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Foreword

During the second week of July, the ICIAM 2019 Congress took place in Valencia
with almost 4,000 participants, with 50 plenary talks, more than 300 mini-symposia,
550 contributed talks and 250 posters. A wide representation of world applied math-
ematics met in Valencia to present and discuss how mathematics was applied to the
most diverse disciplines, such as applied mathematics for industry and engineering,
biology, medicine and other natural sciences, control and systems theory, dynamical
systems and nonlinear analysis, finance and management science, industrial math-
ematics, mathematics and computer science, numerical analysis, partial differential
equations and simulation and modeling, to name some of them.

Within the organizing committee, the idea arose that these presentations and
discussions should be reflected in some way for the future. And the offer from
Springer came up to launch a series of volumes that would record the most notable
advances that took place in it.

This offer crystallized in the ICIAM 2019 SEMA SIMAI Springer Series, which
includes the present volume, dedicated to the conferences of the invited speakers,
which occupies a very central and special place, since it is offered in open access
mode, thanks to the support of Sociedad Espafiola de Matematica Aplicada (SeMA).

The selection of the 336 mini symposia of the ICIAM 2019 was made by its
academic committee. In a very direct relationship with it, the editorial committee
of this series was formed by F. Arandiga Llaudes, M. Gémez Mérmol, F. Guillén-
Gonzilez, F. Ortegén Gallego, C. Parés, P. Quintela, C. Vizquez-Cend6n, S. Xambo-
Descamps and myself. The members of this committee were in charge of selecting
the proposals, many of them derived from mini-congress symposia, and also to act
as the editors in charge for some of the 14 volumes that make up this series:

1. Recent Advances in Industrial and Applied Mathematics, edited by Tomds
Chacén Rebollo, Rosa Donat and Inmaculada Higueras.

2. Stabilization of Distributed Parameter Systems: Design Methods and Appli-
cations, edited by Grigory Sklyar and Alexander Zuyev.

3. Cartesian CFD Methods for Complex Applications, edited by Ralf Deiterding,
Margarete Oliveira and Kai Schneider.



vi Foreword

4. Applications of Wavelet Multiresolution Analysis, edited by Juan Pablo
Muszkats, Silvia Alejandra Seminara and Maria Inés Troparevsky.

5. Progress in Industrial Mathematics: Success Stories, edited by Manuel Cruz,
Carlos Parés and Peregrina Quintela.

6. Applied Mathematics for Environmental Problems, edited by Maria Isabel
Asensio, Albert Oliver and José Sarrate.

7. Improving Applied Mathematics Education, edited by Ron Buckmire and
Jessica M. Libertini.

8. Fractals in Engineering: Theoretical Aspects and Numerical Approximations,
edited by Maria Rosaria Lancia and Anna Rozanova-Pierrat.

9.  Recent Advances in Differential Equations and Control Theory, edited by
Concepcion Muriel and Carmen Pérez-Martinez.

10.  Emerging Problems in the Homogenization of Partial Differential Equations,
edited by Patrizia Donato and Manuel Luna-Laynez.

11.  Multidisciplinary Mathematical Modeling, edited by Francesc Font and Tim
Myers.

12.  Mathematical Descriptions of Traffic Flow: Micro, Macro and Kinetic Models,
edited by Gabriella Puppo and Andrea Tosin.

13.  Systems, Patterns and Data Engineering with Geometric Calculi, edited by
Sebastia Xambo-Descamps.

14.  Modeling, Simulation and Optimization in the Health and Energy Sector,
edited by Rene Pinnau, Nicolas R. Gauger and Axel Klar.

As can be easily seen, the application of mathematics spreads through the most
diverse areas, such as industry, health and energy, engineering data science, environ-
mental problems, geometric calculi, numerical approximation, traffic flow, education,
etc.

Now is the time for the reader to delve into the volumes of this series and learn,
reflect, incorporate new ideas and generally enjoy their content, hoping that the
volumes of this series can serve as a reference for even more innovative applications
of mathematics in the future.

Finally, it is time of acknowledgements. Starting with the ICIAM 2019 Congress,
especially its executive committee led by Tomds Chac6n and Rosa Donat as living
forces of the event, as well as the scientific committee led by Alfio Quarterioni and
the multiple organizers of mini-symposia, speakers and attendees. Continuing with
Francesca Bonadei as the promotor within Springer of the need for the existence of
this series, and with the members of the editorial board of this series, and ending
with the editors in charge and authors of each volume, which with its excellent work,
are the real creators of the message of this series.

Barcelona, Spain Amadeu Delshams



Preface

The papers appearing in this volume are authored by some of the invited speakers
of the 9th International Congress of Industrial and Applied Mathematics, held
in Valencia from July 15 to 19, 2019. This volume is part of a series dedicated to
ICIAM 2019-Valencia.

The congress, hosted by the Spanish Society for Applied Mathematics (SeMA),
was organized at the Universitat de Valéncia (Spain), on behalf of the International
Council for Industrial and Applied Mathematics (ICIAM). With 3983 participants
from 99 different countries, more than 3400 lectures delivered and nearly 250 poster
presentations, ICIAM 2019 has been a great success. These data represent a net
increase in participation, with respect to an already rising trend in previous editions
of this series of events, which can be considered a sound proof of the growing interest
of the applied and industrial mathematics community in ICIAM congresses.

The industrial aspect of the congress was further enriched by organizing a specific
mathematical technology transfer oriented activity: ‘The Industry Day’. Fourteen
speakers, selected from a broad representation of different sectors, presented the
results of ongoing collaborations with academy and the benefits derived from it,
such as better products and services, optimization of processes, organization and
accounting, and growth and innovation. In addition, 19 industrial mini-symposia
were scheduled during the congress, and 48 ‘industry-related’ posters were on display
during ‘The Industry Day.’

Thirty-five satellite events took place during 2018 and 2019 covering a broad
range of topics within industrial and applied mathematics. These events included
two CIMPA schools (Kenitra, Morocco and Tunis, Tunisia, 2019), devoted to initiate
young students from developing countries into research. Also, several Spanish
towns/regions were appointed sub-venues of [CTAM-2019-Valencia (Bilbao, Galicia,
Mailaga, Seville and Zaragoza) and, as such, organized 12 satellite events. We are
deeply thankful to the organizers of all satellite events.

The preparation of the candidacy in 2012 started the long process involved in the
planning of this complex event. Our deepest gratitude and heartiest thanks go to all
the people who helped with their abilities to create ICIAM 2019-Valencia. A list of
all the committees and people involved in this task is given in this book.

vii



viii Preface

The congress could not have been possible without the support of a large set of
sponsors. A special mention is due to our main sponsors: Banco Santander, who
financed over 70% of the Grant Program of the congress, and the Universitat de
Valencia, for its generous offer to make available their facilities to hold the confer-
ence. Thanks are also due to the Spanish universities that contributed to fund over
20% of the Grant Program and to the individual donors who contributed to the
remaining 5%.

A thankful recognition is also due to our four institutional sponsors: Ministry of
Science, Innovation and Universities, Generalitat Valenciana, Diputacié de Valeéncia
and Ajuntament de Valéncia.

On behalf of ICTAM 2019, we would like to express our most sincere gratitude to
the invited speakers that have contributed to this volume for taking the time to provide
their valuable contributions, helping us to make this the reference publication of the
congress.

Sevilla, Spain Tomas Chacon Rebollo
Valencia, Spain Rosa Donat
Pamplona, Spain Inmaculada Higueras
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Universities)
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Opening Ceremony

Tomas Chacén Rebollo, Congress Director

Ihdustrial and Applied

Spain

Your Majesty, President of the Region of Valencia, Minister of Science, Innova-
tion and Universities, Major of Valencia, President of ICIAM, respected guests and
delegates, on behalf of the Spanish Society for Applied Mathematics and the orga-
nizing committee, it is for me a pleasure to convey you our warmest welcome to
ICIAM-2019-Valencia Congress.
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Mathematics is silently shaping the present technological world. It provides a deep
insight in numberless processes and systems, thereby advancing scientific knowl-
edge. It also generates added value in virtually all economic sectors. On top of that,
the last years have witnessed a change in paradigm, as mathematics directly provide
the technological basis of emerging sectors related with data analysis.

The research and transfer in mathematics have experienced a fast development
in Spain; besides all sciences, since the last decades of the twentieth century, Spain
occupies today the 7th world position in mathematical research by citations. The
mathematics play a relevant role in the Spanish economys; in fact, 10% of the national
gross income and 6% of the employment are directly due to its use in the economic
activity.

ICIAM 2019 Congress features 27 invited talks, the 5 ICIAM prices, the Olga
Taussky-Todd Lecture and the Public Lecture. It will count on nearly 2000 talks as
well as 250 posters. It also includes three special panels of great interest to under-
stand the social framework in which our job as mathematicians takes place. This is
industry talking about mathematics, instead of mathematicians talking about their
collaborations with industry. ICTAM 2019 also includes an Industry Day, where 14
technological companies have agreed to present how mathematics helps to improve
their production processes.

Thanks to four different funding programs, we have been able to offer over 230
scholarships to young researchers as well as to researchers coming from developing
countries. In addition, we have implemented a volunteers program with over 170
young students that will greatly help the organization of the congress.

All this has been possible thanks to the collaborative work of the scientific
panel committee, chaired by Prof. Alfio Quarteroni, and an enthusiastic organizing
committee. I convey my deepest thanks to all of them. Special thanks are addressed
to the Spanish Society for Applied Mathematics, and its president, Prof. Rosa Donat,
who also chairs the local organizing committee. Let me also acknowledge the role
of our families, for their support all along the organization of the congress.

We are indebted to ICIAM for trusting us to organize this congress and especially
to her past and present presidents, Profs. Barbara Keyfitz and Maria Esteban, for their
help and advice in the organization process. We also address our deepest thanks to the
many organizations that have sponsored the congress: the Spanish Government, the
Region of Valencia, the Diputacié de Valencia, the City Council and the University
of Valencia, Spanish centers, departments and institutes of mathematics, Springer
Publishing House, Santander Bank and the many individual donors. We are also
indebted to SIAM for embedding their annual meeting in this ICTAM Congress and
also to all you for organizing and participating in the many activities that take place
within it.

You find yourself at the perfect time and place to learn about new mathematical
tools, exchange ideas and move ahead in the thrilling challenge of shaping the world
with mathematics.

Welcome to ICIAM 2019-Valencia Congress!!



Maria J. Esteban, President of ICIAM

VALENCIA
Fintemational Congresson

Industrial and Applied Mathematics
July 1519
Valenci -

His Majesty the King, President of the Generalitat of Valencia, Major of Valencia,
Minister of Science, Innovation and Universities, Congress Director, ladies and
gentlemen, dear colleagues,

It is my great honor and pleasure, to welcome you all to ICIAM 2019, the ninth
International Congress on Industrial and Applied Mathematics.

The ICIAM congresses are the main event organized by our international organi-
zation, a network of more than 50 learned societies. The global ICIAM community
covers many countries and all topics that are related to the applications of mathe-
matics to the real world, to industry, to health, to economy, to climate, to artificial

XXVii



XXViii Maria J. Esteban, President of ICTAM

intelligence and so on. Mathematics is unavoidable in the development of new tech-
nologies and in the advancement of our societies. As the recent report on the impact
of mathematics on the Spanish economy shows, investing in mathematics is a very
good idea, because the economic returns are high. This was also apparent in similar
impact studies carried out previously in the UK, the Netherlands and France.

This congress is the occasion when worldwide applied and industrial mathemati-
cians show to each other what they have done in the past years and what they plan
to do next. During these days, we will prepare the future.

Spain was chosen six years ago to organize this big congress, the main event in
our community, taking place only every four years. In 2015, we were in Beijing,
and in 2023, we will be in Tokyo. Here today in the beautiful city of Valencia,
we host more than 4000 mathematicians from all over the world, junior, senior,
students, professors, researchers and engineers. During these six years, our Spanish
colleagues have worked nonstop to make this congress a big success. In the name
of the whole ICIAM community, let me thank the organizers for their huge effort.
Thank you very much to the Spanish Society of Applied Mathematics (SEMA) and
to the whole Spanish applied mathematics community. Thanks also to all official
Spanish institutions that have offered their support.

And now, to all of you who are eager to see how the congress will develop, I
wish you a productive week. Just be patient and courageous, because the program
of the congress is very heavy, but this is the only way to show the whole span of our
community’s work in only five days. I thank you all for being here, and I wish you
a great congress and a very pleasant week!
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3983 Registered Delegates (Geographical Distribution)

REGISTRATIONS BY COUNTRY (MAIN %)

Others; 22%

India; 3%

South Korea; 4%

Japan; 5%

Italy; 5%

China; 6%

United Kingdom; 6%

Percentage of participants per country

Number of Talks and Posters by Topic

Number of mini-symposia talks, contributed talks and posters by topic

USA; 18%

Spain; 15%

Topics Mini-symposia talks | Contributed | Talks posters
1. Applied Mathematics for Industry and 148 64 35
Engineering

2. Astronomy, Astrophysics and Geophysics 4 8 2
3. Biology, Medicine and other natural 68 41 15
sciences

4. Chemistry, Chemical Engineering 0 2
5. Computational Geometry 4 2
6. Computer Science 3
7. Control and Systems Theory 40 29 5
8. Discrete Mathematics 4 3 3
9. Dynamical Systems and Nonlinear 72 30 15

Analysis
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(continued)

Topics Mini-symposia talks | Contributed | Talks posters
10. Education 16 4 3
11. Finance and Management Science 32 7 3
12. Fluids Physics and Statistical Mechanics 32 19 6
13. Information, Communication, Signals 12 2 5
14. Linear Algebra and Geometry 16 19 1
15. Materials Science and Solid Mechanics 28 11 2
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19. Ordinary Differential Equations 0 9 4
20. Partial Differential Equations 144 57 22
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25. Other Mathematical Topics and their 40 16 11
Applications
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MIA.1. Industrial mathematics success stories | 40 11 3
MIA.2. Industrial mathematics case studies 12 7
MIA 3. Industrial mathematics education 4 3
MIA 4. Industrial mathematics infrastructures | 20 0
to promote industry—academia
collaborations
Total 1344 555 249
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Asteroid-Generated Tsunamis: ™
A ReVieW Check for

updates

Marsha Berger

Abstract We study ocean waves caused by an asteroid airburst located over the
ocean. The concern is that the waves would damage distant coastal cities. Simple
qualitative analysis suggests that the wave energy is proportional to the ocean depth
and the strength and speed of the blast. Computational simulations using GeoClaw
and the shallow water equations show that explosions from realistic asteroids do not
endanger distant cities. We explore the validity of the shallow water, Boussinesq,
and linearized Euler equations to model these water waves.

1 Introduction

This talk will review some of the basics behind the simulation of asteroid-generated
tsunamis, and how this piece of the Asteroid Threat Assessment Program (ATAP)
got its start.

In 1994, the United States Congress asked NASA to identify 90% of asteroids
larger than 1 km in diameter that could pose a threat to Earth. This led to the Near Earth
Observing (NEO) program, which catalogued the objects and tried to determine their
characteristics. In 2005, NASA’s mission was expanded to track near Earth objects
greater than 140 m in diameters. Obviously the largest dinosaur-killing asteroids are
the most dangerous. However, the question arises, how small does an asteroid have
to be before we don’t have to worry about it? Little is known about asteroids smaller
than 140m in diameter, and whether they are safe to ignore. What if one exploded
over an ocean. Could it generate a tsunami that would change it from a regional to a
more global hazard that would threaten coastal populations far away?

As it turns out, in February, 2013 an approximately 20-m asteroid exploded
about 15 miles above the ground over Chelyabinsk, Russia. This airburst provided an
unprecedented opportunity for data collection. Teams of scientists visited, collected

With many thanks to my collaborators Michael Aftosmis, Jonathan Goodman and Randy LeVeque.
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Fig. 1 Airbursts reports from April, 1988 to Dec, 2019. Figure taken from https://cneos.jpl.nasa.
gov/fireballs

samples of the meteor to determine its composition, analyzed web cams from Rus-
sian cars to determine the trajectory and energy deposition, canvassed the region to
see how far away windows broke (evidence of the blast overpressure), etc. [15]. In
other words, data was collected that could be used for model validation. The ATAP
project started shortly thereafter.

A reader might wonder how often such airbursts really occur. Figure 1 shows that
in fact airbursts happens quite regularly. Since most of the world’s surface is water,
an investigation into airburst-generated tsunamis seems warranted.

In this talk I will focus only on simulations of smaller asteroids that explode
before hitting the ground. There is very little literature on the effects of these air-
bursts. There is some literature on simulations of larger asteroids that do reach the
ocean, and sometimes reach the ocean floor [4, 17, 18]. Impact simulations are gen-
erally performed using hydrocodes that simulate material deformation and failure,
multimaterial phase changes (e.g. water turns into vapor and rises through the atmo-
sphere), sediment excavation from the ocean floor, shock waves traveling through
water, etc. A nice discussion can be found in the chapter by Gisler in [6]. These are
very expensive calculations, so they tend to be axisymmetric to reduce cost, includ-
ing the bathymetry.' Asteroid impact simulations is a dynamic area that is receiving
a lot of recent attention [12, 13, 16].

In the next section we will present our simulations using the shallow water equa-
tions modeled with the GeoClaw software package, and describe how GeoClaw was
adapted to model asteroid airbursts. We will review our analysis of a model problem
that helps understand the simulations results. However, it turns out that airburst-
generated tsunamis have smaller length scales that earthquake-generated tsunamis.
Hence we will turn to the linearized Euler equations to bring in the effects of com-
pressibility and dispersion. It will turn out that dispersion is a much more important

! Bathymetry is underwater topography.
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factor at the length scales and pressures of interest, and luckily the shallow water
equations seem to overestimate the effect. We will conclude that airburst-generated
tsunamis do not pose a global threat. This was the conclusion reached by all partici-
pants in the joint NASA-NOAA tsunami workshop in 2016 using a variety of codes
and test problems, summarized in [11].

2 Simulations of Airburst-Generated Tsunamis

2.1 Background

The simulations we first present use the open-source software package GeoClaw
[9]. GeoClaw solves the depth-averaged shallow water equations on bathymetry. It
uses a second order finite volume scheme with a robust Riemann solver to deal with
wetting and drying [5]. Very important for trans-oceanic wave propagation where
coastal inundation is also important is the use of adaptive mesh refinement. GeoClaw
uses patch-based mesh refinement, allowing resolution in deep water with grid cells
the size of kilometers, and on land on the order of meters. Other issues such as
well-balancing (an ocean at rest on non-flat bathymetry stays at rest), and a well-
balanced and conservative algorithm for adding and removing patches, are also part
of GeoClaw. Desktop-level parallelism using OpenMP has also been implemented.
There is no data from asteroid-generated tsunamis to use for benchmarking. We
mention however that GeoClaw has had many benchmarking studies performed for
earthquake-generated tsunamis, especially extensively in 2011 in [7]. This set of
benchmarks was performed to allow GeoClaw to be used in hazard assessment work
funded by the U.S. National Tsunami Hazard Mitigation Program.

The shallow water equations can be derived from the incompressible irrotational
Euler equation using the long wavelength scaling, by assuming the ratioe = h/L <
1. Here, h is the depth of the water and L is the length scale of interest. This scaling
leads to the conclusion that the velocity of the water in the z direction only enters
at O (¢), and the horizontal velocities are constant in the vertical direction to O (€?).
Eliminating the need to compute the vertical velocity reduces the three-dimensional
simulation to a much more affordable calculation using only the horizontal velocities
u and v.

Ordinarily the pressure only appears as a gradient in the shallow water equations,
allowing the value for the pressure itself to be set arbitrarily. In our simulations
however we will need to match the pressure at the top of the water column with the
atmospheric pressure produced by the asteroid blast wave. Re-deriving the shallow
water equations and retaining the pressure produces the following set of equations
for simulation:
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The other terms in (1) are g, gravity, p., the external atmospheric pressure at the water
surface, and p,, = 1025 kg/m? is the density of salt water. B(x, y) is the bathymetry
(underwater topography, or depth of the ocean floor). Note that the pressure forcing
appears in a non-conservative form, as does the bathymetry. In these equations, a
flat ocean would have h(x, y) = —B(x, y). This is often described using the water
elevation n(x, y) = h 4+ B, where sealevelis n(x, y) = 0. In these equations we have
neglected the Coriolis force (often considered unimportant for tsunami propagation).

M?\/ (2 +0v?) . R . . . .
The term D = gh,# is the drag, which is important in numerical simulations

that include inundation. M = 0.025 is the Manning coefficient which we take to be
constant.

To simulate the equation set (1), the external pressure must be known. This is
obtained from detailed simulations of an asteroid entering the earth’s atmosphere at
a given speed, angle, and material composition, performed by others in the ATAP
project [1]. The asteroid deposits its energy in the atmosphere, causing a blast wave.
The simulations extract the ground pressure p,(x, y), and the width and amplitude of
a Friedlander profile, an idealized blast wave profile, is fit to the data. This functional
form is then used in the simulations for the pressure forcing. For simplicity we use
a radially symmetric source term corresponding to a vertical entry angle for the
asteroid. (In other simulations we have performed anisotropic simulations, with no
change to our conclusions.) The blast wave in these simulations travels at 391.5 m/s,
which we take to be constant. This is somewhat faster than the speed of sound in air.

Figure 2 shows a typical profile. A Friedlander profile has a characteristic width
that describes the distance from the leading shock to the ensuing underpressure.
Figure 2 is used in the simulations as follows: At a given time ¢ in the simulation,
each grid point needs to evaluate the atmospheric pressure. If the leading blast wave
travels at speed s = 391.5 m/s, then at time 7 it has travelled a distance d = 391.5 x ¢
meters. If the grid point is farther than d from the initial location of the blast wave
there is no change to the ambient pressure. If it is less, the pressure profile is evaluated
at that distance away and fed to the solver. The blue curve in Fig. 2 shows the profile
at 50s. The amplitude of the overpressure at that time is approximately 100% of
ambient pressure. It is zero ahead of the blast, and decays as it gets closer to blast
center. These values are used in Eq. (1).

The simulation in Fig.2 resulted from a 250 MT asteroid. This roughly corre-
sponds to a meteor with a 200 m diameter entering the atmosphere with a speed of
20km/s. Note that the maximum overpressure of the airburst is approximately 450%.
(Explosions are measured in terms of MT (megatons) of TNT, relating the equiva-
lent destructive power to the uses of dynamite; this is also used to quantify nuclear
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Fig.2 A typical blast wave profile is drawn at two times. The amplitude is fit with a sum of decaying
exponentials and the profile is scaled to get the pressure forcing at a given time. This functional
form is then used in numerical simulations

bombs). For comparison, the explosion of Mount Saint Helens was estimated to be
25-35MT. The largest volcanic explosion ever records was Mount Tamboura, which
was approximately 10-20Gt, and caused global climate change and mass destruc-
tion. The airburst over Chelyabinsk was approximately 520 KT. The Tunguska event,
the largest airburst of the previous century, is now thought to be about 15-20 MT.

We point out that the length scale of the Friedlander profiles are significantly
shorter than those of earthquake-generated tsunamis, which are typically on the
order of 50-100km. We will come back to this point in Sect. 3.

2.2 Analytical and Computational Results for Shallow Water
Equations

In [2], we propose and analyze a one-dimensional model problem that helps describe
the results seen in our simulations. The model problem first assumes that the pressure
disturbance is a traveling wave and then builds on this to solve the problem where the
pressure disturbance starts impulsively at time zero. Of course the actual pressure
disturbance is a decaying function that will generate further waves as it changes
amplitude, but the initial waves are the strongest and most important.

When the pressure pulse from the airburst hits the water, it causes two distinct
waves with two different wave speeds. One will be related to the pressure pulse with
speed 5, and the other is the gravity wave, moving with speed s,. What we call
the response wave is an instantaneous disturbance of the sea surface that is in direct
response to the amplitude of the moving pressure pulse and that propagates at the
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same speed, s, = 391.5m/s (this is called n above, but we change notation here to
indicate it is a response to the pressure forcing).
Our analysis shows the following relationship between the response wave and the
pressure disturbance p,:
J— - )
Puw (s, —87)

In (2), hy is the undisturbed height of the water (i.e. when n = 0). This shows that
the response wave is stronger is deeper water, (almost linearly, since s, depends on
hg too). For 4.5 times atmospheric pressure, at a depth of 3km, the response wave
would have an initial height of approximately 10.8 m. This amplitude would decay
rapidly with the strength of the blast wave. Note that this response wave has positive
amplitude, since p, > 0 and s > s,. This is counterintuitive, since one would think
that pushing on water would have lower its height. With hurricanes, the air pressure
disturbance is negative, and hurricane travel slower than water waves, so again the
water height increases, but this is more intuitive.

There are also gravity waves which move at the slower speed s, = \/ghm/s.
When # = 3000 m, this gravity wave moves at slightly less than 171 m/s, less than
half the speed of the response wave. The initial gravity waves generated can also be
estimated by linearizing the model problem and solving the homogeneous equation
to get:

h(x, 1) = hy(x — syt) — (j—”+1)w+ (j—” - 1) @ 3)
8 8

The first term in (3) is the response wave traveling at blast wave speed s, and the
next two are the gravity waves moving to the right and left with speed s,. We see
that their amplitude is also a function of the amplitude of the response wave.

We next show results from two simulations at different distances from shore
and ocean depths. More details on these particular simulations are in [2]. The first
set of simulations are located off the coast of Westport, Washington. This area has
been well-studied because of its proximity to the earthquake-prone M9 Cascadia
subduction zone. The blast was located 180km from shore, about 30km from the
continental shelf, and the ocean was 2575 m deep underneath the blast. Figure3
shows the region of interest.

Figure 4 shows 3 snapshots at intervals of 25 s after the blast wave. A black circle
is drawn indicating the location of the blast, the red just inside the circle is the
response wave, and further interior to the circle is the gravity waves. Note that the
leading gravity is a depression (negative amplitude). Contours of the bathymetry from
—1000 to —100 are drawn to show the location of the continental shelf. Although
the colorbar scale is from —1 to 1, the response wave height near the blast is over
10m.

Figure 5 shows a zoom of the waves approaching shore (2000s), about to hit the
peninsula (3000 s), and mostly reflecting (4000 s), with some smaller waves entering
Grays harbor. Note that the landscape is better resolved as the waves approach,
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Fig. 3 The first set of simulations has the blast located 180 km offshore from Westport, in 2575 m
deep water, indicated by the purple star. The zoom shows the region of interest studied for inundation
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Fig. 4 Westport simulations at intervals of 25 s after the blast. The waves are spreading symmet-
rically around the blast center. The largest wave is over 10 m at the start
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Fig. 5 Selected times as gravity waves approach Westport coastline. The zooms cover a changing
region closer and closer to shore. No inundation is observed. Note the colorbar scale is a factor of
5 smaller than in the figure above

indicating that the refinement level has increased. The wave amplitudes have greatly
decreased, and no inundation is observed. Note that the colorbar scale (in units of
meters) has been reduced by a factor of 5 in these later plots.

Since the first set of results did not show any inundation despite such a large blast,
the second set puts the blast much closer to shore. We locate the blast 30km off
the coast of Long Beach, California, an area with a lot of important infrastructure.
Figure 6 shows the topography. The water at the center of the blast is 797 m deep.

Figure 7 shows 3 snapshots at intervals of 25 s after the blast wave. Several features
are evident. The black circle, which indicates the location of the blast wave at that
time, no longer coincides with the leading elevation of the response wave (the red
contours). This is because the topography becomes more shallow at the blast wave
approaches Catalina Island, so its instantaneous amplitude has decreased, as expected
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Fig. 6 The second set of simulations has the blast located 30 km from Long Beach, in 797 m deep
water, indicated with the red dot. The zoom shows the region of interest studied for inundation
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Fig. 7 First row shows computed solution for Long Beach simulation at intervals of 25 after the
blast. The black circle indicates the location of the blast wave in air. Bottom row shows zooms near
shore at two later times

from Eq. (2). Also notice that that atmospheric blast wave in the atmosphere jumps
over the island, and the response wave reappears when the blast is again over water.
Once again we see that the gravity waves are mostly a depression.

With this proximity to shore, the blast wave has not greatly decayed before it hits
shore. The blast wave will be the more important cause of casualties and damages,
and not the ensuing tsunami. The zooms in Fig. 7 have more refinement than the early
times. The breakwater is now resolved, and water only approaches shore through the
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breakwater gaps or around the edge. But since the port infrastructure is two meters
high, there is still no flooding. A very tiny bit of flooding is seen along the river (not
visible in these plots).

We performed a number of additional simulations in a variety of locations,
bathymetries, and asteroid strengths, including one with one Gt of energy. We have
not found any examples where airbursts have caused significant onshore inundation.
However, in the next section we examine whether the shallow water equations is an
appropriate model for airburst-generated tsunamis, and compare the previous results
with similar analyses and computations using the linearized Euler equations.

3 The Linearized Euler Equations

Asreviewed earlier, the shallow water equations are along wavelength approximation
to the full 3D equations. Since the length scales of the Friedlander profile are on the
order of 10km, the ratio of water depth to length scale is not that small in a 4km
ocean. Closer to shore the shallow water equations may be more appropriate. The
length scales are also important in determining the effect of dispersion, which is not
present in the shallow water equations.

To examine this more closely, we compare the results from the previous section
using the shallow water equations with those from the linearized Euler equations.
This brings in the effects of both compressibility and dispersion. The latter equations
have the advantage that the free surface boundary condition of the full Euler equations
becomes a simple boundary condition when linearized, so the free water surface and
the atmosphere do not have to be tracked or computed. Unfortunately it does require
that the vertical direction be discretized along with the two horizontal directions, and
so is much more expensive than a depth-averaged equation set.

3.1 Analytical and Computational Results for Linearized
Euler

Again, we first review the results from [2] for our model traveling wave problem but
for the linearized Euler equations (which are also derived there). Unlike the shallow
water equations, which do not have any dependence on wave length, there is such
a dependence in the Euler equations. We first present results for a single frequency
k, where the length scale L = 27 /k. We then apply our results to a function with
many frequencies. Finally we show some preliminary results of radially symmetric
simulations confirming the model problem conclusions.

If we denote the external pressure forcing p.(m) = Age'™, where m = x — spt
is the traveling wave variable in our model problem, we can compute the response
coefficients as a function of wave number, i.e. i, (m) = fz\,ei km and amplitude Ay, and
similarly for the velocities # and now the vertical velocity w too. The traveling wave

ikm
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Fig. 8 Comparison of response wave amplitudes as a function of length scale for the shallow water
and linearized Euler equations. These were evaluated for a 4 km deep ocean, and 1 atm overpressure.
At smaller length scales the dominant difference is due to dispersion, not to compressibility

problem can no longer be solved exactly, but can be evaluated numerically. In Fig. 8,
we evaluate the solution to the model problem using an ocean depth of 4 km, and an
amplitude of 1 atmosphere for the overpressure. We take the speed of sound in water
cw = 1500 m/s, and density p,, = 1025 kg/m>. Figure 8 also evaluates the results for
an artificially faster speed c,, = 108, in order to approach the incompressible limit.

The green curve in Fig. 8 is the shallow water amplitude of the response wave. It
is constant, since as expected there is no dependence on wave number. We can also
compute the nonlinear response, which is done in [2], and overlays the linearized
response. The blue curve is the linearized Euler result using the real sound speed of
water. This does not appear to approach the shallow water curve. The red curve uses
the artificially larger sound speed c,, = 10%, which approaches the incompressible
limit and does approach the shallow water curve, giving us more confidence in the
results. The difference between the linearized Euler curve and the shallow water
curve is roughly 10%. We are calling this the effect due to compressibility. However,
at the length scale of interest for airburst-generated tsunamis, the difference between
the curves is over a factor of 2. We conclude that dispersion is a much more important
effect.

Figure 8 showed the amplitude response due to a single frequency pressure per-
turbation. In Fig.9 we evaluate the response to a Gaussian pressure pulse p,(m) =
exp(—0.5(m/5)?) that includes all frequencies. We take the Fourier transform, mul-
tiply each frequency by the Fourier multiplier shown in Fig. 8 and transform back, so
this is still a static response. The left figure shows results in 4 km deep water, and the
right in 1km deep water. Again we see that compressibility accounts for a smaller
portion of the height difference between shallow water and linearized Euler results
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Fig. 9 Comparison of responses to a Gaussian pressure pulse in 4km deep water (left) and 1 km
deep water (right)

than dispersion. Note also that the Euler results have broadened, an indication of
dispersion. The results in shallower water match better, as expected. Luckily, in all
cases the shallow water results overestimate the response including compressibility
and dispersion.

Finally, in Figs. 10 and 11 taken from [3] we show snapshots from time dependent
simulations with the 250 Mt airburst and compare linearized Euler (denoted AG for
acoustic with gravity in the legends), shallow water, and two different Boussinesq®
models [8, 14]. We thank Popinet for the use of Basilisk in simulations using the
Serre-Green-Naghdi (SGN) set of equations, and Jiwan Kim for the use of Bouss-
Claw, which uses the Madsen Sgrensen equation set [10].

We first show results in a4 km deep flat ocean, then 1 km deep. Note that the scales
are not the same in the two figures. Also, since the tsunami travels more slowly in
shallower water, we only show those results every 100 s. Note that the leading shallow
water gravity wave is a depression in both simulations. Also note that the two Boussi-
nesq simulations agree with each other better than with the linearized Euler runs.
The SGN simulation is in two space dimensions, and plotted as a function of radius,
hence is much noisier than the other simulations which were one-dimensional radi-
ally symmetric computations. We point out that Boussinesq waves decay inversely
proportional to distance traveled, whereas shallow water waves decay inversely to the
square root of distance. Finally, all 4 codes show the same response wave behavior
as an elevation in sealevel, albeit with different magnitudes.

We do not think that the depth-averaged equations are suitable for simulating the
initiation of gravity waves, since there is significant variation in the vertical velocity.
It does seem that depth-averaged equations can be used to propagate the waves, once

2 Generally speaking, the Boussinesq equations keep the next term in the long-wavelength expansion
for the shallow water equations. They are depth-averaged, but much more complicated than shallow
water since they include dispersive terms with third order derivatives. We do not describe them
further.
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Fig. 10 Comparison of initial generation of airburst tsunami using all 4 models in a 4km deep
ocean. Selected frames every 50s. After 300s, the SGN and BoussClaw resuls match linearized
Euler in the leading gravity wave, but not (yet) the rest. The SWE model does not generate gravity

waves that match at any of the times

initiated by a higher fidelity simulation. This has been demonstrated in [3]. We do
not yet know how this translates into shoreline inundation. Preliminary evidence
indicates that the shallow water model provides an overestimate of run-in due to
airbursts, as it did in predicting wave height for the response wave, but we need more

evidence for this hypothesis.
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Fig. 11 Comparison of airburst generated tsunamis using all 4 models in a 1km deep ocean.
Selected frames every 100s. After about 200s, SGN and BoussClaw match the linearized Euler
results in the leading gravity wave, and by 400s, the next few waves are very similar, though the
amplitude is not quite right. The shallow water model still has very different waves

4 Conclusions

We have presented several numerical simulations of the shallow water equations in
response to a 250 Mt airburst. The results are further explained using a traveling
wave model problem, for both the shallow water and linearized Euler equations. All
results show that there is no significant water response (in either the response wave
or the gravity wave) to the airburst. The most serious danger from an airburst would
be from the blast itself if close enough to the blast center, rather than from water
waves it generated.

We also found that because of the shorter wave-lengths of an airburst, the shallow
water equations do not provide an accurate simulation of propagation for these waves,
compared to simulations using Boussinesq or linearized Euler models. However it
may be possible to use the shallow water equations to give an estimate of shoreline
inundation. This is a matter for future study.
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Some Case Studies in Environmental ®
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Alfredo Bermudez

Abstract This presentation deals with four case studies in environmental and indus-
trial mathematics developed by the mathematical engineering research group (mat+i)
from the University of Santiago de Compostela and the Technological Institute
for Industrial Mathematics (ITMATI). The first case involves environmental fluid
mechanics: optimizing the location of submarine outfalls on the coast. This work,
related to shallow water equations with variable depth, led us to develop a theory
for numerical treatment of source terms in nonlinear first order hyperbolic balance
laws. More recently, these techniques have been applied to solve Euler equations
with source terms arising from numerical simulation of gas transportation networks
when topography via gravity force is considered in the model. The last two problems
concerns electromagnetism. One of them is related to nondestructive testing of car
parts by using magnetic nanoparticles (the so-called magnetic particle inspection,
MPI): mathematical modelling of magnetic hysteresis to simulate demagnetization.
Finally, we present a mathematical procedure to reduce the computing time needed
to achieve the stationary state of an induction electric machine when using transient
numerical simulation.

1 Introduction

Four case studies developed by the Research Group in Mathematical Engineering
from the University of Santiago de Compostela (USC) and the Technological Institute
for Industrial Mathematics (ITMATI) are considered. Two of them are related to
fluid mechanics. The first one was developed in the framework of a contract with the
Ministry of Public Works of Galicia and concerns shallow water flows in a domain
with variable depth. The second one deals with gas flow in transport networks and has
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been done for the Reganosa company. From the mathematical point of view both are
modelled with systems of nonlinear hyperbolic partial differential equations with
source terms and the goal is to set up suitable finite volume discretization of the
source terms.

The other two case studies concern electromagnetism. The goal of the first one,
that has been financed by CIE Automotive company, is numerical simulation of mag-
netization and demagnetization processes in magnetic particle inspection procedures.
Finally, the last case study is related to numerical solution of electric machines with
optimal design in view. The underlying mathematical problems are, respectively,
mathematical and numerical analysis of models for electromagnetic hysteresis, and
methods to determine appropriate initial conditions for transient electromagnetic
simulations, in order to attain the steady state as soon as possible.

2 Environmental Flows. The Shallow Water Equations

The technical goal of this work, commissioned by the Galician government to our
research team in the eighties, was to determine the optimal location of submarine
outfalls along the coast of the Galician rias. For this purpose several steps were done
involving modelling, simulation and optimal control:

e To compute the velocity field due to tidal currents and wind which was done by
using the shallow water equations

e To solve a mathematical model giving the evolution and dispersion of some pol-
lution indicators as fecal coliforms or biochemical oxygen demand (BOD)

e To formulate and solve some constrained optimal control problems related to
outfall position and management of wastewater treatment systems.

Regarding the first step, as the shallow water equation is a nonlinear system of
hyperbolic partial differential equations, numerical methods developed in the eighties
of the last century for Euler equations can be applied to its numerical solution.
We mean finite volume methods combined with approximate Riemann solvers. The
unexpected problem we found was related to the discretization of the source term
which is present in the shallow water equations when the bottom is not flat. In order
to give some insight we refer to Fig. 1: we have solved the shallow water equations by
using a finite volume scheme with the Van Leer Q-scheme as approximate Riemann
solver for flux term upwinding, and a centred scheme to discretize the source term
arising from non-flat bottom. We have considered a static configuration in a closed
channel, more precisely, the initial condition (and then the solution along the time)
corresponds to water at rest. In the left plot one can see the computed water level
which is a quite good approximation. However, the right plot shows the computed
velocity which varies between around —60 and 80 m/s while the exact velocity is
null.
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Fig. 1 Shallow water. Centred discretization of the source term. Computed water level (left) and
computed velocity (right). Notice that the zero line is the result of a numerical simulation using [10]

Motivated by this problem, in the old paper [10] we developed a general method-
ology to discretize source terms in nonlinear systems of first order hyperbolic partial
differential equations. In particular, our methods solve exactly the previous static
problem. This paper is considered a seminal work in the theory of well-balanced
schemes for numerical solution of conservation laws with source terms, an active
field of research during the last years. Moreover, thirty years later, this methodol-
ogy was applied by our research group to a different problem: Euler equations with
gravity, more specifically, to numerical simulation of gas transportation networks on
non-flat topography.

3 Gas Network Simulation

This industrial demand from the Reganosa company consisted in writing a software
code for transient numerical simulation of a gas transport network. In Fig.2 the
high-pressure Spanish gas network is shown. Besides the great number of pipes, it
includes entry (emission) and exit (consumption) points, underground storages and,
more importantly, compression stations. The latter are needed to compensate the
pressure drop along the network due to viscous friction of the gas on the pipe walls.

3.1 Mathematical Modelling: Homogeneous Gas Flow
in a Pipe

The mathematical model for gas flow in a pipe consists of Navier-Stokes equations
for compressible flows. More precisely, it involves the mass, momentum and energy
conservation laws and some additional equations: the state equations for real gases
and the Darcy-Weisbach law for turbulent friction between gas and pipe walls com-
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Fig. 2 Spanish gas transport network

bined with Colebrook equation to compute the friction factor. As the pipe length is
much larger than the area of its cross-section we can use a 1D model:
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6 is absolute temperature (K)

p is pressure (Pa)

Z(6, p) is the compressibility factor (dimensionless)
E is the specific total energy (J/kg)

e is the specific internal energy (J/kg)

0y is a reference temperature (K)

¢y (0) is the specific heat at constant volume (J/(kg K)).

3.2 Numerical Solution: One Single Pipe with Homogeneous
Gas

Numerical methodology for solving the compressible Euler equations for homoge-
neous mixtures of perfect gases without sources has been well established since the
eighties of the last century. For instance, one can use a simple first-order method
consisting of Euler explicit for time discretization, finite volume method for space
discretization, and approximate Riemann solvers (e.g., van Leer’s Q-Scheme) for
upwind discretization of the flux term (see, for instance, [24]). However, when source
terms are present (e.g., the gravity term with variable heigth), numerics is more dif-
ficult and similar to the shallow water equations the use of well-balanced schemes
is mandatory. This means that the discretization of source terms also needs some
upwinding. In the last years many papers devoted to numerical solution of Euler
equations with gravity have been written. Let us mention, for instance, [13-15, 23,
25, 27].

In order to highlight the need of using an upwind discretization of the source
terms, we consider the following very simple test problem: i (x) in the gravity
source term is an arbitrary function and we look for a static isothermal solution,
ie., satisfying v(x) =0, 60(x) =0,;, VYx € (0,L). It is easy to see that the

(h(x) — ho)) , and

P(xX) = Rbexipoexp (— R_ (h(x) — ho)). For the data given in Table 1, the com-
Xt

exact solution is given by v(x) =0, p(x) = pgexp (—

puted mass flow rate is shown in Fig.3 as well as the exact solution which is null.
One can see that the former is very bad, oscillating between around —10 and 10.

By using the general methodology developed in [10], we have proposed a dis-
cretization of the gravity term in [7] leading to a well-balanced scheme that repro-
duces the null solution exactly.

Table 1 Data for static isothermal test
R (J/(kgK)) Oext (K) h(x) (m) L (m)
480 288.15 1000sin ( 4% x) 40,000
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Fig. 3 Mass flux, (kg/(m2 s)). Computed with centred discretization of source terms (black) and
exact (red). The horizontal axis is the distance to the origin of the pipe

3.3 Network with Heterogeneous Gas

Simulation of heterogeneous gas flowing in a network is more difficult. New problems
arise: junction modelling, gas quality simulation. These issues have been addressed
in papers [8, 9].

3.4 Experimental Validation in a Real Small Network

The code has been used for a small gas network and the results have been compared
to real measurements. The network can be seen in Fig. 4.

Topography is quite irregular as can be seen in Fig. 5. Results and measurements
corresponding to mass flow rate and pressure for some particular nodes are shown
in Figs. 6 and 7, respectively.

4 Non-destructive Testing: Magnetic Particle Inspection
(MPI)

MPI is a non-destructive testing technique to detect near-surface defects in ferromag-
netic pieces. The process is as follows: firstly, the workpiece is magnetized. Then, the
presence of a surface discontinuity in the material allows the magnetic flux to leak,
since air cannot support as much magnetic field per unit volume as metals. In order
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to identify a leak, ferrous particles, either dry or in a wet suspension, are applied
to the workpiece. Then they are attracted to an area of flux leakage and form what
is called an indication which is evaluated to determine its nature. Since cracks are
more easily detected when they are perpendicular to the induced field, two magneti-
zations are made: circular and longitudinal. After inspection, a final demagnetization
step is required for subsequent processing of the workpiece. In the next subsection
we introduce an axisymmetric model for circular magnetization and present some
numerical results (Figs. 8 and 9). Further details can be found in Refs. [2, 4-6].
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Fig. 6 Mass flow rate at node 01A. Blue: real measurement. Red: computed with a homogeneous
gas model. Green: computed with a heterogeneous gas model

Fig. 7 Pressure at node I-015. Blue: real measurement. Red: computed with a homogeneous gas
model. Green: computed with a heterogeneous gas model

Suspension of ferromagnetic particles ﬁ

Ferromagnetic i v t
work plece
] L i E— 18 o .
] — S ——
Crack Magnetic _\-_Cr}_ JJ#; -
¥ field lines T —— e
———— —— e Twidiin

Fig. 8 Magnetic particle inspection
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Fig. 9 Crack indication. Circular magnetization. Longitudinal magnetization

Fig. 10 Circular
magnetization

4.1 Circular Magnetization. Axisymmetric Model

Let us introduce a mathematical model for circular magnetization. Thanks to axisym-
metry, it can be written on a meridional section (see Fig. 10).

Given [ (¢), the magnetizing or demagnetizing current, and an initial condition
Hy, find Hy in 2 x (ty, T'] such that
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0By 1 .
Weg + curl | — curl(Hpeg) | =0 in 2 x (1, T,
o

Hy(0,z,t) =0 on (0, L) x (ty, T1,
1(t)

Hyp(Rs(2),z,1) = 27 Rs@) on (0, L) x (1, T],

dHy
B_Z(p’ th) =0 on (Fl UFZ) X (t07T]’

Hy(p, z, 1)) = Hy(p,z) in £2.

and
By (x,1) = B(Hp(x,.), (x))(2),

where B is a scalar hysteresis operator to be defined later.

4.2 Hpysteresis Modelling

Mathematical modelling of hysteresis is now a well established subject (see, for
instance, the reference books [11, 12, 17-19, 26]). Let us summarize the main
issues of the theory. We consider a system whose state is characterized by two scalar
variables, # and w, which are assumed to depend continuously on time ¢. In our case
u = Hy and w = By. The value of w(t) is determined by u(¢) and by the values of
u(t) for t < t. Let us introduce some basic definitions and notations (Fig. 11).

At any instant 7, w(t) depends on the previous evolution of #, and on an initial
state of the system to be called £&. We can formalize this as follows:

w(t)=Fw,&)@) Ytel0,T].

Fig. 11 Hysteresis major
and minor loops
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Here F (-, &) represents an operator between suitable spaces of time-dependent func-
tions. Notice that F is non-local in time. A particular example of hysteresis operator
is the Preisach operator:

F:C%0,T]) x Y — C°([0, TY),

[F(u, $))(@) := /[hp(u,é(p))](t)lﬂ(p)dp,
T

where 7T is the Preisach triangle, 0 < p € L'(7) is the Preisach function which is
determined by physical experiments for each material (see Fig. 12), &, is the relay
function (see Fig. 13) and & : 7 — {—1, 1} is a Borel measure representing the initial
magnetic state.

The classical Preisach model is built with the so-called rate-independent relay:
let us fix any pair p := (o1, p2) € R2, p1 < py. For any continuous function u :
[0,T] — Rand any & € {—1, 1}, we define &, (u, £) as follows.

Lett; <... <ty <tbesuchthatu(t;) € {p1, p2}. If {t;} = D ort =0, then

—lifu() < p1,
hp(u,8)(t) = § if py <u(®) < p2,
L ifu(t)> pa,
else
) 1 if u@ty) = pa,
hp(l/l, 5)@) T { —1if M(IN) = py.
If we split 7 = S (1) U S, (t), where

Set) ={(p1.p2) € T : [rp(u, E)1(t) = 1},
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then
[F G, )1(0) = / p(o)dp — f p(o)dp.

S () Su (1)

We present some results obtained by solving the above model for a real crankshaft
(see Fig. 14 for input data). Figure 15 shows the remanent magnetization after the
circular magnetization process. In its turn, Fig. 16 shows the applied demagnetization
current and the remanent magnetization after demagnetizing.

5 Accelerated Simulation of Electric Machines

In the design of electric machines (see Fig. 17), numerical simulation is an important
tool. The engineer needs to know the behaviour of the machine in steady regime. In
particular, he/she wants to know the torque. In order to get this steady state, finite
element methods are used to solve a transient nonlinear system of PDEs derived
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Fig. 17 Main parts
integrating an induction Coil side
motor. From Wikimedia
Commons by Mtodorov 69
under license CC-BY-SA-3.0

Shaft

Rotor bar

from Maxwell equations, coupled with electrical circuit equations, starting from
an (arbitrary) initial condition until the steady state is achieved. The time for this
transient model to attain the steady state highly depends on the choice of the initial
condition. When an unappropriate value is prescribed (for instance, when it is set to
zero), a very long CPU time is needed to reach the steady state solution. Therefore,
techniques leading to a suitable initial condition are in high demand and in the
literature we can find several approaches to the problem. Let us mention, for instance,
time periodic finite element methods [21], time periodic-explicit error correction
methods [16], time differential correction [20], parareal algorithms [22]. A common
drawback for these methods is the need of choosing a suitable time interval in which
the solution is assumed to be periodic: the so-called effective period. Indeed, magnetic
fields in rotor and stator oscillate at different frequencies and the common time at
which both are periodic is generally quite large. However, the periodicity condition
has to be defined in a short time interval for the method to be useful. Our methodology
aims to compute a suitable initial condition and has the advantage of making use of
periodicity property only in the rotor bars, so the above limitation does not apply.
Moreover, the computational cost of our approach does not depend on the size of this
period, and the number of unknowns is very small in comparison with the previously
mentioned methods.

This work has been developed under contract with the company Robert Bosch
GmbH from Stuggart (Stefan Kurz, Marcus Alexander). It has given rise to a Spanish
patent. A detailed description of the methodology has been published in papers [1]
and [3].

5.1 Description of the New Methodology

The main lines of the developed methodology can be described for a toy model. Let
us consider a simple series circuit with an inductor and a resistor,

Li(r) + RI(t) = E(1),
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Conductors

Magnetic

Fig. 18 A quarter of the geometric domain at time r = 0 (left) and # > 0 (right). Modification of
a picture provided by Robert Bosch GmbH

with the electromotive force
E(t) = Esin(wt)

The general solution is

R
I(t)= Aet' +
~ |Z(w)]
transient part

sin(wt — p(w))

steady solution

where Z(w) = R 4+ wLi € C is the impedance of the circuit and ¢ (w) its argument.
We have two opposite extreme situations:

o If ¥ > 1, then the exponential vanishes quickly independently of the initial
condition

o If % <« 1 then the transient part strongly depends on the initial condition. More-
over, in this case

o(w) ~ % and | Z(w)| ~ ol

and hence
_x, E
1(t) = Ae L' + — cos(wt).
oL

If the equation is solved for I(0) = 0, then the solution is approximately given by

1)~ — et 2 coswr
x~ ——¢ — COS wi,
oL wL

so it includes a transient part. However, if the equation is solved for
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10) = —
oL’
then A = 0 and the transient part is close to zero from the beginning. The important
remark is that, if X « 1 then the above initial condition can be obtained without

L
solving the ODE, as follows:

e Firstly, the term involving the resistor can be neglected
e Then, we integrate the equation twice: first between 0 and ¢ and then between 0
and 7. We get

T T

ET

L/I(t)dt — LTI(0) =]E/(T —s)sinwsds = —
0

w
0

e Moreover, since the steady solution is harmonic then fOT 1(t) dt = 0 and from the
above equation we deduce
1 ET E
0)= ——=—
LT w wL
which is the suitable initial condition previously obtained. The interesting feature of
this method is that it can be used in more general settings; in particular, to the model
of induction machines with squirrel cage. In this case, the problem to be solved is
the following:
Given currents along the coil sides 1,,(t),n = Ny + 1, ..., N, and initial currents
along the bars y,?, n=1,..., Ny, find, for every t € [0, T], currents y,(t), n =
1, ..., Ny, along the bars such that y,(0) = y,?, n=1,..., Ny, and

Rb%}' (t,yb(t)) 4 (Rh + (Ab)T B! (Ab))yh(t) A0 (Ah)T (g) _o.
byb 0)
A’y (t)-(e>_o,

where F 1 [0, T] x RN — RN is the nonlinear operator defined as
T

F(t,w) = /UA(x, v, t)dxdy,..., / cA(x,y,t)dxdy e R,
21 QN[;

for te[0,T],weR™, with A(x, y, t) the solution to the following nonlinear
magnetostatic problem:

Given afixedt € [0, T], currents along the coil sides I,,(t),n = N, + 1, ..., Ng,
and w € R™ find a field A(x, y, t) such that
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—div(vg gradA) =0 1in QSOt Ur, (Qgta) i

—di radAd) = ———— inf2,,n=1,..., N,
iv(vo g ) meas($2,) in n A
. 1, (1) .
—div(ypgradA) = ———— inr(82,), n =N+ 1,..., N,
meas($2,)

—div(v(-, |gradA|) gradA) = 0 in 25" Ur, (25°),

nl

with suitable transmission and boundary conditions.

5.2 Numerical Experiments with Real Electric Machines

We present the numerical results obtained for a particular induction machine with
squirrel cage rotor. Firstly, we use our method to get a suitable initial condition. Next,
we solve the transient model with this initial condition and compare the time needed
to reach the steady-state with the one needed by taking null initial condition. The
electric machine we have used for numerical experiments can be seen in Figs. 18 and
19. For confidentially issues it is a modification of a picture provided by Robert Bosch
GmbH. Red, yellow and blue colors correspond to the three different phases. It is
composed by 36 slots in the rotor and 48 slots in the stator. It is a three-phase machine
having 2 pole pairs with 12 slots per pole. The source currents are characterized by
an electrical frequency f. and a RMS current I, through each slot. The currents
corresponding to each phase of the stator are defined as

14(t) = V2 1. cos Qrfo1)

2
I5(t) = V2 I, cos <2nfct + T”) ,

Ic(t) = ﬁlc cos <2nfct — ZTT[) .

We have considered four operating points corresponding to different electrical
sources in the stator and different rotor velocities. They are described in Table2.
The physical time to reach the steady state for the different operating points can
be seen in Table 3. Finally, in Fig.20, the computed torque and current along the
transient simulation are shown for operation point # 4.

Notes and Comments.

e We have presented four case studies in industrial mathematics, all related with
numerical simulation by partial differential equations

e In addition to the industrial outcome, in all cases scientific papers related to the
developed methods have been published

e This shows that industrial problems usually lead to new mathematical develop-
ments
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Fig. 19 Transversal section of an induction electric motor with squirrel cage

Table 2 Operation points for numerical tests

fe (Hz) ny (rpm) 1. (ARMS)
Op. Point 1 42.1 1000 675
Op. Point 2 171.2 5000 314
Op. Point 3 417.5 12,000 675
Op. Point 4 632.0 18,000 531

Table 3 Time to get the steady state with null initial condition and with the one obtained by the

new method
Initial condition Tsteady (s)
Op. Point 1 y20) =0 0.1200
y?(0) = Yu 0.0600
Op. Point 2 y2(0)=0 0.0840
y2©) = Yu 0.0120
Op. Point 3 y20) =0 0.2100
y?(0) = Yu 0.0550
Op. Point 4 y20) =0 0.3467
y?(©) = Yu 0.0133
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Fig. 20 Op. Point 4. Torque versus time (left). Current in bar 1 versus time (right)

e Industrial mathematics is a nice area with good opportunities for young mathe-
maticians willing also to learn other scientific disciplines

e Postgraduate studies mixing applied mathematics and areas of application as
physics, chemistry, biology, medicine, economy, etc. are a good initial step to
develop a career in this promising area of increasing interest for companies and
research institutions.

Acknowledgements This work has been partially supported by Robert Bosch GmbH under con-
tract ITMATI-C31-2015, by FEDER and Xunta de Galicia (Spain) under grant GI-1563 ED431C
2017/60, by FEDER/Ministerio de Ciencia, Innovacién y Universidades-Agencia Estatal de Inves-
tigacion under the research project MTM2017-86459-R.

References

1. Bermidez, A., Dominguez, O., Gémez, D., Salgado, P.: Finite element approximation of nonlin-
ear transient magnetic problems involving periodic potential drop excitations. Comput. Math.
Appl. 65, 1200-1219 (2013)

2. Bermidez, A., Dupré, L., Gémez, D., Venegas, P.: Electromagnetic computations with Preisach
hysteresis model. Finite Elem. Anal. Des. 126, 65-749 (2017)

3. Bermidez, A., Gémez, D., Pifieiro, M., Salgado, P.: A novel numerical method for accelerating
the computation of the steady-state in induction machines. Comput. Math. Appl. (2019)

4. Bermudez, A., Gémez, D., Pifieiro, M., Salgado, P., Venegas, P.: Numerical simulation of
magnetization and demagnetization processes. IEEE Trans. Magn. 53(12) (2017)

5. Bermidez, A., Gémez, D., Rodriguez, R., Venegas, P.: Mathematical analysis and numerical
solution of axisymmetric eddy-current problems with Preisach hysteresis model. Rend. Semin.
Mat. Univ. Politec. Torino 72(1-2), 73-117 (2014)

6. Bermidez, A., Gomez, D., Venegas, P.: Mathematical analysis and numerical solution of models
with dynamic Preisach hysteresis. J. Comput. Appl. Math. 367 (2020). https://doi.org/10.1016/
j.cam.2019.112452

7. Bermiudez, A., Lopez, X., Vazquez-Cendén, M.E.: Numerical solution of non-isothermal non-
adiabatic flow of real gases in pipelines. J. Comput. Phys. 323, 126-148 (2016)


https://doi.org/10.1016/j.cam.2019.112452
https://doi.org/10.1016/j.cam.2019.112452

38

10.
11.
12.
13.
14.
15.

16.

17.
18.
. Mayergoyz, I.D.: Mathematical Models of Hysteresis. Springer, New York (1991)
20.

21.

22.

23.

24.
25.

26.
217.

A. Bermudez

Bermudez, A., Lopez, X., Vazquez-Cendén, M.E.: Treating network junctions in finite volume
solution of transient gas flow models. J. Comput. Phys. 344, 187-209 (2017)

Bermudez, A., Lopez, X., Vazquez-Cendén, M.E.: Finite volume methods for multi-component
Euler equations with source terms. Comput. Fluids 156, 113-134 (2017)

Bermidez, A., Vizquez-Cendén, M.E.: Upwind methods for hyperbolic conservation laws
with source terms. Comput. Fluids 23(8), 1049-1071 (1994)

Bertotti, G.: Hysteresis in Magnetism. Academic Press, New York (1998)

Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions. Springer, Berlin (1996)

Chalons, C., Coquel, F., Godlewski, E., Raviart, P.A., Seguin, N.: Godunov-type schemes for
hyperbolic systems with parameter-dependent source: the case of Euler system with friction.
Math. Models Methods Appl. Sci. 20, 2109-2166 (2010)

Chandrashekar, P., Klingenberg, C.: A second order well-balanced finite volume scheme for
Euler equations with gravity. STAM J. Sci. Comput. 37(3), 382402 (2015)

Kippeli, R., Mishra, S.: Well-balanced schemes for the Euler equations with gravitation. J.
Comput. Phys. 259, 199-219 (2014)

Katagiri, H., Kawase, Y., Yamaguchi, T., Tsuji, T., Shibayama, Y.: Improvement of convergence
characteristics for steady-state analysis of motors with simplified singularity decomposition-
explicit error correction method. IEEE Trans. Magn. 47(6), 1786—1789 (2011)

Krejci, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho Co.
Ltd., Tokyo (1996)

Krasnosel’skii, M.A., Pokrovskii, A.V.: Systems with Hysteresis. Springer, Berlin (1989)

Miyata, K.: Fast analysis method of time-periodic nonlinear fields. J. Math. Ind. 3, 131-140
(2011)

Nakata, T., Takahashi, N., Fujiwara, K., Muramatsu, K., Ohashi, H., Zhu, H.L.: Practical
analysis of 3-D dynamic nonlinear magnetic field using time-periodic finite element method.
IEEE Trans. Magn. 31(3), 1416-1419 (1995)

Schops, S., Niyonzima, 1., Clemens, M.: Parallel-in-time simulation of eddy current problems
using parareal. IEEE Trans. Magn. 54(3), 1-4 (2018)

Thomann, A., Zenk, M., Klingenberg, C.: A second order well-balanced finite volume scheme
for Euler equations with gravity for arbitrary hydrostatic equilibria. Int. J. Numer. Methods
Fluids 89, 465-482 (2019)

Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, New York
(2009)

Varma, D., Chandrashekar, P.: A second-order, discretely well-balanced finite volume scheme
for Euler equations with gravity. Comput. Fluids 181, 292-313 (2019)

Visintin, A.: Differential Models of Hysteresis. Springer, Berlin (1994)

Xing, Y., Shu, C.-W.: High order well-balanced WENO scheme for the gas dynamics equations
under gravitational fields. J. Sci. Comput. 54, 645-662 (2013)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


http://creativecommons.org/licenses/by/4.0/

Modelling Our Sense of Smell )
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Carlos Conca

Abstract The first step in our sensing of smell is the conversion of chemical odor-
ants into electrical signals. This happens when odorants stimulate ion channels along
cilia, which are long thin cylindrical structures in our olfactory system. Determining
how the ion channels are distributed along the length of a cilium is beyond current
experimental methods. Here we describe how this can be approached as a mathemat-
ical inverse problem. Identification of specific functions of receptor neuron arrays
is a major challenge today in both Mathematics and Biosciences. In this paper, two
integral equations based mathematical models are studied for the inverse problem
of determining the distribution of ion channels in cilia of olfactory neurons from
experimental data.

1 Introduction

The first step in sensing smell is the transduction (or conversion) of chemical infor-
mation into an electrical signal that goes to the brain. Pheromones and odorants,
which are small molecules with the chemical characteristics of an odor are found
all throughout our environment. The olfactory system (part of the sensory system
we use to smell) performs the task of receiving these odorant molecules in the nasal
mucosa, and triggering the physical-chemical processes that generates the electric
current that travels to the brain. see Fig. 1 and Sect. 1.1.

What happens next is a mystery. Intuition tells us that the electrical wave generated
gives rise to an emotion in the brain, which in turn affects our behavior. Of course, the
workings of our other four senses is similarly a mystery. And so, we quickly come to
perhaps one of the most fundamental questions in neurosciences for the future: How
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Fig.1 Odorants reaching the nasal mucus (left) and structure of an olfactory receptor neuron (right)

does our consciousness processes external stimuli once reduced to electro-chemical
waves and, over time, how does this mechanism lead us to become who we are?

How can we approach this problem with mathematics? Faced with these reflec-
tions, applied mathematicians take time to stop and wonder if it is possible to provide
such far-reaching phenomena with a mathematical representation that allows us to
understand and act. Biology is synonymous with “function”, so the study of biologi-
cal systems should start by understanding the corresponding underlying physiology.
Consequently, to obtain a proper mathematical representation of the transduction of
an odor into an electrical signal, and before any mathematical intervention, we must
first detect which atomic populations are involved in the process and identify their
respective functions.

1.1 Transduction of Olfactory Signals

The molecular machinery that carries out this work is in the olfactory cilia. Cilia are
long, thin cylindrical structures that extend from an olfactory receptor neuron into
the nasal mucus (Fig. 1).

The transduction of an odor begins with pheromones binding to specific receptors
on the external membrane of cilia. When an odorant molecule binds to an olfactory
receptor on a cilium membrane, it successively activates an enzyme, which increases
the levels of a ligand or chemical messenger named cyclic adenosine monophos-
phate (cAMP) within the cilia. As a result of this, cAMP molecules diffuse through
the interior of the cilia. Some of the cAMP molecules binds to cyclic nucleotide-
gated (CNG) ion channels, causing them to open. This allows an influx of positively
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Fig. 2 Signal transduction mechanism for the olfactory system. a In the absence of stimulus
channels are closed, system is at resting state. b Binding of odorants triggers cAMP synthesis
and opening of CNG channels, leading to Ca?* and Na* transport and a C1~ flux

charged ions into the cilium (mostly Ca’>* and Na* as illustrated in Fig.2), which
causes the neuron to depolarize, generating an excitatory response. This response
is characterized by a voltage difference on one side and another of the membrane,
which in turn initiates the electrical current. This is the overall process that human
beings share with all mammals and reptiles to smell and differentiate odors.

1.2 Kleene’s Experimental Procedure

Experimental techniques for isolating a single cilium (from a grass frog) were devel-
oped by biochemist and neuroscientist Steven J. Kleene and his research team at the
University of Cincinnati in the early 1990s [5, 6]. One olfactory cilium of a receptor
neuron is detached at its base and stretched tight into a recording pipette. The cilium
is immersed in a cAMP bath. As a result of the phenomenon previously described
inside the cilium, the intensity of the current generated is recorded.

Although the properties of a single channel have been described successfully
using these experimental techniques, the distribution of these channels along the
cilia still remains unknown, and may well turn out to be crucial in determining the
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kinetics of the neuronal response. Ionic channels, in particular, CNG channels are
called “micro-domains” in biochemistry, because of their practically imperceptible
size. This makes their experimental description using the current technology very
difficult.

1.3 An Integral Equation Model

Given the experimental difficulties, there is a clear opportunity for mathematics to
inform biology. Determining ion channels distribution along the length of a cilium
using measurements from experimental data on transmembrane current is usually
categorized in physics and mathematics as an inverse problem. Around 2006, a
multidisciplinary team (which brought together mathematicians with biochemists
and neuroscientists, as well as a chemical engineer) developed and published a first
mathematical model [4] to simulate Kleene’s experiments. The distribution of CNG
channels along the cilium appears in it as the main unknown of a nonlinear integral
equation model.

This model gave rise to a simple numerical method for obtaining estimates of the
spatial distribution of CNG ion channels. However, specific computations revealed
that the mathematical problem is poorly conditioned. This is a general difficulty in
inverse problems, where the corresponding mathematical problem is usually ill-posed
(in the sense of Hadamard, which requires the problem to have a solution that exists,
is unique, and whose behavior changes continuously with the initial conditions), or
else it is unstable with respect to the data. As a consequence, its numerical resolution
often results in ill-conditioned approximations.

The essential nonlinearity in the previous model arises from the binding of the
channel activating ligand (cAMP molecules) to the CNG ion channels as the ligand
diffuses along the cilium. In 2007, mathematicians D. A. French and C. W. Groetsch
introduced a simplified model, in which the binding mechanism is neglected, lead-
ing to a linear Fredholm integral equation of the first kind with a diffusive kernel.
The inverse mathematical problem consists of determining a density function, say
p = p(x) > 0 (representing the distribution of CNG channels), from measurements
in time of the transmembrane electrical current, denoted Iy[p]. This mathematical
equation for p is the following integral equation: for all r > 0,

L

lo[p](t) = /,O(X) P(c(r, x)) dx, (D

0

where P is known as the Hill function of exponent n > 0 (see Fig. 3). It is defined
by:

le

Vw >0, Pw)=—"
w" + Ki)
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Fig. 3 The Hill function P 14 P(w)
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In this definition, the exponent n is an experimentally determined parameter and
K12 > 01is a constant which represents the half-bulk (i.e., the ligand concentration
for which half the binding sites are occupied); typical values for » in humans are
n =~ 2.Besides, in the linear integral equation above, c(#, x) denotes the concentration
of cAMP that diffuses along the cilium with a diffusivity constant that we denote
as D; L denotes the length of the cilium, which for simplicity is assumed to be
one-dimensional. Here, by concentration we mean the molar concentration, i.e., the
amount of solute in the solvent in a unit volume; it is a nonnegative real number.

Hill-type functions are extensively used in biochemistry to model the fraction of
ligand bound to a macromolecule as a function of the ligand concentration and, hence,
the quantity IP(c(¢, x)) models the probability of the opening of a CNG channel as a
function of the cAMP concentration. The diffusion equation for the concentration of
cAMP can be explicitly solved if the length of the cilium L is supposed to be infinite.
It is given by:

X
c(t, x) = cperfc ( > )
2+/ Dt
where ¢y > 0is the maintained concentration of cAMP with which the pipette comes
into contact at the open end (x = 0) of the cilium (while x = L is the closed end).
Here, erfc is the standard complementary Gauss error function,

2 X
erfc(x) :=1— ﬁ f e " dr.
0

Accordingly, it is straightforward to check that ¢ is decreasing in both its variables
and that it remains bounded for all (¢, x), 0 < ¢(z, x) < ¢o.

Despite its elegance (by virtue of the simplicity of its formulation), this new model
does not overcome the difficulties encountered in its non-linear version. In fact the
mathematical inverse problem associated to model (1) can be shown to be ill-posed.
More precisely, since P(c(¢, x)) is a smooth mapping, the operator p — Iy[p] is
compact from L?(0, L) to L?(0, T) forevery L, T > 0, 1 < p < oo. Thus, even if
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the operator Iy were injective, its inverse would not be continuous because, if so,
then the identity map in L? (0, L) would be compact, which is known to be false.

1.4 Non-diffusive Kernels

This last result certainly has a more general character. In fact, it is clear from its proof
that any model based on a first-order integral equation with a diffusive smooth kernel
necessarily results in the problem of recovering the density from measurements of
the electrical current being ill-posed.

An initial, natural approach to tackling this anomaly in model (1) was developed
in Conca et al. [3]. This exploited the fact that the Hill function converges point-
wise to a single step function as the exponent n goes to +oo, the strategy was to
approximate IP using a multiple step function.

Based on different assumptions of the spaces where the unknown p is sought, the-
oretical results of identifiability, stability and reconstruction were obtained for the
corresponding inverse problem. However, numerical methods for generating esti-
mates of the spatial distribution of ion channels revealed that this class of models is
not satisfactory for practical purposes. The only feasible estimates for p are obtained
for multiple step functions that are very close to a single-step function or, equiva-
lently, for Hill functions with very large exponents, which imply the use of unrealistic
models.

Another way to overcome the ill-posedness of the inverse problem in (1) consists
of replacing the kernel of the integral equation with a non-smooth variant of the Hill
function.

Specifically, let a € (0, cp) be a given real parameter. A discontinuous version of
[P is obtained by forcing a saturation state for concentrations higher than a. By doing
s0, one is led to introduce the following disruptive variant of P (shown in Fig.4):

IH(C) = IP(C) ]lcfa + ]]-a<c§cm

where 1; denotes the characteristic function of the interval J. The mathematical
problem that recovers p from the electrical current data is therefore modelled by

L

LIpl(r) = / p(¥) Hc(t, x)) dx, ®

0

where c(t, x) is still defined as before. The introduction of this disruptive Hill function
can be understood mathematically as follows: as t — oo, the factor x/ /Dt in the
complementary error function defining the concentration tends to 0, and consequently
c(t, x) tends pointwise to cg. An inverse mathematical problem and a direct problem
are associated with both models (1) and (2). In the first, the electric current is measured
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Fig. 4 A disruptive variant 14 H(c)
of P (a =0.157)
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and the unknown is the density p of ion channels, while in the direct problem the
opposite is true. Since these are Fredholm equations of the first type, it is natural to
tackle them using convolution. Once the variable p has been extended to [0, co) by
zero, the Mellin transform is revealed as being the most appropriate tool for carrying
out this task (see the overview section “Mellin transform”).

2 A General Convolution Equation

The Mellin transform is the appropriate tool to study model (2). It allows to reduce
it in a convolution equation of the Mellin type. To do so, the key observation is the

fact that H(c(¢, x)) can be written in terms of % Indeed, defining G as

1
G(z)=H <coerfc (2@Z>> ,

we have I;[p](?) = foL p(x)G(%) dx. Thus, by extending p by zero to [0, 00), and
rescaling time 7 in ¢2, we obtain

o0

d
Lpl(r?) = f (NG (5) — = (xp) G
X X

0

which is a convolution equation in xp (x).
Taking Mellin transform on both sides and using its operational properties, we
formally obtain

1
§M11 [p1(s/2) = MG(s)Mp(s + 1)
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or equivalently, L MLLo16/2)
1LpI (s

Mp(s+1) = > MGG)

3)

Austrian mathematician Robert Hjalmar Mellin (1854-1933) gave his name
to the so-called Mellin transform, whose definition and properties are recalled
below. The interested reader is referred to §2 of [1] or Lindelof [7] for a
summary of his work, and proof of the main results around this transform.

For g € R, g +i R will denote the vertical line {g + it,t € R} of the
complex plane having abscissa ¢, and for p € R (p > 1), L? ([0, o0), x?), or
simply L7, will stand for the Lebesgue space with the weight x7, i.e.,

Ly ={f: 10,00 > RI1I£ly < +oo},

o0
where || fllLy = (f |.f(x)[Px4 dx)!/?. P, endowed with this norm, is a Banach
space. 0
Let f bein L' ([0, 00), x9). The Mellin transform of f is a complex-valued
function defined on the vertical line ¢ + 1 + i R by

o0

d
My (s) = / ©F@

0

From its very definition, it is observed that the Mellin transform maps functions
defined on [0, c0) into functions defined on ¢ + 1 + i R. Like in the Fourier
transform, M f is continuous whenever f is in L! ([0, 00), x7). Specifically,
we have

Theorem 1 (Riemann-Lebesgue) The Mellin transform is a linear continuous
map from L' ([0, 00), x7)intoC%(g + 1 +iR; C) < L®(g + 1 +iR; ©);
its operator norm is 1.

Proposition 1 If f is in L; for every real number q in (a, b) then its Mellin
transform M () is holomorphic in the strip S = {s € C|a+ 1 < Re(s) <
b+ 1}.
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The following table summarizes the main operational properties of the
Mellin transform:

Function Mellin transform

f(at), a>0 | a*Mf(s)

fa), a#0 | lal""Mf@s)

T0) (=D (s —kMf (s — k)

where, Vx € R andVk > 1, (x); stands for the so-called Pochhammer symbol,
which is defined by

k—1
@ =x@—k+D)=[]c—j) ifk=1,

Jj=0

and (x)o = 1, where x is in IR.

2.1 A Priori Estimates

Seeking continuity and observability inequalities for model (2) is then reduced to
find lower and upper bounds for MG(-) in suitable weighted Lebesgue’s spaces.
Doing so, one obtains

Theorem 2 (A Priori Estimates) Let k € NU {0} and r € R be arbitrary. Assume
that the Mellin transforms of p and I, p] satisfy (3), then

Cillol < 1Dz, < Cillollz,

r=3
z

CHY V3 int |(3), M)

se S iR

CHE VI s |(5), MG,

se S+ R

and L) = L” ([0, 00), x9) stands for the Lebesgue space with the weight x4, p > 1,
q € R.

Remark 1 1t is worth noting that C éf Ck could a priori range from 0 to +oo.

Proof Using the properties of the Mellin transform in Eq. (3), it follows that

(s — k) MI[p)(s — k) =2(s — k) MG (2(s —k)) Mp(2(s —k) + 1) “4)
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Thanks to Parseval-Plancherel’s isomorphism, for every s in ¢ + i R, we have

[aon®,; | = (=D (s = e MITOIG = )] 21y

o= |

R P 2s —k 2s—k)+1
MH(S WMGQs — kN MpQGs —R + D,
2
- = [ 53 MG @) M2 + 1) N
1 s
=—|(=) MGE)Mp(s+1)
JT (2>k L2(2(g—k)+i R)
&)
As M is an isometry from L?> (2(q — k) + 1+ i R) on L4(q Bt
IMoGs + Dllzog-n+imy = IMeO)lzeg-n+1+ir) = V27 lolz . (©)

Thanks to (5) and (6) and the definitions of Clk, C,’;, we get

ol , ., < [aed® Hqu,, = Cullol,

—k)+1

Taking r = 4(q — k) + 1, thatis ¢ = k + =1, provides the result.

For two given functions f, g, the multiplicative convolution f * g is defined
as follows
r d
X y
(From = [ 108 (—) 2/
J Y/, ¥

Theorem 3 (Mellin Transform of a Convolution) Whenever this expression is
well defined, we have

MC(f *8)(s) = Mf(s) Mg(s)

Finally, the classical L2-isometry has his Mellin counterpart.
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Theorem 4 (Parseval-Plancherel’s Isomorphism) The Mellin transform can be

extended in a unique manner to a linear isometry (up to the constant 2m)~17%)
from qu_l onto the classical Lebesgue space L*(q + i R):

Me L£L(L3, ;L% (g +iR, dx))

3 Observability of CNG Channels

The a priori estimates in the theorem above also allow to determine a unique dis-
tribution of ion channels along the length of a cilium from measurements in time of
the transmembrane electric current.

Theorem 5 (Existence and uniqueness of p) Let a > 0 and r < 1 be given. If
I, € [? ([O, 00), t%>, I/1 el? <[0, 00), t2+%) and a is small enough, then there

exists a unique p € L*([0, 00), x") which satisfies the following stability condition:
é
r3 4 i3y >
5y il 757 Z PN

where C > 0 depends only on a and r.
Proof The proof is based on the following technical lemmas and its corollaries.

Lemma 1l Ler A and B be two elements of [0, oo], k € U{O}N be a nonnegative
integer and f a function such that £ is in le- (A, B) forevery j =0, ..., k. For
every real number t, we have

5 k-1 B
/f (@ dx = 3 (=705 [¥ P @+ (1 0y f 0 )t d,
A Jj=0

A

where Q; = Q;(t) = (n{=0(1 +l+it)>_].

Proof We use induction on k € N. For k = 0, since Q_; = 1, there is nothing to
prove. We assume that the formula is true for anintegerk € N. As (k + 1 +it)Q =
Qk—1, it remains to prove that

B B
(k 14+ it)/xkf(k)(x)xit dx = [xk+1f(k)(x)xil]§ _ /xk+1f(k+l)(x)xit dx
A A



50 C. Conca
As d—‘ix” = ’;C—’x”, the previous relation follows by integration by parts. Indeed, we
have

B B
it/xkf(k)(x)x” dx = /ka’lf(k)(x)(xit)/dx

A A
B
= [« O @] — k+ 1) / b O o' d
A

B

_/xk+lf(k+l)(x)xit dx

A

Corollary 1 Let f: [A, Bl — R with A, B € [0, 0c] be a piecewise C' function.
If f is non-negative, f' is non-positive, f € L'(A, B), f' € L{(A, B) and for all
t € Re[xf(x)x"]8 = 0, then

B B

V1412 /f(x)x”dx S/f(x)dx.

A A
Proof From Lemma 1 with kK = 1 one obtains

B

B
vie R, (1 +it)/f(x)x” dx = —/xf/(x)xi’ dx
A

A

As A, B > 0and f’ < 0, using this previous identity twice, for r # 0 and for ¢ = 0,
we get

B B B
V1+1¢2 /f(x)x”dx §f|xf’(x)| dx:/f(x)dx
A A A

Lemma?2 Letn, K >0,qg € Rand f = N;Crfi:K There exists x, > 0 such that the
function g, : x € [x4, 00) > f(x) x97" is decreasing. Let § = inf E, where E;, =
{c>0] g;(x) < 0Vx > c). Thefunctionq — G isincreasingandg = (q/(2n))"/? +

o (ql/z) as q — oo.

Proof As f > 0, the inequality g; (x) < 0is equivalent to

[l _ _q-1
fx) — x

)
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Let us compute . To do so, let u = erfc”, so that f = ¢

W K erf K
-z —n ®)
f uu+K erffc u + K
Since erfc'(x) = 2712~ for x large enough, erfc(x) = 2l 4
0 (x’le’xz), and so
"(x erfc’(x
Fo ( )(1 4+ o0(1)) = —2nx + o(x) 9

=n
f(x) erfc(x)

This asymptotic expansion proves that the inequality (7) is satisfied for large enough
values of x. As a consequence, for every g in IR, the set E, is not empty, which

justifies the definition of g. Note that the definition of g implies g; () =0, and
hence, thanks to (7), % = —”TTI. Let g > g, be two real numbers. In order to
show that ¢, < ¢, it is enough to prove that g;l (g2) = 0. This holds true because

(@) = " (@)d + f(@) (g — D) = @ (@)d + f(G2)(q2 — 1)
=" g, (g) =0

To find an expansion for g, let us recall the following classical lower bound on erfc(x)
forx >0,
1

—_— < lnl/z exp(xz) erfc(x)
x+@x2+2)2 7 2

nkK
> 1+K — u+kK

As the function u = erfc” takes its values in (0, 1] < n. Consequently,

the identities (8) yield

J'(x)
—n(x+ @+ <= (10)
( ) J(x)
Letg > landsetx, = W The inequality — <-n (x +(x2+ 2)1/2)

is equivalent to x (x + &2 4+2)Y 2) < %. A simple computation shows that this

inequality is satisfied for x = x, (and becomes and equality). Thanks to (10), we
I o

fxg) — Xq
and by (7). This last inequahty 1mplles that g tends to +00 as g tends to +00. Finally,

from (9), we get the asymptotic for g, namely

conclude that x, satisfies 2=1 ' which leads to § > X4, by definition of g

‘@G —1

This completes the proof of Lemma 2.
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Proof of Theorem 5
We are now in a position to conclude the proof of Theorem 5. To do so, we begin by
introducing

T(0) ‘L H(cgerfe(x)) = £(x) Lizg + K Looxa,

_ erfc(x)" _ -1 {a _ . :
where f(x) = ey e KT, o = erfc (m)’ and K = 1. A brief calculation

shows that G and J, and their corresponding Mellin transforms are related as follows

1

1
Gx)=J— d MG(s) = ——— 11
) <2¢5x) o ) 253/ DS MJ (—s) (v
Thus, in terms of J, Eq. (3) becomes
2= MI 2
Mp(s +1) = Milpl (s/2) (12)

VD5 MJ(=s)

From the estimate for erfc at 4-0o, given in the proof of Lemma?2, the function J;
is in L} for every k > —1. Thus MJ; is holomorphic on the right half-plane, see
Proposition 1. Using Lemma3.2 in [1] on the vertical line % +i R with 1%’ > 0,
one deduces that bounds for MJ(—s) amounts to estimate |s MJ(s)|, from above
or from below, on the vertical lines ¢ + i R, for ¢ > 0. The Mellin transform of J;
at s = g + it is given by

o +00 s +00
MJi(s) =K /x“l dx +¢p /f(x))cs’1 dx = Ka— + ¢ /f(x)xqflx"’ dx
s
0 o 14

Foranya > 0,9 > Oands € ¢ +i R we have
+00
aq
IMJi($)l < K— + ¢ f J@)x9 " dx,
q

which is finite. Let ¢ > 0. According to Lemma2 the function x — f(x)x9~!
is decreasing for x > x¢. Let a < cperfc(xp) so that o = erfc™! (a /co) > xp. Let
g(x) = f(x)x9 ' 1,5,. For every t € R, [f(x)x”]: =0 because f vanishes

for x <« and xp < @, and g(x) = 2=l gmnx? (x_n+q_le—71x2). Then
Corollary 1 can be applied to the function g, with A = o, B = 4-00,fors € ¢ +i R,
to give
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oo
N
|sMJI(s)|5K|as|+cg\/%\/1+t2 /f(x)xs’ldx

< Ko+ max(l,q)/f(x)x"‘l dx < o0,

Is|

because NiEvel € [qg, 11U [1, gq], eitherg < 1orgq > 1. For small values of a, the first
term dominates the second one. The same calculation as above leads to

[sMJi(s)| > Ka? — ¢ max(1, q) / F)x?tdx

This latter expression is equivalent to K« as « tends to +00, therefore, it is positive
for large values of «.

4 Unstable Identifiability, Non Existence of Observability
Inequalities

Since the French-Groetsch model is also a Fredholm integral equation of the first
kind, itis natural to apply a Mellin transform here too. This leads to interesting results:
neither an observability inequality nor a proper numerical algorithm for recovering
p can be established. However, an Identifiability result holds whenever the current
is measured over an open time interval (see the Identifiability Theorem below).

Defining G as
- 1
G(z) = IP(C erfc< )),
"\ 2vDs

and rescaling time ¢ in #2, we obtain a convolution equation very similar to (3):

1 Mol (5/2)

Mp(s +1) = 2 MG(s)

13)

A close study of the transform of G (s) allows us to establish the following two
theorems, which provide information about the behavior of the inverse problem
associated with model (1). The proof of Theorems 3 and 4 requires to extend Mellin
transform to functions in the Schwartz space and to prove that the Mellin transforms
of such smooth and rapidly decreasing functions decay faster than polynomials on
vertical lines.!

! The interested reader is referred to [1] for details on how this can be done and and for detailed
proofs of Theorems 3 and 4.
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Theorem 3 (Non Observability) Letr < 1 be fixed. For every non-negative integer
k there exists no constant Cy > 0 such that the observability inequality:

IdoleD™ | > Cillplge,

Lz([O,oo),tM*:fS)

holds for every function p € L*([0, 00), x").

Note that this result shows that I € L(Lf; Lz,;3 ), and that if the inverse problem

2

were identificable (i.e., Iy were injective), then Iy ! could not be continuous.

Theorem 4 (Identifiability) Letr < Oand p € L([0, 00), x") be arbitrary. If there
exists a nonempty open subset U of (0, 00) such that for all t € U, L[p](t) =0,
then p = 0 almost everywhere on (0, 00).

The interested reader is referred to [ 1, §4 and §5] for various numerical experiences
associated with the different theoretical results of this paper. In particular, Theorems
5 and 6 are graphically illustrated in the quoted reference with data extracted from
laboratory experiments carried out by Chen et al. [2] in the 1990s.

A Path Forward

The Mellin transform has been successful in mathematically analyzing models (1)
and (2), allowing us to answer questions of existence (observability), uniqueness and
identifiability of the distribution of ion channels along a cilium, as well as stability
issues associated with both direct and inverse problems in these models. However,
from a more holistic scientific point of view, not a purely mathematical one, the big
question does not seem to be exactly this. Rather, it is about whether, by using and
studying these models, Mathematics truly helps to improve our understanding of the
olfactory system and, in general terms, the real world. In this sense, Kleene’s exper-
iments have been a great contribution, albeit insufficient. Much stronger validation
of the models is required, which can only be achieved by forming multidisciplinary
teams and designing ad-hoc experiments.
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State Estimation—The Role of Reduced )
Models

updates

Albert Cohen, Wolfgang Dahmen, and Ron DeVore

Abstract The exploration of complex physical or technological processes usually
requires exploiting available information from different sources: (i) physical laws
often represented as a family of parameter dependent partial differential equations
and (ii) data provided by measurement devices or sensors. The amount of sensors
is typically limited and data acquisition may be expensive and in some cases even
harmful. This article reviews some recent developments for this “small-data” scenario
where inversion is strongly aggravated by the typically large parametric dimension-
ality. The proposed concepts may be viewed as exploring alternatives to Bayesian
inversion in favor of more deterministic accuracy quantification related to the required
computational complexity. We discuss optimality criteria which delineate intrinsic
information limits, and highlight the role of reduced models for developing efficient
computational strategies. In particular, the need to adapt the reduced models—not
to a specific (possibly noisy) data set but rather to the sensor system—is a central
theme. This, in turn, is facilitated by exploiting geometric perspectives based on
proper stable variational formulations of the continuous model.

1 Introduction

Modern sensor technology and data acquisition capabilities generate an ever increas-
ing wealth of data about virtually every branch of science and social life. Machine
learning offers novel techniques for extracting quantifiable information from such
large data sets. While machine learning has already had a transformative impact on
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a diversity of application areas in the “big-data” regime, particularly in image clas-
sification and artificial intelligence, it is yet to have a similar impact in many other
areas of science.

Utilizing data observations in the analysis of scientific processes differs from tra-
ditional learning in that one has the additional information that these processes are
described by mathematical models—systems of partial differential equations (PDE)
or integral equations—that encode the physical laws that govern the process. Such
models, however, are often deficient, inaccurate, incomplete or need to be further cal-
ibrated by determining a large number of parameters in order to accurately represent
an observed process. Typical guiding examples are Darcy’s equation for the pressure
in ground-water flow or electron impedance tomography. Both are based on second
order elliptic equations as core models. The diffusion coefficients in these examples
describe premeability or conductivity, respectively. The parametric representations
of the coefficients could arise, for instance, from Karhunen-Lo¢ve expansions of a
random field that represent “unresolvable” features to be captured by the model. In
this case the number of parameters could actually be infinite.

The use of machine learning to describe complex states of interest or even the
underlying laws, solely through data, seems to bear little hope. In fact, data acquisi-
tion is often expensive or even harmful as in applications involving radiation. Thus, a
severe undersampling poses principal obstructions to state or parameter estimation
by solely processing observational data through standard machine learning tech-
niques. It is therefore more natural to try to effectively combine the data information
with the knowledge of the underlying physical laws represented by parameter depen-
dent families of PDEs.

Methods that fuse together data-driven and model-based approaches fall roughly
into two categories. One prototype of a data assimilation scenario arises in meteorol-
ogy where data are used to stabilize otherwise chaotic dynamical systems, typically
with the aid of (stochastic) filtering techniques. A second setting, in line with the
above examples, uses an underlying stable continuous model to regularize otherwise
ill-posed estimation tasks in a “small-data” scenario. Bayesian inversion is a promi-
nent way of regularizing such problems. It relaxes the estimation task to asking only
for posterior probabilities of states or parameters to explain given observations.

The present article reviews some recent developments on data driven state and
parameter estimation that can be viewed as seeking alternatives to Bayesian inver-
sion by placing a stronger focus on deterministic uncertainty quantification and its
relation to computational complexity. The emphasis is on foundational aspects such
as the optimality of algorithms (formulated in an appropriate sense) when treating
estimation tasks for “small-data” problems in high-dimensional parameter regimes.
Central issues concern the role of reduced modeling and the exploitation of intrinsic
problem metrics provided by the variational formulation of the underlying con-
tinuous family of PDEs. This is used by the so called Parametrized Background
Data-Weak (PBDW) framework, introduced in [20] and further analyzed in [4], to
identify a suitable trial (Hilbert) space U that accommodates the states and eventually
also the data. An important point is to distinguish between the data and correspond-
ing sensors—here linear functionals in the dual U’ of U—from which the data are
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generated. This will be seen to actually open a geometric perspective that sheds light
on intrinsic estimation limits. Moreover, in the deterministic setting, a pivotal role
is played by the so called solution manifold, which is the set of all states that can be
attained when the parameters in the PDE traverse the whole parameter domain.

Even with full knowledge of a state in the solution manifold, to infer from it a
corresponding parameter is a nonlinear severely ill-posed problem typically formu-
lated as a non-convex optimization problem. On the other hand, state estimation from
data is a linear, and hence a more benign inversion task mainly suffering under the
current premises from a severe undersampling. We will, however, indicate how to
reduce, under certain circumstances, the latter to the former problem so as to end up
with a convex optimization problem. This motivates focusing in what follows mainly
on state estimation. A central question then becomes how to best invoke knowledge
on the solution manifold to regularize the estimation problem without introducing
unnecessarily ambiguous bias. Our principal viewpoint is to recast state estimation
as an optimal recovery problem which then naturally leads one to explore the role
and potential of reduced modeling.

The layout of the paper is as follows. Section?2 describes the conceptual frame-
work for state estimation as an optimal recovery task. This formulation allows the
identification of lower bounds for the best achievable recovery accuracy.

Section3 reviews recent developments concerning a certain affine recovery
scheme and highlights the role of reduced models adapted to the recovery task.
The overarching theme is to establish certified recovery bounds. When striving for
optimality of such affine recovery maps, high parameter dimensionality is identified
as a major challenge. We outline a recent remedy that avoids the Curse of Dimen-
sionality by trading deterministic accuracy guarantees against analogs that hold with
quantifiable high probability.

Even optimal affine reduced models can, in general, not be expected to realize the
benchmarks identified in Sect. 2. To put the results in Sect. 3 in proper perspective, we
comment in Sect.4 on ongoing work that uses the results on affine reduced models
and corresponding estimators as a central building block for nonlinear estimators.
We also indicate briefly some ramifications on parameter estimation.

2 Models and Data

2.1 The Model

Technological design or simulating physical processes is often based on continuum
models given by a family
Rw,y) =0, yel, (2.1)

of partial differential Equations (PDEs) that depend on parameters y ranging over
a parameter domain Y C R%. We will always assume uniform well-posedness of
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(2.1): for each y € Y, there exists a unique solution # = u(y) in some trial Hilbert
space U which satisfies R(u(y), y) = 0.
Specifically, we consider only linear problems of the form 8B,u = f, that is,

R, y) =f — Byu. 2.2)

Here f belongs to the dual V' of a suitable test space V and B, is a linear operator
acting from U to V’ that depends on y € Y. Here, uniform well-posedness means
then that B, is boundedly invertible with bounds independent of y. By the Babuska-
Banach-Necas Theorem, this is equivalent to saying that the bilinear form

(u,v) = by(u,v) := (Byu)(v) (2.3)
satisfies the following continuity and inf-sup conditions

b N b 9
sup supM < Cp, and inf sup — . v)

———>,>0, yel, (24
ueU vev lullullvily uel ey [lullullvilv

together with the property that by (u, v) = 0, u € U, implies v = 0 (injectivity of BY).
The relevance of this stability notion lies in the entailed validity of the error-residual
relation

ColIf = Bwllv < lu@) —viv < ¢, ' If = Bwlv, velU,yel, (25

where || g|lv := sup{g(v) : |[v|ly = 1}. Thus, errors in the trial norm are equivalent
to residuals in the dual test norm which will be exploited in what follows.

For a wide range of problems such as space-time variational formulations, e.g.
of parabolic or convection-diffusion problems, indefinite or singularly perturbed
problems, the identification of a suitable pair U, V that guarantees stability in the
above sense is not entirely straightforward. In particular, trial and test space may
have to differ from each other, see e.g. [6, 11, 17, 23] for examples as well as some
general principles.

The simplest example, used for illustration purposes, is the elliptic family

R(u,y) =f + div (a(y)Vu), (2.6)

set in € R% where d, € {1, 2, 3}, with boundary conditions u|yo = 0. Uniform
well-posedness follows then forU =V = HO1 (£2) if we have for some fixed constants
0 < r < R < oo the bounds

r<a(x,y) <R, (x,y)eQxlY, (2.7)
readily implying (2.4).

Aside from well-posedness, a second important structural property of the model
(2.1) is affine parameter dependence. By this we mean that
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dy
Byu = Bou + Zijju, y=0j=1...4, €Y, (2.8)

j=1

where the operators 8B; : U — V' are independent of y. In turn, the residual has a
similar affine dependence structure

d

R(u, y) = Row) + Y _yRu, Ro(w) :=f — Bou, R;=—8B,;. (2.9)
j=1

For the example (2.6) such a structure is encountered for affine parametric represen-
tations of the diffusion coefficients

d

a(x,y) = ap®) + Y WH®, xy) e x Y, (2.10)
=1

i.e., the field a is expanded in terms of some given spatial basis functions 6;. As
indicated earlier, the pressure equation in Darcy’s law for porous media flow is
an example for (2.6) where the diffusion coefficient a(y) of the form (2.10) may
arise from a stochastic model for permeability via a Karhunen-Logve expansion. In
this case (upon proper normalization) y € [—1, 11N has, in principle, infinitely many
entries, that is d, = co. However, due to (2.7), the 6; should then have some decay
as j — oo which means that the parameters become less and less important when j
increases. Another example is electron impedance tomography involving the same
type of elliptic operator where parametric expansions represent possible variations of
conductivity often modeled as piecewise constants, i.e., the §; could be characteristic
functions subordinate to a partition of €2. In this case data are acquired through
sensors that act through trace functionals greatly adding to ill-posedness.
A central role in the subsequent discussion is played by the solution manifold

M=ulY) ={u@y) : ye Y} 2.11)

which is then the range of the parameter-to-solution map u : y — u(y) comprised of
all states that can be attained when y traverses Y. Without further mention, M will
be assumed to be compact which actually follows under standard assumptions met
in all above mentioned examples.

Estimating states in M or corresponding parameters from measurements requires
the efficient approximation of elements in M. A common challenge encountered
in all such models lies in the inherent high-dimensionality of the states u = u(-, y)
as functions of d, spatial variables x € Q and d, > 1 parametric variables y € Y.
In particular, when d, = oo any calculation, of course, has to work with finitely
many “activated” parameters whose number, however, has to be coordinated with the
spatial resolution of a numerical scheme to retain model-consistency. It is especially
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this issue that hinders standard approaches based on first discretizing the parametric
model because rigorously balancing spatial and parametric uncertainties becomes
then difficult.

What renders such problem scenarios nevertheless numerically tractable is a fur-
ther property that will be implicitly assumed in what follows, namely that the Kol-
mogorov n-widths of the solution manifold

d,(M)y = . inf sup intg [[u — vy (2.12)

imU,=n ,c pveEU,
exhibits at least some algebraic decay
d,(Myy <n”* (2.13)

for some s > 0, see [13] for a comprehensive account.

For instance, this is known to be the case for elliptic models (2.6) with (2.7), as
a consequence of the results of sparse polynomial approximation of the parameter
to solution map y — u(y) established e.g. in [15]. More generally, (2.13) can be
established under a general holomorphy property of the parameter to solution map,
as a consequence of a similar algebraic decay assumed on the n-widths of the param-
eter set, see [14]. For a fixed finite number d, < oo of parameters, under certain
structural assumptions on the parameter representations (e.g. piecewise constants on
checkerboard partitions) one can even establish (sub-) exponential decay rates, see
[2] for more details. Assuming s in (2.13) to have a “substantial” size for any range
of d,, is therefore justified.

In summary, the results discussed below are valid and practically feasible for well
posed linear models (2.4) with affine parameter dependence (2.9) whose solution
manifolds have rapidly decaying n-widths (2.13).

2.2 The Data

Suppose we are given data w = (wy, ..., w) | € R” representing observations of
an unknown state # € U obtained through m linearly independent linear functionals
g,‘ S U/, i.e.,

wi=4;w), i=1,...,m. (2.14)

Since in real applications data acquisition may be costly or harmful we assume
that m is fixed. The central task to be discussed in what follows is to recover from
this information an estimate for the observed unknown state u, based on the prior
assumption that u belongs to M or is close to M. Moreover, to bring out the essence
of this estimation task we assume for the moment that the data are noise-free.

Following [4, 20], we first recast the data in a “compliant” metric, by introducing
the Riesz representers y; € U, defined by
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Mi,vu=4W), vel, i=1,...,m,

The ; now span the m-dimensional subspace W C U which we refer to as mea-
surement space, and the information carried by the ¢;(u) is equivalent to that of the
orthogonal projection Pwu of u to W. The decomposition

u = Pwu+ Pw.u, uel, (2.15)

thus contains a first term that is “seen” by the sensors and a second (infinite-
dimensional) term which cannot be detected. The decomposition (2.15) may be seen
as a sensor-induced “coordinate system” thereby opening up a geometric perspective
that will prove very useful in what follows. State estimation can then be viewed as
learning from samples w := Pyu the unknown “labels” Pyy.u € W+,

In this article, we are interested in how well we can approximate u from the
information that u € M and Pywu = w with w given to us. Any such approximation
is given by a mapping A : w — A(w) € U. The overall performance of recovery on
all of M by the mapping A is typically measured in the worst case setting, that is,

Eywe (A, M, W) = sup [u — A(Pwu)||u. (2.16)
ueM

The optimal recovery error on M is then defined as

Eyc(M, W) 1= iI/}f Ewc(A, M, W), (2.17)

where the infimum is over all possible recovery maps. Let us observe that the con-
struction of recovery maps can be restricted to be of the form

A:w— Aw), Aw)=w+Bw), withB: W —> W (2.18)
Indeed, given any recovery mapping A, we can write A(w) = PwA(w) + PywLA(w)
and the performance of the recovery can only be improved if we replace the first
term by w. In other words, A(w) should belong to the affine space

U, == w+ W+, (2.19)

that contains u. The mappings B are commonly referred to as liftings into W+,

2.3 Optimality Criteria and Numerical Recovery

Finding a best recovery map A attaining (2.17) is known as optimal recovery. The
best mapping has a well-known simple theoretical description, see e.g. [21], that we
now describe. Note first that a precise recovery of the unknown state u from the given
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information is generally impossible. Indeed, the best we can say about « is that it lies
in the manifold slice

M, ={ue M:Pyu=w}=MnNU,, (2.20)

which is comprised of all elements in M sharing the same measurement w € W. The
Chebyshev ball B(M,,) is the smallest ball in U that contains M,,. The best recovery
algorithm is then given by the mapping

A*(w) := cen(M,,), 2.21)

that assigns to each w € M the center cen(M,,) of B(M,,), called the Chebyshev
center of M,,. Then, the radius rad(M,,) of B(M,,) is the best worst case error over
the class M,,. The best worst case error over M, which is achieved by A*, is thus
given by

Ewe(M, W) = Eyc (A", M, W) = {Vnea%%(/ rad(M,,). (2.22)

While the above mapping A* gives a nice theoretical description of the optimal
recovery algorithm, it is typically not numerically implementable since the Cheby-
shev center cen(M,,) is not easily found. Moreover, such an optimal algorithm is
highly nonlinear and possibly discontinuous. The purpose of this section is to for-
mulate a more modest goal for the performance of a recovery algorithm with the
hope that this more modest goal can be met with a numerically realizable algorithm.
The remaining sections of the paper introduce numerically implementable recovery
mappings, analyze their performance, and evaluate the numerical cost in constructing
these mappings.

The search for a numerically realizable algorithm must out of necessity lessen the
performance criteria. A first possibility is to weaken the performance criteria to near
best algorithms. This means that we search for an algorithm A such that

Ewe(A, M, W) < CoEye (M, W), (2.23)

with a reasonable value of Cy > 1. For example, any mapping A which takes w into
an element in the Chebyshev ball of M,, is near best with constant Cy = 2. However,
finding near best mappings A also seems to be numerically out of reach.

In order to formulate a more attainable performance criterion, we return to our
earlier observations about uncertainty in both the model class M and in the measure-
ments w. The former is a modeling error while the latter is an inherent measurement
error. Both of these uncertainties can be quantified by introducing for each ¢ > 0,
the e-neighborhood of the manifold

M= {v e U:dist(v, M)y < ¢}. (2.24)
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The uncertainty in the model can be thought of as saying the sought after u is in M°®
rather than u € M. Also, we may formulate uncertainty (noise) in the measurements
as saying that they are not measurements of a u € M but rather some u € M?®. Here
the value of ¢ quantifies these uncertainties.

Our new goal is to numerically construct a recovery map A that is near-optimal
on M?, for some given ¢ > 0. Let us note that M°® is not compact. An algorithm A
is worst-case near optimal for M? if and only if its performance is bounded by a
constant multiple of the diameter

S (M, W) :=max {|lu —v|y :u,v e M®, Pw(u—v) =0}. (2.25)

Notice that ¢ = 0 gives the performance criterion for near optimal recovery over M.
One can show that the function & +— §,(M, W) is monotone non-decreasing in ¢,
continuous from the right, and lim,_, o+ 6, (M, W) = §o(M, W). The speed at which
8¢ (M, W) approaches §o(M, W) reflects the “condition” of the estimation problem
depending on M and W. While the practical realization of worst-case near-optimality
for M is already a challenge, quantifying corresponding computational cost would
require assumptions on the condition of the problem.

One central theme, guiding subsequent discussions, is therefore to find recovery
maps A, that realize an error bound of the form

Eye(Ae, M, W) < Code (M, W). (2.26)

Any a priori information on measurement accuracy and model bias might be used to
choose a viable tolerance €.

High parametric dimensionality poses particular challenges to estimation tasks
when the targeted error bounds are in the above worst case sense. These challenges
can be somewhat mitigated when adopting a Bayesian point of view [24]. The prior
information on u is then described by a probability distribution p on U, which is
supported on M. Such a measure is typically induced by a probability distribution
on Y that may or may not be known. In the latter case, sampling M, i.e., com-
puting snapshots u(y’), i =1, ..., N, for i.i.d. samples y' € Y, provides labeled
data (w;, w}) = (Pwu(y'), Pwiu(y")) according to the sensor-based decomposition
(2.15). This puts us into the setting of regression in machine learning asking for an
estimator that predicts for any new measurement w € W its lifting wt = B(w). It is
then natural to measure the performance of an algorithm in an averaged sense. The
best estimator A that minimizes the mean-square risk

Ems(A, p, W) = E([lu — A(Pwu)||*) = / llu — APyyu) | *dp () (2.27)
U

is given by the conditional expectation

AW) = E|Pwu = w). (2.28)
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Since always Es(A, p, W) < Ey.(A, M, W), the optimality benchmarks are some-
what weaker. In the rest of this paper, we adhere to the worst case error in the
deterministic setting that only assumes membership of u to M or M°.

The following section is concerned with an important building block on a path-
way towards achieving (2.26) at quantifiable computational cost. This building block,
referred to as one-space method is a linear (affine) scheme which is, in principle, sim-
ple and easy to numerically implement. It depends on suitably chosen subspaces. We
highlight the regularizing property of these subspaces as well as ways to optimize
them. This will reveal certain intrinsic obstructions caused by parameter dimen-
sionality. The one-space method by itself will generally not achieve (2.26) but, as
indicated earlier, can be used as a building block in a nonlinear recovery scheme that
may indeed meet the goal (2.26).

3 The One-Space Method

3.1 Subspace Regularization

The one space method can be viewed as a simple regularizer for state estimation.
The resulting recovery map is induced by an n-dimensional subspace U,, of U for
n < m. Assume that, for each n > 0, we are given a subspace U,, C U of dimension
n whose distance from M can be assessed

disttM, U,y = ma/t\)/(( dist(u, U,y < &,. (3.1
ue
Then the cylinder
KU,, e,) = {u € U :dist(u, U,y < &,} (3.2)

contains M and likewise the cylinder K'(U,,, ¢, + €) contains M°. Our prior assump-
tion that the observed state belongs to M or M® can then be relaxed by assuming
membership to these larger but simpler sets.

Remarkably, one can now realize an optimal recovery map quite easily that meets
the relaxed benchmark Ey,. (K'(U,, &,), W): in [4] it was shown that the Chebyshev
center of the slice

«w(Una &) 1= W(U,,, &) N0, (3.3)

is exactly given by the state in U,, that is closest to U,,, that is

u* = u*(w) := argmin |u — Py, ullu. (3.4)
uel,,
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This minimizer exists and can be shown to be unique as long as U, N W+ = {0}.
The corresponding optimal recovery map

Ay, w = u*(w) (3.5)

was first introduced in [20] as the Parametrized Background Data Weak (PBDW)
algorithm, and is referred to as the one-space method in [4]. Due to its above mini-
mizing property, it is readily checked that this map is linear and can be determined
with the aid of the singular value decomposition of the cross-Gramian between any
pair of orthonormal basis for U,, and W.

The worst case error Ey.(K(U,, €,), W) can be described more precisely by
introducing

Ivily

n(WU,, W) ;= sup ——— (3.6)
vel, 1Pwvllu

which is finite if and only if U, N W+ = {0}. This quantity, also introduced in a
related but slightly different context in [1], is therefore related to the angle between
the spaces U, and W. It becomes large when U, contains elements that are nearly
perpendicular to W. It is actually computable: one has u(U,, W) = (U, W)~!

where
B(U,, W) := inf sup w

) 3.7
veln wew [VIuliwllu

and B(U,, W) is the smallest singular value of the cross-Gramian between any pair
of orthonormal bases for W and U,,. It has been shown in [4, 20] that the worst case
error bound over K'(U,, €,) is given by

EWC(AU,ls 7<‘(.[Una gn)» W) = EWC((]((U}'H 8}1)7 W) = /-’L(Una W)gn' (38)
The quantity w(U,, W) also coincides with the norm of the linear recovery map Ay, .
Relaxing the prior u € M by exploiting information on M solely through approx-
imability of M by U,, thus implicitly regularizes the estimation task: whenever
w(U,, W) is finite, the optimal recovery map Ay, is bounded and hence Lipschitz.
One important observation is that the map Ay, is actually independent of ¢,. In
particular, it achieves optimality for the smallest possible containment cylinder
KU, = KU,, dist(M, Un)v), (3.9
and therefore, since Ey(Ay,, M, W) < Ey.(Au,, K(U,), W) = Ey (K (U,), W),
Eyc(Au,, M, W) < w(U,, W)dist (M, U,)u. (3.10)
Likewise, the containment M® C K (U,, dist (M, U,)y + &) implies that

Eye(Ay,, M*, W) < n(U,, W)(dist (M, Uy)u + &). (G.11)
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On the other hand, the recovery map Ay, may be far from optimal over the sets M
or M?. This is due to the fact that the cylinders K'(U,, &,) and K(U,, &, + ¢) may
be much larger than M or M®. In particular, it is quite possible that for a particular
observation w, one hasrad(M,,) < rad(K,,(U,, €,)). Therefore, we cannot generally
expect that the one space method achieves our goal (2.26). In particular, the condition
n < m, which is necessary to avoid that ©(U,, W) = oo, limits the dimension of
an approximating subspace U, and therefore ¢, itself is inherently bounded from
below. The “dimension budget” has therefore to be used wisely in order to obtain
good performance bounds. This typically rules out “generic approximation spaces”
such as finite element spaces, and raises the question which subspace U,, yields the
best estimator when applying the above method.

3.2 Optimal Affine Recovery

The results of the previous section bring forward the question as to what is the best
choice of the space U, for the given M. On the one hand, proximity to M is desir-
able since dist (M, U,)y enters the error bound. However, favoring proximity, may
increase ©(U,, W). Before addressing this question systematically, it is important
to note that the above results carry over verbatim when U, is replaced by an affine
space U,, = u + U,, where U,, C U is a linear space. This means the reduced model
K (U,, &,) is of the form

KU, ) := it + KUy, 20).
The best worst-case recovery bound is now given by
Eve(K (U, 82), W) = (T, Wys,. (3.12)

Intuitively, this may help to better control the angle between W and U,, by anchoring
the affine space at a suitable location (typically near or on M). More importantly,
it helps in localizing models via parameter domain decompositions that will be
discussed later.

The one-space algorithm discussed in the previous section confines the “dimen-
sionality” budget of the approximation spaces U, to n < m. In view of (3.10), to
obtain an overall good estimation accuracy, this space can clearly not be chosen
arbitrarily but should be well adapted both to the solution manifold M and to mea-
surement space W, that is, to the given observation functionals giving rise to the
data.

A simple way of adapting a recovery space to W is as follows: suppose for
a moment that we were able to construct for n = 1, ..., m, a hierarchy of spaces
Ut C U C --- ¢ U™, that approximate M in a near-best way, namely

dist (M, U™)y < Cd,(M)y. (3.13)
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We may compute along the way the quantities 1 (U™, W), then choose

n* = argmin (U™, W)dist (M, U™)y, (3.14)

n<m

and take the map Ay . We sometimes refer to this choice as “poor man’s algorithm”.

It is not clear though whether UQE is indeed a near-best choice for state recovery by
the one-space method. In other words, one may question whether

Eye(Apn. M. W) < C inf  Eye(Ag, M. W), (3.15)

mmU<m

holds with a uniform constant C < oo. In fact, numerical tests strongly suggest other-
wise, which motivated in [12] the following alternative to the poor man’s algorithm.

Recall that a given linear space U,, determines the linear recovery map Ay, . Like-
wise a given affine space U, determines an affine recovery map Ay,. Conversely,
it can be checked that an affine recovery map A determines an affine space U,, that
allows one to interpret the recovery scheme as a one-space method in the sense that
A = Ay,. Denoting by A the class of all affine mappings of the form

A(w) =w+z+ Bw, (3.16)

where z € Wt and B € L(W, W) is linear, we might thus as well directly look for
a mapping that minimizes

Eyc (A, M, W) := sup [lu — A(Pwu)|ly = sup ||Pyw.u — z — BPwully =: &(z, B)
ueM ueM
(3.17)

over A, i.e., over all (z, B) € WL x L£(W, W). It can be shown that indeed a min-
imizing pair (z*, B*) exists, i.e.,

& BY) = min Eye(4, M, W) =: Eye a(M, W),

see [12]. However, the minimization of Ey. (A, M, W) over (z, B) € WL x £L(W, W)
is far from practically feasible. In fact, each evaluation of E\,(A, M, W) requires
exploring M and B can have a range in the infinite dimensional space W+. In order
to arrive at a computationally tractable problem, one needs to

(i) Replace M by a finite set Mc M, that should be sufficiently dense. Denseness
can be quantified by requiring that M M? is a 8-net for M for some § > 0,
i.e., for any u € M, there exists u € M? such that lu — |y < 6.

(ii) Choose a finite dimensional space U, C U that approximates M to a desired
precision dist (M, Uy )y < n, and replace W+ by the finite dimensional comple-
ment
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W =U, oW (3.18)

of Win U;.

The resulting optimization problem

z, 1~9) = argmin sup ||Pw.u — z — BPwullu. (3.19)
(2.B)eWL > LW, WL) ue M

can be solved by primal-dual splitting methods providing a O(1/k) convergence rate,
[12].

Due to the perturbations (i) and (ii) of the ideal minimization problem, the resulting
(z, B) is no longer optimal. However, one can show that

Ewe(A, M, W) < Eye a(M, W) + 4 C3, (3.20)

where the constant C is the operator norm of B minimizing (3.17). On the other hand,
since the range of any affine mapping A is an affine space of dimension at most m,
therefore contained in a linear space of dimension at most m + 1, one always has
Ewe. aM, W) > d,,.11 (M)y. Therefore (2, 1~9) satisfies a near-optimal bound

Eye(A, M,W) < Eye a(M, W), (3.21)
whenever 1 and § are picked such that
N < dpi My, and 8 < dyi (M. (3.22)

The numerical tests in [12] for a model problem of the type (2.6) with piecewise
constant checkerboard diffusion coefficients and d, up to d, = 64 show that this
recovery map exhibits significantly better accuracy than the method based on (3.14).
It even yields smaller error bounds than the affine mean square estimator (2.27). The
following section discusses the numerical cost entailed by conditions like (3.22).

3.3 Rate-Optimal Reduced Bases

To keep the dimension L of the space Uy, in (3.18) small, a near-best subspace U
in the sense of (3.13) would be highly desirable. Likewise the poor man’s scheme
(3.14) would benefit from such subspaces. Unfortunately, such near-best subspaces
are not practically accessible. The reduced basis method aims to construct subspaces
which come close to near-optimality in a sense that we further explain next. The
main idea is to generate theses subspaces by a sequence of elements picked from
the manifold M itself, by means of a weak-greedy algorithm introduced and studied
in [8]. In an idealized form, this algorithm proceeds as follows: given a current
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space Uy,® = span{u,, ..., u,}, one takes u,,; = u(y,+1) such that, for some fixed
y €10, 11, N1 — Pu,ttnslly = ¥ max,en |u — Py, ully, or equivalently

lu(ynsr1) — Pu,uurDllu > ¥ I;lél;( lu(y) — Pu,u(y)llu. (3.23)
Then, one defines U,V,Vf] = span{uy, ..., U,+1}. While unfortunately, the weak greedy

algorithm does in general not produce spaces satisfying (3.13), it does come close.
Namely, it has been shown in [3, 19] that the spaces U, are rate-optimal in the
following sense:

(i) For any s > 0 one has

dy(Muy <C+17", n>0 = dist(M, U")y < Cn+1)"*, n>0,
~ (3.24)
where C depends on C, s, y.
(i) For any 8 > 0, one has

dy(M)y < Ce™, n>0 = dist(M, UMy < Ce ™, n>0, (3.25)

where the constants ¢, c dependonc, C, B, y.

In the form described above, the weak-greedy concept seems infeasible since it
would, in principle, require computing the solution u(y) for all values of y € Y
exactly, exploring the whole exact solution manifold. However, its practical applica-
bility is facilitated when there exists a tight surrogate R(y, U,,), satisfying

crR(y, Up) < u(y) — Py,u()lly = dist (u(y), Up) < CrR(y, Up), y €Y,
(3.26)
for uniform constants 0 < ¢z < Cr < 00, which can be evaluated at affordable cost.
Then, maximization of R(y, U,) over Y amounts to the weak-greedy step (3.23)
with y = é—’; According to [18], the validity of the following two conditions indeed
allows one to derive computable surrogates that satisfy (3.26):

(1) The underlying parametric family of PDEs (2.1) permits a uniformly stable
variational formulation (2.4), and one has affine parameter dependence (2.9);

(i1) The discrete projection [Ty, (of Galerkin or Petrov-Galerkin type) has the best
approximation property, i.e., resulting errors are uniformly comparable to the
best approximation error.

Conditions (i) and (ii) ensure, in view of (2.5), that |[u(y) — Py, u(y)|lu ~ IR,
My, u(y)) ||y holds uniformly in y € Y. Thus,

Ry, I
R, Uy = RO, Ty u() v = sup 2 10D )

(3.27)
veV vilv

satisfies (3.26) and is therefore a tight surrogate for dist (M, U,,)y. In the elliptic case
(2.6) under assumption (2.7), (i) and (ii) hold and the above comments reflect standard
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practice. For the wider scope of stable but unsymmetric variational formulations [6,
16, 23] the inf-sup conditions (2.4) imply (i), but the Galerkin projection in (ii)
needs to be replaced by a stable Petrov-Galerkin projection with respect to suitable
test spaces V,, accompanying the reduced trial spaces U,. It has been shown in [18]
how to generate such test spaces with the aid of a double-greedy strategy, see also
[16].

The main pay-off of using the surrogate R(y, U,) is that one no longer needs to
compute u(y) but only the low-dimensional projection Iy, u(y) by solving for each y
ann X n system, which itself can be rapidly assembled thanks to the affine parameter
dependence [22]. However, one still faces the problem of its exact maximization
overy € Y. A standard approach is to maximize instead over a discrete training set
Y, C Y, which in turn induces a discretization of the solution manifold

M, = {u®y) : yeY,). (3.28)

The resulting weak-greedy algorithm can be shown to remain rate optimal in the
sense of (3.24) and (3.25) if the discretization is fine enough so that M, constitutes
an g,-approximation net of M where ¢, does not exceed cdist (M, U8y for a
suitable constant 0 < ¢ < 1. In the current regime of large or even infinite parameter
dimensionality, this becomes prohibitive because #Y, would then typically scale like
0(ex "), [10].

As aremedy it has been proposed in [10] to use training sets )7,1 that are generated
by randomly sampling M, and ask that the objective of rate optimality is met with high
probability. This turns out to be achievable with training sets of much less prohibitive
size. In an informal and simplified manner the main result can be stated as follows.

Theorem 1 Given any target accuracy ¢ > 0 and some 0 < n < 1, then the weak
greedy reduced basis algorithm based on choosing at each step N = N (g, n) ~
|Inn| + | Ing| randomly chosen training points in Y has the following properties
with probability at least 1 — n: it terminates with dist (M, U,))u < € as soon as
the maximum of the surrogate over the current training set falls below ce'*® for
some c¢,a > 0. Moreover, if d,(M)y < Cn™*, then n(e) < &=, The constants
¢, a, b depend on the constants in (3.26), as well as on the rate r of polynomial
approximability of the parameter to solution map y — u(y). The larger s and r, the
smaller a and b, and the closer the performance becomes to the ideal one.

4 Nonlinear Models

4.1 Piecewise Affine Reduced Models

As already noted, schemes based on linear or affine reduced models of the form
K (U, €) can, in general, not be expected to realize the benchmark (2.26), discussed
earlier in Sect.2. The convexity of the containment set K'(U,, ¢) may cause the
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reconstruction error to be significantly larger than 8, (M, W). Another way of under-
standing this limitation is that in order to make & small, one is enforced to raise the
dimension n of U,, making the quantity u(U,, W) larger and eventually infinite if
n>m.

To overcome this principal limitation one needs to resort to nonlinear models
that better capture the non-convex geometry of M. One natural approach consists in
replacing the single space U, by a family (U¥);_; ¢ of affine spaces

UF = + UF, dim(U%) =, < m, 4.1)

each of which aims to approximate a portion M, of Mto a prescribed target accuracy
simultaneously controlling u([Uk, W): fixing ¢ > 0, we assume that we have at hand
a partition of M into portions

K
M= U M, 4.2)

k=1

such that
dist My, UNy < e, and w0, Wye, <e, k=1,....,K. (4.3)

One way of obtaining such a partition is through a greedy splitting procedure of the
domain Y = [—1, 1]% which is detailed in [9]. The procedure terminates when for
each cell Y, the corresponding portion of the manifold M; can be associated to
an affine Uy satisfying these properties. We are ensured that this eventually occurs
since for a sufficiently fine cell Y, one has rad(My) < & which means that we
could then use a zero dimensional affine space Uy = {i} for which we know that
w(U¥, W) = 1. In this piecewise affine model, the containment property is now

K
Mc | KU ). @.4)
k=1

and the cardinality K of the partition depends on the prescribed ¢.
For a given measurement w € W, we may now compute the state estimates

uyw) =Ap(w), k=1,...,K, (4.5)

by the affine variant of the one-space method from (3.4). Since u € My, for some
value ko, we are ensured that

lu =y W)llu < &, (4.6)

for this particular choice. However kj is unknown to us and one has to rely on the
data w in order to decide which one among the affine models is most appropriate for
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the recovery. One natural model selection criterion can be derived if for any u € U
we have at our disposal a computable surrogate S () that is equivalent to the distance
from u to M, that is

cS(u) < dist (u, M)y < CS), dist (u, M)y = mi;l lu —u() v, 4.7)
ye

for some fixed 0 < ¢ < C. We give an instance of such a computable surrogate in
Sect.4.2 below. The selection criterion then consists in picking k* minimizing this
surrogate between the different available state estimates, that is,

w*(w) = . (w) = argmin (S (w)) : k=1,....K}. (4.8)

The following result, established in [9], shows that this estimator now realizes the
benchmark (2.26) up to a multiplication of € by k := C/c, where c, C are the con-
stants from (4.7).

Theorem 2 Assume that (4.2) and (4.3) hold. For any u € M, if w = Pwu, one has
lu —w* W) < 8ee (M, W), 4.9)

where 8,(M, W) is given by (2.25).

4.2 Approximate Metric Projection and Parameter
Estimation

A practically affordable realization of the surrogate S(u), providing a near-metric
projection distance to M, is akey ingredient of the above nonlinear recovery scheme.
Since it has further useful implications we add a few comments on that matter.

As already observed in (2.5), whenever (2.1) admits a stable variational formula-
tion with respect to a suitable pair (U, V) of trial and test spaces, the distance of any
u € U to any u(y) € M is uniformly equivalent to the residual of the PDE in V’

cllR@, Yllv < lu@y) —ullu < ClIR®@, y)llv, (4.10)
withe = C; Le= cl;l from (2.5). Assume in addition that R(u, y) depends affinely
ony € Y, according to (2.9). Then, minimizing ||R(&, y)|y over y is equivalent to

solving a constrained least squares problem

y = argmin ||g — My||, (4.11)
ey

where M is a matrix of size dy x d, resulting from Riesz-lifts of the functionals

R; (id).
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The solution to this problem therefore satisfies

lu—ulv <« 325 e — u)llu = xdist (@, M)y. (4.12)

where k = C/c = Cj/c;, is the quotient between the equivalence constants in (4.10).
The surrogate
S @) == 1R, y) v (4.13)

for the metric projection distance of u onto M obviously satisfies (4.7). It is indeed
computable at affordable cost using (an approximation to) its Riesz-lifted version
lle(i, y)|lv = IR, y)|lv (in V, C V) assembled from the Riesz-lifts of the compo-
nents R;(u), see [9] for details in the affine expansion (2.9).

Since solving the above problem provides an admissible parameter value y € Y,
this also has some immediate bearing on parameter estimation. Suppose we wish to
estimate from w = Pwu(y*) the unknown parameter y* € Y. Assume further that A
is any given linear or nonlinear recovery map. Computing along the above lines

Yw = argmin |R(A(w), y)[Iv/
yey

we have

luy™) —u@)llu = uG™) =AW llu + [AW) — uGw)llu
< Ewe(A, M, W) + kedist (Aw), M)y < (1 + k) Eye(A, M, W), (4.14)

We consider now the specific elliptic model (2.6) with affine diffusion coefficients
a(y) given by (2.10). For this model, it was established in [5] that for strictly positive
f and certain regularity assumptions on a(y) as functions of x € €2, parameters may
be estimated by states. Specifically, when a(y) € H'(2) uniformly in y € VY, one
has an inverse stability estimate of the form

la(y) — a@) @) < Cllu@y) — u@)y°. (4.15)

Thus, whenever the recovery map A satisfies (4.9) for some prescribed ¢ > 0, we
obtain a parameter estimation bound of the form

la(y*) — a@u) o) < Cee(M, W)HE,

Note that when the basis functions 6; are L,-orthogonal, |a(y*) — a(w)llL, @) is
equivalent to a (weighted) £, norm of y* — y,,.
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4.3 Concluding Remarks

The affine or piecewise affine recovery scheme hinges on the ability to approximate
a solution manifold effectively by linear or affine spaces, globally or locally. As
explained earlier this is true for problems of elliptic or parabolic type that may include
convective terms as long as they are dominated by diffusion. This may however no
longer be the case when dealing with pure transport equations or models involving
strongly dominating convection.

An interesting alternative would then be to adopt a stochastic model according
to (2.27) and (2.28) that allows one to view the construction of the recovery map as
a regression problem. In particular, when dealing with transport models, a natural
candidate for parametrizing a reduced model are deep neural networks. However,
properly adapting the architecture, regularization and training principles pose wide
open questions addressed in current work in progress.
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Pattern Formation Inside Living Cells )

Check for
updates

Leah Edelstein-Keshet

Abstract While most of our tissues appear static, in fact, cell motion comprises
an important facet of all life forms, whether in single or multicellular organisms.
Amoeboid cells navigate their environment seeking nutrients, whereas collectively,
streams of cells move past and through evolving tissue in the development of com-
plex organisms. Cell motion is powered by dynamic changes in the structural pro-
teins (actin) that make up the cytoskeleton, and regulated by a circuit of signaling
proteins (GTPases) that control the cytoskeleton growth, disassembly, and active
contraction. Interesting mathematical questions we have explored include (1) How
do GTPases spontaneously redistribute inside a cell? How does this determine the
emergent polarization and directed motion of a cell? (2) How does feedback between
actin and these regulatory proteins create dynamic spatial patterns (such as waves)
in the cell? (3) How do properties of single cells scale up to cell populations and
multicellular tissues given interactions (adhesive, mechanical) between cells? Here
I survey mathematical models studied in my group to address such questions. We
use reaction-diffusion systems to model GTPase spatiotemporal phenomena in both
detailed and toy models (for analytic clarity). We simulate single and multiple cells
to visualize model predictions and study emergent patterns of behavior. Finally, we
work with experimental biologists to address data-driven questions about specific
cell types and conditions.

1 Introduction: Motile Cells and Their Inner Workings

Many types of cells are endowed with the ability to move purposefully. As an exam-
ple, neutrophils, shown in Fig. 1a, are white blood cells that make up part of our
immune system, in charge of patrolling tissues for pathogens or sites of injury. The
motion of unicellular organisms such as bacteria, while interesting in its own right,
is governed by distinct mechanisms that will not be discussed here.
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Fig.1 Cell motility and cell polarization: from biology to mathematical model: a A white blood
cell (neutrophil) moving between red blood cells (disk-shaped objects) from a 1950s movie clip by
David Rogers. The 1D band represents a transect of the cell from front to back. We are concerned
with how the cell breaks symmetry and polarizes to define such a front-back axis. b, ¢ Sketch of
a cell in top-down b and side ¢ views, indicating the same 1D axis. d In our mathematical model,
we aim to explain how regulatory proteins in the cell (called GTPases) spontaneously polarize and
form hot spots of activity that define the front and back of the cell. e In our abstract “wave-pinning”
model, this same process is depicted as a 1D pattern-formation event, with a wave that stalls to
produced a polarized distribution

< Time

In a movie dating to the 1950s’ David Rogers (then at Vanderbilt University)
captured the amoeboid movements of a neutrophil as it navigates between red blood
cells (disk shaped objects in Fig. 1a). In this movie, which can be seen on a popular
YouTube site, we see a crawling cell, with dynamic shape—a broad front that pushes
outwards, and a thin tail that is pulled along as the cell moves. Figure 1b, ¢ are two
projections of cell shape (top down in (b) and side view in (c)) that we later utilize
in modeling cell polarization.

It is worth pointing out the sizes and timescales that concern us here. In contrast
to some papers (e.g. Prof. Marsha Berger’s whose work describes geological size
scales and timescales of hours and days [1]), here we deal with the micro-world of
cells, whose diameter is on the order of 10-30 wm. The time-scale of relevance is
on the order of seconds. As summarized in Table 1, the process of cell polarization,
which defines the front and back of the cell and specifies its direction of motion,
take place over seconds across the tiny cell diameter. Also noteworthy is the fact
that the production of new copies of proteins (i.e. protein synthesis) does not suffice
to explain how protein activity becomes concentrated at some parts of a cell, since
synthesis takes hour(s), while the response times of a cell to stimuli that polarize it
is known to take only seconds for fast-moving cells like neutrophils.

Here the purpose is to explain an important first step in cell motility: the symmetry
breaking that creates a front and a back in the cell (Fig. 1d), namely the polarization
of the cell. But before embarking on the mathematics that describes this process, we
first discuss the important cellular components that are involved.
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Table1 Typical sizes and speeds of cells, and typical time-scales of protein synthesis and activation

Cell part or process Typical size
Cell diameter 10-30 um
Cell thickness 0.1pm

Cell speed (WBC) 0.1-0.2 pm/s
Response time to stimuli Few seconds
Protein synthesis time Hour(s) (!!)
Protein activation time Few seconds
Diffusion rates (proteins) 0.1-10 pm?/s

Recall that 1 wm = 10~° m. WBC white blood cell (neutrophil)

1.1 Actin Powers Cell Motility

Unlike plants and bacteria, animal cells have no tough outer cell wall. They are
enclosed in a lipid membrane that envelopes the interior, which in turn includes the
fluid cytosol and many organelles. Most organelles, including the cell’s nucleus are
not directly involved in powering cellular motion.

Without some structural components, the cell would be essentially a bag of fluids.
An internal “skeleton” (called the cytoskeleton) is formed by a meshwork of fila-
mentous actin (F-actin), a dynamic biopolymer protein structure that is assembled at
what becomes the cell front. The polymerization of actin leads to protrusion of the
cell front [23]. Meanwhile, in association with the motor protein myosin, contraction
of actomyosin leads to retraction of the rear portion of the cell [33], Fig. 2a.

Due to the abundance of actin monomers at excess concentration in every cell,
actin assembly would be an explosive process were it not tightly controlled by many
interacting regulatory cellular proteins. Many of those proteins, discovered and char-
acterized experimentally over the last decades [27, 34], interact with actin to make it
branch, to cut or cap its growing ends, to sequester or to recycle its monomeric sub-
units. Other proteins play the role of master-regulators that control the components
of the cytoskeleton [30].

1.2 GTPases Are Master Regulators

One important class of proteins that regulate the cytoskeleton is the class of Rho
GTPases, among which Rac and Rho are well known [3]. In the schematic Fig.2,
GTPases are shown to promote the assembly of filamentous actin, and the activity
of myosin contraction. The GTPase Rac does the former, while the GTPase Rho
enables the latter. Hence, if we can explain how Rac and Rho activities concentrate
at one or another part of the cell, we can also explain the localizations of a front and
rear cellular axis, and hence cell polarization. This then, is the main focus of our
approach.
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Fig. 2 Schematic diagram of the cell’s motility machinery: a Actin filaments (F-actin), rep-
resented as blue curves, assemble at what becomes the cell front. Actin polymerization leads to
protrusion at the front edge of the cell. In the cell rear, myosin motors (not shown) associate with
F-actin to contract and pull up the “tail”. Proteins in the class known as Rho GTPases are master
regulators. These proteins control where and when actin assembly and myosin contraction take
place. GTPases play an essential role in cell polarization. b Each GTPase has an active and an
inactive state, modeled by the variables u, v. Only when bound to the cell membrane (shown in
yellow) is the GTPase active. A, I denote rates of activation and inactivation

Interestingly, proteins in the family of Rho GTPases have a curious life-cycle.
They occur in active and inactive forms, with only the active forms exerting the
effects mentioned above [8]. Moreover, the active forms are always bound to the
fatty membrane that forms the outer cell envelop (shown in yellow in Fig.2). Hence,
the small GTPases spend their cellular lives shuttling between the cell membrane
(where part of their structure gets embedded when active) and the cell interior (where
they are entirely inactive). This basic idea is illustrated in Fig. 2b. The GTPases act
as cellular switches that are “ON” when active and “OFF” otherwise.

A natural question one could ask, is what is the functional purpose of the GTPase
cycling between the cell’s membrane and the cell’s interior? As we shall see, math-
ematics may have something to contribute towards answering such questions. A
second question is what property of the cellular machinery account for the spon-
taneous polarization of the cell? That is, how do GTPases redistribute so that their
levels of activity differ between the front and rear of a cell [2].

2 Mathematical Models

In our earliest works on cell polarization, we attempted to account for many known
features of the GTPase activity and their crosstalk and interactions [6, 18, 20]. Such
models were largely computational, as it was a challenge to analyse them mathemat-
ically. It was clear that more basic model variants would be useful for mathematical
progress to be feasible.

As described in Mori et al. [24, 25], we simplify a very complicated cellular pro-
cess to allow for mathematical tractability. We thereby hope to identify key elements
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Fig. 3 Model geometry: The complicated cell geometry is simplified into a 1D domain (transect
along the cell diameter) with active and inactive proteins distributed along that axis, but with distinct
rates of diffusion, D, < D,

that allow for spontaneous cell polarization. First, we consider just one GTPase (say
Rac), rather than the entire network (Cdc42, Rac and Rho). We ask which biological
attributes account for spontaneous symmetry breaking and polar pattern formation.
To investigate this, we construct the following mathematical model.

We define u(t), v(¢) to be the concentrations of the active and inactive forms of
the GTPase. Then, based on the schematic diagram in Fig. 2b, it follows that

du dv

— =Av—1Iu, — =—-Av+1lu.

dt dt
This is not yet enough, since spatial distribution is a vital aspect. Hence, we require
a spatial variable, and need to account for the localization of each of u, v. To do so,
we also need to define the geometry of interest.

As argued earlier, and noted in Fig. 1, to explain symmetry breaking for polariza-
tion, a 1D model along the front-back axis suffices. And while the detailed residence
of the proteins on the membrane or cell interior is important, it proves helpful to
simplify this too, in the steps shown in Fig.3. In that figure, we first idealize the
cell as a thin sheet of uniform thickness, surrounded top and bottom by a membrane
(yellow outline). Zooming in on a small portion of the cell, we might see active (red)
and inactive (black) copies of the GTPase associated with the membrane or the fluid
cell interior. We homogenize these compartments, treating both u and v as dependent
variables on a 1D spatial domain 0 < x < L where L is the cell diameter. We do
however, take into account the very different rates of diffusion of a protein in the
membrane (D, ~ 0.01-0.1 Mmz/s) versus the fluid cell interior (D, &~ 10 umz/s)
[28]. As we shall see, this huge disparity in diffusion plays a significant role.
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The model becomes

5 Ay (1a)
ot “ox2 '
W _p (1b)
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In principle, the rates of activation and inactivation A, I, are not merely constant.
If they were, then Eq. (1) would be linear in u, v, and would have fairly uninter-
esting steady state solutions. Some nonlinearity is essential, and this also requires
feedback—something that can only depend on levels of active proteins. (Recall that
the inactive GTPases do not participate in any interactions.) We have considered
models where many other proteins influence each of the state transitions [14, 18,
21], and in that case, the model would expand in complexity,

3141 821/!1
?:DMW—’_A(ulsqu'-')vl_I(u17u27-~')u17 (2a)
8v1 821)1
WZDUW_A(ulvu2a-~~)vl+I(ulau29~--)ula (2b)
ou

8_1‘2 - ... (2¢)

Such examples, considered in the context of biological experiments, are briefly
discussed further on, but mathematically, they are harder to analyze.

Our ultimate purpose, mathematically, is to strip away such complexity and focus
on the most elementary example, where a single GTPase polarizes on its own. To do
so, we considered the version

5 L Ay — (3a)
ot " x2 ’
w_ % — A + Tu (3b)
ot " 9x2 '

with feedback exclusively in the activation rate A(u«) and a constant rate of inactiva-
tion /. This specific choice is somewhat arbitrary, as shown in [18], since it is possible
to obtain essentially the same behaviour with nonlinearity introduced by assuming
that I = I (u) with A constant, or by other variants where both A and / depend on
u. The biological interpretation is somewhat different, since distinct proteins in cells
play the role of activating (GEFs) and inactivating (GAPS) the GTPases. In the case
of constant 7, we can rescale time, so that I = 1. Altogether, then, the single-GTPase
system consists of the pair of PDEs
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ou 9%u
I =Du@+f(u,v), (4a)
v 9%v
m =Dvw—f(u,v), (4b)
with .
f(u,v)=<b+1/1_l:un>v—u, (40)

where b is the basal rate of activation and y is an additional rate of activation depicting

positive feedback from u to its own activation. The constant n > 2 is the so-called

“Hill coefficient”. Larger values of n result in sharper switching between states.
We also assume Neumann boundary conditions, namely,

u;(0,6) =0, uy(L,t)=0, v(0,£) =0, v (L,t)=0. (4d)

This signifies that no material leaks out of the ends of the 1D domain, i.e. that the
cell ends are sealed.

Notably, on the timescale of interest (a few seconds), no protein is made or lost,
it is merely exchanged between the active and inactive states (see Table 1). This is
captured by the model, since it is easy to see that the total amount of protein in the
domain is conserved, that is,

L
1
Mean total concentration = I f (u(x,t) +v(x,t))dx = constant 5
0

As shown in [24, 25], the following properties are necessary and sufficient to
ensure that a unimodal pattern (depicting a polarized distribution) will exist as a
nonuniform steady state of the model:

1. There is some range of values v; < v < v, for which the function f(u, v) has
three roots, u, < u, < up. (We refer to this range of v as the bistable regime.)

2. Of these three roots, the outer two (u,, u;) are stable fixed points of the spatially
homogeneous variant of (4).

3. For some value, v* in v; < v < vy, there is a change in the sign of the integral

/ f(u,v)du.

4. The rates of diffusion of u and v are sufficiently different: D, << D,,.

It is interesting to contrast the system (4) with a related one consisting of (4a),
(4c) and (4d) but with v = constant, that is, with a single bistable reaction-diffusion
equation in one variable, u. The latter is known to sustain traveling wave solutions, as
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Fig. 4 Travelling waves versus wave-pinning: a A single reaction-diffusion equation (4a) (for
constant v) with kinetics of type (4c) is known to sustain traveling wave solutions for u(x, t).
b In contrast, the system of Eqs. (4a)—(4d) with conservation and distinct rates of diffusion (D, <
D,) results in waves that stop inside the domain, a phenomenon we termed “wave-pinning”

shown in Fig.4a. In contrast, the two-variable system (4a)—(4d) leads to waves that
decelerate and stop inside the domain (once the sign condition above is satisfied) as
demonstrated in Fig. 4b. We refer to this behaviour as “wave-pinning”. We see that
Fig. 4a fails to explain polarization, because the cell diameter is eventually uniformly
active. Figure4b is consistent with polarization, since the two ends of the domain
develop distinct levels of activity as time goes by. In this sense, wave-pinning is a
simple caricature of cell polarization.

2.1 How Wave-Pinning Works

Full details of the analysis of such dynamics are described in [25]. Here it suffices
to briefly mention the key asymptotic analysis ideas used in establishing the result.
The system (4) is rescaled to exploit the existence of a small parameter

2 D,
€ =—,
rL

where r is a typical kinetics rate constant with units of 1/time (e.g., r = y). We then
examine the short and intermediate time-scales of the rescaled system.

On a short time-scale (¢, = ¢ /¢€), it can be shown that to leading order, at various
sites in the domain, u approaches its steady state values u,, u,. This means that the
domain is “carved up” into plateaus of high and of low activity levels u separated by
transition layers between them.

To make progress, we consider the case of a single interface separating a low
and a high plateau. Let the position of the interface be ¢ (#). We go on to seek the
intermediate time scale behaviour. We construct an inner and an outer solution next to
the transition layer and show that, to leading order, the variable v is roughly spatially
constant on the two sides of the interface v ~ V,(¢), while it is depleted in time as u
evolves.
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Fig. 5 Regimes of wave-pinning: Wave-pinning, which represents cell polarization, depends on a
balance between the total amount of GTPase (5) and the size of the small parameter € = D,,/(rL?).
If the total amount is too small, the wave of activity collapses, whereas if it is too large, the wave
sweeps across the entire domain, and a net homogenous state results. Polarization can also be lost
in several ways (1) If the cell size decreases too much, and hence € increases, the system leaves the
polarization regime. (2) If cell size increases so that the mean total GTPase becomes too “diluted”,
polarization can also be lost. Image credit: Alexandra Jllkine

Using well-known analysis for wave-speed, we construct the speed of the wave,
finding it to be described by a ratio of two integrals

L f(u, v)du
speed = ——m.
I

Here u,, u, depend on Vy(¢), and I is a strictly positive integral. We argue that the
wave stops when the numerator vanishes, which is guaranteed to happen at some
point by Condition 3, a Maxwell condition. Indeed, once v is depleted sufficiently,
to the level v*, the integral in the numerator vanishes. Details and discussion of the
steps appear in [25]. Regimes of polarization are shown in (Fig. 5).

Intuitively, the result can be explained as follows: at the transition zone, the high u
plateau activates an adjoining site by virtue of local diffusion and positive feedback.
The spread of u, however, is at the expense of the inactive form v, which gets
depleted as the wave of activity spreads. Once v is sufficiently depleted, the spread
of the activity wave can no longer be sustained. At that point, the wave freezes.

Itis also interesting to note that the fast diffusion of v means that it acts as a “global
messenger’’ in the sense that it rapidly stores domain-wide information about the level
of activity in the cell. Hence, local activation (of u by itself) and global depletion (of
v) synergize to produce the polarization of activity in the domain.
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3 Recent Work: Analysis, Simulation, and Contact with
Experiments

The wave-pinning equations are merely a prototype of the dynamics of a protein in
the small GTPase family. Related systems with greater levels of biological detail have
also been explored [12, 14, 21]. Indeed insights by AFM Marée in [20] contributed
to the understanding that led to the mathematical treatment of wave-pinning in
[24, 25].

3.1 Analysis of Slow-Fast Reaction Diffusion Systems: LPA

While studying systems of reaction-diffusion equations (RDEs) for cell polarization,
we have benefitted from a number of recent methods that result in shortcuts for
quick diagnosis of pattern-formation regimes. Among these, the “Local Perturbation
Analysis” (LPA) is a method to track local and global variables in RDEs using ODEs
that approximate the fate of a small peak of activity (u). This method was invented
by AFM Mareé and V Grieneisen [9, 36], and popularized in several papers [11, 12,
15]. It has helped us to identify approximate regimes where a nonuniform pattern
could form by a finite perturbation of a spatially uniform state in a fast-slow reaction
diffusion system.

Figure 6 illustrates a typical LPA bifurcation result, and its interpretation. The
method identifies the existence of a spatially uniform global branch (in black), and
parameter regimes where this branch is stable (solid) or unstable (dot-dashed curve).
Even when the global homogeneous steady state is stable, a polarized pattern can be
established with large enough stimulus. The local variable u;, represents a thin local
peak of active u. That peak could grow (and lead to a polar pattern) in the regime where
the solid red curve is present. The LPA diagram demonstrates that a sufficiently large
stimulus peak is needed, that its size has to exceed a threshold (dashed red curve),
and that some parameter regimes allow for patterning in response to arbitrarily small
stimuli (dot-dashed black curve). The latter regimes can be identified with Turing
instabilities. The former regimes are not discoverable by the usual linear stability
analysis (LSA) for Turing pattern formation, and are a helpful aspect of LPA that
goes beyond LSA.

In our experience, solving the full PDEs with insights gained from LPA diagrams
makes it easier to identify the interesting parameter regimes. Details of the method
and its uses has been extensively described in [15]. Other useful shortcuts have
included “sharp-switch” approximations (Hill functions replaced by piecewise con-
stant functions), as in [12], and analysis of plateaus described in [36]. None of these
replace the need for simulating the PDEs, but all of them help to gain familiarity
with possible expected behaviours of the reaction-diffusion systems we have inves-
tigated. Most recently, Andreas Buttenschon has created full numerical bifurcation
software for PDEs that permits much greater accuracy in tracking solution branches
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Fig. 6 Methods of analysis and simulations: a Local perturbation analysis (LPA), a shortcut
bifurcation method has helped to detect regimes of patterning in slow-fast reaction-diffusion sys-
tems. Here we show an example of how the basal activation rate b influences potential regimes of
wave-pinning and of Turing-type instability. See text and references [11, 12, 15] for details. b A
number of methods have been used to simulate polarization in 2D deforming domains representing
the “top-down” view of a cell (as in Fig. 1b). From top to bottom: A cellular-Potts model simula-
tion by A. F. M. Mareé of a 2D deforming cell with an internal reaction-diffusion signaling circuit
(and an implicit reaction-diffusion solver) that includes GTPases, interacting lipids, actin, and other
components [21], the wave-pinning system (4) solved in an immersed-boundary method simulation
by Ben Vanderlei [35], by the level set and moving boundary node method by Zajac [7], and using
CompuCell3D by undergraduate summer research student Zachary Pellegrin

[4]. The software builds on state of the art well-conditioned collocation techniques
to discretize functions and their operators. Solution branches are continued using
a matrix-free Newton-Gauss method, for which rigorous convergence estimates are
available.

3.2 Simulating the PDEs in Dynamic Cell-Shaped Domains

So far, analytic results were described in 1D domains that represent a cell transect.
It is instructive to ask how the same systems behave in domains whose shape more
closely relates to that of cells, and in particular, where the internal chemistry affects
(and is affected by) the deforming cell. Based on the fact that cell fragments (radius
~ 5-10 um) without a nucleus, and with overall uniform thickness (/0.2 jum) are
capable of motility, we take the liberty of reducing cell shape to its two-dimensional
“top-down” projection shown in Fig. 1b, d. We solve the governing equations (4)
or more detailed versions, in the 2D domain, and assume that the boundary of the
domain is influenced by the local chemical activity level. For example, if u represents
the level of activity of the GTPase Rac, it causes the boundary to be pushed outwards
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(via F-actin assembly), whereas Rho has the opposite effect (activating contraction
via myosin).

A number of results obtained over the years by group members are illustrated in
Fig. 6b. In general, we found that the simplest system to understand analytically (4), is
not as robust computationally as other variants. Cross-talk between GTPases results
in larger parameter regimes for polarization. As an example, models consisting of four
PDEs that describe the mutual antagonism between Rac and Rho [12] lead to greater
robustness in 2D computations. An even more detailed variant, that includes several
GTPases (Rac, Rho, Cdc42), as well as their effects on actin assembly and myosin
contraction was capable of realistic behaviour such as directed motility (chemotaxis)
[20]. The addition of a layer of signaling lipids (phosphoinositides) also permitted
a simulated cell to rapidly select one front despite conflicting or competing stimuli
[21].

Simulating the reaction-diffusion systems for GTPase signaling in deforming
domains also reveals that evolving domain shape and level curves of the chemical
system influence one another: the zero-flux boundary conditions impose constraints
on the level curves that also accelerate the dynamics of the chemical redistribution
when the domain deforms. Such findings were discussed in detail in [21].

For practical reasons, it is harder to simulate the same systems in 3D. However,
recent work by the group of Anotida Madzvamuse [5] has extended these results to a
coupled bulk-surface wave-pinning computation in a 3D cell-shaped static domain.

3.3 Contact with Biological Experiments

While details are beyond the scope of this summary, it is worth noting several direc-
tions in which the mathematical modeling has contributed to understanding of exper-
imental cell biology.

Willian Bement (U Wisconsin) studies the patterns of GTPases (Rho and Cdc42)
that form spontaneously around sites of laser-inflicted wounds in frog eggs (Xeno-
pus oocytes). The connectivity of these GTPases, and their crosstalk with proteins
that activate or inactivate them (e.g. Abr) has been modeled by group members,
including Cory Simon, Laura Liao, and William R Holmes. Combining models with
experiments has helped to build an understanding of the biology [12, 13, 32].

The polarization of HeLa cells exposed to gradients that stimulate a graded
response by the GTPase Rac were studied experimentally by Benjamin Lin, in the
Lab of Andre Levchenko [19]. A model for Cdc42, Rac, and Rho, interacting with
one another and with the phosphoinositides PIP, PIP, and PIP; explained the timing
and strength of the response, and predicted results of experimental manipulations
that affect parts of the crosstalk [14, 19].

Experiments have been carried out on melanoma cells grown on microfabricated
surfaces that mimic the natural environment of cells (“extracellular matrix”). JinSeok
Park, of the Levchenko Lab at Yale University found three typical motility pheno-
types, including persistently polarized, random, and oscillatory front-back cycling,
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Fig. 7 Extensions of the minimal model: a The simplest basic wave-pinning model of Eq.(4)
can produce a polarized pattern. b When the GTPase promotes assembly of F-actin, which then
promotes GTPase inactivation, waves and other exotic dynamics can be observed, provided the
negative feedback is on a slow time-scale [10, 22]. In a, b time increases along the vertical axis and
space is on the horizontal axis. ¢ Some GTPases cause the cell to spread (Rac) or to shrink (Rho),
affecting cell tension. If the tension also affects GTPase activity, interesting dynamics are observed.
Shown is a time sequence (left to right) of a “tissue” composed of ~370 cells, colour coded by their
internal GTPase activity. The cell size is correlated to that activity, as described in [37]

time

depending on levels of adhesion to the substrate, and manipulations that affect activ-
ities of the GTPases or their downstream targets. We were able to account for the
observed phenotypes by a model for Rac-Rho mutual antagonism, weighted by sig-
nals from the extracellular matrix substrate [16, 26, 29].

4 Extending the Minimal Model

The wave-pinning model has been used as a nucleus from which we have expanded to
larger circuits, and greater levels of biological detail. We showed that some properties
of the system (4) is shared by a circuit of the mutually antagonistic GTPases Rac-
Rho [12]. A notable common feature is the existence of parameter regimes in which
several states coexist. These include states of uniformly low activity, uniformly high
activity, or polarized levels of activity. Which of these develops then depends on
initial conditions. A recent contribution [38] extends these findings to more general
model variants.

A hallmark of the kinetics we described above is the presence of bistability in
some parameter regimes, i.e. the existence of two stable steady states separated by an
unstable one. Such systems also display hysteresis, or a kind of history-dependence:
slowly increasing a parameter results in a sudden appearance of a new steady state
at some transition point, but to reverse the process, the same parameter has to be
decreased much beyond the transition point. The addition of feedback from a third
dynamic variable in such cases, is known to produce the possibility of oscillations.
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We examined several cases of this type, motivated by biological observations.
In one case, we studied feedback from F-actin to the inactivation of a GTPase, as
observed, for example, in [31]. Assuming slow negative feedback from F-actin (to
the inactivation of the GTPase), as shown in Fig. 7b leads to interesting dynamics of
traveling waves and pulses in the domain [10, 22]. Feedback between the Rac-Rho
circuit and the extracellular matrix also results in oscillations, as previously described
[16]. More recently, we also modeled the interplay between mechanical tension in
the cell and the activity of GTPases, as observed experimentally by [17]. Here we
assumed that GTPase such as Rho and Rac can affect cell spreading, which changes
the tension on the cell and feeds back to the activation of the GTPase. A typical
circuit of this type is shown in Fig. 7c. As expected, such negative feedback is also
consistent with regimes of oscillatory dynamics in individual cells, as demonstrated
in [37]. Moreover, when cells with such behaviour are coupled to one another in 1D
or in 2D (simulations in Fig. 7c), one observes waves of chemical activity coupled
to cell-size changes as the “model tissue” undergoes the spatio-temporal dynamics
so created.

5 Discussion

Cell biology presents an unlimited source of inspiring problems. The links between
mathematics and cell biology are relatively recent, and not yet fully recognized. But
the need for quantitative methods, computational platforms, and mathematical analy-
sis of cellular phenomena promises to grow with time, presenting many opportunities
for young applied mathematicians looking for problems to study.

Here I have mainly described a toy model that we constructed to help us understand
cell polarization. The simplicity of the model made it mathematically tractable. Its
analysis reveals several insights that were not a priori evident. First, with the right
kind of positive feedback, we showed that a single GTPase could, on its own, lead
to spontaneous polarization that explains cell directionality. In other words, it is
not essential to have networks of such proteins to achieve this cellular process.
Second, there is a functional purpose for the curious biology of GTPases: their
cycling between membrane and cytosol is not a mere evolutionary artifact. We argue
that this transition sets up the differences in diffusion between active and inactive
GTPases—a difference that is crucial for polarization to be possible, according to
our mathematical model.

The motivation of cell polarity led us to mathematics with a surprising twist,
uncovering the phenomenon of decelerating waves and wave-pinning that were not
widely recognized before in the literature on reaction-diffusion systems. From this
standpoint, we could argue that biology inspires new mathematics. The efforts to
understand models that were so developed also resulted in a variety of methods that
ease the analysis, among them LPA. Extensions of the basic wave-pinning model led
to variants with more exotic patterns and waves. These were investigated in various
geometries, in single cells, and finally, in interacting groups of cells to identify
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causes for cell size fluctuations in a tissue and for a variety of emergent phenomena
in single and collective cell motility. Finally, developing simple theoretical models
and in parallel considering biologically-inspired detailed models are not mutually
exclusive. Our experience in the former helps us with the later, and vice versa.

Many still-unanswered questions can be posed. Among these are some of the fol-
lowing: How does the internal GTPase state of a cell affect the outcome of interactions
between cells, and how does contact between cells change their GTPase state? What
are reasonable ways to model such cell-cell interactions leading to cell adhesion or
cell separation? How is cell state coordinated in a multicellular tissue? What aspects
of cell adhesion, mechanics, deformation, chemical secretion, and environmental
topography (to name a few) affect and are affected by GTPase activities, and how
should these be modelled? What methods of analysis can we develop to help with
larger, more realistic models that have many interacting components? What aspects
of 3D cell shape, and of cell motion in a 3D matrix lead to new phenomena, and what
numerical methods should be developed to address such behaviours? Is there a com-
promise between large-scale computations and mathematical analysis in these more
challenging scenarios? In conclusion, the motility and interactions of cells is a rich
scientific area calling for investigation by applied mathematicians. Pattern formation
inside living cells is merely one facet, while many other fundamental challenges are
at hand.
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Private AI: Machine Learning m
on Encrypted Data e

Kristin Lauter

Abstract This paper gives an overview of my Invited Plenary Lecture at the Inter-
national Congress of Industrial and Applied Mathematics (ICIAM) in Valencia in
July 2019.

1 Motivation: Privacy in Artificial Intelligence

These days more and more people are taking advantage of cloud-based artificial intel-
ligence (Al) services on their smart phones to get useful predictions such as weather,
directions, or nearby restaurant recommendations based on their location and other
personal information and preferences. The Al revolution that we are experiencing in
the high tech industry is based on the following value proposition: you input your
private data and agree to share it with the cloud service in exchange for some use-
ful prediction or recommendation. In some cases the data may contain extremely
personal information, such as your sequenced genome, your health record, or your
minute-to-minute location.

This quid pro quo may lead to the unwanted disclosure of sensitive information
or an invasion of privacy. Examples during the year of ICTAM 2019 include the case
of the Strava fitness app which revealed the location of U.S. army bases world-wide,
or the case of the city of Los Angeles suing IBM’s weather company over deceptive
use of location data. It is hard to quantify the potential harm from loss of privacy,
but employment discrimination or loss of employment due to a confidential health
or genomic condition are potential undesirable outcomes. Corporations also have a
need to protect their confidential customer and operations data while storing, using,
and analyzing it.

To protect privacy, one option is to lock down personal information by encrypting
it before uploading it to the cloud. However, traditional encryption schemes do not
allow for any computation to be done on encrypted data. In order to make useful
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predictions, we need a new kind of encryption which maintains the structure of the
data when encrypting it so that meaningful computation is possible. Homomorphic
encryption allows us to switch the order of encryption and computation: we get the
same result if we first encrypt and then compute, as if we first compute and then
encrypt.

The first solution for a homomorphic encryption scheme which can process any
circuit was proposed in 2009 by Gentry [21]. Since then, many researchers in cryp-
tography have worked hard to find schemes which are both practical and also based
on well-known hard math problems. In 2011, my team at Microsoft Research collabo-
rated on the homomorphic encryption schemes [8, 9] and many practical applications
and improvements [30] which are now widely used in applications of Homomorphic
Encryption. Then in 2016, we had a surprise breakthrough at Microsoft Research
with the now widely cited CryptoNets paper [22], which demonstrated for the first
time that evaluation of neural network predictions was possible on encrypted data.

Thus began our Private Al project, the topic of my Invited Plenary Lecture at the
International Congress of Industrial and Applied Mathematics in Valencia in July
2019. Private Al refers to our Homomorphic Encryption-based tools for protecting
the privacy of enterprise, customer, or patient data, while doing Machine Learning
(ML)-based Al both learning classification models and making valuable predictions
based on such models.

You may ask, “What is Privacy?” Preserving “Privacy” can mean different things
to different people or parties. Researchers in many fields including social science and
computer science have formulated and discussed definitions of privacy. My favorite
definition of privacy is: a person or party should be able to control how and when their
data is used or disclosed. This is exactly what Homomorphic Encryption enables.

1.1 Real-World Applications

In 2019, the British Royal Society released a report on Protecting privacy in practice:
Privacy Enhancing Technologies in data analysis. The report covers Homomorphic
Encryption (HE) and Secure Multi-Party Computation (MPC), but also technologies
not built with cryptography, including Differential Privacy (DP) and secure hardware
hybrid solutions. Our homomorphic encryption project was featured as a way to
protect “Privacy as a human right” at the Microsoft Build world-wide developers
conference in 2018 [39]. Private Al forms one of the pillars of Responsible ML in
our collection of Responsible Al research and Private Prediction notebooks were
released in Azure ML at Build 2020.

Over the last 8 years, my team has created demos of Private Al in action, running
private analytics services in the Azure cloud. I showed a few of these demos in my talk
at ICIAM in Valencia. Our applications include an encrypted fitness app, which is a
cloud service which processes all your workout and fitness data and locations in the
cloud in encrypted form, and displays your summary statistics to you on your phone
after decrypting the results of the analysis locally. Another application shows an
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encrypted weather prediction app, which takes your encrypted zip-code and returns
encrypted versions of the weather at your location to be decrypted and displayed to
you on your phone. The cloud service never learns your location or what weather
data was returned to you. Finally, I showed a private medical diagnosis application,
which uploads an encrypted version of your Chest X-Ray image, and the medical
condition is diagnosed by running image recognition algorithms on the encrypted
image in the cloud, and returned in encrypted form to the doctor.

Over the years, my team' has developed other Private Al applications, enabling
private predictions such as sentiment analysis in text, cat/dog image classification,
heart attack risk based on personal health data, neural net image recognition of
hand-written digits, flowering time based on the genome of a flower, and pneumonia
mortality risk using intelligible models. All of these operate on encrypted data in the
cloud to make predictions, and return encrypted results in a matter of fractions of a
second.

Many of these demos and applications have been inspired by collaborations with
researchers in Medicine, Genomics, Bioinformatics, and Machine Learning. We have
worked together with finance experts and pharmaceutical companies to demonstrate
a range of ML algorithms operating on encrypted data. The UK Financial Conduct
Authority (FCA) ran an international Hackathon in August 2019 to combat money-
laundering with encryption technologies by allowing banks to share confidential
information with each other. Since 2015, the annual iDASH competition has attracted
teams from around the world to submit solutions to the Secure Genome Analysis
Competition. Participants include researchers at companies such as Microsoft and
IBM, start-up companies, and academics from the U.S., Korea, Japan, Switzerland,
Germany, France, etc. The results provide benchmarks for the medical research
community of the performance of encryption tools for preserving privacy of health
and genomic data.

2 What Is Homomorphic Encryption?

I could say, “Homomorphic Encryption is encryption which is homomorphic.” But
that is not very helpful without further explanation. Encryption is one of the building
blocks of cryptography: encryption protects the confidentiality of information. In
mathematical language, encryption is just a map which transforms plaintexts (unen-
crypted data) into ciphertexts (encrypted data), according to some recipe. Examples
of encryption include blockciphers, which take sequences of bits and process them
in blocks, passing them through an S-box which scrambles them, and iterating that
process many times. A more mathematical example is RSA encryption, which raises

1 My collaborators on the SEAL team include: Kim Laine, Hao Chen, Radames Cruz, Wei Dai, Ran
Gilad-Bachrach, Yongsoo Song, Shabnam Erfani, Sreekanth Kannepalli, Jeremy Tieman, Tarun
Singh, Hamed Khanpour, Steven Chith, James French, with substantial contributions from interns
Gizem Cetin, Kyoohyung Han, Zhicong Huang, Amir Jalali, Rachel Player, Peter Rindal, Yuhou
Xia as well.
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Fig. 1 Homomorphic encryption

a message to a certain power modulo a large integer N, whose prime factoriza-
tion is secret, N = p - g, where p and g are large primes of equal size with certain
properties.

A map which is homomorphic preserves the structure, in the sense that an operation
on plaintexts should correspond to an operation on ciphertexts. In practice that means
that switching the order of operations preserves the outcome after decryption: i.e.
encrypt-then-compute and compute-then-encrypt give the same answer. This property
is described by the following diagram:

Starting with two pieces of data, a and b, the functional outcome should be the
same when following the arrows in either direction, across and then down (compute-
then-encrypt), or down and then across (encrypt-then-compute): E(a + b) E(a) +
E(b). If this diagram holds for two operations, addition and multiplication, then
any circuit of AND and OR gates encrypted under map the encryption map E. It is
important to note that homomorphic encryption solutions provide for randomized
encryption, which is an important property to protect against so-called dictionary
attacks. This means that new randomness is used each time a value is encrypted,
and it should not be computationally feasible to detect whether two ciphertexts are
the encryption of the same plaintext or not. Thus the ciphertexts in the bottom right
corner of the diagram need to be decrypted in order to detect whether they are equal.

The above description gives a mathematical explanation of homomorphic encryp-
tion by defining its properties. To return to the motivation of Private Al, another way
to describe homomorphic encryption is to explain the functionality that it enables.
Figure2 shows Homer-morphic encryption, where Homer Simpson is a jeweler
tasked with making jewelry given some valuable gold. Here the gold represents
some private data, and making jewelry is analogous to analyzing the data by apply-
ing some Al model. Instead of accessing the gold directly, the gold remains in a
locked box, and the owner keeps the key to unlock the box. Homer can only handle
the gold through gloves inserted in the box (analogous to handling only encrypted
data). When Homer completes his work, the locked box is returned to the owner who
unlocks the box to retrieve the jewelry.
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Protectmg Data via Encryptlon
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1. Put your gold in a locked box.
2. Keep the key.

3. Let your jeweler work on it through a glove box.
4. Unlock the box when the jeweler is done!

Fig. 2 Homer-morphic encryption

To connect to Fig. 1 above, outsourcing sensitive work to an untrusted jeweler
(cloud) is like following the arrows down, across, and then up. First the data owner
encrypts the data and uploads it to the cloud, then the cloud operates on the encrypted
data, then the cloud returns the output to the data owner to decrypt.

2.1 History

Almost 5 decades ago, we already had an example of encryption which is homomor-
phic for one operation: the RSA encryption scheme [36]. A message m is encrypted
by raising it to the power e modulo N for fixed integers e and N. Thus the product
of the encryption of two messages m; and m; is m{m$ = (m;m5)¢. It was an open
problem for more than thirty years to find an encryption scheme which was homo-
morphic with respect to two (ring) operations, allowing for the evaluation of any
circuit. Boneh-Goh-Nissim [3] proposed a scheme allowing for unlimited additions
and one multiplication, using the group of points on an elliptic curve over a finite
field, along with the Weil pairing map to the multiplicative group of a finite field.

In 2009, Gentry proposed the first homomorphic encryption scheme, allowing in
theory for evaluation of arbitrary circuits on encrypted data. However it took several
years before researchers found schemes which were implementable, relatively prac-
tical, and based on known hard mathematical problems. Today all the major homo-
morphic encryption libraries world-wide implement schemes based on the hardness
of lattice problems. A lattice can be thought of as a discrete linear subspace of
Euclidean space, with the operations of vector addition, scalar multiplication, and
inner product, and its dimension, n, is the number of basis vectors.
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2.2 Lattice-Based Solutions

The high-level idea behind current solutions for homomorphic encryption is as fol-
lows. Building on an old and fundamental method of encryption, each message is
blinded, by adding a random inner product to it: the inner product of a secret vector
with a randomly generated vector. Historically, blinding a message with fresh ran-
domness was the idea behind encryption via one-time pads, but those did not satisfy
the homomorphic property. Taking inner products of vectors is a linear operation, but
if homomorphic encryption involved only addition of the inner product, it would be
easy to break using linear algebra. Instead, the encryption must also add some freshly
generated noise to each blinded message, making it difficult to separate the noise
from the secret inner product. The noise, or error, is selected from a fairly narrow
Gaussian distribution. Thus the hard problem to solve becomes a noisy decoding
problem in a linear space, essentially Bounded Distance Decoding (BDD) or a Clos-
est Vector Problem (CVP) in a lattice. Decryption is possible with the secret key,
because the decryptor can subtract the secret inner product and then the noise is small
and is easy to cancel.

Although the above high-level description was formulated in terms of lattices, in
fact the structure that we use in practice is a polynomial ring. A vector in a lattice
of n dimensions can be thought of as a monic polynomial of degree n, where the
coordinates of the vector are the coefficients of the polynomial. Any number ring is
given as a quotient of Z[x], the polynomial ring with integer coefficients, by a monic
irreducible polynomial f(x). The ring can be thought of as a lattice in R when
embedded into Euclidean space via the canonical embedding. To make all objects
finite, we consider these polynomial rings modulo a large prime g, which is often
called the ciphertext modulus.

2.3 Encoding Data

When thinking about practical applications, it becomes clear that real data first has
to be embedded into the mathematical structure that the encryption map is applied
to, the plaintext space, before it is encrypted. This encoding procedure must also be
homomorphic in order to achieve the desired functionality. The encryption will be
applied to the polynomial ring with integer coefficients modulo ¢, so real data must
be embedded into this polynomial ring.

In a now widely cited 2011 paper, “Can Homomorphic Encryption be Practical?”
([30, Sect.4.1]), we introduced a new way of encoding real data in the polynomial
space which allowed for efficient arithmetic operations on real data, opening up a
new direction of research focusing on practical applications and computations. The
encoding technique was simple: embed an integer m as a polynomial whose ith
coefficient is the ith bit of the binary expansion of m (using the ordering of bits
so that the least significant bit is encoded as the constant term in the polynomial).
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This allows for direct multiplication of real integers, represented as polynomials,
instead of encoding and encrypting data bit-by-bit, which requires a deep circuit just
to evaluate simple integer multiplication. When using this approach, it is important
to keep track of the growth of the size of the output to the computation. In order to
assure correct decryption, we limit the total size of the polynomial coefficients to 7.
Note that each coefficient was a single bit to start with, and a sum of k of them grows
to at most k. We obtain the correct decryption and decoding as long as g > ¢ > k,
so that the result does not wrap around modulo 7.

This encoding of integers as polynomials has two important implications, for
performance and for storage overhead. In addition to enabling multiplication of
floating point numbers via direct multiplication of ciphertexts (rather than requiring
deep circuits to multiply data encoded bit wise), this technique also saves space by
packing a large floating point number into a single ciphertext, reducing the storage
overhead. These encoding techniques help to squash the circuits to be evaluated, and
make the size expansion reasonable. However, they limit the possible computations
in interesting ways, and so all computations need to be expressed as polynomials.
The key factor in determining the efficiency is the degree of the polynomial to be
evaluated.

2.4 Brakerski/Fan-Vercauteren Scheme (BFV)

For completeness, I will describe one of the most widely used homomorphic encryp-
tion schemes, the Brakerski/Fan-Vercauteren Scheme (BFV) [7, 20], using the lan-
guage of polynomial rings.

2.4.1 Parameters and Notation
Let g > t be positive integers and n a power of 2. Denote A = |g/t]. Define
R =Z[x]/(x" + 1),
Ry = R/qR = (Z/qD)[x]/(x" + 1),

and R, = Z/tZ[x]/(x™ 4+ 1), where Z[x] is the set of polynomials with integer coef-
ficients and (Z/q7Z)[x] is the set of polynomials with integer coefficients in the range
[0,g —1).

In the BFV scheme, plaintexts are elements of R,, and ciphertexts are elements
of R; x R,. Let x denote a narrow (centered) discrete Gaussian error distribution.
In practice, most implementations of homomorphic encryption use a Gaussian dis-
tribution with standard deviation o[x] ~ 3.2. Finally, let U, denote the uniform
distribution on Z N [—k /2, k/2).
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24.2 Key Generation

To generate a public key, pk, and a corresponding secret key, sk, sample s < Uy,
a<U g, and e < x". Each of 5, a, and e is treated as an element of R,, where the
n coefficients are sampled independently from the given distributions. To form the
public key—secret key pair, let

pk = ([—(as +e)],.a) € R}, sk =+

where [-], denotes the (coefficient-wise) reduction modulo g.

24.3 Encryption
Letm € R, beaplaintext message. To encrypt m with the public key pk = (po, p1) €
R;, sample u <— U3 and e, e; <— x". Consider u and ¢; as elements of R, as in key

generation, and create the ciphertext

ct = ([Am + pou + erly, [pru + e2],) € R;.

2.4.4 Decryption

To decrypt a ciphertext ct = (cp, c1) given a secret key sk = s, write
t
—(co+c18) =m + v+ bt,
q

where ¢y 4 ¢ is computed as an integer coefficient polynomial, and scaled by the
rational number #/g. The polynomial b has integer coefficients, m is the underlying
message, and v satisfies ||v||o < 1/2. Thus decryption is performed by evaluating

m= F(CO + c]S)—‘ ,
q '

where |-] denotes rounding to the nearest integer.

2.4.5 Homomorphic Computation
Next we see how to enable addition and multiplication of ciphertexts. Addition is
easy: we define an operation @ between two ciphertexts ct; = (cg, ¢;) and ct, =

(dy, dy) as follows:

ct1 @ cty = ([co + dolg. [e1 + di]y) € R;.
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sum

Denote this homomorphic sum by ctgm = (cg'™, ¢{"™), and note that if
t t
5(00+C15)=m1+v1+b1t, C—I(d0+d15)=m2+vz+bzl‘,

then .
E(Céum +c"s) = [my + mal; + vi + v2 + baumt,

Aslong as ||[v; + v2]le0 < 1/2, the ciphertext ctyn is a correct encryption of [m +
ms];.

Similarly, there is an operation ® between two ciphertexts that results in a cipher-
text decrypting to [mm>];, as long as ||v;||s and ||v2 ||« are small enough. Since ®
is more difficult to describe than @, we refer the reader to [20] for details.

2.4.6 Noise

In the decryption formula presented above the polynomial v with rational coefficients
is assumed to have infinity-norm less than 1/2. Otherwise, the plaintext output by
decryption will be incorrect. Given a ciphertext ct = (co, ¢;) which is an encryption
of a plaintext m, let v € Q[x]/(x" 4 1) be such that

t
—(co+c18) =m+ v+ bt.
q

The infinity norm of the polynomial v called the noise, and the ciphertext decrypts
correctly as long as the noise is less than 1/2.

When operations such as addition and multiplication are applied to encrypted data,
the noise in the result may be larger than the noise in the inputs. This noise growth
is very small in homomorphic additions, but substantially larger in homomorphic
multiplications. Thus, given a specific set of encryption parameters (n, g, ¢, x), one
can only evaluate computations of a bounded size (or bounded multiplicative depth).

A precise estimate of the noise growth for the YASHE scheme was givenin [4] and
these estimates were used in [5] to give an algorithm for selecting secure parameters
for performing any given computation. Although the specific noise growth estimates
needed for this algorithm do depend on which homomorphic encryption scheme is
used, the general idea applies to any scheme.

2.5 Other Homomorphic Encryption Schemes

In 2011, researchers at Microsoft Research and Weizmann Institute published the
(BV/BGV [8, 9]) homomorphic encryption scheme which is used by teams around
the world today. In 2013, IBM released HELib, a homomorphic encryption library
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for research purposes, which implemented the BGV scheme. HELIib is written in
C++ and uses the NTL mathematical library. The Brakerski/Fan-Vercauteren (BFV)
scheme described above was proposed in 2012. Alternative schemes with different
security and error-growth properties were proposed in 2012 by Lopez-Alt, Tromer,
and Vaikuntanathan (LTV [33]), and in 2013 by Bos, Lauter, Loftus, and Naehrig
(YASHE [4]). The Cheon-Kim-Kim-Song (CKKS [14]) scheme was introduced in
2016, enabling approximate computation on ciphertexts.

Other schemes [16, 19] for general computation on bits are more efficient for
logical tasks such as comparison, which operate bit-by-bit. Current research attempts
to make it practical to switch between such schemes to enable both arithmetic and
logical operations efficiently ([6]).

2.6 Microsoft SEAL

Early research prototype libraries were developed by the Microsoft Research (MSR)
Cryptography group to demonstrate the performance numbers for initial applications
such as those developed in [4, 5, 23, 29]. But due to requests from the biomedical
research community, it became clear that it would be very valuable to develop a well-
engineered library which would be widely usable by developers to enable privacy
solutions. The Simple Encrypted Arithmetic Library (SEAL) [37] was developed in
2015 by the MSR Cryptography group with this goal in mind, and is written in C++.
Microsoft SEAL was publicly released in November 2015, and was released open
source in November 2018 for commercial use. It has been widely adopted by teams
worldwide and is freely available online (http://sealcrypto.org).

Microsoft SEAL aims to be easy to use for non-experts, and at the same time
powerful and flexible for expert use. SEAL maintains a delicate balance between
usability and performance, but is extremely fast due to high-quality engineering.
SEAL is extensively documented, and has no external dependencies. Other publicly
available libraries include HELib from IBM, PALISADE by Duality Technologies,
and HEAAN from Seoul National University.

2.7 Standardization of Homomorphic Encryption [1]

When new public key cryptographic primitives are introduced, historically there
has been roughly a 10-year lag in adoption across the industry. In 2017, Microsoft
Research Outreach and the MSR Cryptography group launched a consortium for
advancing the standardization of homomorphic encryption technology, together with
our academic partners, researchers from government and military agencies, and part-
ners and customers from various industries: Homomorphic Encryption.org. The first
workshop was hosted at Microsoft in July 2017, and developers for all the existing
implementations around the world were invited to demo their libraries.


http://sealcrypto.org

Private Al: Machine Learning on Encrypted Data 107

At the July 2017 workshop, we worked in groups to draft three white papers on
Security, Applications, and APIs. We then worked with all relevant stakeholders of
the HE community to revise the Security white paper [11] into the first draft standard
for homomorphic encryption [1]. The Homomorphic Encryption Standard (HES)
specifies secure parameters for the use of homomorphic encryption. The draft stan-
dard was initially approved by the HomomorphicEncryption.org community at the
second workshop at MIT in March 2018, and then was finalized and made publicly
available at the third workshop in October 2018 at the University of Toronto [1]. A
study group was initiated in 2020 at the ISO, the International Standards Organiza-
tion, to consider next steps for standardization.

3 What Kind of Computation Can We Do?

3.1 Statistical Computations

In early work, we focused on demonstrating the feasibility of statistical computations
on health and genomic data, because privacy concerns are obvious in the realm of
health and genomic data, and statistical computations are an excellent fit for efficient
HE because they have very low depth. We demonstrated HE implementations and
performance numbers for statistical computations in genomics such as the chi-square
test, Cochran-Armitage Test for Trend, and Haplotype Estimation Maximization [29].
Next, we focused on string matching, using the Smith-Waterman algorithm for edit
distance [15], another task which is frequently performed for genome sequencing
and the study of genomic disease.

3.2 Heart Attack Risk

To demonstrate operations on health data, in 2013 we developed a live demo pre-
dicting the risk of having a heart attack based on six health characteristics [5]. We
evaluated predictive models developed over decades in the Framingham Heart study,
using the Cox proportional Hazard method. I showed the demo live to news reporters
at the 2014 AAAS meeting, and our software processed my risk for a heart attack in
the cloud, operating on encrypted data, in a fraction of a second.

In 2016, we started a collaboration with Merck to demonstrate the feasibility
of evaluating such models on large patient populations. Inspired by our published
work on heart attack risk prediction [5], they used SEAL to demonstrate running the
heart attack risk prediction on one million patients from an affiliated hospital. Their
implementation returned the results for all patients in about 2h, compared to 10 min
for the same computation on unencrypted patient data.
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3.3 Cancer Patient Statistics

In2017, we began a collaboration with a Crayon, a Norwegian company that develops
health record systems. The goal of this collaboration was to demonstrate the value of
SEAL in a real world working environment. Crayon reproduced all computations in
the 2016 Norwegian Cancer Report using SEAL and operating on encrypted inputs.
The report processed the cancer statistics from all cancer patients in Norway collected
over the last roughly 5 decades.

3.4 Genomic Privacy

Engaging with a community of researchers in bioinformatics and biostatistics who
were concerned with patient privacy issues led to a growing interdisciplinary com-
munity interested in the development of a range of cryptographic techniques to apply
to privacy problems in the health and biological sciences arenas [18]. One measure
of the growth of this community over the last five years has been participation in
the iDASH Secure Genome Analysis Competition, a series of annual international
competitions funded by the National Institutes of Health (NIH) in the U.S. The
iDASH competition has included a track on Homomorphic Encryption for the last
five years 2015-2019, and our team from MSR submitted winning solutions for the
competition in 2015 ([27]) and 2016 ([10]). The tasks were: chi-square test, mod-
ified edit distance, database search, training logistic regression models, genotype
imputation. Each year, roughly 5-10 teams from research groups around the world
submitted solutions for the task, which were bench-marked by the iDASH team.
These results provide the biological data science community and NIH with real and
evolving measures of the performance and capability of homomorphic encryption to
protect the privacy of genomic data sets while in use. Summaries of the competitions
are published in [38, 40].

3.5 Machine Learning: Training and Prediction

The 2013 “ML Confidential” paper [23] was the first to propose training ML algo-
rithms on homomorphically encrypted data and to show initial performance numbers
for simple models such as linear means classifiers and gradient descent. Training is
inherently challenging because of the large and unknown amount of data to be pro-
cessed.

Prediction tasks on the other hand, process an input and model of known size, so
many can be processed efficiently. For example, in 2016 we developed a demo using
SEAL to predict the flowering time for a flower. The model processed 200, 000 SNPs
from the genome of the flower, and evaluated a Fast Linear Mixed Model (LMM).
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Including the round-trip communication time with the cloud running the demo as a
service in Azure, the prediction was obtained in under a second.

Another demo developed in 2016 using SEAL predicted the mortality risk for
pneumonia patients based on 46 characteristics from the medical record for the
patient. The model in this case is an example of an intelligible model and consists
of 46° 4 polynomials to be evaluated on the patient’s data. Data from 4, 096 patients
can be batched together, and the prediction for all 4, 096 patients was returned by
the cloud service in a few seconds (in 2016).

These two demos evaluated models which were represented by shallow circuits,
linear in the first case and degree 4 in the second case. Other models such as deep
neural nets (DNNSs) are inherently more challenging because the circuits are so deep.
To enable efficient solutions for such tasks requires a blend of cryptography and
ML research, aimed at designing and testing ways to process data which allow for
efficient operations on encrypted data while maintaining accuracy. An example of
that was introduced in CryptoNets [22], showing that the activation function in the
layers of the neural nets can be approximated with a low-degree polynomial function
(x?) without significant loss of accuracy.

The CryptoNets paper was the first to show the evaluation of a neural net pre-
dictions on encrypted data, and used the techniques introduced there to classify
hand-written digits from the MNIST [31] data set. Many teams have since worked
on improving the performance of CryptoNets, either with hybrid schemes or other
optimizations [17, 25, 35]. In 2018, in collaboration with Median Technologies,
we demonstrated deep neural net predictions for a medical image recognition task:
classification of liver tumors based on medical images.

Returning to the challenge of training ML algorithms, the 2017 iDASH contest
task required the teams to train a logistic regression model on encrypted data. The
data set provided for the competition was very simple and did not require many
iterations to train an effective model (the winning solution used only 7 iterations [26,
28]). The MSR solution [12] computed over 300 iterations and was fully scalable
to any arbitrary number of iterations. We also applied our solution to a simplified
version of the MNIST data set to demonstrate the performance numbers.

Performance numbers for all computations described here were published at the
time of discovery. They would need to be updated now with the latest version of
SEAL, or can be estimated. Hardware acceleration techniques using state-of-the-art
FPGAs can be used to improve the performance further ([34]).

4 How Do We Assess Security?

The security of all homomorphic encryption schemes described in this article is based
on the mathematics of lattice-based cryptography, and the hardness of well-known
lattice problems in high dimensions, problems which have been studied for more than
25 years. Compare this to the age of other public key systems such as RSA (1975)
or Elliptic Curve Cryptography ECC (1985). Cryptographic applications of Lattice-
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based Cryptography were first proposed by Hoffstein, Pipher, and Silverman [24]
in 1996 and led them to launch the company NTRU. New hard problems such as
LWE were proposed in the period of 2004-2010, but were reduced to older problems
which had been studied already for several decades: the Approximate Shortest Vector
Problem (SVP) and Bounded Distance Decoding.

The best known algorithms for attacking the Shortest Vector Problem or the Clos-
est Vector Problem are called lattice basis reduction algorithms, and they have a more
than 30-year history, including the LLL algorithm [32]. LLL runs in polynomial time,
but only finds an exponentially bad approximation to the shortest vector. More recent
improvements, such as BKZ 2.0 [13], involve exponential algorithms such as sieving
and enumeration. Hard Lattice Challenges were created by TU Darmstadt and are
publicly available online for anyone to try to attack and solve hard lattice problems
of larger and larger size for the record.

Homomorphic Encryption scheme parameters are set such that the best known
attacks take exponential time (exponential in the dimension of the lattice, n, meaning
roughly 2" time). These schemes have the advantage that there are no known polyno-
mial time quantum attacks, which means they are good candidates for Post-Quantum
Cryptography (PQC) in the ongoing 5-year NIST PQC competition.

Lattice-based cryptography is currently under consideration for standardization in
the ongoing NIST PQC Post-Quantum Cryptography competition. Most Homomor-
phic Encryption deployments use small secrets as an optimization, so it is important to
understand the concrete security when sampling the secret from a non-uniform, small
distribution. There are numerous heuristics used to estimate the running time and
quality of lattice reduction algorithms such as BKZ2.0. The Homomorphic Encryp-
tion Standard recommends parameters based on the heuristic running time of the
best known attacks, as estimated in the online LWE Estimator [2].

5 Conclusion

Homomorphic Encryption is a technology which allows meaningful computation on
encrypted data, and provides a tool to protect privacy of data in use. A primary appli-
cation of Homomorphic Encryption is secure and confidential outsourced storage
and computation in the cloud (i.e. a data center). A client encrypts their data locally,
and stores their encryption key(s) locally, then uploads it to the cloud for long-term
storage and analysis. The cloud processes the encrypted data without decrypting it,
and returns encrypted answers to the client for decryption. The cloud learns nothing
about the data other than the size of the encrypted data and the size of the computa-
tion. The cloud can process Machine Learning or Artificial Intelligence (ML or AI)
computations, either to make predictions based on known models or to train new
models, while preserving the client’s privacy.

Current solutions for HE are implemented in 5-6 major open source libraries
world-wide. The Homomorphic Encryption Standard [1] for using HE securely was
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approved in 2018 by HomomorphicEncryption.org, an international consortium of
researchers in industry, government, and academia.

Today, applied Homomorphic Encryption remains an exciting direction in cryp-
tography research. Several big and small companies, government contractors, and
academic research groups are enthusiastic about the possibilities of this technol-
ogy. With new algorithmic improvements, new schemes, an improved understanding
of concrete use-cases, and an active standardization effort, wide-scale deployment
of homomorphic encryption seems possible within the next 2-5 years. Small-scale
deployment is already happening.

Computational performance, memory overhead, and the limited set of operations
available in most libraries remain the main challenges. Most homomorphic encryp-
tion schemes are inherently parallelizable, which is important to take advantage of to
achieve good performance. Thus, easily parallelizable arithmetic computations seem
to be the most amenable to homomorphic encryption at this time and it seems plau-
sible that initial wide-scale deployment may be in applications of Machine Learning
to enable Private Al

Acknowledgements I would like to gratefully acknowledge the contributions of many people in
the achievements, software, demos, standards, assets and impact described in this article. First and
foremost, none of this software or applications would exist without my collaborators on the SEAL
team, including Kim Laine, Hao Chen, Radames Cruz, Wei Dai, Ran Gilad-Bachrach, Yongsoo
Song, John Wernsing, with substantial contributions from interns Gizem Cetin, Kyoohyung Han,
Zhicong Huang, Amir Jalali, Rachel Player, Peter Rindal, Yuhou Xia as well. The demos described
here were developed largely by our partner engineering team in Foundry 99: Shabnam Erfani,
Sreekanth Kannepalli, Steven Chith, James French, Hamed Khanpour, Tarun Singh, Jeremy Tieman.
I launched the Homomorphic Encryption Standardization process in collaboration with Kim Laine
from my team, with Roy Zimmermann and the support of Microsoft Outreach, and collaborators
Kurt Rohloff, Vinod Vaikuntanathan, Shai Halevi, and Jung Hee Cheon, and collectively we now
form the Steering Committee of HomomorphicEncryption.org. Finally I would like to thank the
organizers of ICIAM 2019 for the invitation to speak and to write this article.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoff-
stein, J., Laine, K., Lauter, K., Lokam, S., Micciancio, Moody, D., Morrison, T., Sahai, A.,
Vaikuntanathan, V.: Homomorphic encryption security standard. Technical report, Homomor-
phicEncryption.org, Toronto, Canada, Nov 2018. https://eprint.iacr.org/2019/939

2. Albrecht, M., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math.
Cryptol. 9(3), 169-203 (2015)

3. Boneh, D., Goh, E., Nissim, K.: Evaluating 2-dnf formulas on ciphertexts. In: TCC’05: Pro-
ceedings of the Second international conference on Theory of Cryptography, vol. 3378. Lecture
Notes in Computer Science, pp. 325-341. Springer, Berlin (2005)

4. Bos, J.W,, Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homo-
morphic encryption scheme. In: Cryptography and Coding, pp. 45-64. Springer, Berlin (2013)

5. Bos, J.W,, Lauter, K., Naehrig, M.: Private predictive analysis on encrypted medical data. J.
Biomed. Inform. 50, 234-243 (2014)


https://eprint.iacr.org/2019/939

112

6.

10.

11.

13.

14.

15.

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

K. Lauter

Boura, C., Gama, N., Georgieva, M., Jetchev, D.: Chimera: combining ring-LWE-based fully
homomorphic encryption schemes. Cryptology ePrint Archive. https://eprint.iacr.org/2018/
758

. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical

GapSVP. In: Advances in Cryptology—CRYPTO 2012, pp. 868-886. Springer, Berlin (2012)

. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without

bootstrapping. In: Proceedings of ITCS, pp. 309-325. ACM (2012)

. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard)

LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp.
97-106, Oct 2011

Cetin, G.S., Chen, H., Laine, K., Lauter, K., Rindal, P., Xia, Y.: Private queries on encrypted
genomic data. BMC Med. Genomics 10(45) (2017)

Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Hoffstein, J., Lauter, K., Lokam, S.,
Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Security of homomorphic encryption.
HomomorphicEncryption.org, Redmond WA, Technical report (2017)

. Chen, H., Gilad-Bachrach, R., Han, K., Huang, Z., Jalali, A., Laine, K., Lauter, K.: Logistic

regression over encrypted data from fully homomorphic encryption. BMC Med. Genomics
11(81) (2018)

Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X.
(eds.) Advances in Cryptology—ASIACRYPT 2011, pp. 1-20. Springer, Berlin (2011)
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approxi-
mate numbers. In: International Conference on the Theory and Application of Cryptology and
Information Security, pp. 409—437. Springer, Berlin (2017)

Cheon, J.H., Kim, M., Song, Y.: . Homomorphic computation of edit distance. In: International
Conference on Financial Cryptography and Data Security, pp. 194-212. Springer, Berlin (2015)
Chillotti, I., Gama, N., Georgieva, M., [zabacheéne, M.: TFHE: fast fully homomorphic encryp-
tion over the torus. J. Cryptol. 33, 34-91 (2020)

. Dathathri, R., Saarikivi, O., Chen, H., Laine, K., Lauter, K., Maleki, S., Musuvathi, M., Mytkow-

icz, T.: CHET: an optimizing compiler for fully-homomorphic neural-network inferencing. In:
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pp. 142-156. ACM (2019)

Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for
using homomorphic encryption for bioinformatics. Proc. IEEE 105(3), 552-567 (2017)
Ducas, L.,Micciancio, D.: FHEW: bootstrapping homomorphic encryption in less than a sec-
ond. In: Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 617-640. Springer, Berlin (2015)

Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. In: IACR Cryp-
tology ePrint Archive 144 (2012). https://eprint.iacr.org/2012/144. Accessed on 9 April 2018
Gentry, C.: A fully homomorphic encryption scheme. Stanford University (2009)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Cryptonets:
applying neural networks to encrypted data with high throughput and accuracy. In: International
Conference on Machine Learning, pp. 201-210 (2016)

Graepel, T., Lauter, K., Naehrig, M.: ML confidential: Machine learning on encrypted data. In:
International Conference on Information Security and Cryptology, pp. 1-21. Springer, Berlin
(2012)

Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: a ring-based public key cryptosystem. In:
Algorithmic number theory (Portland, OR, 1998), vo. 1423. Lecture Notes in Computer Sci-
ence, pp. 267-288. Springer, Berlin (1998)

Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for
secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security
18), pp. 1651-1669 (2018)

Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.-H.: Logistic regression model training based
on the approximate homomorphic encryption. Cryptology ePrint Archive, Report 2018/254
(2018). https://eprint.iacr.org/2018/254


https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2018/758
https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2018/254

Private Al: Machine Learning on Encrypted Data 113

27. Kim, M., Lauter, K.: Private genome analysis through homomorphic encryption. BMC Med.
Inform. Decis. Making 15(Suppl 5), S3 (2015)

28. Kim, M., Song, Y., Wang, S., Xia, Y., Jiang, X.: Secure logistic regression based on homomor-
phic encryption. Cryptology ePrint Archive, Report 2018/074 (2018). https://eprint.iacr.org/
2018/074

29. Lauter, K., Lopez-Alt, A., Naehrig, M.: Private computation on encrypted genomic data. In:
International Conference on Cryptology and Information Security in Latin America, pp. 3-27.
Springer, Berlin (2014)

30. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop (CCSW °11),
New York, NY, USA, pp. 113-124. ACM (2011)

31. LeCun, Y., Cortes, C., Burges, C.J.C.: The MNIST database of handwritten digits (1998). http://
yann.lecun.com/exdb/mnist/

32. Lenstra, A.K., Lenstra, H.W., Lovasz, L.: Factoring polynomials with rational coefficients.
Mathematische Annalen 261(4), 515-534 (1982)

33. Lopez-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud
via multikey fully homomorphic encryption. In: Proceedings of STOC, pp. 1219-1234. IEEE
Computer Society (2012)

34. Sadegh Riazi, M., Laine, K., Pelton, B., Dai, W.: Heax: high-performance architecture for com-
putation on homomorphically encrypted data in the cloud. arXiv preprint arXiv:1909.09731
(2019)

35. Sadegh Riazi, M., Samragh, M., Chen, H., Laine, K., Lauter, K., Koushanfar, F.: XONN:
Xnor-based oblivious deep neural network inference. In: 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, pp. 1501-1518. USENIX Association, Aug 2019

36. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key
cryptosystems. Commun. ACM 21(2), 120-126 (1978)

37. Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL. Microsoft Research, Red-
mond, WA, Nov 2018

38. Tang, H., Jiang, X., Wang, X., Wang, S., Sofia, H., Fox, D., Lauter, K., Malin, B., Telenti, A.,
Li, Xi., Ohno-Machado, L.: Protecting genomic data analytics in the cloud: state of the art and
opportunities. BMC Med. Genomics 9(63) (2016)

39. Vanian, J.: 4 Big Takeaways from Satya Nadella’s talk at Microsoft Build (2018). https://
fortune.com/2018/05/07/microsoft-satya-nadella-build/

40. Wang, S., Jiang, X., Tang, H., Wang, X., Bu, D., Carey, K., Dyke, S.O0.M., Fox, D., Jiang,
C., Lauter, K., Malin, B., Sofia, H., Telenti, A., Wang, L., Wang, W., Ohno-Machado, L.: A
community effort to protect genomic data sharing, collaboration and outsourcing. NPJ Genomic
Med. 2(33) (2017)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.


https://eprint.iacr.org/2018/074
https://eprint.iacr.org/2018/074
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1909.09731
https://github.com/Microsoft/SEAL
https://fortune.com/2018/05/07/microsoft-satya-nadella-build/
https://fortune.com/2018/05/07/microsoft-satya-nadella-build/
http://creativecommons.org/licenses/by/4.0/

Mathematical Approaches )
for Contemporary Materials Science: L
Addressing Defects in the Microstructure

Claude Le Bris

Abstract We overview a series of mathematical works that introduce new modeling
and computational approaches for non-periodic materials and media. The approaches
consider various types of defects embedded in a periodic structure, which can be
either deterministic or random in nature. A portfolio of possible computational tech-
niques addressing the identification of the homogenized properties of the material or
the determination of the actual multi-scale solution is presented.

1 Introduction

1.1 Contemporary Materials Science

The works outlined in the present review have been motivated by the following
two-fold observation. In the past couple of decades, what we believe to be the most
spectacular changes in materials science are

(1) the increasing multi-scale nature of the materials considered: materials used
to be mostly considered at one single scale, the effect of the finer scales being
only phenomenologically accounted for in the model at the largest scale; when
absolutely necessary, the effect of some micro-scale structure was explicitly con-
sidered, but then it was at most for one such scale and almost exclusively sequen-
tially: information was passed from the micro-scale to the macro-scale; modern
materials science increasingly explicitly and concurrently considers models of
a given material at many different scales.

(ii) the increasing imperfect character of the materials considered: more and
more often, deterministic or random sources of disorder are considered within an
ordered phase: the simplicity of periodic structures is not a valid approximation
any longer for the degree of practical relevance and accuracy that modern mate-
rials science requires; crystalline materials are actually polycrystalline materials
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and consist of mono-crystalline grains, each of them possibly of a different crys-
talline structure, each crystalline structure being itself flawed because sprinkled
of defects and dislocations; the imperfections, or violations of periodicity, affect
every possible scale, and actually cut through scales.

As aresult, the real materials that contemporary materials scientists have to model
have a multi-scale, imperfect, possibly random nature. Such materials have several
characteristic length-scales that possibly differ from one another by orders of mag-
nitude but must be accounted for simultaneously. At possibly each such scale, they
have defects. Their qualitative and quantitative response might therefore differ a lot
from the idealized scenario long considered.

Our intent here is to present several mathematical and numerical endeavors that
aim to better model, understand and simulate non-periodic multi-scale problems.

The specific theoretical context in which we develop our discussion is homoge-
nization of simple, second order elliptic equations in divergence form with highly
oscillatory coefficients:

—div [Ag(x)VuE] = f, (1)

in a domain D C RY, with, say, homogeneous Dirichlet boundary conditions #®* = 0
on dD. This particular case is to be thought of as a prototypical case. It is intuitively
clear that the same approaches carry over to other settings. Current works are indeed
directed toward extending many of the considerations here to other types of equations,
as will be clear in the exposition below.

We conclude this introductory section with a quick presentation of the classical
theory. The reader familiar with this theory may of course skip the presentation and
directly proceed to Sect. 2.

1.2 Basics of Homogenization Theory

1.2.1 Periodic Homogenization

To begin with, we recall some well known, basic ingredients of elliptic homogeniza-
tion theory in the periodic setting, see the classical references [8, 29, 42] for more
details, or an overview in [1, Chap. 1] . We consider the problem

—gdiv [Al,e,. (%) Vu"] =f in D, @)
u® =0 on 0D,

where the matrix A, is Zd-periodic, bounded and bounded away from zero, and
(for simplicity) symmetric. The corrector problem associated to Eq.2 reads, for p
fixed in RY,

{ —div (Aper(y) (P + vaer,p)) =0, (3)

Wper,p 18 Zd-periodic.
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It has a unique solution up to the addition of a constant. This solution is meant to
describe prototypical fine oscillations of the exact solution #® for & small. Then, the
homogenized coefficients read

[ >‘;,gr]ij = /e?Aper(y) (ej + prer,ej (y)) de 4)
0

where Q is the unit cube and e;, 1 <i < d are the canonical vectors of R?. The
main result of periodic homogenization theory for Eq.2 is that, as ¢ vanishes, the
solution u® to Eq.2 converges to u* solution to

per

u*=0 on 09D.

{—div [A%,,Vu*] = f in D, 5)

The convergence holds in L?(D), and weakly in HO1 (D). The correctors w per,e; may
then also be used to “correct” u* in order to show that, in the strong topology H'(D),

d
u® — u®'(x) converges to zero, foru®! (x) = u*(x) + ¢ Zi—l Oy, U™ (X) Wper,e; (x/).
The rate of convergence may also be made precise.

The practical conclusion is that, at the price of only computing the d periodic
problems of Eq. 3, the solution to Eq. 2 can be efficiently approached for ¢ small.

1.2.2 Random Homogenization

A first option to outreach the simplistic setting of periodic structures is to consider
random structures. Of course, materials are never random in nature, but randomness
is a suitable, practical way to encode the ignorance of, or at best the uncertainty on
the intimate microscopic structure of the material considered.

For homogenization, the random setting is a highly non trivial extension of the
periodic setting. Many questions, in particular for nonlinear equations, still remain
open in the random case although they are solved and well documented in the periodic
case. Fortunately, in the case of linear diffusion equations such as Eq. 1, the state of
affairs is that, loosely speaking, all the results of convergence still essentially hold
true but (a) they are more difficult to prove and (b) the convergence rates are even
more difficult to establish.

To fix the ideas, we now give some more formal details on one random case. For
brevity, we skip all technicalities related to the definition of the probabilistic setting,
which we assume discrete stationary and ergodic (we refer e.g. to [2] for all details).
We now fix A(., ) a square matrix of size d, again bounded and bounded away from
zero, symmetric, which is assumed stationary in the sense

vk € 79, A(x + Kk, w) = A(x, txw) almost everywhere in x, almost surely (6)
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(where t is an ergodic group action). This amounts to assuming that the law of
A(., w) is Z4-periodic. Then we consider the boundary value problem

—div(A (3,0) Vu*) = f in D, o
u®* =0 on 0dD.

Standard results of random homogenization [8, 29] apply and allow to find the
homogenized problem for Eq. 7. These results generalize the periodic results recalled
in Sect. 1.2.1. The solution u° to Eq.7 converges to the solution to Eq.5 where the
homogenized matrix is now defined as:

[A%], = E / T A () (e + Vwe,(v.2) dy | . ®)
0

where for any p € R?, w, is the solution (unique up to the addition of a random
constant) to

—div[A (y, ) (p+ Vuwp(y, )] =0, as.on R,
Vw, is stationary in the sense of Eq. 6,

9)
E /pr(y, )dy | =0.
0

A striking difference between the random setting and the periodic setting can be
observed comparing Eqs.3 and 9. In the periodic case, the corrector problem is
posed on a bounded domain, namely the periodic cell Q. In sharp contrast, the cor-
rector problem in Eq.9 of the random case is posed on the whole space R¢, and
cannot be reduced, at the theoretical level, to a problem posed on a bounded domain.
The fact that the random corrector problem is posed on the entire space has far reach-
ing consequences both for theory and for numerical practice. To some extent, the
unboundedness of the domain on which the corrector problem is posed is a com-
mon denominator of all the settings that we will address in the present survey. This
unboundedness of the corrector problem is also a fundamental characteristic fea-
ture of the practically relevant problems of materials science. We cannot emphasize
enough this fact.

In order to approximate Eq. 9 numerically, truncations of the problem have to be
considered, typically on large domains Qn = [0, N]¢ and using periodic boundary
conditions. The actual homogenized coefficients are only captured in the asymptotic
regime Qy — RY. Overall, it is fair to consider that the approach is very expen-
sive computationally, and often actually prohibitively expensive. Therefore, in many
practical situations, the size of the “large” domain Q considered is in fact small,
and the number of realizations of the random microstructure considered therein to
approach the expectation in Eq. 8 is also dramatically limited. Put differently, there
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is a large gap looming between the actual practice and the regime where the theory
provides relevant information.

Important theoretical questions about the quality and the rate of the convergence in
terms of the truncation size arise: see, in particular, the pioneering works by Bourgeat
and Piatnitski [17, 18] and, more broadly and recently, a series of works by F. Otto,
A. Gloria, S. Armstrong, Ch. Smart, J.-C. Mourrat and their many collaborators, see
e.g. [25, 26] for examples of contributions.

2 A Mathematical Toolbox for “Weakly”” Random
Problems

We begin with this section our study of homogenization of non-periodic problems. We
have already mentioned that one possible option is the random setting. And we have
mentioned the practical difficulties it raises. In many practical situations, however,
the real material under consideration is not far from being a periodic material. At
zero-th order of approximation, the material can be considered periodic, and it is
only at a higher order that disorder might play a role. We choose, in this section,
to encode this disorder using randomness. When the “material” under study is the
geological bedrock, there is of course no reason for this assumption to be valid, and
the classical random model of Sect. 1.2.2 might be more relevant. In contrast, the
assumption makes a lot of sense when considering manufactured materials, where
the defect of periodicity typically owes to flaws in the process: the material was meant
to be periodic, but it is actually not. The practically relevant question is to understand
whether or not, despite its smallness, the microscopic amount of randomness might
affect the macroscale at order one. Solving this question requires to come up with a
modeling strategy for the imperfect material.

Our purpose here is to outline a modeling strategy that accounts for the presence
of randomness in a multi-scale computation, but specifically addresses the case when
the amount of randomness present in the system is small. In this case, we call the
material weakly random. The weakly random material is thus considered as a small
perturbation of a periodic material. Our purpose is to introduce a toolbox of possible
modeling strategies that all keep the computational workload limited (in comparison
to a direct attack of the problem as if, like in Sect. 1.2.2, the randomness was not
small) and that provides an approximation of the response of the material which one
may certify by error estimates.

As mentioned above, the simple diffusion equation Eq. 1 is a perfect prototypical
testbed for our toolbox. It is ubiquitous in several, if not all engineering sciences
and life sciences. Although we have not developed our theory and computations for
other, more general equations and settings, we are convinced that the same line of
approach (namely small amount of randomness as compared to a reference periodic
setting, plus expansion in the randomness amplitude, and simplified computations)
can be useful in many contexts.
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2.1 Random Deformations of the Periodic Setting

A firstrandom setting, which has been introduced and studied in [11] and is not, math-
ematically, a particular case of the classical stationary setting recalled in Sect. 1.2.2,
consists of random deformations of a periodic structure. As said above, itis motivated
by the consideration of random geometries that have some specific proximity to the
periodic setting. The periodic setting is here taken as a reference configuration, some-
what similarly to the classical mathematical formalization of continuum mechanics
where a reference configuration is used to define the state of the material under study.
Another related idea, in a completely different context, is the consideration of a ref-
erence element for finite element computations. The real situation is then seen via
a mapping from the reference configuration to the actual configuration. Here, this
mapping is a random mapping (otherwise, one would know everything on the mate-
rial up to a change of coordinates and there would be poor practical interest in the
approach). Assuming some regularity of this mapping induces constraints on the sets
of geometries that the microstructures of the material can take. Put differently, the
material structure, even though it is not entirely known, is not arbitrarily disordered.

We fix some Z?-periodic A .., assumed to satisfy the usual properties of bounded-
ness and coerciveness, and we consider the following specific form of the coefficient
A;,inEq.1

A (4, 0) = Aper (CD‘l (za))) (10)

where the function ® (-, w) is assumed to be, almost surely, a diffeomorphism from R
to R. The diffeomorphism, called a random stationary diffeomorphism, is assumed
to additionally satisty

essinfyco yere [det(VO(x, w))] =v > 0, (11)
essSUpP,,cq yere (IVO(x, ®)]) = M < o0, (12)
V& (x, w) is stationary in the sense of Eq. 6. (13)

Note that the first two assumptions enforce the “homogeneity” of the diffeomorphism:
the deformed periodic structure does not implode nor explode anywhere.
Homogenization holds for the above problem (the details are made precisein [11]).
The homogenized problem again reads as in Eq. 5 with the homogenized matrix given
by:
—1

[A*],'j =det | E /VGD(z, )dZ
Q

< E f e Apor (070 )) (&) + Vwe, (v, ) dy | . (14)
P(0,")
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where for any p € R?, w, is the solution (unique up to the addition of a random
constant and belonging to the suitable functional space) to

—div [Aper (7' (3, @) (p+ Vwp)] =0, as.on RY,
wp(y, ) = Wy (P7'(y, @), w), Vi, is stationary in the sense of Eq. 6,

E / Vuwp(y, )dy | =0.
@(0.)

15)
At first sight, there seems to be no simplification whatsoever in considering the
above system Eq. 15, which even looks way more complex than the classical random
problem Eq.9. The key point, though, is that the introduction of a new modeling
“parameter”, namely the random diffeomorphism &, allows to in some sense intro-
duce a distance between the periodic case (& = I/d) and the random case (& # Id)
considered. Our next step consists in proceeding in this direction.

2.2 Small Random Perturbations of the Periodic Setting

We now superimpose to the setting defined in the previous section the assumption
that the material considered is a small perturbation of a periodic material. This is
formalized upon writing

D(x,w) =x +n¥(x, )+ O, (16)

where W is any random field such that ® is a random stationary diffeomorphism that
satisfies Eqs. 11-13 for 5 sufficiently small.

It has been shown in [11] that, when @ is such a perturbation of the identity
map (see Fig. 1), the solution to the corrector problem of Eq. 15 may be developed
in powers of the small parameter 5. It reads Wy (x, ©) = Wper,p(x) + nwll,(x, w) +

0 (n?), where w per,p 18 the periodic corrector defined in Eq. 3 and where wll, solves

Fig. 1 Small random
deformation of a periodic
structure. In the unperturbed
periodic environment, the
inclusions are circular and
periodic. The deformation of
each inclusion is performed
randomly. Source [21]
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—div [A,,e, lel)]

=div [—Aper VU VW perp — (VT — (div¥)Id) Aper (p+ Vwperp) ],
Vuw,, is stationary and E / Vuw, | =0.

0
A7)

The problem of Eq. 17 in w:) is random in nature, but it is in fact easy to see, taking
the expectation, that Ell) = IE(wll,) is periodic and solves the deterministic problem

—div [Aper VI, ]
=div [~ Aper E(VY) VW erp — E(VET) — E(div W)Id) Aper (P + VWperp)] -

This is useful because, on the other hand, the knowledge of wg and wllj suffices to
obtain a first order expansion (in 1) of the homogenized matrix. Indeed, A*;W being
the periodic homogenized tensor as defined in Eq.4, and

Al = —/E(div W) [A%,, 1 + /(ei + Yy, ) Aper € E(div W)

0 0
+ [ (VL —EVYVW, ) Ape e,
0
we then have
A* =A%, + A + 0. (18)

per

For 7 sufficiently small in function of the accuracy expected, the approach therefore
provides a computational strategy to approximately compute the homogenized ten-
sor that bypasses the classical random problem and only considers (a sequence of)
deterministic, periodic problems.

2.3 Rare but Possibly Large Random Perturbations

The previous section has shown that a perturbative approach can be an interesting
modeling and computational strategy for cases when the structure of the material is
random but “close” to a periodic structure. We now proceed in a similar direction
by presenting an alternative perturbative approach, described in full details in [3, 4].
We consider

A,,()C, w) = Aper(x)+bn(x’ ) Cper(x)s (19)

instead of a coefficient A ., (<I>’1 (., a))) with @ of the form Eq. 16.InEq. 19, A, is
again a periodic matrix modeling the unperturbed material, C ., is a periodic matrix
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Fig. 2 Defects in a periodic P PO e ®
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Sect.2.3). Source [3]

modeling the perturbation, and b, (., ®) is arandom field that is, in some sense, small.
Consider then the case

by(x, ) = Y g1 (¥) B} (@), (20)
keZ4

where the Bf; are, say, independent identically distributed random variables. One
particularly interesting case (see [3, 4] for this case and others) is that when the
common law of the B,’; is a Bernoulli law of parameter 7 (see Fig.2).

We now explain formally our approach. The mathematical correctness of the
approach has been established in the works [23, 40].

To start with, we notice that in the corrector problem

—div[A, (v, 0) (p+ Vwy(y, ®))] =0, 21)

the only source of randomness comes from the coefficient A, (y, w). Therefore, in
principle, if one knows the law of this coefficient A, one knows the law of the correc-
tor function wp(y, @) and therefore may compute the homogenized coefficient A*,
the latter being a function of this law. When the law of A, is an expansion in terms
of a small coefficient, so is the law of wy. Consequently, A} must be attainable using
an expansion.

Heuristically, on the cube Q v and at order 1 in 1, the probability to see the perfect
periodic material (entirely modeled by the matrix A, ) is (1 — nV ‘~1-N dn+
O (n?), while the probability to see the unperturbed material on all cells except one
(where the material has matrix A o, + C ) is N4 (1 — )V ~'n = Nip+ 0(p?).
All other configurations, with more than two cells perturbed, contribute at orders
higher than or equal to n2. This gives the intuition (indeed confirmed by a mathemat-
ical proof) that the first order correction indeed comes from the difference between
the material perfectly periodic except on one cell and the perfect material itself:
A} = A}, + 1A+ o(n) where A7, is the homogenized matrix for the unper-

per
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turbed periodic material and

Ay = NhI-rrl [(Aper + lQCper)(vwg +e) — Aper(vaer,e,- + ei)] , (22)
—400

On

where w solves

— div ((Aper +19Cper) (€ + V) =0 in Qy, w is Qy — periodic.
(23)
Note that the integral appearing on the right-hand side of Eq. 22 is not normalized: ita
priori scales as the volume N¢ of Q y and has finite limit only because of cancellation
effects between the two terms in the integrand.

This perturbative approach has been extensively tested. It has been observed that
the large N limit for cubes of size N is already accurately approximated for limited
values of N. As in the previous section (Sect.2.2), the computational efficiency of
the approach is clear: solving the two periodic problems with coefficients A, and
Aper +19C ), for alimited size N is much less expensive than solving the original,
random corrector problem for a much larger size N. When the second order term
is needed, configurations with two defects have to be computed. They all can be
seen as a family of PDEs, parameterized by the geometrical location of the defects
(see again Fig.2). Reduced basis techniques have been shown to allow for a definite
speed-up in the computation, see [33].

On an abstract level, we note that, in the proposed approach for the “weakly” ran-
dom regime, the determination of the homogenized tensor for a material containing
defects with random locations is reduced to a set of computation of the solutions
to correctors problems such as Eq.23 for materials with defects at some particular
deterministic locations. This naturally establishes a methodological link with our
next section where we indeed consider materials with deterministic defects. The link
is actually more than methodological: the theoretical results of Sect.3 establishing
that the corrector problems with deterministic defects are uniquely solvable in a suit-
able class of functions are readily useful in the random setting for the foundation of
the approach described here in Sect. 2.

3 Deterministic Defects Within an Otherwise Periodic
Structure

We return to the generic multi-scale diffusion equation Eq. 1. Under quite general
and mild assumptions on the diffusion (possibly matrix-valued) coefficient A, (which
needs not be of the form A, = A, (x/¢) or obey any structural assumption of that
type), presumably varying at the tiny scale ¢, the equation admits an homogenized
limit, which is indeed of the same form as Eq. 1, namely Eq.5. Celebrated results
along these lines are due to S. Spagnolo, E. De Giorgi and L. Tartar and their respec-
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Fig. 3 Localized defects in a periodic structure. Some periodic cells in the center of the domain
are perturbed. The error u® — u®! is displayed when calculating u®! using (left) the periodic
COITECtOr W per,p solution to Eq.3 and (right) the adjusted corrector wyp solution to Eq.24. In the
former case, the size of the committed error is almost a “defect detector”. In the latter case, the
error is homogeneous throughout the domain, recovering the quality of the approximation of the
unperturbed periodic case. Source [12]

tive collaborators, see [42]. The strength of such results is their generality. They
are obtained by a compactness argument. Schematically the sequence of inverse
operators [—div(A,V.)]"! is (weakly) compact in the suitable topology, converges,
up to an extraction, and its limit can be proven to be an operator of the same type,
namely [—div(A*V.)]~!. On the other hand, and precisely because of the generality,
not much is known on the limit A*. This contrasts with periodic homogenization
which is both explicit (the limit coefficient A* is known by a formula, namely Eq. 4,
in function of the, also known, corrector) and precised (the rate of convergence of
u® to u* is known for a large variety of norms). Besides their theoretical interest
per se, the combined two ingredients allow for envisioning, in practice, a numerical
approach for the computation of the homogenized limit, certified by a numerical
analysis that guarantees a control of the numerical error committed, in function of ¢
and the discretization parameters.

The question arises to find settings sufficiently general that still allow for the
quality of results of the periodic setting. The recent decade has witnessed several
mathematical endeavors in this direction. We describe here such an endeavor and
give one prototypical example of such a setting, where we illustrate the novelty of
the mathematical questions involved (Fig. 3).

Consider Eq. 1 and assume that A, = A(./¢) where the coefficient A models a
periodic material perturbed by a localized defect. This setting, mathematically, may
be encodedin A = A, + A for A € L?(R?) for some p < +o0. Clearly, the pres-
ence of this defect does not affect the macroscopic behavior, that is the homogenized
equation for the same homogenized coefficient A*, only actually depending on aver-
ages of A over large, asymptotically infinite volumes, for which the addition of a
function such as A does not matter. On the other hand, when it comes to making this
limit more precise, one intuitively realizes, zooming in locally in the material, that
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the corrector equation that describes the microscopic response of the material reads
as
— div(A(e; + Vwe,)) = 0. (24)

This equation is different from Eq.3, and, in sharp contrast with Eq.3 (and simi-
larly to what we observed for Eq.9 in the random setting), does not reduce to an
equation set on a bounded domain with periodic boundary conditions. Note that,
for the particular choice A= 19Cper, Eq.23 is a particular instance of Eq.24 when
N = +o0. In essence, Eq.24 is posed on the entire ambient space R?, a reflection
of the fact that, at the microscopic scale, the defect has broken the periodicity of the
environment: the local response is affected by the defect and depends on the state
of the whole microscopic structure. A considerable mathematical difficulty follows.
The classical toolbox for the study of the well-posedness of (here linear) equations
on bounded domains: the Lax-Milgram Lemma in the coercive case, the Fredholm
Alternative, etc., all techniques that one way or another rely upon the boundedness of
the domain or the compactness of the setting, are now ineffective. Should A be ran-
dom stationary, then Eq. 24 would read as Eq.9 and admit an equivalent formulation
on the abstract probability space. This would make up for compactness, but other
significant complications would arise. For Eq. 24, the difficulty must be embraced.
A related difficulty is to define the set of admissible functions for solutions, or the
variational space in an energetic formulation of the problem. In the specific case
A=Ap,r+ A with A € L?(R?), one seeks for the solution to Eq. 24 under the form
We, = Wpere; + We, thatis, with reference to the periodic solution w e, , Somewhat

i

in echo to what we achieved in Sect.2.3. Equation 24 then rewrites as
—div (A Vi) = div (f),

where f € L?(R%), which, by homogeneity, suggests that the suitable functional
space for Vi is LP(RY). The question then arises to know whether the oper-
ator [V][div(A V )]~ [div] acts continuously in L? (R?). The answer depends
on the properties of the coefficient A. In the present setting, it is positive for
all 1 < p < +o00. The theoretical analysis to reach this conclusion heavily relies
upon the celebrated works [5—7] by M. Avellaneda and F. H. Lin for the periodic
case (see also [30, 41]).

The consideration of the one-dimensional version of the problem clearly shows
(this particular example is worked out in [12]) that when one considers the spe-

d d
cific corrector w solution to 7 <(ape, +a)(y) (1 + - w(y))) = 0, instead
y y

of the periodic corrector w,, solution to —5 Aper(y) <1 + 5 Wper ()
then the quality of the (two-scale, first order) approximation of the solution u® is
immediately improved near the defect and at the scale of the defect.

In dimensions higher than or equal to two, the proof is more difficult. Under
appropriate conditions, the solution u® is well approximated in H' norm, both at
scale one and at scale ¢ (thus in particular in L*> norm), by the first order expansion
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W) =u*(x) + ¢ Zd ) dy, u” (x) we, (x/€) constructed using the specific correc-
tors we,. The latter appf(_)ximation property does not in general hold true for the
periodic first-order approximation u;el, x)=u*(x)+¢ Z(_I_I Ay, U™ (X) Wper,e; (x/€)
constructed using the periodic corrector w ;- One may even make precise the rate
of convergence in function of the small parameter ¢, and likewise may prove similar
convergence for different Sobolev or Holder norms. The proof of these convergences
has first been presented in the case p = 2 (and slightly formally) in [12]. All results
and extensions are carried out in a series of works [9, 10, 13-15].

The procedure above is not restricted to the linear diffusion problem Eq. 1. One
may consider semi-linear equations, quasi-linear equations, systems, etc. And of
course it gets all the more delicate as the complexity of the equation increases. One
such example, namely an Hamilton-Jacobi equation, is the purpose of the work [19]
and also the subject of work in progress by the author and his collaborators, see [16,
20, 28].

Various other cases of defects may be considered for homogenization problems
that are otherwise “simple”. They may formally decay at infinity (like the “localized”
functions A manipulated above), or not. In the former case, the problem at infinity
(that is the problem obtained upon translating the equation far away from the defect)
is identical to the underlying periodic problem. In the latter case, the situation may
sensitively depend upon what the problem “at infinity” looks like. There may even
exist several such problems. Another prototypical example is related to the modeling
of grain boundaries in materials science: two, different, periodic structures are con-
nected across an interface. The defect is, say, a plane separating the two structures,
and at large distances from this interface, different periodic structures are present,
depending upon which side of the interface is considered, see [13]. The correspond-
ing mathematical problem is theoretically challenging, and practically relevant. In
all cases, the purpose is to identify the homogenized, macroscopic limit, while, in the
meantime, retain some of the microscopic features that make the problem relevant.

4 Multi-scale Finite Element Approaches
and Nonperiodicity

Multi-scale Finite Element Methods, abbreviated as MSFEM, have proved to be effi-
cient in a number of contexts. In essence, these approaches are based upon choosing,
as specific finite dimensional basis to expand the numerical solution upon, a set
of functions that themselves are solutions to a highly oscillatory local problem, at
scale ¢, involving the differential operator present in the original equation. This
problem-dependent basis set, precomputed (in an offline stage), is likely to better
encode the fine-scale oscillations of the solution and therefore allow to capture the
solution more accurately. Numerical observation along with mathematical arguments
prove that this is indeed generically the case. The versatility of the classical FEM is
lost, but with MsFEM, their efficiency is restored for multi-scale problems.
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The standard version of the approach has been originally introduced by T. Hou
and his collaborators (see the textbook [24] for a general introduction). There exist
many variants of such a multi-scale approach, within the formalism of MsFEM
or beyond it, and many outstanding numerical analysts and computational analysts
have contributed to the field. Classical examples include the Variational multi-scale
Method introduced by Hughes et al. the Local Orthogonal Decomposition method
by Malqvist and Peterseim, the localization and subspace decomposition method of
R. Kornhuber and H. Yserentant, etc. It is not our purpose here to review all these
works. We would like to concentrate ourselves here on an issue that is intrinsically
related to the context of our discussion, namely breakings of the periodic structure of
a material, and its consequence on the accuracy of a dedicated numerical approach.

We recall, on the prototypical multi-scale diffusion problem Eq. 1, that the MsFEM
approach, in one of its simplest variant, consists of the following three steps:

1. Introduce a discretization of D with a coarse mesh; throughout this article, we
work with the P! Finite Element space

Vi = Span{¢, 1 <i < Ny,} C Hj(D). (25)
2. Solve the local problems (one for each basis function for the coarse mesh)
—div (4Vy*) =0 inK, ¥ =g oniK, (26)

on each element K of the coarse mesh 7y, in order to build the multi-scale basis
functions. This is typically performed off-line, using a fine mesh 7, with h < H.
3. Apply a standard Galerkin approximation of Eq. 1 on the space

Span {yf, 1 <i < Ny,} C Hy(D), (27)

where ¥/ is such that yf |K = wf’K forallK € Ty.

The error analysis of this MsSFEM method has been performed for A, = Ape; (-/€)
with Ape a fixed periodic matrix. Assuming that the basis functions are perfectly
determined (that is, 7 = 0), the main error estimate, under the usual assumption of
regularity of the data and the mesh, reads as

[e
lu® — ulyllm (D) §C<H+«/E+ ﬁ) (28)

where C is a constant independent of H and €.

When the coarse mesh size H is close to the scale ¢, a so-called resonance phe-
nomenon, encoded in the term /¢/H in Eq. 28, occurs and deteriorates the numerical
solution. The oversampling method is a popular technique to reduce this effect. In
short, the approach, which is non-conforming, consists in setting each local problem
on a domain slightly larger than the actual element K considered, so as to become
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less sensitive to the arbitrary choice of boundary conditions on that larger domain,
and next truncate on the element the functions obtained. That approach allows to
significantly improve the results compared to using linear boundary conditions as
in Eq.26. In the periodic case, the following estimate holds

€
lu® —uyllg gy <C (H + Ve + E)’

& e _ e 112 . 1
where ||u® — uly iz, = Kg lue —uy Ik, is the H' broken norm of
H
€

u® —ufy.

The boundary conditions imposed on 9K in Eq. 26 are the so-called linear bound-
ary conditions. Besides the linear boundary conditions, and the oversampling tech-
nique we have just mentioned, there are many other possible boundary conditions for
the local problems. They may give rise to conforming, or non-conforming approx-
imations. The choice sensitively affects the overall accuracy. In an informal way,
the whole history of improvements of the original version of MSFEM can be revis-
ited as the history of improvements of the choice of suitable “boundary conditions”
for Eq.26.

The question of how much the choice of boundary conditions for the local prob-
lems Eq. 26 alters the overall accuracy is all the more crucial in the context of non-
periodic structures. A prototypical case of the difficulty is that of perforated materi-
als. Consider the Poisson problem set on a domain with perforations of size ¢. For
a generic mesh, the edges (or, alternately, the facets in a three-dimensional setting)
of the mesh may intersect the perforations. It is intuitive that difficulties then arise
since the (linear or else than linear) postulated behavior of the basis functions along
the edges has little chance to accurately capture the actual behavior of the exact
solution, given the perforations. Of course, one may use oversampling in order to
circumvent this difficulty, but then the approach is non conformal and other difficul-
ties arise, besides the increased computational cost. Also, one may consider meshing
the domain in such a way that the edges intersect as few perforations as possible.
For a periodic array of perforations, this is a decent solution. But in a non-periodic
setting, and this is all the more true in a fully disordered array of perforations, this is
impractical. A possible option introduced in [34], and extended in [35, 38, 39] and
other subsequent works by different authors, is to resort to “weak” boundary condi-
tions, in the form of Crouzeix-Raviart boundary conditions. The Dirichlet boundary
conditions on dK in Eq. 26 are then replaced by conditions of the type

/wf"‘:o or 1,

edge

Nedge * ASVI/ff’K = Constant ,
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on all edges, where the local function v} K is now associated to an edge i. For this
approach, under technical assumptions, the error estimate is identical to that for linear
boundary conditions, namely Eq.28.

More importantly, upon using such “weak” boundary conditions in the context of
a perforated computational domain (and adding other, generic ingredients, such as
bubble functions), the accuracy, if not improved, is now significantly more robust with
respect to the existence of intersection between edges and perforations. A “stress-test”
considering two extreme scenarios illustrates this property: see in [35] the detailed
comparison of the results obtained with the MSFEM method and different boundary
conditions for the local problems for the shifted meshes in Fig. 4.

Let us conclude this section by emphasizing the formal link between the existence
results for the non-periodic corrector wy, that have been examined in the previous
section and the actual local basis functions wf’K of the MsFEM approaches discussed
here. Up to irrelevant technicalities and details, the corrector and the local functions
are, intrinsically, the same mathematical object: they are obtained by zooming in
locally and solving the problem at the scale of its heterogeneities.

5 Homogenization Under Partial Information

One way or another, all the approaches described so far, both at the theoretical level
and the numerical level, rely on the full knowledge of the coefficient A,. It turns out
that there are several practical contexts where such a knowledge is incomplete, or
sometimes merely unavailable. From an engineering perspective (think e.g. of exper-
iments in Mechanics), there are indeed numerous prototypical situations for Eq. 1
where the response u® can be measured for some loadings f, but where A, is not
completely known, let alone the fact that it is periodic or not. In these situations, it is
thus not possible to use homogenization theory, nor to proceed with any MsFEM-type
approach or with the similar approaches mentioned above. Finding a pathway alter-
nate to standard approaches is thus a practically relevant question. We are interested
in approaches valid for the different regimes of &, which make no use of the knowl-
edge on the coefficient A,, but only use some responses of the medium obtained
for certain given solicitations. Questions similar in spirit have been addressed two
decades ago by Durlofsky. The point is also to define an effective coefficient only
using outputs of the system. They are however different in practice (see [36] for a
detailed discussion).

For simplicity, we restrict ourselves to cases when Eq. 1 admits (possibly up to
some extraction) a homogenized limit Eq.5 where the homogenized matrix coeffi-
cient A* is deterministic and constant. This restrictive assumption on the class of A*
(and thus on the structure of the coefficient A, in Eq. 1) is useful for our theoretical
justifications, but not mandatory for the approach to be applicable.

For any constant matrix A, we consider generically the problem with constant
coefficients



Mathematical Approaches for Contemporary Materials Science ... 131

878

u

0.001

0.000935714

0.000871429
© 0.000807143
~— 0.000742857
0.000678571
0.000814286
0.00055
0.000485714
+ 0.000421429
0.000357143
0.000292857
0.000228571
0.000164286
0.0001

1

@
O
@

0.8

HO 1

0.6

0.4 F

o
no

0 0|0 O]0 Ojo Ojo
O 0|0 O]0 Ojo Ojo
0 00 0j0 0]0 0Jo

)

o

o}\‘jl ,6

O _
1O O]O O]0 Oj0 OjO ©
JO OO0 O]0 Oj0 00
"0 OO0 OO0 Oj0 Ol0 C©
19 OO OJ0 00 OO0 C
IO 0|0 OjO Olo Ol0 ©
200 OO0 OO«

&

u
0.001
0.000935714
0.000871429
0.000807143
- 0.000742857
0.000678571
0.000614286
0.00055
0.000485714
0.000421429
0.000357143
0.000292857
0.000228571
0.000184286
0.0001

i
é
|

0.8

0.6

0.4

0.2

_ ‘o S O e T S e T e R e
Al 2R PR RN PR RN PR RN P

Y OPODPDODODOD®O
p'\ﬁr\r—\r\r\r\ﬁr\r—\
MH\_J\J\_J\J\_)\.J\_J\.J\_J

Y OPOPOPOD®O

Velnieinieinieinie

p\ﬁr\ﬁr\r—\r\r—\r\r—\
JOPOPOQPPO OO

O\("\f'\f‘\f'\f‘\f'\f‘\f’\(‘\
DO PO POPOPO

op N AU A AL A AL A AL A
bﬂr‘u\.J\_}\J\_}\J\J\J\_}

?
?
5
L

Fig. 4 Two extreme cases of meshes regarding intersections with the perforations: no inter-
section at all (top), or as many intersections as possible (bottom). The Crouzeix-Raviart version of
MSFEM is, roughly, equally accurate in both situations. Source [35]

0

o

1



132 C. Le Bris
—div (AVu) = f. (29)

We investigate, for any value of the parameter £, how we may define a constant sym-
metric matrix such that the solution u (A, f) = u to Eq.29 with matrix A best approx-
imates the solution to Eq. 1. The best constant matrix A is (temporarily) defined as
a minimizer of

. — 2
I, = inf sup |uf(f) —u(A, f) HLz(D) ) (30)
constant matrix A>0 f c LZ(D),
I fllzzpy =1

where we have explicitly emphasized the dependency upon the right-hand side f of
the solutions to Eq. 1 and Eq. 29. The norm in Eq. 30 is an L2 norm (and note.g. an H'!
norm) because, for sufficiently small ¢, we wish the best constant matrix ‘A'to be close
to A*, while u® strongly converges to «* only in the L? norm but not in the H! norm.
The key point is that Eq.30 is only based on the knowledge of the outputs #® (that
could be e.g. experimentally measured), and not on that of A, itself. The theoretical
study of the minimization problem Eq. 30 has been carried out in [36]. In particular
it has been proven that, under classical assumptions, the matrices A with energy
asymptotically close to the infimum 7, all converge to A* as & vanishes. In passing,
we note that the approach provides, at least in some settings, a characterization of
the homogenized matrix which is an alternative to the standard characterization of
homogenization theory. To the best of our knowledge, this characterization, although
probably known, has never been made explicit in the literature.

In fact (and this does not alter the above theoretical results), the actual minimiza-
tion problem we use for the practice reads as

I . _ . = e 2
P act inf - sup H—A ! (—leAVu ) — f)||L2(D),
constant matrix A > 2
feL (D),
I flle2py =1

(3D
where —A ™! is the inverse laplacian operator supplied with homogeneous Dirichlet
boundary conditions. The function minimized in Eq. 31 is related to the one of Eq. 30
through the application, inside the L? norm of the latter, of the zero-order differential
operator A~! div(A V .). Note that, in sharp contrast with Eq. 30, the function to
minimize in Eq.31 is now, formally, a second-order polynomial in function of A.
This property significantly speeds up the computations of the infimum. The specific
choice Eq. 31 has been suggested to us by Albert Cohen.

Note also that, in practice, we cannot maximize upon all right-hand sides f in
L?(D) (with unit norm) and that we therefore replace the supremum by a maximiza-
tion upon a finite-dimensional set of thoughtfully selected right-hand sides.

In [36, 37], we have presented a series of numerical experiments using the above
approach. Our tests have established that the approach is in particular able to accu-
rately identify the homogenized matrix A* in the periodic case (with a computational
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Fig. 5 Homogenization approach within an Arlequin-type coupling: The fine-scale highly
oscillatory model and the coarse-grained model (tentatively identical to the homogenized model)
co-exist in an overlap region. The three regions described in the body of our text are displayed,
along with the fine and coarse meshes. Source [27]

time that is much larger than the classical approach, but this is not the point). More
importantly, itis also able to complete this task in the random case (where the classical
approach can be prohibitively expensive). Finally, and since no particular structure
of the coefficient A, is used, it may be applied to a large variety of non-periodic
structures.

A remark is in order: in both cases of periodic and random homogenization, the
classical approach computes the homogenized coefficients by first approximating the
corrector function. A fair comparison between the approaches can therefore only be
achieved if the above approach also provides some approximation of the corrector
function. It is indeed the case: the latter function can also be obtained in our approach,
at a reduced additional computational cost, as demonstrated in [36].

A variant of the above approach, originally introduced in [22], is currently under
investigation in [27]. The purpose of this variant is also to approximate A* without
explicitly using A,, and to achieve this in a robust, engineering-type manner. In a
nutshell, the approach consists in considering a domain divided in three regions, see
Fig.5. The inner region and the outer region respectively contain only the oscillatory
model of Eq.1 and the tentative homogenized model of Eq.29. In between these
two regions, an overlap region where both models exist is used for a smooth cou-
pling. Specifically, the coupling is performed using an Arlequin-type approach (see
again [22]) but this is not mandatory for the approach to perform. A linear Dirichlet
boundary condition, say u = x|, is imposed on the external surface of the domain.
It intuitively plays the role of the right-hand side function f in Eq.31. At ¢ fixed
presumably small, one then solves the minimization problem

J. = inf | V@@ - x| - (32)

constant matrixA>0

Inthe limit of ¢ vanishing, itis established that J, also vanishes and the only minimizer
is obtained for Ae; = A* e;, where ; = V(x) is the first canonical vector of the
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ambient space R?. Repeating this procedure along each dimension of R? allows
to eventually identify the matrix A*. Several computational improvements of the
original approach are introduced in [27]. A numerical analysis is also presented.
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Hyperbolic Model Reduction for Kinetic )
Equations

updates

Zhenning Cai, Yuwei Fan, and Ruo Li

Abstract We make a brief historical review of the moment model reduction for the
kinetic equations, particularly Grad’s moment method for Boltzmann equation. We
focus on the hyperbolicity of the reduced model, which is essential for the existence of
its classical solution as a Cauchy problem. The theory of the framework we developed
in the past years is then introduced, which preserves the hyperbolic nature of the
kinetic equations with high universality. Some lastest progress on the comparison
between models with/without hyperbolicity is presented to validate the hyperbolic
moment models for rarefied gases.

1 Historical Overview

The moment methods are a general class of modeling methodologies for kinetic
equations. We would like to start this paper with a historical review of this topic.
However, due to the huge amount of references, a thorough overview would be
lengthy and tedious. Therefore, in this section, we only restrict ourselves to the
methods related to the hyperbolicity of moment models. Even so, our review in the
following paragraphs does not exhaust the contributions in the history.

According to Sir J. H. Jeans [29], the kinetic picture of a gas is “a crowd of
molecules, each moving on its own independent path, entirely uncontrolled by forces
from the other molecules, although its path may be abruptly altered as regards both
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speed and direction, whenever it collides with another molecule or strikes the bound-
ary of the containing vessel.” In order to describe the evolution of non-equilibrium
gases using the phase-space distribution function, the Boltzmann equation was pro-
posed [1] as a non-linear seven-dimensional partial differential equation. The inde-
pendent variables of the distribution function include the time, the spatial coordinates,
and the velocity.

In most cases, the full Boltzmann equation cannot be solved even numerically.
One has to characterize the motion of the gas by resorting to various approximation
methods to describe the evolution of macroscopic quantities. One successful way to
find approximate solutions is the Chapman-Enskog method [15, 18], which uses a
power series expansion around the Maxwellian to describe slightly non-equilibrium
gases. The method assumes that the distribution function can be approximated up to
any precision only using equilibrium variables and their derivatives. Alternatively,
Grad’s moment method [24] was developed in the late 1940s. In this method, by
taking velocity moments of the Boltzmann equation, transport equations for macro-
scopic averages are obtained. The difficulty of this method is that the governing
equations for the components of the nth velocity moment also depend on compo-
nents of the (n + 1)th moment. Therefore, one has to use a certain closing relation
to get a closed system after the truncation.

Among the models given by Grad’s method [24], Grad’s 13-moment system is the
most basic one beyond the Navier-Stokes equations, as any Grad’s models with fewer
moments do not include either stress tensor or heat transfer. In [23], it was commented
that Grad’s moment method could be regarded as mathematically equivalent to the
Chapman-Enskog method in certain cases. Thus the deduction of Grad’s 13-moment
system can be regarded as an application of perturbation theory to the Boltzmann
equation around the equilibrium. Therefore, it is natural to hope that the 13-moment
system will be valid in the vicinity of equilibrium, although it was not expected to be
valid far away from the equilibrium distribution [25]. However, due to its complex
mathematical expression, it is even not easy to check if the system is hyperbolic, as
pointed out in [2]. As late as in 1993, it was eventually verified in [35, 36] that the
1D reduction of Grad’s 13-moment equations is hyperbolic around the equilibrium.

In 1958, Grad wrote an article “Principles of the kinetic theory of gases” in
Encyclopedia of Physics [26], where he collected his own method in the class of
“more practical expansion techniques”. However, successful applications of the 13-
moment system had been hardly seen within two decades after Grad’s classical paper
in 1949, as mentioned in the comments by Cercignani [14]. One possible reason was
found by Grad himself in [25], where it was pointed out that there may be unphysical
sub-shocks in a shock profile for Mach number greater than a critical value. However,
the appearance of sub-shocks cannot give any hints on the underlying reason why
Grad’s moment method does not work for slow flows. Nevertheless, Grad’s moment
method was still pronounced to “open a new era in gas kinetic theory” [27].

In our paper [5], it was found astonishingly that in the 3D case, the equilibrium is
NOT an interior point of the hyperbolicity region of Grad’s 13-moment model. Con-
sequently, even if the distribution function is arbitrarily close to the local equilibrium,
the local existence of the solution of the 13-moment system cannot be guaranteed
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as a Cauchy problem of a first-order quasi-linear partial differential system without
analytical data. The defects of the 13-moment model due to the lack of hyperbolicity
had never been recognized as so severe a problem. The absence of hyperbolicity
around local equilibrium is a candidate reason to explain the overall failure of Grad’s
moment method.

After being discovered, the lack of hyperbolicity is well accepted as a deficiency
of Grad’s moment method, which makes the application of the moment method
severely restricted. “There has been persistent efforts to impose hyperbolicity on
Grad’s moment closure by various regularizations” [39], and lots of progress has
been made in the past decades. For example, Levermore investigated the maximum
entropy method and showed in [33] that the moment system obtained with such a
method possesses global hyperbolicity. Unfortunately, it is difficult to put it into
practice due to the lack of a finite analytical expression, and the equilibrium lies on
the boundary of the realizability domain for any moment system containing heat flux
[30]. Based on Levermore’s 14-moment closure, an affordable 14-moment closure
is proposed in [34] as an approximation, which extends the hyperbolicity region to a
great extent. Let us mention that actually in [5], we also derived a 13-moment system
with hyperbolicity around the equilibrium.

It looks highly non-trivial to gain hyperbolicity even around the equilibrium,
while things changed not long ago. Besides the achievement of local hyperbolicity
around the equilibrium, the study on the globally hyperbolic moment systems with
large numbers of moments was also very successful in the past years. In the 1D case
with both spatial and velocity variables being scalar, a globally hyperbolic moment
system was derived in [3] by regularization. Motivated by this work, another type
of globally hyperbolic moment systems was then derived in [31] using a different
strategy. The model in [3] is obtained by modifying only the last equation and the
model in [31] revises only the last two equations in Grad’s original system. The
characteristic fields of these models (genuine nonlinearity, linear degeneracy, and
some properties of shocks, contact discontinuities, and rarefaction waves) can be
fully clarified, as shows that the wave structures are formally a natural extension of
Euler equations.

In [4], the regularization method in [3] is extended to multi-dimensional cases.
Here the word “multi-dimension” means that the dimensions of spatial coordinates
and velocity are any positive integers and can be different. The complicated multi-
dimensional models with global hyperbolicity based on a Hermite expansion of the
distribution function up to any degree were systematically proposed in [4]. The
wave speeds and the characteristic fields can be clarified, too. Later on, the multi-
dimensional model for an anisotropic weight function with global hyperbolicity was
derived in [20].

Achieving global hyperbolicity was definitely encouraging, while it sounded like
a huge mystery for us how the regularization worked in the aforementioned cases.
Particularly, the method cannot be applied to moment systems based on a spheri-
cal harmonic expansion of distribution function such as Grad’s 13-moment system.
As we pointed out, the hyperbolicity is essential for a moment model, while it is
hard to obtain by a direct moment expansion of kinetic equations. To overcome
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such a problem, we in [6] fortunately developed a systematic framework to perform
moment model reduction that preserves global hyperbolicity. The framework works
not only for the models based on Hermite expansions of the distribution function in
the Boltzmann equation, but also works for any ansatz of the distribution function in
the Boltzmann equation. Actually, the framework even works for kinetic equations
in a fairly general form.

The framework developed in [6] was further presented in the language of pro-
jection operators in [19], where the underlying mechanism of how the hyperbolicity
is preserved during the model reduction procedure was further clarified. This is the
basic idea of our discussion in the next section.

2 Theoretical Framework

In this section, we briefly review the framework in [19] to construct globally hyper-
bolic moment system from kinetic equations, as well as its variants and some further
development. To clarify the statement, we first present the definition of the hyper-
bolicity as follows:

Definition 1 The first-order system of equations
D
ow ow
— A — =0, eG
T ; ) v

is hyperbolic at wy, if for any unit vector n € RP, the matrix Zle ngAg(wyp) is real
diagonalizable; the system is called globally hyperbolic if it is hyperbolic for any
weG.

Based on this definition, the analysis of the hyperbolicity of moment systems reduces
to a problem of linear algebra: the analysis of the real diagonalizablity of the coef-
ficient matrices. Without knowing the exact values of the matrix entries, the real
diagonalizability of a matrix has to be studied by some sufficient conditions. Some
of them are

Condition 1 All its eigenvalues are real and it has n linearly independent eigenvec-
tors.

Condition 2 All the eigenvalues of the matrix are real and distinct.
Condition 3 The matrix is symmetric or similar to a symmetric matrix.

Grad [24] investigated the characteristic structure of the 1D reduction of Grad’s
13-moment system, whose hyperbolicity was further studied in [36] based on the
Condition 2. Afterwards, this condition is adopted in the proof of the hyperbolicity
of the regularized moment system for the 1D case in [3]. It is worth noting that
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using Condition 2 usually requires us to compute the characteristic polynomial of
the coefficient matrix of the moment system, and for large moment systems, this
may be complicated or even impractical. Even if the characteristic polynomial is
computed, showing that the eigenvalues are real and distinct is still highly nontrivial.
This severely restricts the use of this condition in kinetic model reduction.

To study the hyperbolicity in multi-dimensional cases, we have applied Condi-
tion 1 in [5] to show that Grad’s 13-moment system loses hyperbolicity even in an
arbitrarily small neighborhood of the equilibrium, and in [4] to prove the global
hyperbolicity of the regularized moment system for the multi-dimensional case. Due
to the requirement on the eigenvectors, both proofs based on Condition 1 are compli-
cated and tedious. By contrast, it is much easier to check Condition 3, based on which
Levermore provided a concise and clear proof of the hyperbolicity of the maximum
entropy moment system in [33]. In [19], we re-studied the hyperbolicity of the regu-
larized moment system in [3, 4] based on the Condition 3 and then generalized it to
a framework. Below we will start our discussion from a review of these hyperbolic
moment systems.

2.1 Review of Globally Hyperbolic Moment System

Let us consider the Boltzmann equation:
D
af af
—_ + _— = , l
o ; Vg = Q) (1)

and denote the local equilibrium by f,,, which satisfies Q(f,;) =0 and f,; > 0.
The key idea of Grad’s moment method is to expand the distribution as

[ x,0) =Y fog(t,%,0) fu(t, X)Heo (1,%,0) = Y fult, X)Ho(t, X, 0)

la| <M lal <M
)

for a given integer M > 2, where for the multi-dimensional index o € NP, |a| =
25:1 ag, and the basis function H,, is defined by H, = f.,He,, with He, being
the orthonormal polynomials of v with weight function f,,. When f,, is the local
Maxwellian, He,, can be obtained by translation and scaling of Hermite polynomials.
Grad’s moment system can then be obtained by substituting the expansion into the
Boltzmann equation and matching the coefficients of H,, with |«| < M. To clearly
describe this procedure, we assume that the distribution function f is defined on
a space H spanned by the basis functions H, for all o € N”, and we let Hy; :=
span{H,, : || < M} be the subspace for our model reduction. Then one can introduce
the projection from H to H,, as
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Pf= Y fuHa with fu = (£ Ha), 3)

loe| <M

where the inner product is defined as (f, g) = fR,) f&/feq dv. The projection accu-
rately describes Grad’s expansion (2) and provides a tool to study the operators in the
space H,. For example, matching the coefficients of the basis H, with |¢| < M can
be understood as projecting the system into the space H,,. Hence, Grad’s moment
system is written as

P P
P—f+273vd 3 L _powy). @)

Xd

Let H be the vector whose components are all the basis functions H, with || <
M listed in a given order. Since P f is a function in Hj,, one can collect all the
independent variables in P f and denote it by w with its length equal to the dimension
of H,. Thanks to the definition of the projection operator P, there exist the square

matrices Dand B;,d = 1, ..., D such that
oPf 7 OW oPf Iy OW
P——=H'D—, P =H'B,—. 5
ot o ok, < oxa )

Accordingly, letting Q be the vector such that PQ(P f) = H' Q, one can rewrite
Grad’s moment system as

ow b ow
D—+) B;— = 0. (6)

Actually, the system (6) is the vector form of (4) in H, with the basis H,. By
comparing these equations, we have the following correspondences

ad ad d a

Furthermore, we can diagram the procedure to derive Grad’s moment system in
Fig. 1a. It is noticed in [19] that the time derivative and the spatial derivative are
treated differently in such a process, as a projection operator is applied directly to the
time derivative, while for the spatial derivative, this projection operator appears only
after the velocity v is multiplied. This difference causes the loss of hyperbolicity.
By such observation, we have drawn a key conclusion in [19] that one should add a
projection operator right in front of the spatial derivative to regain hyperbolicity, as
is illustrated in Fig. Ib. The corresponding moment system is
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time derivative convection term
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(B) Hyperbolic regularized moment system

Fig. 1 Diagram of the procedure of Grad’s and regularized moment system

D
P P
pIPI ZPvdP—f =PO(Pf). (®)
ot = 0Xy
where the additional projection operator is labeled in red. Using (5), one can claim
that there exist the square matrices My, d = 1, ..., D such that
aP ow
PvsP ! _ H'M,D—, ©)
8xd Bxd

and obtain the vector form of the regularized moment system as
D
w ow
D—+ ) M,D— = 0. 10
o Z D 0 (10
d=1
Similar to (7), we have one more correspondence:
Md <> Pvd N (1 1)

that is to say, the matrices M are the representation of the operators Pv, on H),. Itis
not difficult to check that the matrices M, are symmetric due to the orthonormality of

the basis H,, so that any linear combination of the matrices My is real diagonalizable.
One can also check the matrix D is invertible. Hence D~!M,D is similar to My so
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that the system (10) is globally hyperbolic. Moreover, if one multiplies D7 on both
sides of (10), the resulting system

+ZDTMdD— =D"Q (12)

turns out to be a symmetric hyperbolic system of balance laws.

2.2 Hyperbolic Regularization Framework

Till now, the hyperbolicity of (10) has been proved using the Condition 3. Looking
back on the whole procedure, one can find that the key point of the hyperbolic
regularization is the extra projection operator in front of the spatial differentiation
operator in (8). Meanwhile, the underlying mechanism to obtain hyperbolicity can
be extended to much more general cases. For example, the radiative transfer equation
has the form

97t x. 6.
W L EO.9) - V.0, 0) =0 x. 6. 0).

xeR} 6e[0,7), ¢el027),

where the velocity is given by £(6, ¢) = (sin 8 cos ¢, sin 8 sin ¢, cos #)7 . To derive
reduced models, one can replace the local equilibrium f,, in (2) by a nonnegative
weight function w, and correspondingly, the orthogonal polynomials He,, should be
replaced by the orthogonal basis functions ¢, for the L? space weighted by w, so that
the basis functions H, become ®, := w¢,. By letting H), := span{®,, : |¢| < M},
one can similarly define the projection operator P as in (3). As an extension of the
globally hyperbolic moment system, we obtain

oP
Pa—f + ZP&}J(@ qD)P—f =PQPL). (13)

Again, if the corresponding matrix D as in (6) is invertible, the resulting moment
system is globally hyperbolic. We refer the readers to [6, 19, 21] for more details of
such applications in radiative transfer equations.

This framework provides a concise and clear procedure to derive the hyperbolic
moment system from a broad range of kinetic equations. It has been applied to many
fields, including anisotropic hyperbolic moment system for Boltzmann equation [20],
semiconductor device simulation [7], plasma simulation [11], density functional the-
ory [8], quantum gas kinetic theory [16], and rarefied relativistic Boltzmann equa-
tion [32].
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2.3 Further Progress

The above framework provides an approach to handling the hyperbolicity of the
moment system. However, the hyperbolicity is not the only concerned property.
Preserving the hyperbolicity and other properties at the same time is often required
in model reduction. Below we will list some recent attempts in this direction.

One of the interesting properties is to recover the asymptotic limits of the kinetic
equations. For example, the first-order asymptotic hydrodynamic limit of the Boltz-
mann equation is the Navier-Stokes equations, and therefore it is desirable that the
moment equations can preserve such a limit. For the classical Boltzmann equation,
most moment systems can automatically preserve the Navier-Stokes limit if the stress
tensor and heat flux are included. However, for the quantum Boltzmann equation,
the equilibrium has a very special form, so that the moment system directly derived
from the framework by taking the equilibrium as the weight function disobeys the
Navier-Stokes limit [16]. In this case, the authors of [16] proposed a method called
local linearization to regularize the moment system. Specifically, we assume the
Grad-type system has the form as (6) and define Md(w) = By (w)D(w)~". In the
regularization, the matrix Md(w) isreplaced by M, := Md(wgq) with w,, being the
local equilibrium of the state w. Such a method allows us to acquire both the hyper-
bolicity and Navier-Stokes limit simultaneously. The symmetry of M is thereby lost
so that one has to use Condition 1 to prove the hyperbolicity.

Another relevant work is the nonlinear moment system for radiative transfer equa-
tionin [21, 22]. In order to retain the diffusion limit (similar to the Navier-Stokes limit
for the Boltzmann equation), the authors pointed out that the projection operators in
(13) at different places do not have to be same and revised (13) to be

LOPf SOPf =
Pa—tf +Y_ PE0, w)PWf =PO(PS). (14)
d=1

The operators P and P are orthogonal projections onto different subspaces of H. By a
careful choice of the subspace for the operator 75, the diffusion limit can be achieved,
and meanwhile, the symmetry of M corresponding to that in (10) is preserved, leading
again to global hyperbolicity. This generalization has broadened the application the
hyperbolic regularization framework and also permits us to take more properties of
the kinetic equations into account.

Besides the hyperbolicity for the convection term, one may also be interested in
the wellposedness of the complete moment system including the collision term. One
related property is Yong’s first stability condition [38], which includes the constraints
on the convection term, collision term, and the coupling of both. This stability con-
dition is shown to be critical for the existence of the solutions in [37]. In [17], the
authors have studied multiple Grad-type moment systems and confirmed that all of
these systems satisfy Yong’s first stability condition.

Under this concise and flexible framework, one may wonder what is sacrificed for
the hyperbolicity. By writing out the equations, one can immediately observe that the
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form of balance law is ruined by the hyperbolic regularization. A natural question is:
how to define the discontinuity in the solution? More generally, one may ask: what
is the effect of such a regularization on the accuracy of the model? In the following
section, we will provide some clues using numerical experiments.

3 Numerical Validation

The application of the framework in the gas kinetic theory has been investigated in
a number of works [3, 9, 10, 12], where many one- and two-dimensional examples
have been numerically studied to show the validity of hyperbolic moment equations.
However, these globally hyperbolic models, as an improvement of Grad’s original
models, have never been compared with Grad’s models in terms of the modeling
accuracy. The only direct comparison seen in the literature is in [10], wherein for
a shock tube problem with a density ratio of 7.0, the simulation of Grad’s moment
equations breaks down and the corresponding hyperbolic moment equations appear
to be stable. Without running numerical tests for the same problem for which both
models work and comparing the results, it could be questioned whether we lose
accuracy when fixing the hyperbolicity. Such doubt may arise since the globally
hyperbolic models can be considered as a partial linearization of Grad’s models
about the local Maxwellians.

In this section, we will make such straightforward comparison using the same
numerical examples for both methods. For simplicity, we only consider the one-
dimensional physics, for which both x and v are scalars. In this case, the characteristic
polynomial for the Jacobian of the flux function has an explicit formula [3], so that
the hyperbolicity of Grad’s equation can be easily checked. The underlying kinetic
equation used in our test is the Boltzmann-BGK equation with a constant relaxation
time

af af 1

__I_v_

o TV30 = x5 Jea = 1) 15)

The ansatz of the distribution function is given by (3), so that (4) stands for Grad’s
moment system, and (8) stands for the hyperbolic moment system. Below we are
going to use two benchmark tests to show the performance of both types of models.
In general, both Grad’s moment equations and the hyperbolic moment equations are
solved by the first-order finite volume method with local Lax-Friedrichs numerical
flux. Time splitting is applied to solve the advection part and the collision part sep-
arately, and for each part, the forward Euler method is applied. The CFL condition
is utilized to determine the time step, and the Courant number is chosen as 0.9. For
Grad’s moment method, the maximum characteristic speed is obtained by solving
the roots of the characteristic polynomial of the Jacobian, and the explicit expression
of the charateristic polynomial has been given in [3]. For the hyperbolic moment
method, the maximum characteristic speeds have been computed in [3]. The explicit
form of the hyperbolic moment system (given in [3]) shows that its last equation con-
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tains a non-conservative product, which is discretized by central difference. In all the
numerical examples, the number of grid cells is 1000 if not otherwise specified. We
have done the convergence test showing that for smooth solutions, such a resolution
can provide solutions sufficiently close to the solutions on a much finer grid, so that
their difference is invisible to the naked eye. When exhibiting the numerical results,
we will mainly focus on the equilibrium variables including density p, velocity u,
and temperature 6, which are defined by

p(t, x) =/f(t,x, v) dv,
R

u(t,x) =

1 /
V] (t,.x, v)dv,
,O(t,x)

0(t, x) = L /[v —u(t, )P f(t, x,v)dv.
p(t, x) J

3.1 Shock Structure

The structure of plane shock waves is frequently used as a benchmark test in the gas
kinetic theory. It shows that the physical shock, which appears to be a discontinuity
in the Euler equations, is actually a smooth transition from one state to another. The
computational domain is (—oo, 4-00) so that no boundary condition is involved, and
the initial data are

P e (_ﬂ> e 20
A/ 27‘[91 201 ’ ’

O? k) =
70w o, ( <v—ur>2> .
exp| — ,ifx > 0,

(16)

270, 20,

where all the equilibrium variables are determined by the Mach number Ma:

p=1, w=+3Ma, 6=1,

2Ma?
or = —5—»
Ma” + 1
V3Ma
Ur = s
Or
3Ma? — 1
0, = ——.

r

2pr
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Fig. 2 Left: The comparison of shock structures of two solutions with Mach number 1.4 and
M = 4. Right: The green area is the hyperbolicity region (horizontal axis: fy/—i, vertical axis: fu),
and the red loop is the parametric curve ( fyr—1, far) with parameter x

We are interested in the steady-state of this problem. Since the parameter Kn only
introduces a uniform spatial scaling, it does not affect the shock structure. There-
fore we simply set it to be 1. Numerically, we set the computational domain to be
[—30, 30]. The boundary condition is provided by the ghost-cell method, and the
distribution functions on the ghost cells are set to be the two states defined in (16).

311 Casel:Ma=14and M =4

In this case, both Grad’s system and the hyperbolic moment system work due to
the relatively small Mach number. The numerical results are shown in Fig.2. By
convention, we plot the normalized density, velocity, and temperature defined by

p(x) sou(x)=—", () =

_ ) —p ue) —u, o 0 =6

or = P U — uy 0, —6

so that the value of all variables are generally within the range [0, 1], unless the
temperature overshoot is observed.

Figure 2b shows the hyperbolicity region of Grad’s moment equations. It has been

proven in [3] that for the one-dimensional physics, the hyperbolicity region can be

characterized by the following two dimensionless quantities:

» Sm-1 2 Sm
Tu-r=ganpe =S

where f), and fj;_; are the last two coefficients in the expansion (3). The red curve
in Fig. 2b provides the trajectory of Grad’s solution in this diagram. It can be seen that
for such a small Mach number, the whole solution is well inside the hyperbolicity
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region, so that the simulation of Grad’s moment equations is stable. Figure 2a shows
that both methods provide smooth shock structures, and the predictions for all the
equilibrium variables are similar. This example confirms the applicability of both
systems in weakly non-equilibrium regimes. Note that for one-dimensional physics,
Grad’s equations do not suffer form the loss of hyperbolicity near equilibrium.

312 Case2:Ma=2.0and M =4

Now we increase the Mach number to introduce stronger non-equilibrium. The same
plots are provided in Fig.3. In this example, despite the numerical diffusion, dis-
continuities can be identified without difficulty from the numerical solutions. These
discontinuities, also known as subshocks, appear due to the insufficient characteris-
tic speed in front of the shock wave, meaning that both systems are insufficient to
describe the physics. To capture these discontinuities, 8000 grid cells are used in the
spatial discretization. This example shows significantly different shock structures
predicted by both methods. For Grad’s moment equations, the subshock locates near
x = —7, while for hyperbolic moment equations, the subshock appears near x = —35.
The wave structures also differ a lot. By focusing on the high-density region, we find
that the solution of hyperbolic moment equations is smoother, showing the possibly
better description of the physics.

Here we remind the readers that the wave structure of hyperbolic moment equa-
tions may depend on the numerical method, due to its non-conservative nature. The
locations and the strengths of the subshock may change when using the different
shock conditions. However, we would like to argue that it is meaningless to justify
any solution with subshocks for the hyperbolic moment equations, for it is unphysi-
cal and should not appear in the solution of the Boltzmann equation. In practice, the
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appearance of discontinuous solutions is an indication of the inadequate truncation
of series, which inspires us to increase M to get more reliable solutions without
subshocks.

Figure 3b shows that Grad’s solution still locates within the hyperbolicity region,
although the curve is already quite close to the boundary of the region. This example
shows that even in its hyperbolicity region, Grad’s moment method may lose its
validity.

313 Case3:Ma=2.0and M =6

Now we try to increase M and carry out the simulation again for Mach number
2.0. The results are given in Fig.4. With the hope that a larger M can provide a
better solution, we actually see that Grad’s moment equations lead to computational
failure. The numerical solution before the computation breaks down is plotted in
Fig.4a. Figure 4b clearly shows that this is caused by the loss of hyperbolicity. We
believe that this implies the non-existence of the solution.

On the contrary, the simulation of hyperbolic moment equations is still stable. As
expected, it provides a smooth shock structure and improves the result predicted by
M = 4.

314 Cased:Ma=17and M =6

In this example, we decrease the Mach number so that the shock structure of Grad’s
equations can be found. Figure 5a shows that the results of both systems generally
agree with each other, but it can be observed that hyperbolic moment equations
provide smoother solutions than Grad’s system, so that it is likely to be more accurate.
Therefore, despite the higher nonlinearity of Grad’s system, it does not necessarily
help provide better solutions.

Interestingly, when looking at the phase diagram plotted in Fig.5b, we see that
Grad’s solution has run out of the hyperbolicity region. It is to be further studied why
the solution is still stable. Here we would like to conjecture that the collision term
and the numerical diffusion help stabilize the numerical solution in the evolutionary
process, and for the steady-state equations, solutions for non-hyperbolic equations
may still exist. Nevertheless, all the above numerical tests show the superiority of
hyperbolic moment equations for both accuracy and stability.

3.1.5 Case5:Ma=2.0and M =10

In this example, we would like to show the failure of both systems for a larger
M. In Fig. 6, we plot the results at ¢t = 0.8, where both numerical solutions contain
negative temperatures. In [28], the reason for such a phenomenon has been explained,
which lies in the divergence of the approximation (3) as M tends to infinity. It is
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rigorously shown in [13] that when 6, > 26,, for the solution of the steady-state BGK
equation, the limit of P f (see (3)) as M — oo does not exist. Here for Ma = 2.0,
the temperature behind the shock wave is 6, = 55/16 > 2 = 26,. Thus for a large
M, the divergence leads to a poor approximation of the distribution function, and
it is reflected as a negative temperature in the numerical results. Such a divergence
issue is independent of the subshock and the hyperbolicity, and should be regarded
as a defect for both systems. The work on fixing the issue is ongoing.
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3.2 Fourier Flow

In this test, we are interested in the performance of both methods with wall boundary
conditions. The fluid we are concerned about is between two fully diffusive walls
locating at x = —1/2 and x = 1/2. For the Boltzmann-BGK equation (15), the
boundary condition is

2
f@, —1/2,v) = o exp(—v), v >0,

V276, 20,
£, 1/2,0) = =2 v 0
, ,V) = exp| — , v <0,
/220, P\ T2,

where 6; , stands for the temperature of the walls, and p; , is chosen such that

/vf(t, +1/2,v)dv = 0.

R

Following [24], the boundary conditions of moment equations can be derived by tak-
ing odd moments of the diffusive boundary condition. We choose the initial condition

) FOx,v) = ——ec ( ”2) (17)
L X, V) = xp | ——
2 P 2

for all x. Again we are concerned only about the steady-state of the solution.

In our numerical experiments, we choose Kn = 0.3, 6, =1 and M = 11. Two
test cases with 6, = 1.9 and 6, = 2.7 are considered. For the smaller temperature
ratio 6, = 1.9, the numerical results are given in Fig. 7, where two solutions mostly
agree with each other. The reference solution, computed using the discrete velocity
model, is also provided in Fig. 7a. It can be seen that both models provide reasonable
approximations to the reference solution. The good behavior of Grad’s solutions can
also be predicted by the phase diagram in Fig. 7b, from which one can observe that
the whole solution locates in the central area of the hyperbolicity region.

For 6, = 2.7, the results are plotted in Fig. 8. In this case, if we start the simulation
of Grad’s equations from the initial data (17), the computation will break down due
to the loss of hyperbolicity in the evolutional process. Therefore, we first run the
simulation for hyperbolic moment equations from the initial data (17) and evolve the
solution to the steady-state. Afterward, this steady-state solution serves as the initial
data of Grad’s equations. Although the steady-state solution of Grad’s equations
can be found using this technique, the approximation looks poorer than hyperbolic
moment equations. The phase diagram (Fig. 8b) shows that the solution near the left
wall is outside the hyperbolicity region, so that the validity of boundary conditions
on the left wall becomes unclear. In contrast, the hyperbolic moment equations still
provide reliable approximation despite the high temperature ratio.
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3.3 A Summary of Numerical Experiments

In all the above numerical experiments, we see that despite the loss of some nonlin-
earity, the hyperbolicity fix does not appear to lose accuracy in any of the numerical
tests. In regimes with moderate non-equilibrium effects, Grad’s equations may pro-
vide solutions outside the hyperbolicity region without numerical instability. In this
situation, our experiments show that the hyperbolicity fix is likely to improve the
accuracy of the model. It has also been demonstrated that other issues, such as sub-
shocks and divergence, are not related to the hyperbolicity, and these issues have to
be addressed independently.
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4 Conclusion

The loss of hyperbolicity, as one of the major obstacles for the model reduction in
gas kinetic theory, is almost cleared through the research works in recent years. With
a handy framework introduced in Sect.2, we can safely move our focus of model
reduction to other properties such as the asymptotic limit, the stability, and the con-
vergence issues. Our numerical experiments show that the hyperbolic regularization
does not harm the accuracy of the model. It is our hope that such a framework can
inspire more thoughts in the development of dimensionality reduction even beyond
the kinetic theory.
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Cryptography and Digital ®
Transformation

updates

Kazue Sako

Abstract Cryptography is implemented using discrete mathematics with security
defined in complexity theory. In this article, we review some cryptographic primitives
for encryption, signing messages and interactive proofs. By combining cryptographic
primitives, we can design and digitally implement various services with desired
features in security, privacy and fairness. We will discuss some examples such as
electronic voting and cryptocurrencies.

1 Digital Transformation

Research in mathematics and cryptography play a big role in shaping our digitalized
society much better in coming years. There is an immense expectation that technology
on Information and Communications, known as ICT, would transform our life to be
more efficient, more productive and more functional. However, these are bright side
of digital transformation. We also need to take care to transform ‘correctly’ so that
we do not suffer from unexpected consequences.

One evident characteristic of ICT is that it makes us free from physical con-
straints. Digital data have little weight and thus we can make thousand copies and
travel thousand miles at once. While this characteristic brings benefit, it also brings
threats to our life. We need alternative ways to create ‘constraints’ to those who is
willing to harm us, and one promising approach to creating such constraints is use
of cryptography.

Cryptography started as a way to conceal information. We were able to design
cryptographic algorithm that is computationally infeasible to recover the message
without knowledge of a decryption key. There are rigorous mathematical proofs that
guarantee that indeed this characteristic holds based on some hard problems, like
NP problems or factorization. So this computational difficulty would serve as an
alternative constraints in a digital world.
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In this article, we provide two examples of use cryptography to implement secure
digital systems. One is digitalization of voting system, and the other is digitalization
of payment system called Bitcoin. Prior to these two examples we oversee some
cryptographic primitives such as encryption schemes, digital signature schemes and
interactive proofs.

2 Cryptographic Foundations

In this section, we will introduce three fundamental notions in cryptography. They
are Encryption Schemes, Digital Signature Schemes and Interactive Proofs.

2.1 Encryption Schemes

First, we begin by introducing two types of encryption schemes, depending on how
we use keys. The first type, which is called Symmetric-key encryption schemes, uses
the same key for both encryption and decryption. This type of encryption schemes
existed since the age of Gaius Julius Caesar. The new type of encryption is called
Publickey encryption schemes or Asymmetric-key encryption schemes, where we
use different keys for encryption and decryption. Moreover, the key to encrypt data
can be made public (Fig. 1).

Let us briefly discuss some mathematical model to define encryption schemes
and its security. Encryption schemes, either symmetric or asymmetric, can be mod-

Cryptographic Foundations I

| Symmetric-key encryption | Public-key (Asymmetric-key)
encryption
iy R

: DEC ‘ _\ENC,

send | I)send

Fig.1 Two types of encryption schemes



Cryptography and Digital Transformation 161

eled in three non-deterministic functions, namely KeyGeneration, Encryption and
Decryption, with a security parameter k. KeyGeneration, on input k, outputs a key
pair EncKey and DecKey. (In case of Symmetric Key encryption schemes, EncKey
= DecKey holds.) Encryption Function, given a message m from its domain and
EncKey, outputs a ciphertext c.

¢ = Encryption(k, m, EncKey)

Similarly, Decryption Function, given a ciphertext ¢ from its domain and DecKey,
outputs a message m’.

m’ = Decryption(k, ¢, DecKey)

A triplet of nondeterministic functions (KeyGeneration, Encryption, Decryption)
is called Encryption scheme if and only if: For any k, for any output (EncKey,
DecKey) of KeyGeneration on input k, and for any message in m,

m = Decryption(k, Encryption(k, m, EncKey), DecKey)

holds.

As seen in the definition, even an Encryption function that returns m as c is an
Encryption Scheme. So we need to define what property we need to call an Encryption
Scheme secure. Cryptographers had studied various ways to do this. A fundamental
observation is: given any two messages m; and m;, and given any ciphertext c¢; of
either m, or m,, the encryption scheme is secure if no one can guess to which message
a ciphertext ¢ decrypts to with probability more than half. To be more rigorous, we
need to define this in an asymptotic manner. That is, if we chose large enough k, the
probability of guessing can be made larger than 1/2 + €. We note that in Asymmetric
Encryption Schemes, guessing is hard even if they know EncKey that was used to
create c. There are various other security definitions for Encryption Schemes, be it
strong or weak [1].

To prove security of some concrete Encryption Schemes, we assume existence of
some one-way functions or some difficult problems like factorization.

2.2 Digital Signature Schemes

Another exciting tools related to Public Key Encryption Schemes are Digital Sig-
nature Schemes. If we can have two related keys PubKey and PrivKey, where one
can publish PubKey without worrying about secrecy of PrivKey, we can construct
a scheme that serves as Digital Signatures. A person would sign a message with
PrivKey and outputs a signature sig. Anyone can verify whether or not the signa-
ture was generated using a key corresponding to PubKey, by performing Verification
(Fig.2).
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Cryptographic Foundations II
| Public-key encryption | Digital Signature

Public-key of My secret key
the receiver data
A =
ﬁ. Gen-
(=516 =
of

the signer

Fig. 2 Digital signature schemes

Similarly, Digital Signature Scheme is modeled by three nondeterministic func-
tions (KeyGen, Gen-SIG, Verify). KeyGen, on input security parameter k, outputs
a key pair PrivKey and PubKey. Gen-SIG Function, given a message m from its
domain and PrivKey, outputs a signature sig.

sig = Gen-SIG(k, m, PrivKey)

Verify Function, given a signature sig from its domain, the message m and PubKey,
outputs either OK or NG.

OK/NG = Verify(k, sig, m, PubKey)

A triplet of nondeterministic functions (KeyGen, Gen-SIG, Verify) is called Signature
scheme if and only if: For any k, for any output (PrivKey, PubKey) of KeyGeneration
on input k, and for any message in m,

OK = Verify(k, Gen-SIG(k, m, PrivKey), m, PubKey)

holds.

For security of signature schemes, we want to claim that it is only a person
who knows PrivKey can generate sig corresponding to m that the Verify Function
outputs OK. For this purpose, we claim a Signature Scheme is secure if there is an
algorithm that can generate signatures that Verify outputs OK, then we can use the
algorithm to ‘extract’ PrivKey. For sake of space, please refer to reference [1] for
more mathematical definition for security of digital signature schemes.
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Cryptographyic Foundations III: Interactive proofs

| Ordinary written-down proofs | Interactive proofs

m o'”— m °"
proof [:DJ
i’

| Trasnferable knowledge. I Can be made to be zero-
knowledge: Nothing leaked.

Fig. 3 Interactive proofs

2.3 Interactive Proofs

The last primitive we will discuss in the article is Interactive Proofs. In Mathematics,
when we say Proof, it is usually something that can be written down in the paper and
those who have seen the Proof can verify the correctness of its claim. So the script
of Proof is non-interactive. The Prover alone would generate the script of Proof by
himself. Also the script of Proof is transferable, that any party who have seen the
Proof can verify that the claim is correct.

Instead, there are protocols where Prover and Verifier talks interactively and at the
end Verifier is persuaded that the Claim is correct. This is called Interactive Proofs
(Fig.3). This type of interactive proofs can provide further characteristic that the
Verifier learn nothing from the interaction except that the Claim is correct. That is,
Verifier learned no knowledge or zero knowledge in engaging the proof protocol.
These types of protocols are called Zero Knowledge Interactive Proofs, which are
frequently used in cryptographic protocols. Because the Verifier learned no new
knowledge, he cannot prove to a third party that the Claim Prover proved is correct.

3 Digitalizing Voting

In this section we discuss how voting procedure can be securely digitalized using
cryptography. Typically the process of designing cryptographic protocols consists of
clarifying the purpose and modeling its feature, then design the protocol, and verify
the designed protocol meets the previously set goal.
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Electronic Voting

e Redefine/clarify its purpose
e Model its features

4 Yes and 2 No

Tallying authority

Fig. 4 Model of electronic voting

3.1 Requirements for Voting

So let us clarify the purpose of the voting and its desired property. Here, we assume
there is a list of legitimate voters with their respective public keys and a Tallying
authority. Each legitimate voter cast either yes or no vote and the Tally authority
wants to have a correct counting of the votes (Fig.4). The three main requirements
we need to meet are the following:

1. Only legitimate voters vote, and one vote per voter.
2. Tallying authority cannot announce faulty results.
3. No one can learn how each voter voted.

3.2 Designing Voting Protocol

It seems these three requirements are hard to achieve simultaneously. If we let all
legitimate voters sign their vote, then the first requirement can be met. However,
if the votes are signed with the voter’s key, it means the votes are not anonymous
thus conflicts the third requirement. If we make all votes anonymous, then we cannot
verify if the votes are from legitimate voters or even if they are, they could have voted
more than once. Moreover, we cannot verify if the Tallying Authority just neglected
some of the anonymous votes cast in counting the tally.

There are several ideas to meet all three requirements that seems conflicting. In
this subsection, we will discuss one of such ideas using shuffling [2].
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Digishuff: Shuffling based voting protocol
Encrypt Ballot
And Sign

}hufﬂe Enc-Data
And then decwpt
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Envelopes

And open

Supervisor
Checks
The process

Fig. 5 Overview of voting protocol using shuffling

The underlying idea came from how we meet those requirements using paper
ballots in voting. In one providence, a voter fills in his paper ballot and put in a
blank envelope. Then the voter puts this bank envelope in a larger envelope and signs
with the voter’s name. The voter hands this envelope to the Tallying Authority. The
Tallying Authority can verify that the voter is a legitimate voter and has hand in one
envelope, but because they are in an envelope the Authority cannot learn the vote.
How about counting? On the day of counting the votes, all the outer envelopes are
removed, but still in a blank inner envelope. All blank envelopes are thrown on the
table and the envelopes will be shuffled manually so that no one learns which inner
envelope came from which outer envelope. After adequate shuffling are performed,
inner envelopes will be opened and count the ballots within. All the procedure will
be supervised by an observer so that Tallying Authority cannot cheat while shuffling
or opening the envelopes. So this trick may be able to use in digitalization (Fig.5).

So we will encrypt the ballot using a public key of the system to mimic the blank
inner envelope. As an outer envelope, the voters would sign on the encrypted ballot,
and cast to the Tallying Authority. The Authority learns from the signature on the
encrypted ballot that the ballot is from a legitimate voter and the same voter had not
voted more than once, but the ballot itself cannot be seen as it is encrypted. Then
the Authority removes the digital signature part and ‘shuffles’ the encrypted ballots.
After the encrypted ballots has been well mixed, that is, it has been made difficult
to match who submitted the encrypted ballot, the ballots will be decrypted to enable
tallying. This way, we can ensure that we have only counted legitimate voter’s vote
once, and authority would not learn the vote of each voter as long as decrypting
keys are kept safe. To ensure that the Authority performed correct Tallying, the
Authority would provide Zero Knowledge Interactive Proofs to prove that it has
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How to shuffle digital data?

Input After Shuffle???
Alice KE9SLIWEL STATIWES4S
Bob SJAJWES4S ——— QKS769WML
Chris GKXBRPBOU —— GR83F80BUY
Eva QKS769WML GKX3RPBYU
Dave GRS3ES0BUY < KE9SLIWEL

\ T
\ / Easy to
e trace back

Fig. 6 Permutation is not shuffling

followed the procedure correctly and that the result of the tally is trustworthy. In the
next subsection, we discuss in more detail how we ‘shuffle’ digital data.

3.3 Shuffling Encrypted Data Using Probabilistic Encryption

If ‘shuffling digital data’ was simply changing the location of some digital data,
then even after shuffling it is easy to spot which digital data came from whom, by
matching the bit patterns (Fig. 6).

So in digital shuffling, we need to change a look of digital data. For this purpose,
we are going to use a public key encryption scheme that is probabilistic [3]. That
is, the encryption function is non-deterministic, therefore there are many ciphertexts
that decrypt to a same message. So changing ‘the look’ of encrypted digital data is
to replace the encrypted data with another encrypted data that decrypts to the same
message. Figure 7 illustrates such shuffling procedure. First a list of encrypted ballots
are permutated. Then each encrypted ballot is replaced with another encrypted data
without changing the content of the ballot. Looking at the input list and the output
list, it is difficult to trace which ballot was shuffled to which position.

An example of a probabilistic encryption scheme that offer this characteristic is
called ElGamal Encryption [4]. Here we provide an overview of the scheme. ElGamal
Encryption is based on the assumption that given a prime p, an generator g of Zp
and y = g mod p, it is difficult to compute a from (p, g, y) for randomly chosen
y in Zp. This is called Discrete Logarithm Problem. So KeyGeneration function for
ElGamal Encryption is generating p of length k (security parameter) g, and y for
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Re-encryption

Input Permute Output
Alice KE9SLIWEL SJATIWES4S IWO0IDLS76
Bob SJAJIWES4S QKS769WML RDQMA4LX
Chris GKX3RPB9U —— GRS83FS80BUY o F8ZPFIEG
Eva QKS7T69WML —— GKX3RPBOU —— JV7D34S
Dave GRS3FS0BUY “KE9SLIWEL PQIODANX

EE—— A
" RE9SLIWEL X
look of encryption s

" P849XKISN

Fig. 7 Shuffling procedure

randomly chosen a. Public Key will be (p, g, y) and the exponent a will serve as
secret key. Encryption function, on input message m in Zp and Public Key (p, g, y),
generates a random number r, and outputs

(c1,¢2) = (¢" mod p, m * y" mod p)

as a ciphertext of m. Oninput (c1, c2) and secret key a, Decryption function performs
c2/(c1)® mod p which should be equal to the message m if the ciphertext was
correctly conveyed. In order to change the look of (c1, c2),

(di,d>) = (¢ * g’ mod p, ¢c; * y* mod p)

for a randomly chosen s, would provide another different looking ciphertext that
also decrypts to the message m. It is interesting to see that this transformation can
be performed without the knowledge of the secret key.

4 Bitcoin Blockchain

Perhaps one of the most impressive digital transformation through cryptography was
digitalizing ‘money’ called Bitcoin [5]. There are many prepaid electronic money
systems today like PayPay, but it is restricted to one currency and there is an account-
able organization who is operating the system. Satoshi Nakamoto designed a system
where only the algorithms ensure the correctness of the money transfer and excluding
the existence of a centralized authority. We provide below an overview of his design.
We note some details are omitted for the sake of simplicity.
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Blockchain | Data Propagated among Multiple Nodes
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Fig. 8 Data managers and transaction logs

4.1 Modeling Blockchain

Blockchain is a technology that is used to manage transaction data in Bitcoin. There
are users of Bitcoin who issue transaction data, typically saying ‘sending x Bitcoin
from my account yyy to the address zzz.” The transaction is accepted if the message
is indeed sent from the owner of the account yyy and indeed there are x Bitcoin
left in the account. The log of transaction infers that after the transaction has been
accepted, x Bitcoin should be decreased from the account yyy and added to the
account zzz. Unlike previous systems where there is one organization keeping record
of all the transactions, there are multiple voluntary ‘Data managers’ in Bitcoin known
as Full Node, connected in Peer-to-peer fashion. When a user issued a transaction,
Data managers check its correctness and propagates the transaction to other Data
managers. The ideal goal is that all the Data managers keep these transaction log in a
consistent way (Fig. 8). However, as transaction logs are created by various account
holders internet-wide and that communication through Peer-to-peer network may not
always be perfect, there is no guarantee that the list of logs are consistent among all the
Data managers. So the big problem Satoshi had to solve was how to synchronize the
transaction log among the Data managers while they are connected in asynchronous
Peer-to-peer network.
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Fig. 9 Crypto puzzles for synchronization

4.2 Crypto Puzzle for Synchronization

A core idea behind synchronization is to restrict frequent distribution of transactions.
If the distribution happens infrequently, for example once in every 10 min or so, that
should provide enough time within Peer-to-peer network to share the same data. In
order to achieve this, Bitcoin blockchain is designed so that a bulk of transaction log
are bundled in a block, and the block cannot be distributed among Data Managers
unless accompanied by a certain solved crypto puzzle related to the content of that
block. This crypto puzzle is so designed that the puzzle for any block can be solved
with high probability, but is time consuming. We note that while the puzzle is hard to
solve, it is easy for other Data managers to verify that the solution is correct (Fig.9).

In order to define crypto puzzle, we use a mathematical function called Hash
Function. Hash Function deterministically maps an arbitrarily long input string to
a fixed length integer of say 256 bits. The output is called a hashed value. With
cryptographically secure hash function, it is computationally difficult to find two
different input that maps to a same hashed value. There are known algorithms that
is believed to achieve this property, such as SHA-256 [6].

Let us assume a Data Manager wants to add bulk of data Dy, ..., D,, on top of
the latest Block data Bn. The Puzzle is defined to find an string str that satisfies the
following equation.

Hash(Hash(Bn) ||D]|... || D]l str) < 2B"®
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where || represents concatenation of strings and Bn(k) is an integer defined from the
previous block Bn, which is called difficulty. A typical output of Hash function is
an integer of length 256, so if Bn(k) is about 60, one need to try many possible str
to check if it meets the equation. The difficulty is so designed that this try and error
process would take 10 min on average to find the desired string str.

The list of Data Dy, ..., D,, accompanied by the correct puzzle solution str, is
the propagated as a new block within Data Managers. Other Data Managers who
received the block verifies the correctness of the solution. If correct, they add this
block on top of the previous blocks, as the chain of data store. Then they will try to
solve the next puzzle based on the new block with other transaction log that has not
yet been stored in the blockchain.

4.3 Incentives for Data Managers

We conclude the overview of Bitcon Blockchain by mentioning why the Data man-
agers spend their computational effort to solve meaningless puzzle. The Data man-
agers are awarded by Bitcoin if they solved the puzzle and followed by the future
Blocks. Their incentives for receiving the award play a central role in maintaining
consistent data among Data managers, and distract them from behaving maliciously.

5 Concluding Remarks

In this article we have discussed some of the examples of securely implementing
current social activities in cyber world using cryptography. We have shown some
of the cryptographic primitives are defined mathematically. The procedure to design
secure protocols begin with clarifying the goal and requirements and then design to
meet those criteria. Although these examples show that cryptography is a promising
approach, we still lack in technology to model and evaluate mathematically overall
system for digital transformation. The author sincerely hope that this article would
encourage the researchers in mathematics, cryptography and information technology
to get together and share their strengths for the goal of making our digital society
more secure and fair place.
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Efficient Algorithms for Tracking Moving )
Interfaces in Industrial Applications: Oneck o
Inkjet Plotters, Electrojetting, Industrial
Foams, and Rotary Bell Painting

Maria Garzon, Robert I. Saye, and James A. Sethian

Abstract Moving interfaces are key components of many dynamic industrial pro-
cesses, in which complex interface physics determine much of the underlying action
and performance. Level set methods, and their descendents, have been valuable in
providing robust mathematical formulations and numerical algorithms for track-
ing the dynamics of these evolving interfaces. In manufacturing applications, these
methods have shed light on a variety of industrial processes, including the design
of industrial inkjet plotters, the mechanics of electrojetting, shape and evolution in
industrial foams, and rotary bell devices in automotive painting. In this review, we
discuss some of those applications, illustrating shared algorithmic challenges, and
show how to tailor these methods to meet those challenges.

Moving interfaces are key components of many dynamic industrial processes,
whose dynamics are critical to the underlying physics. Examples include turbines,
flames and combustion, plastic injection molding, microfluids, and pumping. In each
of these examples, complex physics at the interface, such as between a fluid and a
moving wall, or through a membrane or a transition region, determines much of the
underlying action and performance (Fig. 1).

One approach to propagating interfaces is given by “level set methods”. These
algorithms to track interfaces in multiple dimensions, couple the driving physics
with the interface in a natural way, and smoothly handle topological change due to
merger and breaking. They accurately and robustly compute high order solutions
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Turbines Combustion Dendrite evolution Fluid mixing

Fig. 1 Examples of industrial interfaces

to moving interface problems, and are easily discretized using standard techniques,
such as finite difference, finite element, and discontinuous Galerkin methods.

The paper is a review of the application of these methods to some industrial
problems, and draws from multiple sources [10—17, 26-29, 42-44] to discuss the
design of industrial inkjet plotters, jetting and electrojetting devices, industrial foams,
and rotary bell spray devices. Rather than extensively focus on the equations or the
algorithms, we provide an overview of the approaches, with an emphasis on the
results. References are provided for more in-depth discussions.

1 Modeling Interface Evolution Using Level Set Methods

Level set methods, introduced in [19], have been used in a large number of appli-
cations to track moving interfaces. They are based on both a general mathematical
theory as well as a robust numerical methodology, which relies on exchanging the
typical Lagrangian perspective on front propagation, in which the front is explic-
itly tracked, for an Eulerian view in which the moving interface is embedded as
a particular level set of a higher dimensional function posed in a fixed coordinate
system. The motion of the interface corresponds to solving the evolution of this
higher-dimensional function according to a Hamilton-Jacobi-type initial value par-
tial differential equation.

A brief summary is as follows. Consider a moving interface I'(¢), parameterized
by N — 1 dimensions. We restrict ourselves to interfaces which are closed and simple,
and separate the domain into an “inside” and an “outside”. We recast the problem
by implicitly defining the moving interface I"(¢) propagating in N — 1 dimensions
as the zero level set of the solution to an evolving level set function ¢ (x, 1), ¢ :
RY x t — R, which satisfies a time-dependent partial differential equation. There
are many ways to initialize this implicit function: one approach is to let ¢ (x, r = 0)
be the signed distance from the interface I"( = 0), linking the interface to the zero
level set.

We assume that the underlying physics specifies a speed F normal to the interface
at every point on the interface. Constructing this speed function typically involves
solving complex physics both on and off the interface.
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Thus, there are two embeddings. First, the interface itself is embedded and implic-
itly defined through a higher-dimensional function ¢. Second, to move the other level
sets, we embed the speed F in a higher-dimensional function, known in the literature
as the “extension velocity” F,,,, which defaults to the given speed on the zero level
set corresponding to the interface.

1.1 Egquations of Motion

Here, we review the basic ideas behind the derivation and implementations of level
set methods. We follow the derivation and discussion in [35, 36].

We wish to produce an Eulerian formulation for the motion of a hypersurface I'
representing the interface and propagating along its normal direction with speed F,
where F' can be a function of various arguments. Let +=d (x) be the signed distance
from the point x € R" to the interface at time ¢ = 0. Define a function ¢ (x, t = 0)
by the equation

¢(x,t =0) = Ed(x). (1)

By requiring that the zero level set of the evolving ¢ (see Fig. 2, left) always match
the propagating hypersurface, means that

¢ (x(1),1) =0. 2

D(x,y,t=2)
'

,Y/
- D=0
o D
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The level surface ¢ in red. Top:
¢ = 0 corresponds to two separate
initial fronts. Bottom: Later in
time: the interface topology has
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as the zero level set.
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Transformation of front motion
into initial value problem. An
implicitly defined surface ¢,
whose ensuing motion satisfies
Equation 3, and whose zero level
set always matches the motion of
the interface.

Fig. 2 Left: Implicit embedding of level set function. Right: Topological change
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By the chain rule, ¢, + Vo (x(2), t) - x'(¢) = 0, Since x'(¢) - n = F,,,, where n =
V¢ /|Ve| with extension velocity F,,;, this yields an evolution equation for ¢,
namely,

¢1 + Fers[VP| =0, given ¢(x,1=0). 3)

This is the level set equation introduced by Osher and Sethian [19]. Propagating
fronts can develop shocks and rarefactions in the gradient, corresponding to corners
and fans in the evolving interface, and numerical techniques designed for hyperbolic
conservation laws can be exploited to construct schemes which produce the correct,
physically reasonable entropy solution, see [32-34].

There are several advantages to this approach. First, the formulation works in
any number of dimensions. Second, topological changes are handled without special
attention: fronts split and merge. Third, geometric quantities along the interface can
be calculated by taking advantage of the embedding and computing quantities in
the fixed Eulerian setting. Fourth, this formulation naturally lends itself to numerical
approximations, for example, through finite difference or finite element formulations
on the fixed background mesh.

1.2 Computational Advances

Since its introduction, a large number of computational advances have been devel-
oped to make this approach efficient, accurate, and economical. These include

e The introduction of adaptive, “narrow band level set methods” [1] which confine
computation to a thin band around the zero level set.

e Fast methods to construct extension velocities [2, 25].

e Incorporation of complex physics [3-5], transport of material quantities [6], and
methods to handle multi-phase flows with a large number of distinct propagating
regions coming together in complex junctions, triple points, etc. [26, 27].

A large number of reviews have been appeared over the years, containing these
and many related ideas. We refer the interested reader to [20, 30, 35, 36, 38—40].

2 Industrial Printing

2.1 Physical Problem and Modeling Goals

Industrial inkjet printing involves ejecting ink housed in a well through a narrow
nozzle, which is then deposited on a material. The ink in the bath is expelled by
an electro-actuator mechanism at the bottom, which quickly propels ink through
the nozzle. The shape of the nozzle, the force and timing of the actuator, and the
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properties of the ink are instrumental in determining the ultimate shape, delivery,
and performance of the printing device.

This is a two-phase incompressible fluid flow problem, with the interface sepa-
rating air and ink. Depending on the constituency of the ink, the flow can either be
Newtonian or visco-elastic. Boundary conditions include both no-slip and no-flow at
solid walls, and triple points where air-ink boundaries meets solid nozzle walls are
subject to typical critical angle dynamics controlling slipping. While a common use
for inkjet printers is in commercial home printing, over the past two decades a large
number of sophisticated industrial applications have appeared, ranging from printing
integrated circuits and the manufacture of display devices on through to construction
of tissue scaffolding and layered manufacturing.

The goal of numerical simulation is to identify and optimize key aspects of the
process, including

e Optimize the design of the nozzle and to control the actuator mechanism to aim,
extend, and focus droplet delivery;

e Characterize wall wetting/non-wetting on the shape and separation of droplets;

e Determine and perhaps minimize the formation of secondary trailing droplets,
which break off from the main ejected bubble as the fluid elongates, due to the
effects of surface tension; and

e Understand how variations in viscosities and impurities affect droplet dynamics.

2.2 Egquations of Motion and Computational Challenges

We solve for incompressible flow in a non-rectangular geometry, with no-slip and
no-flow on walls, with air satisfying Newtonian flow and ink satisfying a visco-elastic
Oldroyd-B model. The equations of motion [42-44], are given by

Du
(Ink) pi——rt =-Vp +V-QuD)+V-17;, V-u;=0,
Dt 4)
ﬂ—r-(Vu)+(Vu)T-r—l(T — 2 D))
Di 1 1 1 1 " 1 Up1 i) -
. Du,
(Air) P2Tt=—vpz+v~(2u2@2) . Veu, =0. &)
1 , .
DiZE[Vui—i—(Vu,-) |, wi=ue +ve., i=12 ©)

where, for the ink, 7 is the viscoelastic stress tensor, A is the viscoelastic relaxation
time,  , is the solute dynamic viscosity and subscript 2 refers to (Newtonian) air.

We use a level set method to track the air-ink interface, starting with the initial
pressure disturbance in the reservoir: the fluid then moves through the nozzle and is
then ejected into the ambient air, and then may separate into one or more droplets. We
compute an approximate solution to the incompressible Navier-Stokes given above
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Fig. 3 Left: Experimental profiles, showing ejected ink and satellite formation; note the formation
of the trailing satellite droplet as the initial bubble stretches, and changes topology. Right: simulation
of full ejection cycle (taken from [43]). Inflow pressure from an equivalent circuit model which
describes the cartridge, supply channel, vibration plate, PZT actuator, and applied voltage. Fluid
is an Epson dye-based ink, with critical advancing 6, = 70° and receding 6, = 30° contact angle,
and with p; = 1070 kg/m?, 11 = 3.34 x 1073 kg/m s, and o = 0.032kg/s?. The nozzle geometry
has diameter 26 microns at opening and 65pum at bottom

in both phases simultaneously, with surface tension terms mollified to the right-
hand-side as a forcing term. Thus, the solution accounts for both the ink velocity,
the air-ink interface, and air currents induced in the air by the fluid ejection. We
use a second order projection method [7-9] on a body-fitted logically rectangular
mesh. Calculations are performed in both axi-symmetric two dimensions and full
three-dimensional regimes. For details, see [42—44]. Figure3 shows the results of
both an experiment and simulation.

3 Droplet Formation and Electro-jetting

3.1 Physical Problem and Modeling Goals

A large number of industrial problems involve microjetting and droplet dynamics,
in which small droplets both move through small structures and also transport key
materials, for example, in such areas as deposition of evaporation substances, delivery
of biological materials, and substance separation.

Part of the challenge in computing these problems stems from the critical role of
surface tension and shear forces, which often drive topological change, breakage,
and merger in the evolving droplets. Level set methods, because of their ability to
handle these structural changes, are particularly well-suited for computing droplet
dynamics. Here, we summarize work on microjetting dynamics first presented in
[10], see also [11-17].
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Consider the dynamics of a thin tube of fluid as it pinches off due to surface
tensions effects at a narrowing neck of the fluid (see Fig.5), where mean curvature
drives the interface inward until it breaks into two separate lobes of fluid. The pinch-
off dynamics reveal considerable intricacy: as the droplet breaks, rapidly moving
capillary waves on the surface cause instabilities and oscillations in the fluid lobes.

3.2 Egquations of Motion

Following the arguments in [11, 12], we model the fluid as incompressible and
irrotational with a potential flow formulation. Euler’s equation gives

V.-u=0 in Q@) (N
u; +u- Vu = —— 4 bodyforces on TI'(s). ®)
0

Assuming irrotationality (V x u = 0), the problem can then be written in terms of a
fluid velocity potential u = Vi, namely

Ay =0in Q() )
¢1+%(V¢'V¢)+% =0 onTI,(s), (10

where p, is the atmospheric pressure and p is the fluid density.
As shown in [11, 12], this can be reformulated as

u=Vy in Q@#), Ay =0 in Q@) (11)
by _lgy vy Y (L L
D =3V V) - () on D) (12)

where €2(¢) is the fluid tube, I';(s) is the boundary of the tube, R; and R, are the
principle radii of curvature, and y is the surface tension.

Although the potential ¥ is only defined on the interface, our plan is to build
an extension of both the potential and the interface to all of space, so that we can
then employ the level set methodology. This embedded implicit formulation then
allows calculation of the fluid interface motion through pinch off, and can compute
dynamics of the split fluid lobes.

These embeddings produce a new set of equations, namely
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u=Vy in Q@) )
Ay(r,z) =0 in Q(r)

¢t +uext - V¢ =0 in Qp Z
Gi +uext - VG = fext in Qp '

y L

For details about the derivation of these equations, see [10—-12].

3.3 Computational Challenges

The computational challenges that stem from these equations of motion lie in part on
the delicate, sharp singularity at pinch off. The curvature becomes very large, and as
soon as pinch off occurs, the two pieces of the neck retract very quickly. Constructing
correct extension values for the velocity and the potential requires care as well.

We solve these equations through a time-cycle. Given values for the embedded
implicit potential and level set function on a fixed background mesh, we construct
the zero level set corresponding to the interface, place boundary element nodes on
that interface, and then employ a boundary element method to find the new potential
and associated velocity field, suitably extended. These nodes are then discarded, and
the discrete grid values for the level set function, potential, and velocity are updated.

3.4 Example Results

Extensive numerical experiments are given in [12, 14]: the self-similar behavior
of some variables near pinch-off time is checked within the computations and the
computed scaling exponents agree with experimental and theoretical reported values.
Here we review those results. Figure4 shows a snapshot after pinch-off, revealing
capillary surface waves on the undulating surface. Figure5 shows the fine-scale
structure of droplet dynamics after pinch-off.

3.5 Charged Droplet Separation

The above situation becomes considerably more complicated when the droplets are
electrically charged, in which the droplet motion is driven by a background electrical
field. Applications include electrospray ionization, electrospinning to produce fibers
by drawing charged threads of polymers, particle deposition for nanostructures, drug
delivery systems, and electrostatic rotary bell painting.
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Fig. 4 Droplet dynamics. Left, experiment taken from [41]. Right, level set calculation of surface
capillary waves, taken from [12]

' Qoco a0 '

Fig. 5 Simulation: fine-scale structure of droplet dynamics after pinch-off [12]

Fig. 6 Experimental profile of electrically charged droplet motion [18]

The fundamental mechanism relies on the motion of an electrically conductive
liquid in an electric field. The shape of the droplets starts to deform under the action

of the electric field, afterwards the competition between inertial, surface tension and
electric forces drives the dynamics, see Fig. 6.
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Fig.7 Equations for electrically charged droplet motion. Note: In the shown equations, the velocity
potential is labelled ® but is labelled by W in the main text

3.6 Equations of Motion and Computational Challenges

The equations of motion are the previous potential formulation for droplet hydrody-
namic motion, plus electrodynamics. We assume a perfectly conducting fluid and an
unlimited dieletric exposed to an external uniform force field. Model equations from
[16] are shown in Fig. 7.

Algorithmic challenges include accurate and reliable computation of the electric
field and handling sharp breakup and fast ejection.

3.7 Example Results

We show a numerical simulation [16] of a free charged droplet carrying a charge
above the critical one, reproducing experimental results before and after jet emission.
Figure 8 shows the focused droplet end from which charged tiny droplets are ejected.

4 Industrial Foams

4.1 Physical Problem and Modeling Goals

Many problems involve the interaction of multiply-connected regions moving
together. These include the mechanics and architecture of liquid foams, such as
polyurethane and colloidal mixtures, and of solid foams, such as wood and bone.
The industrial applications of these problems are manifold. Liquid foams are key
ingredients in industrial manufacturing, used in fire retardants and in froth flotation
for separating substances. Solidification of liquid foams results in solid foams, which
have remarkably strong compressible strength because of their pore-like internal
structure; and include lightweight bicycle helmets and automotive absorbers.
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Fig. 8 Time evolution of electrically charged droplet motion, from [16]
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Fig. 9 Examples of multiphase problems

In such problems, multiple domains share walls meeting at multiple junctions.
Boundaries move under forces which depend on both local and global geometric
properties, such as surface tension and volume constraints, as well long-range phys-
ical forces, including incompressible flow, membrane permeability, and elasticity.

Foam modeling is made challenging by the vast range of space and time scales
involved [6]. Consider an open, half-empty bottle of beer. It may seem that nothing
is happening in the collection of interconnected bubbles near the top, but currents in
the lamellae separating the air pockets show slow but steady drainage. It can take tens
to hundreds of seconds for the lamellae fluid to drain and then rupture, triggering an
lamella explosion that retracts at hundreds of centimeters a second, after which the
imbalanced configuration rights itself to a new stable structure in less than a second.
Spatially, membranes are barely micrometers thick, while large gas pockets can span
many millimeters or centimeters. All told, the biggest and smallest scales differ by
roughly six orders of magnitude in space and time.

Another example comes from grain metal coarsening, in which surface energy,
often associated with temperature changes, drives a system to larger structures. A
third example comes from foam-foamed fiber networks, found in both industrial
materials such as paper and biological materials, such as plant cells and tissues
(Fig. 9).
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In all of these engineering problems, understanding how such factors as pocket
formation and distribution, tensile strengths, and foam architecture is a key part of
producing mechanisms to optimize foam performance.

4.2 Computational Challenges

Producing good mathematical models and numerical algorithms that capture the
motion of these interfaces is challenging, especially at junctions where multiple
interfaces meet, and when topological connections change. Methods have been pro-
posed, including front tracking, volume of fluid, variational, and level set methods. It
has remained a challenge to robustly and accurately handle the wide range of possible
motions of an evolving, highly complex, multiply-connected interface separating a
large number of phases under time-resolved physics.

The problem is exacerbated by the nature of the mathematical components that
contribute to the dynamics, including: velocities dependent on such factors as cur-
vature, normal directions and anisotropy; the solution of complex PDEs with jump
conditions, source terms, and prescribed values at the interface and internal bound-
ary conditions; area and volume-dependent integrals over phases; thermal effects and
diffusion within phases; and balance of forces at complex junctions.

From a numerical perspective, some of the challenges stem from the vast time and
space scales involved. Using the same spatial resolution to resolve the physics along
interfaces is often impractical in the bulk phases. Sharp resolution of the interface
and front-driven physical quantities located on the interface is required as input to
the bulk PDEs. Accurately resolving interface junctures is critical in order to provide
reliable values for the balances of forces at junctions.

All told, these lead to formidable numerical modeling challenges.

4.3 Voronoi Implicit Interface Methods

Voronoi Implicit Interfaces Methods (VIIM), introduced in [26], provide an accurate,
robust, and reliable way to track multiphase physics and problems with a large number
of collected, interacting phases. They work in any number of space dimensions,
represent the complete phase structure by a single function value plus indicator at
each discretized element of the computational domain, couple easily to complex
physics, and handle topological change, merger, breakage, and phase extinction in
a natural manner. The underlying equations of motion that represent the evolving
interface and complex physics may be approximated in either a finite difference or
finite element framework. These equations couple level set methods for an evolving
initial value Hamilton-Jacobi-type partial differential equation to a computational
geometry-based Eikonal equation to produce a faithful phase representation. Here,
we provide a brief review of the methods. For details, see [26].
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The starting point is to consider a collection of non-overlapping phases which
divide up the domain. The “interface” consists of places where these phases meet. In
two dimensions, the simplest example is a single curve separating two phases. More
complex structures might have multiple closed curves, each surrounding a separate
phase, which meet in triple points or higher-order junctions. In three dimensions, the
situation is far more complex.

The Voronoi Implicit Interface Method begins by characterizing the entire system
through an implicit representation. For each point x in the plane, define ¢ (x) as
the distance to the closest interface. Additionally, define x (x) as an integer-valued
function which indicates the phase. By construction, the interface representing all
possible boundaries is given as the zero level set {¢ (x) = 0} of this unsigned distance
function, and the indicator function reveals the type of phase.

Thus, for example, if ¢ (x) = 5 and x (x) = 4, then we know that the point x is
located in phase 4, and the closest interface point is located a distance 5 away.

Starting with this unsigned distance function representation, we execute a two-step
process. With interface speed F in the normal direction:

e Advance ¢ through k time steps using the standard level set methodology. That is,
produce ¢"*! from ¢” by solving a discrete approximation to

¢+ FIVe| =0.

e Use the € level sets of this time-advanced solution to reconstruct a new unsigned
distance function. This is done by first computing the Voronoi interface from the €
level sets: this corresponds to the set of all points equidistant from at least two of the
€ level sets from different phases, and closer to any of the non-equidistant phases.
This Voronoi interface is then used to rebuild the unsigned distance function.

These two steps give the method its name: “Implicit Interface” because of the level
set step for the time evolution, and “Voronoi” because of the reconstruction step used
to rebuild the unsigned distance function and characteristic indicator function.

There are several things to note:

e The method works because of a comparison principle which, for a large fraction
of physically reasonable flows built through the use of extension velocities (see
[2]), keeps the zero level set trapped between the neighboring € level sets. These
€ level sets may be updated for a short period of time without suffering from the
influence of the non-smooth ridge along the zero level set.

e The Voronoi reconstruction can be accomplished without explicit construction
through two applications of fast Eikonal solvers [25, 37].

e Regions spontaneously disappear (appear) if they become small (large) enough so
that an e-level set does not exist (can be constructed).

e Careful numerical algorithms can be devised to allow for any non-negative value
for ¢, including € = 0.

For details, see [26, 27].
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Fig. 10 Collapse of a foam cluster, visualized with thin-film interference taken from [29]

4.4 Application of VIIM to Foam Dynamics

Here, we review some current work applying VIIM to tracking the evolution of liquid
foams. The vast time and space scales mean that one cannot compute over all scales
simultaneously. Instead, we use a scale-separation model which allows us to divide
the foam physics into three distinct stages.
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We characterize the foam structures as represented by thin, interconnected mem-
branes (lamellae) each surrounding pockets of air, and containing fluid. Membranes
can share common walls, and fluid in each lamella drains toward common, shared
Plateau borders that form a network of triple junctions and quadruple points. This
drainage is slow, and once a membrane becomes too thin, it ruptures, causing the
large air pockets to be out of macroscopic balance, which then readjust according to
the equations of incompressible flow driven by interfacial forces along the lamellae.

These events can be thought of as taking places over different scales. The macro-
scopic air-fluid incompressible flow phase takes place over the whole domain, and
evolves to an equilibrium relatively quickly. The lamellae drainage phase is slow, but
takes place only over the very thin membrane walls. Rupture occurs very quickly.

In [28, 29], these three phases were used to develop a mathematical model and
numerical simulation framework for foam evolution. During the macroscopic phase,
a second order projection method is used to solve the incompressible Navier-Stokes
equations on a rectangular mesh, with the interface smoothing its influence to the
right-hand side through a mollified surface tension term. The individual lamellae are
advanced under the incompressible flow by the Voronoi Implicit Interface Method,
with the internal liquid transported by the method of characteristics. When the motion
is almost gone, the model enters a different phase and assumes that the multi-phase
configuration has essentially reached equilibrium; a fourth order PDE is then solved
for thin film drainage, approximated through a discretized finite element triangula-
tion. The final phase results from membrane rupture, idealized as an instantaneous
disappearance of a lamella when a user-chosen minimal thickness is reached, which
then redistributes the lamella liquid mass and sends the configuration into macro-
scopic disequilibrium.

4.5 Example Results

An example of the complete dynamics developed in the multi-scale foam model
is shown in Fig. 10, which shows the time evolution of a bubble cluster, starting
from 26 separate bubbles and ending up in a single bubble. The bubble colors are
computed from thin film interference determined by the computed fluid thickness in
the lamellae.

5 Rotary Bell Painting in the Automotive Industry

In manufacturing settings, paints are frequently applied by an electrostatic rotary
bell atomizer. Paint flows to a cup rotating at 10,000-70,000 rpm and is driven by
centrifugal forces to form thin sheets and tendrils at the cup edge, where it then tears
apart into dispersed droplets. Vortical structures generated by shaping air currents
are key to shearing these sheets and transporting paint droplets. Advantages of this
manufacturing process include the ability to paint at high volume and to achieve
uniform consistency in the paint application.
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Schematic of paint flow and air currents [21] in rotary bell atomizing applications
Understanding the generation, size distribution, delivery, and adhesion of these
paint droplets is a problem of considerable importance. For example, (a) much of the
energy involved in automotive assembly is associated with the paint process; (b) a
significant amount of paint does not attach to the cars and ends up as pollutants; and
(c) 10-20% of automobiles need to be repainted due to aberrations in the process.
The goal of computational modeling of the rotary bell delivery system includes

e Optimizing the atomization process for higher paint flow rates to obtain more
uniform and consistent atomization in the 30,000 to 60,000 rpm range.

e Studying the atomization process as a function of paint fluid properties (such as
density, viscosity, and surface tension) and physical properties, such as inflow
rates, bell rotation speeds and shaping air currents.

e Analyzing film dynamics, particularly in the immediate atomization zone adjacent
to the cup edge, including the dynamics of filament formation and droplet size and
distribution and their trajectories.

5.1 Computational Challenges

The computational challenges posed by the painting delivery mechanism are
formidable. The range of physical parameters is substantial. The droplet size ranges
from 5 to 100 wm, the films are 10-50 pm thick, while the rotary bell diameter
is on the order of centimeters. The cup rotates at 200 m/s, droplets breakup over
microseconds, whereas droplet statistics requires milliseconds. As such, modeling
requires tracking droplets across a wide range of length scales, paint fluid mechanics
is subject to high centrifugal and Coriolis forces, and the impact of highly vortical
air structures on film sheeting requires careful resolution.
From a computational point of view, these translate into daunting challenges:

Interfaces are very contorted and complex.

Very thin sheets of paint roll off, and then break into droplets.

Fluid dynamics is highly three-dimensional with gas eddies playing a key role.
Droplets are tiny, and break off and subsequently merge in highly complex ways.



Efficient Algorithms for Tracking Moving Interfaces in Industrial Applications ... 189

e Mass conservation is important: tracking and accurately accounting for small
droplets is critical, since all the paint ultimately breaks into such small objects.

These translate into several modeling/mathematical/algorithmic/numerical chal-
lenges which must be tackled in order to build a workable approach, including:

e High-order accurate fluid solvers and sharp interface physics: The standard level
set approach to tracking two- or multi-phase fluid problems is to solve both the
evolving level set equation and the Navier-Stokes equations on a background fixed
mesh, smearing forces jump conditions, and discontinuities across the air/fluid
interfaces through mollified delta functions into forcing terms on the background
mesh. Because the droplets are so small, and because the viscosity/density jumps
are so large, this approach is too inaccurate. Instead, we need to employ incom-
pressible Navier-Stokes solvers that allow us to represent these forces sharply, by
using implicitly defined meshes that adapt to the moving geometry of the liquid-gas
interface.

e Develop hybrid interface solvers coupled to high order fluid solvers. Coupling
these high-order fluid solvers to the interface dynamics requires building accurate
methods to allow information transfer between the background Cartesian level set
mesh and the unstructured interface-fitted mesh.

e Non-Newtonian fluids: Another complex challenge stems from the fact that paint is
in fact non-Newtonian. One must carefully design and embed experimental shear
stress models inside numerical calculations.

e Mesh adaptivity: In order to capture the shaping air currents and spinning bell,
which occupy large length scales, as well as the smallest scales of droplets and
thin films, we need to employ aggressive adaptive mesh refinement strategies.

e Multi-core high performance computing:This is an involved calculation, requir-
ing small time steps, many mesh elements, and highly accurate elliptic solvers.
Attention must be paid to parallel implementations on sophisticated computing
architectures.

5.2 Level Set Methods and High-Order Multiphase Flow

The central problem in applying level set methods is that the equations of motion
need to include jump conditions at the air-paint interface, e.g., droplet boundaries.
The usual level set approach of “smearing” forces to a background mesh in order to
provide source terms to the incompressible Navier-Stokes equations is problematic.
The droplets can be so small, and the density/viscosity jumps so large and sharp, that
this mollified approach does not provide the required accuracy.

Instead, we make use of an algorithmic technology building on implicitly-defined
meshes [22-24]. There are several ideas at work in this approach:

e First, two-phase incompressible flow is solved using a discontinuous Galerkin
(DG) approach, with a level set method used to track paint-air interfaces.
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Fig. 11 Implicitly defined meshes using multi-phase cell merging. Left: Phase cells, defined by
the intersection of each phase (blue and green) with the cells of a background Cartesian/quadtree
grid, are classified according to whether they fall entirely within one phase, entirely outside the
domain, or according to whether they have a small or large volume fraction. Right: Small cells
are merged with neighboring cells in the same phase to form a finite element mesh composed of
standard rectangular elements and elements with curved, implicitly defined boundaries. Figures
adapted from [23, 24]

e The level set method is solved using finite differences on a fixed background mesh
in a time-evolving narrow-banded data structure.

e The zero level set corresponding to the paint-air boundaries, which cuts through
the cells of a background octree grid, is used to drive a cell-merging procedure
which creates an implicitly-defined mesh, whose element shapes exactly coincide
with the curved geometry of the interface; see Fig. 11.

e This mesh is used to accurately incorporate the now body-aligned interface jump
conditions in the DG solver.

Adaptivity: The next issue stems from the fact that there is a wide range of physical
space scales involved in the process. The paint comes off the bell as a very thin
film, and then breaks into small bubbles; as such, computing on a uniform mesh is
impractical. Instead, we employ adaptively refined meshes wherein the mesh reso-
lution adapts to such triggers as: (a) the distance to liquid-gas interface; (b) amount
of curvature of interface; (c) the thickness of droplets, tendrils, films; and (d) the
proximity to bell cup. See, for example, Fig. 12.

High performance computing: The above calculations are complex and the time
step, spatial resolution, and physics make it impossible to model the entire bell.
With a numerical framework targeting high performance computing facilities, using
massively parallel MPI and OpenMP techniques, we can conduct high-resolution in-
depth studies of rotary bell atomization on small wedges, about 5 degrees in angle,
using tens of thousands of cores. In Fig. 13 we present one result from a large family
of parameter studies. For further details, see [31].
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Fig. 13 Three-dimensional model results of rotary bell atomization for time- and spatially-varying
inflow film thickness, high mesh resolution, and shaping air currents simulating nozzle inlets. In
each of the nine panels, two viewpoints at the same time frame are given: a top-down perspective
and a side-on view to show the vertical drifting of the shedding droplets, being pushed upwards by
the shaping air currents. The liquid surface is colored copper, with the bell cup situated beneath
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6 Conclusions and Summary

We have tried to review a few examples in which the interface dynamics are a
profound contributor to the efficiency of the industrial processes, and have focused
on the application of level set methods for interface tracking to these problems. We
have considered only a few contributions and works, and refer the interested reader
to the referenced review articles.
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Numerical Study for Blood Flows )
in Thoracic Aorta

updates

Hiroshi Suito, Koki Otera, Viet Q. H. Huynh, Kenji Takizawa, Naohiro Horio,
and Takuya Ueda

Abstract Numerical simulations for blood flows related to cardiovascular diseases
are presented. Differences in vessel morphologies produce different flow character-
istics, stress distributions, and ultimately different outcomes. Some examples illus-
trating the effects of curvature and torsion on blood flows are presented both for
simplified and patient-specific simulations. The goal of this study is to understand
relationships between geometrical characteristics of blood vessels and blood flow
behaviors.

1 Introduction

In aging societies, cardiovascular conditions such as aortic aneurysms and aortic
dissections persist as life-threatening diseases. Moreover, congenital diseases such
as hypoplastic left heart syndrome constitute an important issue for our society. In
recent years, patient-specific simulations have become common in the biomedical
engineering field. Several mathematical viewpoints are expected to be added and to
play important roles in this context. For instance, geometrical characterization of
blood vessels, which vary widely among individuals, provides useful information to
medical sciences. Differences in blood vessel morphology give rise to different flow
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characteristics, which cause different stress distributions and outcomes. Therefore,
characterization of these vessels’ respective morphologies represents an important
clinical question. Our objective in this study is to understand possible mechanisms
connecting geometrical characteristics and stress distributions through flow behav-
iors. The studies presented in this paper are parts of a CREST [1] framework sup-
ported by the Japan Science and Technology Agency in a strategic area for promoting
collaboration between mathematical science and other scientific fields.

2 Numerical Methods and Results

2.1 Governing Equations

We adopted incompressible Navier—Stokes equations as governing equations.

ou; u; 1 dp 9 <3ui a”/‘)
trtuiat=—5sa—-+Vva— |-+t a75= ),

88; i 9x; pax; T ax; \9x; T Ox in @x(0,7). (1)
7%, =0
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In those equations, ¢, u; (i = 1,2, 3), p, p, and v respectively represent time, veloc-
ity, pressure, density, and the kinematic viscosity of blood. We assumed that blood
can be regarded as a Newtonian fluid in large arteries. Several numerical results with
different numerical methods are presented in the following subsections. Finite dif-
ference method is used in Sect. 2.2, applied for blood flows in a thoracic aorta and for
flows in simple spiral tubes to examine torsion effects. Then, finite element method
is applied in Sect. 2.3 where fluid structure interaction (FSI) is considered and some
flow mechanisms in a configuration after Norwood surgery are examined.

2.2 Finite Difference Approximation

2.2.1 Visualization of Flows in a Thoracic Aorta

Effects of curvature on flows in curved tubes have been discussed extensively in
earlier studies [2—4]. When a tube has curvature, centrifugal force acts in the opposite
direction, depending on the axial component of the velocity. Subsequently, secondary
flow occurs on the cross-section and forms a set of twin vortices called Dean’s
vortices, thereby playing an important role in blood flow through the aortic arch
where a strong curvature exists.

Figure | presents streamlines that can be visualized based on numerical results
obtained through an earlier study [5]. We assumed a blood vessel as a rigid body and
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applied finite-difference method on a centerline-fitted curvilinear coordinate system,
where the centerlines and cross-sections were extracted from patient-specific CT
scans of patients with aortic aneurysms. Incompressible Navier—Stokes equations
were solved numerically with a boundary condition for the inflow velocity profile
given by a phase-contrast MRI measurement.

Figure 1a presents streamlines through the whole thoracic aorta at peak systolic
phase. Circulation in the aneurysm is apparent. Figure 1b shows the Dean’s vortices
on the aortic arch superimposed to the main axial flow. In Fig. lc, a spiral flow is
apparent in the descending aorta.

Helicity, u - (V x u), represents swirling flow regions of opposite signs. Figure 2a
depicts helicity isosurfaces of a positive and a negative values, which shows Dean’s
vortices generated at the aortic arch and subsequently flowing down to the descending
aorta. In Fig. 2b, an isosurface of the second largest eigenvalue A, of S2 + Q2 where
S and €2 respectively represent symmetric and antisymmetric parts of the velocity
gradient tensor, also shows a swirling flow region [6]. Enstrophy, |V x u|?, exhibits
the strength of vorticity in Fig. 2c. In Fig. 2b, c, colors of isosurfaces show A, values.

2.2.2 Effects of Torsion in Simple Spiral Tubes

We also examined the effects of torsion using a pulsating flow in simple spiral tubes,
as shown in [5]. Torsion of a three-dimensional curve is defined through the Frenet—
Serret formula shown below.

(a)

Fig. 1 Instantaneous streamlines
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(a) Helicity (c) Enstrophy

Fig. 2 Several fluid dynamics quantities

peak systolic phase late systolic phase late diastolic phase

Fig. 3 Secondary flows in a zero-torsion tube
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Therein, x and t respectively represent curvature and torsion, where ¢, n, and b
respectively denote the tangential, normal, and bi-normal vectors.

Figures 3 and 4 portray secondary flows, which are obtainable by subtracting the
main axial flow from the total flow velocities at peak systolic, late systolic, and
late diastolic phases, respectively, for zero-torsion and nonzero-torsion cases. When
the torsion is zero, the secondary flow is invariably symmetric. However, when the
torsion is not zero, merging phenomena occur; one large vortex persists in a diastolic
phase. Such difference brings about differences in torque exerted on vessel walls.
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peak systolic phase late systolic phase late diastolic phase

Fig. 4 Secondary flows in a nonzero-torsion tube

2.3 Finite Element Approximation

2.3.1 Torsion Effects on Flows in the Thoracic Aorta

Next we consider fluid—structure interaction (FSI) to examine torsion effects using
patient-specific morphologies [7]. Here, FSI analysis is handled with the Sequentially-
Coupled Arterial FSI (SCAFSI) technique [8] because the class of an FSI prob-
lem here has temporally—periodic FSI dynamics. Fluid mechanics equations are
solved using Space-Time Variational Multiscale (ST-VMS) method [9-11]. First,
we carry out structural mechanics computation to assess arterial deformation under
an observed blood pressure profile in a cardiac cycle. Then we apply fluid mechan-
ics computation over a mesh that moves to follow the lumen as the artery deforms.
These steps are iterated where the stress obtained in fluid mechanics computation
is used for the next structural mechanics computation. To assess torsion effects, the
torsion-free model geometry is generated by projecting the original centerline to its
averaged plane of curvature, as presented in Fig. 5.

Figure 6 presents secondary flows. On the left-hand side (projected shape), sym-
metric Dean’s vortices are apparent, although they are not visible on the right-hand
side (original shape), similarly to the simple spiral tubes in Fig. 4.

Next we compare the wall shear stresses (WSS) patterns corresponding to the
projected and the original geometries to examine the influence of torsion. Figure 7
presents WSS at peak systolic phase. In the projected torsion-free shape, a high
WSS region is apparent at the aortic arch, which results from the strong Dean’s twin
vortices, although it is not apparent in the original shape with torsion there.

2.3.2 Flow Mechanism in Morphology After Norwood Surgery

This subsection presents examples of patient-specific blood flow simulations at an
anastomosis site after Norwood surgery for hypoplastic left heart syndrome. Our
target is the geometry surrounding an anastomosis site of the aortic arch and pul-
monary artery after Norwood surgery, which is one step taken during surgeries for
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Fig. 5 Projected and original shapes

(a) Projected shape (b) Original shape

Fig. 6 Secondary flows in projected and original shapes

hypoplastic left heart syndrome. The target geometry was extracted from a CT scan
with boundary conditions obtained from ultrasound measurements. Here, we again
adopt the rigid body assumption, i.e., not considering fluid—structure interactions.
The SUPG/PSPG stabilized finite element formulation is used, which is solved on
P1/P1 elements.

Figure 8a portrays instantaneous streamlines at the peak systolic phase, whereas
Fig. 8b depicts the energy-dissipation distribution. Energy dissipation is a clinically
important quantity because it imposes a load on the heart directly [12]. In Fig. 8b,
high energy dissipation is apparent at the anastomosis site, which can be understood
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Fig. 7 Wall shear stresses at
peak systolic phase

(a) Projected shape (b) Original shape

(a) Streamlines (b) Energy dissipation

Fig. 8 Streamlines at an anastomosis site after Norwood surgery

straightforwardly because the velocity is extremely high there. Although high energy
dissipation is also apparent in the descending aorta, it cannot be qualified straightfor-
wardly. This dissipation apparently derives from spiral flow there, which is generated
at the aortic arch immediately after blood passes out of the thin anastomosis channel,
as shown in Fig.9. Here, a relation can be found between morphology and energy
dissipation patterns through flow structures.
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Fig. 9 Front and back views of streamlines

3 Conclusions

‘We have presented some relations between geometrical characteristics of blood ves-
sels and flow behaviors. Those relations are expected to explain how and why vessel
morphologies affect WSS distributions and energy dissipations. As described in Sect.
2.2, vessel curvature induces Dean’s vortices as a secondary flow by centrifugal force,
thereby creating strong WSS there. Moreover, Dean’s vortices show different behav-
iors depending on the existence of torsion. In the example from a Norwood surgery
morphology, an energy dissipation pattern on the descending aorta can be explained
through flow structures. As a next step, predictions based on geometrical characteris-
tics of blood vessels are expected to contribute to better risk assessments and surgery
planning through mathematical modellings and numerical simulations.
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An Iterative Thresholding Method for )
Topology Optimization for the oneckior
Navier-Stokes Flow

Haitao Leng, Dong Wang, Huangxin Chen, and Xiao-Ping Wang

Abstract We develop an efficient iterative thresholding method for topology opti-
mization for the Navier—Stokes flow. The method is proposed to minimize an objec-
tive energy functional which consists of the potential power in the fluid and a fluid-
solid interface perimeter penalization. The perimeter is approximated by a nonlocal
energy, subject to a fluid volume constraint and the incompressible Navier—Stokes
equation. The method is an iterative scheme which alternates two steps: (1) solving a
system containing the Brinkman equation and an adjoint system, and (2) convolution
and thresholding. Various numerical experiments in both two and three dimensions
are given to show the performance of the proposed method.

1 Introduction

Topology optimization was originally developed for the optimal design in structural
mechanics ([3, 4, 6]). Nowadays it has attracted much attention due to its wide appli-
cation in the fields of industry problems such as optimization of transport vehicles,
biomechanical structure, etc. So far, the density method [5, 31] has been well devel-

H. Leng

School of Mathematical Sciences, South China Normal University, Guangzhou 510631,
Guangdong, China

e-mail: htleng@m.scnu.edu.cn

D. Wang

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172,
Guangdong, China

e-mail: wangdong @cuhk.edu.cn

H. Chen

School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical
Modeling and High Performance Scientific Computing, Xiamen University, Fujian 361005, China
e-mail: chx@xmu.edu.cn

X.-P. Wang ()

Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water
Bay, Kowloon, Hong Kong, China

e-mail: mawang @ust.hk

© The Author(s) 2022 205
T. Chacén Rebollo et al. (eds.), Recent Advances in Industrial and Applied

Mathematics, ICIAM 2019 SEMA SIMAI Springer Series 1,
https://doi.org/10.1007/978-3-030-86236-7_12


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-86236-7_12&domain=pdf
mailto:htleng@m.scnu.edu.cn
mailto:wangdong@cuhk.edu.cn
mailto:chx@xmu.edu.cn
mailto:mawang@ust.hk
https://doi.org/10.1007/978-3-030-86236-7_12

206 H. Leng et al.

oped for implementation of topology optimization. It was originally developed for
the design of stiffness and compliant mechanism [32, 33] and has been applied in
various physical problems such as acoustics, electromagnetics, fluid flow, and ther-
mal problems [7, 11, 15, 24, 34]. In fluid mechanics, the concept of density method
was first developed by Borrvall and Petersson [7] for topology optimization for the
Stokes flow. Then it was extended to the Darcy-Stokes flow [21, 43], the Navier—
Stokes flow [12, 18, 20, 27, 36, 47], the non-Newtonian flow [30], the turbulent
flow [13], and more complicated fluidic devices [1, 25, 26]. Approaches using the
topological sensitivity analysis (providing an asymptotic expansion of a shape func-
tion with respect to the size of a small inclusion inserted inside the domain) can
also be used for shape optimization for Stokes flows [22] and Navier—Stokes flows
[2]. Generally, the discrete optimization problem for the topology optimization was
solved by the method of moving asymptotes (MMA) [35], level set based methods
[8, 36, 47] and phase field based methods [18].

The threshold dynamics method developed by Merriman, Bence and Osher
(MBO) [23] is an efficient method for approximating the mean curvature flow. In
this method, the interface is implicitly represented by the characteristic functions of
the domains. It alternates two simple steps: convolution between the characteristic
functions and a heat kernel and point-wise thresholding. Recently, Esedoglu and Otto
generalized the original MBO method to multiphase problems with arbitrary surface
tensions [17]. The method has attracted much attention and it has been extended to
many other applications, such as image processing [16, 37, 39], wetting dynamics
[38, 44, 45], and target-valued problems [28, 29, 40-42].

In this paper we extend the iterative thresholding method developed in [9] to
topology optimization for the Navier—Stokes flow. The porous medium approach
based on the density method is utilized in the algorithm, and a Darcy term is intro-
duced into the Navier—Stokes equation to “interpolate” between the Navier—Stokes
equation in the fluid region and the Darcy flow through a porous medium (a weak-
ened solid region with low permeability) (i.e., Brinkman equation). Then the total
energy consists of the potential power in the fluid, the perimeter regularization, and
a Darcy term. The perimeter term is computed based on the convolution between
the heat kernel and the characteristic functions of regions. There are two steps per
iteration in the proposed algorithm. The first step is to solve the Brinkman equation
and an adjoint system, which can both be efficiently solved using the mixed finite
element method. The second step is to update the fluid-solid regions by a simple
convolution and thresholding step. The convolution can be efficiently computed on a
uniform grid by the fast Fourier transform (FFT) with the computational complexity
O(N log N). A variety of numerical experiments in both two and three dimensions
are shown to verify the efficiency of the proposed algorithm. In addition, numerical
results indicate that the total energy decays.

The paper is organized as follows. In Sect.2, we introduce the mathematical
model, the approximation to the model, and the derivation of the iterative thresh-
olding method. The numerical implementation is discussed in Sect.3. We verify
the performance through extensive numerical experiments in Sect. 4. We draw some
conclusions in Sect. 5.
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2 Derivation of the Method

2.1 The Mathematical Model

In this section, we consider the mathematical model for topology optimization for
the Navier—Stokes flow. Denote 2 € R? (d = 2, 3) as the computational domain
which is fixed throughout optimization and assume that €2 is a bounded Lipschitz
domain with an outer unit normal n such that R? \ Q is connected. Furthermore,
we denote 2y C Q2 as the domain of the fluid which is a Caccioppoli set whose
boundary is measurable and has a (at least locally) finite measure and €2 \ €2 as the
domain of solid. Our goal is to determine an optimal shape of €2 that minimizes the
following objective functional consisting of the total potential power and a perimeter
regularization term,

min Jo(Qp, u) = f B\ vuldx + y|T| (1)
(Q0,u) 2
Q
subject to

V.-u=0, in Q, (2a)
(u-VYu+Vp—V.(uVu) =0, in Q, (2b)
u=0, inQ\ Qo andon Ny, (2¢)
ulyo =up, on 9%, (2d)
|Q| = B1£2| with a fixed parameter § € (0, 1). (2e)

Here,u : Q — R?, pisthe viscosity of the fluid, p is the pressure,up : 92 — R4
is a given function, |I'| is the perimeter of the boundary (i.e., ' = 9€2p), and y > 0
is a weighting parameter.

2.2 The Relaxation and Approximation of the Problem

Since the goal is to minimize the objective functional (1) subject to several constraints
(2) with respect to the fluid-solid interface, it is necessary to have a proper represen-
tation of the fluid-solid interface. Motivated by [9, 17, 37, 44], in this paper, we use
the characteristic function x; of the fluid domain (i.e., £2¢) to implicitly represent the
fluid-solid interface, i.e.,

0, otherwise.

(x) = {1’ ¥ x € S,
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x2(x) =1 — x1(x) is denoted as the characteristic function of Q \ €. Then, the
interface I is implicitly represented by y; and y». Under this representation, |I"| can
be approximated by

P2 T
Tl %\/;/XlGr*Xdez\/;/XIGI*(l_Xl)dX’ 3)
Q Q

2
———exp (—ﬁ> (d =2,3) is the Gaussian kernel and *
(4m7)? 4z

denotes the convolution [17].

Similar to [9], to avoid solving the Navier—Stokes equation in a changing domain at
each iteration, the porous medium approach [18] is utilized to “interpolate” between
the Navier—Stokes equation in the fluid region (i.e., {X| x;(x) = 1}) and u = 0 in
the solid region (i.e., {X| x2(x) = 1}) by introducing an additional penalization term,
a(x)u, as follows:

where G, (x) =

V.-u=0, in Q, (4a)
u-VYu+Vp—-V.-(uVe) +ax)u=0, in 2, (4b)
u|yo = up, on 0%2, (4¢)
fxldX=ﬂIQ|- (4d)
Q

Accordingly, the original objective functional (1) can be approximated by adding
a Darcy penalty term as follows:

JT(X,U)Z/(%IVUIZvL@Iugdwﬂ/\/@/x@*(l—X)dX (&)
Q Q

where x denotes the characteristic function of the solid domain, i.e., x = 2.

Now, we discuss the computation of « in the current representation of the interface
(i.e., using characteristic functions). Theoretically, o should be large enough in the
solid domain to penalize the condition u = 0 and close to 0 in the fluid domain to
make u satisfy the Navier—Stokes equation. For numerical considerations, we relax
o to a smooth function which undergoes rapid changes through the interface. We use
the 0.5 level set of ¢ = G, * x to approximate the position of the interface I" and
such ¢ is a smooth function between [0, 1] and admits a change from O to 1 in an
O (y/7) transition region. Thus, we compute o by

a(xX) =ap =aG; x x (6)
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where « is a sufficiently large constant, and thus by the porous medium approach we
can solve the system (4) in a fixed domain €.
Finally, using (6), we arrive in the following formulation of the problem:

minJ’(x,u)=/ B19ul + LGy 0P+ y | ZxGe s (1= x) ) dx (7)
x,u 2 2 T
Q

subject to

xeB:={x e BV(Q) | x(x)=1{0,1}, a.e., and /(1 — )dx = B} (8a)

Q
V-u=0, in @, (8b)
u-VYu+Vp—-V.-(uVu) + (@G, * x)u=0, in £, (8¢)
u|so =up, on JL2. (8d)

2.3 Derivation of the Method

In this section, we will derive an iterative scheme to find the approximate solution
for (7) and (8). Denote

U:=fue H'(Q)|V-u=0,ul30 =up} and V:={ve Hj(Q)|V- -v=0}.

To derive the first order necessary optimality conditions for a solution (x., u;) of (7)
and (8), we introduce the Lagrangian £ : B x U x V — R by

E'(x,u,0) :=J (x,u) +/(u-V)u~ﬁ+uVu-Vﬁ+ (@G, * y)u - udx
Q

where the pressure term is not shown because V - @ = 0. The variational inequality
is formally derived by

8ET
<(S (Xfaurvﬁf)5X_XT>207 VxeB 9
X

and the adjoint equation can be deduced by

oud -
5 (XTsuTaut)vv =0’ VVGV (10)
u

where (-, -) denotes the L?-inner product.
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To be specific, assume (x;, u;) € B x U is a minimizer of (7) and (8), the fol-
lowing inequality is fulfilled:

o 2 T _ -
EG‘L’*|u‘[| +)/ ?Gt*(l_z)(r)_’_aGt*(ur'ut)vX_Xt ZO,VXGB
(11)

where 1, is the solution to the following adjoint system at (u;, x;):

— (U - VU, — (U, - V)i + (Vu) @+ Vi — V- (uVi) + @G, * x)a =0,

(12a)
V.i=0, (12b)
ﬁ|aQ =0. (IZC)

Here, p is the pressure associated to the adjoint system.

Based on the first order necessary optimality condition, to solve (7) and (8), we use
an iterative scheme to decrease the value of the objective functional with u satisfying
(8) and i satisfying (12). Without loss of generality, assume the k-th iteration x* is
given, we compute (u¥, i*) via solving the following system

V-u=0,

V.i=0,

u-VYu+Vp—V.(uvw) + @G, * x)u =1,
—(u-Vu—(u-V)ia+ (V)a +Vp— V. (uVi) + (@G, * x*)a =0,

ulye =up,
iy =0.
(13)
After (u¥, @) are solved from (13), x**! is updated through
1 =argmin 7 (x, u¥, @). (14)
xeB

Write the objective functional £7(x, u*, i*) into E7* (x):

~ B a T
E™ () = £f<x,uk,uk>=/ExGr*|uk|2dx+y\/;fof*<1—x>dx
Q

Q

+/&xG,*(uk~ﬁk)dx+/\/(uk,ﬁk),
Q
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where N (u*, ") contains all other terms in £7(x, u*, U¥) which are independent of
x - The only problem now is to minimize £%*(x) on B, i.e., finding x**! such that

x ! = argmin £ (). (16)
xeB

We first relax (16) to a problem defined on a convex admissible set by finding r**!
such that

P = arg min £ (r), (17)
reH
where H is the convex hull of B:

H:={r e BV(Q) | r(x) € [0, 1] a.e., and/rdx =W}
Q

The following lemma holds similarly as that in [9] and we refer the details of a similar
proof to [9]. Thus, we can solve the relaxed problem (17) instead of (16).

Lemma 2.1 Letu € HJD (2, RY) bea given functionandr = (ry, r2). Then we have

. gr,k — : gr,k )
arg £r€11721 (r) = arg rrrglrsl (r)

Next we show that (17) can be solved by a thresholding step. Because Evk (r)is
quadratic and concave in r, we first linearize the energy £7*(r) at r* by

EVNry ~ EVR ) + LT = 1),

where

L) =/ (y\/ngt *(1—2r%) + r%GT ' + raG, = (u* -ﬁ")) dx
Q

= / rodx

Q

where¢ = ¥ /ZG, * (1 — 2r*) + £G, * [u*|* + &G = (u* - &). Then (17) can be
approximately solved by

XkH = arg min ﬁr,;k(r) = arg min/rq)dx. (18)
reH T rer
Q

Then we have the following lemma as in [9] and one can also refer the details of
proof to [9].
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Lemma 2.2 Let ¢ =y /TG, * (1 —2x*) + £G, % [u* > + &G, * (u* - &*) and
D' =(xe Q¢ <d)
for some § such that |D§+1| = (1 — B)||. Then with x*+' = Xpk+i, we have
E;’f(XkH) < E;’kk()(k) forallt > 0.

The above lemma shows that (18) can be solved by

{x"“(x) =1, if p(x) <38,

x*1(x) = 0, otherwise,

where § is chosen as a constant such that fQ ¥ ldx = (1 - B)IQ|.

To determine the value of §, one can treat fQ x*tldx — (1 — B)|2] as a func-
tion of § (i.e., f(8) = fQ x*tdx — (1 — B)|R2]) and use an iteration method (e.g.,
bisection method or Newton’s method) to find the root of f(§) = 0. For the uniform
discretization of €2, a more efficient method is the quick-sort technique proposed in
[44]. Assume we have a uniform discretization of 2 with grid size h, we can approx-
imate [, x**'dx by mh? where m is the number of grid points where x**!' = 1.
Assume (1 — B)|Q| is approximated by Mh¢, we then sort the values of ¢ in an
ascending order and simply set x**! = 1 on the first M points.

Now, we arrive at Algorithm 1.

Remark 2.1 We remark here that it’s obvious that the Step 2 in Algorithm 1
decreases the energy which can be proved similar as we did in [9], i.e.,

JT (X b < TR (K ub).
In the Step 1, we don’t have
T (M) < T (xE e

because this step can be interpreted as a projection step. It could increase the value of
the energy. However, in the numerical experiments in Sect. 4, we checked the energy
curves for all examples as displayed. All of them indicate that the algorithm has the
energy decaying property.

Remark 2.2 In the implementation, the stopping criteria is x**! = x* on each grid
point. Itis easy to see that the stationary solution (obtained from Algorithm 1) satisfies
the first order necessary optimality condition (8), (9), and (10).
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Algorithm 1 An iterative thresholding method for topology optimization for the
Navier-Stokes flow

Input: Discretize 2 uniformly into a grid 7;, with grid size & and set M = (1 — ﬁ)lQl/h". Set
T >0,a& >0,k =0, a tolerance parameter ol > 0 and give the initial guess x° € B.

Iterative solution:
Step 1. Given x*, update u and i. Solve the following system
V.u=0,
V-u=0,
(u-VYu+Vp—V.(uVu) + @G * x*u="1,
—(u-Vyu— - Va+ (Vu)lia+Vp— V. (uvi) + @G, x x)ia=0,
ulye =up,
iy =0.
to obtain uf and &*.
Step 2. Update x. Evaluate

=7\ =G s (1 =25 + TG # ' +&G, + (0 1),
T

sort the values of ¢ in an ascending order, and set x**! = 1 on the first M points.
Step 3. Compute el)‘( = M = xFlla. 1 el)‘( < tol, stop the iteration and go to the output step.
Otherwise, let k + 1 — k and continue the iteration.

Output: (x, u) that approximately solves (7) subject to (8)(a-d).

3 Numerical Implementation

Now we illustrate the implementation of Algorithm 1 and we focus on Step 1. The
Navier-Stokes equations with a Dacry term penalty and the adjoint problem (13)
are solved by the mixed finite element method, and the standard Taylor-Hood finite
element space is used for discretization. Let 7, be a uniform grid of the domain €2,
and V}, is the set of all vertices of 7. For a given ¥, € B), where By, is the discrete
version of B defined on A/,. We introduce the Taylor-Hood finite element space

Vi ={ve H(Q,RY | vlx € [P(K)IY, K € T;},

0y :=1{q € L*(Q,R) | /q dx =0, qlx € PI(K), K €T}
Q

Let VP :={v € V}, | v|sq = ul}, where u’} is the a suitable approximation of the
Dirichlet boundary condition up on the boundary edges/faces of 7;,. For the solution
of (13), find (uy, py) € VP x Qy, such that

(- Vg, vp) — (s V- V) + (Vg VVg) + (@(0)up, Vi) =0, Vv, € V9,
(V-uy,qp) =0, Vaqn € Qp.
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and (4, py) € V2 x @, such that

—((ap, - V)i, vi) + (V) Ty, Vi) — (B, V- Vi) + (u Vi, Vvg) + (@), vi)
= (- Vwp,vp), Y, €V,
(V-uy,qp) =0, Y qn € O,

where V) =V, N H} (). All above systems are solved by standard Newton’s
iteration and each iteration is solved by the generalized minimal residual method
(GMRES).

We also note that the above bilinear form can be straightforwardly extended to
the problem both with Dirichlet boundary I, and Neumann boundary Iy, where
FD N FN = @, FD U FN = BQ, and (MVu — pI) . n|[‘N =g.

When u;, and 1, are obtained, we can use the FFT to compute ¢” on each node
of NV, as follows:

T o -
" = V\/;Gr % (1—2x") + 5Gox (Jup)? + 2wy, - Giy)

Following Algorithm 1, we can now use ¢" to update the indicator function x;
by the strategy presented in Algorithm 1.

Remark 3.1 Similar to the adaptive in time strategy used in [9], we can modify
Algorithm 1 into an adaptive algorithm by adjusting t during the iterations. We set a
threshold value 7, and a given tolerance e;, if ef( < e, let Ty = nT With n € (0, 1)
and update T := T,y in the next iteration unless T < t;. Otherwise, T will not be
updated, and the iteration will continue with the same 7.

4 Numerical Experiments

In this section, we perform extensive numerical examples to demonstrate the effi-
ciency of our new algorithm with an adaptive strategy for the choice of 7. We choose
n = 0.5 in the update of 7. If no confusion is possible, we still denote by t as its
initialization in the following. Also, we denote the Reynolds number by Re = ﬁ

4.1 Two Dimensional Results

In this section, we test the performance of the proposed algorithm on two dimen-
sional problems on several different design domains as displayed in Fig. 1. For most
examples in this section, we assume that the Dirichlet boundary condition with a
parabolic profile and the magnitude of the velocity are set as [up| = g(1 — 4(”7”)2)
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Fig. 1 Design domains of two dimensional examples

witht € [a — é a—+ é], where [ is the length of the section of the boundary at which
the inflow/outflow velocity is imposed, and g is the prescribed velocity at the mid-
point a of the flow profile. The directions of the inflow/outflow velocity are illustrated
separately in the design domain in each example.

Example 1 In this example, we consider the design of a bend, which has been tested
by the level set method in [10, 14, 19]. The design domain is presented in Fig. la.
Let g be 1 both in inlet and outlet, and we set the fluid fraction as 8 = 0.087. Here,
we use our algorithm to obtain the optimal design result on a 128 x 128 grid. We
assume the initial distribution y = 0 in the whole domain, and set the parameter
@ = 1.514 x 10* through this example.

The boundary conditions in this example are slightly different with [10, 19], but
are same as that in [14]. Based on the 128 x 128 grid, firstly, we test the example
for different Reynolds numbers, in which the other parameters are set as 7 = 0.001
and y = 0.0001. The optimal design results together with the velocity field and the
energy decaying curve are displayed in Fig. 2 for the cases of Re = 10, 100 and 1000,
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Fig. 2 (Example 1) Left to right: Optimal results and the corresponding energy decaying curve
for the cases of Re = 10, 100, and 1000. The parameters are set as T = 0.001, y = 0.0001 and
a@ = 1.5p x 10*
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Fig. 3 (Example 1) Plots of energy curves for @ = 1.51 x 10* and Re = 10. Left: For fixed
y = 0.0001, energy curves for the cases of t = 0.02, 0.005, 0.001. Right: For fixed = = 0.001,
energy curves for the cases of y = 0.0005, 0.0001, 0.00005

separately. It was mentioned in [46] that the radius of curvature of the fluid domain
is decreased as the Reynolds number is increased. This phenomenon can also be
observed in Fig.2, and the optimal results are consistent with those obtained by the
level set methods in [10, 14, 19].

Furthermore, we numerically check the sensitivity of T and y on the energy
decaying properties. In Fig. 3, we displayed the energy decaying curves for different
choices of v and y with fixed Re = 10. We observe that the energy converges to
almost the same value. In addition, the final design results we obtained are also
identical to the left one in Fig.2.
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Fig. 4 (Example 2) Left to right: Optimal results and energy curves for 8 = 0.5 and § = 0.4

Example 2 We test the example presented in Fig. 1b which has one parabolic inlet
and four parabolic outlets. We assume g =3, / = 0.2 and a = 0.8 on the inlet
boundary x = 0. For the four outlets, we let (g, [, a) = (1,0.1,0.8), (1, 0.1, 0.65),
(1,0.2,0.7) and (1,0.2,0.25) on y =0, y =1, x =1 and x = 1, respectively.
This example has been tested by the phase field method in [18] with the same
boundary conditions. Here, we use our algorithm to obtain the final optimal result
on a 256 x 256 grid. Throughout this example, we set t = 0.001, y = 0.01, ¢ =
1.51 x 10* and Re = 10.

For the initial distribution y =1 — Xi(e.y)we(.1).ye(L,3))» We test this example for
different fluid fractions S. For the left graph of Fig.4 with 8 = 0.5, we obtain the
optimal result after 40 iterations. For the the right graph of of Fig.4 with § = 0.4,
the optimal result is obtained after 38 iterations. We find that the final result in Fig. 4
has a treelike structure which is consistent with that obtained using the phase field
method in [18]. The energy decaying curves for different fluid fractions g are also
displayed in Fig.4.

Example 3 In this example, we consider the minimization of the power dissipation
in a four terminal device. We set g = 1 for the two inflows and homogeneous Neu-
mann boundaries on parts of the top and bottom boundaries with centers [0.5, 0] and
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Fig. 5 (Example 3) Left to right: Optimal results and energy curves on a 128 x 128 grid and
256 x 256 grid. The parameters are set as T = 0.001, y = 0.0001, @ = 2.5;0 x 10* and Re = 1

[0.5, 1] (see Fig. 1c). The fluid fraction is defined as 8 = 0.4. Here, we utilize our
algorithm to achieve the optimal configurations on 128 x 128 and 256 x 256 grids.

We test the case for 7 = 0.001, y = 0.0001, & = 2.5 x 10* and Re = 1 on
128 x 128 and 256 x 256 grids. The initial distribution is set as x =1 —
Xi(xy)we©.1),ye(} 2))- In Fig.5, we observe that the final optimal configuration is
consistent with the result obtained using the level set method in [10]. And the final
results for different grids are almost the same, which indicates that our algorithm
is independent on grid for this example. Furthermore, the energy decaying property
can be observed in Fig. 5.

Example 4 In this example, we consider a three terminal device on the design
domain as displayed in Fig. 1d. We set g = 1 on the two inflows and the homogeneous
Neumann boundary condition on the outflow. The fluid fraction is set as g = 0.3
and we test this example on a 128 x 128 grid for t = 0.0005, y = 0.0002 and
a = 1.5 x 10,

In this example, we study the relation of optimal configurations on different
choices of Reynolds numbers. Based on the initial x =1 — Xi.y)we©.1),ye(t )
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Fig. 6 (Example 4) Left to right: Optimal configurations and energy decaying curves for Re = 20
and 500

the final optimal design results with the velocity fields for Re = 20, and 500 are
displayed in Fig. 6. We observe that the configuration gradually separates from each
other as the Reynolds number increases. The energy decaying curves are also dis-
played and the iteration converges in about 20 steps for Re = 20 and 25 steps for
Re = 500, respectively.

4.2 Three Dimensional Results

In this section, we show the performance of the algorithm on several three dimen-
sional problems for different design domains in Fig.7. In the following examples,
the magnitude of the velocity for the Dirichlet boundary condition on a slice is set as

(s1 —a)* + (s2 — b)z)

jupl = (1 - >
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(a) The design domain of Example 5. (b) The design domain of Example 6.

Fig. 7 Design domains of three dimensional examples

where g is the prescribed velocity at the center (a, b) of a circle in which the
inflow/outflow velocity is imposed, [ is the radius of the circle, (s1, s7) are Cartesian
coordinates on the slice.

Example 5 In the example, we consider the multi-outlet problem in Fig. 7a. For the
inflow, we set g = 1,1/ = 0.2, and (a, b) = (%, %) on x = 0 plane. For the outflow,
weset! =0.1, g =1, and (a, b) = (0.8, 0.5), (0.8, 0.5), (0.8, 0.5), and (0.8, 0.5)
ony=0,y=1,z=0, and z = 1 planes respectively. Throughout this example,
we choose the initial distribution with fluid domain in a region of {(x,y,z) : x €
O,1),ye,1),z¢€ (%, %)}, and set B = 0.2, & = 2.514 x 10* and Re = 20.

We first test the case for T = 0.005 and y = 0.0001 on 32 x 32 x 32 and 85 x
85 x 85 grids. The optimal results in the left graphs of Fig. 8 are consistent with those
obtained using the level set method in [10]. In addition, from the energy decaying
curves in Fig. 8, we observe that the iteration converges in about 20 steps and 30
steps on coarse and fine grids respectively. In Fig.9, we displayed the slices on
32 x 32 x 32 grids on z = 0.5 and y = 0.5 planes.

Next, we compute the result for different 7 and y on the 32 x 32 x 32 grid. The
energy curves for y = 0.0001 and r = 0.01, 0.005, 0.001 are displayed in the left
graph of Fig. 10, and the energy curves for t = 0.005 and y = 0.001, 0.0005, 0.0001
are displayed in the right graph of Fig. 10. We observe that the energy converges to
almost the same value for different y and 7.

Example 6 Here, we consider an example with two inlets and four outlets. The
design domain is defined in Fig.7a. For the two inflows, let g =2, [ = 0.05 and
(a,b) = (0.5,0.5) onx = 0and x = 1 planes respectively. For the four outflows, we
setg =1,/ =0.05and (a,b) = (0.5,0.5) ony =0,y =1,z =0and z = 1 planes
respectively. In the example, we use our algorithm to obtain the final optimal result
for = 0.001, y = 0.0001, @ = 2.5 x 10* and Re = 1. The initial distribution of
fluid region is setas {(x, y,z) : x € (0, 1),y € (0, 1),z € (£, D)}
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Fig. 8 (Example 5) Left to right: Optimal configurations on different grids (top: 32 x 32 x 32,
bottom: 85 x 85 x 85) and energy curves. The parameters are set as T = 0.005, y = 0.0001, @ =
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Fig. 9 (Example 5) The slices on the 85 x 85 x 85 grid for 7 = 0.005, y = 0.0001, @ = 2.5p x
10* and Re = 20. Left: The slice on z = 0.5 plane. Right: The slice on y = 0.5 plane
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Fig.11 (Example 6) Left to right: Optimal configurations on the different grids (top: 64 x 64 x 64,
bottom: 90 x 90 x 90) and energy decaying curves. The fluid fraction is § = 0.18

For the fluid fraction § = 0.1, we design optimal configurations on 64 x 64 x 64
and 90 x 90 x 90 grids. The final results for the coarse and fine grids with cor-
responding energy decaying curves are displayed in Fig. 11. We observe that the
interface is smoother on the fine mesh and the iteration converges in 25 and 30 steps
for the coarse and fine grids respectively.
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Fig. 12 (Example 6) Left to right: Optimal configurations for different 8 (top: 8 = 0.1, bottom:
B = 0.18), energy decaying curves, and slices on y = 0.5 plane

Based on the 64 x 64 x 64 grid, we check the dependency of the results on the
choice of 8. In Fig. 12, we displayed the results, energy decaying curves, and slices on
the y = 0.5 plane for the optimal shape obtained by 8 = 0.1 and 0.18. The iteration
converges in about 25 steps and 20 steps for 8 = 0.1 and 0.18. From Fig. 12, we can
observe that the solid domain in the center shrinks as § increases.

5 Conclusion

In this paper, we present an efficient threshold dynamics method for topology opti-
mization for Navier—Stokes flow. This is an extension of our previous work [9] to the
case of fluids in Navier—Stokes flow. We aim to minimize a total energy functional
that consists of the potential power and the perimeter approximated by nonlocal
energy. Different from the algorithm in [9], during the iterations of the algorithm,
we need to solve not only the Brinkman equation but also an adjoint problem by the
mixed finite element method. Then the indicator functions of fluid-solid regions are
updated by a thresholding step which is based on the convolutions evaluated by the
FFT. A simple adaptive time strategy is used to accelerate the convergence of the
algorithm. Some numerical examples are presented to verify the efficiency of the new
algorithm, and the total energy decaying property of the proposed algorithm can be
observed numerically. The proposed algorithm is simple and easy to implement. For
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the numerical experiments that we have performed, the proposed algorithm always
finds an optimal shape and the numerical results are relatively insensitive to the initial
guesses and parameters.
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Dynamics of Complex Singularities )
of Nonlinear PDEs

updates

Analysis and Computation

J. A. C. Weideman

Abstract Solutions to nonlinear evolution equations exhibit a wide range of inter-
esting phenomena such as shocks, solitons, recurrence, and blow-up. As an aid to
understanding some of these features, the solutions can be viewed as analytic func-
tions of a complex space variable. The dynamics of poles and branch point singular-
ities in the complex plane can often be associated with the aforementioned features
of the solution. Some of the computational and analytical results in this area are
surveyed here. This includes a first attempt at computing the poles in the famous
Zabusky—Kruskal experiment that lead to the discovery of the soliton.

1 Introduction

Ever since Kruskal [22] remarked that soliton motion may be thought of as a “parade
of poles,” the study of complex pole dynamics in nonlinear wave equations has been
an active research field. This paper is an overview of the field, using some of the well-
known model problems, including the Korteweg—De Vries equation that prompted
Kruskal’s remark. The plan is to take these equations, some of them dissipative
and others dispersive, and start them all with the same set of initial and boundary
conditions. Using analysis where we can and numerical computation otherwise, we
shall then track the evolution of the complex singularities. The singularity dynamics
of the various equations will be contrasted, and also connected to the typical nonlinear
features associated with these equations such as shock formation, soliton motion,
finite time blow-up, and recurrence. Here, a particular interest is the entry of the
singularities when the initial condition has no singularities in the finite complex
plane.
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We consider equations of the form
u; +uu, = L), t>0, -1 <x<m, (1)

and assume 27 -periodic solutions in the space variable, x. The linear operator on
the right can be any one of

L(u) = vy, (Burgers), 2)
L(u) = —vu,, (Korteweg—De Vries), 3)
L(u) =v H{u,,} (Benjamin—Ono), @)

where v is a nonnegative constant and H denotes the periodic Hilbert transform,
defined below. As initial condition we consider

u(x,0) = —sin(x), 5)

the particular form of which allows us to make connections to several works of his-
torical interest, namely papers by Cole [10], Hopf [21], Platzman [27], and Zabusky
and Kruskal [39].

The numerical procedure we follow is similar to the one proposed in [35]. The
first step involves a Fourier spectral method in space and a numerical integrator in
time to compute the solution on [—, ] x [0, T']. The second step is to continue the
solution at any time ¢ in [0, 7'] into the complex x-plane. For the continuation we
use a Fourier—Padé method, although other possibilities are considered as well.

In order to identify and display poles and branch points in the complex plane,
we shall plot what is called the “analytical landscape” in [34]. With the solution
f(2) expressed in polar form re’?, the software of [34] can be used to generate a
3D plot in which the horizontal axes represent the real and imaginary components
of z = x + iy, the height represents the modulus r, and colour represents the phase
¢'?. The two examples in Fig. I should clarify this visualization.

The outline of the paper is as follows: The inviscid Burgers equation and its viscous
counterpart are discussed, respectively, in Sects. 2 and 3. Here, analysis provides the
exact locations of the branch point singularities in the inviscid case and approximate
locations of the poles in the case of small viscosity. For the other PDEs considered
here, namely Benjamin-Ono (BO) in Sect. 4 and Korteweg-de Vries (KdV) in Sect. 5,
analytical results are harder to come by and we resort to the numerical procedure
mentioned above. The nonlinear Schrodinger equation (NLS) also makes an appear-
ance in our discussion of recurrence in Sect. 6. In the final section we discuss the
details of the numerical methods employed in the earlier sections.

Novel results presented here include the pole dynamics of the BO, KdV, and NLS
equations. Related studies of KdV were undertaken in [7, 17], but these authors
did not consider the Zabusky—Kruskal experiment which is our focus here. Pole
behaviour in KdV and NLS was also discussed in the papers [11, 22] and [9, 23],
respectively, but those analyses were based on cases where explicit solutions are
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Fig. 1 Analytical landscapes of the functions f(z) = 1/z2 (top left), and f(z) = z'/? (top right).
The height represents the modulus and the colour represents the phase, as defined by the NIST
standard colour wheel (bottom); see [13]. For details about the software used to produce these
figures, see [34]

available. Moreover, in those papers the poles were already present in the initial
condition. Here, our interest is in the situation where the singularities are “born” at
infinity.

Although this paper focuses only on simple model equations such as (1)—(4), pole
dynamics have been studied in more complex models, particularly in the water wave
context. Among the many references are [3, 7, 14].

2 The Inviscid Burgers Equation

The inviscid Burgers equation, u, + uu, = 0, subject to the initial condition (5),
develops ashock at (x, ) = (0, 1), as can be verified by the method of characteristics.
It also admits an explicit Fourier series solution [27]

Ji (kt)

u(x,t):—Zch(t)sin(kx), exlr) = =

k=1

(6)

valid for 0 < ¢t < 1. The J; are the Bessel functions of the first kind. This series is of
limited use for numerical purposes, however, particularly for continuation into the
complex plane. When truncated, it becomes an entire function and will not reveal
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Fig. 2 Solution to the inviscid Burgers equation as computed by applying Newton iteration to the
implicit solution formula (7). The four frames correspond to t = }‘, % %, and 1 (in the usual order).
The thicker black curve is the real-valued solution on the real axis, displaying the typical steepening
of the curve until the shock forms in the last frame. The solution in the upper half-plane is displayed
in the format of Fig. 1. The solution in the lower half-plane is not shown because of symmetry.
The black dot represents a branch point singularity that travels along the imaginary axis according
to (9). By referring to the colour wheel of Fig. 1, one can see that on the imaginary axis, there is no
jump in phase between the origin and the branch point (in some printed versions the abrupt change
in phase may appear to be discontinuous but it is not.) From the branch point to 4ioo, however,
there is a phase jump consistent with a singularity of quadratic type

much singularity information other than perhaps the location and type of the singu-
larity nearest to the real axis [26, 32].
Instead, for numerical purposes we shall use the implicit solution formula

u= f(x —ut), f(x) = —sin(x). @)

This transcendental equation can be solved by Newton iteration for values of x in the
complex plane. One can start at a small time increment, say t = Af,useu = f(x) as
initial guess, and iterate until convergence. Then ¢ is incremented to 2A¢, the initial
guess is updated to the current solution, and the process is repeated. Figure2 shows
the corresponding solutions in the visualization format described in the introduction.

The figure shows one member of a conjugate pair of branch point singularities,
born at +i 00, which travels down the positive imaginary axis and meet its conjugate
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partner (not shown) at (x, #) = (0, 1) when the shock occurs. This behaviour was first
reported in [5, 6], where a cubic polynomial was used as initial condition (similar
to the first two terms in the Taylor expansion of (5)). In the cubic case, eq. (7) can
be solved explicitly by Cardano’s formula, which enabled a complete description
of the singularity dynamics as summarized in [5, 6, 28, 29]. In our case, the initial
condition is trigonometric and therefore Cardano’s formula is not applicable. It is
nevertheless possible to find the singularity locations and their type explicitly.

The singularity location, say z = z;, and the corresponding solution value, say
u = uy, are defined by the simultaneous equations

Usg = f(Zs — Ust), 1= _tf/(zs — uyt), ¥

the latter equation representing the vanishing Jacobian of the mapping; see for exam-
ple [26]. With f(x) defined by (5), the solution is, for 0 < ¢ < 1,

2 = +i (\/1 ~ 2 —tanh ' V1 = z2) Couy =iV =2 9)

These formulas are consistent with the solution shown in Fig.2. A graph of the
singularity location as a function of time is shown as the dashed curve in Fig.3 of
the next section.

Further analysis shows that the singularity is of quadratic type, consistent with
the phase colours in Fig. 2 and in agreement with the analysis of [5, 6, 28, 29] for the
cubic initial condition. When ¢ = 1, i.e., at the time the shock occurs, the singularity
type changes from quadratic to cubic. The Riemann surface structure associated with
this is discussed in [5, 6], in connection with the cubic initial condition.

3 The Viscous Burgers Equation

When viscosity is added, i.e., v > 0 in the Burgers equation (1)—(2), shock formation
does not occur. In the complex plane interpretation this means the singularities do not
reach the real axis. Moreover, they become strings of poles rather than the branch
points observed in the previous section. The poles travel in conjugate pairs from
=i oo, with rapid approach towards the real axis, before turning around. They retrace
their steps along the imaginary axes at a more leisurely pace, and eventually recede
back to infinity, which ultimately leads to the zero steady state solution. !
Analogously to (6), the Burgers equation subject to the initial condition (5) has an
explicit series solution, this time not a Fourier series but a ratio of two such series:

0, 1 = Ly e
u(x,t):—ng, O(x, 1) = 10(5)+2;(—1)k1k(5)e K cos(kx). (10)

! A movie of the pole dynamics of this solution and some of the other solutions in this paper can
be found on the author’s web page [36].
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Fig. 3 Left: Solution of the viscous Burgers equation (2), with v = 0.1, ¢ = 1, as computed from
the series solution formula (10). Right: The locations on the positive imaginary axis of the first
four poles as a function of time. The dash-dot curve is the location of the branch-point singularity
when v = 0, as given by formula (9) (the pole curves approach the dash-dot curve asymptotically
as 1 — 07 but could not be computed reliably for small values of ¢ because of ill-conditioning,
hence the gaps)

The I, are the modified Bessel functions of the first kind. This solution is derived
from the famous Hopf—Cole transformation; in fact, the above series is a special case
of one of the examples presented in the original paper of Cole [10]. Presumably the
solutions (6) and (10) can be connected in the limit v — O, but we found no such
reference in the literature.

The pole locations in Fig.3 can be computed from the series solution (10). For
asymptotic estimates, however, a better representation is the integral form [10, 21]:

[ ESexp (%F(x, s, t)) ds

ulx,t) = (11)
[22, exp (;—UF(x, s, t)) ds
In the case of the initial condition (5) the function F is defined by
(x —s)°
F(x,s,t) =1—cos(s) — Y (12)

To estimate the pole locations in the inviscid Burgers equation one can analyze
the denominator of the formula in (11). Looking for poles on the positive imaginary
axis, we define, for y > 0,

o0

1
D(y, 1) = /exp (EF(yi,s,t)) ds. (13)

—00
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A saddle point method can be used to estimate this integral when 0 < v < 1. We
present an informal analysis here, focussed on an explanation of the situation shown
in Fig.3. A more comprehensive analysis (for the cubic initial condition) can be
found in [28].

Figure4 shows level curves of the real and imaginary parts of F(iy, s, ) in the
complex s-plane, with y = 1 and # = 1. The figure reveals three saddle points, two
in the upper half-plane and one in the lower half-plane. The contour of integration
in (13) is accordingly deformed into the upper half-plane, in order to pass through
the two saddle points.

To estimate the saddle point contributions, we differentiate (13) with respect to s
(and suppress the dependence on y and ¢),

’ . (S - yl) " 1
F'(s) = sin(s) — ; , F"(s) = cos(s) — T (14)

The saddle points are defined by F’(s) = 0, i.e.,
s — yi —tsin(s) =0. (15)

No explicit solution of this equation seems to exist, but it can be checked that for
t = landall y > Othere is precisely one root on the negative imaginary axis, and two
roots in the upper half-plane, symmetrically located with respect to the imaginary
axis. The configuration shown in Fig.4 can therefore be taken as representative of
all y > 0, except that the saddle points coalesce at the origin as y — 0.

We label the roots in the first and second quadrants as s; and s,, respectively, with
s, = —51. The corresponding saddle point contributions are D; and D,, where

TV 1 1.
D, =2 /mexp(ﬂF(sj)—zt(Gjﬂ:n)), (16)

where the upper (resp., lower) sign choice referto j = 1 (resp., j = 2). The quantities
0; are defined by F”(s;) = |F"(s;)|e'%.

The approximation to the denominator integral (13) is now givenby D ~ Dy + D,
as v — 0. After using the symmetry relationships between s; and s, noted above,
as well as the fact that | F”(s;)| = |F" (s»)|, this becomes

TV o, (Hl 1 ) .
i = __9), F = A . 17
Fraple sz, T (s1) 1+ i 17

In the second frame of Fig. 4 the graph of this function is shown as a function of y.
In comparison with a high-accuracy quadrature approximation of the integral (13),
the approximation (17) is seen to be quite accurate. The exception is for small values
of y, because of the coalescence of the saddle points mentioned above.
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Fig. 4 Saddle point analysis for the viscous Burgers equation shown in Fig.3. Left: The dots
are saddle points of F(yi, s, t), with y = 1, t = 1. The colour represents level curves of the real
part of F(yi,s,t), and the dash-dot curves are level curves of the imaginary part. For the saddle
point analysis the path of integration in (13), i.e., the real line, is deformed into the dash-dot curve
in the upper half-plane that defines the steepest descent direction. The main contributions to the
integral come from the regions in the neighbourhood of the saddle points. Right: The function
D(y, 1), computed by numerical integration of (13) (solid curve), in comparison with the saddle
point approximation (17) (dash-dot curve). The zeros of this function define the locations of the
poles seen in Fig.3

Table 1 Left: Pole locations on the positive imaginary axis for the solution shown in Fig.3, i.e.,
t =1 and v = 0.1. The ‘exact’ values were computed by numerical quadrature of (13) and root
finding, both processes executed to high precision. The estimated values were computed by a
numerical solution of the two equations (15) and (18). Right: Turning points of the poles, i.e., the
coordinates of the local minima in the right frame of Fig.3. This was computed by a numerical
solution of the two equations (15) and (18) in combination with a minimization procedure with
objective function y

k  Exact  Estimated
0.4589 0.4527
0.9090 0.9068
1.2964 1.2952
1.6505 1.6498

! Y
1.7221  0.3469
1.1612  0.8991
0.8302  1.2822
0.6373  1.5684

AW N =
NS S K

Approximate pole locations can be computed as the zeros of (17), i.e.,
ur — vl =2vkn, k=1,2,..., (18)

which is solved simultaneously with the saddle point equation (15). In Table 1 we
compare this estimate with the actual pole locations.

The equations (15)—(18) can be used as basis for further analysis, both theoretical
and numerical, of the pole locations. For example, by solving these equations numer-
ically and simultaneously minimizing over y, the closest distance any particular pole
gets to the real axis can be computed. These results are also summarized in Table 1.
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Fig. 5 Finite time blow-up in the Burgers equation (2) with v = 0.1, subject to the complex initial
condition (19). The poles approach the origin from the positive imaginary direction, as can be seen
in the left frame, which corresponds to + = 0.7. In the right frame the leading pole has reached the
real axis, roughly at# = 1, which results in a blow-up (note that there is no upper/lower half-plane
symmetry as was the case in Fig. 2, so we show both half-planes in this figure)

In conclusion of this section on the Burgers equation we mention a lesser
known fact, namely, that nonlinear blow-up is possible with complex initial data.
For example, Fig. 5 shows the blow-up in the solution corresponding to the complex
Fourier mode initial condition

u(x,0) = —sin(x) — i cos(x). (19)

Features such as the blow-up time or the minimum value of v that allows blow-up
can be analyzed by the saddle point method outlined above, but we shall not pursue
this here.

When dispersion replaces diffusion in (1), the poles drift away from the imaginary
axis. The pole behaviour is more complicated than in the Burgers case and the bigger
the dispersive effects, the more intricate the behaviour. For this reason we tackle the
less famous BO equation first, before getting to the more celebrated KdV equation.

4 The Benjamin-Ono Equation

The periodic Hilbert transform H in (4) can be defined as a convolution integral
involving a cotangent kernel [19, Ch. 14], or, equivalently, in terms of Fourier series

[ee}

u(e, )= Y a®e™ = H{ug)= Y (—Dsgn()kcc()e™.  (20)

k=—00 k=—00

When the nonlinear term in (1) is absent, both the BO and KdV equations are
linear dispersive wave equations. They admit travelling wave solutions u(x, t) =
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Fig. 6 Solutions to the Benjamin-Ono equation (1) and (4), corresponding to the initial condi-
tion (5), with v = 0.1. The pole dynamics of this solution can be seen in Fig.7

¢! kx=e®n with dispersion relations @ = —v sgn(k)k? and w = —v k>, respectively.
The quadratic vs cubic dependence on the wave number k£ makes dispersive effects
in the BO equation less pronounced than in the KdV equation.

With the nonlinear term in (1) present, both the BO and KdV equations are com-
pletely integrable and solvable, in principle, by the inverse scattering transform [1].
For arbitrary initial conditions and particularly with periodic boundary conditions,
however, it is unlikely that all steps of the procedure can be completed successfully to
obtain explicit solutions. Numerical methods will therefore be used to study singular-
ity dynamics. As mentioned in the introduction, this consists of a standard method of
lines procedure to obtain the solution on the real axis, followed by numerical analyt-
ical continuation into the complex plane by means of a Fourier-Padé method. Details
are postponed to Sect. 7. Our choice of a Padé based method stems from the fact that
singularities in both BO and KdV (next section) are expected to be poles. This is
related to the complete integrability of these equations and the Painlevé property as
discussed in [1, Sect.2].

Figure 6 shows the solution on the real axis for the BO equation. Like diffusion,
dispersion prevents shocks, but the mechanism is different: oscillations appear and
separate into travelling wave solutions. In the case of KdV, this behaviour gave rise to
the numerical discovery of the soliton, as discussed in Sect. 5. In the present example,
about eight such solitons can be seen, perhaps most clearly identifiable in the pole
parade shown in Fig. 7.
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t=0.4

Fig. 7 Pole locations of a subset of the solutions of the BO equation shown in Fig. 6. Each soliton
in that figure can be associated with a pair of conjugate simple poles in the complex plane. The
poles that exit on the left re-enter on the right because of the periodic boundary conditions

The initial pole behaviour is very similar to that observed in the Burgers equation,
namely, the poles are born at infinity and start to travel in conjugate pairs towards
the imaginary axes. Unlike the Burgers case, however, the poles do not remain on
the imaginary axes but veer off into the left half-plane. Eight pairs can eventually be
associated with the solitons shown in Fig. 6.

In the absence of readily computable error estimates for our procedure we have
used the following strategy to validate the results. Poles of the BO equation are simple,
each with residue £-2iv; see for example [8]. The order and residue of each pole can
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be checked by contour integration on a small circle surrounding its location [35].2
Using this technique, spurious poles and other numerical artifacts can be identified
(one example of which is the slight irregularity near —3 + 0.8i in the third frame of
Fig.7.)

S The Korteweg-De Vries Equation

In the case of KdV, the qualitative behaviour of the solutions is similar to that of the
BO equation. The dispersion prevents shock formation in the solution by breaking
it up into a number of solitons, which is the famous discovery of Zabusky and
Kruskal [39]. The iconic figure from that paper is reprinted in Fig. 8. In the left frame
of Fig.9 we reproduce that solution, but rescaled to the domain [z, ] in order to
facilitate comparisons with the other solutions shown in this paper.

The initial behaviour is the same as for the other equations we have seen thus
far, namely, there are poles that enter from infinity and travel towards the real axis
in conjugate pairs, roughly similar to the first two frames in Fig.7. As was the case
for the BO equation, dispersion causes the poles to drift into the left half-plane and
eventually re-enter in the right half-plane because of periodicity. The eight solitons
marked in the Zabusky—Kruskal figure are clearly identifiable in the pole plot of
Fig.9, with the poles closer to the real axis corresponding to the taller solitons.

We have used the same strategy mentioned at the end of Sect.4 for validation of
Fig. 9. In the case of KAV the poles are locally of the form —12v/(z — z0)?. The phase
information of Fig. 9, when viewed in colour, makes it clear that the computed poles
are indeed of order two, and contour integration confirmed the strength coefficient
of —12v.

It should be noted, however, that numerical analytical continuation is inherently
ill-conditioned as one goes further into the complex plane, and that puts some limi-
tations on our investigations. Two examples are as follows:

First, for <« 1 we found that the Fourier-Padé based method was not able to pro-
duce the theoretical pole information accurately, presumably because of the distance
between the real axis and the nearest singularity. Therefore no figures of this initial
phase of the evolution are presented here. Second, in the literature the existence of
‘hidden solitons’ in the Zabusky—Kruskal experiment is mentioned; see [12] (and
the references therein). In order to investigate these hidden solitons, the solution of
Fig. 9 has to be continued much farther into the complex plane. Because of spurious
poles and the ill-conditioning alluded to above, our efforts at tracking these hidden
solitons were inconclusive. Both of these investigations are offered as a challenge to
computational mathematicians.

Here are two suggestions for such investigations. First, for the KdV method it is
recommended that the equation be transformed into the potential KdV equation, by

2 The order of a pole can also be confirmed visually by examining the phase information in the pole
plots.
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Fig.8 The iconic figure of soliton formation in the KdV equation. The initial condition is u(x, 0) =
cos(x) on [0, 2], with v = 0.0222. Reprinted, with permission, from [39]. Copyright (1965) by
the American Physical Society
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Fig. 9 Left: the Zabusky—Kruskal solution shown in Fig. 8, after rescaling to [—x, ]. Right: the
corresponding poles in the complex plane

the substitution u = v,; see [22]. This equation has simple poles, which makes it
better suited for approximation by Padé methods. Second, the use of multi-precision
arithmetic is advisable. Here, everything was done in IEEE double precision, mainly
because of the speed if offers to create animations of the pole parades [36].

6 Recurrence

Historically, the discovery of the soliton in [39] overshadowed the fact that the
objective of that paper was something else entirely, namely, the verification of the
recurrence phenomenon previously discovered by Fermi, Pasta, Ulam, and Tsingou
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(FPUT) in yet another celebrated numerical experiment [16].% In short, this means
that if a nonlinear system is started in a low mode configuration such as the initial
condition (5), then higher modes are created by the nonlinear interaction, causing an
energy cascade from low modes to high. The upshot of the FPUT experiment was
that this process is not continued indefinitely, but eventually reverses with most of the
energy flowing back to the low modes. The effect of this is that the initial condition
is reconstructed briefly—approximately so and with a shift in phase—after a certain
period of time.

Numerical experiments with KdV such as those reported in Sect.5 do not reveal
the recurrence behaviour in the pole dynamics. Had true recurrence occurred, the
poles would have retraced their steps back along the imaginary axes out to infinity
or would have cancelled somehow. The most we could observe at the purported
recurrence time was a slight widening of the strip of analyticity around the real axis.
This lack of a clear recurrence can be attributed to the fact that the phenomenon is
rather weak in KdV, as discussed in detail in [20].

For a more convincing demonstration of recurrence one has to look outside the
family (1)—(4). Perhaps the best PDE for this purpose is the NLS equation

i+ e + v|uPu =0, (1)

where the solution, u(x, t), is complex-valued. We shall consider v > 0 (known as
the focussing case) and continue to work with 27 -periodic boundary conditions. It
will be necessary, however, to modify our initial condition to have nonzero mean, so
we consider

u(x,0) =1+ e€ecosx. (22)

The corresponding solution is an e-perturbation of the x-independent solution
u = ¢V, Linearisation about this solution shows that the side-bands e*"* grow

exponentially for all integers n satisfying [37, 38]
0 < n? < 2. (23)

That is, for v < 1 there is no instability, for ; < v < 2 a single pair of side-bands
is unstable, a double pair for 2 < v < %, and so on. The instability is named after
Benjamin and Feir, who derived it not via the NLS but directly from the water wave
setting [4]. The growth does not continue unboundedly but subsides, and recurrences
occur at periodic time intervals. The connection between Benjamin-Feir instability
and FPUT recurrence was pointed out in [38].

The growth and recurrence pattern for a special case with two unstable modes
can be seen in Fig. 10. In frames 2, 3 and 7, 8 the unstable mode e** dominates,
while ¢*2* dominates in frames 4, 5, and 6. An almost perfect recurrence occurs in

frame 9, after which time the process continues periodically.

3 Since the mid-2000s it has been recognized that Mary Tsingou deserves credit for her computa-
tions, and so the FPU experiment was renamed FPUT.
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Fig. 10 Solutions to the nonlinear Schrédinger equation (21) corresponding to the initial condi-
tion (22), with v = 3, € = 0.1. The unstable modes e=* and ¢*2* take turns in dominating the
solution, with a near perfect recurrence at¢ = 5. The pole dynamics of the first phase of this solution
can be seen in Fig. 11

Pole locations of some of the solutions in Fig. 10 can be seen in Fig. 11. The first
unstable mode is controlled by a conjugate pair of simple poles on the imaginary axis.
The second is controlled by two pairs of conjugate poles, each pair symmetrically
located with respect to the imaginary axis. The first frame shows the initial onset,
with the poles on the imaginary axis leading the procession. The second frame is
roughly where the first mode reaches its maximum growth, which corresponds to the
point at which the poles reach their minimum distance to the real axis. In the third
frame, these poles are receding back along the imaginary axes and are overtaken by
the approaching secondary sets of poles. The last frame shows a situation where the
second mode has become dominant. At the recurrence time, all of these poles will
have receded back to infinity.

7 Numerical Tools

In this final section we review some of the numerical techniques that can be used
in this field. Our discussion, which focuses primarily on Padé approximation and
its variants, is by no means exhaustive. For other approaches, including tracking the



242 J. A. C. Weideman

t=0.63 t=1.25

Fig. 11 Pole locations of a subset of the solutions of the NLS equation shown in Fig. 10. In the
first two frames the unstable mode e=** dominates, while e¥2* dominates in the last two frames.
This is determined by which pairs of poles are closest to the real axis

poles through the numerical solution of certain dynamical systems, we refer to [7,
26, 32, 33].
We limit the discussion to 277 -periodic solutions that admit a Fourier series expan-

sion of the form
o0

u(x,t) = Z e, —m<x <m. (24)

k=—00

In some rare cases the coefficients ¢ () are known explicitly; cf. (6). Otherwise, the
ci (1) can be computed numerically by a Fourier spectral method and the method of
lines [35]. In order to do this step as accurately as possible, it is necessary to truncate
the Fourier series to a large number of terms (here we used |k| < 256 or 512), and
also use small error tolerances in the time-integration (here on the order of 10~!2 in
the stiff integrator ode15s in MATLAB).

When truncated, the series (24) becomes an entire function and will not reveal
much singularity information other than perhaps the width of the strip of analyticity
around the real axis [32]. A more suitable representation is obtained by converting
the truncated series to Fourier-Padé form. For a fixed value of ¢ (suppressed for now
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in the notation) we convert the series to Taylor-plus-Laurent form by the substitution

r=e o0 o0 [e.¢]
u@) = Y ae™ =3y a +) e/t (25)
k=0 k=0

k=—00

(It is necessary to redefine co — c¢/2.) Each term on the right can be converted to a
type (N, N) rational form as follows. Consider the first term and define

e N N
f@ =Y ad, p@=) a, q@ =) b (26)
k=0 k=0 k=0

One then requires that

f@~ % = p) —q@f(@) =0, (27)

The latter equation can be set up as a linear system to solve for the coefficients ay
and by (after fixing one coefficient, typically by = 1). The second term on the right
in (25) can be converted to rational form in the same way, which then gives the
approximation to u(x) as the ratio of two Fourier-series. The pole plots in Sects. 4,
5 and 6, were all computed using this Fourier-Padé approach.

A promising alternative to the Padé approach to rational approximation is the
so-called AAA method, recently proposed in [24], with subsequent extensions to
the periodic case [25]. It is not implemented in coefficient space like (24)—(26),
but rather uses function values, easily obtained from (26) by an inverse discrete
Fourier transform. The representation is the barycentric formula for trigonometric
functions [18]

3 S (=DFese ((x — x0)u

YN (—Drese (Lo —xp)

u(x) (28)

applicable when M is odd (a similar formula holds for even M). When x; = —m +
(k — 1)2m/M (i.e., evenly spaced nodes in [—m, 7)) and u; = u(xy), then u(x) is
identical to the series (26) when truncated to |k| < N, where 2N +1 = M.

In the AAA algorithm the so-called support points x; are not chosen to be equidis-
tant, which changes the formula (28) from a truncated Fourier series to a rational
form. The choice of the x; proceeds adaptively so as to avoid exponential instabilities.

In preliminary numerical tests the trigonometric AAA algorithm was competitive
with the Fourier-Padé method described above. But further experimentation is needed
to decide the winner in this particular application field.

Neither of these two methods, however, can give much information on branch
point singularities. One way of introducing branches into the approximant is quadratic
Padé approximation [30], which is a special case of Hermite-Padé approximation [2].
Define a polynomial r(x) similar to p(x) and g(x) in (26), and in analogy with the
rightmost expression in (27) define
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PR+ 9@ f@) +r@(f() =0V, (29)

Dropping the order term on the right yields

L~ £ V4@ —4p@)r@)
2r(z)

f@ , (30)

and when this is used to approximate the two terms on the right of (25) a two-valued
approximant to u(x) is obtained. Cubic and higher order approximants can be defined
analogously, but will not be considered here.

Recall that Fig. 2 showed a solution of the inviscid Burgers equation with a branch
point singularity. To test how accurately this singularity can be approximated by
these methods, we solved the equation numerically as described below eq. (24). (We
refrained from using the explicit series (6), which is too special.) The numerical
solution (24) was then continued into the complex plane using the Fourier-Padé and
quadratic Fourier-Padé approximations. Although we have a large number of Fourier
coefficients available, we found that best results are obtained if only a fraction of
those are used in the Padé approximations. For the results shown here, we used only
N = 35 terms in the series for f(z) in (26), which translates into a type (17, 17)
linear Fourier-Padé approximant, and type (11, 11, 11) in the quadratic case.

The results are shown in Fig. 12. The middle figure is the reference solution,
computed to high accuracy by the Newton iteration described in Sect.2. On the left
is the approximation obtained by the linear Fourier-Padé approximant. Away from
the imaginary axis the approximation is good, but it is poor on the axis itself. In the
absence of branches in the approximant, a series of poles and zeros (the latter not
clearly visible) appears as a proxy for the jump in phase. The fact that alternating poles
and zeros ‘fall in the shadow’ of the branch point is a well-known phenomenon in
standard Padé approximation [31], and is evidently also present in the trigonometric
case.* On the other hand, the quadratic Fourier-Padé approximant shown on the right
is virtually indistinguishable from the reference solution.

The relative errors in these two approximations are shown in Fig. 13. The linear
approximant has low accuracy near the imaginary axis because of the spurious poles
mentioned above. By contrast, the quadratic approximant maintains high accuracy,
even on the imaginary axis. If one takes the solution generated by the Newton method
as exact, the quadratic approximant yields more than five decimal digits of accuracy
in almost the whole domain shown in Fig. 13.

Further discussion of numerical aspects of quadratic Padé approximation, includ-
ing their computation and conditioning, can be found in [15].

4 Comparing the left frames of Figs.3 and 12 is interesting. Both solutions can be viewed as a
perturbation of the multivalued solution shown in Fig.2. In Fig.3 the perturbation is caused by a
small amount of diffusion, while in Fig. 12 it is caused by numerical approximation. In both cases
the proximity of the multivalued solution is revealed by a sequence of zeros and poles along the
phase discontinuity.
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Fig. 12 Approximation of a branch point singularity in the inviscid Burgers equation, at t = 0.75.
Left: a type (17, 17) linear Padé approximation. Middle: reference solution computed by Newton
iteration from (7). Right: a type (11, 11, 11) quadratic Padé approximation

Fig. 13 Relative errors in the approximation of the branch point singularity of Fig. 12. Left: the
linear Padé approximation. Right: the quadratic Padé approximation. Bottom: the colour bar in a
log; scale, so each change in shade represents roughly one decimal digit of accuracy
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