily the changes due to the non-uniform illumination
or noise but will fail on ARMD progression generating a high reconstruction error (RE), consequently
making it possible to detect them. The next subsections will detail some of these steps:

4.2.1. Patches Construction

One of the issues with the retinal fundus images we have is their shape. Indeed, our images are
not necessarily square and differ from one set to another. This is why we use an approach based on
patches that allows us to manage several sizes of images but also several forms of useful areas thanks
to a simple manipulation that we explain right away.

As mentioned in Section 3, the area of useful data are not rectangular and is generally surrounded
by black borders, which can be detected by a simple logic test. As can be seen in Figure 4, we solve this
problem by using the Inpainting function of the library scikit-image [30] to complete this background.
This inpainting function is based on the biharmonic equation [31,32], and it exploits the information in
the connected regions to fill the black zones with consistent gray level values. Let us denote by P × P
the size of the patches. The image is also padded with P

2 pixels along all dimensions and directions
before applying the inpainting. Thanks to this operation, we can extract patches from the whole
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image, i.e., patches centered on every useful pixel, without any cropping, and so we can exploit all our
available data without border effects.

Figure 4. Patches construction,useful pixels are inside the green area.

4.2.2. Pre-Training

Let us consider a series of M images representing the progression of ARMD in a patient’s eye.
After the pre-processing and once the images have been aligned and cropped, all images from the
same series have the same number of N useful patches. From there, to pre-train or network, we sample⌊

N
M

⌋
of the patches for every image hence, regardless of the size of the series, we use a total of N

patches. This allows us to build a unique autoencoder AE that works for all pairs in the series, and to
prevent overfitting.

As an example, for a series of 16 images and 600 × 600 useful patches per image, we would
randomly sample 1

16 of the patches for each image of the series (22,500 patches per image), and use
a total of 360,000 patches to pre-train our network.

When processing the patches, our network applies a Gaussian filter in order to weight the pixels
by giving more importance to the center of the patch in the RE calculus.

During the encoding pass of the AE, the model extracts feature maps of N patches of chosen
samples with convolutional layers (Figure 5), and then, during the decoding pass, it reconstructs them
back to the initial ones.

Figure 5. Structure of the algorithm. Example for set of two images Im1 and Im2 and n the number
of patches.
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4.2.3. Fine-Tuning

For every consecutive pair i, i + 1 with i ∈ [[1; M − 1]] of images, we are going to build two
autoencoders initialized with the weights found in the pre-training part. On one hand, AEi,i+1 aims to
reconstruct patches of Imi+1 from patches of Imi and, on the other hand, AEi+1,i is going to reconstruct
patches of Imi from patches of Imi+1.

The whole model is trained to minimize the difference between: the decoded output of AEi,i+1
and Imi+1, the decoded output of AEi+1,i and Imi, and the encoded outputs of AEi,i+1 and AEi+1,i,
see Figure 5.

This joint configuration where the learning is done in both temporal directions, using joint
backpropagation, has empirically proven to be much more robust than using a regular one-way
autoencoder. To optimize the parameters of the model, we use the mean squared error (MSE) of the
reconstructed patches.

For the fine-tuning, we stop iterating and running epochs when the MSE of the reconstructed
patches stabilizes, as is standard for the training of Deep Learning networks.

4.2.4. Reconstruction and Thresholding

Once the models are trained and stabilized, we perform the image reconstruction. For each
pair, we note Imi+1′ the reconstruction of Imi+1 from Imi with AEi,i+1 and likewise we note Imi′ the
reconstruction of Imi from Imi+1 with AEi+1,i. Then, we calculate the reconstruction error RE for every
patch between Imi and Imi′ on one side and between Imi+1 and Imi+1′ on another side. This gives
us two images for each pair representing the average REs for Imi′ and Imi+1′ that we average to get
only one. The model will easily learn the transformation of unchanged areas from one image to the
other: changes in luminosity and blurring effects. At the same time, because the changes caused by the
disease progression are unique, they will be considered as outliers by the model, and thus will have
a high RE. Hence, we apply Otsu’s thresholding [33] that requires no parameters and enables us to
produce a binary change map (BCM).

If we sum up, our algorithm uses the strengths of joint auto-encoders to map the light changes,
contrast defects, and texture changes from one image to another. This way, most of the image defects
and noise issues will be removed. In addition, then, we use the inability of the auto-encoder to
predict structural changes in the lesions through time (this algorithm is not designed to do this),
as is the inability of the algorithm to generate a high reconstruction error in areas where the lesions
have progressed when comparing the encoded reconstructed images with the real images. This way,
we have a fully unsupervised way to remove noise and detect changes in the lesions. The full process
is explained in Figure 5.

5. Experimental Results

5.1. Experimental Setting

We chose to compare our methods presented in Section 4.1 with three other methods, all on
the preprocessed images. We applied all the methods to three of our series for which we have a
ground truth.

The following parameters were chosen for all convolutional layers of our method: kernel size to
3, stride to 1, and padding to 1. The Adam algorithm was used to optimize the models. We set the
number of epochs to 8 for the pre-training phase and just 1 for the fine-tuning phase. These parameters
were chosen as they are the limit after which the reconstruction error generally does not improve
anymore. More epochs during the pre-training phase led to more required epochs to adjust the model
to each couple during the fine-tuning phase without much improvements on the results. In addition,
more epochs on the fine-tuning phase did not lead to any significant improvement in the results and
sometimes resulted in overfitting. Therefore, we fix these parameters both to ensure quality results
and to avoid running extra unneeded epochs for both the pre-training and fine-tuning phase.
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For both phases, the learning rate was set to 0.0001 and the batch size to 100.
The first method that we use for comparison is a simple subtraction of two consecutive images

with an application of Otsu’s thresholding on the result. The second comparison is a combination
of principal component analysis (PCA) and K-means algorithm on the difference image proposed
by Celik et al. in [21], and we apply it to medical images with blocks of size 5. To finish, we
take a Deep-Learning based approach [24] which uses CNN to group similar pixels together with
consideration of spatial continuity. This work by Kanezaki et al. was initially made for unsupervised
segmentation; consequently, we apply the algorithm to our images and then do the segmentation
substractions to get binary change maps. The convolution layers have the same configuration than for
our network and we set the parameter for the minimum number of labels to 3.

As it is common practice, even for unsupervised algorithms, we assess the results of the different
methods using classical binary indexes intended for supervised classification: accuracy, precision,
recall, and F1-Score. All formulas are given in Equations (1)–(4), where we used the change areas as
the positive class and no change as the negative class. The notations “TP”, “TN”, “FP”, and “FN” are
used for true positive, true negative, false positive, and false negative, respectively.

Accuracy refers to the proportion of correct predictions made by the model. It is sensitive to
class imbalance:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision is the proportion of identifications classified as positive by the model that is
actually correct:

Precision =
TP

TP + FP
. (2)

Recall is the proportion of positive results that are correctly identified. It can be thought of as the
proportion of progression of the lesion correctly identified:

Recall =
TP

TP + FN
. (3)

F1-Score also known as the F-Measure, or balanced F Score, is the harmonic mean between the
precision and the recall and is computed as follows:

F1 =
2 × precision × recall

precision + recall
(4)

5.2. Parameters’ Fine-Tuning

The fully convolutional AE model for change detection is presented in Section 4.1.
There are two main parameters in our algorithm. The first one is the the patch size P. As we can

see in Figure 6, a smaller value of P will increase our precision and, on the contrary, a high value of P
will increase our recall. Thus, the challenge is to find a trade-off value between both scores in order to
get the best F1 score possible. In order to improve the performances, we decided to introduce a second
parameter: sigma σ. This one refers to Gaussian weights which are applied to the patches to give more
importance to central pixels and less to pixels closer to the sides of the patches during the RE loss
computation. For each series, we did experiments such as the one shown in Figure 7 to find the best
patch size P and value σ. In general, we got that a high size of the patch gave us a relatively good
recall and the Gaussian weights allow us to regain precision. Two pairs of values came up more often:
patch size P = 13 and a value σ = 12 for patients with larger lesions, and patch size P = 7 and a value
σ = 5 for patients with smaller lesions.
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(a)

(b)

Figure 6. Average recall, Precision, and F1 Score depending on the patch size and sigma: σ = 5 in
red σ = 7 in green σ = 9 in blue. (a) Recall and Precision depending on the patch size; (b) F1 Score
depending on the Patch size.

Figure 7. F1-Score as a function of the patch size and the value of sigma σ on patient 005.
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All of the algorithm steps were executed on an Nvidia GPU (RTX TITAN) with 64 GB of RAM
and an Intel 9900 k. It took about 20 min for a series of 8 frames with a patch size P of 13, with the
execution time increasing with it.

5.3. Results

The results for patients 1, 3, 5, 10, and 115 are shown in Table 3, as well as Figures 8–11 that
we added for visual inspection purposes. Additional images for patient 18 are available in some of
the figures. Other patients were not added to Table 3 or the figures because we do not have reliable
enough change map ground-truths to compute the dice indexes, or because we do not have them at
all. Note that the scores presented in Table 3 are for the complete series (15 to 20 pairs per patient),
while the scores shown in the figures are for the individual couples of images used in each example.
The bottom line of Table 3 shows the weighted mean values for all indexes and all methods for all series.

When looking at Table 3, we can see that the simple difference coupled with Otsu thresholding
achieves the best recall results on average that there is no clear winner for the Precision, and that our
proposed method on average has the best F1 Score.

Please note that we did not display the Accuracy because of the strong class imbalance,
with a large majority of “no change class” pixels leading to results over 85% for Kanezaki’s approach
and the simple differentiating with Otsu thresholding, and over 95% for our approach and Celik
approach. Since these figures are obviously very biased and given that we are more interested in
“change” pixels than “no change” pixels, we did not report them in Table 3 and preferred to focus on
commenting on the Precision, Recall, and F1-score that are less affected by class imbalance.

Table 3. Results and comparison of the different approaches. It contains the means of the recall,
the precision, and the F1 score for each time series. For each patient, the best dice results are in bold.

Patient ID Method Authors Recall Precision F1 Score

001
15 images

Diff + Otsu - 0.68 0.11 0.16
CNN Kanezaki et al. 0.32 0.29 0.18

PCA + KMeans Celik et al. 0.48 0.28 0.3
Joint-AE Our method 0.44 0.21 0.26

003
5 images

Diff + Otsu - 0.55 0.1 0.17
CNN Kanezaki et al. 0.2 0.27 0.07

PCA + KMeans Celik et al. 0.24 0.33 0.27
Joint-AE Our method 0.29 0.28 0.28

005
8 images

Diff + Otsu - 0.46 0.2 0.26
CNN Kanezaki et al. 0.2 0.43 0.21

PCA + KMeans Celik et al. 0.26 0.37 0.28
Joint-FCAE Our method 0.33 0.34 0.32

010
6 images

Diff + Otsu - 0.68 0.06 0.10
CNN Kanezaki et al. 0.32 0.03 0.05

PCA + KMeans Celik et al. 0.47 0.23 0.29
Joint-FCAE Our method 0.38 0.35 0.36

115
9 images

Diff + Otsu - 0.53 0.25 0.29
CNN Kanezaki et al. 0.33 0.15 0.16

PCA + KMeans Celik et al. 0.24 0.38 0.25
Joint-FCAE Our method 0.33 0.39 0.34

Total
(patients’
mean—43
images)

Diff + Otsu - 0.58 0.16 0.20
CNN Kanezaki et al. 0.27 0.27 0.14

PCA + KMeans Celik et al. 0.33 0.32 0.27
Joint-AE Our method 0.35 0.32 0.31
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(a) (b)

(c) (d) (e)

Figure 8. Difference + Otsu thresholding vs. our approach (AE) on patient 003. (a) Image at t = 0;
(b) Image at t + 3 months; (c) Raw difference and Otsu thresholding, F1 score = 0.26; (d) Our method,
F1 score = 0.36; (e) Proposed ground truth.

Our interpretation of these results is the following: Otsu thresholding applied to the difference
between two images has the best recalls because it detects most real change pixels. However, the
binary change map is also very noisy, corresponding to a high number of false positives (wrongly
detected changes), which is confirmed by the very low precision score. This can also be observed
in Figures 8c and 11d, which are examples of the high number of false positives detected using Otsu
thresholding compared with the ground truth in Figure 8c, or our method results in Figure 8e.

In Figures 9–11, we compare our approach with the two other algorithms relying on more
advanced Machine Learning techniques. First, we can see that, like in Table 3, our approach gets
the best F1-score for both patients and pairs of images. Then, we can see that the Kanezaki et al.
approach achieves over-segmentation in Figure 9d and under-segmentation in Figure 10d, which
highlights that it is more difficult to parametrize properly and may require different parameters for
each pair of image, which is not the case for both our approach and the Celik et al. approach. Finally,
regarding the comparison between the Celik et al. approach and our proposed method, we can see
from Figures 9e,f, 10e,f, and 11e,f that also, like in Table 3, the Celik et al. approach achieves overall
good results that are comparable to the ones of our method. However, in the same way that we have
better F1-score and accuracy results, the visual results for our methods are also better as the changes
we detect in the lesions are cleaner and overall less fragmented into very small elements compared
with the ones found by the Celik et al. approach.
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(a) (b) (c)

(d) (e) (f)

Figure 9. Comparison example of the three methods on patient 005. (a) Corrected Image from October
2017; (b) Corrected Image from June 2018; (c) Proposed ground truth; (d) Asako Kanezaki’s approach,
F1 score = 0.15; (e) Turgay Celik’s approach, F1 score = 0.35; (f) Our Fully Convolutional AE, F1
score = 0.4.

(a) (b) (c)

(d) (e) (f)

Figure 10. Comparison example of the three methods on patient 001. (a) Corrected Image from
April 2017; (b) Corrected Image from October 2017; (c) Proposed ground truth; (d) Asano Kanezaki’s
approach, F1 score = 0.17; (e) Turgay Celik’s approach, F1 score = 0.43; (f) Our Fully convolutional AE,
F1 score = 0.43.
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(a) (b) (c)

(d) (e) (f)

Figure 11. Comparison example of the three methods on patient 010. (a) Corrected Image from
November 2017; (b) Corrected Image from May 2018; (c) Proposed ground truth; (d) Otsu thresholding,
F1 score = 0.05; (e) Turgay Celik’s approach, F1 score = 0.253; (f) Our Fully convolutional AE, F1
score = 0.38.

When looking at the figures and areas where the changes are detected, we can see that our method
finds changes that are more in the peripheral areas of the lesions, while the Celik et al. approach tends
to find lots of noisy elements inside existing lesions (see Figure 10e). From a medical point of view and
to study the progression of ARMD, we are of course more concerned with lesion growth and therefore
with what is going on in the peripheral areas of the lesions, thus giving an advantage to our methods,
since it is better at capturing these peripheral changes. However, it does not mean that changes deep
inside the lesions have no values and could not be used to better understand the mechanisms of the
disease in another study.

5.4. Discussion

Overall, we can conclude that both Otsu thresholding and Kanezaki’s approach suffer from risks
of over-segmentation detecting a lot of noise, or under-segmentation detecting nothing, both of which
are impossible to exploit from a medical point of view. On the other hand, despite somewhat mild
recall and precision scores, the Celik approach and our method are visually much better at detecting
meaningful changes in ARMD lesions’ structures. Moreover, we can see that, despite the strong class
imbalance that we mentioned earlier, our proposed method has a slightly higher F1-Score and finds
structures that are visually better and more interesting from a medical point of view since they tend
to be more on the outside and at the limits of existing lesions instead of inside them, and are also
less fragmented.
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To conclude this experimental section, we would like to discuss some of the main weaknesses
and limitations of our proposed approach and of this study overall.

The first limitation that is not inherent to our approach is the difficulty to get accurate
ground-truths to assess the quality of the results (hence why unsupervised learning should be
preferred). In particular, all the ground-truths we have completely ignore possible textural changes
within existing areas of geographic atrophy, and they don’t always have the level of accuracy we hope
for when it comes to subtle small changes in the lesions. This is due to the fact that most of these
ground truths are built by subtracting masks of segmented lesions during two consecutive exams as
shown in Figure 12: Doing so results in ground-truths that ignore most of the changes happening
inside the lesions. It is worth mentioning that series with larger lesions are more affected by this issue
as these lesions are more likely to have internal changes.

(a) (b)

(c) (d) (e)

Figure 12. Example of ground-truth build for patient 010 based on two consecutive masks of segmented
lesions at time t and t + 1: All changes inside the lesions, textural or otherwise, are ignored. (a) Image
t; (b) Image t + 1; (c) segmentation mask t; (d) segmentation mask t + 1; (e) Ground truth built from
Mask t and t + 1.

This explains some of the low dice scores from Table 3 since in many cases there are internal
changes (textural, structural, or both) happening within ARMD lesions, and some of them will be
detected by the algorithms used in this paper. However, almost all of these changes detected inside the
lesions will be classified as false positive since they are not present on the ground truth. One example
of such issue is shown in Figure 13 where all pixels in red in sub-figure (d) will be classified as false
positive despite some of them being actual changes (seeing some internal structural changes is possible
by zooming in on sub-figures a and b).
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(a) (b) (c) (d)

Figure 13. Example of a segmentation in (d) where all changes detected in red will be considered
false positive since the ground truth does not consider changes within existing lesions regardless of if
they are structural of textural. (a) Image of patient 018 at time t; (b) Image of patient 018 at time t + 1;
(c) Proposed Ground truth; (d) Proposed segmentation.

The second obvious weakness of our approach is also related to the difficulty of finding reliably
annotated data and ground-truth. Because it is difficult to find them, we propose an unsupervised
approach. In addition, unfortunately, unsupervised approaches are known to produce results that are
less impressive than their supervised counterparts. A fully unsupervised framework which has the
advantage that it does not require any annotated data to be trained—which is a real strength when very
few are available—but has the weakness that its performances are weaker. In future works, we hope to
refine our method so that we can improve the quality indexes a bit, but, even with better ground-truths,
we expect the performances to remain limited so long as the framework is fully unsupervised.

A third limitation that can be mentioned and comes more from the data and experimental protocol
than the methods is the following: Given that our method is fully unsupervised, and since we use
change maps made by experts ophthalmologists that are not always reliable due to disagreements
between experts on what is an interesting change or not, we have both a test set problem (as mentioned
before), and a choice of metric problem as dice indexes while commonly used are probably not ideal
to evaluate unsupervised methods, especially when there is uncertainty on the quality of the expert
change maps. Two solutions that we plan to use on our future works are the following:

• To have several experts rating the proposed change maps, and use the average mark as a quality
index. This method has the advantage that it is the fairest, but it is inconvenient that it is
very time consuming and does not scale with large datasets as it takes on average 13 min for
an ophthalmologist to do a quality segmentation on a single image.

• Using unsupervised quality indexes alongside the accuracy and the three dice indexes that we
already use, so that we have a more fair evaluation of all methods. While this has the advantage
of scaling well, it is probably a weaker quality argument than supervised indexes and experts’
ratings for an application in the field of medicine.

The fourth limitation of our method that can be pointed out is that, as it stands, our algorithm
does not yet achieve the goal of predicting how the pathology evolves: Our method detects changes
and how the ARMD lesions evolved from one image to the next, but it does not provide any growth
model or any interpretation of why it grew this way. Furthermore, while our algorithm detects changes
fairly well, it is yet unable to predict future changes and therefore to tell in advance how the lesions
might evolve on the short or long term for a given patient. While prediction was not the goal of the
method proposed in this paper, it is certainly a future evolution that we are interested in. In fact, we
hope that we will be able to use the results provided by our method on how the lesions grow and
change from one image to the next to build predictive models based on this information. Some leads
on approaches with which to combine our algorithm include other deep learning approaches such as
long short term memory [34], gated recurrent units [35], or generative adversarial networks [36], all of
which have shown to be useful for time series prediction or long term predictions.
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Finally, even if our work does not lead to a huge leap forward in result quality due to various
issues that we previously mentioned, the fact that we proposed a deep learning architecture will make
it a lot easier in the future to couple our approach with predicting architectures such as the ones we
just mentioned.

6. Conclusions

In this paper, we have presented a new fully unsupervised deep learning architecture based on
a joint autoencoder that detects the evolution of ARMD lesions in an eye fundus series of images.
With a pre-cleaning of the series to remove as many lighting issues as possible, our proposed method
is based on an auto-encoder architecture that can detect non-trivial changes between pairs of images,
such as the evolution of a lesion, while discarding more trivial changes such as lighting problems
or slight texture changes due to different image angles. Our proposed method was applied to three
real sets of images, and was compared with three methods from the state of the art. Despite mild
F1-Score results due to various issues, our method has been shown to give good enough results for
a fully unsupervised algorithm and to perform better than the other methods from the state of the
art, and may prove useful to assist doctors in properly detecting the evolution of ARMD lesions by
proposing a first raw segmentation of the evolution.

While our results are not perfect and cannot yet be used for a fully automated diagnosis, it is
obvious to us that our proposed algorithm may prove useful to assist doctors in properly detecting the
evolution of ARMD lesions by proposing a first raw segmentation of the evolution that is a lot better
than what can be done with the existing methods.

In our future works, our priority will be to solve our ground-truth and test set issues by trying to
have more experts producing and rating our results. This is an important pre-requisite as we plan on
working on approaches that can work on full time series rather than pairs of images. This would also
require both better lighting correction algorithms but may lead to more interesting models to predict
the evolution of ARMD. Developing long-term prediction algorithms is another goal of ours that could
be achieved using a combination of this work on longer series with other deep approaches that are
more adapted for prediction.

Finally, as there are other modalities of images available to study ARMD, some of which have
colors, but with different resolutions, one of our other goals would be to combine several of these
types of images to globally improve our prediction scores. This future work of combining images with
different scales, alignments, and color bands shall prove to be very challenging and will hopefully
yield more interesting results while still using a fully unsupervised approach.
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Abbreviations

The following abbreviations are used in this manuscript:

AE Autoencoder
ARMD or AMD Age Related Macular Degeneration
BCM Binary Change Map
CNN Convolutional Neural Networks
cSLO confocal Scanning Laser Ophthalmoscopy
FAF Fundus Autofluorescence
GA Geographic Atrophy
IR Infrared
OCT Optical Coherence Tomography
PCA Principal Component Analysis
RE Reconstruction Error
RPE Retinal Pigment Epithelium

References

1. Kanagasingam, Y.; Bhuiyan, A.; Abràmoff, M.D.; Smith, R.T.; Goldschmidt, L.; Wong, T.Y. Progress on retinal
image analysis for age related macular degeneration. Prog. Retin. Eye Res. 2014, 38, 20–42. [CrossRef]

2. Priya, R.; Aruna, P. Automated diagnosis of Age-related macular degeneration from color retinal fundus
images. In Proceedings of the 2011 3rd International Conference on Electronics Computer Technology,
Kanyakumari, India, 8–10 April 2011; Volume 2, pp. 227–230.

3. Köse, C.; Sevik, U.; Gençalioglu, O. Automatic segmentation of age-related macular degeneration in retinal
fundus images. Comput. Biol. Med. 2008, 38, 611–619. [CrossRef]

4. Ramsey, D.J.; Sunness, J.S.; Malviya, P.; Applegate, C.; Hager, G.D.; Handa, J.T. Automated image alignment
and segmentation to follow progression of geographic atrophy in age-related macular degeneration. Retina
2014, 34, 1296–1307. [CrossRef]
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Abstract: Medical images have made a great contribution to early diagnosis. In this study, a new
strategy is presented for analyzing medical images of skin with melanoma and nevus to model,
classify and identify lesions on the skin. Machine learning applied to the data generated by first
and second order statistics features, Gray Level Co-occurrence Matrix (GLCM), keypoints and color
channel information—Red, Green, Blue and grayscale images of the skin were used to characterize
decisive information for the classification of the images. This work proposes a strategy for the
analysis of skin images, aiming to choose the best mathematical classifier model, for the identification
of melanoma, with the objective of assisting the dermatologist in the identification of melanomas,
especially towards an early diagnosis.

Keywords: texture analysis; melanoma; glcm matrix; machine learning; classifiers

1. Introduction

The skin cancer is among the most common types of cancer in the world [1]. Melanoma is the
most dangerous type of skin cancer, caused by over production of melanin pigments that change the
color and texture of skin, resulting as a dark area on the skin [2]. Data indicate that the incidence of
melanoma, which is a type of cancer that metastasizes rapidly, has increased alarmingly [3].

However, visual analysis is limited by human visual ability, as well as human perception and
sensitivity, in addition to the fact that not all melanomas have the same characteristics. The tumor is an
exceptional expansion of human cells that reproduce in an unrestricted way and that can be identified
by a variation of color and texture of the human tissue under study, making information contained
in the images extremely valuable. Textures are visual patterns, which have brightness, color, slope,
size and other attributes. When partitioned into sub-images by regions of interest, they are able to be
properly classified.

Color is one of the significant features in the examination of skin lesion. The distribution of texture
and color features presents significant information, as Figure 1 shows.
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(a) (b) 

Figure 1. Images of melanoma and nevus tissues: (a) Skin lesion from melanoma image; (b) Nevus Skin.

A technique of analysis that focuses on the extraction of intrinsic characteristics of the image
such as—brightness and color, providing an idea of the roughness or smoothness, among other
characteristics, is texture analysis. Digital image texture analysis refers to techniques that use image
processing in order to extract representative features of the images studied which can have importance
in the discrimination between images.

This makes it possible to accelerate decisions concerning diagnosis. In these cases, image quality
is essential, relying on bandwidth, sensitivity, resolution and signal-to-noise ratio of the image systems.
Artificial intelligence can be very useful in assisting oncologists and radiologists in making early
diagnoses of tissue regions with melanoma [4].

In Figure 2 a graphical representation of nearly 300,000 cases predicted indicates melanoma was
the 19th most-incident tumor in the world in 2018 and will continue rising, according to the World
Health Organization’s (WHO) International Agency for Research on Cancer (IARC) study Globocan [5].

Figure 2. Estimated of incident cases from 2018 to 2040, melanoma of skin, both sexes, all ages. Source:
International Agency for Research on Cancer of World Health Organization.

The estimate foresees that, this year, 2020, 1.81 million new cases of cancer and 9.5 million deaths
due to neoplasia will occur. One in five men and one in six women are predicted to develop the disease
over a lifetime. This is in contrast to the last survey published, in 2012, when the International Agency
for Research on Cancer (IARC of WHO) predicted 14.1 million new cases and 8.2 million deaths.

According to the IARC, by 2020 there are expected to be 300,000 new cases of melanoma in
the world.
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In 2018, the number of melanoma cases was 287,723. The estimate for 2040 will be 466,914.
Estimated number of deaths from 2018 to 2040 will be 42,208, melanoma of skin, both sexes, all ages.

Given the growth of demand for early diagnosis, a tool such as computer vision with a machine
learning tool could help radiologists to produce relevant diagnoses more quickly and provide
quantitative measures for regions suspected of having melanoma cancer. The works related to this
research reveal this trend.

In this article, the new strategy is proposed through the addition of texture information, through
the red, green and blue color channels, called here RGB components. In the process of acquiring the
characteristics of the textures, using the Python syntax and the algorithms in the Python library to
pinpoint the location of the region of interest (ROI) in the skin image, regardless of the image position.

Artificial intelligence when applied to the set of data representative of characteristic textures of
the images, can assist oncologists and radiologists in identifying suspicious skin regions. Adequate
experimental results have shown how this strategy can provide an accurate measure of quality that
correspond to the subjective assessments by clinical experts [6].

The human eye, despite its perfection, is not able to capture certain details in an image or to
distinguish small differences between certain micro-textures. Using Machine Learning, these differences
can be measured, evaluated and compared to standard images and thus identify microtextural
differences in medical examination images. Different parameters of texture reflect different properties
within the image.

The purpose of resource extraction is to choose a data set representative of the original image
measuring certain properties or resources that can distinguish a pattern between one sub-image
and another.

This is a problem of binary classification, since the samples belonged to two classes—nevus tissue
or melanoma, so the proposal for a solution for this new strategy for detecting melanoma is presented.
All experimental simulations were implemented and executed using the Python language.

The paper is organized as follows—Section 2 presents the studies related to research, introducing
the most common techniques used for the detection of tumors.

Section 3, deals with the theoretical framework in first and second order statistics.
Section 4 proposes strategies and solutions using a machine learning application for the detection

of skin cancer.
Section 5 is dedicated to presenting the results of the experiments. Some discussions are presented

in Section 6 and in Section 7 we make conclusions from the results of this study, with suggestions for
new lines of research and future work.

2. Related Works

Some research works are related to our study because they use convergent techniques for
texture analysis.

The diagnosis of skin lesions was studied by Zhang [7]. The analysis considered Convolutional
Neural Networks (CNN) for automatic detection of skin cancer, comparing this with other research
methods. The proposed method called CNN/WOA achieved an accuracy of 91.00%, with a sensitivity
of 95.00% and specificity of 91.00%.

Pathan [8] reviewed the cutting-edge techniques declared in the literature, summarizing these state
of art approaches. The steps included dermoscopic image pre-processing, segmentation, extraction
and selection of peculiar characteristics and disposition of the skin lesions. The study also evaluated
the consequences of the methodologies reported in the literature in addition to the results and future
directions of research. The best result from the listed methods and algorithms was the Otsu threshold
with Active Contour using a Sparse-Field level-set method, with a precision ability of 97.50% for the
detection of melanomas.

Lee et al. [9] proposed the skin disease classification solution using Fine-tuned Neural Networks.
The model achieved an accuracy of 89.90% and 78.50% in the validation set and the test set, respectively.
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Using the technique of aggregating robust convolutional neural networks (CNNs) into a structure,
Harangi [10] achieved classification results in three classes of injuries. The experimental results
concluded that the average area under the receiver operating characteristic curve (AUC) was 89.10%
for the task of categorizing the 3 classes.

Li [11] proposed two deep learning methods to address three main tasks emerging in the area of
skin lesion image processing, that is, lesion segmentation (task 1), lesion dermoscopic feature extraction
(task 2) and lesion classification (task 3). The proposed deep learning frameworks were evaluated on
the ISIC 2017 dataset. Experimental results show the promising accuracies of these frameworks, that is,
75.30% for task 1, 84.80% for task 2 and 91.20% for task 3 were achieved.

A method proposed by Abbadi [12], takes into account the techniques known as
ABCD—Asymmetry, Edge, Color and Diameter. For the detection of melanoma, the metric TDS (Total
Dermoscopy Score) was calculated to perform the classification. The accuracy found in the results was
95.45%.

Fernandez [3] proposed in his research the extraction of characteristics that appear in the image of
the lesion and treated with the Gray Level Co-occurrence Matrix (GLCM) method. Then, during the
detection phase, a set of classifiers determined the occurrence of a malignant tumor. The experiments
were carried out on images obtained from the ISIC repository. The proposed system provides skin
cancer detection accuracy above 88.00%.

Ansari [13] proposed a skin cancer detection framework using SVM for early detection of skin
cancer. The dermoscopic image of skin cancer was obtained and submitted to different pre-processing
strategies using filtering images. The GLCM system was used to select specific highlights on the image
which were then used to help establish the classifier. The classification determined whether the image
was of a cancerous or non-cancerous tissue. The accuracy of the proposed structure is 95.00%.

The following are references from other authors with their respective works and applications,
using similar techniques for extracting characteristics in medical images.

The diagnosis of breast cancer subtypes using image texture analysis was studied by Waugh [14].
The analysis considered the distribution of the pixel intensities in the magnetic resonance images. The
entropy parameters of the GLCM matrix resulted in significant contributions to image classification,
which can be useful in the treatment and monitoring of breast cancer therapeutics.

Recently, Vamvakas [15] proposed the solution of a challenge in the diagnosis of magnetic
resonance images, using advanced techniques such as Diffusion Tensor Imaging—distinguishing
ambiguous images in the appearance of Glioblastoma Multiforme and solitary metastasis, using 3D
textural resources with GLCM.

Jennitta [16] using GLCM and Local Standard Descriptor parameters, applied to magnetic
resonance images of the brain, showed a promising approach to medical diagnosis.

Hiba Asri [17], with the objective of diagnosing breast cancer, used machine learning techniques,
such as—Support Vector Machine (SVM), Decision Tree, Naive Bayes and K closest neighbors, in the
Wisconsin Breast Cancer database. The results proved that the SVM had the best accuracy—97.13%.

In a recent study on lung cancer, Yoon et al. [18], selected parameters for texture analysis in
magnetic resonance images. Correlation between tumor area and size was calculated by linear
regression. The injection of contrast material was used to check the MRI images and improvements
were recorded in the selected texture parameters, in a time window between 120–180 s.

A predictive and two probabilistic model for detecting cancer in the human liver using computed
tomography images was shown by Seal [19]. Haralick [20] calculated parameters in the GLCM of
images of the liver with injury and without injury, as made available with several classification models
such as—Logistic Regression (LR), Linear Discriminant Analysis (LDA) and a predictive model using
Multilayer Perceptron (MLP), to estimate the likelihood of a patient having liver cancer or not. It was
proved that logistic regression (96.67%) obtained the best accuracy when compared to LDA (95.00%)
and MLP (94.40%).
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Harshavardhan [21] used the SVM (Support Vector Machine) to classify data extracted from brain
images to characterize benign or malignant tumors. To evaluate the performance of these resources,
several texture methods were used, such as the histogram, Gray Level Co-occurrence Matrix (GLCM),
gray level execution length matrix (GRLM), all analyzed separately. Performance results ranged from
82.97% to 92.83%.

Bahadure [22] demonstrated an efficient proposal to identify normal and abnormal tissues from
MRI images of the brain. The experimental results identified one classified with an accuracy of 96.51%,
specificity of 94.20% and sensitivity of 97.72%. Machine learning techniques were used, with data on
texture, color, contrast and GLCM of the studied images.

Abdel-Nasser et al. [23] proposed a method that generates a set of compact representations of
infrared breast images, with competitive results (AUC = 0.989), able to differentiate between normal
and cancerous cases.

3. Materials and Methods

There follows a general description of the statistical parameters used in the proposal of this work,
for the extraction of characteristics from the images. These characteristics make up the co-occurrence
matrix (GLCM) and are part of the keypoints, applied to each image.

Let f (x, y) be a function of two discrete variables x and y, x = 0, 1, . . . , N − 1 and y = 0, 1, . . . ,
M − 1. The discrete function f (x, y) can assume values for i = 0, 1, . . . , L − 1, where L is the number
of grayscale levels. The intensity-level histogram is a function showing (for each intensity level) the
number of pixels in the whole image, which have this intensity:

h(i) =
N−1∑
x=0

M−1∑
y=0

δ( f (x, y), j), (1)

where δ(i, j) is the Kronecker delta function

δ(i, j) =
{

1. i = j
0. i � j

. (2)

The probability of occurrence of each pixel in the image that will appear in the histogram is
given by:

p(i) =
h(i)
M

, i = 0, 1, . . . ., L− 1. (3)

These resources are determined automatically, constituting the first order statistics
(Equations (4)–(7)) and used at keypoints. The average intensity of the grayscale is calculated
by:

μ =
L−1∑
i=0

ip(i). (4)

The variance shows the degree of variability around the average grayscale distribution:

σ2 =
L−1∑
i=0

(i− μ)2p(i). (5)

Skewness measures the asymmetry of the histogram:

μ3 = σ−3
L−1∑
i=0

(i− μ)3p(i). (6)
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Kurtosis is a measure of whether the data are heavy-tailed or light-tailed relative to the normal
distribution. The kurtosis is a measure of flatness of the histogram.

μ4 = σ−4
L−1∑
i=0

(i− μ)4p(i) − 3. (7)

The second-order histogram is defined as that Gray-Level Co-occurrence Matrix, that is a square
matrix is formed by elements that indicate the probability of occurrence for a pair of pixels with
intensities that depend on the distance d and the angle θ. Equations (8) through (14) make up the
second-order statistics set.

p(i, j, d, θ) =
{
((x1, y1), (x2, y2)) : h(x1, y1) = i , h(x2, y2) = j

}
, (8)

where
(x2, y2) = (x1 , y1) + (dcosθ, dsenθ). (9)

In this study, the distances considered were d = 1, 2, . . . , 5, with angles θ = 0◦, 45◦, 90◦ and 135◦.
Energy derived from the second angular momentum measures the local uniformity of the shades

of gray.
E =

∑
i

∑
j

[p(i, j)]2. (10)

Entropy measures the degree of clutter between the image pixels:

H = −
∑

i

∑
j

p(i, j)log2[p(i, j)]. (11)

Correlation is a measure of how a pixel is associated with its neighbor across the image and
assumes values ranging from ±1.

ρ =
L−1∑
i=0

L−1∑
j=0

p(i, j)
(i− μX)( j− μY)

σXσY
. (12)

Contrast is a difference moment of the GLCM and measures the amount of local variations in
an image:

C =
L−1∑
i=0

L−1∑
j=0

(i− j)2p(i, j). (13)

Haralick [20] proposed a set of scalar quantities for summarizing the information contained in a
GLCM. Originally these comprised a total of 14 features namely, angular second moment, contrast,
correlation, sum of variance, inverse difference moment, sum average, sum variance, sum entropy,
entropy, difference variance, difference entropy, information measures of correlation and maximal
correlation coefficient. In order to obtain texture features, the normalized GLCM was computed for
each of four orientations (0◦, 45◦, 90◦ and 135◦).

GLCM expresses the texture feature according to the calculation of the conditional probability of
the pixel pair of the gray intensities, for the different spatial positions [24].

p(i, j |d, θ) =
p(i, j, d, θ)∑

i
∑

j p(i, j
∣∣∣d,θ)

. (14)

The next step was to format a proposal, containing the extraction of characteristics from medical
images to build a classification based on several state-of-the-art classifiers.
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4. Proposed Strategy

The present study investigates the best strategy for aiding in the diagnosis of the presence or
absence of melanoma through skin imaging. In the proposed strategy, what differentiates it from
other methods of texture analysis is the inclusion of RGB components, adding texture information to
the keypoints.

The developed strategy involves the following steps:

1. Random selection of a set of images with melanoma and nevus.
2. Generation of keypoints containing:

a. first order statistics information;
b. second order statistics parameters;
c. RGB component information.

3. Extraction of characteristics from all training images.
4. Classification phase with the modeling using the training database.
5. Application of the selected model to a test image database.
6. Result of the model applied to the test database.

In addition, the algorithm used to read the keypoints does not depend on the image position,
when capturing information in the region of interest—ROI.

The block diagram in Figure 3 shows the proposed strategy.

Figure 3. Block Diagram of the proposed strategy.

All data sets used are available in the Skin Lesion Analysis Towards Melanoma—International
Skin Imaging Collaboration (ISIC) 2019 [25].

The database was formed by 2000 jpeg skin images, selected at random. The learning process was
performed on 75% of the database, as in this research, 10 samples were used per image, the learning
process analyzed a total of 15,000 samples. In the testing process, the remaining 25% of the images
in the database were used, making a total of 5000 samples in the testing phase. Each sample had a
dimension of 6 pixels × 6 pixels.

To increase the efficiency in extracting characteristics for differentiation of the tissues, it was
necessary to add parameters as first and second order statistics into keypoints, such as—mean, variance,
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kurtosis, skewness, contrast, correlation, entropy, energy, maximum and minimum value, as well as
RGB components.

After extracting the characteristics of the images, modeling was performed through training the
database, using the best-known classifiers and their variations, as found in the academic literature:

• Stochastic Gradient Classifier. The basic idea of this classifier method is straightforward—iteratively
adjust the parameters θ in the direction where the gradient of the cost function is large and negative.
In this way, the training procedure ensures the parameters flow towards a local minimum of the
cost function.

• Naïve Bayes Classifier. A Naive Bayes classifier is a simple probabilistic classifier based on
applying Bayes’ theorem (from Bayesian statistics) with strong (naive) independence assumptions.
This classifier is among those common learning methods grouped by similarities which makes use
of Bayes’ theorem of probability to build ML models, especially those related to disease prediction
and document classification.

• Decision Tree Classifier. A decision tree is a decision support tool that uses a tree-like graph and
its possible results. It is a way to display the algorithm.

• Random Forest Classifier. Random forests are an ensemble learning method for classification,
regression and other tasks, that operate by constructing a multitude of decision trees at training
time. As a result, the classes (classification) or average forecast (regression) of these individually
generated trees are grouped. This method aims at averaging many approximately unbiased but
noisy trees to obtain low variances results. Is a collection of decisions tress, which, together, forms
a forest.

• KNN Classifier. Classification is achieved by identifying the nearest neighbors to a query example
and using those neighbors to determine the class of the query.

• Support Vector Machine Classifier. The objective of the SVM classifier is to find the hyperplane that
separates the points of classes C1 and C2 with a maximum margin, linearly penalizing points within
the margin through a regularization parameter selected by the user. Support vector machines
bring a new option to the pattern recognition problem with clear connections in statistical learning
theory. They differ radically from other methods, for example, neural networks—the training of
an SVM always finds a global minimum and its simple geometric interpretation provides much
scope for deeper investigations.

• Model Logistic Regression Classifier. Logistic regression classifies by using the log-ratios between
the probability of groups given the data. For the groups g1 and g2:

log
P(G = g1

∣∣∣X = x)

P(G = g2
∣∣∣X = x)

= β0 + x βx = 0. (15)

The decision boundary is the value where the probability of the group given the data is equal. To
find it, the likelihood function of β is maximized:

L(β) =
N∑

i=1

logPgi(x |β ). (16)

In machine learning, the classification identifies to which Class a set of observed data belongs.
Classification is an example of pattern recognition. Some variants of the classifiers cited and available
in the library of the Python environment were used, to increase the set of classifiers tested:

1. sklearn.linear_model.SGDClassifier;
2. sklearn.naive_bayes.GaussianNB;
3. sklearn.naive_bayes.BernoulliNB;
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4. sklearn.naive_bayes.MultinomialNB;
5. sklearn.tree.DecisionTreeClassifier;
6. sklearn.ensemble.ExtraTreesClassifier;
7. sklearn.ensemble.RandomForestClassifier;
8. sklearn.ensemble.GradientBoostingClassifier;
9. sklearn.neighbors.KNeighborsClassifier;
10. sklearn.svm.LinearSVC;
11. sklearn.svm.SVC;
12. sklearn.linear_model.LogisticRegression.

After the computational effort using the twelve classifiers, the five best ones were selected, based
on the area under the Receiver Operating Characteristics:

1. Linear Model Logistic Regression.
2. Gradient Boosting (Stochastic Gradient Boosting).
3. SVM Linear SVC (Support Vector Machine Linear—Support Vector Classification).
4. Linear Model Stochastic Gradient Descendent (Linear Model SGD).
5. SVM SVC (Support Vector Machine—Support Vector Clustering).

The results of the database simulation are provided in detail in the following sections.

5. Results

First-order statistics concern the distribution of gray levels in an image, where the first-order
histogram is used as the basis for extracting its characteristics, such as—mean, standard deviation,
kurtosis and skewness, as shown in Table 1. These are not sufficient, however, for decision making
between what is melanoma tissue and what is healthy tissue. The Mann-Whitney U test applied to the
parameters in Table 1 show that (p < 0.05), therefore, the null hypothesis is rejected. Meaning that the
distributions of both samples (melanoma and nevus) are not the same.

Table 1. First-order statistics.

Parameters Nevus Tissue Melanoma Tissue p-Value

Mean Intensity 0.4514 ± 0.14340 0.4204 ± 0.1543 0.000
Kurtosis 3.0953 ± 5.4136 3.6476 ± 6.7590 0.003

Skewness 0.1935 ± 1.7280 0.2479 ± 1.8501 0.022

The boxplot in Figure 4 shows that it is not possible to differentiate nevus tissue from tissue with
melanoma by only observing the average intensity values.

Figure 4. Boxplot with average intensities of grayscale images with melanoma and nevus.
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Performance Metrics for Classifiers

In academic medical literature, instances are designated as positive, indicating the existence of the
disease and negative, indicating the absence of the disease; thus, four possibilities arise when medical
images are submitted to the classifiers:

• TP-True Positive: correctly classified positive cases.
• TN-True Negative: correctly classified negative cases.
• FP-False Positive: incorrectly classified negative cases.
• FN-False Negative: incorrectly classified positive cases.

The metrics that were considered to evaluate the classifiers for these were:

1. Accuracy is the ratio of the number of instances correctly classified to the number of all instances
in the test suite.

Accuracy =
TP + TN

TP + TN + FP + FN
(17)

2. Sensitivity, also known as recall, is the ratio of positives predicted correctly relative to the actual
number of positives in the test set.

Sensitivity =
TP

TP + FN
(18)

3. Specificity is the version of the sensitivity for negatives and indicates the proportion of negatives
correctly predicted relative to the actual number of negatives.

Speci f icity =
TN

TP + FP
(19)

4. The F score is a metric that considers both precision and sensitivity by taking their harmonic mean.

F− score = 2 ∗
recall ∗ precision
recall + precision

(20)

The ideal limit for all metrics is to reach the unit value.
Table 2 shows the five best classifiers in descending order by Area Under the Receiver Operating

Characteristics (AUC); these presented the best performance, of the twelve tested.
In this study, considering the test database, the AUC of this set of classifiers, reached levels

between 95.04% and 97.46%. All experiments were conducted under the same Python software setup.
Having a unique metric evaluation facilitates the decision-making process for selection of the

best classifier from a set of the top five. This metric is the AUC. It provides a clear classification of
preferences among all of them and therefore a clear choice of direction. Thus, the best classifier was the
Linear Logistic Regression Model.
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Table 2. Classifiers ordered by Area Under the Receiver Operating Characteristics (AUC).

Classifiers AUC Precision Recall F1-Score Support

1. Logistic Regression 0.9746

Melanoma 0.98 0.97 0.98 269
Nevus 0.96 0.98 0.97 231

Accuracy 0.97
Weighted average 0.97 0.98 0.97 500

2. Gradient Boosting 0.9699

Melanoma 0.97 0.97 0.97 269
Nevus 0.97 0.97 0.97 231

Accuracy 0.97
Weighted average 0.97 0.97 0.97 500

3. SVM Linear SVC 0.9659

Melanoma 0.99 0.94 0.97 269
Nevus 0.93 0.99 0.96 231

Accuracy 0.96
Weighted average 0.96 0.97 0.96 500

4. Linear Model SGD 0.9551

Melanoma 0.95 0.97 0.96 269
Nevus 0.96 0.94 0.95 231

Accuracy 0.96
Weighted average 0.96 0.96 0.96 500

5. SVM SVC 0.9504

Melanoma 0.94 0.97 0.96 269
Nevus 0.96 0.93 0.95 231

Accuracy 0.95
Weighted average 0.95 0.95 0.95 500

1 Linear Model Logistic Regression. 2 Stochastic Gradient Boosting. 3 Support Vector Machine Linear—Support
Vector Classification. 4 Linear Model Stochastic Gradient Descendent. 5 Support Vector Machine—Support
Vector Clustering.

The receiver operating curve (ROC) in Figure 5 is another common tool used with the binary
classifier. It clarifies resource selection and the accuracy of the logistic regression classifier. The blue
dotted line represents the ROC curve of a purely random classifier. A good classifier stays as far away
from that line as possible, as here, in the upper left corner.

A suitable overall measure for the curve is the area under the curve (AUC).
The confusion matrix of the Logistic Regression method that describes the complete performance

of the model is shown in Figure 6. This generates a sensitivity and specificity of 0.97.
The accuracy of a classification can be evaluated by computing the number of correctly recognized

class examples (true positives), the number of correctly recognized examples that do not belong to the
class (true negatives) and examples that either were incorrectly assigned to the class (false positives) or
that were not recognized as class examples (false negatives) [26].

In the Linear Logistic Regression model, the recall for identification of melanoma was 97%.
So, of the 500 medical images in the test database, 269 images were of melanoma and the classifier was
97% correct, that is, it identified TP = 261 images correctly, wrongly classifying FN = 8 of the images
as nevus.
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Figure 5. Receiver operating curve (ROC) curve of logistic regression.

Similarly, the recall for nevus identification was 98.00%. The classifier recognized TN = 226 images
as nevus, classifying FP = 5 images as melanoma, for a total of 231 nevus medical images.

The same reasoning can be made for the other classifiers listed in Table 2.

Figure 6. Confusion Matrix considering the Logistic Regression Model.

For the best performance model, the probability curve is shown through the sigmoid curve
showed in Figure 7.
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Figure 7. Logistic Regression Model of the Proposed Strategy.

Just as linear regression uses the least common square method to minimize error and to attain
the best possible solution, logistic regression achieves the best results using the maximum likelihood
method, plotting the probability curve as a function of the number of samples tested. The steeper
this curve, the smaller the sample range that leads to the probability curve 0 < p < 1, for diagnosis
detection, p > 0.5 probably the tissue will be melanoma, if p < 0.5 the tissue will be nevus.

A ROC curve is a graphical tool used to understand the performance of a classification model.
For a logistic regression model, a prediction can either be positive or negative. Also, this prediction
can either be correct or incorrect.

False Positive Rate =
FP

TN + FP
= 1− Speci f icity. = 84.01%. (21)

The Specificity is 15.99%. The number of positive and negative outcomes change as we change
the threshold of probability values to classify a probability value as a positive or negative outcome.
Thus, the Sensitivity and Specificity will change as well [27].

6. Discussion

Although the results were satisfactory with the use of statistical techniques, for future studies,
it should be noted that when second order GLCM parameters were used, it is necessary to take some
precautions regarding the size of the region of interest.

In some cases, the size of the ROI can change values in some parameters. For example, parameters
describing the image homogeneity and complexity (angular second moment, entropy, sum entropy
and difference entropy) are examples of parameters that depend on the ROI size, especially with small
ROI sizes that approach a limit value [28].

The AUC found in this study, as shown in Table 2, considering the test database, reached
levels between 95.04% and 97.46%, which corresponds to an accuracy between 95.00% and 97.00%,
respectively. The Linear Model Logistic Regression classifiers were the most accurate.

This shows the effectiveness of second-order statistics and the inclusion of RGB components in
the composition of keypoints in improving performance of the proposed strategy.

7. Conclusions

The proposed mechanism of identifying and classifying skin tissue is general; in future work it can
be applied to other medical images to verify the results, since the strategy analyzes the texture of the
images and reveals their differences according to the parameters set, enabling the image classification.

Texture analysis utilizes the changes in the grey value of image pixels and their distribution
pattern, which can reflect microscopic pathological changes that are not visible to the human eye
and can be used in the analysis of various images. Thus, texture analysis in medical imaging can be
a substantial support for the clinical decision-making process in the diagnosis and classification of
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tumors. This methodology is expected to become more accurate than the human eye in detecting
minute deviations in cell and tissue structures.

Statistical methods using GLCM features, associated with red, green and blue color information to
perform micro-texture analyzes of human tissues and image classification for tumor detection showed
great efficiency in the results presented.

The results show that for the detection of melanoma in human tissues, the logistic regression
model was the best model with 97.00% of accuracy and precision on benchmark dataset and also a
sensitivity and specificity of 97.00%.

The second-best method of classifying the data of the evaluated medical images was the
Classification of the Gradient Boosting.
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Abstract: Recent medical imaging technologies, specifically functional magnetic resonance imaging
(fMRI), have advanced the diagnosis of neurological and neurodevelopmental disorders by allowing
scientists and physicians to observe the activity within and between different regions of the brain.
Deep learning methods have frequently been implemented to analyze images produced by such
technologies and perform disease classification tasks; however, current state-of-the-art approaches do
not take advantage of all the information offered by fMRI scans. In this paper, we propose a deep
multimodal model that learns a joint representation from two types of connectomic data offered by
fMRI scans. Incorporating two functional imaging modalities in an automated end-to-end autism
diagnosis system will offer a more comprehensive picture of the neural activity, and thus allow for
more accurate diagnoses. Our multimodal training strategy achieves a classification accuracy of 74%
and a recall of 95%, as well as an F1 score of 0.805, and its overall performance is superior to using
only one type of functional data.

Keywords: deep learning; multimodal learning; convolutional neural networks; autism; fMRI

1. Introduction

Autism spectrum disorder (ASD) is a lifelong neurological condition characterized by repetitive,
restricted behavior as well as limitations in communication and social abilities, manifesting in a wide
range of sensorimotor deficits [1]. Diagnostic processes for ASD are based on the assessment of
social behaviors and language skills; however, there is limited understanding of the neural patterns
behind the spectrum of autism behavior and the severity of the disease [2]. Recently, noninvasive
brain imaging techniques have allowed for a better understanding of the neural circuitry underlying
neurodeficiency disorders and their associated symptoms, such as ASD and its behavioral deficits.
Specifically, functional magnetic resonance imaging (fMRI) allows physicians and medical experts to
visually evaluate the functional characteristics or properties of a brain. This radioimaging procedure is
able to assist neuroscientists in acquiring valuable and precise information on different neurological
disorders [3]. For instance, in the diagnosis of ASD, instead of solely relying on observation and
speaking with the patient, physicians analyze neuroimages for anomalies in brain activity, helping
them more efficiently and precisely identify differences in their patients’ neural pathways. Identifying
the neural patterns of activation for ASD and associating these patterns with physiological and
psychological features will aid scientists and medical practitioners in gaining more insight into the
etiology of mental disorders [4].

Computational diagnosis: However, even with high-quality images, manual analysis is
inefficient and at risk of human error, due to the variation between both doctors and patients.
In an effort to make this process more objective, machine learning and computer vision techniques
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have frequently been applied in medical imaging problems to construct computer-assisted diagnosis
systems [5]. State-of-the-art neuroimaging analysis uses activation maps, alternatively known as
correlation matrices, which are constructed from the radiology scans. Activation maps provide
information regarding the interaction between different areas of the brain by describing the relationship
between their corresponding neural activity [6]. In doing so, the activation maps allow scientists to
localize abnormal neural activity to specific regions of the brain and focus on those regions when
manually analyzing the scans for anomalies.

Traditional machine learning in computer vision relies heavily on features pre-selected by medical
experts. Early machine learning algorithms, e.g., support vector machines (SVM), k-nearest neighbors
(KNN), decision trees, etc., analyze raw image data without any learning of hidden representations.
On the other hand, deep learning (DL) algorithms in computer vision has shown significant advantage
in capturing hidden representations and automatically extracting features from the given image data.
Based on artificial neural networks structures, DL algorithms have multiple stages of non-linear feature
transformation, which leads to hierarchical representations from pixels to edge, motif, part, and the
entire object. State-of-the-art deep learning algorithms include convolutional neural networks (CNNs),
recurrent neural networks (RNNs), long short term memory (LSTM) networks, generative adversarial
networks (GANs), etc., which do not require manual processing or feature selection on raw data.

Related Work

The Autism Brain Imaginge Data Exchange (ABIDE) is a public, anonymized neuroimaging
dataset that has been analyzed extensively in the past using various different techniques. Nielsen [7]
analyzed ABIDE data to classify autism versus control subjects based on brain connectivity
measurements. The study replicated earlier methods and implemented them on point-to-point
connectivity data, and achieved roughly 60% accuracy with whole-brain classification.

Connectivity maps. The most common approach to fMRI analysis focuses on ROI mean time series
data, since it is a representation of brain activity in distinct regions of the brain. Prior to analysis, pair-wise
correlations are calculated between ROIs to form a functional connectivity matrix—each element of the
matrix is a Pearson correlation coefficient representing the level of co-activation between the signals in the
two ROI based on the time series data. The resulting matrix, also known as an activation map, is reshaped
into a feature vector and then used as input into a classification algorithm [8,9].

Full-brain connectivity fingerprints. There are several arguments against exclusively using ROI
time series data to analyze fMRI scans. The original form of each functional scan is a complete 3D scan
of the brain across time (i.e., 4D matrix); thus, averaged ROI signal intensities only offers a partial
representation of the fMRI scan, since by condensing the correlation matrix, one effectively loses the
spatial structure of the connectome [10]. Khosla et. al. (2017) [9] proposed an alternative to relying
exclusively on ROI data—instead of only computing the correlation between each region’s signal
intensities, they construct a full-brain connectivity “fingerprint” consisting of correlation coefficients
between voxels from the fMRI scan and signal intensities from ROIs, incorporating both the spatial
information offered by the original functional image volume along with the averaged time series data.
The connectivity fingerprint is then used as input into a simple CNN architecture [8].

Multimodal learning. Computer vision and deep learning have been used extensively to achieve
automatic disease diagnosis with medical imaging analysis [11,12]. Specifically, many machine learning
problems involve the analysis of different forms of data to arrive at a result; as part of the classification
problem, it is important to understand the relationship between these different data types, or modalities
of data. Zhang et. al. (2018) [13] use generative adversarial networks (GANs) to translate between
computed tomography (CT) and magnetic resonance imaging (MRI) data. Fukui et. al. (2016) [14]
propose a new method for multimodal compact bilinear (MCB) pooling by computing the outer
product of the different feature vectors from multiple modalities. MCB is based on previous compact
bilinear pooling methods and allows for a more expressive and also efficient way of constructing a
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joint representation of both inputs [15]. The model was used to solve visual question answering (VQA)
and visual grounding problems and outperforms state-of-the-art methods.

Our Approach. Previous studies on functional neuroimaging analysis use only one type of
activation map in their evaluation [8,9,16]. In this study, we propose to include both activation maps in
our analysis, and that by using two modalities instead of one, we will be able to create a more accurate
and holistic representation of the functional imaging data, and thus achieve more accurate diagnoses.
To do so, we propose a model architecture capable of analyzing both types of activation maps by
combining different deep learning networks. Specifically, one of the inputs is the ROI time series
activation map as described above, constructed by computing the correlation matrix between all pairs
of ROI, and the second is the fMRI × ROI activation map. The pooling technique used in our model is
a concatenation of the two feature vectors, which is then used as input to four fully-connected layers
before the network outputs its prediction. The resulting classification system is a multimodal model,
an automated disease classification system that uses two types of activation maps to predict whether
the given patient is healthy or has autism. With both input modalities, the resulting diagnosis system
is both more accurate and offers a more complete understanding of the functional data, and provides a
powerful aid to physicians during the diagnostic process.

The main contributions of our method are highlighted as follows:

1. We propose an end-to-end deep neural network-based multimodal architecture that incorporates
features from two different types of modalities. Our proposed architecture incorporates
all connectomic information from the functional imaging data, which allows for a more
comprehensive and holistic functional image analysis.

2. By incorporating both types of activation maps from the functional data, the overall performance
of the classifier is improved and thus creates a more powerful diagnostic tool to assist doctors.
Moreover, we also provide ‘visual explanations’ of the regions in fMRI images that our model
utilizes to make diagnosis predictions. We believe this visualization offers transparency on the
model and is crucial in providing effective assistance to the diagnostic process.

The remainder of this paper is organized as follows: in Section 2, we present the dataset and
imaging modalities that were analyzed in our study, and our methods for analysis, including the
preprocessing pipeline and network architectures; in Section 3, we discuss the details behind the
training and testing of our constructed models; in Section 4, we present the results and performance
metrics of each model and discuss them with respect to other publications in the field; and we present
our conclusions and future work in Section 5.

2. Methods and Data

2.1. Data

In this study, we focus on the analysis of functional magnetic resonance imaging, or fMRI
scans. The purpose of these images is to track changes in blood oxygen level-dependent (BOLD)
signal in the brain across a period of time. Functional images are thus four-dimensional, where the
dimensions (H, W, D, T) represent the height, width, depth, and time dimensions of the image volume,
respectively [3]. fMRI scans can also be represented as regions of interest (ROI) mean time series
data [17,18], which is constructed from the fMRI scan after preprocessing, and can be considered of as
an abridged or summarized version of the complete multidimensional fMRI image volume. The ROI
time series data is constructed by first segmenting the original fMRI scan functionally homogeneous
regions (ROI), and then taking the average BOLD signal from each area. These ROIs are typically
segmented using a functional parcellation brain atlas [19]; different atlases “segment” the full brain
scan into different ROIs. For the purposes of our research, we chose to use the Automated Anatomical
Labeling (AAL) atlas. After the regions have been specified, the BOLD signal intensities of each voxel
are averaged across all voxels enclosed in the region, to return one intensity value for each time frame.
The result is a T-dimensional vector for every ROI, where T represents the number of seconds for
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which the signal was measured. Thus, for each subject, one ROI mean time series volume is a 2D
matrix with dimensions (N, T), where N represents the number of ROIs [8].

However, the BOLD signal measured by fMRI images represents changes in the blood oxygenation
of brain tissue, and are not equivalent to neural activity [20]. Thus, it is not appropriate to directly use
the fMRI scan of BOLD signals nor the ROI time series data as input for analysis. Instead, correlations
between the time series data must be computed, either between voxels and ROIs or only pairs of
ROIs—these correlations serve as the two different features used in our model. The resulting output
from this step is a correlation matrix or activation map, which indicates points in the scan where there
is neural activity.

This study was conducted on the ABIDE dataset [21], a multi-site open-access MRI study
containing anonymized patient neuroimaging data. Data from the first phase of the study (ABIDE-I)
was used in our analysis, which consisted of fMRI images and regions of interest (ROI) time series
signals from both control and disease groups. The original ABIDE-I dataset consists of 1112 subjects;
in this study, 77 subjects were removed from consideration due to low quality or missing scans. This
yielded a total of 1035 subjects, with 505 individuals diagnosed with ASD and 530 typical controls,
from 17 sites.

2.2. Preprocessing

Prior to classification, neuroimaging and connectomic data must be appropriately preprocessed in
order to allow efficient and precise analysis. Preprocessing can be divided into two steps, as outlined
in the following sections: (1) preparation and quality assessment of neuro-images and extraction of
time series data and (2) feature preprocessing.

2.2.1. Preprocessing of Neuro-images

As previously mentioned (see Section 2.1), the dataset used in this study consists of images
collected from 17 different sites [21]. The standard preprocessing steps were taken to prepare the
neuroimages for analysis using the Configurable Pipeline for the Analysis of Connectomes (CPAC)
toolbox [10], which compiles preprocessing tools from multiple state-of-the-art neuroimaging analysis
libraries, such as AFNI, FSL, ANTs, etc. Namely, the preprocessing frameworks in this pipeline include
slice timing correction, motion correction, global mean intensity normalization and standardization of
functional data to MNI space (3 × 3 × 3 mm resolution). We used data extracted with global signal
regression and band-pass filtering (0.01–10Hz) in our analysis. After preprocessing was complete with
the CPAC pipeline, ROI time series data was then extracted from the resulting fMRI images using the
Automated Anatomical Labeling (AAL) functional parcellation brain atlas, which consists of N = 116
labeled regions [19].

2.2.2. Feature Preprocessing

As previously described in Section 3.1, connectomic data consists of the fMRI image scan, as well
as the ROI time series data. While most state-of-the-art neuroimaging analysis studies focus on only
one form of functional data, we computed both ROI connectivity matrices, i.e., ROI × ROI activation
maps, and full-brain connectivity fingerprints, i.e., fMRI voxels × ROI activation maps, using the fMRI
scan and ROI signal intensities.

Activation map of fMRI and ROI. The connectivity fingerprints between the functional images
and mean time series data were computed by calculating correlation coefficients between every pair
of voxels from the fMRI scan and ROI from the time series data [9]. We first restructured the 4D
fMRI scan into a 2D matrix, such that each row of the matrix corresponds to one voxel, and each
column is one intensity value at a given time T. The reshaped matrix would have thus have dimensions
(H × W × D, T). We then compute a correlation matrix between the voxel intensities and the ROI time
series data; the resulting matrix will be of dimensions (H × W × D, N), where N is the number of ROI.
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Activation map of only ROI. The ROI functional connectivity maps were constructed by
computing a correlation matrix for each subject, where each cell of the matrix contains the correlation
coefficient between a pair of regions, i.e., the level of co-activation in the signals between any two
given regions. Since the resulting correlation matrix is symmetrical along its diagonal, we removed the
values in the lower triangle to delete the duplicates, and also deleted the main diagonal of the matrix,
which represents the correlations of each region with itself. The remaining matrix values were then
reshaped into a vector of features to use as input into the model. The number of features in the final
vector is given by 1

2 ((N − 1)N), where N is the total number of regions [8]. Since the AAL brain atlas
was used to extract the ROI time series data (N = 116), the resulting vector consisted of 6670 features.
The entire feature extraction and connectivity matrix construction workflow is illustrated in Figure 1.

Figure 1. Preprocessing workflow. Construction of correlation matrices, or activation maps (terms are
used interchangeably) between fMRI voxels × ROI time series and between pairs of ROI time series alone.
Numbers on edges of the objects indicate matrix dimensions at the current step, e.g., the dimensions of the
fMRI scan and ROI time series data are (H = 61, W = 73, D = 61, T = 296) and (N = 116, T = 296),
respectively. For more detail on ResNet and MLP network architectures, refer to Figure 2.

2.3. Network Architectures

In this neuroimaging classification problem, the input to the model is an fMRI × ROI connectivity
fingerprint and a vector of ROI correlation coefficients, and the goal is to diagnose the subject as
either positive (with autism) or negative (healthy) based on both inputs. The proposed multimodal
model extracts representations for both the fMRI scan and the ROI input, pools the feature vectors
using simple vector concatenation, and arrives at a diagnosis using the combined features, which are
propagated through four fully-connected layers before being classified into one of two classes.

We extracted features from fMRI × ROI correlation matrices using a modified 18-layer Residual
Network (ResNet-18) [22]. All 2-dimensional convolution layers were replaced by their 3-dimensional
equivalents in order to process the multichannel 3D correlation matrices. The correlation matrices
were all uniformly of the dimensions (61, 73, 61, 116), corresponding to (H, W, D, T) respectively.
During training, the data is reshaped to be (116, 61, 73, 61) so that the ROI dimension is used as the
number of input channels into the first convolutional layer of the ResNet-18 network. Max-pooling
is performed following the input convolutional layer over a 1 × 3 × 3 pixel window, with a stride of
(1, 2, 2). The stride attribute determines how far the window or filter is moved in each dimension
after every computation; e.g., with a stride of 2, the filter moves 2 pixels in the specified dimension.
The matrix is then passed through a stack of convolutional blocks (Res-blocks), each with multiple
convolutional layers, where we pass filters across the image to convolve over the height, width,
and depth dimensions. The filters have very small receptive fields: 3 × 3 × 3 (which is the smallest size
to capture the notion of left/right, up/down, center). In the first two convolutional blocks, we also use
1 × 3 × 3 or convolution filters. The convolution stride varies between 1 and 2 pixels depending on
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the dimension. Following the convolutional blocks, average pooling is performed over a 32 × 3 × 2
window, and the resulting output is a 512-D vector. The vector is then passed through a fully connected
layer before returning the final model output.

ROI × ROI connectivity map features were extracted using a multilayer perceptron (MLP)
classifier, which was a simple fully-connected network. The MLP consisted of three hidden layers,
each with 100 nodes. As stated above, the ROI correlation matrices were reshaped into 6670-D vectors,
where each element represents a pairwise correlation coefficient between the averageBOLD signal of
two ROIs.

Figure 2. Multimodal network architectures and training phases. Visualization of the structure of
the complete deep multimodal network. Numbers denote nodes or input channels in the labeled layer;
FC implies fully connected layers. Phase I of training refers to the training of Resnet-18 and MLP
for feature extraction; Phase II refers to the end-to-end training of the entire multimodal model after
removing output layers from the feature extractors (as shown in the figure, the last 2-node layer of the
MLP and the 512-channel layer of the ResNet are bypassed during Phase II of training.)

3. Experimental Details

Training occurred in two separate phases due to the nature of the model architecture, as described
in Section 4.2. In Phase I, the feature extractors were separately trained as independent networks.
Namely, the MLP was trained on ROI activation maps, and ResNet-18 was trained on fMRI × ROI
activation maps. Upon completion of training for both networks, Phase II of training began. Both MLP
and ResNet-18 models were truncated to remove their output layers to be used as feature extractors,
and then combined with the four fully-connected layers to form the end-to-end model. The resulting
multimodal network, built from the pretrained MLP and ResNet-18 models (the learned network
weights of both models were saved and loaded into the multimodal network), was trained from scratch
in Phase II, initialized with the learned weights from Phase I. After training is complete, we report
performance metrics of classification accuracy, precision, recall, and F1 score for each feature extractor
model, as well as the final end-to-end multimodal model. The full network architecture and the two
training phases are visualized in Figure 2.

3.1. Training Details

Prior to training, the neuroimaging datasets was randomly split into the training and testing sets.
900 subjects were used to train the model, and the remaining 135 subjects were used to evaluate the
trained model. The same training and testing sets were used in both phases of training, i.e., to train
both the feature extractor models and the overall combined multimodal network to avoid polluting
the test set with training data, or vice versa.

The ResNet-18 network used in this work is detailed in Table 1. We used a rectified linear unit
(ReLU) activation function [23] after each layer and Softmax cross-entropy loss to train the network
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using minibatch stochastic gradient descent. We used a batch size = 8 and momentum = 0.9 to train
both the feature extractor models and the end-to-end multimodal model. Both the feature extractor
models were trained from scratch. To train the 3D CNN feature extractor, we used a learning rate
of 1 × 10−2 for 30 epochs and dropped the learning rate after every 6 epochs by a factor of 1 × 10−1;
with the MLP, we used a learning rate of 1 × 10−2 across 50 epochs and dropped the learning rate by
a factor of 1 × 10−1 after every 5 epochs. In the second phase of training for the end-to-end model,
the feature extractor layers were initialized using the MLP and ResNet’s weights learned during Phase
I of training; the entire network was then trained end to end with a learning rate of 1 × 10−5 for 30
epochs. The learning rate was dropped after every 8 epochs for this network with a factor of 1 × 10−1.
All models were constructed using Pytorch [24] and were trained on a single Nvidia P6000 GPU.
The end-to-end training process of both feature extractors and the complete multimodal model took
roughly two hours.

Table 1. ResNet-18 architecture. Network architecture for 3D ResNet-18 model used for corr (fMRI,
ROI) feature extraction. Building blocks are shown in brackets, with the numbers of blocks stacked.

Layer Name 3D ResNet-18 Output Size

conv1 5 × 5 × 5, 64, stride(2,2,2) 32 × 38 × 32 × 64

Max Pool 1 × 3 × 3 max pool, stride(1,2,2) 32 × 19 × 16 × 64

Res-block 1

[
1 × 3 × 3, 64, stride(1,1,1)
1 × 3 × 3, 64, stride(1,1,1)

]
× 2 32 × 19 × 16 × 64

Res-block 2

[
1 × 3 × 3, 128, stride(1,2,2)
1 × 3 × 3, 128, stride(1,1,1)

]
× 2 32 × 10 × 8 × 128

Res-block 3

[
3 × 3 × 3, 256, stride(1,2,2)
3 × 3 × 3, 256, stride(1,1,1)

]
× 2 32 × 5 × 4 × 256

Res-block 4

[
3 × 3 × 3, 512, stride(1,2,2)
3 × 3 × 3, 512, stride(1,1,1)

]
× 2 32 × 3 × 2 × 512

Average Pool 32 × 3 × 2 average pool 1 × 1 × 1 × 512

Fully connected 512 × 2 fully connected layer 2

We present details of the ResNet-18 network architecture in Table 1 above.

4. Results

Due to the absence of any standardized benchmarks or training-testing set splits, it is difficult to
compare against other published works in this field. Previous papers also do not evaluate networks
using the same metrics, and thus do not all report precision, recall and F1 scores, and thus cannot be
directly compared with our results. The following studies use different architectures and do not specify
the data used for training and testing, and are meant to serve only as a reference to the present paper.

Previous studies on functional imaging analysis used only one type of correlation matrix or
activation map as input. Khosla et. al. [9] analyzed the fMRI voxel and ROI time series activation
map, and achieved 73% accuracy with their ensemble model. Guo et. al. [16] conducted studies on the
ROI time series activation map, and achieved 81% accuracy using a fully-connected DNN network.
Heinsfeld et. al. [8], also only used the ROI time series activation map, and report classification
accuracies ranging from 52% to 70% using DNNs. They also studied the same data using support
vector machines and random forests, which achieved 62% and 58% accuracy, respectively.
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When trained on a random subset of 90% of the total ABIDE-I dataset and evaluated on the
remaining patients, our proposed multimodal model is able to achieve an accuracy of 74% and an
F1-score of 0.805. More importantly, we are able to reach a very high recall of 95%, which is crucial for
a computer-assisted diagnosis system—when physicians diagnose patients for disease, a false negative
can have extremely adverse consequences.

4.1. Ablation Results

We compare the performance of the feature extractor models and the combined multimodal model
in Table 2. The ResNet-18 network, trained on fMRI × ROI activation maps, achieved a classification
accuracy of 73.1%; the MLP classifier, trained on ROI × ROI activation maps, achieved a classification
accuracy of 70.8%. When the feature vectors from both networks are pooled and used in the combined
multimodal model, the resulting network has a higher classification accuracy of 74%, as well as a very
high recall of 95% and an F1 score of 0.805, indicating that integrating both types of input in the model
improves the overall network performance and be able to more accurately predict the correct diagnosis.

Table 2. Results and performance metrics. Classification accuracy, precision, recall, and F1 scores for
both feature extractor networks and final end-to-end multimodal model.

Training Phase Input Model Accuracy Precision Recall F1 Score

Phase I corr(fMRI, ROI) ResNet-18 0.731 0.726 0.849 0.783
corr(ROI, ROI) MLP 0.708 0.737 0.759 0.749

Phase II Both corr Multimodal 0.740 0.699 0.949 0.805

4.2. Explanation of Model Predictions

Many medical imaging analysis techniques, especially those involving complex deep learning
models, are difficult to interpret—it is difficult to decipher the inner workings of the networks or
understand how they arrive at their predictions. To make our multimodal model more transparent,
we visualized the regions of the fMRI images where the network focused on during the prediction
process, as shown in Figure 3. Using gradient-weighted class activation mapping (Grad-CAM)
as proposed by Selvaraju et. al. [25], we computed the activation gradients on the fMRI and ROI
correlation matrices that were computed during the feature preprocessing stage of our study. We then
overlaid these gradient-maps (heatmaps) on the original ABIDE fMRI scans to provide a clearer visual
on which areas of the scan the model focuses on during the training and learning process. Through
this visualization process, we were able to construct ‘visual explanations’ for the decisions made by
our model by highlighting the important regions in the functional image for predicting the diagnosis.
In doing so, we can clearly see the areas of the brain the model focuses on to identify differences
between healthy control subjects and patients with autism. Moreover, this visualization will also aid
doctors and physicians in the diagnostic process for ASD by assisting them in pinpointing the regions
most likely to contain neural anomalies.
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Figure 3. Explanations of model predictions. Cross-sections of fMRI scans indicating the regions that
the network focused on when making predictions. Left: scans from a patient with autism; right: scans
from a healthy individual with normal development. These images depict the regions the model used
to predict the diagnosis of the scan, offering transparency on the model’s decision-making process.
The visualizations were produced using techniques proposed by Selvaraju et al. [25].

5. Conclusions

In this paper, we proposed a deep multimodal learning model for neuroimaging classification
on the ABIDE dataset. Two types of functional imaging data, namely the activation maps calculated
between fMRI image voxels × ROI time series and between only ROI time series, were used as input to
two separate classifiers, a 3D ResNet-18 network and a multilayer perceptron classifier. The resulting
feature vectors from these networks were pooled and used as input into several fully-connected layers
to make the final prediction either control (healthy) or diseased (with autism). By proposing a model
architecture that incorporates both types of activation maps, we use all the information provided by
the functional data and demonstrate that the new model is capable of more accurate performance and
thus makes for a better diagnosis system to assist doctors and medical practitioners.

However, at this point in time, the prediction accuracy of the multimodal model has only reached
74%, due to the limited amount of training data. This leads to the overfitting of our model.In the future,
we plan to expand the training dataset by data augmentation and collecting more images to train our
models in an effort to achieve higher accuracy. We hope that with further optimization and testing, we
can eliminate any overfitting and reduce the amount of time needed for training. Moreover, we will be
able to expand our analysis to other neuroimaging datasets, and demonstrate the generalizability of
our methods by applying our automated system to diagnose more neurological diseases in addition to
autism. With more testing and a larger quantity of data, we also hope to perform separate analysis
on the visualizations of the model predictions, and to study the trends in which regions our model
focuses on when making a diagnosis.
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The following abbreviations are used in this manuscript:

MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
ABIDE Autism Brain Imaging Data Exchange
CNN convolutional neural network
Grad-CAM gradient-weighted class activation mapping
ROI regions of interest
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Abstract: Image classification is a very popular machine learning domain in which deep convolutional
neural networks have mainly emerged on such applications. These networks manage to achieve
remarkable performance in terms of prediction accuracy but they are considered as black box models
since they lack the ability to interpret their inner working mechanism and explain the main reasoning
of their predictions. There is a variety of real world tasks, such as medical applications, in which
interpretability and explainability play a significant role. Making decisions on critical issues such as
cancer prediction utilizing black box models in order to achieve high prediction accuracy but without
provision for any sort of explanation for its prediction, accuracy cannot be considered as sufficient
and ethnically acceptable. Reasoning and explanation is essential in order to trust these models and
support such critical predictions. Nevertheless, the definition and the validation of the quality of a
prediction model’s explanation can be considered in general extremely subjective and unclear. In this
work, an accurate and interpretable machine learning framework is proposed, for image classification
problems able to make high quality explanations. For this task, it is developed a feature extraction
and explanation extraction framework, proposing also three basic general conditions which validate
the quality of any model’s prediction explanation for any application domain. The feature extraction
framework will extract and create transparent and meaningful high level features for images, while
the explanation extraction framework will be responsible for creating good explanations relying
on these extracted features and the prediction model’s inner function with respect to the proposed
conditions. As a case study application, brain tumor magnetic resonance images were utilized for
predicting glioma cancer. Our results demonstrate the efficiency of the proposed model since it
managed to achieve sufficient prediction accuracy being also interpretable and explainable in simple
human terms.

Keywords: interpretable/explainable machine learning; image classification; image processing;
machine learning models; white box; black box; cancer prediction

1. Introduction

Image classification is a very popular machine learning domain in which Convolutional Neural
Networks (CNNs) [1] have been successfully applied on wide range of image classification problems.
These networks are able to filter out noise and extract useful information from the initial images’
pixel representation and use it as input for the final prediction model. CNN-based models are able
to achieve remarkable prediction performance although in general they need very large number of
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input instances. Nevertheless, this model’s great limitation and drawback is that it is almost totally
unable to interpret and explain its predictions, since its inner workings and its prediction function is
not transparent due to its high complexity mechanism [2].

In recent days, interpretability/explainability in machine learning domain has become a significant
issue, since much of real-world problems require reasoning and explanation on predictions, while it is
also essential to understand the model’s prediction mechanism in order to trust it and make decisions
on critical issues [3,4]. The European Union General Data Protection Regulation (GDPR) which was
enacted in 2016 and took effect in 2018, demanded a “right to explanation” for decisions performed by
automated and artificial intelligent algorithmic systems. This new regulation promotes to develop
algorithmic frameworks which will ensure an explanation for every Machine Learning decision while
this demand will be legally mandated by the GDPR. The term right to explanation [5] refers to the
explanation that an algorithm must give, especially on decisions which affect human individual rights
and critical issues. For example, a person who applies for a bank loan and was not approved may ask
for an explanation which could be “The bank loan was rejected because you are underage. You need to
be over 18 years old in order to apply.” It is obvious that there could be plenty of other reasons for
his rejection, however the explanation has to be short and comprehensive [6], presenting the most
significant reason for his rejection, while it would be very helpful if the explanation provides also a fast
solution for this individual in order to counter the rejection decision.

Explainability can also assist in building efficient machine learning models and secures that they
are reliable in practice [6]. For example, let assume that a model classified an image as a “cat” followed
by explanations like “because there is a tree in image”. In this scenario, the model associated the whole
image as a cat based on a tree which is indeed pictured in the image, but the explanation is obviously
based on an incorrect feature (the tree). Thus, explainability revealed some hidden weaknesses that
this model may have even if its testing prediction accuracy is accidentally very high. An explainable
model can reveal the significant features which affect a prediction. Subsequently, humans can then
determine if these features are actually correct, based on their domain knowledge, in order to make
the model reliable and generalize well in every new instance in real world applications. For example,
a possible “correct” feature which would prove that the model makes reliable predictions could be
“this image is classified as a cat because the model identified sharp contours” this explanation would
reflect that the model associated the cat with its nails which is probably a unique and correct feature
that represents a cat.

Medical applications such as cancer prediction, is another example where explainability is essential
since it is considered a critical and a “life or death” prediction problem, in which high forecasting
accuracy and interpretation are two equally essential and significant tasks to achieve. However, this is
generally a very difficult task, since there is a “trade-off” between interpretation and accuracy [4].
Imaging (Radiology) tests for cancer is a medical area in which radiologists try to identify signs of
cancer utilizing imaging tests, sending forms of energy such as magnetic fields, in order to take pictures
of the inner human body. A radiologist is a doctor who specializes in imaging analysis techniques and
is authorized to interpret images of these tests and write a report of his/her findings. This report finally
is sent to the patient’s doctor while a copy of this report is sent to the patient records. CNNs have
proved that they are almost as accurate as these specialists on predicting cancer from images. However,
reasoning and explanation of their predictions is one of their greatest limitations in contrast to the
radiologists which are able (and obligated) to analyze, interpret and explain their decision based
on the features they managed to identify in an image. For example, an explanation/reasoning of a
diagnosis/prediction of a case image could probably be: “This image probably is classified as cancer
because the tumor area is large, its texture color is white followed by high density and irregular shape.”

Developing an accurate and interpretable model at the same time is a very challenging task as
typically there is a trade-off between interpretation and accuracy [7]. High accuracy often requires
developing complicated black box models while interpretation requires developing simple and less
complicated models, which are often less accurate. Deep neural networks are some examples of
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powerful, in terms of accuracy, prediction models but they are totally non-interpretable (black box
models), while decision trees and logistic regression are some classic examples of interpretable models
(white box models) which are usually not as accurate. In general, interpretability methods can be
divided into two main categories, intrinsic and post-hoc [6]. Intrinsic methods are considered the
prediction models which are by nature interpretable, such as all the white box models like decision
trees and linear models, while post-hoc methods utilize secondary models in order to explain the
predictions of a black box model.

Local Interpretable Model-agnostic Explanations (LIME) [8], One-variable-at-a-Time approach [9],
counterfactual explanations [10] and SHapley Additive exPlanations (SHAP) [6] are some state of the
art examples of post-hoc interpretable models. Grad-CAM [11] is a very popular post-hoc explanation
technique applied on CNNs models making them more transparent. This algorithm aims to interpret
any CNN model by “returning” the most significant pixels which contributed to the final prediction
via a visual heatmap of each image. Nevertheless, explainability properties such as fidelity, stability,
trust and representativeness of explanations (some essential properties which define an explanation as
“good explanation”) constitute some of the main issues and problems of post hoc methods in contrast
to intrinsic models. Our proposed prediction framework is intrinsic model able to provide high quality
explanations (good explanations).

In a recent work, Pintelas et al. [7], proposed an intrinsic interpretable Grey-Box ensemble model
exploiting black-box model’s accuracy and white-box model’s explainability. The main objective was
the enlargement of a small initial labeled dataset via a large pool of unlabeled data adding black-box’s
most confident predictions. Then, a decision tree model (intrinsic interpretable model) was trained
with the final augmented dataset while the prediction and explanation were performed by the white
box model. However, one basic limitation is that the application of a decision tree classifier or any
white box classifier on raw image data without a robust feature extraction framework would be totally
inefficient since it would require an enormous amount of images in order to build an accurate and
robust image classification model. In addition, the interpretation of this tree would be too complicated
since the explanations would rely on individual pixels. Our proposed prediction framework would be
able to provide stable/robust and accurate predictions followed by explanations based on meaningful
high-level features extracted from every image.

This paper proposes an explainable machine learning prediction framework for image classification
problems. In short, it is composed by a feature extraction and an explanation extraction framework
followed by some proposed “conditions” which aim to validate the quality of any model’s predictions
explanations for every application domain. The feature extraction framework is based on traditional
image processing tools and provides a transparent and well-defined high level feature representation
input, meaningful in human terms, while these features will be used for training a simple white box
model. These extracted features aim to describe specific properties found in an image based on texture
and contour analysis. The feature explanation framework aims to provide good explanations for
every individual prediction by exploiting the white box model’s inner function with respect to the
extracted features and our defined conditions. It is worth mentioning that the proposed framework is
general and can potentially be applied to any image classification task. However, this work aims to
apply this framework on tasks where interpretation and explainability are vitally and significantly
prominent. To this end, it was chosen to perform a case study application on Magnetic Resonance
Imaging (MRI) for brain cancer prediction. In particular, we aim to diagnose and interpret glioma,
which is a very dangerous type of tumor, being in most cases a malignant cancer [12], versus other
tumor types, which are most of the times benign. Some examples of extracted meta-features for this
case study are tumor’s size, tumor’s shape, texture irregularity level and tumor’s color.

The contribution of this work lies on the development of an accurate and robust prediction
framework, being also intrinsic interpretable, able to make high quality explanations and make
reasoning and justification on its predictions for image classification tasks. For this task, it is proposed
a feature extraction framework which creates transparent and meaningful high level features from
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images and an explanation extraction framework which exploits a linear model’s inner function in
order to make good explanations. Furthermore, we propose and define some conditions which aim to
validate the quality of any model’s explanations on every application domain. In particular, if one
model verifies all these conditions, then its predictions’ explanations can be considered as good. Finally,
3 types of presentation forms are also proposed for the prediction’s explanations with respect to the
target audience and the application domain.

The remainder of this paper is organized as follows. Section 2 presents in a very detailed way
our proposed research framework while Section 3 presents our experimental results, regarding the
prediction accuracy and model interpretation/explanation. In Section 4, a brief discussion regarding
our proposed framework is conducted. Finally, Section 5 sketches our conclusive remarks and possible
future research.

2. Materials and Methods

2.1. Proposed Explainable Prediction Framework

Figure 1 presents the abstract architecture of our model which is composed by the feature extraction
framework, which will be described in next subsection, a white box linear model and an explanation
extraction framework. The great advantage of lineal models is that the identification of the most
important features is very easy since it naturally comes out by the interpretation of their corresponding
weights. A low weight’s absolute value indicates low importance while in contrast a high, indicates
high importance. We have to mention that although linear models are considered intrinsic interpretable
models, this does not imply that they can also provide by default good explanations. Therefore, it was
developed a new explanation extraction framework that will exploit the inner linear model’s prediction
function in such a way that will provide an easily understandable explanation output scheme which
will satisfy all the proposed conditions that verify an explanation as good.                 
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Figure 1. An abstract overview of our proposed explainable model.
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2.2. Image Feature Extraction Methodology

In general, the input feature representation which a machine learning model uses to make
predictions or the feature representation input that an explanation algorithm uses to make explanations
(e.g., post hoc models) must be understandable to humans when the objective is the development of an
explainable prediction model [8]. Therefore, we introduce a feature extraction framework which will
create transparent and well-defined features from images by processing the pixel values from grayscale
images based on traditional image analysis techniques, while these features will be also applied as
an input on a prediction model. This feature extraction step is essential in order to convert the initial
noisy pixel representation input of every image to a compressed, compact, robust and meaningful
high-level feature representation input for the final prediction model while this representation will
be meaningful to humans too. Following such approach, we can get rid of the black box approach
of utilizing CNN models for image classification tasks and use instead simple, stable and intrinsic
interpretable models as final predictors such as linear models.

It is worth mentioning that probably some of the utilized features will not be totally understandable
to every human since the main audience domain which are directed to is for image analysts and
therefore this fact points out our main approach’s limitation. Based on this limitation, in Section 2.2.4
we provide a qualitative explanation in human understandable terms for some of these complex
features in order to expand our model’s explanations audience range. However, easily defined features
such as size of object (e.g., tumor size in our case study), mean value of image pixels (e.g., tumor color
tends to be black or white) and cyclic level (e.g., tumor shape tends to be cyclic or oval) are by default
easily understandable to most humans but they may not be significant for the prediction problem
which a machine learning model aims to solve. Therefore, identifying features understandable to
humans being also informative and useful for the machine learning model, constitute a key factor for
creating efficient and viable explainable prediction models.

2.2.1. Data Acquisition

As mentioned before, the main objective of this work is to apply the proposed framework on tasks
where interpretation and explainability is vital and very significant. Therefore, we chose to perform
a case study application on MRI for glioma tumor classification. The utilized dataset is publicly
available [13]. In particular, it is consisted of 3064 head images with glioma (1426 slices), meningioma
(708 slices) and pituitary (930 slices). The slices consist of 512× 512 resolution, 0.49× 0.49 mm2 voxel
size and tumor depicted in three planes (axial, coronal and sagittal). The main task of this case study is
the identification of glioma tumor, since in most cases, the glioma lesion tends to be malignant while
meningioma and pituitary (the other two main types of brain tumor) tend to be benign. Therefore,
the images were separated in two groups. The first group includes glioma with 1426 instances and the
other meningioma and pituitary with 1638 instances.

Our feature extraction procedure consists of two main image feature family types, texture and
contour features. Texture features are extracted based on the image’s pixel values intensities (e.g., gray
levels) while contour features based on the shape of the Region of Interest (ROI) lied into the image.
The final extracted dataset consists of 234 different features in total composed by 194 texture features
and 40 contour features. Some examples of these extracted features from each image are area size of
tumor, pixels mean value, intensity, variation, correlation, smoothness, coarseness and regularity [14].

The first step constitutes the identification of the ROI. The ROI was evaluated quantitatively
using the manual segmentation by experts as ground truth. Figures 2 and 3 present some examples of
extracted tumor areas.
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(a) 

 
(b) 

 
(c) 

Figure 2. Head MRI examples. The red color illustrates the tumor area (a) glioma, (b) meningioma,
(c) pituitary.

 
(a) 

 
(b) 

Figure 3. (a) Image with glioma, (b) Region of Interest (ROI) extraction.

The body of tumor is represented by pixels with different gray levels. Every pixel has significant
information about the type of tumor. Furthermore, we normalized the images from 0 to 32 gray levels.
The low values represent the dark color pixels and the high values the light white pixels.

2.2.2. Texture Features

Texture analysis is one of the high-speed feature extraction methods for image analysis and
classification using the pixel’s values. These methods mainly aim to describe the spatial distribution
of intensities and the varying shades of pixels in images. In this study, three major approaches were
utilized, the gray-level Co-Occurrence matrix, Run length and Statistical values from ROI matrix.

Co-Occurrence matrix [14] characterizes the texture of an image by capturing the gray-level values
with spatial dependence from image, calculating how often pairs of pixel with specific values and in a
specified spatial relationship occur in an image. In particular, we used the initial ROI matrix of every
image and four more scales from wavelet transform [15] as pre-processing step, in order to find all
pixel information. Then, the Co-occurrence matrices for every ROI image (initial plus four extracted
filtered images) were calculated. The Co-Occurrence matrix is calculated by the following equation:

G =
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)
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p
(
Ng, 1

)
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(
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)
· · · p

(
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)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ng is the number of gray levels in the image and p(i, j) is the probability that a pixel with value I

will be found adjacent to a pixel of value j. Based on the Co-Occurrence matrix, meaningful features for
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every image can be extracted such as entropy, energy, contrast, homogeneity, variance and correlation.
In total, we extracted 100 features via the Co-Occurrence approach. Some of the most significant
identified features are presented in Table 1.

Table 1. Mathematic description of the most important identified features of Co-Occurrence approach.

Co-Occurrence Features Formula

Correlation 1
σχσy

⎛⎜⎜⎜⎜⎝ Ng∑
i=1

Ng∑
j=1

p(i, j) − μχμy

⎞⎟⎟⎟⎟⎠
Information Measure of Correlation (1− exp[−2(HXY2 −HXY)])

1
2

Sum Average
2Ng∑
i=2

ipx+y(i)

where x and y are the coordinates (row and column) of the entry matrix, px+y(i) is the probability of
coordinated summing to x + y, μx, μy, σx and σy are the means and standard deviations of px and py

which are the partial probability density functions,

HXY = −
Ng∑
i=1

Ng∑
j=1

p(i, j)log
{
p(i, j)

}
HXY2 = −

Ng∑
i=1

Ng∑
j=1

px
(
i)py( j

)
log

{
px

(
i)py( j

)}

and HX, HY are the entropies of px and py.
Run-length matrix is another way to characterize the surface of a given object or region utilizing a

gray level run. A gray level run is a set of consecutive image points computed in any direction [16].
The matrix element (i, j) specifies the number of times that the pixel value appears in every direction.
These elements correspond to the number of homogeneous runs of j voxel with gray value i [17].
From run-length method were produced 39 features. The most important run-length features identified
via the interpretation of the weights of our utilized white box linear prediction model are Short
Run Emphasis (SRE), Run Length Non-Uniformity Normalized (RLNUN) and Low Gray Level Run
Emphasis (LGLRE) as presented in Table 2.

Table 2. Mathematic description of the most important identified features of Run Length approach.

Run-Length Features Formula

SRE 1
N

Ng∑
i=1

Nr∑
j=1

p(i, j)
j2

RLNU 1
N2

Ng∑
i=1

⎛⎜⎜⎜⎜⎝ Nr∑
j=1

p(i, j)

⎞⎟⎟⎟⎟⎠
2

LGLRE 1
N

Ng∑
i=1

Nr∑
j=1

p(i, j)
i2

where Nr is the number of different run-length that occurs. Higher value of SRE indicates fine textures.
RLNU measures the distribution of runs over the gray values and LGLRE is the distribution of the low
gray-level runs [16]. These feature values are low when runs are equally distributed along grey levels
indicating higher similarity in intensity values [17].

Statistical Values are features based on first and second order statistical analysis. The texture of
an image is determined by the distribution over the pixels in calculated region. These features aim
to describe specific properties of an image, such as the smoothness or irregularity, homogeneity or
inhomogeneous while some extracted features are mean value, standard deviation, kurtosis, entropy,
correlation and contrast.
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2.2.3. Contour Features

In general, contour features aim to describe the characteristics and the information lied in the
shape of objects. In our case study, tumor shape constitutes the object on every image as presented in
Figure 4. For example, such features can describe if the tumor shape tends to be irregular or regular,
oval or cyclic, large or small and so on. In our study, tumor size was identified to be the most significant
contour feature (based on formulas described in Section 2.3.4).

 
(a) 

 
(b) 

Figure 4. (a) Binary image, (b) border extraction.

This feature is described by the following formula:

tumor size = Nin

where Nin is the number of pixels inside the tumor object. It is worth mentioning that this is an
informative feature for the final prediction model while it is also easily understandable in human
terms. In general, the identification of features which are easily understandable to most humans while
they are also useful for the machine learning prediction task, probably constitute some of the main
research challenges and key elements in explainable machine learning domain. The identification
of such useful and easily understandable features can contribute positively to this domain since the
explanation of the model’s decision would rely on features understandable in human terms and thus it
would be able to address a much larger audience.

2.2.4. Qualitative Explanation of Extracted Features

We recall that an explainable machine learning model requires also an explainable feature
representation in which the explanation output will rely on. Therefore, in the sequel it is attempted to
explain in easy human understandable terms some complicated mathematically defined features of our
framework. Table 3 presents a qualitative description of some of the most important identified features.
For each of those features, we present two extreme example cases (high-low value comparison) in
order to illustrate their main characteristics differences.

Correlation feature measures the linear relationship between two variables, which in our case,
these variables are pixel coordinates. In other words, correlation measures the similarity between
neighborhood sub-image’s regions. In natural images, neighboring pixels tend to have similar values
while a white-noise image exhibits zero (lowest value) correlation. A high correlation indicates the
existence of an object, objects or some kind of structure lied in the image while a low correlation could
indicate that there is no object in the image or it is not transparent enough. Regarding our case study,
a correlation value can indicate how clear or not, the tumor can be seen in an image. For example,
in Table 3, images on the 1st column (left) correspond to a very high correlation in contrast to images
on the 2nd column (right). In the left image, a tumor (object) is clearly defined, in contrast to the right
which no object can be seen at all.
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Table 3. Qualitative description of some of the most important identified features.

Features
Tumor Examples

Description
(High Value) (Low Value)

Correlation

  

Measures the linear
relationship between two

variables (pixels coordinates
for images). In other words,

measures the similarity
between neighborhood

sub-image’s regions.

Information
Measure of
Correlation

 

Measures the amount of
information that one

variable contains about
another. In other words, it
measures how irregular is

the texture of an image.

Sum Average

  

Provides the average of the
grey values from ROI.

Information measure of correlation measures the amount of information which one variable
contains about another (pixel coordinates for images). A high value can indicate that the pixel’s
intensities values of an image will tend to be smooth and regular while a low value that its pixel’s
intensities values will tend to irregular. This feature for our specific study can be defined also as
“tumor’s texture irregularity level”.

Sum average feature aims to measure the average of the grey values from ROI. Although its
mathematic definition in Table 1 seems to be a bit complicated, in practice it measures a very easily
understandable in human terms feature. In particular, it aims to describe how light or dark is by
average a gray image. In our case study, a high value indicates that the tumor’s color tends to be white,
a low value to be black, while an average value indicates that the tumor’s color tends to be gray.

2.3. Machine Learning Prediction Explanations

Interpretable machine learning focuses on interpreting machine learning models’ prediction mechanism
in a reasonable form. More specifically, it aims to describe the mathematic or rule formula which an
algorithm utilizes to make predictions, in a compact and meaningful form. An example is presented in
Figure 5. Algorithm’s interpretation mainly aims to present and interpret (e.g., via visualization of their
decision boundaries) the model’s decision function behavior. This can be very useful for machine learning
developers, experts and data scientists in order to understand how a prediction model works, to identify
its weaknesses and further improve its performance.

Explainable machine learning aims to explain machine learning models’ predictions to human
understandable terms. The definition of explainability is a very blur issue since it deals with humans
and social aspects and thus explanations can be unclear and subjective [6]. Therefore, we have to
define the properties of machine learning models’ prediction explanations and clarify what should
be considered as a good explanation. Our analysis below is based on the recent work of Christoph
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Molnar in his book Interpretable machine learning [6], the popular research work of Ribeiro et al. [8]
and the resent study of Robnik-Šikonja and Bohanec [9].

 

 
 
 
 
 
 
 
 
 
 
 
 

                                                                                                                                                            
                                                                       

                                                                       

2.27 − 1ݔ0.22 +   0 = 2ݔ0.5

          x1 

         x2   2.27  ܨܫ − 1ݔ0.22  + 2ݔ0.5  >  0   THEN                                 ELSE 

Figure 5. A visualization example presenting the decision function of a trained linear model.

2.3.1. Properties of Explanations

In general, an explanation usually has to relate in some way the features utilized by the algorithm
in order to make predictions understandable to human terms. Some basic properties that explanations
have, are described below.

Expressive Power is the language of the explanation output which is provided by the prediction
framework. Some language examples are if-then rules, decision trees, weighted sums, finite state
machines, graph diagrams, etc. This property is a very significant starting step for an explanation
method since the way that this language will be defined, will determine the quality and the
understandability of explanations to humans. Every machine learning algorithm has its own raw
language in which makes decisions and predictions depending on its own unique computation formula
and algorithm. If we just utilize the algorithm’s raw output as the explanation output giving it to
humans, it will be impractical, confusing and most likely not understandable at all.

For example, the raw interpretation output of a logistic regression algorithm (considered as white
box model) applied on a specific dataset composed by three features could be:

if
1

1 + e−(2+5x1+7x2−3x3)
> 0.5 then Output = 1 else Output = 0

which is probably not understandable and not meaningful to most humans. In contrast, decision trees
models have by nature expressive power very close to human general logic since their explanation
output come in an if-then-else total rule form composed by an ensemble of sub-rules which relate only
one feature at a time. For example, an explanation output of a decision tree could be:

if
{
(sub-rule 1) and (sub-rule 2) and (sub-rule 3)

}
then (Output = 1)else (Output = 0)

where sub-rules 1, 2 and 3 could be x1 = “poor”, x2 = “young”, x3 > 95 kg where
x3 = “weight”, respectively.

Then this is close to human reasoning and understanding as an expressive language.
Fidelity is a property, which describes how well the explanation output approximates the actual

raw decision function of the prediction algorithm. For example, a decision tree model has very high
fidelity since its decision function matches exactly with the utilized explanation output. In contrast,
an explanation output for a black box model utilizing post-hoc methods has to approximate the original
black box decision function for example with simple intrinsic models.

However, global fidelity which describes how well the explanation output approximates the
complete model’s decision function providing global explanations, is almost impossible to achieve in
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practice and thus the explanations focus on local fidelity which deals with specific data instances or local
data instances and data sub-sets, providing instance and local explanations. Individual instances and
local explanations are usually more significant in practice, since humans mostly care about explanations
for every individual instance at a time or for instances, which belong to the same vicinity (similar
instances), instead of giving a global detailed explanation for every possible instance which could
lead to information overload and very confusing explanations. Nevertheless, global explanations
or explanations which cover as much more instances and data sub-sets at the same time (also called
representativeness of explanations), are very significant in order to ascertain trust in the model.

Stability refers to the ability of a prediction model to provide similar explanations for similar
instances. This means that slight changes in the feature values of an instance will not substantially
change the explanation. High stability is desirable since it can enhance the trust and reliability of
model’s decisions and explanations. Notice that a beneficial side effect of the stability property is that
it can also diagnose possible overfitting behavior of a prediction model since lack of explanations’
stability highlights also high variance of the model’s decision function. Finally, it is worth mentioning
that the more complicated a model’s decision function is, the more unstable this model will probably
be, while its function interpretation will be more difficult. This means that simple models with simple
prediction function are stable models. However, this does not mean that all white box models are
stable (since white boxes are usually considered simple models). A decision tree with a very large max
depth will probably lead in a very complicated prediction function being probably extremely unstable
just like a common complicated black box model.

Comprehensibility refers to the ability of an explanation to be short and comprehensive being
understandable by most humans. This property is very significant since it defines how informative and
understandable at the same time is an explanation. Comprehensibility is highly depended on the target
audience. This means that different explanations may need for example, a mathematician/statistician
comparing to the manager or director of a company. Therefore, this property is highly affected by the
expressive power as mentioned before, since an intelligent choice and definition of the explanation’s
expressive power can lead to a very high comprehensibility factor with respect to the audience that the
specific explanation is directed to.

Degree of importance refers to the ability of an explanation to reflect the most important features
which affect the predictions. These features can describe the model’s decision function in a global way,
in a local way and in individual way. Global important features are the features which highly affect the
decision function of the model taking into consideration all the instances trained on. Local important
features are the features which highly affect the model’s decision function taking into consideration local
data sub-sets, while instance’s important features are the features which highly affect the prediction
just only for this specific individual instance. This global–local differentiation is very crucial since
“features that are globally important may not be important in the local context, and vice versa” [8]. Therefore,
an explanation for an individual prediction mostly cares for the specific features that affect this specific
instance or similar to it instances, rather than describing the global important features.

2.3.2. Fundamental Property of Explanations

Nevertheless, even if an explanation possesses all of these properties, the main fundamental
property than an explanation should have, is its humanistic social property which comes from the
interactive dialogue between the explainer and the audience. An explanation which covers all factors
for a certain prediction is not a human friendly explanation while the explanations have to be selected
and come gradually via small answers based on the questions applied. More specifically, this dialogue
comes up in a “questions–answers” form, where questions are in general contrastive and answers
(explanations) are selected.

It was proved that humans’ questions usually are contrastive and humans most of the times
expect and desire selected explanations [6]. The term contrastive question means that questions are in
a counterfactual form, e.g., “Why the model predicted output 1 instead of 2?”, “What the prediction would be
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if feature input X would be different?”, “What is the minimum change required for feature input X in order the
model to predict a different output result?”. The term selected means that explainers usually select only
one or two causes and present these as the explanation [6]. Therefore good explanations have to be
able to answer contrastive questions and be selected, while this does not necessary imply that every
other property described on previous section is not significant.

2.3.3. Proposed Conditions for Good Explanations

The definition and the validation of a good explanation can be considered in general extremely
subjective and unclear. Therefore, taking into consideration the above analysis, we try to define three
basic conditions that any prediction algorithm has to satisfy in order its prediction explanations to be
considered good, stable, useful and easily understandable.

Condition A. Identification of features which highly determine the prediction result for the specific
individual instance. This is probably the most significant and basic part of every explanation method
since most of them mainly aim to identify these features. For example, the Grad-CAM method identifies
and returns the pixels of an image which are important and determine a specific prediction for a black
box model such as CNN. If the pixels’ location, color level and volume can be considered as the raw
initial features of every image, then such methods typically return the most significant features just
like linear models would do via the interpretation of their weights on every feature variable.

Nevertheless, it is worth mentioning that by just returning the most significant pixels of an image
which determined a specific prediction it does not always lead to useful explanations. If the objective
is the identification of higher level representation features and properties that come out by pixels’
grouping, such as shape and texture properties of an object lying in an image, which determine
a prediction output, then relying only on pixels returns as explanations cannot reveal any useful
information. For example, if a doctor classified a tumor image as malignant cancer and the main
reason for this decision was just the tumor size and tumor’s irregularity level, then pixels by itself are
useless. Our proposed framework will be able to provide such type of explanations and this is the
main difference comparing to other works which provide explanations based on image pixel returns.

However, explanations with pixels returns is very useful when the objective is the segmentation
of an object (in our case tumor) or the identification of an object hidden in a noisy image, since the
return of significant pixels would reveal if the model decided correctly utilizing the correct area of
pixels or wrongly. For example, if a model classified an image as a cat, where this image actually
illustrates a man hugging a dog and a cat, then explanations based on pixels returns would reveal if
the model decided by cat’s pixels (proper area) or another area e.g., dog’s pixels where that would be
obviously wrong.

Condition B. For a specific individual prediction identify some other instances such as local
data sub-sets or instances that belong to the same vicinity (similar instances) which share the same
prediction output and share at least one common explanation rule. This condition deals with the
stability (robustness) and the representation property of model’s explanations and as a result with the
trust factor of a prediction model. An untruthful or unstable model, such as Deep Neural Network [18],
probably will provide totally different explanations for similar instances. A very common example
constitutes the adversarial attacks which aim to modify an original image in a way that the changes
are almost undetectable to the human eye while the prediction function of an unstable model will
probably be highly affected. In a very recent study, One pixel attack for fooling deep neural networks,
2019 [19] the authors revealed that the output of Deep Neural Networks can be easily altered by adding
relatively small perturbations to the input pixel vector revealing that such models could be totally
unstable and unreliable on image classification tasks.

Let assume a scenario in which an explanation method like Grad-CAM, identified for one new
image (instance) the important pixels which determined a specific prediction. In order to ascertain
some trust in the model, it would be very helpful if an explanation framework could also provide
answers to questions like “For those identified pixels, what are their volume values in which this prediction
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remains same?” A possible answer (explanation) could be “If the mean value of those pixels’ volume
is higher than 180 then the prediction will remain stable”. In practice this means that for every new
image which shares the same important identified pixels (or at least close to it) and the same rule:
mean volume value > 180, then the model’s prediction will remain the same. Obviously, if a method
can provide meaningful explanations in a global way, this is desirable too, but generally this is almost
impossible in practice and as already mentioned in previous section, humans usually care for individual
explanations and explanations for local or similar instances.

Condition C. Identification of the most important features’ critical values in which the prediction
result will change. This condition aims to validate the explanation method’s ability of answering
contrastive questions based on the social humanistic property for making questions in a counterfactual
form, as presented in previous section. Following the same previously defined scenario, some possible
contrastive questions could be “If those identified pixels were changing color and volume, what the prediction
would be, would it be still the same? If not, what is the minimum change required for those pixel’s mean volume
value in order the model to predict a different output result?” A possible answer (explanation) could be
“If their mean volume value increases by 30 then the prediction will change.”

Final Presentation form. Merge all explanation’s information in a compact, selected, comprehensive
and informative form, with respect to the targeted audience and application domain (significant the
proper definition of expressive power). This step deals with the explanation framework’s ability
to create comprehensive and selected explanations which constitute some of the most significant
properties of good explanations as already described in previous section. For instance, if the explanation
framework was a decision tree, by default a decision tree is an example which provides information
in a comprehensive and easy to read form, since one can just follow its nodes and easily verify and
obtain the prediction result [7]. Nevertheless, we have to mention that even a decision tree which is
naturally interpretable and explainable model, has to provide selected explanations in the case that the
tree’s maximum depth is very large. This means that one has to prune and select explanation rules
from the global tree in order to provide selected and comprehensive individual explanations. This is a
significant limitation because this procedure is not straightforward since it must define a probably
subjective threshold for this pruning procedure.

2.3.4. Explanation Extraction Framework

Let assume the Logistic Regression (LR) [20] algorithm our utilized linear prediction model
(it is worth mentioning that this framework theoretically can be applied on every linear interpretable
prediction model). We have to note that one basic limitation of a Logistic Regression model is that it is
restricted for binary classification problems and thus this limitation applies also to the proposed total
prediction framework.

The prediction function of the trained LR model is given by the following formula:

fLR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 F > 0.5

“unidenti f ied“ F = 0.5

0 F < 0.5

(1)

where F is defined by the following function:

F =
1

1 + e−(a0+
∑N

j=1 ajxj)
(2)

N is the total number of features, while if F = 0.5 then the prediction output fLR will be “unidenti f ied”
meaning that the output can be either 0 or 1. In such cases, the prediction output can be chosen
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randomly or set by default to one value. By solving the inequality in Equation (1), the initial function
can be simplified to:

fLR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 G > 0

“unidenti f ied” G = 0

0 G < 0

(3)

where G is defined by the following function:

G = a0 +
N∑

j=1

ajxj (4)

Let assume a new instance:
Ii =

(
xi1, xi2, . . . , xij, . . . xiN

)
Verifying explanation Condition A. In linear models the absolute values of weights aj of each feature

xj express the importance factors of its prediction function. A high weight value of aj for feature xj
indicates that this feature is important because small changes of feature xj multiplied by a large aj weight
value will highly affect the final output. The important features are chosen by the following formula:

Most important f eatures : K =
{
j :

∣∣∣aj
∣∣∣ > dth

}
(5)

where dth is a defined threshold which defines the minimum feature’s importance factor.
Verifying explanation Condition C. For the features k identified as important: k ∈ K, we will

compute their critical values in which the prediction result will change. These critical values are
defined when the prediction output is in the “unidenti f ied” region state. Based on Equations (3) and (4)
the critical feature values xcritk satisfy the following equation:

a0 +
k−1∑
j=1

ajxij + akxcritik +
N∑

j=k+1

ajxij = 0, ∀ k ∈ K (6)

and it turns out that:

xcritik = −
a0 +

∑k−1
j=1 ajxij +

∑N
j=k+1 ajxij

ak
, ∀ k ∈ K (7)

Verifying explanation Condition B. If xk < xcritik by Equation (7) it turns out that:

a0 +
k−1∑
j=1

ajxij + akxk +
N∑

j=k+1

ajxij < 0

while if xk > xcritik similarly it turns out that:

a0 +
k−1∑
j=1

ajxij + akxk +
N∑

j=k+1

ajxij > 0

and thus by Equations (3) and (4) it turns out that:

y =

{
1, ∀ xk ≥ xcritik and xj = xij, ∀ j � k
0, ∀ xk < xcritik and xj = xij, ∀ j � k

(8)

where y is the prediction output. For sake of simplicity we defined by default the prediction output to
be 1 for the “undenti f ined” state.
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Summarizing, the function described in Equations (3) and (4) represent the global interpretation
formula of our prediction model while Equation (8) describes a local interpretation for instances similar
to Ii which share the same prediction output, sharing one common explanation rule.

Final Presentation form. We have to find out a comprehensive and understandable form that will
merge all information provided by conditions A, B and C while humans will be able by just following
some basic rules, to easily obtain all this information. 2 main types of presentation forms are proposed
for the explanation output of our prediction model: graph form since they can provide in an intelligible
and compact way explanations to humans and a question–answers form since it is probably one of the
most common and desirable ways that humans make explanations (Section 2.3.2). We will present it
analytically in next section on our application case study scenario.

2.4. Summary of Proposed Framework

In Table 4 are summarized and described in a compact form our total proposed framework’s
basic steps.

Table 4. Summary of proposed framework.

Step 1. Import images
(
XM×H×W

init , y
)
, where M is the number of images, H and W are the number of pixels

corresponding to the Height and Width of every image.
Step 2. Compute Co-Occurrence, Run-length, Statistical and Contour features and extract new dataset(
XM×N

new , y
)
, where N is the number of new extracted features.

Step 3. Train White Box Linear model LR with
(
XM×N , y

)
.

Step 4. Define a weight threshold dth and compute most important features K.
Step 7. For every new instance X1×N

new and every feature k ∈ K compute its critical values xcritk.
Step 8. Verify explanation Conditions A, B and C.
Step 9. Select and define the language of the explanation with respect to the targeted audience.
Step 10. Create the Final Presentation explanation output.

3. Results

In this section, we present our experimental results regarding to the proposed explainable
prediction framework for image classification tasks, applying it on glioma prediction from MRI as a
case study application scenario. In our experiments, all utilized machine learning models (Table 5) were
trained using the new data representation which was created via our feature extraction framework and
validated using a 10-fold cross-validation using the performance metrics: Accuracy (Acc), F1-score (F1),
Sensitivity (sen), Specificity (spe), Positive Predictive Value (PPV), Negative Predictive Value (NPV)
and the Area Under the Curve (AUC) [21]. It was considered not essential to conduct experiments
based on the initial dataset (raw images) since such experiments were already performed by various
CNN models based on transfer learning approach on previous works [22,23] managing to achieve
around to 99% accuracy score. It is worth mentioning that since this work proposes an explainable
intrinsic prediction model, obviously our goal is not to surpass the performance of these powerful
black box models but manage to achieve a decent performance score with powerful explainability.

Table 5. Summary of utilized machine learning models.

WB Model Basic Parameters BB Model Basic Parameters

DT1 max depth = 3 NN1 N.L.1 = 64, N.L.2 = 16
DT2 max depth = 5 NN2 N.L.1 = 128, N.L.2 = 32
DT3 max depth = 10 NN3 N.L.1 = 256, N.L.2 = 64
NB No parameters SVM1 C = 1
LR1 C = 1 SVM2 C = 500
LR2 C = 500 SVM3 C = 1000
LR3 C = 1000 k-NN k = 3
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Our experiments were performed via two phases. In the first phase, various white box (WB)
models were compared while in the second phase, the best identified WB model was compared with
various black box (BB) models. Table 5 depicts all the utilized machine learning models and their
basic tuning parameters. All Decision Trees (DT) models were evaluated based on their max depth
parameter. A high depth leads to a complex decision function while a low depth leads to a simple
function but probably to biased predictions. The basic version of decision tree algorithm used in our
experiments was CART algorithm since it was identified to exhibit superior performance comparing to
other decision tree algorithms [24]. On Naive Bayes (NB) [20] classifier, no parameters were specified.

All Neural Networks (NNs) are fully connected networks composed by two hidden layers each and
N.L.x refers to the number of Neurons in Layer x. The basic tuning parameter of a Logistic Regression
(LR) constitutes the regularization parameter C, just like in Support Vector Machine (SVM) [25], where
small values specify stronger regularization. All SVM models were composed by a radial basis function
kernel. We have to mention that all these models’ parameters were identified via exhaustive and
thorough experiments in order to incur the best performance results. Finally, the k-NN [26] was
implemented based on the Euclidean distance metric, while the basic tuning parameter is the number
of neighbors k.

3.1. Experimental Results

Table 6 presents the performance comparison of WB models regarding the predefined performance
metrics. LR1 exhibited the best classification score (94%) while NB exhibited the worst (77%).
Table 7 presents the performance comparison of the best identified WB model (LR1) comparing to
the BB models. LR1 managed to be as accurate as the best identified BB models (NN3 and SVM2).
This probably means that our feature extraction framework managed to filter out the noise and the
complexity of the initial image representation. As a result, this framework creates a robust and simpler
data representation that simple linear models can efficiently be applied on, while powerful BB models
like NN are becoming unnecessary.

Table 6. Performance comparison of white box (WB) models.

WB Model Acc F1 sen spe PPV NPV AUC

DT1 0.87 0.86 0.83 0.92 0.9 0.86 0.87
DT2 0.89 0.87 0.86 0.91 0.89 0.88 0.88
DT3 0.87 0.86 0.86 0.88 0.87 0.88 0.87
NB 0.77 0.74 0.69 0.84 0.79 0.76 0.77
LR1 0.94 0.93 0.94 0.94 0.93 0.95 0.94
LR2 0.93 0.93 0.93 0.93 0.92 0.94 0.93
LR3 0.93 0.93 0.93 0.93 0.92 0.94 0.93

Table 7. Performance comparison of black box (BB)–WB models.

Model Acc F1 sen spe PPV NPV AUC

NN1 0.93 0.92 0.92 0.94 0.93 0.93 0.93
NN2 0.94 0.93 0.92 0.94 0.93 0.94 0.93
NN3 0.94 0.93 0.92 0.95 0.94 0.93 0.94

SVM1 0.92 0.91 0.9 0.93 0.92 0.92 0.92
SVM2 0.93 0.93 0.92 0.95 0.94 0.93 0.93
SVM3 0.93 0.93 0.92 0.94 0.93 0.93 0.93
k-NN 0.89 0.87 0.83 0.94 0.92 0.86 0.88
LR1 0.94 0.93 0.94 0.94 0.93 0.95 0.94
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3.2. Predictions Explanations

In the sequel, our framework’s explanation output is presented for some case study predictions.
The final prediction model is the LR1. Let assume two new instances as presented in Figure 6.         

Tumor’s Size:         -0.78                    3.44            

Sum Average:         0.25                    0.34 

Correlation:             0.31                    0.30 

       …                                       … 

 Instance A Instance B 

Figure 6. Two case study instances. Instance A is GLIOMA while Instance B is NON GLIOMA.

Two basic language forms are proposed for our model’s explanation output, graph diagrams
and questions–answers forms as presented in Figures 7 and 8, which were extracted via the formulas
described in Section 2.3.4 regarding the predefined conditions A, B and C. The graph diagram provides
in a compact, comprehensive and visual form, information which can easily fast extracted by just
investigating every node. Each node represents one feature followed by an explanation rule in
which a specific prediction output is qualified. The three displayed nodes represent the three most
important identified features while the size of each node represents the importance factor of the
corresponding feature.

A questions–answers form is probably one of the best ways to provide explanations since this is
the main fundamental way that humans make explanations (more details in Section 2.3.2). As already
mentioned before, the proper choice of the language is highly depended by the audience. Therefore,
we also propose two types of questions–answers forms, Specific and Humanistic form. In specific form,
the answers are extracted directly by the graph diagram without any information loss providing all
details of graph’s information. In humanistic form the answers are extracted via a preprocessing step
aiming to simplify the explanation and convert it to a more human like explanation, by approximating
the initial model’s features to easier understandable abstract features (meta-features) specified by
the application domain. For example, in our case the Object size can be converted to Tumor Size,
the Sum Average to Tumor’s Color (more details for Sum Average feature are presented in Section 2.4).
Additionally, every quantitative value has to be converted to qualitative such as Small, Average, Large.
For this step is essential the knowledge of a High and Low value of each feature in order to create such
qualitative terms.
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Output 
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Output 

Explainable Prediction Model 

Feature 
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Framework 

Trained Linear 
Prediction 

Model 
“GLIOMA” 

Instance A 

Question 1: What are the most important features for this prediction? 
 -> Object’s size, Sum Average and Correlation 
Question 2: What is their importance order? 
 -> Object’s size > Sum Average > Correlation 
Question 3: What is the main reason for this prediction? 
 -> Because Object’s size < 0.2, Sum Average = 0.25, Correlation = 0.31 
Question 4: What are the main conditions that would make the model to change prediction? 
 -> If Object’s size ≥ 0.2 or Sum Average ≥ 1.4 or Correlation ≥ 1.9 then the model’s        
      prediction will change. 

Question 1: What are the most important features for this decision? 
 -> Tumor’s size, Tumor’s mean color and Tumor’s texture irregularity level 
Question 2: What is their importance order? 
 -> Tumor’s size > Tumor’s mean color > Tumor’s texture irregularity level 
Question 3: What is the main reason for this decision? 
 -> Because Tumor’s size is very small, Tumor’s mean color  is close to grey,  
      followed by an average Tumor’s texture irregularity level. 
Question 4: What are the main changes that would make the model to change decision? 
 -> If Tumor’s size becomes larger or Tumor’s mean color becomes much lighter or     
      Tumor’s texture irregularity level  becomes much more irregular then the model’s       
      decision will change. 

Specific 

Humanistic 

 

 

 

 

 

 

 

 

 

 

 

 

                            

Tumor’s Size < 0.2 GLIOMA   

T.Size = -0.78    

 

Correlation = 0.31 

T.Size = -0.78    

Correlation  < 1.9 Sum Average < 1.4 

 

Sum Average = 0.25 
 Low = -2         High = 6 

Low = -2.6  High =  2.3 Low = -2   High = 3    

T. Size ≥ 0.2 

Correlation = 0.31 Sum Average = 0.25 

NON GLIOMA   

Correlation   ≥ 1.9 

S. Aver.  ≥ 1.4 

Graph

→→→→
→→→
→

Figure 7. Explanation output for Instance A.
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Question 1: What are the most important features for this prediction? 
 -> Object’s size, Sum Average and Correlation 
Question 2: What is their importance order? 
 -> Object’s size > Sum Average > Correlation 
Question 3: What is the main reason for this prediction? 
 -> Because Object’s size > 3.4, Sum Average = 0.34, Correlation = 0.30 
Question 4: What are the main conditions that would make the model to change prediction? 
 -> If Object’s size ≤ 3.4 or if Sum Average ≤ 0.3 or if Correlation ≤ 0.2 then the model’s        
     prediction will change. 

Question 1: What are the most important features for this decision? 
 -> Tumor’s size, Tumor’s mean color and Tumor’s texture irregularity level 
Question 2: What is their importance order? 
 -> Tumor’s size > Tumor’s mean color > Tumor’s texture irregularity level 
Question 3: What is the main reason for this decision? 
 -> Because Tumor’s size is very large, Tumor’s mean color  is close to grey,  
      followed by an average Tumor’s texture irregularity level. 
Question 4: What are the main changes that would make the model to change decision? 
 -> If Tumor’s size becomes little smaller or  Tumor’s mean color become darker or       
      Tumor’s texture irregularity level  become more regular then the model’s       
      decision will change. 
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“NON GLIOMA” 
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Tumor’s Size > 3.4 NON GLIOMA   

 

T.Size = 3.44    

 

Correlation = 0.30 

T.Size = 3.44    

Correlation  > 0.2 Sum Average > 0.3 

 

Sum Average = 0.34 
 Low = -2         High = 6 

Low = -2.6  High =  2.3 Low = -2   High = 3    

T. Size ≤ 3.4 

Correlation = 0.30 Sum Average = 0.34 

 GLIOMA   

Correlation   ≤ 0.2 

S. Aver.  ≤ 0.3 

Graphical

→→→→
→→→
→

Figure 8. Explanation output for Instance A.
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4. Discussion

In this study, a new prediction framework was proposed, which is able to provide accurate and
explainable predictions on image classification tasks. Our experimental results indicate that our model
is able to achieve a sufficient classification score comparing to state of the art CNN approaches being
also intrinsic interpretable able to provide good explanations for every prediction/decision result.

One major difference comparing to other state of the art explanation frameworks for image
classification tasks, is that our approach is not performing pixels based explanations. By the term
pixels based (or pixel returns) we mean that the explanations are based on the visual interpretation of
the most important identified pixels that determined a specific prediction. For example, if a model
classified as a cat, an image which presents a cat and a dog, then meaningful pixel base explanation
would probably return the cat’s pixels revealing that the model classified the image utilizing the proper
area of pixels. However, if the task was to recognize an owner’s missing cat, then the identification
of high level features which uniquely describe this cat would be essential. Such features could be
cat’s size, cat’s color, cat’s color irregularity level and cat’s number of legs. In such cases, the model’s
prediction explanation would be useful to rely on such high level features instead of just specific pixels.
If the main reason for this prediction was just that this cat has 3 legs and blue color then pixel returns
probably could not reveal any useful explanation and reasoning.

As already mentioned our explanation approach is not pixel based but higher level feature based.
By this term it is meant that the explanations are performed via a higher level feature representation
input, in contrast to raw pixels which are the lowest level input (initial representation). Such high level
features can describe the unique properties that groups of pixels possess in every image such as color
of an image, color irregularity level, shape irregularity of objects lied in an image, number of objects
lied in an image and so on. Obviously, these high-level feature inputs have to be understandable
to humans since the model’s predictions’ explanations would be useless. For example, if a model
classified an image as a dog because x = 5 without any knowledge about what the feature x means
and how was calculated, then such explanation can be considered meaningless. Where instead if it
was known that the feature x is the size of an object in an image or the color value of an image and so
on, then we would be able to make reasoning about the model’s decision and easily understand it.

Nevertheless, creating high level image features being also understandable to humans is a complex
task. There is no guarantee that utilizing these features as an input for the machine model would lead
to high prediction performance, as probably there are a lot of other hidden unutilized features lied in an
image that are probably useful for the specific classification problem. It is hard to identify a priori such
features since they are actually found out and crafted by a human sense based approach, while it could
make more sense to seek the assistance of an expert with respect to the application domain. In contrast,
automatic methods such as CNN models manage to automatically identify useful features in images
avoiding this painful human based feature extraction process. However, these features that automatic
methods manage to identify are not interpretable and explainable to humans, whereas features crafted
by humans can be transparent, meaningful and understandable. This is the trade-off that we need
to endure if the objective is the development of interpretable prediction models. Traditional feature
extraction approaches, specialized expertise, specific knowledge domain regarding the application and
the art of creating useful features for machine learning problems followed by new innovative strategies
and techniques can constitute essential key elements in explainable artificial intelligent era.

5. Conclusions and Future Work

In this work, an accurate, robust and explainable prediction framework was proposed for image
classification tasks proposing three types of explanations outputs with respect to the audience domain.
Comparing to most approaches, our method is intrinsic interpretable providing good explanations
relying on high-level feature representation inputs, extracted by images. These features aim to describe
the properties that the pixels of an image possess such as its texture irregularity level, object’s shape,
size, etc. One basic limitation of our approach is that some of these features are probably only
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understandable by image analysts and specific human experts. However, we made an attempt to
qualitatively explain what such features describe in simple human terms in order to make our model’s
explanation output more attractive and viable to a much wider audience.

Last but not least, in our experiments we utilized all features, even the least significant.
We attempted to reduce the number of features in this dataset by analyzing the correlation between
the features as well as their significance and by applying some feature selection techniques [27–29].
However, any attempt of removing any features was leading to decrease the overall performance of
the prediction model; hence, no feature was removed. We point out the feature selection processing
was not in the scope of our work since our main objective was the development and the presentation
of an explainable machine learning framework for image classification tasks. Clearly, an interpretable
prediction model, exhibiting even better forecasting ability, could be developed through the imposition
of sophisticated feature selection techniques as a pre-processing step.

In future work, we aim to incorporate and identify features more understandable to human,
being also very informative for the machine learning prediction models. In addition, it is worth
investigating whether an interpretable prediction model exhibiting even better forecasting ability
could be developed through the imposition of penalty functions together with the application of
feature selection techniques or through additional optimized configuration of the proposed model.
Finally, we also aim to develop more sophisticated algorithmic methods in order to improve the
prediction performance accuracy of intrinsic white box models. Such algorithms could simplify the
initial structure complexity and nonlinearity level of the initial dataset, in order to efficiently train
simple white box models.
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Abstract: The recent developments of deep learning support the identification and classification of
lung diseases in medical images. Hence, numerous work on the detection of lung disease using
deep learning can be found in the literature. This paper presents a survey of deep learning for lung
disease detection in medical images. There has only been one survey paper published in the last
five years regarding deep learning directed at lung diseases detection. However, their survey is
lacking in the presentation of taxonomy and analysis of the trend of recent work. The objectives
of this paper are to present a taxonomy of the state-of-the-art deep learning based lung disease
detection systems, visualise the trends of recent work on the domain and identify the remaining
issues and potential future directions in this domain. Ninety-eight articles published from 2016 to
2020 were considered in this survey. The taxonomy consists of seven attributes that are common in
the surveyed articles: image types, features, data augmentation, types of deep learning algorithms,
transfer learning, the ensemble of classifiers and types of lung diseases. The presented taxonomy
could be used by other researchers to plan their research contributions and activities. The potential
future direction suggested could further improve the efficiency and increase the number of deep
learning aided lung disease detection applications.

Keywords: deep learning; lung disease detection; taxonomy; medical images

1. Introduction

Lung diseases, also known as respiratory diseases, are diseases of the airways and the other
structures of the lungs [1]. Examples of lung disease are pneumonia, tuberculosis and Coronavirus
Disease 2019 (COVID-19). According to Forum of International Respiratory Societies [2], about 334
million people suffer from asthma, and, each year, tuberculosis kills 1.4 million people, 1.6 million
people die from lung cancer, while pneumonia also kills millions of people. The COVID-19 pandemic
impacted the whole world [3], infecting millions of people and burdening healthcare systems [4].
It is clear that lung diseases are one of the leading causes of death and disability in this world. Early
detection plays a key role in increasing the chances of recovery and improve long-term survival
rates [5,6]. Traditionally, lung disease can be detected via skin test, blood test, sputum sample
test [7], chest X-ray examination and computed tomography (CT) scan examination [8]. Recently, deep
learning has shown great potential when applied on medical images for disease detection, including
lung disease.
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Deep learning is a subfield of machine learning relating to algorithms inspired by the function
and structure of the brain. Recent developments in machine learning, particularly deep learning,
support the identification, quantification and classification of patterns in medical images [9]. These
developments were made possible due to the ability of deep learning to learned features merely
from data, instead of hand-designed features based on domain-specific knowledge. Deep learning is
quickly becoming state of the art, leading to improved performance in numerous medical applications.
Consequently, these advancements assist clinicians in detecting and classifying certain medical
conditions efficiently [10].

Numerous works on the detection of lung disease using deep learning can be found in
the literature. To the best of our knowledge, however, only one survey paper has been published
in the last five years to analyse the state-of-the-art work on this topic [11]. In that paper, the history
of deep learning and its applications in pulmonary imaging are presented. Major applications of
deep learning techniques on several lung diseases, namely pulmonary nodule diseases, pulmonary
embolism, pneumonia, and interstitial lung disease, are also described. In addition, the analysis of
several common deep learning network structures used in medical image processing is presented.
However, their survey is lacking in the presentation of taxonomy and analysis of the trend of recent
work. A taxonomy shows relationships between previous work and categorises them based on
the identified attributes that could improve reader understanding of the topic. Analysis of trend, on
the other hand, provides an overview of the research direction of the topic of interest identified from
the previous work. In this paper, a taxonomy of deep learning applications on lung diseases and
a trend analysis on the topic are presented. The remaining issues and possible future direction are
also described.

The aims of this paper are as follows: (1) produce a taxonomy of the state-of-the-art deep learning
based lung disease detection systems; (2) visualise the trends of recent work on the domain; and (3)
identify the remaining issues and describes potential future directions in this domain. This paper is
organised as follows. Section 2 presents the methodology of conducting this survey. Section 3 describes
the general processes of using deep learning to detect lung disease in medical images. Section 4
presents the taxonomy, with detailed explanations of each subtopic within the taxonomy. The analysis
of trend, research gap and future directions of lung disease detection using deep learning are presented
in Section 5. Section 6 describes the limitation of the survey. Section 7 concludes this paper.

2. Methodology

In this section, the methodology used to conduct the survey of recent lung disease detection using
deep learning is described. Figure 1 shows the flowchart of the methodology used.

First, a suitable database, as a main source of reference, of articles was identified. The Scopus
database was selected as it is one of the largest databases of scientific peer-reviewed articles. However,
several significant articles, indexed by Google Scholar but not Scopus, are also included based on
the number of citations that they have received. Some preprint articles on COVID-19 are also included
as the disease has just recently emerged. To ensure that this survey only covers the state-of-the-art
works, only articles published recently (2016–2020) are considered. However, several older but
significant articles are included too. To search for all possible deep learning aided lung disease
detection articles, relevant keywords were used to search for the articles. The keywords used were
“deep learning”, “detection”, “classification”, “CNN”, “lung disease”, “Tuberculosis”, “pneumonia”,
“lung cancer”, “COVID-19” and “Coronavirus”. Studies were limited to articles written in English
only. At the end of this phase, we identified 366 articles.

Second, to select only the relevant works, screening was performed. During the screening,
only the title and abstract were assessed. The main selection criteria were this survey is only
interested in work, whereby deep learning algorithms were applied to detect the relevant diseases.
Articles considered not relevant were excluded. Based on the screening performed, only 98 articles
were shortlisted.
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Last, for all the articles screened, the eligibility inspection was conducted. Similar criteria, as in
the screening phase, were used, whereby the full-text inspection of the articles was performed instead.
All 98 screened articles passed this phase and were included in this survey. Out of the eligible articles,
90 were published in 2018 and onwards. This signifies that lung disease detection using deep learning
is still a very active field. Figure 1 shows the numbers of studies identified, screened, assessed for
eligibility and included in this survey.

Figure 1. Flow diagram of the methodology used to conduct this survey.

3. The Basic Process to Apply Deep Learning for Lung Disease Detection

In this section, the process of how deep learning is applied to identify lung diseases from medical
images is described. There are mainly three steps: image preprocessing, training and classification.
Lung disease detection generally deals with classifying an image into healthy lungs or disease-infected
lungs. The lung disease classifier, sometimes known as a model, is obtained via training. Training is
the process in which a neural network learns to recognise a class of images. Using deep learning, it is
possible to train a model that can classify images into their respective class labels. Therefore, to apply
deep learning for lung disease detection, the first step is to gather images of lungs with the disease to
be classified. The second step is to train the neural network until it is able to recognise the diseases.
The final step is to classify new images. Here, new images unseen by the model before are shown to
the model, and the model predicts the class of those images. The overview of the process is illustrated
in Figure 2.
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Figure 2. Overview of using deep learning for lung disease detection.

3.1. Image Acquisition Phase

The first step is to acquire images. To produce a classification model, the computer needs to learn
by example. The computer needs to view many images to recognise an object. Other types of data,
such as time series data and voice data, can also be used to train deep learning models. In the context
of the work surveyed in this paper, the relevant data required to detect lung disease will be images.
Images that could be used include chest X-ray, CT scan, sputum smear microscopy and histopathology
image. The output of this step is images that will later be used to train the model.

3.2. Preprocessing Phase

The second step is preprocessing. Here, the image could be enhanced or modified to improve
image quality. Contrast Limited Adaptive Histogram Equalisation (CLAHE) could be performed to
increase the contrast of the images [12]. Image modification such as lung segmentation [13] and bone
elimination [14] could be used to identify the region of interest (ROI), whereby the detection of the lung
disease can then be performed on the ROI. Edge detection could also be used to provide an alternate
data representation [15]. Data augmentation could be applied to the images to increase the amount
of available data. Feature extraction could also be conducted so that the deep learning model could
identify important features to identify a certain object or class. The output of this step is a set of images
whereby the quality of the images is enhanced, or unwanted objects have been removed. The output
of this step is images that were enhanced or modified that will later be used in training.
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3.3. Training Phase

In the third step, namely training, three aspects could be considered. These aspects are the selection
of deep learning algorithm, usage of transfer learning and usage of an ensemble. There are numerous
deep learning algorithm, for example deep belief network (DBN), multilayer perceptron neural network
(MPNN), recurrent neural network (RNN) and the aforementioned CNN. Different algorithms have
different learning styles. Different types of data work better with certain algorithms. CNN works
particularly well with images. Deep learning algorithm should be chosen based on the nature of
the data at hand. Transfer learning refers to the transfer of knowledge from one model to another.
Ensemble refers to the usage of more than one model during classification. Transfer learning and
ensemble are techniques used to reduce training time, improve classification accuracy and reduce
overfitting [16]. Further details concerning these two aspects could be found in Sections 4.5 and 4.6,
respectively. The output of this step is models generated from the data learned.

3.4. Classification Phase

In the fourth and final step, which is classification, the trained model will predict which class an
image belongs to. For example, if a model was trained to differentiate X-ray images of healthy lungs
and tuberculosis-infected lungs, it should be able to correctly classify new images (images that are
never seen by the model before) into healthy lungs or tuberculosis-infected lungs. The model will give
a probability score for the image. The probability score represents how likely an image belongs to a
certain class. At the end of this step, the image will be classified based on the probability score given
to it by the model.

4. The Taxonomy of State-Of-The-Art Work on Lung Disease Detection Using Deep Learning

In this section, a taxonomy of the recent work on lung disease detection using deep learning is
presented, which is the first contribution of this paper. The taxonomy is built to summarise and provide
a clearer picture of the key concepts and focus of the existing work. Seven attributes were identified for
inclusion in the taxonomy. These attributes were chosen as they were imminent and can be found in all
the articles being surveyed. The seven attributes included in the taxonomy are image types, features,
data augmentation, types of deep learning algorithms, transfer learning, the ensemble of classifiers
and types of lung diseases. Sections 4.1–4.7 describe each attribute in detail, whereby the review of
relevant works is provided. Section 4.8 describes the datasets used by the works surveyed. Figure 3
shows the taxonomy of state-of-the-art lung disease detection using deep learning.

Figure 3. Taxonomy of lung disease detection using deep learning.
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4.1. Image Type

In the papers surveyed, four types of images were used to train the model: chest X-ray, CT scans,
sputum smear microscopy images and histopathology images. These images are described in detail in
Sections 4.1.1–4.1.4. It should be noted that there are other imaging techniques exist such as positron
emission tomography (PET) and magnetic resonance imaging (MRI) scans. Both PET and MRI scans
could also be used to diagnose health conditions and evaluate the effectiveness of ongoing treatment.
However, none of the papers surveyed used PET or MRI scans.

4.1.1. Chest X-rays

An X-ray is a diagnostic test that helps clinicians identify and treat medical problems [17].
The most widely performed medical X-ray procedure is a chest X-ray, and a chest X-ray produces
images of the blood vessels, lungs, airways, heart and spine and chest bones. Traditionally, medical
X-ray images were exposed to photographic films, which require processing before they can be viewed.
To overcome this problem, digital X-rays are used [18]. Figure 4 shows several examples of chest X-ray
with different lung conditions taken from various datasets.

Figure 4. Examples of chest X-ray images.

Among the papers surveyed, the majority of them used chest X-rays. For example, X-rays
were used for tuberculosis detection [19], pneumonia detection [20], lung cancer detection [14] and
COVID-19 detection [21].

328



J. Imaging 2020, 6, 131

4.1.2. CT Scans

A CT scan is a form of radiography that uses computer processing to create sectional images
at various planes of depth from images taken around the patient’s body from different angles [22].
The image slices can be shown individually, or they can be stacked to produce a 3D image of the patient,
showing the tissues, organs, skeleton and any abnormalities present [23]. CT scan images deliver more
detailed information than X-rays. Figure 5 shows examples of CT scan images taken from numerous
datasets. CT scans have been used to detect lung disease in numerous work found in the literature, for
example for tuberculosis detection [24], lung cancer detection [25] and COVID-19 detection [26].

Figure 5. Examples of CT scan images.

4.1.3. Sputum Smear Microscopy Images

Sputum is a dense fluid formed in the lungs and airways leading to the lungs. To perform
sputum smear examination, a very thin layer of the sputum sample is positioned on a glass slide [27].
Among the papers surveyed, only five used sputum smear microscopy image [28–32]. Figure 6 shows
examples of sputum smear microscopy images.

Figure 6. Examples of sputum smear microscopy images.

4.1.4. Histopathology Images

Histopathology is the study of the symptoms of a disease through microscopic examination of
a biopsy or surgical specimen using glass slides. The sections are dyed with one or more stains to
visualise the different components of the tissue [33]. Figure 7 shows a few examples of histopathology
images. Among all the papers surveyed, only Coudray et al. [34] used histopathology images.
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Figure 7. Examples of histopathology images.

4.2. Features

In computer vision, features are significant information extracted from images in terms of
numerical values that could be used to solve specific problem [35]. Features might be in the form
of specific structures in the image such as points, edges, colour, sizes, shapes or objects. Logically,
the types of images affect the quality of the features.

Feature transformation is a process that creates new features using the existing features. These
new features may not have the same representation as to the original features, but they may
have more discriminatory power in a different space than the original space. The purpose of
feature transformation is to provide a more useful feature for the machine learning algorithm for
object identification. The features used in the surveyed papers include: Gabor, GIST, Local binary
patterns (LBP), Tamura texture descriptor, colour and edge direction descriptor (CEDD) [36], Hu
moments, colour layout descriptor (CLD) edge histogram descriptor (EHD) [37], primitive length,
edge frequency, autocorrelation, shape features, size, orientation, bounding box, eccentricity, extent,
centroid, scale-invariant feature transform (SIFT), regional properties area and speeded up robust
features (SURF) [38]. Other feature representations in terms of histograms include pyramid histogram
of oriented gradients (PHOG), histogram of oriented gradients (HOG) [39], intensity histograms
(IH), shape descriptor histograms (SD), gradient magnitude histograms (GM), curvature descriptor
histograms (CD) and fuzzy colour and texture histogram (FCTH). Some studies even performed lung
segmentations before training their models (e.g., [13,14,36]).

From the literature, a majority of the works surveyed used features that are automatically extracted
from CNN. CNN can automatically learn and extract features, discarding the need for manual feature
generation [40].

4.3. Data Augmentation

In deep learning, it is very important to have a large training dataset, as the community agrees
that having more images can help improve training accuracy. Even a weak algorithm with a large
amount of data can be more accurate than a strong algorithm with a modest amount of data [41].
Another obstacle is imbalanced classes. When doing binary classification training, if the number of
samples of one class is a lot higher than the other class, the resulting model would be biased [6]. Deep
learning algorithms perform optimally when the amount of samples in each class is equal or balanced.

One way to increase the training dataset without obtaining new images is to use image
augmentation. Image augmentation creates variations of the original images. This is achieved by
performing different methods of processing, such as rotations, flips, translations, zooms and adding
noise [42]. Figure 8 shows various examples of images after image augmentation.

Data augmentation can also help increase the amount of relevant data in the dataset. For example,
consider a car dataset with two labels, X and Y. One subset of the dataset contains images of cars of label
X, but all the cars are facing left. The other subset contains images of cars of label Y, but all the cars are
facing right. After training, a test image of a label Y car facing left is fed into the model, and the model
labels that the car as X. The prediction is wrong as the neural network search for the most obvious
features that distinguish one class from another. To prevent this, a simple solution is to flip the images
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in the existing dataset horizontally such that they face the other side. Through augmentation, we may
introduce relevant features and patterns, essentially boosting overall performance.

Figure 8. Examples of image augmentation: (a) original; (b) 45◦ rotation; (c) 90◦ rotation; (d) horizontal
flip; (e) vertical flip; (f) positive x and y translation; (g) negative x and y translation; (h) salt and pepper
noise; and (i) speckle noise.

Data augmentation also helps prevent overfitting. Overfitting refers to a case where a network
learns a very high variance function, such as the perfect modelling of training results. Data
augmentation addresses the issue of overfitting by introducing the model with more diverse data [43].
This diversity in data reduces variance and improves the generalisation of the model.

However, data augmentation cannot overcome all biases present in a small dataset [43]. Other
disadvantages of data augmentation include additional training time, transformation computing costs
and additional memory costs.

4.4. Types of Deep Learning Algorithm

The most common deep learning algorithm, CNN, is especially useful to find patterns in images.
Similar to the neural networks of the human brain, CNNs consist of neurons with trainable biases
and weights. Each neuron receives several inputs. Then, a weighted sum over the inputs is computed.
The weighted sum is then passed to an activation function, and an output is produced. The difference
between CNN and other neural networks is that CNN has convolution layers. Figure 9 shows
an example of a CNN architecture [44]. A CNN consists of multiple layers, and the four main
types of layers are convolutional layer, pooling layer and fully-connected layer. The convolutional
layer performs an operation called a “convolution”. Convolution is a linear operation involving
the multiplication of a set of weights with the input. The set of weights is called a kernel or a filter.
The input data are larger than the filter. The multiplication between a filter-sized section of the input
and the filter is a dot product. The dot product is then summed, resulting in a single value. The pooling
layer gradually reduces the spatial size of the representation to lessen the number of parameters and
computations in the network, thus controlling overfitting. A rectified linear unit (ReLu) is added to
the CNN to apply an elementwise activation function such as sigmoid to the output of the activation
produced by the previous layer. More details of CNN can be found in [44,45].

CNN generally has two components when learning, which are feature extraction and classification.
In the feature extraction stage, convolution is implemented on the input data using a filter or kernel.
Then, a feature map is subsequently generated. In the classification stage, the CNN computes a
probability of the image belongs to a particular class or label. CNN is especially useful for image
classification and recognition as it automatically learns features without needing manual feature
extraction [40]. CNN also can be retrained and applied to a different domain using transfer learning [46].
Transfer learning has been shown to produce better classification results [19].
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Figure 9. Example of a CNN structure.

Another deep learning algorithm is DBN. DBN can be defined as a stack of restricted Boltzmann
machines (RBM) [47]. The layer of the DBN has two functions, except for the first and final layers.
The layer serves as the hidden layer for the nodes that come before it, and as the input layer for
the nodes that come after it. The first RBM is designed to reproduce as accurately as possible the input
to train a DBN. Then, the hidden layer of the first RBM is treated as the visible layer for the second
one, and the second RBM is trained using the outputs from the first RBM. This process keeps repeating
until every layer of the network is trained. After this initial training, the DBN has created a model that
can detect patterns in the data. DBN can be used to recognise objects in images, video sequences and
motion-capture data. More details of DBN can be found in [31,48].

One more example of a deep learning algorithm used in the papers surveyed is a bag of words
(BOW) model. BOW is a method to extract features from the text for use in modelling. In BOW,
the number of the appearance of each word in a document is counted, then the frequency of each word
was examined to identify the keywords of the document, and a frequency histogram is made. This
concept is similar to the bag of visual words (BOVW), sometimes referred to as bag-of-features. In
BOVW, image features are considered as the “words”. Image features are unique patterns that were
found in an image. The general idea of BOVW is to represent an image as a set of features, where each
feature contains keypoints and descriptors. Keypoints are the most noticeable points in an image, such
that, even if the image is rotated, shrunk or enlarged, its keypoints are always the same. A descriptor
is the description of the keypoint. Keypoints and descriptors are used to construct vocabularies and
represent each image as a frequency histogram of features. From the frequency histogram, one can
find other similar images or predict the class of the image. Lopes and Valiati proposed Bag of CNN
features to classify tuberculosis [19].

4.5. Transfer Learning

Transfer learning emerged as a popular method in computer vision because it allows accurate
models to be built [49]. With transfer learning, a model learned from a domain can be re-used on a
different domain. Transfer learning can be performed with or without a pre-trained model.

A pre-trained model is a model developed to solve a similar task. Instead of creating a model from
scratch to solve a similar task, the model trained on other problem is used as a starting point. Even
though a pre-trained model is trained on a task which is different from the current task, the features
learned, in most cases, found to be useful for the new task. The objective of training a deep learning
model is to find the correct weights for the network by numerous forward and backward iterations.
By using pre-trained models that have been previously trained on large datasets, the weights and
architecture obtained can be used and applied to the current problem. One of the advantages of a
pre-trained model is the reduced cost of training for the new model [50]. This is because pre-trained
weights were used, and the model only has to learn the weights of the last few layers.
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Many CNN architectures are pre-trained on ImageNet [51]. The images were gathered from
the internet and labelled by human labellers using Amazon’s Mechanical Turk crowd-sourcing
tool. ILSVRC uses a subset of ImageNet with approximately 1000 images in each of 1000 classes.
Altogether, there are approximately 1.2 million training images, 50,000 validation images and 150,000
testing images.

Transfer learning can be used in two ways: (i) fine-tuning; or (ii) using CNN as a feature extractor.
In fine-tuning, the weights of the pre-trained CNN model are preserved on some of the layers and
tuned in the others [52]. Usually, the weights of the initial layers of the model are frozen while only
the higher layers are retrained. This is because the features obtained from the first layers are generic
(e.g., edge detectors or colour blob detectors) and applicable to other tasks. The top-level layers of
the pre-trained models are retrained so that the model learned high-level features specific to the new
dataset. This method is typically recommended if the training dataset is huge and very identical to
the original dataset that the pre-trained model was trained on. On the other hand, CNN is used as a
feature extractor. This is conducted by removing the last fully-connected layer (the one which outputs
the probabilities for being in each of the 1000 classes from ImageNet) and then using the network as a
fixed feature extractor for the new dataset [53]. For tasks where only a small dataset is available, it is
usually recommended to take advantage of features learned by a model trained on a larger dataset in
the same domain. Then, a classifier is trained from the features extracted.

There are several issues that need to be considered when using transfer learning: (i) ensuring that
the pre-trained model selected has been trained on a similar dataset as the new target dataset; and (ii)
using a lower learning rate for CNN weights that are being fine-tuned, because the CNN weights are
expected to be relatively good, and we do not wish to distort them too quickly and too much [53].

4.6. Ensemble of Classifiers

When more than one classifier is combined to make a prediction, this is known as ensemble
classification [16]. Ensemble decreases the variance of predictions, therefore making predictions
that are more accurate than any individual model. From work found in the literature, the ensemble
techniques used include majority voting, probability score averaging and stacking.

In majority voting, every model makes a prediction for each test instance, or, in other words, votes
for a class label, and the final prediction is the label that received the most votes [54]. An alternate
version of majority voting is weighted majority voting, in which the votes of certain models are deemed
more important than others. For example, majority voting was used by Chouhan et al. [55].

In probability score averaging, the prediction scores of each model are added up and divided
by the number of models involved [56]. An alternate version of this is weighted averaging, where
the prediction score of each model is multiplied by the weight, and then their average is calculated.
Examples of works which used probability score averaging are found in [15,57].

In stacking ensemble, an algorithm receives the outputs of weaker models as input and tries
to learn how to best combine the input predictions to provide a better output prediction [58]. For
example, stacking ensemble was used by Rajaraman et al. [12].

4.7. Type of Disease

In this section, the deep learning techniques applied for detecting tuberculosis, pneumonia, lung
cancer and COVID-19 are discussed in greater detail in Sections 4.7.1–4.7.4, respectively. The first three
diseases were considered as they are the most common causes of critical illness and death worldwide
related to lung [2], while COVID-19 is an ongoing pandemic [3]. We also found that most of the existing
work was directed at detecting these specific lung-related diseases.

4.7.1. Tuberculosis

Tuberculosis is a disease caused by Mycobacterium tuberculosis bacteria. According to the World
Health Organisation, tuberculosis is among the ten most common causes of death in the world [59].
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Tuberculosis infected 10 million people and killed 1.6 million in 2017. Early detection of tuberculosis is
essential to increase the chances of recovery [5].

Two studies used Computer-Aided Detection for Tuberculosis (CAD4TB) for tuberculosis
detection [60,61]. CAD4TB is a tool developed by Delft Imaging Systems in cooperation with
the Radboud University Nijmegen and the Lung Institute in Cape Town. CAD4TB works by obtaining
the patient’s chest X-ray, analysing the image via CAD4TB cloud server or CAD4TB box computer,
generating a heat map of the patient’s lung and displaying an abnormality score from 0 to 100.
Murphy et al. [60] showed that CAD4TB v6 is an accurate system, reaching the level of expert human
readers. A technique for automated tuberculosis screening by combining X-ray-based computer-aided
detection (CAD) and clinical information was introduced by Melendez et al. [61]. They combined
automatic chest X-ray scoring by CAD with clinical information. This combination improved accuracies
and specificities compared to the use of either type of information alone.

In the literature, several works use CNN to classify tuberculosis. A method that incorporated
demographic information, such as age, gender and weight, to improve CNN’s performance was
presented by Heo et al. [62]. Results indicate that CNN, including the demographic variables, has
a higher area under the receiver operating characteristic curve (AUC) score and greater sensitivity
then CNN based on chest X-rays images only. A simple convolutional neural network developed
for tuberculosis detection was proposed by Pasa et al. [63]. The proposed approach is found to be
more efficient than previous models but retains their accuracy. This method significantly reduced
the memory and computational requirement, without sacrificing the classification performance.
Another CNN-based model has been presented to classify different categories of tuberculosis [64].
A CNN model is trained on the region-based global and local features to generate new features.
A support vector machine (SVM) classifier was then applied for tuberculosis manifestations recognition.
CNN has also been used to classify tuberculosis [65–67]. Ul Abideen et al. [68] used a Bayesian-based
CNN that exploits the model uncertainty and Bayesian confidence to improve the accuracy of
tuberculosis identification. In other work, a deep CNN algorithm named deep learning-based
automatic detection (DLAD), was developed for tuberculosis classification that contains 27 layers with
12 residual connections [69]. DLAD shows outstanding performance in tuberculosis detection when
applied on chest X-rays, obtaining results better than physicians and thoracic radiologists.

Lopes and Valiati proposed Bag of CNN features to classify tuberculosis [19] where feature
extraction is performed by ResNet, VggNet and GoogLenet. Then, each chest X-ray is separated into
subregions whose size is equal to the input layer of the networks. Each subregion is regarded as a
“feature”, while each X-ray is a “bag”.

Several works that utilised transfer learning are described in this paragraph. Hwang et al.
obtained an accuracy of 90.3% and AUC of 0.964 using transfer learning from ImageNet and training
on a dataset of 10848 chest X-rays [70]. Pre-trained GoogLeNet and AlexNet were used to perform
pulmonary tuberculosis classification by Lakhani and Sundaram [57], who concluded that higher
accuracy was achieved when using the pre-trained model. Their pre-trained AlexNet achieved
an AUC of 0.98 and their pre-trained GoogLeNet achieved an AUC of 0.97. Lopes and Valiati used
pre-trained GoogLenet, ResNet and VggNet architectures as features extractors and the SVM classifier
to classify tuberculosis [19]. They achieved AUC of 0.900–0.912. Fine-tuned ResNet-50, ResNet-101,
ResNet-512, VGG16, VGG19 and AlexNet were used by Islam et al. to classify tuberculosis. These
models achieved an AUC of 0.85–0.91 [71]. Instead of using networks pre-trained from ImageNet,
pre-training can be performed on other datasets, such as the NIH-14 dataset [72]. This dataset contains
an assortment of diseases (which does not include tuberculosis) and is from the same modality as that
of the data under consideration for tuberculosis. Experiments show that the features learned from
the NIH dataset are useful for identifying tuberculosis. A study performed data augmentation and
then compared the performances of three different pre-trained models to classify tuberculosis [73].
The results show that suitable data augmentation methods were able to rise the accuracies of CNNs.
Transfer learning was also used by Abbas and Abdelsamea [74], Karnkawinpong and Limpiyakorn [75]
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and Liu et al. [76]. A coarse-to-fine transfer learning was applied by Yadav et al. [77]. First, the datasets
are split according to the resolution and quality of the images. Then, transfer learning is applied to
the low-resolution dataset first, followed by the high-resolution dataset. In this case, the model was
first trained on the low-resolution NIH dataset, and then trained on the high-resolution Shenzen
and Montgomery datasets. Sahlol et al. [78] used CNN as fixed feature extractor and Artificial
Ecosystem-Based Optimisation to select the optimal subset of relevant features. KNN was used
as the classifier.

Several works that utilised ensemble are described in this paragraph. An ensemble method
using the weighted averages of the probability scores for the AlexNet and GoogLeNet algorithms was
used by Lakhani and Sundaram [57]. In [79], ensemble by weighted averages of probability scores
is used. An ensemble of six CNNs was developed by Islam et al. [71]. The ensemble models were
generated by calculating the simple averaging of the probability predictions given by every single
model. Another ensemble classifier was created by combining the classifier from the Simple CNN
Feature Extraction and a classifier from Bag of CNN features proposals [19]. Three classifiers were
trained, using the features from ResNet, GoogLenet and VggNet, respectively. The Simple Features
Ensemble combines all three classifiers, and the output is obtained through a simple soft-voting scheme.
A stacking ensemble for tuberculosis detection was proposed by Rajaraman et al. [12]. An ensemble
generated via a feature-level fusion of neural network models was also used to classify tuberculosis [80].
Three models were employed: the DenseNet, ResNet and Inception-ResNet. As such, the ensemble
was called RID network. Features were extracted using the RID network, and SVM was used as
a classifier. Tuberculosis classification was also executed using another ensemble of three regular
architectures: ResNet, AlexNet and GoogleNet [79]. Each architecture was trained from scratch,
and different optimal hyper-parameter values were used. The sensitivity, specificity and accuracy
of the ensemble were higher than when each of the regular architecture was used independently.
The authors of [15,81] performed a probability score averaging ensemble of CNNs trained on features
extracted from a different type of images; the enhanced chest X-ray images and the edge detected
images of the chest X-ray. Rajaraman and Antani [82] studied and compared various ensemble methods
that include majority voting and stacking. Results show that stacking ensemble achieved the highest
classification accuracy.

Other techniques used to classify tuberculosis images include k-Nearest Neighbour (kNN),
sequential minimal optimisation and simple linear regression [38]. A Multiple-Instance Learning-based
approach was also attempted [83]. The advantage of this method is the lower labelling detail required
during optimisation. In addition, the minimal supervision required allows easy retraining of a
previously optimised system. One tuberculosis detection system uses ViDi Systems for image analysis
of chest X-rays [84]. ViDi is an industrial-grade deep learning image analysis software developed
by COGNEX. ViDi has shown feasible performance in the detection of tuberculosis. The authors
of [36] introduced a fully automatic frontal chest screening system that is capable of detecting
tuberculosis-infected lungs. This method begins with the segmentation of the lung. Then, features are
extracted from the segmented images. Examples of features include shape and curvature histograms.
Finally, a classifier was used to detect the disease.

For CT scans related tuberculosis detection works, a method called AECNN was proposed [85].
An AE-CNN block was formed by combining the feature extraction of CNN and the unsupervised
features of AutoEncoder. The model then analyses the region of interest within the image to perform
the classification of tuberculosis. A research study explores the use of CT pulmonary images to diagnose
and classify tuberculosis at five levels of severity to track treatment effectiveness [24]. The tuberculosis
abnormalities only occupy limited regions in the CT image, and the dataset is quite small. Therefore,
depth-ResNet was proposed. Depth-ResNet is a 3D block-based ResNet combined with the injection
of depth information at each layer. As an attempt to automate tuberculosis related lung deformities
without sacrificing accuracy, advanced AI algorithms were studied to draw clinically actionable
hypotheses [86]. This approach involves thorough image processing, subsequently performing feature
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extraction using TensorFlow and 3D CNN to further augment the metadata with the features extracted
from the image data, and finally perform six class binary classification using the random forest.
Another attempt for this problem was proposed by Zunair et al. [87]. They proposed a 16-layer
3D convolutional neural network with a slice selection. The goal is to estimate the tuberculosis
severity based on the CT image. An integrated method based on optical flow and a characterisation
method called Activity Description Vector (ADV) was presented to take care of the classification of
chest CT scan images affected by different types of tuberculosis [88]. The important point of this
technique is the interpretation of the set of cross-sectional chest images produced by CT scan, not as a
volume but as a series of video images. This technique can extract movement descriptors capable of
classifying tuberculosis affections by analysing deformations or movements generated in these video
series. The idea of optical flow refers to the approximation of displacements of intensity patterns. In
short, the ADV vector describes the activity in image series by counting for each region of the image
the movements made in four directions of the 2D space.

For sputum microscopy images-related tuberculosis detection works, CNN was used for
the detection and localisation of drug-sensitive tuberculosis bacilli in sputum microscopy images [29].
This method automatically localises bacilli in each view-field (a patch of the whole slide). A study
found that, when training a CNN on three different image versions, namely RGB, R-G and grayscale,
the best performance was achieved when using R-G images [28]. Image binarisation can also be used for
preprocessing before the data were fed into a CNN [30]. Image binarisation is a segmentation method
to classify the foreground and background of the microscopic sputum smear images. The segmented
foreground consists of single bacilli, touching bacillus and other artefacts. A trained CNN is then
given the foreground objects, and the CNN will classify the objects into bacilli and non-bacilli. Another
tuberculosis detection system automatically attains all view-fields using a motorised microscopic
stage [32]. After that, the data are delivered to the recognition system. A customised Inception V3
DeepNet model is used to learn from the pre-trained weights of Inception V3. Afterwards, the data
were classified using SVM. DBN was also used to detect tuberculosis bacillus present in the stained
microscopic images of sputum [31]. For segmentation, the Channel Area Thresholding algorithm is
used. Location-oriented histogram and speed up robust feature (SURF) algorithm were used to extract
the intensity-based local bacilli features. DBN is then used to classify the bacilli objects. Table 1 shows
the summary of papers for tuberculosis detection using deep learning.

Table 1. Summary of papers for tuberculosis detection using deep learning.

Authors Deep Learning Technique Features Dataset

[74] CNN with transfer learning and
data augmentation Features extracted from CNN Montgomery

[38]
K-nearest neighbour, Simple Linear
Regression and Sequential Minimal
Optimisation (SMO) Classification

Area, major axis, minor axis,
eccentricity, mean, kurtosis,
skewness and entropy

Shenzhen

[84] ViDi Features extracted from CNN Unspecified

[64] CNN Gabor, LBP, SIFT, PHOG and
Features extracted from CNN Private dataset

[24] CNN Features extracted from CNN ImageCLEF 2018 dataset

[62] CNN with transfer learning, with
demographic information

Features extracted from CNN +
demographic information Private dataset

[79]
CNN with data augmentation, and
ensemble by weighted averages of
probability scores

Features extracted from CNN Montgomery, Shenzhen,
Belarus, JSRT

[70] CNN with transfer learning and
data augmentation Features extracted from CNN Private dataset, Montgomery,

Shenzhen
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Table 1. Cont.

Authors Deep Learning Technique Features Dataset

[69] CNN Features extracted from CNN Private datasets,
Montgomery, Shenzhen

[71]
CNN with transfer learning and
ensemble by simple linear
probabilities averaging

Features extracted from CNN +
rule-based features Indiana, JSRT, Shenzhen

[29] CNN HoG features ZiehlNeelsen Sputum smear
Microscopy image DataBase

[75] CNN and shuffle sampling Features extracted from CNN Private datasets

[81] CNN with transfer learning and
ensemble by averaging

CNN extracted features from edge
images Montgomery, Shenzhen

[57]
CNN with transfer learning, data
augmentation and ensemble by
weighted probability scores average

Features extracted from CNN Private dataset, Montgomery,
Shenzhen, Belarus

[85] AutoEncoder-CNN Features extracted from CNN Private dataset

[76] CNN with transfer learning and
shuffle sampling Features extracted from CNN Private dataset

[65] End-to-end CNN Features extracted from CNN Montgomery, Shenzhen

[88] Optical flow model Activity Description Vector on
optical flow of video sequences ImageCLEF 2019 dataset

[28] CNN Colours TBimages dataset

[83]
Modified maximum pattern margin
support vector machine (modified
miSVM)

First four moments of the intensity
distributions Private datasets

[61] CAD4TB with clinical information Features extracted from CNN +
clinical features Private dataset

[31] DBN LoH + SURF features ZiehlNeelsen Sputum smear
Microscopy image DataBase

[60] CAD4TB Features extracted from CNN Private dataset

[72] CNN with transfer learning and
data augmentation Features extracted from CNN Montgomery, Shenzhen,

NIH-14 dataset

[30] CNN Features extracted from CNN TBimages dataset

[63] CNN from scratch and data
augmentation Features extracted from CNN Montgomery, Shenzhen,

Belarus

[86] 3D CNN
Features extracted from CNN +
lung volume + patient attribute
metadata

ImageCLEF 2019 dataset

[12] CNN with transfer learning and
ensemble by stacking

local and global feature descriptors
+ features extracted from CNN

Private dataset, Montgomery,
Shenzhen, India

[80] CNN with transfer learning and
feature level ensemble Features extracted from CNN Shenzhen

[15] CNN with transfer learning and
ensemble by averaging

CNN extracted features from edge
images Montgomery, Shenzhen

[32] CNN with transfer learning Features extracted from CNN ZiehlNeelsen Sputum smear
Microscopy image DataBase

[66] CNN with data augmentation Features extracted from CNN Shenzhen

[73] CNN with transfer learning and
data augmentation Features extracted from CNN NIH-14, Montgomery,

Shenzhen

[19]
CNN with transfer learning, Bag of
CNN Features and ensemble by a
simple soft-voting scheme

Features extracted from
CNN + BOW

Private dataset, Montgomery,
Shenzhen

[36] Neural network
Shape, curvature descriptor
histograms, eigenvalues of Hessian
matrix

Montgomery, Shenzhen
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Table 1. Cont.

Authors Deep Learning Technique Features Dataset

[77] CNN with transfer learning and
data augmentation Features extracted from CNN Montgomery, Shenzhen,

NIH-14

[87] 3D CNN Features extracted from CNN ImageCLEF 2019 dataset

[78]
CNN and Artificial
Ecosystem-based Optimisation
algorithm

Features extracted from CNN Shenzhen

[67] CNN Features extracted from CNN Shenzhen

[68] Bayesian based CNN Features extracted from CNN Montgomery, Shenzhen

[82]

CNN with transfer learning, and
ensemble by majority voting, simple
averaging, weighted averaging, and
stacking

Features extracted from CNN

Montgomery, Shenzhen,
LDOCTCXR, 2018 RSNA
pneumonia challenge
dataset, Indiana dataset

4.7.2. Pneumonia

Pneumonia is a lung infection that causes pus and fluid to fill the alveoli in one or both lungs,
thus making breathing difficult [89]. Symptoms include severe shortness of breath, chest pain, chills,
cough, fever or fatigue. Community-acquired pneumonia is still a recurrent cause of morbidity and
mortality [90]. Most of the studies used transfer learning and data augmentation. Tobias et al. [91]
straightforwardly used CNN. Stephen et al. [92] trained their CNN from scratch while using rescale,
rotation, width shift, height shift, shear, zoom and horizontal flip as their augmentation techniques.
A pre-trained CNN was utilised by the authors of [20,55,93–97] for pneumonia detection, while
the latter four also applied data augmentation on their training datasets. For data augmentation,
random horizontal flipping was used by Rajpurkar et al. [96]; shifting, zooming, flipping and
40-degree angles rotation were used by Ayan and Ünver [20]; Chouhan et al. [55] used noise addition,
random horizontal flip random resized crop and images intensity adjustment; and Rahman et al. [97]
used rotation, scaling and translation. Hashmi et al. [98] used CNN with transfer learning, data
augmentation and ensemble by weighted averaging.

In a unique study, Acharya and Satapathy [99] used Deep Siamese CNN architecture. Deep
Siamese network uses the symmetric structure of the two input image for classification. Thus, the X-ray
images were separated into two parts, namely the left half and the right half. Each half was then fed
into the network to compare the symmetric structure together with the amount of the infection that is
spread across these two regions. Training the model for both left and right parts of the X-ray images
makes the classification process more robust. Elshennawy and Ibrahim [100] used CNN and Long
Short-Term Memory (LSTM)-CNN for pneumonia detection. The key advantage of the LSTM is that it
can model both long and short-term memory and can deal with the vanishing gradient problem by
training on long strings and storing them in memory. Emhamed et al. [101] studied and compared
seven different deep learning algorithms: Decision Tree, Random Forest, KNN, AdaBoost, Gradient
Boost, XGBboost and CNN. Their results show CNN obtained the highest accuracy for pneumonia
classification, followed by Random forest and XGBboost. Hashmi et al. [98] used CNN with transfer
learning, data augmentation and ensemble by weighted averaging.

In addition, Kumar et al. [102] attempted not only pneumonia classification, but also ROI
identification. Pneumonia was detected by looking at lung opacity, and Mask-RCNN based model
was used to identify lung opacity that is likely to depict pneumonia. They also performed ensemble by
combining confidence scores and bounding boxes. In addition to pneumonia detection, Hurt et al. [103]
proposed an approach that provides a probabilistic map on the chest X-ray images to assist in
the diagnosis of pneumonia. Table 2 shows the summary of papers for pneumonia detection using
deep learning.
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Table 2. Summary of papers for pneumonia detection using deep learning

Reference Deep Learning Technique Features Dataset

[99] Deep Siamese based neural network
CNN extracted features from
the left half and right half of
the lungs

Unspecified Kaggle dataset

[20] CNN with transfer learning and
data augmentation

Features extracted from
CNN LDOCTCXR

[55]
CNN with transfer learning, data
augmentation and ensemble by
majority voting.

Features extracted from
CNN LDOCTCXR

[93] CNN with transfer learning Features extracted from
CNN LDOCTCXR

[102]

CNN with transfer learning, data
augmentation and ensemble by
combining confidence scores and
bounding boxes.

Features extracted from
CNN

Radiological Society of North
America (RSNA) pneumonia
dataset

[96] CNN with transfer learning and
data augmentation

Features extracted from
CNN NIH Chest X-ray Dataset

[92] CNN from scratch and data
augmentation

Features extracted from
CNN LDOCTCXR

[95] CNN with transfer learning Features extracted from
CNN LDOCTCXR

[91] CNN Features extracted from
CNN Mooney’s Kaggle dataset

[100] CNN and LSTM-CNN, with transfer
learning and data augmentation

Features extracted from
CNN Mooney’s Kaggle dataset

[103] CNN with probabilistic map of
pneumonia

Features extracted from
CNN

2018 RSNA pneumonia challenge
dataset

[101]
Decision Tree, Random Forest,
K-nearest neighbour, AdaBoost,
Gradient Boost, XGBboost, CNN

Multiple features Mooney’s Kaggle dataset

[98]
CNN with transfer learning, data
augmentation and ensemble by
weighted averaging

Features extracted from
CNN LDOCTCXR

[97] CNN with transfer learning and
data augmentation

Features extracted from
CNN Mooney’s Kaggle dataset

[94] CNN with transfer learning Features extracted from
CNN Private dataset

4.7.3. Lung Cancer

One key characteristic of lung cancer is the presence of pulmonary nodules, solid clumps of tissue
that appear in and around the lungs [104]. These nodules can be seen in CT scan images and can be
malignant (cancerous) in nature or benign (not cancerous) [23].

As early as 2015, Hua et al. [105] used models of DBN and CNN to perform nodule classification
in CT scans. They showed that, using deep learning, it is possible to seamlessly extract features
for lung nodules classification into malignant or benign without computing the morphology and
texture features. Rao et al. [25] and Kurniawan et al. [106] used CNN in a straightforward way to
detect lung cancer in CT scans. Song et al. [23] compared the classification performance of CNN, deep
neural network and stacked autoencoder (a multilayer sparse autoencoder of a neural network) and
concluded that CNN has the highest accuracy among them. Ciompi et al. [107] used multi-stream
multi-scale CNNs to classify lung nodules into six different classes: solid, non-solid, part-solid, calcified,
perifissural and spiculated nodules. Specifically, they presented a multi-stream multi-scale architecture,
in which CNN concurrently handles multiple triplets of 2D views of a nodule at multiple scales
and then calculates the probability for the nodule in each of the six classes. Yu et al. [14] performed
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bone elimination and lung segmentation before training with CNN. Shakeel et al. [108] performed
image denoising and enhanced the quality of the images, and then segmented the lungs by using
the improved profuse clustering technique. Afterwards, a neural network is trained to detect lung
cancer. The approach of Ardila et al. [13] consists of four components: lung segmentation, cancer
region of interest detection model, full-volume model and cancer risk prediction model. After lung
segmentation, the region of interest detection model proposes the most nodule-like regions, while
the full-volume model was trained to predict cancer probability. The outputs of these two models were
considered to generates the final prediction. Chen et al. [109] performed nodule enhancement and
nodule segmentation before performing nodule detection.

For the works that employed transfer learning, Hosny et al. [110] and Xu et al. [111] both
used CNN with data augmentation. For augmentations, both studies used flipping, translation
and rotation. The authors of [112] leveraged the LUNA16 dataset to train a nodule detector and then
refined that detector with the KDSB17 dataset to provide global features. Combining that and local
features from a separate nodule classifier, they were able to detect lung cancer with high accuracy.
The authors of [113] used transfer learning by training the model multiple times. It commenced
using the more general images from the ImageNet dataset, followed by detecting nodules from chest
X-rays in the ChestX-ray14 dataset, and finally detecting lung cancer nodules from the JSRT dataset.
The authors of [34] is the only study surveyed to do lung cancer detection on histopathology images.
Adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) are the most frequent subtypes of lung
cancer, and visual examination by an experienced pathologist is needed to differentiate them. In this
work, CNN was trained on histopathology slides images to automatically and accurately classify them
into LUAD, LUSC or normal lung tissue. Xu et al. [114] used a CNN-long short-term memory network
(LSTM) to detect lesions on chest X-ray images. Long short-term memory is an extension of RNN. This
CNN-LSTM network offers probable clinical relationships between lesions to assist the model to attain
better predictions. Table 3 shows the summary of papers for lung cancer detection using deep learning.

Table 3. Summary of papers for lung cancer detection using deep learning.

Reference Deep Learning Technique Features Dataset

[13] CNN Features extracted from CNN LUNA, LIDC, NLST

[113] CNN with transfer learning Features extracted from CNN JSRT Dataset, NIH-14 dataset

[107] Multi-stream multi-scale
convolutional networks Features extracted from CNN MILD dataset DLCST dataset

[34] CNN with transfer learning Features extracted from CNN NCI Genomic Data Commons

[110] CNN with transfer learning and
data augmentation Features extracted from CNN

NSCLC-Radiomics,
NSCLC-Radiomics-Genomics,
RIDER Collections and several
private datasets

[105] CNN and DBN Features extracted from CNN and
DBN LIDC-IDRI

[112] CNN with transfer learning Features extracted from CNN
Kaggle Data Science Bowl 2017
dataset, Lung Nodule Analysis 2016
(LUNA16) dataset

[25] CNN Features extracted from CNN LIDC-IDRI

[108] CNN Features extracted from CNN LIDC-IDRI

[23] CNN with data augmentation Features extracted from CNN LIDC-IDRI database

[111] CNN with transfer learning and
data augmentation Features extracted from CNN Private dataset

[14]
Bone elimination and lung
segmentation before training with
CNN

Features extracted using CNN from
bone eliminated lung images and
segmented lung images

JSRT dataset

[114] CNN-long short-term memory
network Features extracted from CNN NIH-14 dataset
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Table 3. Cont.

Reference Deep Learning Technique Features Dataset

[109] CNN with transfer learning and
data augmentation Features extracted from CNN JSRT database

[106] CNN with data augmentation Features extracted from CNN Cancer Imaging Archive

4.7.4. COVID-19

COVID-19 is an infectious disease caused by a recently discovered coronavirus [115]. Senior
citizens are those at high risk to develop severe sickness, along with those that have historical medical
conditions such as cardiovascular disease, chronic respiratory disease, cancer and diabetes [116].

A straightforward approach to detect COVID-19 using CNN with transfer learning and data
augmentation was used by Salman et al. [21]. For transfer learning, they used InceptionV3 as a
fixed feature extractor. Other works that implemented the similar approach of transfer learning for
COVID-19 detection can be found in [117–122].

The authors of [123,124] performed 3-class classification using CNN with transfer learning,
classifying X-ray images into normal, COVID-19 and viral pneumonia cases. Chowdhury et al. [125]
utilised CNN with transfer learning and data augmentation to classify classifying X-ray images into
normal, COVID-19 and viral pneumonia cases. The augmentation techniques used were rotation,
scaling and translation. Wang et al. [126] trained a CNN from scratch and data augmentation to perform
three-class classification. The augmentation technique used were translation, rotation, horizontal flip
and intensity shift. Other work performing three-class classification can be found in [4,127–130]. Studies
that employ data augmentation to increase the amount of data available can be found in [131,132].
In addition to COVID-19 detection on X-ray images, Alazab et al. [131] managed to perform prediction
on the number of COVID-19 confirmations, recoveries and deaths in Jordan and Australia.

For works utilising ensemble, Ouyang et al. [133] implemented weighted averaging ensemble.
Mahmud et al. [134] implemented stacking ensemble, whereby the images were classified into four
categoriesL normal, COVID-19, viral pneumonia and bacterial pneumonia.

Shi et al. [135] utilised VB-Net for image segmentation and feature extraction and used a modified
random decision forests method for classification. Several handcrafted features were also calculated
and used to train the random forest model. More information about random forest can be found
in [136].

A system that receives thoracic CT images and points out suspected COVID-19 cases was
proposed by Gozes et al. [26]. The system analyses CT images at two distinct subsystems. Subsystem
A performed the 3D analysis of the case volume for nodules and focal opacities, while Subsystem B
performed the 2D analysis of each slice of the case to detect and localise larger-sized diffuse opacities.
In Subsystem A, nodules and small opacities detection were conducted using a commercial software.
Besides the detection of abnormalities, the software also provided measurements and localisation.
For Subsystem B, lung segmentation was first performed, and then COVID-19 related abnormalities
detection was conducted using CNN with transfer learning and data augmentation. If an image is
classified as positive, a localisation map was generated using the Grad-cam technique. To provide a
complete review of the case, Subsystems A and B were combined. The final outputs include per slice
localisation of opacities (2D), 3D volumetric presentations of the opacities throughout the lungs and a
Corona score, which is a volumetric measurement of the opacities burden.

The authors of [137] focused on location-attention classification mechanism. First, the CT images
were preprocessed. Second, a 3D CNN model was employed to segment several candidate image
patches. Third, an image classification model was trained and employed to categorise all image
patches into one of three classes: COVID-19, Influenza-A-viral-pneumonia and irrelevant-to-infection.
A location-attention mechanism was embedded in the image classification model to differentiate
the structure and appearance of different infections. Finally, the overall analysis report for a single
CT sample was generated using the Noisy-or Bayesian function. The results show that the proposed
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approach could more accurately detect COVID-19 cases than without the location-attention model.
Several other studies modified the CNN for COVID-19 detection. In [138], a multi-objective differential
evolution-based CNN was utilised. Sedik et al. [139] implemented CNN and LSTM with data
augmentation, while Ahsan et al. [140] employed MLP-CNN based model. The authors of [141]
employed capsule network-based framework with transfer learning. Table 4 shows the summary of
papers for COVID-19 detection using deep learning.

Table 4. Summary of papers for COVID-19 detection using deep learning.

Authors Deep Learning Technique Features Dataset

[137]
CNN with transfer learning
and location-attention
classification mechanism

Features extracted from CNN Private dataset

[125] CNN with transfer learning
and data augmentation Features extracted from CNN

SIRM database, Cohen’s Github
dataset, Chowdhury’s Kaggle
dataset

[26]
RADLogics Inc., CNN with
transfer learning and data
augmentation

Features extracted from RADLogics
Inc and CNN

Chainz Dataset, A dataset from
a hospital in Wenzhou, China,
Dataset from El-Camino
Hospital (CA) and Lung image
database consortium (LIDC)

[123] CNN with transfer learning Features extracted from CNN Cohen’s Github dataset and
LDOCTCXR

[21] CNN with transfer learning
and data augmentation Features extracted from CNN Cohen’s Github dataset and

unspecified Kaggle dataset

[135]
VB-Net and modified
random decision forests
method

96 handcrafted image features

Dataset obtained from Tongji
Hospital of Huazhong
University of Science and
Technology, Shanghai Public
Health Clinical Center of Fudan
University, and China-Japan
Union Hospital of Jilin
University.

[126] CNN from scratch and data
augmentation Features extracted from CNN COVIDx Dataset

[127] CNN with transfer learning Features extracted from CNN
Cohen’s Github dataset,
Andrew’s Kaggle dataset,
LDOCTCXR

[117] CNN with transfer learning Features extracted from CNN Cohen’s Github dataset, RSNA
pneumonia dataset, COVIDx

[131] CNN with transfer learning
and data augmentation Features extracted from CNN Sajid’s Kaggle dataset

[4] CNN with transfer learning
and data augmentation Features extracted from CNN Cohen’s Github dataset,

Mooney’s Kaggle dataset

[118] CNN with transfer learning Features extracted from CNN COVID-CT-Dataset

[128]
CNN as feature extractor
and long short-term memory
(LSTM) network as classifier

Features extracted from CNN

GitHub, Radiopaedia,
The Cancer Imaging Archive,
SIRM, Kaggle repository, NIH
dataset, Mendeley dataset

[132]

CNN with transfer learning
and synthetic data
generation and
augmentation

Features extracted from CNN
Cohen’s Github, Chowdhury’s
Kaggle dataset, COVID-19 Chest
X-ray Dataset, Initiative

[129]
CNN with transfer learning,
data augmentation and
ensemble by majority voting

Features extracted from CNN Cohen’s Github, LDOCTCXR
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Authors Deep Learning Technique Features Dataset

[134] CNN with transfer learning
and stacking ensemble Features extracted from CNN Private dataset, LDOCTCXR

[130] CNN Features extracted from CNN Private dataset

[138] Multi-objective differential
evolution-based CNN Features extracted from CNN Unspecified

[119] CNN with transfer learning Features extracted from CNN Cohen’s Github

[139] CNN and ConvLSTM with
data augmentation Features extracted from CNN Cohen’s Github,

COVID-CT-Dataset

[120] CNN with transfer learning Features extracted from CNN Cohen’s Github

[133] CNN with ensemble by
weighted averaging Features extracted from CNN Private hospital datasets

[121] CNN with transfer learning Features extracted from CNN
Cohen’s Github, Mooney’s
Kaggle dataset, Shenzhen and
Montgomery datasets

[140] MLP-CNN based model Features extracted from CNN Cohen’s Github

[122] CNN with transfer learning Features extracted from CNN Cohen’s Github, unspecified
Kaggle dataset

[141]
Capsule Network-based
framework with transfer
learning

Features extracted from CNN Cohen’s Github, Mooney’s
Kaggle dataset

4.8. Dataset

The datasets used by the surveyed works are reported in this section. Tables 5–8 show
the summary of datasets used for tuberculosis, pneumonia, lung cancer and COVID-19 detection,
respectively. This is done to provide readers with relevant information on the datasets. Note that only
public datasets are included in the tables because they are available to the public, whereas private
datasets are inaccessible without permission.

According to Table 5, among the twelve datasets used for tuberculosis detection works, five of
them do not contain tuberculosis medical images: JSRT dataset, Indiana dataset, NIH-14 dataset,
LDOCTCXR and RSNA pneumonia dataset. JSRT dataset contains lung cancer images, while
the Indiana and NIH-14 datasets contain multiple different diseases. LDOCTCXR and RSNA
pneumonia datasets both contain pneumonia and normal lung images. These five datasets were
used for transfer learning in several studies. Models were first trained to identify abnormalities in
chest X-ray, and then they were trained to identify tuberculosis. The India, Montgomery and Shenzhen
datasets contain X-ray images of tuberculosis; ImageCLEF 2018 and ImageCLEF 2019 datasets contain
CT images of tuberculosis; and the Belarus dataset contains both X-ray and CT images of tuberculosis.
Two of the datasets contain sputum smear microscopy images of tuberculosis: the TBimages dataset
and ZiehlNeelsen Sputum smear Microscopy image DataBase.

For detection works related to pneumonia, only four public datasets are available, as shown in
Table 6. All four datasets contain X-ray images only. Even though the number of datasets is low,
the number of images within these datasets is high. Future studies utilising these datasets should have
sufficient data.
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Table 5. Summary of datasets used for tuberculosis detection.

Name Disease Image Type Reference Number of Images Link

Belarus dataset Tuberculosis X-ray and CT [142] 1299 http://tuberculosis.by

ImageCLEF 2018
dataset Tuberculosis CT 2287 https://www.imageclef.

org/2018/tuberculosis

ImageCLEF 2019
dataset Tuberculosis CT [143] 335

https://www.imageclef.
org/2019/medical/
tuberculosis

India Tuberculosis X-ray [39] 78 tuberculosis and
78 normal

https://sourceforge.net/
projects/tbxpredict/

Indiana Dataset Multiple diseases
with annotations X-ray [144] 7284 https:

//openi.nlm.nih.gov

JSRT dataset Lung nodules
and normal X-ray and CT [145] 154 nodule and 93

non-nodule
http:
//db.jsrt.or.jp/eng.php

Montgomery and
Shenzhen datasets

Tuberculosis and
normal X-ray [146] 394 tuberculosis and

384 normal

https:
//lhncbc.nlm.nih.gov/
publication/pub9931

NIH-14 dataset Pneumonia and
13 other diseases X-ray [147] 112120

https:
//www.kaggle.com/
nih-chest-xrays/data

TBimages dataset Tuberculosis Sputum smear
microscopy image [148] 1320 http://www.tbimages.

ufam.edu.br/

ZiehlNeelsen Sputum
smear Microscopy
image DataBase

Tuberculosis Sputum smear
microscopy image [27] 620 tuberculosis and

622 normal
http:
//14.139.240.55/znsm/

Large Dataset of
Labeled Optical
Coherence
Tomography (OCT)
and Chest X-Ray
Images (LDOCTCXR)

Pneumonia and
normal X-ray [93] 3883 pneumonia and

1349 normal

https:
//data.mendeley.com/
datasets/rscbjbr9sj/3

Radiological Society of
North America (RSNA)
pneumonia dataset

Pneumonia and
normal X-ray 5528

https://www.kaggle.
com/c/rsna-
pneumonia-detection-
challenge/data

Table 6. Summary of datasets used for pneumonia detection.

Name Disease Image Type Reference Number of Images Link

LDOCTCXR X-ray [93] 3883 pneumonia
and 1349 normal

https://data.
mendeley.com/
datasets/rscbjbr9sj/3

NIH Chest X-ray
Dataset

Pneumonia and
13 other diseases X-ray [147] 112,120

https:
//www.kaggle.com/
nih-chest-xrays/data

Radiological Society
of North America
(RSNA) pneumonia
dataset

Pneumonia and
normal X-ray 5528

https://www.kaggle.
com/c/rsna-
pneumonia-detection-
challenge/data

Mooney’s Kaggle
dataset

Pneumonia and
normal X-ray 5863

https:
//www.kaggle.com/
paultimothymooney/
chest-xray-pneumonia

According to Table 7, among the ten datasets used for lung cancer detection works, only one
contains histopathology images, which is the NCI Genomic Data Commons dataset. The NIH-14
dataset contains X-ray images, while the JSRT dataset contains a mix of X-ray and CT images. The rest
of the datasets all contain CT images.

344



J. Imaging 2020, 6, 131

Table 7. Summary of datasets used for lung cancer detection.

Name Disease Image Type Reference Number of Images Link

JSRT dataset Lung nodules
and normal lungs X-ray and CT [145] 154 nodule and 93

non-nodule
http:
//db.jsrt.or.jp/eng.php

Kaggle Data Science
Bowl 2017 dataset Lung Cancer CT scans 601

https://www.kaggle.
com/c/data-science-
bowl-2017/overview

LIDC-IDRI Lung Cancer CT [149] 1018

https://wiki.
cancerimagingarchive.
net/display/Public/
LIDC-IDRI

Lung Nodule
Analysis 2016
(LUNA16) dataset

Location and size
of lung nodules CT scans [8] 888

https://luna16.grand-
challenge.org/
download/

NCI Genomic Data
Commons Lung Cancer histopa- thology

images [150] More than 575,000 https://portal.gdc.
cancer.gov/

NIH-14 dataset 14 lung diseases X-ray [147] 112,120
https:
//www.kaggle.com/
nih-chest-xrays/data

NLST Lung Cancer CT Approximately
200,000

https://biometry.nci.nih.
gov/cdas/learn/nlst/
images/

NSCLC-Radiomics Lung Cancer CT 422

https://wiki.
cancerimagingarchive.
net/display/Public/
NSCLC-Radiomics

NSCLC- Radiomics
-Genomics Lung Cancer CT 89

https://wiki.
cancerimagingarchive.
net/display/Public/
NSCLC-Radiomics-
Genomics

RIDER Collections Lung Cancer CT Approximately
280,000

https://wiki.
cancerimagingarchive.
net/display/Public/
RIDER+Collections

Table 8 shows that there are thirteen public datasets related to COVID-19. With the rise of
the COVID-19 pandemic, multiple datasets have been made available to the public. Many of these
datasets still have a rising number of images. Therefore, the number of images within the datasets
might be different from the number reported in this paper. Take note that some of the images might be
contained in multiple datasets. Therefore, future studies should check for duplicate images.

Table 9 summarises the works surveyed based on the taxonomy. This allows readers to quickly
refer to the articles according to their interested attributes. The analysis of the distribution of works
based on the identified attributes of the taxonomy is given in the following section.

Table 8. Summary of datasets used for COVID-19 detection.

Name Disease Image Type Reference Number of Images Link

Andrew’s Kaggle dataset COVID-19 X-ray and CT 79
https://www.kaggle.
com/andrewmvd/
convid19-x-rays

Chainz Dataset COVID-19 and
normal CT 50 COVID-19, 51

normal www.ChainZ.cn

Chowdhury’s Kaggle
dataset

COVID-19,
normal and
pneumonia

X-ray [125]
219 COVID-19, 1341
normal and 1345
pneumonia

https://www.kaggle.
com/tawsifurrahman/
covid19-radiography-
database

Cohen’s Github dataset COVID-19 X-ray and CT [151] 123
https:
//github.com/ieee8023/
covid-chestxray-dataset

345



J. Imaging 2020, 6, 131

Table 8. Cont.

Name Disease Image Type Reference Number of Images Link

COVIDx Dataset
COVID-19,
normal and
pneumonia

X-ray [126]
573 COVID-19, 8066
normal and 5559
pneumonia

https://github.com/
lindawangg/COVID-
Net/blob/master/docs/
COVIDx.md

Italian Society Of
Medical And
Interventional Radiology
(SIRM) COVID-19
Database

COVID-19 X-ray and CT 68
https://www.sirm.org/
category/senza-
categoria/covid-19/

LDOCTCXR Pneumonia and
normal X-ray [93] 3883 pneumonia and

1349 normal

https:
//data.mendeley.com/
datasets/rscbjbr9sj/3

Lung image database
consortium (LIDC) Lung Cancer CT [149] 1018

https://wiki.
cancerimagingarchive.
net/display/Public/
LIDC-IDRI

Sajid’s Kaggle dataset COVID-19 and
normal X-ray 28 normal, 70

COVID-19

https:
//www.kaggle.com/
nabeelsajid917/covid-
19-x-ray-10000-images

Mooney’s Kaggle dataset Pneumonia and
normal X-ray 5863

https:
//www.kaggle.com/
paultimothymooney/
chest-xray-pneumonia

COVID-CT Dataset COVID-19 and
normal CT 349 COVID-19 and

463 non-COVID-19

https:
//github.com/UCSD-
AI4H/COVID-CT

Mendeley Augmented
COVID-19 X-ray Images
Dataset

COVID-19 and
normal X-ray 912

https:
//data.mendeley.com/
datasets/2fxz4px6d8/4

COVID-19 Chest X-Ray
Dataset Initiative COVID-19 X-ray 55

https:
//github.com/agchung/
Figure1-COVID-
chestxray-dataset

Table 9. Summary of the works surveyed based on the taxonomy.

Attributes Subattributes References

Image types X-Ray [4,12,14,15,19–21,24,36,38,55,57,60–85,91–103,109,113,114,117,119–129,
131,132,134,139–141]

CT Scans [13,23,25,26,86–88,105–108,110–112,118,130,133,135,137–139]
Sputum Smear Microscopy
Images [28–32]

Histopathology images [34]

Features Extracted from CNN [4,12–15,19–21,23–26,30,32,34,55,57,60–82,84–87,91–103,105–114,117–
134,137–141]

Others [12,15,26,28,29,31,36,38,61,62,64,71,81,83,86,88,105,135]

Data augmentation Yes [4,20,21,23,26,55,57,63,66,70,73,74,77,79,92,96–98,100,102,106,109–111,
114,122,125,126,128,129,131,132,139]

Types of deep
learning algorithm CNN [4,12–15,19–21,23–26,28–30,32,34,55,57,60–69,72,74,76–82,84–86,91–

103,105–114,117–134,137–141]
Non-CNN [19,26,31,36,38,83,88,105,135]

Transfer learning Fixed feature extractor [12,15,19,21,62,70,76,78,80,81,93,94,96,100,102,117,127,128,137]

Fine-tuning CNN [4,20,26,32,34,55,57,71–74,76,77,79,82,95,97,98,102,109–113,118–125,
129,131,132,134,141]

Ensemble Majority voting [19,55,82,129]
Probability score averaging [15,57,71,79,81,82,98,102,133]
Stacking [12,82,134]
Other [80]

Disease types Tuberculosis [12,15,19,24,28–32,36,38,57,60–88]
Pneumonia [20,55,91–103]
Lung cancer [13,14,23,25,34,105–114]
COVID-19 [4,21,26,117–135,137–141]
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5. Analysis of Trend, Issues and Future Directions of Lung Disease Detection Using
Deep Learning

In this section, the broad analysis of the existing work is presented, which is the last contribution
outlined in this paper. The analysis of the trend of each attribute identified in the foregoing section
is described, whereby the aim is to show the progress of the works and the direction the researchers
are heading over the last five years. The shown trend could be useful to suggest the future direction
of the work in this domain. Section 5.1 presents the analysis of the trend of the articles considered.
The issues and potential future work to address the identified issues are described in Section 5.2.

5.1. An Analysis of the Trend of Lung Disease Detection in Recent Years

This subsection presents the analysis of lung disease detection works in recent years for each
attribute of the taxonomy described in the foregoing section.

5.1.1. Trend Analysis of the Image Type Used

Figure 10a shows that the usage of X-ray images increases linearly over the years. The usage of
CT images also increases over the years, with a slight dip in 2018. The sputum smear microscopy and
histopathology images are combined into one as ‘Others’ due to the low number of previous work
using them to detect lung diseases. The usage of other image types slowly increases until 2018, and
then drops. This indicates that deep learning aided lung disease detection works are heading towards
the direction of using X-ray images and CT images.

Figure 10b shows that the majority of the studies used X-ray images at 71%, while CT images
followed second with 23%. Such observation could be due to the availability, accessibility and mobility
of X-ray machines over the CT scanner. Due to the COVID-19 pandemic that has spread to all types
of geographical locations, it is anticipated that the X-ray images will still be the dominant choice of
medical images used to detect lung-related diseases over CT images. CT images may remain the second
choice because they provide more detailed information than X-rays.

(a) (b)

Figure 10. (a) The trend of the usage of image types in lung disease detection works in recent years; and
(b) the distribution of the image type used in deep learning aided lung disease detection in recent years.

5.1.2. Trend Analysis of the Features Used

From the perspective of features used for lung disease detection in recent years, as shown in
Figure 11a, the usage of CNN extracted features is steadily increasing, while the usage of other features
and the combination of CNN extracted features plus other features remain low. This is because CNN
allows automated feature extraction, discarding the need for manual feature generation [40]. The usage
of other features was less preferred due to the fact that most recent works showed the superiority of
CNN extracted features in detecting lung diseases. Figure 11b shows the distribution of work by type
of features used. CNN extracted features were used in 79% of the works. The combination of CNN
extracted features plus some other features were used in 13% of the recent works, while the remaining
works utilised other types of features.
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(a) (b)

Figure 11. (a) The trend of the usage of features in lung disease detection works in recent years; and
(b) the distribution of usage of data augmentation in deep learning aided lung disease detection in
recent years.

5.1.3. Trend Analysis of the Usage of Data Augmentation

Figure 12a shows the trend of the usage of data augmentation. Although implementing data
augmentation increased the complexity of the data pre-processing, the number of works employing
data augmentation increases steadily over the years. Such trend signifies that more researchers have
realised how beneficial data augmentation is to train the lung disease detection models.

Figure 12b shows the distribution of data augmentation usage in deep learning aided lung
disease detection. Only about one-third of the studies used data augmentation. While it is reported
that data augmentation improved the classification accuracy, the majority of works did not use data
augmentation. One reason for this might be that data augmentation is not that simple to implement.
As mentioned in Section 4.3, the disadvantages of data augmentation include additional memory costs,
transformation computing costs and training time.

(a) (b)

Figure 12. (a) The trend of the usage of data augmentation in lung disease detection works in recent
years; and (b) the distribution of usage of data augmentation in deep learning aided lung disease
detection in recent years.

5.1.4. Trend Analysis of the Types of Deep Learning Algorithm Used

Figure 13a shows the trend of the usage of deep learning algorithms in lung disease detection
works in recent years. As shown in Figure 13, CNN was the most preferred deep learning algorithm
for the last five years. Future works will likely follow this trend, whereby more work may prefer CNN
for lung disease detection over other deep learning algorithms.

Figure 13b visualises the analysis of the usage of CNN in deep learning aided lung disease
detection in recent years. The majority of the papers surveyed used CNN. This is because CNN is
robust and can achieve high classification accuracy. Many of the works surveyed indicate that CNN
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has superior performance [74]. Other benefits of using CNN include automatic feature extraction and
utilising the advantages of transfer learning, which is further analysed in the following subsection.

(a) (b)

Figure 13. (a) The trend of the usage of deep learning algorithms in lung disease detection works in
recent years; and (b) the distribution of the usage of CNN in deep learning aided lung disease detection
in recent years.

5.1.5. Trend Analysis of the Usage Of Transfer Learning

Figure 14a shows the trend of the usage of transfer learning. As time goes on, more works
employed transfer learning. With transfer learning, there is no need to define a new model. Transfer
learning also allows the usage features learned while training from an old task for the new task, often
increasing the classification accuracy. This could be due to the model used being more generalised as it
has been trained with a greater number of images.

Figure 14b shows the usage of transfer learning among the works which used CNN. According to
the figure, 57% of the recent works utilised transfer learning. Even though the number of works
utilising transfer learning increased over the years, as shown in Figure 14a, the percentage of
works using transfer learning is just 57%. For example, in 2020, out of 44 studies that used CNN,
28 implemented transfer learning. This suggests that works in this domain are moving towards
the direction of using transfer learning, but not at a high pace. Transfer learning remains a strong
approach to lung disease detection, with respect to the detection performance. Hence, the distribution
of work may be skewed towards transfer learning in the near future.

(a) (b)

Figure 14. (a) The trend of the usage of transfer learning in lung disease detection works in recent
years; and (b) the usage of transfer learning in lung disease detection works using CNN.

5.1.6. Trend Analysis of the Usage Of Ensemble

Based on Figure 15a, it seems that the ensemble was only applied on COVID-19, pneumonia and
tuberculosis detection. It is observed that the usage of the ensemble is slowly growing in popularity
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for pneumonia and COVID-19 detection. Although less popular, the works that deployed an ensemble
classifier reported better detection performance than when not using ensemble.

Figure 15b shows the distribution of the usage of the ensemble in deep learning aided lung disease
detection. Only 15% of the studies used ensemble. This suggests that ensemble classifier is still less
explored for lung disease detection. Only three types of ensemble techniques were found in the papers
surveyed, which were majority voting, probability score averaging and stacking. The challenge to
implement ensemble may be the caused of such low application. Using ensemble, the performance
could only improve if the errors of the base classifiers have a low correlation. When using similar
data, which may occur when the size of the datasets and the number of datasets itself are limited,
the correlation of errors of the base classifiers tends to be high.

(a) (b)

Figure 15. (a) The trend of the usage of ensemble classifier in lung disease detection works in recent
years; and (b) the distribution of the usage of the ensemble in deep learning aided lung disease
detection in recent years.

5.1.7. Trend Analysis of the Type Of Lung Disease Detected using Deep Learning

Based on the trend shown in Figure 16a, the total number of lung disease detection works using
deep learning increased steadily over the years, with most work related to tuberculosis detection.
As more lung disease medical image datasets become public, researchers have access to more data.
Thus, more extensive studies were conducted. Towards 2020, the works on COVID-19 detection
emerged while work conducted to detect other diseases decreased tremendously. This signifies that
using deep learning to detect lung disease is still an active field of study. This also shows that much
effort was directed towards easing the burden of detecting COVID-19 using the existing manual
screening test, which is already anticipated.

Figure 16b shows the distribution of the diseases detected using deep learning in recent
years. The majority of works were directed at tuberculosis detection, followed by COVID-19,
lung cancer and pneumonia. The reason that works of tuberculosis are high is because
the majority of tuberculosis-infected inhabitants were from resource-poor regions with poor healthcare
infrastructure [61]. Therefore, tuberculosis detection using deep learning provides the opportunity
to accelerate tuberculosis diagnosis among these communities. The reason that works of COVID-19
detection are second highest is because researchers all over the world are trying to reduce the burden of
detecting COVID-19, and thus many works have been published, even though COVID-19 is a relatively
new disease.

350



J. Imaging 2020, 6, 131

(a) (b)

Figure 16. (a) The trend of the deep learning aided lung disease detection works in recent years; and
(b) the distribution of the diseases detected using deep learning in recent years.

5.2. Issues and Future Direction of Lung Disease Detection Using Deep Learning

This subsection presents the remaining issues and corresponding future direction of lung disease
detection using deep learning, which are the final contributions of this paper. The state-of-the-art lung
disease detection field is suffering from several issues that can be found in the papers considered.
Some of the proposed future works are designed to deal with the issues found. Details of the issues
and potential future works are presented in Sections 5.2.1 and 5.2.2, respectively.

5.2.1. Issues

This section presents the issues of lung disease detection using deep learning found in
the literature. Four main issues were identified: (i) data imbalance; (ii) handling of huge image
size; (iii) limited available datasets; and (iv) high correlation of errors when using ensemble techniques.

(i) Data imbalance: When doing classification training, if the number of samples of one class is a
lot higher than the other class, the resulting model would be biased. It is better to have the same
number of images in each class. However, oftentimes that is not the case. For example, when
performing a multiclass classification of COVID-19, pneumonia and normal lungs, the number
of images for pneumonia far exceeds the number of images for COVID-19 [126].

(ii) Handling of huge image size: Most researchers reduced the original image size during training
to reduce computational cost. It is extremely computationally expensive to train with the original
image size, and it is also time-consuming to train a deeply complex model even with the aid of
the most powerful GPU hardware.

(iii) Limited available datasets: Ideally, thousands of images of each class should be obtained for
training. This is to produce a more accurate classifier. However, due to the limited number of
datasets, the number of available training data is often less than ideal. This causes researchers
to search for other alternatives to produce a good classifier.

(iv) High correlation of errors when using ensemble techniques: It requires a variety of errors for an
ensemble of classifiers to perform the best. The base classifiers used should have a very low
correlation. This, in turn, will ensure the errors of those classifiers also will be varied. In other
words, it is expected that the base classifiers will complement each other to produce better
classification results. Most of the studies surveyed only combine classifiers that were trained on
similar features. This causes the correlation error of the base classifiers to be high.

5.2.2. Potential Future Works

This section presents the possible future works that should be considered to improvise
the performance of lung disease detection using deep learning.
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(i) Make datasets available to the public: Some researchers used private hospital datasets. To
obtain larger datasets, efforts such as de-identification of confidential patients’ information
can be conducted to make the data public. With more data available, the produced classifiers
would be more accurate. This is because, with more data comes more diversity. This decreases
the generalisation error because the model becomes more general as it was trained on more
examples. Medical data are hard to come by. Therefore, if the datasets were made public, more
data would be available for researchers.

(ii) Usage of cloud computing: Performing training using cloud computing might overcome
the problem of handling of huge image size. On a local mid-range computer, training with large
images will be slow. A high-end computer might speed up the process a little, but it might still
be infeasible. However, by training the deep learning model using cloud computing, we can
use multiple GPUs at a reasonable cost. This allows higher computational cost training to be
conducted faster and cheaper.

(iii) Usage of more variety of features: Most researchers use features automatically extracted by
CNN. Some other features such as SIFT, GIST, Gabor, LBP and HOG were studied. However,
many other features are still yet to be explored, for example quadtree and image histogram.
Efforts can be directed to studying different types of features. This can address the issue of
the high correlation of errors when using ensemble techniques. With more features comes
more variation. When combining many variations, the results are often better [41]. Feature
engineering allows the extraction of more information from present data. New information
is extracted in terms of new features. These features might have a better ability to describe
the variance in the training data, thus improving model accuracy.

(iv) Usage of the ensemble learning: Ensemble techniques show great potentials. Ensemble methods
often improve detection accuracy. An ensemble of several features might provide better detection
results. An ensemble of different deep learning techniques could also be considered because
ensembles perform better if the errors of the base classifiers have a low correlation.

6. Limitation of the Survey

The survey presented has a limitation whereby the primary source of work considered were those
indexed in the Scopus database, due to the reason described in Section 2. Exceptions were given on
COVID-19 related works, as most of the articles were still at the preprint level when this survey was
conducted. Concerning the publication years considered, the latest publication included were those
published prior to October 2020. Therefore, the findings put forward in this survey paper did not
consider contributions of works that are non-Scopus indexed and those that are published commencing
October 2020 and onwards.

7. Conclusions

As time goes on, more works on lung disease detection using deep learning have been published.
However, there was a lack of systematic survey available on the current state of research and application.
This paper is thus produced to offer an extensive survey of lung disease detection using deep learning,
specifically on tuberculosis, pneumonia, lung cancer and COVID-19, published from 2016 to September
2020. In total, 98 articles on this topic were considered in producing this survey.

To summarise and provide an organisation of the key concepts and focus of the existing work
on lung disease detection using deep learning, a taxonomy of state-of-the-art deep learning aided
lung disease detection was constructed based on the survey on the works considered. Analyses
of the trend on recent works on this topic, based on the identified attributes from the taxonomy,
are also presented. From the analyses of the distribution of works, the usage of both CNN and
transfer learning is high. Concerning the trend of the surveyed work, all the identified attributes in
the taxonomy observed, on average, a linear increase over the years, with an exception to the ensemble
attribute. The remaining issues and future direction of lung disease detection using deep learning were
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subsequently established and described. Four issues of lung disease detection using deep learning were
identified: data imbalance, handling of huge image size, limited available datasets and high correlation
of errors when using ensemble techniques. Four potential works for lung disease detection using deep
learning are suggested to resolve the identified issues: making datasets available to the public, usage
of cloud computing, usage of more features and usage of the ensemble.

To conclude, investigating how deep learning was employed in lung disease detection is
highly significant to ensure future research will concentrate on the right track, thereby improving
the performance of disease detection systems. The presented taxonomy could be used by other
researchers to plan their research contributions and activities. The potential future direction suggested
could further improve the efficiency and increase the number of deep learning aided lung disease
detection applications.
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Abstract: Deep learning algorithms have become the first choice as an approach to medical image
analysis, face recognition, and emotion recognition. In this survey, several deep-learning-based
approaches applied to breast cancer, cervical cancer, brain tumor, colon and lung cancers are studied
and reviewed. Deep learning has been applied in almost all of the imaging modalities used for cervical
and breast cancers and MRIs for the brain tumor. The result of the review process indicated that deep
learning methods have achieved state-of-the-art in tumor detection, segmentation, feature extraction
and classification. As presented in this paper, the deep learning approaches were used in three
different modes that include training from scratch, transfer learning through freezing some layers
of the deep learning network and modifying the architecture to reduce the number of parameters
existing in the network. Moreover, the application of deep learning to imaging devices for the
detection of various cancer cases has been studied by researchers affiliated to academic and medical
institutes in economically developed countries; while, the study has not had much attention in Africa
despite the dramatic soar of cancer risks in the continent.

Keywords: deep learning; medical image analysis; breast cancer; brain tumor; cervical cancer;
colon cancer; lung cancer

1. Introduction

Over the last decades, three different approaches have been practiced to deal with medical images.
The first is creating awareness among the community for a regular check-up and it was not be practiced
among communities. The second approach is using medical imaging technologies for screening and
it is witnessed over the last decades. However, the benefits of medical imaging technology depend
on the experience of the image interpreting experts or radiologists. Then, applying a computer-aided
detection (CAD) approach using machine learning techniques has brought a promising result along
with the imaging technologies. Machine learning techniques have evolved rapidly in recent years to
solve complex problems.

The architecture of deep convolutional neural networks (DCNNs) is composed of convolutional
layers, pooling layers and fully connected layers to perform feature extraction (see Figure 1),
features down sampling (see Figure 2) and classification, respectively during the process
of optimization [1].
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In convolutional layers, local features such as colors, end-points, corners and oriented-edges
are collected in the shallow layers. These local features in the shallow layers are integrated into
larger structural features like circles, ellipses, specific shapes or patterns when the layer goes deeper.
Afterwards, these features of structures or patterns constitute the high-level semantic representations
that describe feature abstraction for each category. In pooling layers, feature down sampling is
performed either using average pooling or max-pooling layers to reduce the dimensionality of the
features extracted using convolutional layers [2]. On the other hand, in fully connected layers, it takes
the extracted features from the convolutional layers as inputs and works as a classifier, well known
as multilayer perceptron (MLP). These fully connected layers encode the spatial correspondences of
those semantic features and convey the co-occurrence properties between patterns or objects.

There have been many survey papers produced on the application of deep learning on medical
image analysis and few among many produced in 2017 are considered in this survey paper. Suzuki [3]
in his survey paper claimed that machine learning in deep learning form has emerged in computer
vision and paved the way for many researchers to work on medical image analysis using deep learning
approach. The popularity of deep learning started after the AlexNet model won the competition in 2012.
Suzuki has produced an interesting survey paper that aimed to address four major points: the machine
learning techniques used in the computer vision field, changes observed in machine learning after the
introduction of deep learning, available machine learning models in deep learning and the impact
of deep learning for medical image analysis. As claimed by Litjens et al. [4], convolutional neural
network-based deep learning has become a method for medical image analysis. In their survey paper,
they considered papers that were related to medical image analysis, specifically for image classification,
object detection, segmentation, registration and other tasks. In addition, the areas of application
of deep learning were neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal and
musculoskeletal.

Dinggang Shen et al. [5] claimed that deep learning has helped many researchers in the area of
computer vision to identify, classify and quantify patterns in medical images. They specifically argued
that deep learning is useful in exploiting hierarchical features from data itself than feature engineering
using handcrafting using human effort. Suzuki [6] in his survey paper overviewed the area of deep
learning and its application in medical imaging analysis to assess what was changed before and after
the introduction of deep learning in machine learning, identifying the reasons that make deep learning
powerful and their applications to medical image analysis.

Figure 1. Example of convolution operation from [7].
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Figure 2. Example of down sampling operation using max-pooling and average-pooling.

In this survey paper, we briefly describe the breast cancer, cervical cancer, brain tumor,
colon cancer and lung cancer along with their respective screening methods. Finally, we reviewed
the application of deep learning for each cancer type in terms of deep learning application types
like feature extraction, detection, segmentation, prediction and classification. The motivation behind
selecting the cancer type for the survey was based on the cancer statistics reported in 2018 by the World
Health Organization as presented in Table 1.

Table 1. World Health Organization 2018 statistical report through the global cancer observatory.

Cancer Type New Cases (%) Death Rate (%)

Breast Cancer 11.6 6.6

Colon Cancer 10.2 9.2

Brain Tumor 3.5 2.8

Cervical Cancer 3.2 2.5

Stomach Cancer 5.7 8.2

Liver Cancer 4.7 8.2

Lung Cancer 11.6 18.4

2. Methods

Published papers from 2016 to 2020 were considered and reviewed to (1) assess the application
of deep learning for breast cancer, (2) assess the application of deep learning for cervical cancer,
(3) assess the application of deep learning for a brain tumor and (4) assess the application of deep
learning for colon cancer. We first defined a search criterion for the selected search databases.
Our general search criteria for this survey paper are ((“colon” OR “colorectal”) AND (“cancer”
OR “polyp”) AND (“deep learning”) AND (“Image”) AND (“detection” OR “classification” OR
“segmentation” OR “Localization”)) OR ((“breast”) AND (“cancer” OR “mass”) AND (“deep learning”)
AND (“Image”) AND (“detection” OR “classification” OR “segmentation” OR “Localization”)) OR
((“Brain”) AND (“Tumor”) AND (“deep learning”)AND (“MRI”) AND (“detection” OR “classification”
OR “segmentation” OR “Localization”)) OR (“Cervix” OR “Cervical”) AND (“Deep Learning”) AND
(“Classification” OR “segmentation”). The searches were carried out from four databases: (1) PubMed,
(2) Science Direct, (3) IEEE Xplore Digital Library and (4) Google Scholar. The search framework of
the survey paper is presented in Figure 3 and the major performance metrics used to evaluate deep
learning approach applied to the selected medical images are presented in Section 2.1.
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Figure 3. Search criteria framework used for IEEEexplore, PubMed, Google Scholar and Science Direct
engines to select papers for review.

2.1. Segmentation and Classification Performance Metrics

Most of the performance metrics encountered in the review include area under curve (AUC),
sensitivity (Sn), specificity (Sp), accuracy (Acc), precision (P), recall (R), positive predictive values
(PPV), Matthews correlation coefficient (MCC), geometric mean (G-Mean), which are usually successful
in describing the classification performance [8,9]. Performance measures including Dice similarity
coefficient (DSC) or Zijdenbos similarity index (ZSI) or F1-score, Hausdorff distance (H) and
intersection over union (IoU) are the most effective metrics for measuring system’s segmentation
performance [10]. Here, the true positives for the segmentation are the correctly labeled pixel while it
is correctly labeled class for classification case.

3. Deep Learning in Tumor Detection, Segmentation and Classification

Region-based segmentation technique was in use in medical image analysis until the deep learning
approach evolved in the field of computer vision [8]. However, Lee et al. [7] in their survey paper
indicated that the existence of deep learning in the research community has become a reason to use
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object recognition in an image. In addition to object detection, deep learning has been applied for
feature extraction, abnormality detection, cancer/tumor segmentation and classification [11].

3.1. Breast Cancer

Breast cancer occurs when there is uncontrolled growth of cells in the breast [12]. It is the most
widely diagnosed type of cancer in women and the first prevalent cancer type in Ethiopia [11,13].
There are four types of breast cancer manifestation that include: mass, calcification, architectural
distortion and bilateral asymmetry [11].

3.1.1. Screening Methods

As presented in Debelee et al. [11], breast cancer image analysis and breast abnormality detection
start with breast cancer screening. Breast cancer screening methods include screen film mammography
(SFM), digital mammography (DM), ultrasound (US), magnetic resonance imaging (MRI), digital breast
tomosynthesis (DBT) and combinations of the screening methods.

3.1.2. Datasets

There are many datasets prepared for medical image analysis based on the different imaging
modalities. The most common and available dataset for the breast cancer is of mammography and
histopathology datasets. Some of the most common datasets are discussed in Table 2.

Table 2. Image datasets for breast cancer image analysis.

Dataset Size #Classes/Targets Format Type Author/Repository, Year

MIAS 322 2 pgm Mammography Suckling, J. et al. [14]

DDSM 55,890 npy Mammography Scuccimarra [15]
InBreast 410 XML Mammography Moreira et al. [16]

Breast Cancer Wisconsin 568 3 csv Mammography Dua, D. and Graff, C. [17]

BreakHis 7909 2 png Histology Bukun [18]

BACH/ICIAR2018 400 4 tiff Histology G.Aresta [19]

3.1.3. Deep Learning for Detection of Breast Cancer Through Diagnostic Medical Imaging Techniques

Li Shen et al. [2] proposed a deep learning-based breast cancer detection algorithm using
end-to-end training approach using mammographic images from the Digital Database for Screening
Mammography (DDSM) and INbreast databases. The deep learning architectures used in their paper
were ResNet-50 and VGGNet-16. The proposed approach was evaluated in terms of AUC at single
model and four-model (ResNet-ResNet, ResNet-VGGNet, VGGNet-VGGNet and VGGNet-ResNet)
averaging level. For the DDSM dataset, the best single model achieved a per-image AUC of 0.88,
and four-model averaging improved the AUC to 0.91 with sensitivity of 86.1% and specificity of
80.1%. For INbreast database, the best single model achieved per-image AUC of 0.95, and four-model
averaging achieved a better AUC value of 0.98 with sensitivity of 86.7% and specificity of 96.1%.

Wu et al. [20] proposed a DCNN architecture based on four columns of ResNet-22 to classify breast
cancer screening exams using mammography. There was a total of 200,000 exams which incorporated
over 1,000,000 images to train and evaluate the proposed DCNN model. The performance of their
network achieved an AUC of 0.895 in predicting whether there is a cancer in the breast, when tested
on the screening population and the result was compared to 14 radiologists reading results.

Alzubaidi et al. [21] transfer learning approach on their proposed 74 layer CNN. Their model
was pre-trained on one same domain image dataset (erythrocytesIDB dataset, which has images of
peripheral blood smears samples taken from patients with Sickle Cell Disease). They divided the
original microscopy image into 12 patches and used majority voting for the classification, where the
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most frequent patch label is chosen to be the image label. The model achieved a patch level accuracy
of 90.5% and image-level accuracy of 97.4%. The majority voting they employed seemed not a correct
way since if the cells are the majority of normals and if it still has cancerous cells, the system might
classify them as normal, which is not good.

Zhu et al. [22] proposed two deep learning approach to predict the occurrence of invasive cancer
on MRI images. The first approach was based on transfer learning using GoogleNet pre-trained model
to predict the presence of invasive cancer. As a second approach, the authors extracted features from
the natural images and used SVM to predict the invasive disease. The best classification result gained
in terms of AUC was 0.53 for transfer learning approach and 0.70 for extracted features.

Li et al. [23] explored the abilities of digital breast tomosynthesis (DBT) and full-field digital
mammography (FFDM) in mass classification using deep neural networks equipped with or without
transfer learning. They also explored an eligible combination strategy of DBT and FFDM in
enhancing classification performance. They applied a 16-layer VGG network (VGG-16) and 11-layer
deep convolutional neural network (DCNN) for the 2D images and extend the 11-layer DCNN to
accommodate the extra dimension in 3D DBT images. The best performer from these methods,
a 2D-DCNN which was trained by combining the DBT and FFDM, achieved the highest performance
with average AUC, accuracy, sensitivity and specificity of 0.95, 92.13%, 83% and 93.84%, respectively
on three class classification (benign, malignant, normal).

Zeiser et al. [24] explored the application of the U-Net model with different depths with or without
data augmentation for the segmentation of masses on mammograms. The U-Net model trained with
depth of 5 and with data augmentation was the best performer with sensitivity of 92.32%, specificity
of 80.47%, accuracy of 85.95%, Dice index of 79.39% and AUC of 86.40% on the DDSM dataset.

Shen et al. [2] applied an ensemble of four best performing deep learning models which were
designed based on Resnet50 and VGG16 as patch classifiers and Resnet and VGG blocks as top layer for
breast cancer classification. The ensemble of these classifiers achieved the best AUC of 0.91 (sensitivity:
86.1%, specificity: 80.1%) on the detection of benign and malignant masses and classifications on the
DDSM dataset.

Zhang et al. [25] used U-net architecture for the segmentation and extraction of fat tissue,
fibroglandular tissue (FGT) inside the breast, and all nonbreast tissues outside the breast in breast MRI.
They achieved mean DSC of 0.95 for breast and 0.91 for FGT; and mean accuracy of 0.98 for breast and
0.97 for FGT.

Zhou et al. [26] applied 3D deep convolutional neural network (CNN) based on 3D DenseNet [27]
architecture with 37 layers for diagnosing breast cancer and localizing the lesions at dynamic contrast
enhanced (DCE) MRI data in a weakly supervised manner. The proposed algorithm performance for
breast cancer diagnosis showed 83.7% accuracy, 90.8% sensitivity, 69.3% specificity, 0.859 AUC and
0.501 Dice distance.

Summary of the performance of the above reviewed work can be summarized in Table 3.

3.1.4. Deep Learning for Breast Histopathology Image Analysis

Breast histopathology helps to confirm the presence of cancerous sales detected by other imaging
modalities. Since histology slides may contain millions of cells and identifying the cancerous sales
from the slides is time consuming and tedious job. Hence there are many varieties of research done in
this area.
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Table 3. Summary of scientific papers on detection of breast cancer using diagnostic medical
imaging techniques.

Author and Citation Dataset AUC Sn (%) Sp (%) Acc (%) Target

Siemens and Hologic 0.933 - - - Detection

Wu et al. [20] Personal 0.895 - - - Classification/Prediction

Shen et al. [2] DDSM 0.88 - - - Detection
(Single-Model) INbreast 0.95 - - - Detection

Shen et al. [2] DDSM 0.91 86.1 80.1 - Detection
(Four-Models Average) INbreast 0.98 86.7 96.1 - Detection

Zhu et al. [22] (Transfer learning) - 0.53 - - - Prediction

Zhu et al. [22] (SVM) - 0.7 - - - Prediction

Li et al. [23] - 0.95 83 93.84 92.13 Classification

Zeiser et al. [24] DDSM 0.86 92.32 80.47 85.95 Segmentation

Zhang et al. [28] - - - - 97.5 Detection

Zhou et al. [26] - 0.86 90.8 69.3 83.7 Classification

Sheikh et al. [29] proposed a multi-scale input and multi-feature CNN network for the
classification of histopathological images. They concatenate four scales (1 ×, 0.5 ×, 0.33 × and 0.25 ×)
of the original normalized image to accommodate the scale variant property of the cells and used it
as an input to the CNN network. They trained their proposed model on ICIAR2018 and BreakHits
datasets. The model achieved a satisfactory max accuracy of 0.83 for the ICIAR2018 dataset and 0.98 for
the BreakHis dataset for binary classification. For the multiclass classification, the proposed model’s
accuracy was rather unsatisfactory reaching as low as 60% for the ICIAR2018 dataset.

Li et al. [30] modified the Densenet-121 architecture by removing the pooling layers of
the 4th Dense-block and feeding the extracted feature maps from each Dense-block to the
squeeze-and-excitation (SENet) module for breast histopathology images. The used SENet for receiving
more channel-wise information. After concatenating each SENet output, they used a fully-connected
layer for the classification purpose. They used a pre-trained Densenet model for their architecture
using the transfer-learning approach. Using the publicly available BreakHis dataset, their algorithm
achieved an average accuracy of 88% over different magnification levels for binary classification.

Yan et al. [31] used the transfer-learning approach by using Google’s Inception-V3 model
as patch-wise feature extraction and image-wise long short-term memory (LSTM) for classifying
breast histopathological images into four classes, namely normal, benign, in situ and invasive.
They fine-tuned the Inception-V3 model. Their proposed model achieved an average accuracy of 91%
on the ICIAR2018 dataset.

Sharma et al. [32] studied the use of pre-trained deep learning networks as feature extractor
from breast cancer histopathology images. They used transfer learning on the pre-existing networks
(VGG16, VGG19 and ResNet50) for using them as feature extractor. The extracted features were then
classified using SVM classifier. The VGG16 network with linear SVM achieved the highest accuracy
(93.97% for 40 ×, 92.92% for 100 ×, 91.23% for 200 × and 91.79% for 400 × magnifications).

Vang et al. [33] proposed ensemble classifier and reinforcement backed deep learning approach
using inception-V3 for multiclass (normal, benign, in situ and invasive) classification. The ensemble
fusion approach for image level prediction involved majority voting, gradient boosting machine (GBM)
and logistic regression. Their approach performed low in terms of sensitivity for the two classes
(benign and normal). The sensitivity of the normal and benign predicted classes was improved by
adding a dual path network (DPN) to use it as feature extractor. However, the extracted features were
further sent to the next layer of ensemble prediction fusion using GBM, logistic regression and support
vector machine (SVM) to refine predictions. This approach was evaluated in terms of accuracy and
scored an accuracy of 87.5%.
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Alzubaidi et al. [21] transfer learning approach onto their proposed 74 layer CNN.
They pre-trained their model on one same domain image dataset (erythrocytesIDB dataset, which has
images of peripheral blood smears samples taken from patients with Sickle Cell Disease). They divided
the original microscopy image into 12 patches and used majority voting for the classification, where the
most frequent patch label is chosen to be the image label. The model training was don on the ICIAR
2018 dataset. The model achieved patch level accuracy of 90.5% and image level accuracy of 97.4%.
The majority voting they employed seemed not a correct way since if the cells are majority of normal
and if it still has cancerous cells the system might classify them as normal, which is not good.

The summary of papers explored in classification of breast histological slides can be summarized
in Table 4. From the literature reviews the algorithm proposed by Yan et al. [31] seems the best method
for histopathological breast cancer detection.

Table 4. Summary of scientific papers on classification of breast cancer using histopathological images.

Author and Citation Dataset Acc Sn (%) Sp (%)

Siemens and Hologic 0.933 - -

Vang et al. [33] ICIAR2018 87.5 - -
(H & E)

Sharma and Mehra [32] BreakHis 93.97 - -

Sheikh et al. [29] ICIAR2018 83 - -
and BreakHis 98

Li et al. [30] ICIAR2018 88 - -

Yan et al. [31] ICIAR2018 91 - -

Alzubaidi et al. [21] ICIAR 2018 97.4 -

3.1.5. Summary

As presented in Tables 5 and 6, the deep learning architecture involved in the recently published,
from 2016 to 2020, breast cancer we considered in this survey paper were ResNet, VGGNet, AlexNet,
Inception V3, U-Net and DenseNet.

Table 5. Summary of breast cancer scientific papers in terms of convolutional neurla network (CNN)
architecture and type of environment used in the selected papers.

Authors Network Pre-Training Transfer Learning Environment

Wu et al. [20] ResNet-22 Yes No TensorFlow

Shen et al. [2] ResNet-50, VGGNet-16 Yes Yes -

Vang et al. [33] Inception V3 Yes No TensorFlow

Zhu et al. [22] GoogleNet Yes Yes Caffe

Li et al. [23] VGGNet-16 Yes Yes -

Sharma and Mehra [32] VGGNet-16, VGGNet-19, ResNet50 Yes Yes Keras, TensorFlow

Zeiser et al. [24] U-net No No -

Zhang et al. [28] U-net No No TensorFlow

Zhou et al. [26] 3D DensNet No No -

Sheikh et al. [29] MSI-MFNet No No Keras

Li et al. [30] IDSNet Yes Yes Tensorflow

Yan et al. [31] Inception-V3 Yes Yes Tensorflow

Alzubaidi et al. [21] ResNet Yes Yes -
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Table 6. Summary of breast cancer scientific papers in terms of publication year, name of
journal/conference for the selected papers and its impact factor with year of impact factor.

Authors Publication Year Journal/Conf. Impact Factor Year of Impact Factor

Wu et al. [20] 2020 ITMI 6.85 2020

Shen et al. [2] 2019 Scientific Reports 3.998 2019

Vang et al. [33] 2018 CBM 5.4 2019

Zhu et al. [22] 2019 CBM 3.434 2020

Li et al. [23] 2019 European Radiology 4.101 2019

Sharma and Mehra [32] 2020 Journal of Digital Imaging 2.99 2018

Zeiser et al. [24] 2020 Journal of Digital Imaging 2.99 2018

Zhang et al. [28] 2018 Academic Radiology 2.50 2020

Dembrower et al. [34] 2020 Radiology 7.608 2018

Zhou et al. [26] 2019 Journal of Magnetic Resonance Imaging 2.112 2018

Sheikh et al. [29] 2020 MDPI, Cancers 6.126 2019

Li et al. [30] 2020 Plos One 2.74 2019

Yan et al. [31] 2020 Elsevier, Methods 3.812 2019

Alzubaidi et al. [21] 2020 MDPI, electronics 2.412 2019

As indicated in Table 7, the result of almost all papers in this survey paper were not compared
with the domain specialists and performance of the traditional machine learning algorithms.

Table 7. Summary of breast cancer scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Hagos et al. [35] No No

Wu et al. [20] Yes No

Shen et al. [2] No No

Vang et al. [33] No No

Zhu et al. [22] No No

Li et al. [23] No No

Sharma and Mehra [32] No Yes

Zeiser et al. [24] No Yes

Zhang et al. [28] No No

Zhou et al. [26] Yes Yes

Sheikh et al. [29] No Yes

Li et al. [30] No Yes

Yan et al. [31] No Yes

Alzubaidi et al. [21] No yes

3.2. Cervical Cancer

Cervical cancer is one of the most common cancers among women worldwide, especially in
developing nations, and it has a relatively high incidence and mortality rates [36]. Cervical cancer
usually develops slowly over time. When cervical cancer begins in the cervix, cervical cells go through
changes called dysplasia, in which cells that are not normal begin to appear in the cervical tissue. In its
later stage, cancer cells start to multiply and proliferate more deeply into the cervix and to surrounding
areas. Fortunately, cervical cancer is mostly preventable with active screening and detection techniques.
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For example, preventive screening and early detection can decrease the morbidity of cervical cancer by
about 70% in the United States [37].

3.2.1. Screening Methods

Nowadays, there are a few frequently-used cervical cancer screening techniques, such as high-risk
human papillomavirus (HPV) testing, Pap smear cytology testing, colposcopy and visual inspection of
the cervix with acetic acid (VIA), each of which has its advantages and disadvantages.

• Bimanual pelvic examination. This is a visual and physical inspection by the physician.
It consists of both visual inspections using a device called a speculum and physical inspection by
using fingers. This test is not enough on its own and the Pap test is usually performed next.

• Cervical cytopathology Papanicolaou Smear (Pap smear) or liquid-based cytology is a process
of gently scraping cervical cells and inspection of those cells under a microscope. It can also be
analyzed digitally using computers.

• HPV typing test. Cervical cancer usually occurs from persistent infection of the cervix with some
carcinogenic types of human papillomavirus (HPV) such as HPV16 and HPV18 [38]. It is usually
performed along with a Pap test or after Pap test results show abnormal changes to the cervix.
The occurrence of HPV does not confirm cancer.

• Colposcopy. Colposcopy is a visual inspection of the cervix using a special instrument called a
colposcope. The device magnifies the cervix area under inspection like a microscope. It can be
used for pregnant women.

Other types of tests were also used for cervical cancer screening such as X-ray, CT scan,
MRI and PET scan but they are more expensive and used to detect advanced stages of cancer.

Cervical cytology (Pap test) is the most common test used to look for early changes in cells that can
lead to cervical cancer [39]. It has been widely used for the screening of cervical cancer in developed
countries and is effective in reducing the number of deaths. It is still unavailable for population-wide
screening in the developing countries. This is because screening using cervical cytology is difficult,
tedious, time-consuming, expensive and subjected to errors because each slide contains around three
million cells with large shape and appearance variation between cells, the poor contrast of cytoplasm
boundaries and the overlap between cells [40]. In developed countries like the United Kingdom,
cervical cancer screening is performed every 3 years for women aged 25 to 49 years and every 5 years
aged 50 to 64 years [41]. Over the past few decades, many types of research were performed in
developing a computer-assisted cervical cancer screening method. Most of these researches tried to
automatically identify the various stages of cancer or abnormality types by classifying cells on the
Pap-smear slides. Most of these classifications consist of cell or nuclei segmentation, feature extraction
and classification steps [42].

3.2.2. Datasets for Cervical Cancer

Most of the research regarding the detection and segmentation of cervical cancer used the
Herlev dataset. The pap-smear benchmark database provides data for comparing classification
methods. The data consists of 917 images of pap-smear cells, classified carefully by cyto-technicians
and doctors [43]. The dataset is distributed unevenly into seven classes, namely superficial squamous,
squamous intermediate, columnar, moderate dysplasia, moderate dysplasia, severe dysplasia and
carcinoma in situ. Each image in the Herlev dataset contains only a single cell. Each slide contains many
cells and cells might also overlap. Hussien [44] prepared a more realistic dataset for the classification
of cervical cells. Summary of the publicly available datasets for classification and segmentation of
cervical cells and cervix is given in Table 8.
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Table 8. Image datasets for cervical cancer.

Dataset Size #Classes/Targets Format Type Author, Year

Herlev 917 187 Bit Map(BMP) Histology Dr J. Jantzen [43]

DANS-KNAW 963 4 jpg Histology Hussien [44]

CRIC 400 6 png and csv Histology M.T. Rezende et al. [45]

Zenodo 962 4 jpg Histology Franco et al. [46]

ALTS 938 2 jpg Colposcopy Alts Group [47]

MobileODT 1448 3 jpg Colposcopy MobileODT [48]

3.2.3. Deep Learning for Segmentation of Cervical Cells

Traditional cytological criteria for classifying cervical cell abnormalities are based on the changes
in the nucleus to cytoplasm ratio, nuclear size, irregularity of nuclear shape and membrane. In normal
cells, the cytoplasm appears much larger than the nucleus with the regular shaped nuclei. Therefore
numerous works are focusing on the segmentation of cell or cell components (nuclei, cytoplasm) [41].
Deep learning has been applied for the segmentation of cervical cell nuclei and the whole cell itself.
The successful segmentation of each cervical cell from the slides gives a better performance for
cancerous cells. Nuclei detection is only maybe helpful and is easier than segmentation of the whole
cell and may be enough for the detection of cancer or help for the segmentation of the whole cell.

Song et al. [49] tried to improve cervical cell segmentation by using learning-based segmentation
when overlapping cells are encountered. They include high-level shape information to guide the
segmentation algorithm which is done by the convolutional neural network algorithm. They evaluated
their algorithm in nuclei detection and cervical cell segmentation. By using the datasets ISBI 2015
challenge dataset, and SZU dataset they achieved a Dice similarity coefficient (DSC) of 0.95 and
0.89, respectively.

Zhao et al. [50] proposed an algorithm called Progressive Growing of U-net + (PGU-net +) for
Automated Cervical Nuclei Segmentation, which tried to modify the original U-net algorithm [51],
which augmented the limited medical dataset for use of deep learning. They claimed these
augmentations mix the information of different scales that affect each other; hence, it limits the
segmentation accuracy of the model. they proposed a progressive growing U-net (PGU-net +) model,
which extracts image features at each scale independently and passing residual information with the
next scale. They achieved a segmentation accuracy of 0.925 on the Herlev dataset, with precision
0.901 ± 0.13, recall 0.968 ± 0.04 and ZSI of 0.925 ± 0.09.

Sompawong et al. [52] applied a pre-trained Mask R-CNN for cervical cancer nuclei detection,
segmentation and classification into normal and abnormal ones. They used liquid-based histological
slides obtained from Thammasat University (TU) Hospital and obtained mean average precision
(mAP) of 57.8%, the accuracy of 91.7%, the sensitivity of 91.7% and specificity of 91.7% per image.
They used DeepPap as a benchmark to evaluate their algorithm. Since DeepPap used the Herlev
dataset (containing images of single cells) for training and testing. It needs to be modified and retrained
on the TU dataset. They showed the proposed algorithm performs better than the modified DeepPap
on the TU dataset. They did not evaluate the Mask R-CNN algorithm on the Herlev dataset.

Liu et al. [53] proposed a cervical nucleus segmentation method in which pixel-level prior
information was utilized to provide the supervisory information for the training of a mask regional
convolutional neural network (Mask R-CNN). They added a local fully-connected conditional random
field (LFCCRF) to refine the segmentation. Using the Herlev Pap smear dataset, the proposed method
achieved 0.96 in both precision and recall and 0.95 in the Zijdenbos similarity index.

Liang et al. [42] used a comparison based detection which combines the decision of two CNN
architectures. First reference, samples were obtained by using the ResNet50 with Feature Pyramid
Network (FPN) architecture from each cell image from the dataset. At the same time features from the
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whole slide image, which contains many cells, were extracted through ResNet50 with FPN and region
proposal network (RPN). They replaced the original parameter classifier from their baseline network,
Faster R-CNN with FPN with their comparison classifier. Their proposed algorithm can detect 11
different cell types from the whole slide. The performance of the proposed algorithm achieved mean
average precision (mAP) of 26.3% and average recall (AR) of 35.7%. They argue these performance
measurements do not reflect how good the algorithm was since the proposed algorithm groups
multiple neighboring cells with the same category into one result.

Kurnianingsih et al. [54] used deep learning methods to segment cervical cells and classify them.
For the segmentation purpose, transfer learning was applied on Mask R-CNN weights trained using
the COCO dataset. The pre-trained model was trained to segment cervical cell area consisting of both
nuclei and cytoplasm. In the segmentation phase, when Mask R-CNN is applied to the whole cell,
it outperforms the previous segmentation method in precision (0.92 ± 0.06), recall (0.91 ± 0.05) and ZSI
(0.91 ± 0.04).

Deep learning-based segmentation into nuclei segmentation and cell segmentation can be
summarized (see Tables 9 and 10).

Table 9. Summary of selected papers on nuclei segmentation.

Authors Method Dataset Acc P R F1 Sp Sn ZSI

Zhao et al. [50] Progressive Growing Herlev 0.925 0.901 0.968 0.925
of U-net+(PGU-net+)

Liu et al. [53] Mask-RCNN with LFCCRF Herlev 0.96 0.96 0.95

Sompawong et al. [52] Mask-RCNN TU 89.8% 94.3% 72.5%

Table 10. Summary of selected papers on cervical cell segmentation.

Authors Method Dataset Acc P R ZSI DSC

Kurnianingsih et al. [54] Mask R-CNN Herlev 0.92 0.91 0.91

Song et al. [49] CNN with Shape information Herlev 0.92

Liang et al. [42] comparison based Faster R-CNN local 26.3 35.7

3.2.4. Deep Learning for Cervical Cell Classification

Zhang et al. [55] tried to directly classify cervical cells—without prior segmentation—based
on deep features, using convolutional neural networks (ConvNets). In their algorithm (DeepPap),
a pre-trained ConvNets was trained on a cervical cell dataset consisting of adaptively re-sampled
image patches coarsely centered on the nuclei. Then they applied aggregation to average the prediction
scores of a similar set of image patches. The proposed algorithm achieved classification accuracy
(98.3%), area under the curve (AUC) (0.99) values and specificity (98.3%) on the Herlev dataset.

Hyeon et al. [56] proposed a CNN-based pre-trained model, VGGNet-16 for feature extraction,
and use different classifiers namely: logistic regression, random forests, AdaBoost and SVM for
classification of the pap-test images into normal and abnormal. From these classifiers, the highest
scoring one is the SVM classifier with an F1-score of 0.7817 on a dataset collected locally.

LIN et al. [57] applied the transfer learning approach to fine-tune different CNN models (AlexNet,
GoogLeNet, ResNet and DenseNet) which were pre-trained on ImageNet dataset [58]. The pre-trained
models were fine-tuned on the Herlev cervical dataset with additional cytoplasm and nucleus
morphological masks. They achieved classification accuracies of 94.5%, 71.3% and 64.5%, for two-class
(abnormal versus normal), four-class (normal, low-grade squamous intraepithelial lesion (LSIL),
high-grade squamous intraepithelial lesion (HSIL) and carcinoma-in-situ (CIS) [59]) and seven-class
(”World Health Organization classification system”) classification tasks, respectively.

Chen et al. [60] tried to combine features extracted from different types of tests. They proposed
a Faster R-CNN, which is based on Faster R-CNN for fusing acetic and iodine images of the cervix.
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They fuse non-image features extracted from the cervix transformation zone type, pap test, HPV test
and age after they non-linearly compression of the fused image features to 29D by using one
fully connected (FC) layer. They did not mention which classifier they used for normal–abnormal
classification but achieved an accuracy of 87.4% (88.6% sensitivity and 86.1% specificity) on a locally
collected dataset.

Kurnianingsih et al. [54] trained a compact VGG network based on their Mask R-CNN based
segmentation algorithm. For the classification, a compact VGG Net classifier yields a sensitivity
score of more than 96% with a low standard deviation (± 2.8%) for the binary classification problem
and yields a higher result of more than 95% with low standard deviation (maximum 4.2%) for the
7-class problem.

Performance comparison of different pre-trained deep learning models on Pap smear classification
was done by Promworn et al. [61]. They compared the performance of CNN models namely resnet101,
densenet161, AlexNet, vgg19_bn and squeeznet1_1, which are the top five models based on accuracy
in ImageNet. The models are retrained on the Herlev dataset. Based on accuracy, densenet161 was the
best performer on both binary classification (94.38%) and multiclass classification (68.54). Based on
sensitivity, AlexNet and resnet have achieved 100% on binary classification. Whereas densenet161 was
the best performer on multiclass classification with 68.18%. Again, based on specificity, densenet161
was superior with values 82.61% for binary and 69.57% for multiclass classification.

Yutao Ma et al. [62] developed a CADx system by using a convolutional neural network (CNN) for
feature extraction and support vector machines (SVM) for classifying the optical coherence microscopy
(OCM) images into five classes namely normal, ectropion, low-grade and high-grade squamous
intraepithelial lesions (LSIL and HSIL) and cancer. They also used HPV test results for the classification
in conjunction with features extracted from the OCM images by the CNN. An 88.3 ± 4.9% classification
accuracy was achieved for all five classes. In the binary classification task (low-risk (normal, ectropion
and LSIL) vs. high-risk (HSIL and cancer)), the CADx method achieved an area under the curve (AUC)
value of 0.959 with 86.7 ± 11.4% sensitivity and 93.5 ± 3.8% specificity.

Ahmed et al. [63] proposed transfer learning-based approaches for the classification of cervical
cells. They explored six different methods for the classification of cervical cells by combining three
pre-trained models as features, shallow CNN, which consisted of only two convolutional layers
and two max-pooling layers, VGG-16 Net and CaffeNet as a feature extraction technique and two
classifiers, extreme learning machine (ELM) and auto encoder (AE) for the classification purpose.
They used the Herlev dataset for training and testing their system. The best performer from these
combinations is the CaffeNet+ELM which achieved a binary classification accuracy of 99.7 and 97.2 for
the 7 class classification.

Dong et al. [64] used artificially extracted features such as color, texture and morphology along
with the Inception-V3 model for the classification of cervical cells. They used features extracted
manually since the features extracted from the CNN architecture since the knowledge of cervical cells
is lacking there. Nine artificial features were combined with features extracted from the Inception-V3
architecture joined on the fully connected layer and used the Softmax function for the classification.
They keep the aspect ratio of the cells when resizing for the Inception-V3 network will harm the
morphological features. The proposed algorithm achieved an overall accuracy of 98.2%, the sensitivity
of 99.4% and specificity of 96.73% for normal abnormal classification on the Herlev dataset.

Martinez-Mias et al. [65] tried to improve and make it realistic the cervical classification from
PAP smears using a cell merger approach. They used CNN for PAP smear image classification,
and optimize and integrate the cell fusion approach since most PAP smear slides contain overlapping
cells. They used a local PAP smear dataset collected from ten patients and labeled using biopsy results.
Hence, it was used as a gold standard. They trained the CaffeNet model using data prepared using
a cell merger to reflect the reality of the PAP smear examination. For classifying the cervical cells
into four classes the CaffeNet with the cell merger dataset achieved an average accuracy of just 55.6%
with the performance as low as just 16.7% for LSIL class. For the normal/abnormal classification,
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their proposed algorithm achieved an accuracy, sensitivity and specificity of 88.8%, 0.92 and 0.83,
respectively. This performance is satisfactory considering the classification was done on overlapping
cell regions.

Xiang et al. [66] used YOLOv3 as a cell detector and Inception-V3-based classifier for cervical
cell classification into ten classes that could be present on the slide namely, normal cells (NORMAL),
atypical squamous cells-undetermined significance (ASC-US), atypical squamous cells-cannot exclude
HSIL(ASC-H), low-grade squamous intraepithelial lesion (LSIL), high-grade squamous intraepithelial
lesion (HSIL), atypical glandular cells (AGC), adenocarcinoma (ADE), vaginalis trichomoniasis (VAG),
monilia (MON) and dysbacteriosis (DYS). The model achieves 97.5% sensitivity (Sens) and 67.8%
specificity (Spec) on cervical cell image-level screening.

The cervical cell classification algorithms can be categorized into two categories, binary and
multiclass. In the binary classification cervical cells are classified into normal and abnormal cells
(see Table 11). Multiclass classification describing the severity of the cancer including the normal ones
(see Table 12).

Table 11. Summary of selected papers on cervical cell binary classification.

Authors Method Dataset Acc(%) Sn(%) Sp(%) AUC F1 P R

Zhang et al. [55] DeepPap Herlev 98.3 - 98.3 0.99 - - -

Hyeon et al. [56] VGG16 SVM local - - - 0.78 0.78 0.78

Lin et al. [57] GoogleNet5C Herlev 94.5 - - - - - -

Chen et al. [60] Mask R-CNN 7 class local- 87.4 88.6 86.1 - - - -

Kurnianingsih et al. [54] Mask R-CNN Herlev 98.1 96.7 98.6 96.5 - - -

Promworn et al. [61] densenet161 Herlev 94.38 100 - - - - -

Yutao Ma et al. [62] CNN and SVM OCM image - 86.7 93.5 0.96 - - -

Ahmed et al. [63] CaffNet+ELM Herlev 99.5 - - - - - -

Dong et al. [64] Inception-V3 Herlev 98.23 99.4 96.7 - - - -

Martinez-Mias et al. [65] CaffeNet Local 88.8 92 83 - - - -

Table 12. Summary of selected papers on cervical cell multiclass classification.

Authors Method Dataset Acc Sn Sp Others

regressor 7 classes

Yutao Ma et al. [62] CNN and SVM 5 classes OCM image 88.3

Lin et al. [57] GoogleNet5C 4 classes Herlev Dataset 71.3

Lin et al. [57] GoogleNet5C seven classes Herlev Dataset 64.5

Kurnianingsih et al. [54] Mask R-CNN 7 class Herlev 95.9 96.2 99.3

Promworn et al. [61] densenet161 7 classes Herlev dataset 68.54 68.18 69.57

Ahmed et al. [63] CaffNet+ELM Herlev 91.2 - - -

Martinez-Mias et al. [65] CaffeNet Local 55.6 - - -

Xiang et al. [66] YOLOv3+InceptionV3 local 89.3 97.5 67.8 -

3.2.5. Deep Learning for Cervix Classification

Colposcopic images are also used for cervical cancer detection using deep learning methods.
A colposcopy helps to observe the cervix at up to ×10 magnification [67]. Cervical intraepithelial
lesions are easily recognized when treated with acetic acid solutions using colposcopy.

Cervix type classification from smartphone camera was tried in [68] using capsule networks which
achieves an accuracy of 94%. A more advanced approach called CervixNet [69] which is designed
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based on a novel hierarchical convolutional mixture of experts (HCME) method achieved an accuracy
of 96.77%.

M. Arora et al. [70] used the transfer learning approach from a pre-trained CNN, Inception V3
model [71] by modifying the output layer. The output layer was replaced by a pooling layer and a
fully connected layer for the classification of the cervix based on its image. A cervical image dataset
from Kaggle was used here, which has three types of cervix based on the location of the transformation
layer. The type of cervix will help the physician whether further tests are needed or not. They obtained
an average accuracy of just 54.54%.

Guo et al. [72] explored the application of two versions of regions with convolutional neural
networks (R-CNN), Mask R-CNN and MaskX R-CNN, on three different dataset for cervix classification
for automatic segmentation of cervix region. Mask R-CNN is effective on datasets with annotations
having the exact boundaries. The MaskX R-CNN can also trained the bounding box annotation.
The highest performance was achieved using Mask R-CNN with Dice and IoU of 0.947 and 0.901,
respectively. MaskX R-CNN also achieved a very good performance with Dice and IoU of 0.92 and
0.86 respectively. These colposcopy images suffer from presense of many distractors such as pubic
hair, intra-uterine devices (IUDs), the speculum and even parts of human hand. The main problem in
cervix classification from cervix photos is the presence of out of focus images [73].

Guo et al. [74] used an ensemble of three deep learning architectures, RetinaNet, Deep SVDD
and a customized CNN for the detection of cervix on smarthphone captured images. They achieved
an average accuracy and F1-score of 91.6% and 0.890, respectively.

3.2.6. Summary

Screening through a Pap test for cervical cancer can take days for the final analysis to complete
since the pathologist needs to go through millions of cells. A deep learning-based system can detect
those cells in minutes if it is accurate enough to be trusted. One of the main challenges of deep
learning methods is the presence of other types of cells and other materials present in the image and
the overlapping between two adjacent cervical cells. To solve these problems, a large and carefully
annotated dataset needs to be built for the algorithms to learn. Building this many datasets for medical
images is very difficult. The most commonly used dataset for cervical cancer screening is the Herlev
dataset as shown in Table 10.

Deep learning has been applied for cervical cancer screening in many of its screening methods.
Most of the successful deep learning-based cervical cancer detection methods were based on a dataset
using pap smear histology images. Colposcopic images are also taking more attention since they are
easy to take and not invasive. Their accuracies on the detection of cervical cancers is not as good as
that of the histology images. Cervical cancer detection using the deep learning methods based on the
colposcopic images are becoming common since a large dataset can be collected and annotated easily.
Colposcopic screening could be applied for mass screening purposes with the aid of deep learning,
since taking samples are easy. As we can see from Tables 9–12, the Herlev dataset is the most used
dataset for cervical cell classification and segmentation works. Most of the coloscopic datasets used for
cervix classifications are locally collected. We can also see that the deep learning methods for nuclei
segmentation are more accurate than that of cell segmentations since cell boundaries might overlap
between adjacent cells. For the classification case, binary classifiers are more accurate than that of
multiclass classifiers which can detect the type of abnormalities in the cells.

From Tables 11–13, we can see those deep learning methods with pre-trained networks and
those with transfer learning mechanisms are more accurate than networks trained from scratch with
TensorFlow the widely used software.

Most of the reviewed papers on the application of deep learning on cervical cancer screening
were published in 2019 with an average impact factor of 3.4 (see Table 14). And, as shown in Table 15,
only one of the papers compares the algorithm performance with that of the specialist.
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Table 13. Summary of cervical cancer scientific papers in terms of CNN architecture, and type of
environment used in the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Zhao et al. [50] U-Net No No -

Liu Y. et al. [53] Mask-RCNN Yes No Tensorflow

Sompawong et al. [52] Mask-RCNN Yes Yes -

Kurnianingsih et al. [54] Mask-RCNN and VGGNet Yes Yes -

Song et al. [49] CNN-Custom No No -

Lianget al. [42] ResNet50 Yes Yes Tensorflow

Zhang et al. [55] ConvNet Yes Yes Caffe

Hyeon et al. [56] CNN Yes Yes -

Yutao Ma et al. [62] VGG-16 Yes Yes Tensorflow

Lin et al. [57] GoogLeNet Yes Yes Caffe

Promworn et al. [61] DenseNet161 No No PytTorch

Wimpy and Suyanto [68] Capsule Network Yes No Tensorflow

Gorantla et al. [69] ResNet101 yes Yes -

Arora et al. [70] CNN-Custom No No -

Ahmed et al. [63] CaffeNet yes yes Caffe

Martinez-Mias et al. [65] CaffeNet yes yes Caffe

Table 14. Summary of cervical cancer scientific papers in terms of article publication year, name of the
journal for the selected papers and its impact factor with year of impact factor.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Zhao et al. [50] 2019 MMMI 2019 - -

Liu Y. et al. [53] 2018 IEEE Access 4.098 2018

Sompawong et al. [52] 2019 Conference ACEMBS 0.54 2019

Kurnianingsih et al. [54] 2019 IEEE Access 4.098 2018

Song et al. [49] 2016 Conference ISBI 1.51 2019

Liang et al. [42] 2019 Neurocomputing 3.317 2016

Zhang et al. [55] 2017 JBHI 5.223 2020

Hyeon etal. [56] 2017 Conference ICMDM - -

Yutao Ma et al. [62] 2019 IEEE Transaction on Biomedical Engineering 4.78 2019

Lin et al. [57] 2019 IEEE Access 4.098 2018

Promworn et al. [61] 2019 Conference ICNEMS 0.312 2019

Wimpy and S. Suyanto [68] 2019 Conference ISRITI - -

Gorantla et al. [69] 2019 BIBE 0.392 2012

Arora et al. [70] 2018 Conference ICSCCC 0.91 2019

Ahmed et al. [63] 2019 Future Generation computer systems 6.125 2019

Dong et al. [64] 2020 ASCJ 5.5 2020

Martinez-Mias et al. [65] 2020 ESWA 5.45 2020
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Table 15. Summary of cervical cancer scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Zhao et al. [50] No Yes

Liu Y. et al. [53] No Yes

Sompawong et al. [52] No Yes

Kurnianingsih et al. [54] No Yes

Song et al. [49] No Yes

Lianget al. [42] No Yes

Zhang et al. [55] Yes No

Hyeon et al. [56] No No

Yutao Ma et al. [62] Yes No

Lin et al. [57] No Yes

Promworn et al. [61] No Yes

Wimpy and S. Suyanto [68] No Yes

Gorantla et al. [69] No Yes

Arora et al. [70] No No

Ahmed et al. [63] No Yes

Dong et al. [64] No Yes

Martinez-Mias et al. [65] No No

3.3. Brain Tumor

Brain tumor is a group of abnormal cells around or inside the brain due to the uncontrolled
division of cells with a serious effect of deterring the normal functionality of the brain activity and
destroying the healthy cells[75].

Brain tumor is classified into benign or low-grade (grade I and II) and malignant or high-grade
(grade III and IV). Benign is a non-cancerous tumor that does not exhibit any progression and cannot
spread to other parts of the body; it started in the brain with a very low growth rate. On the other
hand, a malignant tumor is cancerous with an attribute of growing rapidly and spreading to other
parts of the body. Malignant tumors can further be categorized as primary and secondary. Primary
malignant tumor originates in the brain itself; whereas, the secondary type begins from somewhere
else in the body and spreads to the brain. Cancerous cells that spread to the brain commonly originate
from the lung, kidney, breast, skin and colon. A metastatic brain tumor is another expression for this
type of brain tumor. Glioblastoma multiform (GBM) is the most common type of primary brain tumor
that grows fast from glial cells. An intense clinical treatment plan is required for high-grade gliomas
(HGG) as they have a higher spreading rate than the low-grade gliomas (LCG) [76]. It is evidenced that
patients with GBMs decease in less than a year. Early detection helps a therapeutic plan of patients
and improves the overall survival rate [77]. The most prevalent brain cancer is high-grade glioma with
85% of new cases of malignant primary tumor diagnosed every year [78].

3.3.1. Screening Methods

Magnetic resonance imaging is the most common brain tumor diagnosis and has a great role in
treatment planning strategies [79]. These images have an important contribution towards an automatic
medical image analysis field as they provide quite a lot of information about the brain structure and
abnormalities [80].

This is the reason why MRI images have a great impact on the automatic medical image analysis
field. There are various steps taken in the course of brain tumor treatment. The first step is determining
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if the tumor does exist in the brain or not. Then, the infected region in the brain tissues must be
extracted from an MRI image in a process called segmentation [81]. Segmentation is not an easy task
as MRI images may not help human readers easily discern regions of concern for various technical
reasons. However, segmentation is a very important task in properly conducting the diagnosis,
treatment and appraisal of treatment outcomes. A great number of automatic segmentation methods
with varying degrees of accuracy have been developed as applications of the computational science
for utilization of imaging devices advance.

There are different modalities of the MRI including T1-weighted (T1), T2-weighted contrast-enhanced
(T1c), T2-weighted (T2) and T2-weighted fluid attenuated inversion recovery (FLAIR) for segmenting
the brain tumor [82]. Moreover, features of the MRI like textures, local histograms and structure tensor
eigenvalues have been used in brain tumor segmentation [83]. Deep learning-based methods have
become state-of-the-art as they score superior performance in image analysis fields [84].

3.3.2. Datasets

Most of the researchers have applied publicly available brain tumor image datasets to test their
methods. Summary of publicly available datasets for brain tumor segmentation and classification is
summarized in Table 16.

Table 16. Image datasets for brain tumor (N—normal, AB—abnormal).

Dataset Size #Classes Format/Targets Type Author, Year

LBPA40 288 2 html MRI Shattuck et al. [85]

BRATS 2015 43,708 2 .mha MRI Menze et al. [86]

BRATS2013 1799 2 .mha MRI Menze et al. [86]

RIDER_NEURO_MRI 29 2 .tcia MRI Barboriak et al. [87]

SUH 49 2 - MRI Fabelo et al. [88]

HMS 66 2 .gif MRI Keith A. Johnson

FBT 3064 2 .mat MRI C. Jun [89]

NHTM 3064 2 .png MRI C. Jun [89]

GCE 150 2 .png MRI Jun Cheng [90]

3.3.3. Deep Learning in Brain Tumor Segmentation

Alkassar et al. [91] proposed transfer learning and fully convolution network (FCN) to achieve
robust tumor segmentation using VGG-16 networks. The proposed method achieved a global accuracy
of 0.97785 and a 0.89 Dice score in terms of whole tumor segmentation on MRI images from the
BRATS2015 dataset.

Amiri et al. [92] proposed a simple and reliable brain segmentation method in MRI images
through recursively and deeply transferring a learned random forest (RF) to guide an SVM classifier
for segmenting tumor lesions while capturing the complex characteristics of brain tumor appearance.
They tested this method on 20 patients with high-grade gliomas from the Brain Tumor Image
Segmentation Challenge (BRATS) dataset. Their method outperforms both SVM and RF with a
high statistical significance using paired t-test; i.e., a mean Dice index of 72% compared to SVM (59%)
and RF (63%).

Chahal et al. [93] proposed a novel approach using deep learning which utilizes both global and
local brain image datasets for precise segmentation. Their proposed deep learning model combines
two-pathway and cascade architectures to analyze and implement brain segmentation. The results are
evaluated over Input Cascade and the outcomes showed better performance—that is, a metrics of Dice

378



J. Imaging 2020, 6, 121

score for high grade and low-grade image with values 0.943 and 0.950, respectively—than existing
MFC cascade.

Ding et al. [94] proposed deep residual dilate network with middle supervision (RDM-Net)
which combines the residual network with dilated convolution. By evaluating their framework
on the BRATS 2015 challenge, their framework proved to achieve better performance than other
state-of-the-art methods incomplete tumor (Dice score of 0.86) and core tumor segmentation (Dice
score of 0.78). However, the Dice score for enhancing tumors only achieves 0.63 which is not as good
as the other counterpart methods. The reason for this could be the focus on the 2D slices segmentation
by the proposed framework which pays less attention to the context information within slices by
comparing with 3D segmentation. The loss of context information may lead to worse performance on
the enhancing tumor segmentation.

Mallick et al. [95] have used a deep wavelet autoencoder (DWA) for an image compression
technique which blends the basic feature reduction property of autoencoder along with image
decomposition property of wavelet transform for further classification task by using DNN.
The performance of the DWA-DNN classifier was compared with other existing classifiers like
autoencoder-DNN or DNN and the proposed method surpasses them all with an overall accuracy of
96% where that of AE-DNN is 93% and DNN is 91%.

Ramirez et al. [96] proposed a new variational model for saliency detection in images and
its application to brain tumor segmentation. The model works by incorporating a saliency term
to a classical total variation-based restoration functional and hence discriminates what is relevant
(salient) from the background. They have, therefore, introduced a deep learning framework for using
available knowledge from a specific application to optimize the parameters of the energy functional.
The proposed framework achieved a Dice score of 0.857, precision 0.845 and recall 0.882.

Sajid et al. [97] proposed a deep learning-based method that uses different modalities of MRI for
the segmentation of brain tumors. The proposed hybrid convolutional neural network architecture
uses a patch-based approach and deals with the over-fitting problems by utilizing dropout regularize
alongside batch normalization, whereas the data imbalance problem is dealt with by using a two-phase
training procedure. The proposed method contains a preprocessing step, in which images are
normalized and bias field corrected, a feed-forward pass through a CNN and a post-processing
step as a means of removing remnant false positives in the skull portion. The proposed method is
validated on the BRATS 2013 dataset, where it achieves scores of 0.86, 0.86 and 0.91 in terms of Dice
score, sensitivity and specificity for whole tumor region, improving results compared to existing
state-of-the-art techniques.

Wang et al. [98] proposed an automatic method named residual and pyramid pool network
(WRN-PPNet) to segment brain tumor by first obtaining 2D slices from 3D MRI brain tumor images
and then normalizing the 2D slices and putting them in the model. The model will output the tumor
segmentation results. The experimental results show that the proposed method is simple and robust
compared to the other state-of-the-art methods with an average Dice, sensitivity and PPV values on
randomly selected datasets 0.94, 0.92 and 0.97, respectively.

Zhao et al. [99] proposed a new method for brain segmentation which is an integration of
fully convolutional neural networks (FCNNs) and conditional random fields (CRFs) in a unified
framework. The result helps to obtain segmentation results with the appearance and spatial consistency.
The following steps are taken to for training the deep learning model using 2D image patches and
image slices: (1) training FCNNs using image patches; (2) training CRFs as recurrent neural networks
(CTF-RNN) using image slices with parameters of FCNNs fixed; and (3) fine-tuning the FCNNs and
the CRF-RNN using image slices. In the model, 3 segmentation models are particularly trained using
2D image patches and slices obtained in axial, coronal, and sagittal views respectively are combined
to segment brain tumors using a voting-based fusion strategy. The method used BRTS 2013, BRATS
2015 and BRATS 2016 with an experimental result of a competitive score. The method achieved a
promising performance on the BRATS 2013 and BRATS 2015 testing dataset. The method could also
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achieve competitive performance with only 3 imaging modalities (FLAIR, T1c and T2) rather than
4(FLAIR, T1, T1c and T2). In BRATS 2016, the method ranked first on its multi-temporal evaluation.

Kuzina et al. [100] proposed a knowledge transfer method between diseases via the generative
Bayesian prior network to mitigate the common challenge of obtaining large image datasets for
automatic segmentation. They have applied deep weight prior; hence the name UNet-DWP for their
method, to incorporate information about the structure of previously learned convolutional filters
during the training of a new model. A comparison between a pre-trained approach and random
initialization to this approach proves that this method yields the best results in terms of the Dice
similarity coefficient metric on a small subset of the BRATS2018 dataset. The performance of the model
was rated by taking subsets containing 5, 10, 15 or 20 randomly selected images from the dataset and
comparing them with the fixed test sample size of 50 images. They have also used a blend of binary
cross-entropy and Dice losses to train U-Net in the non-Bayesian setting. The results indicate that the
model outperforms both pre-trained and randomly initialized U-Nets for all the training sizes.

Zeineldin et al. [101] proposed a new generic deep learning architecture named DeepSeg to
address the challenge of distinguishing tumor boundaries from healthy cells in the brain tumor
diagnosis. This method helps to wholly automate detection and segmentation of the brain lesion
using FLAIR MRI data. The developed system is a decoupling framework interacting encoding and
decoding relationship where the encoder part performs spatial information using a convolutional
neural network and the decoder provides the full-resolution probability map from the resulting
semantic map. The study has employed different CNN models such as residual neural network
(ResNet), dense convolutional network (DenseNet) and NASNet using modified U-Net architecture.
The proposed architecture has been tested on MRI datasets of brain tumor segmentation (BRATS2019)
challenge which includes s336 cases as training data and 125 cases for validation data yielding Dice
and Hausdorff distance scored of about 0.81 to 0.84 and 9.8 to 19.7, respectively. The proposed DeepSeg
is open source and freely available at https://github.com/razeineldin/DeepSeg/.

Fabelo et al. [102] suggested a deep learning-based hyperspectral image (HSI) processing modality
to be used as a reliable support in real-time neurosurgical procedure for carrying out accurate resection
of the tumor without affecting much of the normal brain tissue. The study employed a number of deep
learning techniques for the detection of brain tumors using HSI. The HS image database was obtained
during the course of operation and the system employed a highly sophisticated and specialized visible
and near-infrared (VNIR) push broom camera. Classification methods with 2D-CNN and pixel-wise
classification with 1D-DNN have been found to yield a very good result. Despite the challenge in
obtaining sufficient number of training samples and the anomalies incurred due to brain movement
during scanning, the overall average accuracy for the proposed method was 80%. The method has also
achieved a very high specificity for both binary and multiclass classification schemes with values of
100% and 90%, respectively.

The summary of researches on deep learning methods for brain tumor segmentation is presented
in Table 17.

3.3.4. Deep Learning in Brain Tumor Classification

Like in the segmentation, deep learning-based methods have performed fairly well in image
classification of brain tumors. Yet, variation in the shape, size, location and contrast of tumor tissue
cells is the major factor that impacts the accurate classification of brain tumors from MRI images [103].

Deep learning techniques involving different enhancement methods are used to classify different
types of brain tumors—glioma, meningioma and pituitary. The classification is further categorized
into axial, coronal and sagittal planes that are used by various algorithms to minimize the error rate of
neural networks in identifying the brain tumor [104].

Mohsen et al. [80] employed a DNN classifier where a 7-fold cross-validation technique was
applied for building and training the DNN of 7-hidden layers structure for classifying a dataset of brain
MRIs into four classes, i.e., normal, glioblastoma, sarcoma and metastatic bronchogenic carcinoma.
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They have combined the classifier with the discrete wavelet transform (DWT)—a powerful feature
extraction tool—and principal components analysis (PCA). They achieved a classification rate of
96.97%, recall 0.97, precision 0.97, F-measure 0.97 and AUC (ROC) 0.984.

Table 17. Summary of selected papers on brain tumor segmentation.

Authors Method Learning Dataset Acc. P R F Sp Sn Dice PPV

Alkassar et al. [91] DNN+FCN+VGG-16 BRATS2015 0.98 0.89

Amiri et al. [92] RF-SVM BRATS 0.72

Chahal et al. [93] CNN BRATS2013 0.96 0.93 0.95

Ding et al. [94] RDM-Net BRATS2015 0.86

Mallick et al. [95] DWA-DNN RIDER_NEURO_MRI 0.93 0.93 0.92 0.94
Ramirez et al. [96] CNN+TVS Flair-MRI Brats2015 0.84 0.88 0.86

Sajid et al.[97] hybrid CNN BRATS 2013 0.91 0.86 0.86

Wang et al. [98] WRN-PPNet BRATS2015 0.92 0.94 0.97

Zhao et al. [99] FCNNs and CRF-RNN BRATS 2013–16 0.82 0.84 0.89

Kuzina et al. [100] UNet-DWP BRATS2018 0.76

Zeineldin et al. [101] DeepSeg BRATS 2019 0.81–0.84

Fabelo et al. [102] HSI+2D-CNN SUH 80 80–100

Alqudah et al. [105] used a convolutional neural network (CNN) for classifying a dataset of 3064
T1 weighted contrast-enhanced brain MR images for grading the brain tumors into three classes called
glioma, meningioma and pituitary. The research has used T1-weighted contrast-enhanced brain MR
images for classifying brain tumor grades. They have used a free online available dataset at [90] which
contains images having the above-mentioned attributes. A total of 18 layers in the proposed CNN
architecture would enable the classifier to rate the brain tumor effectively. In their work they proved
that the proposed CNN classifier is a powerful tool with an accuracy of 98.93% and sensitivity 98.18%
for cropped lesions; for the uncropped lesions, they have obtained an accuracy of 99% and 98.52%
sensitivity; for segmented lesion images, the result is 97.62 accuracy and 97.40% sensitivity.

Ucuzal et al. [106] developed a deep learning free web-based software that can be utilized in
the detection and diagnosis of the three types of brain tumors (glioma/meningioma/pituitary) on
T1-weighted magnetic resonance imaging. In the research, 3064 T1-weighted MR image scans for the
three types of brain tumors have been used. Out of which, 2599 instances were used in the training
phase; whereas, the remaining 465 were used in the testing phase. A python programming language
library called Auto Keras was used in image pre-processing (image rotation, changing width and
length, truncating images, rescaling, etc). Furthermore, a Bayesian optimization technique was used to
tune the hyperparameters of the model. With this, they have verified that all the calculated performance
metrics—i.e., accuracy, precision, sensitivity, specificity, F1-score, MCC, G-Mean of the experimental
results are higher than 98% for classifying the types of brain tumors on the testing dataset obtained
from Nanfang Hospital and Tianjin Medical University General Hospital which is an open-source
dataset downloaded from [107]. This data set consists of 3064 T1-weighted contrast-enhanced MR
images from 233 patients: 708 meningiomas, 1426 glioma and 930 pituitary tumors. The developed
web-based software can be publicly available at [108].

Selvy et al. [109] developed a model that makes use of an image processing technique and artificial
neural network for successful detection of the brain tumor. To enhance the contrast of the original
image in its analysis and manipulation, they have used histogram equalization (HE) technique where
gray level co-occurrence matrix (GLCM) would be used on the feature extraction. A probabilistic
neural network (PNN) classifier is applied to the obtained feature to accurately determine tumor
location in brain MRI images. The PNN classifier has produced an accuracy of 90.9%, specificity of
100% and sensitivity 85.75%.

Sultan et al. [110] proposed a deep learning (DL) model to classify different brain tumor types.
The model which bases a convolutional neural network has employed two publicly available datasets
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acquired from Nanfang Hospital and General Hospital, Tianjing Medical University, China from 2005
to 2010. The two datasets entail 233 and 73 patients with a total of 3064 and 516 images on T1-weighted
contrast-enhanced images, respectively. The overall accuracy of the proposed network is 96.13% for
the first and 98.7% for the second dataset. The result inferred that the model has the ability to perform
brain tumor multi-classification. The network training and performance computations are finally
presented. The system parameters used to train the neural network structure are Intel i7-7700HQ CPU
(2.8 GHz), NVIDIA GTX 1060 (6 GB) GPU, 16GB RAM, Matlab 2018b and Python 3. The network is
constructed from 16 layers where the input layer holds the pre-processed images passing through
the convolution layers and their activation functions (3 convolution, 3 ReLU, normalization and
3 max-pooling layers). Additionally, two dropout layers are used to prevent overfitting followed by a
fully connected layer and a softmax layer to predict the output and finally a classification layer that
produces the predicted class. Although the dataset is relatively not big (due to the variety of imaging
views), data augmentation helped well to show better results and hence, overcome this problem.

Badža and Barjaktarovic [111] presented a new CNN architecture for Brain Tumor Image
Segmentation and classification for three tumor types. The study has employed an image database
that contains 3064 T1-weighted contrast-enhanced MRI images acquired from Nanfang Hospital and
General Hospital, Tianjin Medical University, China from 2005 to 2010. The input layer of the proposed
network was represented by MRI images of the database after being normalized to 256 × 256 pixels.
The network architecture having consisted of input, two main blocks, classification block and output
was employed to perform tumor classification. The blocks consist of the rectified linear unit (ReLU)
activation layer, the dropout layer and the max-pooling layer engaged in fine-tuning and resizing
the images. A CNN developed in Matlab R2018a (The MathWorks) was employed for the tumor
classification. The evaluation of the network was assessed using four approaches: combinations of
two 10-fold cross-validation methods and the two databases mentioned above. The generalization
capability of the network was tested with one of the 10-fold methods, subject-wise cross-validation,
and the improvement was tested by using an augmented image database. The best result for the
10-fold cross-validation method was obtained for the record-wise cross-validation for the augmented
data set, and, in that case, the accuracy was 96.56%. With good generalization capability and good
execution speed, the new developed CNN architecture could be used as an effective decision-support
tool for radiologists in medical diagnostics.

The summary of the papers reviewed is presented in Table 18.

Table 18. Summary of selected papers on brain tumor classification.

Authors Method Dataset Acc. P R F Sp Sn MCC G-Mean

Mohsen et al. [80] DWT-DNN Harvard 0.97 0.97 0.97

Alqudah et al. [105] CNN Online 98.40 98.19 99.19 98.18

Ucuzal et al. [106] CNN Multiclass NHTM 99.74 99.58 99.59 99.81 99.60 99.39 99.70

Selvy et al. [109] PNN GCE 90 100 85.75

Sultan et al. [110] CNN NHTM 96.13–98.7

Badža and Barjaktarovic [111] CNN NHTM 96.56

3.3.5. Summary

As shown in Table 19, papers from 2016,2018, 2019, and 2020 were reviewed here. Unlike other
cancer type papers, reviewed papers on brain tumors consist of a significant number of papers that
compared the performance of their model with that of the domain expert(see Table 20).

As indicated in Tables 17 and 18, Brain Tumor Image Segmentation Challenge (BRATS) of various
versions is the most widely used dataset among the researchers and appeared in ten out of the
seventeen papers reviewed.

From Table 21 it was found that a Tensor flow-based framework run by a high-speed core
processor or a GPU was widely used, seven out of seventeen, followed by PyTorch, two out of
seventeen, to implement the experiments and conducting the deep learning training. However, the rest
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of the papers have not explicitly indicated which software platform they have applied. On the other
hand, VGGNet is the most frequently applied network to achieve robust tumor segmentation 52.9% of
the papers have made a comparison with domain experts; on the other hand, 94.1% of the paper has
made a comparison with the traditional method.

Table 19. Summary of brain tumor scientific papers in terms of article publication year, name of journal
for the selected papers and its impact factor with year of impact factor.

Author and Citation Publication Year Journal Impact Factor Impact Assigned Year

Alkassar et al. [91] 2019 ICECCPCE19 Conference 0.627 2019

Amiri et al. [92] 2016 ATSIP 2016 Conference 0.17 2019

Chahal et al. [93] 2019 RDCAPE Conference - -

Ding et al. [94] 2019 IEEE Access 3.745 2019

Mallick et al. [95] 2019 IEEE Access 3.745 2019

Ramirez et al. [96] 2018 ISBI Conference 1.51 2019

Sajid et al.[97] 2019 Arabian Journal for Science and Engineering 0.33 2019

Wang et al. [98] 2019 IJCNN Conference 0.37 2019

Zhao et al. [99] 2018 Medical Image Analysis 3.88 2019

Kuzina et al. [100] 2019 Frontiers in Neuroscince 3.7 2020

Mohsen et al. [80] 2018 Future Computing and Informatics 3.88 2019

Alqudah et al. [105] 2019 IJATCSE 0.2 2019

Ucuzal et al. [106] 2019 ISMSIT 0.84 2019

Zeineldin et al. [101] 2020 IJCARS 1.961 2017

Fabelo et al. [102] 2019 MDPI 3.275 2019

Selvy et al. [109] 2019 IJSRCSEIT 1.638 2016

Sultan et al. [110] 2019 IEEE Access 3.745 2019

Badža and Barjaktarovic [111] 2020 MDPI 2.474 2019

Table 20. Summary of brain tumor scientific papers in terms of comparison to specialists and/or
traditional techniques.

Author and Citation Comparison to Specialists (Yes/No) Comparison to Traditional Technique (Yes/No)

Alkassar et al. [91] Yes Yes

Amiri et al. [92] No Yes

Chahal et al. [93] No Yes

Ding et al. [94] No Yes

Mallick et al. [95] No Yes

Ramirez et al. [96] Yes Yes

Sajid et al.[97] No Yes

Wang et al. [98] Yes Yes

Zhao et al. [99] Yes Yes

Kuzina et al. [100] No Yes

Mohsen et al. [80] No Yes

Alqudah et al. [105] No Yes

Ucuzal et al. [106] Yes No

Zeineldin et al. [101] Yes Yes

Fabelo et al. [102] Yes Yes

Selvy et al. [109] No No

Sultan et al. [110] Yes Yes

Badža and Barjaktarovic [111] No Yes
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Table 21. Summary of brain tumor scientific papers in terms of CNN architecture, and type of
environment used in the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Alkassar et al. [91] VGGNet-16 Yes Yes

Amiri et al. [92] RF+SVM Yes Yes

Chahal et al. [93] CNN Yes Yes

Ding et al. [94] RDM-Net Yes Yes

Mallick et al. [95] DWA-DNN Yes Yes Tensor flow

Ramirez et al. [96] CNN+TVS Yes Yes Tensor flow

Sajid et al.[97] hybrid CNN Yes Yes Tensor Flow

Wang et al. [98] WRN-PPNet Yes Yes Tensor flow

Zhao et al. [99] FCNNs and CRF-RNN Yes Yes Tensor flow

Kuzina et al. [100] UNet-DWP Yes Yes

Mohsen et al. [80] DWT-DNN Yes Yes

Alqudah et al. [105] VGGNet-19 Yes Yes

Ucuzal et al. [106] UNet-DWP Yes Yes Tensor flow and Keras

Zeineldin et al. [101] ResNet+DenseNet+NasNet Yes Yes Keras, Tensor Flow

Fabelo et al. [102] UNet Yes Yes Tensor Flow

Selvy et al. [109] GLCM+PNN Yes Yes

Sultan et al. [110] CNN Yes Yes Matlab 2018b and Python

Badža and Barjaktarovic [111] CNN Yes Yes Matlab 2018b

3.4. Colorectal Cancer (CRC)

Worldwide in 2018, more than 1,849,518 (which accounts for 10.2% of overall cancer cases) new
cases of colorectal cancer (CRC) are diagnosed and nearly 880,792 people died which is 9.2% of all
cancer-related deaths [112]. It is the third most common cancer worldwide and the second most
deadly [112]. Since colorectal cancer takes a long time before it becomes invasive, it is often curable
if found early. Hence, casual screening for colorectal cancer can substantially reduce its mortality.
Approximately 95% of all colorectal cancers are adenocarcinomas [113]. Colorectal adenocarcinomas
develop in the lining of the colon or rectum and are characterized by glandular formation.

3.4.1. Screening Methods

There are three common screening methods for colorectal cancer: fecal occult blood test (FOBt),
flexible sigmoidoscopy (FS) and total colonoscopy (TC) [114]. FOBt reveals traces of blood in stool
samples which is an early sign of colorectal cancer. FS involves visual inspection of the distal
bowel for polyps and cancers. TC visualizes the entire bowel and therefore is a more invasive
examination. The advancement of whole slide imaging (WSI) scanners has opened new opportunities
in automating pathology image analysis by digitizing the slides [115]. Histological examination
of the glands, most frequently with the hematoxylin & eosin (H & E) stain, is routine practice
for assessing the differentiation of cancer within colorectal adenocarcinoma [113]. Pathologists
use the degree of glandular formation as an important factor in deciding the grade of the tumor.
Accurate segmentation of structures of the glandular formations such as glands and nuclei have
crucial importance, because their morphological properties can assist the pathologist in screening the
malignancy [113].

3.4.2. Datasets

In Table 22, we present some of the publicly available and widely used datasets for colorectal
cancer detection and segmentation.
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Table 22. Publicly available datasets for colorectal cancer (CRC), UMCM—University Medical Center
Mannheim, CVC—computer vision center.

Dataset Size #Classes/Targets Format Type Author, Year

CVC-EndoSceneStill 912 4 bmp Colonoscopy Vázquez et al. [116], 2017

CVC-ColonDB 300 4 bmp Colonoscopy J. Bernal et al. [117], 2012
CVC-ClinicDB 612 4 tiff Colonoscopy J. Bernal et al. [118], 2015
UMCM 500 8 mat histology Kather et al. [119], 2016

3.4.3. Deep Learning for Cell Detection and Classification on Histological Slides

Kainz et al. [120] applied deep learning methods to segment and classify colon glands into benign
and malignant types for GlaS@MICCAI2015 challenge. They first pre-processed the stained RGB by
taking the Red channel and ignoring the others. Then contrast enhancement was performed using
contrast limited adaptive histogram equalization (CLAHE) technique. Two CNN classifiers were
trained: Object-Net, Separator-Net. Object-Net is for the detection of benign and malignant glands
from their respective backgrounds. Separator-Net is for classifying gland-separating structures since
the Object-Net architecture segment two neighboring glands as one. These to classifiers are then
regularized using a figure-ground segmentation based on weighted total variation to produce the
final segmentation result. They have achieved 96% average accuracy on the two tests provided by
the challenge.

Sirinukunwattana et al. [121] proposed a spatially constrained convolutional neural network
(SC-CNN) that includes parameter estimation layer and spatially constrained layer for spatial
regression to predict the probability of a pixel being the center of a nucleus in hematoxylin
and eosin (H & E) stained histopathology images. For classifying the detected nuclei they
combine neighboring ensemble predictor (NEP) with a standard softmax CNN (s-CNN). For the
nuclei detection using SC-CNN, they achieved 0.77 precision, 0.82 recall, and 0.8 F1-score.
The NEP&s-CNN classifier achieved an F1-score of 0.784 and the overall nuclei detection and
classification (SC-CNN+NEP&s-CNN) achieved an F1-score of 0.69.

Graham et al. [113] used a fully convolutional neural network that counters the loss of information
caused by the max-pooling layer by introducing original down-sampled image into the residual unit
using the minimal information loss (MIL) units. They applied atrous spatial pyramid pooling for
multi-level aggregation and preserving the resolution. They achieved an F1-score of 0.92 for gland
segmentation using the GlaS challenge dataset.

Chamanzar et al. [122] develop a deep learning method that can detect and segment a single
cell using only point labeled dataset. They combined Voronoi transformation, Local pixel clustering
and Repel encoding methods with U net with Resnet encoder by feeding them to a multi-task scheduler
for training the system. They achieved an accuracy of 93% for cell segmentation and 94.1% for detection
of adenocarcinoma.

Sari et al. [123] proposed a novel approach for feature extraction, which defines the features by
considering only the salient subregions of the image. The salient subregions were detected by the
detection of nuclear and non-nuclear pixels using an algorithm presented in [124]. Then a deep belief
network of restricted Boltzmann machines (RBMs) re-characterizes these regions and extract features.
These features are clustered using the k-means clustering algorithm and SVM classifier for categorizing
those regions. They achieved an average precision, recall, and F1-score of 82.3%, 89.9% and 85.1,
respectively at the detection of colon adenocarcinoma.

Shapcott et al. [125] proposed a deep learning-based cell identification on histological images of
the colon with a systematic random sampling of the WSI slides. Their proposed system consists of
two CNNs in series in which the first one detects cells on the WSI slide while the second one classifies
those cells into epithelial, inflammatory, a fibroblast or ”other”. The training was performed on a local

385



J. Imaging 2020, 6, 121

dataset and Evaluated using the ”The Cancer Genome Atlas (TCGA)” dataset. Using five patients’
slides, they achieved an average accuracy of 65% in the detection of cells and 76% in the classification.

Tang et al. [126] proposed Segnet based gland segmentation on the histology image of the colon.
Augmented MICCAI2015 challenge dataset was used to train the SegNet network which is a CNN with
encode-decoder architecture for pixel-wise segmentation. SegNet achieved an average Dice similarity
index of 0.872 and Hausdorff distance of 104.61.

Vuong et al. [127] proposed an algorithm based on DenseNet121 that can perform both
classification and regression tasks on WSI images, for improving the overall performance of the
system. They designed this multi-task deep learning model by adding two fully connected layers,
one for classification and one for regression, after the DenseNet121 network. The classifier classifies
the tissue image into four distinctive pathologies and the regressor considers these four pathological
categories as continuous values. They achieved 85.1% accuracy in classifying colon tissues into
four categories.

Sabol et al. [128] proposed a semantically explainable fuzzy classifier called cumulative fuzzy
class membership criterion (CFCMC) for classifying WSI of colorectal cancer tissue into eight
different tissue types. They compared many CNN architectures as feature extraction for the CFCMC
classifier with the Xception architecture performance being the best feature extractor for the CFCMC.
The explainability of the system is its ability to provide a degree of confidence for each of its predictions.
The proposed method achieved an accuracy of 92.78% for the classification of the different tissue
samples. The explainability was evaluated by pathologists based on its objectivity, level of details,
reliability and quality. Based on these measures, they confirmed that the explainability of the system is
better than the traditional CNN architectures.

3.4.4. Deep Learning for Classification of Polyps on Endoscopic Images

Colorectal polyps are abnormalities in the colon tissues that can develop into colorectal cancer.
The survival rate for patients is higher when the disease is detected at an early stage and polyps
can be removed before they develop into malignant tumors. These tests are usually performed
using endoscopic analysis of the colon. During this study, the endoscopist explores the colon cavity
looking for abnormal growths of tissue, polyps. However, polyp detection is a challenging problem
given its high variation in appearance, size, shape and in many cases its high similarity with the
surrounding tissue.

The application of CTs for the screening of colorectal cancer suffers from false positives due to
the similarity between polyps and colorectal tubes on the CT image. Approaches in [129] can help to
distinguish between colorectal tubes and polyps in CT scans of the colon area using a three dimensional
massive-training artificial neural network (3D-MTANN). The proposed model manages to reduce false
positives by 33% while keeping a sensitivity of 96%.

Ornela Bardhi et al. [130] used CNNs with auto-encoders for the automatic detection of colon
polyp. They used the SegNet architecture from the TensorFlow to build the model and train it from
scratch using three datasets: CVC-ColonDB, CVC-ClinicDB and ETIS-LaribPolypDB. They achieved a
maximum accuracy of 96.7% on the EITS dataset for the detection of colon polyps.

Bour et al. [131] trained different architectures: ResNet50, ResNet101, Xception, VGG19
and Inception V3 for classification of polyps. ResNet50 achieved the highest accuracy of 87.1 %
with precision 87.1%, recall 87.1%, F1-score 87.1% and specificity 93%.

Liu et al. [132] used a deep learning network, faster_rcnn_inception_resnet_v2 model for
localization and classification of endoscopic images of the colon. They achieved 90.645% mean
average precision and 0.5 for the intersection over union (IoU).

Ozawa et al. [133] used deep convolutional neural network (CNN) architecture called single
shot multibox detector (SSD) for the detection of colorectal polyps. All layers were fine-tuned using
stochastic gradient descent with a global learning rate of 0.0001. The trained SSD detected the
trained CNN detected 1246 colorectal polyps from a dataset collected at Tada Tomohiro Institute
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of Gastroenterology and Proctology with a sensitivity of 92% and a positive predictive value (PPV)
of 86%.

Nadimi et al. [134] used a modified version of ZF-net, a CNN architecture proposed by
Matthew D. Zeiler and Rob Fergus [135], as the basis for a Faster R-CNN to localize regions of images
containing colorectal polyps. They trained their architectures using a locally collected dataset labeled
as colorectal polyps (N = 4800) and normal mucosa (N = 6500). The proposed architecture achieved an
accuracy, sensitivity and specificity of 98.0%, 98.1% and 96.3%, respectively. The proposed approach
produces the bounding box annotation of the polyp.

3.4.5. Summary

The most common colorectal cancer screening methods use endoscopic images to find abnormal
colon tissues, polyps and locating cancerous cells or glands on WSI images. Hence most of the
application of deep learning for detecting colorectal cancer is either finding adenocarcinoma on WSI
or detection of polyps on colonoscopic images. Most of the research shows promising results in both
polyp detection and adenocarcinoma or glands detection as seen in Tables 23 and 24.

Table 23. Summary of selected papers on detection and classification for colorectal cancer
histological slides.

Authors Method Dataset Acc P R F1 DSC H

Kainz et al. [120] Separator-Net and Object-Net MICCAI2015 96 59 74 62 - -

Graham et al. [113] MILD-Net GlaS+ - - - 87 88 142

Chamanzar et al. [122] WSMTL local 93 - - 79.1 78.4 -

Sari et al. [123] DeepFeature local - 82.3 89.9 85.1 - -

Shapcott et al. [125] CNNs local and TCGA 65 - - - - -

Sirinukunwattana et al. [121] SC-CNN+NEP & s-CNN MICCAI2015 - - - - 69 -

Tang et al. [126] Segnet MICCAI2015 - - - - 87.2 104.61

Vuong et al. [127] Multitask DensNet121 local 85.1 - - - - -
Sabol et al. [128] CFSCMC UMCM 92.78 - - - - -

The main challenge for the analysis of colposcopic images is most of the dataset suffers from out
of focus problems. Detection of polyps from endoscopic images presents a big opportunity for deep
learning methods to shine since most of the physicians may miss smaller polyps. Still, challenges are
there due to low-quality samples and the operator might miss some areas.

Papers who used pre-trained models and applied transfer learning approaches discuss their
findings in detail and are from reputable journals (see Tables 25 and 26). From Table 27, only two of
the papers measure the performance of their proposed model against expert physicians.

Table 24. Summary of selected papers on colorectal cancer polyp detection.

Authors Method Dataset Acc P R F1 Sp Sn PPV

Ornela Bardhi et al. [130] SegNet EITs 96.7 - - - - - -

Bour et al. [131] Resnet50 local 87.1 87.1 87.1 87.1 93 - -

Liu et al. [132] faster_rcnn_inception_resnet_v2 local 90.6 - - - - - -

Ozawa et al. [133] SSD local - - - - - 92 86

Nadimi et al. [134] mZF-net+ResNet local 98 - - - 98.1 96 -
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Table 25. Summary of colorectal cancer in terms of article publication year, name of journal for the
selected papers and its impact factor with year impact factor has been assigned.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Kainz et al. [120] 2017 PeerJ 2.38 2019

Graham et al. [113] 2018 Medical Image Analysis 8.79 2018

Chamanzar et al. [122] 2020 ISBI conference 2.283 2019

Sari et al. [123] 2019 IEEE Transactions on Medical Imaging 9.71 2019

Shapcott et al. [125] 2019 Frontiers in bioengineering and biotechnology 3.644 2020

Sirinukunwattana et al. [121] 2016 IEEE transactions on medical imaging 9.71 2019

Tang et al. [126] 2018 Conference YAC 1.461 2019

Vuong et al. [127] 2020 Conference ICEIC 0.76 2019

Ornela Bardhi et al. [130] 2017 Conference ISSPIT 1.393 2019

Bour et al. [131] 2017 Conference ISSPIT 1.393 2019

Liu et al. [132] 2019 Conference ISNE 0.152 2019

Ozawa et al. [133] 2020 Therapeutic advances in gastroenterology 4.08 2020

Nadimi et al. [134] 2020 CEE 2.663 2020

Sabol et al. [128] 2020 YJBIN 3.526 2020

Table 26. Summary of colorectal cancer in terms of CNN architecture and type of environment used in
the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Kainz et al. [120] Object-Net and SeparatorNet—custom No No Matlab

Graham et al. [113] MILD-Net—custom No No Tensorflow

Chamanzar et al. [122] U-net and Resnet Yes Yes PyTorch

Sari et al. [123] DeepBelief Yes Yes -

Shapcott et al. [125] - No No Tensorflow

Sirinukunwattana et al. [121] - No No Matlab

Tang et al. [126] SegNet No No Caffe

Vuong et al. [127] DensNet121 No No PyTorch

Ornela Bardhi et al. [130] SegNet No No Tensorflow

Bour et al. [131] ResNet50 Yes Yes Tensorflow

Liu et al. [132] faster_rcnn_inception_resnet_v2 No No Tensorflow

Ozawa et al. [133] Single Shot MultiBox Detector (SSD) No No Caffe

Nadimi et al. [134] mZF-Net+ResNet Yes Yes Matlab 2018a

Sabol et al. [128] Xception+CFCMC Yes Yes -

Table 27. Summary of colorectal cancer papers in terms of comparison to specialists and/or traditional
techniques.

Author and Citation Comparison to Specialists Comparison to Traditional Technique (Yes/No)

Kainz et al. [120] No No

Graham et al. [113] No Yes

Chamanzar et al. [122] No Yes

Sari et al. [123] No No

Shapcott et al. [125] No No

Sirinukunwattana et al. [121] No Yes

Tang et al. [126] No Yes

Vuong et al. [127] No No

Ornela Bardhi et al. [130] No No

Bour et al. [131] Yes (Approval) No

Liu et al. [132] No Yes

Ozawa et al. [133] No No

Nadimi et al. [134] No No

Sabol et al. [128] Yes Yes
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3.5. Lung Cancer

Lung cancer is the deadliest cancer worldwide with the highest incidence rate [112]. The death
rate is so high because the majority of the cases are discovered at an advanced stage, where curative
treatment is no longer feasible. Hence, screening for early detection is significant enough for
decreasing mortality.

3.5.1. Screening Methods

The recommended screening test for lung cancer is low-dose computed tomography (LDCT),
which uses a low dose of X-ray radiation to get detailed images of the lungs. Physicians will
study different slices of the LDCT to determine the presence of an abnormal area called lung
nodule (or mass) [136]. Other approaches also exist like chest X-ray(the usual X-ray image),
sputum cytology (microscopic analysis of mucus from the lungs). According to a study performed
in [136], these approaches do not seem to decrease the mortality rate.

3.5.2. Datasets

In Table 28, some of the publicly available and widely used datasets for lung cancer detection and
segmentation are listed.

Table 28. Publicly available datasets for CRC, UMCM—University Medical Center Mannheim,
CVC—computer vision center.

Dataset Size #Classes/Targets Format Type Author, Year

UCI ML repository 32 3 CSV Hong and Yang [137], 1991

SPIE-AAPM-NCI 22489 2 dicom CT Armato et al. [138], 2015

Lung Nodule Malignancy 6690 2 hdf5 CT Scott Mader [139], 2017

LUNA2016 888 2 mhd.zip CT Consortium for Open Medical Image Computing [119], 2016

3.5.3. Deep Learning for Lung Nodules Detection

Before the introduction of convolution-based deep learning methods, Suzuki [140] uses massive
training artificial neural networks (MTANN) for the detection and decreasing false positives in lobules
detection using extracted subregions from LDCT images. MTANNs are designed based on the concepts
of artificial neural network filters, where MTANN will classify each subregion (kernel) independently.
Hence, the convolution process is external. They used Multiple MTANNs in parallel to distinguish
between nodules and non-nodules by training each MTANN with the same nodules but different types
of non-nodules. multi-MTANN was applied to differentiate between benign and malignant nodules
from LDCT images in [141].

Tajbakhsh and Suzuki [142] compared the performances of the two widely studied deep learning
models, CNNs and MTANNs, for the detection and classification of lung nodules. The proposed
MTANN-based architecture outperforms the best performing CNN (AlexNet in their experiment)
insensitivity and false-positive rates achieving 100% sensitivity and 2.7 false positives per patient.
In the classifications of the nodules into benign and malignant the MTANNs achieved an AUC of 0.88.

Gu et al. [143] proposed a novel CAD system for the detection of lung nodules using a 3D-CNN.
They implemented a multiscale approach for making the system more efficient at the detection of
various sizes of nodules. The proposed CAD system considers the preprocessing step, which is usually
essential in building a standalone CAD system. It has a volume segmentation step for generating
ROI cubes for the 3D-CNN to classify them. After the classification, DBSCAN was used to merge
neighboring regions into one since they might be different parts of the same nodule. Using the LUNA16
dataset, they found out that small scale cubes are efficient in the detection of smaller nodules (92%
sensitivity and four false positives per patient), but larger ones have lower sensitivity (88%), but with
an average of one false positive per patient.
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Sahu et al. [144] proposed a multiple view sampling-based multi-section CNN model for nodule
classification and malignancy estimation from CT scans. Their proposed model is computationally
lighter than the widely used and relatively efficient 3D-CNNs. They used sample slices extracted
at different orientations, with spherical sampling performing the best, and a pre-trained MobileNet
network to build their system. On the classification task, the proposed model achieved a sensitivity of
96% and AUC of 98% on the LUNA2016 dataset. They measure the severity of malignancy by training
the logistic regression model to estimate the class probability of malignancy. It achieved an accuracy
of 93.79% on malignancy estimation. Since it is a lightweight model, the model can work on smaller
devices such as smart-phones, tablets, etc.

Ozdemir et al. [145] proposed an efficient end-to-end CAD system by coupling nodule detection
with malignancy ranking step. They called the nodule detection system as CADe (detection) whose
output is an input for malignancy ranking step, CADx (diagnosis) step in the complete CAD system.
Training and evaluation were performed on the LUNA16 and Kaggle Bowl datasets [146]. The proposed
model includes model uncertainty in its decision, making it relatively trustworthy in a real-world
application. The proposed CADe system achieved a sensitivity of 96.5%+ and 19.7 false positives per
patient without using false positive reduction techniques. The CADx system also achieves an AUC of
98%. The combination of the two systems was further tuned to build the full CAD system.

Bansal et al. [147] proposed Deep3DSCan for lung cancer segmentation and classification.
They used a deep 3D segmentation algorithm to extract a 3D volume of interest from CTs.
A combination of features extracted using a deep fine-tuned residual network and morphological
features were used to train the ResNet based model. Training and testing used the publicly available
LUNA16 dataset. The proposed architecture achieved an accuracy of 88% in segmentation and
classification tasks with an F1-score of 0.88.

3.5.4. Summary

Many of the papers discussed here studied the detection and classification of lung nodules from
the LDCT images. The end-to-end papers covered in these reviews ([142,145,147]) can help to build
an effective CAD system to assist the radiologist.Bansal et al. [147] seems to work better than the
other works reviewed here since its performance covers both the detection and classification tasks
(see Table 29). We must also consider MTANN-based papers since they deliver a satisfactory result
with smaller data sizes. Papers reviewed here can be summarized in Tables 30 and 31. Here we did
not consider to create a table for domain expert approval since none was participated in the papers
we reviewed.

Table 29. Summary of selected papers on lung cancer detection and classification.

Authors Method Dataset Acc FPR Sp Sn AUC

Tajbakhsh and Suzuki [142] MTANN, detection local - 2.7 - 100

Tajbakhsh and Suzuki [142] MTANN, classification local - - - - 0.88

Gu et al. [143] 3D-CNN, detection LUNA16 - 2.5 - 90

Sahu et al. [144] multi-section MobileNet LUNA16 93.8 - - 96 0.98

Ozdemir et al. [145] V-Net, classification LUNA16 - 19 - 96.5 0.98

Bansal et al. [147] ResNet LUNA16 88 - 89.7 87 0.88
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Table 30. Summary of lung cancer in terms of article publication year, name of journal for the selected
papers and its impact factor with the year impact factor has been assigned.

Author and Citation Publication Year Journal/Conference Impact Factor Impact Assigned Year

Tajbakhsh and Suzuki [142] 2017 Pattern Recognition 7.196 2019

Gu et al. [143] 2018 CBM 3.43 2019

Sahu et al. [144] 2019 IEEE-JBHI 5.180 2020

Ozdemir et al. [145] 2020 IEEE Transactions on Medical Imaging 9.71 2020

Bansal et al. [147] 2020 IET Image Processing 2.61 2020

Table 31. Summary of Colorectal cancer in terms of CNN architecture and type of environment used in
the selected papers.

Author and Citation Network Pre-Training Transfer Learning Environment

Tajbakhsh and Suzuki [142] MTANN - - Caffe

Gu et al. [143] 3D-CNN - - Keras

Sahu et al. [144] Mobile-Net Yes Yes Keras

Ozdemir et al. [145] Vnet - - -
Bansal et al. [147] Resnet - - Pythorch

3.5.5. Deep Learning for Other Cancer Detection and Segmentation

In this sub-section, we included the application of deep learning on skin, liver and stomach cancer
detection. Melanoma is skin cancer which is the deadliest cancer in its nature. In a normal diagnosis
distinguishing melanoma lesions from nonmelanoma, lesions are very challenging [148]. For such
difficulties, researchers have introduced an automatic skin cancer diagnosis system for detection and
segmentation. As a result of uneasy visual characteristics of skin lesion that include inhomogeneous
features and fuzzy boundaries. To overcome the challenges, Adegun and Viriri [148] proposed a deep
learning-based automatic melanoma lesion detection and segmentation algorithm. They evaluated
their approach in terms of Dice coefficient and accuracy 92% and 95% on ISIC 2017 dataset and accuracy
and Dice coefficient of 95% and 93% on PH2 datasets.

Another deadly cancer with high morbidity is liver cancer. There are no widely recommended
methods for early detection of liver cancer. For patients at higher risk, an imaging test such as CT, MRI,
ultrasound and angiography can be used to test for liver cancer. If the physician believes in the need,
a biopsy may be used to confirm the diagnosis. Hence, deep learning methods have been proposed in
assisting physicians in the diagnosis of liver cancers, including hepatocellular carcinoma (HCC), liver
metastasis, cysts, hemangioma and other masses [149]. A custom CNN for classifying HCC in liver
cancer from MRI images, which achieved 92% sensitivity (Sn), 98% specificity (Sp) and 92% accuracy
was proposed in [150]. In [151], VGGNet was used to develop a CAD system that identifies four
types of liver cancers, cysts, hemangiomas, HCC and metastatic liver cancer from ultrasound images.
The developed CAD system achieved an average accuracy of 88%. A hybridized fully convolutional
neural network (HFCNN) was applied in the detection of liver cancer from abdominal CT images
in [64]. HFCNN accurately segments 94.7% of the tumor volume.

Stomach (gastric) cancer is also another common cancer with the fourth-highest incidence rate
and the third-highest mortality rate in the world [112]. The most common screening methods for
stomach cancer are UGI series, serum pepsinogen (PG) testing, Hpylori serology and endoscopy [152].
Endoscopy is the most accurate of these methods, but it is highly invasive [152]. Some popular
deep learning architectures, the inception, ResNet and VGGNet that were pre-trained on ImageNet
were applied using transfer learning methods has been applied to identify benign ulcer and cancer
from gastrointestinal endoscopic color images in [153]. The ResNet model achieved the highest
performance with normal versus abnormal accuracies of 90% and ulcer versus cancer accuracy of 77%.
A pre-trained Inception-Resnet-v2 model was trained and compared with endoscopists in classifying
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classification of gastric neoplasms in [154]. The Inception-Resnet-v2 model performance was lower in
five-class (advanced gastric cancer, early gastric cancer, high-grade dysplasia, low-grade dysplasia
and no neoplasm) classification, i.e., 76.4% vs. 87.6%. The Inception-Resnet-v2 model performance is
comparable with endoscopist in the differentiation of gastric cancer and neoplasm (accuracy 76.0%
vs. 82.0%).

4. Conclusions

The paper review indicates that deep learning methods have achieved state-of-the-art breast
cancer, cervical cancer, brain tumor. colon cancer and lung cancer detection, feature extraction,
classification and segmentation. In this article, a good number of deep learning-based methods for
breast cancer, cervical cancer, brain tumor and colon cancer image analysis are studied. The developed
and implemented methods employed a CNN approach combined with other techniques to mitigate
the existing challenge arising from a large dataset demand for such systems to learn. Problems related
to noise and corrupted images have been properly addressed in some of the works as they suggest
utilizing normal images and limited dataset size in modes that encompass a combination of two or
more architectures to discern breast, cervical, brain and colon abnormalities.

The use of enhanced activation functions have also been recommended to improve the overall
performance of deep learning-based systems in medical image analysis. Moreover, many researchers
have added multiple layers in the CNN architecture to increase the performance of the system.
Some researchers worked on designing unique architectures for specific task properties instead of using
CNN as it is. Subsequently, most of the methods are proved to produce a successful performance in
terms of specificity, sensitivity and Dice score when tested on renowned datasets and BRATS challenges.
The lack of sufficient datasets can be considered a challenge for many of the deep learning-based
researches. All of the reviewed papers have not used different medical images other than MRI for
brain and in most cases mammograms for breast.
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Abstract: With the exponential increase in new cases coupled with an increased mortality rate,
cancer has ranked as the second most prevalent cause of death in the world. Early detection is
paramount for suitable diagnosis and effective treatment of different kinds of cancers, but this is
limited to the accuracy and sensitivity of available diagnostic imaging methods. Breast cancer is
the most widely diagnosed cancer among women across the globe with a high percentage of total
cancer deaths requiring an intensive, accurate, and sensitive imaging approach. Indeed, it is treatable
when detected at an early stage. Hence, the use of state of the art computational approaches has been
proposed as a potential alternative approach for the design and development of novel diagnostic
imaging methods for breast cancer. Thus, this review provides a concise overview of past and present
conventional diagnostics approaches in breast cancer detection. Further, we gave an account of
several computational models (machine learning, deep learning, and robotics), which have been
developed and can serve as alternative techniques for breast cancer diagnostics imaging. This review
will be helpful to academia, medical practitioners, and others for further study in this area to improve
the biomedical breast cancer imaging diagnosis.

Keywords: cancer; breast cancer; diagnostics; imaging; computation; artificial intelligence

1. Introduction

Cancer is a non-communicable disease characterized by abnormal cell proliferation or cell division,
with the ability to spread to other parts of the body [1]. Cancer continues to be a major public health
problem and has been labeled as a global threat exacerbated by poor lifestyle choices and environmental
factors [2,3]. Generally, cancer is classified according to the affected body part or tissue of origin.
The most common cancer diseases include but are not limited to lung cancer, ovarian cancer, prostate
cancer, head and neck cancer, breast cancer, etc. [4]. Indeed, breast cancer has been considered as one
of the most common cancers diagnosed among women around the world. Breast cancer comprises 18%
of the total cases of female cancer and approximately a million new cases are reported in the world
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every year [5]. Due to the ability of this type of cancer to metastasize to distant organs or lymph nodes,
it has been considered to be the leading cause of mortality in females [5,6].

Due to the increase in the numbers of breast cancer over the years, there has been a rise in
the number of computational models and algorithms for diagnosis and treatment to assist medical
practitioners. A commonly, and frequently, used computational method is artificial intelligence
(AI). Many AI related models have been developed for detecting and diagnosing diseases not only
for breast cancer or mammography image analysis and classification [7] but for other diseases
such as hycobacterium tuberculosis classification (MTC) [8], human immunodeficiency virus (HIV)
therapy, screening, identification, and prediction [9], coronavirus disease 2019 (COVID-19) detection
and diagnosis [10], etc. These AI models include machine learning, deep learning, and robotics.
Rapid improvement in classification and learning algorithms is one of the main reasons these models
have been widely used for these purposes with good and efficient results. Therefore, the contribution of
this review is to provide a concise overview of past and present conventional diagnostics approaches in
breast cancer detection and diagnosis. Further, we gave an account of several AI related computational
models that have been developed and can serve as alternative models for breast cancer diagnosis.
The remaining part of this paper is organized as follows: The types of biomedical imaging is presented
in Section 2. The computational techniques used in breast cancer imaging diagnostics are outlined in
Section 3. This section discusses the AI models used in breast cancer diagnosis. Finally, the paper is
concluded in Section 4, where some points of future work are recommended.

2. Types of Biomedical Imaging

2.1. Mammography

Mammography is an excellent method used in primary breast imaging. It is used for early
detection of abnormalities in the breast, especially those suspicious for breast cancer before it becomes
apparent clinically, by using low-dose X-ray imaging to generate the images of the breast [11,12].
According to the United States of America preventive services task force (USPSTF), this type of breast
imaging has been helpful in the earlier and better treatment for women over 40 years of age and
has decreased breast cancer mortality by at least 30% [13]. Although this imaging approach remains
the key for early breast cancer detection and screening, the overall accuracy of the test remains low
and second-line accurate imaging techniques are required in some instances to lessen the number of
unnecessary excisional biopsies [14,15].

Screening mammography is credited with the examination of an asymptomatic woman and
decreases the risk of breast cancer-related death [16,17]. Conventional mammography has limitations
in specificity and sensitivity, especially in dense breasts. The sensitivity of this type of imaging in
breast cancer diagnostics is about 50 to 85%, depending on the density of the breast. Meanwhile,
the sensitivity is below 50% in the dense breast due to tissue superposition; this is a major reason for
the false-positive result, which leads to additional imagining and cost and false-negative results due to
masking of true lesions [18–20].

In the breast, the normal internal mammary lymph node chain is usually below 5 mm in diameter.
Metastases to this chain cannot be easily detected by mammography or ultrasonography clinical
examination because they are normally covered by cartilaginous and bony structures of the chest
wall [21,22]. The use of mammography in the detection of recurrent breast cancer is a challenging
task due to changes in the architecture of the breast, mainly in fibrosis and scarring secondary to
radiotherapy and surgery, resulting in difficulties to interpret mammograms. Breast compression is
another major challenge faced by this modality due to accompanied pain which could lead to delayed
diagnosis. Hence, considering all of the aforementioned mammography limitations, there is a call for
alternative and more accurate methods that can resolve the imaging of dense breasts [19,20].
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2.2. Tomosynthesis

Due to the limitations of mammography, breast tomosynthesis was introduced to the clinic
because of its ability to produce three-dimensional information at a lower dose and its relative
cost-effectiveness. Consequently, there has been an upsurge in interest in tomosynthesis. The Food and
Drug Administration (FDA) has approved some products that are now in use and on the market [23].
This technique involves using X-ray projection images acquired over an arc to generate image slices
for a partially 3D image [24]. Tomosynthesis allows for the generation of an arbitrary number of
in-focus planes retrospectively from a series of radiograph projections obtained in a single motion of
the X-ray tube [25]. Notably, a combination of tomosynthesis and digital mammography increases the
brightness of invasive cancers while at the same time decreasing the likelihood of false-positive data [24].
Tomosynthesis has been applied to several clinical tasks, including dental imaging, angiography, breast
imaging, bone imaging, and chest imaging [23]. In breast cancer, tomosynthesis increases the sensitivity
of mammography, which could enhance the early detection of breast cancer due to the improved
lesion margin conspicuity [25]. This is very beneficial to breast cancer patients, especially those
with radiographically dense breasts. However, Poplack et al. [26] showed that breast tomosynthesis
has a comparable or superior image when compared with diagnostic film-screen mammography
in 89% of recruited subjects. More recently, this was supported by another study where one-view
stand-alone digital breast tomosynthesis (DBT) detected more breast cancer than digital mammogram
(DM) [27]. This suggests that the use of one-view DBT alone could be feasible in breast cancer screening.
Although the acquisition procedures of tomosynthesis mimic standard mammography, the X-ray tube
of tomosynthesis takes several low-dose exposures as it travels within a limited arc of motion unlike
conventional mammography [26]. Sechopoulos [28] has written an excellent review of all aspects
of tomosynthesis, including doses and reconstruction processes. When the overall dose used for
visualization is constant, the quality of the image improves with a wider angular range [29]. However,
the quality of image degenerates once the maximum is attained at a particular number of projections.

2.3. Ultrasound Imaging

Ultrasound (US) imaging diagnostics, otherwise known as sonography or ultrasound scanning,
is a painless and safe approach. US makes use of 1 to 10 MHz sound waves to produce pictures that
reveal the movement and structure of the breast, and other soft tissue [30,31]. It can also reveal the
movements of blood and other materials within the blood vessels and body [31]. It is a cross-sectional
technique that uses a small probe, known as a transducer, and gel that is directly placed on the
breast/skin; it displays the tissues without overlap [31–33]. The high-frequency soundwaves travel
from the probe via the gel into the body, and the probe receives the sounds that bounce back, which in
turn produces an image on a computer. This type of imaging technique does not make use of radiation
because it captures images in real-time [31–33].

In recent times, the development of high-resolution US technique has greatly improved the
diagnosis of breast cancer because, in the past, US was thought to only be suitable for the diagnosis of
cysts [34,35]. It has been shown to enhance the differential diagnosis of both benign and malignant
lesions during guided interventional and local preoperative staging diagnosis. Due to the higher
sensitivity of this type of imaging technique, it has been adopted as a complementary technique to
mammography with limited sensitivity to identify early, node-negative cancer in dense breasts [36,37].

However, the use of US imaging techniques is diminishing due to the time and skill required to
detect small tumors with hand-held imaging, and non-palpable cancers. The implementation of this
imaging technique in breast cancer diagnostics has been hampered by limited numbers of qualified
personnel and lack of uniformity in the results; this has caused low specificity that can lead to the
generation of high numbers of false-positive results [38]. This assertion is corroborated by findings
of some previous studies which revealed that US can identify and detect the presence of carcinoma
in dense breasts. Some other studies have shown low detection of cancerous cells in dense breasts,
but have proposed the addition of this imaging method to negate mammography which seems to have
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limited cost-efficiency and is controversial for women with dense breasts without any other major risk
factors. In addition, due to the high scattering ability of the soundwaves at bone and air interfaces,
various parts of the body are invisible, which limits the effectiveness of depth imaging in most organs
to about 10 cm [39,40].

2.4. Dedicated Breast Computed Tomography

Dedicated breast computed tomography (DBCT) is a recently used and fastest-growing imaging
technique that allows for true isotropic and provides three-dimensional (3D) information which can be
reconstructed or rebuilt into several imaging planes. Although DBCT is comparable to breast magnetic
resonance imaging (MRI), the process involved can be carried out without breast compression, and is
not limited by breast implants or the density of the breast [41–43]. The radiation dose in this type of
imaging technique is similar to that of a conventional two-view mammogram [42]. Boone et al. [44]
investigated the feasibility of low dose radiation on the image quality of DBCT. The findings from
their average glandular dose for 80-kVp breast CT study, when compared to two-view mammography,
revealed that the breast CT dose for thicker breasts is approximately one-third lower than that of
two-view mammography. For a typical breast of 5 cm 50% glandular, it was discovered that the
maximum dose of mammography in 1 mm3 voxel is far greater (20.0 mGy) than that of breast CT
with 5.4 mGy. It was further stated that the CT images for 8 cm cadaveric breasts have an average
glandular dose of 6.32 mGy, which is superior to the estimated dose of 5.06 mGy for the craniocaudal
view, with an average glandular dose of 10.1 mGy for standard two-view mammography of the same
specimen [44]. The invention, improvement, and development of DBCT with dedicated scanners with
novel technology has been documented in the literature by Sarno et al. [45]. Studies further reported
the development of low radiation dose scanners with improved spatial resolution and rapid image
acquisition times, which is aimed at addressing the issue of imaging dense breasts and painful breast
compression [41–43].

Kuzmiak et al. [42] investigated the confidence of radiology experts in the characterization
of suspicious breast lesions with a DBCT system compared with the conventional diagnostics of
two-dimensional (2D) digital mammography in terms of overall lesion visibility and dose. It was
discovered that DBCT is superior in the characterization of the masses and radiologists’ visualizations,
although it is inferior to calcifications when diagnostic mammography is used. It was further averred
that the DBCT application could help eliminate the 2D mammography drawback of overlapping tissue.
Their study concluded that the technical challenges in breast imaging remain, but 3D DBCT could
have a promising clinical application in breast cancer diagnosis or screening, however, this needs
further investigation.

In 2008, Lindfors et al. [41] carried out a comparative study between the DBCT and screen-films
mammograms where it was discovered, in the study of the selected group of women, that the
visualization of breast lesions with both the DBCT and screen-film mammography is approximately
the same. Although, DBCT was reported to be superior in the visualization of the masses, while in the
imaging of microcalcification lesions screen-film mammography shows to be better. It was further
deduced in their study that women are more comfortable with DBCT screening when compared to
screen-film mammography. Hence, it was assumed that DBCT is a potential technology and may be a
promising clinical application in diagnostic and screening for breast cancer investigation. Additionally,
it was further presumed that DBCT is more accessible and could be a replacement for breast MRI or
act as a control technique for tumor ablation procedures or robotic breast biopsy, all of this calls for
further studies.

Recently, Shah et al. [43] investigated the characterization of computed tomography (CT).
Hounsfield units were used in clinical settings for the purpose of tissue differentiation in a reconstructed
CT image in 3D acquisition trajectories on a DBCT system. It was depicted in their statistical study
that the approach has a better performance in the saddle orbit, mostly when close to the chest and the
nipple areas of dense breast. It was further discovered that the saddle orbit functions significantly well
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and provides a tighter distribution of Hounsfield unit values in the reconstructed volumes. In addition,
the study demonstrated the significance of the application of 3D acquisition for breast CT trajectories
and other uses through the establishment of the robustness in Hounsfield unit values in the large
reconstructed volumes.

2.5. Magnetic Resonance Imaging

Since the beginning of the third millennium, magnetic resonance imaging (MRI) has developed
into a paramount tool in breast cancer screening, diagnosing, staging, and follow-up [46]. This imaging
tool has played a vital role in the screening of high-risk breast cancer patients. Breast MRI uses
an intravenous contrast agent such as gadolinium, which allows for the visualization of lesions.
The sensitivity of this tool in breast cancer has been documented to be over 90% while the specificity is
still about 72%; hence, the distinction between benign and malignant lesions is still challenging [46].
Although mammography is the basic imaging tool for breast tumor identification, it has been indicated
that MRI has a higher sensitivity for detection of breast cancer, and the breast density does not affect
it [47]. In most cases, the sensitivity of mammography in the detection of multiple malignant foci is
below 50%. It is important to note that breast MRI is not meant to replace mammography particularly
in ductal carcinoma in situ, which is not detectable by MRI but rather by mammography [48]. The MRI
screening in women with genetic susceptibility to breast cancer has proved to be beneficial [49,50]. In a
prospective cohort study, the sensitivity of MRI in women with a high risk of breast cancer but who were
asymptomatic was between 93–100%, the 10-year survival was 95.3% [50]. Similarly, the sensitivity of
MRI in contralateral breast tumor detection was documented to be 91%, and specificity was 88% [51].
In women with a known BRCA1/2 mutation, MRI surveillance detected breast cancer at early stages;
encouragingly, there was no distant recurrence after 8.4 years follow-up since diagnosis [52]. This tool
can be used in identifying the size and degree of the tumor towards achieving better surgery procedures.
Nevertheless, the use of MRI before surgery continues to be controversial with extensive variations in
the outcome; however, it helps in planning conservation in patients that respond to chemotherapy
where feasible [46]. Despite the high sensitivity of this imaging tool in breast cancer, the cost involved
in MRI makes it difficult to be employed in the general population. Conclusively, the invention and
development of new imaging techniques such as diffusion-weighted imaging offer an added advantage
in breast cancer management.

2.6. Diffusion-Weighted Imaging

Since the early years of the 21st century, diffusion-weighted imaging (DWI) has been at the forefront
of cancer imaging attaining widespread recognition due to its ability in the diagnosis of stroke [53,54].
DWI is a noninvasive MRI technique that relies on the principle of random molecular motion of free
water in tissues (Brownian movement). With the development of stronger diffusion gradients and
application in whole-body imaging, DWI has attracted attention in oncology [55]. In breast cancer,
Sinha et al. [56] demonstrated that DWI is reliable in a clinical setting with an echo-planar sequence
and possesses potential in breast lesion characterization as either benign or malignant using apparent
diffusion coefficient (ADC) values. Generally, breast lesions classified as malignant have a high-cellular
level with limited water diffusion and lower ADC values when compared to benign lesions [57].
An earlier clinical study that recruited women with breast lesions stated that ADC values and the tumor
biological aggressiveness correlate; hence, ADC is a promising factor in the evaluation and analysis of
the degree of the malignancy [58]. In most clinical settings, DWI is interpreted in combination with
dynamic contrast-enhanced (DCE)-MRI to increase the specificity. However, more recently, lesions in
the breast (31 =malignant; 13 = benign) were analyzed using quantitative diffusion-weighted sequence
on 3T MRI with b-values of 500 and 1000 s/mm2 [59]. The ADC cut-off value for benign and malignant
lesions was set to 1.21 × 10−3 mm2/s for b = 500 s/mm2 and 1.22 × 10−3 mm2/s for b = 1000 s/mm2,
respectively. The sensitivity of DCE-MRI was 100% with a specificity of 66.7%, when DCE-MRI was
combined with b = 1000 s/mm2, 100% specificity was attained and sensitivity of 90.6%; there was no
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significant difference between the ADC and prognostic factors [59]. Non-contrast (NC)-MRI can be
an alternative for DCE-MRI for breast cancer diagnosis, though its inferior lesion conspicuity and
lower inter-reader agreement should be considered [60]. This study and many more have documented
explanatory results for DWI as a tool for diagnosing breast lesion and aids the orthodox breast
MRI procedures. Several pitfalls, which include but are not limited to motion artifacts, ADC value
accuracy, image quality, and signal-to-noise ratio, are associated with DWI [61,62]. These challenges
are bothersome and lay emphasis on the need to incorporate computer science into breast cancer
diagnosis, for example, robotics could significantly decrease time in DWI MRI and create improved
breast cancer detection.

2.7. Computed Tomography

CT scan is a method that exposes the pictures of cross-sections or 2D slices of the body’s organs
via a connected computer [63,64]. The use of a contrast solution (iodine), injected into the body via
the arm, dramatically improves and aids in the visualization of the cancerous cells in organs. In 2003,
the use of CT for breast cancer imaging was proposed by Suga et al. [65], after a surgical issue in
patients, to obtain interstitial lymphography that can map and present sentinel lymph nodes of the
breast. The use of CT in breast cancer has some advantages, which includes patient comfort and fast
scanning time. However, CT has not been widely used in breast cancers due to the risks involved in
radiation exposure and poor quality of the image produced.

Due to the dynamic technique of CT, it can be used in the detection and characterization of breast
tumors, investigation of neoadjuvant chemotherapy effects, and local staging of cancerous cells in the
breast. In 2015, Foo et al. [66] employed this imaging scan method to evaluate the staging of cancer
cells in newly diagnosed breast cancer patients that are in a locally advanced stage. It was revealed
that a limited number of patients involved in this study had some pelvic significance with relation to a
patient who had peritoneal cancer with widespread metastasis, and a patient with a presumed gene
carrier of a concurrent primary ovarian malignancy. It was further stated that 50% of all pelvic results
required additional radiological examinations.

Although the CT scan technique in breast cancer examinations may not replace the conventional
mammography routine, based on improvements carried out in some studies [67,68], it can be used
to overcome several limitations associated with mammography such as detection of cancers in
premenopausal, dysplastic, and dense breasts. The mean glandular dose of 8.2 ± 1.2 mGy has also
been documented for different types of breast shapes and sizes [69]. As documented by Park et al. [68],
in prone positions, low-dose perfusion CT is possible for imaging with regards to the quantification
of tumor vascularity and radiation doses. CT can be used in the detection of unsuspected very
small cancers in the breast that cannot be identified or seen by physical examinations or conventional
mammography. It is useful in definitive diagnostic evaluation in a situation where physical examinations
and mammography are inconclusive, and it can also be helpful in recognition of precancerous and
high-risk lesions. More so, CT can be used in the discrimination of tumor tissue from normal tissue in
breast cancer patients without the use of a contrast medium.

2.8. Near-Infrared (NIR) Fluorescence

During human surgery, X-ray fluoroscopy and ultrasound have been used widely. However,
during X-ray fluoroscopy, patients and caregivers are exposed to ionizing radiation; in an ultrasound,
only a thin surgical field-of-view is seen and requires direct contact with tissue, in this case, breast.
Interestingly, none of the methods can be amended by target contrast agents to guide imaging during
oncologic surgery due to the number of procedures required [70,71]. Thus, near-infrared (NIR) light,
with a wavelength range of about 700 to 900 nm, has offered diverse significant advantages over some
widely used tools including relatively high penetration of photon in and out of living tissue (breast)
due to the reduction in the rate of absorbance and scatter. Owing to lower tissue autofluorescence,
NIR has a higher signal-to-background ratio [71,72]. This technique has a great potential to interrogate
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deep tissues (breast) for molecular-based imaging. The NIR light is visible to the human eyes when
conjugated with NIR excitable fluorophore or dyes. These are chemical compounds which convert light
generated from one NIR wavelength into the NIR light of diverse wavelength. It has been recommended
that the mapping of sentinel lymph nodes (SLN) is a standard approach for the management of breast
cancer and care staging of the axilla [71].

NIR fluorescence imaging, which uses indocyanine green (ICG), has been shown to improve the
procedure of the SLN mapping by facilitating percutaneous incisions and identifying the intraoperative
ability of lymphatic channels and SLNs [71,72]. The safety and accuracy of NIR fluorescence imaging
applications for identifying SLNs in patients suffering from breast cancer were demonstrated by
Verbeek et al. [73]. The use of the Mini-FLARE camera system and 1.6 mL of 0.5 mM ICG showed
the excellent identification of the SLN in patients with breast cancer. Although, the technique which
should be used as the gold standard in future analyses, was raised as a question [73]. In a similar
study by Mieog et al. [74], the clinical translation of a novel NIR fluorescence imaging system and
the optimal ratio of ICG to the human serum albumin (HSA) dose for mapping of SLN in breast
cancer was described. It was stated that 400 and 800 μM is the optimal dose of the injection ratio of
ICG:HSA and this can be chosen based on the preferences of local preparation. For instance, a dose of
500 μM was depicted to be the most convenient in the United States due to the minimal requirement in
the manipulation of albumin volumes. Other studies that have employed this approach in mapping
SLNs in breast cancer patients include Sevick-Muraca et al. [75] which demonstrated the prospective
feasibility in the use of the minimal dose of ICG in noninvasive optical imaging of lymph nodes in
the breast cancer patients undergoing SLNs mapping. In 2008, Altınoǧlu et al. [76]. demonstrated
the synthesis and bioresorbable use of calcium phosphate nanoparticles (CPNPs) which incorporated
the molecule of the NIR emitted fluorophore and ICG. In their study, the in vivo and ex vivo studies
demonstrated the potentiality of the NIR CPNPs in diagnostic imaging of early breast solid tumors.
Although, the result from their ex situ imaging of deep tissue showed that the depths of NIR CPNPs in
porcine muscle tissue is 3 cm. Poellinger et al. [77] employed the use of NIR fluorescence imaging
with the late and early enhancement of ICG, which corresponds to extravascular and vascular phases
of contrast agent enhancement to distinguish between malignant and benign breast lesions as well
as to detect breast cancer. Ke et al. [78] assessed the specificity of continuous-wave NIR fluorescence
imaging by an intensified charge-coupled device (CDD) camera on a novel epidermal growth factor
(EGF)-Cy5.5 to detect EGF receptors in breast cancer xenografts.

2.9. Single-Photon Emission Computed Tomography

Single-photon emission computed tomography (SPECT) is a medical imaging tool based on
tomographic reconstruction protocols and routinely used in a clinical decision in cancer [79], coronary
artery disease, left ventricular dysfunction [80], and Parkinson disease [81]. In fact, it is the most used
tool in myocardial ischemia assessment. SPECT aims at getting a perfect 3D radioactivity distribution
resulting from the uptake of a radiotracer in humans. One or more photons are released in random
directions when a SPECT radioisotope decays [82]. However, collimators are used to focus the angle of
the emitted photons that reach the detector because conventional lenses cannot restrict high-energy
photons, and only 0.02% of the decay events is measured [82]. SPECT, coupled with CT, can be used
when conventional images are complex to interpret, for example, suspicion of contamination [83].
Clinically, SPECT/CT provides more value in anatomical localization of sentinel nodes. This highlights
a relevant role for this tool in the surgical approach and may improve staging [84]. The sentinel lymph
node biopsy is a well-known procedure used in evaluating the status of the axillary lymph node in
patients with early stages of breast cancer [85]. Markedly, SPECT/CT improved visualization from 84%
to 92% in patients, but it only showed sentinel nodes in 11 out of 22 breast cancer patients (50%) with
non-visualization on planar imaging [84]. Similarly, Lerman et al. [86] documented that the addition
of SPECT/CT to lymphoscintigraphy enhances sentinel node identification in breast cancer patients
who are overweight. Notably, SPECT/CT identified hot nodes in 91% of patients and sentinel nodes
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in 29 of 49 patients (59%) who were negative on planar imaging (planar lymphoscintigraphy) [86].
Hence, this technique is of high relevance in overweight breast cancer patients because intraoperative
techniques have failed in the identification of draining nodes. Another SPECT/CT evaluation study
demonstrated a sentinel node in 91.1% of breast cancer patients, and localization was more precise on
SPECT/CT fusion images than on the planar views [87]. Mann et al. [88] documented that the use of
dedicated SPECT identifies regions of interest at a global lower-level threshold within dense breast
tissue without any negative effects, which in turn betters patient care. Additionally, dedicated breast
positron emission tomography (PET)/CT can accurately visualize uncompressed breast suspected
lesions in 3D [89]. However, this scanner was unable to generate a full quantitative image. Recently,
Tornai et al. [90] developed a fully 3D CT in a hybrid SPECT/CT breast imaging system that facilitated
complex trajectories, which improved the quality of the image when compared with simple circular
breast CT acquisitions. The SPECT-subsystem allows viewing of the chest wall for pendant breast
imaging [90]. Recently, it was shown that the hybrid SPECT/CT provides precise anatomical data
that enables clear assessment of patients contaminated with radionuclide during the procedure [83].
Such precise data can assist surgeons towards a better surgical plan. Non-visualization of sentinel
nodes, unexpected lymphatic drainage, and complicated planar imaging interpretation are challenges
faced by these imaging techniques. However, this can be amended by incorporating AI, such as
deep learning and machine learning algorithms, with currently available breast cancer imaging tools.
Overall, such combinations will improve breast cancer diagnosis, predict treatment outcome and
ultimately, improve the patient quality of life. The dose in the dedicated SPECT-CT system using
both the geometric and anthropomorphic phantoms showed that the average doses absorbed in 100%
fibroglandular-equivalent was 4.5 ± 0.4 mGy, while 100% adipose-equivalent tissues was 3.8 ± 0.2 mGy.
More so, the dose measured in a cadaver breast using a radiochromic film in the same study yielded an
average dose of 4.3 ± 0.3 mGY and 4.2 ± 0.3 mGy along two orthogonal planes [91].

3. Computational Techniques Used in Breast Cancer Imaging Diagnostics

A correct diagnosis of mammograms containing malignant tumors is a complex task for even the
most experienced medical practitioner. To circumvent this complexity, several computational models
have been developed to assist medical practitioners to distinguish between benign and malignant
breast tumors. The models described in this paper are based on machine learning, deep learning,
and robotics which have been shown to be useful in breast cancer diagnosis. In this section, we present
some studies that have applied these models.

3.1. Machine Learning Algorithms

Several machine learning algorithms have been proposed for the detection and diagnosis of breast
cancer. Despite this, the development of new algorithms and models for this purpose is still an active
research area, especially in the detection of abnormalities in mammograms. In the following, we review
machine learning models that have been used in diagnosing this type of cancer, such as artificial neural
network (ANN) and support vector machine (SVM).

3.1.1. Support Vector Machines

SVMs are supervised learning models that aim at formulating a computationally effective approach
of learning to separate hyperplanes in high-dimensional feature space [92]. It has been used and proven
to be an efficient learning technique for several real-world problems such as image recognition [93],
bioinformatics [94], and classification problems [95], among others. SVMs are one of the earliest
machine learning techniques used for cancer diagnosis. Acharya et al. [96] focused on detecting
breast abnormalities or cancer automatically by using infrared imaging. The approach used texture
features and SVMs to detect breast cancer based on thermography. Texture features were obtained
from a run-length matrix and co-occurrence matrix from 25 cancerous and 25 normal infra-red breast
images. These features were then fed to an SVM for automatic classification and detection of malignant
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and normal breast conditions. A comparison of SVMs based classifiers with ANNs and Bayesian
classifiers for the prognosis and diagnosis of breast cancer was done in Maglogiannis et al. [97].
The implementation of the comparison was performed on the Wisconsin prognostic breast cancer and
the Wisconsin diagnostic breast cancer datasets. The expected result of the implementation was to
predict a class that corresponds to a likely tumor recurrence in four-time intervals. The result also
shows that SVM outperforms the other classifiers. Huang et al. [98] used SVM to evaluate several
pathologically proven breast tumors. The study presented a computer-aided diagnosis (CAD) system
with textural features for classifying malignant and benign breast tumors on medical ultrasound
systems. The aim of the CAD is to assist medical practitioners and radiologists in identifying lesions and
also to differentiate malignant lesions from benign lesions on the basis of medical images. The proposed
SVM technique was able to identify solid breast nodules at very high accuracy. Recently, Wang et al. [7]
proposed an approach to solving the limitations of machine learning models’ performance in diagnosing
breast cancer. The approach was based on an SVM-based ensemble learning algorithm; this approach
reduces the diagnosis variance and increases diagnosis accuracy. In doing this, 12 different SVMs were
hybrid using the proposed weight area under the receiver operating characteristics curve ensemble
(WAUCE) approach.

3.1.2. Artificial Neural Network

ANN is a computational-intelligent model that uses different optimization tools to learn from
the data available in the past and use that prior training to identify or predict new patterns or to
classify new data. Several research works have applied ANN for medical purposes [99], such as
cancer treatments [100]. The Memetic Pareto ANN (MPANN) approach was proposed by Abbass [101].
The approach was based on a pareto-differential evolution algorithm. This algorithm was augmented
with a local search for the prediction and diagnosis of breast cancer. Tourassi et al. [102] proposed a
new approach for breast cancer diagnosis based on the constraint satisfaction neural network (CSNN)
technique using mammographic and breast cancer patient history findings. The main advantage of
this technique is that it has a non-hierarchical architecture and flexibility that allows it to work as
a predictive tool and as an analysis or data mining tool to discover the knowledge of association
rules among clinical diagnosis and historical findings. In this work, the authors used two different
datasets of breast cancer, each containing 250 patient cases. The CSNN was first used to train the
first 250 datasets and the other 250 datasets were used to test the predictive strength of the CSNN.
The result of the analysis was done based on the kind of mammographic lesions seen in each patient.
The result of this study shows that CSNN is a very efficient CAD tool for predicting and diagnosing
breast cancer from mammographic and historical findings. A study by Janghel et al. [103] implemented
a model using ANN to assist medical practitioners in diagnosing breast cancer. The model has four
phases, namely radial basis function networks (RBFN), back propagation algorithm (BPA), competitive
learning network (CLN), and learning vector quantization (LVQ). The dataset used in this study
consisted of 55 malignant cases and 184 benign cases. The result of the experiment showed that the
LVQ output was the best result during testing then CLN, BPA, and RBFN in order. Figure 1 presents a
simple ANN diagnosis for breast cancer.
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Figure 1. A simple artificial neural network (ANN) method on breast cancer [103].

Other works in the literature used data mining methods in diagnosing breast cancer [104,105].
Data mining is the process of extracting useful data from a larger set of raw data using one or more
software. Çakır et al. [106] used Weka, a data mining tool to analyze 462 breast cancer patients data
obtained from the Ankara Oncology Hospital. Classification algorithms are applied to each of the
datasets and the outputs of the classification were compared to find the most effective treatment method.
This work assists oncology doctors to suggest the best treatment method for a patient. Şahan et al. [107]
proposed a hybrid system of a fuzzy-artificial immune system with the k-nearest neighbor (KNN)
algorithm. This method was used to solve diagnosis problems through classifying the Wisconsin breast
cancer dataset (WBCD). The system has a high classification accuracy on large datasets and can be
used for any type of breast cancer diagnosis. Additionally, it can be used for other medical condition
diagnoses. The Table 1 below presents an overview of machine learning (ML) techniques in breast
cancer diagnosis that are explained in this section. The evaluation results presented in the table are the
50–50% training–test partition for the reference with three different training-test partitions.
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3.2. Deep Learning

In recent years, deep learning has set an exciting trend in the fields of machine learning and
AI [113]. Deep learning techniques utilize computational models, composed of multiple processing
layers that are used to learn data representations and applied to many real-world applications.
These applications range from image recognition, object detection, power systems, breast cancer
detection, speech recognition to drug discovery and genomics, etc. [114–117]. In the following sections,
deep learning models for breast cancer diagnosis are presented.

3.2.1. Convolutional Neural Network

The convolutional neural network (CNN), often called ConvNet, is a type of deep learning
model that has become dominant for many computer vision tasks, ranging from image classification,
object tracking and detection to semantic segmentation [118,119]. CNN was designed to adaptively
learn hierarchies of features, usually from low-level to high-level patterns [120]. Indolia et al. [121]
explained that the CNN overcomes limitations as seen in traditional machine learning approaches;
it has shown to be widely used for solving complex problems, especially in the medical imaging
domain. Recent studies have adopted the CNN model for effective breast cancer diagnosis [122–124].
An example of CNN segmentation tasks for breast cancer diagnosis is presented in Figure 2.

Figure 2. A convolutional neural network (CNN)-based approach for screening mammography [125].

For an improved diagnosis, Tan et al. [126] developed an imaging system called breast cancer
detection using convolutional neural networks (BCDCNN) aimed at assisting medical practitioners
to classify mammographic images into malignant or benign. The results showed that the BCDCNN
system improved the accuracy of the classification tasks on the mini-Mammographic Image Analysis
Society (mini-MIAS) database. Amit et al. [122] proposed an approach for dynamic contrast-enhanced
(DCE) imaging that uses the CNN to correctly classify medical images and a pre-trained classifier to
extract features in the images. The study showed that CNN outperformed the pre-trained classifier
and accuracy improved significantly. In another study, Byra et al. [127] described a CAD approach that
uses the Nakagami imaging method to train a CNN model, aimed at breast cancer diagnosis. The study
was tested on 458 RF data matrices of breast lesions. The study showed that better area under the curve
(AUC) results that amounts to 0.912 were obtained. Gao et al. [128] extended the use of CNN using the
INbreast dataset to overcome the challenges faced with the contrast-enhanced digital mammography
(CEDM), which is prone to a high false-positive rate. CNN was effective at differentiating benign cases
from malignant lesions, which is the main challenge faced with a breast cancer diagnosis.

In a similar study, Wang et al. [129] explored a CAD method that utilizes feature fusion with
CNN using a private dataset. The method uses CNN for feature extraction based on several image
sub-regions. After the feature extraction tasks, the images were then classified into benign or malignant.
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The study concluded that this task outperformed other existing methods. Murtaza et al. [124] applied
the use of CNN on the BreakHis dataset to improve the detection of breast cancer. The study reported
a high accuracy with the use of the CNN model. Other interesting areas of application of CNN to
breast cancer diagnosis are found in the following references [126,130–136].

3.2.2. Generative Adversarial Networks

The advent of generative adversarial networks (GANs) by Goodfellow [137] has opened a new area
of research within the image segmentation domain. According to Kazeminia et al. [138], GANs have
been shown to generate realistic-looking images in the large, unlabelled corpus. One of the many
challenges faced within the CV and medical image analysis (MIA) community is the heavy reliance
on labelled training data, which can be a major limitation [7]. The communities have recognized the
potential of GANs and have eagerly investigated in its efficacy to tackle many problems. Recently,
a good deal of research has leveraged the use of GANs for image-to-image translation [139,140]. GANs
have found many applications in generative modelling and distribution learning [139]. Furthermore,
GANs unique generation and identification network is increasingly used for image segmentation and
has achieved good results. GANs create outputs using its discriminator and generator [141]. Figure 3
shows the structure of GANs.

 

Figure 3. Structure of a generative adversarial networks (GANs) [142].

Shams et al. [143] developed DiaGRAM (deep GenerRAtive multi-task), which is based on GANs
and CNN in a mammography study to detect early signs of breast cancer. The study concluded that
feature learning with GANs led to high classification performance and an effective end-to-end scheme.
A study by Singh et al. [144] applied GANs to segment mammographic images from regions of interests
(ROIs) with varying length and sizes. GANs helped eliminate issues of overfitting on the datasets
(INbreast and digital database for screening mammography (DDSM)) and showed effectiveness in
the screening of cases. Wu et al. [145] addressed the issue of limited data and class imbalance for
breast cancer classification using GANs. The classification performance of GANs was compared
with other augmentation methods. The results showed that GANs improved the classification task.
Guan et al. [146] applied GANs to generate synthetic images from a digital database for screening
mammography. The authors opined that GANs performed better in augmenting the training dataset,
which was useful for the study. Together, we have discussed the CNN and GANs approaches to breast
cancer detection. Most of the works presented in this section are summarised in Table 2. In the table,
we present the deep learning techniques, and scope of work that are used for breast cancer diagnosis.
In addition, the performance metrics for each technique and the type of dataset used were presented.
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Table 2. Summary of deep learning models in breast cancer diagnosis.

Reference
Deep Learning

Technique
Scope

Evaluation
Results

Datasets

Tan et al. [126] CNN Classification Accuracy = 82%
mini-Mammographic

Image Analysis Society
(mini-MIAS)

Amit et al. [122] CNN Classification
Accuracy = 83%,
Area under the

curve = 0.91
ED (MRI)

Byra et al. [127] CNN Classification
Accuracy = 83%,
Area under the
curve = 0.912

ED (US, Nakagami)

Gao et al. [128] CNN Classification
Accuracy = 90%
Area under the

curve = 0.92
INbreast

Wang et al. [129] CNN Classification Accuracy = 76.5% Private

Tan et al. [126] CNN Classification
Accuracy = 95%,
Area under the

curve = 0.97
BreakHis

Litjens et al. [130] CNN Classification Area under the
curve = 0.99 Private

Araújo et al. [132] CNN Classification

Accuracy = 77.8%
(four classes),

Accuracy = 83.3%
(two classes)

BICBH

Ragab et al. [135] CNN with SVM Feature extraction
Accuracy = 73%,
Area under the

curve = 0.94

Digital Database for
Screening Mammography

(DDSM), CBIS-DDSM

Acharya et al. [136] CNN with
K-means Feature extraction Accuracy = 97% Private

Karthik et al. [147] DNN Classification Accuracy = 98% WBC

Yu et al. [134] DNN + CNN Classification
Accuracy = 81%,
Area under the

curve = 0.88
BCDR

Sun et al. [131] CNN Classification
Accuracy = 82.43%,

Area under the
curve = 0.8818

ED(Mg)

Hadad et al. [148] CNN Classification
Accuracy = 94%,
Area under the

curve = 0.98
ED(Mg, MRI)

Nahid et al. [123] CNN Classification Accuracy = 91% BreakHis

Shams et al. [143] GANs Classification

Area under the
curve = 0.88,

Area under the
curve = 0.925

DDSM, INbreast

Singh et al. [144] GANs + CNN Classification Accuracy = 72% DDSM and Private

Wu et al. [149] GANs Classification Accuracy = 89% DDSM

Guan et al. [146] GANs Classification Accuracy = 79.8% DDSM

3.3. Robotics

With the improvements in medical robots’ accuracy, robots in healthcare now assist by relieving
medical practitioners from their routine tasks and also make medical procedures less costly and safer
for patients [129]. These could be the reasons research into creating robots to detect and diagnose
breast cancer in patients have been gaining popularity in the last decade. Robotics as a branch of AI,
is developed based on some machine learning algorithms [129,150]. Such algorithms include but are
not limited to reinforcement learning and deep reinforcement learning [150].
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3.3.1. Reinforcement Learning

Reinforcement learning is an approach to machine learning that involves computational learning
by interaction. It involves learning about what to do and how to map situations to actions to maximize
a numerical solution. Unlike other machine learning approaches, reinforcement learning does not
directly demonstrate how to perform a task but works through the problem on its own [129,150].

Examples of systems that are built based on the unsupervised learning approach of reinforcement
learning are self-driving cars, a program playing chess (e.g., Alphago), etc. These systems interact
with their environment, such that, when they complete a task successfully, they receive a reward state.
Such tasks could be driving to a destination safely or winning a game. On the other hand, when the
system does not complete a task successfully, they receive a penalty for performing incorrectly. Such a
task could also be going off the road or being checkmated [150].

These systems, over time, make decisions to maximize their reward and minimize their penalty
using dynamic programming. The advantage of this approach to AI is that it allows an AI program to
learn without a programmer spelling out how a system should perform the task; this type of approach
is popularly called unsupervised learning [150].

3.3.2. Robotic Tools for Breast Cancer Diagnosis

In the research reported by Kato et al. [151], a robotic system called WAPRO-4 was developed for
the automatic palpation of breast cancer. The study aimed at palpating and diagnosing breast cancer
without the assistance of medical personnel. The major objective was to aid the early detection of
breast cancer. Additionally, WAPRO-4 consists of three parts which include the measuring instrument,
the locomotion unit, and the microcomputer system [151]. The WAPRO-4 was constructed to detect
tumors while ignoring breathing and the configuration of the chest wall. Kobayashi et al. [152]
developed a palpation-based needle insertion method for diagnostic biopsy and treatment of breast
cancer. The system locates cancerous tissues from force information and reduces tissue during needle
insertion. Kobayashi et al. [152] compared the palpation-based needle insertion approach to the normal
needle insertion approach using a numerical simulation of a breast tissue model. The outcome showed
that palpation-based needle insertion had a smaller error which suggests that the procedure could be a
safe and effective alternative [152].

Larson et al. [153] developed a robotic device to perform minimally invasive breast interventions
with real-time MRI guidance for the early diagnosis and treatment of breast cancer. In this work,
five computer-controlled degrees of freedom were used to perform minimally invasive interventions
inside a closed MRI scanner. According to Larson et al. [153], the intervention consists of a biopsy of
the suspicious lesion for diagnosis, which involves the therapies to destroy or remove malignant tissue
in the breast. As a result, the procedure includes conditioning of the breast along with a prescribed
orientation, the definition of an insertion vector by its height and pitch angle, and insertion into the
breast. The entire device is made of materials compatible with an MRI machine, avoiding artefacts and
distortion of the local magnetic field. This device was built to be remotely controlled via a graphical
user interface.

Meanwhile, automated detection of breast lesions from DCE-MRI volumes was implemented
based on deep reinforcement learning [154]. The method significantly reduces the inference time for
lesion detection compared to an exhaustive search, while retaining state-of-the-art accuracy. The authors
demonstrated their results on a dataset containing 117 DCE-MRI volumes, validating runtime and
accuracy of lesion detection [154,155].

Moreover, Tsekos et al. [155] implemented a robotic device with haptic, tactile, and ultrasound
capabilities, that can acquire and render the information of breast pathology remotely. In this work,
the device is designed to screen for breast cancer by examination for the patient in a remote area
without convenient access to medical personnel. The device was said to be more accurate than human
medical personnel [155]. Further, a robotic based device designed to assist medical personnel in placing
the instrument on the tumor location and automatically acquiring tumor images in real-time was

415



J. Imaging 2020, 6, 105

implemented in [153,156]. This device has the potential to increase targeting accuracy while reducing
the level of skill required to perform minimally invasive breast interventional procedures.

4. Conclusions

Breast cancer has shown to be one of the leading causes of female mortality in the world. Recent
studies have shown that early diagnosis is the first step towards a successful treatment, which can help
save many lives. This review presented a brief overview of past and present conventional diagnostics
approaches as well as recent computational techniques that have contributed immensely to the diagnosis
of breast cancer. Articles on breast cancer classification published from 2006 to 2020 were extensively
reviewed. In total, 55 were carefully reviewed from different academic repositories. Several criteria
were used for the review, such as conventional diagnostics approaches, the computational technique
used, scope, evaluation results, and different types of datasets were used for these studies. We noticed
that researchers preferred publicly available datasets over exclusive ones. For example, WBC and
DDSM were seen to be popular among researchers. For computational approaches, we reviewed three
areas: Machine learning, deep learning, and robotics. Out of these approaches, the deep learning
techniques appear to be increasingly popular for most researchers. Among these techniques, we noticed
that CNN was a popular choice, used for classification. Currently, GANs have shown to be a promising
deep learning algorithm for breast cancer diagnosis due to its ability to give convincingly good
results. Performance metrics such as AUC, accuracy, sensitivity, specificity, and measure were used for
evaluating deep learning approaches.

Finally, this review provides a roadmap for future conversations about building better techniques
for early detection, which could help save millions of lives. We believe that this comprehensive review
will offer a better understanding of the breast cancer classification domain and provide valuable
insights to researchers in this field.
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Abstract: Deep learning methods have been very effective for a variety of medical diagnostic tasks
and have even outperformed human experts on some of those. However, the black-box nature of the
algorithms has restricted their clinical use. Recent explainability studies aim to show the features
that influence the decision of a model the most. The majority of literature reviews of this area have
focused on taxonomy, ethics, and the need for explanations. A review of the current applications
of explainable deep learning for different medical imaging tasks is presented here. The various
approaches, challenges for clinical deployment, and the areas requiring further research are discussed
here from a practical standpoint of a deep learning researcher designing a system for the clinical
end-users.
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1. Introduction

Computer-aided diagnostics (CAD) using artificial intelligence (AI) provides a promising way to
make the diagnosis process more efficient and available to the masses. Deep learning is the leading
artificial intelligence (AI) method for a wide range of tasks including medical imaging problems. It is
the state of the art for several computer vision tasks and has been used for medical imaging tasks
like the classification of Alzheimer’s [1], lung cancer detection [2], retinal disease detection [3,4], etc.
Despite achieving remarkable results in the medical domain, AI-based methods have not achieved
a significant deployment in the clinics. This is due to the underlying black-box nature of the deep
learning algorithms along with other reasons like computational costs. It arises from the fact that,
despite having the underlying statistical principles, there is a lack of ability to explicitly represent
the knowledge for a given task performed by a deep neural network. Simpler AI methods like linear
regression and decision trees are self-explanatory as the decision boundary used for classification can
be visualized in a few dimensions using the model parameters. However, these lack the complexity
required for tasks such as classification of 3D and most 2D medical images. The lack of tools to inspect
the behavior of black-box models affects the use of deep learning in all domains including finance and
autonomous driving where explainability and reliability are the key elements for trust by the end-user.
A schematic explaining the relationship between deep learning and the need for explanations is shown
in Figure 1.

A medical diagnosis system needs to be transparent, understandable, and explainable to gain the
trust of physicians, regulators as well as the patients. Ideally, it should be able to explain the complete
logic of making a certain decision to all the parties involved. Newer regulations like the European
General Data Protection Regulation (GDPR) are making it harder for the use of black-box models in
all businesses including healthcare because retraceability of the decisions is now a requirement [5].
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An artificial intelligence (AI) system to complement medical professionals should have a certain amount
of explainability and allow the human expert to retrace the decisions and use their judgment. Some
researchers also emphasize that even humans are not always able to or even willing to explain their
decisions [5]. Explainability is the key to safe, ethical, fair, and trust-able use of artificial intelligence
(AI) and a key enabler for its deployment in the real world. Breaking myths about artificial intelligence
(AI) by showing what a model looked at while making the decision can inculcate trust among the
end-users. It is even more important to show the domain-specific features used in the decision for
non-deep learning users like most medical professionals.

Figure 1. A brief schematic of basics of XAI methods.

The terms explainability and interpretability are often used interchangeably in the literature.
A distinction between these was provided in [6] where interpretation was defined as mapping an
abstract concept like the output class into a domain example, while explanation was defined as a
set of domain features such as pixels of an image the contribute to the output decision of the model.
A related term to this concept is the uncertainty associated with the decision of a model. Deep learning
classifiers are usually not able to say “I don’t know” in situations with ambiguity and instead return
the class with the highest probability, even if by a narrow margin, making uncertainty a crucial topic.
Lately, uncertainty has been analyzed along with the problem of explainability in many studies to
highlight the cases where a model is unsure and in turn, make the models more acceptable to non-deep
learning users. There have been studies about the uncertainty of machine learning algorithms which
include those for endoscopic videos [7] and tissue parameter estimation [8]. We limit the scope of this
paper to explainability methods and discuss uncertainty if a study used it along with explainability.
The topic of uncertainty in deep learning models can be itself a subject of a future review. As noted
earlier, deep learning models are considered as non-transparent as the weights of the neurons can
not be understood as knowledge directly. [9] showed that neither the magnitude or the selectivity
of the activations, nor the impact on network decisions is sufficient for deciding the importance of a
neuron for a given task. A detailed analysis of the terminologies, concepts and, use cases of explainable
artificial intelligence (AI) is provided in [10].

This paper describes the studies related to the explainability of deep learning models in the
context of medical imaging. A general taxonomy of explainability approaches is described briefly in
the next section and a comparison of various attribution based methods is performed in Section 3.
Section 4 reviews various explainability methods applied to different medical imaging modalities.
The analysis is broken down into Sections 4.1 and 4.2 depending upon the use of attributions or
other methods of explainability. The evolution, current trends, and some future possibilities of the
explainable deep learning models in medical image analysis are summarized in Section 5.
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2. Taxonomy of Explainability Approaches

Several taxonomies have been proposed in the literature to classify different explainability
methods [11,12]. Generally, the classification techniques are not absolute, it can vary widely depending
upon the characteristics of the methods and can be classified into many overlapping or non-overlapping
classes simultaneously. Different kinds of taxonomies and classification methods are discussed briefly
here and a detailed analysis of the taxonomies can be found in [10,11] and a flow chart for them is
shown in Figure 2.

Figure 2. Taxonomy of XAI methods.

2.1. Model Specific vs. Model Agnostic

Model-specific interpretation methods are based on the parameters of the individual models.
The graph neural network explainer (GNNExplainer) [13] is a special type of model-specific interpretability
where the complexity of data representation needs specifically the graph neural network (GNN).
Model Agnostic methods are mainly applicable in post-hoc analysis and not limited to specified
model architecture. These methods do not have direct access to the internal model weights or
structural parameters.

2.2. Global Methods vs. Local Methods

Local interpretable methods are applicable to a single outcome of the model. This can be done by
designing methods that can explain the reason for a particular prediction or outcome. For example,
it is interested in specific features and their characteristics. On the contrary, global methods concentrate
on the inside of a model by exploiting the overall knowledge about the model, the training, and the
associated data. It tries to explain the behavior of the model in general. Feature importance is a good
example of this method, which tries to figure out the features which are in general responsible for
better performance of the model among all different features.

2.3. Pre-Model vs. In-Model vs. Post-Model

Pre-model methods are independent and do not depend on a particular model architecture to
use it on. Principal component analysis (PCA) [14], t-Distributed Stochastic Neighbor Embedding
(t-SNE) [15] are some common examples of these methods. Interpretability methods, integrated into
the model itself, are called as in-model methods. Some methods are implemented after building a
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model and hence these methods are termed as post model and these methods can potentially develop
meaningful insights about what exactly a model learned during the training.

2.4. Surrogate Methods vs. Visualization Methods

Surrogate methods consist of different models as an ensemble which are used to analyze other
black-box models. The black box models can be understood better by interpreting the surrogate model’s
decisions by comparing the black-box model’s decision and surrogate model’s decision. The decision
tree [16] is an example of surrogate methods. The visualization methods are not a different model,
but it helps to explain some parts of the models by visual understanding like activation maps.

It is to be noted that these classification methods are non-exclusive, these are built upon different
logical intuitions and hence have significant overlaps. For example, most of the post-hoc models like
attributions can also be seen as model agnostic as these methods are typically not dependent upon
the structure of a model. However, some requirements regarding the limitations on model layers or
the activation functions do exist for some of the attribution methods. The next section describes the
basic concept and subtle difference between various attribution methods to facilitate a comparative
discussion of the applications in Section 4.

3. Explainability Methods—Attribution Based

There are broadly two types of approaches to explain the results of deep neural networks (DNN)
in medical imaging—those using standard attribution based methods and those using novel, often
architecture, or domain-specific techniques. A majority of the papers for explaining deep learning in
medical image diagnosis use attribution based methods. Their model agnostic plug and play nature
along with readily available open-source implementations make them a convenient solution. The deep
learning practitioners can, therefore, focus on designing a model optimal for a given task and use these
easy to generate explanations for understanding the model better. Since attribution based studies are a
majority (with many of them using multiple attribution based methods), we discuss them beforehand.
The applications for those methods are ordered according to the anatomical districts, i.e., organ groups
for the diagnosed diseases in Section 4.1. Other methods are used in only a few studies each which
typically uses a single method and are hence discussed along with their applications in Section 4.2
which is ordered by the explainability method used.

The problem of assigning an attribution value or contribution or relevance to each input feature
of a network led to the development of several attribution methods. The goal of an attribution method
is to determine the contribution of an input feature to the target neuron which is usually the output
neuron of the correct class for a classification problem. The arrangement of the attributions of all
the input features in the shape of the input sample forms heatmaps known as the attribution maps.
Some examples of attribution maps for different images are shown in Figure 3. The features with a
positive contribution to the activation of the target neuron are typically marked in red while those
negatively affecting the activation are marked in blue. These are the features or pixels in case of images
providing positive and negative evidence of different magnitudes, respectively.

The commonly used attribution methods are discussed in this section and the applications in the
next section. It must be noted that some of the approaches like DeepTaylor [17] provide only positive
evidence and can be useful for a certain set of tasks. The attribution methods can be applied on a black
box convolutional neural network (CNN) without any modification to the underlying architecture
making them a convenient yet powerful XAI tool. An empirical comparison of some of the methods
discussed in this section and a unified framework called DeepExplain is available in [18]. Most of the
methods discussed here apart from the newer Deep Learning Important FeaTures (LIFT) and Deep
SHapley Additive exPlanations (SHAP) are implemented in the iNNvestigate toolbox [19].
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Figure 3. Attributions of VGG-16 with images from Imagenet using the methods implemented in [19].

3.1. Perturbation Based Methods—Occlusion

Perturbation is the simplest way to analyze the effect of changing the input features on the output
of an AI model. This can be implemented by removing, masking, or modifying certain input features,
and running the forward pass (output computation), and measuring the difference from the original
output. This is similar to the sensitivity analysis performed in parametric control system models.
The input features affecting the output the most are ranked as the most important. It is computationally
expensive as a forward pass needs to be run after perturbing each group of features of the input. In the
case of image data the perturbation is performed by covering parts of an image with a grey patch and
hence occluding them from the system’s view. It can provide both positive and negative evidence by
highlighting the responsible features.

This technique was applied by Zeiler and Fergus [20] to the convolutional neural network (CNN)
for the image classification task. Occlusion is the benchmark for any attribution study as it is a simple
to perform model agnostic approach which reveals the feature importance of a model. It can reveal
if a model is overfitting and learning irrelevant features as in the case of adversarial examples [21].
The adversarial examples are the inputs designed to cause the model to make a false decision and are
like optical illusions for the models. In that case, the model misclassifies the image (say a cat as a dog)
despite the presence of discriminating feature

Occluding all features (pixels) one-by-one and running the forward pass each time can be
computationally expensive and can take several hours per image [18]. It is common to use patches of
sizes such as 5×5, 10×10, or even larger depending on the size of the target features and computational
resources available.

Another perturbation based approach is Shapley value sampling which computes approximate
Shapely Values by taking each input feature for a sample number of times. It a method from the
coalitional game theory which describes the fair distribution of the gains and losses among the input
features. It was originally proposed for the analysis of regression [22]. It is slower than all other
approaches as the network has to be run samples × number of features times. As a result it is not a
practical method in its original form but has led to the development of game theory-based methods
like Deep SHapley Additive exPlanations (SHAP) as discussed in the next subsection.

3.2. Backpropagation Based Methods

These methods compute the attribution for all the input features with a single forward and
backward pass through the network. In some of the methods these steps need to be repeated multiple
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times but it is independent of the number of input features and much lower than for perturbation-based
methods. The faster run-time comes at the expense of a weaker relationship between the outcome
and the variation of the output. Various backpropagation based attribution methods are described
in Table 1. It must be noted that some of these methods provide only positive evidence while others
provide both positive and negative evidence. The methods providing both positive and negative
evidence tend to have high-frequency noise which can make the results seem spurious. [18].

Table 1. Backpropagation based attribution methods.

Method Description Notes

Gradient Computes the gradient of the output of the target neuron with
respect to the input.

The simplest approach but is usually not the most
effective.

DeConvNet [20] Applies the ReLU to the gradient computation instead of the
gradient of a neuron with ReLU activation.

Used to visualize the features learned by the
layers. Limited to CNN models with ReLU
activation.

Saliency Maps [23]

Takes the absolute value of the partial derivative of the
target output neuron with respect to the input features to
find the features which affect the output the most with least
perturbation.

Can’t distinguish between positive and negative
evidence due to absolute values.

Guided backpropagation
(GBP) [24]

Applies the ReLU to the gradient computation in addition to
the gradient of a neuron with ReLU activation.

Like DeConvNet, it is textbflimited to CNN models
with ReLU activation.

LRP [25]
Redistributes the prediction score layer by layer with a
backward pass on the network using a particular rule like
the ε-rule while ensuring numerical stability

There are alternative stability rules and limited
to CNN models with ReLU activation when all
activations are ReLU.

Gradient × input [26]
Initially proposed as a method to improve sharpness of
attribution maps and is computed by multiplying the signed
partial derivative of the output with the input.

It can approximate occlusion better than other
methods in certain cases like multi layer perceptron
(MLP) with Tanh on MNIST data [18] while being
instant to compute.

GradCAM [27]
Produces gradient-weighted class activation maps using
the gradients of the target concept as it flows to the final
convolutional layer

Applicable to only CNN including those with fully
connected layers, structured output (like captions)
and reinforcement learning.

IG [28]
Computes the average gradient as the input is varied from
the baseline (often zero) to the actual input value unlike the
Gradient × input which uses a single derivative at the input.

It is highly correlated with the rescale rule of
DeepLIFT discussed below which can act as a good
and faster approximation.

DeepTaylor [17]
Finds a rootpoint near each neuron with a value close to the
input but with output as 0 and uses it to recursively estimate
the attribution of each neuron using Taylor decomposition

Provides sparser explanations, i.e., focuses on key
features but provides no negative evidence due to
its assumptions of only positive effect.

PatternNet [29] Estimates the input signal of the output neuron using an
objective function.

Proposed to counter the incorrect attributions of
other methods on linear systems and generalized
to deep networks.

Pattern Attribution [29] Applies Deep Taylor decomposition by searching the
rootpoints in the signal direction for each neuron

Proposed along with PatternNet and uses
decomposition instead of signal visualization

DeepLIFT [30]

Uses a reference input and computes the reference values
of all hidden units using a forward pass and then proceeds
backward like LRP. It has two variants—Rescale rule and the
one introduced later called RevealCancel which treats positive
and negative contributions to a neuron separately.

Rescale is strongly related to and equivalent
in some cases to ε-LRP but is not applicable
to models involving multiplicative rules.
RevealCancel handles such cases and using
RevealCancel for convolutional and Rescale for
fully connected layers reduces noise.

SmoothGrad [31] An improvement on the gradient method which averages the
gradient over multiple inputs with additional noise

Designed to visually sharpen the attributions
produced by gradient method using class
score function.

Deep SHAP [32]
It is a fast approximation algorithm to compute the game
theory based SHAP values. It is connected to DeepLIFT and
uses multiple background samples instead of one baseline.

Finds attributions for non neural net models
like trees, support vector machines (SVM) and
ensemble of those with a neural net using various
tools in the the SHAP library.

An important property of attribution methods known as completeness was introduced in the
DeepLIFT [30] paper. It states that the attributions for a given input add up to the target output minus
the target output at the baseline input. It is satisfied by integrated gradients, DeepTaylor and Deep
SHAP but not by DeepLIFT in its rescale rule. A measure generalizing this property is proposed in [18]
for a quantitative comparison of various attribution methods. It is called sensitivity-n and involves
comparing the sum of the attributions and the variation in the target output in terms of PCC. Occlusion
is found to have a higher PCC than other methods as it finds a direct relationship between the variation
in the input and that in the output.
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The evaluation of attribution methods is complex as it is challenging to discern between the errors
of the model and the attribution method explaining it. Measures like sensitivity-n reward the methods
designed to reflect the network behavior closely. However, a more practically relevant measure of
an attribution method is the similarity of attributions to a human observer’s expectation. It needs
to be performed with a human expert for a given task and carries an observer bias as the methods
closer to the observer expectation can be favored at the cost of those explaining the model behavior.
We underscore the argument that the ratings of different attribution methods by experts of a specific
domain are potentially useful to develop explainable models which are more likely to be trusted by
the end users and hence should be a critical part of the development of an XAI system.

4. Applications

The applications of explainability in medical imaging are reviewed here by categorizing them into
two types—those using pre-existing attribution based methods and those using other, often specific
methods. The methods are discussed according to the explainability method and the medical imaging
application. Table 2 provides a brief overview of the methods.

4.1. Attribution Based

A majority of the medical imaging literature that studied interpretability of deep learning methods
used attribution based methods due to their ease of use. Researchers can train a suitable neural
network architecture without the added complexity of making it inherently explainable and use a
readily available attribution model. This allows the use of either a pre-existing deep learning model
or one with a custom architecture for the best performance on the given task. The former makes
the implementation easier and allows one to leverage techniques like transfer learning [33,34] while
the latter can be used to focus on specific data and avoid overfitting by using fewer parameters.
Both approaches are beneficial for medical imaging datasets which tend to be relatively smaller than
computer vision benchmarks like ImageNet [35].

Post-model analysis using attributions can reveal if the model is learning relevant features or if it
is overfitting to the input by learning spurious features. This allows researchers to adjust the model
architecture and hyperparameters to achieve better results on the test data and in turn a potential
real-world setting. In this subsection, some recent studies using attribution methods across different
medical imaging modalities are reviewed in the order of the anatomical districts from top to bottom of
the human body. The reviewed tasks include explanations of deep learning for diagnosing conditions
from brain MRI, retinal imaging, breast imaging, CT scans, chest X-ray as well as skin imaging.

4.1.1. Brain Imaging

A study comparing the robustness of various attribution based methods for convolutional neural
network (CNN) in Alzheimer’s classification using brain MRI [36] performed a quantitative analysis
of different methods. Gradient × input, Guided backpropagation (GBP), LRP, and occlusion were
the compared methods. The L2 norm between the average attribution maps of multiple runs for
the same model to check the repeatability of heatmaps for identically trained models. It was found
to be an order of magnitude lower for the first three methods compared to the baseline occlusion
since occlusion covers a larger area. LRP performed the best overall indicating the superiority of a
completely attribution based method over function and signal-based methods. The similarity between
the sum, density, and gain (sum/density) for the top 10 regions of the attributions across the runs was
also the highest for LRP. In another study [37] GradCAM and Guided backpropagation (GBP) were
used to analyze the clinical coherence of the features learned by a CNN for automated grading of brain
tumor from MRI. For the correctly graded cases, both the methods had the most activation in the tumor
region while also activating the surrounding ventricles which can indicate malignancy as well. In some
cases, this focus on non-tumor regions and some spurious patterns in Guided backpropagation (GBP)
maps lead to errors indicating unreliability of the features.
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4.1.2. Retinal Imaging

A system producing IG heatmaps along with model predictions was explored as a tool to assist
diabetic retinopathy (DR) grading by ophthalmologists [38]. This assistance was found to increase
the accuracy of the grading compared to that of an unassisted expert or with the model predictions
alone. Initially, the system increased the grading time but with the user’s experience, the grading time
decreased and the grading confidence increased, especially when both predictions and heatmaps were
used. Notably, the accuracy did reduce for patients without DR when model assistance was used and an
option to toggle the assistance was provided. An extension of IG called Expressive gradients (EG) was
proposed in [39] for weakly supervised segmentation of lesions for Age-related macular degeneration
(AMD) diagnosis. A convolutional neural network (CNN) with a compact architecture outperformed
larger existing convolutional neural network (CNN)s and Expressive gradients (EG) highlighted the
regions of interest better than conventional IG and Guided backpropagation (GBP) methods. Expressive
gradients (EG) extends IG by enriching input-level attribution map with high-level attribution maps.
A comparative analysis of various explainability models including DeepDeep Learning Important
FeaTures (LIFT), DeepSHapley Additive exPlanations (SHAP), IG, etc. was performed for on a model
for detection of choroidal neovascularization (CNV), diabetic macular edema (DME), and drusens from
optical coherence tomography (OCT) scans [40]. Figure 4 highlights better localization achieved by
newer methods (e.g., DeepSHAP) in contrast to noisy results from older methods (e.g., saliency maps).

Figure 4. Example of heat maps from a retinal OCT image [40].

4.1.3. Breast Imaging

IG and SmoothGrad were used to visualize the features of a convolutional neural network (CNN)
used for classifying estrogen receptor status from breast MRI [41]. The model was observed to have
learned relevant features in both spatial and dynamic domains with different contributions from both.
The visualizations revealed the learning of certain irrelevant features resulting from pre-processing
artifacts. These observations led to changes in the pre-processing and training approaches. An earlier
study for breast mass classification from mammograms [42] using two different convolutional neural
network (CNN)s—AlexNet [43] and GoogleNet [44]—employed saliency maps to visualize the image
features. Both the convolutional neural network (CNN)s were seen to learn the edges of the mass
which are the main clinical criteria, while also being sensitive to the context.
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4.1.4. CT Imaging

A DeepDreams [45] inspired attribution method was presented in [46] for explaining the
segmentation of tumor from liver CT images. This novel method formulated using the concepts
of DeapDreams, an image generation algorithm can be applied to a black-box neural network like
other attribution methods discussed in Section 3. It performed a sensitivity analysis of the features
by maximizing the activation of the target neuron by performing gradient ascent, i.e., finding the
steepest slope of the function. A comparison between networks trained on real tumors and synthetic
tumors revealed that the former was more sensitive to clinically relevant features and the latter was
focusing on other features too. The network was found to be sensitive to intensity as well as sphericity
in coherence with domain knowledge.

4.1.5. X-ray Imaging

In a recent study for detection of COVID-19 from chest X-ray images [47], a method called
GSInquire was used to produce heatmaps for verifying the features learned by the proposed COVID-net
model. GSInquire [48] was developed as an attribution method that outperformed prior methods
like SHAP and Expected gradients in terms of the proposed new metrics—impact score and impact
coverage. The impact score was defined as the percentage of features which impacted the model
decision or confidence strongly. While impact coverage was defined in the context of the coverage of
adversarially impacted factors in the input. Another study performed the analysis of uncertainty and
interpretability for COVID-19 detection using chest X-rays. The heatmaps of the sample inputs for
the trained model were generated using saliency maps, Guided GradCAM, GBP, and Class activation
maps (CAM).

4.1.6. Skin Imaging

The features of a suite of 30 CNN models trained for melanoma detection [49] were compared
using GradCAM and Kernel SHapley Additive exPlanations (SHAP). It was shown that even the
models with high accuracy would occasionally focus on the features that were irrelevant for the
diagnosis. There were differences in the explanations of the models that produced similar accuracy
which was highlighted by the attribution maps of both the methods. This showed that distinct neural
network architectures tend to learn different features. Another study [50] visualized the convolutional
neural network (CNN) features for skin lesion classification. The features for the last two layers were
visualized by rescaling the feature maps of the activations to the input size. The layers were observed
to be looking at indicators like lesion borders and non-uniformity in color as well as risk factors like
lighter skin color or pink texture. However, spurious features like artifacts and hair which have no
significance were also learned indicating some extent of overfitting.

There are other studies using attribution based methods for diagnosis in addition to the more
common imaging modalities discussed above. For example, a study performed uncertainty and
interpretability analysis on CNNs for semantic segmentation of colorectal polyps, a precursor of rectal
cancers [51]. Using GBP for heatmaps the convolutional neural network (CNN)s were found to be
utilizing the edge and shape information to make predictions. Moreover, the uncertainty analysis
revealed higher uncertainty in misclassified samples. There is plenty of opportunity for applying
the explainability of deep learning methods to other modalities like laparoscopy and endoscopy
e.g., [52]. An explainable model using SHapley Additive exPlanations (SHAP) attributions for
hypoxemia, i.e., low blood oxygen tension prediction during surgery was presented in [53]. The study
was performed for analyzing preoperative factors as well as in-surgery parameters. The resulting
attributions were in line with known factors like BMI, physical status (ASA), tidal volume, inspired
oxygen, etc.
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The attribution based methods were one of the initial ways of visualizing neural networks and
have since then evolved from simple class activation map and gradient-based methods to advanced
techniques like Deep SHapley Additive exPlanations (SHAP). The better visualizations of these methods
show that the models were learning relevant features in most of the cases. Any presence of spurious
features was scrutinized, flagged to the readers, and brought adjustments to the model training methods.
Smaller and task-specific models like [39] along with custom variants of the attribution methods can
improve the identification of relevant features.

4.2. Non-Attribution Based

The studies discussed in this subsection approached the problem of explainability by developing
a methodology and validating it on a given problem rather than performing a separate analysis using
pre-existing attributions based methods like those previously discussed. These used approaches
like attention maps, concept vectors, returning a similar image, text justifications, expert knowledge,
generative modeling, combination with other machine learning methods, etc. It must be noted that the
majority of these are still post-model but their implementation usually needs specific changes to the
model structure such as in the attention maps or the addition of expert knowledge in case of rule-based
methods. In this section, the studies are grouped by the explainability approach they took. Figure 5
shows a schematic of these methods according to the taxonomy discussed in Section 2. These are
characterized in a hierarchical way using multiple taxonomies for a finer classification.

Figure 5. Classification of explainability methods that are not attribution based.

4.2.1. Attention Based

Attention is a popular and useful concept in deep learning. The basic idea of attention is inspired
by the way humans pay attention to different parts of an image or other data sources to analyze them.
More details about attention mechanisms in neural networks are discussed in [54]. An example of
attention in medical diagnosis is given in [55]. Here, we discuss how attention-based methods can be
used as an explainable deep learning tool for medical image analysis.

A network called MDNet was proposed [56] to perform a direct mapping between medical images
and corresponding diagnostic reports. With an image model and a language model in it, the method
used attention mechanisms to visualize the detection process. Using that attention mechanism,
the language model found predominant and discriminatory features to learn the mapping between
images and the diagnostic reports. This was the first work that exploited the attention mechanism to
get insightful information from medical image dataset.
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In [57] an interpretable version of U-Net [58] called SAUNet was proposed. It added a parallel
secondary shape stream to capture important shape-based information along with the regular texture
features of the images. The architecture used an attention module in the decoder part of the U-Net.
The spatial and shape attention maps were generated using SmoothGrad to visualize the high activation
region of the images.

4.2.2. Concept Vectors

A novel method called TCAV was proposed in [59] to explain the features learned by different
layers to the domain experts without any deep learning expertise in terms of human-understandable
concepts. It took the directional derivative of the network in the concept space much like that in the
input feature space for saliency maps. It was tested to explain the predictions of diabetic retinopathy
(DR) levels where it successfully detected the presence of microaneurysms and aneurysms in the retina.
This provided justifications that were readily interpretable for the medical practitioners in terms of
presence or absence of a given concept or physical structure in the image. However, many clinical
concepts like the texture or the shape of a structure cannot be sufficiently described in terms of the
presence or absence and need a continuous scale of measurement.

An extension of TCAV, which used the presence or absence of concepts, using Regression Concept
Vectors (RCV) in the activation space of a layer was used to detect continuous concepts [60]. The task
of the network was to detect tumors from breast lymph node samples. It was found that most of
the relevant features like area and contrast were present in the early layers of the model. A further
improvement over the TCAV used a new metric called Uniform unit Ball surface Sampling (UBS) [61]
to provide layer-agnostic explanations for continuous and high dimensional features. It could
explain high dimensional radiomics concepts across multiple layers which were validated using
mammographic images. The model produced variations amongst the important concepts which were
found to be lower across the layers of the SqueezeNet [62] compared to a baseline CNN with 3 dense
layers explaining the better performance of the SqueezeNet.

4.2.3. Expert Knowledge

A vast majority of the research discussed in this review tried to correlate model features
with expert knowledge using different approaches. Another approach was to use domain-specific
knowledge to craft rules for prediction and explanation. An example of using task-specific knowledge
to improve the results as well as the explanations were provided in [63] for brain midline shift (MLS)
estimation using U-Net [58] based architecture and keypoints. It was reduced to the problem of
detecting a midline using the model under domain constraints. The original midline was obtained
using the endpoints and hence the shift from the predicted one was computed. The model also provided
confidence intervals of the predictions making them more trustworthy for the end-user. Another
study [64] used guidelines for rule-based segmentation of lung nodules followed by a perturbation
analysis to compute the importance of features in each region. The explanations provided in terms
of the regions already marked using rules were found to be more understandable for the users and
showed the bias in data for improving the model. This method was then used to provide explanations
at a global level for the entire dataset providing an overview of the relevant features.

4.2.4. Similar Images

Some studies provided similarly labeled images to the user as a reason for making a prediction
for a given test image. A study [6] proposed analysis of layers of a 3D-convolutional neural network
(CNN) using Gaussian mixture model (GMM) and binary encoding of training and test images based
on their Gaussian mixture model (GMM) components for returning similar 3D images as explanations.
The system returned activation wise similar training images using atlas as a clarification for its decision.
It was demonstrated on 3D MNIST and an MRI dataset where it returned images with similar atrophy
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conditions. However, it was found that the activation similarity depended on the spatial orientation of
images in certain cases which could affect the choice of the returned images.

In a study on dermoscopic images, a triplet-loss and k nearest neighbors (kNN) search-based
learning strategy was used to learn convolutional neural network (CNN) feature embeddings for
interpretable classification [65]. The evidence was provided as nearest neighbors and local image
regions responsible for the lowest distance between the test image and those neighbors. Another
approach used monotonic constraints to explain the predictions in terms of style and depth two
datasets—dermoscopy images and post-surgical breast aesthetics [66]. It concatenated input streams
with constrained monotonic convolutional neural network (CNN) and unconstrained convolutional
neural network (CNN) to produce the predictions along with their explanations in terms of similar
images as well as complementary images. The system was designed for only binary classification.

4.2.5. Textual Justification

A model that can explain its decision in terms of sentences or phrases giving the reasoning can
directly communicate with both expert and general users. A justification model that took inputs from
the visual features of a classifier, as well as embeddings of the predictions, was used to generate a
diagnostic sentence and visual heatmaps for breast mass classification [67]. A visual word constraint
loss was applied in the training of the justification generator to produce justifications in the presence of
only a limited number of medical reports. Such multimodal explanations can be used to obtain greater
user confidence due to a similarity with the usual workflow and learning process.

4.2.6. Intrinsic Explainability

Intrinsic explainability refers to the ability of a model to explain its decisions in terms of human
observable decision boundaries or features. These usually include relatively simpler models like
regression, decision trees, and support vector machines (SVM) for a few dimensions where the decision
boundaries can be observed. Recent studies to make deep learning model intrinsically explainable
using different methods such as a hybrid with machine learning classifiers and visualizing the features
in a segmentation space.

An example of the latter was presented in [68] using the latent space of the features of a
variational autoencoder for classification and segmentation of the brain MRI of Alzheimer’s patients.
The classification was performed in a two-dimensional latent space using an multi layer perceptron
(MLP). The segmentation was performed in a three-dimensional latent space in terms of the anatomical
variability encoded in the discriminating features. This led to the visualization of the features of the
classifier as global and local anatomical characteristics which were usually used for clinical decisions.
A study for detection of autism pectrum disorder (ASD) from functional magnetic resonance imaging
(fMRI) used a hybrid of deep learning and support vector machines (SVM) to perform explainable
classification [69]. The support vector machines (SVM) was used as a classifier on the features of a
deep learning model and the visualization of the decision boundary explained the model.

This subsection discussed a variety of non-attribution explainability methods but the list is not
exhaustive as newer methods are published frequently due to high interest in the area. The design of
these methods is more involved than the application of attribution based methods on the inputs of a
trained model. Specific elements like concept vectors, expert-based rules, image retrieval methods
need to be integrated often at a model training level. This added complexity can potentially provide
more domain-specific explanations at the expense of higher design effort. Notably, a majority of these
techniques are still a post-hoc step but for a specific architecture or domain. Moreover, we have limited
our scope to medical imaging as that is the dominant approach for automated diagnosis because of the
detailed information presented by the images. However, patient records also provide rich information
for diagnosis and there were studies discussing their explainability. For example, in [70] a gated
recurrent unit (GRU)-based recurrent neural network (RNN) for mortality prediction from diagnostic
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codes from electronic healthcare record (EHR) was presented. It used hierarchical attention in the
network for interpretability and visualization of the results.

Table 2. Applications of explainability in medical imaging.

Method Algorithm Model Application Modality

Attribution

Gradient*I/P, GBP, LRP,
occlusion [36] 3D CNN Alzheimer’s detection Brain MRI

GradCAM, GBP [37] Custom CNN Grading brain tumor Brain MRI

IG [38] Inception-v4 DR grading Fundus images

EG [39] Custom CNN Lesion segmentation for
AMD Retinal OCT

IG, SmoothGrad [41] AlexNet Estrogen receptor status Breast MRI

Saliency maps [42] AlexNet Breast mass classification Breast MRI

GradCAM, SHAP [49] Inception Melanoma detection Skin images

Activation maps [50] Custom CNN Lesion classification Skin images

DeepDreams [46] Custom CNN Segmentation of tumor
from liver CT imaging

GSInquire, GBP,
activation maps [47] COVIDNet CNN COVID-19 detection X-ray images

Attention

Mapping between image
to reports [56] CNN & LSTM Bladder cancer Tissue images

U-Net with shape
attention stream [57] U-net based Cardiac volume

estimation Cardiac MRI

Concept
vectors

TCAV [59] Inception DR detection Fundus images

TCAV with RCV [60] ResNet101 Breast tumor detection Breast lymph
node images

UBS [61] SqueezeNet Breast mass classification Mammography
images

Expert
knowledge

Domain constraints [63] U-net Brain MLS estimation Brain MRI

Rule-based
segmentation,
perturbation [64]

VGG16 Lung nodule
segmentation Lung CT

Similar
images

GMM and atlas [6] 3D CNN MRI classification 3D MNIST,
Brain MRI

Triplet loss, kNN [65]
AlexNet based
with shared
weights

Melanoma Dermoscopy
images

Monotonic
constraints [66]

DNN with two
streams Melanoma detection Dermoscopy

images

Textual
justification

LSTM, visual word
constraint [67]

Breast mass
classification CNN Mammography

images

Intrinsic
explainability

Deep Hierarchical
Generative Models [68] Auto-encoders

Classification and
segmentation for
Alzheimer’s

Brain MRI

SVM margin [69] Hybrid of CNN
& SVM ASD detection Brain fMRI
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5. Discussion

There has been significant progress in explaining the decisions of deep learning models, especially
those used for medical diagnosis. Understanding the features responsible for a certain decision is
useful for the model designers to iron out reliability concerns for the end-users to gain trust and make
better judgments. Almost all of these methods target local explainability, i.e., explaining the decisions
for a single example. This then is extrapolated to a global level by averaging the highlighted features,
especially in cases where the images have the same spatial orientation. However, emerging methods
like concept vectors (Section 4.2.2) provide a more global view of the decisions for each class in terms
of domain concepts.

It is important to analyze the features of a black-box which can make the right decision due to
the wrong reason. It is a major issue that can affect performance when the system is deployed in
the real world. Most of the methods, especially the attribution based are available as open-source
implementations. However, some methods like GSInquire [48] which show higher performance
on some metrics are proprietary. There is an increasing commercial interest in explainability,
and specifically the attribution methods which can be leveraged for a variety of business use cases.

The explainability methods have two different but overlapping objectives for the two different
user groups. Deep learning practitioners can use them to design better systems by analyzing the
model features and understanding the interactions between the model and the data. The clinical
end-users can be provided with the explanations as a reasoning for the model decision and hence build
confidence and trust in the model decision and also help identify potentially questionable decisions.
A recent study compared the understanding of explanations amongst data scientists [71]. In this study
common issues like missing data and redundant features were introduced and the data scientists were
provided explanations of the trained models in order to identify the problems. The study reported
over trust on the models as they tried to justify the issues as meaningful features. This is contrary to
lower trust and acceptance from end-users who are wary of the black-box nature. It is notable that the
experienced data scientists were able to use them effectively for understanding model and data issues.

Studies analyzing the effect of explanations on the decisions of the clinical end-users show in general
positive outcomes [38]. There are studies comparing explainability methods quantitatively [36,39] which
are discussed previously. The quantitative analysis focuses on theoretical correctness and robustness
while missing out on actual clinical usefulness. There is a pertinent need to perform end-user based
qualitative comparison of explanations for medical imaging applications. This can help to identify
the most relevant techniques for explaining decisions to the clinicians. Such studies can be performed
using expert agreement where a panel of experts can be asked to rate the explanations. A similar
approach was used for deep learning based methods in [72] and for clinical diagnosis in [73]. We are
currently working on a quantitative and qualitative analysis of various XAI methods in the diagnosis of
retinal disease. The explanations will have quantitative comparisons along with qualitative evaluation
by expert clinicians rating the explanations. This would also help to evaluate the overlap between the
clinical knowledge acquired through clinical training and experience and the model features acquired
for the pattern recognition task for a given dataset.

Studies have extended existing explainability methods to better suit the challenges of the medical
imaging domain. For example, [39] proposed Expressive gradients (EG), an extension of commonly
used IG to cover the retinal lesions better while [60] extended concept vectors from [59] for continuous
concepts like texture and shape. Such studies lead to the advancement of the explainability domain
and provided customization without designing new methods from scratch. Despite all these advances,
there is still a need to make the explainability methods more holistic and interwoven with uncertainty
methods. Expert feedback must be incorporated into the design of such explainability methods to
tailor the feedback for their needs. Initially, any clinical application of such explainable deep learning
methods is likely to be a human-in-the-loop (HITL) hybrid keeping the clinical expert in the control of
the process. It can be considered analogous to driving aids like adaptive cruise control or lane keep
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assistance in cars where the driver is still in control and responsible for the final decisions but with a
reduced workload and an added safety net.

Another direction of work can be to use multiple modalities like medical images and patients’
records together in the decision-making process and attribute the model decisions to each of them.
This can simulate the diagnostic workflow of a clinician where both images and physical parameters
of a patient are used to make a decision. This can potentially improve accuracy as well as explain the
phenomena more comprehensively. To sum up, explainable diagnosis is making convincing strides but
there is still some way to go to meet the expectations of end-users, regulators, and the general public.
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Acronyms

AI artificial intelligence
AMD Age-related macular degeneration
ASD autism pectrum disorder
CAD Computer-aided diagnostics
CAM Class activation maps
CNN convolutional neural network
CNV choroidal neovascularization
CT computerized tomography
DME diabetic macular edema
DNN deep neural networks
DR diabetic retinopathy
EG Expressive gradients
EHR electronic healthcare record
fMRI functional magnetic resonance imaging
GBP Guided backpropagation
GDPR General Data Protection Regulation
GMM Gaussian mixture model
GradCAM Gradient weighted class activation mapping
GRU gated recurrent unit
HITL human-in-the-loop
IG Integrated gradients
kNN k nearest neighbors
LIFT Deep Learning Important FeaTures
LRP Layer wise relevance propagation
MLP multi layer perceptron
MLS midline shift
MRI magnetic resonance imaging
OCT optical coherence tomography
PCC Pearson’s correlation coefficient
RCV Regression Concept Vectors
ReLU rectified linear unit
RNN recurrent neural network
SHAP SHapley Additive exPlanations
SVM support vector machines
TCAV Testing Concept Activation Vectors
UBS Uniform unit Ball surface Sampling
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