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Preface

This book is an outcome of the 13th International Congress on Mathematical
Education (ICME-13) that was held in Hamburg, Germany, from 24th to 31st July
2016. ICME-13 was hosted by the Gesellschaft für Didaktik der Mathematik
(Society of Didactics of Mathematics), under the auspices of the International
Commission on Mathematical Instruction (ICMI).

There were 3,486 participants at ICME-13, with 360 accompanying persons,
making ICME-13 the largest ICME to date. Congress participants came from 105
countries, that is, more than half of the countries in the world were represented.
Two hundred and fifty teachers attended additional activities during ICME-13.

The invited lectures (formerly known as regular lectures) are an important fea-
ture of the programme of the four-yearly ICME congress. These lectures are
delivered by prominent researchers in mathematics education from different parts
of the world. The International Programme Committee of ICME-13 issued the
invitations to present, and the 64 invited lectures at ICME-13 covered a wide
spectrum of topics, themes and issues.

Included in this volume are 44 of the 64 invited lectures from ICME-13. Not all
presenters submitted papers for publication and all submissions were subjected to a
strict peer-review process to insure high quality. The editors of this volume thank
all reviewers for their work and Springer for providing language editing for selected
contributions.

ICME-13 supported more than 223 scholars from less-affluent countries to
enable them to participate in ICME-13. Consequently, this book is made available
on open access to allow broad access to all mathematics education scholars across
the developed and developing countries of the world.
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We hope that this book will receive broad attention in the mathematics education
community and that its contents will enrich international discussions on the issues
raised.

Gabriele Kaiser
On behalf of the editors Helen Forgasz

Mellony Graven
Alain Kuzniak
Elaine Simmt

Binyan Xu

Hamburg, Germany
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Chapter 1
Practice-Based Initial Teacher Education:
Developing Inquiring Professionals

Glenda Anthony

Abstract Practice-based initial teacher education reforms are typically organised
around a set of core teaching practices, a set of normative principles to guide
teachers’ judgement, and the knowledge needed to teach mathematics. Developing
more than understandings, practices, and visions, practice-based pedagogies also
need to support prospective teachers’ emergent dispositions for teaching. Based on
the premise that an inquiry stance is a key attribute of adaptive expertise and teacher
professionalism this paper examines the function and value of inquiry within
practice-based learning. Findings from the Learning the Work of Ambitious
Mathematics Teaching project are used to illustrate how opportunities to engage in
critical and collaborative reflective practices can contribute to prospective teachers’
development of an inquiry-oriented stance. Exemplars of prospective teachers’
inquiry processes in action—both within rehearsal activities and a classroom
inquiry—highlight the potential value of practice-based opportunities to learn the
work of teaching.

Keywords Teacher education � Practice-based � Rehearsals � Inquiry stance
Professionalism

1.1 Introduction

Initial teacher education (ITE) curricula and pedagogies reflect prevailing notions of
classroom instruction at different moments in history within specific culturally
ascribed educational systems. Current calls for reforms, designed to shift away from
a perceived disconnect between university-based course work and practical expe-
riences in the classroom, reflect the need to prepare teachers for the complex
demands of teaching in 21st century schools. In some countries (e.g., Australia,
New Zealand, United Kingdom, and United States) these reforms call for a
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reconfiguration of how teacher education is distributed between university and
school sites. However, reforms are not without their critics. Researchers urge that
we need to be careful that changes represent more than a pseudo-approach
involving teacher candidates spending more time in clinical field placements
(Zeichner 2012). Brown et al. (2015) argue that new partnerships require ITE
programs to support prospective teachers in becoming more independent
research-active teachers. However, in critiquing the move to school-based reforms
in the UK, Meierdirk (2016) warns of the consequence concerning the “knowledge
base that is needed for fruitful reflection is missing” (p. 376).

In New Zealand, the Ministry of Education has recently prioritised funding
masters-level ITE programs that involve close collaboration between partner
schools and universities and demonstrate a commitment to a teaching as inquiry
stance (Aitken et al. 2013; Sinnema et al. 2017). In this paper, I draw on findings
from a 3-year design-based study Learning the Work of Ambitious Mathematics
Teaching (Anthony et al. 2015c) to argue that practice-based ITE reforms can
support the development of an inquiry disposition:

a way of knowing and being in the world of educational practice that carries across
educational contexts and various points in one’s professional career and that link indi-
viduals to larger groups and social movements intended to challenge the inequities per-
petuated by the educational status quo. (Cochran-Smith and Lytle 2009, p. viii)

However, whilst an inquiry stance is increasingly advocated as a key attribute of
professionalism associated with teacher adaptive expertise and continuous learning,
little is currently known about ways to support its development within ITE settings
(Parker et al. 2016). The intent of this paper is to argue for the potential of
practice-based learning to afford opportunities for prospective teachers (PTs) to
develop an inquiry stance. My discussion begins with an introduction to theoretical
framings concerning inquiry, followed by an overview of practice-based peda-
gogies utilised in the Learning the Work of Ambitious Mathematics Teaching
design phases. Vignettes from university in-class rehearsals, involving PTs prac-
tising core routines associated with ambitious mathematics teaching, serve to
illustrate concurrent opportunities to model, practise, and engage in inquiry prac-
tices. Moving from the university to the school setting, I discuss PTs’ experience of
teaching instructional activities associated with rehearsals. PTs’ perceptions of the
challenges and their progress within the school setting serve to further illustrate how
the use of inquiry practices can facilitate the development of an inquiry stance.

1.2 Inquiring Professionals

To be effective in preparing teachers for the complex demands of 21st century
classrooms, PTs need opportunities to learn not only knowledge of content and
students, and specific techniques and routines to manage that work, but also a vision
of practice that can guide decision making, and dispositions that support student
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and teacher learning (Ghousseini and Herbst 2016). As Sinnema et al. (2017) note,
“to teach well, and to improve their teaching, teachers need, in our view, to
demonstrate their ability to inquire into that uncertainty in ways that address the
particular complexities, conditions, and challenges they face” (p. 9). Informing the
recommended ITE changes incorporating an inquiry stance in New Zealand,
Sinnema et al. propose the adoption of six inquiry-oriented standards for teaching:
inquiry in learning, teaching strategies, enactment of teaching strategies, impact of
teaching, professional learning, and education systems. Each standard emphasises
“high-quality teacher inquiry closely connected to learners’ experience that draws
on education’s body of knowledge, competencies, dispositions, ethical principles,
and commitment to social justice” (p. 12). For example, their proposed Learning
Priority Inquiry Standard requires that teachers identify learning priorities for each
student and be able to defend their decisions. Mediated by beliefs and commitments
to social justice, defensible decisions must necessarily draw on a complex array of
knowledge resources including knowledge about the learner, the discipline, and the
community.

It is evident, that these inquiry-based standards pose significant challenges of
judgements for the professional teacher. Positioned as agentic, the inquiring pro-
fessional must decide on the learning priorities, decide on the teaching strategies,
enact these strategies, and examine their impact in tandem with assessment of the
relative merits of competing alternatives. In this sense, it is clear to see that being an
inquiring professional is also an attribute associated with adaptive expertise (Aitken
et al. 2013; Athanases et al. 2015)—a “gold standard for becoming a professional”
(Hammerness et al. 2005, p. 360). Timperley (2013) described the adaptive teacher
as one who is driven by a “moral imperative to promote the engagement, learning
and well-being of each of their students” and who engages in “ongoing inquiry with
the aim of building the knowledge that is the core of professionalism” (p. 5). As
Lampert (2010) puts it, adaptive expertise enables teachers to “innovate when
necessary, rethinking key ideas, practices, and values in order to respond to non-
routine inputs” (p. 24). Focused on better learning for themselves and their students,
adaptive teachers pursue the knowledge of why and under which conditions certain
approaches have to be used or new approaches have to be devised.

Despite advocacy for adaptive expertise, little is currently known about begin-
ning teachers’ adaptive expertise capabilities and their associated development of
an inquiry stance within ITE contexts (Anthony et al. 2015b; Athanases et al. 2015;
Meierdirk 2016; Soslau 2012). Research on the nature and impact of PTs’ reflective
practice typically concerns field-based experiences (Körkkö et al. 2016), and more
recently portfolio assessments (Toom et al. 2015).

Critiquing reflective practices in ITE, Ord and Nuttall (2016) argue that reflec-
tion should be accompanied by “close attention to the embodied sensation of
learning … as a legitimate part of the content of learning to teach” (p. 361).
Likewise, Thompson and Pascal (2012) argued that reflective learning needs to
involve “more sociologically informed critically reflective practices” (p. 322) that
take greater account of collaborative and emotional dimensions. They proposed that
Schön’s (1983) seminal constructs of reflection-in-action and reflection-on-action

1 Practice-Based Initial Teacher Education: Developing … 3



be expanded to include reflection-for-action: “the process of planning and thinking
ahead about what is to come, so that we can draw on our experiences (and the
professional knowledge base implicit within it) in order to make the best use of the
time resources available” (p. 317). In this regard, Bronkhorst et al. (2011) argued
that for meaning-orientated learning anticipatory reflection should “go beyond the
planning of teaching and focus on why teaching should be done in a certain way”
(p. 1128).

Despite these suggestions there remains considerable evidence that the potential
of inquiry for professional learning is difficult to realise (Horn and Little 2010).
Researching in New Zealand classrooms, Benade (2015) noted that the ‘teaching as
inquiry’ model (Ministry of Education 2007) is frequently reinterpreted as an
“instrumental formula for teachers to follow, with no requirement they examine
their fundamental beliefs and assumptions” (p. 116). Moreover, the commonly
reported practice of treating inquiry as a linear process with a fixed solution to a
finite task constrains engagement in systematic and analytical examination of the
tensions and problems teachers encounter. According to Lawton-Stickor and
Bodamer (2016), genuine inquiry involves a “balance between constantly reflecting
on and problematizing current structures and practices, and carrying out inquiry
practices that seek to develop, and systematically explore questions that arise from
reflection” (p. 395).

1.3 Inquiry Within Practice-Based Initial Teacher
Education

In looking to support PTs learn how to do the complex practices of teaching as they
relate to unpredictability and improvisation, teacher education researchers are
increasingly exploring ways to avoid the dualism of theory and practice (Sinnema
et al. 2017). In particular, ITE has witnessed a turn towards practice-based
approaches that “view teaching not only as a resource for learning to teach but as a
central element of learning to teach” (McDonald et al. 2014, p. 500). Grossman
et al. (2009) proposed a framework for practice-based instruction that draws on
three pedagogical approaches: representation of teaching (e.g., modelling, exam-
ining video or written case exemplars); decomposition of practice (e.g., focus on
core/high–leverage practices); and approximation of practice (e.g., rehearsals). In
combination, these approaches are used to occasion shifts in PTs’ professional
vision about teaching and support the development of productive dispositions,
while simultaneously providing opportunities to learn the practices of ambitious
teaching practices; practices that “position students’ thinking and strategies as
central means to drive learning forward” (Singer-Gabella et al. 2016, p. 412).

In mathematics education, research associated with the Learning in, from, and
for Teaching Practice project (Lampert et al. 2013) provides us with what is
arguably the most sustained study of practice-based ITE. This project is structured
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around Cycles of Enactment and Investigation involving PTs planning and teaching
purposefully designed instructional activities that serve as containers of core
practices, pedagogical tools, and principles of high-quality teaching. Teaching
within rehearsals involves constructing experiences “around the critical tasks and
problems that permeate teachers’ daily work” (Ghousseini and Herbst 2016, p. 80).
Within each rehearsal “the variations of the practice as it relates to particular
students and mathematical goals” (Lampert et al. 2013, p. 238) highlight the
complex relational and situated nature of teaching.

The pedagogy of rehearsals, involving modelling of practice, in-the-moment
coaching and shared consideration of teaching moves and aspects of the rehearsal
activity, supports collaborative inquiry in multiple ways. The cycles of enactment
and investigation of deliberate practice provide a space for PTs to “open up their
instructional decisions to one another and their instructor” (Kazemi et al. 2016,
p. 20). For example, Lampert et al. (2013) analysis of 90 rehearsals across three ITE
sites categorised teacher educator interactions as either involving directive or
evaluative feedback, scaffolding enactment, or facilitating a reflective discussion of
instructional decisions. The researchers noted that “discussions often entailed much
work on the development of novices’ judgement in adapting to the uncertainties of
practice” (p. 234). In particular, feedback interactions within rehearsals that
prompted PTs to reconsider and/or retry specific teaching moves enabled direct
links to student outcomes related to learning a mathematical concept, offering an
explanation, or developing feelings of competency. Developing an inquiry stance
was also fostered through individual and collective accountability within the
rehearsal process. For example, using a framework of Accountable Talk (Greeno
2002), Lampert et al. (2015) argued that the process of PTs making and defending
assertions and interpretations of what they are observing and what they are doing
within a rehearsal, provides an opportunity for teacher educators to actively position
PTs as “authors and agents in developing knowledge of teaching” (p. 353).

1.4 Developing an Inquiry Stance Within Rehearsals

In this section, vignettes—in the form of sequences of exchanges within rehearsal
scenarios from our 3-year design study Learning the Work of Ambitious
Mathematics Teaching (Anthony et al. 2015c)—are used to illustrate the way that
practice-based pedagogies can support the development of PTs’ inquiry stance.
Building on the work of Lampert et al. (2013), the project utilised pedagogies of
practice associated with cycles of investigation and enactment of instructional
activities in the form of rehearsal activities in the university and group teaching in
classroom settings. The purpose of these activities was to provide opportunities for
PTs to learn the work of ambitious mathematics pedagogy (Lampert 2010) through
enactment of high-leverage practices. Practices identified as key to the principles
and vision of ambitious mathematics teaching were those that placed students’

1 Practice-Based Initial Teacher Education: Developing … 5



mathematical thinking and reasoning at the centre of instruction, and supported
equitable engagement of diverse learners in rich mathematical activity.

As part of the cycle of enactment and investigation, the teaching of instructional
activities was rehearsed in the mathematics methods courses, and then with groups
of students in school-based settings. In a rehearsal, the PT was responsible for
teaching an instructional activity (e.g., Choral Count, Number String, Launching a
Problem) to a group of peers acting as students, with the teacher educator acting as
coach. These approximations of practice scenarios provided PTs with teaching and
observational opportunities that involved controlled complexity and feedback from
peers and teacher educators. Coaching, in the form of in-the-moment pauses by the
teacher educator, was used to scaffold the learning of practice. This was achieved in
multiple ways: stepping in and modelling aspects of practice; suggesting alternative
moves to retry; prompting teacher or peer group reflection related to students’
thinking, learning, and participation; asking for teacher explanation of teacher
moves in order to highlight effective practice; or inputting a student response that
the teacher has to address.

In the project, rehearsals conducted in the early stages of each course occasioned
opportunities for PTs to attend to presentation and managerial skills (e.g., writing
on the board and establishing pair-share routines). However, the focus quickly
progressed to high-leverage routines associated with eliciting and responding to
students’ thinking. In learning to notice students’ thinking, rehearsals facilitated a
trajectory of practising to elicit students’ thinking towards a consideration of how to
elicit students’ thinking in ways that enabled explanations to act as reflective tools
for the learners. To illustrate, I zoom in on a rehearsal in which the eliciting process
used by the teacher is extended from having peers engage with a particular
response, towards using the response as a building block to further the discussion.
We enter the rehearsal of a choral count, which involved counting in fives begin-
ning from one (see Fig. 1.1), immediately after the rehearsing teacher (RT) records
Robert’s suggested pattern of “55 being added to each number” (pointing to
diagonal numbers pairs):

RT: That’s good. Does anyone have another pattern?
Coach: Pause. That’s quite a complex idea and it might be one which you want to

throw back to them and say does everyone agree? Like, “Let’s look at
what Robert said; he said that they increase by 55. Do you agree, why or
why not”?

Fig. 1.1 Choral count pattern
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RT: Right, I would like you all to have a think about what Robert just shared
with us because that is quite a complex idea, and think about what Cath
said at the start about how she adds five, and somebody else said that
when we are going down we are adding five tens, so think about that,
adding five [pause]. Oh I am giving it away aren’t I? Have a chat to your
neighbour about how that works.

After the rehearsing students had talked for a few minutes, the rehearsing teacher
asked them to share their ideas:

Megan: If you go across it is plus 5 and then going down is five tens so 5 times 10
is 50 so the 5 plus the 50 is 55 [RT notates the explanation].

RT: So that way is the same as those two? Is that what you are saying
[notating the explanation with arrows]?

Megan: Yes you can add them together.
RT: Great.
Coach: Pause. You know you said I am kind of giving it away but what I think RT

did was you really structured it so they could work out why that pattern
was. If you had just said just look at it, with Year Fours they may not have
seen it. You didn’t say what you need to do is…, but you said look at that
idea, and look at that idea, and that gave a foundation for them to then see
that and use that, so that was a good thing to do.

In this vignette we see how the coach’s suggested teacher move enabled the
rehearsing teacher to trial a way to support students to engage with their peers’
reasoning. Notably, the coach’s feedback made reference to impact in terms of the
how the learner was scaffolded to engage with the structural nature of the pattern. In
this way, it served to draw attention to the importance of linking the teacher move
to the opportunity to learn. This explicit shift from teaching to learning enabled PTs
to access essential processes in their practice and become students of their students
and learners of their own practice. This shift represents an important component of
inquiry. As Hadar and Broady (2016) note, “when teachers explore their students’
learning they adopt a different stance, placing themselves in the role of learners”
(p. 102). This change in focus from self to student is also a signifier of developing
adaptive expertise (Timperley 2013).

With experience of more rehearsals, the norms associated with engagement in
sharing mathematical thinking shifted. The rehearsal students, placing themselves
in the role of learners, became more willing to take risks, and in doing so they
offered partial solutions, conjectures, or simulated student errors involving complex
or incomplete explanations. This provided an opportunity for PTs to notice and
learn how to use errors as an important resource. For example, in the following
String activity involving a linked set of multiplication calculations the rehearsing
teacher asked the students to solve 35 � 5:

RT: Would anyone like to share their answer?
Dan: One hundred and fifty-five.
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RT: So Dan you think it is 155?

At this point, the rehearsing teacher, noticing the student error, paused indeci-
sively, and the coach intervened:

Coach: Pause. This is a really good moment to say agree, disagree, not sure. Don’t
indicate what the answer is.

RT: So does everyone agree, disagree, or are you unsure about the answer?
Coach: And now you need to say remember if you agree or disagree you have to

have a mathematical reason, but Dan may first want to say whether he
agrees or disagrees with a mathematical reason.

Here the coach deliberately introduced an alternative to the ‘agree/disagree’ talk
move that had not surfaced in earlier discussion—that of allowing the contributor to
disagree with their own response, to change their mind and reconstruct their rea-
soning. As the rehearsal proceeds, Dan takes up this option as part of his role play:

RT: So Dan do you agree or disagree?
Dan: Yes, I disagree with my answer now.
RT: Do you have a new answer or would you like more time to think about it?
Coach: Well done.
Dan: One hundred and seventy five.
RT: And how did you get that answer?
Dan: For some reason what I originally did was that I knew that 30 times 5 was

150 and I don’t know why but I just added 5.
RT: Because you saw another five there?
Dan: Yeah because I saw another five there and then when everyone disagreed I

was wondering why. But then it clicked, so it is 5 times 5 and that is 25.
So I know that 30 times five is 150 and I know that 5 times 5 is 25 because
we did that before, so I just added 150 and 25 together to make 175.

In this vignette, we again see how the participants were able to experience the
effects of a teacher move that provided additional thinking space for the student.
The teacher’s response meant that the student’s erroneous thinking became a
learning tool that supported reconstruction and justification of the reasoning, using
mathematics as the authority. Learning to value students’ erroneous thinking offers
a direct challenge to many PTs’ epistemological beliefs about the nature of math-
ematics and mathematics learning. PTs’ willingness to question personal assump-
tions and beliefs is another example of an inquiry stance (Le Fevre et al. 2014).

In attending to students’ thinking, a teacher also needs to be able to steer the
discussion towards the important mathematical idea (Leatham et al. 2015). The
following episode from a Choral Count rehearsal (see Fig. 1.2) illustrates how the
coach explicitly surfaced the need to connect students’ mathematical thinking to a
mathematics point.

We enter the rehearsal with the rehearsing teacher eliciting different patterns, sup-
ported by revoicing, and press for elaboration of the solution strategies. Responding to a
request to justify the claim that the pattern increased by eight, Mai noted:
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Mai: It was ten take away two.
RT: Okay, so you say ten take away two and that’s eight [recording the

calculation in the first column of the choral count].
Coach: Pause. Try to think at this point about getting other students to agree or

disagree. You are getting some interesting patterns here.
RT: Okay does anyone disagree with Mai’s observation there? What do you

think Ben?
Ben: I can see the same thing.
RT: You can see the same thing, so you agree with Mai.
RT: What do you think Tui?
Tui: Yes, and the second row seems to be the same, like 28–20 is 8.
RT: So you see it in the second row as well [recording the calculation on the

choral count].
C: Pause. So thinking about your questioning here, rather than just “do you

agree or disagree”, try a more structured approach. For example, taking
what Mai said, you could have said, “Ben can you have a look at what Mai
said and see if that works in the fourth column?”

Here we see the coach prompting the PTs to reflect on what might be the bigger
picture in getting students to disagree or agree. Noting that the rehearsing teacher’s
immediate response was to attend only to Mai’s single instance, the coach pressed
the PTs to consider how they could use this opportunity to link the rehearsing
student’s thinking to the generalisation of the pattern across the rows. In effect, the
coach engaged PTs in practice and reflection on how they could use talk moves to
support students to “articulate a mathematical idea that is closely related to the
student mathematics of the instance” (Leatham et al. 2015, p. 92).

These previous examples relate well to specific routines associated with pro-
fessional noticing of students’ thinking (see Anthony et al. 2015a), but could
rehearsals also involve the development of an inquiry stance around issues of social
justice? In supporting PTs to learn how to establish communities of mathematical
inquiry (Alton-Lee et al. 2011) we wanted PTs to experience and experiment with
ways to position students as competent and valued. In the next vignette we see how
the coach’s prompt to explain a teacher move surfaces a discussion on ways that
teachers’ formative assessment practices can be used to position students as
‘achieving’ within a class plenary session:

Fig. 1.2 Choral count pattern
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RT: I saw some really good work. Susan or Troy, please could one of you
come up to the board and show us your thinking for the next two lines?

Coach: (to all) So how do you think RT made a decision about who to invite up to
the board?

Susan: She saw that I hadn’t written any of the work. I had contributed ideas but I
hadn’t written anything.

Coach: I thought there might be a strategic mathematical reason?
Troy: She recognised that we knew the strategy. She doesn’t want us coming up

if we are going to get it all wrong.
RT: That’s part of it; with my Year 9 class I would have picked the weakest

overall pair who got it right—they are the ones not used to being good at
maths, so that was why. You were right, I had seen you got it right, but I
gave you the choice of Susan or Troy.

Importantly, the ensuing discussion positioned the PTs within the activity as
having valid opinions that are worth sharing—as authors and agents in developing
knowledge of teaching (Lampert et al. 2015). But also the coach’s response in
pressing for alternative meanings modelled the expectation that PTs engage in
practices that enable reflection as both a process and an outcome (Toom et al.
2015).

Within the New Zealand context, the drive towards realising the vision of
Indigenous Māori students enjoying and achieving education success as Māori,
demands the development of cultural competencies (Ministry of Education 2011)
be central to an inquiry stance. While the instructional activities used in the research
phase of the project did not incorporate explicit contextual contexts, Averill et al.
(2015) makes the case that the enactment of the rehearsal activity, in itself, mod-
elled culturally responsive pedagogy. In particular, the use of wānanga—partici-
pating with learners and communities in robust dialogue for the benefit of [Māori]
learners—was evident in the co-construction of mathematical ideas through
mathematical talk within the rehearsal and in the co-construction of knowledge for
teaching within the PT/coach interactions around practice. For example, in the
following rehearsal episode we see how wānanga was experienced through
expectations for PTs to share, respect, and attend to multiple contributions from the
PTs’ learning community:

Coach: Is there a way to increase the proportion of learner talk? Talk in pairs
about how to adapt what Michael has done to increase the amount of
learner talk.

Student1: Asking others for similar ideas.
Student2: Pairs, then giving specific maths terms and asking them to discuss again

in pairs using the terms.
Student3: Other ideas, like students making up their own example for everyone to

do next.

Other cultural competencies such as whanaungatanga—engaging in respectful
working relationships; manaakitanga—showing integrity, sincerity and respect
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towards Māori beliefs, language and culture; and ako—taking responsibility for
their own learning and that of Māori learners, were embedded in the social norms
associated with the rehearsal. The integration of these values within the community
of learners meant that opportunities to take intellectual and social risks were readily
adopted as a way of learning. As a PT noted in a post-rehearsal interview: “It was
useful to see others at work, for one thing it was comforting to see others make
mistakes, and to see we are all learners, even the lecturers”.

1.5 Developing an Inquiry Stance in Classroom-Based
Rehearsals

This section provides further exemplars of how practice-based pedagogies—this
time associated with PTs’ enactment and investigation cycle within a school—can
support the development of an inquiry stance and associated adaptive expertise.
Working in groups of four, the PTs were required to plan, teach, and review their
teaching of a group of students aged 9–11 years over a six lesson sequence.
Teaching a range of instructional activities afforded PTs opportunities to experience
the relational demands associated with launching a problem, eliciting and
responding to students’ mathematical thinking, utilising a range of representations,
connecting the big ideas in mathematics (Stein et al. 2008), and positioning students
as competent (Boaler 2008).

Opportunities to engage in a more complex form of approximation of practice
within a collaborative teaching inquiry supported the development of adaptive
expertise—at least in an emergent sense (see Anthony et al. 2015b). In the process
of working collaboratively to seek feedback to improve performance, PTs were
afforded opportunities to develop metacognitive awareness about the value of an
inquiry stance. For example, awareness of the collaborative aspect of learning
through inquiry was evident in Chris’ post school-lesson comment attributing
learning as a function of their teamwork: “I think we have to think a lot about how
we talk to children to get them to think, and that’s definitely something that I need
to work on—we actually did much better in the second visit.”

Learning to work and learn within a group was challenging. However, many PTs
expressed that, despite perceptions of intellectual and social risks, there were
benefits. For example, Pip remarked early on in the teaching inquiry:

Even though it’s a group and you’re teaching and you’re learning, you are getting videoed.
So I feel that you are on show; that you’re going to be critiqued. But as I’ve done one or
two of the lessons you just get in and you just forget about that. My thoughts are that if you
make mistakes, that’s good. I’m here to learn, we’re here to learn. [PI#1]

Moreover, Pip noted the value of evidence-based feedback from team members:

You don’t know you do stuff, you think you are being an effective teacher, an equitable
teacher but sometimes you’re not. [PI#2]
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Group and whole-class reviews of weekly teaching sessions helped PTs inves-
tigate thorny questions and “figure out what they do and do not yet understand
about how their students are performing and what to do about it” (Hammerness
et al. 2005, p. 377). These reviews surfaced many dilemmas of practice, especially
in the early stages. As Chris noted, “probably the biggest thing was just the fact that
a teacher is really a multi-tasker—there is just so much going on”. Maximising the
“public declaration of knowledge and information, and intrinsic goal setting”
(Benade 2015, p. 111) supported discussions around anticipatory reflections. For
example, in reviewing their video of the teaching episode Sandra noted:

In our group we had one little girl who did it completely differently, like she was just
adding on, like just counting all of them, so I think next time I would get her to repeat how
one of the boys had done it, like 8 times 3, to start her thinking about other ways to do it.
Like she explained her thing, but I didn’t get her to repeat any other ways to get her
thinking about it. [SJ#1]

To develop teacher agency and dampen the effects of enculturation into existing
teaching modes, PTs were challenged to build theories of practice that bridged
formal and everyday knowledge (Lampert 2010). Given repeated opportunities to
experiment with teaching the instructional activities to the same group of students,
PTs were pressed to evaluate what they were doing in relation to aspects of practice,
the underlying principles of ambitious mathematics, and through explicit attention
to student learning outcomes—a feature of developing expertise (Anthony et al.
2015b). For example, in gathering evidence of the interactions with and between
students when working with groups, Troy remarked:

Lots of kids come in with their ideas and lots of groups working well. I think they can take
those ideas and use them. It’s giving everyone a bit of expression; hopefully they can see
themselves as more of a mathematician than they would have otherwise. [TJ#1]

However, through sharing and interpreting evidence, PTs also came to realise
how their inquiry lenses were mediated by their personal histories, beliefs, and
everyday practice theories (Fairbanks et al. 2010). For example, Pip, a PT who had
struggled as a mathematics learner, was keenly focused on the impact of her
teaching for diverse learners in terms of participatory practices. In attempting to
resolve tensions between the research-based literature and her everyday knowledge
of ability grouping structures, Pip was able to incorporate new evidence from her
teaching inquiry:

I can see that thinking about your groupings, not just letting the students randomly choose
is a big part. I can see it being another way to change the perception that maths is only for
those people with a maths brain … and making this fun for everyone, it’s not just for the
bright and clever, it’s for everybody. [PI#2]

Overall, there was a sense that these practice-based learning opportunities
enabled PTs to appreciate that learning to manage uncertainty and develop confi-
dence in one’s improvisational capability is something that develops over time—
not just with repeated practice, but with sustained professional inquiry into that
practice. However, like others (e.g., Campbell and Elliot 2015; Kazemi and Wæge
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2015), PTs in our study exhibited differing levels of commitment to, and confidence
with, inquiry based practices. For some, willingness to take an agentic position
towards improving practice appeared to be moderated somewhat by the authority of
the status quo. For example, Chris near the end of his ITE, when asked whether he
would like to continue to use rich group tasks responded:

I think coming out as a new teacher it would be something that I would implement slowly
… now that I have experienced this, I don’t know if I would be confident to go into the
classroom on the first day and go right so this is how we are doing maths. Maybe when I am
comfortable in the teacher role it would definitely be something I would look at imple-
menting one day a week to start with, then maybe two days a week. So just giving those
problems out, and doing much like we done in the inquiry, creating that environment where
the children are willing to discuss their thoughts and ideas. [I#2]

Rayna, in contrast, draws on her practice-based teaching experiences to argue
that ambitious teaching is “doable”:

…it’s not just something that people have researched and decided it works. It works, and it
has benefits for everybody, like it’s not just picking the mainstream and teaching to them or
trying to extend them or help them, it actually works for everybody and I’ve seen the
benefits myself so I can stand there on my own two feet and say “I’ve done it and it works”.
I think that is the biggest thing for me is that I can stand in a staffroom and say “well I’ve
done it and it works”.

1.6 Supporting Teaching Inquiry-Orientated Standards

It seems that these practice-based opportunities, designed to learn the complex work
of teaching, can also be structured to develop PTs’ disposition to inquire into their
practice. In reviewing the preceding exemplars, it is evident that the practice-based
opportunities within rehearsal cycles involving enactment of investigation can
usefully contribute to the six teaching inquiry-orientated standards proposed by
Sinnema et al. (2017): Learning priorities; Teaching strategies; Enactment of
teaching strategies; Impact inquiry; Professional learning inquiry; and Education
system.

Rehearsals were designed using instructional activities that afforded opportuni-
ties to inquire into the effects of particular instructional moves, that is, to “get deep
enough into authentic interactions with specific learners to practice inventing
educative responses” (Lampert et al. 2010, p. 135). I have provided examples of
how, as part of this experimentation process, PTs were required to make defensible
decisions on learning priorities for each of their learners and for those teaching
strategies most likely to be successful for prioritised learning.

In selecting and enacting teaching strategies, PTs were expected to draw on
education’s body of knowledge, both theoretical and informal. The process of
collaborative planning and public explication of theories of practice within reflec-
tion sessions also supported PTs to develop skills at anticipating the reactions and
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questions that students bring to a given topic, as well as how particular instructional
strategies are likely to work. Moreover, opportunities to repeat rehearsal activities
with different peer groups and different problems, including practice in how to
adjust instructional activities for student learning needs, supported PTs’ developing
awareness of the situated nature of practice.

Central to the classroom inquiry was a focus on what happened and whether this
made enough of a difference for learners. In examining the impact of teaching on
each of their students, PTs were, in the first instance, able to draw on their expe-
rience as learners in the university-based rehearsal process. In particular, these early
experiences of being a learner challenged PTs’ expectations for providing expla-
nations, sharing their thinking, and listening and learning from others. Moreover,
discussion of these experiences surfaced issues of social justice related to
socio-political positioning and participatory practices that framed explorations of
impact for each of the students in the school-based settings.

Sinnema et al. (2017) describe the Professional learning inquiry as one that
requires teachers to be metacognitive and self-regulated learners, as evidenced by
“teachers increasingly becoming their own teachers and demonstrating the skills to
learn from practice and also to learn for practice” (p. 10). Engagement in the
classroom inquiry required that PTs identify their own learning needs as teachers in
relation to impact. For example, Troy’s journal entry noted the importance of team
planning for individual student outcomes and anticipated next steps in their
enactment of teaching strategies as follows:

E [a student] is a very reluctant participant. We aim to encourage her participation by
devising simpler problems and highlighting how her strategies/solutions relate to other
more complex problems. C’s [another student] change, in contrast, will be providing clear,
accessible explanation of his strategies to his peers. [TJ#2]

Moreover, participatory norms that affirmed the entitlement and obligation for
PTs to challenge information presented by the teacher educators fostered an attitude
of open-mindedness. Being “open to alternative possibilities”, being “willing to
acknowledge that one’s beliefs could be incomplete or misinformed” and engaging
in “critical examination of evidence” (Le Fevre et al. 2014, p. 2) are key inquiry
processes.

Sinnema et al. (2017) final inquiry standard—Education system inquiry—ref-
erences the broader context of school, teaching, and learning. The standard
emphasises the need for teachers to “participate in moving education-related
debates forward and to contribute to system-wide improvements” (p. 10). As noted
above, teacher educator efforts to model culturally inclusive pedagogies, combined
with practice-based opportunities involving mathematical inquiry communities,
went some way to challenge the hegemonic participatory practices associated with
ability-based groupings in our schools (Anthony and Hunter 2017). Moreover,
learning experienced as social and dialogical inquiry within communities of prac-
tice acknowledged that learning is integrally connected to worldly experiences and
emotions. As Pip explained towards the end of her course:
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I wasn’t good at maths and knowing about the research about how teachers who are
confident and have good attitudes about maths pass that on to their students, but doing
maths how we’ve done it this way I feel more confident that I can go into the classroom. It’s
changed my attitude about how I feel about myself. Being able to facilitate discussion and
bringing children’s thinking out has been a really important part for my learning. [PI#2]

In grappling with the inherently situated, relational, and practical nature of
teaching, it appeared as if PTs’ practice-based experiences of teaching—of coming
to know about teaching—existed “in relation to themselves, others, and contexts of
time, space, and resources” (Ord and Nuttall 2016, p. 359). Potentially, these
experiences of learning to construct and analyse practice with peers could lay the
foundation for participation in collegial teacher inquiry as an ongoing part of
professional and career development.

1.7 Challenges and Implications Going Forward

Designing and enacting practice-based activities are based on the belief that
learning the work of teaching cannot be separated from its enactment; that is,
teachers do not learn new things and then learn how to implement them. Exploring
the function and value of inquiry in practice-based teaching, I argue that inquiry
must be regarded both as a process and product. That is, in supporting PTs’
development of an inquiry stance, it is imperative that PTs engage in critical and
collaborative reflective practices, including reflections on, in, and for practice.

Exemplars from the Learning the Work of Ambitious Teaching project have
shown how practice-based activities can occasion PTs learning of attributes of
professionalism associated with inquiry, collective responsibility, and knowledge
co-construction—attributes that signify adaptive expertise. Going forward, such
expertise is crucial for mathematics teachers to “do teaching that is more socially
and intellectually ambitious than the current norm” (Lampert et al. 2013 p. 241).
However, in shaping this proficiency, I argue that it is imperative that teacher
educators explicitly attend to the development of inquiry stance. For, without
explicit attention to the development of an inquiry stance we run the risk of PTs
learning a toolbox of core practices that are ‘nice to know’ but difficult to imple-
ment in the ‘real’ classroom setting. Moreover, in claiming that teacher inquiry in
practice-based settings supports continuous learning and improvement, we need to
be wary of pseudo-practice-based reforms that do little more than increase the
amount of time spent in schools. In particular, we need to ensure that PTs have
access to the full resource set of: education’s body of knowledge; cultural, technical
and relational competencies; dispositions; ethical principles; and commitment to
social justice (Sinnema et al. 2017). Without appropriate access to this resource set
the enactment of reflective practice would surely be in a technical sense rather than
a critical sense (Meierdirk 2016).

These conjectures are based on my own and colleagues’ emergent experiences of
practice-based ITE. The challenge of how successfully we have supported PTs to
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examine in a critical way their fundamental beliefs and assumptions and develop an
inquiry stance remains real. To develop courageous teachers who are willing to
share their reflective thoughts with colleagues, invite feedback, question their own
practice, and commit to change, requires that we all commit to the collaborative
community of practice. Without such commitment, the preparation of teachers who
can survive outside of the previously privatised practice that 21st century learning is
focused on eradicating is less certain. This work will undoubtedly require ongoing
theorisation of the concept of inquiry, and its relationship to adaptive expertise,
particularly as it applies within practice-based teacher education.
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Chapter 2
Mathematical Experiments—An Ideal
First Step into Mathematics

Albrecht Beutelspacher

Abstract Since the foundation of the Mathematikum, Germany, in 2002 and Il
Giardino di Archimede, Florence, Italy, in 2004 there have been many activities
around the world to present mathematical experiments in exhibitions and museums.
Although these activities are all very successful with respect to their number of
visitors, the question arises what is their impact for “learning” mathematics in a
broad sense. This question is discussed in the paper. We present a few experiments
from the Mathematikum and shall then discuss the questions, as to whether these
are experiments and whether they show mathematics. The conclusion will be that
experiments provide an optimal first step into mathematics. This means in particular
that they do not offer the whole depth of mathematical reasoning, but let the visitors
experience real mathematics, insofar as they provide insight by thinking.

Keywords Mathematical experiments � Science centers � Learning by experience
Mathematics in leisure time

In the last years, quite a few mathematical exhibitions have been developed and
mathematical museums (“science centers”) have been opened. In these, mathe-
matics is typically not presented in the traditional way using the mathematical
language. On the contrary: visitors find “exhibits”, in which they may see or
explore mathematics. In other words, visitors are challenged to perform “mathe-
matical experiments”. In addition, also several books with easy-to-perform exper-
iments have been published, which aim at teachers, students or the general public.

In this article we look at mathematical experiments, and investigate their
potential for formal and informal learning of mathematics. The basic reason for the
success of science centers in general is expressed in the slogan “hands-on,
minds-on, hearts-on”. In other words, in performing the experiments, visitors get
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experience. This experience leads to understanding, and understanding gives
pleasure.

2.1 Mathematical Experiments and Science Centers

Probably the first man-made experiments are due to the time of Galilei (for instance
experiments with pendula). In mathematics, models and instruments became
important in the 19th century. The book of Dyck (1892) shows an impressive
collection of mathematical models, apparatuses and instruments.

Some mathematical experiments have been known for a long time, mostly under
the name of “mathematical games”. Famous games are for instance Hamiltons’s
Icosian Game (1857), the “Tower of Hanoi” (Lucas 1883), and the Soma cube
(Hein 1934).

The first initiative to collect and develop mathematical experiments as such was
undertaken by the Italian professors Franco Conti and Enrico Giusti, who very
successfully developed and organized the exhibition “Oltre iI compasso—the
mathematics of curves”, which was first shown in 1992. Since 2004 it has been
enlarged to form the “Giardino di Archimede” in Florence. Nearly at the same time,
the first step towards the Mathematikum was taken: in 1994 the first German
exhibition under the name “hands-on mathematics” (“Mathematik zum Anfassen”)
was shown in Giessen, Germany. This exhibition was a work of a group of students,
who organized this exhibition as a follow-up of a mathematical seminar.
Mathematikum, the world’s first mathematical science center, was opened in 2002.
Since then, quite a few institutions of different size followed these ideas, for
instance “Adventure Land Mathematics” in Dresden, “MoMath” in New York, and
“Maison des Maths” in Mons, Belgium.

The idea of all these institutions is basically that the combination “interactive
exhibits and visitors” works. It is fascinating to observe that in all science centers
visitors start working, without a guide, without a teacher, even without reading the
label, and have lots of fun. In most science centers, certainly in all mathematical
science centers, the responsible people take science serious. “Fun” should not arise
from strange colors, noise, fog and so on, but from insight into the phenomena.
Looking at the visitors, we see experience, understanding and pleasure. In the
science center-terminology: hands-on, minds-on, hearts-on.

2.2 Mathematikum Giessen

The Mathematikum in Giessen, Germany (near Frankfurt) is a mathematical science
centre founded in 2002. It aims to make mathematics accessible to as many people
as possible, in particular to young people. On its 1200 m2 exhibition area it shows
about 180 interactive exhibits. From the very beginning, it was a great success.
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Between 120,000 and 150,000 people visit the Mathematikum each year. About
40% are group visitors, mainly school classes, 60% are private visitors, mainly
families.

Visitors like the Mathematikum. In particular they like the way mathematics is
presented. They are entertained by performing the experiments and trying to
understand what they have experienced. The Mathematikum is a house full of
communication. When one listens to what people are talking about, one notices that
it is always about the exhibits.

The permanent exhibition of Mathematikum is complemented by several other
formats, which address different target groups.

– Temporary exhibitions on special topics, such as randomness, calculating
devices, mathematics in everyday life, mathematical games, etc.

– Popular lectures on special topics such as cryptography, astronomy, etc.
– Lectures for children on topics as, for instance, mathematics and—the bicycle,

the bees, the heaven, the kitchen, the Christmas tree, and so on.

2.3 Some Experiments

The experiments in Mathematikum cover many mathematical disciplines, such as
geometry (shapes and patterns), arithmetic (numbers and calculating), calculus
(functions), probability (randomness and statistics), algorithms, and history of
mathematics. No mathematical discipline is generally excluded.

We shorty describe some exhibits; more can be found in Beutelspacher (2015).
Figure 2.1 shows an invention of John H. Conway. It is a puzzle consisting of

three small cubes of side length 1 and six 2 � 2 � 1-cuboids, which should be

Fig. 2.1 Conway’s cube
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assembled to form a cube. One first calculates how big the cube will be. Even with
this knowledge, most people struggle—until they get the idea where to locate the
small cubes in the big cube.

In Fig. 2.2 we see seven lamps in a circle. To each lamp a switch is attached.
When trying the switches, one notes that each switch affects three lamps, precisely
the lamp is attached to the switch and the lamps on the right hand side and on the
left hand side of the switch. When activating a switch, the status of these three
lamps changes: those which have been off, are on now, and those which have been
on, are off now.

The task, which is already included in the title of the experiment, is to put all
lamps on.

Fig. 2.2 Lights on!

Fig. 2.3 Tetrahedron in the
cube
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Many people start by randomly pressing the switches. Also in this way, we
arrive at situations which are promising. For instance, if four lamps in a row are on,
then it is easy to switch on the remaining lamps. Also, if only one lamp is on, one
has a promising situation. By pushing one switch one gets four enlightened lamps
in a row and one can proceed to finish as above.

The experiment shown in Fig. 2.3 consists of two parts.This experiment consists
of two parts. One part is a cube made of glass with its upper face removed.
The other part is a rather big tetrahedron which is supposed to be put inside of the
cube. Most likely, first attempts will fail. Describing failed attempts, one gets an
idea of how to succeed. If one holds the tetrahedron so that one vertex points
downwards, it won’t work. Also, if one vertex points upwards (and its face
downwards), it will not work. Now, one could think of trying to let an edge point
downwards. In fact, putting edge on a diagonal of the cube’s upper square the
tetrahedron automatically slides inside.

The experiment shown in Fig. 2.4 provides a challenging task. There is a poster
showing a pattern of equilateral triangles. Following the task, one has to hold a
framed irregular triangle in-between the lamp and the poster. Of course, we see a
shadow. Moreover, the shadow is an irregular triangle. The task is now to put the
triangle in a position so that its shadow perfectly fits onto one of the smaller
equilateral triangles. For this, one has to move the triangle; back and forth, rotating
in all possible ways. Eventually, the perfect shadow is found.

Fig. 2.4 All triangles are
equal
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In the experiment shown in Fig. 2.5 the vistor is confronted with a poster, where
one sees an incredible number of smarties, far too many to be counted. If you want
to know how many smarties there are, you have to rely on estimation strategies.
Estimations nevertheless are not blindly guessing a number but using the method of
a random sample. Next to the picture, you find a square frame. Holding the frame
onto the picture, it is easy to count the smarties within the frame. Now, you only
have to know how often the frame fits into the picture. You find this number for
example by how many times the frame fits into the upper side of the picture and
how many times it fits into the vertical side.

Figure 2.6 shows an experiment related to Pythagoras’ theorem. In front, there is
a triangle the longer side of which is blue and the shorter sides are red and yellow.
On either side, there is a square which can be filled with coloured plates. The
yellow square can be filled with 3 � 3 yellow plates, the red square can be filled

Fig. 2.5 The smarties

Fig. 2.6 Pythagoras puzzle
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with 4 � 4 red plates so that all plates are used. By turning these 9 + 16 plates, the
25 blue plates perfectly fit into the 5 � 5 square above the triangle’s blue side.

This experiment illustrates the Pythagorean theorem which states that in a
rectangular triangle, the size of the legs’ squares (a2 + b2) equals the size of the
hypotenuse’s square (c2). In short, a2 + b2 = c2.

In the experiment shown in Fig. 2.7 six wheels invite us to turn them. Each
wheel has colorful pieces on it, which vary in form and color. Four different shapes
(triangle, square, star, and circle) occur in four different colors, so that we have in
total 16 symbols. Each wheel is adorned with these 16 symbols in some random
order.

Now we let the wheels rotate. The wheels come to a standstill at random
positions. The question is, whether “by accident” two equal symbols (shape and
color identical) are at the same line.

Naively, we would conjecture that this will be a rare event, since it is no problem
at all to put the six wheels in a position where no equal symbols are at the line. But
when performing the experiment, we often see the bewildering situation that two
equal symbols are in the same row.

2.4 Books and Easy-to-Built Experiments

In recent years, quite a few books have appeared which contain experiments with
cheap material. Many of them are based on paper folding, assembling objects with
sticks, and so on. Classical books on this subject are van Delft and Botermans
(1978), and, on a higher level, Cundy and Rollett (1952), and Wenninger (1974).

Fig. 2.7 Two in a row
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Most of these books aim at the leisure market (for instance Beutelspacher and
Wagner 2008), but some are explicitly meant for teachers (e.g. Schmitt-Hartmann
and Herget 2013).

The experiments in science centers and the models which can be built using
these books share several properties.

– Everybody can perform it. The experiments are deliberately simply to perform.
In a strong way it is “mathematics for everybody”.

– People like it. One reason why people like the experiments is their success. Each
experiment has the possibility of a positive ending, and “all’s well that ends
well”. What is more: the success is undoubtable. When I have composed the
pyramid, it stands there and nobody can question it.

– On the other hand, from a mathematician’s point of view, people often stop at an
early stage and are satisfied with a superficial effect.

2.5 Two Critical Questions

2.5.1 Are These Experiments at All?

One of the main features of mathematics is that the truth of an assertion is obtained
by a proof, that is by purely logical arguments, and not, for instance, by experi-
ments. This distinguishes mathematics from sciences such as physics or chemistry,
where experiments are used to verify a theory or to falsify a wrong hypothesis.

Also, mathematical experiments are not used to simply illustrate a definition or a
theorem.

The role of a mathematical experiment is quite different. Its basic property is to
stimulate thinking. In science centers, experiments do not come second (after a
theory), but experiments come first. They provide a strong impulse. Basically, a
person working with a mathematical experiment is challenged by a mathematical
problem. As in research, one has to get the right conception, the right idea of what’s
going on. And sometimes, after a while of thinking, and sometimes with luck, one
finds the solution.

A big advantage of such experiments is the fact that the solution is beyond any
doubt, because it is materialized: the cube is there, the bridge is stable, the pattern is
correct.

To put it short, a mathematical experiment works “bottom-up”: starting from
experience, leading to insight. It is an impulse. If the experiment is good, this
impulse is so strong that it enables the visitor to ask the right questions, to get the
right conceptions and, finally to get by an “Aha-moment” the right insight.
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2.5.2 Is This at All Mathematics?

Certainly, it does not look like mathematics, in particular not like school mathe-
matics. In fact, in Mathematikum we explicitly stated at the beginning that we want
to make a place that doesn’t look like school. Mathematical experiments do not
show the mathematical language: no point is called “P”, no variable is called x, in
fact, there are no formulas. Also, no definitions, no theorems, no proofs.

On the other hand, an important part of mathematical activity is clearly present,
namely problems. And, if visitors solve the problems, they activate
mathematics-related competences, such as arguing, and communicating.

Mathematical experiments have two main target groups. (a) School classes,
(b) private visitors.

When a school class visits Mathematikum, the students may deal with experi-
ments closely related to the topics in math education. For instance, they may look at
experiments dealing with the theorem of Pythagoras, or with number systems or
with randomness. The teacher then can talk with the students the next day in school
about their experiences and insights.

Private visitors, in particular families, behave quite differently. First of all, they
have no idea, whether an exhibit represents important mathematics or mathematics
at all. They do not care whether the formal mathematics behind it is difficult or easy.

For all visitors it is true that when they start to deal with an experiment, they
have a chance to perform a first step into mathematics. The most important aspect is
that they think. In fact, they automatically start thinking, for instance asking
questions and making conjectures. They try out ideas to solve the problem and
eventually they experience the Aha!-moment, in which the whole situation becomes
clear.

In addition, when trying to solve a mathematical experiment, the visitors con-
centrate on important mathematical notions such as edge, angle, it fits, etc. and also
they get acquainted with important mathematical concepts, such as patterns, cor-
respondence, infinity, etc.

Finally, they meet not only mathematics taught in school but many aspects
which go far beyond school, for instance the travelling salesman problem, minimal
surfaces, prime numbers, conic sections, etc.

To sum up, working with mathematical experiments is a first step into mathe-
matics. This statement has two sides.

Firstly, it is a step into mathematics. In fact, the problems posed by the exper-
iments can only be solved by thinking, by carefully observing, by looking for the
right idea.

On the other hand, dealing with experiments provides only a first step into
mathematics. Many more steps could follow. In particular, in this context, there is
no formal description of the mathematical phenomena.
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In other words, mathematical experiments offer extremely good possibilities to
“do” mathematics, but have also clear limitations: they stimulate enthusiasm and
true motivation, but also they neither give formal arguments nor can replace a
course in a mathematical subject.

Working with mathematical experiments goes far beyond “learning mathemat-
ics”. It empowers people: When visitors see that they have achieved something by
thinking by themselves, they become more self-confident.

2.6 Effects and Impact on the Visitors

The main effect of all science centers is experience. Visitors experience real phe-
nomena. This is also what visitors like. It is not a virtual experience, which we have
by working with computer programs. When we feel real physical objects and work
with them, it is clear that we cannot be cheated.

Mathematical experiments stimulate thinking. One has to consider several pos-
sibilities, one has to develop the right idea for a solution and one verifies whether a
solution is correct.

The unquestionable experience of many years of Mathematikum is that dealing
with mathematical experiments makes the visitors happy. They become happy
because they have understood something, which is very satisfying (see also
Beutelspacher 2016).

The fact that experiments activate people’s brain can be seen—or heard—by the
noise in the exhibition. Sometimes it is really loud. But in fact, it is communication.
People talk to each other, ask questions, give advice—and enjoy the common
solution.

A final point: if mathematics is interesting, then it is also interesting outside
school. In mathematical science centers as the Mathematikum, mathematics is part
of the visitor’s leisure time. Adult people and whole families spend hours to
experience the power of mathematics. Thus, mathematical experiments and math-
ematical science centers have a great impact on a mathematical education of the
general public.
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Chapter 3
Intersections of Culture, Language,
and Mathematics Education: Looking
Back and Looking Ahead

Marta Civil

Abstract This paper draws from a research agenda focused on the interplay of
culture, language and mathematics teaching and learning, particularly in
working-class Mexican-American communities in the United States. Drawing on
data collected over several years, I emphasize the need for a coordinated effort to
the mathematics education of non-dominant students, an effort that involves
teachers and other school personnel, the students’ families, and the students
themselves. Through the voices of parents, teachers, and students, I illustrate the
resources that non-dominant students bring to school but often go untapped, and the
tensions that this may carry. Following a socio-cultural approach grounded on
the concept of funds of knowledge, I argue for the need to develop stronger
communication among the interested parties to develop learning experiences in
mathematics that build on the knowledge, the language and cultural resources, and
the forms of participation in the students’ communities.

Keywords Culture � Language of learning and teaching � Immigrant students
In-school and out-of-school mathematics � Parental engagement in mathematics

That’s in mom’s home. Let’s do it the way that we do it in the school. [Dina]

Dina was a fifth-grade teacher (students are ten years old) in a Teacher Study
Group focused on issues around mathematics, language, and culture. She was
teaching in a school in a working-class community with a large number of students
of Mexican origin, some of whom were classified as English Learners (ELs). In the
excerpt below, Dina is reflecting on some of the challenges she thinks students face
in regard to mathematics learning.
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Dina: One of the problems that I saw here was that we were teaching
multiplication skills to the children, and I thought, ‘Oh, that is
something easy that the parents at home can help the children.’ Well
we ended up with totally different answers, and the children came back
with the homework, and the answer was not even close to what the
answer was, and they start to say to us, ‘But that’s an approximation.’
… Then we asked some parents to come to the school and teach us
what they were doing at home, and they were doing something that we
never understood, but it was close to the answer. They didn’t
understand that math is a precise subject. You cannot change the right
answer unless it’s a … what is it…what is the one that is close?

Interviewer: An estimation.
Dina: An estimation, but if you do multiplication you have to give me exactly

the answer, and for a while, division and multiplication became a
problem because we couldn’t get the children, you know, they learned it
at home, how to do things, and they came, and they do it on the board,
and I didn’t know what were they doing.… I don’t know exactly what
they were trying to teach the children, but now the children are doing
the math the way we asked them to do it. They are still making
mistakes, but they are getting better. At least they understand.

Interviewer: Do the kids ever complain to the moms, that ‘that’s not the way my
teacher does it’?

Dina: No, they did it the other way; ‘Well, that’s not the way my daddy does it
at home. This is not the way my mom does it. It’s the other way.’ Then
we ask them, ‘Come to the board; we want to learn.’ But we never, at
least I never understood how they got the answers…. We talked to the
parents, and we explained to them that we need to be precise, and we
need the correct answer, and we explain how we teach it here, how we
do it. And the question was, ‘Well, what if he doesn’t know?’ ‘Well you
tell them to come early in the morning, and we will help them here.’We
didn’t want to say don’t do it but… And now every Wednesday we are
teaching division and multiplication, and the children are doing it the
way we ask. This Wednesday when we did it, Eliseo said, ‘Oh no, my
mom did it different.’ And he went to the board and did it that way, and
I said ‘Yes, but that’s in mom’s home. Let’s do it the way that we do it
in the school.’And it was again very close, but not the answer. It was an
approximation. It was an approximation.
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3.1 School Versus Home

The opening vignette illustrates the main theme that I will address in this paper,
namely a tension between the school way and the home way. Differences between
parents’ ways of doing mathematics and the ways that their children may be learning
at school are quite typical and can be attributed to generational changes in approaches
to teaching and learning. However, as I have argued elsewhere (e.g., Civil and Planas
2010), when this is placed in the context of non-dominant communities whose
knowledge is often not recognized or valued, the implications need to be considered.
In the context of the work I report here, the non-dominant communities are
working-class and of immigrant origin, largely from Mexico. In several cases, the
parents were schooled in Mexico while their children have been mostly schooled in
the United States. Suárez-Orozco and Suárez-Orozco (2001) underscore the diffi-
culties that immigrants often face as they try to navigate the culture from their country
of origin and that of their new country. In particular, “Children of immigrants become
acutely aware of nuances of behaviors that although ‘normal’ at home, will set them
apart as ‘strange’ and ‘foreign’ in public” (pp. 88–89).

Some of the differences in the ways of doing mathematics may be attributed to
cultural aspects, for example, different algorithms being used in different countries.
But underlying the home-school tension captured in the vignette presented above is
the concept of valorization of knowledge (Abreu 1995). In her study of how
children experienced the relationship between home and school mathematics, de
Abreu presents an interview with 14-year-old Severina, whose father is a sugarcane
worker in rural Brazil:

Interviewer: Can you tell me what you think about the way your father did the
sums, is it the same or different from the way you learned in school?

Severina: It is a different way, he does it in his head, mine is with a pen.
Interviewer: Which do you think is the proper way?
Severina: School.
Interviewer: Which do you think gives a correct result?
Severina: My father.
Interviewer: Why?
Severina: Because I just think so (p. 137).

I often use this exchange between Severina and the interviewer to illustrate the
concept of valorization of knowledge. While Severina knows that her father can do
computation in his head and get the right answer, she still believes that the school
way with pencil and paper is the proper way. What are the implication for children
like Severina or the ones in the opening classroom vignette when their parents’
ways are different from the school’s ways? What message is Dina (the teacher in the
vignette) sending when she says, “Yes, but that’s in mom’s home. Let’s do it the
way that we do it in the school”?
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3.2 Some Context

This paper draws on over 20 years of a research agenda focused on the interplay of
culture, language and mathematics teaching and learning, particularly in
working-class Mexican-American communities in Southern Arizona, in the United
States. It is important to understand that there are wide differences in these com-
munities, with some families having been there in Arizona for generations. The area
was part of Mexico until the Gadsden purchase treaty in 1853 (Sheridan 1995).
A popular saying is that “we didn’t cross the border, the border crossed us.” Other
families are recent immigrants. In some households the primary language is
Spanish, while in others it is English; many families are bilingual (or multilingual).
In many homes, children may speak English among themselves and use Spanish to
speak with their parents and older relatives. Overall these students attend de facto
segregated schools in that a majority of the students in their school is of Mexican
origin and working-class. Students in these schools tend to do less well by tradi-
tional testing measures than those in schools in middle to upper class neighbor-
hoods with fewer numbers of students of non-dominant backgrounds.

My approach to both research and outreach in schools in working-class,
immigrant origin communities rejects a deficit view of these communities that tends
to blame children and their families for their “lack of success” in school. Instead,
my work is grounded on the theory behind the Funds of Knowledge for Teaching
project (González et al. 2005). The main premise is that in all communities and
households there is knowledge, resources, experiences that allow families to get
ahead. Moll et al. (2005) define funds of knowledge as “these historically accu-
mulated and culturally developed bodies of knowledge and skills essential for
household or individual functioning and wellbeing” (p. 72). I argue that our obli-
gation as educators, teachers, researchers is to learn about and from these funds of
knowledge and build on them for the advancement of students in school.

Hodge and Cobb (2016) describe this approach as an example of the “Cultural
Alignment Orientation”, which they say “has become the default theoretical
framework for research on issues of equity in mathematics education” (p. 2). In this
orientation, the authors say that the focus is on “aligning the practices established in
the mathematics classroom with the out-of-school practices in which students
participate. Given this framing, it becomes critical to learn about and leverage
students’ out-of-school practices as resources to address inequities in learning
opportunities” (p. 2). The authors argue for a “Classroom Participation
Orientation,” which they consider broadens our approach to developing equitable
approaches to teaching and learning. In their view, “the Classroom Participation
Orientation is grounded in the view of culture as a network of local hybrid practices
that people jointly constitute as they negotiate their places in specific settings such
as the mathematics classroom” (p. 4). While the two orientations are different, the
authors themselves note that the Funds of Knowledge project, which is at the basis
of much of my work, has moved from the notion of alignment to also incorporate
that of participation, particularly building on the concept of hybridity. Following a
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Funds of Knowledge orientation means that the concepts of resources, participation,
and valorization are central to the data analysis (Civil 2002b, 2016a).

An underlying question in my work has been how to develop mathematical
learning experiences that are culturally responsive in the sense that they reflect and
build on the learners’ everyday/out-of-school experiences, but are also responsive
to the mathematical agenda that needs to be met (Civil 2002b, 2007). As we started
bringing in the voices of parents through their participation in mathematics work-
shops where there is an exchange of experiences, our approach has somewhat
moved back and forth between the notion of alignment, in that we have a deep
interest in out-of-school mathematical experiences and the notion of participation,
particularly as we see students and families navigate multiple spaces (Díez-Palomar
et al. 2011; Menéndez et al. 2009). Underlying this work is a need for a two-way
dialogue between home and school about mathematics (Civil 2002a; Civil and
Andrade 2003; Civil and Planas 2010). In the next section I look at some avenues
towards this two-way dialogue.

3.3 Towards a Two-Way Dialogue Home—School

In the opening vignette it seems that some parents had ways of multiplying that
were different from what the teachers were teaching. Dina tried to learn them, when
she says “Then we asked some parents to come to the school and teach us what they
were doing at home, and they were doing something that we never understood, but
it was close to the answer” or later on when she says that she invited students to
come to the board and show how their parents had taught them, “’Come to the
board; we want to learn.’ But we never, at least I never understood how they got the
answers.” Throughout the vignette, Dina provides evidence that she tried to
understand the methods but did not succeed. Dina did not feel comfortable in her
understanding of mathematics and in fact in that same interview she acknowledged
that if it were up to her she would not be teaching mathematics. Dina is not alone.
Over the years, I have shown teachers and preservice teachers different algorithms
that students may bring to class from home and I have noticed their trepidation
(Civil 2016b). Dina opted for making sure that the children learned the school
method and that they used that one while in school. She wanted parents to
understand that there is a certain way that children are being taught, that is different
from how they do it at home, and as she says “we didn’t want to say don’t do it
but…” and does not finish the sentence:

We talked to the parents, and we explained to them that we need to be precise, and we need
the correct answer, and we explain how we teach it here, how we do it. And the question
was, ‘Well, what if he doesn’t know?’ ‘Well you tell them to come early in the morning,
and we will help them here.’ We didn’t want to say don’t do it but…

This situation leads to several unanswered questions such as, were the parents’
methods incomplete and indeed producing only an approximation? Even if that was
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the case, was there some mathematics in them worth exploring? How could the
teachers have turned this source of knowledge from the parents into a learning
opportunity? Would the teachers have had the support from the school adminis-
tration? What role does valorization of knowledge play? Closely related to issues of
valorization of knowledge and whose knowledge is valued, are issues of power:

The border between knowledge and power—can be crossed only when educational insti-
tutions no longer reify culture, when lived experiences become validated as a source of
knowledge, and when the process of how knowledge is constructed and translated between
groups located within nonsymmetrical relations of power is questioned. (González 2005,
p. 42)

How can we address these issues of power and valorization of knowledge when
working with teachers, parents, and students? This has become a central question in
my work. One activity I have been using is to have parents and teachers read quotes
that other parents and teachers have said in relation to issues on the teaching and
learning of mathematics. The quotes are posted around the room and the partici-
pants are to stand by the one that speaks to them the most (either because they agree
with it, or they do not, or any other reason). One of the quotes I have used was
related to the opening vignette and read as follows:

We are teaching division and multiplication, and the children are doing it the way we ask.
This Wednesday when we did it, Eliseo said, ‘Oh no, my mom did it different.’ And he
went to the board and did it that way, and I said ‘Yes, but that’s in mom’s home. Let’s do it
the way that we do it in the school.’

One mother and one teacher stood by that quote and this is what each said:

Mother: I identified with this quote because I did that with my child and it seems
that I confused him and so the part on “let’s do it the way we do it in
school”, we need to get involved and learn the way they teach it at
school so that we can continue [the support].

Teacher: I do have students who say my mom/dad taught me this way, and for
me, I do have to teach them certain ways but I encourage them if mom
and dad want to teach them a different way, then my student has the
strategy from school and the one from mom and dad and they can check
and make sure that both answers match up, so they can check twice…

These are different reactions to the same quote. The mother underscores the
importance of her learning the way they teach it at school so that she can support
her child. This is most likely why she joined the project. As discussed elsewhere
(Civil et al. 2005), originally parents joined a mathematics project to be able to help
their children. However, in reading this mother’s comment, I wonder, does she
recognize the value of her own methods? Does she appreciate the potential richness
of multiple methods? Is she in a way according more value to the school method
than to her own method? On the other hand, the teacher, while acknowledging the
institutional pressures she feels to teach specific methods, is open and in fact
encourages children to bring other ways from home. Her approach is what I
characterize as resource-based. This teacher views home knowledge as an asset
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towards her students’ education. How do we capitalize on a resource-based view
that encourages the use of home knowledge without pushing away parents who feel
that their role is to learn the school ways? But also, how do we strike a balance
between recognizing and building on home knowledge while recognizing that
“merely glorifying popular knowledge does not contribute to the process of social
change” (Knijnik 1993, p. 25).

Bringing quotes such as the one in the vignette for discussion with parents and
teachers is an effective way to promote a dialogue around teaching and learning
mathematics. Other approaches have included teams of parents and teachers pre-
senting mathematics workshops to other parents in the community (Civil and
Bernier 2006), parents and teachers participating in mathematics workshops toge-
ther, parents visiting a mathematics classroom and then debriefing the visit (Civil
and Quintos 2009), and teachers visiting the homes of some of their students to
learn about the family’s funds of knowledge. In what follows, I briefly present some
key findings from these different avenues to promoting a dialogue between home
and school around mathematics teaching and learning.

3.4 Cultural Aspects

Many immigrant parents (like everybody else) bring deeply rooted views of what
mathematics teaching and learning should look like, for example expressing sur-
prise at physical arrangements of the classroom where students are sitting in groups,
some with their backs to the board or to the teacher’s desk; or showing concern
when students in 3rd grade and higher do not know their multiplication facts yet.
But at the same time, as parents engage as learners of mathematics themselves,
some develop an appreciation for a focus on conceptual understanding and not only
memorization of facts; or an appreciation for joint problem-solving. Yet, as the
example of the mother’s reaction to the quote indicates, there are some parents who
seem ready to give into the school ways. This points to the complexity of the
situation where parents, and in particular immigrant parents, are interpreting what
they see through their own cultural experiences but also are listening to their
children and trying to make sense of their schooling experience. Over the years, we
have collected evidence from mothers mentioning the tension they feel when they
try to teach their children how they were taught (e.g., Civil and Planas 2010; Civil
et al. 2005).

Parents and children are likely to have other ways of doing mathematics, or
interpret problems in ways that are based on their everyday experiences and may be
different from what the teacher expected. What can teachers do? Some express
concern as to how to work with these different approaches. Their concern may be
based on their own understanding of mathematics like Dina’s case in the vignette,
where she tried to understand but did not succeed. Other teachers seem comfortable
encouraging students to use strategies that their mom or dad may have taught them,
like the teacher earlier whom I described as having a resource-based approach.
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The excerpt that follows captures some of the complexity that teachers have
expressed on the issue of home versus school mathematics. Caroline was a 6th grade
teacher who was reflecting on the challenges and advantages that children in
general, and Latina/o children in particular faced in regard to mathematics learning.

Caroline: The Latino children, if their parents came from Mexico, then they
probably did it a different way than what they did here, and even the
algorithms maybe look a little different. So, I think that causes part
of the problem. I think maybe part of it may be language and to
translate, some of them, you know especially the students whose
first language is Spanish …

Interviewer: So what do you think are the advantages that these same children
bring to the classroom?

Caroline: I think it’s, like when you’re making the connection, if you are
doing it orally they may see it in a little different way and if, if
you’re discussing it, the students build off of each other … so I think
that’s one; and then also even while you’re discussing, even if
you’re looking at algorithms or something, they’re going to be like
“Oh well, my dad does it this way” or “My mom does it this way.”
And so, then you’re bringing in another way, so that they’re seeing
maybe even a third or a fourth or a fifth way to attack a problem.

This excerpt represents what teachers in our work have often said. They are
aware that students may have other ways to do mathematics particularly in the case
of children of immigrant origin but they do not all see them as an advantage or a
challenge. Caroline first refers to this as a possible problem, “So, I think that causes
part of the problem” but then at the end of the excerpt these different algorithms are
seen as an advantage, “And so, then you’re bringing in another way, so that they’re
seeing maybe even a third or a fourth or a fifth way to attack a problem.” Woven
throughout Caroline’s excerpt is the issue of language, which she sees as a potential
problem when children have to go back and forth between English and Spanish. But
she did not discourage the use of both languages and in fact she emphasized
students discussing mathematics and sharing ideas, which is how she would learn
about knowledge from home, “Oh well, my dad does it this way” or “My mom does
it this way.” In the next section I focus on language issues, which are particularly
relevant when working with students and families whose home language is different
from that of the school.

3.5 Language Aspects

It is important to briefly describe the language policy in Arizona to provide some
context. In 2000, Proposition 203 was passed, which had the effect of limiting
access to bilingual education for students who had been classified as English lan-
guage learners (ELLs). Instead ELLs were to be taught with structured English
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immersion. Furthermore, in 2006 additional legislature established what is known
as the 4-h English requirement, which means that ELLs were to receive 4 h of
English language instruction daily. Considering that a school day has about 7 h of
instruction, what does this mean for the learning opportunities of ELLs? The idea
behind this approach was that students would be proficient in one year and thus be
able to move out of the 4-h block. Research has documented that it takes longer
than one year for students to become proficient in the command of the language
needed for schooling purposes (Cummins 2000). As Gándara and Orfield (2012)
point out, the case of Arizona is particularly important because, “having spawned a
series of anti-immigrant and highly restrictionist language policies, Arizona stands
as the embodiment of this struggle, and pending legal decisions in that state have
the potential to reinforce these hegemonic practices and shape the way that English
learners are educated across the U.S. for some time to come” (p. 9). But this, I
argue, is relevant not only for the U.S., but for any country that is faced with
educating children whose home language(s) is different from the language of
instruction. As it has been pointed out, discussion on language policy in schools are
closely related to issues around immigration and the education of immigrant stu-
dents (e.g., Alrø et al. 2009; Barwell et al. 2016; Civil 2012; Gándara and Orfield
2012; Wright 2005).

What are the implications on different language policies on students’ mathe-
matics education? This is a broad question that cannot be fully addressed in this
chapter, but I can certainly offer some snippets based on my research with parents,
teachers, and students. A main finding is the impact of language policy on parental
engagement in their children’s mathematics education. In Acosta-Iriqui et al.
(2011), we present a contrasting case of two states, Arizona and New Mexico, with
radically different language policies. Through parents’ voices we hear how their
engagement and feeling of confidence at being able to help their children were
drastically different in the two contexts. Many of the parents in the research studies
in Arizona had experienced bilingual education with some of their children and then
saw the switch to structured English immersion for their other children. The fol-
lowing quote captures the frustration of Verónica whose child was in bilingual
classrooms for kinder and first grade but was moved to an English only classroom
in second grade:

I liked it while they were in a bilingual program, I could be involved …. When he was in
kindergarten … I even brought work home to take for the teacher the next day. In first
grade, it was the same thing, I went with him and because the teacher spoke Spanish, she
gave me things to grade and other jobs like that. My son saw me there, I could listen to him,
I watched him. By being there watching, I realized many things. And then when he went to
second grade into English only and with a teacher that only spoke English, then I didn’t go,
I didn’t go.

On a different occasion, Verónica also shared that she felt comfortable with her
knowledge of mathematics and that she could probably help her son (by then in
middle school) but that he did not come to her for help because he did not feel
comfortable translating from English into Spanish so that she could understand the
problems. Hence, while he could communicate in Spanish with her, he did not have
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the level of Spanish that would allow him to converse about mathematics. Would
this be different, had he stayed in bilingual classes?

The question of how to teach mathematics in multilingual contexts has been
widely studied (e.g., Barwell et al. 2016) and is certainly a complex situation tied to
social and political considerations. In my specific context where it is essentially a
Spanish/English situation and given the geographical location so close to Mexico, it
seems that providing access to a solid bilingual education for all students would be
a benefit to all. As one of the teachers said on reflecting on the advantages that his
students brought to the classroom: “The ability to be bilingual, biliterate, I think is a
huge advantage. I think that where we are in our country …, so close to the border,
the ability to speak two languages is not a hindrance, it’s an advantage. I think you
have more opportunities available to you.”

Up to this point the focus of this paper has been on looking back at some of my
work with parents and teachers around the general theme of seeking ways to
connect home and school in relation to the teaching and learning of mathematics.
The children are of course at the center, since they are often caught in the middle,
trying to navigate both worlds, home and school. In what follows, I present the case
of a student, Larissa, to further illustrate the intersection of language, culture, and
mathematics education.

3.6 The Case of Larissa

Larissa arrived to the United States three months into the school year, at the age of
13. In Mexico, she had attended a bilingual (Spanish/English) school for most of
her schooling, but based on the English placement test she was placed in classes
with other students classified as ELLs, but that I will describe as bilingual learners.1

This meant that for all their classes but an elective and maybe one more class, the
bilingual learners were segregated from the students who were considered proficient
in English. This case is an example of what Valdés (1998) also found in her study
where ELLs were segregated from non-ELLs, thus resulting in two schools within
one school. Furthermore, many schools in my local context are already de facto
segregated by ethnicity and social class. For example, the school that Larissa
attended was at that time 95% Latino/a, 25% ELLs and 85% eligible for the free or
reduced-price lunch program.

I am focusing on Larissa as representative of the case of many adolescent
students who have to adapt to different cultural and language norms while keeping
up with their academic learning and going through typical adolescence growing
pains. Suárez-Orozco et al. (2009) noted that in general, recent immigrant youth

1While students whose home language is not English are often labeled as ELLs, a label that
emphasizes what they “lack” (i.e., English), I prefer the term “bilingual learners” as it emphasizes
that they know two languages (and in some cases more than two), even if it is with different levels
of proficiency.
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have positive attitudes towards learning and show optimism for their future.
However, as years go by, things can change, “despite their initial academic
advantage, for nearly all immigrant groups, length of residence in the United States
appears to be associated with declines in academic achievement and aspirations.”
(p. 714).

Larissa seemed to fit the profile of the academically ready learner upon arrival, as
portrayed by Suárez-Orozco et al. (2009). Her knowledge of mathematics was
sound and she soon emerged as a leader in mathematical discussions in the class.
She was not happy about being in the segregated section for bilingual learners
because, as she said in an interview three months after her arrival: “I don’t really
like the classes with everyone speaking Spanish. I wouldn’t like to forget all the
English I learned in elementary school.” In that same interview, she went onto
saying that she preferred English to Spanish and that if she could, she would speak
mostly in English. She made friends who were English dominant and she made a
clear effort to work on her English. She also shared that she was happy to be in this
school because it offered more electives than her prior school in Mexico. An
interview with her mother also confirmed that Larissa was happy at school: “She
doesn’t want to leave school. She likes it here. Larissa expresses very little of what
she feels. But, what she has always told me, ‘Mom, I don’t want to go. I want to be
here at school. I’ve liked it very much’” (Civil and Menéndez 2011, p. 55).

Elsewhere I have discussed the effect on students’ ability to engage in mathe-
matical discussions when access to their home language is encouraged (despite the
language policy in place) (Civil 2011; Civil and Hunter 2015). Here I just give a
brief illustration of the role of language in communicating a mathematical idea.
Larissa was asked to explain a probability game they had just been working on to
the next class, a group of 6th graders (so, a year younger), who had just entered the
classroom:

Larissa: We played a game that’s called the multiplication game and the rules are
that, two players that are A and B, take turns rolling two number cubes,
and when, the, if the product of the numbers rolled is an odd, is an odd
number, player A wins a point, and if the product of the numbers rolled
is even, player B wins a point. ¿Lo decimos en español? [Do we say it in
Spanish?] …

Larissa: Es un juego que se llama multiplication game; entonces, dos jugadores,
que son el A y el B, toman turnos tirando dados. Entonces, cuando tiras
dos dados, ese número lo vas a multiplicar por el otro número del otro
dado, y si el número es impar, el player A gana un punto; si el número es
par, multiplicándolo, el player B tiene un punto. ¿Ya me entendieron?
[It’s a game called multiplication game; so, two players, which are A
and B, take turns rolling dice. So, when you roll two dice, you are going
to multiply that number by the number on the other die, and if the
number is odd, player A gets a point; if the number is even, multiplying
it, player B has a point. Did you all get it?]
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As soon as she switches to Spanish, Larissa appears more relaxed and engaged
with the audience. While she was speaking in English she was mostly looking at the
handout where the game was explained. When she turns to Spanish, while she still
looks at the handout, as soon as she moves away from a literal translation of “if the
product of the numbers rolled is…” and says “So, when you roll two dice, you are
going to multiply that number by the number on the other die,” she is looking at the
students and using her hands to gesture in the air the two numbers that are being
multiplied. Granted, her expression is not precise when she says “and if the number is
odd, player A gets a point; if the number is even, multiplying it, player B has a point”,
as it is not clear which “number” she is referring to. It seems implicit that she means
the product but she does not express it with this level of precision. Earlier in the
discussion of the problem she had found the word “product” confusing, something
that is not uncommon for students (note that the word in Spanish is “producto”,
which is not that different but it is one of these terms that have a specific meaning in
mathematics, different from its meaning in everyday life). I argue that though her
explanation may have lacked some precision, she probably reached the 6th graders
(also bilingual learners) better than through her reading of the problem in English.

When Larissa first arrived, she would take notes in class, including copying the
problems from the book into her notebook. No other student in the classroom was
doing that. When I asked her about this, she said that it helped her study. The
notebook is part of Mexican schooling. Students have a notebook for each of their
subjects and they take notes from what is on the board and do their work there. It
becomes a record of what they are doing. In contrast, in the many schools I have
been in for my research, I have seen very limited use of notebooks, and in fact little
emphasis on students taking notes and writing in the mathematics classroom. As
part of the current standards in place in mathematics education, there is an
expectation that students communicate about mathematics, explain and justify their
reasoning. Would developing the habit of keeping a notebook help towards this
goal? Are teachers aware that students who have been schooled in Mexico already
bring this habit of study? It is important to note that by April of that first year,
Larissa was no longer using a notebook. As the teacher and I were trying to develop
norms that involved students writing explanations in mathematics using a blank
sheet of paper (instead of trying to squeeze in their writing in the handouts they
were working on), I pointed out to Larissa’s group that she knew how to do this:

Marta: Larissa knows this because she usually does it, though lately she seems
to have picked up other habits…

Larissa: Oh, but now I’m here. Over there [Mexico], it’s another story.

That the academic expectations between school in Mexico and school in the
United States were perceived as quite different became evident in the interviews
with parents. For example, Larissa’s mom commented that the school should expect
more since what she saw her daughter doing was very easy for her. This is
something that other parents and students have noted in different interviews, where
they mention that what they are doing in mathematics is something that they had
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already seen in Mexico. Larissa indeed confirmed this in her first interview (three
months after her arrival). Larissa’s mother also brought up that while she had seen
her bring some homework at the beginning, she was not seeing that anymore.
Another mother who was part of the same interview said the same thing about her
son. They both adamantly said that if they were in Mexico, they would have much
more homework (Civil and Menéndez 2011). In a different group interview with
immigrant parents including Larissa’s mother, the group brought up several aspects
that they all agreed that were stricter in schools in Mexico. They mentioned that the
school should have more homework, demand more from the students, expect them
to bring tools (pens, notebooks) to the classroom, and ask for higher quality
products from the students. As one mother said, “here they put any scribble on the
notebook, or on the sheet they bring from school and that’s it.” Below is an excerpt
for that interview:

Marcos: [They should] give them homework so that they bring
it home, so that we can see what kinds of mathematics
they are doing; because there are many children who
don’t bring any; my daughter doesn’t bring any, they
don’t give her any

Iliana: Mine neither, I always ask her
Mila (Larissa’s mother): Besides giving them homework, they need to demand

more [from the children], because what I see, with my
daughter and school here and school in Mexico, they
should demand more, because for her it’s very easy
here and then she just kind of glosses over… and in
addition to more demanding, the school should be
stricter with them… they are too lax.

I move now to Larissa the following year. She was placed in the algebra class
which is the highest level of mathematics at the middle school. She was also no
longer in the segregated section for bilingual learners, hence taking all her classes
with students who spoke English (though with different levels of proficiency, but
had met the requirements to be in those classes). Furthermore, she was taking some
electives available only to students in gifted education. So, by these indicators she
seemed to be doing quite well academically. Towards the end of that year I had one
more interview with her. I asked her to reflect on her almost two years at that school
and what her impressions were:

Larissa: What I like about the school?
Marta: Yes.
Larissa: Nothing … So, nothing is really all that interesting; I mean I think that

for someone to like something, the teacher has to be more sociable and
make it more engaging so that we do the work with more interest.

It could be that Larissa was acting like many young people her age. It could also
be that she was not being challenged enough since the only class she said she liked
was the one that was for gifted students. What was interesting to me in this second
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interview is that she did not seem as enthusiastic about the school as in the first
interview. Even more interesting were her comments about her language preference.
Recall that in the first interview she had said that she preferred English over Spanish.
In this second interview, we talked about how she was no longer in the section for
bilingual learners and how there was much more English being used around her.
While she spoke English to some of her peers, she spoke Spanish to others:

Larissa: I don’t like to speak English much.
Marta: How come?
Larissa: I don’t know.
Marta: It’s interesting because last year you told me that you wanted to speak in

English.
Larissa: No, I just wanted to practice it.

…

Larissa: I hardly like it [English].
Marta: What is it that you don’t like about English?
Larissa: That I haven’t learned it well yet… that is, there are times where I need

to stay quiet because I feel embarrassed if I don’t say something well. So,
that’s the reason.

This exchange points to the difficulty that immigrant students may face when
trying to fit in an environment when they do not feel comfortable with the dominant
language yet. Larissa’s story traces the journey from her perhaps initial optimism
when she first arrived since she already knew some English to the realization that it
takes longer than a year to have a good command of another language. It is worth
noting what Matilde, the mathematics teacher of the bilingual learners, said when
reflecting on what happens when they move to the “regular” classes.

Matilde: I work only with ELL students … Our kids feel afraid to be in the
regular classroom because they feel the other kids have the power. So,
even if I have a very brilliant a kid, he goes to a regular classroom, and
he is going to be student X [meaning anonymous]. Because he is not
going to be that brilliant because they’re going to ask them questions in
English so they don’t know how to explain themselves and they’re going
to be quiet. So they’re going to be, relegated to the back of the class. So
they are afraid to go to a regular class.

The case of Larissa highlights some of the issues that immigrant students face in
a different school setting. Larissa brought multiple resources with her, such as study
and work habits (e.g., note taking); good mathematics background; bilingualism.
But she also had to learn new cultural norms of what it means to go to school and
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improve her knowledge of English. All of this while going through adolescence. In
the next and final section I look at the main points presented and use them to
address the looking ahead part of this paper.

3.7 Looking Ahead

Throughout this paper my focus has been on the need to take a resource-based view
towards the mathematics education of non-dominant students. While in the context
of my work, many of these students and their families navigate varying cultural and
linguistic terrains that at times may make their learning of mathematics hard, they
also bring multiple resources, such as knowledge of mathematics and study habits
that may go untapped; knowledge of more than one language, which can be seen as
an advantage as they can provide access to more representations; experiences with
mathematics at home that can be used to strengthen the connection between home
and school. In Civil (2016a) I argue for the need to get a better understanding of the
nature of engagement in mathematically-rich everyday practices particularly in
non-dominant communities. How do parents and students participate in mathe-
matical practices in their everyday life; how do they relate (or could) to the practices
in school mathematics? As I look ahead, I wonder about the potential of the notion
of culturally sustaining pedagogy (Paris 2012) for future work in mathematics
education:

The term culturally sustaining requires that our pedagogies be more than responsive of or
relevant to the cultural experiences and practices of young people—it requires that they
support young people in sustaining the cultural and linguistic competence of their com-
munities while simultaneously offering access to dominant cultural competence. (p. 95)

In this paper, I have argued for the need to develop an integrated model that
connects mathematics teaching and learning to the cultural, social, linguistic and
political contexts of non-dominant students. In particular, the case of Dina calls for
teacher education initiatives that provide opportunities for teachers to engage in
using their students’ funds of knowledge as resources for teaching. The case of
Larissa underscores the potential loss of learning opportunities when students’
funds of knowledge (e.g., home language(s); different ways to do mathematics and
study habits) are not developed in a culturally sustaining way. To this end, as I look
ahead, I suggest that we need to work on developing stronger and meaningful
communication between home and school; challenge the different valorizations
given to different forms of mathematics; probe the effects of language policies on
students’ mathematics education; engage with teachers in conversations about the
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mathematics education of non-dominant students; and share narratives of
non-dominant students’ successful participation in mathematical discussions.
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Chapter 4
The Double Continuity of Algebra

Al Cuoco and William McCallum

Abstract We consider Klein’s double discontinuity between high school and
university mathematics in relation to algebra as it is studied in both settings. We
give examples of two kinds of continuities that might mend the break: (1) examples
of how undergraduate courses in algebra and number theory can provide useful
tools for prospective teachers in their professional work, as they design and
sequence mathematical tasks, and (2) examples of how questions that arise in
secondary pre-college mathematics can be extended and analyzed with methods
from algebra and algebraic geometry, using both a careful analysis of algebraic
calculations and the application of algebraic methods to geometric problems. We
discuss useful sensibilities, for high school teachers and university faculty, that are
suggested by these examples. We conclude with some recommendations about the
content and structure of abstract algebra courses in university.

Keywords Klein � Double discontinuity � Algebra � Secondary school teaching

4.1 Introduction

The young university student found himself, at the outset, confronted with problems, which
did not suggest, in any particular, the things with which he had been concerned at school.
Naturally he forgot these things quickly and thoroughly. When, after finishing his course of
study, he became a teacher, he suddenly found himself expected to teach the traditional
elementary mathematics in the old pedantic way; and, since he was scarcely able, unaided,
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to discern any connection between this task and his university mathematics, he soon fell in
with the time honoured way of teaching, and his university studies remained only a more or
less pleasant memory which had no influence upon his teaching.

—Felix Klein, Elementary Mathematics from an Advanced Standpoint (1932, p. 1)

Does Klein’s oft-quoted description of what he called the double discontinuity,
given over 100 years ago, still hold today? The recommendations of the Conference
Board on the Mathematical Sciences (CBMS 2012) for the mathematical education
of teachers in the US were formulated on the premise that there was still a problem
to be solved in at least one of the directions of the discontinuity: the transition from
the university coursework of a prospective teacher to their practice in teaching
secondary school. Chapter 2 of that report discusses some of the evidence for that
point of view. In the other direction, de Guzmán et al. (1998) describe the dis-
continuity from the point of view of a secondary school student entering university,
and find it particularly strong for prospective teachers.

Given the apparent persistence of the problem, it is reasonable to wonder if the
double discontinuity results in part from a double discontinuity in the subject matter
itself of the courses that students take. In the US, Wu (2015) has described what he
calls textbook school mathematics as a subject alienated from genuine mathematics.
The US Common Core State Standards for Mathematics were motivated in part by a
desire to lessen the distance between school mathematics and university mathe-
matics. Such projects need stories of continuity. In this paper we consider conti-
nuities between secondary school and university mathematics in both directions,
focusing on the subject of algebra.

4.2 From University to Secondary School

In this section we follow mathematical threads from a course in abstract algebra or
number theory to secondary school mathematics.

A common topic of discussion among teachers is finding tasks that can be used
to launch a new topic. They want the answers to be simple, so that computational
overhead does not get in the way of the ideas.

For example, consider the topic of the law of cosines, to be introduced by the
task of finding the measure of \UQS in Fig. 4.1. This task has a particularly simple
answer, 60°. Examples like this are prized by teachers; they are traded at depart-
ment meetings and sought after online. The problem of finding such examples is a
problem in task design. A teacher with university background in abstract algebra or
algebraic number theory can apply that knowledge to task design and find general
methods for constructing such examples. This can be viewed as a sort of applied
mathematics for the profession of teaching, as described at the elementary level in
Ball et al. (2008).
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4.2.1 Pythagorean Triples

Before considering the task design problem of finding nice triangles with a 60°
angle, we consider the simpler problem of finding nice triangles with a 90° angle,
that is, nice right triangles. The triangle with side lengths 3, 4, and 5 is such a
triangle because the lengths satisfy the Pythagorean identity:

32 þ 42 ¼ 52:

Another example is the triangle with side lengths 5, 12, and 13, because

52 þ 122 ¼ 132:

There are infinitely many such Pythagorean triples, that is, triples of positive
integers ða; b; cÞ such that

a2 þ b2 ¼ c2:

Diophantus of Alexandria developed, around 250 CE, a geometric method for
generating such triples. In modern language, he realized that a rational point on the
unit circle (the graph of x2 þ y2 ¼ 1), when written in the form a

c ;
b
c

� �
; produces a

Pythagorean triple (Fig. 4.2):

a
c

� �2
þ b

c

� �2

¼ 1 ) a2 þ b2 ¼ c2:

5

8

7

Q

U

S

Fig. 4.1 What is the measure
of \UQS?

(−1, 0)

a
c , b

c

Fig. 4.2 The method of
Diophantus
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One can get such a rational point by forming a line with positive rational slope
through the point P ¼ ð�1; 0Þ and intersecting the line with the circle. The second
intersection point will then be rational. Hence, it was known early on that there are
infinitely many Pythagorean triples [for details, see Cuoco and Rotman (2013)].

In addition to this geometric method, there is an algebraic method for generating
Pythagorean triples, using complex numbers and the observation that

x2 þ y2 ¼ ðxþ yiÞðx� yiÞ: ð4:1Þ

The sum of two squares can thus be written as the product of a complex number
and its complex conjugate. So, if you want integers a and b so that a2 þ b2 is a
perfect square, you might write the sum of these two squares as

a2 þ b2 ¼ ðaþ biÞða� biÞ

and try to make each factor on the right-hand side the square of a complex number
with integer real and imaginary parts. And it is within the scope of secondary school
mathematics to show that if aþ bi ¼ ðrþ siÞ2, then a� bi ¼ ðr � siÞ2. So, for
example,

ð3þ 2iÞ2 ¼ 5þ 12i and

ð3� 2iÞ2 ¼ 5� 12i:

So,

52 þ 122 ¼ ð5þ 12iÞð5� 12iÞ
¼ ð3þ 2iÞ2ð3� 2iÞ2

¼ ð3þ 2iÞð3� 2iÞð Þ2

¼ 32 þ 22
� �2

¼ 132;

and we have the Pythagorean triple ð5; 12; 13Þ:

4.2.2 The Algebraic Method from a Higher Standpoint

To extend the applicability of this method, it helps to look at it from a higher
standpoint. Complex numbers of the form aþ bi where a and b are integers are
called Gaussian integers. The set of all Gaussian integers is denoted by Z½i�,
because Z denotes the system of ordinary integers that is the focus of much of
arithmetic in school; so Z½i� is obtained from Z by adjoining i. Both Z and Z½i� are
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endowed with two operations—addition and multiplication. The properties of
addition and multiplication that allow one to calculate with integers also hold in
Z½i�—order does not matter in addition or multiplication, multiplication distributes
over addition, and so on. Formally, both systems are examples of commutative
rings, and, in fact, Z is a subring of Z½i�.

The complex conjugate of a complex number z ¼ aþ bi is denoted by �z, so
aþ bi ¼ a� bi. This operation of multiplying a Gaussian integer by its complex
conjugate is a map from Z½i� to Z called the norm and denoted by N:

NðzÞ ¼ zz:

The norm map has the following properties:

1. NðzwÞ ¼ NðzÞNðwÞ for all Gaussian integers z and w:
2. Hence, if z is a Gaussian integer, then

Nðz2Þ ¼ NðzÞð Þ2:

3. If z ¼ aþ bi, NðzÞ ¼ a2 þ b2, a non-negative integer.

Put in the context of Pythagorean triples, item (3) shows that we are looking for
Gaussian integers whose norms are perfect squares. Item (2) tells us how to do that:

Tomake NðzÞ a square inZ;make z a square inZ½i�:

This gives an easily programmed algorithm for generating Pythagorean triples,
giving secondary school teachers a useful tool for their lesson planning. Table 4.1,
generated in a computer algebra system, shows ðrþ siÞ2 ¼ aþ ib and the corre-
sponding norm c. The three integers a, b, and c form a Pythagorean triple.

4.2.3 Using Norms to Construct Triangles with a 60° Angle

We now return to the task design problem of finding examples like Fig. 4.1. The
problem is to find a triple of positive integers ða; b; cÞ that are side-lengths of a
triangle with a 60° angle.

Applying the law of cosines to the triangle in Fig. 4.3, we have

c2 ¼ a2 þ b2 � 2ab cos 60�

¼ a2 þ b2 � 2ab
1
2

¼ a2 � abþ b2

4 The Double Continuity of Algebra 53



So, we want integers ða; b; cÞ so that

c2 ¼ a2 � abþ b2: ð4:2Þ

Examples of such triples are ð5; 8; 7Þ (corresponding to the example above) and
ð15; 7; 13Þ.

We will call such a triple an Eisenstein triple. We want to find a system anal-
ogous to Z½i� in which the right-hand side of (4.2) is a norm. Such an expression
arises naturally in number theory courses that treat roots of unity.

Just as we can form the ring of Gaussian integers Z½i� by adjoining the fourth
root of unity i to Z, so we can form the ring of Eisenstein integers by adjoining the
cube roots of unity, that is, the roots of x3 � 1 ¼ 0. Because

x3 � 1 ¼ ðx� 1Þðx2 þ xþ 1Þ;

the three roots are

1;
�1þ i

ffiffiffi
3

p

2
;
�1� i

ffiffiffi
3

p

2

	 

:

Table 4.1 ðrþ siÞ2 and the resulting norm

s = 1 s = 2 s = 3 s = 4

r = 2 3 + 4i, 5

r = 3 8 + 6i, 10 5 + 12i, 13

r = 4 15 + 8i, 17 12 + 16i, 20 7 + 24i, 25

r = 5 24 + 10i, 26 21 + 20i, 29 16 + 30i, 34 9 + 40i, 41

r = 6 35 + 12i, 37 32 + 24i, 40 27 + 36i, 45 20 + 48i, 52

r = 7 48 + 14i, 50 45 + 28i, 53 40 + 42i, 58 33 + 56i, 65

r = 8 63 + 16i, 65 60 + 32i, 68 55 + 48i, 73 48 + 64i, 80

a

b

c

Q

U

S
60◦

Fig. 4.3 A nice triangle
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Let

x ¼ �1þ i
ffiffiffi
3

p

2
;

and consider Z½x� ¼ aþ bx j a; b 2 Zf g: This is a ring (the Eisenstein integers)
with structural similarities to Z and Z½i� [details are in Cuoco and Rotman (2013)].
In particular, because

xþx ¼ �1 and

xx ¼ 1;

a direct calculation shows that

NðzÞ ¼ ðaþ bxÞðaþ bxÞ
¼ ðaþ bxÞðaþ bxÞ
¼ a2 � abþ b2:

Hence, the same mantra applies:

Tomake NðzÞ a square inZ;make z a square inZ½x�:

Once again, teachers have a method for generating Eisenstein triples (see
Table 4.2).

4.2.4 What Is to Be Learned from This?

At one level, the methods given above could be viewed as no more than charming
tricks of no great consequence in mathematics education. It is certainly true that

Table 4.2 ðrþ sxÞ2 and the resulting norm

s = 1 s = 2 s = 3 s = 4

r = 2 3 + 3x, 3

r = 3 8 + 5x, 7 5 + 8x, 7

r = 4 15 + 7x, 13 12 + 12x, 12 7 + 15x, 13

r = 5 24 + 9x, 21 21 + 16x, 19 16 + 21x, 19 9 + 24x, 21

r = 6 35 + 11x, 31 32 + 20x, 28 27 + 27x, 27 20 + 32x, 28

r = 7 48 + 13x, 43 45 + 24x, 39 40 + 33x, 37 33 + 40x, 37

r = 8 63 + 15x, 57 60 + 28x, 52 55 + 39x, 49 48 + 48x, 48

r = 9 80 + 17x, 73 77 + 32x, 67 72 + 45x, 63 65 + 56x, 61

r = 10 99 + 19x, 91 96 + 36x, 84 91 + 51x, 79 84 + 64x, 76
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secondary school mathematics teachers can get by without them. However, when
viewed not as methods but as examples of a certain sensibility, they acquire greater
significance. That sensibility is a tendency to view the mathematics learned in
university as a useful tool in teaching secondary mathematics. This is a useful
sensibility for high school teachers to have.

For example, the way of thinking about arithmetic in complex numbers as
“algebra with i” with an extra simplification rule—exemplified above—is often
discouraged in secondary school mathematics. But it has quite a solid pedigree in
modern algebra and can provide a glimpse of the reduction technique used to
construct splitting fields for polynomials. Another example: In polynomial algebra,
being explicit about the interplay between formal and functional thinking (some-
thing that is often blurred in secondary texts) helps students develop an appreciation
for the “two faces” of algebra (Weyl 1995).

More generally, major themes in algebra—structure, extension, decomposition,
reduction, localization, and representation—can help teachers bring coherence and
parsimony to the entire secondary school curriculum.

4.3 From Secondary School to University

Now we look at a couple of mathematical threads that go in the opposite direction,
from secondary school to university. Or, since the exact boundary between sec-
ondary school and university varies from country to country, it might be better to
consider these simply as examples that go from some point in secondary school to a
more advanced point, be it in secondary school, university, or beyond.

4.3.1 Ptolemy’s Theorem

Consider the following secondary school mathematics problem.1

Given a cyclic quadrilateral whose sides are 2, 3, 5, 6, find the length of the
square of the diagonal which makes a triangle with sides of length 2 and 3 (see
Fig. 4.4).

Because the quadrilateral is inscribed in a circle, \ABC is supplementary to
\CDA, so / ¼ h� 180: Applying the Law of Cosines to both triangles formed by
the diagonal AC; we get

x2 ¼ 4þ 9� 2 � 6 cos h

¼ 25þ 36þ 2 � 30 cos h

1We are indebted to Dick Askey for suggesting the sequence of ideas developed here.
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Eliminating cos h and solving for x yields x ¼ ffiffiffiffiffi
21

p
. Now consider the same

problem with a general quadrilateral, as in Fig. 4.5. The same method yields

x2 ¼ b2cdþ a2cdþ abc2 þ abd2

abþ cd
:

The expression on the right provides a wonderful opportunity for students to
exercise what one might call algebraic insight. At first glance it is not obvious how
to factor the numerator, but if one regroups the products in a way that shares the
squared term with the other factors, it becomes easy to see:

x2 ¼ ðbcÞðbdÞþ ðacÞðadÞþ ðacÞðbcÞþ ðadÞðbdÞ
abþ cd

¼ ðacþ bdÞðadþ bcÞ
abþ cd

Another exercise in algebraic insight is to imagine what the corresponding
expression for y2 would look like. One could repeat the calculation, or one could
simply observe that y is in the same position with respect to ðb; c; d; aÞ as x is with
respect to ða; b; c; dÞ: Therefore the formula for y2 is obtained by performing the
cyclic permutation a ! b ! c ! d ! a: Without actually writing the expression
down, one can contemplate the effect of the permutation on the rightmost expres-
sion for x2. The three parenthetical factors in that expression come in two types.
Two of them, abþ cd and adþ bc; are obtained by multiplying pairs of adjacent
sides and adding the resulting products. One of them, acþ bd; is obtained by
multiplying pairs of opposite sides and adding the resulting products. The per-
mutation is going to swap the first two types and leave the second type unchanged.
This has the effect of causing a lot of cancellation when you multiply x2 and y2. The
swapped terms cancel each other out and we are left with

x2y2 ¼ ðacþ bdÞ2;

or

A

B θ

C

D
φ

6

5

3

2

x

Fig. 4.4 A cyclic
quadrilateral
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xy ¼ acþ bd:

This is Ptolemy’s theorem, a beautiful generalization of Pythagoras’s theorem.
Theorem (Ptolemy) In a quadrilateral inscribed in a circle, the product of the

diagonals is the sum of the products of oppose sides.
Pythagoras’s theorem is the special case where the quadrilateral is a rectangle.

4.3.2 A Question from a Secondary School Class

This section is inspired by a story from the PROMYS for Teachers program at
Boston University, recounted in Rosenberg et al. (2008). It starts with a question
that could come up in a secondary school geometry class:

If two triangles have the same perimeter and same area; are they congruent?

It is natural to assume the answer is no, if only on the grounds that if the answer
were yes it would be a well known theorem. However, it turns out to be surprisingly
difficult to come up with counterexamples. From an advanced point of view, the
reason for this is that the counterexamples live on a curve which, unlike the circle in
Sect. 4.2.1, is not easy to parameterize. We briefly sketch the derivation of that
curve here.

We want to parameterize the family of triangles with fixed perimeter p and fixed
area A: The radius r of the inscribed circle of such a triangle is related to A and p by
the equation

A ¼ p
2
r: ð4:3Þ

This can be seen by decomposing the triangle into three triangles with bases on
the sides of the triangle and vertices at the incenter, and adding up their areas,
taking note of the fact that the altitude of each of the smaller triangles is r (see
Fig. 4.6). It follows from (4.3) that all the triangles in the family have the same in

d

c

b

a

x
y

Fig. 4.5 A general cyclic
quadrilateral

58 A. Cuoco and W. McCallum



radius r; and they can all be circumscribed around a fixed circle, as in Fig. 4.6. We
consider the space of all triangles circumscribed around this circle, obtained by
varying the angles a, b, and c and keeping the base horizontal. This is a two
parameter space, since the angles are constrained by the condition that they must
add up to 2p. Every triangle is similar to a triangle in this space, since every triangle
can be scaled to have inradius r: Our family of triangles with perimeter p and area A
is a curve within that space, defined by a constraint on the angles a, b, and c, which
we now derive.

Another way of decomposing the triangle is to break it into 3 quadrilaterals
formed by the radii and the segments into which the sides are divided by the
perpendiculars from the incenter. Since the center of the inscribed circle is the
intersection of the angle bisectors, these quadrilaterals are divided into pairs of
congruent right triangles by the lines from the vertices to the center of the inscribed
circle (dotted in Fig. 4.6). Therefore these lines also bisect the angles a, b, and c.
Adding up the lengths of the 6 line segments around the perimeter we get

p ¼ 2r ðtan a
2
þ tan

b
2
þ tan

c
2
Þ: ð4:4Þ

From Eqs. (4.3) to (4.4) we see that, in our family of triangles with fixed area A
and fixed perimeter p; the sum of the tangents is also fixed;

tan
a
2
þ tan

b
2
þ tan

c
2
¼ k; where k is the constant

p2

4A
: ð4:5Þ

We can get an algebraic equation out of this by choosing parameters x ¼
tanða=2Þ and y ¼ tanðb=2Þ: Since aþ bþ c ¼ 2p, we have

c
2
¼ p� a

2
� b

2
;

so

tan
c
2

� �
¼ tan p� a

2
� b

2

� �
¼ � tan

a
2
þ b

2

� �
¼ � xþ y

1� xy
:

r

rr

α

β

γ

Fig. 4.6 Triangle and
inscribed circle
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Referring back to Eq. (4.5) we obtain, for fixed k; the equation

xþ y� xþ y
1� xy

¼ k;

or equivalently

x2yþ xy2 � kxyþ k ¼ 0: ð4:6Þ

This defines a curve in the xy-plane called an elliptic curve. Our original triangle
gives a point on this curve; conversely, given a point on the curve with x[ 0 and
y[ 0; we can reconstruct a triangle circumscribed around a circle of radius r with
area A and perimeter p: Moreover, one can verify that that if x and y are rational
numbers, then A and p are also rational numbers.

The method of finding rational points on elliptic curves using the secant method
is well-developed in number theory and has a venerable history. We won’t describe
it further here, referring the interested reader to (Silverman and Tate 1994). We
conclude with an example which is enjoyable to carry out by hand. The right
triangle with sides 3, 4, and 5 corresponds to a point on the curve defined by (4.6)
with k ¼ 6: In fact there are six points, depending on which side you choose as base
and how you orient the triangle: ð1; 2Þ, ð2; 1Þ, ð1; 3Þ, ð3; 1Þ, ð2; 3Þ, and ð3; 2Þ: Using
the secant method one can find the rational point 54

35 ;
25
21

� �
on this curve, which

corresponds to the triangle with side lengths 41
15,

101
21 , and

156
35 : Our method shows that

this triangle has perimeter 12 and area 6, just like the ð3; 4; 5Þ triangle.
The journey does not stop here. The family of elliptic curves described here is

closely related to the elliptic surfaced studied in (van Luijk 2007). Thus a journey
that started in high school leads to the frontiers of research today.

4.3.3 What Is to Be Learned from This?

Again, we present these two examples as examples of a sensibility. Just as it is
useful for high school teachers to view the mathematics learned in university as a
useful tool in teaching secondary mathematics, it is useful for faculty at universities
teaching prospective high school teachers to have the sensibility that the mathe-
matics of high school can be mined for advanced examples in their courses. These
two sensibilities are intertwined; together they could resolve the double
discontinuity.
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4.4 Implications for Teaching Abstract Algebra

The examples in Sect. 4.2 illustrate some of the many concrete applications of
algebra, algebraic geometry, and number theory to the work of teaching mathe-
matics at the secondary level, applications that are often missed in undergraduate
courses and professional development programs. The examples in Sect. 4.3 illus-
trate ways in which high school mathematics can be applied to deep questions that
show the utility of abstraction and of seeking structure in expressions. Courses in
abstract algebra, in particular, would be much more useful to prospective teachers
(and all undergraduate students, we claim) if they incorporated examples like these,
examples that show how abstract methods provide useful tools for the day-to-day
work of teaching and how questions and methods that live in high school mathe-
matics can motivate some of those abstract methods.

We conclude with some suggestions for preservice courses in abstract algebra
that we propose would contribute to closing the distance between school mathe-
matics, university mathematics, and mathematics as it is practiced by mathematics
professionals.

1. Abstractions should be capstones, not foundations—they should motivated with
concrete examples whenever possible. This “experience before formality” is one
of the hallmarks of mathematical work, and it is sometimes missing from
dogmatic expositions of established mathematical results.

2. Groups should introduced in an historically faithful way, as part of an intro-
duction to the Galois theory of polynomial equations.

3. The structural similarities between between Z and k½x� (k a field) should be a
major focus. These are the two major systems developed in school mathematics,
and their underlying structure (that of a principle ideal domain) can form a
bridge between arithmetic and algebra.

4. The development should follow the historical evolution of the ideas, showing
how algebra evolved from techniques for solving equations to a study of sys-
tems in which the “rules of algebra” hold.

5. Applications should include those that are foundational for high school teaching.
First, such applications can enrich and bring coherence to the mathematics that
students study; second, they can help teachers in their professional work, such as
designing lessons and tasks and sequencing topics; finally, to quote from
(CBMS 2012, p. 54), they can help teachers understand that

“the mathematics of high school” does not mean simply the syllabus of high school
mathematics, the list of topics in a typical high school text. Rather it is the structure of
mathematical ideas from which that syllabus is derived.
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Earlier texts, like the celebrated (Birkhoff and MacLane 2008), met many of
these principles, except for item 5 above. The text (Cuoco and Rotman 2013) is one
example of a course that attempts to meet all of them.2 Some of the applications
included in that course are:

• Pythagorean triples and the method of Diophantus.
• A historical development of C.
• The mathematics of task design.
• Periods of repeating decimals.
• Cryptography.
• Lagrange interpolation and the Chinese Remainder Theorem.
• Ruler and compass constructions.
• Gauss’ construction of the regular 17-gon.
• The arithmetic of Z½i� and Z½x�.
• Solvability by radicals.
• Fermat’s Last Theorem for exponents 3 and 4.

These are a mere sample of the ideas that have direct application to the work of
teaching. Again, from (CBMS 2012, p. 66), “It is impossible to learn all the
mathematics one will use in any mathematical profession, including teaching, in
four years of college—teachers need opportunities to learn further mathematics
throughout their careers.’’ Professional development programs that developed other
applications—in geometry, analysis, and statistics, for example—could carry this
program forward for career-long learning for practicing teachers.
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Chapter 5
A Friendly Introduction to “Knowledge
in Pieces”: Modeling Types of Knowledge
and Their Roles in Learning

Andrea A. diSessa

Abstract Knowledge in Pieces (KiP) is an epistemological perspective that has
had significant success in explaining learning phenomena in science education,
notably the phenomenon of students’ prior conceptions and their roles in emerging
competence. KiP is much less used in mathematics. However, I conjecture that the
reasons for relative disuse mostly concern historical differences in traditions rather
than in-principle distinctions in the ways mathematics and science are learned. This
article aims to explain KiP in a relatively non-technical way to mathematics edu-
cators. I explain the general principles and distinguishing characteristics of
KiP, I use a range of examples, including from mathematics, to show how KiP
works in practice and what one might expect to gain from using it. My hope is to
encourage and help guide a greater use of KiP in mathematics education.

Keywords Knowledge in pieces � Conceptual change � Complex systems

5.1 Introduction

5.1.1 Overview

Knowledge in Pieces (KiP) names a broad theoretical and empirical framework
aimed at understanding knowledge and learning. It sits within the field of “con-
ceptual change” (Vosniadou 2013), which studies learning that is especially diffi-
cult. While KiP began in physics education—in particular to provide a deeper

Some parts of this chapter are based on text in diSessa (2017), “Knowledge in Pieces: An
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understanding of the phenomenon of “prior conceptions” (misleadingly labeled as
“misconceptions”; Smith et al. 1993)—it has since engaged other areas, such as
mathematics, chemistry, ecology, computer science, and even views of race and
racism (Philip 2011).

I aim to produce a relatively non-technical introduction to KiP that can be
understood by those who are not experts in the field of conceptual change, KiP’s
“home discipline.” I emphasize breadth and “big ideas” over depth, while still
pointing in the direction of KiP’s distinctive fine structure and technical precision.
A longer but still general introduction to KiP for those who want to pursue these
ideas more deeply is diSessa et al. (2016).

Before beginning discussion in earnest, I would like to make two points about
my strategy of exposition. First, the initial examples I give will be from physics,
KiP’s “home turf.” I beg the (mathematical) reader’s indulgence in doing so, but it
allows me to select some of the best and most accessible examples of KiP analyses,
where its core features are transparent, and where some competitive advantages
over contrasting points of view are easiest to see. These examples are at the
high-school level, so I do not expect them to be too much of a conceptual challenge.
Mathematical examples will follow in Sects. 5.3 and 5.4. Second, with respect to
mathematical examples, there are, of course, perspectives in the mathematics lit-
erature that bear on the same topics. While I will mention some of these (see
comments and references in Sects. 5.3 and 5.4), careful comparative analysis is too
complex for the scope of this paper. Readers who already know the relevant per-
spectives from mathematics education, of course, should be prepared to elaborate
their own comparisons and conclusions.1

KiP is essentially epistemological: It aims to develop a modern theory of
knowledge and learning capable of comprehending both short-term phenomena—
learning in bits and pieces (hence the name, Knowledge in Pieces)—and long-term
phenomena, such as conceptual change, “theory change,” and so on. It aims to build
a solid two-way bridge between, on the one hand, theory, and, on the other hand,
data concerning learning and intellectual performance. “Two-way” implicates that
(a) the theory is strongly constrained by and built out of observation, but also that
(b) the theory can “project” directly onto what learners actually do as they think and
learn, giving general meaning to their actions. KiP is, thus, a reaction against
theories that are a priori, very high level, and consequentially are difficult to apply
to the messiness of real-world learning.

KiP shares important features with two major progenitors. The first is Piagetian
and neo-Piagetian developmental psychology, epitomized in mathematics
education by Les Steffe, Ernst von Glasersfeld, Robbie Case, and many others.

1While I provide specific hints later for more detailed comparisons on a per-topic basis, probably
the most effective single hint I can provide for reader-developed comparisons is to consider
(a) whether work on the same topic identifies intuitive pre-cursor ideas in detail (few do), including
their productive as well as problematic nature, and (b) whether data analysis includes extensive
examination and explanation of students’ in-process thinking, in addition to long-term compar-
isons. The presentation of distinctive KiP themes, just below, elaborates these points.
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The core unifying feature of KiP with this work is constructivism, the focus on how
long-term change emerges from existing mental structure. The second progenitor is
cognitive modeling, such as in the work of John Anderson (e.g., his work on
intelligent tutoring of geometry), or Kurt vanLehn (e.g., his work on students’
“buggy” arithmetic strategies). The relevant common feature with KiP in the case of
cognitive modeling is accountability to real-time data. A key distinctive feature of
KiP, however, is its attempt to combine both long-term and short-term perspectives
on learning. Piagetian psychology, in my view, was never very good at articulating
what the details of students’ real-time thinking have to do with long-term changes.
In complementary manner, I judge that cognitive modeling has not done well
comprehending difficult changes that may take years to accomplish.

I now introduce a set of interlocking themes that characterize KiP as a frame-
work. These will be elaborated in the context of examples of learning phenomena to
illustrate their meaning in concrete cases and their importance.

Complex systems approach—KiP views knowledge, in general, as a complex
system of many types of knowledge elements, often having many particular ex-
emplars of each type. Two contrasting types of knowledge are illustrated in the next
main section.

Learning is viewed as a transformation of one complex system into another,
perhaps with many common elements across the change, but with different orga-
nization. For example, students’ intuitive knowledge (see the definition directly
below) is fluid and often unstable, but mature concepts must achieve more stability
through a broader and more “crystalline” organization, even if many of the same
elements remain in the system. The pre-instructional “conceptual ecology” of
students must usually be understood with great particularity—essentially “intuition
by intuition”—in order to comprehend learning; general properties go only so far.
A number of such particular intuitions will be identified in examples.

I use the terms “intuitive” and “intuition” here loosely and informally to describe
students’ commonsense, everyday “prior conceptions.” However, consistent with
the larger program, I will introduce a technical model of a very particular class of
such ideas that has proven important in KiP studies.

A modeling approach—The learning sciences are still far from knowing
exactly how learning works. It is more productive to recognize this fact explicitly
and to keep track of how our ideas fail as well as how they succeed. Concomitantly,
KiP builds models, typically models of different types of knowledge, not a singular
and complete “theory of knowledge and learning,” and the limits of those models
are as important (e.g., in determining next steps) as demonstrated successes.

Continuous improvement—A concomitant of the modeling approach is a
constant focus on improving existing models, and, sometimes, developing new
models. In fact, the central models of KiP have had an extended history of
extensions and improvements (diSessa et al. 2016). It is a positive sign that the core
of existing models has remained in tact, while details have been filled in and
extensions have been produced to account for new phenomena.

I call the themes above “macro” because they are characteristic of the larger
program, and they are best seen in the sweep of the KiP program as a whole.
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In contrast, the “micro” themes, below, can be relatively easily illustrated in many
different contexts, which will be seen in the example work presented below.

A multi-scaled approach—I already briefly called out the commitment to both
short-term and long-term scales of learning and performance phenomena, a tem-
porally multi-scaled approach. Most conceptual change research, and, indeed, a lot
of educational research, is limited to before-and-after studies, and there is almost no
accountability to process data, to change as it occurs in moments of thinking.

A systems orientation also entails a second dimensional scale. Complex systems
are built from “smaller” elements, and indeed, system change is likely best
understood at the level of transformation and re-organization of system con-
stituents. So, for example, the battery of “little” ideas, intuitions, which constitute
“prior conceptions,” can be selected from, refined, and integrated in order to pro-
duce normative complex systems, normative concepts. Since normative concepts
are viewed as systems, their properties as such—both pieces and wholes—are
empirically tracked. I describe a focus on both elements and system-level properties
as structurally multi-scaled.

Richness and productivity—This theme is not so much a built-in assumption of
KiP, but it is one of the most powerful and consistent empirical results. Naïve
knowledge is, in general, rich and escapes simple characterizations (e.g., as isolated
“misconceptions,” simple false beliefs). Furthermore, learning very often—or
always—involves recruiting many “old” elements into new configurations to pro-
duce normative understanding. This is the essence of KiP as a strongly construc-
tivist framework, and it is one of its most distinctive properties in comparison to
many competitor frameworks for understanding knowing, learning, and conceptual
change. diSessa (2017) systematically describes differences compared to some
contrasting theories of conceptual change. In my reading, assuming richness and
productivity of naïve knowledge is comparatively rare, but certainly not unheard of,
in mathematics, just as it is in science.

Diversity—An immediate consequence of the existence of rich, small-scaled
knowledge is that there are many dimensions of potential difference among
learners. Each learner may have a different subset of the whole pool of “little”
intuitions, and might treat common elements rather differently. KiP may be unique
among modern theories of conceptual change in its capacity to handle diversity
across learners.

Contextuality—“Little” ideas often appear in some contexts, and not others.
Furthermore, as they change to become incorporated into normative systems of
knowledge, the contexts in which they operate may change. So, understanding how
knowledge depends on context is core to KiP, while it is marginally important or
invisible in competing theories. This focus binds KiP with situative approaches to
learning (“situated cognition”). See Brown et al. (1989) for an early exposition, and
continuing work by such authors as Jean Lave and Jim Greeno.
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5.1.2 Empirical Methods

KiP is not doctrinaire about methods, and many different ones have been used.
Two modes of work are, however, more distinctive. First, KiP has the devel-

opment and continuous improvement of theory (models) at its core. We in the
community articulate limits of current models, encourage the refinement of old
models and the development of new ones, when necessary.

Theory development, in turn, usually requires the richest data sources possible in
order to synthesize and achieve the fullest possible accountability to the details of
process. This is opposed to data that is quickly filtered and reduced to a priori codes
or categories. In practice, microgenetic or micro-analytic study of rich data sources
of students thinking (e.g., in clinical interviews) or learning (full-on corpora of
individual or classroom learning) have been systematically used in KiP not only to
validate, but also to generate new theory. See Parnafes and diSessa (2013) and the
methodology section of diSessa et al. (2016). This kind of data collection and
analysis is strongly synergistic with design-based research (diSessa and Cobb
2004), and iterative design and implementation of curricula—along with rich
real-world tracking of data in concert with more cloistered and careful “break-out”
studies of individuals—have been common.

I now proceed to concretize and exemplify the generalizations above with
respect both to theory development and empirical work. I will boldface themes from
the above list, as they are relevant. As mentioned, I start with examples having to do
with physics, but then proceed to mathematics.

5.2 Two Models: Illustrative Data and Analysis

In this section I sketch the two best-developed and best-known KiP models of
knowledge types. As such, the section illustrates KiP as a modeling approach.
While both models are both temporally and structurally multi-scaled, the first
model, p-prims, emphasizes smaller scales in time and structure. The second,
coordination classes gives more prominence to larger scales.

5.2.1 Intuitive Knowledge

P-prims are elements of intuitive knowledge that constitute people’s “sense of
mechanism,” their sense of which happenings are obvious, which are plausible,
which are implausible, and how one can explain or refute real or imagined possi-
bilities. Example p-prims are (roughly described): increased effort begets greater
results; the world is full of competing influences for which the greater “gets its
way,” even if accidental or natural “balance” sometimes exists; the shape of a
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situation determines the shape of action within it (e.g., orbits around square planets
are recognizably square). Comparable ideas in mathematics are that “multiplication
makes numbers bigger” (untrue for multipliers less than one); a default assumption
that a change in a given quantity generally implies a similar change in a related
quantity (more implies more; less implies less, whereas, in fact, “denting” a shape
may decrease area but increase circumference); and “negative numbers cannot
apply to the real world” (what could a negative cow mean?). In the rest of this
section, I will discuss physics examples only.

We must develop a new model for this kind of knowledge because, empirically,
it violates presumptions of standard knowledge types, such as beliefs or principles.
First, classifying p-prims as true or false (as one may do for beliefs or principles) is
a category error. P-prims work—prescribe verifiable outcomes—in typical situa-
tions of use, but always fail in other circumstances. Indeed, when they will even be
brought to mind is a delicate consequence of context (contextuality, both internal:
“frame of mind”; or external: the particular sensory presentation of the phe-
nomenon). So, for example, it is inappropriate to say that a person “believes” a
p-prim, as if it would always be brought to mind when relevant, and as if it would
always be used in preference to other ways of thinking (e.g., other p-prims, or even
learned concepts). Furthermore, students simply cannot consider and reject p-prims
(a commonly prescribed learning strategy for dealing with “misconceptions”).
Impediments to explicit consideration are severe: There is no common lexicon for
p-prims, and people may not even be aware that they have such ideas. Furthermore,
“rejection” does not make sense for ideas that usually work, nor for ideas that may
have very productive futures in learning (see upcoming examples).

Example data and analysis: J, a subject in an extended interview study (diSessa
1996), was asked to explain what happens when you toss a ball into the air.
J responded fluently with a completely normative response: After leaving your
hand, there is only one force in the situation, gravity, which slows the ball down,
eventually to reverse its motion and bring it back down.

Then the interviewer asked a seemingly innocuous question, “What happens at the
peak of the toss?”Rather than responding directly, J began to reformulate hermodel of
the toss. She added another force, air resistance, which is changing, “gets stronger and
stronger [as if to anticipate an impending balance and overcoming; see continuing
commentary] to the point where when [sic] it stops.” But then, she introduced yet
another force, an upward one, which is equal to gravity, “in equilibrium for a second”
at the top, before yielding to gravity. Starting anew, she provided a source for the
upward force: It comes from your hand, and it “can only last so long against air and
against gravity.” In steps, she further decided that it’s just gravity that is opposing the
upward force, not air resistance, and gradually she reformulated the whole toss as a
competition where the upward force initially overbalances gravity, reaching an
equilibrium at the top, and then gravity takes over.

The key to understanding these events is that the interviewer “tempted” J to
apply intuitive ideas of balancing and overcoming; he asked about the peak because
the change of direction there looks like overcoming, one influence is getting
weaker, or another is getting stronger. J “took the bait” and reformulated her ideas
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to include conflicting influences: The downward influence is gravity, but she
struggled a bit to find another one, first trying air resistance, getting “stronger and
stronger,” but then introducing an upward force that is changing, getting weaker
and weaker. This is a striking example of contextuality: J changed her model
entirely after focusing attention on a particular part of the toss that suggested
balancing. However, more surprises were to come.

Over the next four sessions, the interviewer continually returned to the tossed
ball, providing increasingly direct criticism. “But you said the upward force is gone
at the peak of the toss, and also that it balances gravity there. How can it both be
zero and also balance gravity?” Over the last two sessions, the interviewer broke
clinical neutrality and provided a computer-based instructional sequence on how
force affects motion, including the physicist’s one-force model of the toss. At the
end of the instructional sequence, J was asked again to describe what happens in the
toss. Mirroring her initial interview but with greater precision and care, she gave a
pitch-perfect physics explanation. But, when asked to avoid an incidental part of her
explanation (energy conservation), J reverted to her two-force model. So, we know
that J exhibits not only surprising contextuality in terms of what explanation of a
toss she would give, but that contextuality, itself, seems strongly persistent, a core
part of her conceptual system.

After the completion of interviewing sessions, J reflected that she knew that it
would appear to others that she described the toss in two different ways, and the
“balancing” one might be judged wrong. But she felt both were really the same
explanation.

Salient points: The dominant description of intuitive physics in the 1990s was
that it constituted a coherent theory (see diSessa 2014, for a review and references),
and the two-force explanation of the toss was a perfect example. External agents
(the hand) supply a force that overcomes gravity, but is eventually balanced by it,
and finally overcome. The KiP view, however, is that the “theory” only appears in
particular situations (e.g., when overcoming is salient). Indeed, J did not seem to
have the theory to start, but constructed it gradually, over a few minutes.
Contextuality is missing from the then “conventional” view; “theories” compa-
rable to Newton’s laws don’t come and go depending on what you emphasize in a
visual scene. J’s case is particularly dramatic since she never relinquished her
intuitive ideas, even while she improved her normative ones. Instead,
situation-specific saliences continued to cue one or the other “theory” of the toss.
The long-term stability of an instability (the shift between two models of a toss)
shows an attention to multiple temporal scales that is unusual in conceptual
change studies but critical to understanding J’s frame of mind. What happened in a
moment each time it happened (shifting attention and corresponding shift in model
of the toss), nonetheless continued to happen regularly over months of interviewing.
Such critical phenomena test the limits of observational and analytical methods. For
example, before and after tests are very unlikely even to observe the phenomenon.
Attributing “misconceptions” categorically to a subject—“J has the non-normative
dual force model of a toss”— fails to enfold this essentiallymulti-scaled and highly
contextual analysis of J.
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Another subject in the same study, K, started by asserting the two-force model of
the toss. However, this subject reacted to similar re-directions of her attention
concerning her explanation by completely reformulating her description to the
normative model. She then observed that she had changed her mind and explained
the reasons for doing so. The two-force model was then gone from the remainder of
her interviews.

Ironically, a standard assessment employing first responses would classify J as
normative, and K as “maintaining the naïve theory.” Rather, K was a very different
individual who could autonomously correct and stabilize her own understanding. J,
in contrast, alternated one- and two-force explanations, and didn’t really feel they
were different. KiP methodologies did not assume simple characterization of either
student’s state of mind (richness), and they could also therefore better document
and understand their differences (diversity). Neither J nor K would be well char-
acterized by their initial responses. J, and not K, was deeply committed to a bal-
ancing view of many aspects of physics, even if both found balancing salient and
significant in some cases.

Some lessons learned: The knowledge state of individuals is complex, and
assessments cannot presume first responses will coherently differentiate them. The
assumption of coherence in students’ understanding is plainly suspect; J consis-
tently maintained both the correct view and the “misconception,” even in the face of
direct instruction. The interviewer, knowing that fragile knowledge elements like
p-prims are important, primed one (balancing, at the peak), and saw its dramatic
influence. P-prims explain a lot about the differences and similarities between J and
K (both used balancing, but J had a much greater commitment to it), but not
everything. In continuing study (diSessa et al. 2002), we discovered that J showed
an unusual and often counterproductive view of the nature of physics knowledge,
which K did not. Modesty is the best policy: The complex conceptual ecology of
students needs continuing work (continuous improvement).

One lesson learned here is that p-prims behave very differently than normative
concepts. In terms that might be familiar to mathematics education researchers,
p-prims provide a highly articulated version (specific elements whose use and
contextuality can be examined across many circumstances) of a student’s “concept
image” (Tall and Vinner 1981). We need a different model to understand sub-
stantial, articulate and context-stable ideas, something roughly akin to “concept
definition,” but something that, in my view, uses KiP to better approach the cog-
nitive and learning roots of expertise.

5.2.2 Scientific Concepts

Coordination classes constitute a model aimed at capturing central properties of
expert concepts.
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According to the coordination class model, the core function of concepts is to
read out particular concept-relevant information reliably across a wide range of
circumstances, unlike the slip-sliding activation of p-prims. Figure 5.1 explains.

Figure 5.2 shows the primary difficulty in creating a coherent concept. All
possible paths from world (or imagined world) to concept attributes must result in
the same determination. This is called alignment, and it is a property of the whole
system, not of any part of it.

A physics example of lack of alignment is that students will sometimes deter-
mine forces by using intuitive inferences (“An object is moving; there must be a
force on it.”), and sometimes by “formal methods” (“An object is moving at a
constant speed; according to Newton’s third law, there is no net force on it.”).
A mathematical example is that students may deny that an equator on a sphere with
three points marked on it is a triangle, even if they have agreed that any part of a
great circle is a “straight line,” and that a triangle is any three connected straight line
segments.

Coordination classes are large and complex systems. This is structurally unlike
p-prims, which are “small,” simple, and relatively independent from one another.
Alignment poses a strict constraint on all possible noticings (e.g., noticing F1 or F2
in Fig. 5.2) and all possible inferences (e.g., I1 and I2): All paths should lead to the
same determination. That is, there is a global constraint on all the pieces of a

Fig. 5.1 Coordination classes allow reading out information relevant to concepts, here illustrated
by “location,” from the world. The readout happens in two stages. (1) “See” or “notice” involves
extracting any concept-relevant information: “The cat is above the mat,” and “The cat is touching
the mat.” (2) “Infer” draws conclusions specifically about the relevant information (location) using
what has been seen: “The cat is on the mat.”

Fig. 5.2 In situations where multiple features (F1, F2) are available, different choices of what to
observe may lead to different inferences (I1, I2) and potentially contradictory determinations (D1,
D2) of the “same” information
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coordination class, which makes the model essentially multi-scaled. In this case,
multi-scaled refers to the structure of the knowledge system—pieces and the whole
system—rather than to its temporal properties, which were emphasized with J.

I will not belabor a full taxonomy of parts of coordination classes, but, because it
is relevant to an example from mathematics (Sect. 3.1), I note that a coordination
class needs to include relevance, in addition to noticings and inferences. Relevance
means that a coordination class needs to “know” when a concept applies and when
information about it must be available. If you are asked about slope, there must be
some available information about “rise” and “run,” and it behooves one to attend to
that information.

Dufresne et al. (2005) provided an accessible example of core coordination class
phenomena. They showed two groups of university students, engineering and social
science majors, various simulated motions of a ball rolling along a track that dipped
down, but ended at its original height. They asked which motion looked most
realistic. Subjects saw the motions in two contexts: one that showed only the focal
ball, and another that also showed a simultaneous and constant ball motion in a
parallel, non-dipping path. The social scientists’ judgments of the realism of the
focal motion remained nearly the same from the one- to two-ball situation. But, the
engineers showed a dramatic shift, from preferring the correct motion to preferring
another motion that literally no one initially believed to be realistic. In the two-ball
case, engineers performed much worse than social scientists!

Using clinical interviews, the researchers confirmed that the engineers were
looking at (“noticing”) different things in the different situations. Relative motion
became salient with two balls, changing the aspects of the focal motion that were
attended to. In the two-ball presentation, a kind of balancing, “coming out even”
dominated their inferences about realism. The very same motion that they had
resoundingly rejected as least natural became viewed as most realistic.

Lessons learned: Scientific concepts are liable to shifts of attention during
learning, and thus different (incoherent) determinations of their attributes. This is an
easily documentable feature of learning concepts such as “force,” and there is every
reason (and some documentation) to believe this is also true for mathematical
concepts. So, people must learn a variety of ways to construe particular concepts in
various contexts, ways that are differentially salient in various conditions, yet all
determinations must “align.” Again, this local/global coherence principle shows
KiP’s attention to multiple scales of conceptual structure.

It is onlymildly surprising that the “culprit” inference here is a kind of balancing, as
implicated in J’s case. So, once again, a relatively small-scaled element, similar to
balancing p-prims, plays a critical role. Balancing is a core intuitive idea, but it also
becomes a powerful principle in scientific understanding (productivity). Changes in
kinetic and potential energy do always balance out. In this case, engineering students
have elevated the importance and salience of balancing compared to social scientists,
but have not yet learned very well what exactly balances out, and when balancing is
appropriate (relevance). Certain p-prims are thus learned to be powerful, but they have
not yet taken their proper place in understanding physics. Incidentally, this analysis
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also accounts for a very surprising difference (diversity) between different classes of
students—engineers and social scientists.

P-prims and coordination classes are nicely complementary models. Within
coordination class theory, p-prims turn out to account for certain problems (mainly
in terms of inappropriate inferences), but they also can lie on good trajectories of
learning, in constructing the overall system. Balancing is a superb physical idea, but
naïve versions of balancing need to be developed precisely and not overgeneralized.
Linearity is a comparable idea in mathematics. It is a wonderful and powerful idea,
but it does not work, for example, for functions in general. Sin(a + b) is not
sin(a) + sin(b). As balancing and linearity develop, they both need to be properly
coordinated with checks and other ways of thinking.

5.3 Examples in Mathematics

This section displays some mathematical examples. The field of KiP analyses in
mathematics is less rich than for physics, and overall trends are less well scouted
out. But, to give a sense of what KiP looks like in mathematics and to encourage
further such work is a primary goal of this article.

5.3.1 The Law of Large Numbers

Joseph Wagner (2006) used the main ideas of coordination class theory to study the
learning of the statistical “law of large numbers”: The distribution of average values
in larger samples of random events hews more closely to the expected value
(long-term average) than for smaller samples. In complementary manner, smaller
samples show a greater dispersion; a greater proportion of their averages will be far
from the expected value. So, if one uses a sample of 1000 coin tosses, one is nearly
assured that the sample will have an average close to 50% heads and 50% tails.
A sample of 10 tosses can easily lead to averages of, say, 70% heads and 30% tails.
In the extreme case, a single toss, one is guaranteed of “averages” that are as far as
possible from the long-term average: one always gets 100% heads, or 100% tails.

Wagner discovered that students often showed canonical coordination class
difficulties during learning. Many had exceedingly long trajectories of learning,
corresponding to learning in different contexts of use of the law of large numbers.
In more technical detail, thinking in different contexts typically involves different
knowledge (different noticings and different inferences), which may need to be
acquired separately for different contexts. Furthermore, reasoning about the law in
each context must align in terms of “conceptual output” (e.g., what is the relevant
expected value) across all contexts. In short, contextuality is a dramatic problem
for the law of large numbers, and systematic integrity (a large-scale structural
property—in fact, the central-most large-scale property of coordination classes) is
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hard won in view of the richness of intuitive perspectives that may be adopted local
to particular contexts (small-scale structure; think p-prims).

I present an abbreviated description one of Wagner’s case studies to illustrate.
Similar to the case of J, this is a fairly extreme case, but one in which characteristic
phenomena of coordination class theory are easy to see. In particular, we shall see that
learning across awide range of situations appears necessary. The law of large numbers
might not even appear to the learner as relevant to some situations, or it might be
applied in a non-aligned way, owing to intuitive particulars of the situations. I sketch
the subject’s learning according to diSessa (2004), although a fuller analysis on most
points and a more extensive empirical analysis appear in Wagner (2006).

The subject, called M (“Maria” in Wagner 2006), was a college freshman taking
her first course in statistics.Wagner interviewed her onmultiple occasions throughout
the term (methodologically similar to J’s study), and used a variety of near isomorphic
questions involving the law of large numbers. The questions asked whether a small or
large sample would be more likely to produce an average within particular bands of
values, bands that include the expected value, or bands that are near or far from it.
Would you choose a small or large sample if you wanted to get an average percentage
of heads in coin tosses between 60 and 80% of the tosses? The law of large numbers
says you would want a smaller number of tosses; in contrast, a very large number of
tosses is almost certain to come out near 50% heads.

We pick up M’s saga after she learned, with some difficulty, to apply the law of
large numbers to coin tosses. Just after an extensive discussion of the coin situation,
the interviewer (Jo) showed M a game “spinner,” where a spun arrow points to one
of 10 equal angular segments. Seven of the segments are blue, and three are green.
Jo proceeded to ask M whether one would want a greater or lesser number of spins
if one wanted to get an average of blues between 40 and 60 percent of the time.

M: OK. … Land on blue? … Well, 70% of the // of that circle is blue. Yeah.
Seventy percent of it is blue, so, for it to land between 40 and 60 percent on
blue, then, I would say there really is no difference. [She means it doesn’t
make a difference whether one does few or a lot of spins.]

Jo: Why?
M: Because if 70% of the // the circle, or, yeah, the spinner is blue, so … it’s most

likely going to land in a blue area, regardless of how many times I spin it. It
kinda really doesn’t matter. It’s not like the coins…

M is saying that she does not see the spinner situation as one in which the law of
large number applies. The coordination class issue of relevance defines one of her
problems. The larger data corpus suggests that a significant part of the problem is
that M does not see that the concept of expected value applies to the spinner. She
knows that in one spin, 70% of the time you will get blue, and 30% of the time you
will get green. She reasons pretty well about “chances” for individual spins. But she
simply does not believe that the long-term average, the expected percentage of
blues or greens, exists. She “sees” chances, but does not infer from them a
long-term average, nor even appear to know that a long-term average exists in this
case.
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Jo showed M a computer simulation of the spinner situation and proposed to do
an experiment of plotting the result (histogram) of many samples of a certain
number of spins. Would the percentages of blue pile up around any value, the way
coin tosses always pile up around 50%? M was reluctant to make any prediction at
all. But she very hesitantly suggested that the results might pile up around 70%.
When the simulation was run, M was evidently surprised. “It does peak [pile up]
around 70!!”

Here, we are at a disadvantage because we know much less about the relevant
p-prims (or similar knowledge elements) that are controlling M’s judgments, unlike
the fact that, for J, the interviewer suspected balancing might provoke a different
way of thinking about the toss, or that Dufresne et al. found that “balancing out”
also sometimes controlled engineers’ judgments about the realism of depicted
motions of rolling balls. A good coordination class analysis demands a better
analysis than the data here allow. However, a hint was offered earlier in the con-
versation when Jo pressed M to explain how the spinner differed from coins.
M reported, “The difference, uh, between the coins and this [spinner] is that, in
every toss, in the coin, I know that there’s a … 50% chance of getting a head, 50%
chance of getting a tail.” But with a spinner, “It’s just not the same.” Although M
cannot put her finger on the difference, it seems plausible that she sees the 50–50
split of a coin flip to be inherent in the coin, “in every toss…,” while the spinner
arrow, per se, does not visibly (to her) have 70–30 in its very nature. An alternative
or contributing factor involves the well-known fact concerning fractions that stu-
dents seem conceptually competent first with simple ones, like ½. But, again, there
is not enough data to distinguish possibilities.

Independent of the reason, the big picture relevant to coordination classes is that
M simply does not see the spinner as essentially similar to coins. The relevance part
of her developing coordination class is the most obvious problem. In particular, she
doesn’t naturally see an expected value as relevant to (nor determinable for)
spinners. This case has a happy ending because the empirical (computer simulation)
result was enough to convince M that expected value existed in the spinner case,
and she began to reason more normatively about Jo’s questions. To summarize,
there was a conceptual contextuality that prevented using the same pattern of
reasoning, the law of large numbers, in different situations. M needed to learn that
expected value existed for spinners, and that it related to the “chances” concerning a
single case in the same way as for coins: The long-term expected average is the
same as the “chances” for a single case.

The final case of contextuality I report (there are many others!) concerns the
average height of samples of men, corresponding to men in the U.S. registering for
the military draft at small or large post offices. If the average height in the U.S. is
5 ft 9 in., would a small or large post office (small or large sample) be more likely
to find an average height for one day of more than 6 ft? At first, M had no idea how
to answer the question. Pressed, she offered an uncertain reference to larger sets of
numbers having smaller averages. The law of large numbers was, again, invisible to
her in this context.
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Jo improvised yet another context. Would you rather take a big or small sample
of men at a university in order to find the average height? M was quick and
confident in her answer. A larger sample would be “more representative,”2 “more
accurate.” Arguably, the sampling context evoked a memory or intuition that larger
samples are “better.” Having made the connection to this intuition, M applied it
relatively fluently to the post office problem.

The reason “representativeness” and “accuracy” were cued in the university
sampling situation and not previously might not be clear. But M did not mention
these intuitive ideas in any previous problems, and, once cued, she took those ideas
productively into new contexts. The combination of contextuality and produc-
tivity, shown here, is highly distinctive of KiP analyses. Some intuitions, even if
they are not usually evoked, can be useful if, somehow, they are brought to the
learner’s attention.

The next example is among the first applications of KiP to mathematics (a
decade earlier than Wagner’s work), and the final one is among the latest (a decade
later than Wagner).

5.3.2 Understanding Fractions

Smith (1995) did an investigation of student understanding of rational numbers and
their representation as fractions according to broad KiP principles. He began by
critiquing earlier work as (a) using a priori analysis of dimensions of mathematical
competence, and also (b) systematically assessing competence according to success
on tests. Instead, he proposed to look at competence directly in the specific
strategies students use to solve a variety of problems. In particular, he did an
exhaustive analysis of strategies used by students during clinical interviews on a set
of fractions problems that was carefully chosen to display core ideas in both routine
and novel circumstances. Smith looked most carefully at the strategies used by
students who could be classified as “masters” of the subject matter. So, his intent
was to describe the nature of achievable, high-level competence by looking directly
at the details of students’ performance.

The results were surprising in ways that typify KiP work. Masters used a
remarkable range of strategies adapted rather precisely to particulars of the prob-
lems posed. While they did occasionally use the general methods that they had been
taught (methods like converting to common denominators or converting to deci-
mals), general methods appeared almost exclusively when none of their other

2Kahneman and Tversky (1972) provide a now-canonical treatment of statistical “misconcep-
tions,” including representativeness. However, their theoretical frame is very different from
KiP. Productivity, in particular, is missing, unlike the cited role of representativeness in M’s
learning. These authors maintain that, to learn, intuitions must be excluded, and formal rules must
be followed without question. Pratt and Noss (2002) provide a KiP-friendly treatment of statistical
intuitions.
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methods worked. A careful look at textbooks suggested that it was unlikely that
many, if any, of the particular strategies had been instructed. Student mastery seems
to transcend success in learning what is instructed.

In net, observable expertise is: (a) “fragmented” (contextual) in that it is highly
adapted to problem particulars; (b) rich, composed of a wide variety of strategies;
and (c) significantly based on invention, rather than instruction. The latter two
points suggest productivity, the use of rich intuitive, self-developed ideas, and that
that richness is maintained into expertise, in contrast to what conventional
instruction seems to assume.

One can summarize Smith’s orientation so as to highlight typical KiP strategies,
which contrast with those of other approaches:

• avoiding a priori or “rational” views of competence in favor of directly
empirical approaches: Look at what students do and say about what they do.

• couching analysis in terms of knowledge systems (a complex systems
approach) of elements and relations among them (e.g., particular strategies
were often, but not always, defended by students by reference to more general,
instructed ways of thinking).

• discovering that the best student understanding, not just intuitive precursors, is
rich (many elements), diverse, and involves a lot of highly particular and con-
textually adapted ideas (contextuality). Thus it is in some ways more similar to
pre-instructional ideas than might be expected.

Smith did not use the models (p-prims, etc.) that later became the recognizable
core of KiP. But, still, the distinctiveness of a KiP orientation proved productive.
I believe this is an important lesson, that, independent of technical models and
details, KiP’s general principles and orientations can provide key insights into
learning that are not available in other perspectives. Newcomers to KiP might do
well to start their work at this level, and move to more technical levels when those
details come to seem sensible, and when and if the value of technicalities becomes
palpable.

5.3.3 Conceptual and Procedural Knowledge in Strategy
Innovation

The relationship of procedural to conceptual knowledge is a long-standing,
important topic in mathematics education. There is a general agreement that one
should strike a balance between these modes. However, at a more intimate level, the
detailed relations should be important. What conceptual knowledge is important,
when, and how? It is known that students can (e.g., Kamii and Housman 2000) and
do (e.g., Smith’s work, above) spontaneously innovate procedures. How might
conceptual knowledge be important to innovation, specifically what knowledge is
important, and what is the nature and origin of those resources?
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Levin (2012) studied strategy innovation in early algebra. Her study involved a
student who started with an instructed guess-and-check method of solving problems
like: “The length of a rectangle is six more than three times the width. If the
perimeter is 148 ft., find the length and width.” Over repeated problem solving, this
student moved iteratively, without direct instruction, from guess-and-check to a
categorically different method: a fluent algorithmic method that mathematicians
would identify as linear interpolation/extrapolation. One of the interesting features
of the development was that intuitive “co-variation schemes,” more similar to
calculus (related rates) than anything instructed in school, rooted his development
(productivity). Indeed, his development could be traced through six distinct levels
of co-variation schemes, progressively moving from qualitative (the “more implies
more” intuition, but in a circumstance where it is productive), toward more quan-
titatively precise, general, and “mathematical-looking” principles.

In order to optimally track and generalize this student’s progress, Levin extended
the coordination class model to what she calls a “strategy system” model,
demonstrating the generative and evolving nature of KiP (continuous improve-
ment). Her model maintained a focus on perceptual categories (“seeing” in
Fig. 5.1), and inferential relations (e.g., co-variation schemes). But there were also
theoretical innovations: Typically more than one coordination class is involved in
strategy systems. General conceptions (inferences) specifically supported proce-
dural actions in particular ways.

In addition to the core co-variational idea, a cluster of intuitive categories, such
as “controller,” “result,” “target,” and “error” played strongly into the student’s
development. All in all, Levin’s study showed the surprising power of intuitive
roots—ones that may never be invoked in school—and provided a systematic
framework for understanding their use in the development of procedural/conceptual
systems.

5.3.4 Other Examples

In addition to what was presented above, I recommend a few other examples of KiP
work that will be helpful for mathematics education researchers with different
specialties in order to understand the KiP perspective. Andrew Izsák’s has devel-
oped an extensive body of work using KiP to think about learning concerning, for
example, area (Izsák 2005), and early algebra (Izsák 2000). Similarly Adiredja
(2014) treated the concept of limit from a KiP perspective. Adiredja’s analysis is
important in the narrative of this article in that it takes steps to comprehend learning
of the topic, limits, at a fine grain-size, including the productivity and not just
learning difficulties that emerge from prior intuitive ideas. The work may be
profitably contrasted with that of Sierpinska (1990) and Tall and Vinner (1981) on
similar topics.
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5.4 Cross-Cutting Themes

In this final section, I identify KiP’s position and potential contributions to two
large-scale themes in the study of learning in mathematics and science.

5.4.1 Continuity or Discontinuity in Learning

I believe that one of the central-most and still unsettled issues in learning concerns
whether one views learning as a continuous process or a discontinuous one. In
particular, how do we interpret persistent learning problems that appear to afflict
students for extended periods of time? In science education, so-called “miscon-
ceptions” or “intuitive theories” views treat intuitive ideas as both entrenched and
unproductive. They are assumed to be unhelpful—blocking, in fact—because they
are simply wrong (Smith et al. 1993). In mathematics education, one also finds a lot
of discussion about misconceptions (e.g., concerning graphing, Leinhardt et al.
1990) and also about the essentially problematic nature of “intuitive rules” such as
“more implies more” (Stavy and Tirosh 2000). But, more often than in science,
researchers implicate discontinuities of form, rather than just content. For example,
Sierpinska (1990) talks about basic “epistemological obstacles,” large-scale chan-
ges in “ways of knowing.” Vinner (1997) talks about “pseudo-concepts” as
bedeviling learners, and some interpretations of the distinction between process and
object conceptualizations in mathematics (Sfard 1991) put process forms as inferior
to conceptions that are at the level of objects (not necessarily Sfard’s contention).
Or, the transition from process to object modes of thinking is always intrinsically
difficult. Tall (2002) emphasizes the existence of discontinuities possibly due to
deep-seated brain processes (“the limbic brain;” sensory-motor thinking). Along
similar lines (as anticipated in footnote 2), Kahneman and Tversky’s view of dif-
ficulties in learning about chance and statistics relies on so-called “dual process”
theories of mind. (See Glöckner and Witteman 2010, for a review and critical
assessment.) Instinctive (intuitive) thinking must be replaced with a categorically
different kind of thinking based on a conscious and explicit rule following.

On the reverse side, mathematics education researchers sometimes have sup-
ported the productivity of intuitive ideas (e.g., Fischbein 1987), and, most partic-
ularly, constructivist researchers have pursued important lines of continuity
between naïve and expert ideas (Moss and Case 1999, is, in my view, an excep-
tional example from a large literature). However, very few studies approach the
detail and security of documentation of elements, systems of knowledge, and
processes of transformation of the best KiP analyses.

The issues are too complex and unresolved for a discussion here, but KiP offers a
view and accomplishments to support a more continuous view of learning and to
critique discontinuous views. For example, both experts and learners use intuitive
ideas, even if their knowledge is different at larger scales of organization.
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Gradual organization and building of a new system need not have any essential
discontinuities: There may not be any chasm separating the beginning from the end
of a long journey. It is just that, before and after, things may look quite different.
A core difficulty in learning might simply involve (a) a mismatch between our
instructional expectation concerning how long learning should take and the realities
of the transformation, and (b) a lack of understanding of the details of relevant
processes. KiP offers unusual but tractable and detailed models of small-scale,
intuitive knowledge that can support its incorporation into expertise, and method-
ologies capable of discovering and carefully describing particular elements. These
issues are treated in more detail in Gueudet et al. (2016).

5.4.2 Understanding Representations

To conclude, I wish to mention two KiP-styled studies concerning the general
nature of representational competence—central to mathematical competence—and
the roles of intuitive resources in learning about representations.

Sherin (2001) undertook a detailed study of how students use and learn with
different representational systems (algebra vs. computer programs) in physics. One
of Sherin’s key findings was that p-prim-like knowledge mediates between
real-world structure (“causality”) and representational templates. For example, the
idea of “the more X, the more Y” (e.g., more acceleration means greater force)
translates into the representational form “Y = kX” (e.g., F = ma). Sherin’s work will
be most interesting to mathematics education researchers interested in how repre-
sentations become meaningful in thinking about real-world situations (modeling),
how such situations bootstrap understanding of mathematical structure, and the
detailed role that intuitive knowledge plays in these processes. This work builds on
similar earlier work by Vergnaud (1983), but in distinctly KiP directions.

Finally, diSessa et al. (1991) studied young students’ naïve resources for
thinking about representations. In contrast to misconceptions-styled work, we
uncovered very substantial expertise concerning representations. However, the
expertise was different than what is normally expected in school. It had more to do
with the generative aspects of representation (e.g., design and judgments of ade-
quacy) and less to do with the details of instructed representations. This repository
of intuitive competence is essentially ignored in school instruction, an insight
shared with a few (e.g., Kamii and Housman 2000), but not many, mathematics
education researchers.
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Chapter 6
History of Mathematics, Mathematics
Education, and the Liberal Arts

Michael N. Fried

Abstract This paper considers how the history of mathematics, if it is taken
seriously, can become a mode of thinking about mathematics and about one’s own
humanness. What I mean by the latter is that by studying the history of mathematics
rather than simply using it as a tool—and that means attempting to understand it as
an historian does—one becomes aware of how mathematics is something human
beings do that therefore informs our human identity. In this way, the history of
mathematics in mathematics education has the potential to make us fuller human
beings, which is at the heart of the educational tradition known as the “liberal arts.”
By considering the nature of the liberal arts, we may understand better the meaning
of the history of mathematics in mathematics education and, indeed, the meaning of
mathematics education tout court.

Keywords History of mathematics � Humanistic mathematics � Liberal arts
Whiggism

This paper concerns the history of mathematics and mathematics education.
I should say from the start that I will not display results from empirical research
showing how the history of mathematics is good for this or that. This is not because
I belittle such research. Not at all. However, much of that research treats the history
of mathematics as a tool, to use the phrase Jankvist (2009) has popularized. Again, I
have no objection to questions about tools and utility. Indeed, the last part of my
lecture concerning the liberal arts is in some way a matter of profound utility.
Nevertheless, emphasizing the use of the history of mathematics, as I pointed out in
my 2001 paper on the subject (Fried 2001), draws us away from the meaning of the
history of mathematics in mathematics education. It is that—the meaning of the
history of mathematics in mathematics education as something to study rather than
to use—that I wish to elaborate here.
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The paper will comprise four parts. By way of introduction, I will say a few
words about D. E. Smith, whose importance both in the field of mathematics
education—not the least because of his involvement in ICMI, the organization
behind this conference—and in the history of mathematics is undeniable. Next, I
will discuss the nature of history and its character as a discipline. Following that, I
will make the point that a non-historical tendency enters mathematics teaching
when history is viewed as something to be used only, and that that leads to a kind of
dilemma for the teacher who has a serious interest in history. This third section will
end, however, by suggesting that that very dilemma can provide us with an
opportunity to review what we really mean by mathematics education or, rather, by
the mathematically educated person. Finally, I will turn briefly to the old idea of the
liberal arts. Taking the term artes liberales literally, these are the arts of a “free
human being,” or, better, of a fully human being. Thinking about the liberal arts in
connection to the history of mathematics, I will claim, has the potential of bringing
us back to a mathematics education aiming to make our students more fully human.
And with that we may obtain insight into the meaning both of the history of
mathematics in mathematics education and mathematics education itself.

6.1 By Way of Introduction: David Eugene Smith

Despite its apparent distance from mainstream empirical research in mathematics
education, the subject of my paper is, I believe, appropriate for the ICME com-
munity. For one, there are several other sessions in the conference centered on
historical ideas. But, more than that, the history of mathematics was a central
preoccupation of David Eugene Smith (1860–1944), whose remarks in
L’Enseignement Mathématique in 1905 set into motion the creation of ICMI in the
first place. For this reason alone it is worth saying a few words about Smith. But
thinking about Smith and his views also brings us directly into the set of ideas I
wish to develop in this paper.

As most of you probably know, the 1905 article in L’Enseignement
Mathématique was a response to an inquiry (published in the same volume of the
journal) concerning the reforms necessary for the teaching of mathematics. Smith
was only one respondent among others including such luminaries as Gino Loria and
Emile Borel. It was Smith’s view, though, that what was urgently needed was an
international organization dedicated to questions on mathematics teaching. And,
partly in response to Smith’s proposal, the ICMI was created three years later. But
more pertinent to my subject in this paper, in that same short piece in 1905, Smith
also took the opportunity to express his views about the importance of the history of
mathematics. He said that, regarding the training of mathematics teachers, besides
knowing integral and differential calculus, the teacher, “…also ought to know, in a
precise way, the historical development of subjects being taught, why were they
were taught, how were they presented in different places” (Smith 1905, p. 470, my
translation).
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Smith had already stated a similar position more than once in his earlier work,
The Teaching of Elementary Mathematics (Smith 1902). I would add too, that, like
me, Smith is critical in this work about the motive of utility in mathematics edu-
cation. He tells us that there are two main motives for teaching arithmetic:

…arithmetic, like other subjects is taught either (1) for its utility, or (2) for its culture.
Under the former is included the general “bread-and-butter value” of the subject and its
applications; under the latter, its training in logic, its bearing upon ethical, religious and
philosophical thought. (p. 20)

He says that the utility motive favored by the “mechanical teacher” (as he puts it,
together with another expression, the “machine teacher”) is overrated and that it is
the cultural motive that should be developed. On the other hand, by a “cultural
motive” he seems mostly to mean a motive towards thoughtful and reflective
learning. Thus, just a few lines after the sentence just quoted, he emphasizes that
“[arithmetic] has cultural value because, if rightly taught, it trains one to think
closely and logically and accurately” (p. 20)—which one might say is a more
profound utility and more important for human life than the mechanical operations
necessary for the day-to-day work of a storekeeper.

It is remarkable that D. E. Smith does not set the history of mathematics as an
integral part of the “cultural motive.” The history of mathematics would seem to be
at the very heart of culture. For, whatever else it may mean, “culture” surely
embraces at its core the doings and productions of human beings in a certain place
and time. What makes this even more astonishing is that Smith was extraordinarily
learned in the history of mathematics and wrote voluminously on the subject; he
also amassed a collection of thousands of manuscripts and books related to the
history of mathematics that was legendary (see Swetz and Katz 2011; Donoghue
1998). And in the book On Teaching Elementary Mathematics, which I have been
referring to, Smith’s arguments are, in a very pointed and explicit way, based on
historical evidence. Almost from start to finish, Smith the historian of mathematics
is at work. So how do we explain this seeming paradox?

The answer, I believe, can be discerned in the way that Smith argues that the
history of mathematics should have a place in mathematics education. For he
earnestly believes that, as I have already stated, and provides two justifications
(Smith 1902). The first is based on the “parallelism argument,” that is, that the
development of an individual parallels the development of mathematics itself. As
Smith himself suggests, this is an old argument. To be sure, it has had a long history
before Smith, as one discovers in Schubring’s thorough and deep works on the
parallelism idea (e.g., Schubring 1978). It was also the driving argument for
Toeplitz, whose “genetic approach” was laid out in 1926 (see Fried and Jahnke
2015), and it is still a potent argument for incorporating the history of mathematics
in mathematics teaching (see Furinghetti and Radford 2008; Thomaidis and
Tzanakis 2007). Here is how Smith states the position:

…the child learns somewhat as the world learns. This does not mean that the child must go
through all of the stages of mathematical history—an extreme of the “culture-epoch”
theory; but what has bothered the world usually bothers the child, and the way in which the
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world has overcome its difficulties is suggestive of the way in which the child may over-
come similar ones in his own development. (pp. 42–43)

Smith’s second argument is that history of mathematics serves as a kind of filter
allowing one to see clearly what has proven important and fruitful and what turned
out to be effete and not worth pursuing. In Smith’s words:

…the history of the subject [he is speaking specifically about the history of arithmetic, but
the argument is general] gives us a point of view from which we can see with clear vision
the relative importance of the various subjects, what is obsolete in the science, and what the
future is likely to demand. (p. 43)

Despite Smith’s immense factual knowledge of the history of mathematics and
his wide reading and scholarship, these arguments, I claim, presuppose a certain
view of mathematics in which mathematics, at bottom, is an unhistorical subject;
that is, it is one unaffected in any essential way by time and place or what we might
call culture. This can be seen in Smith (1921) presidential address to Mathematics
Association of America (Smith 1921). He called it “Religio Mathematici,” the
“religion of a mathematician,” after Sir Thomas Browne’s Religio Medici, which
was Browne’s spiritual testament of his own identity as a doctor. So Smith’s
“Religio Mathematici” is Smith’s credo concerning the nature of mathematics and,
from it, one can infer with little trouble his credo concerning the history of
mathematics. Among other things, he writes:

One thing that mathematics early imparts, unless hindered from so doing, is the idea that
here, at last, is an immortality that is seemingly tangible,–the immortality of a mathematical
law…The laws of the Medes and Persians, unchangeable though they were thought to be,
have all perished; the canons that bound Egyptian activities for thousands of years exist
only in the ancient records, preserved in our museums of antiquity…But in the midst of all
these changes it has ever been true, it is true today, it shall be true in all the future of this
earth, and it is equally true throughout the universe whether in the algebra of Flatland or in
that of the space in which we live, that (a + b)2 = a2 + 2ab + b2. (p. 341)

Mathematics does not change in this view, though it may be not be revealed all
at once. Its history, therefore, cannot be a history of change and development;
despite missteps here and there, it is rather the progressive unveiling of the
immortal truth—true everywhere “throughout the universe.”

Thus, it is not surprising that, for Smith, history should reveal a kind of natural
direction of ideas and that its course should be consistent with that of an individ-
ual’s intellectual development. It is not marked by the arbitrariness or idiosyncrasy
one finds in artistic creation and thus cannot be “cultural” in the way one expects
the history of art or literature to be. Thus Smith contrasts mathematics with the laws
of Persia and the canons of Egypt: If mathematics has a historical aspect, it is a
different kind of history from that of Egypt or Persia.

Moreover, the usefulness of the history of mathematics in mathematics educa-
tion, its capacity to be a tool, comes from its unchanging character. Unlike the
norms of Egypt or Rome, it will always be relevant, and its history will open our
eyes and provide a measure of the importance of things according to an immortal,
unchanging scale. It is for this reason that, as Smith says in the passage quoted
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above, “the history of the subject gives us a point of view from which we can see
with clear vision the relative importance of the various subjects, what is obsolete in
the science, and what the future is likely to demand.”

These comments about Smith serve to bring out several points, all of which are
central to any considerations regarding the history of mathematics and mathematics
education. First, how one conceives the history of mathematics is not a direct result
of one’s learnedness; Smith’s positions were not the result of his not knowing
enough about dates, thinkers, and texts. Second, the role one assigns to the history
of mathematics in mathematics education is inseparable from one’s conception of
the nature of mathematics. Third, in a similar way, how one conceives a cultural
motive in mathematics teaching is connected to how one conceives mathematics; in
particular, it is connected to its historical or non-historical character. Fourth, the
non-historical character of the history of mathematics is in fact what allows it to be
a tool, whether for guiding the teaching of individual students or for guiding the
design of a curriculum.

To these I would like to add the converse of the last point, namely, that when one
asks the history of mathematics to be a tool in mathematics teaching, one forces the
history of mathematics to be non-historical. I will have to justify that claim,
although it can be said immediately that to the extent that history is either what has
been or the disciplined account of what has been, the student of history is some-
thing other than the user of a tool; therefore, treating history as a tool is ab initio
contrary to history. However, before one even begins to talk about what it is to be
non-historical, one should have a sense of the historical. So having encountered
Smith’s Religio Mathematici let us look at what might be called Religio Historici.

6.1.1 Religio Historici

Of course the word religion ought to be uttered with a smile. There is no single
dogma to which all historians ascribe when it comes to their craft. Still, one can say
that, if not quite a religion, there is at least a historical orientation: a set of pre-
occupations recognizable by almost all historians despite considerable disagreement
as to how one should pursue those preoccupations.

The question of sources is one such preoccupation, and in the case of intellectual
history, of which the history of mathematics is an example, these are chiefly
original texts. The centrality of original texts as a way of incorporating the history
of mathematics in mathematics education was, accordingly, emphasized by
Laubenbacher et al. (1994), for example. This has remained central in historical
work, though its objective character has been challenged, for example, in Carr’s
What Is History? whose first chapter concerns what he called “the cult of facts”
(Carr 1967, p. 9). Carr’s position was that history cannot be removed from the
historian’s perspective on the past. This does not mean that the study of original
texts is outdated. Far from it. Objections by Carr and many others keep alive the
question of the meaning of sources.
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Having a perspective on the past is connected to what is arguably the most
important preoccupation of history, namely, the past itself or, rather, the relation-
ship between the past and present. No doubt it is the past that jumps to one’s mind
when one hears the word history. However, a view of the past and history are not
synonymous: It matters very much exactly how one considers the past.

Michael Oakeshott (1901–1990), in his various writings on history, has pressed
the point that the “‘historical past’ denotes a distinguishable mode of the past”
(Oakeshott 1999, p. 9). In his first and most famous book, Experience and Its
Modes (1933), he says that in fact there are “certain pasts [that] may be dismissed at
once as alien to history” (Oakeshott 1933, p. 102). There is, he says, among others,
a remembered past or autobiographical past, a fancied past, and a practical past. It is
the last of these that he considers most opposed to the historical past, and,
accordingly, the one that brings out the nature of the historical past.

The practical past is a past whose entire mode of being is that of something
involved with the present; it is derived and inspired by the present, important if
important to the present, pursued if it is significant for our present concerns or even
if it allows a way to escape them. As Oakeshott puts it:

Wherever the past is merely that which preceded the present, that from which the present
has grown, wherever the significance of the past lies in the fact that it has been influential in
deciding the present and future fortunes of man, wherever the present is sought in the past,
and wherever the past is regarded as merely a refuge from the present—the past involved is
a practical, and not an historical past. (Oakeshott 1933, p. 103)

Our ordinary human day-to-day lives are so much directed to the present it is
difficult to think of the past in any other way and perhaps impossible to engage in
thinking of the past in a way that we utterly forget the present. Yet the historical
past, the object of historical inquiry, involves, as Oakeshott says elsewhere, “a
redirection” of this kind of activity “inherent in a human life” (Oakeshott 1999,
p. 127). The past may be like the present, in fact, in that it must be in some way like
the present if it is to be understood at all; however, the activity of history involves
the attempt, even if it is ultimately doomed to failure, to see the past as other than
the present, to see, as he says, “… the past as past, and with each moment of the
past in so far as it is unlike any other moment” (Oakeshott 1933, p. 106).

The insidious side of Oakeshott’s practical past is that it presents itself as his-
torical. This is less so, for example, in the case of a fancied past or legends of yore:
Serious people rarely take a Disney world of knights and unicorns as the real thing.
But a past viewed from the perspective of the present is not always questioned. It
was for this reason that Herbert Butterfield (1900–1979) wrote his famous book,
The Whig Interpretation of History (Butterfield 1931/1951), just two years earlier
than the work of Oakeshott that we have been referring to. It was a book about
historians—Butterfield refers to it in the preface, with a smile no doubt, as a book
about “the psychology of historians” (p. vi)—and it is presumably addressed to
historians. As for the term, “Whig history,” he says:
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What is discussed is the tendency in many historians to write on the side of protestants and
Whigs, to praise revolutions provided they have been successful, to emphasise certain
principles of progress in the past and to produce a story which is the ratification if not the
glorification of the present. (p. v)

And Butterfield, like Oakeshott, points to the essential character of a historical
account in trying to grasp the otherness of the past in the attempt to see the past for
itself:

…the chief aim of the historian is the elucidation of the unlikenesses between past and
present and his chief function is to act in this way as the mediator between other generations
and our own. It is not for him to stress and magnify the similarities between one age and
another, and he is riding after a whole flock of misapprehensions if he goes to hunt for the
present in the past. (p. 10)

6.2 History of Mathematics and Mathematics Education

This kind unhistorical history is particularly tempting in the history of mathematics,
precisely because of the “religio mathematici” that Smith espoused. For if one takes
mathematics to be essentially unchanging and immortal, then at bottom there is no
difference between past and present. Therefore, with that in mind, one may freely
translate the mathematics of the past into a modern idiom and use the present
unabashedly as a guide to the past. The Whig perspective would, in that light, be
completely unobjectionable and, undoubtedly, enlightening. Thus, in his
well-known polemical article in 1975, Unguru declared that “Whig history, a dead
horse nowadays—one would like to believe—in most branches of history, is alive
and thriving in the history of mathematics, where its dangers are no less real than in
the more traditional types of intellectual history” (Unguru 1975, p. 86).

Well aware of these difficulties, Grattan-Guinness (2004a, b) suggested two
approaches to treating the mathematics of the past, history and heritage. These are
distinguished by their guiding questions: History asks, “What happened?” or “Why
did N happen?”; heritage asks “How did we get here?” The answer,
Grattan-Guinness playfully points out, is more often than not via “the royal road to
me.” Grattan-Guinness is perfectly willing to say that “heritage resembles Whig
history, the seemingly inevitable success of the actual victors, with predecessors
assessed primarily in terms of similarities with the dominant position”
(Grattan-Guinness 2004b, p. 171).

There is no doubt Grattan-Guinness’s history/heritage dichotomy can be a useful
tool for analyzing how mathematics of the past is treated; however, it does not
adequately explain what it is we truly learn from heritage as opposed to history, and
it does not bring out explicitly enough how these different approaches to the past
are in fact different views of the past itself and place one in a different relation to the
past. For they are truly different relations, even incompatible ones, as I think even
Grattan-Guinness would have to admit. For this reason, in my book on Apollonius
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with Sabetai Unguru, we spoke about going through a historical door or a math-
ematical door (Fried and Unguru 2001, p. 404ff). Each door leads into a very
different world: “The mathematical and the historical approaches are antagonistic.
Whoever breaks and enters typically returns from his escapades with other spoils
than the peaceful and courteous caller” (p. 406).

It should not be thought that the accusation of Whiggism or of an adherence to
some other form of non-historical history is an accusation of being unlearned. It is
not about not knowing enough history. As I have already mentioned, Smith was
immensely learned. Clifford Truesdell (1919–2000) who was, among other things,
the editor of Euler’s collected works, was also a tremendously learned man, yet he
was decidedly Whiggish in his approach to history, or at least happy to view the
past as “practical past.” Thus, he could write, for example, that

one of the main functions [the history of mathematical science] should fulfill is to help
scientists understand some aspects of specific areas of mathematics about which they still
don’t fully know. What’s more important, it helps them too. By satisfying their natural
curiosity, typically present in everybody towards his or her own forefathers, it helps them
indeed to get acquainted with their ancestors in spirit. As a consequence, they become able
to put their efforts into perspective and, in the end, also able to give those efforts a more
complete meaning. (in Giusti 2003, p. 21)

It is clear from his writings that Truesdell felt truly that the figures of the past
were, as Littlewood famously said, merely “fellows of another college” (Hardy
1992, p. 81). I emphasize the learnedness of Smith and Truesdell only to bring out
that the meaning of history is to be found in how one approaches the past: It is not a
direct function of how many names and dates one can recite. This is crucial not only
for one who desires insight into the history of mathematics, but more importantly
for those of us who are teachers who desire to use the history of mathematics to
inform our teaching.

The two cases are not symmetrical. Historians of mathematics and those who
wish simply to learn from history will gain by engaging with mathematical texts
and thoughts from the past while giving cognizance to the meaning of history, the
meaning of the past, and the meaning of thinking about the past. And that, as I have
argued, requires actively avoiding the present and treating it as an unproblematic
guide to the past. History, in fact, is not quite history without that.

But mathematics teachers as mathematics teachers have other unavoidable
concerns. They have a curriculum to follow; they may have national examinations
or some other kinds of large-scale examination for which they are obliged to
prepare their students. A brave and bold teacher might decide, despite everything,
to put aside such external constraints in order to treat the history of mathematics in a
spirit of religio historici; however, that spirit, with its demand that the present be
suspended, cannot be an imperative for mathematics teachers. It is not just that it is
unnecessary: It conflicts with other imperatives. For the mathematics that mathe-
matics teachers teach—the kind of mathematics laid out in the Common Core, for
example—is crucial for the present and has more than historical import. No one can
deny the kinds of approaches, techniques, and ideas that belong to mathematics of
the present are genuinely useful in the sciences, engineering, and industry and that
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they are genuinely interesting, enlightening, and often beautiful. A teacher placing
an emphasis on such mathematics cannot be condemned.

The external demands made on teachers and, perhaps, their own legitimate
commitment to teaching the mathematics of the present—the mathematics needed
in applications and in modern science—makes it easier to put history aside than put
modern mathematics aside. But if there are mathematics teachers who nevertheless
aim to bring history of mathematics into their teaching, they must, because of those
external demands, economize by making history fit their other concerns. They must
show its relevance to subjects already being taught or, alternatively, show its rel-
evance to general mathematical thinking: what Smith called “culture.” They must
make history of mathematics useful. But in doing so, they are led almost ineluctably
into precisely the “practical history” of Oakeshott or “Whiggist history” of
Butterfield, which I described above: the past in the service of the present.

It is easy to find examples written by educators equally ignorant of mathematics
education research and the history of mathematics, but such examples prove very
little. On the other hand, it is not difficult to find papers where this is not the case.
I have a paper in my files, for instance, called, “The history of mathematics as a
pedagogical tool: Teaching the integral of the secant via Mercator’s projection”
(Haverhals and Roscoe 2010). I choose to highlight it because (1) it presents a good
way of introducing the Mercator projection as it is used in geography and presents a
pleasant way of teaching the integral of the secant function and showing its rele-
vance and (2) its authors show an awareness of some of the literature being written
in mathematics education research on history of mathematics (for example, Janvist
2009; Siu 2007; Ernest 1988) and a willingness to confront it. Yet, when it comes
down to it, true to their title, history is not so much a subject to study as it is a tool
to use and, as such, can be freely adapted for educational use. Thus, referring to the
difficulties of original texts whose importance I have already mentioned, they say,
“…student difficulty in confronting historical text can be alleviated by careful and
thoughtful presentation that is at once historically accurate while educationally
streamlined toward an intended goal, in this case, an understanding of the integral
of the secant” (p. 354).

The authors have clear priorities. The priorities are not unreasonable. Haverhals
and Roscoe are interested in teaching a subject, in this case the integral of the secant
function, and have found a good example with historical color: It is an example that
has the potential of holding the interest of the students and making their authors’
task something more than an empty exercise. I emphasize this to make it clear that
the authors’ priorities are indeed priorities: They are to a great extent given in
advance by commitments to a standard calculus curriculum. So if historical material
is used, its use must be subordinated under the demands of such a modern cur-
riculum. If the authors were to ignore the modern notion of the integral and the
functional way of thinking, they could be more historical but undoubtedly less
successful in achieving the teaching goals of their mathematics lessons. In effect,
they are compelled to adopt a Whiggist perspective. For this reason, when I began
thinking about the question of incorporating the history of mathematics in
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mathematics teaching, I stated the deliberations of a mathematics teacher interested
in the history of mathematics as a kind of dilemma:

…if one is a mathematics educator, one must choose: either (1) remain true to one’s
commitment to modern mathematics and modern techniques and risk being Whiggish, i.e.,
unhistorical in one’s approach, or, at best, trivializing history, or (2) take a genuinely
historical approach to the history of mathematics and risk spending time on things irrele-
vant to the mathematics one has to teach. (Fried 2001, pp. 397–398)

At the time I wrote that, I thought the dilemma was inescapable and, much to my
dismay, damning to almost any serious attempt to bring the history of mathematics
into mathematics teaching. This was not for lack of good historical material. Writers
such as Victor Katz, Frank Swetz, and the late John Fauvel, among others, work
from the IREM team in France, and the many papers presented at the HPM-ESU
conferences have all supplied plentiful historical sources and discussions for
thinking about the history of mathematics. But as long as mathematics education
was committed to the modern mathematical ideas necessary for the needs of
modern life, as so many of the general documents pertaining to mathematics
education declare—as, for example, when the NCTM’s Principles and Standards
for School Mathematics describes itself to be “the first set of rigorous, college, and
career readiness standards for the 21st century” (NCTM 2016)—any use of history,
I thought then, would have to be marked by the selection, abridgment, and orga-
nization of material for the modern ends that Butterfield underlined as the hallmark
of Whig history.

But mathematics education both as an enterprise and as the focus of mathematics
education research is not so rigidly defined: Its commitments are not written in
stone. This means that, in principle at least, rather than asking how to adapt the
history of mathematics to a fixed mathematics education with a predetermined set of
commitments, one can ask how mathematics education might be conceived so that
the history of mathematics plays an essential part in it, that is, where it is something
to be studied and thought about. In this regard, the dilemma I set out in 2001 should
be viewed more as a challenge to redefine mathematics education informed by the
history of mathematics than as a criticism of past efforts.

It would be unfair to say there has been until now no thought in this direction.
A survey of many of the ideas can be found in Fried (2014), and many of these
predate 2001. It is beyond the scope of this lecture to summarize the work of all the
scholars described there, but, as a sample, I would certainly mention the work of
Radford, whose ideas on the semiotic and cultural core of mathematics education
(for example, Radford 2015) have inspired many of us here; there is Jankvist and
Kjeldsen’s (2011) work within the context of the Danish competencies framework,
which includes the history of mathematics; and then we have Jahnke’s hermeneutic
approach (e.g., Jahnke 2000), in which mathematics learners are conceived as
interpreters, so that the reading of historical texts becomes a way of exploring one’s
own mathematical identity. My only contribution has been to sharpen the question
to which these are possible answers.
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6.3 The Liberal Arts

To characterize concretely mathematics education in which history forms an inte-
gral part, I could mention, for example, the centrality of original texts. I referred to
this above in connection to the work of Laubenbacher et al. (1994). Or I could
speak about some of the proposals connected to Jahnke’s work cited above. But,
since time is short, I would rather end with a much more general picture: one
inspired by a concomitant history of the history of mathematics, namely, the history
of education itself. What I have in mind specifically are the liberal arts.

It is true that the liberal arts come specifically from the history of education in
the West, but, as I said, my intention is to use them as an image, a general picture,
not a promotion of the West or a denigration of any other tradition. This tradition,
however, is still very much a part of students’ lives. Students who receive a BA or
MA degree have, by name at least, received degrees in the liberal arts, for those are
precisely the arts intended by Bachelor of Arts and Master of Arts. Even more, the
MA, Magister Artium, is the qualification to teach the liberal arts. And here I say as
an aside that whether or not it is right to think of history in terms of memory, it is
certainly true that it treats the kind of forgetfulness that occurs when original
meanings are lost in the light of modern transformations. Students who write the
letters BA and MA after their names are oblivious, more often than not, to the
traditions buried under their degrees.

The tradition of the liberal arts is a long one, although its systematization into an
educational scheme became most clearly articulated in late antiquity. The usual
scheme involved seven liberal arts. Of these, three were, in a sense, connected to
language. These formed the trivium, the “three ways,” of grammar: the nature of
letters, words, sentences—rhetoric, or the artful use of words—and logic—the
formation of arguments. The other four arts, contrary to the modern tendency to set
mathematics and science apart from the liberal arts, were explicitly mathematical.
These mathematical arts formed the quadrivium, the “four ways”: the arts of
arithmetic, geometry, astronomy, and music. I should mention that there were other
schemes for the liberal arts; for example, in Varro’s lost treatise, The Nine Books of
Disciplines, written during the first century BCE, there were, besides these seven
arts, two more: architecture and medicine (see Wagner 1986, p. 15ff). Nevertheless,
in time the trivium and quadrivium became more or less the canonized scheme (see
Fig. 6.1).

It is important to understand that the arts were thought of as a system—partic-
ularly the mathematical arts: a system no less unified than a system of the world.
Thus, Proclus (412–485 CE), recalling the Pythagorean tradition, tells us that the
quadrivium was structured so that arithmetic and geometry corresponded to the
basic division between multitude and magnitude, with arithmetic being about
numbers in themselves, pure multitudes, and geometry being about magnitudes at
rest, figures that do not move. Music was derivative from arithmetic, being the
study of numbers taken relatively to other numbers, such as the harmonic divisions
of a string, while astronomy was geometry in motion (see Fig. 6.2).
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One can disagree with the organizational principle; however, what is important
is that there was an organizational principle at all, an attempt to present education as
a reflection of a whole.

That the learnable things, the mathēmata, reflected the whole universe was
almost certainly the result of Pythagorean doctrines. Whether the Pythagoreans had
much use for the arts in the trivium is not nearly as clear, even though, surely, later
Pythagoreans, such as Nichomachus of Gerasa, from whom we know much about
Pythagorean teachings, were well versed in grammar, rhetoric, and logic. They
could hardly express themselves so well without rigorous training in the trivium.1

Artes Liberales
The Liberal Arts

TriviumQuadrivium

Arithmetic

Geometry

Music

Astronomy

Grammar

Rhetoric

Logic

Fig. 6.1 The liberal arts

Mathematical (“Learnable”) Things

MagnitudesMultitudes (numbers)

By themselves:

Arithmetic

Relatively:

Music

At rest:

Geometry
In motion:

Astronomy

Fig. 6.2 The Pythagorean division of mathematics

1There was among especially the Church Fathers, Augustine and Jerome, for example, a certain
tension between the rigor of this training and its connection to classical oratory on the one hand
and unadorned inner spirituality on the other. One can detect an echo here of a similar tension
today in mathematics education, namely, that between rigorous training in mathematical tech-
niques and procedures and intuitive and original thinking.
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But there is another sense in which the liberal arts reflected a whole, where the
full complement of the arts was essential. Indeed, in Martianus Capella’s early fifth
century CE allegory, The Marriage of Philology and Mercury, the seven liberal
arts, seven sisters, bestow the gifts that sanctify the marriage of the maiden
Philology and Mercury, gifts which make the pair one. In general, our sources are
largely “encyclopedias” written around this time, works by Boethius, Cassiodorus,
and Isadore of Seville. This was the time when the Roman Empire was breaking
down, and the need for inner coherence rooted in the tradition under threat was felt
acutely.

The word encyclopedia is significant. It is a combination of two Greek words,
engkuklios and paideia; the first, coming from kuklos, a circle, means what happens
over and over, regularly, or common to all. The second may be translated variously
as culture, upbringing, or, education, so that engkuklios paideia is something like
the education common to all. The word paideia is truly the difficult—and therefore
most important—word here. Jaeger (1945) required three thick volumes to explain
it. But one can say that (1) paideia was rooted in the literature and thought of one’s
tradition—here the translation “culture” is apt and (2) it was meant to be carried
throughout life, so that (3) it was very much an expression of being a human in the
fullest sense of the word, thus the Latin translation of paideia came to be,
revealingly enough, humanitas (see Marrou 1982, p. 218).

It is not by chance of course that encyclopedias, with their connection to the
classical idea of paideia, should be the place where the liberal arts were discussed.
For the study of the liberal arts was inseparable from the idea of paideia, even
identified with it. They were called liberal arts because, like paideia, they were
directed towards human beings who are not slaves but who are free to pursue a life
allowing them to be fully what they are as human beings. In the history of paideia,
this was particularly true in the post-Socratic period. Thus Jaeger (1945) writes:

…it is Socrates’ idea of the aim of life which marks the decisive point in the history of
paideia. It threw a new light on the purpose and duty of all education. Education is not the
cultivation of certain abilities; it is not the communication of certain branches of knowl-
edge…. The real essence of education is that it enables men [in gender-insensitive language
of 1945] to reach the true aim of their lives…. This effort cannot be restricted to the few
years of what is called higher education. Either it takes a whole lifetime to reach its aim, or
its aim can never be reached. Therefore the concept of paideia is essentially altered; and
education, in the Socratic sense, becomes the effort to form one’s life along lines which are
philosophically understood, and to direct it so as to fulfill the intellectual and moral defi-
nition of man. In this sense, man was born for paideia. It is his only real possession. (Jaeger
1945, Vol. II, pp. 69–70, emphasis original)

At this point, one might complain that although I have been looking back at a
chapter in the history of education, I seem to have departed from history as such—
and it is the history of mathematics in mathematics education that is my topic. The
objection is actually more acute than one might think, for while the seven liberal
arts were not fixed in the past, as a pointed out earlier, history was never considered
one of them. On the other hand, today the liberal arts considered central to the

6 History of Mathematics, Mathematics Education … 97



“humanities” and have become the locus of historical study, while mathematics,
traditionally always part of the liberal arts, has nearly become excluded from them.

The new place of history as the prime liberal art is partly the result of a change in
the understanding of history, at least since the time of 17th–18th century figures
such as Giambattista Vico (1668–1744) and certainly since Hegel. The idea that we
ourselves may be historically constituted, that history might represent for human
life the clearest kind of truth, has driven the modern idea of history. It has also made
the aim of the liberal arts—the exploration and fulfillment of our human life as free,
thinking beings—in some quarters the aim of history as well. Thus Collingwood
could say:

[The historian’s knowledge] is not either knowledge of the past and therefore not knowl-
edge of the present, or else knowledge of the present and therefore not knowledge of the
past; it is knowledge of the past in the present, the self-knowledge of the historian’s own
mind as the present revival and reliving of past experiences. (Collingwood 1993, p. 175; see
also Fried 2007)

The place of history as the central liberal art was certainly challenged by, for
example, Thomas Huxley in the second half of the 19th century. Huxley doggedly
made the case that science should be at the heart of education; indeed, one of his
essays, which makes this point, is called “A Liberal Education; and Where to Find
It” (1868, in Huxley 1899, pp. 76–110). Calls to increase science education today,
with their tacit belittlement of the humanities, I believe, echo Huxley’s well-meant
sentiments. Moreover, to return to Smith, with whom I began, it may be said that
his use of the word culture without history stems from the same sentiment that
impelled Huxley to speak about liberal education with science at the center, more
paleontology than history, to use one of Huxley’s own points.

But I think it is fair to say that culture, for us, not only in general and in history
but also in mathematics education itself, is impossible to untie from history and a
view of ourselves as historical beings. Mathematics education in this light can look
back to the liberal arts in which mathematics was central and in which their place in
defining a full human life can be informed by the historical sense of a human life.
The problem therefore of the history of mathematics and mathematics education in
this way becomes a challenge to rethink mathematics education in terms of the
liberal arts and the attempt to see ourselves more clearly and more deeply as the
beings that created mathematics. If the history of mathematics is taken as a tool,
then it must be taken in the way the liberal arts were tools: arts to be used but also a
source on which we reflect about mathematics and ourselves.

6.4 Concluding Words

History, as we said, has become central to the liberal arts, while mathematics has
become excluded. The history of mathematics is one way of restoring mathematics
as a liberal art. Conversely, thinking of mathematics as a liberal art opens the way to
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the history of mathematics becoming an essential part of mathematics education. It
allows mathematics to assume a place in a human life that is taken as an integral
whole in a world that is taken as an integral whole. As in all history (as
Collingwood has said) and in all the liberal arts, mathematics education, in this
light, becomes a way of reflecting on ourselves.

Reflecting about ourselves and our human capabilities is humanism. It must be
understood, however, that the liberal arts, which can be taken as another term for
humanism, are not a dogma. In the same way, history and tradition, while being
formative, are not binding. As one of my own teachers, Eva Brann, liked to point
out, in thinking about tradition, one must remember that the Latin word tradere
means both “to pass on” but also “to betray” (Brann 1979, p. 64). Searching for a
whole, either of the world or of tradition or of traditions, a search that ultimately
cannot be consummated, brings us thus to an openness to our own incompleteness
—and therefore, to our own potentialities. We look back at our own foundations in
history and by recognizing that truly, using Gadamer’s (2006) language, we look
beyond our own horizon.
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Chapter 7
Knowledge and Action for Change
Through Culture, Community
and Curriculum

Linda Furuto

Abstract At the 1984 International Congress on Mathematical Education
(ICME-5), Ubiratan D’Ambrosio envisioned the creation of a global society where
“mathematics for all” reached an unprecedented dimension as a social endeavor by
questioning the equilibrium of mathematics education (1986, p. 6). To respond to
the challenge three decades later, I will present a contemporary perspective by
re-examining the sociocultural role of mathematics education in the schooling
process. I will specifically discuss how knowledge and action for change are
achieved through intersections of culture, community and curriculum in an ongoing
process of navigating and wayfinding in Hawai‘i and the Pacific. This will be
accomplished by developing new theoretical insights into honoring and sustaining
non-Western cultural systems and practices through examples in mathematics
teacher education. In doing so, I will highlight diverse funds of teaching and
learning that are grounded in a shared commitment to equity, empowerment and
dignity.

Keywords Curriculum and instruction � Community � Culture-based education
Equity

7.1 “Mathematics for All”

Three decades after the 1984 International Congress on Mathematical Education
(ICME-5) where D’Ambrosio spoke about a vision of creating a society where
“mathematics for all” reached an unprecedented dimension as a social endeavor
(p. 6), we have come to understand that mathematics education is going through
one of the most critical periods in its long recorded history since Western classical
antiquity (Bishop 1988; Boaler 2002). The U.S. National Science and Technology
Council’s Federal Science, Technology, Engineering and Mathematics (STEM)
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Education 5-Year Strategic Plan (2013) states, “We don’t want our kids just to be
consumers of the amazing things that science generates; we want them to be pro-
ducers as well. And we want to make sure that those who historically have not
participated in the sciences as robustly—girls, members of minority groups—are
encouraged…this means teaching proper research methods and encouraging young
people to challenge accepted knowledge” (p. 1). The current era emphasizes the
role of an interconnected global society undergoing changing social, educational,
political and economic conditions. Mathematics education has a direct role in
influencing the equilibrium of achievement, particularly in traditionally underrep-
resented and underserved populations (Palhares and Shirley 2013; Weiss and Miller
2006).

To respond to the challenge of re-examining the sociocultural role of mathe-
matics education in the schooling process, this article will discuss how knowledge
and action for change are achieved through intersections of culture, community and
curriculum in an ongoing process of navigating and wayfinding in Hawai‘i and the
Pacific (Furuto 2016; Tuhiwai Smith 1999). The research goal is to develop new
theoretical insights into honoring and sustaining non-Western cultural systems and
practices through examples in mathematics teacher education that are grounded in a
shared commitment to equity, empowerment and dignity (Rosa et al. 2016). The
underlying premise is that “Mathematics is powerful enough to help us build a
civilization with dignity for all, in which iniquity, arrogance, violence and bigotry
have no place, and in which threatening life, in any form, is rejected. School
ethnomathematics practices encourage the respect, solidarity and cooperation with
others. It is thus associated with the pursuit of peace” (D’Ambrosio 2004, p. ix).

7.1.1 Ethnomathematics and Ecological Systems Theory

Defined as the intersection of historical traditions, sociocultural roots, political
dimensions and linguistics, among others, ethnomathematics encourages the
investigation and adaptation of these concepts within and outside of classrooms
around the world (Greer et al. 2009; PREL 1995). The term ethnomathematics was
introduced by D’Ambrosio in 1977 to foster an “awareness of the many ways of
knowing and doing mathematics that relates to the values, ideas, notions, proce-
dures and practices in contextualized environments” (Rosa et al. 2016, p. 1). By
drawing on the assets and backgrounds of our students and communities, we
acknowledge the importance of strengths-based approaches in accessing diverse
funds of teaching and learning experiences (Hall 1993; Maton et al. 2003).

At the 2016 International Congress on Mathematical Education (ICME-13),
Barton expanded on the ethnomathematics program and invoked the ecological
systems theory. Ecological systems theory seeks to bridge the divide between
science and the humanities in order to help students achieve responsible creativity
and ethical citizenship (Bronfenbrenner 1979). In this system, “justice and educa-
tion are part of a larger environment in which there is more than one ‘way of
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knowing’ resulting in a diversity of knowledge” (Barton 2017, p. 3). Barton con-
tinued, “The extent to which we free mathematics and mathematics education from
society and culture is the extent to which we are absolving ourselves from
responsibility to others and to our world. It frees us from social and cultural
responsibility. Ultimately, this makes us amoral” (2017, p. 3). In other words, to do
mathematics is to engage in processes of understanding and fulfilling our civic and
moral responsibilities.

7.2 Culture, Community and Curriculum

7.2.1 Theoretical Frameworks

Over the past three decades, research has emerged to support equity and empow-
erment, especially in communities traditionally underrepresented and underserved
in mathematics education. Some of the important theories that frame the discussion
on curriculum and instruction include the following: culturally relevant pedagogy
(Ladson-Billings 1995), culturally congruent pedagogy (Au and Kawakami 1994),
culturally compatible pedagogy (Jacob and Jordan 1987), engaged pedagogy
(Hooks 1994), everyday pedagogies (Nassir 2008), critical care praxis (Rolón-Dow
2005), and most recently, culturally sustaining pedagogy (Alim and Reyes 2011;
Cammarota 2007; Irizarry 2007; Paris 2012; Winn 2011). According to Paris
(2012), “The term culturally sustaining requires that our pedagogies be more
than responsive of or relevant to the cultural experiences and practices of young
people—it requires that they support young people in sustaining the cultural and
linguistic competence of their communities while simultaneously offering access to
dominant cultural competence” (p. 95).

Research is critical in the democratic struggle toward principles of social justice
in our schools and society (Alim et al. 2011; Hill 2009; Kirkland 2011). The
literature encourages pedagogical, curricular and teaching innovations in sustaining
and extending the richness of the past in the current struggle to overcome deficit
theories and strive toward strengths-based approaches in education (Chang and Lee
2012; Morrell 2004; Paris 2011). According to Rosa et al. (2016), the main
foundation of an ethnomathematics program is embracing these types of diverse
instructional practices and pedagogy that are integral as we move toward equity.

As an example of ethnomathematics, Math in a Cultural Context emerged from
ethnographic work with Yup’ik elders and teachers (Lipka et al. 2005). The macro
themes that evolved in this work concern positive changes in relationships, both in
the classroom and between the classroom and community, pride in identity and
culture, and ownership of knowledge. This curriculum is locally and culturally
based while meeting both the State of Alaska’s cultural standards and the standards
of the National Council of Teachers of Mathematics (2000). Importantly, “this
curriculum holds great promise to improve Alaska Natives students’ mathematical
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understanding while bridging the culture of the schools to that of the community. It
also can be viewed as a way to tap rich Indigenous cultural heritages, thus liberating
from the legacy of colonial education and the restrictive pedagogical forms it
prescribes” (Lipka et al. 2005, p. 368).

7.2.2 Connections to Hawai‘i and the Pacific

Ethnomathematics has fundamental connections to Hawai‘i and the Pacific.
Research in Native Hawaiian communities demonstrates the importance of cul-
turally sustaining pedagogy as a means of engaging and empowering students and
their families in the learning process (Furuto 2014; Kanaʻiaupuni et al. 2010).
According to Kanaʻiaupuni et al. (2017), “Embracing the emancipatory potential of
culture-based education is a ‘win’ for everyone in our increasingly plurilingual,
pluricultural society, who will benefit from the assets found in Indigenous
knowledge, values, and stories as models of vitality and empowerment through
which we can all progress” (p. 334). By drawing on Indigenous wisdom and 21st
century knowledge, we have opportunities to re-examine the schooling process of
Native Hawaiian and all students.

A tradition that has run deep in the Indigenous peoples of Hawai‘i and the
Pacific for over 2000 years is open ocean, deep sea voyaging by celestial navigation
without GPS systems, compasses, clocks or sextants (Baybayan et al. 1987; Finney
et al. 1986; Goetzfridt 2008). Traditional wayfinding is done by the rising and
setting of the sun, moon, stars, ocean swells, winds, currents, birds and principles of
mathematics. Over time, knowledge of these traditional wayfinding techniques
dwindled and nearly disappeared. However, in the past 40 years, traditional
wayfinding has experienced a revival across the Pacific, especially in Hawai‘i.

When the navigation renaissance began in the early 1970s by the Polynesian
Voyaging Society (PVS), Native Hawaiians and others voyaged to prove that pur-
poseful migration occurred across the Pacific (Goetzfridt 2008; Kyselka 1987; PVS
2016). Now, with the tradition of wayfinding revived and thriving, the voyages allow
new generations of students to honor and sustain knowledge, culture and values
through education. The Polynesian Voyaging Society’s prototype canoe Hōkūle‘a
(“star of gladness”) has sailed over 150,000 nautical miles, and inspired a revival of
voyaging and Indigenous practices around the world (Finney et al. 1986; Furuto
2014). With the guidance of master navigator Mau Piailug and PVS founders Herb
Kāne, Ben Finney andTommyHolmes, among others, Hōkūle‘a has spawned a legacy
of more than 25 deep sea voyaging canoes birthed across 11 Pacific Island nations.

Hōkūle‘a’s most recent voyage was to circumnavigate the globe from 2013 to
2017 with a mission to mālama honua, which is to “care for island earth” and all
people and places as ‘ohana (“family”). It is a culture of caring for our students,
schools, communities and homes. The author was on the first international leg from
Hawaiʻi to Tahiti as apprentice navigator and education specialist, and subsequent
voyages to Samoa, Olohega (Swain’s Island), Aotearoa (New Zealand),
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South Africa, Virginia, Washington, D.C. and New York City, sailing with leaders
such as the Archbishop Desmond Mpilo Tutu, His Holiness the 14th Dalai Lama
and United Nations (UN) Secretary General Ban Ki-moon. At the 2014 UN Small
Island Developing States Conference in Samoa, Ban Ki-Moon presented PVS with
a message in a bottle evocative of D’Ambrosio’s challenge at ICME-5, “I am
honored to be part of Hōkūle‘a’s Mālama Honua Worldwide Voyage. I am inspired
by its global mission. As you tour the globe, I will rally more leaders to our
common cause of ushering in a more sustainable future and a life of dignity for all.”

In this next section, I will highlight examples in mathematics teacher education
through the lenses of ethnomathematics and voyaging that honor Indigenous wis-
dom and 21st century connections. Powell and Frankenstein (1997) urge, “As we
more clearly understand the limits of our educational practice, we will increase the
radical possibilities of our educational action for liberatory change. Thus, we feel
the most important area for ethnomathematical research to pursue is the dialectics
between knowledge and action for change” (p. 327). Through culture, community
and curriculum, we have witnessed firsthand how this is possible.

7.3 Knowledge and Action for Change

Knowledge and action for enduring, transformational change comes from essential
understandings gained by working with and learning from the populations we are
endeavoring to serve. According to Jaworski et al. (1999), “Inservice providers
cannot just ‘deliver’ a course, or a workshop, or a session. They must become part
of the learning community, to live with the teachers and the learners and the
realities of their situation. In doing so, inservice providers will necessarily influence
and be influenced by that situation, and be an intimate part of any research the
inservice providers might be engaged in as part of the development work” (p. 12).
This is what we have strived to do as we have brought voyages back to land,
especially in Hawai‘i and the Pacific.

7.3.1 Educational Context in Hawai‘i and the Pacific

Hawai‘i is the only statewide school district in the U.S., and operates a single public
higher education University of Hawai‘i System. As such, we have a unique
opportunity to reach our schools through partnerships and strategic alignment. The
long standing achievement gap of Native Hawaiian students in the Hawai‘i State
Department of Education and University of Hawai‘i System represents a significant
concern, and one that key stakeholders are committed to resolving (HIDOE 2017;
UH IRO 2017). The connections from early childhood education through graduate
studies (P–20) inspire meaningful, relevant and sustainable promising practices
(Waitzer and Paul 2011; Weiss and Miller 2006).
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In Fall 2013, the Polynesian Voyaging Society’s Promise to Children was
authored by educational leadership in Hawai‘i and the Pacific, including the
Hawai‘i State Department of Education (HIDOE) Superintendent and the
University of Hawai‘i System (UHS) President who participated as crew members
on the Mālama Honua Worldwide Voyage. According to the Promise to Children,
“We believe that the betterment of humanity is inherently possible, and we believe
our schools, from early childhood education through advanced graduate studies, are
a powerful force for good. This is the voyage of our lifetimes…the University of
Hawai‘i’s 10 campuses have active programs and projects to achieve this goal such
as…ethnomathematics learning” (p. 3). This alliance spans early childhood edu-
cation through graduate studies (P–20), public and private sectors, and invites new
partners to achieve collective impact (Bryk et al. 2011; Kania and Kramer 2011).

As a result of P–20 collaborations, the HIDOE Office of Hawaiian Education
created learning outcomes that all K–12 students will achieve by graduation. Nā
Hopena Aʻo (2015) is a product of the HIDOE’s Mālama Honua Worldwide
Voyage efforts to inform policy implementation at the statewide level. It is a
framework to develop the skills, behaviors and dispositions of Hawaiʻi’s unique
context, and to honor the qualities and values of the Indigenous language and
culture of Hawaiʻi. Nā Hopena A‘o (HĀ) reflects the HIDOE’s core values and
beliefs in action throughout the public educational system of Hawai‘i to develop the
competencies that strengthen a sense of belonging, responsibility, excellence, aloha,
total well-being and Hawai‘i in ourselves, students and others (HIDOE 2015). With
a foundation in Hawaiian values, language, culture and history, HĀ supports a
holistic learning process to guide the entire school community. The purpose of this
policy is to provide a comprehensive outcomes framework to be used by those who
are developing the academic achievement, character, physical and social-emotional
well-being of students to the fullest potential (HIDOE 2015, 2017).

Similarly, the University of Hawai‘i System (UHS) is the sole provider of public
higher education in Hawai‘i, and is comprised of 10 campuses. It is committed to
improving the social, economic and environmental well-being of current and future
generations, and services the needs of students not just in Hawai‘i but throughout
the Pacific, particularly in U.S. affiliated entities. Approximately 25% of the student
population is Native Hawaiian (UH IRO 2017). The UHS Strategic Directions
2015–2021 guides the university’s priorities to achieve systemwide outcomes,
along with measurable goals and the ability to effectively monitor progress over
time (UHS 2015). Interwoven in the strategic directions are two key imperatives
embraced within the UHS mission—a commitment to being a foremost
Indigenous-serving institution and advancing sustainability. With the Mālama
Honua Worldwide Voyage as a catalyst, the UHS is firmly committed to advancing
these directions in concert with its core values of academic rigor, excellence,
integrity, service, aloha and respect (UHS 2015). According to the UHS, “There are
powerful motivations for the University of Hawai‘i to be supportive of its
Indigenous population: some of its campuses sit on ceded lands; negative Native
Hawaiian social and economic statistics exist; and inequity of success amongst its
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native and non-native students are factors that demand attention. There are many
reasons…However, the best reason is because it is the right thing to do” (2012,
p. 26).

7.3.2 Preparing Teachers as Leaders

The College of Education at the University of Hawai‘i’s flagship Mānoa campus is
the ideal vehicle to help achieve P–20 knowledge and action for change. The UH
Mānoa College of Education directs online and in-person teacher preparation
programs, professional development, curriculum development and research projects
across Hawai‘i and U.S. affiliated Pacific Islands. It produces more than 65% of
Hawai‘i’s teaching force and leads U.S. affiliated Pacific Islands in providing
educational programs and professional development (UHM COE 2016). The
underlying mission is to “envision a community of educators who provide inno-
vative research, teaching and leadership in an effort to further the field of education
and prepare professionals to contribute to a just, diverse and democratic society.
The College aims to enhance the well-being of the Native Hawaiian people and
others across the Pacific Basin through education” (UHM COE 2016, p. 2). The UH
Mānoa College of Education is well-equipped to achieve UHS priorities, which
include, “Continue improving P–20 education by establishing collaborative initia-
tives” (UHM COE 2016, p. 2).

The Ethnomathematics Institute is housed at the UH Mānoa College of
Education, and the author is the principal investigator. Now in its 9th year, the
project is an effort to address issues of equitable and quality education through
culturally sustaining pedagogy grounded in the ethnic, cultural, historical, episte-
mological and linguistic diversities of Hawai‘i and the Pacific. We bring together
research institutions and community-based organizations to support yearlong pro-
fessional development for P–20 inservice educators (note: for the first five years
when the author was an Associate Professor of Mathematics at the University of
Hawai‘i—West O‘ahu, the focus was on undergraduate students).

The three main objectives of the Ethnomathematics Institute are to: (1) explore
promising practices in diverse, high needs populations in alignment with national
and state standards, such as the Mathematics Common Core State Standards, Next
Generation Science Standards and Nā Hopena A‘o; (2) prepare teachers as leaders
to provide instruction and professional development in ethnomathematics in their
schools and communities through high-quality learning that is relevant, contextu-
alized and sustainable; and (3) strengthen campus-community partnerships to build
a research consortium within Hawai‘i and the Pacific. In addition to classroom
learning, place- and culture-based learning occur throughout the Hawaiian islands.

For example, students and teachers sail on Polynesian Voyaging Society canoes
to perpetuate the art and science of traditional voyaging and the spirit of explo-
ration. Through experiential, hands-on curriculum development, they inspire their
communities to respect and care for themselves, each other, and their natural and
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cultural environments. Some of the experiments performed on land and sea to link
Indigenous wisdom and 21st century knowledge include: plankton tows and
identification, water quality research, marine debris collection and identification,
hydroponic food growing, marine mammal acoustics and fish DNA identification.
These mathematics and science experiments were designed and implemented with
support from the HIDOE and UH Mānoa School of Ocean and Earth Science and
Technology, spanning the disciplines of oceanography, geology and geophysics,
marine biology, agriculture and zoology.

The project is guided by the shared HIDOE and UHS values of belonging,
responsibility, excellence, aloha, total well-being and Hawai‘i. We honor our stu-
dents by connecting the classroom to the local ecological, cultural, historical and
political contexts in which schooling itself takes place. Following an ethnomathe-
matics lesson implemented by one of the teacher leaders on Polynesian Voyaging
Society canoes, a 12th grade student reflected, “Papahānaumoku/Haumea has given
birth to our world. She helps to provide our food and materials needed to survive.
So in return, we as the children must take care of the land by making sure our
lifestyle is balanced and keeps Papahānaumoku hau‘oli loa (very happy) by
understanding related rates of change in the tides, caring for the canoes that teach us
analytic geometry, and using the Cartesian coordinate system to cultivate native
plants that crew members take on voyages” (H. Barbieto, personal communication,
December 1, 2015).

Over the past nine years, the Ethnomathematics Institute has grown through
successes, challenges and lessons learned. For the first five years at the University
of Hawai‘i—West O‘ahu, performance measures included a 1400% increase in the
number of students enrolled in mathematics courses as the general student body
population grew from 940 students in 2007 to 2361 students in 2013 (UH IRO
2017). This led to the development of 11 new mathematics courses tied to insti-
tutional learning outcomes, accreditation and graduation requirements, all of which
are grounded in ethnomathematics. Over the past four years, the Ethnomathematics
Institute transitioned into a yearlong professional development program for P–20
inservice educators, and has had participation of educators from all 15 complex
areas and seven districts of the HIDOE. This has formed an integrated statewide
network that demonstrates commitment to improving learner outcomes, particularly
in traditionally underrepresented and underserved populations.

Next steps include institutionalizing the grant-funded Ethnomathematics
Institute as a new academic program at the University of Hawai‘i at Mānoa
beginning in Fall 2018. As we work to become a stronger Indigenous-serving UHS,
a new academic graduate-level program focused on preparing P–20 inservice
educators to develop curriculum using both Western and non-Western approaches
appeals to our diverse populations. The vision of preparing P–20 teachers as leaders
to provide ethnomathematics instruction in their schools and communities
strengthens the educational pipeline in alignment with the UHS Strategic Directions
2015–2021 and HIDOE Nā Hopena A‘o. As stated by UHS President Lassner,
“The new ethnomathematics graduate-level program will become a model for other
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programs interested in creating alternate pathways towards traditional academic
goals” (D. Lassner, personal communication, April 27, 2017).

Research conducted by Bishop (1988) provides structure in the process of
institutionalization. He asserts, “Of particular significance are the ideas that all
cultural groups generate mathematical ideas, and that ‘Western’ mathematics may
be only one mathematics among many…we must recognize the complex layers”
(p. 179). We look forward to new developments guided by promising practices, and
we know from quantitative and qualitative data that transformational change is
occurring through the empowerment of individuals, schools, societies and nations.
D’Ambrosio’s declaration of a global society where “mathematics for all” reaches
an unprecedented dimension as a social endeavor is not just a vision but a growing
reality.

7.4 Further Discussion

Through developing new theoretical insights into honoring and sustaining
non-Western cultural systems and practices, we have learned that we cannot change
the winds but we can change our sails. When we change our sails, we often arrive
not necessarily where we think we need to be, but exactly where we are supposed to
be.

As a PVS apprentice navigator, I initially thought my responsibility was to arrive
at a destination according to the sail plan. On the Mālama Honua Worldwide
Voyage leg around the Samoan Islands, we planned to visit a number of islands but
we were not able to due to the directional winds. Since it was necessary to return
early to Pago Pago, American Samoa, we were able to interact with about 20
schools on Tutuila Island that were not in the original sail plan. Following our
education presentation at Matatula Elementary School, the class expressed their
appreciation and an 8-year old child stood and stated in the matai (“chief”) lan-
guage, “Thank you for teaching us what is not written in our textbooks” (I. Lagi,
personal communication, September 30, 2015). The children remind us why we do
the things we do, and they are the reason why we are voyaging the frontiers of
education. Together we are writing the textbooks of island earth, and mathematics
education is a powerful lens.

In conclusion, three decades after the 1984 International Congress on
Mathematical Education (ICME-5), we have increasingly hopeful responses to the
challenge of re-examining the equilibrium of mathematics education. Knowledge
and action for change are continuing to be achieved through strengthening inter-
sections of culture, community and curriculum in Indigenous wisdom and 21st
century learning. In Hawai‘i and the Pacific, we explored these through navigating
and wayfinding traditions, and the Ethnomathematics Institute being institutional-
ized as a new academic program at the University of Hawai‘i at Mānoa.

As we reflect on our educational visions and calls to action, I am inspired by the
‘ōlelo no‘eau (“Hawaiian proverb”) shared by International Commission on
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Mathematical Instruction (ICMI) President Ferdinando Arzarello to open the 2016
International Congress on Mathematical Education (ICME-13). “‘A‘ohe hana nui
ke alu‘ia—No task is too big when done together by all” (Pukui 1993, p. 18).
Through storms and calm seas, we will change our sails as necessary and continue
to remain steadfast in our firm commitment to equity, empowerment and dignity for
all.
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Chapter 8
The Impact and Challenges of Early
Mathematics Intervention in an Australian
Context

Ann Gervasoni

Abstract This paper explores the design and longitudinal effect of an intervention
approach for supporting children who are mathematically vulnerable: the Extending
Mathematical Understanding (EMU)—Intervention approach. The progress over
three years of Grade 1 children who participated in the intervention was analysed
and compared with the progress of peers across four whole number domains. The
findings show that participation in the EMU program was associated with increased
confidence and accelerated learning that was maintained and extended in subse-
quent years for most children. Forty per cent of children were no longer vulnerable
in the year following the intervention, and others were vulnerable in fewer domains.
Comparative data for non-EMU participants highlights the wide distribution of
mathematics knowledge across all children in each grade level. This explains why
classroom teaching is so complex and highlights the challenges teachers face in
providing inclusive learning environments that enable all students to thrive.

Keywords Mathematics difficulties � Mathematics intervention
Inclusion � Whole number concepts � Mathematics assessment

8.1 Introduction

Leaders of school systems throughout the world voice concern about the phe-
nomenon of children who experience difficulty with learning school mathematics
and seek insight about how to overcome this situation. Ensuring that all children
thrive mathematically is recognised as important for children’s future citizenship
and opportunities for work and further education, and ultimately for contributing to
the economic and cultural prosperity of a society. The International Committee for
Mathematics Education (ICME) actively supports research and development in this
area. It commissioned a survey team to examine the state of the art with respect to
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the Assistance of students with mathematical learning difficulties—How can
research support practice? (Scherer et al. 2016). The survey results highlight
shifting paradigms in understanding mathematics learning difficulties, and found
that approaches for identifying and assisting children are moving away from
medical models towards more inclusive approaches.

In Australia, there is increased attention placed on the early identification of
children who experience difficulty with learning school mathematics, and on
providing these children with access to research-informed interventions to enable
their learning. One approach is the Extending Mathematical Understanding
(EMU) intervention program (Gervasoni 2004, 2015), developed by the author, and
implemented in hundreds of Australian schools as part of a whole school approach to
enabling mathematics learning for all (Fullen et al. 2006; Gervasoni et al. 2010). This
approach and the outcomes are explored in this paper. It is anticipated that the insights
gained from examining this intervention approach may contribute to the international
discussion about the type of resources and strategies that can enable children to thrive
mathematically. A particular focus is considering the longitudinal effect of the
intervention approach for children who initially failed to thrive when learning school
mathematics, and any implications for providing inclusive classroom environments
that enable all children to learn mathematics successfully.

8.2 Failure to Thrive When Learning Mathematics

Currently there are contested views for explaining why children initially fail to
thrive when learning school mathematics and for describing the phenomena of
children who experience difficulty with learning mathematics. Gervasoni and
Lindenskov (2011) argue from a social justice perspective, that these children have
‘special rights’ in mathematics education because historically they have not had
access to high-quality mathematics programs and instruction. These students fall
into two groups. The first group comprises those children who are visually or
hearing impaired, or who have physical or intellectual impairments such as Down
syndrome. The second group are those who underperform in mathematics due to
their exclusion from quality mathematics learning and teaching environments that
are necessary for them to thrive mathematically. Underperformance in mathematics
is too often due to issues associated with equity and quality. Gervasoni and
Lindenskov (2011) argue that many students in this first group have been directly
excluded from opportunities and educational pathways in learning mathematics
because mathematics was deemed an inappropriate field of study for them (e.g.,
Faragher et al. 2008; Feigenbaum 2000). The second group of students participate
in mathematics classes, but they do not receive the quality of instruction or expe-
rience that enables them to thrive mathematically (Gervasoni and Sullivan 2007;
Lindenskov and Weng 2008). These students are indirectly excluded from math-
ematics education.
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The perspective and principles underpinning the development and implemen-
tation of the EMU intervention approach are that all children have the right to
access high quality mathematics education, at their local school, that enables them
to thrive. This implies that all children can learn mathematics successfully given the
necessary resources, environment, and teaching. However, it is important to
acknowledge that providing high quality mathematics learning environments for all
students is a struggle that may take some time to achieve. For example, in Tanzania,
universal primary education has just become a reality for six-year-old children. First
grade classes may include more than 100 students with access to few mathematics
learning opportunities and teaching resources (Gelander et al. 2017). Even the most
expert mathematics teacher may struggle to teach 100 children effectively in this
environment. In contrast, Australia has the economic resources to provide
six-year-old children with class sizes of 20–25 children and primary school teachers
with at least 4-year degrees in teacher education. Australian children begin primary
school at the start of the year in which they turn five, and have access to 15 h per
week of pre-school education in the year prior to beginning school. However, even
in this environment, not all Australian children thrive when learning mathematics at
school and may be considered mathematically vulnerable. The term vulnerable is
widely used in population studies (e.g., Hart et al. 2003), and refers to students
whose environments include risk factors that can lead to poor developmental
outcomes.

8.3 The Extending Mathematical Understanding
(EMU) Intervention Approach

The EMU intervention approach is based on a social constructivist view of learning
(Cobb et al. 1992) and the principle that all children can learn mathematics given
access to the necessary resources, environment, and teaching. This view contrasts
with many intervention approaches that consider mathematics learning difficulties
from a medical or psychological paradigm rather than as a social construct. Magne
(2003) extensive review of the literature on special educational needs in mathematics
found that a medical model was adopted in the majority of studies surveyed; this
positions mathematics difficulties as innate deficiencies as opposed to a socially,
culturally, and politically constructed facet of identity and experience (Scherer et al.
2016). In the EMU approach, teachers focus on designing rich learning environments
for all students that are responsive to differences in how children learn. The approach
recognises that teachers need to be expert at understanding how individual children
learn mathematics, and how they can advance this learning. This calls for a high level
of professional knowledge. In Australia, primary classroom teachers are generalists
and typically teach every curriculum area. This means that their initial teacher edu-
cation rarely includes the depth of knowledge required to deal with the complexity of
providing a truly inclusive mathematics classroom.
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Schools using the EMU approach first concentrate on enabling all classroom
teachers to increase their mathematical pedagogical content knowledge (PCK), and
their ability to design and implement inclusive learning environments. This involves
providing professional learning opportunities to develop each teacher’s knowledge
and confidence. These schools also employ an EMU specialist teacher whose role is to
provide three levels of support for vulnerable students and classroom teachers
(Gervasoni 2015), including an EMU intervention program for the most vulnerable
students in Grade 1. Level 1 EMU support provides classroom teachers with advice
about how to best advance a child’smathematics learning, and this is supplemented by
an individual learning plan that outlines the learning goals and experiences that may
boost a particular child’s learning. Level 2 support provides this same advice plus
in-classroom support (e.g., peer teaching, coaching, small group teaching) for chil-
dren during mathematics lessons. Level 3 includes a small group EMU intervention
program for prioritised students. This daily withdrawal program is coordinated with
the classroom mathematics program. EMU specialist teachers complete a 36-hour
course (at Masters level) that focuses on assessment of children’s knowledge and
dispositions, mathematical pedagogical content knowledge, and instructional design
that maximises mathematics learning for all. This professional learning program
recognises that specialist mathematics teaching knowledge is one important factor in
enabling all students to thrive mathematically (Hill et al. 2005). Specialists also
complete at least 25 h of field-based learning associated with teaching the EMU
intervention program, and a programof professional reading prior to being accredited.
Ongoing accreditation requires that EMU specialists engage in two days of ongoing
professional learning each year.

Level 3 EMU support provides Grade 1 children who are mathematically vul-
nerable with an intervention program that aims to accelerate their learning and
increase their confidence, so that ultimately they can thrive in the regular classroom
environment. The intervention is also possible for older students, depending on the
available resources in a school. During this intervention, groups of three children
(6-year-olds) participate in 30-min lessons 5 days per week for a total of 10–
20 weeks (i.e., 50–100 lessons), depending on their progress. The lessons are
designed and customised for each student because of the diverse range of knowl-
edge and difficulties noted amongst those who are mathematically vulnerable (see
Table 8.1). Gervasoni and Sullivan (2007) found that it was rare to find two stu-
dents with the same difficulties. The theoretical underpinnings of the EMU inter-
vention program, the teaching approach, and lesson structure are described in detail
in Gervasoni (2004), and also in the accompanying book for specialist teachers
(Gervasoni 2015). In brief, each 30-min lesson focuses on: whole number learning
with an introduction to build connections with recent learning (2-min); activities to
develop children’s understanding of quantities and numerosity, including place
value and counting knowledge(8-min); mathematical investigations and open tasks
involving the four operations, with an emphasis on the development of heuristic
arithmetic and reasoning strategies (15-min); reflection on learning (5-min); and
assignment of a daily home task (usually a mathematics game) to involve parents in
the children’s learning. Specialist teachers are encouraged to be responsive to what
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they learn about each student during each lesson. The pedagogical approach
encourages children to use concrete models to assist with their construction of new
knowledge, and teachers prompt children to simulate, imagine, and describe solu-
tions derived from using these concrete models. Children are also expected, and
supported, to explain their thinking and strategies, and to develop confidence and
positive mind-sets. The course for EMU specialist teachers emphasises these
pedagogical approaches, and detailed explanations and illustrative examples are
provided in the 220 page Extending Mathematical Understanding: Intervention
book for teachers (Gervasoni 2015).

8.4 Using Growth Point Profiles to Identify Children Who
May Benefit from an Intervention Program

While the aim of inclusive mathematics education is for each child to thrive with
their learning in their classroom, it is also necessary to identify those children who
are not thriving and to change their experience of learning. Sometimes a more
intensive learning experience than what is available in a regular classroom is helpful
in the short term. This is the intent of the EMU intervention program.

The EMU approach begins with the proposition that the classroom and specialist
teachers need to deeply understand each child’s current mathematical understanding
and strategies. This process is facilitated through reference to a framework of
mathematics growth points that help teachers recognise children’s current under-
standing in four whole number domains, and guide their teaching. The growth point
framework in the EMU approach was developed during the Early Numeracy
Research Project (Clarke et al. 2002) and further refined in 2013 (Gervasoni et al.
2011). The processes for validating the growth points, the associated assessment
interview items, and the comparative achievement of students are described in full
in Clarke et al. (2002) and have been reported widely (e.g., Clarke 2001, 2013).
From a research and evaluation perspective, the framework of growth points also
enables children’s learning progress to be measured. The growth points do not
represent an assessment score, but rather describe a child’s current knowledge in
reference to the set of research-informed progressions in children’s developing
knowledge. This is a common approach in Australia (Bobis et al. 2005). The idea is
that the growth points guide teachers about how they might respond to a child’s
current knowledge, and then provide the resources and teaching to extend their
learning.

School communities using the EMU approach organise for classroom teachers to
assess all children in their class using the Mathematics Assessment Interview
(Gervasoni 2011). This one-on-one assessment requires the teacher to sit with each
child, and to observe and probe their thinking and strategies for solving mathe-
matics tasks, until they have a deep understanding of the extent of the child’s
current whole number knowledge. Based on children’s strategies and responses, the
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detailed assessment script leads children through different tasks in nine whole
number, measurement, and geometry domains, just like a choose your own
adventure story. Following the assessment, the teacher analyses each child’s
responses to determine their growth point profile, and identifies whether any chil-
dren are mathematically vulnerable. In the EMU intervention context, the four
whole number domains (Counting, Place Value, Addition and Subtraction
Strategies, and Multiplication and Division Strategies) have been shown to be the
most reliable for identifying children who were mathematically vulnerable. In
contrast, children’s performance in the measurement and geometry domains was
much less predictable (Gervasoni 2004). This emphasis on the whole number
domains for identifying and prioritising children who may benefit from an EMU
intervention program does not diminish the importance of children’s measurement
and geometry learning. Rather, it has been found that children have typically learnt
measurement and geometry knowledge successfully in the classroom environment.

To illustrate the nature of the growth points (see Clarke et al. 2002; Gervasoni
2015 for detailed descriptions) and the wide distribution of knowledge in any grade
level, Fig. 8.1 shows the 2016 Multiplication and Division Strategies distribution of
growth points for all 21,884 primary students in a region of the New South Wales.

The wide distribution of growth points in every grade level was evident also in
each of the other three whole number domains. For each grade level, it is clear that
there is a group of students who are failing to thrive in comparison to their peers. It
is also clear that responding to this wide distribution of knowledge is highly
complex for teachers, and requires the classroom teacher to be highly skilled in
customising mathematics lessons and teaching. An inference from these data is that
children on the lowest growth points in a class may be marginalised, with the
teacher struggling to provide the resources necessary to enable all to learn.

Fig. 8.1 Multiplication and Division Strategies growth point distributions for children in
Kindergarten to Grade 6 in 2016
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The EMU approach uses children’s growth point profiles in the four whole number
domains to prioritise children for Level 3 EMU intervention. For example, in the
domain of Multiplication and Division Strategies, Grade 1 children who do not yet
use count-all strategies (growth point one) to solve multiplicative problems are
considered mathematically vulnerable in this domain, and they qualify for specialist
EMU intervention support (Gervasoni 2004). This is because their current inability
to use count-all strategies for simple multiplicative tasks excludes them from
engaging with typical Grade 1 learning activities.

8.5 Progress of Students Who Participated in an EMU
Intervention Program

Several studies have investigated the impact of the EMU intervention program (e.g.,
Clarke et al. 2002; Gervasoni 2004). During the Bridging the Numeracy Gap in
Low SES and Aboriginal Communities Pilot Project (BTNG) (Gervasoni et al.
2011, 2012), the longitudinal progress of six-year-old students who participated in
an EMU intervention program in 2010 was measured over three years using the
ENRP growth point framework. The participants in the BTNG research all
belonged to socially disadvantaged communities, as classified by the Australian
Government, and formed two groups. The first group was the 42 Grade 1 children
who, in 2010, took part in an EMU intervention program for 10–20 weeks. The
second comparison group comprised all 2545 Grade 1 (6-year-old) to Grade 4
(9 year-old) children who attended the schools involved in the study during 2010–
2011. All these schools employed an EMU Specialist Teacher who was able to
provide support for children who were mathematically vulnerable, and all children
in these schools were assessed by their classroom teachers using the Mathematics
Assessment Interview (MAI). Following this assessment, their associated whole
number growth points in 2010 and 2011 were used to provide a comparative
measure of mathematics growth for all children in the study. Children’s growth
point profiles, and any vulnerability in the four number domains, were used to
prioritise Grade 1 children for participation in the EMU intervention program,
according to the protocol identified by Gervasoni (2004), with those classified as
Priority 1 (most vulnerable) being the first to be offered the intervention. None of
the schools had the financial resources to offer intervention programs to all children
who were mathematically vulnerable.

Of interest for the BTNG longitudinal study was whether the EMU intervention
program accelerated children’s mathematics learning and how their learning pro-
gressed over three years. These students from the states of Victoria and Western
Australia were all the most mathematically vulnerable students in their class, based
on their MAI assessment and growth point profiles (Gervasoni 2004). Table 8.1
shows the number of whole number domains and the combination of domains for
which these 42 children were vulnerable at two time points: (1) at the beginning of
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Grade 1 and before they began the EMU intervention program; and (2) 12 months
later, at the beginning of Grade 2 and after these children had completed both the
EMU Program in the previous year and the long summer holiday. Figure 8.2 shows
the decrease in the number of domains for which children were vulnerable after the
2010 EMU Program. It is important to note that the growth points used for iden-
tifying children as vulnerable in Grade 2 (2011) were increased by one growth point
in each domain to account for median growth across 12 months. For example,
children beginning Grade 1 were identified as vulnerable in Counting if they did not
reach Growth Point 2. At the beginning of Grade 2, children were identified as
vulnerable in Counting if they did not reach Growth Point 3.

The data suggest that these children were a diverse group. Pre-EMU, some were
vulnerable in only one domain (21%), some in two (31%) or three domains (33%),
but only four students (10%) were vulnerable in all four domains. This is consistent
with the findings of Clarke et al. (2002) during the Early Numeracy Research
Project. Further, the combinations of domains for which the students were vul-
nerable prior to participation in the EMU intervention program varied. Clearly,
there was no one pattern to describe students who were mathematically vulnerable.
This highlights the complexity of teaching, and the need for teachers to be expert at
understanding children’s current knowledge and in designing learning environ-
ments that are personalised to enable all children to learn.

From an evaluation perspective, the EMU program aims for no children to be
mathematically vulnerable at the end of the program or, as a minimum, for children
to be vulnerable in fewer domains. To measure the effect of the EMU program for
decreasing the domains for which children are mathematically vulnerable, chil-
dren’s EMU growth point data were collected by the new classroom teacher at the
beginning of Grade 2, that is, after the long summer holidays. The data shown in
Table 8.1 and Fig. 8.2 show that in 2011, after experiencing the EMU Program in
2010, the vast majority of students were vulnerable in fewer domains, and almost
half were no longer vulnerable at all. It is important to note that the growth points

Fig. 8.2 The percentage of
EMU participants who were
vulnerable in 0, 1, 2, 3 or 4
whole number domains in
2010 and 2011
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used to identify a student as vulnerable in 2011 were one growth point higher in
each domain compared with those used in 2010 and before the EMU Program. This
increase adjusts for the typical growth in knowledge across one year of schooling
(Clarke et al. 2002). The results suggest that most of the children were in a stronger
position to thrive mathematically in 2011 compared with the previous year.
However, 17% of children remained vulnerable in 3 or 4 domains. The challenge
remained for their 2011 Grade 2 classroom teacher to create the learning experi-
ences that would enable these children to thrive.

A paired-samples t-test was conducted to determine whether the change in the
number of domains for which children were vulnerable before and after the inter-
vention was significant. There was a statistically significant decrease in the number
of domains for which children were vulnerable in 2010 before EMU (M = 2.20,
SD = 1.05) and in 2011 after EMU (M = 1.15, SD = 1.24), t (40) = 6.13, p < .001
(two-tailed). The mean decrease in vulnerable domains was 1.05 with a 95%
confidence interval ranging from 0.703 to 1.394. The eta squared statistic (.48)
indicated a large effect size. While the study design does not enable the claim to be
made that the EMU intervention program was the sole cause of this decrease in
vulnerability, the intervention program was likely to be a contributing factor.

8.6 Longitudinal Impact on Mathematics Knowledge
and Growth Points Over Three Years

The data presented in the previous section highlight that participation in the EMU
program was associated, typically, with an acceleration in some children’s whole
number learning and a decrease in the number of domains in which they were
vulnerable. However, it is also important to determine whether this learning was
maintained and extended in the following years. To evaluate the longitudinal
progress of students who participated in a Grade 1 EMU intervention program only
in 2010 (but not in subsequent years), the EMU group’s growth point distributions
in 2010–2013 for each domain were calculated and compared with the progress of
all students in the entire cohort (including EMU students). Figure 8.3 shows the
growth point distributions for the two groups for the Multiplication and Division
Strategies domain from 2010 to 2013. Note that due to the BTNG project ending in
2011, longitudinal data for students in the comparison 2012 Grade 3 cohort and the
2013 Grade 4 cohort were unavailable, so available 2011 data for all Grade 3 and
Grade 4 students in the same schools were used to illustrate the distributions that
might be expected of the 2012 Grade 3 and 2013 Grade 4 cohorts. An asterisk
indicates this use of 2011 Grade 3 and Grade 4 data in Figs. 8.3, 8.4, 8.5 and 8.6.
Only growth point data for children in the EMU intervention group were available
for collection in 2012 and 2013 due to a limited extension of the BTNG project to
enable these children’s longitudinal progress to be measured.
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Figure 8.3 shows that the spread of Multiplication and Division Strategies
growth points for the 2010 EMU group was substantially different to their peers,
with 71% of the EMU group on Growth Point 0 (GP0) compared with only 32% of
their peers. However, the EMU group made substantial growth by 2011. It is
noticeable how similar the spread of growth points are in 2011 for both the EMU
group and their peers (All) in Grade 2. This finding was also apparent for the other
whole number domains (see Figs. 8.4, 8.5 and 8.6). These data suggest that one
effect of the EMU Program in 2010 was an acceleration of whole number learning
to the extent that the EMU group’s growth point distribution at the beginning of
2011 (Grade 2) mirrored that of their peers. Nevertheless, while some EMU stu-
dents progressed two or three growth points in each domain across 2010–2011,
some remained vulnerable when they reached Grade 2 and remained on the lowest

Fig. 8.3 2010–2013 multiplication and division growth point distributions (beginning of the year)
for the 2010 EMU group, and comparison data for all Grade 1–Grade 4 students

Fig. 8.4 2010–2013 addition and subtraction growth point distributions (beginning of the year)
for the 2010 EMU group and comparison data (2010–2011) for all Grade 1–Grade 4 students
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growth points (GP0 and GP1). Such vulnerable students, including those who do
not participate in the Grade 1 intervention program, are of concern and may benefit
from additional assistance throughout Grade 2.

Overall, it is clear from the data presented in Figs. 8.3, 8.4, 8.5 and 8.6 that the
majority of students participating in the EMU intervention program made accel-
erated progress in each domain by the beginning of Grade 2 (2011). It is also
important to consider whether their progress continued or faded in 2011–2013
when they no longer had the opportunity afforded by an intervention program.
A comparison of the Grade 2–Grade 4 Multiplication and Division growth point
distributions (Fig. 8.3) for the 2010 EMU group suggests that their learning was
maintained during this period, but that the rate of progress for many students was

Fig. 8.5 2010–2013 place value growth point distributions (beginning of the year) for the 2010
EMU group and comparison data (2010–2011) for all Grade 1–Grade 4 students

Fig. 8.6 2010–2013 counting growth point distributions (beginning of the year) for the 2010
EMU group and comparison data (2010–2011) for all Grade 1–Grade 4 students
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less in the following years when they no longer received additional support from a
specialist teacher. Transition from one growth point to the next growth point in the
framework represents a significant step in a student’s development that may take
12 months to achieve, as opposed to smaller steps in learning that are noticeable
day by day (Clarke et al. 2002). Figure 8.3 shows that, typically, the children in the
highest quartile of the EMU cohort distribution (on GP3 and GP4) at the beginning
of Grade 2 (2011) progressed one additional growth point from 2012 to 2013 in the
Multiplication and Division Strategies domain, but EMU students in the lowest
quartile distribution (on GP0 and GP1) of the cohort distribution made less pro-
gress, on average. Encouragingly, the rate of progress of students in the 2010 EMU
group from 2011 to 2013 was consistent with the progress of their peers (All).
Children on the lowest growth points struggled to make progress in 2011 and may
not have benefitted greatly from their classroom experiences in Grade 2.

Figure 8.4 shows children’s progress in the Addition and Subtraction Strategies
domain. The EMU group made strong progress from 2010 to 2011 after the period
of the intervention program but, although their learning was maintained in subse-
quent years, the rate of progress reduced.

It is of interest to examine the progress of both the EMU Group and their peers
(All) from Grade 2 to Grade 3 (2011–2012). On average, comparison students in the
upper 50% of the Grade 2 distribution were likely to progress at least one growth
point by Grade 3 (e.g., GP3–GP4 or GP4–GP5), but the learning for most EMU
students in the bottom half of the Grade 2 distribution has stagnated by Grade 3 on
GP1 and GP2. That is, 64% of the EMU students were on GP1 or GP2 at the
beginning of Grade 2 and 49% were still on GP1 or GP2 at the beginning of Grade
3. It appears that being able to move from using a count-on strategy for addition
(GP2) to a count-back strategy for subtraction (GP3) is a difficult progression for
many students.

In the Place Value domain, mean growth for children is just less than one growth
point per year (Clarke et al. 2002). Examining the data in Fig. 8.5 for Grade 2,
Grade 3 and Grade 4 children in both the EMU and comparison groups shows that
the median was GP2 (understanding 2-digit numbers) in all these distributions.
From year to year, this was less growth than might be expected and suggests that
many children’s place value knowledge was stagnating from Grade 2 through to
Grade 4. Further, comparisons between the growth from Grade 2 to Grade 3 for
both the EMU group and their peers (All) suggest that, on average, students
beginning Grade 2 on GP1 or GP2 (success with tasks involving 1-digit and 2-digit
numbers respectively), were highly likely to remain on these growth points one year
later. These findings suggest that learning opportunities in Grade 2 and Grade 3
classrooms were insufficient for all students in Place Value. This is an issue for
school systems to investigate.

Inspection of the 2010 EMU group’s progress in the Counting domain (Fig. 8.6)
suggests that, on average, learning was accelerated across Grade 1 for EMU stu-
dents during the intervention period. There was substantial change in the proportion
of EMU students in the lowest two growth points (GP0 and GP1) from Grade 1 to
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Grade 2. Further, there were proportionally fewer children in the EMU group on
these growth points in Grade 2 than among the All students group.

The data in Fig. 8.6 suggest that progress for some EMU students was likely to
stagnate across Grade 2 and Grade 3, particularly if children began the year on
Growth Point 2 (can count at least 20 objects) or Growth Point 3 (can count by ones
past 109 and back from 24). In stark contrast, the EMU children who began on
Growth Point 2 at the beginning of Grade 1, on average, were likely to progress to
at least Growth Point 3 one year later. This suggests that instruction in Grade 2 and
Grade 3 may not have been sufficiently focused on supporting students to learn to
skip count (GP4 and GP5). Skip counting, or the teaching of skip counting, appears
to present a barrier that prevents some students from progressing beyond GP3.

8.7 Impact of EMU Intervention on Children’s
Confidence for Learning Mathematics

Another goal of the EMU intervention program is to develop children’s positive
dispositions for learning mathematics. However, this aspect of children’s learning
was not investigated during the BTNG project described earlier. To gain some
insight on any impact of the EMU intervention program in this regard, 127 EMU
specialist teachers in New South Wales who completed their course in 2016 were
surveyed. They were asked, “What key changes have you observed in your students
as a result of their participation in the EMU program?” Seventy-nine of the teachers
(62%) noted changes in children’s confidence. Several responses that illustrate the
impact of the EMU intervention program on children’s confidence include the
following:

The increase in the students’ confidence has been the biggest change. The students are more
willing to participate in classroom mathematics.

Confidence and engagement/enjoyment in maths has been a huge change - these kids are
now approaching maths with a positive mindset and (as reported back from the classroom
teachers following the course) these students are now much more likely to ‘have a go’ in
their classrooms, persevere with their learning if they find it difficult, and look for different
ways/strategies to solve a problem.

I could not believe the speed with which they showed improvement. After 2 weeks they
were more confident in sharing their strategies and ideas and it carried over into the
classroom too. Teachers have reported that the students in EMU were more confident in
Maths and used a wider variety of strategies than other students. The students taught their
classmates some of their activities and became ‘the experts’!

The confidence that my students now demonstrate is fantastic. They are so much more
engaged in numeracy in their classrooms and love to contribute ideas and explain their
thinking.

Another strong theme in the responses was the positive change in children’s
engagement in classroom mathematics learning. This is also evident in the
responses above. These data suggest that the EMU intervention program, as
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perceived by the specialist intervention teachers, had a positive effect on children’s
dispositions for learning mathematics, as well as on their mathematics knowledge
and problem solving. Further, the data suggest that this increased confidence may
have transferred to children’s experience of learning mathematics in their
classrooms.

8.8 Issues Related to Effective Intervention Approaches

The data presented earlier demonstrate that the mathematics learning of most
children who participated in the EMU intervention program increased across the
year, and that this learning was mostly maintained and extended in the subsequent
three years. Further, most children gained in confidence and had more positive
attitudes to learning mathematics, as noted by their classroom teachers. Thus, the
majority of children were more strongly positioned to thrive mathematically in their
classroom environment following participation in an EMU intervention program.
This impact was further demonstrated by many EMU participants no longer being
mathematically vulnerable or being vulnerable in fewer domains, with associated
increased mathematics knowledge and confidence to bring to the classroom
learning environment. Thus, the EMU program is likely to have assisted children to
benefit more fully from their classroom mathematics learning in subsequent years.
However, some children remained vulnerable. It is possible that these children may
benefit from ongoing support from a specialist teacher who can advise the class-
room teacher about the type of experiences and teaching adjustments that can
enable their learning. Indeed, a specialist teacher can play an important role across
the school in providing professional learning opportunities and advice for class-
room teachers as they work towards providing a more effective and inclusive
environment for mathematics learning.

The longitudinal data that described the progress of EMU children, alongside the
whole cohort of students for comparison, clearly demonstrated that there were
points when many children’s mathematics learning stalled for 12 months or longer.
This finding suggests that the classroom teachers may have needed further support
to improve their pedagogical content knowledge to respond productively to all
children’s current mathematical understanding, and to provide experiences that
enabled growth for all. Inclusive mathematics education calls upon teachers to
provide learning experiences and teaching based on what children currently know,
within the framework of a curriculum document. The wide distribution of knowl-
edge in any one classroom across multiple mathematical domains, as demonstrated
in Figs. 8.3, 8.4, 8.5 and 8.6, highlights the complex situation that teachers face
when designing inclusive mathematics learning environments. It may be that the
teaching approaches used by the EMU specialist teachers in the intervention pro-
gram may be beneficial for classroom environments also. This would include:
providing tasks that can be differentiated to enable children to engage in different
ways and levels; adopting teaching strategies that enable children to use concrete
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models to assist with problem solving in new topic areas; encouraging children to
simulate and describe their actions with concrete models; and providing opportu-
nities for children to discuss their mathematical conjectures. Identifying effective
teaching approaches that respond to the wide variation in children’s mathematical
knowledge is an important topic for ongoing research and development.

The increased learning for children in the EMU intervention group was
noticeable when comparing the growth point spread for EMU students and their
peers when the children reached Grade 2. Indeed, by Grade 2 (2011), and again in
Grade 3 (2012) and Grade 4 (2013), the growth point distributions of both groups
were very similar, in contrast to the marked differences observed between the two
groups in 2010. However, an important issue apparent in the EMU group’s Grade 2,
Grade 3, and Grade 4 growth point distributions was that learning for some students
seemed to stall across these grades; generally students in the top quartile of the
growth point distribution were most likely to progress. This finding suggests that
classroom mathematics teaching for Grade 2–Grade 4 students may not be suffi-
ciently differentiated to enable all students to thrive. The analyses also suggest that
not all Grade 1 children who participated in an EMU intervention program expe-
rienced accelerated learning in all whole number domains. Longitudinally,
one-quarter of the EMU group reached the highest growth points found in the 2011,
2012 and 2013 distributions for All students, while a proportion of the EMU group
remained mathematically vulnerable in subsequent years. These EMU children
progressed, but remained mathematically vulnerable as the curriculum demands
increased. Further insights are needed about effective strategies to assist these
students.

Participation in the EMU intervention program was associated with most Grade
1 children progressing their whole number learning beyond the one growth point
anticipated in each domain across one school year. This was true even for the
children who began on the lowest growth points. It was also apparent that their
learning was maintained over subsequent years, although some students’ learning
progression stagnated. This stagnation in learning was noted also for students in the
All students comparison cohort. Profitable areas for further research and develop-
ment are: (a) seeking insight into why some students make less progress during an
intervention program than others, and (b) designing classroom instruction for Grade
2–Grade 4 students that is more inclusive and better enables mathematics learning
for all. It may be beneficial for an EMU specialist teacher to be more available to
advise Grade 2–Grade 4 teachers about how to refine curriculum and customise
teaching to enable all to learn. It is also likely that some students may benefit from
more specialised mathematics teaching beyond Grade 1, and also that classroom
teaching in Grade 2–Grade 4 may need to be more responsive to students’ indi-
vidual learning needs. The importance of teachers’ mathematical knowledge for
teaching has been increasingly recognised as a key to achieving desired learning
outcomes for all students (Hill et al. 2005).
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8.9 Conclusion

The research and experiences presented in this chapter suggest that participation in
a Grade 1 EMU intervention program was associated with accelerated mathematics
learning for most students and that this learning was generally maintained and
extended in the following three years. It appears that the EMU program also results
in children gaining confidence as learners of mathematics. A review of the Maths
Recovery Program (Smith et al. 2013) concluded that mathematics intervention
programs must be coordinated with, rather than isolated from, the classroom
mathematics program. This conclusion is supported by Clements et al. (2013) who
further claim that interventions in the early years need to be scaled-up in subsequent
years to be most effective for students. The longitudinal data presented in this
chapter highlight that although most EMU intervention participants’ learning was
maintained in subsequent years, some students stalled in their learning at various
points in the three years after the EMU Program concluded. This supports the
findings of Smith et al. (2013) and Clements et al. (2013) that interventions need to
be co-ordinated with classroom programs and scaled-up in subsequent years for
their impact to be extended beyond the intervention period. Following an inter-
vention program, if children continue to experience the same conditions under
which they were marginalised and excluded from learning mathematics in the first
place, then their learning may again be disrupted. It is possible that specialist
intervention teachers have a role to play in scaling-up intervention in subsequent
years through supporting classroom teachers to provide an inclusive mathematics
learning environment in which all students can thrive.
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Chapter 9
Helping Teacher Educators in Institutions
of Higher Learning to Prepare Prospective
and Practicing Teachers to Teach
Mathematics to Young Children

Herbert P. Ginsburg

Abstract Research shows that young children possess surprising mathematical
abilities and can benefit from Early Mathematics Education, which can lay a sound
foundation for mathematics learning. Yet institutions of higher education generally
provide their students with inadequate preparation in teaching mathematics to
young children. To ameliorate this unfortunate situation, I have been working with
colleagues on development of a comprehensive set of materials that teacher edu-
cators—usually professors and instructors in institutions of higher learning—can
use in their teaching, either live or online. This paper describes a framework for
training teacher educators and their students and presents an account of materials
that can be used to promote understanding of the relevant mathematics, mathe-
matical thinking of young children, and the kind of formative assessment that can
be useful for teachers.

Keywords Professional development � Early mathematics education
Mathematical thinking � Formative assessment � Higher education

9.1 Introduction

In this paper, I describe the need for rich programs of teacher preparation in Early
Mathematics Education (EME). Quality EME can lay a sound foundation for
mathematics learning and also satisfy children’s curiosity about numbers, shapes,
and other mathematical topics. Yet, I argue, institutions of higher education gen-
erally do not prepare their students adequately for EME. They often fail to provide
prospective and practicing teachers with an understanding of young children’s
mathematical thinking and the pressing need to foster it. To ameliorate this
unfortunate situation, I have been working with colleagues on development of a
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comprehensive set of materials that teacher educators—usually professors and
instructors in institutions of higher learning—can use in their teaching, either live or
online. Before introducing what we have developed, and the rationale for it, I
describe the urgent need for an improved EME as well as some challenges we must
overcome to implement it. I argue that it is clear that young children possess
surprising mathematical abilities and can benefit from EME, if only the teacher
educators and their students are properly prepared to understand and implement it.
Then I describe a framework for training teacher educators and their students and
present an account of the new materials we are developing with the collaboration of
colleagues.1

9.2 The Need for EME

Many countries around the world stress the need for strong and extensive programs
of EME. In the U.S., “Early childhood education has risen to the top of the national
policy agenda with recognition that ensuring educational success and attainment
must begin in the earliest years of schooling” (Cross et al. 2009). Latin American
countries express similar concerns: “We have to do something [about EME],
especially in the countries that were the land of brilliant civilizations like the
Mayans and the Incas, who made important scientific and mathematical contribu-
tions” (Bosch et al. 2010, p. 5). Improving early mathematical competence has
become a major priority around the world (Platas et al. 2016).

Why this focus on EME? One reason is that it has become increasingly clear that
early proficiency in mathematics is a good predictor of academic success in later
years (Duncan et al. 2007) and even college attendance (Duncan and Magnuson
2011). Further, “A causal relationship has been identified between early mathe-
matical proficiency and later individual economic well-being and broader economic
growth in countries including Kenya, Tanzania, Ghana, and Pakistan…” (Platas
et al. 2016, p. 164).

We would add another important reason for EME, namely that failing to provide
it is a disservice to young children. They are curious about mathematical ideas and
want to learn. Contemporary developmental and educational research (Sarama and
Clements 2009) shows that young children develop a relatively powerful informal
mathematics as well as the capacity to acquire rather sophisticated foundational
math skills. From the earliest days of infancy, they develop an everyday mathe-
matics of some power and complexity. Infants can identify a collection containing
more objects than another contains. Parents can easily confirm that babies prefer

1This work was done in collaboration with Megan Franke, Linda Platas, and Deborah Stipek, all of
whom are members of the Development and Research in Early Mathematics Education (DREME)
project, generously funded by the Heising-Simons Foundation. We are grateful for the
Foundation’s support. I also want to acknowledge the contributions of my students, Ma. Victoria
Almeda, Bona Lee, Myra Luna-Lucero, Colleen Oppenzato, Colleen Uscianowski, and Eileen Wu.
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more food to less. Babies approve of the parent adding food, and make clear their
displeasure when some is taken away.

From about 2 years to 6, children engage in even more complex mathematical
activities. Knowing a fair number of counting words, they develop ideas about
“how many?” They learn, sometimes without adult assistance, to assign the
counting words, one at a time, in order, to one and only one object. As they grow
older, they gradually learn that the last number in the count sequence indicates the
set’s cardinal value and thus answers the “how many” question (Baroody and
Dowker 2003).

Young children also enjoy their everyday mathematics. It is part of their intel-
lectual life. It satisfies their curiosity. They do not need EME to make them ready
for learning mathematics. Their everyday mathematics is real mathematics,
involving thinking and exploration as well as the necessary memorization (for
example of the numbers from one to ten).

Given young children’s ability and potential to learn, promoting their mathe-
matical learning should be a critical component of high quality early childhood
education. Although preparation for the future is vital, we should also help children
thrive in the present by providing them with the appropriate mathematical food for
thought. If the focus is mainly on the future, one result may be high stakes testing,
which may have the effect of deadening teaching and learning during the early
years. But a focus on the present will not only respond to children’s current interests
but also help prepare them for future school success.

Given its importance (in the present as well as in the future), early mathematics
proficiency is alarmingly inadequate around the world. “[A]t least 250 million
primary-school age children around the world are not able to read, write or count
well enough to meet minimum learning standards (Center for Universal Education
at Brookings and UNESCO Institute for Statistics 2013, p. 1), including those who
have spent at least four years in school. Further, “Of the more than 800 millions 0 to
6 year old children in the world, less than a third benefit from early childhood
education programmes” (Lillemyr et al. 2001, p. 1).

Socio-Economic Status (SES) and ethnic differences in early mathematics pro-
ficiency exist in many countries. In the U.S., low-income and African-American
children perform more poorly than middle-income and mainstream children
(Denton and West 2002; Love and Xue 2010).

Given the low levels of mathematics performance, especially in lower-SES and
minority children, and given the importance of early mathematics learning, many
education authorities around the world (Bosch et al. 2010) have called for the
widespread, even universal, implementation of high quality mathematics education
for young children by at least the age of 4 years, especially for low-income children
at risk of school failure (Cross et al. 2009) and of attending failing schools
(Ginsburg et al. 2008). Meeting the educational needs of young children requires
many different kinds of contributions, including:

• Political: The public needs to decide that early education is a social priority and
should be universally available.
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• Economic: The public needs to devote adequate public funding for classrooms,
teachers and assistants, meals, and related needs.

• Resource Development: Educators need to create rich materials for children’s
mathematics learning.

• Teacher Education: Institutions of higher learning need to prepare teachers for
EME and school systems need to support teachers who are engaged in imple-
menting it.

• Research: Educators and psychologists need to understand the basic processes
of EME and evaluate their efficacy.

Fortunately, many efforts along these lines are already underway. As we saw,
many education authorities have called for extensive EME and are devoting funds
to pay for it. Educators and researchers and others have developed and evaluated
rich mathematics curricula (Casey et al. 2004; Ginsburg et al. 2003; Griffin 2004;
Sarama and Clements 2004; Sophian 2004; Starkey et al. 2004).

One area that has received relatively little attention is pre-service education.
Prospective teachers are seldom given adequate preparation in EME at the level of
higher education (Ginsburg et al. 2014). The Development and Research in Early
Mathematics Education (DREME) project aims to provide teacher educators—
professors, instructors, and others—with effective EME pedagogy and materials
that can be used in a flexible manner, in different courses, to prepare their students,
prospective teachers, for EME.

9.3 A Guide for Teacher Educators

William James had it right over a hundred years ago (1899) when he wrote:
“Psychology is a science, and teaching is an art; and sciences never generate arts
directly out of themselves. An intermediary inventive mind must make the appli-
cation, by using its originality” (James 1958, pp. 23–24). That is, although science
may provide insights into children’s mathematical thinking and learning, teachers
need to use their “intermediary inventive mind[s]” to construct understandings of
individual children and ways of teaching them. Our overall goal is to help teacher
educators to prepare and support thoughtful, critical minded students.

9.3.1 What Do We Teacher Educators Want Our Students
to Know?

The teaching of virtually any subject is complex, difficult and intellectually chal-
lenging. To teach well, our students need to learn a great deal about several
interesting topics.
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9.3.1.1 The Mathematics

It is self-evident that teachers need to understand what they attempt to teach. The
problem, however, is that many students, and adults generally, do not realize that
the mathematics young children need to learn is not simple. Indeed this basic
mathematics—including whole number, shape and space—is far more complex
than many adults recognize, precisely because it deals with basic ideas. Addition of
the whole numbers, for example, is much more than remembering number facts,
like the sum of 2 and 3. Addition also involves a set of fundamental mathematical
ideas. For example, the child should know that the sum of any two numbers (other
than zero) must be greater than each; that the order of adding makes no difference;
that the sum indicates the total number of objects; that addition can be used to
model certain real situations; and that methods for calculating a sum can and should
make sense. These ideas are not hard for adults to learn, but many prospective
teachers do not think about early addition in these terms and hence cannot teach the
subject effectively.

9.3.1.2 The Development of Mathematical Thinking

How can anyone teach effectively without understanding the students to be taught?
Would any teacher want not to understand her students? Teachers of young children
in particular need to understand their thinking because it often differs from our own.
The idea of distinctive child thought was one of the central points of Piaget’s theory
(Piaget and Inhelder 1969). We are surprised, and sometimes amazed and amused,
to encounter a child who thinks that moving around a group of objects, without
adding or taking away any of them, results in a change in the group’s number,
because we do not see the world in the same manner. Effective EME requires
teachers to take a cognitive leap from their own ways of thinking, in order to
understand the child’s. In a sense, teachers need to overcome their own egocentrism
to see the child’s.

The psychology of children’s mathematical thinking is very rich. Inspired by
Piaget’s theory (Piaget 1952), contemporary research has illuminated key aspects of
everyday and formal mathematics learning (Sarama and Clements 2009). We now
know in great detail how children think about the topics central to EME: basic
number, shape, space, pattern, and measurement. The research has also plotted the
developmental trajectories of thinking related to these topics. It is important to note
that current research goes far beyond general Piagetian ideas about broad stages of
development, like pre-operational and concrete-operational thought. Current
research offers insight into the development of specific aspects of mathematical
thinking, both everyday and schooled. This was not something that Piaget tried to
do. Surely our students need to understand the details of student thinking and how it
develops.
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9.3.1.3 Formative Assessment and Understanding the Individual

Formative assessment is the process of collecting information that enables the
teacher to understand individual children and to use what has been learned to
improve instruction (Heritage 2010). Formative assessment is different in several
ways from summative assessment, like achievement tests, year-end testing, or other
forms of high-stakes assessment that use standard tests to focus mainly on chil-
dren’s achievement and mastery. By contrast, formative assessment employs flex-
ible, and deliberately non-standardized methods, primarily clinical interviews and
observations, to focus not only on performance, which of course is important, but
also on what underlies it, namely children’s ideas and strategies, knowledge of
which can be used to shape teaching. Formative assessment is relevant for teachers,
whereas summative assessment provides them with little actionable information.

It is important to note that the target of formative assessment is the individual
child, not the average or prototypical child pictured by a developmental trajectory.
Yes, 4-year-olds can be characterized in general as doing so and so. This is valuable
information, but there is variation within the group, so that the prototype may not
fully apply to the individual. Given the fact of widespread individual differences,
the teacher needs to understand and assess the individual child.

9.3.1.4 Pedagogical Goals and Methods

Students need to learn that the overarching pedagogical goal is to produce mean-
ingful learning in which children synthesize what they already know, their everyday
mathematics, with the more powerful formal mathematics developed over the years
in different cultures, from the Indian to the Arabic to the Western.

Vygotsky (1986) put the matter thus: “In working its slow way upward, an
everyday concept [everyday mathematics] clears a path for the scientific concept
[formal mathematics] and its downward development. It [the scientific concept]
creates a series of structures necessary for the evolution of a concept’s more prim-
itive, elementary aspects, which give it body and vitality. Scientific concepts, in turn,
supply structures for the upward development of the child’s spontaneous concepts
toward consciousness and deliberate use… The strength of scientific concepts lies in
their conscious and deliberate character. Spontaneous concepts, on the contrary, are
strong in what concerns the situational, empirical, and practical” (p. 194).

In other words, the goal of our pedagogy should be help the child develop a
meaningful synthesis of the personal, which offers “body and vitality,” and the
formal, which is conscious and deliberate. The synthesis allows the child to “own”
the resulting mathematical knowledge.

Accomplishing this goal requires several pedagogical approaches, and our stu-
dents need to understand them all. Students need to appreciate the appropriate roles
of free play, exploration, projects, guided instruction, group discussion, verbaliza-
tion of ideas, memorization, and curriculum. These are all useful to the extent that
they promote effective EME, each in their own ways. Thus free play can excite
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interest in mathematical ideas, but intentional teaching may be necessary for the
child to understand them in depth.

9.3.2 Overcoming Negative Feelings

Unfortunately, many students, at least in the U.S., have negative feelings about
mathematics. They experience anxiety about learning, doing, and teaching mathe-
matics. Indeed, some students say that they chose the profession of early childhood
education so that they would not have to teach mathematics. They may transmit
negative feelings to the children they teach (Beilock et al. 2010). Clearly one of the
teacher educator’s goals must be to help students overcome their math anxiety. It’s
also true that some teacher educators may feel this kind of anxiety. To you, I can
only say that the course materials may help you to overcome yours as well.

9.4 The DREME Modules

Our DREME project2 has, to date, produced five modules, namely basic number
(including counting words, enumeration, and cardinality); geometry (including
shape and space); operations (including addition/subtraction and division into fair
shares); pattern (including growing patterns); and measurement (informal and
exact). In each module, the materials include:

• Readings on aspects of EME, some specially created for these modules,
• Explanations of the basic mathematics,
• Accounts of children’s mathematical thinking and learning, with accompanying

videos,
• Analyses of teaching, with accompanying videos,
• Guides to assessment, with accompanying videos,
• Guides to picture book reading from a mathematical point of view, with videos,
• Activities for higher education classroom use, with accompanying videos, and
• Vignettes of adult experiences related to EME.

Our general pedagogical approach is this: As much as possible, TEs should help
adult students learn in the same way that we want teachers to help children learn.
TEs need to engage students in active learning that bridges the gap between theory
and practice, and that gives personal meaning to the concepts learned in the course.

We designed the modules for flexible use. TEs can use one component of a
module in a course on science education; several components in a math methods
course; or another component in a general introduction to Early Childhood

2http://prek-math-te.stanford.edu/.
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Education. I now illustrate the modules, along with some methods of my own,
through a personal use case: an account of my own teaching.

9.5 My Course

My course, The Development of Mathematical Thinking meets once a week, for 1 h
and 40 min, over a period of 14 or 15 weeks, and also includes a web based
component. The course (despite its name) uses many of the DREME materials to
focus not only on children’s mathematical thinking but also on early childhood
pedagogy. Of course, few TEs will want to teach the course exactly the way I do,
but they may choose DREME activities that help them meet their own goals and are
consonant with their backgrounds. Indeed, this flexibility is exactly the goal of our
DREME project.

Almost all of my students are prospective teachers at the Masters level in a
Department of Curriculum and Teaching. Clearly these students are different from
undergraduate education majors, but they do share an interest in teaching young
children. The course (or the equivalent) is highly recommended for Early
Childhood Education students.

9.5.1 Who Are You?

At the outset, like many TEs, I am interested in learning about the students taking
the course. I have used several methods to learn about their interests, their back-
ground, and their feelings towards mathematics and EME. In my experience it is
particularly useful to explore their anxieties about the course, particularly because
some students may have been reluctant to take it in the first place.

The DREME materials include an activity dealing with student feelings. It
begins with students reading a vignette called But, I’m not good at math! (Platas
electronic document-a), which describes student fears and anxieties about teaching
mathematics to a young child. The reading is followed by an activity, “Engaging
Mathematics” Activity, (Platas electronic document-c), that helps students address
and understand their feelings, beliefs, and attitudes, and thus begin the process of
developing a positive approach to teaching mathematics.

I conduct a similar classroom discussion activity. During the first class I initiate a
discussion of their ideas about and feelings toward EME. My intent is to help
students understand that others may also have had traumatic (not too strong a word)
experiences in their mathematics classes and still fear learning and teaching it. I also
want them to know that I am concerned about their feelings and will try to
help. I say that they should be patient because over the course of the semester, as
they discuss the mathematics and children’s responses to learning it, they will begin
to shed their fears and in fact will find EME intriguing. I ask the students to send
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me, before the next class, a reflection on this activity. To insure confidentiality, I do
not reveal the authors of the following typical quotes:

I was concerned that I was going to be the only person that wasn’t good at math coming
into the course.

Overall, this week’s [class] made me realize that I am not alone in my feelings of dis-
comfort surrounding teaching math in the classroom.

I, myself, have had a negative outlook towards math and have always tried to avoid dealing
with anything to do with math.

9.5.2 What Concerns You?

As a TE, I want to monitor my students’ learning throughout the semester. Of
course, I talk with them during class, ask questions, and the like, but sometimes
students do not feel comfortable revealing their ideas or concerns to others in a
group setting, particularly if the class is large.

For this reason, I require students to submit on our course website, after each
weekly session, a short, ungraded reflection on what they learned in the previous
class. Usually students are urged to discuss anything they found important or
arguable. Occasionally I may ask them to discuss a specific issue. Before the next
class, I read all of the reflections and send brief comments to each student. Then, at
the outset of the next class, I show (via a projected PowerPoint) and discuss with
the students parts of 4 or 5 reflections carefully selected to raise important issues.
Here are some examples:

1. “For the past two classes now, what has really stood out to me is how much one
can analyze from just 1–1.30 min of a video. Even the smallest details, from a
glance to a slight hesitation, are indicative of something much larger. I wonder,
though, how this would be possible in a classroom with 10 or 15 children, each
one making several such gestures that indicate a thought, feeling or strategy. If
only life had a pause and rewind button, then I could effectively analyze the
mathematical thinking occurring in the classroom without missing a beat.”

2. “I think symbols can give children different feelings depending on the scenarios
in which they are presented. For example, exposing a child to symbols in a
classroom setting and telling them that they must memorize these symbols can
come off as very stressful and hard. But showing children symbols in everyday
experiences can be less stress inducing and even fun, while also giving the
children a visual representation of what certain symbols can mean; thus making
the symbols less foreign for them to understand. I think that even taking children
on walks as a field trip, allowing them to experience these symbols (and ask
questions about such if they are so inclined) could be a great learning experience
for young children living in any area.”
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3. “I think the thing that struck me the most was the highly detailed critique that
we did of even just the first few pages of the storybook [name deleted]. It’s just
so surprising how many flaws that we were able to come up with as a class in
about 20 min that this book had, and that such flaws were not taken into account
prior to publishing this children’s book.”

As is evident, the student reflections provide the TE with opportunities to discuss
and expand upon interesting issues. Thus the TE can use the first reflection to
discuss a very real dilemma, namely how difficult it is for a teacher to attend to the
activities of some 10 or 15 children, and to suggest possible solutions (for example,
a plan to spend 5 min carefully observing each of 4 students a day). The TE can use
the second reflection to dig more deeply into the nature of mathematical symbols
and methods to help children learn them in meaningful and enjoyable ways. This
reflection also allows students to draw conclusions about the differing value of
activities depending on their context. The TE can use the third reflection to raise the
issue of strategies for storybook reading, including how to deal with pages that are
unclear or incorrect.

I have discovered that the post-class reflection offers the students a distinctive
form of digital intimacy. After seeing that I take the reflections seriously and that
the class discussions are interesting and useful, students begin to write lengthier
reflections and to reveal in them insecurities and areas of ignorance, as well as
questions about the readings, and comments on my lectures or other class events.
Also, students get excited (and I think feel pride) when their reflections have been
chosen for class discussion. The reflections provide me with insights into student
needs, confusing remarks I may have made, and issues I had not considered.
Sometimes a reflection teaches me something new about the subject matter—the
children and also the mathematics.

9.5.3 Learning About the Math

Recognizing that many students are fearful of mathematics, the DREME modules
contain several approaches to teaching number and geometry.

One approach is traditional. We have created some readings on the relevant
mathematics, including a short piece on The Mathematics of Counting, (Platas
electronic document-b) and What Young Children Know and Need to Learn about
Number (Ginsburg electronic document-f), that discuss the mathematics to be
learned in relation to children’s existing knowledge.

DREME also offers classroom activities in which TEs can have adult students
solve some mathematics problems, reflect on what they learned, and relate their
learning to children’s (Franke electronic document). This method helps teachers to
see the world of mathematics from the learner’s point of view.
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Finally, I urge TEs to make the acquaintance of Professor Ginsboo (Ginsburg
electronic document-e), who presents students with a hopefully amusing and
engaging introduction to basic mathematical ideas from the perspective of a child
trying to learn them. We find that some students and TEs find this approach useful,
and others don’t know what to make of it. We intend to investigate the appeal and
effectiveness of the good Professor.

9.5.4 Learning About Children’s Thinking

Students need to learn about the general trajectory of children’s thinking during the
early childhood years and beyond. The 3-year-old child’s concept of “how many?”
is very different from that of the 5-year-old’s. Fortunately, researchers have con-
tributed enormous insights into the nature and development of mathematical
thinking during this age range.

One way for students to learn about the trajectory is to read relevant papers.
Although this is valuable, our DREME project offers what we think are more
engaging written accounts with built in videos. We call them “Thinking Stories”
because they use a narrative form to present key aspects of mathematical thinking.
One such thinking story describes a young boy’s understanding of “how many?” as
revealed by clinical interviews conducted when he was 3-, 4-, and 5-years of age
(Ginsburg electronic document-a). This story, a kind of longitudinal case study, is
particularly dramatic because it involves videos of the same child throughout.

Videos of young children are memorable. Former students have told me years
later that they still remember several course videos. The DREME project offers on
its website many videos that can be used to illustrate children’s thinking and
learning. You and your students can make such videos as well.

9.5.5 Assessment

TEs need to help students to understand individual children’s behavior and think-
ing. Students need to learn to observe carefully, to think critically about what they
see, develop reasoned interpretations, and use those interpretations to guide
teaching. I use several methods for accomplishing these goals.

9.5.6 Analyzing Videos

One approach, which I use in almost all class sessions, is to engage the class in the
analysis of videos, usually involving clinical interviews and observations of
behavior. I use the “pedagogy of the video clip,” which works as follows.
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Imagine that you are in front of your higher education classroom. The topic is
Counting. You say that the class will discuss a video illustrating key aspects of both
the child’s counting skill and knowledge, and the interviewer’s method. The stu-
dents’ task is to examine the video carefully, develop an interpretation of what the
child does and does not understand about counting, and consider how this inter-
pretation can guide teaching. The students also examine the interviewer’s clinical
interview technique.

The video you use meets several essential requirements. First and foremost, the
content illustrates children’s thinking and learning of the mathematical topic of
interest. Further, the video is intriguing, attractive, dramatic, and sometimes even
funny. It is not too long (usually under two minutes). It grabs students’ attention
and animates what they read for their assignments. The video is a kind of intel-
lectual manipulative with which students can explore children’s thinking and
construct a meaningful understanding of it.

Yet by itself the video, no matter how wonderful, is not sufficient. You, as the
instructor, should not simply show the entire video, tell the students what you think
it means, and then go on to the next topic. Instead you need to use and exploit the
video as effectively as possible to promote your students’ careful observation,
analytic thinking, judicious interpretation, and consideration of productive
instructional activities.

The essence of the pedagogy of the video clip is to:

• Show your students carefully selected segments of the video;
• Help students observe carefully;
• Repeat a segment or part of it to clarify observations and hypotheses;
• Ask students for interpretations supported by evidence;
• Challenge their interpretations;
• Encourage students to justify their interpretations;
• Ask students to evaluate classmates’ interpretations;
• Do not allow students to get away with vague generalities, like “She is in

Piaget’s preoperational stage” or “His behavior is developmentally appropriate”;
• Use flexible questioning to reveal the thinking behind your students’

interpretations;
• Encourage the students to discuss and challenge interpretations, offer possible

alternative hypotheses, and propose instructional approaches based on what has
been learned about the child’s understanding;

• And finally, help your students to relate the lessons learned from the video to
academic papers and ideas concerning children’s mathematical thinking and
learning.

Examining videos in this fashion may be more effective than observing children
directly or reading about children’s thinking. A video is worth many more than a
thousand words. The video allows you to view and review, to go forward and
backwards in time, and to engage in deliberate and unhurried contemplation of the
evidence. By comparison, direct observation is ephemeral and does not afford the
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kind of careful study provided by videos of thinking and learning. Hence,
the DREME project offers a video-based introduction to the pedagogy of the
video-clip (Ginsburg electronic document-d).

9.5.7 Clinical Interview

One of the most effective methods of formative assessment is the clinical interview,
in which the adult uses flexible questioning to uncover what the child knows.
Piaget’s experience with the development of Binet’s IQ test taught him that stan-
dardized tests are not particularly effective in uncovering cognitive processes; he
felt that answers to IQ test items were ambiguous and required further examination
by means of the clinical interview (Piaget 1976), which typically begins with a task
chosen by the adult. Then the interviewer observes the student’s response, behavior,
affect and anything else that might be relevant, and develops an interpretation of the
processes underlying the student’s behavior. To check the interpretation, the
interviewer develops new tasks as appropriate, follows up with questions designed
to elicit thinking, and in general follows the student’s thought process to where it
leads. The interviewer sometimes challenges the student’s response (“But Johnny
said that 2 and 2 is really 5”) to assess its stability and the student’s confidence in it.
The interviewer may sometimes employ gentle hints to help the student overcome a
difficulty (“Can you use your fingers to help you figure it out?”). The interviewer
continues these non- standardized investigative maneuvers, which must be con-
structed on the spot, in real time, until enough evidence has been obtained to
support a reasonable interpretation of the student’s behavior. If done well and
guided by appropriate theory, clinical interviews can provide deep insights into
thinking and can reveal strengths and weaknesses that otherwise may go undetected
(Ginsburg 1997).

The students become familiar with the clinical interview almost each week as we
discuss videos, most of which involve an adult interviewing a child. Although most
of the analysis centers on children’s thinking, we often examine, in some detail, the
interviewer’s technique.

Students are also required to complete a mid-term assignment in which they
conduct and video record a clinical interview with a child. At this point, the stu-
dents are impressed by the power of the interview to reveal hidden features of a
child’s thinking. But they are also apprehensive at the prospect of conducting an
interview themselves, especially when they are required to video-record it and use
clips from the video to justify their analyses. I tell the students to be brave and to go
out and do the interview, and that everyone makes mistakes in interviewing, which
is a complex skill.

In addition to cheerleading, I provide the students with various DREME mate-
rials: a general guide to interviewing, which we call math-thinking conversations,
along with a sample interview protocols describing a series of questions and
prompts that the student might use or modify (Ginsburg electronic document-b);
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and a voice over analysis of a video recording showing a teacher’s excellent
interview with her preschool student (Ginsburg electronic document-c).

The details of the interview assignment are worth describing in detail. The
student is required to write on the class website a paper that shows what the
interview revealed about the child’s thinking. The paper (available only to the
instructor) begins in a standard way with an overall introduction to the problem, a
very brief review of the literature, a statement of the goal, a description of the initial
protocol (which the student is encouraged to modify as necessary in response to the
child’s responses), and a description of the child and the testing conditions (for
example, the interview was conducted in a quiet part of the classroom). All of this is
conventional.

But the next part, the results, takes advantage of a video technology that allows
students to make short clips from the interview and insert them where appropriate to
buttress their interpretations. The students provide an interpretation and then justify
it with a carefully selected video clip of the child’s response. The students essen-
tially have to provide an argument and justify it with evidence from the video. I see
this as promoting students’ critical thinking skills—their use of evidence to justify
an argument, or to show that the interpretation is not clear and requires further
evidence to resolve. The assignment is also designed to help students avoid vague
interpretations, empty concepts, and fuzzy thinking. When I grade the papers I can
not only read what the students wrote but also view their videos, which may or may
not support their arguments. Below is an example of a student response (Fig. 9.1).

Clinical interviewing can be a rewarding activity for the child as well as the
interviewer. My student Catherine Rau wrote this about a 4-year-old whom she had
interviewed a few weeks earlier.

Fig. 9.1 Student assignment

148 H. P. Ginsburg



But it wasn’t until Sawyer approached me at school randomly, the other week, to ask when
we would be doing math again together, that I knew I absolutely had to interview him. He
told me that he really liked learning math with me and that he wanted to do more fun math
games and for even longer this time.… I couldn’t help but smile and agree to do more math
with him….

So the student can use the results of the interview to understand individual
children and the children can enjoy the process of being interviewed. They seem to
appreciate the attention of an adult who is interested in their thinking—how rare is
that!—and the opportunity to solve interesting problems. For both adult and child,
this is a win-win situation, clearly different from most high stakes assessments,
which too often are lose-lose.

9.5.8 Pedagogy

The course naturally considers pedagogy. We have sessions and readings on the
nature and value of pedagogy and curriculum for EME. My general approach is
“constructivist,” but I argue that it is important to consider the specifics of teaching,
namely the particular maneuvers and methods that teachers use for different pur-
poses (Ginsburg and Amit 2008). The argument is that teachers need to use a
variety of methods to achieve the goal of children’s meaningful construction of
knowledge. Under some circumstances and for certain topics, free exploration is
effective. At other times, direct instruction is desirable. For example, teaching the
first 10 number words requires giving students basic practice that can facilitate
memorization. At other times, the teacher may tell the child what to do—“I want
you to make a color pattern with these blocks.” There is a time for “telling”
(Schwartz and Bransford 1998). The most important point for our students is to
avoid being doctrinaire, and instead to attempt to match a teaching method with the
needs of a child. If free exploration is what that child needs, fine. But if he needs
drill to further the construction of knowledge, that is fine too.

Our DREME project makes available some teaching videos on its web site. In
my class, we use analytic techniques, like the pedagogy of the video clip, to
examine interesting cases of teaching.

Students are often skeptical about using curriculum for EME, even though
several are available. I try to convince the class that using a planned curriculum is
not necessarily “developmentally inappropriate.” Because it is not the job of a
higher education course to teach a particular curriculum, we examine examples of
curriculum activities—from manipulatives to textbooks.

The course final project is designed to integrate what students have learned about
children’s thinking and about effective teaching and interviewing. Students engage
in and video-record a three-part exercise in which they interview a child on a
particular mathematical topic, teach what the child does not understand about the
topic, and finally interview the child again to see what was learned. All of this
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provides the material for web-based papers in which students analyze the child’s
knowledge at each point, as well as their own teaching and interviewing.

9.5.9 Picture Books

Everyone loves children’s picture books like Goodnight Moon (Brown and Hurd
2007). Parents snuggle up with their children at the end of the day to read books
like these, sometimes over and over again. Teachers enjoy reading picture books to
the whole class, at circle time, and also to the individual child or small groups of
children. Children may want to read books over and over again (taxing parents’ and
teachers’ literary patience). How many times has Moon gone to sleep?

Most picture books involve art and narrative. Some present simple exposition,
not stories, as in the case of a book displaying different kinds of vehicles, from
bicycles to fire trucks. But all these books for young children use pictures.

Reading books of this type can promote children’s mathematics learning.
Consider three types of picture books: those in which the mathematics is explicit,
those in which significant mathematics is implicit, and everything else.

Explicit mathematics books are written for the express purpose of teaching
children mathematics and may even contain a reference to mathematics in their titles,
as in the case of counting books like, Anno’s Counting Book (Anno 1977). Many
books clearly written to teach mathematics do not have such titles, like Rooster’s Off
to See the World (Carle 1987), in which a different number of animals joins Rooster
on each page, and children are invited to add up the total number of animals.

Other picture books were not written to teach children mathematics. However,
they still address significant mathematical concepts in the narrative and illustrations.
A well-known example is the classic story, Goldilocks and the Three Bears, which
involves size comparisons (for example, the big bear, the medium-sized bear and
the little bear) and correspondences (little bear with little bed and so on) that are
crucial to the plot.

Finally, we have the rather large category of “everything else.” The basic idea is
that because a picture book page typically has objects or abstract shapes arranged in
space, an adult reader can always ask the child to count them, or talk about their
location (for example, “The hat is on top of his head”). In other words, adults can
interject math conversation in virtually every single book ever written because
“Mathematics is all around us” (or at least we can find mathematics all around us if
we have a mind to), including in picture books. At the same time, we should not
ruin an interesting story by interjecting math for its own sake. Occasionally, the
adult might point to some math in an “everything else” story, but in general it’s not
a good idea to do so: the primary goal should be to enjoy and explore the story.

Given the popularity of picture books, and given many adults’ fear and dislike of
mathematics, reading storybooks can be a kind of stealth weapon in teaching
mathematics. For this reason the DREME project offers materials designed to help
students learn how to read storybooks to further mathematics learning.
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I have found that an effective way to begin is to jump right in and read a picture
book together as a whole-class activity. While ultimately the students will be
presented with a guide to help them analyze books on their own, this introduction
can be exploratory. The book is basically one well worth reading: it has many
positive qualities, like an interesting story, but may also include problematic text or
illustrations, thus providing opportunities for an interesting whole-class discussion.
After reading the book once without commentary, we examine it page by page.
I ask students to look at the text, the illustrations, and point out interesting and
problematic features.

After students have analyzed a picture book together, I introduce a DREME
guide, How to Use Picture Books for Young Children to Teach Math (Oppenzato
et al. electronic document), which is designed to help students analyze books and
determine their suitability and usefulness for teaching mathematics to young chil-
dren. For example, the Guide encourages students to examine carefully the relation
between the picture and the text on each page, the accuracy of the mathematics
presented, and other important topics. Once armed with the Guide, the students can
be broken into small groups to compare and contrast a pair of books. Students are
asked to consider possibilities for using different pages to promote mathematics
learning.

For example, Ten Red Apples (Hutchins 2000) begins by showing ten apples on
a tree. Then apples are removed from the tree, one by one, by different animals,
much to the annoyance of the farmer. At one point, there are three left and then one
is stolen, although the result is not shown on the page. The students can discuss
how a teacher might use this page to talk about subtraction. The students learn that
it wise for the teacher to begin with a series of questions that can be used both to
probe and promote children’s understanding of the mathematical concepts.

We should also want our students to understand that reading books with
mathematics content is in many respects no different from reading other books. In
both cases, the primary goal is to enjoy and learn from the books. Also, in both
cases, the adult reader should employ “dialogic reading,” that is, reading that
engages adult and child in a dialog around reading. The adult asks questions about
the book, encourages the child’s attention and participation, and in general takes the
child on an intellectual adventure. Most likely, your students will have studied
dialogic reading in classes on literacy. In any event, the guide (Oppenzato et al.
electronic document) presents the major principles of dialogic reading in the context
of picture books with significant focus on math. At the same time, the adult reader
should not ask so many questions that they get in the way of enjoyable book
reading.

Finally, after analyzing books as a whole class and in small groups, the students
select a picture book and plan a lesson around it. Later they can conduct a final class
project, involving interviewing and teaching, as described earlier, on picture book
reading.
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9.6 Conclusion

As I noted at the outset, the success of Early Mathematics Education depends in
good measure on the professional development of prospective and practicing
teachers in our institutions of higher learning. Teacher Educators have the oppor-
tunity and responsibility to train students to be thoughtful, sensitive, and effective
guides of their children’s mathematics learning. The DREME project aims to help
Teacher Educators to seize the opportunity and fulfill their responsibility. We invite
colleagues to share our materials and collaborate in our efforts to prepare
prospective teachers to engage in exciting and meaningful mathematics education
for all children.
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Chapter 10
Hidden Connections and Double
Meanings: A Mathematical Viewpoint
of Affective and Cognitive Interactions
in Learning

Inés M. Gómez-Chacón

Abstract This paper poses methodological questions concerning the evaluation of
emotion in the process of mathematical learning where the interaction between
emotion and cognition occurs. These methodological aspects are considered not
only from the perspective of educational psychology but from that of mathematics
education. Some epistemological and ontological aspects, which are considered
central to the cognition-affect interplay, are noted. Special attention is given to the
notion of cognitive-affective structure as a dynamic system. The interplay between
cognition and affect in mathematics is viewed through the concepts of local and
global affect and using a mathematical working space model. A model of this
interplay is illustrated with research examples, enabling us to move from descrip-
tions of cognition-affect at an individual level to the explanation of the tendency of
a group. The non-linear modelling of emotion is reflected in the affect-cognition
local structure.

Keywords Structures of affect � Affective and cognitive interactions
Epistemology and emotions � Mathematical working space � Learning

10.1 Introduction

Current advances in philosophy of science (Brun et al. 2008), social neuroscience
for education (Immordino-Yang and Damasio 2007), and cultural approaches in
social psychology (Harré 2009) have been highlighting interconnections between
cognition and emotion, which frequently allow for emotions to contribute to the
growth of knowledge. The demand for research that identifies these interconnec-
tions derives from the benefit that knowledge about them can impart to the design
of learning environments.
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Responding to this need to characterize these interconnections, we focus on
specific mathematical knowledge. This chapter highlights some precise aspects of the
epistemological and ontological dimension that this analysis of the cognition-affect
interplay entails. We consider that the epistemic meaning of the emotions must be
studied according to the specific characteristics of the epistemology of mathematical
knowledge and under a dynamic interrelation approach (a dynamic system of affect).
Recent reviews of affect (e.g., Pepin and Rösken-Winter 2015) have highlighted the
need to make explicit the combined nature of cognition, motivation, and emotion on
mathematical work in dynamic affect systems. Here, we propose viewing these sys-
tems in a holistic manner. This means an understanding of a system by examining the
linkages, interactions, and relationships between the elements that compose the
entirety of the system. Typologies of cognition and affect structures are identified. In
describing these structures in our empirical studies, we found characterizations of
affect that depend on the nature of the context (local–global) and on the kinematics of
the mathematical processes involved (static–dynamic) as well as on the dynamic
movement of the nature of the phenomenon at an individual or group level. Some
dynamic affect systems may have properties that can only be studied at the higher
emergent level in a group, so patterns of interaction that characterize the affective
systems of individuals and collectives need be observed.

Specifically, we are looking to make progress in the understanding of the fol-
lowing aspects of the interaction between cognition-affect in mathematics:

(a) The conceptualization of structures of this interaction;
(b) The affective-cognitive reference system given by specific mathematical

knowledge, which includes the distinction between mathematical knowledge
and appraisal processes; and

(c) The complexity of explicitness of dynamic systems involved in this interaction,
from the uniqueness of the individual patterns of reasoning to the characteri-
zation of the tendency of a group.

Section 10.2, Theoretical Fundamentals, deals with some aspects of what epis-
temologically characterizes the affective-cognitive system in mathematical rea-
soning and considers a model of analysis with its own categories. Sections 10.3 and
10.4 present the study by which the local affect-cognitive structure has been
determined, using this model of analysis. A final section addresses the conclusions
of the study and makes suggestions for developmental aspects in future research.

10.2 Theoretical Fundamentals

In order to tackle the intricacy of the subject under investigation, a number of
theoretical considerations are employed to establish a consistent interpretative
framework: epistemological dimension and the affective-cognitive reference system
model.
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10.2.1 Affective-Cognitive Reference System: The Zig-Zag
Path in Mathematical Reasoning

We begin with the assumption that no affective behavior is devoid of cognition.
Some authors use terms such as affective schemes or cognitive-affective schemes
(Schlöglmann 2005) in an attempt to study this interaction in greater depth. Far
from contradicting the aforementioned basic assumption, the acknowledgement of
“affective structures” confirms that they are isomorphs of cognitive structures and
the result of intellectualization (Piaget 1981), which exists whenever feelings are
structured. In fact, structure and the workings of cognition and affect are indivisible
in all behavior. Nevertheless, I note that there are authors such as Goldin (2000)
who see this interaction as a representational system; in his works he leans more
towards a separation of structures of affect and cognition, following the work of
Zajonc (1980).

Maintaining a dialogue concerning cognition-affect interaction entails bearing in
mind matters relating to the singularity of individual reasoning patterns as well as
social interaction. An initial insight is that mathematical reasoning does not follow a
straight line but, as Lakatos (1976) contends, a zig-zag course.

Discovery does not go up or down, but follows a zig-zag path: prodded by counterex-
amples, it moves from the naïve conjecture to the premises and then turns back again to
delete the naïve conjecture and replace it with the theorem. Naïve conjecture and coun-
terexamples do not appear in the fully fledged deductive structure: the zig-zag of discovery
cannot be discerned in the end-product. (Lakatos 1976, p. 42)

Affect is essential to the self-regulation and self-reflection that takes place in the
course of reasoning. Self-assessment of personal competence, affective response,
and self-regulation are keys to problem solving. In this regard, Lakatos notes that
perseverance is needed to surmount the cognitive and affective difficulties arising in
“conscious guessing, because it comes from the best human qualities: courage and
modesty” (Lakatos 1976, p. 30).
Motion and e(motion)

The epistemological view of Lakatos challenges a simplistic view of objectivity in
mathematical knowledge. In each theory (scientific or mathematical), the subjective
dimension, either as a psychological process or a sociological process, is inexorably
involved. For Lakatos, mathematical thinking does not develop monotonically:
“Informal, quasi-empirical, mathematics does not grow through a monotonous
increase of the number of indubitably established theorems but through the incessant
improvement of guesses by speculation and criticism, by the logic of proofs and
refutations” (1976, p. 5) in a dynamic zig-zag motion (trajectories).

In this characterization of mathematical knowledge, motion (hence, e(motion)) is
essential. The word (e)motions or simply motions are used to denote mental states
not fully described by a formalized language: They are individual instances of
subjective, conscious experience. The “motions of the cognitive-affective interplay”
are inner motions, interior movements consisting of thoughts, imaginings, emo-
tions, inclinations, desires, feelings, repulsions, and attractions. To identify this
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interaction involves becoming sensitive to these movements, reflecting on them,
and understanding where they come from and where they lead us. The word motion
conveys the movement and purpose inherent in the meaning of the word emotion; in
contrast, the word emotion conveys only a sense of spontaneous change and
movement without a definite purpose.

In this light it may be said that the continuous process underlying motion holds
and connects the stages that occur in the movement of problem solving. We invite
the reader to consider the phenomenon of interaction as a key element of this
movement. Moreover, affect is considered not only as energy (in the sense in which
Piaget distinguished between affectivity as energy and cognition as structure) but as
a structure, although a structure that is not static but dynamic (see Sect. 10.2.2).

10.2.2 Affective-Cognitive Reference System Model

Since our first study in 1997 on affect and cognition (Gómez-Chacón 2000a, b;
Gómez-Chacón and Figueral 2007), we have been interested in the methodological
aspects that would allow us to establish an analytical model. In this respect our
major claim is that in order to understand cognitive-affect interplay in the acting
individual at a particular moment, it is necessary to attain knowledge of that
individual at different levels: individual, group, society, and integrally as holistic.
This knowledge would capture aspects that model the dynamics of cognitive-affect
using some constructs: structures of (local and global) affect, cognitive dimension
(valuation processes and mathematical processes), and meta-affect.

Conceptualization of affect and structure

Prior to describing these constructs (categories) we need to clarify the meaning
of the terms affect and structure.

We wish to note that the term affect has a different meaning if it is used by
educational psychology or by mathematics education. Pekrun and
Linnenbrink-Garcia (2012) note that the term affect in psychological emotion
research refers more specifically to emotions and moods; here, we use the term in
the broad sense prevalent in mathematics education (e.g., Goldin 2014; Pepin and
Rösken-Winter 2015). We share the view of those who within mathematics edu-
cation regard the importance of emotions as being partly or mainly through their
connection with attitudes, beliefs, and values.

Affect is understood here as a notion of a higher order that includes all of the
above as a phenomenon. Affect is defined as a “quality power status variable”, with
duration and intensity at the level of consciousness.

Regarding the meaning of structure, in every structure definition, the concept
structure refers to following elements: (a) a whole, (b) the parts of this whole, and
(c) the relationship between these parts. In the 50s, mathematical structure was
defined as “a specific set of relations or laws describing the functions of a phe-
nomenon that can be represented by a model” (Bastide 1962, p. 14). In this light,
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we understand structure as a system of interconnected elements in which a change
in one element necessarily causes changes in other elements. This type of approach
has been expressed in positions such as that of Piaget in the analysis of mathe-
matical structures, defining structure as a system of transformations, which cites
fullness (a whole), transformation, and self-regulation as important characteristics.
The phenomenon of invariance is associated to the transformation. For many
structuralist thinkers, this principle of invariance appears as a key element.

In our casewe seek to confirm specific patterns, specific cases, and simple rules that
give a typical structure or rhythmic sequences in this interaction between cognition
and affect in the individual and explore whether these same patterns are extended to a
group of individuals. The structure definition that we use here is dynamic (a dynamic
system), and it corresponds to the predominant use of the term today.

We consider that the importance of capturing structure models, as already
mentioned, or what other colleagues have expressed as “cognitive-affective
schemes,” resides not only in identifying schemes but also in the potential cre-
ated for the recursive construction for the understanding of that scheme. Many of
the individual actions are performed unconsciously. However, many of the oper-
ations through which we assemble our experiential world can be explored and the
knowledge attained can help make learning different, and perhaps better.
Structures of affect: local and global

Local affect-cognition structure occurs at the micro and individual level. It is
defined as the understanding of the affective reactions of students towards mathe-
matics by observing and knowing the stages in the process of change of emotional
reactions during problem solving and detecting cognitive processes associated with
positive or negative emotion. It consists in representing the information on emo-
tional reactions that have an impact on conscious processing. This allows us to
establish productive affective pathways. Affective pathways are sequences of (local)
emotional reactions that interact with cognitive configurations in problem solving.

Global affect-cognition structure occurs at the medium and macro (individual,
group, and society) level and is understood as a result of these factors:

1. The summary of the pathways followed by the individual in the local affective
dimension. These pathways are established with the cognitive system and they
contribute to the construction of the general structures of one’s self-concept as
well as the beliefs about mathematics and the learning of mathematics.

2. The interactions and social-cultural influences on individuals and how that
information is internalized and shapes their belief systems. Two aspects to take
into account: the social representations of mathematical knowledge and the
socio-cultural identity of subjects. The features that the students’ identities have
in their context are equivalent to a network of meanings that will be manifested
in the learning of mathematics. These meanings will throw light on our search
for a greater understanding of the global configuration of the affective aspect,
their way of knowing and reacting affectively to the learning of mathematics,
and their way of constructing belief systems and the knowledge of these.
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To sum up, the term local affect includes emotional states and mood states but
also their moment-by-moment interactions with cognition, the social environment,
the emotions of others, and the individual’s traits. Global affect includes trait
emotions as well as stable structures that incorporate emotions—not only attitudes,
beliefs, and values but constructs such as mathematical self-identity
(Gómez-Chacón 2000a, b; Gómez-Chacón and Figueral 2007).

Cognitive dimension

In this study we use the term cognitive broadly. On the one hand, this refers to the
extensive use of processes of evaluation (cognitive appraisal; Lazarus 1991) and, on the
other hand, to the characterization of the subjects’ personal meanings of the cognitive
dimension of the heuristic that acts in the solution of problems (mathematical cognitive
processes) (Goldin 2004; Gómez-Chacón 2000a, b, 2015; Schoenfeld 1994).

Certain distinctions between “knowledge” and “evaluation/appraisal” are
essential in our study. The need for this differentiation arises not only from our
studies but from studies that have expressed the need to make a distinction between
knowledge and appraisal (Lazarus 1991). We consider that there are certain features
with emotional implications that may be particular to mathematics as compared
with other school subjects, and they are related to the cognitive dimension. For
instance, the circulation between different types of mathematical reasoning (dis-
cursive, instrumental, and visual) and the difficulty of transitions between them or
the necessity of formal language, which involves specific semiotic systems and
representation. As we will present in Sect. 10.3, the analysis of the cognitive
dimension of mathematical work requires a specific model. In this section we
present the mathematical working space framework (MWS) model in order to go
deeper into the analysis of local affect and cognition interplay.

We can also speak to the differentiation of cognitive demands according to concepts
of the difference between mathematical knowledge in general and contextual mathe-
matical knowledge. The former includes establishing attitudes, beliefs and intuitions
about oneself, while the latter is active in a particular situation or with a specific content
whose impact on emotion can be very different. Regarding cognitive appraisal, this will
be referred to as the generation of personal meanings and how the valuation of that
knowledge makes it potentially emotional, i.e., how the situation globally affects rel-
evance for the person, in relation to the goals, and to resource management.

Meta-affect or meta-emotion

Notions such as ‘meta-affect’ or ‘meta-emotion’ are required to refer to affect
about affect or to affect in cognition that is about affect. In this way they serve to
monitor affect both through cognition and affect. It’s referred to meta-emotional
understanding and meta-emotional skills. It shows how meta-affect arises in the
formation of an individual’s cognitive and affective schemes (Gómez-Chacón
2000a, b, 2015; DeBellis and Goldin 2006; Malmivuori 2006; Schlöglmann 2005).

Cognitive understanding of affect enables individuals to control their actions in
affective situations. Successful handling of affective situations stabilizes affect
schemata and consequently beliefs through simulation as a cognitive window to
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emotions. Prior research has shown that the stability of an individual’s beliefs is
closely related to the interaction among belief structures. These include not only affect
(feelings and emotions) but also and especiallymeta-affect (emotions about emotional
states, emotions about cognitive states, thinking about emotions and cognitions, and
regulation of emotions; Gómez-Chacón 2000b). These findings reveal the personal
and social dimensions of the affective constructs and self-control of emotions.

The section that follows deals with determining the local affect-cognition
structure. The main reasons for doing so are that the local affect-cognition structures
offer a profile of global affect structure of the subjects and also because, as we
indicated at the beginning, the results of this basic research could be easily inte-
grated in classroom practice.

10.3 Determining the Local Affect-Cognitive Structure

To empirically illustrate this section we will take a recently developed study about
affective pathways and interactive visualization in the context of technological and
professional mathematical knowledge (Gómez-Chacón 2012, 2015). For a period of
three years, a study with university students with degrees in mathematics who were
possible future secondary school teachers (98 students, 65 female and 33 male) was
carried out. In this study, a teaching experiment was developed through problem
solving. A questionnaire was composed of six non-routine problems about geo-
metric locus to be solved using GeoGebra. The problems required the solver to use
a proposed chain of various steps of visual processing (technical, deductive, and
analytical) in order to find the solution. Each of the 98 students solved the six
problems. In order to identify both types of cognitive processes and emotions, data
were collected from the subjects’ problem-solving protocols as well as with two
questionnaires: one on beliefs and emotions about visual reasoning completed at the
outset and another on the interaction between cognition and affect in a technological
context filled in after each problem was solved.

As introduced in Sect. 10.2.2, when we focus on the local affective-cognitive
interaction as a research goal, we are trying to “capture” (explain andmodel) the precise
mathematical elements of both cognitive processes and appraisal processes; patterns,
routines, and dynamic changes in the affective pathways of each individual; and the
transition of local affective-cognitive local structure to global affective-cognitive
structure in the individual. Explaining and modelling these specific aspects involves
both methodological and theoretical options. To describe these aspects and illustrate
them with the results of empirical research the following points were established:

(a) Considerations for the analysis of the cognitive mathematical dimension
(Sect. 10.3.1)

(b) Modeling the local structure of affect in the individual: routines and bifurca-
tions (Sect. 10.3.2)

(c) Modeling local affect structure in a group (Sect. 10.4).
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10.3.1 Considerations for the Analysis of the Cognitive
Mathematical Dimension

Following the term cognitive described in Sect. 10.2, two aspects need to be
characterized: the cognitive dimension of the mathematical visualization processes
and the processes of cognitive appraisal.

Relative to the cognitive dimension, the mathematical working space
(MWS) model (Gómez-Chacón and Kuzniak 2013; Gómez-Chacón et al. 2016),
together with the instrumental dimension, are used to describe the complexity
involved in applying technology to the mathematical and cognitive aspects of
geometric tasks. Within the mathematical working space framework, cognitive and
epistemological levels need to be articulated to ensure a coherent and complete
geometric work.

Epistemological and cognitive levels are defined in terms of three geneses—
semiotic-figural, instrumental, and discursive (see Fig. 10.1)—to guarantee com-
plete and consistent geometric work. The cognitive plane is introduced to describe
the cognitive activity of a single user. In this model, the idea of three cognitive
processes involved in geometrical activity is adapted from Duval (2005): (a) a
visualization process connected to the representation of space and material support,
(b) a construction process determined by instruments (ruler, compass, etc.) and
geometrical configurations, and (c) a discursive process that conveys argumentation
and proofs. Both planes, cognitive and epistemological, need to be articulated in
order to ensure a coherent and complete geometric work. This articulation assumes
the presence of some transformations that are possible to define through three
fundamental geneses represented in the diagram below (Fig. 10.1).

In the analysis of the problem solution we examined some key aspects of how
both figural and instrumental developments are involved in the learning process in a
computer environment. An understanding of the visualization processes identified
which ones are associated with patterns of use, with structuring information by sign
operations, or with a heuristic function that allows the user to anticipate and plan
actions and modes of validation.

The study of the local affect-cognitive structure addresses the so-called intra- and
inter-plane zig-zag paths in mathematical reasoning. These epistemological aspects
of this point were introduced in detail in Sect. 10.2. There the conception of
interaction cognition and the complexity of treating such interaction were expres-
sed. As additional information, the interested reader can consult Gómez-Chacón
et al. (2016), where the nonlinearity or zig-zag motion was given in detail, with an
example of the interaction between demonstrative reasoning and mathematical
attitudes by two secondary school students.

Regarding zig-zag paths in mathematical reasoning, in the presented study we
focus on the plane that is associated with figural and instrumental genesis.
Movements comprising inter-genesis and intra plane transitions were analyzed at
the local level (see Table 10.1). Image typology and the use of visualization were
analyzed as well. They are categorized conceptually: the use of visualization as a
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reference and its role in mathematization and the heuristic function of images in
problem solving.

Finally, referring to the processes of cognitive appraisal, different patterns of
appraisal are analyzed (pleasantness and goal-path obstacle) and it is determined
whether a given belief (beliefs about visualization and beliefs about technology)
can elicit different emotions from different individuals.

10.3.2 Modeling the Local Structure of Affect
in the Individual: Routines and Bifurcations

Establishing patterns of interaction of cognition and affect requires analysis at the
microscopic level of individuals and all data sources. Below we present an analysis
in the case study for the following problem:

The ladder: The top of a 5-m ladder rests against a vertical wall, and the bottom rests on the
ground. Define the locus generated by midpoint M of the ladder when it slips and falls to
the ground. Define the locus for any other point on the ladder.

This analysis will endeavor to answer these research questions: What kind of
cognitive affective pathways can be described? What are the influences that helped
these students to stay on—or get back on—an enabling pathway of affect instead of
sliding down to anxiety, fear, and despair?

Fig. 10.1 Geometric working space, geneses, and vertical planes in an ideal MWS

10 Hidden Connections and Double Meanings: A Mathematical … 163



T
ab

le
10

.1
Pa
rt

of
th
e
an
al
ys
is

of
A
lb
er
to
’s

so
lu
tio

n
to

th
e
la
dd

er
pr
ob

le
m

re
po

rt
ed

by
th
e
su
bj
ec
t
in

hi
s
pr
ot
oc
ol
,
zi
g-
za
g
re
as
on

in
g
in

in
te
r-
ge
ne
si
s,

in
te
r-
pl
an
e
tr
an
si
tio

ns
an
d
em

ot
io
ns

M
et
ho

d
de
sc
ri
pt
io
n,

in
cl
ud

in
g
vi
su
al
iz
at
io
n

T
yp

ol
og

y
of

th
e
us
e
of

re
pr
es
en
ta
tio

n/
im

ag
e/

L
oc
al

af
fe
ct
/

em
ot
io
ns

R
ea
so
ni
ng

pa
th
w
ay

in
in
te
r-
pl
an
e
tr
an
si
tio

ns

(1
)
In

th
e
fi
rs
t
pl
ac
e,

I
m
ad
e
a
re
pr
es
en
ta
tio

n
of

th
e

pr
ob

le
m

on
th
e
pa
pe
r.
It
ri
ed

to
lo
ok

fo
r
a
w
ay

to
so
lv
e
it

an
al
yt
ic
al
ly

bu
tI

do
no

tfi
nd

an
y.
Ir
efl
ec
to

n
th
e
po

ss
ib
le

re
la
tio

ns
hi
ps

be
tw
ee
n
th
e
tr
ia
ng

le
s
th
at

th
e
la
dd

er
gr
ad
ua
lly

ge
ne
ra
te
s
as

it
sl
id
es

do
w
nw

ar
d
ag
ai
ns
t
th
e

w
al
l
an
d
th
e
flo

or
w
ith

ou
t
be
in
g
ab
le

to
ge
t
an
yw

he
re

(2
)
I
th
in
k
ab
ou

t
th
e
an
sw

er
w
ill

it
be

a
st
ra
ig
ht

lin
e,

an
el
lip

se
,
or

a
ci
rc
le
?

(3
)
I
le
ft
th
e
pr
ob

le
m

fo
r
an
ot
he
r
da
y.

I
w
as

th
in
ki
ng

ab
ou

t
it
w
hi
le

I
w
as

do
in
g
ot
he
r
ac
tiv

iti
es
.
I
tr
us
te
d
m
y

su
bc
on

sc
io
us

to
co
nt
in
ue

to
jo
b

F
ig

!
D
is
c

R
ef
er
en
ce

Pu
rs
ui
t
of

di
sc
ur
si
ve

ge
ne
si
s
vi
su
al
-fi
gu

ra
l

ju
st
ifi
ca
tio

n
on

ly

(4
)
I
co
ok

up
th
e
pr
ob

le
m

w
ith

ex
ci
te
m
en
t
an
d
ho

pe
.

I
ex
pe
ri
m
en
t
w
ith

a
pe
n
an
d
an

el
as
tic

ru
bb

er
ro
lle
d
on

its
m
id
dl
e
pa
rt
.
It
se
em

s
to

fo
rm

an
ar
c
of

a
ci
rc
le
.
A

t
le
as
t,
I
al
re
ad
y
ha
ve

an
id
ea

(5
)
I
st
ar
t
to

w
or
k
w
ith

G
eo
G
eb
ra
.
A
ft
er

tr
yi
ng

so
m
e

co
ns
tr
uc
tio

n
w
ith

st
ra
ig
ht

lin
es
,
I
no

tic
e
th
at

th
e
la
dd

er
w
as

a
se
gm

en
t
of

le
ng

th
5
al
lo
w
s
m
e
to

m
ak
e
a

co
ns
tr
uc
tio

n
ba
se
d
on

a
ci
rc
le
of

ra
di
us

5
th
at
ru
ns

th
e
y-

ax
is

In
s
!

F
ig

C
on

fi
gu

ra
tio

n
(i
ns
tr
um

en
ta
tio

n)
Sh

ap
e
de
co
ns
tr
uc
tio

n
by

m
an
ip
ul
at
io
n-
ki
ne
tic
s

(6
)
I
ge
ne
ra
te

a
sl
id
er

t
an
d
I
de
fi
ne

th
e
ce
nt
re

of
th
e

ci
rc
le

C
=
(0
,1

)
T
he

sl
id
er

w
ill

sh
ri
nk

fr
om

5
to

0.
It
is

ze
ro

w
he
n
th
e
la
dd

er
lie
s
on

th
e
gr
ou

nd
.
Po

in
t

B
re
pr
es
en
ts
th
e
in
te
rs
ec
tio

n
of

th
e
ci
rc
le

an
d
th
e
x-
ax
is

D
is
!

L
is
!

F
ig

St
ru
ct
ur
al

an
al
ys
is
us
in
g
to
ol
s,
sh
ap
e,

an
d

di
m
en
si
on

to
co
m
e
up

w
ith

a
pr
op

os
al

In
st
ru
m
en
ta
l
ge
ne
si
s

Si
gn

ifi
ca
nt

un
its

in
th
e
in
te
ra
ct
iv
e
im

ag
e

ge
ne
ra
tio

n
to

fi
nd

th
e
ex
pl
an
at
io
n
gr
ap
hi
ca
lly

164 I. M. Gómez-Chacón



A possible establishment of patterns was analyzed for each subject:

1. Exposed beliefs and beliefs in action about visual thought and emotional
reacting that can be generated.

2. Coincidences in the typologies of use of visualization and associated emotion.
3. Valuation made about the events that stimulate feelings: local affect. In this case,

we have concentrated on processes related to visualization and technological use
and the zig-zag reasoning in inter-genesis and inter-plane transitions:
Figurative ! Instrumental ! Discursive (Fig ! Ins ! Disc).

We will use Alberto’s Case as an example. Alberto is university student with a
mathematics degree and is a visualizing individual. His enjoyment of mathematical
visualization is closely intertwined with the evolutionary conception of mathe-
matics. He considers visual reasoning to be essential in problem solving. He defines
his own pathway of affect-cognition for the ladder problem (Fig. 10.2).

In Table 10.1, we have an extract of the cognition-affect relations in the problem
according with the theoretical frame, where relationships between affect, cognition,
and epistemological consideration are evidenced. An in-depth analysis of the
problem-solving protocol for this exercise and the affective-cognitive pathway
reported showed that this subject was able to describe and control emotions and
identify causes. Three types of affective perspective were identified. First, Alberto
always tried to find an answer even when in doubt or blocked. Alberto was con-
tinuously active, which is one way that many students cope with stress. Second, he
was able to walk away from the problem, aware of the role of the subconscious in
mathematics (See number (3) in first column of Table 10.1). Third, he struck a
balance between the combination of graphic geometric thought and analytical task
solving (transitions between Dis-Ins planes). These three behaviors were indicative
of interaction between the cognitive-affective system and self-control. The
description of emotions revealed that, from both a mathematical and a
technical-instrumental perspective, self-confidence, stimulus, and joy were associ-
ated with the reproduction of physical forms and the visual/perceptive control
implicit in a command of ancillary mathematical objects.

This type of microscopic analysis was performed for the whole teaching
experiment (six problems). This allows each student to describe pathways in dif-
ferent problems. Comparison of the pathways of the six problems (Table 10.2) in
the teaching experiment allows us to model the local structure of affect in the
individual that shapes a more stable structure we call the global structure.

Fig. 10.2 Affective pathways reported for the problem by Alberto
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In Alberto’s case, it can be seen that the cognitive processes of visual reasoning
and negative emotion interaction occur in identifying strategies of interactive rep-
resentation and processing of certain representations, where the student has to put
into play the identification of parametric variations. He is a student who has a fluid
use of images: concrete, kinesthetic, and analogic. This student recognizes an
overall positive self-concept structure when working with computer mathematics.

In short, this kind of analysis allows us to identify patterns in the individual and
between individuals in relation to their local cognitive affective structure:

1. In the individual, the summary of the pathways followed by the individual in the
local affective dimension in different problems allow us to identify invariance
and variances that occur in their local structure and that shape a more stable
structure we call global structure.

2. Among individuals, variations in local structure according to individuals. This
type of data analysis allows us to identify in-depth profiles of students with
varied characteristics: gender, achievement in mathematics, beliefs, display
style, and emotions. The affective pathways they reported were compared in
order to glean information on meta-emotion and visualization. The comparison
revealed: (a) the use of visualization and associated emotion and (b) the
dependence of their emotional self-control on their individual perception, which
was influenced by style, disposition, type of activity or skill, instrumental
command, and belief system around technology-aided mathematical learning.
For more detailed information see Gómez-Chacón (2012, 2015).

10.4 Modeling Local Affect Structure in a Group

In Sect. 10.3 we have focused on the understanding of the cognition-affect inter-
action in the individual. In this section we are going to take a step further: we will
try to see how to make the leap from the characterization of individuals to the
characterization of the group. To carry out this characterization, we ask the fol-
lowing questions: What are the differences in a subject’s choice of pathway? What
information on meta-emotion and visualization can be gleaned from the productive
affective pathways reported by students in locus problems? Of these, which allow
characterization of the tendency of a group?

Methodologically, in the affect dimension the characterization of a group has
been solved by quantitative studies, mainly based on surveys. Here, we would like
to raise other methodological forms that are based on qualitative measures and on
quantitative behavior modeling collected in a qualitative way. In our most recent
work we have worked with implicative statistical analysis models or models based
on fuzzy logic (Gómez-Chacón 2015, 2017). In this paper I describe the first
models.
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10.4.1 Implicative Data Analysis

In this research, together with the qualitative analysis (Sect. 10.3.2), an implicative
analysis (Gras et al. 1997) was performed in order to explore the structure in cognition
and affect interactions for the group. Gras’s implicative statistical method has been
conducted by using software called CHIC (Classification Hiérarchique Implicative et
Cohésitive). At the descriptive level, it can be used to detect a certain degree of
stability in the structuring, while for predictive purposes, it provides the grounds for
assumptions. This statistical analysiswas then used to establish rules of association for
data series inwhich variables and individuals werematched in order to define trends in
sets of properties on the grounds of inferential, non-linear measurement.

Defining categories

Two types of analyses were conducted in this study. The first was exploratory,
descriptive, and interpretational, involving mainly inductive data analysis, with
categories and interpretation building on the information collected (Sect. 10.3.2).
This analysis used a qualitative approach based a cross-check of the solutions
performed by three researchers. The following categories were defined:

1. Emotion associated with visual reasoning in the ladder exercise: P4EviP (like),
P4EviN (dislike), P4EviM (mixed emotions), and P4viInd (indifferent).

2. Instrumental difficulties: The focus in this category was on two types of diffi-
culties arising around the six problems (Fig. 10.3). Typology 1: Static con-
structions (discrete) (DT1P4). Typology 2: Incorrect definition of the
construction (DT2P4).

3. Initial problem visualization: VisiP4.
4. Beliefs about visual reasoning: BeviP (positive), BeviN (negative).
5. Preferences and emotions around the use of visualization: EviP (like), EviN

(dislike), EviInd (indifference).
6. Beliefs about computer-aided learning: BeGeoP (positive), BeGeoN (negative).

DT1 difficulty DT2 difficulty

Fig. 10.3 Examples of subjects’ difficulties with the ladder exercise
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7. Emotions concerning computer use: EGeoP (like), EGeoN (dislike), EGeInd
(indifference).

8. Affective-cognitive pathways: R1 (mainly positive emotions), R2 (mainly
negative emotions), R3 (subject-formulated, as described in Fig. 10.2 and
Table 10.2).

All categories were compiled and coded in a matrix for implicative analysis
performed using CHIC software. The identification of possible links among
affective-cognitive pathways, emotions, and meta-emotion was the subject of the
analysis.

10.4.2 Results of the Modeling of Local Affect Structure
in a Group

In this study, a similar response was received when the beliefs explored related to the
use of dynamic geometry software as an aid to understanding and visualizing the
geometric locus idea. All the subjects claimed to find it useful, and 80% expressed
positive emotions based on its reliability, speedy execution, and potential to develop
their intuition and spatial vision. They added that the tool helped them surmount
mental blocks and enhanced their confidence and motivation. As future teachers they
stressed that GeoGebra could favor not only visual thinking, but help maintain a
productive affective pathway. They indicated that working with the tool induced
positive beliefs towards mathematics itself and their own capacity and willingness to
engage in mathematics learning (self-concept as a mathematics learner).

Table 10.3 summarizes the frequencies of pathways and emotions associated
with visualization in the ladder problem. Mixed affective pathways were identified,
with alternating negative and positive emotions and optimized self-control of
emotions.

The question that was posed to study the mix of emotions and meta-emotion in
greater detail was “What are the differences in a subject’s choice of these three
pathways?” The preliminary analysis showed that pathway R3 was largely
self-formulated and contained a much greater mix of emotions (Sect. 10.3.2). In most
cases, moreover, the trend was not as explicit as in R1 (positive) or R2 (negative).
Rather, negative feelings (which were controlled) were attributed to certain stages of
the visualization process and positive feelings to success in representing the desired
images. A hierarchy study of R3 yielded some significant affective-cognitive impli-
cations respecting visual processes: R3P4 ! 0.99 VisiP4 and R2P4 ! 0.90 DT2P4.

Table 10.3 Percentage of affective-cognitive and emotional pathways associated with visualiza-
tion in the ladder exercise

R1 R2 R3 EviP EviN EviM EviInd

Problem (%) 46 12 40 18 25 53 3
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Three of the nine nodes obtained in the hierarchy tree were significant and
identified the following groups (Fig. 10.4).

Group 1 (N (level 1, cohesion: 0.998) = (R3P4 VisiP4)), comprising over 40%
of the initially visualizing subjects (in Problem 4) who indicated pathway R3 as the
expression of their cognition-affect interaction. The most significant characteristic
of these individuals was their positive feelings towards computers (use of
GeoGebra (EGeoP) software).

Group 2 (N (level 7, cohesion: 0.276) = ((EviP BeviP) BeGeoP))), where the
most prominent finding was that a belief in the use of GeoGebra was attendant upon
a belief in and a preference for visual reasoning.

10.5 Conclusion

It has been argued, given the empirical evidence, that the link between cognition
and affect is at the basis of the whole of mathematical activity. It has been noted,
however, that similar investigations on the agenda of mathematics education are
still very scarce. One of the main reasons for this shortfall is that it is difficult to
carry out studies on affect: It is a question of the adequacy of theoretical and
methodological frameworks.

We have tried to envisage both the epistemological and ontological keys
inherent in the methodology designed to capture the interaction of cognition and
affect in mathematics. Also, a study and research design has been shown that has
resulted in an instrument that is significant and productive in addressing this goal.

The results of the research presented in Sects. 10.3.2 and 10.4 have shown the
following findings: (1) Both cognitive mathematical processes and appraisal pro-
cesses are key dimensions that explain the interplay between cognition and affect,
and (2) the non-linear modeling of emotion is reflected in the affect-cognition local
structure. It has been shown that the emotions in problem solving are not static.

Fig. 10.4 Hierarchy tree
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They are dynamic events that can be on-going throughout a problem-solving ses-
sion. The inspiration of the nonlinear model of emotion described here is based not
only on socio-constructivist approaches (such as Mandler’s theory; Mandler 1984)
but on other emotion theories with a more holistic view of the individual or a
perspective systemic of affectivity that we presented in Sect. 10.2.

Regarding the connections between cognition and emotion, two categories seem
to appear within the study: emotions that have causes known by the person who
experiences them and words that are used to denote the causes of the emotions. The
analysis of these connections sought not only to determine the relations between
variables but also to develop rule models as well as use a description of qualitative
data that can enrich this relationship. Notice that the analysis of the group
(Sect. 10.4) as a multiple variable analysis with the capability of decision trees
enables us to go beyond simple one-cause, one-effect relationships and to discover
and describe things in the context of multiple influences.

The results of studies where non-linear modeling of emotion is reflected in the
affect-cognition local structure drive us to formulate an open question about the
type of generated structure. We might ask whether or not the aforementioned
affective-cognitive interactions have a so-called fractal structure; that is, are they
basically similar (self-similar) at the mental and subjective, micro-social (inter-
personal or small-group), and macro-social (international or intercultural) levels?
As is well known, fractality is a property of a great number of natural and cultural
phenomena which are intensely studied by dynamic systems theory (formerly called
chaos theory) and of many biological, demographic, and economic processes.
Fractal structure is generated by basically similar dynamics (algorithms) on dif-
ferent levels of functioning. The result is a characteristic so-called self-similarity (or
scale-independence) of structural patterns on different levels of complexity. The
notion of fractality permits a methodologically correct transfer of small-scale (e.g.,
individual or interpersonal) observations to large-scale (e.g., inter-group or inter-
national) processes and vice versa.

Notice that studies on the exploration of fractal structures have been developed
in the understanding of mathematical concepts, but we do not meet them in the field
of interplay of cognition and affect (e.g., Singer and Voica 2010). So, although the
present study casts some light on this issue of the fractal structure, it is still a
question open to debate. The discussion on fractality can be established in the
global-local cognitive-affective perspective taken in this paper and in the method-
ological transfer of small-scale observations to large-scale processes.

In the results of the described study, a type of fractal construction could be seen
in the patterns of use of visualization and associated emotion and in the
meta-emotion and beliefs of the individuals. It has been shown that the cognitive
processes of visual reasoning and negative emotion interaction occur in identifying
strategies of interactive representation and processing of certain representations,
where the student has to put into play the identification of parametric variations.

10 Hidden Connections and Double Meanings: A Mathematical … 171



A distinction has been made between computer imagery and mathematical object
imagery, and, through instrumental and dimensional deconstruction concepts, the
existence of separate cognitive mechanisms for processing objects and relations
among objects, where figurative and instrumental genesis processes are involved,
has been shown.

In addition, the affective-cognitive dynamics can generally suffer sudden chan-
ges under special conditions. When the emotional tensions in mental or social
systems reach a critical point, the dominant forms of feeling, thinking, and acting
can suffer sudden global changes (called non-linear bifurcation). In this study, the
control parameter that determines the moment of bifurcating was the meta-emotion
and beliefs of subjects. Through implicative data analysis that took into account
these small-scale observations as categories, it was possible to transfer to a
large-scale process. As seen in Sect. 10.4, in individuals whose pathway is R3 (with
alternating negative and positive emotions and optimized self-control of emotions)
or individuals whose positive belief in the use of GeoGebra, both aspects may
become the new relevant order-parameters (or nuclei of crystallization) around
which the new global feeling-thinking-behaving patterns are organized.

The conceptualization of mathematical work can lead to an essential contribution
to the methodology for the diagnosis of cognition and affect interaction. Regarding
the cognitive dimension in appraisal processes, the categories of levels established
have been useful for a global analysis, while the mathematical working space model
has enabled a local look at how representations and images are produced. The
transitions between figural, instrumental, and discursive processes have allowed us
to characterize the dialectical process in the cognition and affect interaction between
types of mathematical thinking. As we noted at the beginning, mathematical
knowledge has specific characteristics that distinguish it from other areas of
knowledge. Today, characterizing this is among the key issues around which we
need to advance our knowledge.
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Chapter 11
The Role of Algebra in School
Mathematics

Liv Sissel Grønmo

Abstract Algebra can be viewed as a language of mathematics; playing a major
role for students’ opportunities to pursue many different types of education in a
modern society. It may therefore seem obvious that algebra should play a major role
in school mathematics. However, analyses based on data from several international
large-scale studies have shown that there are great differences between countries
when it comes to algebra; in some countries algebra plays a major role, while this is
not the case in other countries. These differences have been shown consistent over
time and at different levels in school. This paper points out and discusses how these
differences may interfere with individual students’ rights and opportunities to
pursue the education they want, and how this may interfere with the societies’ need
to recruit people to a number of professions.

Keywords Equal rights to education � Low emphasise on algebra
Daily life mathematics � Different profiles in mathematics education

11.1 Introduction

Algebra can be viewed as a language of mathematics. It is commonly accepted that
competence in a countries language is essential for your opportunities in that
country. The same may be said about algebra. Competence in algebra is essential
for people across all types of education and professions where they use this lan-
guage. To learn a country’s language takes time, and it matures over time by
intensive training through listening and by training to use it yourself, and it is
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usually easier for young children to start learning it than for adults. To some extent
the same can be said about algebra; except that in mathematics you learn arithmetic
first, as arithmetic is the basis for algebra, so it seems reasonable to start with
algebra after some fluency in arithmetic.

In a modern society, everyone goes to school for a long time; a school preparing
them for being responsible citizens taking care of their own daily life as well as
having a job to support themselves and to contribute to society. We have to ask
what type of competence is it reasonable that school emphasises in our societies. Is
it enough to teach them some arithmetic and statistics in mathematics to prepare
them for their daily life, or do we have to put more effort into learning them the
mathematical language algebra? A modern society needs a lot of people well
educated in different types of technology such as computer science and engineering.
A modern society faces problems related to the environment and economy. In all
these domains, competence in the mathematical language algebra is essential.
Algebra is an important tool for pursuing a profession in so many domains in our
society. It is also important for all types of education in natural sciences as physics,
biology, chemistry, or in mathematics itself. If you want to study geometry at a
university, you need to be fluent in the language of algebra.

The school is responsible for giving students competence in algebra, and it is, for
good reasons, part of school curriculum all over the world. Nevertheless, a number
of analyses have shown that the emphasis on students learning algebra varies quite a
lot around the world. This paper presents the results of a number of such analyses
completed over the two last decades, based on data from different studies and at
different levels in school. Drawing on these results, some consequences for indi-
vidual students and societies not emphasizing the learning of algebra in their
schools will be pointed out and discussed.

This include discussions of students equal rights to pursue all types of education
and by that have the opportunity for a number of different positions in the society,
possible reasons for the low emphasis on algebra in some countries, the relation
between pure and applied mathematics, and also some reflection about teaching and
learning algebra from the perspective that algebra is a language.

11.2 Different Profiles in Mathematics Education

Since it is commonly accepted that competence in algebra is an important tool for
pursuing a number of types of education and profession in a modern high tech-
nology society, it may seem obvious that algebra should play a major role in school
mathematics. However, a number of analyses based on data from several interna-
tional large-scale studies have shown that there are great differences between
countries when it comes to emphasis on algebra in school mathematics; in some
countries algebra plays a major role, while this is not the case in other countries.

International assessment surveys such as TIMSS, TIMSS Advanced, and PISA
(IEA 2017a; OECD 2017) aim at establishing reliable and valid scores for students’
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achievement which can be compared across countries or across groups of pupils
within countries, and to relate achievement to various background and context
variables that may give ideas about possible indicators for characterization of high
performance in mathematics. There has also been an international comparative
study of teacher education in mathematics (IEA 2017b; Tatto et al. 2012) collecting
the same types of data for students in this type of tertiary education. All these
studies also offer opportunities for secondary analyses to answer a number of other
research questions. An important research question that has been asked is if it is
reasonable to distinguish between different profiles of mathematics education in
various countries or groups of countries, and to what extent such profiles seems to
be consistent over time and at different levels in school. This paper will especially
pay attention to the role of algebra in different groups of countries.

A number of analyses have been conducted based on data from all the studies
mentioned above, looking for patterns in what type of content different countries
seem to emphasis in mathematics in school. A method commonly used in these
analyses is a type of cluster analysis looking for “item-by-country interactions” to
investigate similarities and differences between countries or groups of countries
across cognitive items. For more about these types of cluster analyses, see Olsen
(2006). It has to be recognized that in these analyses, one is talking about relative
performance. Countries at different levels of performance can therefore show equal
patterns for the type of mathematical content that is emphasized, since the cluster
analysis displays groupings of countries according to similarities in relative
response patterns across items. Countries in the same group tend to have relative
strengths and weaknesses in the same items. These types of analyses have been
conducted on data from the first TIMSS-study in 1995, and later on data from a
number of international studies at different levels in school and with different
framework according to the type of mathematical competence that is measured in
the study. The analyses of data from TIMSS 1995 concluded that the following
clusters of countries formed meaningful profiles from a geographical, cultural or
political point of view: English-speaking, German-speaking, East European,
Nordic, and East Asian countries (Grønmo et al. 2004). In the following, the paper
will concentrate on the four profiles that have revealed consistent profiles in a
number of later analyses. The German-speaking profile will not be included because
this profile has not been that consistent in later studies. Grønmo et al. also used the
residuals in the matrix which was the basis for the cluster analysis in the previous
section in order to identify items for which a certain group of countries achieved
particularly well or badly. They concluded that typical for the items where East
European and East Asian countries seemed to perform relatively best, was that they
all focused on classical, pure and abstract mathematics such as algebra and
geometry. Contrary to this finding, the Nordic group as well as the
English-speaking group performed relatively better on items closer to daily life
mathematics like estimation and rounding of numbers. The Nordic and the
English-speaking groups also scored relatively low on items dealing with more
classical abstract mathematics like fractions and algebra.
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This type of analyses has later been conducted on data from TIMSS 2003, PISA
2003, TIMSS Advanced 2008, and TEDS-M 2008 (IEA 2017a, b; OECD 2017).
The analyses have been conducted over an extended period of time, and there have
been different countries participating in the studies which also influence the result.
Nevertheless, all these analyses have concluded that it seems to be consistent
patterns of countries clustering together in a Nordic group, an English-speaking
group, an East European group, and an East Asian group (Grønmo et al. 2004;
Olsen and Grønmo 2006; Grønmo and Olsen 2006a, b; Grønmo and Pedersen
2017; Blömeke et al. 2013) for mathematics in school. The analyses have been
conducted at different levels in school, from lower secondary through upper sec-
ondary and even at the teacher education level of mathematics. The studies con-
tributing to data for such analyses have a quite different framework for their testing,
and different types of items for testing students’ competence. PISA tests students’
ability to solve problems presented mostly in some type of daily life context—or
some in a more professional context (Wu 2009; Olsen and Grønmo 2006). The
context is described with text, tables, and requires quite some reading, it also
requires ability to relate and understand different types of information, before
students use some mathematics to answer one or more questions. PISA does not
have any items testing students’ competence in pure algebra (ibid.). TIMSS in
lower secondary school has items testing students in pure algebra, and items where
algebra is tested in context, but less demanding when it comes to reading than items
in PISA. TIMSS Advanced test students in a number of items in pure algebra, and
some in context, but complexity in this study is in the mathematical domain, not in
reading, as it is in PISA. TEDS-M test students’ to become teachers in their
understanding of pure algebra, in addition to also testing them from the perspectives
of how to teach algebra in school (IEA 2017b). However, all these analyses give
consistent results pointing out that it is meaningful to conclude that we have four
different profiles in mathematics education that seem to be stable over time, at
different levels in education and in different studies independent of the study
framework or way of formulating the items of the tests.

Although the analyses reveal four different types of profiles, it is also meaningful
to talk about two very different types of profile, a conclusion especially interesting
from the perspective of algebra in school. One type of profile consists of East Asia
and East Europe, the other type consists of the English-speaking and the Nordic
countries. To summarise, even if there are distinct differences between each of the
four profiles, we also find clear similarities between the two groups of countries we
have linked as belonging to the same type of profile. The East Asian and the East
European profiles are quite similar in the sense that both groups perform relatively
better in traditional mathematical content areas like algebra than in mathematics
more closely related to daily life such as data representation and probability. In the
same way do the English-speaking and the Nordic profiles reveal similarities, both
these groups of countries perform relatively better on data representation and
probability and relatively worse in algebra.

The consistent difference between the two types of profiles according to algebra,
based on a number of cluster analysis of data from TIMSS, TIMSS Advanced,
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PISA and TEDS (IEA 2017a, b; OECD 2017) forms an important basis for dis-
cussions and conclusions in this paper.

Conclusions about differences according to emphasis on algebra in different
countries are also supported by other types of analyses. Items in TIMSS, TIMSS
Advanced and PISA have been re-categorized according to requirement of algebraic
manipulation or not to be solved, then compared with students’ success in different
countries in solving the items (Hole et al. 2015, 2017).

11.3 Equal Rights to Education

It is interesting from several perspectives that some groups of countries like the
Nordic and the English-speaking countries, emphasis teaching and learning of
algebra less than other group of countries like East-Asian and East-European
countries. It is reasonable to discuss possible consequences of such priorities in
school, both for individual students as well as for society at large. If some countries
do not give their students the opportunities to achieve the type of competence they
need to be successful in todays modern societies, students from these countries will
have disadvantages compared to students from other countries where this type of
competence is achieved. It may also influence students’ possibilities within each
country, because if this type of competence is not achieved in school, students with
highly educated parents, or economically well suited students may get some help
outside school, and for that reason have a much better position to pursue a number
of educations and important professions (Grønmo 2015).

Questions about what type of competence and knowledge students need in their
life, daily life and in their professional working life; and questions about how the
school can give them this type of competence seems therefore highly relevant.
Algebra is not likely to be needed that much in daily life, but in a modern highly
developed technological society it might be essential for students’ possibilities for
further education and for getting the job they want. It can also be argued that algebraic
competency underpins higher level abstract reasoning, especially when it involves
unknowns and generalised relationships. On this basis, algebraic competency is
necessary or highly desirable for professional occupations including medicine,
management and administrative occupations. In the PISA-study in 2015, 29% of the
Norwegian students answered that they saw themselves at the age of 30 having a job
categorized as based on some competence in technology, natural science or mathe-
matics (Kjærnsli and Jensen 2016), while only 20% answered the same in 2006.
According to the changes seen in our societies, it seems realistic that a high number of
people will have these types of professions. OECD have pointed out an increasing
need for more education related to science, technology and mathematics to give
people a fair opportunity in our modern societies (OECD 2017). They also make
strategy reports for a number of countries all over the world, about how to improve
their educational system. In the Norwegian report, more competence in mathematics
is pointed out as being of essential importance (OECD 2014).
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The important issue discussed in this paper is that many professions require
some type of competence in mathematics, and especially in the mathematical
language algebra, since all these types of professions in one way or another use this
mathematical language as a tool. This is true for educations and professions as
engineering, economy, computer science, and natural sciences as physics, chem-
istry or biology. The responsibility for teaching students the algebra they need for
further education and professions lies with the school. If this is not provided in
school, it will influence student’s possibilities to pursue a number of educations
based on their home background (Grønmo 2015). This is not in accordance with the
goal of equity for access to educations and later professional work that are a main
goal in education in so many countries (Ibid.).

The school’s responsibility for providing this type of knowledge to their stu-
dents’ is therefore closely related to students’ equal rights to education in a
changing world, and we have to take into account the direction of development in
the society (OECD 2017). There is an ongoing discussion about the need for people
with creativity and competence in how to handle changes in many countries
including Norway. On the other hand, there seems to be less discussion about the
need to emphasise students’ learning of basic knowledge in the mathematical
language algebra, needed in so many professions. I will argue that basic knowledge
in algebra is more to be seen as complementary and necessary for being creative,
rather than something opposing creativity. This may not be true for all types of
societies, but at least for the highly developed technological society we have in
many countries today. Without the language to develop technology and science,
creativity is probably not very helpful. Algebra was probably not that important for
so many fifty years ago as it is today. But taken into account the changes and
challenges we are facing in a modern society (Ibid.), competence in algebra is
essential and for that reason also an issue of importance from the perspectives of
giving all students the possibility to pursue the education and job positions they
want.

Failing to educate students to gain some fluency in the language of algebra may,
for obvious reasons, have important consequences for the society, such as the
shortage of people in a lot of professions and jobs. But the consequences for each
individual student lacking this type of competence are no less serious. And it is
especially thought provoking, that the low emphasis on the language algebra is
most pronounced in the Nordic countries, well known for their emphasis on equal
right for all citizens.

During the last 50 years, the Nordic welfare state has been established as a unique model,
with strong emphasis on equity of access to education of high level of quality. (Yang
Hansen et al. 2014, p. 26)

The goal of equity of access to education of high quality may be more pro-
nounced in the Nordic countries than in other countries, but many other countries
around the world probably also support this goal.

Important characteristics of the Nordic welfare state, especially after the Second
World War, have been free access to education and social mobility. After the war,
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education has in general been free of charge, at all levels, including college and
university level. This has given people from all social classes in the society the
possibility of pursuing all types of education. This means that it is no longer that
important what type of background you have, economically or intellectually, and it
has resulted in a large number of children from working class- and farmer class
families having opportunities no one in their family ever had before. Based on the
type of education people took, it was possible for people to join more or less any
type of profession, and through this gain an influence in the society that their
parents and grandparent could only dream of. This social mobility is probably also
an important reason for the political stability seen in the Nordic countries today
(Grønmo 2015).

But it is difficult to give equal right for all to educations and professions in the
society, unless the school takes into account the competence needed for further
education and professions today and in the future. We know that technological,
economical, and natural science competencies are important today, and they are
likely to be even more important in the future (OECD 2017). We also know that the
mathematical language algebra is what students need to pursue many types of
educations and professions in the society. Today, the Nordic countries seem to put a
lot of effort into learning students to use technology, but little effort it seems to
giving them the tools they need to be actively involved in developing new tech-
nology. This needs to be reflected upon from the perspective of students’ equal right
to education, and also from the perspective of social mobility and political stability.
Also English-speaking countries seem to face problems by not emphasizing algebra
throughout their school system, even if not to the same extent as in the Nordic
countries.

In addition, since algebra is the language of generalization and the language of
the relationships between quantities (Usiskin 1995) it is the basis for higher level
abstract reasoning needed in all professions involving managerial decision making.
So failing to develop algebraic competency among learners is denying them access
to many occupations beyond science and technology, and is thus an obstacle to the
human right of social mobility.

11.4 Reasons for Low Emphasis on Algebra

Analyses of different profiles in mathematics education around the world show
notable differences between countries in how much emphasis is put on algebra.
A consistent result of these analyses is that the Nordic and the English-speaking
countries do not emphasize students’ learning of pure mathematics as algebra, in
opposition to countries in East Europe and East Asia (Olsen and Grønmo 2006;
Grønmo and Olsen 2006a, b; Grønmo 2010). Why this is the case is an interesting
question, probably related to development of curricula within individual countries,
which again is influenced by the country’s culture for school and education. Equal
rights to education have been an important force for the development of school in
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many countries, and especially in the Nordic countries. Slogans as ‘mathematics for
all’ have been part of this drive, as has the need for teaching all students the type of
mathematics they need in daily life so as to be responsible, active citizens. The need
for daily life mathematics has influenced discussion about content in mathematics
in school. In particular, international comparative study PISA has highlighted the
need for students to be able to use mathematics from such a perspective.

Such a daily life perspective is important, but it is also interesting to see to what
extent this perspective has been especially influential in the Nordic and the
English-speaking countries in opposition to countries in East Europe and East Asia.
Based on data from PISA 2003 Olsen and Grønmo (2006) developed a classifi-
cation system for analyzing this. All items in PISA were re-classified according to
how close they were to “real world” or “daily life” mathematics as a way to further
understand of the differences between the different profiles found in mathematics
education. Their findings revealed that the profiles of the Nordic and the
English-speaking countries were mainly accounted for by this variable, and that this
variable had a higher degree of explanatory power than the aspects described in the
framework of PISA when it came to understanding the clustering of countries in
different profiles. The profile for the Nordic countries was strongly characterized by
relatively high performance on items involving some sort of real world mathe-
matics, and the same was true for the English-speaking countries. The East Asian
and East European countries, however, achieved relatively lower on items cate-
gorized as some sort of real world mathematics. This result, consistent with
Grønmo et al.’s (2004) findings, made it reasonable to conclude that real-world
mathematics has been a driving force for school mathematics in the Nordic and in
the English-speaking countries, in contrast to countries in East Europe and East
Asia. Other researchers have also pointed out that an emphasis on everyday
applications of mathematics has been an important driving force underlying
changes in curriculum over the last decades (Mosvold 2009). The needs of math-
ematics for pupils in their daily lives have received more curricular attention than
before, while more formal aspects of mathematics, such as algebra, have been
reduced. From the mid-1980s, there has been a lot of discussion about the tendency
to give more attention to daily life mathematics; see for example De Lange (1996)
and Kilpatrick et al. (2005).

The findings presented here are consistent with those of other researchers in
mathematics education, who have suggested that the mathematics curricula in the
Nordic countries, as well as in the English-speaking countries, have been heavily
influenced by an emphasis on real world mathematics and a daily life perspective on
mathematics in compulsory school (Niss 1996; De Lange 1996; Gardiner 2004).

Olsen and Grønmo (2006) also found that there was a tendency for the pupils in
the Nordic countries to perform relatively better on easier items, and with a
non-significant tendency to achieve lower on items requiring accuracy in calcula-
tions. For the English-speaking countries the need for calculation was a significant
factor indicating low relative achievement. This suggests that accuracy in calcu-
lations is not seen as that important in the Nordic and the English-speaking
countries. To what extent an increased focus on daily life mathematics in Norway
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over the last decades has resulted in little attention being given to accuracy in
calculation has also been discussed in several articles based on data from PISA and
TIMSS (Bergem et al. 2005; Grønmo 2005; Grønmo and Olsen 2006a, b; Olsen and
Grønmo 2006). It seems that it is not only algebra that is not emphasizes in some
countries, but also emphasis on accuracy in calculation in arithmetic’s seems to
have been low.

Olsen and Grønmo (2006) concluded that on average the pupils in the Nordic
countries performed relatively better on items with a realistic context, on items
which included some sort of graphical material, on low difficulty items, and on
items which did not include explicit algebraic expressions. Pupils in the Nordic
countries also performed relatively better on items relating to probabilities and
statistics in a daily life context (classified as Uncertainty in the PISA framework),
and on items that tended to be of a more qualitative type which did not require any
accuracy in performance of calculations. These results may also influence students’
possibilities to learn algebra; since algebra may be seen as some type of general-
ization of arithmetic. Students’ lack of competence in arithmetic is therefore likely
to have a negative effect on students’ learning of algebra (Brekke et al. 2000).

It is not only the content of curriculum that is important; it might be also the
organization of the curriculum that might be problematic. In Norway are for
example goals in the curriculum for grade 1 to grade 10 organized in three year
blocs, while it is the teacher, the local school or community who decide what is to
be emphasized each year (Utdanningsdirektoratet 2006). This seems to be one
reason for why algebra is not emphasized in Norway. Algebra seems to be taken
late, with teachers referring to algebra as abstract and therefore difficult to teach and
difficult for students to learn. It might be abstract, which is part of why it is so
powerful and useful in solving problems in so many different situations. It might
also be argued in opposition to this, that since it is abstract, it is important to start
learning it early so it can mature over time. Ordinary language, at least in written
form, is also abstract; nevertheless, we start early in school so all shall be able to
learn it.

Another important issue when it comes to what is emphasised in school is
teacher education. The international comparative study TEDS-M 2008 of teacher
education showed that the Nordic and the English-speaking countries do not
emphasis algebra for their student teachers (Tatto et al. 2012; Grønmo and Onstad
2012; Blömeke et al. 2013). If teachers do not feel they are very competent in
algebra themselves, it is understandable why they do not emphasis this mathe-
matical content very much, or at least postpone it as long as possible according to
what has to be done according to the curriculum.

You do not need very much algebra in daily life, but you do need it in many
educations and professions. Researchers in Finland have warned about the prob-
lematic issue that even though Finland is a high achieving country in PISA, this
does not reveal the whole truth about mathematics in their schools. Since PISA
emphasis daily life mathematics, and not the type of mathematics needed for further
education and professions, this study does not give the total picture of mathematics
in their school.
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This conflict can be explained by pointing out that the PISA survey measured only
everyday mathematical knowledge, something which could be - and in the English version
of the survey report explicitly is - called “mathematical literacy”; the kind of mathematics
which is needed in high-school or vocational studies was not part of the survey. No doubt,
everyday mathematical skills are valuable, but by no means enough. (Astala et al. 2005)

A central question is therefore how to find a balance between what students need
in their daily life and their needs to pursue further education and professions in the
society. Equally important is a question about how mathematics for daily life and
professions best can be implemented in school, taking all levels in school into
account. These questions are by no means easy to answer, but they are far too
important not to be asked and reflected upon.

11.5 Pure and Applied Mathematics

The discussions about what should constitute mathematics in compulsory school
may be understood in the light of the considerable efforts and use of resources to
develop education for all citizens in Western societies (Ernest 1991; Skovsmose
1994). The relationship between pure and applied mathematics has been part of
these discussions, even if it has been argued that the distinction between pure and
applied mathematics may not be very well founded from a historical point of view.
Some of the main contributors in mathematics, as Newton, Fermat, Descartes, and
Gauss among others, would probably not have recognised the distinction being
made today between pure and applied mathematics—indicating that mathematics
should be taught as a whole (Kline 1972). However, in a discussion about what
should be the content of mathematics in school, this distinction does seem to be
relevant and fruitful, as illustrated in the former analyses of different profiles in
mathematics education. It also seems relevant in discussions of curriculum and
curriculum changes for mathematics. As some have argued, an increasing focus on
applied mathematics seems to have resulted in too little attention given to what we
may call pure mathematics. Gardiner (2004) has argued that to apply mathematics
you need some competence in traditional pure mathematics, and that it is a
misunderstanding that teaching applied mathematics is an alternative to teaching
pure mathematics, even if some seem to believe that. Grønmo (2005) and Grønmo
and Olsen (2006a, b) also pointed to problems created by underestimating the
importance of pure mathematics and that only emphasizing applied mathematics
may be one possible reason for the low performance of Norwegian pupils in studies
as TIMSS and PISA, especially on items involving algebra.

Figure 11.1 presents a commonly accepted model of the relationship between
pure and applied mathematics taken from an influential United States policy doc-
ument on standards in mathematics (National Council of Teachers of Mathematics
1989). PISA uses a slightly different form of this model (OECD 2003, p. 38). The
right-hand side of the figure represents the mathematical world (what we may refer
to as pure mathematics)—an abstract world with well-defined symbols and rules.
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The left-hand side represents the real, concrete world, containing an infinite number
of different contexts and situations. The context or situation presented may either be
scientific or what might be called daily life. Working with pure mathematics, such
as numbers or algebra out of any context, means working only on the right-hand
side of the model. In applied mathematics, the starting point is intended to be a
problem from the real world, which first has to be simplified, and then mathema-
tized into a model representing the problem. School mathematics rarely starts with a
real problem. What is presented as a problem for pupils has in almost every case
already been simplified to make it accessible to them.

For any type of applied mathematics, the pupils need to have some knowledge of
pure mathematics to find a correct mathematical solution. Applied mathematics can
therefore be seen as more complex than pure mathematics, if the same mathematics
is involved in the two cases. Gardiner (2004) argues extensively that even if the
ability to use mathematics to solve daily life problems is a main goal for school
mathematics, this cannot be seen as an alternative to basic knowledge and skills in
pure mathematics. It may rather underline the pupils’ need for being able to orient
them in the world of pure mathematics as a necessary prerequisite to solving real
world problems.

PISA aims at embedding all items in a context as close to a real-life situation as
possible, while most items in TIMSS are pure mathematical items with no context,
or items with a simplified context, as has long been the tradition in school math-
ematics. TIMSS therefore gives extensive information about pupils’ knowledge in
pure mathematics—or what may be called traditional school mathematics—while
PISA mainly displays pupils’ competence in solving items in a daily life context
with the use of some mathematical knowledge—what may be referred to as applied
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mathematics, and usually in a rather complex context (Wu 2009; Olsen and
Grønmo 2006; Grønmo and Olsen 2006a, b).

Many countries have as a goal that, on leaving compulsory school, all pupils
should have a type of competence that makes them well prepared to solve daily life
problems using mathematics. This has been seen as important for active citizens in a
modern society, and has by some been referred to as functional numeracy (Niss
1994, 2003; De Lange 1996). The aim of PISA is to test pupils in this type of
mathematical competence, defined in the study as Mathematical Literacy.

Countries representing the East European profile performed relatively better in
TIMSS than in PISA in 2003 (Grønmo and Olsen 2006a, b). This may indicate that
most of the East European countries give little attention to the left-hand side of the
mathematisation cycle. The general message that this example serves to commu-
nicate is that concentrating only on pure mathematics in school may not be the best
if the aim is to foster pupils who are mathematically literate, pupils who can use
mathematics to solve the daily life problems they are likely to be exposed to. In
contrast to the East European countries, countries representing the East Asian
profile as for example Japan, are high achieving in both TIMSS and PISA. This
may indicate that pure mathematics is emphasized in the mathematics curriculum in
East Asian countries as for example Japan, at the same time as attention is given to
the full cycle of applied mathematics.

A European country such as the Netherlands, also high-achieving in both studies
in 2003, revealed some clear differences from Japan on performance levels in
different topics in TIMSS. Comparing achievement in Japan and the Netherlands in
Grade 8, the countries achieved equally well in the topics number, measurement,
and data, while there were clear differences between these countries in their
achievement levels in algebra and geometry. This indicates that even
high-achieving countries may have pronounced differences in what they emphasise
in their curriculum. Algebra and geometry seem to be much more in focus in Japan
than in the Netherlands. But when it comes to achieving well in mathematical
literacy, as tested in PISA, the Netherlands is doing just as well as Japan. Grønmo
and Olsen (2006a, b) took this as an indication that the “basics” of most importance
for daily life mathematics, are the fundamental concepts of number and operations
with numbers.

The achievement in algebra has been low for a long time in Norway (IEA
2017a), which have been pointed out in several national report based on data from
TIMSS (Grønmo and Onstad 2009; Grønmo et al. 2010, 2012; as well as in articles
based on TIMSS studies (Grønmo 2010; Grønmo and Onstad 2013a, b). It is also
worth noticing that despite the fact that Norway measured a general improvement in
mathematics in grade 8 in TIMSS from 2011 to TIMSS 2015, there was a signif-
icant decrease in achievement in algebra (Bergem et al. 2016).

Even if algebra is not the most important content for applying mathematics to
solve daily life problems, this content knowledge is highly relevant for those going
into studies and professions in need of more mathematical competence. The con-
clusions pointed out in the discussion of Fig. 11.1 about the need for basic
knowledge and skills to be able to apply mathematics is just as relevant for applying
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algebra as it is for applying number in mathematics problem solving. This aspect
received more attention in the TIMSS 2007 report (Grønmo and Onstad 2009),
referring to the problems in Norway in recruiting pupils to educational programs
and professions requiring knowledge in algebra. In connection to this, the report
also posed a critical question about what the Norwegian compulsory school offers
to their most talented pupils in mathematics, the pupils who are most likely to be
recruited to studies and professions in need of this type of mathematical knowledge
(Grønmo et al. 2014).

One consequence of a growing focus on applied mathematics may be that
problems arise if too little attention is given to pure mathematics. If pupils lack
elementary knowledge and skills with numbers, this is important also for their
possibility to learn algebra. It has been pointed out that problems pupils have
learning algebra in many cases are caused by a too weak basis in arithmetic (Brekke
et al. 2000). And as already underlined, if talented pupils are not given the
opportunity to learn basic concepts and skills in algebra, it will probably lead to
later problems in recruiting them to studies and professions in need of such
knowledge (Grønmo et al. 2016).

11.6 How to Learn the Mathematical Language Algebra

There are different ways of learning a language, but to be fluent in a language, to be
able to use it in a lot of different contexts, a good way is to experience using it in a
lot of different situations, and to give students the opportunities to mature their
competence over time. To learn algebra, as other languages, we have to take this
into account. This indicates that since learning of algebra is essential for so many
students in our societies, it is necessary to reflect this throughout the school system.
Algebra is not only relevant for what we teach students in lower or upper secondary
school, the basis for this language, as with spoken and written languages is laid
much earlier. This paper has already pointed to how learning of arithmetic is an
important basis for learning algebra (Brekke et al. 2000). But it is also necessary to
discuss what part of algebra can be implemented even at lower levels in school.

The curriculum in a Nordic country as Norway put much more emphasize on
algebra in the sixties and seventies than today. Textbooks showed that students
were exposed to letters as X for a variable number already in grade 1 in the 50s and
60s, for students at the age of seven. The Norwegian curriculum from 1974 indi-
cated that students should start learning about variables in a simple setting from the
start of school, and that there should be a special focus on elementary algebra from
grades 4–6, with consolidation and expansion of it in grade 7–9. This was a period
that is referred to as modern mathematics, with a lot of emphasis on abstract
mathematics at all levels in school. It is not a good solution to go back and copy
this, because it probably went too far in the abstract and formal direction. But it
seems troublesome that after that time there has been a long period with the
opposite problem, too little emphasis on pure abstract mathematics as arithmetic
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and especially on algebra. Education, as many other things in life, is probably more
about a balance between different aspects and goals. Some have referred to changes
in school as jumping from one ditch to the other, or following the swing of a
pendulum (Ernest 1989), but never finding the best balance between all the different
and sometimes contradictory goals schools are supposed to handle.

If you want to improve something, a common way is to look at and learn from
those who are good at it. However, the Nordic countries seems to have a strong
tradition for mostly looking to each other since they share common values and
ideology based on geography, culture and history (Bergem et al. 2016; Grønmo
et al. 2016). For good reasons, the Nordic countries have pointed out that their
societies are stable with a good social system for all citizens. But this is not the
same as the Nordic countries being best in everything, nor a good reason for not
looking to other countries in the world for improvement.

To do well in algebra, it seems more reasonable to look at some of the East-
Asian countries, like Japan, Singapore or Hong Kong. These countries have a very
different culture, but nevertheless, we can look at what they are doing, and pick up
ideas about what is good and what is not, even if our cultural background is very
different. Cultural similarities can be an advantage, but also a disadvantage if taken
too far.

A country like Japan has, for example, produced some very interesting videos
about their way of teaching algebra to middle school students (TIMSSVIDEO
1999). In this video, they use the differences between students’ competences as a
resource in their teaching, not a problem, activating their students in interesting
discussions. It is well documented that East-Asian countries perform much better in
algebra than Nordic and English-speaking countries. We have master students
comparing textbooks in Norway and Singapore, especially looking at how they start
to teach algebra (Karimzdeh 2014).

We also need to discuss at what level in school we should start teaching algebra
to our students. Some countries start teaching formal algebra at early levels in
school, while other countries prefer to formalize algebra much later. As already
mentioned, it is also interesting to look back to the curriculum in our countries some
decades ago, where algebra was also emphasized more than in our present cur-
riculum. This was before the emphasis on daily life mathematics was supposed to,
more or less; solve the problems in school mathematics (Gardiner 2004).

The school curriculum has to meet the needs of all students. Not only for those
who will need algebra for an academic career, but also for those only needing daily
life mathematics. This is the challenge we have to meet in our societies, based on
students’ needs and how to meet them in compulsory school, as well as in lower
and upper secondary school. One source of answers is to look at world wide
practices. Looking at countries with different types of educational systems and
different cultures, to learn, to discuss and reflect upon their methods to find ways of
improving our own system. We can probably learn from everybody, from different
countries all over the world, at the same time as we keep in mind that just copying
anybody is not the way to do it.
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11.7 Summary and Further Research

As pointed out earlier in this paper (ref Sect. 11.5) numbers and algebra constitute
important parts of pure mathematics. Working with numbers and algebra out of any
context are pure mathematics, while using numbers or algebra to solve a problem in
daily life or in professional life are applied mathematics. It is also underlined that to
apply any type of mathematics, the students need to be competent in the type of
pure mathematics they are supposed to apply (Gardiner 2004). It is especially for
their professional life, higher education and work, students need algebra. To little
emphasize on pure mathematics as algebra in school is therefore problematic from
the point of view to give all students’ equal opportunities to pursue the education or
professions they want.

A number of analyses based on data from several international large-scale studies
have shown that there are great differences between countrieswhen it comes to the role
of algebra in school mathematics. While countries in East Asia and East Europe
emphasize students’ learning of puremathematics as algebra, this is not the case in the
Nordic or English speaking countries. This is likely to interfere with students’ rights
and opportunities to pursue the education they want, which is especially thought
provoking given the common consensus, especially in the Nordic countries, when it
comes to students’ equal right to education at all levels in school. The fact that
education in general is free of charge is important characteristic of the Nordic welfare
state. This is based on a consensus about the importance of an equal rights to education
for all citizens and at all educational levels.

To what extent a country offers students the opportunity to learn algebra may
also interfere with the society’s possibilities to recruit people into a number of
professions needed in a modern society. This is the case for professions in tech-
nology as engineering and computer science, in natural sciences as physics,
chemistry, biology, and in studies of economy. Educations or professions using
mathematics as a tool need students with basic competence in the mathematical
language algebra. We also have to take into account that this type of competence is
likely to be more important as our society become more dependent of technology,
to solve problems related to environmental problems or problems in economics. It
has also been suggested that all higher level professionals need the high level
thinking skills that rest on a basic understanding of algebra. Countries can, as many
already do, hire people from other countries if their school system does not educate
enough people with the competence needed. But not educating the working force
needed in a country is not a good solution, neither for individuals in the country, or
for the country as a whole. Especially for rich countries spending a lot of resources
on education, this seems to be an unsatisfactory or bad solution.

This paper has referred to a number of analyses drawing the same conclusions
about the problems arising from the low emphasis algebra in several countries, and
also pointed out some problems and perspectives to be discussed in solving this.
Also some solutions such as looking to other countries that are successful in
teaching and learning algebra have been mentioned. However, we need more
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research on how this can be done in a good way. More research projects comparing
countries with different profiles in mathematics education seems to be one possi-
bility, as a way to learn from each other. Copying other countries ways of dealing
with algebra may be tempting, but probably not the best way forward. In a complex
field like education, differences in culture are likely to play a major role we must
take into account if we want to improve our own educational system. Cooperation
and discussions between countries with different educational systems and cultures is
more likely to be successful, especially if we include it as part of research about
education. Earlier in this paper, reference was made to a tendency in the Nordic
countries to mostly compare and discuss our systems in relation to other countries
close to us, geographically or culturally. This is probably true for many countries in
the world. But just as our societies become more dependent on all types of tech-
nology, countries in the world will also be more dependent on cooperation on a
broader range, in education as in other fields, than in former times. There have been
more references lately to the fact that we share one world together, and that we have
to solve and take care of it together, especially when it comes to environmental or
economical problems. But this may be just as true when discussing education all
over the world, an important factor for solving most problems we are facing.

This paper is heavily based on a number of secondary analyses of data from
different type of international comparative studies, as TIMSS, PISA, TIMSS
Advanced and TEDS-M. To be able to conduct such type of analyses it is important
that countries participate in several of these studies. No study, no matter how good
the quality of the study is, can give the best answer on how to improve a country’s
educational system. All the studies referred to in this paper have quite different
frameworks for what they want to test, as well as quite different ways of developing
items to cover their frameworks. For this paper, the differences between TIMSS and
PISA have played an important role, and giving researchers the possibility to ask
and answer more questions about the role of algebra and daily life mathematics than
any of these studies could answer alone. Participation in both TIMSS for com-
pulsory school and TIMSS Advanced last year of upper secondary school has also
given countries the possibility to see how what is emphasized at one level in school
seems to influence other levels in school. In that way, a country will get a much
broader view of their own educational system, and better information about how to
improve education in their country.

Researchers in Finland have warned about the problem Finland is facing because
they mostly only participated in PISA:

A proper mathematical basis is needed especially in technical and scientific, biology
included. The PISA survey tells very little about this basis, which should already be created
in comprehensive school. Therefore, it would be absolutely necessary that, in the future,
Finland would participate also in international surveys which evaluate mathematical skills
essential for further studies. (Astala et al. 2005, https://matematiikkalehtisolmu.fi/2005/erik/
PisaEng.html)

International comparative studies have produced a large databank that can be
used to answer a high number of interesting research questions. Especially by
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combining analyses of data from different international comparative studies will
give researchers unique possibilities for better answers to their research questions.
This type of further research needs to be emphasized to improve education all over
the world, which is also likely to influence our chances of solving the problems we
are facing today and will face in the future.

References

Astala, K., Kivelä, S. K., Koskela, P., Martio, O., Näätänen, M., & Tarvainen, K. (2005).
polytechnics, m. t. i. u. a. The PISA survey tells only a partial truth of Finnish children’s
mathematical skills. Retrieved from https://matematiikkalehtisolmu.fi/2005/erik/PisaEng.html.

Bergem, O. C., Grønmo, L. S., & Olsen, R. V. (2005). PISA 2003 og TIMSS 2003: Hva forteller
disse undersøkelsene om norske elevers kunnskaper og ferdigheter i matematikk. Norsk
Pedagogisk Tidsskrift, 89(1), 31–44.

Bergem, O. K., Kaarstein, H., & Nilsen, T. (2016). Vi kan lykkes i realfag. Resultater og analyser
fra TIMSS 2015. Oslo: Universitetsforlaget.

Blömeke, S., Suhl, U., & Döhrmann, M. (2013). Assessing strengths and weaknesses of teacher
knowledge in Asia, Eastern Europe and Western countries: Differential item functioning in
TEDS-M. International Journal of Science and Mathematics Education, 11, 795–817.

Brekke, G., Grønmo, L. S., & Rosén, B. (2000). KIM (Kvalitet i matematikkundervisningen):
Veiledning til algebra [Quality in mathematics teaching: A guide in algebra]. Oslo: Nasjonalt
Læremiddelsenter.

De Lange, J. (1996). Using and applying mathematics in education. In A. J. Bishop, K. Clements,
C. Keitel, J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education
(Vols. 1–2). Dordrecht: Kluwer Academic Publishers.

Ernest, P. (1989). Mathematics teaching: The state of the art. London: Falmer Press.
Ernest, P. (1991). The philosophy of mathematics education. London: Falmer Press.
Gardiner, A. (2004). What is mathematical literacy? Lecture given at the ICME-10 conference,

Copenhagen, Denmark, July 2004.
Grønmo, L. S. (2005). Matematikkprestasjoner i TIMSS og PISA [Mathematics achievement in

TIMSS and PISA]. Nämnaren, 32(3), 5–11.
Grønmo, L. S. (2010). Low achievement in mathematics in compulsory school as evidenced by

TIMSS and PISA. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl, & L.
Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education (pp. 49–
69). Charlotte, NC: Information Age Publishing.

Grønmo, L. S. (2015). Cómo alcanzar la equidad de acceso a la educación un perfil nórdico en
matemáticas [How to achieve equity of access to education. A Nordic profile in mathematics].
Paper presented at PEDAGOGIA 2015, Havana, Cuba.

Grønmo, L. S., Hole, A., & Onstad, T. (2016). Ett skritt fram og ett tilbake. TIMSS advanced 2015.
Matematikk og fysikk i videregående skole. Oslo: Cappelen Damm Akademisk.

Grønmo, L. S., Jahr, E., Skogen, K., & Wistedt, I. (2014). Matematikktalenter i skolen-hva med
dem? [How do we threat student with a talent for mathematics?] Oslo: Cappelen Damm.

Grønmo, L. S., Kjærnsli, M., & Lie, S. (2004). Looking for cultural and geographical factors in
patterns of responses to TIMSS items. Paper presented at the 1st IEA International Research
Conference, May 11–13, 2004, Lefkosia, Cyprus.

Grønmo, L. S., & Olsen, R. V. (2006a). Matematikkprestasjoner i TIMSS og PISA: ren og anvendt
matematikk [Mathematic achievement in TIMSS and Pisa: Pure and applied mathematics].
In B. Brock-Utne & L. Bøyesen (Eds.), Å greie seg i utdanningssystemet i nord og sør. Bergen:
Fagbokforlaget.

11 The Role of Algebra in School Mathematics 191

https://matematiikkalehtisolmu.fi/2005/erik/PisaEng.html


Grønmo, L. S. & Olsen, R. V. (2006b). TIMSS versus PISA: The case of pure and applied
mathematics. In Proceedings at the 2nd IEA International Research Conference, Washington,
DC.

Grønmo, L. S., & Onstad, T. (2009). Tegn til bedring. Norske elevers prestasjoner i matematikk og
naturfag i TIMSS 2007 [Signs of improvement]. National report from TIMSS 2007. Oslo:
Unipub.

Grønmo, L. S., & Onstad, T. (Eds.). (2012).Mange og store utfordringer [Many great challenges].
National report from TEDS-M 2008. Oslo: Unipub.

Grønmo, L. S., & Onstad, T. (Eds.). (2013a). Opptur og nedtur. Analyser av TIMSS-data for
Norge og Sverige. Oslo: Akademika forlag.

Grønmo, L. S., & Onstad, T. (Eds.). (2013b). The significance of TIMSS and TIMSS advanced.
Mathematics education in Norway, Slovenia and Sweden. Oslo: Akademica Publishing.

Grønmo, L. S., Onstad, T., Nilsen, T., Hole, A., Aslaksen, H., & Borge, I. C. (2012). Framgang,
men langt fram. Norske elevers prestasjoner i matematikk og naturfag i TIMSS 2011. Oslo:
Akademika forlag.

Grønmo, L. S., Onstad, T., & Pedersen, I. F. (2010). Matematikk i motvind [Mathematics against
headwinds]. National report from TIMSS advanced 2008. Oslo: Unipub.

Grønmo, L. S., & Pedersen, I. F. (2017). Do analyses of TIMSS advanced data confirm that
countries have a similar cultural profile in mathematics at all levels in school?

Hole, A., Grønmo, L. S., & Onstad, T. (2017). Measuring the amount of mathematical theory
needed to solve test items in TIMSS advanced mathematics and physics. Paper presented at the
7th IEA International Research Conference, June 28–30, 2017, Prague, Czech Republic.

Hole, A., Onstad, T., Grønmo, L. S., Nilsen, T., Nortvedt, G. A., & Braeken, J. (2015).
Investigating mathematical theory needed to solve TIMSS and PISA mathematics test items.
Paper presented at the 6th IEA International Research Conference, June 24–26, 2015, Cape
Town, South Africa.

IEA. (2017a). TIMSS and PIRLS International Study Center. US: Lynch School of Education,
Boston College. https://timssandpirls.bc.edu. Retrieved May 15, 2017.

IEA. (2017b). TEDS-M. Teacher Education and Development Study in Mathematics. https://arc.
uchicago.edu/reese/projects/teacher-education-and-development-study-mathematics-teds-m.
Retrieved May 15, 2017.

Karimzdeh, A. (2014). Algebra i norske og singaporske matematikklaereboker (Comparing
algebra in Norwegian and Singaporian texstbooks) (Master thesis). ILS, University of Oslo.

Kilpatrick, J., Hoyles, C., Skovsmose, O., & Valero, P. (2005). Meaning in mathematics
education. New York: Springer.

Kjærnsli, M., & Jensen, F. (Eds.). (2016). Stø kurs. Norske elevers kompetanse i naturfag,
matematikk og lesing i PISA 2015. Oslo: Universitetsforlaget.

Kline, M. (1972). Mathematical thought from ancient to modern times. Oxford: Oxford University
Press.

Mosvold, R. (2009). Teachers’ use of projects and textbook tasks to connect mathematics with
everyday life. In B. Sriraman, C. Bergsten, S. Goodchild, G. Pálsdóttir, B. Dahl, &
L. Haapasalo (Eds.), The first sourcebook on Nordic research in mathematics education
(pp. 169–180). Charlotte, NC: Information Age Publishing.

NCTM. (1989). Curriculum and evaluation standards for school mathematics. Reston, VA:
National Council of Teachers of Mathematics.

Niss, M. (1994). Mathematics in society. In R. Biehler, R. W. Scholz, R. Straesser, & B.
Winkelmann (Eds.), The didactics of mathematics as a scientific discipline. Dordrecht: Kluwer
Academic Publishers.

Niss, M. (1996). Goals of mathematics teaching. In A. J. Bishop, K. Clements, C. Keitel,
J. Kilpatrick, & C. Laborde (Eds.), International handbook of mathematics education
(Vols. 1–2). Dordrecht: Kluwer Academic Publishers.

Niss, M. (2003). Mål for matematikkundervisningen [Goals of mathematics teaching]. In
Grevholm, B. (Ed.), Matematikk for skolen. Bergen: Fagbokforlaget.

192 L. S. Grønmo

https://timssandpirls.bc.edu
https://arc.uchicago.edu/reese/projects/teacher-education-and-development-study-mathematics-teds-m
https://arc.uchicago.edu/reese/projects/teacher-education-and-development-study-mathematics-teds-m


OECD. (2003). PISA 2003 assessment framework. mathematics, reading, science and problem
solving. Knowledge and skills. Paris: OECD Publications.

OECD. (2014). OECD Skills strategy action report Norway. Retrieved from http://www.oecd.org/
skills/nationalskillsstrategies/OECD_Skills_Strategy_Action_Report_Norway.pdf

OECD. (2017). PISA, Programme for International Students Assessment. Accessible at
http://www.oecd.org/pisa/publications/. Retrieved May 15, 2017.

Olsen, R. V. (2006). A Nordic profile of mathematics achievement: Myth or reality? In J. Mejding
& A. Roe (Eds.), Northern lights on PISA 2003—A reflection from the Nordic countries. Oslo:
Nordisk Ministerråd.

Olsen, R. V., & Grønmo, L. S. (2006). What are the characteristics of the Nordic profile in
mathematical literacy? In J. Mejding & A. Roe (Eds.), Northern lights on PISA 2003—A
reflection from the Nordic countries. Oslo: Nordisk Ministerråd.

Skovsmose, O. (1994). Towards a philosophy of critical mathematics education. Dordrecht:
Kluwer Academic Publishers.

Tatto, M. T., Schwille, J., Senk, S. L., Ingvarson, L., Rowley, G., Peck, R., et al. (2012). Policy,
practice, and readiness to teach primary and secondary mathematics in 17 countries. Findings
from the IEA teacher education and development study in mathematics (TEDS-M).
Amsterdam: IEA.

TIMSSVIDEO (Producer). (1999). Lesson JP3. TIMSS video study. From http://www.timssvideo.
com/49.

Usiskin, Z. (1995, Spring). Why is algebra important to learn? American Educator, 30–37.
Retrieved on January 7, 2017 from https://www.researchgate.net/publication/240415845_
Why_Is_Algebra_Important_to_Learn.

Utdanningsdirektoratet. (2006). The Norwegian Directorate for Education and Training. The
curriculum for the common core subject of mathematics. https://www.udir.no/laring-og-trivsel/
lareplanverket/finn-lareplan/#matematikk&englishundefined. Retrieved May 15, 2017.

Wu, M. (2009). A critical comparison of the contents of PISA and TIMSS mathematics
assessments. Retrieved from https://www.researchgate.net/publication/242149776.

Yang Hansen, K., Gustafsson, J. E., & Rosén, M. (2014). School performance differences and
policy variations in Finland, Norway and Sweden. In Nothern lights on TIMSS and PIRLS
2011. Differences and similarities in the Nordic countries (Vol. TemaNord 2014: 528,
pp. 24–47). Norway: Nordic Council of Ministers.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

11 The Role of Algebra in School Mathematics 193

http://www.oecd.org/skills/nationalskillsstrategies/OECD_Skills_Strategy_Action_Report_Norway.pdf
http://www.oecd.org/skills/nationalskillsstrategies/OECD_Skills_Strategy_Action_Report_Norway.pdf
http://www.oecd.org/pisa/publications/
http://www.timssvideo.com/49
http://www.timssvideo.com/49
https://www.researchgate.net/publication/240415845_Why_Is_Algebra_Important_to_Learn
https://www.researchgate.net/publication/240415845_Why_Is_Algebra_Important_to_Learn
https://www.udir.no/laring-og-trivsel/lareplanverket/finn-lareplan/#matematikk%26englishundefined
https://www.udir.no/laring-og-trivsel/lareplanverket/finn-lareplan/#matematikk%26englishundefined
https://www.researchgate.net/publication/242149776
http://creativecommons.org/licenses/by/4.0/


Chapter 12
Storytelling for Tertiary Mathematics
Students

Ansie Harding

Abstract This paper offers a narrative of ideas, events and opinions addressing the
underexposed area of storytelling in tertiary mathematics. A short discussion on
storytelling is followed by a brief account of the history of storytelling. Features of
stories are discussed as well as options for when a story should be told and the
requirements of a good story. The main thrust of the paper is a personal account of
experiences of storytelling in a tertiary mathematics classroom. The study involves
a large group of engineering students doing a calculus module. The storytelling
discussed in this paper takes the form of a structured activity in a specific timeslot.
Student feedback presents an unexpected angle, deviating from the intended pur-
pose of entertain, inspire and educate, namely, giving a perception of caring from
the teacher’s side.

Keywords Storytelling �Mathematics � Tertiary students � Features of storytelling
Mathematics stories

12.1 About Stories and Storytelling

Storytelling is part of every culture: It is an ancient art that has been practiced
through millennia of human interaction. It ranges from a mother telling her child a
story to theatrical storytelling on a stage. Storytelling often relies on the imagination
and speaking ability of the storyteller and the listening ability of the audience.
Stories have travelled and still travel all over the world, and commonalities in
different cultures abound.

Stories come in many forms: they can be in written form, orally conveyed or
visually depicted. Stories appear everywhere: in newspapers, on the internet, in
magazines, on television and in discourse between people. Stories can be factual
or fictional, stem from actual events or be the product of someone’s imagination.
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They can range from centuries-old traditional folktales to accounts of current
events. Young and old alike find appeal in stories, and it seems as if stories are built
into our thinking, as it is easy to remember and to repeat when the time comes.
Stories fuel conversation, are compelling and can be a source of entertainment.

Storytelling is basic to education. From a young age children are exposed to
stories that open up new worlds for them and expose them to characters and
situations from which they can learn moral lessons. Many of these stories come
through generations and are brought to life for a new generation by the storyteller at
each telling.

12.2 History of Storytelling

As the practice of storytelling stretches over many millennia, an accurate account
would be ambitious and falls outside the scope of this narrative. For the sake of
simplifying this history, we note several landmarks in the long history of story-
telling. This account is a personal perspective formed over a long period and is
sourced widely.

The origins of storytelling are lost in the mists of time, but most probably first
took form in oral storytelling, which could date back as far as the time of the
Neanderthal people. One can imagine people sitting around a fire and relating
events of the day, perhaps telling of a narrow escape or a heroic encounter. Stories
possibly travelled from clan to clan where the stories also conveyed news.

The first recorded stories date from around 35,000 BC, from when cave paint-
ings show a recording of events, telling stories of people and animals. Amongst the
cuneiform clay tablets dating from Babylonian times (around 2000 BC) is the story
of Gilgamesh, a forerunner of the modern day superheroes. The Epic of Gilgamesh
is considered the oldest piece of epic Western literature (Ancient History
Encyclopedia, n.d.). Gilgamesh is widely accepted as a real person of superhuman
capabilities.

Stories about real people evolved towards stories of imaginary characters. From
Greece (500 BC) we inherited the fables of Aesop, presenting moral lessons for life.
Homer’s Odyssey (800 BC), with its mythological characters such as the one-eyed
Cyclopes, is one of many Greek and Roman works on fictional characters. The
story of Merlin and King Arthur (500 AD) and the One Thousand and One Nights
stories are more of the early treasures of fictional stories.

Perhaps the biggest thrust in the history of storytelling is the advent of printed
books. The first book printed with movable metal type is Jikji (an abbreviated title),
a Korean Buddhist document, which dates from 1377. The Gutenberg Bible,
printed by Johannes Gutenberg in 1450, was the first major book printed in Europe
with movable metal type. The printing of books was the process that would make
recorded stories accessible to a wide population.

The invention of storytelling machines dates from the early 1900s. A 1907 Lee
de Forest company advertisement promised: “It will soon be possible to distribute
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grand opera music from transmitters placed on the stage of the Metropolitan Opera
House … to almost any dwelling in Greater New York and vicinity.”
(TVTechnology, n.d., p. 1). This promise became a reality in 1910. The radio
became a storytelling device that has a place in almost every household and has
survived the times.

In 1890, Edison invented the kinetograph, technology that led to an enormous
film and television industry. The first of the silent movies, The Great Train
Robbery, appeared in 1903 and is all of about 10 min long. The year 1927 saw the
first of the talkies, The Jazz Singer, in which characters could first be heard talking.
Almost simultaneously, in 1926, Logie Baird gave life to television, perhaps the
greatest storytelling device of all time.

The final milestone in the history of storytelling is internet storytelling. The new
millennium has seen storytelling blossom by means of social media, blogs,
Facebook, Twitter, YouTube and other platforms. People write fictitious stories but
also relate events and experiences in their own lives, reminiscent of the first sto-
rytelling of the Neanderthal people, thus seemingly completing a full circle.

Through all the new modes of storytelling that have emerged through times, it is
noticeable that despite new devices and modes appearing, the older ones remain.
For example, there was talk that printed books would be replaced by e-books, but it
has not happened. Both of these co-exist. Oral storytelling is another example of
how the most ancient form of storytelling has survived. Every new mode has
supplemented rather than replaced previous ones.

12.3 Literature on Storytelling in Education

Zazkis and Liljedahl (2009) have been instrumental in promoting storytelling in the
mathematics classroom. The purpose of telling stories in the mathematics class-
room, according to these authors, is to create an environment of imagination,
emotion and thinking; to make mathematics more enjoyable and more memorable;
to engage students in a mathematical activity; to make them think and explore; and,
perhaps most importantly, to help them understand ideas and concepts. The ability
that stories have for shaping and orientating the listener’s feelings is mentioned by
Zazkis and Liljedahl (2009) as a great power. These authors divide stories
according to their function in the classroom and their potential for engagement into
six categories: stories used to ask a question, stories accompanying a topic, stories
for introducing an idea, stories intertwined with a topic, stories to explain a concept
and stories used to introduce an activity. Friday (2014) claims that teachers have
been storytellers for millennia but do not necessarily see themselves as storytellers.
He admits that becoming a storyteller takes effort and inclination but that the effort
makes it worth it. Hamilton and Weiss (2005) maintain that stories are the best gifts
teachers can give their students because they can never be taken away: they belong
to students forever.
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Although Tobin’s (2007) comprehensive study on using storytelling in tertiary
education focuses on information technology (IT), it covers a broad scope of sto-
rytelling, listing formats, structure, uses and benefits and implementation with a
comprehensive source of references to each of these. He states that that the use of
storytelling is not “as well established or commonly accepted as the more traditional
logical or scientific content-based lecture method” (p. 55). The article serves to
stimulate interest in storytelling and concludes with a checklist of issues to be
considered when using a storytelling approach. Other valuable resources in the
higher education context that offers ways in which storytelling can be used effec-
tively as a tool are presented by Alterio and McDrury (2002) and Kruyvenhoven
(2009).

The term digital storytelling describes the practice of people who use digital
tools to tell their story, involving some means of technology in storytelling, as
opposed to face-to-face storytelling. The implementation and effects of digital
storytelling in education have been discussed widely (for example, Heo 2009; Hull
and Katz 2006; Ohler 2005; Robin 2005; Sadik 2008).

The purpose of using storytelling to bring the culture of the community—in our
case, the culture of mathematics—into the classroom and making it part of students’
awareness is captured by Harold Rosen, well-known engineer and educationalist, as
quoted in Zipes (1995): “If the culture of the community is to enter the culture of
the school, its stories must come too and, more profoundly perhaps, its oral sto-
rytelling traditions must become an acknowledged form of meaning making” (p. 1).

Scepticism about the value of storytelling in the corporate environment is voiced
by Denning (2004) as he describes his journey in the business world. Executives
thrive on analysis and although analysis “might excite the mind, it hardly offers a
route to the heart” (p. 3). Denning claims that storytelling is the place to go “to
motivate people not only to take action but to do so with energy and enthusiasm”
(p. 3). The latter statement applies generally and also in education.

Huggins (2017) discusses the purpose of storytelling from the game design
environment that has the mission to inform, inspire and entertain in order to channel
teens’ interest. The author of this chapter differently interprets the notion of
informing as education, thus subscribing to the threefold purpose to entertain,
inspire and educate.

12.4 Storytelling for Tertiary Mathematics

The task of teaching tertiary mathematics seems to be remote from the act of telling
stories, and lecturers often shy away from this “juvenile” activity. This does not
mean that storytelling does not happen in the tertiary mathematics classroom, but
rather that it is often an informal rather than structured activity. Historical anecdotes
are often woven into teaching, providing context to topics while bringing a moment
of relaxation to the class. Mathematics in particular is embedded in a rich history
and also relates to almost any other field in some way, thus offering ample material
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for storytelling. In this paper I would like to propose including storytelling into
tertiary mathematics as a more structured activity.

The question of where to fit storytelling into a classroom experience has no
definite answer, but there are various options. Probably the most common usage of
storytelling is as an introduction to the lecture or a topic. The story is then related to
the day’s work or the topic at hand. The aim is to give context to the topic that will
follow. My personal experience and opinion is that although there are positives to
this method, there are also negatives. There is a measure of sugar coating involved
in this practice, in that the pleasantness of the story is followed by the toughness of
the mathematics, and unintentionally the lecturer is trying to soften the blow. For
large classes of more than 100 students there is another concern, namely that the
nature of a story is such that it is a trigger for discussion, conversation and sharing.
There is no real opportunity for this, as it not only takes time but also disturbs the
calm in the classroom and necessitates regaining its harmony.

Another option is using a story as a “by the way”, weaving it into the teaching as
a short anecdote or an amusing snippet. The intention is to vary the teaching and
pace through the appeal that a story has. Although a commendable practice, the
story could in this case come in an abbreviated form, so the richness of the char-
acters and context of the story are not fully exposed. In other words, the potential of
the story is curbed.

A third option of storytelling is to use it as a “commercial break” somewhere in
the middle of the lesson, between topics. Student attention span is limited and
pausing the teaching for the light entertainment provided by the story is an option.
The story can be fleshed to suit in terms of characters and storyline. Calling it a
commercial break distinguishes the story from the work. After the story, the second
half of the lecture ensues. This practice can be successful but holds the same danger
as an introductory story; namely, to regain the attention and focus of the lesson could
be problematic as one has to deprive students of the repartee that follows a story.

The fourth option emerged for me as the most successful mode after many years
of experimenting with different modes of storytelling in tertiary teaching. This
mode is to use storytelling as a reward. I teach calculus to a large first-year group of
engineering students of around 300 that consists of four contact sessions of 50 min
each per week. The last 10 min of the last lecture of the week is dedicated to a
full-fledged story. I take care in preparing a story that is mostly in low-tech oral
form or sometimes centred around one or two slides. The idea is that we have
worked hard on the week’s study material and this is the reward. The story could be
related to the work at hand but often is not. The mathematics link is always there,
stronger sometimes than at other times. Students look forward to the story of the
week and alert me as the time gets closer. Student reaction is the motivation; why
this is a successful way of incorporating storytelling will be discussed subsequently.

For tertiary students a story needs care from the storyteller: care in preparation
and care in presentation. The practice of telling a fleshed-out story demands
searching and compiling of facts and anecdotes from various sources. Most
important is that the storytellers make the stories their own. You need to be
comfortable with both the facts and the storyline. You have to put soul into the
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storytelling, fleshing out the characters and bringing the story to life. I have
compiled a long list of suitable stories as a resource but am continuously searching
for new stories. Sources include the internet, books, listening to people, talking to
people, using your imagination to embellish the story and always adding your own
touch.

I have practiced storytelling for tertiary students for a number of years. It seems
unlikely that a large group of engineering students would take to storytelling, yet it
does happen and supports the point that storytelling is for all ages. The time spent
on storytelling is little enough not to impact negatively on teaching time.

The question that most probably arises in the reader’s mind is what is typical of
such stories. A few of the stalwart stories are: “How long is a year?” “How a memory
stick burned down the houses of parliament in England.” “Pythagoras was possibly a
plagiarist.” “l’Hôpital’s rule?No, Bernoulli’s rule.” “Why x represents the unknown.”
“Newton vs Leibniz.” “Memorising the digits of pi.” “De Moivre’s story.” “The
Millennium problems.” “The Fields medal.” “Why there is no Nobel prize in math-
ematics”. Two of these stories are included as examples at the end of the chapter.

12.5 Features of Storytelling

Although storytelling is a diverse activity, mostly influenced by the personality
traits of the storyteller or author, there are recognizable elements. Firstly there are
characters placed in a setting, which the storyteller has to flesh out to bring to life.
Characters have ambitions or quests that they pursue or would like to pursue. The
character then encounters some problem or some conflict ensues. Through a series
of events, the story leads to an outcome or resolution and, most of the time, “they
lived happily ever after”. In all stories, the human element plays a major role. It
provides the audience member with a human connection to the events or character
through which the story is brought to life. When considering a story, I pay attention
to the presence of these elements.

Compiling a good story is a skill to be cultivated. A collection of facts does not
make a good story. My personal list of requirements for a story are: (1) The gist of the
story has to bemathematics related in someway. (2) There has to be a human element,
preferable a hero and anti-hero. (3) There has to be a flow of events in the story from
the start, running through events towards a conclusion. (4) This story has to contain an
element that will trigger reaction, be it humour, outrage or the unexpected.

12.6 Data Gathering

The students involved in this study were first-year engineering students doing a
calculus module presented by the mathematics department. The teaching model was
one of large-group teaching, with around 1500 students enrolled for the module
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taught by five lecturers. The study involves one group of around 300 students. The
students were of mixed ethnic, socioeconomic and gender distribution, typical of a
South African university. The study was conducted in 2016 over a semester of
14 weeks. After concluding the semester, while students were doing examination
preparation, I posted an invitation on the Blackboard learning management system
for students to share their opinions and views on the storytelling feature at the end
of the last lecture of the week. A high response rate was not expected because of the
timing. A total of 26 students responded, and it was noticeable that care was taken
in responding.

The analysis of the data is based on the systematic methodology of grounded
theory. Student responses were studied and anchors were identified in each
response and coded. Codes of similar content allowed the data to be grouped. Broad
groups of similar concepts were used to generate the following six categories of
responses.

12.7 Feedback

The responses were overwhelming in volume and in detail. Not only did students
express their appreciation, but they also suggested additional topics for stories and
shared their own reading experiences. It was clear that the storytelling struck a
chord and that students wanted to share their opinions. Many students did not stop
at a few lines but continued to write a page or more about the value it had had for
them. The prolific writing certainly came as a surprise.

As mentioned before, the mantra I adhere to is entertain, inspire and educate.
The intention is to tell a story, consciously leaving the actual mathematics aside,
that will lift their spirits through the entertainment element while at the same time
weaving a picture that brings inspiration. Stories open up circumstances and events
previously unknown to the students and in so doing educate them.

1. Emotional impact

What emerged is that students have a personal need to be included and recognised.
The storytelling proved to have an unexpected positive emotional impact.

“Made me feel you are a parent of my own in the university environment
because no one seems to care about students in university, unlike in high school.”

“The fact that you tell us inspirational or even just fun stories … makes me
calmer and more focused.”

“Made me feel welcome in the class(room).”
“It is a way of saying: ‘It’s okay, you are in competent hands.’”

2. Reward

The intention to use the storytelling as a reward, although never stated, paid off, as
students seem to have picked up on this. It also underlines the positive outcome of
storytelling at the end of the week instead of at the start of a lecture.
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“Gave us something to look forward to.”
“They are a sort of reward for the week’s work. A refreshing beer at the end of a

long day.”
“It was almost like an energy bar for the weekend.”

3. Motivation

Motivation resulting from the storytelling was mentioned by students as a gain.
Motivation links to inspiration, which was one of the three intentions of presenting
storytelling.

“Motivates me to wake up that early for a lecture.”
“Motivates me to go to even the last lecture of the week.”
“I will have strength to study because I have a smile at the end of the lecture.”
“It motivated me personally to pursue my studies more enthusiastically.”

4. Subject impact

Although storytelling was presented as a separate activity to the formal lecturing,
feedback showed that it had a definite impact on perceptions of the subject itself.

“The stories showed me that mathematics need not begin and end with difficult
integrals and limits.”

“I feel that a story is an immersive, simple way to get to know the skeleton of the
work, before having to add the flesh to the bones.”

“… it can truly inspire some students into delving deeper into mathematics.”
“It made me feel like I was part of some ‘maths family’.”

5. Appreciation

A pleasant personal reward came from appreciation showed by students. This
appreciation did not so much relate to the stories themselves but to the human side
shown through storytelling. This is a significant finding, as the result is far removed
from the intention of entertaining, inspiring and educating. Students perceive the
lecturer as someone who cares and is approachable.

“Showed me that you as a lecturer put in effort to make the classes interesting for
the students.”

“It made you seem less of an almighty professor in front of the class and more of
a teacher that actually cares about your class.”

“The stories demonstrated that the lecturer was someone who actually (still)
cares about her craft.”

“… it is your peculiar signature move.”
“It helped all of us know you were much more approachable than some others.”
“It made you more approachable and added to your standing in the students’

eyes.”
“I viewed you more like a ‘guardian’ and less like a lecturer.”
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6. Bigger picture

The storytelling seems to have opened up horizons for students to give a wider view
beyond the subject content.

“The stories remind us that there is life ahead of university as they portray
general knowledge.”

“It proved that there is more to maths than the calculus we studied in this
course.”

“… shows us how maths relates to the world around us.”
“It inspires me not only to work for distinctions but to have a broader view such

as inventing new things and being innovative in my career.”

12.8 Critical Reflection

The chapter presents a personal storytelling journey that follows the thoughts of
Gallagher (2011), who argues that storytelling is central to education research and
maintains that storytelling as a narrative methodology is here to stay.

The storytelling discussed in this paper takes the form of a structured activity in
a specific time slot. Feedback shows that the gain experienced by students is
perhaps more on an emotional level than on a cognitive level. Students see the
storytelling as an act of caring and as a contribution to their well-being from the
lecturer’s side. In this sense a fourth reason for telling a story is added to those
given by Zazkis and Liljedahl (2009). We tell stories because we enjoy it, because
the students like it and because we believe it is an effective instructional tool for
teaching mathematics but also because it gives the student the sense of caring from
the lecturer’s side, a sense of giving beyond the subject content. This quote captures
student perception best: “It shows you care about maths and you care about your
students.”

Being active in storytelling for a period leads to agreement with Friday (2014),
who claims that teachers do not necessarily see themselves as storytellers and that
becoming a storyteller takes effort but that the efforts make it worth it. Becoming a
storyteller is a learning process, both in animating the story to the appeal of the
audience and in searching for suitable stories. The benefit of delving into the history
and characters of mathematics proves to be an ultimately enriching experience.

Scepticism, such as voiced by Denning (2004), about storytelling in a tertiary
environment is not uncommon, and yet the enthusiasm and motivation encountered
counteract any negativity.

My experience in storytelling has also led to the sobering realisation that it
requires full buy-in from the storyteller regarding collecting stories, personalising
them and presenting them in an enthusiastic manner.
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12.9 Examples of Stories

To conclude the paper, two stories are presented as examples, each followed by an
interpretation. The first story on how a memory stick burned down the houses of
parliament is loosely related to mathematics and brought into the modern context
through seeing tally sticks as the forerunner of the memory stick.

How a memory stick burned down the Houses of Parliament:
Tally sticks have been around for a long, long time. A tally stick is a piece of

wood or bone on which notches are carved, mainly to remember things. So a tally
stick is just a primitive memory stick. The oldest tally stick found dates back
35,000 years, found in a cave in the Lebombo Mountains on the border between
South Africa and Swaziland. It shows 29 notches on a baboon bone that could point
to the number of days in a lunar cycle. It is the first evidence of recorded counting.

In medieval Europe, tally sticks came to another use. With coins in short supply
and the population largely unable to read and write, tally sticks were used to keep
record of transactions. If you borrowed money or bought goods from me, we carved
the amount in terms of notches on a tally stick. The tally stick was then split in half
(hence “split tally”) through the centre of the carving so that both halves showed the
amount. Neither you nor I could add marks as the other had proof of the original
transaction. One part was then slightly shortened and given to you the borrower, the
longer part to me the lender. Hence the expression that the borrower had “the short
end of the stick”. The longer part was called the “stock” and the shorter part the
“foil”.

The tally stick system formed the basis of commerce in the British Empire until
the 1600s, when the Bank of England was formed in which a paper system was
followed. People found it difficult to let go of the tally system, and legislation was
slow, as we all know that governments take their time. Charles Dickens was one of
the people that canvassed against the use of tally sticks as an outdated practice. It
was only in 1826 when the sticks were finally removed from circulation and stored
in the Houses of Parliament. The basement was overflowing. In 1834, it was
decided to get rid of the mass of tally sticks. Rather than give them away as
firewood, it was decided to burn them in the two underfloor coal furnaces in the
House of Lords.

Two guys, Joshua and Patrick, were assigned to do the job. They unfortunately
chose to ignore the warning that the old building was a fire risk. They stuffed the
furnaces with tally sticks all day long. The job was inspected early on, but left to
them later in the day. The copper-lined brick flues overheated and during the late
afternoon, as people were getting ready to go home, they noticed that the House of
Lords chamber was smoky and unusually hot. Again this was ignored. Joshua and
Patrick wanted to finish the job and they pushed on as lock-up time drew nearer. An
hour later the place was ablaze, helped on by a gusting wind. It is believed that the
overheated copper linings set the wooden wall panelling alight.

As expected, a multitude of spectators gather to witness a sight too spectacular to
miss, lining the banks of the Thames, testing the crowd controlling skills of the
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police and the army. It was a huge disaster and the subject of a painting by JMW
Turner. Only the foundations remained.

Interpretation: The story contains historical information, two characters of
dubious intention and a disturbing outcome. The story has a beginning and end, it
has a human element and an element of surprise. It aims towards creating an
environment of imagination, emotion and thinking as well as towards to making
mathematics more enjoyable and more memorable (Zazkis and Liljedahl 2009). The
story also complies with the threefold purpose to entertain, educate and, in this case
to a lesser extent, inspire. The story describes events caused by people’s actions and
can be seen a educating about historical events and about how the forerunner of our
banking system worked. It also illustrates how mathematics is engrained in society.

The second story on the rule that is wrongly attributed to l’Hôpital is strongly
embedded in mathematics and positioned in the years following Newton and
Leibniz’s formulation of calculus.

L’Hôpital’s rule or Bernoulli’s rule?
This story has two players: Guillaume l’Hôpital and Johann Bernoulli.

Guillaume l’Hôpital was born in 1661, which makes him about 20 years younger
than Newton. His family was considered to be nobility in France. Since childhood,
l’Hôpital was passionate about mathematics. He briefly followed a military career
because of his family background. He spent his days in the tent doing mathematics
and soon found an excuse to quit. He then worked to become one of the best
mathematicians in France.

Johann Bernoulli, six years younger than l’Hôpital, was part of the Bernoulli
family, who produced six outstanding mathematicians over three generations.
Johann’s family were traders and he, along with his brother Jacob, did not want to
take over the family spice business. They began studying mathematics together and,
although successful, the two developed a rather jealous and competitive relation-
ship, trying to outdo each other. After Jacob’s early death from tuberculosis, Johann
took over his brother’s position as professor and merely shifted his jealousy toward
his own talented son, Daniel. At one point, Johann published a book based on
Daniel’s work, even changing the date to make it look as though his book had been
published before his son’s.

When l’Hôpital was 30 years old and Bernoulli 24, they met by chance at a
science meeting in Paris. Bernoulli had just arrived in Paris after giving lectures on
the latest development in mathematics, namely Leibniz’s differential calculus.
Bernoulli liked l’Hôpital for his pleasant personality and l’Hôpital, on the other
hand, quickly became intrigued by Bernoulli’s knowledge on this new mathematics.
Bernoulli agreed to give four lectures a week over a six-month period that l’Hôpital
attended. After that, l’Hôpital managed to persuade Bernoulli to give him private
lessons on his estate. Then l’Hôpital came with a proposition: He would start by
paying Bernoulli 300 pounds. Bernoulli would sell his work and ideas to l’Hôpital
and would keep quiet about the transaction. L’Hôpital could publish it as his own.
Why Bernoulli agreed to this is not clear. Did he need the money or did the fact that
he came from a tradesman’s background and l’Hôpital from a nobleman’s back-
ground make him obliged to be subservient?
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Five years after first meeting Bernoulli, l’Hôpital published the first ever text-
book on differential calculus. In the introduction, l’Hôpital acknowledges Leibniz
and Johann Bernoulli as knowledgeable, but the impression was that the work was
his own. He also acknowledges Newton as discoverer of calculus but says that
Leibniz’s notation was better. In Chap. 9 appears the rule now known as
L’Hôpital’s rule for a limit where both numerator and denominator tend to zero.
This book was an enormous success. It was used for a long time, with new editions
produced for more than 100 years. Bernoulli said nothing at first, but after
L’Hôpital’s early death eight years later (he died at age 43) he became more forceful
in saying that the book was essentially his. His claims were not taken too seriously
as he had been involved in many disputes. Towards the end of his life Bernoulli
boasted of the money he had received from L’Hôspital, exaggerating the amount he
had received.

Only in 1921 did a manuscript copy of the course given by Johann Bernoulli to
l’Hôpital come to light, and it was seen how closely the book followed the course
notes. It was only when the agreement between the two men came to light that more
understanding of the events became possible. In fact Bernoulli had not been in a
position to complain when l’Hôpital’s book was published because of the agree-
ment between them.

We should not judge l’Hôpital’s procedure too harshly. L’Hôpital, being a
nobleman, was accustomed to paying for the services of others. In fact, Bernoulli
did a similar thing to his own son later. The bottom line is that the rule is still
known as L’Hôpital’s rule and not Bernoulli’s rule.

Interpretation: The human element is again present in this story. The sequence
of events leads to a surprising outcome and the listener is left wondering whether
justice prevailed or not. The purpose of the story is to place L’Hôpital’s rule in
historical context but also to expose a situation of perceived injustice and thus to
create an environment of imagination, emotion and thinking (Zazkis and Liljedahl
2009). The aspiration is also that the oral format does justice to shape the listener’s
feelings about the information that is communicated. In the categorisation of Zazkis
and Liljedahl (2009), this is a story accompanying a topic.

References

Alterio, M., & McDrury, J. (2002). Learning through storytelling in higher education. New
Zealand: Dunmore Press Limited.

Ancient History Encyclopedia. (n.d.). Gilgamesh. http://www.ancient.eu/gilgamesh/. Accessed
August 25, 2017.

Denning S. (2004.) Telling tales. Harvard Business Review, 82(5), 122–129.
Friday, M. J. (2014). Why storytelling in the classroom matters. Edutopia. https://www.edutopia.

org/blog/storytelling-in-the-classroom-matters-matthew-friday. Accessed July 28, 2017.
Gallagher, K. M. (2011). In search of a theoretical basis for storytelling in education research:

Story as a method. International Journal of Research & Method in Education, 34(1), 49–61.

206 A. Harding

http://www.ancient.eu/gilgamesh/
https://www.edutopia.org/blog/storytelling-in-the-classroom-matters-matthew-friday
https://www.edutopia.org/blog/storytelling-in-the-classroom-matters-matthew-friday


Hamilton, M., & Weiss, M. (2005). Children tell stories: Teaching and using storytelling in the
classroom. Katovah: Richard C. Owen Publishers.

Heo, M. (2009). Digital storytelling: An empirical study on the impact of digital storytelling on
pre-service teachers’ self-efficacy and dispositions towards educational technology. Journal of
Educational Multimedia and Hypermedia, 18(4), 405–428.

Huggins, S. (2017). Storytelling and young adults: An overview of contemporary practices.
In J. M. Del Negro & M. A. Kimball (Ed.), Engaging teens with story: How to inspire and
educate youth with storytelling. Santa Barbara: ABC-CLIO.

Hull, G. A., & Katz, M.-L. (2006). Crafting an agentive self: Case studies of digital storytelling.
Research in the Teaching of English, 41(1), 43–81.

Kruyvenhoven, J. (2009). In the presence of each other: A pedagogy of storytelling. Toronto:
University of Toronto Press.

Ohler, J. (2005). The world of digital storytelling. Educational Leadership, 63(4), 44–47.
Robin, B. R. (2005). The educational uses of digital storytelling. https://

digitalliteracyintheclassroom.pbworks.com/f/Educ-Uses-DS.pdf. Accessed July 28, 2017.
Sadik, A. (2008). Digital storytelling: A meaningful technology-integrated approach for engaged

student learning. Educational Technology Research and Development, 56(4), 487–506.
Tobin, P. K. J. (2007). Teaching IT through storytelling. SACJ, 38, 51–61.
TVTechnology. (n.d.). Metropolitan opera to celebrate 100 years of live broadcasts. http://www.

tvtechnology.com/news/0086/metropolitan-opera-to-celebrate-years-of-live-broadcasts/227629
. Accessed August 25, 2017.

Zazkis, R., & Liljedahl, P. (2009). Teaching mathematics as storytelling. Rotterdam: Sense
Publishers.

Zipes, J. (1995). Creative storytelling—Building communities/changing lives. New York and
London: Routledge.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
The images or other third party material in this chapter are included in the chapter’s Creative

Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

12 Storytelling for Tertiary Mathematics Students 207

https://digitalliteracyintheclassroom.pbworks.com/f/Educ-Uses-DS.pdf
https://digitalliteracyintheclassroom.pbworks.com/f/Educ-Uses-DS.pdf
http://www.tvtechnology.com/news/0086/metropolitan-opera-to-celebrate-years-of-live-broadcasts/227629
http://www.tvtechnology.com/news/0086/metropolitan-opera-to-celebrate-years-of-live-broadcasts/227629
http://creativecommons.org/licenses/by/4.0/


Chapter 13
PME and the International Community
of Mathematics Education

Rina Hershkowitz and Stefan Ufer

Abstract The International Group for the Psychology of Mathematics Education
(PME) was founded in 1976 in Karlsruhe (Germany), during the ICME-3 Congress.
Since 1977, the PME group has met every year somewhere in the world, since then,
and has developed into one of the most interesting international groups in the field
of educational research. In this paper, after a short introduction, we draw some main
features of the unique essence of the PME as a research group. We focus on and
analyse the change and development of the group’s research over the past 40 years,
and exemplify these changes and developments by tracing on a few main research
lines. Based on specifics of PME research, we describe the more comprehensive
lines of PME research, its change and progress in the past four decades.

Keywords The International Group for the Psychology of Mathematics Education
History of mathematics education � Research trends in IGPME � Theory in mathe-
matics education research �Methods of mathematics education research

13.1 Introduction

13.1.1 Some General Features of PME

In the introduction to the “Handbook of Research on the Psychology of
Mathematics Education” (PME 1976–2006) which was published in 2006 for the
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30 years of PME, the editors Gutierrez and Boero (2006), mentioned two reasons
for the success of the PME group.

Their first reason is the human and scientific quality of the founding members
—“The fathers”: E. Fischbein, H. Freudenthal & R. Skemp and many others who
shared both the important decision itself and bringing the PME into the existence.

We feel that this is the place to say some words in the memory of Efraim
Fischbein (Fig. 13.1) who was in a sense the “inspiration spirit” of the PME
organization. We borrowed these words from Tall (1998), who wrote after
Fischbein’s death:

The 23rd meeting of the International Group for the Psychology of Learning Mathematics
in Israel is touchingly the first in which we cannot be joined by our Founder President,
Professor Efraim Fischbein, who left us on July 22nd 1998. It is a time of sadness, yes, but
it is also a time for celebrating the achievements of this gentle man who is responsible for
the existence of our organization. In particular, it is to him that we owe our focus on the
psychology of learning mathematics. (Tall 1998)

Gutierrez and Boero see the second reason for the success of the PME group in
‘the fact that the growth of “PME”… happened during the full development of
mathematics education as a research domain, contributing to that development, but
also profiting from it’, (2006, p. 1).

We may conclude from the above that the editors of the book see a kind of
symmetrical relationships between mathematics education research community in
general and the PME group activity.Wemay also conclude that the main contribution
of PME to mathematics education research and practice is being a—not necessarily
always coherent—core group in the domain in which mathematics education
researchers and practitioners, psychologists, and mathematicians from different
countries and cultures maymeet on an annual basis within awell-organized group and
work together. The group created a constitution which has been adopted in the PME
1980 conference, and went through a few democratic changes from then.

Fig. 13.1 Efraim Fischbein,
first PME president
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13.1.2 PME Spirit Through the Lens of Its Goals,
Conferences, Proceedings and Books

The major formal goals of PME, as they appeared in the PME constitution (1980–
2016), frames its activity. They are:

(i) to promote international contacts and exchange of scientific information in the field of
mathematics education; (ii) to promote and stimulate interdisciplinary research in the afore-
said area; and (iii) to further a deeper andmore correct understanding of thepsychological and
other aspects of teaching and learning mathematics and the implications thereof.

In spite of the diversity of research included in the PME, PME as a scientific
organization and especially the annual conferences and the proceedings volumes, in
which the annual conference contributions are published, have the following uni-
fying characteristics:

• Democratization and freedom spirit is one of the characteristics of the International
Group for the Psychology of Mathematics Education from its very beginning.

• This spirit encourages members of PME to present (orally and in writing) their
empirical studies, aswell as their hypothetical new thoughts and theories (partial or
more complete), in a very early stage of their development. These presentations
enable the researchers to get the critical and oftenwise feedback from their peers in
PME, and to interweave what they had learned from it in the longitudinal thread of
their work and also publications in the PME proceedings without the highly
demanding procedures of scientific journals. This way, young researchers are able
to “gain time and help” on their way to becomemature researchers in their domain,
working asmembers in a community and/or cooperate with others on individual or
small group basis, rather than in isolation.Members of PME are quite aware to this
advantage. E.g., the dedication which has been written on the new handbook for
the 40 years of PME says (Gutierrez et al. 2016):

To the young researchers, throughout the world, who are the 
future of mathematics education research and of the PME 

community

• An additional characteristic of the PME activity is the fact that there are and
always were mathematics education researchers who are active in both the PME
community, as well as in other international frameworks in mathematics edu-
cation and educational research beyond. These people are “interactive pipes”
among the various mathematical activity frameworks.
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13.2 First Views on the Research Presented at PME

One focus of research in PME, among many others, from the very beginning has
been conceptual understanding of the number system. When having a superficial
glance at the papers from PMEs in the late 70s and early 80s, one might sometimes
wonder if anything has changed at all since then. One illustrative example is the
following: In the PME38 proceedings, we find a neatly designed, experimental
study with pre-, post- and follow-up test by Heemsoth and Heinze (2014), titled
“How should students reflect upon their own errors with respect to fraction prob-
lems?” It investigates, flatly speaking, if it is better for students to reflect on their
errors in exercises or if it is better if they study the correct solutions of the exercises.
In the proceedings of PME7, one finds a neatly designed, experimental study with
pre-, post- and follow-up test by Swan (1983) titled “Teaching decimal place value.
A comparative study of ‘conflict’ and ‘positive only’” approaches. The study
investigates, flatly speaking, if it is better in instruction to focus on the errors
students’ make in exercises, when learning decimals, or if it is better to focus on the
correct solution of these exercises. Both studies come to the conclusion that, par-
ticularly in the long run, focusing on errors is more effective than an exclusive focus
on the correct solution. So, nothing has changed? Well, of course important things
have changed—when looking at the research in both periods in more detail; we see
continuity, but also substantial development.

13.2.1 The Theoretical Basis That Is Used to Frame
Findings

When we consider these two studies, we see important differences. The Swan study
(1983) starts out from the point that “traditional courses” do not remedy students’
misconceptions on fractions, and then proposes the two teaching styles as potential
solutions to this problem. Afterwards, it presents a mathematical analysis of
potential student errors in decimal arithmetic—which is actually mostly in line with
what we can read in the literature today. Next, the sample, intervention method-
ology, and results are presented. At the end, the author hypothesizes that the
“conflict” approach should be particularly effective to foster conceptual knowledge
in contrast to procedural knowledge, connecting his study to a model of cognition
that is not further specified. The Heemsoth and Heinze (2014) study can refer to the
then more extensive literature on students’ misconceptions about fractions and on
learning from errors, but it also refers explicitly to a developmental learning model
that includes conceptual and procedural knowledge. The authors interpret their
results in view of this model and see some peculiarities, e.g. that the “error centred”
(conflict) intervention showed immediate effects on procedural knowledge, while
an effect on conceptual knowledge occurred only by the follow-up test. Our main
point here is not if the results are conclusive. What is visible in the newer
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contribution explicitly—even though it might also have been done in the older one
—is how theoretical models can be challenged by empirical data, and how ques-
tions regarding their power to describe mathematical learning processes can be
derived from well-planned studies. In the sequel, we will contrast the accounts of
numerical cognition in earlier and newer times of PME. However, the discussion of
the theoretical basis for and the role of theories in mathematics education in general
cannot be tackled here in detail (see English and Sriraman 2009).

In his PME2 paper, Noelting (1978) discusses a developmental model for pro-
portional reasoning, based on Piaget and Inhelders’ developmental stage models.
He presents 23 tasks that required students to compare which of two mixtures of
orange juice and water with respect to the “relative orange taste”. He categorizes the
answers of 321 students aged 6–16 into four developmental stages statistically, and
provides a qualitative description of each stage. This study is one example of a
number of studies from “early PME” that closely connected to general theories of
cognitive development and learning going back to the Piagetian tradition. We see
the criticism of these theoretical accounts reflected in later PME proceedings, for
example in an analysis of students’ conceptions of multiplication by Herscovics
et al. (1983) in PME7, who indicate that some of Piaget and Szeminska’s original
findings might be due to the specific tasks used in their experiment. Even though no
empirical data is presented in their contribution, the more critical stance towards the
established psychological theories is visible. One direction this discussion took was
to take into account the socio-cultural context in which learning and mathematical
thinking take place (see Sect. 13.3.4).

Beyond this, descriptions of tasks and students’ individual understanding, based
on analyses of the underlying mathematical structures, have a tradition in and
beyond PME (e.g., Carpenter et al. 2012). In the recent years, different perspectives,
based on specific theories of numeric processing like Dehaene’s triple code model
(Dehaene 1992), and assumptions about how human process numbers are studied in
detail. Under the umbrella term “natural number bias”, for example, several studies
follow the question if and under which conditions humans process fractions as one
holistic magnitude, instead of processing their denominator and numerator sepa-
rately (e.g. van Dooren 2016). These accounts use psychological theories of number
processing (e.g., Dehaene 1992), as well as dual process theories of cognition
which differentiate between quick default heuristics and more demanding analytic
strategies. Of course, strategies which students use when dealing with fractions
have been described in studies long before, primarily using self-reports. One pos-
sible focus of PME in the future might be to study the link between the existing
descriptions of mathematical thinking and these specific models of number pro-
cessing. This cannot only enrich our understanding of mathematical cognition, but
also help interpreting students’ strategy choice and provide means which advance
students’ use of mathematics.
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13.2.2 Methods Used to Approach Questions

As the theoretical perspectives of research shift, this often has an impact on the
research methods required or deemed relevant to study mathematical cognition and
learning. With the strong basis on the ideas from Piaget’s school, research in the
early phases of PME focused primarily on individual thinking and learning pro-
cesses, often in well-controlled settings such as clinical interviews or
paper-and-pencil tests. Two developments can be distinguished from that point.
Firstly, together with a perspective on learning which focused on the social and
cultural embedding of mathematical cognition and learning, methods have been
developed to study these phenomena in authentic, realistic settings, taking into
account not only psychological, but also social phenomena that influenced math-
ematical learning and thinking (e.g., Cobb and Yackel 1996). Secondly, new the-
oretical models, such as those about number processing mentioned above, drove the
application of methods recently, that had not been used before a lot. These “new”
research methods, like eye-tracking and reaction time analysis or, less frequently
applied, brain imaging methods, have been discussed in several recent group
activities in PME, including a Research Forum on the role of neurocognitive
research for mathematics education in PME39 (Tzur and Leikin 2015), and a
working session on the use of eye-tracking technologies organized by Barmby et al.
(2014) in PME38. A good example for a new method that found its way into PME
this way is the choice/no-choice method to study students’ strategy choice in dif-
ferent kinds of tasks (Luwel et al. 2009). Originally, it builds on the assumption that
students chose their calculation strategies from a pre-defined set of strategies, and it
allows to study strategy choice within this theoretical frame, well beyond the
restrictions of usual self-report methods. It is also a good example that a new
method need not be based on innovative technology—sometimes creative but
systematic thinking is a good first step.

13.3 Development and Changes in PME Research
on Mathematics Learning

13.3.1 General Features of Trends in This Research

We use the thread of the research on processes of mathematics learning as a second
example for a more detailed demonstration of the development, the theoretical and
methodological changes and milestones, in PME research.

While starting to search in PME’s proceedings and books we realized that the
reality is quite complex and it is not easy to describe how the focus changed, raised
and fell along the 40 years of PME; paradigms, trends and fashions were changing
in an evolutional way, were in use, and would almost vanish after a short time, or
would become at least partially nesting in the following one or vice versa. In our
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view, the main reason for such an interweaving emerges from the following
research situation:

…it seems that more than in the past, researchers today do not feel obliged to and/or
satisfied with sticking to one methodological paradigm. Research trends in our area are
nowadays characterized by flexibility and creativity in combining research methods and
methodological tools, which fit the researchers’ theoretical framework and meet their goals
and needs to explain and answer some ‘big questions’ emerging from their explorations.
(Hershkowitz 2009, p. 273)

In the following we will try to discuss a few research trends that became
milestones in certain points during the PME 40 years. Those trends seemed to be
the most dominant in the area of investigating processes of learning mathematics.
This discussion is not a statistical survey. Our words express our view which is
supported by our knowledge, memory and rereading in PME proceedings and in
other publications. On our way we were helped by others who wrote on similar
topics—“we were standing on the shoulders of giants” (Sreen 1990).

13.3.2 Learning as It Is Expressed in the Accumulation
of Learners’ Responses (as Individuals)
to Purposeful Tasks in Tests and Questionnaires
(Quantitative Research)

In this trend of research, the responses of each individual are analysed separately.
However the accumulation of all responses draws a picture of the collective
knowledge as a product at one point of time. But, it does not allow direct inferences
on the processes of the knowledge construction; neither on the individual, nor on
the collective knowledge construction. Yet, valuable information on achieved
knowledge of the collective at one point of time is collected.

While searching in one of the first proceedings of PME, (e.g., the first part in the
proceedings of the 1980 PME conference, edited by Robert Karplus), it can be seen
that many of the contributions use a very popular quantitative methodological tool:
The questionnaire. If we will examine the first part of the 1980 proceedings, there
are mainly two patterns of research methodology of making use in questionnaires:

The first one can be described by the following pattern of research elements:

• Research question;
• Hypothesis;
• The rationale for the hypothesis;
• The methodology and methodological tool—the questionnaire;
• Big heterogeneous sample which fits the research question and the hypothesis;
• Results presentations and analysis;
• Comparison between the findings and the hypothesis;
• Answer to the research question;
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• Interpretation and explanation;
• Some ideas for a follow-up research and/or for activities of practice.

The above is a kind of Top-Down Research, and many quite valuable studies
were done according to such a pattern. A classic example is the seminal study done
by Efraim Fischbein and Irith Kedem, which was published in the PME (1982)
proceedings. In this study the researchers investigated the question:

Does the high-school student, normally involved in courses of mathematics, physics etc. …
clearly understand that a formal proof of a mathematical statement confers on it the attribute
of a priori, universal validity – and thus excludes the need for any further check?

The second pattern of research in which its main research tool is the questionnaire,
is a pattern of bottom-up research, whose main line might be described as follows:

• Focusing on the mathematics learning topic to be investigated;
• A priori epistemic analysis of the knowledge students are expected to develop

by learning the above topic;
• Constructing questionnaire;
• Defining the research sample and circulating the questionnaire;
• Analyses of the finding; Interpretations of the above, which on one side is often

supported by previous well known studies and learning theories, but on the other
side provides opportunities for the emergence of new theories (either partial or
not);

This pattern is a Bottom–up research, as the findings and also the conclusions
are concluded directly from the data, without the need to confirm or to refute a
pre-given theory or hypothesis. As an example of this pattern we may read the
contribution by Haseman (1980), which investigates difficulties of 7th graders in
addition of fractions.

13.3.3 Theory in the Center

It is quite amazing that only three years after the 1980 Conference in Berkeley, we
may find so many theoretical contributions in the Proceedings of the 1983 PME
Conference in Israel. As for the 1980 conference, we should mention the theory
concerning the differentiation between the Concept Definition and the Concept
Image, suggested at PME 1980 by Vinner and Hershkowitz (1980) (and later by
Tall and Vinner 1981).

Section B in the above proceedings with the title: “Learning Theories” (pp. 52–
122) includes 12 contributions, with almost each of them discussing a theme in
mathematics learning from a theoretical point of view, rather than having a dis-
cussion based on empirical data. Often some mathematical-pedagogical examples
do appear, mostly as illustrations for the main ideas. If empirical data are mentioned
(for example interviews with learners), they are summarized in a “meta way”
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without real examples. We assume that the lack of a written space (six pages per a
contribution) is also a reason for this style of representing findings. At any case it
leaves the impression that for these researchers theoretical ideas are much more
important than the findings or their interpretations. Also if empirical findings
appear, they mostly emphasize the end-products and less the observation and
analysis of the learning processes.

A very typical example is the dominant theory in the late seventies and eighties
by Richard Skemp (Fig. 13.2), the second PME President. Richard Skemp was a
mathematician who later studied psychology (Skemp 1986) and drew on both these
disciplines to explain understanding in mathematics. The main ‘thrust’ of his
argument is that learners construct schemata to link what they already know with
new learning. According to Skemp, mathematics involves an extensive hierarchy of
concepts—we cannot form any particular concept until we have formed all the
subsidiary ones upon which it is depends. Skemp stressed that instrumental and
relational understandings are both ways of understanding. This is a distinction in a
theory of understanding: Instrumental understanding: a rule/method/algorithm’
kind of understanding, which gives quicker results in the short term. Relational
understanding: a more meaningful understanding in which the pupil is able to
understand the links and relationships which give mathematics its structure (which
is considered more beneficial in the long term and aids motivation). Both are
deemed important for mathematics learning (Skemp 1977).

13.3.4 Constructivism and Socio-cultural Approaches,
as Catalysts for Classroom Research or Vice-Versa

One of the main theories which raised an intensive theoretical, empirical and
practical interest as well as intensive debates at PME’s community is construc-
tivism, which might be considered as one of the PME’s milestones in the late
eighties. Looking at PME proceedings from 1987 in Montreal, we may learn about

Fig. 13.2 Richard Skemp,
second PME president
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the place of the constructivism theory within the thinking, discussions and debates
at the PME’s eleventh conference. Confrey and Kazak (2006) described clearly this
milestone, with its peak at the PME conference, in their chapter in the PME 30
book. The authors start from mentioning PME organization’s main goal which
expresses the need to integrate together Mathematics Education and Psychology
(see the third goal of PME above). There is no doubt that the presentations at the
1987 Conference (especially the four plenaries) demonstrate the advantages as well
as the difficulties in interweaving together the “P”, “M” and “E” at the PME
community. Confrey and Kazak describe main features of constructivism and
explain how it became so popular. They wrote:

As a grand theory constructivism served as a means of prying mathematics education from
its sole identification with the formal structure of mathematics as the sole guide to curricular
scope and sequence. (p. 306)

An extreme example of the above trend of mathematics education is the
sequence of the SMSG text books (e.g., SGMG 1961) in which the “curriculum
developers” were mostly mathematicians, who seemed to believe that if only the
text book will be mathematically correct and the order of the various chapters will
be constructed according to a mathematical logic, students will be able to learn the
mathematical subject, no matter how abstract it is. Confrey and Kazak continued
and said:

The constructivism created means to examine mathematics from a new perspective, the
eyes, mind and hand of the child… Constructivism evolved as researchers interests’ in the
child’s reasoning went beyond a simple diagnostic view of errors, to understanding the
richness of student strategy and approach. (p. 306)

Gerard Vergnaud, the PME third president, explained in his presentation at the
1987 PME Conference what he considered as the main goal of constructivism:

As a matter of fact, our job, as researchers, is to understand better the processes by which
students learn, construct or discover mathematics and help teachers, curriculum and test
devisors and other actors in mathematics education to make better decisions. (p. 43)

This approach, which is related to the investigation of the learning process of the
student as an individual, and was based on the belief that the learner has to construct
his/her mathematics by him/herself, had its own research methodologies. For
example, Steffe and his colleagues describe the methodologies they used for
teaching experiments and for clinical interviews with an individual child, through
which they built models of children’s mathematics, meaning the mathematics which
was created by the student. In these models they suggest ways to consider the role
of interactions between the interviewer and the student and/or between the teacher
and the student (Confrey and Kazak, p. 313).

Confrey and Kazak also explained why the constructivist approach held for quite
a long time:
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It took hold in practice because it addressed the two primary concerns of teachers:
(1) students’ weak conceptual understanding with over-developed procedures (relational vs.
instrumental in Skemp’s language) and (2) students’ demonstrated difficulties with recall
and transfer to new tasks…. (p. 306)

When mathematics education researchers’ and practitioners’ interest moved on
to focus on processes of the collective’s mathematics learning (mostly classroom
research), constructivist psychological approach was not enough. The socio-cultural
approaches, which were established and developed at the beginning mainly in the
Soviet countries (Vygotsky 1978 and many others), were adopted by theoreticians
and researchers in many areas all over the world and also by the mathematics
education people as well as the PME community. E.g., “The materialist psychology
by Vygotsky”, was mentioned by Lerman (2006) in his chapter in the 30 PME
handbook. Lerman (2006) wrote that the main elements of the theory are: “That
development led by learning (Vygotsky 1986); that concepts appear first on the
social plane and only subsequently on the individual plane; that the individual plane
is formed through the process of internalization; Psychological phenomena are
social events; Learning takes place in the zone of proximal development and pulls
the child into their tomorrow; and motives are integral to all actions” (p. 350).

Coordination between the constructivist and the socio-cultural approaches
(theories and methodologies), led to a deep investigation of what is going on in the
mathematical classroom. As an example we cite Cobb and Yackel (2011):

…we differentiated between what we termed the social aspects of the classroom which
included classroom social norms and the cognitive aspects which included students’
mathematical reasoning…. We instead came to the view that any aspect of the classroom
can be analysed from either social or a cognitive perspective. (p. 38)

They called this new theoretical framework The Emergent Perspective. The
emergent perspective framework is a powerful framework for describing
socio-cognitive development within a classroom and was established upon the need
to better understand and interpret what was observed in the mathematics classroom.

13.3.5 Research in the Mathematics Classroom
and the Mathematics that is Taught and Learned
in the Classroom

For more than 20 years now mathematics educators and researchers have been
discussing intensively teaching and learning practices like cooperative learning,
interactions and argumentation in the various classroom settings, social norms,
socio-mathematical norms and more. The discourse about these practices is often
general and does not always relate much to what contents and structures of
mathematics are the most appropriate for teaching and learning so that the above
practices will be activated by needed mathematical contents and mathematical
means. Yet, there were and still are projects and innovative curricula in different
countries which are enriched by the vision of such practices and vice versa.
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Realistic Mathematics Education (RME), which is a teaching and learning
theory in mathematics education, was the vision and curriculum development of the
Freudenthal Institute in the Netherlands. This theory influenced and has been
adopted by a large number of countries all over the world (de Lange 1996). The
vision of RME was led mostly by Freudenthal’s view on mathematics learning
(Freudenthal 1991). Two of his important points of views are: “mathematics must
be connected to reality” and “mathematics as human activity”. First, mathematics
must be close to children and be relevant to everyday life situations. However, the
word ‘realistic’, refers not just to the connection with the real-world, but also refers
to problem situations which are real in students’ minds. Second, the idea of
mathematics as a human activity is stressed. Mathematics education organized as a
process of Guided Reinvention, where students can experience a similar process
compared to the process by which mathematics is being invented. The meaning of
invention is steps in learning processes while the meaning of guided is the
instructional environment of the learning process. The reinvention process can use
concepts of mathematization (Freudenthal 1991, p. 41) as a guide.

13.3.6 Networking—Connecting Theoretical Approaches
for Better Interpretation of Empirical Findings

In Sect. 13.3.4 we discussed the coordination between the constructivist and the
socio-cultural approaches (theories and methodologies), for a deep investigation of
what is going on in themathematical classroom. In the current years researchers discuss
networking which is engaged in connecting different theoretical/methodological
approaches, where each of them is a framework underlying some trend/s of research.
Coordinating them together in planning the study and in analysing the findings enables
higher levels of interpreting the results, innovative understanding and insights (Prediger
et al. 2008). We see the interest in networking an additional evidence for the trend of
flexibility in choosing both, theoretical and methodological basis for research with the
aim of better understanding and interpreting the meaning of research.

The work of the researchers (In alphabetic order—Dreyfus, Hershkowitz,
Rasmussen and Tabach) is a good example representing the above trend. First, the
researchers coordinated together two theoretical/methodological frameworks: The
AiC (Abstraction in Context) framework which analysed construction processes of
mathematical knowledge of individuals as well as small groups within an inquiry
classroom. The second framework is the DCA (Documenting Collective Activity),
whose aim is investigating processes of constructing mathematical knowledge within
the whole class community. By the above coordination, the researchers were able to
trace processes of knowledge constructing and knowledge shifts between and within
the different settings in the working mathematics classroom along a whole lesson and
more. While doing so they were able to reveal the active role of some students
and the teacher in the shifts of knowledge. Currently (Hershkowitz et al. 2017)
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the group started to characterize the shifts of knowledge by additional step of net-
working. The group raised the question: In what way is the shifted knowledge
creative? For searching the authors used the work of Lithner (2008) on creativity.
This new study represents progress in terms of what Prediger et al. (2008) refer to as
the local integration of different theoretical/methodological approaches.

13.4 Factors Influencing PME’s Development—Examples
from Research on Mathematics Teachers

Besides the perspectives on developments within PME, we will outline factors
influencing PME from the outside, exemplified by research on mathematics
teachers. This research area went through an extraordinary development in the last
30–40 years. Some researchers speak of an “explosion”. Thus it is not possible to
aggregate all the many individual single contributions within and outside PME into
a consistent account of the development of the field and derive influencing factors.
However, we will highlight some aspects we regard as most important.

13.4.1 The Development of Research on Teachers
and Teaching in PME

Several papers have summarized the development of research on teachers and
teaching in PME in the past (e.g., Hoyles 1992; da Ponte and Chapman 2006;
Llinares and Krainer 2006; Jaworski 2011; Lin and Rowland 2016). In most con-
tributions, the development of the field is described by three phases.

1. Teachers getting recognized: All these accounts agree that the teacher was not in
the focus of PME research until the end of the 80s. Even though research from
this phase has been criticized as simplistic and deficit-oriented, it has certainly
played an important role in the formation of the research area.

2. Towards a research area: In her 1992 plenary lecture, Hoyles (1992) diagnoses
two trends in PMEs work: A quantitative increase in contributions that focus on
the “teacher as an integral – and crucial – facet of mathematics learning and a
series of qualitative shifts as to how the teachers’ role is conceptualized”. If the
teachers occurred in research contributions before, they seem to have played a
side-role as the facilitator for students’ development, while the student was at
the centre of researchers’ attention. At the time, teachers were increasingly
recognized as a possible focus of research, initially with a restriction to teachers’
beliefs, later on the relation of these beliefs to teachers’ classroom practice.
Studies addressed the question, if and how teachers’ attitudes could be changed
so that curricular innovations would be taken up. For the late 80s, Hoyles
observed that research increasingly addressed how teachers’ beliefs and actions

13 PME and the International Community of Mathematics Education 221



were connected to a specific classroom context as well as its broader cultural
(e.g., national) embedding. Finally, she described the first developments of a
research area focusing on teachers, including a reflection on theoretical per-
spectives and methodologies used.

3. Differentiation of the field: As Jaworski (2011) outlines in her historical account,
the 1990s started a very active phase of teacher and teaching research in PME.
In particular, she mentions three working groups, which met regularly for five
years during PME conferences during this phase (Psychology of In-Service
Education of Mathematics-Teachers, Research on the Psychology of
Mathematics Teacher Development, Teachers as Researchers in Mathematics
Education). Each of these groups produced a book volume by 1999, there were
two PME plenaries on the topic (Hoyles 1992), and the Journal of Mathematics
Teacher Education was founded under the lead of Tom Cooney in 1998. The
topic was also taken with a special survey for ICME-10 in 2004 and the ICMI
Study 15 The professional Education and Development of Teachers of
Mathematics.

In their summary of the field for the 30 years PME volume in 2006, da Ponte and
Chapman (2006) identify four main objects of study in teacher-related research on
PME: Teachers’ mathematical knowledge, Teachers’ knowledge of mathematics
teaching, Teachers’ beliefs and conceptions, Teachers’ practices. While all of these
topics are still in place, Lin andRowland (2016) put teacher knowledge in the centre of
their contribution for the 40 year handbook ten years later, highlighting its role in
PME research.

13.4.2 Trends Impacting the Development of Research
on Teachers and Teaching

The development described above was influenced by different other trends in
mathematics education and related fields.

Advent of so-called “socio-cultural approaches”: Several authors offer expla-
nations for the increased focus on the teacher in the late 80s and in the 90s. Lin and
Rowland (2016) note that this development coincided with the so-called “social
turn”, meaning an increased focus on social context, in which students’ mathe-
matical thinking and development takes place (see Sect. 13.3.4). Mathematical
thinking and learning cannot be considered as something that happens in the stu-
dents’ isolated mind, independently of external influences. This idea that the
environment—most prominently the classroom and the teacher—have an influence
is already visible in many early PME papers. As soon as these ideas spread, it was
only natural to pay more attention to the role of the teacher.

Discussion on the situatedness of cognition: This trend relates to the discussion,
to what extent cognition in general, or knowledge specifically is connected to
specific situational contexts, or to what extent it may be considered as a more
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general disposition that can be activated in a variety of situations. A famous part of
this discussion it the so-called Anderson-Greeno-debate, which went on over sev-
eral papers in the “Educational Researcher”. In a joint paper (Anderson et al.
2000), the opposing groups propose a research agenda that pursues both approaches
“vigorously”, and argue for attempts to integrate the different understandings of
learning and knowing into a comprehensive account in the future.

Within PME, researchers favouring the “situated approach” have often focused
on teachers’ practices in realistic situations, research initiatives from the “cognitive
side” have tried to build up models that describe the knowledge that is necessary for
the professional work of a teacher, and studied them often using paper-and-pencil
tests. Apart from the different conceptualizations of knowledge in both approaches,
each perspective has developed and often stuck to a specific set of research
methods. The discussion seems to have split the research tradition into two parts.
Even (2009) asks “Are the two perspectives compatible? Do they complement each
other?” Based on a model of assessment proposed by Blömeke et al. (2015),
Gabriele Kaiser illustrated one approach towards an integration of both views in her
plenary lecture on PME38 (Kaiser et al. 2014). They propose to study teachers’
knowledge not only with methods traditionally applied in the cognitive tradition, as
paper and pencil tests, but also using complex, authentic assessment situations to
observe teachers’ practices systematically. However, the path towards the inte-
gration of both perspectives seems to be rocky. Lin and Rowland (2016) state after
discussing these and related ideas: “The paradigmatic differences in conceptual-
izations of mathematics teacher knowledge […] remain intact”.

Parallel developments in teacher research in other areas: Krauss (2011) reviews
the history of teacher related research in education in general, mostly focusing on
developments that were not explicitly connected to PME. He describes four phases
of teacher research in the past on the quest for identifying characteristics of “good
teachers”, in the sense of teachers who support their students’ development suc-
cessfully. While the first phase did not yield strong results on the effectiveness of
teachers, the second and the third phase brought up substantial knowledge that can
today be found in typical texts on instructional psychology, for example on the role
of instructional clarity, prevention of disturbances, and adequate speed of instruc-
tion. Since 1985, Krauss (2011) describes an increasing interest in the teacher again,
now with a focus on teacher characteristics that can be connected to teacher
practices and student development theoretically and empirically. The historical
narrative in the mathematics education tradition is that developments within
mathematics education itself led to this “discovery of the teacher” at this time, and
that the developments in general educational research on the role of the teacher
were viewed with scepticism at that time, due to different theoretical perspectives
on classroom learning. However, some PME members surely had contacts to the
general education community. Given that the trend to focus on the teacher devel-
oped about the same time in both communities, it cannot be excluded that they were
connected to a certain extent—be it with the goal of integrating or of delineating the
different approaches in both research communities.
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13.4.3 What Can We Learn from Research on Teachers
and Teaching?

Discussing frameworks: Mathematics education is a quite young science, and thus it
is not clear yet in many fields, which notions are best suited to describe the phe-
nomena and problems we observe in mathematics teaching and learning. Diverse
models of teacher knowledge have been discussed in the past (see Lin and Rowland
2016 for an overview). Lin and Rowland (2016) describe attempts to find relations
between these frameworks and study their unique characteristics. Whether a
“Mainstream Theory”, as Lin and Rowland (2016) call it, is a realistic goal of
research or merely a guiding ideal is still under debate. Ideas to compare and
combine different theories have been proposed to deal with these multiple per-
spectives in design research (Artigue and Mariotti 2014). However, it will be very
interesting to follow the development of our understandings of teacher knowledge
and its effects towards increasing coherence, since this field has proven productive
in generating a variety of frameworks in the past (Lin and Rowland 2016).

Struggling to integrate opposing views: As indicated above, the discussion about
the nature of knowledge and cognition, as well as different methodological approa-
ches, pose a major challenge for a field of research. Along them comes the danger of
the field splitting into separate subfields, but also the chance to reach a deeper
understanding of the field of study, be it teachers and teaching, or students’ mathe-
matical cognition. Of course we can admit that each perspective has something to
contribute, but does this really increase our understanding? Sometimes it increases our
joint confusion, since we arrive at different conclusions, even from the same data. If
our goal is to further our joint understanding ofmathematics learning and teaching, we
will not get around trying to find a common basis to talk to each other.

Talk to your neighbour: Research on mathematics teachers and teaching has
developed parallel, and more or less independently, with trends in neighbouring dis-
ciplines like psychology, education, and sociology. Research on teachers is perfect for
such an intense discourse with these disciplines, since effective teaching is not a purely
subject-related matter. Many PME contributions are discussing not only problems that
are closely connected to the specifics of mathematics teaching and learning. They
address also general aspects of learning, knowing, and cognition. The increased and
ongoing contact with disciplines that deal with the same issues will stimulate the
discussion and scientific progress on both sides and prevent divergent developments.

13.5 Epilog

We would like to end this paper, with a few sentences from Hans Freudenthal
(Mathematician and educator, who left his deep traces on the mathematics educa-
tion community, one of the PME’s “fathers”). The following sentences are bor-
rowed from his plenary at PME 1983.
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Freudenthal (Fig. 13.3) claimed that for him an education is a human activity,
which is about learning and teaching as processes, taking place in a more or less
organized way”. He complains that in the late 70th and early 80th, education meant
for many people education research, and many publications were concerned with
states (his words) rather than processes. Many of the publications were in the style
of: “before the treatment and after and what happened in between was indeed a
treatment rather than a teaching-learning process.” Freudenthal was also happy to
tell the PME 1983 conference that: about a third of the contributions in the few
PME proceedings which existed at 1983, “were concerned in what I (he) like to call
education, that is learning and teaching as a process” (1983, p. 46). Over the years,
PME members have taken Freudenthal’s insightful comments to heart. It is our wish
that the community continue to follow his inspirational path.
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Chapter 14
ICMI 1966–2016: A Double Insiders’ View
of the Latest Half Century
of the International Commission
on Mathematical Instruction

Bernard R. Hodgson and Mogens Niss

Abstract This paper concentrates on the latest five decades of the International
Commission on Mathematical Instruction. We had the privilege of occupying
leading positions within ICMI for roughly half the period under consideration,
which has provided us with a unique standpoint for identifying and reflecting on
main trends and developments of the relationship between ICMI and mathematics
education. The years 1966–2016 have seen marked trends and developments in
mathematics teaching and learning around the world, at the same time as mathe-
matics education as a scientific discipline came of age and matured. ICMI as an
organisation has not only observed these developments but has also been a key
player in charting and analysing them, as well as in fostering and facilitating (some
of) them. We offer, here, observations, analyses and reflections on key issues in
mathematics education as perceived by us as ICMI officers, and as influenced by
ICMI.

Keywords ICMI (International Commission on Mathematical Instruction)
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14.1 Introduction

The year 2016 marks more than a century of existence of the International
Commission on Mathematical Instruction (ICMI) since its establishment in Rome in
1908. This paper concentrates on the last five decades of that period.
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During the years 1966–2016, ICMI witnessed and took note of marked trends
and developments in mathematics teaching and learning around the world, in terms
both of the socio-economic and institutional boundary conditions and of the diverse
and multi-faceted practices of mathematics education. This half century is also the
one in which mathematics education as a scholarly and scientific discipline came of
age and matured. ICMI as an organisation has not only observed these develop-
ments but has also been a key player in charting and analysing them, as well as in
fostering and facilitating (some of) them, for instance by way of conferences,
studies or other activities.

It has been our privilege to having occupied leading positions in the Executive
Committee (EC) of ICMI for roughly half the period of time under consideration,
including those of consecutive Secretaries-General from 1991 to 2009. This has
provided us with a unique platform from which we could identify and reflect on the
main trends and developments of the relationship between ICMI and mathematics
education from the perspective of two “insiders”.

Our paper thus offers observations, analyses and reflections on key issues in
mathematics education as perceived by us as ICMI officers, and as influenced by
ICMI.

The history of ICMI and the roles played by some of its protagonists have also
been subject of attention at recent International Congresses on Mathematical
Education (ICMEs). This is reflected for instance by the regular lecture by Howson
(2008) presented at ICME-10 (Copenhagen, 2004), as well as by the talk by
Arzarello et al. (2008) at ICME-11 (Monterrey, 2008).

Although the focus of our paper will be on the years 1966–2016, we have found
it necessary to provide a brief outline of ICMI’s first 58 years, so as to set the stage
for understanding and appreciating the target years. The paper is thus divided into
four sections:

• 1908–1982: Foundation, (re)formation and “the first crisis” around ICMI;
• 1983–1998: Consolidation and expansion;
• 1999–2016: Calm waters, but with “a second crisis” around ICMI; and finally
• ICMI and the field of mathematics education.

14.2 1908–1982: Foundation, (Re)Formation
and “The First Crisis” Around ICMI

Following a suggestion of the US mathematician and teacher educator David E.
Smith made in the then recently created journal L’Enseignement Mathématique
(Smith 1905, p. 469), ICMI was first established at the General Assembly of the 4th
International Congress of Mathematicians (ICM) held in Rome in 1908, based on
the following resolution:
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The Congress, recognizing the importance of a comparative study on the methods and plans
of teaching mathematics at secondary schools, charges Professors F. Klein, G. Greenhill,
and Henri Fehr to constitute an International Commission to study these questions and to
present a report to the next Congress. (Lehto 1998, p. 13)1

This instigated what might be called the “Klein Era” of ICMI—from the name of
ICMI’s first President, Felix Klein (1849–1925), see Bass (2008)—characterised by
activities focusing on curricular reflections and comparisons. The first host of
results of the Commission’s work, undertaken by mathematicians with educational
interests, teachers of high reputation and institutional representatives, were pre-
sented at the ICM in Cambridge (UK), in 1912. The mandate of the Commission
was extended and the work continued during WWI. By 1920, 310 reports (totalling
more than 13,500 pages) had been produced from eighteen countries plus the
so-called Central Committee, the ancestor of the EC—see Lehto (1998, p. 14) and
Fehr (1920–21, p. 339). Even though the Commission was international and open to
all countries, it was, in fact, highly Euro- and US-centric.

Because of difficulties in international relationships caused by WW1, the
so-called “Central Powers” were excluded from the then newly established
International Mathematical Union (IMU)—historically named the “Old IMU” in the
parlance of Lehto (1998). Nevertheless, the mandate of the Commission was
re-confirmed during the 1920s and 1930s, but activity was progressively reduced.

After WWII there was a strong desire to avoid international division, so all
countries were invited to take part in the international mathematical collaboration.
Thus IMU was re-established in 1951, and in 1952 ICMI was re-constituted as a
sub-commission of IMU with the following brief, forming part of the Terms of
Reference (and still in force today):

The Commission shall be charged with the conduct of the activities of IMU, bearing on
mathematical and scientific education, and shall take the initiative in inaugurating appro-
priate programmes designed to further the sound development of mathematical education at
all levels and to secure public appreciation of its importance. (ICMI Terms 1954)2

The members of ICMI were then national representatives of IMU member states,
plus an Executive Committee elected by the General Assembly at the ICMs.3

During the years 1952–1966, ICMI gradually moved from “Old ICMI” style

1Original text: “Il Congresso, avendo riconosciuto la importanza di un esame accurato dei pro-
grammi e dei metodi d’insegnamento delle matematiche nelle scuole secondarie delle varie
nazioni, confida ai Professori Klein, Greenhill e Fehr l’incarico di costituire un Comitato inter-
nazionale che studii la questione e ne riferisca al prossimo Congresso.” (Castelnuovo 1909, p. 33)
2It is interesting that this brief asks for the furthering of “sound development of mathematical
education” and the securing of “public appreciation”, both of which are of a normative nature.
3This is in distinction to the current situation, where the members of ICMI are now countries, as
was always the case with IMU. Hence the members of the ICMI EC are no longer considered as
“members of ICMI”. This change in the definition of ICMI membership was formalised in the
2002 revision of the ICMI Terms of Reference—see http://www.mathunion.org/icmi/icmi/icmi-as-
an-organisation/terms-of-reference/. The members of the Commission, as in the original 1954
wording, now form the ICMI General Assembly.
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actions, where mathematics education was predominantly seen as a “national
business”, to more international activities, marked by the concerns of individual
actors on the stage and involving, along the road, mathematics educators (“didac-
ticians of mathematics”). This evolution eventually lead to the emergence of an
international mathematics education community, collaborating with organisations
such as OEEC/OECD and UNESCO, which in turn gave rise to initiatives towards
developing countries. One instance of this development was the launching in 1961
of the Comité Interamericano de Educación Matemática (CIAEM)—see Hodgson
et al. (2013, pp. 911–913)—on the initiative of Marshall Stone (1903–1989), ICMI
President for the term 1959–1962.

The 1950s saw an emerging interest in curriculum design and reform combined
with approaches to teaching aligned with these reforms, whilst paying attention to
contributions from psychology and general education (e.g., Jean Piaget and Jerome
Bruner). One also began to gradually realise that (good) teaching is not the same as
(good) lecturing. The establishment of the Commission Internationale pour l’Étude
et l’Amélioration de l’Enseignement des Mathématiques (CIEAEM)—(Hodgson
et al. 2013, pp. 910–911)—initiated by Caleb Gattegno and with early members
including Gustave Choquet, Jean Dieudonné, Georges Papy and Piaget, also
exerted an influence on ICMI’s development. Among the founding members of
CIEAEM were also André Lichnerowicz (1915–1998), ICMI President for the term
1963–1966, and Hans Freudenthal (1905–1990), Lichnerowicz’ successor as ICMI
President—André Delessert (1923–2010) served as Secretary-General under both
Lichnerowicz and Freudenthal. During the presidencies of Stone and Lichnerowicz,
ICMI became an agent for fostering and promoting the set-theory based New Math
(or mathématiques modernes) in school curricula around the world. This can be
seen in the first volumes of UNESCO’s series New Trends in Mathematics
Teaching (from 1966), published in collaboration with ICMI.

With this historical background in view, we now enter the first segment of the
time span covered by this paper, 1967–1982.

A significant turning point in ICMI’s life was the presidency of Hans
Freudenthal (1967–1970). Even though this presidency lasted only one term, as was
usual in those days, Freudenthal introduced so many new features into ICMI and to
mathematics education that his influence lasted more than a decade after his
presidency. So, it is fair to use the term the “Freudenthal Era”—in the spirit of Bass
(2008)—for the years 1967–1980. His presidency marked a break away from New
Math and—albeit slowly at first—from the dominance of research mathematicians
in mathematics education that had been prevalent up till then. One of Freudenthal’s
most significant moves regarding mathematics education was the inauguration of
the International Congresses on Mathematical Education (the ICMEs), the first of
which was held in Lyon in 1969. At the same time, but not formally under the
auspices of ICMI, he launched the world’s first international journal of mathematics
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education Educational Studies in Mathematics (ESM) in 1968.4 The developments
leading to these decisions are captured in a resolution adopted at ICME-1:

The theory of mathematical education is becoming a science in its own right, with its own
problems both of mathematical and pedagogical content. The new science should be given
a place in the mathematical departments of Universities and Research Institutes, with
appropriate academic qualifications available. (Editorial Board of Educational Studies in
Mathematics 1969, p. 284)

It would be wrong to say that these initiatives were received with applause by
IMU. Secretary Otto Frostman wrote as follows to Freudenthal in December 1967
(Frostman 1967):

On the ESM: “I must admit that I am not too happy about the new pedagogical journal. Do
you really think that there is a market for two international journals of that kind (I do not)?
If you are not satisfied with L’Enseignement, ICMI’s official journal, perhaps it would be
better to try to reform it.”

On ICME: “I can agree with very much of your criticism of the meetings of ICMI at the
International Congresses [of Mathematicians], but I am not sure that ICMI should isolate
itself from those who have, primarily, a scientific interest but who have, nevertheless, very
often taken part in the discussions of ICMI.”

One reason for such reactions from IMU might well have been that Freudenthal
launched these initiatives without much interaction with IMU officials, so that IMU
was often facing faits accomplis from ICMI. This constituted the first ICMI/IMU
crisis. This is well captured by a comment of IMU President Henri Cartan, in
reaction to an initiative taken by Freudenthal concerning ICME-2. In October 1970,
right at the beginning of a letter to IMU Secretary Frostman, Cartan wrote:
“Freudenthal me donne encore du souci” (“Freudenthal again causes me worries”)
(Cartan 1970). This time, Cartan was worried because Freudenthal wanted the
outgoing ICMI Executive Committee to appoint the International Programme
Committee for ICME-2 with only 2½ months left of his presidency. This inaugu-
rated some tension between the ICMI President and the IMU leadership, arising
again from time to time in the years to come.

However, these were also years with an abundance of initiatives on the part of
ICMI. Quite a few of these initiatives were taken during the presidencies of James
Lighthill (1924–1998)—ICMI President for 1971–1974 with Edwin Maxwell
(1907–1987) as Secretary-General—and Shokichi Iyanaga (1906–2006)—1975–78
President with Yukiyoshi Kawada (1916–1993) as Secretary-General. In addition to
sponsoring the ICMEs (ICME-2, 1972; ICME-3, 1976; and ICME-4, 1980—qua-
drennial except for the first interval), ICMI affiliated two Study Groups at ICME-3,

4ICMI’s official organ since its inception in 1908, L’Enseignement Mathématique (launched in
1899), was never really a mathematics education journal, even though it did—and still does—
publish education reports and papers from time to time. In the opinion of Freudenthal, in relation to
the launching of ESM, the “contributions [of L’Enseignement Mathématique] on education were
not pedagogical but organisatory and administrative.” (Freudenthal 1967)
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the International Group for the Psychology of Mathematics Education (PME) and
the International Study Group on the Relations between the History and Pedagogy
of Mathematics (HPM), instigated the so-called ICMI Regional Conferences, and
held other ICMI-related symposia in Europe, Africa, India, Latin America, and
Southeast Asia as an expression of the first outreach efforts of the Commission.
Finally, ICMI established the ICMI Bulletin as a rather informal means of com-
munication within the “ICMI family”.

These developments of ICMI were concurrent with the emergence of mathe-
matics education as a scientific and scholarly discipline, a field of systematic
reflection and investigation. At the institutional level this was marked by the
establishment—in addition to ESM, founded by an ICMI President—of the Journal
for Research in Mathematics Education (JRME) and the International Journal of
Mathematical Education in Science and Technology (IJMEST) in 1970, and of For
the Learning of Mathematics (FLM) and Recherches en Didactique des
Mathématiques (RDM) in 1980. Whilst secondary education received most of the
attention in the first fifty years of ICMI, primary and tertiary education now entered
the field of interest as well. The fourth volume of UNESCO’s New Trends in
Mathematics Teaching series, which appeared in 1979 (volume I had been pub-
lished in 1966, II in 1970, and III in 1972), contained chapters on the goals of
mathematics teaching (by Ubiratan D’Ambrosio), on applications (by Henry
Pollak) and on algorithms (by Arthur Engel), which went beyond the teaching of
established mathematical areas and topics.

The 1979–1982 term of Hassler Whitney (1907–1989) as President and Peter
Hilton (1923–2010) as Secretary-General turned out to be a difficult one as far as
relationships both with the IMU and within ICMI itself were concerned. In the
minutes of an IMU Executive Committee meeting held in 1980, one can read: “The
[IMU] EC expresses concern about the lack of communications between IMU and
ICMI.” And again in 1981: “Much concern concerning the difficulties that arose in
the [ICMI] EC.” (IMU EC Minutes 1980, p. 14, and 1981, p. 25)

The difficulties were to do with Whitney’s wilfulness in his way of undertaking
his office—for example the EC only rarely met—and with the fact that the EC
seemed to think of Hilton’s role as Secretary-General to be that of an office clerk
rather than that of an organiser and decision making executive officer. At least this
was the perception he expressed in a confidential letter to one the Ex-Officio
members of the ICMI EC, IMU Secretary Jacques-Louis Lions: “It is clear to me
that I was expected by some of my colleagues on the EC to act purely in a
‘secretarial’ capacity, (…) and that I could not exercise the influence I hoped to
have from that position” (Hilton 1980). That perception had led Hilton to present
his resignation from the Secretary-General’s office. However, for reasons (yet) un-
known this resignation did not materialise and Hilton finally remained as the ICMI
Secretary-General till the end of his term.

The controversies were also due to the fact that members of the ICMI EC put
forward as its candidate for the next President the Danish mathematics educator
Bent Christiansen (1921–1996), ICMI Vice-President for two terms, since 1975.
This was not well received by the IMU leadership. Thus the IMU President,
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the Swedish mathematician Lennart Carleson, in a letter to the ICMI EC at the end
of 1981 wrote: “The [next] President should be a well-known mathematician with
established interests in education” (Carleson 1981). Evidently, IMU officers thought
that mathematics education was far too important to be left to the mathematics
educators.

Eventually, IMU elected the French mathematician Jean-Pierre Kahane
(1926-2017) as the next President and the British mathematician/mathematics
educator Geoffrey Howson as the Secretary-General. Besides, Bent Christiansen
was elected to a third term as Vice-President. The—perhaps implicit—mandate of
Kahane and Howson was to put ICMI back on track, or at least—as can be seen in
the video interview with Kahane made for the ICMI Centennial in 2008 (under
“Interviews and film clips” on the History of ICMI site at http://www.icmihistory.
unito/it)—to revitalise ICMI. This takes us to our next section.

14.3 1983–1998: Consolidation and Expansion

Kahane and Howson both served for two terms: 1983–1989. This was the first time,
since the presidency of Klein, that an ICMI President was elected twice. Their terms
represented a much wanted consolidation and stabilisation of the ICMI leadership
after a number of years of turbulence and tension.

During the Kahane-Howson era, ICMI instigated significant new activities
(some of which had been proposed in previous terms), above all the first series of
the ICMI Studies, according to the following format:

• for each Study, the ICMI EC selected a theme, described in general terms, and
appointed an International Programme Committee;

• the Programme Committee produced a Discussion Document to be circulated
internationally, inviting written reactions;

• based on the written reactions, a rather small invited symposium/Study
Conference was organised;

• based on the conference activities, a comprehensive Study Volume was written,
typically with Kahane and Howson as the main authors. Sometimes also con-
ference proceedings were put out.

The Study Volumes for the first five Studies (1–5), which were—as a deliberate
choice—rather slim, were all published by Cambridge University Press in the ICMI
Study Series. They were devoted to the following themes, four of which were
already identified at the very outset of the Kahane-Howson term5:

5Howson (1982) presents the idea of ICMI Studies under the heading “Possibilities for future
action” and describes the first four of these (but calling them “symposia”). In the report on ICMI
for the year 1983, Howson (1983) uses the word “Studies”.
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• The Influence of Computers and Informatics on Mathematics and Its Teaching
(Strasbourg, 1985)

• School Mathematics in the 1990s (closed seminar, Kuwait, 1986)
• Mathematics as a Service Subject (Udine, 1987)
• Mathematics and Cognition (no conference, written under the auspices of PME,

published in 1990)
• The Popularization of Mathematics (Leeds, 1989).

[A report on these five Studies presented in 1990 at the Kyoto ICM can be found
in Hodgson (1991).] The Studies can be seen as a reflection of needs pertinent to
new issues and developments in mathematics education concerning technology,
school mathematics, service subject, cognition and popularisation. In the first series,
the Studies hadn’t yet found a uniform format.

During the Kahane-Howson era, the International Organisation of Women and
Mathematics Education (IOWME) in 1987 became the third ICMI Affiliated Study
Group, and regional meetings continued to be supported, as was collaboration with
UNESCO. The activities and roles of the representatives of member countries
caused concern, as the links between many of them and the EC were frail or
non-existent. So, the IMU General Assembly held on the occasion of the 1990
Kyoto ICM passed a resolution (#5) limiting the number of consecutive terms
served by representatives—this came to be known as the “Kobe rule”, from the
name of the host city of the General Assembly:

All Adhering Organizations are reminded that they should review their national repre-
sentation on ICMI and that normally national representatives should not be asked to serve
for more than two consecutive four-year terms. (IMU General Assembly 1990, p. 8)

Two ICMEs, both of which added new facets to the format and perspectives of
the congresses, were held during their terms, ICME-5 (Adelaide, 1984) and
ICME-6 (Budapest, 1988).

The range and scope of mathematics education as a field of research and
development expanded considerably during the Kahane-Howson era. The educa-
tional levels dealt with expanded “downwards” to kindergarten and pre-school
children, and “upwards” to tertiary programmes, especially those involving math-
ematics as a service subject. Also the public image and perception of mathematics
and their influence on mathematics education received increasing attention, hence
the Study on “popularisation”.

With particular regard to research, foci moved from curriculum design and
teaching to mathematics learning on the one hand, and to classroom communication
in mathematics on the other. But new foci concerning mathematical substance per
se gained momentum as well—such as problem solving, applications and mod-
elling, and technology in mathematics education.

These different sorts of expansion led people to begin to systematically reflect on
the nature of mathematics education research, not least the German mathematics
educator Hans-Georg Steiner, who established a forum, Theory of Mathematics
Education (TME), for discussing these issues—first at ICME-5 in 1984, leading to
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the paper (Steiner 1985), and in subsequent colloquia elsewhere (see also Hodgson
and Rogers (2012) for comments about TME).

The following two ICMI EC terms, 1991–1998, for which the Spanish mathe-
matician with a strong interest in mathematics education Miguel de Guzmán (1936–
2004) and the Danish mathematician/mathematics educator Mogens Niss were
President and Secretary-General, respectively, can be characterised as one of
continued consolidation and expansion of ICMI and its activities along the lines
established in the Kahane-Howson years. This era was one of continuity and calm
reform, not one of abrupt changes and revolution, even though some dark clouds
emerged at the end of the second de Guzmán-Niss term (see the next section).

One of the most significant changes during those years was the re-shaping of the
ICMI Studies. First, their goals were clarified as being to provide a state-of-the art
account and review of the problématiques and topics chosen for the Studies, for
which developments in research were to receive increased emphasis. Moreover,
there was an increased uniformisation of the Study formats as regards the nature
and role of their main components (see above): International Programme
Committee—Discussion Document—Study Conference—Study Volume. There
was a growing and widening interest and participation in the Studies, which con-
siderably expanded the “ICMI family”. This was also meant to be stimulated by the
fact that the relatively expensive Study Volumes were made available to individuals
at reduced rates by agreements between ICMI and the publishers (first Kluwer, then
Springer when they bought Kluwer). Unfortunately, however, these agreements
were never as widely known or used as anticipated. Six Study Conferences were
held during the Guzmán-Niss era, the resulting volumes being published in the New
ICMI Study Series (Studies 6–11):

• Assessment in Mathematics Education (Calonge, 1991, resulted in two books)
• Gender and Mathematics Education (Höör, 1993)
• What is Research in Mathematics Education and What are its Results? (College

Park, 1994)
• Perspectives on the Teaching of Geometry for the 21st Century (Catania, 1995)
• The Role of the History of Mathematics in the Teaching and Learning of

Mathematics (Luminy, 1998)
• The Teaching and Learning of Mathematics at University Level (Singapore,

1998).

It was systematically attempted by the ICMI EC, during those years, to always
have three Studies underway in different stages of completion at the same time: one
for which the International Programme Committee has been appointed and the
Discussion Document is in the process of being written; one for which the Study
Conference is under planning; and one for which the Study Volume is being written
and edited. (This resulted in having roughly three Study Conferences per four-year
term of a given ICMI EC.) Along with the above-mentioned key purpose of an
ICMI Study as being to capture and gauge the state-of-affairs and trends concerning
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pertinent issues and topics, the Studies also had a dual purpose, namely, for ICMI to
identify, shape and facilitate work with new foci.

During the de Guzmán-Niss era the World Federation of National Mathematics
Competitions (WFNMC) was accepted as a new Affiliated Study Group (1994). On
the personal initiative of de Guzmán, announced in his Presidential address at
ICME-7, a so-called Solidarity Programme and Fund were established. At the same
time it was decided to include a 10% Solidarity Tax on ICME conference fees as
part of a concerted effort to reach out to new places and groups in mathematics
education, in both geographical, socio-economic and cultural terms. Moreover,
efforts were made by the ICMI EC to stimulate the creation of Sub-Commissions of
ICMI so as to provide a bridge between ICMI and its member states and to com-
pensate for the sometimes insufficient functioning of some country representatives.
Finally, the ICMI Bulletin was consolidated both in format and publishing regu-
larity during those years.

The ICMEs held during the de Guzmán-Niss terms were ICME-7 (Québec,
1992) and ICME-8 (Sevilla, 1996). As a reflection of the general growth of ICMI
activities and undertakings, the time line for deciding upon and planning the ICMEs
became extended considerably, roughly 5–6 years in advance. And in that respect,
controversies and conflicts sometimes began to arise.

A look at the concurrent development of mathematics education as a field
reveals an extension of its radius of action to encompass

• assessment;
• history and philosophy of mathematics and their impact on mathematics

education;
• teacher education and professional development;
• students’ and teachers’ beliefs and affect in mathematics;
• socio-cultural factors influencing mathematics teaching and learning;
• equity.

New international journals were established in those years, including the
Mathematics Education Research Journal (MERJ—1989), Nordisk
Matematikdidaktik (NOMAD—1993), ZDM–Mathematics Education (1997), the
Journal of Mathematics Teacher Education (JMTE—1998),Mathematical Thinking
and Learning (MTL—1999), whilst some “national” journals became increasingly
international, as was the case with the Journal für Mathematik-Didaktik (JDM—
1980). Moreover many new ideas for Studies were in the pipeline by the end of 1998.

14.4 1999–2016: Calm Waters, but with “A Second
Crisis” Around ICMI

With the election by the 1998 IMU General Assembly of Hyman Bass (President)
and Bernard Hodgson (Secretary-General), an ICMI leadership duo once again took
office for what turned out to be two consecutive terms (1999–2006). According to
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the 2002 revision of the Terms of Reference for ICMI, “Secretary-General” was
then instituted as the official title of what was previously named “Secretary”6—see
Bass (2002). Right away the Bass-Hodgson era opened with some problematic
issues that the new leadership had to deal with “on the first day in the office”.

As part of the transition from the previous era, it was assumed that ICME-10 was
going to be held in Brazil (the planning of ICME-9, Makuhari/Tokyo, 2000, was
already well under way). However, already in December 1998, the incoming ICMI
President received a letter, signed jointly by the Brazilian representative to ICMI
and the President of the Brazilian Mathematical Society, speaking against the
possibility of ICME-10 being hosted by Brazil. This point of view was presented as
being “shared by the Council” of the Society—see Soares and Cordaro (1998).
Since holding an ICME requires the concerted effort of all relevant parties in a
country, including of course the research mathematicians, this was in effect a veto
statement. So, the new ICMI leadership had to work hard for several months to find
an alternative host country, eventually persuading the so-called Nordic Countries
(Denmark, Iceland, Finland, Norway and Sweden) to expedite previously expressed
ideas to host ICME-11 in that region. Eventually, Copenhagen was chosen as the
venue for ICME-10. This course of events urged ICMI to develop a more closely
monitored bidding process for future ICMEs, including a 7-year in advance “pre-
liminary declaration of intention of presenting a bid to act as host.” (Hodgson 2000,
p. 14)

The other problematic issue, too, was a leftover from the previous term. At the
1998 ICM, held in Berlin, serious problems about the education section of the
scientific programme occurred. Instead of accepting ICMI—IMU’s commission for
mathematics education—as the responsible body for the education activities of
IMU’s own ICM, the general Programme Committee for the congress designed
these activities by itself. De Guzmán and Niss reacted vigorously to the IMU
leadership, who agreed to sort things out for future ICMs together with the new
ICMI EC. This was achieved during the Bass-Hodgson era.

The “ICM crisis” provided momentum to thoughts prevailing in some ICMI
quarters about the justification of having ICMI as an organization living “inside”
the IMU, leading to the question: “Should ICMI seek independence from IMU?”.
Michèle Artigue, at that time Vice-President of ICMI, later returned to this issue in
her Presidential address at the ICMI Centennial Symposium held in Rome in 2008:

Retrospectively this crisis was beneficial. It obliged the ICMI EC to deeply reflect about the
nature of ICMI and what we wanted ICMI to be. This led us to reaffirm the strength of the
epistemological links between mathematics and mathematics education. (Artigue 2008,
p. 190)

6This change of nomenclature, to some extent of a trivial nature, is nonetheless related to the
perception and understanding of the role attached to this position within the ICMI EC—see the
Hilton episode discussed above.
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So, there was, at the very outset of the Bass-Hodgson terms, an urgent need to
re-establish a relationship of mutual understanding and respect between IMU and
ICMI, and to reinvigorate links through concrete actions. This became a central
objective of the ICMI EC. As a first step it was agreed that the ICMI President and
Secretary-General would regularly be invited to the IMU EC meetings, whilst the
IMU President or Secretary would attend ICMI EC meetings. However, the most
marked outcome of the growing harmony and intensive collaboration between IMU
and ICMI was a new constitutional foundation of ICMI as a commission of IMU. In
fact a truly historic and unexpected change of the governance of ICMI took place
during the years 2002–2006.

The 2002 IMU General Assembly requested a change in the election procedure
of the IMU EC, introducing a Nominating Committee to produce a slate of pro-
posals for the EC members. The first proposal of IMU was that this same
Nominating Committee would also produce the slate for the ICMI election, but it
was promptly stressed by the ICMI EC that this scheme would not pay sufficient
attention to the specificity of ICMI and its community. The ensuing discussions
eventually gave rise to an agreement between the IMU President John Ball and the
ICMI EC, reached at the ICMI EC meeting during ICME-10 in 2004, leading to the
introduction of a specific ICMI Nominating Committee whose task is to propose a
slate to be voted on, not by the IMU General Assembly, but by the ICMI General
Assembly. This major change of constitution was put before the following IMU
General Assembly, held in 2006 in Santiago de Compostela Spain, which—after a
rather fierce debate in which ICMI President Hyman Bass, in his capacity as a
distinguished mathematician, played a crucial part—decided to adopt the proposed
change. The first election according to the new scheme took place at ICME-11 in
Monterrey in 2008, where the 2010–2012 EC was elected by the ICMI General
Assembly.7

Another reflection of the improved relationship between ICMI and IMU was the
so-called “Pipeline Project”, launched in 2004 on the request of IMU in order to
chart the supply and demand for mathematics students and personnel in educational
institutions and in workplaces. One task was to provide data for decision making
and for a better understanding of the situation internationally. Reports were pre-
sented at ICME-11 (2008) and ICM-2010.

Several other new initiatives were taken during the Bass-Hodgson era. For
instance collaboration with UNESCO, which because of funding problems had been
rather dormant during the previous era, was renewed. The two organisations thus
collaborated on establishing the travelling exhibition “Experiencing Mathematics”,
which was launched at ICME-10 in 2004 and was thereafter visited by around 1
million pupils, students, teachers and parents in 50 cities in 20 countries. There
were also actions towards reinforcing the links with L’Enseignement Mathématique,

7Consecutive 3-year terms of office for the 2007–2009 and 2010–2012 ICMI ECs allowed
transferring the election year from the IMU to the ICMI General Assembly.
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the official organ of ICMI since its inception in 1908, notably through a joint
L’Enseignement Mathématique-ICMI symposium held in 2000 to celebrate the first
one hundred years of the journal, established in 1899—see Coray et al. (2003).

At a late stage in the last term of de Guzmán and Niss, the ICMI EC had received
a proposition to establish ICMI awards so as to recognise outstanding contributions
to mathematics education research and development.8 The proposition was carried
over to the first Bass-Hodgson EC, which decided to establish two ICMI Awards,
named after legendary ICMI Presidents: the Felix Klein Award, honouring lifetime
achievement, and the Hans Freudenthal Award, honouring a major cumulative
programme of research. These awards are awarded in odd-numbered years, from
2003 on.

The ICMI Study Series was continued during the Bass-Hodgson terms with
Studies 12–17, thus pursuing the rhythm of having three Studies in progress at a
given time:

• The Future of the Teaching and Learning of Algebra (Melbourne, 2001)
• Mathematics Education in Different Cultural Traditions: A Comparative Study

of East Asia and the West (Hong Kong, 2002)
• Applications and Modelling in Mathematics Education (Dortmund, 2004)
• The Professional Education and Development of Teachers of Mathematics

(Águas de Lindóia, 2005)
• Challenging Mathematics in and Beyond the Classroom (Trondheim, 2006)
• Digital Technologies and Mathematics Teaching and Learning: Rethinking the

Terrain (Hanoi, 2006).

On the organisational side, the International Study Group for Mathematical
Modelling and Applications (ICTMA) was adopted as a new Affiliated Study Group
in 2003, and several ICMI Regional Conferences were held, including the
Conferencia Interamericana de Educación Matemática (CIAEM—launched in the
1960s), the ICMI-East Asia Regional Conference in Mathematics Education
(EARCOME—1998, but originating from a series started in 1978), Espace
Mathématique Francophone (EMF—2000), based on the notion of a “region”
being conceived in linguistic terms, and the Africa Regional Congress of ICMI on
Mathematical Education (AFRICME—2005).

Having in mind to pave the way for a smooth transition to the new governance
structure, a new EC was established by the 2006 IMU General Assembly for a
3-year term, 2007–2009. Former Vice-President Michèle Artigue was elected not
only as the first female ICMI President ever,9 but also as the first President in the
“New ICMI” era, inaugurated in 1952, whose credentials are primarily based on the
reputation as a mathematics educator rather than as a classical research

8The idea of having “a medal (or possibly two) to be awarded to someone who has made an
outstanding contribution to mathematics education” had been raised earlier by ICMI
Secretary-General Howson (1982, p. 8).
9But certainly not the last, as Jill Adler was elected ICMI President for 2017–2020 at ICME-13.
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mathematician. To ensure continuity from the past to the future, Bernard Hodgson
was exceptionally asked to serve as the Secretary-General for a third term, also a
complete novelty since the time when Henri Fehr (1870–1954) served for decades
as Secretary-General of the “Old ICMI”.

This term saw further consolidation of established ICMI activities. Thus ICMI
Studies 18 and 19 were conducted:

• Statistics Education in School Mathematics: Challenges for Teaching and
Teacher Education (Monterrey, 2008), organised jointly with IASE, the
International Association for Statistical Education

• Proof and Proving in Mathematics Education (Taipei, 2009),

and ICME-11 was held in Monterrey (2008), for the first time in a country outside
what used to be called the “First World”.

It was in this very eventful term that the ICMI Centennial 2008 was celebrated in
Rome in a symposium organised in Palazzo Corsini, home of the Accademia
Nazionale dei Lincei and the very birthplace of ICMI at the 1908 ICM. The cen-
tennial is commemorated in the symposium proceedings, edited by Menghini et al.
(2008).

The year 2008 also saw the inception of a new ICMI project whose subsequent
underpinnings are related to the thematic session on the Legacy of Felix Klein held
at this congress. The Klein project stems from a proposal made by Vice-President
Bill Barton, at the first meeting of the 2007–2009 ICMI EC, to foster the promotion
of mathematics through the revisiting of Felix Klein’s famous Elementary
Mathematics from an Advanced Standpoint, originally published in 1908—see
ICMI EC Minutes (2007, p. 1). The aims of the project are to produce resources for
secondary teachers about contemporary mathematics, so as to help them make
connections between their teaching and the field of mathematics as a living subject.

At that same ICMI EC meeting, a decision was made to launch an electronic
newsletter for prompt, efficient and brief communication with the community, a
project that had already been considered for a while, partially inspired by the IMU-
Net initiated in 2003. The first issue of ICMI News appeared in December 2007.
The aim of this new and “light” channel of communication was to complement the
ICMI Bulletin, which retained interest in a long-term archival perspective, but
whose size and scope, since the turn of the century, had become more ambitious
while its appearance was more erratic, as only ten issues were published between
1999 and 2009. Less than a year after its launching, ICMI News had more than a
thousand subscribers. Also in the year 2009, the project of updating the ICMI
website, which had been in progress for a few years, was finally completed. (The
initial version of the ICMI website, originally a mere page on the IMU server, went
back to 1995.)

New Terms of Reference for ICMI were adopted in 2009. The Terms them-
selves, under the jurisdiction of the IMU EC, are accompanied by Guidelines,
concerning some ICMI internal rules of operation. For instance the definition of the
ICMI General Assembly and the voting rights therein are part of the Terms,
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whereas the details of the ICMI EC election procedure are under the jurisdiction of
the ICMI General Assembly. With the 2009 revision of the Terms of Reference, the
traditional notion of an Affiliated Study Group was extended and generalised to that
of an Affiliate Organisation. The International Group for Mathematical Creativity
and Giftedness (MSG) was accepted in 2011 as the sixth ICMI Affiliated Study
Group, whilst existing multi-national mathematical education societies became
affiliate organisations shortly after the adoption of the new scheme: CIAEM (2009),
CIEAEM (2010), the European Society for Research in Mathematics Education
(ERME—2010) and the Mathematics Education Research Group of Australasia
(MERGA—2011).

A new EC was elected for a 3-year term, 2010–2012, at ICME-11 in Monterrey
(2008) with Bill Barton as President and Jaime Carvalho e Silva as
Secretary-General. Under their leadership, ICMI Studies 20 and 21 were conducted:

• Educational Interfaces between Mathematics and Industry (Lisbon, 2010),
organised jointly with the International Council for Industrial and Applied
Mathematics (ICIAM)

• Mathematics Education and Language Diversity (Águas de Lindóia, 2011).

ICME-12 was held in Seoul in 2012, and the Klein Project underwent consid-
erable development.10 Moreover it was decided at the 2011 EC meeting to launch
the Database Project, with the ultimate goal of building a free access database of
mathematics curricula from all over the world.

This EC also saw, in 2011, the inauguration of the IMU Secretariat in Berlin,
where a position of ICMI Administrator had been established. This event turned out
to be a major change in the daily maintenance of ICMI business thanks to the most
welcome support thus provided to the work of the EC.

But probably the most significant new development in the Barton-Carvalho e
Silva era was the launching in 2010 of the so-called CANP (Capacity and
Networking Project), meant to stimulate outreach to developing countries by fos-
tering networking amongst teachers, mathematics educators and mathematicians
within a given region. The project emerged as a joint initiative of ICMI and
UNESCO, spurred by the renewed collaboration that had started in the early 2000s
with the exhibition “Experiencing Mathematics” (see above). As a result of the
regular links that then arose between the two bodies, UNESCO invited in 2009
ICMI President Michèle Artigue to pilot the preparation of a White Paper on
Challenges in basic mathematics education (UNESCO 2011). Inspired by the
recommendations of that document, UNESCO proposed to ICMI during the year
2010 to organise an event in Africa aiming at “reinforcing teacher education

10At the time of writing, more than 20 “Klein Vignettes” have been produced, each being a short
piece on a selected mathematical topic likely to be new to most secondary teachers and typically
requiring some undergraduate mathematical knowledge. Some vignettes are available in different
languages.
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capacities, building synergies between communities, and reinforcing South-South
collaboration” (Artigue 2017). Led by the incoming President Barton, the ICMI EC
developed, jointly with UNESCO, the CANP model, of which the first event
actually took place in Africa in 2011.

Five CANP workshops—each with a follow up meeting held about a year later
—took place in the period 2011–2016 (which goes into the term of the next ICMI
EC):

• two in Africa: Mali (2011) and Tanzania (2014);
• two in Latin America: Costa Rica (2012) and Peru (2016); and
• one in South East Asia: Cambodia (2013).

These workshops and follow up events gathered more than 400 participants from
more than 25 developing countries in five regions—see Koch (2016), a preliminary
report on CANP by the ICMI Administrator. CANP is considered within ICMI as a
most successful endeavour, notably with regard to the improvement in the indi-
vidual scientific capacity of the participants, as well as to the fostering of regional
network building—data supporting this view are provided in (Koch 2016, 2017).

The organisation of CANP workshops could be considered somewhat expensive,
as the average cost per workshop for ICMI is of the order of 50,000 € (in addition
to funding and support from local sources). However the cost per participant for
these two-week workshops is very low. Moreover more than 85% of these expenses
up till now have been covered by special grants, mainly from IMU but also from the
International Council for Science (ICSU) and UNESCO (Koch 2016). In spite of
the substantial amounts involved, the ICMI EC clearly finds the cost worth the
while because of the most significant outreach impact obtained.

After the two 3-year terms, it was now time to go back to the usual 4-year terms.
At the ICMI General Assembly in Seoul, 2012, a new ICMI EC was elected for the
term 2013–2016, with Ferdinando Arzarello as President and Abraham Arcavi as
Secretary-General. A major decision made by the EC was the establishment,
announced early in 2015, of a third ICMI Award, the Emma Castelnuovo Award
honouring excellence in the practice of mathematics education, to be awarded every
four years, starting in 2016 at ICME-13 (Hamburg). The Arzarello-Arcarvi era also
saw ICMI Studies 22 and 23:

• Task Design in Mathematics Education (Oxford, 2013)
• Primary Mathematics Study on Whole Numbers (Macau, 2015).

as well as the adoption by the EC of Guidelines for conducting an ICMI Study
crystallising the goals and process of an ICMI Study (Arzarello et al. 2014, p. 83).

Regarding communication with the ICMI community, this new EC decided, at
its very first meeting in 2013, to officially discontinue the production of the ICMI
Bulletin (Arzarello et al. 2014, p. 92). The previous EC had supported in principle
the importance of the role played by the Bulletin, but in practice no issue had been
published during its term of office. The Arzarello-Arcarvi EC aimed at improving
the use of ICMI News as the main communication channel, notably by producing a
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more sophisticated version of the journal (still in a brief style), and also aimed at
reinforcing the collaboration with L’Enseignement Mathématique.

14.5 ICMI and the Field of Mathematics Education

In this paper we have attempted to link a brief account of ICMI’s organisational
history to a portrayal of ICMI as a facilitator of international cooperation and
collaboration in mathematics education in a broad sense. ICMI can be perceived as
a body that reflects, and reflects on, important developments in mathematics edu-
cation as a field of research and development. ICMI can also be perceived as a body
that takes initiatives to identify new issues and needs in mathematics education and
provides a platform for the exploration and unfolding of these issues and demands.

Thus, ICMI has engaged in a symbiotic relationship with mathematics educa-
tion. However, it is important to understand that for the past half century, ICMI was
never a body taking political stances on pertinent issues, e.g., by passing resolutions
and making particular educational recommendations.11 Nor was ICMI ever a
managerial body that tried to “rule over” mathematics education. Since mathematics
education is—of course—about mathematics, a key theme throughout those five
decades has been to create and maintain strong and mutually respectful links
between mathematics and mathematics education, and between research mathe-
maticians and mathematics educators.

The half century covered by this paper has been an epoch of expansion and
enlargement in a multitude of different respects. There is every reason to believe
that thanks to new generations of concerned, committed and competent ICMI
officers, new land will be reclaimed and charted during the next fifty years.
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Chapter 15
Formative Assessment in Inquiry-Based
Elementary Mathematics

Alena Hošpesová

Abstract The chapter presents findings related to Czech teachers’ and pupils’
difficulties with, opinions on, and needs associated with formative assessment,
namely, peer assessment, in inquiry-based lessons. The research was conducted
within the EU-funded Assess Inquiry in Science, Technology, and Mathematics
Education project (ASSIST-ME). Six teachers of primary mathematics worked with
researchers on inquiry tasks and methods of peer assessment and implemented them
in their classrooms. The paper focuses mainly on (a) the interplay of teachers’
intentions, subject matter, and learners in inquiry; (b) the teachers’ role in sup-
porting learning via (formative) assessment; and (c) the pupils’ role in their own
learning and the learning of peers. Significant phenomena in implementation of
assessment were identified, namely, the importance of formulation of learning
objectives; pupils’ ability to decide about the correctness, identify the mistakes, and
give supporting feedback to their peers; possible (and needed) support; and insti-
tutionalization of knowledge.

Keywords Formative assessment � Peer assessment � Self-assessment
Inquiry based mathematics education � Primary school level

15.1 Introduction

School assessment as a feedback tool and an important part of interaction among
key actors in school education has for a long time been the subject of discussion in
the Czech Republic because it influences the character of the entire system of
teaching and learning. School assessment is closely related to school tradition and
the culture of education. For this reason, the implementation of inquiry based
approaches in mathematics education at school includes, among other problems,
the challenges of having to comply with curriculum requirements, classroom
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management issues in responding to unexpected and uncertain situations, and the
problem of conducting assessment. The objective of the chapter on the general level
is to show what changes occurred in classrooms of teachers developing
inquiry-based approaches and assessing their pupils’ results and achievement, in
other words, what the relationship between assessment and inquiry-based education
in mathematics is.

The chapter reports the results of a research study on peer assessment carried out
in the Czech Republic under the framework of the EU-funded Assess Inquiry in
Science, Technology, and Mathematics Education project (ASSIST-ME). The
project develops and studies formative and summative methods of assessment that
support inquiry-based approaches in teaching science, technical disciplines, and
mathematics. Based on analysis of what is known about summative and formative
assessments of knowledge, skills and attitudes, the project team proposed a variety
of combined methods of assessment. These methods were tested on primary and
secondary schools in different countries across Europe (the Czech Republic,
Denmark, Finland, France, Cyprus, Germany, Switzerland, and the United
Kingdom). The research carried out was focused on creation of formative assess-
ment methods that (1) fit into everyday classroom practice, (2) provide qualitatively
oriented feedback of competence-oriented, inquiry-based learning processes, and
(3) can be combined with existing summative assessment requirements and
methods used in different educational systems.

The chapter is based on data from primary mathematics classrooms collected
within the framework of the ASSIST-ME project in the Czech Republic and aims to
answer the questions: What difficulties are faced in introducing formative assess-
ment in primary mathematics classroom?

15.2 Background of the Study

15.2.1 Assessment

The issue of assessment has a long tradition at ICME, e.g., Topic Study Group
“Assessment and Testing in Mathematics Education” (Suurtamm and Neubrand
2015) at ICME 12 focused on:

– Issues connected to the development of teachers’ professional knowledge of
assessment and their use of assessment in the mathematics classroom.

– Issues and examples related to the enactment of classroom practices that reflect
current thinking in assessment and mathematics education (e.g., the use of
assessment for learning, as learning, and of learning in mathematics
classrooms).

This chapter contributes to debate the latter of the two topics.
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Our study focused on classroom-based assessment of pupils (in the sense of
definition published in OECD 2013). This assessment requires specification of the
purpose for which the data are collected and interpreted, i.e., the purpose of
assessing. This affects a number of decisions the teacher makes about (a) the data to
be collected (e.g., whether systematically or occasionally), (b) interpretation of
them, (c) communication about them, and (d) building further decisions on them
(Black et al. 2004). With respect to how assessment is used and with what purpose
it is carried out, two approaches are distinguished:

– Summative assessment in which the evaluator checks and summarizes what the
pupil has learned. It may concern individual pupils, groups of pupils, or the
whole population (for example, large-scale external tests and examinations).

– Formative assessment that supports the pupils’ learning process. This involves
the processes of data collection and interpretation that learners and their teachers
use to make decision about the following: What have the pupils learned so far?
Where is their learning aim? How can they be supported and assisted on their
way to learning?

Black and Wiliam (2009) explained formative assessment in these words:

Practice in a classroom is formative to the extent that evidence about student achievement is
elicited, interpreted, and used by teachers, learners, or their peers to make decisions about
the next steps in instruction that are likely to be better, or better founded, than the decisions
they would have taken in the absence of the evidence that was elicited. (p. 9)

From this definition, the main characteristics of formative assessment can be
summarized (see ARG 2002):

– Pupils play active roles in making decisions about their own learning. They can
be expected to be able to channel their effort more efficiently if they know the
objectives of their learning.

– The teachers’ feedback includes advice on how to advance; it does not compare
pupils with each other.

– Teachers use the information to make adaptations to their lessons in a way that
gives their pupils more opportunity to learn.

– Dialogues between teachers and the pupils support the pupils’ reflection on the
learning process.

– Pupils develop self-assessment by taking part in determination of what will
make them advance.

The idea of formative assessment has been discussed in Czech educational
context since the 1990s, but it has only been slowly introduced in school practice
(for more details, see Žlábkova and Rokos 2013). Slavík (2003) summarized that
although several examples of good practice were offered, empirical research find-
ings focused on problems in using the formative assessment methods were almost
absent. Some forms of formative assessment are seen as embedded in common
Czech teaching culture, such as immediate teacher feedback as a response to a
pupil’s problem solving (on-the-fly assessment) or less frequent written comments
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from teachers. Others are seen as difficult in mathematics on primary school level
(e.g., structured classroom dialog or formative peer assessment).

Teaching/learning processes including formative assessment were depicted by
Harlen (2014) as a repetitive cyclic process the learner in the center (see Fig. 15.1).

In inquiry-based education, formative assessment naturally penetrates the pro-
cess of inquiry:

– The teacher formulates a short-term goal of a lesson or several lessons, i.e., the
norm the pupil is expected to achieve. In mathematics education, the goal is
often operationalized in the form of a problem or a set of problems (see
Samková et al. 2015).

– In discussions with peers and the teachers, pupils communicate about how they
understand the problems in question, how they solve them, and how they
understand their classmates’ solutions. If teachers do not find these discussions
meaningful, they stimulates them by asking open questions; i.e., the teacher
collects data during the activities being carried out, interprets them, and inter-
venes if necessary. In school mathematics, the teacher makes often conjectures
about how the learner thinks.

– The teacher then formulates some recommendation, which Harlen (2014) refers
to as “judgement,” about the next steps. These steps are then carried out by the
pupil in the subsequent process of learning.

C
B
A

Goals

Students Where students areHow to get there

Where they need to go

Students’ activities

Collection of evidence 
relating to goals and 
success criteria

Interpretation of 
evidence in terms of 

progression

Designing effective 
learning environment

Evaluation

Fig. 15.1 Assessment for formative purposes (Harlen 2014, p. 6)
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– Information the teacher gets about a pupil’s activity is related to the short-term
objectives of a lesson, or several lessons. This information constitutes the basis
for making decisions about the next steps or about how to help the pupil carry
out these steps. The goal is to support pupils’ learning and to provide feedback
on the progress they have made in their understanding or skills. It is at the same
time feedback for the teacher, who can adapt tasks to the pupil and maximize the
opportunity to learn. Empirical evidence has verified that formative assessment
increases efficiency of learning, e.g., Black and Wiliam (1998) mentioned
studies that stated that “improved formative assessment helps the (so-called) low
attainers more than the rest, and so reduces the spread of attainment whilst
raising it overall” (p. 3).

Peer assessment, which is the focus of our attention in this study, is understood
here in accordance with Boud and Falchikov (2007, p. 132):

Peer assessment requires students to provide either feedback or grades (or both) to their
peers on a product or a performance, based on the criteria of excellence for that product or
event which students may have been involved in determining.

Slavík (2003) and others consider peer assessment to be a way to autonomous
assessment, i.e., deeper reflection on one’s own learning and its results “that
learners use on their own, master it, that they understand to the needed extent, that
they can explain or defend” (p. 14). Slavík (2003) stated that autonomous assess-
ment partially develops and deepens in relation to self-assessment and partially in
relation to assessment of others’ performance (most likely of classmates’, i.e., peer
assessment) through which pupils learn to reflect on their work. Pachler et al.
(2010) stressed that learner self-regulation is a core factor in formative assessment
and that it is linked to motivation and emotional factors which affect learners’
engagement.

Learning benefits are supposed for both pupils acting as assessor and as assessee,
as well, because they both can bridge the gaps in their understanding of particular
contents and get a more sophisticated grasp on their learning (Topping 2013). In
addition, there has been great interest in upscaling formative assessment to change
learning/teaching culture (OECD 2015).

15.2.2 Inquiry-Based Approach in Mathematics Education
and Assessment

Formative assessment is especially important in the situation of inquiry-based
education:

As is the case in the natural sciences, inquiry-based mathematics education refers to an
education which does not present mathematics to pupils and students as a ready-built
structure to appropriate. Rather it offers them the opportunity to experience:
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– how mathematical knowledge is developed through personal and collective attempts at
answering questions emerging in a diversity of fields, from observation of nature as well
as the mathematics field itself, and,

– how mathematical concepts and structures can emerge from the organisation of the
resulting constructions, and then be exploited for answering new and challenging
problem (Artigue et al. 2012, p. 8).

Inquiry-based education in teaching mathematics helps not only to build
inquiry-based attitudes in pupils but also to reinforce pupils’ understanding of
mathematical concepts and procedures. According to Donovan and Bransford
(2005), it uses (a) a knowledge-centered lens, focusing attention on “what is taught
(learning goals), why it is taught, and what mastery looks like”; (b) an
assessment-centered lens, emphasizing the need to provide frequent opportunities
“to make students’ thinking and learning visible as a guide for both the teacher and
the student in learning and instruction”; and (c) a community-centered lens, based
on a culture of “questioning, respect, and risk taking,” as well as the interaction of
learners and teacher as central to the learning process (p. 13). It follows that in the
process of inquiry, the roles of the pupil and the teacher and their responsibility for
the teaching/learning process change. Primarily, it is the pupil/group of pupils who
must be active when looking for information, estimating and guessing, making
conjectures, and discovering solutions. When peer assessment is present, pupils
must try to understand the solutions of others, comment on them, and give feed-
back. The teachers’ role is to create the right conditions for this. They must create
an environment that encourages cooperation, guide their pupils, support them in
their search for unknown solving methods, and ask questions, such as “Why?”
“How would you explain?” “Is it really so?” and “Do you know any similar
problem/task?” The teacher must be proactive, support pupils’ efforts, praise pupils’
contributions (including giving feedback on mistakes the pupils have made) and
must help their pupils advance in learning based on their own independent dis-
coveries and interpretations.

Implementation of inquiry-based approaches brings a radical change to the
whole process of education; starting with response to the demands of curricula, to
problems that stimulate independent inquiries, to a change in the pupils’ and
teachers’ roles in the teaching/learning process. Pupils and their teacher constitute a
complex system with its own dynamics, conditions, and rules. The system can be
illustrated by the schema in Fig. 15.2.

Inquiry at school can be depicted as a cycle:

Like scientific inquiry, mathematical inquiry starts from a question or a problem, and
answers are sought through observation and exploration; mental, material or virtual
experiments are conducted; connections are made to questions offering interesting simi-
larities with the one in hand and already answered; known mathematical techniques are
brought into play and adapted when necessary. This inquiry process is led by, or leads to,
hypothetical answers—often called conjectures—that are subject to validation. (Artigue and
Baptist 2012, p. 4)
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In respect to this study, we have to better characterize the problems that initiated
the inquiries. Openness of problems as the stimuli of inquiry has been requested
already by Dewey (1938):

The original indeterminate situation is not only “open” to inquiry, but it is open in the sense
that its constituents do not hang together. A variety of names serves to characterize inde-
terminate situations. They are disturbed, troubled, ambiguous, confused, full of conflicting
tendencies, obscure, etc. (p. 105)

In other words, problems can be interpreted in more ways and there are more
correct ways of solving them and sometimes more correct answers. To solve the
problem, the pupils discover (or better, rediscover) the ways of its solution. In
accordance with their actual knowledge, they make experiments (mental, material,
and virtual), observe similarities and differences, and compare them with their
current knowledge. Adding more experience and knowledge to their network of
knowledge, they restructure the existing. They make mistakes and learn from them
(especially their own but also other people’s mistakes).

15.3 Empirical Study

15.3.1 Goals and Organization of the Study

The goal of the research study presented here is to identify those phenomena that
could be observed in a planned implementation of peer assessment in inquiry-based
education in mathematics at the primary school level and, in particular, the diffi-
culties faced in such an implementation.

Fig. 15.2 Roles of different agents in the classroom in the course of pupils’ independent inquiry
(modified according Samková et al. 2015, p. 97)
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Four methods of formative assessment were proposed in the frame of the
ASSIST-ME project: (a) questions and other interactions between the teacher and
their pupils conducted “on the fly”, (b) structured dialogue in the classroom,
(c) evaluation (grading and feedback), and (d) peer assessment and self-assessment.
These methods were tested in selected primary and secondary schools in the Czech
Republic in three rounds in the period from September 2014 to February 2016.
Each round took six months. In these six months, the participating teachers assessed
their pupils in inquiry-based lessons using methods chosen from the above list.

Six elementary teachers prepared in pairs and individually realized teaching
experiments in elementary mathematics in the second, fourth, and fifth grades
(pupils mostly aged 7, 9, and 10 years). The teachers together with researchers
developed a sequence of 4–6 inquiry-based units, which they implemented mostly
in 90-min blocks. The topics were chosen in accordance with the teaching plans of
relevant grades: enriching the concept of great numbers and properties of plane
geometrical figures and their area.

15.3.2 Preparation of the Educational Experiments

The educational experiments were carried out with the intention of creating a space
for independent pupils’ inquiry supported by peer assessment. Lesson planning was
always carried out via joint discussion by the local working group (teachers and
researchers), during which the goal was formulated and various options for its
fulfilment were discussed. The discussion focusing on a priori didactical analysis of
content (in the sense formulated by Brousseau 2002) identified the key concepts
that became the goal of the teaching experiment.

The goals were operationalized in the form of “the problem of a lesson.” We
always were looking for problems that would stimulate inquiry. The main char-
acteristics of these problems were their openness (see Dewey 1938). The following
problems are two examples:

Problem 1 Find out how many lentils there are in a half-kilogram package.

Problem 2 Create instruction for your friends on how to determine the number of
tiles needed to tile the triangle in Fig. 15.3.

The first problem is indeterminate in terms of the solution procedure. The goal in
solving this problem is to cover the topic of great numbers in order to:

– understand that the basis of representing a number in the position system is the
grouping of elements according to the base of the numeral system and the
notation of the number of these groupings and

– perceive that the value of a figure in the notation of a number depends on its
position.
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Pupils are familiar with grouping into tens and hundreds from counting to 100. It
is very likely they have not come across a similar activity with larger sets at school
or in their real life. The problem may also be solved by weighing.

The second problem prepares students for the introduction of the concept of the
area of a triangle. Pupils may count whole tiles and their parts and may also
discover that a triangle is one half of a 4 cm by 5 cm rectangle.

Each of the teachers then individually elaborated a plan for the lesson and
realized them with their pupils. The plan was based in general on Polya’s model of
stages of problem solving (Polya 1945), supplemented by the peer-assessment stage
(5) and reflection (6) (see schema in Fig. 15.4).

In most cases, a worksheet was created in which the pupils recorded a solution to
the problem and provided peer assessment (an example of the worksheet for the
topic of great numbers is included in the Appendix). Pupils described their solution
procedure in the worksheets. After that they swapped the worksheets and provided
each other written feedback on the solution. Having received comments from peers,
each pupil (or a group of pupils) had the chance to revise the original solution with
respect to the feedback they had received. In addition, each student also briefly
responded in writing to the feedback they had received.

15.3.3 Data and Their Analysis

We have acquired a rich source of data from the 16 experiments that were
implemented:

– Video recordings (2 cameras: the teacher’s and one in the classroom) of lessons
and their transcriptions

– Structured classroom observation protocols from the researchers
– Pupils’ written productions (worksheets capturing problem-solving and assess-

ment comments by classmates)

Fig. 15.3 Figure in
assignment of tiling problem
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– Audio recordings of group work if it took place
– Semi-structured interviews with the teachers who realized the teaching experi-

ments before the lesson to determine how they understood inquiry-based
mathematics education and the role of formative assessment in it

– Audio recordings of discussions in local working groups during the preparation
of lessons and their transcripts

– Short interviews with teachers after each lesson.

Data were analyzed qualitatively. Transcripts were coded via open coding. The
codes were derived from the characteristics of formative assessment, the
inquiry-based education, and perceived actions. Gradually, a list of codes were
created, including codes for the activities of both teachers (e.g., assignment of the
problem; explaining on the initiative of the teacher or pupil(s); monitoring the
activities of pairs or groups of pupils; discussion with pupils; individuals, pairs, or
groups giving feedback; questions to individuals, pairs, or groups; individuals
requesting clarification; feedback directing solutions for the whole class, feedback
directing solutions for individuals; reactions to pupils’ explanations; general eval-
uation of pupils’ work; assessment of pupils’ work; putting knowledge into context
with what has been previously learned; and indication of the importance of
knowledge for the future) and pupils (clarification requests, comments on the
problem, solving tasks in pairs or groups, a request for clarification during the
solution of the problem, a request for equipment, loud comment on the solution of
the problem solution summary, and reaction to summarize for the teacher).

1. Grasping the problem situation 

2. Devise a plan for solving the problem 

3. Carry out the plan (if necessary revise, carry out  again, etc.) 

4. Recording the process of solution 

5. Assessment of the solution (given by peers/self-assessment) 

6. Reflection of the process of solution based on assessment given by peers

Fig. 15.4 Schema of planning experimental education units

258 A. Hošpesová



Specific issues related to difficulties that teachers and pupils had with intro-
ducing and conducting assessment gradually emerged in the process of pupils’
independent inquires, such as how to support peer assessment, what the role of the
teacher in peer assessment is, and what difficulties pupils have with peer
assessment.

15.4 Selected Findings and Discussion

We identified significant phenomena in implementation of assessment in the
teaching experiments.

15.4.1 Formulation of Learning Objectives

It is essential for the teachers’ planning and decisions in the lesson that the
didactical objective to be achieved in the lesson should be clearly defined. This
premise is often discussed in the materials for teachers. When teaching mathematics
at the primary school level in the Czech Republic, teachers often use materials to
support their teaching that define only the topic of the lesson and cover classroom
management (what problems will be included in the lesson, how they will be
arranged, and what form of classroom organization will be used). Teachers do not
plan lessons with respect to what the pupils will learn but with the objective of
correctly solving problems provided in textbooks, workbooks, and worksheets.

In inquiry mathematics education, the quality of feedback that pupils may gain
from their solutions depends on the accuracy of the definition and the opera-
tionalization of the learning objective of the “inquiry.” At the beginning of our
sequence of lessons, the objectives defined in cooperation with the teachers were
quite general (e.g., “get experience,” “apply a known procedure in a new envi-
ronment”). The experiments showed that it is essential for assessors to state the
objective in terms of the expected pupil’s performance.

This can be illustrated on the solution of Problem 2, in which the pupils were
asked to formulate comprehensible instructions on how to determine the number of
tiles needed to tile the triangle in Fig. 15.3. Assessors decided whether the
instructions were clear and could be used for determining the number of tiles
needed to tile other triangles. This assessment could have been initiated by a
concrete question: Did the solvers determine correctly that 15 tiles are needed? But
asking this question would not correspond to the defined learning objectives: Pupils
gain pre-concepts that form the basis of measuring the area of a triangle, namely, an
experience with filling in a triangle with, for instance, squares (i.e., by a selected
unit). For that reason, we asked the assessor to determine the number of tiles in
another triangle according to the instructions, and after that we asked questions: Is
the instruction correct? Is the instruction clear?
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15.4.2 Supporting Self-Assessment and Formative Peer
Assessment

The pupils who participated in the experiments had before had the opportunity to
occasionally do inquiries in mathematics under the guidance of their teachers, but
this experimental education was their first experience with peer assessment. As
mentioned above, to support the peer assessment we (the members of the local
working group) designed the worksheets. The worksheets were used both for
recording the solution of the problem and peer assessment. In the process of dis-
cussion of the content of the worksheet, we immediately realized the difficulties that
peer assessment in inquiry-based education in mathematics create. The problems
that the pupils deal with can usually be solved in various ways. Not all of these
ways are directed to meet intentional educational goals, and for that reason it is
difficult to formulate the rubrics in the worksheet to enable the pupils to assess the
work of their classmates.

For example, in the Lentil problem (determine how many lentils there are in a
half-kilogram package) we assumed that pupils would determine the weight (or
volume) of a certain number of lentils or vice versa and then use a reasoning based
on knowledge of proportionality. It would also be possible to use ways based on
estimation. The specific solutions can vary in details. The uncertainty of the situ-
ation created difficulty in formulating the questions on the worksheet. We decide to
distinguish the correct solution and ask the question: What did you like in the
solution? In the solutions that the assessors considered erroneous, the instruction
was: Recommend to your classmates how to get the correct number.

The pupils solved this problem in groups. The groups then assessed the work of
another group using the questions from the worksheet. Table 15.1 presents three

Table 15.1 Several solutions of the lentil problem and its peer assessment

Solvers (assessees) Assessors

S1 First we determined that 5 g contains 80
grains. 500 � 5 = 100, 100 � 80 = 8000
There should be 8000 lentil grains in the
package

We like that they have the same
principle as we have

But weighing needs to be accurate

S2 First we determined the mass of the whole
package. Then we calculated how many
grains there are in one gram. We then
calculated the problem and got 93,258 as the
result

We cannot assess this. They do not
write what problem they were solving.
Therefore we do not know how they
calculated it

S3 We poured the grains into a large vessel and
weighed it. We subtracted the mass of the
vessel from the mass of the grains. We found
out that the grains weighed 501 g. Then we
found out that 20 grains weigh 1 g
Calculation: 501 � 20 = 10,020

The procedure was correct
But our result was different
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descriptions of the solution procedure (S1 correct, S2 incomplete, S3 incorrect) and
their assessment by classmates.

Although the assessors of S2 expressed the error in the solution quite accurately,
the assessees in the final discussion criticized the assessors not to give them sup-
porting feedback.

In the following experiments, we split the solution into stages and asked for
separate assessment of each stage. However, our questions still had to be general in
order not to lead the pupils to a “correct” solution.

15.4.3 Correctness of Solution of the Problem and Peer
Assessment

The greatest advantage of peer assessment lies in the fact that a classmate may often
give a problem solver more comprehensible feedback because assessor and assessee
have almost the same learning experience and speak the same language. In our
study, we experienced two difficulties. The solvers found it very difficult to record
their solution procedure (see examples in Table 15.1), and for this reason the
assessors sometimes did not fully understand the solution. The second problem was
related to the assessors, who were not always able to assess the correctness of the
solution. Sometimes it was difficult for assessors to decide whether the problem had
been solved correctly, in other words, to assess the individual steps of the solution
procedure described by their classmates, and it was equally difficult to communicate
this assessment in a comprehensible way. In S2 (Table 15.1), some steps that were
not needed for the solution are described (the mass of lentils in the package was
given in the assignment), while other steps were not described clearly enough to
make a decision on their correctness. The assessors commented on the second part
of the solution quite clearly. However, they did not comment on the fact that it was
not necessary to determine “what the mass of the package was.” Another problem
was that number of lentils was approximately 10 times higher than the correct
solution. The peers did not comment this fact because they were not sure of the
correct answer.

Essential in inquiries are those erroneous contributions that move the solution
forward. However, these are not often assessed by an evaluator who is familiar with
similar methods of work as the solver. The situation becomes even more compli-
cated if the solution is not described clearly and comprehensibly by the solver.

In our study, the solvers could react to the peer assessment at the conclusion of
the whole solution process. Several answers to the question: “Did your friends’
advice help you?” were negative, using a sad emoticon: “ It did not because if they
write that the measuring should be accurate, we don’t know how exactly.”
“No. Those who were checking our work must have lost their lentils.” “ Saying
the result was different is of no help.” As the children grew more experienced with
peer assessment, they grew more self-critical in these final comments: “We think it
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should have been briefer and we did not finish the manual because we had for-
gotten.” “We think it’s all quite muddled.” “We could do it better to make it
comprehensible for everybody. But otherwise we think it’s OK.”

In the final interview, students answered a question: Do you think you did well
in assessing your peer(s)? The majority of pupils’ felt relatively competent in
assessing their peers (58%), while about a quarter of the pupils responded that they
did not work well. Others (17%) were not able to evaluate their work and responded
that they did not know. Among reported difficulties, the most frequent was the lack
of knowledge or skills necessary for correct assessment, which was associated
either with uncertainty about the solution of the inquiry task or the criteria for the
assessment. The pupils mentioned, for example, that “it was difficult to decide
whether it is correct or not,” “I did it differently and I am not sure that this could be
realized,” etc. Dealing with this uncertainty in the classroom is crucial for imple-
mentation of peer feedback in a broader context.

15.4.4 Peer Assessment and Institutionalization
of Knowledge

Formulation of the objectives of an inquiry is connected to the issue of institu-
tionalization of the gained knowledge. We found out that at the end of
inquiry-based lessons, the pupils expected an unequivocal decision on what had
been done correctly. They expected the result of their solution—the discovered
knowledge—to be shared by the group, critically discussed, and then accepted. The
final summary was in the hands of the teacher. However, if the teacher had not
stated the learning objective clearly enough, their summary was very vague (“You
worked very nicely,” “I am pleased with your work.”). Our findings are in agree-
ment with the theory of didactical situations. The need for the inclusion of an
institutionalization phase was theoretically grasped by Brousseau and Balacheff
(1997) and introduced in the model of the so-called a-didactical situation (a situ-
ation in which the teacher let the pupils to discover part of mathematical knowl-
edge). The presence (and necessity) of the institutionalization phase in independent
problem-solving situations has been confirmed in the Czech educational context
(Novotná and Hošpesová 2013).

15.4.5 Other Methods of Formative Assessment in Our
Experiments

Although the Czech part of the project focused on peer assessment, we also
monitored the implementation of other forms of formative assessment or action
supporting it. On-the-fly assessment (immediate corrective feedback and
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reinforcement) was present, especially in the inquiry phase. It is a part of the Czech
culture of primary mathematics that the teacher corrects pupils’ work while they are
working. On-the-fly assessment can also be considered peer feedback. During the
group discussions, the pupils considered the suggestions for the solutions presented
by their members.

15.5 Concluding Remarks

The research question we were focusing on was: What difficulties have to be faced
in introducing formative assessment in the primary mathematics classroom? Let us
now summarize these difficulties from the point of view of the actors in education:
teachers and pupils. The interviews with teachers after the realization of each lesson
showed that the peer assessment during the inquiry-based tasks in mathematics is
rather difficult and challenging for both teachers and pupils.

15.5.1 Formative Assessment and Teachers

The teachers reflected on their role, which they found even more important and
difficult than they foresaw. The main problems they identified were time and
resources demands (worksheets, assessment tools, and teacher assistant time). This
is related to the issue of appropriate support that teachers need. At the beginning of
experimental teaching, the teachers appreciated the worksheets for pupils. During
and after the experiments, they reported that they preferred to see a more experi-
enced colleague’s teaching, real teaching-situation stories, a databank of tasks,
training courses for teachers, and researchers’ on-site support. Some training,
therefore, should precede the implementation of formative assessment, and assis-
tants in classes would also be helpful, as the implementation would be time con-
suming and not all teachers have proper readiness.

During the experimental teaching, the teachers realized that pupils frequently
were not able to provide effective feedback to their peers, and they felt uncertain
how to help them. After the experimental teaching, the teachers mentioned that the
pupils were often not able to give meaningful feedback to the recipient that would
provide enough hints about how to proceed further. They saw the importance of
development of the pupils’ assessment skills, which should help pupils not only in
learning to assess (both self and peers), but also in mastering the curriculum.

The teachers also reflected that they had difficulties in summing up the lessons in
a final whole-class discussion that could institutionalize the new piece of knowl-
edge (Brousseau and Balacheff 1997).

Some teachers saw parents’ views on learning as an obstacle to the implemen-
tation of formative assessment: “… only working with the pupils’ book is seen as
sound learning, anything else is seen as entertainment or relaxation,” “… I do not
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know how I could defend the time we have spent on it and explain to parents that
we did not practice enough of the tasks in the pupils’ book.”

Some teachers’ comments were directly related to the realization of experimental
lessons. In particular, written peer feedback seemed too difficult; the pupils were
able to be more precise and detailed when speaking. In introducing formative (peer)
assessment, it would be good to start with simpler tasks and with some task for
training, e.g., working on a series of similar tasks and only at the end asking the
pupils for peer feedback. The teachers also mentioned that the pupils would prefer
to have an opportunity to see and discuss more solutions before assessing. Some of
the teachers considered this to be a big issue, as they realized that pupils may need
more time to think the assessment over.

We realized that it is quite essential to elaborate the learning progress structure of
the inquiry task, but it is more or less impossible to do it for inquiry that has been
initiated using an open problem. Summary of peer feedback and learning accom-
plished is important for “institutionalization of new knowledge,” i.e., deepened
understanding of the concept being studied.

15.5.2 Formative Assessment and Pupils

The trend is to make pupils responsible for their learning. Whether they are ready to
accept this responsibility largely depends on whether they understand what the
meaning of various school activities is and on their ability to recognize when to use
which activity. This means pupils need the space to define and accept goals of their
learning and the space to see whether they have actually achieved those goals. If
pupils are given the chance to speak about their learning and reflect on the process
of learning, higher order thinking skills and metacognition are developed.

Our experiments showed that pupils adapted to inquiry-based education and peer
assessment very quickly. Pupils’ willingness to inquire and to assess each other and
their success in these activities developed as they gained experience. For both
individuals and groups to become independent while solving problems and develop
towards autonomous assessment is a gradual process that must be given enough
space at schools. Our experience showed that formative assessment of peers’ work
is more productive if preceded by a discussion with the whole class on the possible
solutions of the problem. This discussion reduces pupils’ uncertainty associated
with the correctness of the problem’s solution, which is the main problem of peer
assessment from the pupil’s point of view.

15.5.3 Formative Assessment and Culture

The relationship between content (curriculum requirements), how the content is
used (pedagogy), and assessment is well known: What is taught is influenced by
how it is taught, and what is assessed influences both what is taught and how it is
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taught. It follows that if the curriculum is packed with content and assessment
requires memorization of facts instead of conceptual understanding,
learner-centered approaches including inquiry-based education will be out of place
and there is no need to demand that pupils should be responsible for their learning.

In our project, the course of an inquiry-based lesson including formative
assessment is expressed by the schema in Fig. 15.5. Although inquiry and forma-
tive assessment are both described as cyclical processes, in the lessons they have the
nature of a linear process that starts with the assignment of the problem and ends
with a teacher’s summary.

Mathematics, with a greater extent of generic skills, is different from the science
subjects, as teachers see open inquiry in math as more difficult to prepare and
manage. Peer assessors feel somewhat less certain when providing feedback unless
the institutionalization of learned knowledge precedes.

For primary-level group and pair activities, including inquiry and peer feedback,
seem to be convenient. We recommended starting with formative assessment
activities very soon: Even second-grade students can try them and learn a lot
(though mostly about the feedback process itself).

The strong tradition of summative assessment in the Czech Republic calls for
open discussion in broader contexts, including the general public (media, etc.), in
order to slowly change the assessment culture.
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Chapter 16
Professional Development of Mathematics
Teachers: Through the Lens of the Camera

Ronnie Karsenty

Abstract The VIDEO-LM project (Viewing, Investigating and Discussing
Environments of Learning Mathematics), developed at the Weizmann Institute of
Science in Israel, is aimed at enhancing secondary mathematics teachers’ reflection
and mathematical knowledge for teaching. In the project, videotaped lessons serve
as learning objects and sources for discussions with teachers. These discussions are
guided by an analytic framework, comprised of six viewing lenses: mathematical
and meta-mathematical ideas; goals; tasks; dilemmas and decision making; inter-
actions; and beliefs. To assess and characterize the impact of the project, data was
collected from 17 different implementations of in-service VIDEO-LM courses
around the country conducted by facilitators specifically qualified for this pursuit.
This paper reports on some of the findings, with particular reference to possible
mechanisms that can explain the processes of change that teachers undergo.

Keywords Video-based professional development � Secondary mathematics
teachers � Reflection � Mathematical knowledge for teaching

16.1 Introduction

Video has been used as a tool for teacher education and professional development
(PD) for the past 50 years, however the focus and methods of its uses has changed
considerably over time (Sherin 2004; see Fig. 16.1). Presently, the low cost of
portable easy-to-use digitized video recording devices, combined with accessible
means of editing and exchanging clips, has increased the dissemination of this
technology within PD programs for mathematics teachers around the world [e.g.,
Mathe sicher können in Germany; the Problem-Solving Cycle and the Learning and
Teaching Geometry programs in the USA (Borko et al. 2011); MILE in the
Netherlands (Goffree and Oonk 2001); and Effective Mathematics Teaching and
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CBL in Australia (Clarke et al. 2013)]. Online video resources are now largely
available to educators (MET in the USA and Teachers Media in UK are prominent
examples) and international symposia are dedicated to the use of video in profes-
sional development for mathematics teachers (e.g., http://www.weizmann.ac.il/
conferences/video-lm2014).

The affordances of videotaped episodes as a source for teacher learning have
been investigated in a growing number of studies (e.g., Brophy 2004; Borko et al.
2011; Coles 2014; Gaudin and Chaliès 2015; Nemirovsky and Galvis 2004;
Santagata and Yeh 2013; Sherin and van Es 2009). Sherin and van Es (2009) claim
that “teachers benefit from opportunities to reflect on teaching with authentic rep-
resentations of practice” (p. 21); Brophy (2004) argues that video can introduce “the
complexity and subtlety of classroom teaching as it occurs in real time” (p. 287);
and Nemirovsky and Galvis (2004) suggest that “because of the unique power of
video to convey the complexity and atmosphere of human interactions, video case
studies provide powerful opportunities for deep reflection” (p. 68). All of these
scholars emphasize the role of video as a window to the authentic practice of
teaching, which allows teachers to focus on complex issues that may be unpacked
through observing, re-observing, and reflecting on specific occurrences.

Three main directions can be identified within programs that use videotaped
episodes from mathematics lessons as resources for teacher development. First,
video is utilized for introducing new curricula, activities, pedagogical strategies,
etc. This target is mainly implemented through supplying teachers with video cases
that model and demonstrate how teaching the new curricula or using the peda-
gogical strategies may be enacted (e.g., Seago et al. 2010). A second direction is
using videotaped lessons as a source for feedback and evaluation. Teachers watch
videotapes from their own classrooms and discuss them with colleagues or
instructors, often with the use of pre-constructed standard-based rubrics such as
those developed by Danielson (2013) or Hill et al. (2008). The third direction is
using videotaped episodes to enhance teachers’ proficiency to notice, understand

The 
1960s 

The 
1970s

The 
1980s

Late 1980s 
& the 1990s

From the 1990s 
onwards

Fig. 16.1 Changes in video uses in teacher education (based on Sherin 2004)
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and discuss students’ mathematical thinking (Sherin et al. 2011), usually in the form
of “video clubs” (van Es and Sherin 2008).

The VIDEO-LM Project (Viewing, Investigating and Discussing Environments
of Learning Mathematics) is aimed at a fourth direction: the elaboration and use of
tools for reflection on the mathematics teaching practice through the development
of a productive language that supports deep peer conversations. The project also
aims at promoting the development and enrichment of mathematics knowledge for
teaching, in the sense defined by Ball et al. (2008).

In this paper, I describe the project and its theoretical roots. I then introduce the
framework of analysis, called the six-lens framework, developed to achieve the
project’s aims. I present findings from an evaluative study conducted to assess
the impact of the project. Finally, I suggest possible mechanisms that can explain
the processes of change that teachers undergo.

16.2 The VIDEO-LM Project: Rationale, Theoretical
Roots, and Framework

Teaching is known to be a rather lonely profession. Despite participation in pro-
fessional communities, online forums, and other forms of communication and col-
laboration with other teachers, the reality is that the vast majority of teachers are the
“solo adult actors” in their classrooms, where they spend the lion’s share of their
professional life. In many countries teachers seldom get the chance to watch their
peers in action once the pre-service period is over. This is not merely a social deficit
but also a barrier to certain processes of professional evolution embedded in peer
learning in situ. The VIDEO-LM project, developed at the Weizmann Institute of
Science in Israel, is a research-based PD program for secondary mathematics
teachers that creates opportunities for teachers to watch whole lessons given by other
teachers. The project uses a collection of videotaped lessons, which serve as learning
objects and sources for discussions with teachers. Since teachers do not watch
themselves, as is frequently done in video clubs, but rather observe videotaped
lessons of unknown teachers, the videos are taken, in a sense, as “vicarious expe-
riences” that allow for indirect exploration of one’s own perceptions on the practice
of mathematics teaching through the observation of “remote” teaching events. This
is done in a supportive atmosphere that does not focus on evaluative feedback.

The project is rooted in two theories: Schoenfeld’s (1998, 2010) Teaching in
Context theory and the theoretical framework of Mathematical Knowledge for
Teaching (MKT; Ball et al. 2008). According to the Teaching in Context frame-
work (Schoenfeld 1998, 2010), teaching is goal-oriented; teachers strive to achieve
various types of goals and are constantly modifying and changing their goals in
correspondence with classroom realities. The theory asserts that teachers have a
body of knowledge resources they can call upon for both expected and unexpected
situations and that teachers, like everyone else, have a set of orientations, i.e.,
predispositions and beliefs about mathematics, about students, and about teaching.
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This triad of goals, resources, and orientations monitors teachers’ decision-making
processes and shapes their choice of actions.

The MKT framework, proposed by Ball et al. (2008) and refined by Hill et al.
(2008), is comprised of two categories, Subject Matter Knowledge and Pedagogical
Content Knowledge, further divided into six sub-categories. This framework is
valuable both as a conceptualization tool of the kind of knowledgewewish to enhance
within a PD setting and as an analysis tool that allows a scrutinized look at what
teachers are focusing on during PD sessions, as I shall demonstrate in Sect. 16.4.

16.2.1 The Six-Lens Framework

In light of these theoretical frameworks, we suggest that teachers can and should be
actively involved in a deep reflection and analysis of their own (and others’) goals,
resources, and orientations and of their mathematical knowledge for teaching.
Following previous initial experimentation with video-based discussions that cen-
tralize these ideas (Arcavi and Schoenfeld 2008), we designed a framework con-
sisting of six analytical tools with which mathematics teachers can reflect on a
videotaped lesson. We call these tools lenses, to emphasize their use as means of
observation, in the dual sense of watching an occurrence but also commenting on it.
Viewing a lesson through a certain lens implies shedding light on a specific feature
of the mathematics teaching practice. Table 16.1 presents this six-lens framework
(henceforth: SLF), consisting of the following components: mathematical and
meta-mathematical ideas; goals; tasks and activities; interactions; dilemmas and
decision-making; and beliefs about mathematics teaching. Table 16.1 outlines the
focus of observation activities around each of these lenses, and exemplifies the sort
of questions that direct discussions with teachers.

16.2.2 Features of Using SLF in Video-Based PD Sessions

The SLF framework was designed with a particular desired learning environment in
mind. We envisioned a supportive and nonthreatening setting in which a group of
teachers feels comfortable enough to elicit ideas and thoughts, while opportunities are
created for deep reflection on practice. Our aimwas that the activities of watching and
analyzing videotaped lessons will lead to forming peer groups that are highly engaged
in core issues of themathematics teaching profession. Therefore,we explicitly defined
the use of SLF in PD sessions around the following features and norms:

• SLF is not evaluative in nature and is not used for the purpose of providing
feedback. In line with the works of Jaworski (1990) and Coles (2013), the use of
SLF attempts to establish nonjudgmental norms of discussion through the
redirection of highly evaluative comments into “issues to think about”. This is
closely connected to the next feature.
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Table 16.1 The Six-Lens Framework (SLF)

Examples of ques ons that direct 
teachers' discussions  

• Which ideas did the filmed teacher 
bring forward in the lesson? Which 
ideas were leŌ out? How can this 
decision be explained?  

• Which meta-mathemaƟcal noƟons 
were evident in the lesson?    

• Try to idenƟfy the goals that you 
think the filmed teacher was 
aƩempƟng to achieve. Show 
evidence from the video to support 
your asserƟon. 

• Did you noƟce a moment when the 
teacher's goals have changed or a 
new goal was added? Why do you 
think this happened? 

• Observe and document how the 
task is introduced and carried out 
and how the teacher addresses 
students’ reacƟons. 

• What may be the benefits and 
piƞalls in bringing this task to class?  

• How does the filmed teacher 
navigate students’ responses during 
the mathemaƟcal acƟvity? What 
kind of quesƟons does the teacher 
ask? Who gets permission to speak?  

• Characterize the teacher’s feedback 
to students. 

• Did you noƟce a dilemma during the 
lesson? What did the teacher decide 
to do? Are there alternaƟves you 
can think of for this decision?  

• What may be the constraints and 
affordances of the teacher’s choice 
and of the suggested alternaƟve 
paths? 

• What may be the filmed teacher’s 
views about the nature of 
mathemaƟcs as a discipline?  

• How does the teacher perceive his 
or her role? What may be the 
teacher’s ideas about what “good 
mathemaƟcs teaching” is? What 
does the teacher think about the 
students’ role as learners?  

Lenses for observing 
a videotaped 
mathema cs lesson 

The focus of ac vi es around each 
lens 

MathemaƟcal and 
meta-mathemaƟcal 
ideas  

Scanning the space of relevant ideas, 
concepts, and procedures, as well as 
meta-mathemaƟcal ideas (e.g., one 
counter example is sufficient to 
refute a conjecture) that may be 
associated with the lesson's topic 

Explicit and implicit 
goals 

AƩribuƟng goals that may underlie 
the teacher’s acƟons or decisions, on 
the basis of what was observed in 
the video. Rather than "scienƟfically 
verifying true goals", the aim is to 
sharpen awareness of different 
possible goals and negoƟate the pros 
and cons of preferring certain goals 
over others.  

Tasks and acƟviƟes ConducƟng an “a posteriori task 
analysis”: discussing features of the 
task and how it was enacted by the 
filmed teacher and students. 
NoƟcing if and when it develops 
differently than expected.

InteracƟons with 
students 

Observing and analyzing if and how 
the filmed teacher poses further 
quesƟons to those of the task; 
listens to (or ignores) comments or 
difficulƟes raised by students; 
manages discussions; delegates 
responsibiliƟes in the process of 
knowledge generaƟon. 

Dilemmas and 
decision-making 

Uncovering situaƟons of dilemma 
(i.e., when there is no evident 
opƟmal course of acƟon) that the 
filmed teacher seemed to have faced 
during the lesson. Discussing the 
decisions taken in order to resolve 
these dilemmas, and their 
consequent tradeoffs.   

Beliefs about 
mathemaƟcs 
teaching 
 

EliciƟng orientaƟons, beliefs and 
values that may be aƩributed to the 
filmed teacher on the basis of the 
video. Unpacking implicit messages 
that may be conveyed to students 
through the teacher's 
communicaƟons and acƟons. 
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• An SLF-based discussion pre-accepts a basic working assumption that the
filmed teacher is acting in the best interest of his/her students. Thus, observers
are required to “step into the shoes” of the filmed teacher in an attempt to
understand his/her goals, decisions, and beliefs, maintaining a respectful con-
versation. This viewpoint allows for deeper layers of reflection than those
entailed in comments such as “she’s doing it all wrong”.

• SLF does not pursue the demonstration of “best practice”. This is intentional;
we believe that for different teachers there may be different best practices and
that these differences may be linked to personal, contextual, and cultural set-
tings. Our aim is to choose lessons that can serve as springboards for meaningful
discussions on different aspects of practice, rather than on alignment with cri-
teria of what teaching should look like. In this sense, we adopted the term
“better than best practice” coined by Lefstein and Snell (2014).

• SLF is deeply rooted in the subject matter of mathematics and shuns generic
discussions on teaching. Issues of classroom management, the teachers’ body
language and other generic aspects are marginal, if not completely absent,
during discussions around the screened lessons. Instead, SLF refers to what lies
at the heart of mathematics teaching, such as mathematical concepts and ideas,
meta-mathematical concerns, possible targets of mathematics lessons, and
beliefs about mathematics teaching.

In addition, the following two choices regarding the use of SLF are important to
mention:

• SLF is a teacher-centered framework, i.e., the focus is on the filmed teacher’s
actions and choices. Students’ voices and actions are taken into account within
the interaction lens; however, the lion’s share of an SLF-based discussion is
dedicated to what the teacher is doing. In this regard, SLF is significantly
different from the noticing framework (Sherin et al. 2011) mentioned earlier.

• SLF does not refer to clips or short episodes edited from a lesson; rather, the
units of analysis for teachers’ discussions are whole lessons, in which a more
comprehensive “story” can unfold, with a beginning, a development of a pro-
cess, and a closure. This characteristic marks SLF as unique amongst other
frameworks used in most PD programs.

16.3 Exploring Possible Gains of Video-Based Discussions
Directed by the SLF Framework

16.3.1 VIDEO-LM Courses for Secondary Mathematics
Teachers

During the 2012–13 academic year, we conducted two pilot courses for mathe-
matics teachers. Based on this pilot, we refined the design of the course to obtain a
model which has since then been implemented in 29 new PD courses (7, 8, and 14
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in the academic years of 2013–14, 2014–15, and 2015–16, respectively). The
course consists of 30 academic hours, usually configured as 7–8 monthly sessions
of 4–4.5 h each, and is led by a VIDEO-LM facilitator who has been specifically
qualified for this pursuit, in consultation with the development team. In each ses-
sion, the teachers watch a videotaped mathematics lesson. Several modes of
“watching and discussing” may apply, according to a predesigned session plan
(e.g., watching together or in small groups, focusing on different lenses, watching
the whole lesson uninterruptedly vs. breaking it to sequenced episodes). The col-
lection of videotaped lessons (mostly filmed by the VIDEO-LM team in Israel and a
few videos from Japan and USA with Hebrew subtitles) as well as supplementary
materials such as the tasks used in the lesson and lesson graphs describing the flow
of the lesson are available on the VIDEO-LM website.1

16.3.2 Research Aim and Questions

Following the growing demand for VIDEO-LM courses, we designed several
studies aiming to explore possible impacts of these courses on the participating
teachers. Two of the research questions (RQ) investigated were the following:

RQ I. What may be the gains of video-based teacher discussions around the SLF
framework, in terms of the teachers’ MKT?
RQ II. To what degree do VIDEO-LM sessions stimulate reflections and deep
conversations about the teaching practice?

16.3.3 Data Collection and Analysis

Data was collected from the 17 VIDEO-LM professional development courses that
were conducted during 2012–2015 at nine different sites in Israel. The analyses of
data are still ongoing, and in this paper I report on selected findings from five
courses. Details on these courses and the data collection means used appear in
Table 16.2.

All participants were secondary school mathematics teachers with different
levels of experience—from new teachers to experienced teachers. Participation was
recognized by the Ministry of Education for accruing credential points for pro-
motion. Although courses were somewhat different from one another, according to
each facilitator’s approach and the local dynamics of the group, all were aligned
with the course model described above, and in all of them SLF was used as a base
for peer discussions.

1http://adasha.weizmann.ac.il.
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As shown in Table 16.2, the data collected included video and audio docu-
mentation of PD sessions and written reflections or feedback questionnaires sub-
mitted by teachers at the end of the course (these submissions were part of the
course assignments; the decision whether to include written reflections or feedback
questionnaires in the final assignments was left to the facilitator in each site). The
analysis of the data was carried out using various qualitative content analysis
methods. Each method was applied to selected parts of the data, according to both
availability of data at the time of analysis and the target of the analysis. Two
analysis methods that are relevant to findings reported in this paper are described
below.

(1) In order to answer RQ I, we performed a sequence of steps as follows (Karsenty
et al. 2015; Nurick 2015): Transcribing video or audio records of PD sessions;
tracing all utterances of participants’ associated with MKT (i.e., unpacking
mathematical concepts or relating to teaching these concepts); grouping utter-
ances into units of analysis that share similar ideas; using the units to form
“discussion maps” that convey the evolution of knowledge throughout different
parts of sessions (examples follow in the Findings section); and comparing
utterances in the discussions before and after watching the video using the six
MKT categories. This type of analysis was performed on data from Sites
(a) and (b).

(2) In order to answer RQ II, we performed a sequence of steps based on grounded
theory methods (Glaser and Strauss 1967) as follows (Karsenty and Schwarts
2016; Schwarts 2016): Reading all the documented material—both spoken and
written—relating to a the same lesson watched in various sites and identifying
common themes; categorizing participants’ utterances by the themes identified;

Table 16.2 Courses details and data collection means

Site Year Location No. of
participants

Written data
(reflections or
feedback
questionnaires)

Documentation
of sessions

(a) 2012–13 WIS 10 ✓ Video of all
sessions

(b) 2013–14 WIS 12 ✓ Video of all
sessions

(c) 2014–15 RTC, large city
in the center of
Israel

17 ✓ Video or audio
of several
sessions

(d) 2014–15 RTC, town in
the center of
Israel

11 ✓ Video or audio
of several
sessions

(e) 2014–15 RTC, town in
the north of
Israel

11 – Video or audio
of several
sessions

WIS Weizmann Institute of Science; RTC Regional Teacher Centre
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defining major themes according to considerations of prevalence and interest,
merging categories where necessary; building “theme narratives” in order to
characterize teachers’ reactions in each category; and reexamining the narra-
tives in search for different types of reflections that may be identified. This type
of analysis was performed on data from Sites (a), (c), (d) and (e).

16.4 Selected Findings

16.4.1 Growth of Mathematical Knowledge for Teaching

In the third session conducted at Site (a), teachers watched an episode from a lesson
on the commutative and associative laws given in a seventh grade heterogeneous
class. Prior to watching the video, teachers were asked to elicit any mathematical
ideas that may be associated with the topic of the commutative and associative laws.
They suggested a fairly wide range of ideas, from the simple fact that addition and
multiplication satisfy both laws, while subtraction and division do not, through
various models that demonstrate the laws, to efficient solutions of multi-term
exercises using the laws. It appeared that most teachers perceived the topic as
natural and intuitive for students, at least at the numerical level. The discussion was
coded in terms of the MKT categories (Ball et al. 2008): Each unit of analysis was
coded as reflecting Common Content Knowledge (CCK), Specialized Content
Knowledge (SCK), Knowledge of Content and Teaching (KCT), etc. The following
excerpt demonstrates a unit of analysis coded as KCS (Knowledge of Content and
Students):

64 T1: In seventh grade it’s difficult to construct a serious generalization, so you
smooth it over to things that work or don’t work. As ideas, the associative and
commutative laws are too early for seventh grade and it’s difficult to create
learning

65 T2: There is use in it, applications. For example 99 + 3232 + 1. A student that
looks at it intuitively will do it

66 T3: They will do it without us calling it the commutative law and generalizing it

The part of the discussion before the video was screened was formed into two
“discussion maps”, one of which is presented in Fig. 16.3. Each unit was colored
according to its MKT categorization using the color key introduced in Fig. 16.2.
The discussion map clearly shows that prior to watching the video, teachers mainly
demonstrated pedagogical content knowledge. The other discussion map, not
appearing herein due to space limitations, conveys the same conclusion.

In the videotaped episode, the teacher asked the class whether operations that
satisfy the commutative law necessarily satisfy the associative law as well and vice
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versa. The students’ spontaneous collective answer was “yes”. The teacher then
introduced operation tables that were shown to be counterexamples to this con-
jecture (see Fig. 16.4) and led a discussion resulting in the conclusion that the laws
are not interdependent.

The laws are natural 
and intuitive for students 

Thus teaching should aim at…

Consolidating students' 
intuition 

Therefore teaching 
needs to focus on…

The result is that…

Since the concept is natural, it is difficult 
to teach it; students perform operations 
without understanding their meaning 

Therefore teaching 
needs to focus on…

Comparing the 4 operations to 
understand where the laws apply, 
first generally, then examples 

Looking at many examples to 
see where the laws apply, from 
examples to generalizations 

Bringing in parameters creates 
difficulty and confusion for students 

Students take the existence of the 
commutative and associative laws for 
granted    

KCS

KCT

KCT+SCK

Fig. 16.3 One of the “discussion maps” describing the discussion before watching the video “The
commutative and associative laws” (For interpretation of the references to color in this figure, the
reader is referred to the web version of this article)

Fig. 16.2 Components of MKT (adapted from Ball et al. 2008, p. 403; For interpretation of the
references to color in this figure, the reader is referred to the web version of this article)
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While watching the episode, each couple of teachers was requested to focus on
one of the lenses comprising SLF. Then, in the plenary, observations were shared
and discussed by all participants. On the whole, teachers were surprised by the
episode, since the main mathematical idea raised by the filmed teacher was not
considered by the group earlier. One of them described the teachers goal as “un-
dermining the perception that an operation can either satisfy both the associative
and commutative laws or none of them”. The teachers used concepts from set theory
to express this idea (see Fig. 16.5), noting that addition and multiplication are in the
intersection of the commutative operations and the associative operations sets,
while subtraction and division are in the complement of the union of these sets.
While students might hold the misconception that the other possible two sets are
empty, the lesson demonstrates that operations exist in all possible sets. Teachers
also discussed the use of finite operation tables. Some teachers asserted that
operations on small finite groups are not equivalent, mathematically and peda-
gogically, to operations defined on the real numbers. Thus, they challenged the
group to find an operation, defined on the real numbers and relevant to students’
school learning, for which only one of the laws holds. Eventually, two such

Operation that returns the 
first number in the pair 

Arbitrary operation on all 
possible pairs made of a, b, c 

Operation table presented: 

Commutative law 

Associative law 

Fig. 16.4 Examples of operations discussed in the video “The commutative and associative laws”

Commutative 
Operations

Associative 
Operations

All Operations 

Fig. 16.5 A teacher presenting the mathematical idea of the episode using set theory
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examples were found: a□b = (a + b)2 and a□b = |a + b|. In both cases the oper-
ation satisfies the commutative law but not the associative law.

This part of the discussion was also coded in terms of the MKT categories and
formed into a discussion map. Figure 16.6 presents the schema of this map,
illustrating the colored MKT categories (since space is limited, only several units
are presented in words within this map). Comparing the discussion maps before and
after the video was observed and analyzed by teachers, reveals that watching the
video triggered a shift in the participants’ utterances from pedagogical considera-
tions towards the eliciting of more mathematical ideas, as was evident from the
considerable increase in the units coded as Common Content Knowledge (CCK). In
terms of quantification, the percentage of units coded as CCK before and after
observing the video was 20 and 45%, respectively.

The findings from the case of “the commutative and associative laws” video are
representative of other findings as well. For example, at Site (b), teachers explored
various definitions of an inflection point, after watching an 11th grade Calculus
class. In the video, the teacher discussed with her students the concept of concavity
of functions, leading to the definition of inflection points as points where the graph
changes from concavity upwards to concavity downwards or vice versa. This was
then translated into a working tool, associating inflection points of f(x) with the
extreme points of f′(x) or the zeros of f″(x).

The video triggered a discussion about possible deficiencies of this tool,
focusing on the following question: What about an inflection point where the first or

CCK-math

KCSKCT

CCK-meta

SCK
CCK

There is no operation defined 
on and known to students, 
for which only one law applies

Perhaps there is such an operation? 

The operations a□b = (a+b)2 and a□b 
= |a+b| satisfy the commutative law 
but not the associative law.   

Fig. 16.6 A schema of the “discussion map” describing the discussion after watching the video
“The commutative and associative laws” (For interpretation of the references to color in this figure,
the reader is referred to the web version of this article)
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the second derivatives do not exist? The group became motivated to find coun-
terexamples where f(x) has an inflection point in x0 but f′(x0) or f″(x0) do not exist,
and found a graphic example but not an algebraic representation of such a function.
Following the session, in an intense and rich email exchange, teachers found and
shared different counterexamples, as described in Fig. 16.7.

As a result, the group reached a consensus about the accuracy of definitions of
inflection points that are customarily presented in advanced calculus classrooms.
The new collectively generated MKT also included valuable pedagogical sugges-
tions offered by participants, such as the idea to have students find their own
counterexamples to the “rule” that identifies inflection points with f″(x) = 0.
Another opportunity to extend knowledge evolved during the session, when the
goals of the videotaped teacher were discussed. Participants attempted to justify the
teacher’s choice of presenting an inaccurate working definition by ascribing to her
two major considerations: Firstly, students may not be ready to grasp the correct
definition, which requires advanced thinking, and, secondly, functions such as
x � xj j are not included in the curriculum and in the final exams. This part of the
discussion opened a debate on more general questions: How far should teachers go
beyond what is delimited by the curriculum? To what extent are we allowed to
“sacrifice” mathematical rigor in favor of our students’ immediate practical
interests?

To sum up this section, the cases analyzed above suggest that SLF-based peer
discussions around videotaped lessons can be a powerful tool for prompting the
growth and refinement of relevant mathematical knowledge for teaching.

16.4.2 Enhancement of Reflection on the Mathematics
Teaching Practice

In this section I will demonstrate, through representative examples, how viewing
videotaped mathematics lessons of unknown teachers, using lenses included in

Fig. 16.7 Examples generated by teachers for functions f(x) that have an inflection point at 0 but
f′(0) and/or f″(0) do not exist
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SLF, contribute to the development of rich reflection on the practice of teaching
mathematics in general and on one’s own practice in particular. I will focus here on
two lenses: tasks and beliefs.

16.4.2.1 Reflecting Through the Lens of Tasks

The video enables teachers to watch a “task in action”, how it is implemented, the
nuances in introducing it, how students attempt to solve it, and how the teacher
addresses the students’ reactions. We refer to this as an “a posteriori task analysis”,
which may be very different from the somewhat limited “a priori analysis”, i.e.,
examining the same task as it appears in a written text. This turned out to be a very
engaging activity in VIDEO-LM courses. For example, when we investigated what
teachers talked about in sessions around a Japanese video, in which a challenging
geometrical problem was given to eighth grade students, we found that 29.3% of
the teachers’ talk was devoted to the task, its characteristics, affordances, and
limitations, how it was presented and how students handled it (Karsenty and
Schwarts 2016; Schwarts 2016). This collective analysis led many teachers to relate
to the kinds of tasks and problems they use in their own classrooms, as illustrated in
the following teacher citations, taken from PD sessions or from written reflections
submitted after the course:

• “There’s an embarrassment here, do I surprise my students at all, occasionally?
It’s difficult to deal with this embarrassment […] Seeing this unusual problem
raises the question of how many times do I do that, and what it tells about the
way I teach” (PD session, Site a)

• “Many times I try to select problems that are unique, special […], it’s not always
simple, sometimes I have them from last year, sometimes I find them accidently
[…], and then once you do the irregular stuff, the other problems they can
handle” (PD session, Site c)

• “There are beautiful proofs using areas, but in fact we actually never do them”
(PD session, Site e)

• “Watching this Japanese lesson left me with frustration, that I as a teacher
mainly teach technique, solving algorithms and not much beyond that, I feel
chained to the time constraints. Or is this just an excuse for not being creative?”
(written reflection).

• “I’m in my 22nd year of teaching, and I look at this thing and I know that I’m
taking this today […] I’m not going to be this teacher in this classroom but I
definitely leave here asking myself what I’m going to do with it tomorrow, in
my classes” (PD session, Site a).

Talking about tasks and their implementation in class may also evoke reflections
about risks that teachers take (or refrain from taking) when choosing tasks for
students. Following a discussion on a videotaped lesson on sequences, given in a
low-track class, one of the teachers wrote in his reflection:
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In this session teachers occasionally raised doubts (that I also feel sometimes) about the
ability of students to deal with the tasks we give them. The one who phrased it in the best
way was Sam, who said “I don’t have the courage to throw my students into it, just like
that, on their own…”. I think that this is the heart of the matter, it is us who don’t have
courage to let them strive. If we dare a little more, so will they. (written reflection, emphasis
in original)

In this case, the teacher raises considerations of what he calls “courage,” related
to selecting tasks that students may struggle with. In another case, teachers talked
about selecting tasks that are challenging for teachers. The conversation below took
place in Site (d):

677 T1: What does a teacher do if he just now opened the textbook, saw some
tasks, tried to solve them and did not succeed. Does he take it to class? […]

685 Facilitator: Do I take to my classroom something that I cannot solve?
686 T2: Of course not! Are you kidding me?
687 T3: Surely not
688 T1: I don’t know, maybe yes
689 T2: What [do you mean] yes?
691 Facilitator: Why?
692 T1: Why? Because if I come to class with the approach of “let’s learn

together” …
693 T2: Let’s think together?
694 T1: Let’s think together, here, there are certain things that I too…

In both cases, clearly the discussion through the lens of tasks is interrelated with
the teachers’ beliefs regarding their role as teachers, although this interrelation
remains implicit. This connection is not surprising; the issue of how teachers’
beliefs shape their practice has been widely studied (e.g., Schoenfeld 1998; Li and
Moschkovich 2013). Thus, we acknowledge that in fact the use of most of the
lenses comprising SLF (i.e., goals, tasks, interactions, and dilemmas) is likely to be
guided by the beliefs teachers hold. This is one of the main sources for our decision
to explicitly include conversations about beliefs in VIDEO-LM courses, or in other
words, to incorporate the lens of beliefs as one of the six lenses. In the next section I
elaborate on possible gains of using the lens of beliefs.

16.4.2.2 Reflecting Through the Lens of Beliefs

Facilitating discussion about beliefs is a delicate matter; for many teachers, this
theoretical construct is foreign, thus it needs to be carefully presented. As shown in
Table 16.1 above, some the questions we focus on within this lens are: On the basis
of the observed teacher’s actions, what may be her views about the nature of
mathematics as a discipline? How does she perceive her role? What may be her
ideas about what “good mathematics teaching” is? The exercise of inferring and
attributing beliefs to another teacher is not a trivial one. However, it often triggers
catalytic comments, especially in later stages of the course, when teachers begin to
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internalize the SLF language and connect the analysis to their own practices. This
was demonstrated vividly in one of the PD sessions at Site (b). The topic of the
lesson watched was sketching, for a given function f ðxÞ, the graphs of ef ðxÞ and
ln f ðxÞ. The teaching in this lesson was frontal, with the teacher’s tight control over
the development of the mathematical knowledge. Students appeared to be highly
engaged in the questions posed by the teacher, who never left her position near the
board. In the discussion, one teacher said:

The lesson really challenges our beliefs. […] If you’d ask me at the beginning, before
watching the video, what… how should a lesson look like, I would have said many nice
things […] such as you need to have a discussion, you need to have shared thinking,
students should experiment right and wrong things, you need to have interaction in the
class, and dynamics, and then suddenly I see something that… doesn’t have these things -
there’s no discussion, or just a very short one, and I’m looking at it and I say ‘what a
beautiful lesson!’ […] so now I have an internal conflict, really, I have an internal conflict,
because on the one hand everything I know about teaching is missing here, but on the other
hand I like what I see. So I’m trying to settle this dissonance, so I say okay, maybe it’s class
dependent, maybe it’s students dependent.

This citation indicates that, when given the opportunity to directly speak about
beliefs, teachers may re-inspect their most deep convictions and practices and
confront the complexities of teaching. This may or may not lead to changes in one’s
own beliefs, or in one’s practice, but it increases teachers’ awareness to various
decisions they make, which are often left implicit.

16.5 Discussion

VIDEO-LM professional development courses provide opportunities for secondary
mathematics teachers to watch authentic lessons and discuss them in a supportive
and non-evaluative environment. In the previous section, I presented indications of
the development and refinement of mathematical knowledge for teaching among
courses participants, as well as enhancement of focused reflection on various
aspects of the mathematics teaching practice. One of the interesting questions to be
raised in light of these findings concerns the mechanisms by which such devel-
opments may take place. In this specific context, I define “mechanisms” as “actions,
thinking processes, or behaviors occurring during the activities of watching a
videotaped lesson and engaging in an SLF-based discussion”. Accordingly, the aim
is to identify and characterize mechanisms that possibly enable, or account for,
observed outcomes of reflection and knowledge growth that are associated with
participation in VIDEO-LM courses. Pointing to such explanatory mechanisms is
an elusive pursuit, as it is difficult to determine a causal connection between certain
features of a PD activity and observed products of the PD. Nevertheless, several
mechanisms can by mentioned as a starting point for further exploration:
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I. Using an explicit “language” and a multi-focused tool. The SLF framework
and norms can be seen as a new language that teachers get acquainted with.
The explicitness of SLF and its presence in all sessions function as an
organizer of experience, in the sense described in classic psycholinguistics:
“Language enables us to extract from the fleeting mass of phenomena the
common elements or qualities essential for our experience, and to give them
permanence” (Hörmann 1979, p. 11). This possible mechanism is reflected,
for instance, in the following citation from the written feedback of a par-
ticipant in Site (a):

These are really tools that now I use to look at lessons, and also when I plan
lessons […] everything suddenly has names, selecting tasks as well. There are
many kinds of spectacles that now became natural to me.

II. Comparing and contrasting. Comparison to others is a powerful mechanism,
encountered by people on a daily basis (Mussweiler et al. 2004). Although
such comparisons can often be unproductive, situations in which a subtle
comparison to other professionals is triggered carry an opportunity to reflect
on one’s goals and decisions. VIDEO-LM’s agenda does not include direct
comparisons, yet these are apparently unavoidable, and in most PD con-
versations teachers switch back and forth from analyzing actions of the
videotaped teacher to self-inspections of their own teaching, as shown, for
instance, in Sect. 16.4.2.1. In some of the written feedbacks we found even
“meta-reflections” on this process, for example:

During the video watching and discussions […] I found myself engaged in
questions: Where do I stand? What would I have done? How come I never
thought of this? […] In what ways am I different? What should I keep? What
should I change?

III. Intentional stepping into another person’s shoes. This mechanism is
explicitly present in SLF-based discussions, as described in Sect. 16.2.2. We
invite teachers to infer and attribute goals, dilemmas, and beliefs to the
filmed teacher; Rather than evaluating the teacher, they are requested to seek
possible reasons for certain decisions made. One of our facilitators developed
a unique strategy for this request: A chair is put in the front of the room, and
whoever wants to offer an analysis of a specific occurrence is asked to sit in
that chair and speak in a first person voice, attempting to adopt the per-
spective of the teacher in the video. This unusual stance has a considerable
influence on participants, as illustrated in the following citation by a teacher
who was also a regional teacher mentor employed by the Ministry of
Education:

[It] completely changed the nature of my observations on teachers’ lessons […]
all of the conversation, the conversation that I hold now with a teacher, after
visiting his classroom for observation, is more like “what’s your motivation, and
what brought you [to do this], and what were your considerations”, and it leads
to a different kind of meaningful conversations. […] Something changed, even in
the way I observe.
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IV. Postponing judgment. In the first PD sessions, the facilitators establish this
norm almost “forcefully”; Instead of judgmental comments about the filmed
teacher’s decisions, participants are asked to consider alternative paths and
their consequent tradeoffs. Later on in the course, this norm seems to be
internalized as an almost automatic mechanism, and judgmental viewpoints
are replaced with the need for mindful decisions, as reflected in the following
feedback:

We all teach fine, the point is to understand what you’re doing, why do you do it,
and do you really agree with what you decided to do. If you agree, fine, but if
you don’t – go and fix it! But be aware of what you did. I never thought about
that.

V. Discovering collective wisdom. Hearing opinions expressed by peer teachers,
rather than by “authorities” such as facilitators or researchers, seems to have
the potential of convincing teachers to consider a change in their own
opinion. We encountered an interesting example of this mechanism in the
case of Daniela (pseudonym), a teacher who argued passionately that the
Japanese lesson could never be successfully duplicated in an Israeli class-
room. She nevertheless decided to try it in her classroom and reported back
in the next session on its overwhelming success. When asked later why she
decided to act against her intuition, she said:

The fact that people were in favor. I’m trying to figure out if, let’s say, everyone
was against it, would I still want to try this lesson? Probably the fact that there
were other people that said… that supported this lesson and said “it might be a
good thing, it might be beneficial.” […] Yeah, it definitely reinforced it […]
Other opinions that upset me is actually a fascinating thing, to try them, because,
again, who says I’m in this place that is guaranteed? The minute this opinion was
strengthened by opinions of the participants, and people justified their stance, so
I was even more interested to check this out.

VI. Exposure to a variety of styles and methods. The videotaped lessons observed
during a typical VIDEO-LM course are varied in terms of teaching styles,
approaches to teaching core subjects in the curriculum, use of technology,
and more. Possibly, this diversity serves as an eye opener by itself and has an
impact on teachers’ readiness to elicit ideas of their own and reflect on their
practice. The following citation from a written reflection illustrates this:

It’s a pleasure to look at different teachers and diverse teaching styles that often
were a mirror to my own conduct and sometimes were a source for inspiration
and pondering.

I end this paper with a last citation, taken from a teacher’s written reflection, that
conveys the spirit of VIDEO-LM and the kind of teacher learning we aspire to
nurture within it:

Theoretically, I know that there is an infinite variety of teachers that I can regard
as “good teachers” and still they will be different from one another, and in
various decision crossroads they may take totally opposite decisions. However,
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each time I witness this it is a refreshing discovery, and I feel that slowly slowly
it wears out my inherent belief that there are absolute “rights” and “wrongs” in
teaching too.
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Chapter 17
Powering Knowledge Versus
Pouring Facts

Petar S. Kenderov

Abstract Many problems related to the real world admit a mathematical
description (i.e., a mathematical model) based on what is studied at school. Solving
the mathematical model, however, often requires a higher level of mathematics, and
this is the reason for not including such problems in the curriculum. We present
several problems of this kind and propose solutions to their mathematical models by
means of widely available dynamic mathematics software (DMS) systems. For
some of the problems, it is possible to directly use the in-built functionalities of the
DMS and to construct a computer representation of the problem that allows
exploring the situation and obtaining a solution without developing a mathematical
model first. Using DMS in this way can broaden the applicability of school
mathematics and increase its appeal. The ability of students to solve problems with
the help of DMS has been tested by means of two types of competitions.

Keywords Mathematical modelling � Inquiry education � Computational thinking

17.1 Introduction

There are two partially contradicting trends in high school mathematics education.
On one hand, we want mathematical knowledge to be based on a solid logical base
(rigor). On the other hand, we want this knowledge to be rich both in content and
applications. These two trends cannot always (and easily) be reconciled (De Lange
1996). One of the reasons for this contradiction is the fact that only a few problems
related to practice allow mathematically pure and complete treatment with the
traditional rigor. The demonstration of patterns of logical thinking is time con-
suming and often related to simplified mathematical content that does not properly
reflect the unavoidable complexity of the real world. The formulation of a
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mathematical model for a real-life situation cannot be based on rigor only.
Dropping out some features and keeping only the most essential ones in the
mathematical model requires skills that have little to do with rigor, and this is an
obstacle for the inclusion of complex real-life situations in the mathematics cur-
riculum. Furthermore, there are many problems related to practice (some of which
will be considered below) that can be equipped with a reasonable mathematical
model based on what is studied at school. The corresponding model may be a
system of equations, an optimization problem, or something else of a mathematical
nature. Solving this mathematical model, however, with the traditional rigor within
the frame of the school mathematics is not always possible. It may require a higher
level of mathematical knowledge, for instance, advanced calculus and/or numerical
methods for approximation of the exact solution. This is another reason for
avoiding the consideration of genuine real-life applications within the school
mathematics. However, with the appearance of powerful and widely accessible
dynamic mathematics software (DMS) systems it became possible to reduce, at
least partially, the mentioned contradiction between rigor and applications. Solving
a model can be performed by means of DMS. As mentioned in Hegedus et al.
(2017) “This leaves more time for essential mathematical skills, e.g., interpreting,
reflecting, arguing and also modeling or model building for which there is mostly
no time in traditional teaching” (p. 20). With the help of technology, it is possible to
offer to students much more demanding mathematical content and interesting
applications (Hoyles and Lagrange 2009). Such a change would drastically increase
the realm of real-life problems that can be considered in school. We do not have in
mind only the traditional application of computers where a mathematical model of the
problem is solved by a computer; in addition, some examples will be described below
where the standard in-built operations (“buttons”) of the DMS system can be used
directly to make a computer representation of the problem without first writing the
formulas of a mathematical model. This DMS representation of the problem will be
called a “computer model of the problem.” By means of this model and the in-built
functionalities of DMS (such as dragging, measuring distances, and areas), the
solution of the problem can be found with a reasonable degree of precision. This
direct DMS modelling of the problem as well as the mathematical modelling of the
problem, followed by a DMS-assisted solution, are in the focus of this paper, which is
mainly oriented toward problem solving. Both types of modelling support the most
natural way of knowledge acquisition: by experimenting, by formulating and veri-
fying conjectures, by discussing with peers, and by asking more experienced people.
In a nutshell, the technology provides the opportunity to learn mathematics by
inquiry. This refers not only to what happens (and how it happens) in class but also to
extracurricular activities that provide a fruitful playground for building mathematical
literacy and cultivating elements of computational thinking (Freiman et al. 2009).
Another advantage of using technology in this way is that much larger and more
operational mathematical content could be given to the students at an earlier age.

Later in the paper, several problems are considered for which it is easy to assign
a proper mathematical model based on school mathematics but whose solution with
the necessary rigor while remaining in the frame of school mathematics is relatively
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difficult (or at least not easy). On the other hand, these models are easily solvable by
means of DMS systems. This way of problem solving opens further opportunities
for inquiry and cultivates the elementary computational thinking skills of the stu-
dents, thus powering (in the sense of “adding power to”) their existing knowledge
and skills. Problems such as the ones considered below and the inquiry-based
approach to their solving can make the mathematics studied in school more
applicable and more appealing in contrast to the now prevailing pouring of
mathematical facts. The ability of school students of different ages to solve such
problems has been tested by means of two online competitions called VIVA
Mathematics with Computer and Theme of the Month. The participants’ scores
show that the use of DMS for problem solving is gradually gaining popularity in
Bulgaria. The students are interested in this approach and many are capable of using
it. The problems considered next have been used in these competitions.

17.2 The Sample of Problems

The problems in this section illustrate the differences in the uses of the models we
consider in this paper: a mathematical model which can (or cannot) be solved in the
traditional way, a mathematical model allowing a simple DMS supported solution,
and a computer model (direct DMS representation of the problem). Each of the
problems is easy to formulate as a mathematical model but not so easy to solve with
the usual rigor within school mathematics. On the other hand, an approximate
DMS-assisted solution is readily available, or a computer model of the problem is
easy to construct by means of which the problem can be solved even at the earlier
stages of secondary education.

The Parking Entrance Problem

This problem is a further elaboration of one of the Problems of the Month used
in the European Project MASCIL (http://www.mascil-project.eu/). We present both
the computer modeling, which is amenable for younger students using DMS, and
the pencil-and-paper mathematical modeling, which requires rather advanced
knowledge of mathematics.

Problem 1 A vehicle (car, baby carriage, or wheel-chair) with a wheelbase b (the
distance between the centers of the wheels) and clearance (ride height) c is to be
moved from the street to the basement of a house over a slope of c degrees
(Fig. 17.1; c = 20º). Is this possible without damaging the bottom of the vehicle?
(Fig. 17.2)

The answer to this problem depends on the concrete values of the parameters b,
c, and c. A steeper slope c is more likely to cause damage to the vehicle. Damage
will occur also if b is big enough. The clearance c is also decisive. The interplay
between these parameters is not simple and the usual intuition does not help much.
The heavy scratches on the surface of many “sleeping policemen” (speed bumps)
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on the streets indicate that problems similar to this one are important. Further, for
the sake of simplicity, we will depict the vehicle only by its two wheels (circles of
radius c centered at A and B respectively) and the segment AB (the wheelbase)
connecting the wheels. Both the computer model of this problem and its mathe-
matical model rely on the very basic geometric fact that the opposite angles formed
by two intersecting lines are equal (angles a in Fig. 17.3). Figure 17.3 shows the
collision situation when the vertex at the beginning of the slope hits the bottom of
the vehicle at some point C from the segment AB. The second arm of the angle b on
Fig. 17.3 is the tangent from C to the front wheel.

A collision occurs only if aþ b\c (the front wheel is no longer rolling on the
slope). This suggests the idea for the computer model that is visualized on
Fig. 17.4. The numbers b, c, and c are entered in the model as parameters (sliders in
GeoGebra). Using the built-in operations of GeoGebra, one constructs a segment
AB of length b and two circles (the wheels) of radius c centered at A and B and takes
an arbitrary point C on AB that is outside the two wheels. Further, tangents from
C to these circles are drawn as shown in Fig. 17.4 and, finally, the angles a and b
are measured by the corresponding operation in GeoGebra.

Fig. 17.1 Moving a vehicle
from the street to the
basement

Fig. 17.2 The lowest flat part
of the vehicle can hit the
“vertex” at the beginning of
the slope

Fig. 17.3 Collision situation
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The sum d ¼ aþ b is a function of the position of the point C. By moving
(dragging) point C along AB and observing the change of d, one can establish
experimentally that the function d attains its minimum at the point M, which is the
middle of AB. If this minimum is bigger or equal to c, the vehicle could be parked
safely in the basement. Otherwise a collision occurs. This observation confirms the
intuitive expectation that the middle M of the segment AB is the critical and most
vulnerable point. If it passes above the slope vertex, the vehicle can be parked
safely in the basement. This observation also shows that even a simpler computer
model can solve the problem. Note that if C and M coincide, then a ¼ b, and the
condition for non-collision takes the form 2a� c. Given the numbers b, c, and c,
one finds the middle M of the segment AB, draws the tangents from M to the two
wheels, and measures the angle d between these tangents (Fig. 17.5). If d� c, the
vehicle can be moved safely. If d\c there will be a collision and moving it without
damage becomes impossible.

The second computer model solution of this problem is completely amenable for
students at earlier stages of secondary education. In contrast, as we will now see, the
mathematical model of the problem requires knowledge of inverse trigonometric
functions, and the classical solution uses some elements of calculus. Denote by x the
length of the segment CA in Fig. 17.4. Then a ¼ arcsin c

x and b ¼ arcsin c
b�x. One has

to find the minimum of the function dðxÞ ¼ arcsin c
x þ arcsin c

b�x in the interval
[c, b − c] (this is the interval where the function dðxÞ is well-defined; we implicitly
assume here that b > 2c). By finding the zeros of the derivative of dðxÞ, one can derive
that the minimum of this function is attained for x ¼ b

2 and solve the problem.
Here are some tasks for further inquiry with the computer or the mathematical

model of this problem:

Problem 1.1 What is the steepest slope (in degrees) that a baby carriage with
b = 130 cm and c = 12 cm can overcome without troubles?

Fig. 17.4 A computer model
for the parking problem

Fig. 17.5 A simpler
computer model for the
parking problem
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Problem 1.2 If the slope to the basement is 20° and the wheelbase of the car is
b = 290 cm, what is the smallest radius of the wheels such that moving the car to
the basement will not be a problem?

Problem 1.3 For some vehicles, the bottom line is different from the line con-
necting the centers of the wheels. Also, the front wheels and the rear wheels are not
always of the same radius (Fig. 17.6). Develop a computer and a mathematical
model for the exploration of the dangers for moving such vehicles down slopes.

One could further explore the parking problem by means of the more realistic
computer model developed by Toni Chehlarova. The corresponding GeoGebra file
is available at http://cabinet.bg/content/bg/html/d22178.html (last visited December
2016).

The Cylindrical Container Problem

Problem 2 Two thirds of the volume of a closed cylindrical can of radius 5 cm
(Fig. 17.7) is filled with some liquid. What is the height of the liquid if the can is
laid horizontally?

The problem seems to be three dimensional but could be easily reduced to a two
dimensional one. In the horizontal position, two thirds of the circle area of the can
base are covered by the liquid. Hence, the problem is reduced to finding a hori-
zontal chord AB (Fig. 17.8) in a circle of radius 5 cm with center at O that cuts off a
circular segment (slice) of area one third of the total area of the circle.

Fig. 17.6 A model with different wheels

Fig. 17.7 The cistern
problem
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This can be done in different ways. The in-built operations of the DMS can be
used to find the area of the circular sector outlined by the segments OA, OB, and the
arc from B to A (in the counterclockwise direction) and the area of the triangle AOB.
The difference between the two areas is the area of the circular segment we are
looking for. If the horizontal chord AB is made movable (the DMS takes care of the
dynamics and automatically re-calculates the areas), a position for the chord AB can
be found such that the area of the circular segment is one third of the area of the
entire circle. If C is the middle of the chord AB at this position, then the height of
the liquid in the horizontal can is equal to the radius of the can base (5 cm) plus the
length of the segment CO (which can be measured by the functionalities of the
DMS). In our case, an approximate value for the height of the liquid is 6.32 cm.
The computer model just developed allows exploration of similar situations with
other cylindrical cans (the radius of the can could be made changeable, the part of
the can volume which is filled with liquid in vertical position can change, etc.).

We will now proceed to a mathematical model of the problem. For the sake of
generality (and since this will not introduce further complications), we will denote
the radius of the can base by r. Let a be the measure (in radians) of the angle in the
circular sector considered above. The area of this sector is a

2 r
2. The area of the

triangle OBA is 1
2 r

2 sina. Hence, the angle a that corresponds to a circular segment
with area equal to one third of the area of the circle has to satisfy the equation
a
2 r

2 � 1
2 r

2 sina ¼ 1
3 pr

2. Equivalently, a� sin a� 2
3 p ¼ 0. As we see, the mathe-

matical model of this problem is an exotic equation. School mathematics does not
deal with such equations, and this seems to be the reason for not including this
important cistern problem in the curriculum. The numerical/graphical solution of
this model by DMS, however, is available. The graph of the function f ðxÞ ¼
x� sin x� 2

3p is depicted in Fig. 17.9. The point A has been constructed as the
intersection of the graph of f and the x-axis. The first coordinate of A gives the angle
we are looking for: a ¼ 2:60533 (the precision of 5 digits after the decimal point is
taken here arbitrarily; it can be increased or decreased).

The length of the segment OC corresponding to this a and r ¼ 5 can be cal-
culated: OC ¼ r cos a2 ¼ 1:32465. For the height of the liquid in the horizontal
position of the can, we obtain 6.32465.

Fig. 17.8 Cutting a circular
segment with an area one
third of the circle area
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If the angle a is measured in degrees, the area of the circular sector is a
360 pr

2.
Correspondingly, the equation from which the angle a will be determined has the
following appearance:

a
180

p� sin a� 2
3
p ¼ 0

For further inquiries with either the computer model or with the mathematical
model, one could consider the following related problems:

Problem 2.1 A horizontally laid cylindrical tank with diameter 200 cm and length
500 cm is partially filled with petrol so that the level of the petrol is 80 cm. How
many liters of petrol are there in the tank?

Problem 2.2 If the height of the can from Problem 2 is 24 cm, how much addi-
tional liquid should be poured into it in a horizontal position so that the level of the
liquid is elevated by 1 cm? If after the addition of the liquid the can is turned into
vertical position, what is the height of the liquid level?

Problem 2.3 If the height of the can from Problem 2 is 24 cm, how much liquid
should be removed from it so that in a horizontal position the liquid level drops
down by 1 cm?

Problem 2.4 A heavy metal ball of radius 4 cm is placed into an empty vertically
placed can of radius 5 cm and height 25 cm. Then liquid is poured into the can until
its level reaches 20 cm and then the can is sealed. What would the liquid level be, if
the can is laid horizontally (see Fig. 17.10)?

Fig. 17.9 Graphical presentation of the function f(x)
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The Conical Container Problem

This problem is a well-known mathematics exercise for university students. It
can be settled by means of calculus or by a mathematical trick with inequalities. We
present the mathematical model and demonstrate that by means of a DMS the
problem can be considered and solved in school.

Problem 3 A circular sector of measure a (in degrees) has been cut out from a
circular plastic sheet of radius l with center O (Fig. 17.11). From the remaining part,
a right circular cone is made by sticking (gluing) the cuts (Fig. 17.12). What is the
size of angle a (in degrees) for which the volume of the resultant cone is maximal?

The mathematical model of this problem is based on the well-known formula for
the volume V of the cone: V ¼ pR2

3 h. Here R is the radius of the cone base and h is

Fig. 17.10 In a horizontal position, a part of the ball might be above the liquid surface

Fig. 17.11 Cutting a sector
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cone’s height. Since a is measured in degrees, the length of the arc of the removed
circular sector is a

360 2pl. Therefore, the length of the cone base circumference is
what remains after the cutting: 2pl� a

360 2pl. Hence, 2pl� a
360 2pl ¼ 2pR. It follows

that the radius R can be expressed as function of x ¼ a
360 :R ¼ lð1� xÞ. Further, it

follows from Pythagoras’s theorem that h2 ¼ l2 � R2 ¼ l2 1� ð1� xÞ2
� �

. i.e.,

h ¼ l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� xÞ2

q
. Thus, the volume of the cone is

V ¼ 1
3 pl

3ð1� xÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� xÞ2

q
. The essence of the problem, its mathematical

model, is to find a number x; 0� x� 1, for which the function f ðxÞ ¼ ð1�
xÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1� xÞ2

q
attains its maximal value. Once again we see that the derivation

of the mathematical model is based on school mathematics. Solving this model
however requires more advanced mathematics. Using calculus one can find the
extremal values of this function f by finding the zeros of its derivative. These zeros

are x ¼ 1�
ffiffi
2

pffiffi
3

p ; x ¼ 1 and x ¼ 1þ
ffiffi
2

pffiffi
3

p . The last of these numbers is outside the

interval [0, 1] and is not relevant for our considerations. The value x ¼ 1 corre-
sponds to a minimum for f because f ð1Þ ¼ 0. Therefore the maximum of f is

attained at x ¼ 1�
ffiffi
2

pffiffi
3

p and the value of f at this point is equal to 2
3

ffiffi
1
3

q
.

There is a nice trick which allows solution of this mathematical model by means
of the well-known inequality between the arithmetic mean and the geometric mean
of any non-negative numbers a, b, and c:

ffiffiffiffiffiffiffi
abc3

p � aþ bþ c
3 . It is known also that

equality is attained in this inequality if and only if a ¼ b ¼ c. Applying this

inequality for a ¼ b ¼ ð1�xÞ2
2 ; c ¼ 1� ð1� xÞ2, we get

f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ4 1� ð1� xÞ2

� �r

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� xÞ2

2
ð1� xÞ2

2
1� ð1� xÞ2

� �
s

� 2

ffiffiffiffiffiffiffiffiffiffiffiffi
1
3

� �3
s

¼ 2
3

ffiffiffi
1
3

r
:

The equality will be reached when ð1�xÞ2
2 ¼ 1� ð1� xÞ2

� �
. This again yields

x ¼ 1�
ffiffi
2

pffiffi
3

p .

Fig. 17.12 Gluing a cone
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If at all, calculus and the mentioned trick with the inequality are available only at
the last stages of school mathematics. With the help of DMS, however, the
mathematical model of this problem can be solved by younger students. It is
possible to draw the graph of the function f ðxÞ and see where its maximum is. The
graph of the function f(x) can be seen in Fig. 17.13.

It is clear from this picture that the function f has two maxima. Only the one in
the interval [0, 1] on the x-axes is of interest for us. The DMS (GeoGebra) allows
observation of the coordinates of a point A, which moves along the graph of the
function. When A is dragged to the highest point in the graph, its first coordinate
will be equal to the value of x we are looking for. In Fig. 17.13, this is the point
A ¼ ð0:18; 0:38Þ. If the precision of calculations is increased, one gets x ¼ 0:1835,

which is a very good approximation of x ¼ 1�
ffiffi
2

pffiffi
3

p . This value of x corresponds to

a � 66:06�, and the latter value could be accepted as a reasonable solution to
Problem 3.

The Ice Cream Container Problem

The next problem is a challenge for pencil-and-paper technology, even for uni-
versity students. With the help of DMS it is completely amenable for school students.

Problem 4 An ice cream container (as depicted in Fig. 17.14) is to be made of a
circular plastic sheet of radius l with center O by cutting and gluing (sticking). The
cutting and gluing operations allowed and the order in which they are performed are:

(a) Cut a circular sector of measure a (in degrees) from the plastic sheet
(Fig. 17.15) and, by gluing, make from it a cone that will serve as the lower
part of the ice cream container.

(b) Cut off from the remainder (Fig. 17.15) a full circular sector of radius t (this
number t is to be specified later) and glue a cut cone (truncated cone) that will
serve as the upper part of the ice cream container.

For what size of a will the ice cream container have largest volume?

Fig. 17.13 The graph of the function f(x)
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The length of the arc of the circular sector of measure a is 2pla
360 . The cone made of

this sector will have a radius r of the base determined from the equation 2pr ¼ 2pla
360 ;

i.e., r ¼ lx where x ¼ a
360.

The radius t of the full circular sector mentioned in (b) is determined in such a
way that the upper circle of the lower cone fits the lower circle of the upper

truncated cone: ð360�aÞ
360 2pt ¼ 2pr. Hence t ¼ r

1�x. Note that the length of the gen-
eratrix of the truncated cone obtained in (b) is l� t. The resultant container is
depicted in Fig. 17.16. As in Problem 3, we see that the radius R of the upper
circle of the truncated cone is R ¼ ð1� xÞl. The altitude h1 of lower cone is
determined by Pythagoras’s theorem: h21 ¼ l2 � r2 ¼ l2 1� x2ð Þ. The volume of the
lower cone is

V1 ¼ p
3
l3x2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p
:

The altitude h2 of the truncated cone is determined similarly (using Pythagoras’s
theorem):

Fig. 17.14 The ice-cream
container

Fig. 17.15 The cutting and
gluing process
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h2 ¼ lð1� 2xÞ
1� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� x2

p
:

The volume V2 of the truncated cone is V2 ¼ p
3 h2 R2 þRrþ r2ð Þ

where R ¼ ð1� xÞl, r ¼ lx, R2 þRrþ r2 ¼ l2 ð1� xÞ2 þð1� xÞxþ x2
� �

¼
l2 ð1� xÞ2 þ x
� �

.

Hence V2 ¼ p
3 l

3 1�2x
1�x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x� x2

p
1� xþ x2ð Þ. The volume of the ice cream con-

tainer is V ¼ V1 þV2. We note here that x must belong to the interval ½0; 1
2�. This

follows from the fact that the number t ¼ r
1�x ¼ lx

1�x cannot be bigger than l.
Finding the maximum of V by means of calculus is a challenge. With the help of

a DMS it can be found, as in the previous problem, that the maximal value of V is
attained for x � 0:23088, which corresponds to a � 83:12�.

Here are some problems for further inquiry:

Problem 4.1 What is the minimal radius l of the initial circle from which the ice
cream container is produced in the above way so that its volume is at least 200 cm3?

Problem 4.2 A bucket (the far right of Fig. 17.17) with a circular base of radius
r = 10 cm has to be made from a circular plastic sheet of radius l = 60 cm with
center O by cutting and gluing (sticking). The cuts that are allowed and the order in
which they are performed are:

(a) Cut circles centered at O (i.e., concentric with the initial circle).
(b) Cut from the remainder a radial segment of measure a (in degrees).

For what size of a will the volume of the bucket be the largest?

Fig. 17.16 Geometry behind
the mathematical model
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What is the largest possible volume of the bucket?
A computer model for Problem 4 was developed by Toni Chehlarova. It can be

found at http://cabinet.bg/content/bg/html/d22582.html (visited December 2016).

A geometrical problem

This is the last of the sample problems:

Problem 5 For an arbitrary triangle ABC, denote by D, E, and F its orthocenter,
incenter, and the centroid, correspondingly (Fig. 17.18). Are there triangles ABC
for which the area of the triangle DEF is bigger than the area of the triangle ABC
itself?

This problem deviates in style from the previously considered problems. It
contains a research-like component that is suitable for work on a project by the
students. The computer model for this problem is easy to construct. The in-built
operations of GeoGebra can be used to construct the orthocenter, the incenter, and
the centroid of an arbitrary triangle. Using the “finding area of a polygon” com-
mand, the areas of the triangles ABC and DEF are calculated and displayed on the
monitor. Due to the dynamic functionalities of GeoGebra, this computer model of
Problem 5 allows to explore many triangles (by dragging some of the vertices A, B,
and C). Playing with the vertices can experimentally establish that for some obtuse
triangles ABC the answer to the question in Problem 5 is positive.

Note that this computer model solution of the problem does not require
knowledge of more advanced mathematics (trigonometry, analytical geometry,
etc.). It relies on the knowledge of the basic notions involved (orthocenter, incenter,

Fig. 17.17 The construction of a bucket

Fig. 17.18 The orthocenter
D, the incenter E, and the
centroid F of the triangle ABC
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and centroid), on acquaintance with the functionalities of GeoGebra, and on some
modeling skills.

Problem 5.1 For an arbitrary triangle ABC, find the area of the triangle with
vertices at the orthocenter, the circumcenter, and the centroid of ABC.

Exploring this task with the corresponding computer model can show that the
required area is always zero and, therefore, the three points are collinear (they lie on
the famous Euler line of the triangle ABC).

The following simplified form of Problem 5 was given as one of the tasks in the
competition VIVA Mathematics with Computer.

Problem 5.2 Given is a triangle ABC (by its sides or by the coordinates of its
vertices; see Fig. 17.18). Find the area of the triangle with vertices at the ortho-
center D, the incenter E, and the centroid F of the triangle ABC.

17.3 The Competitions Viva Mathematics with Computer
and Theme of the Month

In order to examine the attitudes of Bulgarian students to problems like those in the
previous section and to test the students’ ability to solve such problems, two online
competitions named VIVA Mathematics with Computer (VIVA MC) and Theme of
the Month (TM) were launched in 2014 with the financial support of VIVACOM, a
major telecommunication operator in the country (https://www.vivacom.bg/bg).
The VIVA MC competition is for students from Grade 3 to Grade 12 and has two
rounds. The first round is conducted twice during the academic year (in December
and April) and is with open access. The second round takes place in September or
early October and is only for the best performers in the December and April
editions of the first round from the previous academic year. Pre-registration is
needed at the VIVAcognita portal (http://vivacognita.org/) for participation in
VIVA MC. Each registered student chooses how to participate in the competition:
from any place with internet access by desktop, tablet, or laptop. On a fixed day and
time every participant gets access for 60 min to a worksheet that contains 10 tasks
corresponding to the participant’s age group. The easier tasks are equipped with
several possible answers. i.e., these are multiple-choice questions. The participant is
expected to select the correct answer on the basis of performing some mathematical
operations. The majority of the remaining tasks require a decimal number (usually
up to two digits after the decimal point) as an answer that has to be entered in a
special answer field. To find this answer, the student has to make a computer model
of the task and explore it with the functionalities of DMS. Some of the most difficult
tasks are accompanied by a file (a computer model) that solves a similar problem,
and participants must modify the files accordingly in order to solve the tasks
assigned to them. The number of points given for the answer to a task depends on
both how close the student’s answer is to the one calculated by the jury and/or by
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the author of the task and the difficulty of the problem. The maximum possible
score is 50 points. There are no restrictions concerning the use of resources: books,
internet search, advice from specialists, etc. More information about this compe-
tition can be found in Chehlarova and Kenderov (2015). In April 2016, there were
474 participants while in December 2016 the number of participants was 1321. In
both cases there were five age groups (two grades per group). An impression of the
degree to which the participants were capable of solving problems with the help of
DMS can be gained by the overview of their scores presented in Tables 17.1 and
17.2.

Students’ scores in solving the problems fromSect. 17.2were similar. Problem 5.2
from Sect. 17.2was proposed as a last (presumablymost difficult) task in the very first
edition of VIVAMC (December 2014) to 207 students from Grades 8 to 12. The lack
of experiencewith such problems and the short time towork on the problems (60 min)
is clearly seen from the obtained results: About half of the students (48%) did not enter
any answer for this task, 13% provided precise answer, and 2% gave an answer with
satisfactory precision. The cylindrical container problem (Problem 2 from Sect. 17.2)
was given to 317 students from Grade 8 to Grade 12 at the December 2015 edition of
VIVAMC.An auxiliaryDMSfilewas provided in order to facilitate the exploration of
the problem. Only 13% provided an answer with sufficiently high precision. The
answers of a further 37% were given with satisfactory precision. The general feeling
has been that with every new edition of VIVAMC the performance of the participants
improves, though rather gradually.

The other competition, TM, is conducted monthly. A theme of five tasks related
to a common mathematical idea is published at the beginning of the month on the
abovementioned portal (vivacognita.org). The tasks are arranged in the direction of
increasing difficulty. The participants are expected to solve the problems and send
responses online by the end of the month. Some of the problems are accompanied
by auxiliary DMS files which allow the students to explore the mathematical

Table 17.1 Scores of participants in April 2016 competition VIVA MC

Grades in a group 3 and 4 5 and 6 7 and 8 9 and 10 11 and 12

Number of participants 146 142 79 67 40

Participants with 35–50 points 80 49 2 9 1

Participants with 20–34 points 44 59 15 21 16

Participants with 10–19 points 19 24 22 23 5

Table 17.2 Scores of participants in December 2016 competition VIVA MC

Grades in a group 3 and 4 5 and 6 7 and 8 9 and 10 11 and 12

Number of participants 449 385 268 123 86

Participants with 35–50 points 180 27 7 12 11

Participants with 20–34 points 147 146 24 29 28

Participants with 10–19 points 75 114 84 37 20
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problem, find suitable properties, try out different strategies, and find a (usually
approximate) solution. To solve the more difficult tasks from the theme, the stu-
dents have to adapt the auxiliary files from previous problems or to develop their
own files for testing and solving the problem. Each problem brings at most 10
points (depending on the degree of preciseness of the answer). The maximum total
score is 50 points. Usually there are hundreds of visits to the site where the theme is
published. Only dozens, however, submit solutions. The theme for February 2015
was related to the parking problem (Problem 1 from Sect. 17.2). Seventeen par-
ticipants submitted their solutions. Seven received between 35 and 50 points and
two received between 20 and 34. Much better were the results from the theme from
September 2015, which was related to conical containers (Problems 3, 4, and 4.2
from Sect. 17.2). Sixteen students submitted their solutions, with 14 scoring
between 41 and 50 points and one scoring 34 points. The results of the first several
runs of TM are published in Kenderov et al. (2015) and Chehlarova and Kenderov
(2015).

After the April 2017 edition of VIVA MC, the participants (more than 500) were
asked to fill in a questionnaire and submit it to organizers. Of the 143 participants
who returned the questionnaire, 95.51% said they liked the event. Here are some of
their responses:

The problems are interesting because they require logical thinking.
I like it because I could use GeoGebra for each problem.
The contest is nice since I don’t feel pressed when solving the problems.
The questions are at the right level for me.
It is interesting and helps me develop.
I find the problems entertaining.
It was easy for me to understand the formulation of the problem by means of the
dynamic file I could use.
Every problem is interesting in its own way.
I like the fact that I can explore while solving the problem.
I like the parking entrance problem because it is something you could face in the
real world.
This relatively modest feedback confirms the expectation that providing the stu-
dents with appropriate exploration tools can increase their awareness of both the
beauty and the applicability of mathematics.
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Chapter 18
Mathematical Problem Solving
in Choice-Affluent Environments

Boris Koichu

Abstract This chapter presents a proposal for an exploratory confluence model of
mathematical problem solving in different instructional contexts. The proposed
model aims at bridging the knowledge of how problem solving occurs and the
knowledge of how to enhance problem solving. The model relies of the premise that
a key solution idea to a problem is constructed as a result of shifts of attention
stipulated by the solver’s individual resources, interaction with peers, or with a
source of knowledge about the solution. The exposition converges to the conclusion
that successful problem solving is likely to occur in choice-affluent learning envi-
ronments, in which the solvers are empowered to make informed choices of a
challenge to cope with, problem-solving schemata, a mode of interaction, an extent
of collaboration, and an agent to learn from. The theoretical argument is supported
by an example from an empirical study.

Keywords Mathematical problem solving � Shifts of attention
Choice-affluent environments

18.1 Introduction

The centrality of problem solving in doing and studying mathematics is broadly
recognized in the mathematics education research community (e.g., Halmos 1980;
Mason 2016a; Schroeder and Lester 1989). Research on problem solving keeps
growing, and many approaches to translating the developed problem-solving
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frameworks and accumulated research results into recommendations for practice
have been articulated (e.g., Schoenfeld 1983, 1985; Felmer et al. 2016). In par-
ticular, the professional literature suggests various specifications of “good” math-
ematical problems (e.g., Lappan and Phillips 1998), characterizations of
problem-solving classrooms (e.g., Engle and Conant 2002; Lampert 1990;
Schoenfeld et al. 2014), and sets of principles for teaching for and through problem
solving (Cai 2010; Heller and Hungate 1985; Koichu et al. 2007a; Lester 2013;
Lester and Cai 2016; Schoenfeld 1983). In many cases, the recommendations are
presented as generalized reflections on successful classroom practices, experiments,
or series of experiments (e.g., Koichu et al. 2007a, b; Lester 2013; Schoenfeld
1992). In some cases, the recommendations are based also on theories of
problem-solving architecture (e.g., Ambrus and Barczi-Veres 2016; Clark et al.
2006) or decision making (e.g., Schoenfeld 2013).

It is indicative, however, that recent reflections of the state of the art tend to
emphasize lacunas and open questions rather than the accomplishments of
problem-solving research as a servant of mathematics instruction (Mason 2016a, b;
Lester 2013; Schoenfeld 2013; Vinner 2014). Vinner (2014), for instance, questions
the feasibility and even the relevance of problem solving for exam-oriented school
education. Mason (2016a) reminds us that a variety of factors should be taken into
account in order to make problem-solving instruction feasible in school and uni-
versity settings. In his words, “all aspects of the human psyche, cognition, affect,
behavior, attention, will and metacognition or witnessing must be involved”
(p. 110). He then characterizes a research approach attempting to isolate particular
features of problem solving as simplistic and unlikely to bring the desired change. In
the same volume (Felmer et al. 2016), Mason (2016b) suggests that the crucial yet
not sufficiently understood issue for adopting a problem-solving approach to
mathematics teaching is the when-issue, that is, the issue of “when to introduce
exploratory tasks, when to intervene, and in what way” (p. 263).

Lester (2013) acknowledges that research on mathematical problem solving has
provided some valuable information about problem-solving instruction, but argues
that the progress is slow and, generally speaking, insufficient. As one of the
explanations of “this unfortunate state of affairs” (p. 251), Lester (2013) reiterates the
claim that he and Charles made 25 years ago (Lester and Charles 1992): Research on
mathematical problem solving remains largely atheoretical. Lester (2013) then
argues that the comprehensive framework for research on problem-solving
instruction proposed by Lester and Charles (1992) is still worth pursuing.
Likewise, Schoenfeld (2013) reflects on the gains and limitations of a problem-
solving framework that he authored 30 years ago (Schoenfeld 1985). He then sug-
gests that the current challenge is to advance from a framework for examining
problem solving to a model that would specify the theoretical architecture of this
activity, i.e., would say “what matters” in problem solving (Schoenfeld 2013, p. 17),
explain “how decision making occurs within that architecture” (p. 17) and theorize
“how ideas grow and can be shared in interaction” (p. 20).

Stimulated by the aforementioned calls, the goal of this chapter is to present a
particular proposal for an exploratory model of problem solving that would bridge

308 B. Koichu



our knowledge of how problem solving occurs with the knowledge of how to
support and enhance problem solving in instructional settings.1 The proposed
model is confluence, namely, it consolidates ideas from several conceptual and
theoretical frameworks. The consolidation is pursued by means of a strategy that is
referred to as networking theories by iterative unpacking. In brief, this strategy
consists of sequencing theoretical developments so that at each step of theorizing
one theory serves as an overarching conceptual framework, in which another the-
ory, either existing or emerging, is embedded in order to elaborate on the chosen
elements(s) of the overarching theory. Mason’s theory of shifts of attention (Mason
1989, 2008, 2010) serves as the overarching conceptual framework of the proposed
model. Throughout the chapter, the model is illustrated by consideration of a single
geometry problem, which is analyzed theoretically and then based on empirical
evidence. Thoughts about possible implications of the model are shared in the
concluding section.

18.2 The Proposed Model at a Glance

The proposed model is schematically presented in Fig. 18.1. The model is referred
to as the shifts and choices model (SCM) in the rest of the chapter.

The inner part of Fig. 18.1 concerns the process that might be termed, with
reference to Pólya (1945/1973) or Schoenfeld (1992), as a heuristic search
embedded in the planning phase of problem solving. The main query associated
with this part of the SCM is, simply stated: Where can a solution to a challenging
problem come from? A more elaborated formulation of the query is as follows:
Through which activities and resources does a problem solver construct a pathway
of shifts of attention towards an invention of a key solution idea to a mathematical
problem?

The outer part of Fig. 18.1 concerns a configuration of choices available to a
problem solver. This part of the SCM deals with the following query: What choices
is a problem solver empowered to make when constructing or co-constructing a
chain of shifts of attention towards invention of a key solution idea to a mathe-
matical problem that he or she perceives as a challenge? Among endless conscious
and unconscious choices that individuals face when solving problems on their own
or with others, the model takes into account the following: a choice of a challenge
to be dealt with, a choice of schemata for dealing with a challenge, a choice of the
mode of interaction, a choice of an extent of collaboration, and a choice of an agent
to learn from.

As Fig. 18.1 shows, a key solution idea notion is in the core of the SCM. It is a
solver-centered notion. Namely, a key solution idea is a heuristic idea that is

1In a way, this paper synthesizes and develops ideas that have been presented separately in
Palatnik and Koichu (2014, 2015) and Koichu (2015a, b, 2017).
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invented by the solver and evokes the conviction that it can lead to a full solution to
the problem. A full solution is referred to as a solution that, to the solver’s
knowledge, would be acceptable in a situation in which it is communicated.
Furthermore, Raman (2003) explains the heuristic idea notion as follows2: it is “an
idea based on informal understandings, e.g., grounded in empirical data or repre-
sented by a picture, which may be suggestive but does not necessarily lead directly
to a formal proof” (p. 322). Note that not any heuristic idea is a key solution idea.
An in-depth discussion of an idea notion is beyond the scope of this chapter. It is
sufficient to mention here that the Oxford Dictionary defines idea as “a thought or
suggestion as to a possible course of action” (https://en.oxforddictionaries.com/
definition/idea). Accordingly, a heuristic idea notion can operationally be treated as
a piece of content-level mathematical discourse (see Sfard 2007) suggestive as to a
possible way of solving the problem. An elaborated example is presented below.

The SCM relies on three premises:

1. Even when a problem is solved in collaboration, it has a situational solver: an
individual who invents and eventually shares its key solution idea.

2. A key solution idea can be invented by a situational solver as a shift of attention
in a sequence of his or her shifts of attention when coping with the problem.

3. Generally speaking, a solver’s pathway of the shifts of attention is stipulated by
choices the solver is empowered to make and by enacting the following types of
resources:

Fig. 18.1 Schematic
presentation of the proposed
model (SCM)

2See also Koichu et al. (2007a) and Liljedahl et al. (2016) for detailed discussions of approaches to
conceptualizing heuristics.
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(i) individual resources,
(ii) interaction with peer solvers who do not know the solution and struggle

in their own ways with the problem or attempt to solve it together, and
(iii) interaction with a source of knowledge about the solution or its parts,

such as a textbook, an internet resource, a teacher, or a classmate who has
already found the solution but is not yet disclosing it.

These three possibilities are intended to embrace all frequent situations of
problem solving in instructional settings. Needless to say, the possibilities can be
employed separately or can complement each other in problem solving.

18.3 Elaboration on the Elements of the Proposed Model

Discussion of the elements of the SCM in this section is supported by consideration
of the two-circle problem (Fig. 18.2). The reader is invited to approach it before
continuing reading.

18.3.1 Invention of a Key Solution Idea as a Shift
of Attention

Mason’s theory of shifts of attention had initially been formulated as a conceptual
tool to dismantle constructing abstractions (Mason 1989) and was then extended to
the phenomena of mathematical thinking and learning (Mason 2008, 2010).
Palatnik and Koichu (2014, 2015) adapted the theory as a tool for analyzing insight
problem solving. To characterize attention shifts, Mason (2008) considers what
attended to by an individual and how it is attended to. To address the “how”
question, he distinguishes five different ways of attending or structures of attention.

According to Mason (2008), holding the wholes is the structure of attention
where a person is gazing at the whole without focusing on particulars. This is what
probably happens when a reader flashes a glance at Fig. 18.2. Discerning details is
a structure of attention in which one’s attention is caught by a detail that becomes
distinguished from the rest of the elements of the attended object. For example,
one’s attention can be caught by the segments EF and GH or by triangle MEF in
Fig. 18.2. Mason (2008) suggests that “discerning details is neither algorithmic nor
logically sequential” (p. 37). Recognizing relationships between the discerned
elements is a development from discerned details that often occurs automatically: It
refers to specific connections between specific elements. Say, for instance, that
when gazing at the central part of Fig. 18.2, one notices that segments EF and GH
look equal and can be considered sides of a quadrilateral EFHG. The perceiving
properties structure of attention is different from the recognizing relationships
structure in a subtle but essential way. In the words of Mason (2008): “When you
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are aware of a possible relationship and you are looking for elements to fit it, you
are perceiving a property” (p. 38). In our example, one can draw the segments EG
and FH. The perceived property would be “EFHG is a rectangle.” Finally, rea-
soning on the basis of perceived properties is a structure of attention in which
selected properties are attended to as the only basis for further reasoning. For
example, one might consider what needs to be proved for sides EG and FH in order
to prove that EFHG is a rectangle (see Fig. 18.3).

Palatnik and Koichu (2014, 2015) added a “why” question to Mason’s “what”
and “how” questions about attention: Why do individuals make shifts from one
object of attention to another in the way that they do? One way of addressing this
question is related to the obstacles embedded for the solver in attending to a
particular object and to continuous evaluation of potential gains and losses of the
choice to keep attending to the object or shift the attention to another one.

Two extrinsic circles are given. From the center of each circle, two tangent segments to another circle 
are constructed. The points of intersection of the tangent lines with the circles define two chords, EF
and GH (see drawing). Prove that EF = GH. 

Fig. 18.2 The two-circle problem (translated from Sharygin and Gordin 2001, No. 3463)

Fig. 18.3 Auxiliary construction for the two-circle problem
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For example, one can try proving that EFHG is a rectangle by applying the
available schemata associated with the rectangle notion, such as: it is enough to
prove that EFHG is a parallelogram with a right angle, so let’s try proving first that
EF = FH. To prove this conjecture, it is enough to prove that DEKG ffi DFLH and
so on. (The reader is invited to check that this reasoning line is not particularly
productive). At some point one can decide that enough attention has been given to
EFHG and consider another object. A shift is likely to be mediated by mathematical
resources within the reach for the solver. Our imaginary solver might think: “What
else can be done? How can the congruency of two segments be proved? Maybe, it is
worth including the segments into some pair of triangles and prove that they are
congruent. Are EFM and GHN congruent? Apparently not. Should I stop consid-
ering EF and GH for a while and focus on their halves, EP and GQ?” Such a shift
may seem trivial (especially if one knows the solution), but in fact it is not.

In a while, the solver might consider EP and GQ to be the sides of the
right-angle triangles MEP and NGQ. The solver can then perceive the following
property: DMEP�DMCN and DNGQ�DNAM. There is a gap, however, between
perceiving a property and choosing it as the only basis for further reasoning. Indeed,
the solver should somehow realize that the triangle similarity can help in proving
that two segments are equal. If our imaginary solver arrives this far, she has a good
chance of inventing a key solution idea to the problem. One such idea consists of
the observation that EP and GQ can be expressed through the same elements, R,
r and MN, based on the aforementioned triangle similarities. This idea can be
developed into a full solution to the problem: EP ¼ r�R

MN from the first similarity and
GQ ¼ r�R

MN from the second similarity, consequently, EF = GH, QED.
The presented imaginary scenario suggests how the process of inventing a key

solution idea can be seen in terms of the solver’s shifts of attention. Generally
speaking, the solver attends to the objects embedded in the problem formulation
and mentally manipulates them by applying available schemata. The process is goal
directed, but particular shifts can be sporadic. However, it should be noted that the
presented scenario is neither complete nor compelling. More should be done in
order to realistically characterize one’s problem solving process as a chain of shifts
of attention. In particular, the specificity of problem solving in socially different
educational contexts should be considered. This is done in the next three
subsections.

18.3.2 Shifts of Attention in Individual Problem Solving

The lion’s share of the data corpus that underlies the development of the foremost
problem-solving frameworks (e.g., Schoenfeld 1985; Carlson and Bloom 2005)
consists of cases of individual problem solving. Carlson and Bloom (2005) consider
four phases in individual problem solving by an expert mathematician: orientation,
planning, executing, and checking. The model also includes a sub-cycle,
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“conjecture-test-evaluate,” and operates with various problem-solving attributes
(this notion is due to Schoenfeld 1985), such as conceptual knowledge, heuristics,
metacognition, control, and affect. Generally speaking, Carlson and Bloom’s
framework offers a kit of conceptual tools that can be used for producing thick
descriptions of individual problem solving. These tools enter the SCM as tools for
addressing “how” and “why” questions about the shifts of attention.

For example, when our imaginary problem solver individually coped with the
two-circle problem, she first directed her attention to proving that a particular
quadrilateral is a rectangle and then shifted her attention to proving the similarity of
two pairs of triangles. The pre- and post-stages of the shift can be described as two
“conjecture-test-evaluate” sub-cycles within the planning phase. The shift itself can
be characterized in terms of her mathematical, heuristic, and affective resources.

18.3.3 Shifts of Attention When Interaction with Peers Is
Available

While studying problem-solving behaviors in small groups of students, Clark et al.
(2014) extended Carlson and Bloom’s (2005) framework by introducing two new
categories/codes. They termed them questioning and group synergy. The former
category was introduced in order to give room in the data analysis to various
questions (for assistance, for clarification, for status, and for direction) that the
participants had asked. The latter category appeared to be necessary in order

to capture the combination and confluence of two or more group members’
problem-solving moves that could only occur when solving problems as a member of a
group. … A key characteristic of this group synergy code is that it leads to increased group
interaction and activity, sometimes in unanticipated and very productive ways. (Clark et al.
2014, p. 10–11)

Indeed, when a possibility to collaborate with peers is available to problem
solvers, their shifts of attention can be stipulated by inputs of the group members,
especially when the inputs are shared in some common problem-solving space in a
non-tiresome way. Peer interaction can increase one’s chances to produce a key
solution idea, but can also be overwhelming or distracting. In particular, when
nobody in a group knows how to solve the problem, the other members’ inputs of
potential value are frequently undistinguishable for the solver from inputs of no
value.

Schwartz et al. (2000) deeply explored the cognitive gains of two children who
failed to solve a problem individually, but who improved when working in peer
interaction. They distinguished between the two-wrongs-make-a-right and two-
wrongs-make-a-wrong phenomena. The mechanisms of co-construction behind the
two-wrongs-make-a-right phenomenon were the mechanisms of disagreement,
hypothesis testing, and inferring new knowledge through challenging and con-
ceding. These mechanisms might be involved in those cases of collaborative
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problem solving in which group synergy led the participants in Clark et al.’s (2014)
study to “very productive ways” (p. 11) of solving the given problems. To further
explore the phenomenon of group synergy, it seems necessary to me to acknowl-
edge that the above mechanisms can become active on condition that at least
sometimes solvers shift their attention from an object that they are exploring to an
object attended to by a peer.

Consider as an example once more the two-circle problem, but this time based
on real data. The data were collected from a two-year experiment conducted in a
class of 17 regular (i.e., not identified as gifted) 10th grade students. During the
experiment, many difficult problems were offered to the students to solve over the
course of 5–7 days for each problem in an environment combining classroom work
and work from home. The work from home was supported by an online discussion
forum at Google+. The forum devoted to the two-circle problem was active for
4 days and contained 230 entries. Three different solutions were finally produced,
including the one presented in Sect. 18.3.1. An excerpt from the beginning of the
forum is presented in Fig. 18.4.

Evidently, the forum participants are still far from any productive heuristic idea.
Some of them are at the orientation stage and, generally speaking, are occupied by
creating initial drawings. Maya and Shira begin to develop the direction that
“EFHG is a rectangle,” which, as we know, is a dead end. The excerpt is suggestive
about the following phenomena: The students independently choose different
objects of attention (e.g., a kite-looking quadrilateral, a pair of triangles) and then
share what they do. Sometimes the attempts to get somebody’s attention are suc-
cessful, and sometimes they are not. The students occasionally choose to explore
the same object together. The excerpt is also suggestive about the aforementioned
mechanisms of productive peer interaction.

How can such interactions influence an individual pathway of shifts of attention?
Let me address this question with particular focus on one student, Maya. According
to the teacher, Maya has neither been an active student in a classroom nor a
successful student in terms of mathematics exams. However, Maya was one of the
most active participants in the two-circle problem forum. She initiated six out of 34
discussion threads, replied to 17 threads, uploaded two drawings and a scanned
hand-written solution. Based on her reflective questionnaire, we know that she
devoted about 5 h to the problem during 4 days and that for about 3 h she worked
outside the forum. A part of the Maya’s devious pathway of shifts of attention is
presented on Fig. 18.5.

The key solution idea of Maya was similar to the idea presented in Sect. 18.3.1,
but she considered different pairs of similar triangles, DKNL�DGNH and
DKML�DEMF (see Fig. 18.3). To prove their similarity, Maya first proved that
KL EFk kGH. This was the major challenge for her. She then concluded the proof by
consideration of proportions stemming from these similarities, in conjunction to a
proportion based on the “bridging” pair of similar triangles, DMAK �DNCK.

Maya was a situational problem solver in the group. It is of note that Maya’s
interactions with the peers were mostly around the objects of attention chosen by
her. She switched her attention to the objects suggested by the other students only
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Teacher (Day 1, 04:37): Good week, everybody! Today we begin to work on the third task of the project 
[posts the two-circle problem]. Good luck! [one “like”]

Shira (Day 1, 22:14): Look guys if you understand anything [in the drawing on the right side]. But this 
is, in general, the direction that I took :-) [two “likes”]

Zila (Day 1, 22:16): The truth is that I also thought about this way as the beginning, but how can you 
develop it?

...

Zila (Day 1, 23:49): How the quadrilateral (looks 
like a kite at Shira’ drawing), you said that it is a 
parallelogram?

Shira (Day 2, 07:22): I think it does not matter 
what the drawing looks like. 
I just did not draw exactly :-). But this is, in 
general, the direction, and you’re invited to 
continue :-)

Maya (Day 2, 19:11): I began working on the exercise only now and your auxiliary construction is exactly 
what I drew, even without looking! ̂ ______^ [this sign roughly means “I am proud of myself”]. I thought 
to use the segment between the centers and the distance from the center of the circle, I’ve not really 
begun, just a sort of conjecture :) [one “like”]

Zila (Day 2, 19:12): [Maya], did you reach the conclusion that this is a parallelogram (there is a good 
chance that it is!)

Maya (Day 2, 19:27): So far I’ve drawn a sketch, and I’ll begin thinking in a moment. 

Shira (Day 2, 21:20): The teacher, Maya, and I talked by phone for about 15 min about the exercise and 
thought and thought and got something. We first understood that the key points are those points that 
define the given arcs. So, the auxiliary construction should be from them or they should be included in 
two triangles so that it will be possible to prove their congruence. [one “like”]

Teacher (Day 2, 21:26): Excellent. It is worth adding to your previous ideas. . .

Maya (Day 2, 21:40): I invented this idea with Shira! In general, the idea is to get to the rectangle EFHG. 
I thought about how to prove the congruence of triangles EKG = FLN [six “likes”].

Zila (Day 2, 21:42): Maya, they are congruent.

Maya (Day 2, 21:52): How???

Zila (Day 2, 21:53): According to the calculation of the angles.

Zila (Day 2, 21:53): Or, in fact, they are not.

Maya (Day 2, 22:01): Hhhhhhhh... I am sitting already for two hours on this exercise. . . . If it would be 
that simple, I’d already be successful.

Fig. 18.4 An excerpt from the beginning of the two-circle problem forum at Google+

and the radii (with Shira) Points defining arcs and 
Possible similarity of and , and Similarity of and , and 

(Meirav’s idea, which appears to be a dead-end for Maya) return to Return to Arcs 
and , chords and , similarity of and , and ??? solution

Fig. 18.5 Maya’s pathway of shifts of attention in solving the two-circle problem
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occasionally. Interestingly, Maya never explicitly acknowledged that the ideas
published on the forum had helped her. However, some steps in her solution can be
traced back to the ideas suggested and explored by the other participants.3

18.3.4 Shifts of Attention When Interaction with a Solution
Source Is Available

The option to interact with a source of knowledge about a key solution idea to a
problem can drastically change a pathway of one’s shifts of attention, up to the
point that the entire process can stop being a problem-solving process and become a
solution-comprehending process. The proposed model seeks to encompass only the
situations in which a solution source can be present as a provider of cues to the
solution or as a convenient storage of potentially useful facts, but not as a source of
telling the solution. Such situations are common, for instance, when a teacher
orchestrates a classroom problem-solving discussion by favoring some of the stu-
dents’ ideas over the others. In this way, the problem is usually solved before the
bell rings. A danger in this situation, however, is that solvers may be deprived of
inventing the solution themselves or being misled by a deceptive feeling, such as
“we solved the problem with the teacher, so next time I will be able to do so alone.”

When a source of knowledge about the solution is present but does not give the
solution, the solver may attempt to extract it from the source (e.g., see questions for
assistance and questions for direction in Clark et al. 2014). In some cases, one’s
shifts of attention may occur as a straightforward result of such attempts. In other
cases, a shift may occur as a result of a conflict that emerges when more knowl-
edgeable and less knowledgeable interlocutors assign different meanings to the
same assertions (cf. Sfard 2007 for commognitive conflict).

For example, the assertion “triangle similarity is a good idea” can either pass
unnoticed in the group discourse or be a trigger for solvers to shift their object of
attention. The effect of the assertion would depend on who it has come from, a
regular member of the group or a teacher or a peer who acts as if she has already
solved the problem. In one case, the assertion can be perceived as “it is possible that
similarity helps”; in another, “I’ve tried it and it helped”; and in yet another, “this is
the direction approved by the authority.” In any case, the perceived meaning of the
assertion does not necessarily match the intended meaning. In line with Sfard
(2007), one can suggest that a conflict of meanings can either hinder the commu-
nication or help the solver to progress.

Let me illustrate this suggestion by an additional excerpt from the two-circle
problem forum. This time I focus on an episode from the fourth day of the forum,
when Maya announced that she solved the problem. As one can see (Fig. 18.6),

3Unfortunately, there is no room in this chapter for presenting the entire story and the method of its
SCM-driven analysis. It will be done elsewhere (Koichu and Harris, in preparation).
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when Maya announced her success, she was perceived by the classmates as a source
of knowledge about the solution. This fact essentially shaped the interaction. The
students did not ask Maya to share the full solution—they knew that this would be
against the rules of the forum—but they sought direction. Meirav asked for a hint.
Alina inquired about a particular solution step. Zila assumed the role of translator of
Maya’s ideas. Interestingly, the situation is not as festive as it probably looks. First,
when Maya actually published her solution, it appeared to have a logical flaw. She
succeeded in producing a mathematically valid proof only after polishing her rea-
soning in interaction with two forum participants. Second, the hint provided by
Maya in response to Meirav’s request sounds as if the theorem of Thales might
help, but this was not the case. Neither Maya nor other students used this theorem.
Apparently, “Thaleses” was an informal tag for the idea “use proportions.” Third,
Zila’s suggestion that Maya used “the theorems about tangent line and triangle
similarity” was not helpful at best and misleading at worst. Maya indeed used these
theorems, but not in proving that KL EFk kGH.

The point is that interaction with a source of knowledge about the solution
affected the students’ pathways of shifts of attention. It seems that an interplay of
different meanings assigned to the same statements (e.g., “Thaleses”) was an
indispensable characteristics of such an interaction.

18.3.5 Shifts of Attention and Choices That Problem Solvers
Are Empowered to Make

The argument presented in the previous subsections can be condensed into the
following sentence: One’s pathway of shifts of attention when solving a mathe-
matical problem is essentially stipulated by choices that he or she is empowered to
make. At a glance, this sentence echoes a description of a problem-solving process
offered by Poincaré (1908/1948): A problem-solving process consists of a
multi-stage pathway of conscious and unconscious steps towards the minimalistic

Maya: I succeeeeeded!!!!!!!!! And the teacher was right—it is so simple that I’d like to die. When I 
saw that I got nothing from [consideration of] this rectangle [ on Fig. X.3], I stopped and 
changed the direction. I went to proportions and solved the problem in several theorems, but anyway 
the long way towards the rectangle helped me to prove that KL is parallel to GH and to EF, and this is 
what helped me with the proportions. I’ll now organize everything and upload the solution ☺.

Meirav: But I’ve tried a lot of times to find some parallelograms and it did not work out. A hint?

Maya: Look at Thaleses…

Meirav: Thanks!! 

Alina: How did you prove that is parallel to and ?

Zila: She used the theorems about tangent lines and triangle similarity. Is it right? 

Maya: Oh, it took years….

Fig. 18.6 Interactions with Maya as a source of knowledge about the solution
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choice of a “proper” combination of ideas out of a huge number of possible
combinations. Let us recall however that the Poincaré description concerns only the
choices of solution steps and applies to mathematicians. Accordingly, it concerns
problem solving having very specific characteristics: The choice of a problem is
made by its solver, the solver has immensely rich mathematical resources and is
confident in his or her mathematical ability, and has virtually unlimited time and
motivation for pursuing the problem. Few of these characteristics hold for mathe-
matical problem solving in instructional settings, but let me argue that Poincaré’s
idea of choice can usefully be stretched.

Let us come back to the case of Maya once more. This time I wish to summarize
the choices available to Maya when solving the Two-Circle Problem. As the pre-
sented excerpts suggest, Maya acted in a situation in which she could choose her
solution moves. Moreover, she was empowered to make many additional choices
such as whether to attempt to solve the given problem, follow problem-solving ideas
of her peers, or merely ignore the challenge, as some of her classmates did; whether
to work independently or with her peers; who to communicate with and when; which
ideas to respond to and when; which and whose ideas to include into her own
reasoning line; which ideas to share and how; and how much time to devote to the
problem. It seems that only two choices were not up to Maya: Which problem to
solve and when. In the described episode, these choices have been made for her.

The presented situation was particularly rich with opportunities for the students
to choose. It is possible to recall or imagine instructional situations in which a
configuration of choices available to the problem solvers would be different and
include more or less choices. In fact, any instructional situation involving problem
solving can be thought of in terms of choices that mathematics teachers empower
their students to make, either intentionally or not.

18.4 Pedagogical Uncertainty and Choice-Affluent
Environments

The diversity of choices involved in problem solving in instructional settings is
immense, as are the diversity of individual pathways of shifts of attention. Being
aware of this, we must acknowledge a fundamental role of pedagogical uncertainty:
We can never know in advance which pathways of the shifts of attention the students
construct when solving problems; thus, we will probably never be able to formulate
universal recommendations as to how to organize a problem-solving classroom so
that it would fit the individual needs and traits of each student. In the other words, we
can probably never produce a satisfactory answer to Mason’s (2016b) “when”
question, which he posits as the question of problem-solving instruction: “when to
introduce exploratory tasks, when to intervene, and in what way” (p. 263). In yet
other words, there are probably no configuration or configurations of teaching
decisions that would be optimal for enhancing problem solving for all.
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There is an alternative, however, to the perennial search for such configurations
of decisions. Its roots can be traced to seminal work of Dewey (1938/1963), who
substantiated the idea that students must be involved in choosing what they learn
and how. I term this alternative as constructing choice-affluent learning environ-
ments. By a choice-affluent learning environment, I mean an environment in which
students can at different times choose the most appropriate (1) challenge to pursue,
from solving a difficult problem to comprehending a worked-out example;
(2) mathematical tools and schemata for dealing with the challenge; (3) extent of
collaboration, from being actively involved in exploratory discourse with peers of
their choice to being independent solvers; (4) a mode of interactions, that is,
whether to talk, listen, or be temporarily disengaged from the collective discourse,
as well as whether to be a proposer of an idea, a responder to the ideas by the others,
or a silent observer; and (5) agent to learn from, that is, the opportunity choose
whose and which ideas are worthwhile of their attention.

How feasible are choice-affluent environments in school reality? One example of
such an environment, an asynchronous problem-solving forum characterized by
exploratory discourse, was presented above. An additional example involving
engagement of students in long-term mathematics research projects has been pre-
sented elsewhere (Palatnik and Koichu 2015; Koichu 2017). Furthermore, it can be
argued that even a lesson in a classroom that has a time constraint can be a
choice-affluent environment.

For example, one characteristic of what Liljedahl (2016) termed the thinking
classroom is the use of vertical surfaces (e.g., whiteboards or blackboards) as media
that substitute for notebooks or working sheets that traditionally lie on the student
desks. In such a classroom, students are given time to solve mathematical problems
in a small group while standing and writing on the vertical surfaces instead of
sitting and writing in their notebooks. Accordingly, students all have access not
only to the content of the whiteboard of their own small groups, but can also see
what is written on the other groups’ whiteboards. I had a chance4 to observe the
following phenomenon in such a lesson: When a small group felt that they were in
progress, they paid little attention to the work of the other groups. But when the
students felt that they were stuck, some of them looked over the other groups’ work
without directly interacting with the members of these groups with the hope of
getting a useful cue or evaluating their progress in comparison with the other
groups’ progress. In this way, they got what can be called non-intrusive assistance.
Furthermore, the students engaged themselves in interactions exactly when they
needed them and not when the teacher decided for them that they needed them. In
terms of the definition of a choice-affluent environment, the students in Peter
Liljedahl’s class were empowered to make choices (2), (3), and (5) above.

4I thank Peter Liljedahl for the opportunity to attend such a class during my visit to Simon Fraser
University in 2016.
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18.5 Concluding Remarks

Developing a model of mathematical problem solving that would be applicable to
different educational contexts is motivated by several causes. First, with few
exceptions, the existing problem-solving frameworks utilize different conceptual
tools for exploring problem solving in socially different educational contexts.
Second, the foremost frameworks (Carlson and Bloom 2005; Schoenfeld 1985) are
comprehensive within the problem-solving contexts within which they have
emerged, but it is sometimes difficult to apply them to additional contexts. Third,
the central issue of connecting our knowledge of how problem solving occurs and
how to enhance this activity in instructional settings is still underdeveloped (e.g.,
Schoenfeld 2013).

In this chapter, a particular way of constructing a model of mathematical
problem solving is presented. The proposed model capitalizes on the Mason’s
(1989, 2008, 2010) theory of shifts of attention (which was initially developed for
other reasons) and consideration of choices that problem solvers are empowered to
make. Hence, the model has been named the shifts and choices model, or the SCM.
In fact, the model is a confluence and embeds theoretical tools from the existing
problem-solving frameworks and theories. As mentioned, the model is only
exploratory. Its use as a research tool is stipulated by the availability of research
methodologies for identifying shifts of attention in socially different
problem-solving contexts. In part, such methodologies are available from past
research, but they should be further developed. The use of the model as a peda-
gogical tool depends on further unpacking the mechanisms underlying the choices
that problem solvers make in different instructional situations and on research on
how a teacher’s decisions affect these choices. Little research has been conducted in
this direction so far.5

Furthermore, the choice-affluent learning environment notion is introduced in
this chapter. It is important to note that I do not argue for the claim that the more
choices that are left to the students, the better. I rather argue for being aware of the
fundamental role of pedagogical uncertainty related to Mason’s (2016b) “when”
question, for being aware of configurations of choices that we, mathematics
teachers, inevitably create for our students and for being aware of the complexity
and sensitivity of the student pathways of shifts of attention when they are engaged
in problem solving.

I choose to end this chapter by mentioning some of the questions that I have had
a tendency to ask myself as a mathematics educator ever since I have begun looking
at my own lessons through the lenses provided by the SCM: What student choices
do I tend to support? What student choices am I aware of? How do my students
choose what they choose? How can I support the desirable choices without

5A study by Flowerday and Schraw (2000) on teachers’ beliefs about instructional choices is an
exception and a useful step towards understanding how teachers construct choices for their
students.
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choosing for the students? Which choices should I leave to the students? To what
extent were my lessons during the last week choice affluent? My best hope in
relation to this chapter is that some of the readers would find some of these
questions worth thinking about.
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Chapter 19
Natural Differentiation—An Approach
to Cope with Heterogeneity

Günter Krauthausen

Abstract Teachers in their classes always have to cope with heterogeneity, and
that by no means is a new problem. In Germany e.g. plenty of (mostly pedagogical)
publications from the midst 1970s until today offer brilliant advice for several kinds
of differentiation. How then can it be that after forty years, heterogeneity and
differentiation are still called a ›mega issue‹? Could it be that those traditional kinds
of differentiation are admittedly to be considered or necessary, but not sufficient—
and if: why? This paper will discuss questions like these aiming to bring together
crucial issues for (primary) math education in heterogeneous classes, like standards
for mathematical practice, standards for mathematical content, social learning with
and from each other, and heterogeneity. Main theoretical concepts are substantial
learning environments (Wittmann in Educational Studies in Mathematics 15(1):25–
36, 1984; Wittmann in Educational Studies in Mathematics 48(1):1–20, 2001a;
Wittmann in Proceedings of the Ninth International Congress on Mathematical
Education. Kluwer Academic Publishers, Norwell, MA, 2004) and natural differ-
entiation (Wittmann and Müller in Grundkonzeption des Zahlenbuchs. Klett,
Stuttgart, 2012; Krauthausen and Scherer in Ideas for natural differentiation in
primary mathematics classrooms. Vol. 1: The substantial environment number
triangles. Wydawnictwo Uniwersytetu Rzeszowskiego, Rzeszòw, 2010a;
Krauthausen and Scherer in Motivation via natural differentiation in mathematics.
Wydawnictwo Universytetu Rzeszowskiego, Rzeszów, pp. 11–37, 2010b;
Krauthausen and Scherer in Natürliche Differenzierung im Mathematikunterricht –
Konzepte und Praxisbeispiele aus der Grundschule. Kallmeyer, Seelze, 2014).
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19.1 Heterogeneity and Differentiation—A Traditional
Problem with Traditional Answers?

Math teachers in their classes have to cope with heterogeneity every day of their
professional lives. It is by no means a new problem. And it is still as much a
theoretical challenge as it is a practical one. This paper tries to illuminate the
perspective, concepts and experiences from Germany. Since the early 1970s there
have been plenty of publications in that country addressing differentiation (e.g.
Bönsch 1976; Geppert and Preuß 1981; Klafki and Stöcker 1976; Winkeler 1976),
when it was already called a ›mega issue‹, just as it is still called these days. For
primary schools, normally just ›inner differentiation‹ has been taken into account.
That means methods to be used within a classroom and not splitting up the class in
(supposed) homogeneous groups for a longer time. Today’s references in Germany
often quote the same theoretical and methodical concepts of inner differentiation,
though new terms may have been created (cf. Bönsch 2004; Paradies and Linser
2005). Some of those traditional methods are:

• social differentiation: single work, partner work, group work, …
• differentiation by teaching methods: course-like formats, projects, …
• differentiation by media: textbook, worksheets, manipulatives, digital media, …
• quantitative differentiation: same amount of time for different workload/amount

of content, or different amount of time for identical workload/amount of content
• qualitative differentiation: objectives and tasks with different levels of difficulty.

This list looks like a current offer of in-service courses. Actually, it dates back to
a booklet from Winkeler (1976), which may raise two questions: (1) Is there no
namable progress since then? Why else would differentiation still be so prominent
on the agenda? (2) And why is that so?

For sure, those traditional recommendations should not be devaluated per se, nor
can be claimed that they are non-effective. But obvious problems can possibly
hinder or prevent what is actually intended. Four examples for that:

The idea of ›difficulty‹

Declaring a task as difficult/moderate/easy—a common practice found in work-
books from publishers or on self-made worksheets by teachers—necessarily comes
up against limiting factors:

(a) A level of difficulty varies not just between different students, but also with the
same student, at different times, and even with the same task (cf. Selter and
Spiegel 1997). Difficulty is a question of subjective valuation and not an
objective concern.

(b) A felt grade of difficulty depends on diverse considerations:

• complexity of the demands of calculation (kind and size of numbers etc.),
• involved arithmetic operations (addition and subtraction often seem to be

easier to do than multiplication and division),
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• demands of cogitation, strategic comprehension, process-related compe-
tency, linguistic understanding of the task, amount of required (oral or
written) text production or documentation, etc.

(c) The level of a task’s difficulty cannot be measured just by the formal-syntactic
steps that the solution requires.

All these aspects clearly relativize the sometimes stated claim (by workbooks
and even more by digital media) that a learning offer would automatically adjust its
level of difficulty to the capability or demands of the individual learner.

Individualization and social learning

Put to practice, the postulate of individualization sometimes even results in the
abolition of social learning, the learning with and from each other. But individu-
alization does not mean that each student should deal with his very own, individual,
and different tasks or even topics. That kind of misunderstanding leads to scenarios
that evokes pictures of open-plan offices: Students working at their desks, dis-
patching different things, and no substantial communication about the things they
individually deal with. In this case, social learning is often seen in a mainly ped-
agogical sense or as a question of classroom management, aiming at implementing
effective rules and rituals within and for lessons in order to make classroom rela-
tions affable, friendly and non-threatening. No doubt that this all is important, too.

But if restricted to that, argumentation—that is the communication of minds on
shared contents—turns to become nearly impossible, because there are no shared
experiences with a common content. Some teachers even take pride in that by
declaring: »We abolished those common plenary phases in favor of a thorough
individualization«. In doing so, individualization is made absolute and actually
leads to the isolation of the learners.

But social learning is not independent of contents, and it is reliant on commu-
nication. And that, according to Bakhtin (1981, 1986), means at least two voices
engaging in persuasive discourses about shared contents. Teaching mathematics
means to foster the internalization of multivoiced dialogical thinking. In contrast to
transmission models (Shannon and Weaver 1949), Bakhtin postulates that multi-
voicedness of communication. And then, heterogeneity comes into play not as an
obstacle, but as a source of cognitive pluralism to evoke multivoiced discourses
(Wertsch 1991).

The importance of collaborative working in groups is a well known basic
assumption. But more than students with essentially similar ways of thinking and
contributing each a piece of the whole, here it is a matter of students with truly
different ways of thinking. A heterogeneous classroom in a natural way can provide
qualitatively different voices. In addition to that, Bakhtin’s (1981) rent metaphor
may be helpful: A voice, an utterance can just ›rent‹ meaning instead of owning a
fixed meaning as it is assumed in an authoritative discourse (Wertsch 1991).
Tenants are individuals (students), renter is the community they are part of (e.g. a
classroom). And progressing the metaphor (cf. Hollenstein 1997): Renting implies

19 Natural Differentiation—An Approach to Cope with Heterogeneity 327



options of influence. What is used cannot remain unchanged. In a multivoiced
discourse meanings are steadily modified. In that sense providing and using
meanings can create new meaning.

Arbitrariness and wasted thoughtfulness

›Open learning‹ and ›free work‹ are sometimes interpreted as leaving it to the
students themselves which contents they would like to deal with. This may harbor
the risk of arbitrariness, namely if learning needs are confused with students’ desire
to deal with whatever they fancy. Instead, the teacher him- or herself is responsible
for …

• identifying and choosing mathematically substantial contents,
• the didactic design of so called substantial learning environments (sensu

Wittmann 2001a) and
• keeping in mind far-reaching didactic and subject-matter goals as well as

process-related competency (communication, argumentation, problem solving,
representation, modelling; cf. KMK 2005).

This requires specific professional competency and cannot just be handed over to
elementary students. Even an autonomously learning and high-performing child
needs sound support when (s)he meets the zone of his or her proximal development
(Vygotsky 1978). The teacher, on the one hand, is responsible for leading the child
to its individual limits. On the other hand, (s)he must offer the child sound impulses
in order to push those limits more and more forwards. Delving into mathematical
structures of the learning contents in that sense does not happen automatically,
rather a well-considered encouragement is necessary.

This does not deny the requirement to gradually qualify children for autonomy
and self-reliance regarding their own learning process. But about it is necessary to
contemplate where, when and with which prerequisites which degrees of freedom
are meaningful, important, and rational for the child.

What about mathematics …?

In Germany, theoretical and conceptual discussions concerning heterogeneity and
differentiation were mostly dominated by organizational and methodical questions.
In addition to that, most publications originated from a pedagogical point of view.
This neglects the essential importance of the subject matter, in this case mathe-
matics, and its specifics.

Meanwhile, several proposals for learning environments in mathematics edu-
cation were developed where desirable forms of differentiation can take effect—
because, in a sense, it is implemented in the topic itself (e.g. Hengartner 2006; Hirt
and Wälti 2009; Wittmann and Müller 1992, 2017).
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19.2 Modified Requirements and Potential Risks

Traditional approaches as a matter of principle are limited. They come along with
modified or increased requirements regarding education, school, or society:

• Increased range of heterogeneity: The gap between low and high achievers has
perceptibly expanded over the years. In one and the same classroom there may
sit students whose proficiency may spread over three school years.

• Inclusion: In 2008, the Convention of the United Nations on the rights of
persons with disabilities came into effect. Implementing its demands for schools
and mathematics education is far from being trivial. Until this very day it
requires development efforts in order to provide »[e]ffective individualized
support […] in environments that maximize academic and social development,
consistent with the goal of full inclusion« (UN-Convention 2014, p. 36).

• Traditional kinds of inner differentiation may be helpful and needed. But evi-
dently they are not sufficient. It still lacks a crucial element in order to make
perceptible progress in coping with heterogeneity.

The limited range and efficiency of traditional kinds of inner differentiation as
well as the varied requirements mentioned above, and finally yet importantly, the
demands of actual Common Core State Standards (NGA Center/CCSSO 2010;
KMK 2005) involve potential risks: Teachers can feel left alone when trying to
bridge the gap between fitting learning processes individually for all students as a
basic principle and fulfilling the requirements of the standards. More than a few
teachers in Germany complain that they do not have convincing and effective tools
for that.

Consequences can be observed in classes, when the terms differentiation or
individualization as popular catch cries are understood rather ambiguously. Their
meaning remains mostly unexamined in terms of effective classroom practice, while
being still expected to serve as a universal secret weapon for optimizing students’
proficiency in math classes.

Additionally, the wide-spread availability and the familiarity with traditional
kinds of differentiation may cause their application for anything and everything,
even in situations where they come up against limiting factors. In cases of perceived
helplessness teachers may settle for the mere semblance of what can be called
›modern teaching‹—potentially ending in »open communication with closed
mathematics« (Steinbring 1999). In that case, differentiation and individualization
become mere labels. But because that practice at least looks ›modern‹, teachers can
live with it—more or less, despite an awkward aftertaste.
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19.3 Natural Differentiation—A Redefined Answer

The concept of natural differentiation (cf. Wittmann 2001a; Krauthausen and Scherer
2014) intends to fill the gaps of traditional inner differentiation, in particular by …

• orientating actions of differentiation explicitly towards the specifics of
mathematics,

• doing justice to the different areas of responsibilities for teachers and for
students,

• ensuring degrees of freedom for individual learning processes,
• laying great emphasis on guaranteeing common social learning in the sense

mentioned above (multivoiced discourses).

There is no unambiguous and comprehensive ›definition‹ of what natural dif-
ferentiation encompasses. The constitutive characteristics of natural differentiation
are embedded in theoretical concepts of math education which are widespread (not
only) in German schools and teacher education, namely discovery learning (Bruner
1961; Winter 2016), productive practicing (Winter 1984; Wittmann 1992), and
substantial learning environments (Wittmann 1984, 2001a, 2004).

19.3.1 Constitutive Features

Due to text length constraints, they can just briefly be sketched here (cf. Fig. 19.1),
followed by a short example (Figs. 19.2 and 19.3; cf. more concrete examples in
Krauthausen and Scherer 2010a, b, 2014):

Fig. 19.1 The constitutive components of natural differentiation
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1. Same one offer for all: All students get the same offer like e.g. a common task or
problem. In contrast to traditional differentiation, there is no need for a vast
number of additional worksheets or ›special tasks‹ for different levels of
capabilities.

2. Holistic and sufficiently complex: Because holistic content includes more
meaning than isolated parts, this offer must not be split up into several isolated
pieces. It must be holistic with regards to the content (so, not meant here is the
pedagogical sense of ›head, heart and hand‹). This facilitates access for learners
of all capabilities. The task or problem may not fall below a specific amount of
complexity and mathematical substance. This may startle teachers at first or
make them sceptical—especially with respect to low achievers who (in tradi-
tional differentiation) have been fostered by applying the principle of small and
smallest steps and the principle of isolated difficulties. But holistic and complex
problems naturally allow to develop a momentum of their own, giving room for
the inherent dynamism of the topic.
It is helpful to carefully distinguish between complex and complicated, which
are not necessarily identical! Complexity does not by nature make things more
complicated; but complexity can rather facilitate an overview, allow assorting
(despite not yet mastering all the details of the content), and a personal access at
a certain point for the individual student. On the contrary, if the learning
environment or the task is too narrow, the accesses are too limited, possibly to
just the one which successfully leads to the (one and only) solution. This kind of
challenging and complex learning environments (in contrast to common isolated
tasks) are not only an advantage for better learning students (cf. Scherer 1999).

It is important to emphasize in particular: The sound realization of these first two
features of natural differentiation is specifically the teacher’s responsibility. It
cannot be delegated to elementary students, as some questionable teaching methods
may suggest. Because what is needed here, is a professional background in several
respects: Knowledge of mathematical content and mathematics pedagogical content
in accordance with the design of well-considered substantial learning environments
(cf. Wittmann 2004) as well as of goals concerning the content and the process for
elementary math education (and beyond). A substantial learning environment,
developed on the basis of a structural-genetic didactic analysis (Wittmann 2013),
then offers a sufficiently complex frame, including meaningful, reasonable and
beneficial degrees of freedom, that means for …

Fig. 19.2 Number triangle
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3. Students’ degrees of freedom: Those first two features mentioned above, by
nature (naturally) imply different levels of aspiration and difficulty within such a
learning environment, without determining them in advance. It is not the teacher
who decides about the grade of difficulty to actually work on, but the student,
asking him-/herself: Which ways could I follow for a solution? Which aids or
manipulatives may be helpful? How could I argue? Which kinds of documen-
tation are at my disposal? Which levels of argumentation are plausible or
adequate? (cf. Example in Sect. 19.3.2)

4. Social learning: The postulate of social learning from and with each other is
fulfilled in a natural way as well, since it makes sense by the content itself:
Because if the whole group has worked on the same problem (though on dif-
ferent levels), then it is obvious to share the various approaches, experiences and
solutions. Everybody knows what is on the agenda and what is talked about.
Everybody has the opportunity to link his/her own experiences with those of
others. And the multivoiced discourse (Bakhtin 1986; Wertsch 1991) can serve
as a thinktank to create meaning. Compared with that, traditional differentiation
with separated worksheets requires that each student at once makes him-/herself
familiar with the pretty different topics presented … if (s)he is at all motivated
and capable of that in a final plenary.
»All students will be confronted with alternative ways of thinking, different
techniques, variable conceptions, independent from their individual cognitive
level. Rigid inner differentiation is more likely to just complicate this oppor-
tunity. […] So, the various, individually organized ways of solution also have an
impact on affective, emotional areas. They leave a cognitive scope to students
which can facilitate their identification with the learning demands. In this way,
the direct experience of autonomy can lead to motivation and interest«
(Neubrand and Neubrand 1999, p. 154 f., transl. GKr; also cf. Freudenthal 1974,
p. 66 ff.).

19.3.2 An Example: Number Triangles

A well-known topic in nearly every German mathematics textbook for primary
schools (grade 1–4) are number triangles. They consist of three interior fields, filled
with one number each, and three exterior fields with the particular sum of the
corresponding adjacent interior fields (cf. Fig. 19.2).

Number triangles could be used just as a container for any addition or sub-
traction tasks, simply chosen by chance. Traditional differentiation mostly offered
different worksheets with easy/medium/difficult number triangles, allocated to the
students by the teacher or chosen by the students themselves. After completing the
fields the results just were compared, and the task was done. But this would not at
all savor what is actually inherent in number triangles (cf. Wittmann 2001b).
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Here are just some tasks or problems around number triangles going beyond simple
addition and subtraction (cf. Krauthausen and Scherer 2010a, b, 2014):

• Practicing the number triangles rule: In order to make oneself acquainted with
the rule, students have to fill in some number tringles. This is more interesting
with an additional focus: »Make number triangles with your own numbers—
three number triangles you would call easy, three you would call difficult, and
three ›special‹ ones« (The latter turned out to be a very interesting question
because the term special is so vague!). »And in each case write down why you
think so« (to be discussed in the plenum …).

• Discovering and describing patterns: Three filled out number triangles with an
inherent pattern are given, two empty ones left to be filled. »Work out and
continue! What do you discover? Write down your explanation« (to be dis-
cussed …).

• Generating own patterns: »Make number triangles with your own patterns and
describe them.«

• Generating patterns for others: »Design number triangles with different patterns
to be continued and described by your partner.« And: »Write down descriptions
of different patterns for your partner to be filled into and continued in number
triangles.«

• Moving counters: »Place a counter into one of the interior fields of a completed
number triangle (= increasing this field by 1). Now let the counter move con-
jointly around the interior fields. What do you discover?« Or: »Two of those
counters move clockwisely, one counter moves counter clockwisely. What do
you discover?«

• Number triangles with numbers from the multiplication tables: Partly completed
number triangles just contain numbers from the multiplication tables. »What do
you discover? Explain …« (The inherent distributive law can be justified by
patterns of counters.)

• Even/odd exterior fields: This example will be explained below (cf. Fig. 19.3).
• Three exterior fields given: »How can you find the numbers for the interior

fields?« (there are different ways, with and beyond just trial and error)
• Sums of the interior/exterior fields: »Have a closer look at sums of interior fields

and sums of exterior fields. What do you discover? Explain …« (This problem
also offers some hints for the task mentioned before.)

How do number triangles with problems like these serve the constitutive features
of natural differentiation? As an example, Fig. 19.3 shows the upper part of a
corresponding worksheet which was tested in many classes (the lower part just
offered empty number triangles for investigations).

Same one offer for all students

The whole class got this same worksheet with claims from Mandy and John. No
different tasks and ›special‹ worksheets for ›special‹ needs.
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Holistic and sufficiently complex

Mandy’s and John’s claims by nature offered various levels of demands, ranging
from more or less trial-and-error approaches (calculating several number triangles)
to arguing with number properties in a more general way.

Students’ degrees of freedom

It was possible for the students to choose own numbers for their investigations
(arithmetical approach). Or they used abbreviations like e(ven) or o(dd), a
pre-algebraical approach. Mandy’s utterance could be disproved by just one
counter-example. This may be found with or without a case discrimination (three
even numbers or three odd numbers in the interior fields). John’s claim could also
be investigated with concrete numbers or pre-algebraically. Several bidirectional
transitions between those approaches could be observed within classrooms.

Some students used counters or other manipulatives to explain their arguments,
others worked just on the symbolic level. Some fourth-graders were not settled for
the fact that there are no triangles with three odd exterior numbers (John’s claim).
So they felt free to change the triangle format to a number square with four interior
fields—and for that John was proved right. Then they investigated more cases,
ending up in the general utterance that John’s claim is true for all cases where there
is an even number of interior fields. Others argued that John is right because they
used rational numbers in the interior fields.

Fig. 19.3 The even/odd-problem
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Social learning

All those different approaches and argumentations by nature suggested common
discussions in a plenary phase: Is it allowed to use rational numbers? Why or why
not, who tells? What is the definition of even numbers—a number that can be split
up evenly, into two equal halves? »But that is the case with 7 = 3.5 + 3.5! So seven
is even?!« This utterance of a fourth-grader opened a substantial discussion among
the students of that class …

19.4 Demands for Teacher Education

Natural differentiation is not a magic wand, evolving its efficiency automatically or
in the sense of self-evident, unstudied etc. The term ›natural‹ (in its colloquial
meaning) might connote this, but in clear contrast to that the concept of natural
differentiation is understood in the sense explained above. And then it can be a
pretty powerful tool for math educators. But it is reliant on diverse prevailing
circumstances. Just two of them will be shortly introduced here as they emerge for
teacher education.

Mathematics content knowledge

Due to text length constraints it cannot explored here in detail what kind of content
knowledge is needed for elementary teachers (cf. e.g. Loewenberg Ball 2003;
Osana et al. 2006). But for sure, the content knowledge of elementary teachers has
to be expanded, as TEDS-M has shown (cf. Blömeke and Delaney 2012). For a
general characterization a postulate from Freudenthal can be helpful. For teachers’
mathematics content knowledge he required the same as for the mathematics that
they have to teach: It has to be diversely related (Freudenthal 1978, p. 71 f.).
Mathematics content knowledge for prospective teachers should not just consist of
isolated collections of facts (cf. above: ›Even numbers can be divided into two equal
parts‹), but rather make the manifold interconnections and structural relations
transparent and available. And it includes attitudes as well.

Math education has to enable students to realize the demands of the subject
matter. Teachers might succeed in this even better, the more they themselves feel an
aptitude to the contents of their teaching. »The art of teaching has to convey the
claim of the content. It is generally agreed that we also have to know something
about the learners […]. It is a given that we have to reflect the order of presentation
[…], the arrangement of our teaching. But all of this remains hollow without love
for the content, without a steady effort to do justice to it […]. The shift of peda-
gogical interest, away from contents and instead to psychology or methods, seems
questionable to me. I ask myself, how can contents be imparted by people who
know how to present them, but who themselves do not feel the demands involved.
How can somebody who is not interested in a topic, make this topic interesting for
somebody else?« (Schreier 1995, p. 14 f.; transl. GKr).
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Methodical competency

A fundamental aspect is the ability to stimulate and to maintain a shared commu-
nicative exchange among the learners in the sense of mathematical discourses. This
»is not an easy task—neither for the teacher as a moderator, nor for the students,
who at first will have to learn a more self-directed communication; and for that they
are entitled to professional support by their teacher« (Krauthausen and Scherer
2014, p. 82; transl. GKr). Some teachers may confuse a plenum with rigid ›chalk
and talk method‹, a teacher-centered approach from the front of the classroom and
generally associated with an antiquated understanding of classroom practice. But in
fact, there are several good reasons for a plenary phase, e.g. content-related ones.

A common plenum by no means involves a revitalization of an outdated tradi-
tional method. Instead it gets a new function with the main goal of deepening the
content-related demands. It is just this newly customized plenary phase which first
and foremost allows a deeper incursion into the mathematical core. Because stu-
dents hardly will and can do that by themselves (e.g. in the range of traditional
differentiation), a higher point of view is needed for that. In other words: A pro-
fessional moderation by the teacher is as a matter of fact not just indispensable, but
also much more possible than at other times when students work actively (alone or
in small groups) on a problem. A sound moderation in that sense certainly belongs
to the most demanding tasks of teaching. Because a deep understanding of
content-knowledge is needed, as well as a sure instinct for the right moment and the
appropriate impulse—and all that in real-time, spontaneously, and without time to
contemplate. The teacher in the example mentioned above did that quite well (cf.
transcripts in Krauthausen and Scherer 2010a).

Another reason would be a sociological perspective on the role of mathematical
discourses about shared contents. Miller (2006, p. 200 ff.) considers social dis-
courses a compulsory factor in modern learning (cf. Bakhtin). According to that,
learning can only happen as desired (that means: effectively and sustainably), if
learners enter a shared argumentation—about the process of generating knowledge,
and not first and foremost about the completed products (cf. Krauthausen and
Scherer 2014). »Only in collective discourses the learners involved will be able to
develop argumentative contexts for generating new insights and new knowledge
[…] and that by moments of reciprocal differences, misunderstandings and irrita-
tions« (Schülke and Söbbeke 2010, p. 21, transl. GKr; cf. also Schülke 2013).

Therefore both the following demands are essential for teaching:

(a) Content must be expressed in language—as a matter of principle there must be
communication (= emphasis on language); and …

(b) Content must be expressed in language—so, there must be content involved
(= emphasis on content), not just talking about anything.

Connecting both meanings in a fruitful way is one of the special and most
demanding tasks for teachers moderating such kind of argumentative discourses in
a sound and child-oriented way—mathematically substantial, elaborately expressed
and effective.
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Moderation competence, too, is a complex concept and cannot be discussed here
in its entirety. That’s why just a few catch words will be mentioned in order to mark
the direction and to hint at some facets of the bundle of skills (cf. examples in
Krauthausen and Scherer 2014):

• Imperative of influence: It is a misunderstanding (and in a sense a failure to
render assistance) that students should discover all and everything just by
themselves, and teachers would have nothing to do but observe. Didactic
responsibility includes exerting influence. The question indeed is what that
means, and how it is done. In his famous paper ›Taboos of the Teaching
Profession‹ Adorno says: »Success as a teacher is apparently due to the absence
of any kind of predictive influence and relinquishing persuasion« (Adorno 1965,
p. 491; transl. GKr). Adorno does not argue against influence, but against
predictive influence, e.g. by too deterministic and prescribing lesson plans
which then are strictly executed. Possible deviations from prescription are
rebalanced by means of Bauersfeld’s funnel pattern (Bauersfeld 1983; Voigt
1984). This, of course, is not what Adorno had in mind.

• Reserve: Teachers have to control their own ›missionary enthusiasm‹. They
must not tell and explain their students everything immediately. »To reveal
something to a child what it could find out by himself is not just bad teaching, it
is a crime« (Freudenthal 1971, p. 424; transl. GKr).

• Monitoring the learning process and analytical listening: Once again
Freudenthal explains the difference to just occasionally watching students’
activities: »I called it intelligent observing. Not recording photographically.
Before you start observing you have to know what to pay attention to. On the
other hand, you must not know this too exactly, because then you will just see
what you want« (Freudenthal 1978, p. 162; transl. GKr).

• Authentic curiosity: Genuine curiosity for what a child knows and how (s)he
thinks as well as authentic, true and no staged enthusiasm are a fundamental
tenor of teachers who want to foster and support mathematical discourses with
and among their students. Their comments and answers are not just classified as
wrong or right or (counter-)productive, but helpful for the teacher to understand
even better what and how the students think.

• Encouragement to express oneself and turn towards others: All students must
have secure confidence that they can express all their thoughts, assumptions,
even ventured ideas, free of sanctions and without the prospect of hasty
evaluations.

• Manifold repertoire of questions: Especially valuable are ›higher order‹ ques-
tions and impulses which initiate new/distinct/variable thinking as well as
autonomous/reasoning/inferential thinking.

• Probing into the subject matter again: This is to encourage students to dig
deeper into the subject. To repeat questions does not at all mean that an answer
must have been wrong.
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• Having a break: Productive discourses sometimes need a break. Not in order to
interrupt the thinking process, but to pause for thought. Short moments of
silence—caused e.g. by speechless astonishment, by surprise, by hesitation, by
skepticism—should be experienced as productive, not as embarrassing blank-
ness which ought to be filled as soon as possible with a strange comment or a
displacement activity.

19.5 Conclusion

Natural differentiation as a specific kind of inner differentiation offers opportunities
to design the learning of heterogeneous students in a way that is more productive
and more sustainable for all. It is natural, because heterogeneous groups of learners
by nature evoke and foster multivoiced discourses expressing truly different ways
of thinking on truly different levels. And it is natural, because complex and holistic
problems, like substantial learning environments, by nature allow a momentum of
their own, giving room for the inherent dynamism of the content. And it is natural
because it is the learner who can make use of his/her degrees of freedom in several
respects in a designated frame of a mathematical substantial learning environment.

The special prospects in particular lie in the following attributes of the concept:

• Emphasizing the specifics of mathematics and consciously valuating the
demands of the content as well as the social learning postulate, especially via
moderated discourses about shared experiences with working on a common
learning environment.

• Emphasizing an integrative access to content-related and process-related
mathematical competency (KMK 2005).

• No claim as an all-in-one tool for the whole range of mathematical learning and
teaching (though rather likely for its major part). Practicing basic facts or
introducing a specific procedure may require other methods.

• Availability of numerous appropriate learning environments (sensu Wittmann
2004) for substantial hands-on activities that meet the demands of proper natural
differentiation.
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Chapter 20
Changes in Attitudes Towards Textbook
Task Modification Using Confrontation
of Complexity in a Collaborative Inquiry:
Two Case Studies

Kyeong-Hwa Lee

Abstract This study examined how two middle school mathematics teachers
changed from being reluctant to modify tasks in mathematics textbooks to having
positive attitudes about textbook task modification. In order to successfully coor-
dinate a curriculum revision with the textbooks they use, mathematics teachers need
to be able to use their in-depth understanding of the intentions of both the revision
and textbooks to modify and implement tasks appropriately. The two middle school
teachers’ cases in this study showed that it is possible to change teachers’ negative
attitudes about modifying tasks in mathematics textbooks if they explicitly
understand the complexity in mathematics teaching and go through a sequence of
activities that help them understand the revised curriculum in detail, interpret and
modify textbook tasks, and implement the modified tasks and reflect on their
implementation.

Keywords Mathematics textbook � Textbook task modification
Complexity map � Collaborative inquiry � Professional development

20.1 Introduction

Teacher researcher- or teacher-led inquiry communities have been increasingly
viewed as promising for professional growth and development of theory and
practice in mathematics education (Lin and Cooney 2001; Dowling 2013; Jaworski
2003; Slavit and Nelson 2010; Robutti et al. 2016; Goodchild 2008; Goodchild
et al. 2013). Researchers have reported that teachers both deepen content knowl-
edge and pedagogical knowledge by learning ways of teaching and develop their
understanding of how to facilitate students’ conceptual understanding through
collaborative work with their colleagues and researchers (e.g., Sullivan et al. 2012;
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Cooper et al. 2006). However, with the popularity of community approaches, pit-
falls have also arisen such as limited local school resources, shortages of qualified
teachers in distressed areas, and stress related to performance on high stakes testing
(Ledoux and McHenry 2008). In addition, a number of tensions produced from the
complex nature of relationships among members in communities have suggested
that one cannot be purely optimistic about such collaborative work (Martin et al.
2011). Therefore, there is a need to unpack the tensions and complexities involved
in community approaches along with the learning opportunities among teachers and
researchers by recognizing the genuine perspectives and needs of teachers (Schwarz
2001).

Textbook modification is a common procedure used in collaborative approaches
by teachers and researchers for professional development (Bao and Stephens 2013;
Boston and Smith 2011; Zaslavsky 1995). Through textbook modification, teachers
can learn how to redesign textbook tasks and how to teach mathematics differently.
In order to successfully coordinate a curriculum revision with the textbooks they
use, mathematics teachers need to be able to use their in-depth understanding of the
intentions of both the revision and textbooks in order to modify and implement
tasks appropriately. However, studies have shown that a number of mathematics
teachers merely follow textbooks as they are written (Manouchehri and Goodman
1998; Choe and Hwang 2004, 2005). A deeper understanding is needed of the
reason that mathematics teachers place textbooks in a rather fixed position of high
authority. Professional development programs giving opportunities for teachers to
reflect on this passiveness towards textbook modification may help teachers to
consider textbooks to be a type of curriculum material that can be evaluated,
interpreted, and redesigned prior to and during lessons (Drake and Sherin 2006;
Lloyd 1999; Remillard 2005). In this study, teachers were invited to co-learning
activities with the researcher that focused on textbook task modification (TTM) for
professional development. Although the community was initiated by the researcher,
the teachers participated voluntarily in the whole collaboration and all members had
equal status (Hospesovà et al. 2006). To recognize the teachers’ genuine perspec-
tives on and needs for TTM, teacher narrative analysis was used. This article will
describe and discuss why and how two middle school mathematics teachers who
participated and had a voice in all phases of the research process (Sullivan et al.
2012; Goodchild 2008; Jaworski 2003) changed their initial attitudes about mod-
ifying tasks in mathematics textbooks from negative to positive.

20.2 Learning by Collaborative Work on TTM

A professional learning community (PLC) of teachers and educators facilitates
teacher and researcher learning through collaboration, conversation, and inquiry
(Jaworski 2003; Goodchild et al. 2013). The ways in which the participants in a
PLC interact is closely linked to the roles they play within the community (Robutti
et al. 2016). The three elements of practice—engagement, imagination, and
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alignment of participant—can be employed as essential norms in a PLC (Jaworski
2003) for lesson study. Firstly, members of a community can be engaged in the
activities of analyzing and modifying textbook tasks and applying and reflecting on
the modified tasks (Bao and Stephens 2013; Boston and Smith 2011; Coe et al.
2010). The purpose of analyzing textbook tasks is to gain insights into their
intended mathematical and pedagogical meaning through revealing specific learn-
ing goals and making distinctions between task features, such as context-based and
open-ended tasks (Sullivan et al. 2012). In addition, predicting student miscon-
ceptions and errors can be done at this stage. Finally, possible dimensions and
possible ranges of variation (Watson and Mason 2006) of concepts, procedures, or
representations embedded implicitly or explicitly in tasks can be described using
task analysis. Based on these detailed analyses, we move to the modification stage,
in which we make judgments on modifications in detail. We prepare supplementary
tasks to help those students who cannot begin the given task or those who complete
tasks in a very short time. Applying this stage includes not only implementation of
modified tasks but also improvisational adaptation of tasks based on in-the-moment
decisions in reaction to students’ responses.

Secondly, imagination, which requires participants in the community to disen-
gage by moving back and looking at the engagement through the eyes of an
outsider (Wenger 1998, p. 185), can be considered in collaborative work between
teachers and researchers. In order to take a step back and look at the big picture of
teachers’ engagement related to textbook task use, understanding teachers’ per-
spectives by asking the following questions is useful. Why do you think teachers
should analyze textbook tasks? What does it mean to analyze? What are the criteria
and methods for analyzing? What was the most important thing you learned from
the experience of analysis? Have you had any experience in modifying textbook
tasks? When, why, and how did you do any modification? How did you understand
the results of implementing modified tasks? What were your main concerns both
when you were modifying textbook tasks and after you implemented the modified
tasks? What was the most important thing you learned from the experience of
modifying and implementing the tasks?

When answering the above questions, teachers can regard themselves as subjects
who interpret and modify textbook tasks (Remillard 2005) and not as subjects who
use textbook tasks with few or no modifications. The above questions are to recall
and describe teachers’ perceptions of the complexity of textbook use in their
everyday classrooms. Teachers’ answers to these questions may be represented as a
map showing key issues and concerns; this will be called a complexity map in this
study. A complexity map is defined as a diagram that is made using teachers’
answers to the above questions and teachers’ perceptions of complexity in textbook
use. A complexity map is an ongoing process that makes it possible to examine
teachers’ concerns and understand the indirect effects that influence the direction
and degree of task modification and implementation. In other words, a complexity
map can be a communication tool that teachers initiate or lead the creation of that
represents various components and the relationships among those components that
teachers have perceived while they were analyzing, modifying, and implementing
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textbook tasks. A complexity map by an individual teacher can reveal a part of a
subjective scheme, a kind of mental framework by which objectively given struc-
tures of information such as tasks and narratives in textbooks are understood and
interpreted (Otte 1986). A complexity map may vary with respect to educational
environments, teaching cultures, and value systems. Mathematical emphasis,
referring to the mathematics knowledge and practices that are valued (Remillard
et al. 2014, p. 739), may differ among teachers who have different perceptions of
the complexities in textbook use (Ben-Peretz 1990; Heaton 2000; Sherin and Drake
2009). Furthermore, teachers’ different complexity maps may have different
influences on students’ learning opportunities (Schmidt 2007; Valverde et al. 2002;
Grouws and Smith 2000; Stein et al. 2007).

By constructing a complexity map as a communication tool in collaborative
works, critical alignment (Goodchild et al. 2013) can be pursued. Teachers and
researchers can create a special synergy by means of critical alignment mediated by
complexity maps as suggested in Goodchild et al. (2013). One possible aim for both
teachers and researchers in a PLC for textbook modification can be engagement of
students in mathematics learning by modifying textbook tasks. The other possibility
is doing research and drawing implications on textbook task use in classrooms.
Teacher-researcher collaboration to achieve these aims can be facilitated by critical
alignment between both participants. Complexity maps can be viewed as a set of
problems to be solved or set of constraints to be overcome by collaborative treat-
ments. We can see a complexity map as a window to look at practices from
teachers’ perspectives. Using a complexity map, we can invite teachers to reflect on
their current practices and to highlight partial or general complexity when con-
sidering TTMs. If critical alignment between practice- and research-based aware-
ness in teaching with textbook tasks can be developed and rooted in the learning
community, then knowledge can grow in practice.

20.3 Mathematics Curriculum and Mathematics
Textbooks in Korea

The place that curriculum and textbooks take in mathematics education can vary
from country to country. In the Korean context, the curriculum and textbooks are
regarded as having high authority by teachers, parents, and students. The mathe-
matics curriculum in Korea is developed by a committee that is sanctioned at the
national level. Mathematics curriculum reform has been conducted based on dis-
cussions about the objectives, content, and methods of mathematics education.
When this study was conducted, we used the curriculum that was revised in 2009
(Ministry of Education, Science, and Technology [MEST] 2009). In the 2009
Curriculum, mathematical problem solving, communication, and reasoning were
considered to be crucial process standards for nurturing mathematical creativity,
and it was strongly recommended that these three aspects be realized in teaching
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and learning (MEST 2009). In addition, the 2009 Curriculum suggested finding and
exploring real-life contexts that are familiar to students and accepting student
intuition and an informal approach. The 2009 Curriculum’s structure has five
sections: characteristics, objectives, content, teaching and learning methods, and
evaluation. In the characteristics section, school mathematics is described as a
subject that deals with mathematical concepts, principles, and rules to be explored
in various contexts; develops logical thinking; cultivates the ability to observe and
interpret various phenomena; and develops an understanding of how to use various
methods to solve problems. MEST (2009) puts particular emphasis on the devel-
opment of mathematical literacy:

The in-depth understanding and application of mathematical concepts, including
problem-solving ability, are essential in learning diverse content successfully and are also
necessary to increase one’s skills and ability to solve problems as a democratic citizen.
Moreover, mathematical knowledge and thinking methods act as an intellectual driving
force in the development of human civilization and are necessary in the rapidly changing
information-based society. (p. 5)

The objectives for the three school levels, primary, middle, and high school, are
set by integrating perspectives from relevant research studies as well as the aims
and the requests of the noosphere (Chevallard and Bosch 2014). For example, the
objective for middle school mathematics is

to obtain the basic knowledge and understand the functions of mathematics, to cultivate the
ability to think mathematically and communicate in order to create practical solutions to
social and natural phenomena and problems, and to cultivate a positive attitude toward
mathematics. (MEST 2009, pp. 8–9)

Even terms and notations that should be included in textbooks and lessons are
presented in the curriculum. In addition to teaching and learning methods, rec-
ommendations for didactic transposition of content are presented. For example, in
the functions section for seventh grade, the following recommendations are
included: (a) Use a daily-life context where one quantity changes as another
quantity changes and (b) teach the concept of functions at an intuitive level. In the
evaluation section, a great deal of emphasis is put on conducting assessments in
order to provide useful cognitive and definitive suggestions that can help students’
learning and well-rounded development and improve teaching practices.
Considering the level of students’ mathematical knowledge is also explicitly
mentioned, and abiding by the content presented in the curriculum documents is
suggested. A variety of types of evaluation, such as formative and summative
evaluations, is suggested as well. This systematically organized intended curricu-
lum influences Korean mathematics textbook development and mathematics
teaching in classrooms.

Textbook writers make an effort to realize the reform ideas prescribed in the
curriculum by following its terms and the notations, instructions for teaching
specific content areas, and aspects to be emphasized in evaluation. In general,
Korean textbooks are written based on thorough interpretation of the content, the
teaching and learning methods, and the evaluation policies in the intended
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curriculum. Therefore, even though there are various kinds of secondary school
textbooks in Korea, they have a lot in common in many aspects. The coverage and
the depth of content areas, teaching and learning strategies, and assessment systems
in textbooks are almost the same. Therefore, studies have shown that it is very
natural for teachers follow the national curriculum and their textbooks in planning
lessons (Choe and Hwang 2004, 2005). Teachers’ tendency to follow the intended
curriculum explains the difficulty of opening a discussion on the necessity of TTM
in professional development programs about TTM. In this study, making each
mathematics teacher’s complexity perception explicit is used as a strategy to open a
discussion on the necessity of TTM.

20.4 Research Context

As a large part of research project, 88 middle school mathematics teachers first
participated in a six-hour professional development program on textbook-task use.
Seventeen of these teachers then voluntarily participated in a second professional
development program on TTM that lasted eight months. At the beginning of this
advanced professional development program, a survey was administered to
examine the teachers’ experiences with and attitudes toward TTM where they were
asked to choose between three items: (1) I have experience with modifying text-
book tasks, (2) I am not willing to modify textbook tasks, and (3) I want to learn
more about modifying textbook tasks if there is any follow-up program. Based on
the survey results, two teachers who had experienced TTM but had negative atti-
tudes toward it were selected for the purpose of this study in order to examine why
these teachers had negative attitudes toward TTM, the reasons behind their negative
attitudes, and why and how they changed their perspective on TTM over time. The
two teachers, Euna and Miyeong, were both female. Euna was in her early 30s and
had six years of teaching experience but did not have any textbook-writing expe-
rience. She taught a seventh grade class consisting of approximately 34 students at a
large, low-achieving public middle school for boys located in a large metropolitan
city. The other teacher, Miyeong, was in her mid-40s, had 17 years of teaching
experience, and had textbook-writing experience. Miyeong taught an eighth grade
class of approximately 33 students at a large, low-achieving public school for boys
and girls located in a large metropolitan city. Miyeong was widely recognized as an
expert teacher and was actively involved in enhancing students’ interest in
mathematics.

The data were collected in three ways: teachers’ narratives, which were used to
get insights about their perceptions and beliefs (Connelly and Clandinin 1990;
Schwarz 2001); discussions; and classroom observations of their mathematics
classrooms. First, teachers were asked to write free narratives on the following
topics: previous TTM experiences; a brief explanation about why they were not
willing to do TTM; key roles, affordances, and constraints of textbook tasks;
complexities in task use, teaching, and learning; tensions and dilemmas experienced
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in teaching and participating in PD programs; and what they learned from TTM and
its implementation. Teachers’ narratives were used in discussion meetings as
prompts. Discussion meetings were conducted 12 times from March to October.
After selecting key issues to be discussed in these meetings, the meetings were
facilitated to discuss the issues systematically. Another source of data was class-
room observation. Euna’s four lessons, where the topics were the concept of a
function, graphs of functions, and applications of functions, were observed.
Miyeong’s five lessons, where the topics were events, relative frequency, the
concept of probability, and probability calculation, were also observed.

20.5 Findings

The relationships between teachers and the curriculum seem to be relatively simple
in the Korean mathematics education context, as mentioned in the earlier section. In
particular, the two teachers, Euna and Miyeong, clearly presented their negative
attitude to TTM in the beginning. The reasons for their prior thoughts on TTM will
be reported first. Then, how complexity maps showing the teachers’ recognition of
their practices were drawn and utilized over PLC meetings will be described. The
significant tensions and challenges faced by the teachers and how the teachers
changed their attitudes to TTM can provide interesting insights into the ways in
which the teachers incorporated the reform principles prescribed in the revised
curriculum into their teaching practices.

20.5.1 Rationales for Negative Attitudes Toward TTM

Both teachers in this study had negative attitudes toward TTM at the beginning of
the PLC activity. Their participation in the prior workshop for six hours and their
volunteering to participate in the PLC meetings for eight months showed that they
did not just blindly follow textbooks and that they were at least somewhat interested
in TTM. Euna viewed textbooks as effective tools for teaching mathematics, a view
similar to those of the teachers in Choe and Hwang’s studies (2004, 2005). She used
textbooks without modifications because she felt that textbook tasks (a) are effective
in deepening students’ mathematical understanding, (b) are systematically
sequenced and have appropriate scope, and (c) reflect new visions and recent
research trends in the mathematics curriculum and teaching and learning of
mathematics. Her positive evaluation of textbooks can be attributed to her trust in
the process of textbook development and its authors in Korea. In describing her
trust in textbooks, she said:

Textbooks are usually written by a team of mathematicians, mathematics educators, and
experienced mathematics teachers. They must incorporate new visions, appropriate content,
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and new teaching and thinking methods into the textbook they are writing. Why not follow
the textbook? It is an optimal solution [emphasis added] for teaching and learning math-
ematics in our environment.

The idea of optimal solution that Euna described is closely related to the way of
organizing content in Korean mathematics textbooks. Korean mathematics text-
books are structured in a deductive way in the sense that their basic structure starts
with the definition and ends with its application via some explanations, with worked
out examples and drills in the meantime. Before the body of the content begins, an
interesting opening is provided that gives a context in which the learning content
can be related to what students are familiar with.

In summary, Euna’s negative attitudes toward TTM can be attributed to her
satisfaction with current textbooks and her belief that it is more effective to follow
textbooks. The dilemma Euna faced is associated with her perception of
unchanging practices with the revised curriculum. For her, an optimal solution has
nothing to do with the newly emphasized competences such as communication,
reasoning, and problem solving. She was invited to reconsider what would be
optimal for her interpretations and implementations of textbook tasks in order to
find another optimal solution.

Similar to Euna, Miyeong also trusted textbooks. However, she provided dif-
ferent reasons for her negative attitudes toward TTM. Having 17 years of teaching
experience, she was widely recognized as an expert teacher. Being sensitive to
curriculum revisions, she fully understood what had been revised in the curriculum.
She had rich experience with modifying textbook tasks. Despite all of this, she was
reluctant to modify textbook tasks because she thought that it was much easier to
design new tasks rather than modify the existing tasks in textbooks:

There is a saying that “revolution is easier than reform.” Likewise, I prefer to design new
tasks instead of TTM. I am free to use various contexts and knowledge from a variety of
fields such as film, travel, finance, and history when designing new tasks. However, this
only applies to extra classes, such as work done after finishing units or after-school pro-
grams, but not to regular classes. TTM is not easy to implement because we need to cover
the limited range of concepts and procedures that are contained in the curriculum. If the
advantages of TTM for teaching specific content in the curriculum are clear, it would be
okay.

Even if textbook tasks were to be modified, it would be important for Miyeong
to maintain the original learning goals and content as intended in the textbooks;
however, it was difficult to create learning opportunities that were better than the
textbook tasks. The reason for this limitation was that she was concerned with being
able to attain the original learning goal and was sensitive to potential changes to
what can be learned using modified tasks. The rationale behind her negative atti-
tudes toward TTM included: (a) TTM does not guarantee good learning and
teaching and (b) TTM is a challenging and risky job. While explaining that TTM is
a challenging and risky job, Miyeong mentioned cases where the main focus of
instruction is on non-mathematical issues, for example, cases that mainly focus on
students’ interests.
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It is noteworthy that both teachers had negative attitudes toward TTM because
they trusted textbooks more than their unsuccessful TTM. The rationales behind the
teachers’ negative attitudes toward TTM show that one should not interpret merely
following textbooks as a signal of teachers’ resistance to being independent of
textbook use. Instead, teachers’ resistance to TTM can be viewed as their faithful
implementation of the curriculum. Having identified the fact that the two teachers
greatly value faithful implementation of curriculum, we naturally moved to discuss
the complexities faced by the teachers and were able to draw complexity maps.

20.5.2 Complexities Perceived by the Two Teachers

Faithful implementation of the curriculum has proved challenging, since the
mathematical emphases and pedagogical approaches included in the curriculum
materials are difficult to carry out (Lloyd 1999; Remillard 2005). Moreover, Korean
mathematics teachers are under intense pressure to raise or maintain students’ test
scores while at the same time realizing the reform ideas described in the curriculum
documents (Lee 2010; Park 2004). Although reasonable rationales for their negative
attitude to TTM were discussed, the two teachers recognized the necessity of TTM,
which led them to volunteer to participate in the PLC on TTM. The initial com-
plexity maps were constructed based on the teachers’ perceptions about complexity
in teaching. Among various fragmentary components, those that were perceived
first became the discussion topics and were reflected in the initial complexity maps.
For example, Euna expressed her uncomfortable feeling about the fact that some
students did their homework from cram schools during mathematics classes or
independent study time. It was also difficult for her to see that her students’ parents
mainly focused on their children’s test scores. These issues came out in Euna’s
narratives and during discussion meetings and were reflected in her initial com-
plexity map. In her narratives and PLC meetings, Miyeong focused more on
potential mathematical meanings and the structures of particular concepts that
should be highlighted in her classes. The two teachers’ perceptions about com-
plexity in their teaching practices were different, which might explain their different
understandings of the challenges and dilemmas of TTM (Leder et al. 2006; Goldin
et al. 2011; Gates 2006).

Table 20.1 shows the categories of the types of complexity that Euna and
Miyeong initially perceived: student-related complexity (SRC),
mathematics-related complexity (MRC), and external complexity (EC). Several
differences in their experiences, including teaching experience and experience with
writing textbooks, could be connected to the difference in the initial complexity that
each teacher perceived. Miyeong was able to recognize the complexities in her
implementation well and competently explain each complexity. On the other hand,
Euna’s order of priorities was EC, SRC, and MRC, and she rarely recognized the
relationship among the complexities. Unlike Miyeong, Euna expressed difficulties
with teaching mathematics and spent a considerable amount of time expressing
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such difficulties as complexities and making the connection to task modification.
Before Euna discussed issues with Miyeong, Euna was not sure how to reflect some
of the complexities in TTM. For instance, regarding the issue of cram schools, Euna
was very concerned about the interruptions made by students who attended cram
schools but did not come up with specific solutions, whereas Miyeong identified the
issue of cram schools as “bad habits in learning mathematics.” This indicates that
cooperation with colleagues, particularly with more experienced teachers, is
important in developing mathematics teachers’ expertise, as previous research has
evidenced (Garet et al. 2001; Desimone et al. 2002).

Euna frequently mentioned cram schools, which she identified as one of the
external complexities. Considering that approximately 30% of her students attended
cram schools and learned content in advance, Euna had difficulty in designing tasks
and planning lessons for those students.

One thing I never feel easy about is the interruption made by the students who go to cram
schools. They already know the content before I teach it. If these students dominate the
dialogue among students by employing the mathematics concepts that are considered the
learning goal, then other students lose learning opportunities. Inquiry-based learning is not
easily pursued in this situation.

Teaching was also very complex for Euna because parents were very interested
in and passionate about their children’s education, and they tended to evaluate and
supervise her teaching. Among SRCs, Euna mentioned the range in students’
achievement levels most frequently. As curriculum revision had been conducted so
frequently, Euna felt the pressure to change things in her practice. This indicates
that she was trying to understand the revised curriculum and reflect it in her
practice. Another MRC is evaluation. Assessment-focused mathematics education
has been characterized as one of the main features of mathematics education in East

Table 20.1 Initial complexities that Euna and Miyeong individually perceived

Type of complexity Complexities Euna initially
perceived

Complexities Miyeong initially
perceived

Student related (SRC) • A wide range of achievement
• Negative attitude
• Passive attitude

• A wide range of achievement
• Negative attitude
• Changing students
• Bad habits in learning
mathematics

• Learning anxiety pressure

Mathematics related
(MRC)

• Frequently changed
curriculum

• Assessment

• Unfamiliar terminology
• Hierarchy of mathematics
• Abstract mathematics
• Not differentiated curriculum
• Assessment

External (EC) • Cram schools
• High level of parents’
enthusiasm

• Large class size

• Cram schools

352 K.-H. Lee



Asia (e.g., Park 2004; Leung 2001), and Euna was also very concerned about
preparing students for assessments while teaching. She commented that she taught
in ways that “emphasized the content and form of knowledge reflected in assess-
ments but did not focus as much on knowledge that would not be assessed.” This
may have influenced her task designing and lesson planning, which made her
teaching complex. Miyeong had more factors related to MRC.

For Miyeong, teaching was complex because of issues involving the nature of
mathematics, such as “the hierarchy of mathematics” and “abstract mathematics.”
Other factors such as “unfamiliar terminology,” “not differentiated curriculum,” and
“assessment” were complexities related to the limitations of school mathematics. In
terms of SRC, beyond “a wide range of achievement” and “negative attitudes
(toward mathematics and mathematics learning)” that Euna perceived, Miyeong
thought that the complexity was attributed to “different students,” “bad habits in
learning mathematics,” and “learning anxiety or pressure.” Among these, Miyeong
provided the following explanation for “different students”:

We never have the same students; on the contrary, teachers need to be prepared to satisfy
new students every year. The students I have this year are quite different from those I taught
last year. Hence, I had to learn what and how they learned and can learn in my classes day
by day. I had to develop how to teach mathematics in many ways.

The changes in the cognitive aspects of students mentioned above were not the
only difficulties Miyeong experienced. She said in the later discussion that she had
difficulties with task design and lesson planning in terms of students’ different
dispositions and attitudes toward mathematics. For instance, she said that “students
in the past waited quietly, but students nowadays do not wait at all, so it is difficult
to include problems that require in-depth investigation from the students.” When
Miyeong explained about “bad habits in learning,” she associated it with cram
schools and assessment. For example:

Many students seek recipes for solving problems with the goal of getting high scores on the
tests. Thus, creating tasks that do a good job of enhancing the students’ learning is very
important. Otherwise, students may develop bad habits, such as depending on strange
recipes without understanding the necessary mathematics behind them. Cram schools are
places where students learn such irrelevant strategies. I have tried to tackle this issue in
different ways, but it is not easy to resolve.

Whenever Miyeong referred to “bad habits in learning,” Euna thought that this
was related to her EC and agreed with Miyeong. For example, Euna said, “Right, I
had students who bragged about weird methods learned from cram schools, but I
could understand them,” and emphasized the interruptions made by these students.

Even though the initial complexity maps were not clear in meaning, they played
roles in forming discourses between the teachers and the researcher about practices.
It was especially helpful for me as a researcher to understand the teachers’ cir-
cumstances and the practices they used in teaching mathematics. This was effective
in decreasing the asymmetry between the teachers and the researcher that is gen-
erally caused by the researcher presenting certain theories or results of previous
studies (Goodchild 2008) and achieving equal status between practitioners and
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theorists (Hospesovà et al. 2006). Discussions that were dominated by discourses
initiated by the teachers rather than by the researcher led to teachers having greater
curiosity about theories and previous studies. For example, there were many dis-
cussions led by Miyeong about abstraction in mathematics and the structure of
mathematical knowledge, and at the end of these discussions, the teachers asked
questions about mathematics teaching-learning theory and related research results.

Although teachers did not reach a level where they were finding and discussing
theories and research results themselves, they tended to appreciate each component
in a complexity map from a theoretical standpoint as they related them to TTM.
They also tried to understand the relationships between various components in the
complexity map. In addition, teachers attempted to connect what they understood
from various research results to analyzing and modifying textbook tasks. These
collaborative activities led teachers to deepen complexities of teaching and to utilize
complexity maps as a tool to form a productive discourse that can be helpful in
analyzing and modifying textbook tasks. It provided teachers with opportunities to
take some theoretical perspectives into consideration for resolving their teaching
dilemmas. Gradually, the two teachers began to play researcher roles in the sense
that they contributed to the elaboration of some research questions to be examined
using implementations of their own TTMs. The two teachers became deeply
involved in the collaborative inquiry, which resulted in the development of pro-
found content knowledge and pedagogical content knowledge (Jaworski 2007;
Darling-Hammond and Richardson 2009).

It is worth mentioning that the two teachers found the necessity for and ways of
implementing TTM after a few discussions about their complexity maps. They
started talking about their unsuccessful TTM experiences and tried to see those
from a distance in order to link them to a particular theoretical perspective that
would give them ideas for improvements. By introducing relevant studies, the
teachers could relate to their previous experiences with TTM and the researcher
identified potential research questions to collaboratively tackle in the later stages. In
the meantime, the teachers determined the affordances and constraints of textbook
tasks they wanted to highlight or overcome in the classroom. For example, Euna
said,

Textbook tasks are ideal for average or low-achieving students because they introduce the
standard method. They specify the detailed steps, so I do not need to provide any extra
explanation. However, they are limited in that they do not consider that various students are
at different achievement levels. I can try TTM when targeting students from different
achievement levels.

She further tried to find the affordances and constraints of textbook tasks based
on her perception of the instructional reality (Zhao et al. 2006):

Textbook tasks are too simple and stereotyped to deepen conceptual understanding. As
many students use the secret recipes, they think that they are good at mathematics as long as
they are dealing with textbook tasks. I would like to design tasks that cannot be solved by
their methods but provide rich conceptual understanding.
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Both teachers emphasized that it was a very meaningful experience to develop
expertise while considering a complexity map and analyzing textbook tasks.
Opportunities to discuss the initial complexities that each teacher perceived, to
share teaching practices, and to analyze the affordances and constraints of textbook
tasks served to develop expertise for both teachers. This is evidence of closing the
gap between theory and practice in mathematics teaching and learning based on
teacher-researcher collaborations. In the end, all members in the PLC constructed a
shared complexity map to tackle five core questions (see Fig. 20.1):

Q1. How can we consider a wide range of student achievement?
Q2. How can we consider students’ negative and passive attitudes towards math-

ematics and mathematics learning?
Q3. How can we change students’ bad learning habits using TTM?
Q4. How can we enhance conceptual understanding with procedural fluency using

TTM?
Q5. How can we engage students in creative and critical thinking using TTM?

20.5.3 Two Teachers’ Use of the Shared Complexity Map
in the TTM Process

Euna tried TTM on 109 tasks. Of the 109 modified tasks, 35 (about 32%) had a
cognitive level higher than the original tasks, 66 (about 61%) maintained the same
cognitive level as the original tasks, and 8 (about 7%) had a lower cognitive level
than the original tasks. Euna was developing a sensibility about changes in the
cognitive demands of a task by implementing TTM over time. Her main focus was
to increase the participation of various students, especially those with low
achievement. This became a turning point for her and helped her become more
active in implementing TTM.

Fig. 20.1 The shared
complexity map
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I will never forget the moment when I discovered Sucheol working very hard on a task I
was able to offer him using TTM. He used to be like a ghost in the previous classes. At this
moment, however, he was so visible to everyone, including me. I was like, like… I cannot
express the emotion I felt at that moment. It was one of the best moments in my teaching
career. Since then, I have had no doubt about the value of TTM.

Euna’s TTM process included considering SRC explicitly and implementing it
first and then implicitly and indirectly considering EC and MRC (see Fig. 20.2).

Miyeong modified 43 textbook tasks using the process of first modifying the task
herself and then doing a second modification after a discussion. Miyeong addi-
tionally modified 74 textbook tasks by herself without discussion. Of the 117
modified tasks, 82 (about 70%) had higher cognitive demands than the originals, 26
(about 22%) maintained the original cognitive demands, and 9 (about 8%) had
lower cognitive demands than the originals. Miyeong was very sensitive to the
changes of cognitive demands of tasks at the beginning of TTM. Unlike Euna, who
focused on SRC, Miyeong mainly considered MRC, consequently increasing the
cognitive demands of the tasks beyond those in the textbook. Euna consistently
identified SRC, but Miyeong first considered MRC and made opportunities for
low-achieving students to participate if possible. Miyeong’s turning point in cul-
tivating a positive attitude toward TTM was quite different from Euna’s:

It was quite striking for me to see doubtful contexts or prompts included in textbook tasks.
For example, the warm-up task for teaching probability using a 14-faced die was far from
the fundamental idea of experimental probability. The first prompt was rolling the die 20
times, which is irrelevant to the meaning of experimental probability. Doing this may
provide an opportunity to think about the “law of large number,” but that is not the focus in
this unit. Suddenly I felt embarrassed, as I did not consider that ever before and just asked
students to complete the table. Why that kind of prompt was there without proper intent and
why did I just follow it? Why wasn’t I aware of it?

Miyeong’s TTM process included considering MRC first and then SRC while
explicitly considering EC. Figure 20.3 illustrates this process and its dynamics.

Fig. 20.2 Euna’s TTM process and dynamics in the shared complexity map
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20.6 Conclusion

Unlike what has been shown in previous studies (e.g., Drake and Sherin 2006), the
two middle school teachers in this study trusted the contents and structure of
MEST-authorized mathematics textbooks rather than having been influenced by the
way they learned and experienced mathematics when they were students. The
teachers were concerned that TTM itself did not promote effective lessons or reform
lessons and that it would sometimes result in bad modifications that were worse
than textbook tasks. In order to successfully coordinate the revised curriculum with
the textbooks they use, mathematics teachers need to be able use their in-depth
understanding of the intentions of both the revision and textbooks in order to
modify and implement tasks appropriately. The two middle school teachers’ cases
in this study showed that it is difficult to change teachers’ passive attitudes about
modifying tasks in mathematics textbooks unless they go through a sequence of
activities that help them understand the revised curriculum in detail, interpret and
modify textbook tasks, and implement the modified tasks and reflect on their
implementation.

Instead of making teachers learn theoretical concepts or the results of previous
studies that are provided to them by a researcher, this study progressed by
encouraging the teachers to verbalize the complexities they perceived, recognize
them as problems, and find solutions through modifying textbook tasks. This
process was very challenging because the teachers and the researcher sometimes
either had different meanings for the same terms or used ambiguous terms. Over
time, however, examining the complexity became helpful in clarifying the common
goal of modifying tasks for effective instruction and finding their implementation
strategies. This shows that mathematics teachers can play an active and key role in
constructing and operating a learning community with other mathematics teachers.
In other words, the use of a complexity map played a significant role in critical
alignment of the intent and the implementation of class using the modified textbook
tasks, as shown by Goodchild et al. (2013).

Fig. 20.3 Miyeong’s TTM process and dynamics in the shared complexity map
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From their experiences with modifying textbook tasks, implementing modified
tasks, and then reflecting on what they had done, mathematics teachers had an
opportunity to understand the essence of school mathematics deeply. In this study, I
did not focus on the development of the teachers’ mathematical knowledge for
teaching specifically. However, from the discussions about modifying the tasks and
the actual modification, I was able to gain evidence of substantial development.
This should be closely examined in future studies. In this study, the focus was on
changing mathematics teachers’ prejudices about task modification, especially their
absolute trust in textbook tasks. Teachers learned that it is necessary to modify
textbook tasks according to situations that they face, even though the textbook tasks
were developed based on previous studies. Moreover, when they implemented
modified tasks in their class, they learned how to observe whether they were helpful
in revealing the essence of school mathematics and whether the lesson was facil-
itated efficiently. The two teachers in this study mentioned that for a long time they
had recognized the importance of reflecting on lessons, but they did not know what
aspects of lessons should be reflected upon or how to reflect. They stated that
through participating in this professional development program, they had learned
why they should think about the textbook tasks when they prepared lessons, how
and in what ways they could modify the tasks, how to observe when they imple-
ment the modified tasks in class, and how they could draw improvement ideas for
the next class. The professional development in this study changed the asymmetric
discourse structure between teachers and researcher to a symmetric one that was
different in quality from ones that add several theories or results of studies to the
teachers’ previous perspective. This kind of professional development is significant
since it has transformative potential (Price 2001), in that teachers can continue to
reflect and improve their reality for themselves.
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Chapter 21
How Can Cognitive Neuroscience
Contribute to Mathematics Education?
Bridging the Two Research Areas

Roza Leikin

Abstract This paper, which describes neurocognitive studies that focus on math-
ematical processing, demonstrates the value that both mathematics education
research and neuroscience research can derive from the integration of these two
areas of research. It includes a brief overview of neuroimaging research related to
mathematical processing. I base my claim that cognitive neuroscience and mathe-
matics education are still two tangent areas of research on a brief comparison of
these two fields, with a particular spotlight on research goals, conceptions, and
tools. Through a close look at several studies, I outline possible directions in which
mathematics education and educational neuroscience can capitalize on each other.
Mathematics education can contribute to the stages of research design, while
neuroscience can validate theories in mathematics education and advance the
interpretation of the research results. To make such an integration successful,
collaboration between mathematics educators and neuroscientists is crucial.

Keywords Mathematics education research � Cognitive neuroscience
Educational neuroscience � Mathematical processing

21.1 Introduction

In this paper, I analyze the potential contribution of neurocognitive research to the
theory of mathematics education and exemplify some of its implications. This
analysis is motivated by the following three observations:

First, there is no consensus among researchers that neuroscience has relevance
for education. Educational neuroscience is seen as an emerging discipline with its
roots in cognitive neuroscience and its focus on applying the findings of neuro-
science to education and posing educational questions to be pursued in neurosci-
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entific investigation (Geake 2009). In 1998, Byrnes and Fox suggested that brain
research findings might have useful applications in education. Since then many
researchers have supported this view with several theoretical hypotheses and have
attempted to link neurocognitive empirical findings with the development of edu-
cational theory and practice. However, Bowers (2016) argued that there are still no
examples of neuroscience motivating new and effective teaching methods, and
further asserted that neuroscience is unlikely to improve teaching in the future.

Second, whereas some researchers (e.g., De Smedt et al. 2010), underscored the
importance of “balanced dialogue” between neuroscience and education, Turner
(2011) argued that this relationship is imbalanced, with a clear dominance of
neuroscience (Clement and Lovat 2012). Furthermore, while De Smedt et al. (2010)
maintained that neuroscience does not replace the need for behavioral studies,
because behavioral studies may be needed to test conclusions drawn from neuro-
scientific observations, even in this argument behavioral studies and neuroscientific
studies are not presented symmetrically. On the contrary, I argue that studies in the
field of neuroscience can and should help in testing conclusions drawn from
behavioral research in mathematics education. Consequently, research goals and
research questions in neurocognitive research can be determined by the results of
behavioral research, while behavioral studies can inform neuroscientific research
vis-à-vis task design and research interpretations.

Third, mathematics education and cognitive neuroscience are two tangent areas
of research. Even though a relatively large number of neurocognitive studies have
been performed in the field of numerical cognition, these studies are rooted in
cognitive psychology and are not connected to the findings of mathematics edu-
cation research. Consequently, they use somewhat different terminology and have
little impact on the processes of learning primary mathematics in school.
Furthermore, only a small number of studies in cognitive neuroscience are currently
exploring brain processing associated with (relatively) advanced mathematical
concepts while these are rarely connected to theories in mathematics education.

Three notes:

(1) This paper does not provide a broad and detailed meta-analysis of research in
the field or detailed descriptions of the studies observed, and it intentionally
omits technical details related to the data collection and data analysis proce-
dures of the reviewed research. Instead, it attempts to simplify complex
information, present examples to illustrate the main ideas, and propose some
directions through which research in cognitive neuroscience can contribute to
the development of mathematics education as a scientific field.

(2) This paper does not address eye-tracking, a promising and interesting neuro-
scientific area of research. Implementation of eye tracking in mathematics
education—e.g., in analysis proof reading (e.g., Andrá et al. 2015), exploration
of problem-solving strategies (e.g., Obersteiner et al. 2014), and even exami-
nation of creative problem solving (e.g., Muldner and Burleston 2015)—has
been developing exponentially. For example, the PME-40 conference included
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a relatively large number of presentations that applied eye tracking to the
examination of mathematical processing at different levels (Csíkos et al. 2016).

(3) A glossary of technical terms in cognitive neuroscience can be found in the
“Cognitive neuroscience and Mathematics Learning” special issue of ZDM-
Mathematics Education 42(6) (Grabner et al. 2010a, b).

21.2 Mathematics Education and Educational
Neuroscience are Two Tangent Areas

Even though neuroscientific research in the field of mathematical processing is
making progress, some limitations to this research are still evident. De Smedt and
Grabner pointed out that neuroscientific research is mostly performed with adult
participants and requires better ecological validity. That is, many studies are per-
formed in laboratory settings which are not similar to classroom settings in which
students cope with tasks at different levels of mathematical challenge. In this section I
argue that mathematics education and educational neuroscience are two tangent areas
and illustrate this argument with the results of a brief search performed in several
research outlets in the fields of cognitive neuroscience and mathematics education.

21.2.1 Publications on Mathematical Processing
in Cognitive Neuroscience Journals

De Smedt and Grabner (2015) stress that “in the past decade, there has been a
tremendous increase in neuroscience research on mathematics learning” (p. 2),
while “the field of mathematics learning has been proposed as an ideal workspace
for making applications of neuroscience to education” (p. 3).

I present herein a brief summary of publications in three journals in the field of
cognitive neuroscience. I have chosen these particular journals according to their
goals and scopes, which all include educational publications: Frontiers in Human
Neuroscience, Neuropsychologia: An International Journal in Behavioral and
Cognitive Neuroscience, and Trends in Neuroscience and Education. An analysis
of a number of publications related to mathematical processing (at different levels
of mathematics) during 2012–2016 demonstrated that despite researchers’ growing
interest in this area (reflected in Trends in Neuroscience and Education), the
number of neuroscientific studies related to mathematical processing is very small.
The search was made using the following key words: mathematics, arithmetic,
numerical cognition, numerical operations, dyscalculia, algebra, calculus, and
geometry. After this search, the papers were downloaded and compared in order to
count only once those papers that came up repeatedly in the searches using different
key words. The percentage of papers published in these journals varies
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significantly. During this period, in contrast to Frontiers in Human Neuroscience,
where less than 1% of papers (19 of 2417) presented original research dealing with
mathematical processing, 33% (12 of 36) of original research papers in Trends in
Neuroscience and Education included reports associated with research in mathe-
matical processing. Overall, across the three journals, about 2.4% of all publications
(including original research papers, review papers, and commentaries) were focused
on various aspects of mathematical processing. No less interestingly, among the
105 articles (of 4375) in the same three journals, 92 papers (87%) addressed
numerical processing (including 18 articles on dyscalculia). Only a handful of
studies explored brain activity related to mathematics studies in school.

21.2.2 Neurocognitive Studies Published in Journals
in Mathematics Education

For analysis of publications in mathematics education journals, also during 2012–
2016, I chose Educational Studies in Mathematics (ESM), Journal for Research in
Mathematics Education (JRME), Mathematical Thinking and Learning (MTL), and
Journal of Mathematical Behavior (JMB). The search, with a focus on original
research papers, was conducted using the following key words pertaining to neu-
roscientific methodologies: EEG, ERP, fMRI, fNIRS, and eye tracking. I found
only one publication, by Inglis and Alcock (2012), in JRME. This paper presented
an investigation comparing expert and novice approaches to reading mathematical
proofs using eye tracking methodology.

There are several possible explanations for the results of this search. First, I may
have overlooked some publications (my apology if this is the case) and if so I would
be glad to receive information from authors and readers who are familiar with such
publications. Second, of the mathematics education researchers who consider these
journals to be venues for publication of their findings, only a small number employ
neuroscientific methodology in their studies. Third, those who do such research
usually collaborate with neuroscientists, who prefer publishing their manuscripts in
neuroscientific journals.

Fourth, there is another side of this coin. In my experience, reviews from neu-
roscientists and mathematics educators in response to the same publication had
different foci of attention, and the requirements for revisions were contradictory to
some extent. One of the central issues here is that, as I mentioned in the intro-
duction, the implications of neuroscientific research for mathematics education are
not straightforward, and it is difficult to explain the connections in a convincing
way. The other central issue, which I describe in Sect. 21.4.1 of the paper, is the
difference in theoretical frameworks and, correspondingly, in terminology and
interpretation of findings, in the two fields. These issues are illustrated by the
response that my colleagues and I received from the editor of one of the leading
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mathematics education journals (which I will call X) justifying why the paper was
rejected without sending it to reviewers:

Articles published in X journal pertain to the teaching or learning of mathematics and
advance research in this area…. Although I read your paper with great interest, its findings
do not move the field of research in mathematics education forward in clearly identifiable
ways. (Editor)

The positions of the researchers in mathematics education and educational
neuroscience are not contradictory but complementary, and thus bridges built
between mathematics education and educational neuroscience can contribute
meaningfully to the development of both fields. I argue that making connections
between the two fields is a challenging task, and reviewers in both fields have to
take greater care in presenting arguments that are compelling for researchers from a
different discipline. In what follows, I demonstrate that research methods and tools
are one of the reasons for tangency of the research in the two fields.

21.2.3 Special Issues in Mathematics Education

Fortunately, three special issues devoted to neuroscientific research related to
mathematics education were published in two mathematics education journals. Two
special issues were published in ZDM—Mathematics Education: one was
“Cognitive Neuroscience and Mathematics Learning,” edited by Grabner, Ansari,
Schneider, De Smedt, Hannula, and Stern in 2010, and another was “Cognitive
Neuroscience and Mathematics Learning: Revisited After Five Years,” edited by
Grabner and De Smedt in 2016. Another special issue edited by Anderson, Love,
and Tsai, “Neuroscience Perspectives for Science and Mathematics Learning in
Technology: Enhanced Learning Environments,” was published in 2014 in the
International Journal of Science and Mathematics Education (iJSME).

Most of the original papers in the iJSME special issue edited by Anderson et al.
(2014) used eye-tracking techniques in research on processing related to mathe-
matical and scientific concepts and processes. A paper by Norton and
Deater-Deckard (2014) is one of two papers related to studies that investigated brain
functioning associated with mathematical problem solving. The researchers take a
neo-Piagetian approach to mathematical learning of fractions with computer games
in order to frame two studies involving the use of EEG and FMRI techniques.
Based on the neuroimaging data, the authors arrive at conclusions about the
memory and attention mechanisms involved at different task levels.

The two ZDM special issues revealed a significant increase in the variety of
topics under investigation. The 2016 ZDM special issue contains articles on an
impressive diversity of topics—including fraction comparison, geometry, arith-
metic, and artificial symbol learning, to name just a few. In comparison to the state
of the art in 2010, a more diverse set of questions pertaining to mathematics
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education is being investigated from a cognitive neuroscience perspective. This
represents significant and exciting progress (Ansari and Lyonsi 2016, p. 380).

There was also an obvious shift in the methodology used—from fMRI inves-
tigations only to studies that employed a variety of neuro-cognitive techniques:
fMRI, EEG (ERD), and ERP. In 2010, the ZDM special issue included eight
original research papers, three overview manuscripts, and a glossary of terms. In
2016, the special issue included nine papers presenting original research and three
commentary papers. As a critique, Ansari and Lyonsi (2016) pointed out that most
of the studies published in both special issues presented experiments that had adults
as the research participants and included “well-controlled psychological experi-
ments, but their connections to the educational context and the mathematics
classroom are unclear” (p. 380). This argument supports my observation that these
two research areas are still tangent. However, I am certain that mathematics edu-
cators can find a wealth of exciting and useful information in these studies that can
help in understanding the underlying processes of mathematical cognition, problem
solving under different stress conditions, and neuroimaging aspects related to
intuitive rules (see Sect. 21.4 in this paper).

21.3 Neuroimaging Research Associated
with Mathematical Processing: A Brief Overview
of Issues Mathematics Education Research Does
not Address

Neuroimaging research focuses on the underlying brain structures (the magnitude of
brain activation as well as brain topographies) associated with different types of
mental activities in different population groups. A variety of neuroimaging tech-
niques (for definitions, see Grabner et al. 2010a, b) allow researchers to obtain
high-quality information on both temporal and spatial brain activity associated with
different kinds of information-processing, including mathematical processing at
different levels in individuals with varying levels of abilities. For example, the
event-related brain potentials (ERP) technique offers high temporal resolution over
the course of problem solving due to a precise reflection of perceptive and cognitive
mechanisms. ERPs are electrophysiological measures that reflect changes in the
electrical activity of the brain in relation to external stimuli and/or cognitive pro-
cesses. These measures provide information about the process in real time, before
the appearance of any external response (Neville et al. 1993). Another major
technique is functional magnetic resonance imaging (fMRI), which offers high
spatial resolution and enables the detection of differences in processing that are not
evident from behavioral and ERP measures alone, thereby potentially leading to a
more comprehensive understanding of the underlying processes and brain structures
involved.
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21.3.1 Localization of Brain Activation Associated
with Mathematical Processing

As mentioned, neuroimaging research focuses on localization of brain activation
associated with mathematical processing and its relationship to general cognitive
abilities (e.g., memory and attention). One example can be seen in the triple code
theory of numerical knowledge, which emphasizes the role of the parietal cortex in
number processing and arithmetic calculations (Dehaene et al. 2003) and identifies
three regions of the parietal cortex that have been linked to the different functions
connected to number processing. The horizontal intraparietal sulcus (HIPS) has
been found to be involved in calculations; the posterior superior parietal lobule
(PSPL) has been linked to the visuospatial and attention aspects of number pro-
cessing (Dehaene et al. 2003); the angular gyrus (AG) has been found to be
involved in the verbal processing of numbers and in fact retrieval (Grabner et al.
2009). Additionally, the parietal cortex has been found to be associated with
word-problem solving (Newman et al. 2011), algebraic equations (Sohn et al.
2004), and geometry proof generation (e.g., Anderson et al. 2011).

Another example can be found in studies that show that the posterior superior
parietal cortex is involved in visuospatial processing, including the mental repre-
sentations of objects and mental rotations (Zacks 2008), while the frontal cortex has
been linked to attention-control processes (Badre 2008) and working memory
(Gruber and Von Cramon 2003). Solving of (relatively) advanced mathematical
problems, such as calculus integrals, was found to activate a left-lateralized cortical
network (Krueger et al. 2008).

Research on mathematical problem solving associated with different represen-
tations of mathematical objects is also a focus of neuroscientists. For example,
different brain areas are known to be involved in recalling different representations
of the functions (verbal vs. equation representations) and are thus connected to
different cognitive processes involved in the corresponding mathematical process-
ing (Sohn et al. 2004). Lee et al. (2007) compared brain activation in diagrammatic
and equation representations for mathematical word problems and found that both
modes of representation were associated with activation of areas linked to working
memory and quantitative processing (the left frontal gyri and bilateral activation of
HIPS). However, the symbolic representation activated the posterior superior
parietal lobules (PSPL) and the precuneus. These findings suggest that the two
representation modes impose different attention demands (symbolic representation
being more demanding).
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21.3.2 Individual Differences Reflected in Structural
and Functional Characteristics of Brain Activation

Neurocognitive research also focuses on individual differences. Neuroimaging
studies demonstrate the neural correlates of mathematical difficulties and disabilities
(e.g., developmental dyscalculia; Butterworth et al. 2011). At the other end of the
continuum, research has also demonstrated connections between intelligence and
brain activity related to different cognitive tasks. Neuroimaging research shows that
intelligence is associated with the reciprocity of several brain regions within a
widespread brain network (Colom et al. 2010; Desco et al. 2011). Another branch
of neurocognitive research focuses on the relationship between intelligence and the
extent of induced brain activity during cognitive task performance (Jausovec and
Jausovec 2000). These studies have led to the formulation of the neural efficiency
hypothesis of intelligence, which states that “brighter individuals display lower
(more efficient) brain activation while performing cognitive tasks” (Neubauer and
Fink 2009, p. 1004). The neural efficiency phenomenon has also been shown to be
related to individuals’ expertise in a given field (in our case, excellence in math-
ematics) (e.g., Grabner et al. 2006). At the same time, task difficulty has an effect:
The neural efficiency phenomenon is revealed in easy to moderately difficult tasks,
whereas when it comes to performing difficult and challenging tasks, more intel-
ligent individuals exhibit higher brain activity (e.g., Neubauer and Fink 2009).

21.4 Mathematics Education and Educational
Neuroscience Can Capitalize on Each Other

21.4.1 Goals, Terms, and Tools in the Two Fields
of Research

In the last decade, several publications have been devoted to the various theories in
mathematics education (e.g., a volume edited by Sriraman and English 2007). Some
debate on the existence and essence of the theories in the field is to be expected.
Silver and Herbst (2007) argued that “the development of the grand theory of
mathematics education is not simply attainable but desirable for organizing the
field” (p. 4), whereas Sriraman and English (2007) questioned the feasibility of
creating such a grand theory due to the mathematical, social, and cultural contex-
tualization of mathematics teaching and learning. In our review of the volume
(Leikin and Zazkis 2012) we suggested that research in mathematics education is
integrated in general education research in two ways. On the one hand, mathematics
education is informed by more general theories such as, for example, cognitive
sciences, sociology, and anthropology. On the other hand, the recent mathematics
education research findings can inform and extend general educational theories. In
this paper, I argue that while (in the meantime) mathematics education is not well
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informed by neuroscience research, and findings of mathematics education research
are rarely used in neuroscience research, the integration of the two research areas
can empower each of them.

Cognitive research in mathematics education has a variety of foci of attention
and research methods. These studies include, but are not limited to, learning and
understanding of mathematics as related to problem solving, proofs, proving and
argumentation, and defining and exemplification. Special attention is given to
investigation and modeling activities, while substantial attention is devoted to
difficulties and misconceptions, as well as to expertise, creativity, and giftedness.
The Handbook of Research Design in Mathematics and Science Education (Kelley
and Lesh 2000) emphasizes research designs that are intended to radically increase
the relevance of research to actual practice. Examples of such research designs
include: teaching experiments, clinical interviews, analyses of videotapes, action
research studies, ethnographic observations, software development studies, and
computer modeling studies (Kelley and Lesh 2000, p. 18). Schoenfeld (2000)
highlighted two main purposes of research in mathematics education. One is a
theoretical objective directed at better understanding the nature of mathematical
processing as it pertains to thinking, teaching, and learning. The second is an
applied objective; that is, to use such understanding to improve mathematics
instruction, which ultimately helps realize mathematical giftedness and encourages
mathematical creativity. Schoenfeld (2000) stressed that models and theories in
mathematics education must have explanatory and predictive power, possess a
broad scope, and allow replicability.

As noted in Sect. 21.3 of this paper, neuroimaging research focuses on the
underlying brain structures (magnitude of brain activation as well as brain
topographies) associated with different types of mental activities in varying popu-
lation groups. Interestingly, De Smedt and Grabner (2015) identified three types of
applications of neuroscience to education: neuro-understanding, neuro-prediction,
and neuro-intervention. Neuro-understanding is based on the capacity of neuro-
scientific research to deepen understanding of mathematical processing at the
biological level and thus to inform mathematics education theories regarding typical
and atypical development of mathematical competencies. Neuro-prediction opens
opportunities to use neuroimaging results to predict learning trajectories.
Neuro-intervention includes both (1) the use of brain imaging data to analyze the
impact of education on the neural circuitry underlying development of mathemat-
ical knowledge and (2) the effect of neurophysiological interventions on mathe-
matical performance or learning. An analysis of exemplary studies of each type can
be seen in De Smedt and Grabner (2015).

An interesting connection between the two fields of research can be seen in the
parallel between Schoenfeld’s (2000) call for the explanatory and predictive powers
of the theories in mathematics education and the neuro-understanding and
neuro-prediction types of applications of neuroscience to education. In turn, neu-
roscience has a strong potential for increasing the explanatory and predictive
powers of mathematics education theories as well as examining the power of dif-
ferent educational interventions using neuro-intervention Type 1 mentioned above.
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I also would like to suggest the verification power of neuroscience studies, and later
in this paper I will illustrate an example of a study (Anderson et al. 2014) that can
be categorized as being of a neuro-verification type, even though the authors did not
connect their results with mathematics education theories.

Table 21.1 outlines a comparison between the research goals and methodologies
in the two fields. I do not include references in the table since each row could
include at least a dozen references in each column.

Obviously, neuroscience research on mathematical processing and cognitive
research in mathematics education are complementary. They have many features in
common, and each field can provide information that cannot be attained by research
methodologies in other fields. Clearly, mathematics education research does not
address biological data of the kind that is provided by neuroscience. However,
behavioral data, collected over long periods of time—related to analysis of pro-
cesses of mathematical creation (Hadamard 1945), solving mathematical problems
of varying complexity and classroom communication and classroom discourse—
still are not a part of neuroscience research (excluding eye tracking methodology,
which seems to come close to the field of mathematics education research, as
mentioned in Note 2 in the Introduction section).

In what follows, I analyze examples of several neurocognitive studies on rela-
tively advanced mathematical processing that suggest interesting and rather clear
connections between mathematics education research and neurocognitive research,
and I go on to explain these connections. I also provide two examples from a
large-scale research project entitled “Multidimensional Investigation of
Mathematical Giftedness” performed by the research group of Haifa University’s
Research and Advancement of Giftedness and Excellence Center (RANGE; Leikin
et al. 2013).

Note that I do not provide examples of studies in the fields of number sense and
arithmetic. One of the latest comprehensive reviews of neurocognitive studies in this
field can be seen in Kaufman et al. (2015). Additionally, de Freitas and Sinclair (2015)
provided a critical review of neurocognitive studies on number sense with special
attention devoted to studies of dyscalculia. They argued that neurocognitive research,
in contrast to mathematics education research, deployed images of numbers with an
emphasis on cardinality rather than ordinality and concluded that there is a need for
new kinds of neurocognitive research. I take a less critical view, suggesting that
integration of the two fields can enable both to benefit from each other.

21.4.2 Between Pólya and Neuroscience: Discovering
the Structure of Mathematical Problem Solving

Pólya’s works (1945/1973) in mathematics education are among the most
influential ones in the field of problem solving. His four-step approach to heuris-
tically solving problems included understanding the problem, devising a plan,
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Table 21.1 Brief comparison of cognitive studies in mathematics education and studies in
cognitive neuroscience associated with mathematical processing

Cognitive studies in mathematics
education

Studies in cognitive neuroscience
associated with mathematical
processing

Goals: better
understanding
of

• Skills, expertise, difficulties in
– Numerical operations
– Problem solving processes,
proving, defining,
exemplifying, investigating

– Logical, critical, creative
thinking

– Conceptual understanding
– Teaching, learning,
communication

– Teacher knowledge and skills
• Individual differences

• Brain activation associated with
– Mainly numerical processing
(Subsidizing, enumeration,
approximation, comparison,
arithmetic operations)

– Problem solving (mainly in
arithmetic)

– Training
– Neuro-stimulation

• Individual differences
• Domain-general cognitive
abilities involved in mathematical
processing

Mathematical
topics

Broad range of topics, concepts, and
properties from elementary to
university mathematics

Number sense and arithmetic
(mainly)
Relatively advanced mathematics
(a small number of studies)

Different
representations

• Numerical, graphical, algebraic,
pictorial, verbal

• Translations between different
representations

• Numerical magnitude
representation (mainly)
– Concrete quality, verbal,
number line

• Symbolic versus pictorial (few)

Research
participants

• K-12
• University students
• Research mathematicians

• Adults (mostly university
students)

• Children (a small number of
studies)

• Research mathematicians (few
studies)

Research
conditions

• Laboratory/clinics
• Field experiments,
– Design experiment
– Teaching experiment

• Ethnographical research

• Laboratory
– e.g.: MRI (fMRI), EEG (ERP,
ERD), fNIRs,

– GSR
– Eye tracking

Research tools • Tests
– Written, oral, computerized

• Interviews
– Individual, collective

• Observations
• Written questionnaires
• Self-reports

• Tests
– Computerized (e.g., E-Prime)

• Self-reports

Tasks • Open/closed
• Multiple solutions
• Multiple choice
• Differ in conceptual density

• Very short
• Multiple choice
• Yes/no

(continued)

21 How Can Cognitive Neuroscience Contribute to Mathematics … 373



Table 21.1 (continued)

Cognitive studies in mathematics
education

Studies in cognitive neuroscience
associated with mathematical
processing

Measures • Behavioral
– Correctness
– P-S/proving strategies
– Critical reasoning, creative
thinking

– Communicative collaborative
and processes

– Teachers’ knowledge and
competences

• Behavioral
– Correctness (%)
– Reaction time

• Neurocognitive
– Magnitude of the brain
activation

– Brain topographies
• Cognitive
– Connections between
mathematical processing of
different types and basic
cognitive functions associated
with these

carrying out the plan, and looking back. Schoenfeld (1992) suggested somewhat
more detailed stages of problem solving that included reading, analyzing, explor-
ing, planning, implementing, and verifying. Pólya and Schoenfeld demonstrated
that a close look into these stages can distinguish experts from non-experts in
problem solving when the participants are required to cope with a non-standard
problem—one for which they do not have a ready-to-use procedure.

Without any connection to Pólya (1945/1973) and Schoenfeld (1992), Anderson
et al. (2014) conducted neuroimaging (fMRI) research that was aimed at discovering
the stages of mathematical problem solving, the factors that influence the duration of
these stages, and how these stages are related to the learning of a new mathematical
competence. This study demonstrated that participants went through five major
phases when solving a class of problems: (1) Define Phase, where they identified the
problem to be solved, characterized by activity in visual attention and default network
regions; (2) Encode Phase, where they encoded the needed information, characterized
by activity in visual regions; (3) Compute Phase, where they performed the necessary
arithmetic calculations, associated with activity in regions active in mathematical
tasks; (4) Transform Phase, at which they performed any mathematical transforma-
tions, characterized by activation of mathematical and response regions; and
(5) Respond Phase, at which they entered an answer, associated with activation in
motor regions. Two features distinguished the mastery trials during which partici-
pants came to grasp a new problem type. First, the duration of late phases of the
solution process increased. Second, therewas increased activation in the rostro-lateral
prefrontal cortex (RLPFC) and angular gyrus (AG) regions associated with
metacognition. This indicates the important contribution of reflection to successful
learning.

Obviously, the stages identified by Anderson et al. (2014), which go beyond the
task design, are in harmony with the stages devised insightfully by Pólya and
Schoenfeld in their works: the define and encode phases correspond to the reading
and analyzing stages in Schoenfeld’s terms, or to understanding the problem in
Pólya’s terms. The compute and transform phases correspond to carrying out the
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plan (Pólya). The respond phase corresponds to the looking back or verifying stages
(of Pólya and Schoenfeld, respectively). Anderson and colleagues provided bio-
logical validation for the big ideas of mathematics education researchers and, in this
sense, theirs can be considered a neuro-validation study. At the same time, it
provides us with further information about the basic cognitive abilities (visual
attention, visual encoding, and motor skills), which are very often overlooked in
mathematics education literature. This connection to cognitive processes can be
helpful in gaining a better understanding of the effectiveness of educational prac-
tices as they are connected to specific cognitive traits. Thus, this study is also of a
neuro-understanding type. Moreover, from the point of view of a mathematics
educator, connecting the work of Anderson et al. to other works of mathematics
educators related to learning and teaching equations can have an added value for the
interpretation of the behavioral research results achieved through individual or
collective interviews and relevance to the educational practices.

21.4.3 Mathematical Expertise: Connections Between
Advanced Mathematical Processing with Language
and Number Sense

Experts are usually characterized by consistently superior performance on a specified
set of representative tasks (Ericson 1996), while expertise reflects a varying balance
between deliberate practice and innate differences in capacities and talents. Experts
usually have more robust mental imagery, more numerous images, and the ability to
make flexible use of different images and focus their attention on appropriate features
of problems (Carlson and Bloom 2005). Experts differ from novices in the
problem-solving strategies they employ (Schoenfeld 1992). There is consensus that
professional mathematicians are experts in mathematics. Poincare (1908) linked the
activity of a mathematician to mathematical creation that requires a feeling of
mathematical order and mathematical intuition, which, in his opinion, cannot be
possessed by everyone. Still, research on mathematical expertise in school students is
rare. To the best of my knowledge, the connections between expertise at earlier ages
and expertise in research mathematicians remain unexplored.

Neurocognitive research by Amalric and Dehaene (2016) demonstrated con-
nections between numerical processing and relatively advanced mathematical
thinking. The researchers performed an investigation into the neuronal origins and
consequences of mathematical expertise. They employed fMRI with 15 expert
mathematicians and 15 non-mathematicians who had comparable educational
backgrounds. The participants were asked to evaluate the correctness of mathe-
matical and non-mathematical statements. The non-mathematical statements refer-
red to general knowledge and could be meaningful or meaningless, while the
mathematical statements referred to domains of higher level mathematics: geome-
try, analysis, algebra, and topology. No differences were found in the cortical
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network activated (a) for all four domains of mathematics examined and (b) in the
expert mathematicians when reacting to meaningful vs. meaningless mathematical
statements. At the same time, the study revealed a contrast of brain activation
measured during the reflection on mathematical statements versus activation
associated with reflecting on non-mathematical statements. A direct comparison of
the groups revealed that parietal and frontal activation during reflection on math-
ematical statements was only present in the group of expert mathematicians. The
experiment demonstrated that the brain regions employed by expert mathematicians
during their reflection on mathematical statements are located outside areas typi-
cally associated with language. The findings contradicted previous findings of
studies on numerical cognition, which had demonstrated connections between
activation evoked by numerical processing and by language. The research by
Amalric and Dehaene (2016) shows that language may play a role in the initial
acquisition of mathematical competencies and that brain activation during ele-
mentary numerical processing and higher level mathematics are connected; they
thus demonstrated that advanced mathematical processing is connected to symbolic
number processing.

The connection between advanced mathematical processing and number sense
can develop awareness of the importance of nurturing mathematical minds from
early stages of development. Additionally, these findings can lead to a hypothesis
stating that early competencies associated with number processing and numerical
operations can constitute predictors of later mathematical expertise and, probably,
of mathematical talent. This hypothesis, supported by some self-reports by math-
ematicians (e.g., Tao 1992) about their first steps of success in mathematics,
requires a longitudinal systematic investigation.

21.4.4 Starting from Theories in Mathematics Education
to Enrich Them

Only a small number of neuroimaging experiments are rooted in theories of science
and mathematics education. For example, Babai et al. (2016) explored the effect of
mode (discrete/countable vs. continuous perimeters) and the order of presentation
on elementary schoolchildren’s performance on the “comparison of perimeters”
task. They found that providing students with the opportunity to overcome diffi-
culties by altering the mode or order of presentation may lead to improved student
performance on the tasks. Their fMRI brain-imaging findings point to two factors
that are involved in solving the task correctly: inhibitory control mechanisms and
salience. The authors claim that the fMRI brain-imaging results corroborate, vali-
date, and support behavioral findings and, as such, they contribute theoretically and
practically to the understanding of reasoning processes and to improved teaching.

Another interesting research study was performed by Tzur and Depue (2014),
who examined how task design, rooted in a constructivist theory of learning and
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thinking, may impact adults’ brain processing of numerical comparisons. They
examined four independent variables: number comparison—whole numbers or unit
fractions (1/n), task sequencing—cueing first by a number or by an operation;
distance between the two compared numbers—large (1 > 8?) or small (7 > 5?), and
testing occasion—pre/post a purely conceptual teaching intervention. The study
showed that each independent variable had a significant impact on reaction time,
whereas the error rate remained invariant. The authors suggest implications for
mathematics education and cognitive-neuroscience with rethinking distance effect
and the need to amend the limiting notion of fractions as equal-parts-of-whole. Tzur
(2015) took it one step further by illustrating differentiated circuitry for comparing
whole numbers and unit fractions in support of the hypothesis that a fraction is not
merely a simple extension of a whole number.

21.4.5 Mathematical Giftedness: Designing
a Neurocognitive Study Based on Mathematics
Education Theories

Our research group in the RANGE Center at the University of Haifa conducted a
study aimed at gaining a better understanding of mathematical giftedness (Leikin
et al. 2013). It was motivated by the observation that the evaluation of individuals
presented as over-performers or who excel in the field of mathematics is not an easy
matter due to the lack of strong definitions of the phenomenon of mathematical
giftedness. We also argued that the development of tools for evaluation of indi-
vidual abilities (especially high abilities) in the field of mathematics is insufficient
and that applying brain research to the study of mathematical giftedness seems to be
of importance to the attainment of an operative definition of mathematical gifted-
ness and, consequently, to the development of tools that enable researchers to
identify mathematical giftedness.

Several distinctions were introduced in the study: First, based on theories of
gifted education (e.g., Milgram and Hong 2009), a distinction was made between
levels of intelligence (“general giftedness,” G, determined by IQ scores higher than
130) and levels of expertise (“excellence in mathematics,” EM, determined by high
scores in secondary school mathematics). This was applied in the sampling pro-
cedure, whereby four research groups were designed by a varying combination of
EM and G characteristics. Second, based on the theories of mathematics education,
a distinction was made between the translations of different representations of
mathematical objects required by the task (Kaput 1998) and different areas of
mathematics (i.e., algebra and geometry), together with a third distinction between
learning-based and insight-based tasks; these distinctions were implemented in the
design of the research tools. The task design was determined by Pólya’s (1973)
theory of problem-solving strategies. Three strategies—understanding the task
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conditions, understanding the question, and verifying the results—constituted the
stages of the task design and the corresponding cognitive processes.

The study design led to some exciting discoveries: The distinction between
general giftedness and expertise in mathematics proved to be powerful in under-
standing that these two characteristics, even though interrelated, are different in
nature. It was also obvious that using behavioral measures only is insufficient and
sometimes misleading.

For example, coping with a function-related task that required translation
between graphical and algebraic representations of the functions (Waisman et al.
2014) both at the behavioral (accuracy and reaction time for correct responses) and
electrophysiological levels (amplitudes, latencies, and scalp topographies of brain
activity identified using the ERP procedure) was affected by students’ level of
mathematical expertise, with significantly higher accuracy of responses and sig-
nificantly shorter reaction times among non-gifted students only. Interestingly,
students who excelled in school mathematics but were not identified as being
generally gifted exhibited the highest electrical brain activity as compared to all the
other groups of students. That is, for (relatively) simple learning-based mathe-
matical problems, mathematical expertise appeared to be the main factor that
influenced problem-solving performance.

When comparing ERP measures associated with performance of function-based
tasks and tasks that involved geometrical inferences (Leikin et al. 2014), we found
differences both in the magnitudes and topographies of brain activation at the stage
of answer verification (Fig. 21.1). Based on these results, we argue that problem

(a) (b) 

300–500 ms 500–700 ms 700–900 ms

Algebra

Algebra
Geometry

Geometry

F(1,67) = 4.811* F(1,67) = 18.853*** F(1,67) = 50.243***

*p < .05, **p < .01, ***p < .001

. 9242 =η . 0222 =η . 7602 =η

Fig. 21.1 a ERP topographies in the three time frames at the answer verification stage.
b Amplitudes in the posterior regions at the answer verification stage
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solving in algebra and geometry, even when requiring a similar translation between
visual to symbolic representation, is associated with variant patterns of brain
activity as related to different underlying cognitive processes.

The distinction between learning-based and insight-based problems led to
additional surprising results (Leikin et al. 2016): behavioral and neurocognitive
measures led to somewhat contradictory findings, and thus neurocognitive char-
acteristics provided essential information that was hidden in the behavioral analysis.
We found that, contrary to our research hypothesis, expertise in school mathematics
affected behavioral measures associated with the insight-based test only, while
general giftedness affected accuracy of the responses on both tests. At the same
time, as hypothesized, expertise in mathematics and its interaction with general
giftedness affected ERP measures associated with solving learning-based problems
only, while ERP measures associated with solving insight-based problems appeared
to be affected mainly by the G factor.

Our findings of stronger activation of the PO4–PO8 electrode site (Fig. 21.2)
matched findings of Jung-Beeman et al. (2004), who demonstrated the increased
activation of the PO8 electrode being associated with the “Aha!” moment. Thus, in
Leikin et al. (2016) we raised a hypothesis that our findings on increased activation
at the PO4–PO8 electrode site associated with solving insight-based problems
indicate that mathematical insight is a specific characteristic unique to generally
gifted students. Moreover, our findings expanded upon the previous findings by
Jung-Beeman et al. (2004) by showing that students who excel in school mathe-
matics exhibit increased activation of the PO4–PO8 electrode site when they are
presented with learning-based mathematical tasks. This finding led to the hypoth-
esis (that opens a window for future studies) that this increase in the absolute ERP

Effect in PO electrodes Mean amplitudes Brain topographies

Task presentation stage: Learning-based task, 500-900 ms time frame

Laterality × EM
F (1, 65) = 4.110*

2
pη =.059

*p < .05

EM NEM

Answer verification stage: Insight-based task, 500-900 ms time frame

Laterality × G
F (1, 65) = 5.650*

2
pη =.080

G NG

Fig. 21.2 ERP topographies and amplitudes at the stage of answer verification
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amplitudes at the PO4–PO8 electrodes is linked to the ability of experts to predict
the problem question based on the problem givens (Schoenfeld 1992). This pre-
diction can also be considered an insight-based process related to learning-based
tasks reflected in our findings and, thus, can be considered to be evidence of the
insight-related component of problem solving by experts at the stage of under-
standing the problem.

We connected our findings regarding the strength of electrical potentials evoked
in different groups of participants when solving learning-based tasks to the neural
efficiency effect (see Sect. 21.3 in this paper and critique by Ansari 2016). We
suggest that our findings showed no neuro-efficiency associated with solving
insight-based tasks for either G or EM, due to the high difficulty of the task.
Furthermore, the effects of the G characteristic on the cortical topographies asso-
ciated with solving insight-based problems were explained by the presumably
different problem-solving strategies applied by students with different levels of
intelligence.

Clearly, our neurocognitive experiment not only validated our initial hypotheses,
which were not always supported by behavioral data, but also led to new insights
and new hypotheses. First, mathematical expertise and general giftedness are not
equivalent constructs. We hypothesized that both of these characteristics are nec-
essary conditions for mathematical giftedness. Second, we realized that externally
similar algebra and geometry problems are based on different underlying cognitive
processes, as reflected in different brain activation when solving the problems.
Third, only ERP data allowed us to develop an understanding that success in
solving insight-based problems is a function of general intelligence and is not
attained by school mathematical expertise. We believe that further behavioral
research is needed to ascertain to what extent classroom culture determines these
findings or whether mathematical insight is an innate characteristic of the gifted.
Finally, only a neurocognitive experiment enabled us to discover the insight-based
component in experts and the problem-solving process inherent in learning-based
tasks. This component appears at the stage of understanding the problem, which
appears to be insightful for the experts. All these findings were made possible
thanks to the careful research design, which was rooted in mathematics education
theories and theories of expertise and giftedness. The integration of educational
theories in the neurocognitive study allowed us to enhance our knowledge through
neuro-discovery and neuro-explanation. At the same time, educational theories
allowed for richer interpretation of the research findings.

21.5 Concluding Comments

I hope that the analysis performed in this paper demonstrates that mathematics
education and cognitive neuroscience can capitalize on each other by increasing
validity of findings and mutually providing more substantiated interpretations of
findings. Mathematics education can clearly contribute to research design, and
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neuroscience can validate (or perhaps refute) theories in mathematics education
and, later, advance the interpretation of research results. Mathematics education
initially developed as a branch of cognitive psychology; neurocognitive investi-
gation can enrich mathematics education by contributing to our understanding of
the underlying cognitive processes involved in different types of mathematical
performance and by explaining the roots of success and difficulties in mathematics
learning, proving, problem solving and creative, intuitive, and critical reasoning. To
successfully integrate the fields, collaboration between mathematics educators and
neuroscientists is crucial. This collaboration should be symmetrical to allow
reciprocal enhancement and further development of these two fields of research
and, eventually, to allow implementation of the resulting findings in educational
practice.
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Chapter 22
Themes in Mathematics Teacher
Professional Learning Research in South
Africa: A Review of the Period 2006–2015

Mdutshekelwa Ndlovu

Abstract In this chapter, I review and identify themes in in-service mathematics
teacher professional development/learning research in South Africa over a 10-year
period from 2006 to 2015. No less than 92 journal articles were reviewed. Nine
themes were identified as characterising research during this period. Mathematical
knowledge for teaching and pedagogical content knowledge were the two most
dominant themes. Subject matter knowledge was the fourth and closely aligned to
the first two. Curriculum knowledge was the third most frequently occurring
research theme and was also closely aligned to the first two. Together the first four
themes constituted 54% of the research output for this period, an indication of the
centrality of practising teachers’ professional knowledge of school mathematics.
Under-researched themes included the integration of ICTs in mathematics educa-
tion as well as impact studies that were apparently constrained by lack of funding
for large-scale research.

Keywords In-service training � Mathematics teacher � Professional development
Professional learning � Teacher knowledge

22.1 Introduction

The mathematics education situation in South Africa has been described as a crisis
by many researchers based on the low performance and perception of the country in
international benchmark studies. Principal examples of such studies include the
Trends in Mathematics and Science Study (TIMSS), the Southern and Eastern
Africa Consortium for Monitoring Educational Quality (SACMEQ) and the World
Economic Forum’s (WEF) annual Global Competitiveness Reports. Various
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reasons have been proffered and chief among them is the apartheid legacy (e.g.
Kaino et al. 2015) that has provided unequal educational resources and opportu-
nities based on race, not only at school level but also at initial teacher education
level. While the white minority received world-class education, the majority black
underclass received substandard education that was dismissive of mathematics as it
was being taught to the white master’s hewers of wood and drawers of water. That
psyche permeated the preparation of teachers in subtle ways. While white teachers
were well prepared at universities to be graduates, black teachers were underpre-
pared at under-resourced teacher education institutions that awarded mainly a
three-year teaching diploma. There was no requirement for teacher education
institutions to conduct research. In an effort to redress the imbalances of the past,
the post-apartheid dispensation sought to upgrade historically underqualified
teachers through formalized in-service teacher education programmes such as the
Advanced Certificate of Education (ACE). It is no coincidence therefore that most
of the in-service teacher education research in the period reported here is apparently
dominated by involvement in this programme.

Initially, teacher education was incorporated into universities so that all newly
qualified teachers could receive degrees (i.e., receive a relative educational qualifi-
cation value of Level 14 [REQV-14], which consists of matriculation and 4 years of
training) irrespective of where or who they were going to teach. Concomitantly,
universities began to offer upgrading courses such as the ACE to those teachers who
had received REQV-13 (Brown 2010). This provided an opportunity for universities
to carry out systematic scrutiny (research) on teacher education programmes as part of
their core business of research, teaching and service to the community. Apart from
upgrading teachers in mathematics teaching skills, the ACE also became a vehicle
for retraining in new subjects in the curriculum. Mathematical literacy was one
such subject introduced in the Further Education and Training (FET) phase
(Grades 10–12), as a compulsory alternative to pure mathematics in order to fulfil the
mathematics for all policy adopted by the new democratic government. This subject
was introduced with no experience around the world to draw from, thus attracting
considerable research interest (e.g., Julie 2006; Bansilal et al. 2014).

Frequent changes in the school curriculum stimulated research interest in their
own right in the broader education reform process. The rapid changes in the cur-
riculum saw an evolution from the National Education Department (NATED)
curriculum to outcome-based education (OBE) in the form of Curriculum 2005, the
Revised National Curriculum Statements (RNCS) and the National Curriculum
Statement (NCS) to the Curriculum and Assessment Policy Statements (CAPS).
This is why I prefer to refer optimistically to a mathematics education system in
transition or in search of an identity, rather than one in crisis, for a relatively young
nation state.

The purpose of this paper is to analyse the research themes privileged in
mathematics teacher professional development/learning (MTPD/MTPL) for the
10-year period from 2006 to 2015. To achieve this goal I will use some
meta-analysis and the following overarching research question and sub-questions to
guide the study:
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22.1.1 Main Research Question

What were the main themes (issues) investigated by the researchers with respect to
MTPL?

22.1.2 Sub-questions

(a) Where was the research surveyed published for the period under review?
(b) What volume of research was published in (accredited) journals over the

period?
(c) Who were the research participants?
(d) What were the themes (issues) problematized in the research?

22.2 Methodology

Firstly, I conducted a literature search on Google Scholar using the following search
phrases: ‘mathematics teacher professional development in South Africa’,
‘in-service training for mathematics teachers in South Africa’, ‘mathematics teacher
professional learning in South Africa’ etc. I ticked the box for articles and unticked
the boxes for ‘case law’, ‘include patents’ and ‘include citations’. I selected the
custom range 2006–2015 to limit the search to article publications during that
period. I repeated the same procedure for the other two search phrases, yielding
results of approximately the same number of pages each time: 100, 99 and 100
respectively. Figure 22.1 below shows the top and bottom screenshots for page 2 of
100 Google Scholar pages that were prompted when the first phrase was used for
searching within the 2006–2015 range. Each of the first 99 pages contained a list of
about 10 publications (articles, books, conference proceedings papers, etc.). The
last page only had one publication listed on it. Table 22.1 shows the total number of
journal articles that spoke to research on mathematics teacher professional devel-
opment in South Africa for the 10-year period 2006–2015. I repeated the same
procedure for the other search phrases and specifically looked for articles that had
not been prompted by the preceding searches.

Secondly, I searched for publications in South African databases (e.g., Sabinet
and Ebscohost) for accredited journals. I excluded conference publications to
narrow down the search and ensure only articles involving more rigorous peer
review were included. I excluded book chapters, as most appeared to be drawing
from prior published journal articles or unpublished thesis work. I also excluded
unpublished theses from this study, as they were not rigorously peer-reviewed
work. However, many of the published articles were based on thesis work and
hence publishable thesis work was indirectly included in that sense.
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Thirdly, I scrutinized each article’s title and abstract to confirm whether it was
indeed about mathematics teacher professional development. Where details of
participants were not clear from the title and abstract, I proceeded to the method-
ology section to confirm or refute whether it was a study on in-service teacher
professional development/learning or not. I also discarded multidisciplinary studies
that involved more than two subjects, as these tended to be more general and less
specific to mathematics teaching. I included articles that involved mathematics and
science teacher professional development/learning as the twin gateway subjects
were frequently researched together (e.g., Mokhele and Jita 2012a, b; Jita and
Mokhele 2012, 2014; Mokhele 2013). In the larger study, I categorised each article
that related to teacher development or professional learning research according to
the following sub-headings: author(s), year, journal, topic/theme, theoretical
framework, purpose of research, research method, paradigm, participants and main
findings. In this paper, I only deal with the main themes/issues explored. In all, 92
articles were included for analysis. Although this was not an exhaustive list, I
considered it a representative sample of identified research studies.

Fig. 22.1 Top and bottom screenshots of Google Scholar page 2 of 100 for the phrase
‘mathematics teacher professional development in South Africa’

Table 22.1 Google Scholar results for the phrase ‘mathematics teacher professional development
in South Africa’

Pages 1–10 11–20 21–30 31–40 41–50 51–60 61–70 71–80 81–90 91–100 Total

Total 8 12 9 4 4 5 4 4 0 2 51
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22.3 Results

22.3.1 Main Journals Surveyed

Figure 22.2 shows the distribution by journal of the 92 articles reviewed. The
journal that contained the largest share (32%) of mathematics teacher professional
learning research articles was Pythagoras. This accredited journal is exclusively
dedicated to mathematics education and the only one of its kind is South Africa. It
is published by the Association of Mathematics Education of South Africa
(AMESA), the largest mathematics education research association in the country
and one of only two accredited mathematics education conferences. The second
largest contributing journal is the African Journal of Research in Mathematics,
Science and Technology Education (AJRMSTE) which contributed 21% of the total
number of articles from the journals surveyed. This journal is published by the
Southern African Association of Mathematics, Science and Technology Education
(SAARMSTE). The SAARMSTE annual conference is the only accredited con-
ference dedicated to mathematics, science and technology education. It draws its
membership from the Southern African region.

The South African Journal of Education and the South African Journal of
Higher Education respectively contributed 13 and 9% to the total number of articles
selected for review. The category ‘Other’ included any other journal from which
articles on MTPL in the sample were obtained, such as Perspectives in Education
(PiE), Acta Academica, Education as Change, Journal of Educational Studies,
Journal of Social Sciences, and Anthropologist.

Fig. 22.2 Distribution of journals surveyed
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22.3.2 Volume of Journal Publication Output

The graph in Fig. 22.3 shows the volume of publication output from year to year in
this sample.

The graph shows that the research output experienced erratic growth from 2006
to 2010 before an acceleration or exponential growth pattern from 2010 to 2015.
The overall picture is one of steady growth during the 10-year period.

22.3.3 Distribution of Research Participants

Figure 22.4 shows the distribution of research participants.
Almost three quarters of the research (72%) involved secondary school mathe-

matics teachers as participants. Only 11% was on primary school teachers. In 11%
of the articles, the research participants were both primary and secondary school
teachers. In 6% of the articles, it was unclear at what level the participants were.
There was not much evidence of Foundation Phase (Grades R-3) or Intermediate
Phase (Grades 4–6) teachers participating in the research.

22.3.4 Main Research Themes

Figure 22.5 shows distribution of main research themes.
Nine themes were identified:

1. Pedagogical content knowledge (PCK; 14%)
2. Mathematical knowledge for teaching (MKT; 14%)
3. Subject matter knowledge (SMK; 13%)

Fig. 22.3 Journal article output 2006–2015
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4. Curriculum knowledge (12%)
5. Teacher professional learning (TPL) programme design (12%)
6. Integration of information and communication technologies (ICTs; 10%)
7. Impact of TPL interventions (7%)
8. Professional learning communities (PLCs; 13%)
9. Professional learning needs (5%).

MKT (e.g., Adler and Davis 2006; Adler and Pillay 2007; Aldridge et al. 2009;
Brijlal et al. 2012; Gierdien 2008; Mhlolo et al. 2012; Mudaly and Moore-Russo
2011; Tosavainen et al. 2013; Kazima et al. 2008; Kazima and Adler 2006; Bansilal
2014a, b; Lampern 2015) and PCK (e.g., Mhlolo and Schafer 2012; Brijlal 2014;
Brodie and Sannie 2014) were the two most researched themes. SMK

Fig. 22.4 Distribution of research participants

Fig. 22.5 Main research themes privileged
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(e.g., Likwambe and Christiansen 2008; Bansilal 2011; Ndlovu and Mji 2012; Berger
2013; Wessels and Nieuwoudt 2013), a theme closely related to the first two, was tied
for third most frequently researched (with PLCs). Taken together these three closely
intertwined themes (or domains) constituted 41% of the research output. Curriculum
knowledge (e.g., Khuzwayo and Mashiya 2015; Mwakapenda and Dhlamini 2009;
Bansilal 2015; Shalem et al. 2013; Biccard and Wessels 2015) was tied for fifth most
frequently researched theme (with TPL programme design) and closely aligned to
MKT, SMK and PCK. Curriculum knowledge helps teachers to align their mathe-
matics content knowledge and mathematics for teaching to the syllabus (intended
curriculum) and the assessment (assessed curriculum). Together, the first four themes
constituted 54% of the research output, which conveys the importance placed on
practicing teachers’ knowledge of mathematics required for the successful teaching of
school mathematics. Although so much emphasis has been placed on these funda-
mental professional knowledge domains of the mathematics teacher, there still seems
to be a long way to go in the attempts to solve the teacher knowledge problem, more
so in an environment where the mathematics curriculum itself keeps on evolving
(Paulsen 2015; Phoshoko 2015).

Formalised TPL programme design (e.g., Julie 2006; Adler and Davis 2006;
Brown and Schafer 2006; Fricke et al. 2008; Plotz et al. 2012; Owusu-Mensah
2014) was tied for fifth in prevalence together with curriculum knowledge (e.g.
Graven and Venkat 2014; Khuzwayo and Mashiya 2015; Molefe and Brodie 2010;
Webb 2015). If we add PLC research, together with alternative non-formalised
programme designs such as lesson study, cluster programmes and communities of
practice, research (e.g., Brodie 2007, 2013; Brodie and Shalem 2011; Posthuma
2012; Pausigere and Graven 2014; Singh 2011; Ono and Fereira 2010) to for-
malised TPL programme design, we see that these two closely related themes
combine to make 25% of the research output. This is understandable in the context
of a research community seeking more sustainable models of teacher professional
development and learning.

The integration of information and communication technologies into mathe-
matics teaching (e.g., Stols et al. 2008, 2015a, b; Van der merwe and Van der
Merwe 2008; Berger 2011; Van Staden and Van Westhuizen 2013; Gierdien 2014;
Leendertz et al. 2015; Stols and Kriek 2011) came in seventh but with increasing
intensity in the second half of the period under review. With the proliferation of
ICTs in numerous forms and platforms, this is an encouraging sign. However, it still
falls short of the rate at which ICT tools themselves are becoming increasingly
ubiquitous. To this end, Blignaut et al. (2010) lament the lack of ICT competency
among teachers in terms of basic ICT, as revealed by the Second International
Technology Education Studies (SITES) of 2006.

Studies relating to the impact/effectiveness of TPL programme interventions,
notably on student learning outcomes, were few (e.g., Frick et al. 2008; Ndlovu
2011a, b, c, d; Ndlovu 2014; Pourana et al. 2015). Similarly, studies that specifi-
cally focused on TPL needs were few and far between (e.g., Rakumako and
Laugksch 2010; Wessels and Nieuwoudt 2011; Julie et al. 2011).
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22.4 Discussion of Results

It is clear that the research emphasis focussed sharply on teachers’ mathematical
knowledge, be it as pure SMK or fused with pedagogy as in PCK or more specialised
as mathematics for teaching (MFT) or mathematical knowledge for teaching (MKT/
MKfT). Mathematical knowledge for teaching also re-appeared as mathematical lit-
eracy knowledge for teaching (MLK), Statistical knowledge for teaching (SKT) and
more recently as mathematical discourse in instruction (MDI; e.g., Adler and Ronda
2015; Venkat and Adler 2012). Although this might be taken for granted in other
countries, it appeared to be the core problem vexing the quality of mathematics
teaching to the extent that teachers’ mathematical discourses in action needed to be
analysed in context—some form of situated cognition—and acted upon relevantly.

Lack of resources in disadvantaged schools included knowledge resources such
as mathematics for teaching abilities of teachers and cultural resources such as the
undermined/underutilised potential of indigenous languages in the teaching of
mathematics, requiring re-sourcing of teachers (e.g., Adler 2012; Dicker 2015;
Setati 2008). Research on the integration of ICT in mathematics education might
have been impeded by the novelty of the technology itself, which caused in-service
providers to also be co-learners in most instances. The paucity of research on ICT
integration pointed to the possibility that very few in-service teacher educators were
comfortable (i.e., digital natives) with the new tools. For example, Stols and Kriek
(2011) asked the question ‘why don’t all maths teachers use dynamic geometry
software in their classrooms?’ They postulate that their beliefs could initially hinder
their intention to use technology, but once exposed, the intention and the actual use
of technology actually increases. However, more research is needed to establish the
full range of impediments. For example, a strong possibility exists that as ICT
proliferates, there may be many more practitioners who use technology than
researchers think—it just has not been written about in journal articles.

Many mathematics teachers appeared to be out of their depth, especially in the
secondary school sector. The majority of the studies sought to describe or unpack
the nature of mathematical knowledge required for teaching and what mathematical
difficulties underqualified teachers encountered even as they were being upgraded.
Given the long history of neglect of the education of the majority, it was under-
standable that unless a completely new breed of teachers was trained overnight to
replace the old cadres, the problems of under-equipped and inappropriately
deployed teachers would persist.

The rapid changes in the curriculum made the design of teacher professional
programmes a rather messy issue, as researchers had to attempt to fix a system that
in itself was a moving target. Very often, changes in policy outstripped the supply
of appropriately qualified or appropriately retrained teachers, as Mbekwa (2006)
and other researchers highlighted, for example, in the case of mathematical literacy.
A constant shortcoming of in-service teacher education was its general failure to
influence the quality of education positively. The very few studies on impact may
suggest a persistent lack of capacity or competencies as well as funding constraints

22 Themes in Mathematics Teacher Professional Learning … 393



among researchers to conduct large-scale randomised control trial (RCT) projects.
Following the success of the East Asian countries in international benchmark tests,
some research on professional learning communities and lesson study has surfaced
as a prospectively more sustainable, teacher-driven (bottom-up) alternative. The
notion of PLCs has been embraced at the policy level by both the Department of
Basic Education (DBE) and the Department of Higher Education and Training
(DHET) in the integrated strategic planning framework for teacher education and
development (DBE and DHET 2011). However, the initiation of such communities
of practice might still be a challenge as there may not be enough skilled personnel
(e.g., professors) to stimulate them all over the country with equal zeal and skill as
in the reported research. There might also not be enough resources nor enough time
and incentives for participating teachers to embrace them wholeheartedly.

22.4.1 Implications for the Way Forward

The research has on balance led to greater local understanding and interpretation of
pedagogical problems affecting the South African mathematics education conun-
drum. Whereas some researchers appear to bemoan the ineffectiveness of one-off or
hit-and-run approaches to teacher professional learning (e.g., Jita and Mokhele
2012), formal in-service teacher education programmes such as the ACE reported
here have also lacked consistency in standardising what is taught. The broad con-
sensus appears to be that more long-term formats of teacher professional learning
programmes may yield more long-lasting improvements. Whereas the pace of cur-
riculum change has to be moderated, there is also the challenge for initial teacher
education to produce more adaptable educators, perhaps partly by extending teaching
experience and partly by investing in ICT infrastructure at higher education insti-
tutions so that the integration of ICT in mathematics can be more easily and naturally
embraced in the field. This could be backed by improved research funding for its
integration in schools, not only for mathematics but for all other subjects as well.

Figure 22.6 highlights the need for constant interaction between initial teacher
education, continuous teacher professional learning and student learning outcomes.

Fig. 22.6 The
interrelationship between
TPL, student learning
outcomes and initial teacher
education
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Furthermore, looking at the comparatively extensive volume of research on
in-service mathematics teacher professional development and learning that South
Africa has produced, it is worth recommending the consolidation of the funding
model for higher education research that has been a major catalyst for research
productivity. Since most research emanates from the higher education sector, it
raises the prospects of the researchers to influence the re-curriculation of initial
teacher education (ITE) so that the gap between ITE and the realities of the prac-
ticing South African mathematics teacher can be as narrow as possible.
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Chapter 23
Pedagogies of Emergent Learning

Ricardo Nemirovsky

Abstract We distinguish emergent learning from “teleological” learning, which is
learning for the sake of passing pre-defined tests and goals. While teleological
learning may succeed or fail, emergent learning is always going on in ways that
move pass disciplinary boundaries and anticipated results. To advance a perspective
on pedagogies of emergent learning we analyze selected episodes from a program
for children who volunteered to enroll. The sessions alternated between the after
school club they attended and an art museum. The program engaged the children in
basket weaving, in the analysis of baskets exhibited at the museum, and with ways
in which flat materials can be shaped in 3D space along distinct surface curvatures.
These experiences have inspired us to outline two streams of pedagogical ideas that
seem to nurture and go along with the unforeseeable paths of emergent learning.

Keywords Informal mathematics learning � Emergent learning
Pedagogy � Museum learning � Crafts and mathematics

23.1 Introduction

We contrast emergent learning with “teleological” learning, which is learning for
the sake of passing pre-defined tests and goals. To grasp the nature of emergent
learning and how it differs from teleological learning, we review one of the best
known and most cited papers in mathematics education: “The case of Benny”
(Erlwanger 1973). In sixth grade Benny was regarded as one of the best students in
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his mathematics class. Since second-grade Benny had been using “Individually
Prescribed Instruction” (IPI): a structured sequence of exercises punctuated by
multiple-choice tests, such that 80% of the answers were required to be correct in
order to advance in the sequence. Benny “was making much better than average
progress through the IPI program” (p. 7), which indicated that his test responses
had largely been correct according to the key provided by the IPI program.
However, as Erlwanger interviewed him, he noticed that Benny was computing
answers to problems by applying a multitude of self-generated rules many of which
were incorrect, even though in particular cases they would lead to answers con-
sistent with the key (e.g. the result of 0.7 � 0.5 is 0.35 because, on the left side,
“there’s two points in front of each number” (p. 8), then Benny used the same rule
to evaluate: 0.3 + 0.4 = 0.07). In addition to many idiosyncratic rules—Benny
estimated that “in fractions we have 100 different kind of rules” (p. 10)—his five
years of experiences with IPI led him to adopt certain views about the nature of
mathematics and mathematics learning. The rules, he thought,

were invented “by a man or someone who was very smart.” This was an enormous task
because, “it must have took this guy a long time… about 50 years… because to get the
rules he had to work all of the problems out” (p. 12)

Applying diverse rules Benny was able to obtain different answers to the same
problem, all of which he deemed to be true ones, although the IPI key accepted
only one of them. Erlwanger asked Benny why the teachers would mark as wrong
all these other true answers: “They mark it wrong because they just go by the key.
They don’t go by if the answer is true or not” (p. 12). This mismatch between the
variety of true answers and the single one chosen by the key, Benny remarked, “is
why nowadays we kids get the fractions wrong” (p. 11).

The practices involved in the use of IPI hinged on whether the students obtained
adequate scores on its tests. We call this kind of learning “teleological:” learning
for the sake of passing pre-defined tests and goals. At the same time, Benny learned
many skills, ways of thinking, and forms of social awareness that were not
pre-specified or even intended by the program, the school, and the participating
teachers, such as the distinction between truth and key selection, his own confi-
dence as a prolific maker of mathematical rules, or mathematics as an invention of a
very smart and hard-working man. We will refer to this learning as “emergent.”
The concept of emergence is currently used in a range of disciplines, from com-
plexity theory and thermodynamics of far-from-equilibrium systems, to system
dynamics and organizational theory (Goldstein 1999; Kreps 2015). Characteristics
of emergence include that it is largely unpredictable, not reducible to internal
components and variables, self-organizing, and creative. Teleological Learning
may succeed or fail; in the Case of Benny success was achieved to a certain degree,
as he made more than average progress through the IPI program. Other researchers
(Jacobson and Kapur 2012; Jacobson et al. 2016; Jacobson and Wilensky 2006)
have elaborated on an approach to emergent learning that differs from ours because
they base their work on an a computational model of learning.

In contrast to its etymological roots (Young 1987), the word “pedagogy” is
nowadays strongly associated with formal teaching and schooling (Hamilton 1999).
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This association elicits a paradoxical sense to the phrase “pedagogy of emergent
learning” because school teaching is commonly seen as inherently teleological, as
if, without explicit behavioral goals, teaching were to dissolve into a mass of
incoherent and random interactions devoid of purpose. Emergent learning, being
elusive to anticipated aims and predicted outcomes, appears, for the most part, to be
an unintended byproduct of schooling practices that are bound to the achievement
of testable results. Thus, clarifying what we mean by pedagogies of emergent
learning is a critical matter.

We conceive of pedagogy of emergent learning as one that drifts and moves
along unanticipated flows of emergent learning traversing educands and educators,
one in which spontaneous memories, speculations, and projects of the participants
may take center stage regardless of whether they accord with pre-conceived end-
points. While a pedagogy of emergent learning seeks to instigate collective
improvisation, it does preserve the asymmetry between educators and educands,
although treating the axis of this asymmetry as, in the words of Rancière (1991
p. 13), will to will and not intelligence to intelligence. “Will to will” entails that
educators plan, facilitate, and orchestrate the activities the group engages in; “not
intelligence to intelligence” implicates that participants share, make sense and
pursue these activities in their own ways nurtured by their desires, histories and
contexts of life. In other words, while there is an inequality educand/educator in that
the latter regulates and sets up the stage for their joint work, there is a primordial
equality educand/educator in their autonomy for expression, recollection, concep-
tualization, initiative, and insight.

Pedagogy of the Oppressed (Freire 1970) and The Ignorant Schoolmaster
(Rancière 1991) seem to us inspiring for the development of a pedagogy of
emergent learning. Freire saw the dialogue between educators and educands as
necessitating humility and the sense that they are all learners: “At the point of
encounter there are neither utter ignoramuses nor perfect sages; there are only
people who are attempting, together, to learn more than they now know” (Freire
1970). Educators are also learners who struggle against their own assumptions and
expectations, pursuing to “learn more than they now know.”While it is said that the
main goal of the pedagogy of the oppressed is “conscientização” (i.e. approxi-
mately, to become aware), we think it is more accurate to say that its goal is to
elucidate, to some extent, what “conscientização” amounts to in the context of the
circumstances of the educands and educators, as well as the histories of their lives.
What makes the pedagogy of the oppressed non-teleological is not the absence of
goals, but coping with the ongoing persistent challenge of what the goals are, as
well as the openness to their being constantly transformed into new, unanticipated,
and often surprising and provisional ends. In other words, the goals themselves are
emergent, which entails that they are diverse, shifting, ephemeral, situated, and
co-generated.

We suggest that case studies are main sources to elaborate on pedagogies of
emergent learning. An important example is the case of “SeanNumbers-Ofala”
(2010, Online) focused on interactions in a third grade classroom taught by
Deborah L. Ball. This paper is a case study based on a program entitled “Basket
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Weaving and Curvature” that was conducted during the fall of 2015. The program
was part of the InforMath project, one of whose main goals is to investigate/design
informal learning environments amenable to the creation of new social images of
mathematics—images that are more inclusive and inspiring than the prevalent ones
in our society. Note that this is a goal without finish line and goalposts, not unlike
the one of “conscientização.” It is a goal irremediably recursive, the pursuit of
which entails an ongoing questioning, hopefully insightful, of what it is about and
where it comes from.

23.2 Basket Weaving and Curvature

This program is one of several that have been designed and conducted in the
context of the InforMath project, which is a collaborative initiative including
museum educators from three museums located in Balboa Park, San Diego, as well
as faculty members and graduate students from San Diego State University. The
children, all members of an after school program at the Boys and Girls Club of
Southeast San Diego, volunteered to participate. A recruitment session was held at
the Chula Vista clubhouse, where all students in grades 5–8 attended a brief pre-
sentation about Mingei museum and had the opportunity to engage with a weaving
activity composed of yarn and a cardboard loom. The program consisted of six
sessions that took place every other week and alternated locations between the
museum and the Chula Vista clubhouse. Eleven students signed up, they were
9–12 years old, with four girls and seven boys, of which eight completed the
program. To record each session, two stationary video cameras were used as well as
head cameras worn by several of the kids. The Basket Weaving and Curvature
program was designed and conducted by two museum educators, Lucera and
Johanna, and two math educators, Ricardo and Cierra. Lucera led the activities
during the sessions themselves. We will refer to the four of them as the “educators.”
The educators met in between sessions to design the ensuing ones and to prepare
materials accordingly.

The springboard of the program was an exhibition hosted by the Mingei
International Museum called “Made in America,” which included outstanding craft
products from each of the 50 US states. Made In America was in the process of
installation when we began to envision the program. Lucera and Johanna had
produced educational materials to accompany the exhibition. Apprehending the
upcoming exhibition as a suitable arena for a program intermingling mathematics
and crafts, to be attended by children from Southeast San Diego, were the initial
issues we worked on. While the collection encompassed a wide variety of tech-
niques and materials, during our preliminary visits we were particularly lured by
several handcrafted baskets (see Fig. 23.1), as well as encouraged by Lucera’s past
workshop experiences, to engage children in basket weaving. We held several
preparatory sessions. In one of them Lucera taught Ricardo and Cierra to create
round baskets using two different techniques: coiling and weaving. In parallel to
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this preparatory work, Ricardo and Cierra were participating in an online seminar
with a mathematician, John McCleary, on topics of differential geometry. This
seminar was one of the professional development initiatives held by the InforMath
project. At the time, topics discussed in this seminar included surface curvature and
geodesics. This overlap of activities evoked the idea of basket weaving as a set of
techniques to create, out of flat materials, a shape in three-dimension space. Since
3D shapes can be characterized by the local curvature for each point of the surface,
basket weaving appeared to be a suitable maker’s context to encounter and use
ideas about surface curvature.

23.3 Episode 1

The first session took place at the Mingei. After a warm up activity, the director of
the museum and curator of Made in America, Rob Sidner, led a visit to the gallery
floor explaining the history of the exhibition and conversing with the children about
their impressions and questions. Afterwards the group gathered at the museum’s
workroom. Lucera initiated a discussion about the differences between straight and
curved lines. She introduced the children to a tool we refer to as a “curvature
instrument.”

The curvature instrument had been designed by the educators over a three-week
period before the beginning of the program. After trying out different designs, the
final version consisted of a “cross” made out of cardstock with pipe cleaners in
between; the two pieces of cardstock were stapled along the edges to keep the pipe
cleaners in between. The curvature instrument is used by placing it over an object or
certain shape of interest aligning one non-adjacent pair of arms along the orientation
of maximal curvature, and contouring the remaining pair of arms to the shape of the
object (see Fig. 23.2). The pipe cleaners help maintain the shape of the surface after
the tool is detached from the object The idea of the curvature instrument arose from
trying to figure out ways to support children to develop an intuitive sense of

Fig. 23.1 Some of the baskets included in the Made in America exhibition
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Gaussian curvature at a given point on the surface. Gaussian curvature is obtained
by multiplying the maximum and minimum linear curvature around the point of
interest. Euler proved in 1760 that on smooth surfaces the maximum and minimum
linear curvatures are perpendicular to each other, which necessitated the perpen-
dicularity of the arms of the curvature instrument.

Lucera explained that when the two non-adjacent pairs are bent in the same
direction it is said that the curvature is “positive,” whereas if each of the two pairs
are bent in opposite directions it is “negative”; if one or both non-adjacent pairs are
flat the curvature is zero. She showed how the top of her head had a positive
curvature whereas the inner side of a bent elbow or knee, has a negative one. The
children then used the curvature instrument to ascertain different types of curvature
on their bodies. During the last segment of the session Lucera showed how to
weave a basket with pipe cleaners and yarn, and then the children selected materials
and started to make their first basket.

The second session took place at the Chula Vista clubhouse. They reviewed the
activities of the first session, watched and discussed a video showing craftsmen
creating blown glass pieces, and continued work on their baskets. During the third
session, at the Mingei, the group talked about their baskets and compared tech-
niques (e.g. looping the yarn around each spoke or just alternating inside/outside
each spoke). Afterwards they went to the gallery floor to observe and discuss
different pieces, particularly woven baskets. Students were encouraged to speculate
about what materials and processes went into creating the art pieces. Episode 1 took
place during this visit to the gallery floor.

Fig. 23.2 Curvature instrument on a sphere (left) and removed (right)
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• Annotated Transcript

1 Lucera: So, this basket ((see Fig. 23.3a)) alsouses spokes. So, it has a bunchof reeds
2 ((which are the spokes, see white outline in Fig. 23.3a)) going up the sides
3 but I thought this basket was interesting, um, because it started out– if you
4 just imagine, like, slice it in half ((makes horizontal slicingmotionwith flat
5 hand, see Fig. 23.3b)) and the bottom is just like a regular bowl going out
6 ((makes upward swinging gesture following contour of lower half of
7 basket, see Fig. 23.3c)) but then it started going back in ((uses hand to trace
8 the contour of the upper half of basket going in, see Fig. 23.3d)). So, how do
9 you think they did it on this one? Yeah?

Commentary

Lucera started [1–3] by highlighting the vertical reed spokes traversing the
basket. Then she imaginarily sliced the basket in half, to mark a difference between
the bottom part (i.e. “going out” [5]) and the upper part (i.e. “going back in” [7]).
She asked how the basket weaver managed to produce this difference
outwards-inwards [8]. Lucera’s question: “So, how do you think they did it on this
one?” [8], was an invitation to conjecture the making of a difference. Generally
speaking, woven baskets obtain a shape outwards by increasing the distance

Fig. 23.3 a Outline of one of the many vertical reed spokes. b Slicing the basket horizontally
along equator. c Tracing the lower half going outwards. d Tracing the upper half going inwards
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between spokes or widening the spokes themselves, and likewise turn inwards by
decreasing the distance or spoke width—a relationship Lucera was familiar with.
Lucera wished to discern, after calling their attention to the vertical spokes, how the
children perceived the roles of the spokes in shaping up the basket. It is unlikely
that any of the educators knew how to “explain” the relationship between variation
of spoke width and curvature. This type of relationship is something that we lit-
erally grasp in the context of making, rather than the one of talking.

10 Ryan: So, like, what I found right here ((points at bottom of basket)) is like it’s
11 going out ((curves hand to mirror contour of lower basket)) and then like
12 on this part ((points near equatorial region where handle reeds depart
13 from wall of basket)) it’s going that way ((motions upward with hand
14 following angle of handle reeds, see Fig. 23.4a)) so, like, they can, they can
15 carry it ((points at handle)…
16 Lucera: Mm-hmm.
17 Ryan: …like a handle
18 Lucera: So, okay, so over here ((near equator of basket)) it’s like making a turn
19 ((referencing contour of upper basket that curves back in)).
20 Ryan: Yeah.
21 Lucera: Can everyone see where he’s pointing? Can you point where you’re…
22 Ryan: Like, this pointwhere it goes like that ((uses pointerfinger to trace the angle
23 of the handle reeds, see Fig. 23.4b))…
24 Lucera:Okay, sohe’s noticed it’smakinga turn ((curves hand tomodel curvature of
25 upper basket))

Commentary

From his side, Ryan noticed something different around the equator line: the
appearance of a spoke going upwards to hold the handle in position. This spoke is
unique because while it appears to be an ordinary spoke on the bottom half, then it
breaks free and becomes handle support. Lucera understood his “then like on this

Fig. 23.4 a Ryan traces the spoke coming out of the woven reeds to support the handle. b Ryan
traces the salient spoke again

408 R. Nemirovsky



part ((middle level)) it’s going that way ((slanted upwards))” [12–13] as corrobo-
rating her “then it started going back in” [7], so that she re-described Ryan’s words
as “it’s like making a turn” [16–17], from the lower to the upper half of the basket.
Such mutual unawareness of differences between their accounts is a natural
byproduct of the inherent ambiguity of utterances, exacerbated in this case by the
inability to touch the basket, as well as the fact that we tend to be primed to perceive
what we expect. Unless ambiguity turns out to be minimal, it is only through the
insistence of a difference that we face it.

26 Lucera:Anybodyelsehaveideashowthismight’vebeenmade?Omar?Didyouhave
27 something?
28 Omar: I think they, theyused, um, really, really, um, thinwood so it’s easier for them
29 to, um, bend the ((points toward basket)) wood.
30 Lucera:Oh, okay.Okay.So, it’s just amatter of usingvery thinwood so that they can
31 bend it ((makes upward sweeping, semicircular motion)). So you also
32 agree that there is some bending going on.
33 Omar: Yeah.
34 Lucera: Yeah?

Commentary

Omar thought that the basket maker had generated the outward/inward difference
by bending the spokes, which required them to be made of an easy-to-bend material,
such as thin wood. This might have resonated with his recent experiences weaving
yarn around pipe cleaners that can be bent effortlessly. While isolated spokes show
to contribute to the shape of the basket by their bent, the weaving reeds, as they bring
the spokes into mutual relationships, make them bear and sustain the particular shape
of the basket. This does not invalidate Omar’s remark: had the spokes been made of
rigid material, they would have refused to comply with the hands of the weaver as
they interlaced the horizontal reeds. The main point we elicit in this commentary is
the ongoing merging of perception and imagination, both materializing from
memory: as Omar envisioned the (imaginary) making of this (perceived) basket, the
salient feature that came to the present surface of memory—a memory that included
the making of pipe cleaner baskets and much else—was the bending of the spokes.

35 Alexa: I think there is a little bit of bending going on, but like right there ((points
36 near equator of basket)), you can see that they’re ((the spokes)) bigger and
37 then as they go up ((traces circles with finger as she raises arm)), they
38 become really small ((makes repeated pinchingmotions with index finger
39 and thumb)).
40 Lucera: Oh, okay. So let’s look over here on this side ((see Fig. 23.5a)). So, she’s
41 saying like kind of in the middle the ((indicates greater width with index
42 finger and thumb, see Fig. 23.5b)), the spokes, they get bigger, they get
43 thicker and then as it goes up ((raises arm, indicates lesser width with
44 index finger and thumb)), it gets smaller.
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Fig. 23.5 a Other side of
basket. Note changing width
of reed spoke. b Lucera’s
hand highlights greater width
of the spokes in the middle
height of the basket
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Commentary

Alexa acknowledged that there is “bending going on” [35] but she foregrounded
another variation: from wide to narrow width. She was referring to the spoke
thickness, decreasing from the middle up. Note that Alexa gestured such movement
up by tracing circles with her finger as she raised her arm [37]: Alexa imagined the
making of this basket in terms of weaving reeds going around and gradually
up. Just as in the making of a coiled basket, each circle of threaded reeds has a
shorter and shorter perimeter in order to go inwards; the narrowing of the spokes
generates such perimeter shortening. As in our previous commentary on Omar’s
remark, Alexa’s utterance merges perception and imagination such that a particular
feature came to the present from the depth of vast memories, recently stirred by her
work with pipe cleaner basketry: the perimeter’s shortening as circles move
upwards. Lucera’s requested the group to watch the basket from another side (see
Fig. 23.5b), probably motivated by that one being the side that Alexa was
observing, and perhaps also by that side of the basket being color-uniform (compare
Fig. 23.5b and a), allowing for a more focused appreciation of the spoke width.
From that side, Lucera highlighted the narrowing of the spokes [42–44].

45 Jake: Mmm.
46 Lucera: Does anyone else see that? Do you agree with that? Or are they the same
47 size all the way from the bottom to the top?
48 Omar: I think they’re the same size.
49 Lucera: You think they’re the same size? If you look at this little piece up here
50 ((makesmeasuringgesturewith thumband indexfinger near topofbasket,
51 see Fig. 23.6a))– I wish I could touch it– and then this piece ((makes
52 measuring gesture near bottom)) and the middle ((makes measuring
53 gesture near equator, see Fig. 23.6b)) and down there ((makesmeasuring
54 gesturenear bottomagain, seeFig. 23.6c))…it’s the same size?Who thinks
55 it’s the same size?Raise your hand. ((four kids raise their hands))…Who
56 thinks it’s a different size? ((four kids raise their hands, including one girl
57 who voted again))
58 Jake: I think it’s just like an optical illusion.
59 Lucera: I think it’s–Maybe it’s an optical illusion? Okay, then that—yeah, that’s

Fig. 23.6 a Lucera highlights spoke width at the top of the basket. b Lucera highlights spoke
width in the middle of the basket. c Lucera highlights spoke width at the bottom of the basket

23 Pedagogies of Emergent Learning 411



60 makingme doubtmyself but I think it’s slightly different size. I think it, it
61 starts out, um,mediumon the bottom ((usesfingers to indicatewidth near
62 bottom)) and then it gets a little bit thicker ((moves fingers up towards
63 equator to indicate width)) and then it gets thin at the top ((moves fingers
64 near top to indicate width)) Just slightly.
65 Ryan: I wish I could touch it.
66 Jake: Slightly

Commentary

Sensing that some of the children were unconvinced by Alexa’s observation [45
and 48], Lucera responded by wanting to show the decrease in width. Limited by
her inability to touch the basket [51], she marked the spoke thickness by the
separation between the tips of her thumb and index fingers, as they slid vertically
over the glass surface. However, as she was enacting the spoke thickness with her
fingers, she started to hesitate, to the point of bringing into question the observation
itself (“it’s the same size?” [54]). Lucera turned to the children asking for a poll of
opinions. Following the mixed polled opinions, Jakes remarked that it was “just” an
optical illusion [58]. That perception is infused with the imaginary does not mean
that the distinction between them vanishes: the question “do we see it or imagine
it?”, which corresponds to “is it there or is it an illusion?”, still makes sense, and
emerges with full force when the difference in question is feeble. Lucera accounted
for her own doubts by deeming the width difference to be “slight” [60], and yet, she
still thought that it was there [60–64]. While the seeing was ambiguous, “thought”
brought to her a sense that, in all likelihood, the spoke width varied. Tenuous
differences create possibilities for thinking and seeing to reach different
conclusions.

23.4 Transition

Woven baskets obtain a shape outwards by increasing the distance between the
edges of each vertical spoke and inwards by decreasing it, which can occur with or
without a change in spoke width. However, this relationship had not been salient in
the practice of weaving yarn with pipe cleaners because, we think, the children
worked to regulate the opening of the basket by tightening or loosening the yarn as
it went around, rather than by bending the pipe cleaners—the spokes—and keeping
their shape and position stable while weaving; this made the tensioning of the yarn
the primary method for regulating whether the wall of the basket would curve
outward or inward. This observation prompted us to explore alternative crafts in
which the separation between successive pairs of spokes becomes the primary
manual/material difference engendering shape. While we were seeking alternatives,
it happened that a colleague at SDSU, who is a quilter, mentioned fabric bowls and
lent us a book about it. This serendipitous event launched us into investigating the
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manufacture of fabric bowls and experimenting with different materials and tech-
niques. The kind of fabric bowl we envisioned would be created by sewing the
edges of a flat piece of fabric cut with a shape similar to the one shown in Fig. 23.7.

After a lengthy process of repeated experimentation, we ended up using cotton
fabric ironed on both sides of a thick stabilizer (see Fig. 23.8). This material was
then cut with a laser cutter according to templates generated in Geometer’s
Sketchpad (see Fig. 23.9). The two control points can be moved to change the
radius of curvature of the two arcs of a circle enclosing each petal. The petals can be
seen as equivalent to the spokes in a woven basket; the shape of the petals deter-
mines the separation between two successive in/out thread shifts at different
heights, and regulating accordingly the overall shape of the bowl (Fig. 23.10).

23.5 Episode 2

During the 4th session, at the Chula Vista clubhouse, the children were asked to
wrap large balls in paper and discuss the origin of the wrinkles appearing on the
wrapping paper. After this initial experience transforming a flat surface into a
curved 3D shape, Lucera introduced the materials for the fabric bowls. Each child
chose the fabric and the template they wanted to use. Most of the 5th session at the
Mingei was spent sewing the fabric bowls. Then they went to the gallery floor with
their bowls to discuss and identify ways in which the shape of baskets exhibited in
Made in America were similar or different than the shape of their fabric bowls.
Episode 2 took place during this visit.

Fig. 23.7 Fabric cutout
ready to sew into a bowl
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Fig. 23.8 A sewn fabric bowl

Fig. 23.9 Template
generated in GSP with ten
“petals”

Fig. 23.10 A child sewing
his fabric bowl
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• Annotated Transcript

1 Johanna: Howabout otherpeople’sbaskets?Didyouhaveachance?Whichonedid
2 you notice? [That looks like yours?
3 Gabriella: [Umm(.)Well, I… I noticed thatTHAT((Gabrielapoints
4 at a basket on the opposite side of the room, see Fig. 23.11)) one over there…
5 …
6 Johanna: Oh, so you want to go all the way over here. Let’s take a look.
7 Gabriella: ((while the group is walking towards the basket)) Yeah. If–um, Alexa
8 ((Gabriella looks towardsAlexa)) sewedhers onup like, um, a basket, itwould look
9 like this ((the one she had pointed at)).

10 Johanna:Oh,yeah.Okay, soyouguys– ’causeyours ((Alexa’s bowl)) isn’t complete
11 yet ((See Fig. 23.12, Alexa’s bowl is not completely sewn)) but we’re
12 thinking that if that was sewn all of the way up that it would look really
13 similar to this ((basket selected by Gabriela))?
14 Allison: [Yeah, ’cause it’s like she could pro’ly like bend it a little ((Allison
15 points at Alexa’s bowl, on the upper side, see Fig. 23.13))
16 Gabriella: [Yeah, ’cause it’s– it’s small ((Gabriella shows how the slices become
17 narrower on the upper side, see right side of Fig. 23.13))
18 Allison: just tomake it like thefinal thing to look like that ((like the basket they are
19 looking at)).

Fig. 23.11 Gabriella points
at a basket she had noticed
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20 Gabriella: ’Cause it goes small and then it gets fat ((Gabriella traceswith her thumb
21 and her index finger a width that starts small, gets “fat”, and then gets
22 smaller again, see Fig. 23.14))

Commentary

Alexa had chosen her template to be such that the edges of the petals fit an arc
with a small radius of curvature—the type shown in Fig. 23.9. Most of the other
children’s templates were of the kind shown in Fig. 23.7. Her choice made of her
bowl one that went conspicuously inwards over the upper half. This is the common
feature that Allison indicated by touching Alexa’s unfinished bowl and pointing at

Fig. 23.12 Alexa holds her bowl, not yet completely sewn, whose overall shape will be similar to
the exhibited basket

Fig. 23.13 Allison points at the upper side of Alexa’s bowl while Gabriella, on the right side,
shows that the upper side of the basket is “small”
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the basket. Gabrielle traced on the glass panel the shape of a petal that would
generate the contour of the basket see Fig. 23.14. Because this is a coiled basket
that has no spokes or woven reeds, there is no physical indications on it of petal-like
units; nevertheless, she found compelling, and others plausible, to imagine it split in
petals with a certain outline, as if she were overlaying Alexa’s bowl on the basket.

Returning to our theme of the imaginary infusing perception, both of them
surging from memory, this episode is an occasion to elaborate further on the nature
of memory and the significance of making and crafting for the genesis of memory.
Memory is much ampler than individual recollections, both in the sense that what
Allison and Gabrielle pointed out originated from group activity with a range of
materials and tools, and that there was no single event from a past moment reen-
acted in their analysis of the basket. Furthermore, memory is deeply-rooted in
materiality: the basket and Alexa’s bowl remember countless versions of their own
making, which they open to the grasp of others and things. Joining shaped petals is
a “version” of the making of the basket—one that is markedly different from the
processes that had been followed by its basket maker, but that was, in non-trivial
ways, implicitly conveyed by them. The materiality that grounds memory allows
for making and crafting being rich and nuanced sources: they bestow tangibility,
texture, and bodily skill upon things, even when those things are out of touch or
beyond the creative abilities of the perceivers. Neither Johanna nor the children
could touch the basket, and yet, Alexa’s bowl, unfinished and made out of other
materials and techniques, passed onto the basket features graspable by skin, mus-
cles, and sight. Because of this, making and crafting can be, among genetic sources
of memory, exceptionally generous, just as the engagement with playing instru-
ments can give birth to entirely new forms of music appreciation. Each craft gives
in its own ways: basket weaving with yarn and pipe cleaners conferred to the basket
shown in Fig. 23.3a attributes different from the ones sewing fabric bowls did to the
basket shown in Fig. 23.14, such as the latter one being a composition of petals.

Fig. 23.14 Gabriella traces
the shape of the “petals”
imaginarily forming the
basket
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23.6 Towards a Pedagogy of Emergent Learning

Far from trying to demonstrate “best practices,” we have shared some of our
experiences with the Basket Weaving and Curvature program for the sake of
investigating a kind of practice, whose main orientation is a quest for pedagogies of
emergent learning. For this kind of pedagogy there are no best practices because no
concrete attempt can be isolated from the circumstances of its development, the
contingencies pervading its daily events, and the life history of the participant
individuals and institutions. At most, given historic and contextual aspects, one can
discriminate promising or rather-to-be-avoided ways of doing things. Ultimately,
the character of a pedagogy of emergent learning is to be expressed by the ongoing
outline of an ethics, which is a never-completed moving outline. Freire, for
instance, emphasized the importance of “humility” on the part of educators and
participants (“there are only people who are attempting, together, to learn more than
they now know” Freire 1970). Like any other ethical rule, this is not a talisman. Not
only because an act that seems humble to someone may strike as arrogant to
someone else, but also because, aside from extreme cases, every judgment of this
sort is necessarily bounded by invisible biases and more or less partial grasp of the
circumstances. Ethical rules can be pursued not as maxims guiding behavior, but as
efforts to keep certain questions alive (e.g. What does it mean, here and now, or
there and yesterday, to be humble?). Part of this aliveness is the shared sense that
there are no ideal or perfect actions and that, in retrospect, one can always imagine
what appears to be more desirable ways of doing things, even though uncertainty
about them cannot be dispelled (Nemirovsky et al. 2005). A pedagogy of emergent
learning is distinct, we think as of now, by its openness to unanticipated courses of
action, freedom from predefined testable outcomes, mostly voluntary participation,
and, yes, humility. For the most part, these features make such pedagogies difficult
to pursue, other than marginally, in formal education, but they can be central, we
propose, in informal mathematics education (Nemirovsky et al. 2016), of which the
Basket Weaving and Curvature program is an instance. We will delineate two
streams of pedagogical ideas as recently inspired by our experiences in the pro-
gram: (1) Explorations at the Edge; and, (2) Opening Avenues of Expression.

• Explorations at the Edge

The “edge” that we have in mind is one that adjoins or brings into contact two
territories, like the edge of a sea bordering both, an expanse of water and a strip of
country land. One side of the edge is a territory that appears firm and amenable to
walk through, the other side is to be navigated with caution and wonder, without
straying too far from the edge, as it is outpouring with questions and barely seen
possibilities extending up to a remote horizon. Husserl thought that every object is
located at an edge of that sort, demarcating, as it were, its sides directly perceived
and the indefinite anticipations of the unseen sides: “…every object is not a thing
isolated in itself but is always already an object in its horizon of typical familiarity
and precognizance.” (Husserl 1975, p. 122). He then wrote a crucial idea:

418 R. Nemirovsky



But this horizon is constantly in motion; with every new step of intuitive apprehension, new
delineations of the object result, more precise determinations and corrections of what was
anticipated. (Husserl 1975, p. 122)

An exploration at the edge, we suggest, is an activity in which horizons are set in
motion. An example of such exploration, as it took place in the Basket Weaving and
Curvature program, was the work with fabric bowls. While neither the educators,
nor the children, had ever sewn a fabric bowl, we were all acquainted with bowls
and fabric. Fabric bowls and the techniques of their making were at an edge
separating familiarities with various bowls and types of fabric from expanses cir-
cumscribed by a horizon of barely seen possibilities: What shapes can they have?
Do they keep their shapes stably? How firmly can they hold content? What are
suitable materials allowing for easy sewing? How do template shapes correlate with
bowl shapes? and so forth. Certain skills that were for some participants on one side
of the edge, were for others on the other side, such as sewing: the children told us
that they had never sewn, and that, with few exceptions, they had never seen
anyone sewing (a couple of grandmothers were the exception). Stemming from
their concurrent participation in a geometry seminar, for Ricardo and Cierra the
horizon of fabric bowls encompassed also the creation of flat maps for the rounded
earth, as well as the distribution of Gaussian curvature on a 3D surface.

Star and Griesemer (1989) introduced the notion of “boundary object,” which
are objects, such as architectural drawings or soil samples, that are used and con-
ceived differently by different disciplines and practitioners, while serving to coor-
dinate their collaborative work. Similarly, exploring objects and techniques at the
edge can nurture and mesh the diverse horizons of the explorers; an example of
which, we think, took place in Line 20 of Episode 2, when Giselle traced on the
glass enclosing a coiled basket, the shape of a petal.

The Basket Weaving and Curvature program included other explorations at the
edge, some of which reached only an embryonary stage, such as the ones involving
the curvature instrument and the paper wrapping of balls. The program has inspired
us to propose that explorations at the edge, particularly when they are at the edge
for all participants, including the educators, are very significant for pedagogies of
emergent learning. Ultimately, it seems fair to say, emergent learning is the col-
lective mobilizing of horizons.

• Opening Avenues of Expression

There is an important difference, particularly in the context of mathematics
education, between representing and expressing (Whitacre et al. 2009). Instead of
presenting-again, in a different format, what had been present before, an expression
is an explosion of meaning without clear boundaries, subject to never-ending
interpretations. It matters greatly whether we see a gesture, a diagram, a drawing, or
an utterance as a representation or an expression. During the final session in which
the children shared their work with parents and other adult attendants, a boy
explained that the inside and outside colors he had chosen for his fabric bowl—dark
on in the inside, light on the outside—were like some people he knew who looked
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nice from outside but were bad inside. In one of the individual interviews that
Cierra conducted with the children, a girl said that she saw herself as an “art
person,” and then she pointed, as a mode of evidence, to her fabric bowl held on her
other hand. Letting baskets, woven yarn around pipe cleaners, fabric bowls, and
craftwork exhibited in Made in America, be expressions traversing disciplinary,
institutional, and historical boundaries we customarily take for granted, amounts to
opening avenues of expression. We propose that this is a major quality for the kind
of pedagogy we try to understand. It is through expression that the emergent finds
itself, for a gaze seeking a set representation, such as a certain definition or graph, is
blind to emergent learning.

It is complex but possible to discern aspects of what has been learned in a
program infused with qualities such as Explorations at the Edge and Opening
Avenues of Expression. The analysis of videotaped episodes and interviews moves
us to reckon that participants in the Basket Weaving and Curvature program
learned, with various degrees of subtlety, that there is a relationship between the
shape of petals and of sewn bowls, or that an art museum can be a fascinating place.
Along the same lines, the authors of this paper sense the burgeoning appearance of
seed-ideas about the roles of craftwork in mathematics learning. Had the exhibit
been another one, or many of the contingent events populating the program been
absent, a different learning would have emerged.
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Chapter 24
Connecting Mathematics, Community,
Culture and Place: Promise, Possibilities,
and Problems

Cynthia Nicol

Abstract In this essay I explore a critical pedagogy of place for mathematics
education. Greenwood’s (2013) theoretical framework of a critical pedagogy of
place is used alongside frameworks for critical mathematics education to present an
approach for connecting mathematics, community, culture and place. Drawing upon
literature from both Indigenous and non-Indigenous scholars, theories of
place-based education are examined. I introduce theories of mathematics education
that advocate what Freire (1970/2000) calls ‘problem-posing’ practices to read
(understand) and write (transform) the world with mathematics Gutstein (2006).
Two place-based problems are presented, inspired and used by secondary/middle
school teachers in a rural community. These problems provide examples and cri-
tiques of connecting mathematics, community, culture, and place. The essay con-
cludes with reflections on the challenges and possibilities of a critical pedagogy of
place for mathematics education in a world with increasing complex global issues.

Keywords Critical mathematics education � Place-based education
Decolonization � Social justice

24.1 Introduction

Place-based or community-based education is receiving increased attention as an
approach to education that connects school curriculum and local context for better
understanding of complex global issues (Cajete 1994; Greenwood 2013; Smith and
Sobel 2010; Sobel 1998). Advocating a holistic mindset, place-based education,
begins at the local level to inspire student interest, engagement and participation in
local community decision making and problem-solving (Smith 2002; Smith and

C. Nicol (&)
University of British Columbia, 2125 Main Mall, Vancouver, BC V6T 1Z4, Canada
e-mail: cynthia.nicol@ubc.ca
URL: http://edcp.educ.ubc.ca/faculty-staff/cynthia-nicol/

© The Author(s) 2018
G. Kaiser et al. (eds.), Invited Lectures from the 13th International Congress
on Mathematical Education, ICME-13 Monographs,
https://doi.org/10.1007/978-3-319-72170-5_24

423



Sobel 2010). Thus a curriculum that is grounded in activities and issues of the local
place rather than abstractions of the environment, “can help children and youth
begin to see themselves as actors and creators rather than observers and consumers”
(Smith and Sobel 2010, p. viii). In a world with increasingly complex global issues
including economic and social inequities, climate change, poverty, sustainability,
resource depletion and mass displacement of people due to war, famine or envi-
ronmental changes a deep understanding of place is required for understanding “the
nature of our relationship with each other and the world” (Gruenewald 2003a,
p. 622).

Smith (2002) articulated five different approaches to place-based education:
(1) cultural studies involving students in studying local cultural or historical events;
(2) nature studies by investigating the physical world; (3) real-world problem
solving by locating, reflecting on and developing solutions to local community or
school issues; (4) entrepreneurial opportunities by investigating relationships
between vocation and place; and (5) participation in community decision-making.
In recognizing that conceptions of place-based education ignored critical perspec-
tives on culture, ecology, and schooling, while critical theory ignored attention to
place, Gruenewald’s (2003b) work adds a sixth approach framed as a “critical
pedagogy of place.”

In this chapter, I explore the nature of a critical pedagogy of place in the context
of mathematics education by asking the question: What would it look like to
connect mathematics, community, culture, and place? To answer this question I
draw upon research with the Indigenous community of Haida Gwaii in Canada’s
Pacific northwest to provide a rural example of a critical pedagogy of place. To
begin I first explore the nature of critical mathematics education. While some
mathematics education scholars theorize and research mathematics education from
a critical perspective (e.g., Frankenstein 1987; Gutstein 2012; Kumashiro 2015;
Skovsmose 1994), few have explicitly considered the connection and role of place
in mathematics education. Following a discussion of critical approaches to math-
ematics education, I examine theories of place and mathematics education. Next I
discuss Greenwood’s (2013) critical pedagogy of place drawing upon the processes
of decolonization and reinhabitation, and use this framework to critique the case of
connecting mathematics, community, culture, and place on Haida Gwaii. I conclude
with a discussion of the possibilities and challenges of a critical pedagogy of place
in mathematics education.

24.2 Critical Approaches to Mathematics Education

More than 30 years ago, Frankenstein, in the United States, writing in English, and
Skovsmose, in Denmark, writing in Danish, developed ideas for critical approaches
to mathematics education. Frankenstein, who was motivated by the “continuing
injustices and the connections among those injustices to deeply entrenched insti-
tutional structures” (2012, p. 59), drew upon Freire’s (1970/2000) approach to
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developing critical consciousness. She was one of the first to bring Freire’s ideas of
liberatory problem-posing education into the mathematics classroom (Frankenstein
1987). As critical thinkers, students could “develop their power to perceive criti-
cally the way they exist in the world with which and in which they find themselves”
(Freire 1970/2000, p. 83). A problem-posing education recognizes people as his-
torical beings with the human desire to move forward, drawing upon the past to
improve the future, and accepting incompleteness as the process of “becoming more
fully human” (p. 84). Thus a critical education affirmed teaching and learning in a
way that both educators and students became teachers and learners, and where the
generative themes of students’ own historicity became starting places for education.

Frankenstein (1987, 2012), working with Freire’s theory, designed statistics
lessons for her adult education courses. Students explored problems developed from
issues that concerned them, with a focus on unpacking the more hidden purposes
and interests in various approaches to statistical analysis along with the contexts of
those problems. Frankenstein (1987) provides sample problems for her adult stu-
dents that were designed to teach mathematics, while raising political and social
consciousness. Examples included: examine data on United States military
spending or federal subsidies to nuclear power industries and calculate the total
spent or total subsidized; examine data on United States food manufacturing to
calculate the percentage of firms making the top percentage of net profits; examine
decisions made around interest loan payments; examine survey report results; and
analyze their own, or other students’, mathematical error patterns. Statistics, argues
Frankenstein, along with statistical and probability theories, provide rich opportu-
nities for students to critically solve and pose problems related to issues in the
public sphere, as well as to question underlying assumptions made based on sta-
tistical data and how they are used.

Like Frankenstein, Skovsmose, although working in Denmark, developed a
critical approach to mathematics education that is “an open and uncertain concept”
(Skovsmose 2012, p. 42) in “an open conceptual landscape” (Skovsmose 2016,
p. 2). Critical mathematics education for Skovsmose is a broad field that is best
characterized by the issues that drive it. One issue is the performative aspect of
mathematics, where mathematics is in action in many different applications and
practices including technological design construction, hypothetical reasoning and
mathematical modeling, justification or legitimation, realization, and what
Skovsmose terms the “dissolution of responsibility” (2011, p. 68). For example, a
place of concern for mathematics–based action is mathematical modeling that could
be designed to provide legitimacy for a decision that is already made, such as an oil
company providing justification to increase its production while limiting environ-
mental impacts. For all forms of mathematics, Skovsmose (2014) argues that
“mathematics in action is in need of being carefully criticized” (p. 117).

This is particularly important when mathematics is considered a performative
language where the tools of mathematics (its grammar or structure) format what
innovations can be developed, how they are used, and the intentions of their use.
Using examples from the airline industry Skovsmose (1994) illustrates how
mathematics used in technologies for schedules and flight routines becomes “not
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only also descriptive but also prescriptive” (p. 55). Flight routines format or
structure our social reality, for instance, in terms of how we might organize or plan
our own daily activities. Thus, a critical mathematics education involves students in
reflective knowing to become aware of the biases and blind spots, in order to make
more apparent this formatting power of mathematics. Skovsmose provides possi-
bilities for the design and implementation of critical mathematics education through
using themes or problem-based learning contexts that draw upon students’ interests
and community experiences. One example of such a project is Economic
Relationships in the World of a Child, a series of 12 units challenging young
students to engage with mathematics and social issues related to spending pocket
money, the child benefit allowance, and what to buy for a youth club. Skovsmose
(2011) cautions, however, that although mathematics is in action in many different
contexts, such as particular cultural settings, a critical mathematics curriculum
needs to consider not only what is familiar to students (i.e., their backgrounds) but
also their foregrounds (i.e., their possibilities and obstructions). Finally, at a
meta-level, Skovsmose encourages an ongoing critical stance for the idea of critical
mathematics education, as mathematics, its purposes, and formatting are neither
fixed nor predetermined but continuously changing, and thus “always in need of
critique” (2014, p. 119). What role do considerations of place/land have in critical
mathematics education?

Gutstein (2006), also inspired by Freire’s “problem-posing” curriculum, studied
his own teaching of Grade 9 students in an urban American classroom. He extended
Freire (1970/2000) ideas of literacy as involving both reading (making sense of the
word in the world) and writing (using this sense-making to change the world), to
mathematics (Gutstein 2006). Providing examples of projects co-constructed with
students, Gutstein writes of challenging his students to read the world mathemat-
ically (do and understand mathematics) and write the world mathematically (use
that understanding to change the world). One such project focused on using
mathematics to understand arguments for recent home foreclosures in the students’
community (Gutstein 2012). The mathematics of bank loans, subprime mortgage
loans, profits and foreclosures as well as resulting neighbourhood displacement
helped students better understand issues they were currently experiencing, and as
Gutstein (2012) argues become more engaged in both mathematics and the world.
Gutstein suggests that such problems drawing from students’ lived experiences or
their community knowledge, provide opportunities to learn classical or academic/
school mathematics, as well as engage students in critical inquiry from various
perspectives.

Critical approaches to mathematics education developed by Frankenstein,
Gutstein and Skovsmose take seriously approaches that draw on students’ lived
experiences—both their backgrounds and foregrounds—so that students can par-
ticipate in understanding (reading) and intervening (transforming) the world. For
each of these scholars importance is placed on participatory teaching practices that
bring student and teacher in reciprocal relationships of co-learning. This means, as
Freire (2005) argues, both teachers and students are co-creating, each is at the same
time both teaching and learning. In considering place/land in shaping lived
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experiences, Cajete (1994, 2012), an Indigenous Tewa scholar from the United
States, refers to this co-learning as an ecology of relationships connecting humans
and place in which humans and place shape each other. “People make place” argues
Cajete, “as much as place makes them” (1994, p. 84).

24.3 Theories of Place and Education

In considering the very idea of place, philosopher Edward Casey (1996), writes that
“place is not a mere patch of ground, a bare stretch of earth, a sedentary set of
stones” (p. 26). Instead, for Casey, “places not only are, they happen” (p. 27), they
are “generative and regenerative,” and from place “experiences are born and to it
human beings (and other organisms) return for empowerment” (p. 26). Places are
living and are lived, they “gather experiences and histories, even languages and
thoughts” (p. 24) and places hold them in a kind of gathering action. A place bears
on, or structures, the experiences of those (animate and inanimate) within place,
while those occupying place organize living with place in a symbiotic co-creation.

Cajete (1994), writing from an Indigenous perspective, suggests that with place
we have a dialogical relationship in which we learn more about ourselves, our
relationships with each other, and our relationships with the more-than-human
world. Place figures prominently in the discourse and life of Indigenous peoples for
whom ancestral memories and stories are intimately connected to land and land-
scapes. Like Casey (1996) who describes place as event, Cajete (1999) conveys the
animated nature of place, stating “place is ever evolving and transforming through
the life and relationship of all its participants” (p. 193). Place, for Cajete (1999), is
“not only a physical place”, but also “a spiritual place, a place of being and
understanding” where “interactions with places give rise to and define cultures and
community” (p. 193).

Similarly, Indigenous scholar Michell et al. (2008) describes place with five
dimensions: multidimensionality (more than physical and also emotional); rela-
tionality (epistemologically everything is in relation); experientially (experiences in
place, on land and in relation to the human and non-human worlds ground
meaningful learning); locality (places are specific and general at the same time) and
where living place over time brings peoples’ “landscapes [to] become reflections of
their very souls” (Cajete 2000, p. 183); and land-based (place is land, and rela-
tionship between land and people is key). Thus place is described as local, expe-
riential, land-based, and within a holistic perspective that “entails, physical,
emotional, and spiritual characteristics” (Michell et al. 2008, p. 27). Bringing place
and education together for Indigenous scholars such as Cajete (1999) and Michell
(2013) involves considering place/land as teacher in a relational education that
recognizes the interdependence of human, other-than-human, and more-than-human
worlds toward sustainability, and “reinforces natural connections to land and
community” (Cajete 1999, p. 201).
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Place conscious education is the name Greenwood (2013) gives to this meeting
of place and education. For Greenwood, place conscious education is a theoretical
and philosophical stance that differs from the articulations of place-based education
focusing on pedagogical strategies designed to improve student achievement
through connections to the community (Smith 2002; Smith and Sobel 2010).
Instead, Greenwood (2013) theorizes place conscious education as a critical ped-
agogy of place consisting of two goals: decolonization and reinhabitation.
Greenwood uses decolonization to critique the cultural practices related to place,
and reinhabitation to imagine new possibilities of consciousness between people
and place. In Greenwood’s (2013) words:

Cultural decolonization involves learning to recognize disruption and injury in person-place
relationships, and learning to address their causes. … [D]ecolonization refers also to the
educational process of identifying and unlearning patterned and familiar ways of experi-
encing and knowing to make room for practices that are unfamiliar. (p. 96)

Decolonization then involves an “awareness of potential settler impositions, and
the desire to reveal and challenge these impositions” (Kerr 2014, p. 86). Coloniality
scholars such as Quijano (2007), Fanon (1952/2008), and Memi (1965), examine
Euro-centered colonialism as a formal system of domination, social and political,
where colonizers’ beliefs, knowledge and practices are considered superior to those
first occupying place. European colonization, fuelled by the need for resources and
materials in the Industrial Era, was one of domination over people, nature, land, and
resources. This included political colonization, systematic repression, cultural col-
onization, and imposed patterns of meaning making. For example, a colonial view
of land severs the relationships between humans and place/land, viewing land as
something to be tamed, dominated, or conquered. Greenwood’s (2013) decolo-
nization then is a personal process of working toward “transforming or resisting
oppressive relationships that limit people’s ability to control their own life cir-
cumstances” (p. 96).

Reinhabitation is the second goal of a critical pedagogy of place. Reinhabitation,
writes Greenwood (2013), “involves learning to live well socially and ecologically
in a place, and learning to live in a way that does not harm other people and places”
(p. 96). Decolonization involves recognition or unlearning colonial practices of
dominance and oppression, conscious or unconscious, that could limit renewed
relationships. Reinhabitation, on the other hand, involves moving from unlearning
to relearning practices of being or inhabiting place that “involves taking a new
stance toward one’s own being and knowing” (p. 96).

428 C. Nicol



24.4 Critical Pedagogy of Place and Mathematics
Education

I am inspired by these views of place and education and argue for their inclusion
within the broad field of critical mathematics education. Greenwood (2013) pro-
vides a series of questions related to place that I suggest are helpful in considering
place and mathematics education as an approach to critical mathematics education.
The questions provoke criticality toward the historical, socioecological, and ethical
aspects of relations to place that can engage us in the inter-related practices of
decolonization and reinhabitation (Greenwood 2013). The dual goals of decolo-
nization and reinhabitation heed Tuck and Yang (2012)’s warning that decolo-
nization as consciousness raising should not be the end goal but instead also require
consideration of future actions. Greenwood’s (2013, p. 97) critical questions
include:

1. What happened here? (historical)
2. What is happening here now and in what direction is the place headed?

(socioecological)
3. What should happen here? (ethical)

I bring place and mathematics education together in considering these questions
through cases of logging practices and food growing on Haida Gwaii in Canada’s
Pacific northwest coast.

24.4.1 Land-Use on Haida Gwaii

As an example of a critical approach to mathematics education considering place/
land relations, let me turn to an ongoing project located in Canada’s Pacific
northwest coast—Haida Gwaii, People of the Islands (Nicol et al. 2013; Nicol and
Yovanovich 2011, in press). Haida Gwaii is a unique archipelago of over 150
islands located in northern British Columbia’s Pacific Ocean, where all places
intimately connect people to land and ocean. In fact, a Haida worldview is “ev-
erything is connected to everything else”—human, non-human and
more-than-human worlds. Before European contact, tens of thousands of people
(some Haida Elders say it is many more) lived on and with these islands.
Monumental cedar trees, and seafood such as salmon, were resources managed in a
sophisticated system of family governance. With European contact also came dis-
ease that decimated the Haida population to less than 1000 and required, out of
necessity of survival, congregation into two main villages. In 1853 the British
claimed Haida Gwaii as British land, and about 25 years later the Canadian gov-
ernment’s Indian Act of 1876 declared all “Indians” or First Peoples as under the
responsibility of the government, making illegal cultural activities such as the
potlatch, used by coastal First Nations in cultural, social, and economic governance
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practices. With ancestral communities displaced or decimated by disease across the
Islands the settler colonizer saw most of Haida Gwaii as unsettled and open for
resource removal. Whaling stations, open-pit mining, clam canneries, sawmills and
logging camps occurred over the years, much without the consultation, permission
or decision-making of the Haida people. However, since 1985, the Haida have
taken a stand first to logging companies then to the federal government, to reclaim
governing rights over their lands. This conflict led to creating the Gwaii Haanas
National Park Reserve and an historical agreement where the lands are co-managed
by the Government of Canada and the Haida Nation.

Today Haida Gwaii’s population is less than 5000, with just less than half the
population identifying as having Indigenous ancestry. There is one public school
district serving about 500 students, with approximately 70% identifying as being of
Haida or First Nations ancestry. For the past 10 years, I have been working with the
school district to explore the nature of creating mathematics education learning
environments that are more responsive to the place and community of Haida Gwaii.

As a group that includes community members, Elders, artists, administrators and
educators, we are exploring responsive mathematics education. We have co-created
a number of lessons that bring mathematics, community, culture, and place toge-
ther. I discuss two lessons related to land use, one focused on logging, the other on
food growing.

24.4.1.1 Logging Practices

Land-use practices on Haida Gwaii can provide a context to critically examine
mathematics and connections to place/land. The forests of Haida Gwaii contain an
abundance of coniferous trees including red and yellow cedar, hemlock, and sitka
spruce, some more than 600 years old. For generations, the Haida have used the
bark, wood, and roots of cedar and spruce trees. Cedar was harvested for building
magnificent longhouses and ocean-faring canoes; its bark and roots woven into
blankets, clothing, baskets, and hats; and its wood carved into house poles and
masks that hold ancestral stories. Monumental cedar trees, those over 140 years old
and measuring more than 120 cm in diameter, were carefully selected for har-
vesting (Council of the Haida Nation 2016). If fallen, the entire tree was used; if left
standing, only the bark was stripped in selected sections, preserving the tree’s life
for future harvests. Cedar trees, like all animate forms, together with the inanimate
and spiritual, were considered part of the same world (Stewart 1984). Being part of
the forest emanated a life-force. Before European contact the forests of Haida Gwaii
and its monumental cedars formed an integral part of Haida life.

Need for aircraft construction grade wood during the early 1900s brought log-
ging practices to Haida Gwaii. Spruce trees on the Islands were superior to else-
where. With high strength to weight ratio, and tight, straight, uniform grain, Haida
Gwaii spruce was perfect for aircraft frames. Heavy industrial clear-cut logging
began in the 1950s and increased steadily for the next 40 years (Gowgaia Institute
2007). A mapping animation documenting the logging history from 1901 to 2004
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provides a spatial map of logged areas and a visual representation of the harvesting
rate (Gowgaia Institute 2004a).

Since the 1990s, the volume rate of harvest per year has decreased: approxi-
mately 2.4 million cubic metres were logged in 1984, 1.8 million cubic metres in
1994, 1.1 million cubic metres in 2004, and 840,000 m3 in 2014 (Council of the
Haida Nation 2016). Log barges the size of football fields carry logs off the Islands
to Canadian and foreign markets, some carrying close to 30,000 m3 of logs.

Middle school students examine and graph the change in volume harvested over
the years. They engage in quantitative reasoning as they explore the relative size of
log volumes, searching for comparable visualizations for 1 million cubic metres.
What would hold 1,000,000 m3? What else is 1,000,000 m3 in volume? About how
many cedar trees make 1,000,000 m3? How many log barges were used each year
to carry these logs to the mainland? Doing calculations and making referents for
large numbers engages students in quantitative reasoning, but it is not sufficient for
a critical pedagogy of place.

Asking Greenwood’s (2013) historical, socioecological, and ethical questions
from a mathematical perspective can lead to critically examining logging practices
on Haida Gwaii in terms of who had the decision-making power for which areas
would be harvested, how they would harvested, and at what rate. Such a study
could call into question the underlying epistemologies of settlers who brought
clear-cut logging practices to Haida Gwaii, practices that relegated land as subor-
dinate to settler colonizer needs. How did it come to pass that trees were once
logged at a rate of 2.4 million cubic metres per year? In this example, students
examine what this rate means. Data documenting logging outputs, in terms of
volume of wood harvested and land area logged, could be analyzed to determine
how and in what ways rates of harvesting could be sustained or not, as well as who
benefits, who does not and in what ways.

Furthermore, the mathematics used in designing the mapping tools used to
calculate forest cut-rates could be examined (Gowgaia Institute 2004b). As maps
are not neutral-free, students could examine the ways data were collected, repre-
sented, analyzed, and communicated, for creating animating maps with consider-
ation of whose perspective is represented. Images of log barges carrying 15,000
tonnes of logs leaving the Islands, clear-cut mountains, and economic benefits can
be used to prompt investigation of what is going on here, what is happening now,
and what should be happening. Extensions include field trips to the forest scaling
yard to learn the process of tree valuation and volume determination. Investigations
of questions such as these can engage students in a critical mathematics education,
where mathematics is used to make sense of the historical context of logging,
current practices, and more sustainable future practices.
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24.4.1.2 Food Growing

Over the past 10 years, sustainable food growing on Haida Gwaii has received
increased attention. As an Island system separated from the mainland by large
ocean bodies, it is a challenge for food to arrive on Haida Gwaii still fresh and
affordable. A two-day drive plus seven to eight hour ferry ride make the price of
shipped food to the Islands more than three times that found in mainland cities. For
thousands of years, food harvesting of the Haida involved feasting off the range of
marine wildlife including ocean fish such as salmon and halibut, shellfish such as
clams and crabs, and kelp gathered from vast ocean kelp forests. As more settlers
arrived on Haida Gwaii attracted by resource extraction industries such as logging,
mining, and fishing, food-harvesting practices changed. Settlers claimed land, but
harsh Island climates and short growing seasons challenged attempts to establish
farms dedicated to food growing. Many Islanders then became dependent less on
local food and more on purchasing food such as meat, fruit, and vegetables
imported from the mainland.

With efforts of teachers in northern Haida Gwaii’s only high school, and with
collaboration and support of the community, a school greenhouse was built on
school grounds in 2011. The greenhouse is now one of seven on the Islands and
part of a Food-to-Cafeteria system that includes schools and the local hospital. The
high school renovated its school kitchen to accommodate the integration of the
Food-to-School program using greenhouse food for school cafeteria lunches, and
integrating greenhouse activities across the curriculum. As the math and science
teacher states:

[D]epending on the course and the potential curricular links to gardening, I have expanded
my activities to include full courses specifically dedicated to maintaining school gardens or
short visits to the greenhouse for a quick extension linking a particular topic to a hands-on,
garden related activity. [high school teacher’s written reflection, 2012]

In linking school gardening activities with mathematics, the high school math-
ematics and science teacher involved students in planning, mapping and designing
the shape and size of the raised soil bed boxes to optimize varying natural light
intensity, sun angle, and greenhouse temperatures throughout the year. Students
mapped garden layout designs, deciding where to seed various plants based on their
mature height, light needs, and growth rate. They have studied soil composition and
organic composting. Upon food harvesting, students created their own recipes,
providing opportunities to study concentration ratios, scaling, volume, and
proportion.

Returning to Greenwood’s (2013) guiding questions offers an occasion to
examine the kinds of activities needed for a critical mathematics education that
includes place. Asking ‘what happened here?’, students and teachers could examine
the conditions that led to the need to ship food to Haida Gwaii from the mainland.
What forms of traditional marine knowledge or Indigenous knowledge of marine
harvesting were practiced? What were the underlying values of these practices, and
in what ways were they sustainable? And, what are the underlying values of food
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cultivation, farming, and agriculture? Next, students and teachers could examine
socioecological issues that critique the need and use of greenhouse gardens, and the
relationship of such food practices to traditional Haida food harvesting. Here stu-
dents could examine large data sets focused on fish stocks and harvesting rates over
various years. Studying patterns of marine harvesting and population growth on the
Islands could provide contexts for discussion of socioecological issues of sustain-
ability. Students could also engage in data collection and analysis of interviews and
surveys to learn more about who takes advantage of the products of the greenhouse,
who does not, and the patterns of food consumption over the year. Finally questions
of what should happen could include consideration of further data collected from
community members, to learn more about the benefits and possibilities of
food-to-school programs, how Indigenous knowledge and harvesting practices are
considered and included in current food-work practices, and what an Indigenous
‘garden’ might actually look like.

The Food-to-School program has gained momentum in Haida Gwaii. School
food learning circles were created in 2013–2014, bringing teachers, farmers, Haida
Elders, and chefs together to consider possibilities and future goals for the program.
It began with settler initiative that is now including the visions and voices of Haida
community members.

24.5 Conclusion: Challenges and Possibilities

To the conversation of critical mathematics education, I argue for a focus on place,
and explore theories of education informed by place. I argue for a broad concep-
tualization of place, and draw upon historical, socioecological, and ethical questions
posed by Greenwood (2013) to consider a critical mathematics education with place
in mind. This focus on place differs from place-based education that tends to
advocate connections to place in order to motivate and improve student achieve-
ment, as well as increase students’ connection to places in order to better care for
particular places (Smith and Sobel 2010). Certainly student outcomes are important,
while pedagogies that re-connect students to places are crucial for rebuilding
ecological relationships more globally. However, Indigenous scholars interested in
place/land pedagogies push for theorizing land relations that pay attention to settler
colonialism as an ongoing and incomplete project. As Cajete (2000) reminds us,
places shape ways of being in the world. As first teachers, places represent learning
environments that intimately connect human, non-human and more-than-human
relational worlds. This is quite different from viewing place as the context for
human activity, or background for human privileged use (e.g., resource extractions),
or as a material object, or in terms of right of ownership. Such conceptions are what
Bang et al. (2014) refer to as “conceptions of place in the service of settler colonial
legitimacy” (p. 41). Instead, I am inspired by views of place/land that provide
opportunities to challenge such colonial conceptions of land. Greenwood’s his-
torical, socioecological, and ethical questions provide one pathway toward a critical
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mathematics education that includes opportunities for increasing awareness of
human/land relations, as well as the historical and ongoing colonizing of place.

In conclusion, I discuss the challenges and possibilities of a critical pedagogy of
place in mathematics education through the following issues: social action, rele-
vance, the role of mathematics, and urban versus rural places.

24.5.1 Social Action

Critical pedagogy conceptualized by Freire, Gutstein, and Frankenstein involves
both reading the world with mathematics (using mathematics to understand the
world), and writing the world with mathematics (using mathematics to change the
world). The land-use lessons provide contexts to engage students in reading and
writing the world with mathematics. Mathematics is used to make sense of past and
current logging practices, analyze data represented in visual maps (volume of wood/
year) of logging practices, and use of mathematics to examine decisions about
sustainability. These are examples of reading the world with mathematics. It is
more difficult designing tasks that engage students in writing the world with
mathematics. Few examples offered by Gutstein and Peterson (2013) actually
involved students in moving from discussions of social action to enacting social
action. Currently students on Haida Gwaii are neither participating in challenges to
current logging practices, nor are they leading the food-to-school food movement.
Both examples stop short of physical action engagement. Nonetheless, mathematics
helped students understand the issues associated with each example and provided
an occasion for further exploration. One could argue that discussing possibilities for
social action could be the first step toward action engagement.

A further challenge related to social action involves considering which action is
appropriate. How do teachers and students decide how to act or respond to issues
presented? As Esmond (2014) found in her research, it is possible for students to
engage in critical mathematics education with a social justice goal that strengthens
rather than challenges unjust biases. It is also possible for students to engage in
social action that may not change the situation. For example, in the case of logging
practices on Haida Gwaii, it is possible that some students whose families are
employed in the industry may deepen beliefs of land entitlement that denies
Indigenous land claims. It is therefore important for educators to think carefully
about problem contexts, be aware of the complexities of a critical pedagogy of
place, and be prepared for an open kind of teaching with issues that may not be
easily resolved.
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24.5.2 Relevance

The land-use lessons were attempts to engage students both in developing mathe-
matics competence and in what Freire (1970/2000) termed critical consciousness.
Analyzing land-use and even marine-use practices on Haida Gwaii is a political
issue affecting all families on Haida Gwaii in some way. A reason for students’ lack
of enacted social action in either lesson could rest on the degree of relevance of the
issues for students. Freire argues for developing problems based on students’
interests—generative themes that are part of students’ culture and community.
Although both logging and food growing are familiar to students, teachers chose
both examples for students. In addition, it could be argued that land use, for
example, on Haida Gwaii is not necessarily a topic of interest or of relevance to
elementary or secondary school students. While all students on Haida Gwaii are
familiar with logging trucks, have friends or family employed in the logging
industry, and are witness to the sites of logged areas, most students lack personal
experience or expertise in logging. Yet land-use and Indigenous claims to land are
of high interest to communities on Haida Gwaii.

In conversations with youth, many spoke about a future need to balance logging,
with maintaining old-growth forests, and with sustaining future yields. Nonetheless,
the question of relevance is important. Enyedy et al. (2011) researched how, in a
culturally relevant mathematics curriculum where students choose an issue to
investigate, “different forms of relevance permeate and mediate students’ sustained
engagement” (p. 275). In a community mapping project these researchers found that
relevance for students was negotiated throughout the project. Relevance could focus
on mathematics content or context, on authentic purpose such as development of
critical consciousness, or on familiar instructional practices. The land-use lessons
were guided by relevance focused on content and purpose, where students’ local
experience and knowledge were considered in the design of the lessons. However,
relevance of practices was not considered, and yet could be an important aspect for
determining the extent to which students chose to engage or chose not to move
toward social action. A critical pedagogy of place in mathematics education is not
only about what places are relevant for learning to read and write the world with
mathematics, but also about who decides on such relevance

24.5.3 The Place of Mathematics

Are problems focused on place somewhat removed from mathematics? Skovsmose
(1994) asked himself this question when developing the idea of a critical mathe-
matics education. Teachers discussing the land-use investigations also struggled
about the role and place of school mathematics. Teachers often questioned whether
or not students’ activities were seen as mathematical, and the extent to which the
activity met their required curricular outcomes. These concerns are similar to those
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raised by American teachers in Showalter’s (2013) study, who questioned whether
place-based mathematics education “compromises mathematical rigor” (p. 1).
Showalter suggests that maintaining the level of mathematical sophistication
appears easier in contexts where problems engage students in statistical analysis. In
fact, many of the mathematics lessons offered by Frankenstein (1987, 2012), and by
Gutstein and Peterson (2013), involve data analysis. This can also be seen in the
food growing lessons. Students could analyze data sets on marine life and on
harvesting practices as forms of traditional ecological knowledge in contrast to food
growing. However, unlike the secondary school teachers in Showalter’s study who
found it difficult to connect meaningfully with place as a context for mathematical
inspiration, the Haida Gwaii teachers could, in the particular cases of land-use,
bring the context close to students, partly due to their own experiences with these
activities. Nonetheless, I suggest both lessons provide opportunities for teachers
and students to engage in mathematical work and to use mathematics to deepen
understanding of local and global issues.

24.5.4 Place as Urban and Rural

The Haida Gwaii land-use examples were developed in a rural context. Is such
work possible in other contexts, for example urban settings? Much of the
place-based education research, such as that articulated by Smith and Sobel (2010),
has focused on rural contexts, where land and ecological experiences are perhaps
more easily accessed than in urban contexts. However, Rubel et al. (2016) argue
that working with large data sets on questions of place provides opportunities to
examine cities as places of economic and social inequities, providing opportunity
for some, and disadvantage for others. Like Enyedy et al. (2011), Rubel et al.
(2016) also use participatory mapping as a tool to reveal social injustices through
spatial perspectives. Rubel et al. (2016) provide examples of possible investigations
of reading and writing the urban context with mathematics. They suggest that the
“urban setting is particularly conducive for TMSpJ [Teaching Mathematics for
Spatial Justice] and participatory mapping because it is so densely populated and
highly wired with cellular and data networks and services” (p. 561). Results from
this work indicate that urban students are motivated to engage in critical analysis of
place through data analysis and map making. Although there were unexpected
outcomes and challenges of this work, students were able to use mathematics to
identity issues and question injustices. This work provides evidence that a critical
pedagogy of place in mathematics education is possible in not only rural settings
such as Haida Gwaii but also urban contexts.
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24.5.5 Concluding Remarks

A critical pedagogy of place for mathematics education involves attending to the
generative themes of students’ experiences to engage students critically with the
world through mathematics, and to reason about the world with mathematics.
Greenwood’s (2013) goals of decolonization and reinhabitation, and his three
guiding historical, socioecological, and ethical questions can provide a critical
framework for teachers in connecting mathematics, community, culture, and place.

In addition to the challenges noted above, there can be resistance from educators,
students, and parents, who question the purpose and place of a mathematics cur-
riculum that has a goal of raising students’ critical consciousness. For example, a
Canadian news magazine, Maclean’s, published an article by Reynolds (2012)
titled “Why Are Schools Brainwashing Our Children?”, arguing that teachers who
are committed to social justice education, mathematics included, fall into the trap of
imposing their own biases on students, and are therefore “brainwashing” students in
the name of social justice. Reynolds further argues that teaching for social justice
deters teachers from their main task of teaching children “properly.” Reynolds
(2012, para. 17) asks: “[D]oes too much time devoted to social justice divert
attention from academic achievement and ironically promote a gross social injus-
tice: students ill-prepared to contend with a complicated and competitive world?”
Such a view conveys the message that what is important in mathematics education
is successful completion of school mathematics, not politics or culture or learning
about, and working for, social justice using mathematics. For some educators and
parents, the mathematics classroom should remain pure and focused on school
mathematics; for others, the classroom provides opportunities to write the world.
The land-use tasks presented provide a counter narrative to Reynolds’ claims, as
neither teachers nor students came to think in one homogenous perspective. This is
not to say, however, that all such tasks provide opportunities for deep conversations
of justice that are transformative rather than supportive of further biases.

As we learn more about ways of connecting mathematics, community, culture,
and place for a critical pedagogy of place, our understanding of what is possible in
terms of teaching for justice will grow. Critical mathematics education with place in
mind, I argue, could bring us closer to a vision of “teaching mathematics in a way
where it can help us live in harmony with values that protect life and enhance
understanding” (Fasheh 2012, p. 103). Or as Gloria Ladson-Billings (2015) states,
pursuing “not social justice” but “just justice.”
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Chapter 25
Relevance of Learning Logical Analysis
of Mathematical Statements

Judith Njomgang Ngansop

Abstract Our work focuses on logic and language at a university in Cameroon.
The mathematical discourse, carried by the language, generates ambiguities. At the
university level, symbolism is introduced to clarify it. Because it is not taught in
secondary school, it becomes a source of difficulties for students. Our thesis is as
follows: “The determination of the logical structure of mathematical statements is
necessary in order to properly use them in mathematics.” We conducted our study
in the predicate calculus theory. In the first part of the paper, a summary of the
theory is presented, followed by a logical analysis of two complex mathematical
statements. The second part is a report of two sequences of an experiment that was
conducted with first-year students that shows that knowledge of the logical structure
of a statement enables students to clarify the ambiguities raised by language.

Keywords Logic and language � Symbolism � Logical structure of statement
Didactics

25.1 Introduction

The mathematical discourse is carried by language. As such, linguistic ambiguities
are unavoidable. We can quote as examples the phrases “two by two” and “all . . .
are not,” which may have different1 meanings according to the context. Besides,
interpretation of statements whose quantification is implicit is problematic for a
number of students.

The logico-mathematical symbolism introduced in mathematics courses in order
to sort out these ambiguities is far from being shared by learners and even repre-
sents an obstacle in their understanding of statements. The handling of symbols is
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learned neither in secondary school nor by university students. Switching from one
language to another, namely, from a statement in a natural language to one written
exclusively with mathematical variables or other relationship or operation symbols,
constitutes for many students a difficult obstacle to overcome (Duval 1988).

Regarding the construction of a proof, Selden and Selden (1995) argue that when
students cannot easily make the structure of a logical informal2 statement explicit,
they cannot easily determine the structure of the proof of these statements. Indeed,
the logical structure of statements provides indications of how the proof can be
undertaken.

The results of the studies that we listed above and a number of others that we are
going to present further lead us to propose the following thesis:

The identification of the logical structure of mathematical statements is necessary
for the good use of these statements in the learning of mathematics.

A research question that emerges is:

To what extent will conducting a logical analysis enable us to anticipate and
analyze the difficulties students face in handling of mathematical statements?

We are carrying out our research in the framework of predicate calculus, which,
according to Durand-Guerrier (2003), is the theory of reference for the analysis of
mathematical discourse.

In the first part of this paper, we present some elements of predicate calculus that
we used as tools to analyze statements. In the second part, we will illustrate with
two examples the relevance of logical analysis of mathematical statements as a tool
to anticipate students’ difficulties. Indeed, the logical analysis of statements can
help to anticipate the difficulties a priori in the determination of the structure of a
sentence. In these analyses, we lay emphasis on logical structure and proof and
logical structure and language switching.

In the third part, we present the result of an experiment involving first-year
mathematics students. We conclude with the perspectives of the research.

25.2 Predicate Calculus as a Tool for Didactic Analyzing
of Mathematic Statements

According to Cori and Lascar (2003), predicate calculus is somehow the first step
into formalizing the mathematical activity.

2A statement that deviates from a version in the language of predicate calculus, i.e., it does not use
such expressions as “for every,” “there exists,” “and,” “or,” “if . . . then,” or “if and only if” with
their variants (Selden and Selden 1995).
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25.2.1 Some Elements of Predicate Calculus

In predicate calculus, the formal language consists of letters for variables and
predicates, symbols for logical connectors, and both existential and universal
quantifiers. The fundamental elements are atomic formulas, which are built with
predicate letters and variables together, and terms. From atomic formulas, logical
connectors, and quantifiers, complex statements can be built. But determining the
truth value of these statements no longer obeys in most cases the principle of
verifunctionality, as was the case in proposition calculus because in predicate
calculus, “the complex propositions are not the aggregates of simpler propositions”
(Tarski 1936/1972). Indeed, many complex statements are made of intertwined
statements. The notion of satisfaction of the propositional function by an element of
the discourse universe initiated by Tarski (1944/1972) allows giving a semantic
definition of truth as an extension of propositional proposition calculus.

In mathematics, sentences such as:

Some integers are even. (1)
All integers are even numbers. (2)

are respectively true and false statements. They contain, in the first, the existential
quantifier “some” and, in the second, the universal quantifier “all.” These quanti-
fiers are not part of the alphabet of propositional calculus. These sentences are
considered in this system as entities and formalized by a letter, which is a propo-
sitional variable.

Let consider the mathematical negation of sentence (2):

There is at least one integer that is not even number. (3)

This can be formalized as ¬p, where p is interpreted using statement (2).
This formalization does not allow us to notice the change of quantifier from

statement (2) to statement (3) and, a fortiori, the structure of the two sentences.
Therefore, we cannot analyze them.

25.2.2 Quantification

In the standard language of predicate calculus, there exist two quantifiers: the noted
universal quantifier 8, whose meaning in natural language is “all,” and the exis-
tential quantifier 9, which means in spoken language “there exists at least one.”

Given an interpreting domain, the universal quantifier changes an open statement
into a true proposition when all the elements in the discourse universe satisfy the
open statement;3 if not, the proposition is false. The formalization of a universally

3An open statement is a statement containing a free variable, i.e., a variable that is not in the scope
of a quantifier. For instance, “x is an even number.”
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quantified statement is “8x;P xð Þ,” where x is a variable and P is a propositional
function.

The existential quantifier transforms an open sentence into a true proposition if at
least one element of the discourse universe satisfies the open sentence. In a case
where no object satisfies the open sentence, the proposition is false. A formalization
of an existential statement is “9x;P xð Þ,” where x and P are as previously defined.

It is worth noting that in common language, the existential quantifier is not
always explicit. It is the case of the following statement:

The set A has an upper bound.

To convert a given common language statement into predicate calculus lan-
guage, we have to clarify its meaning, as we will see later. Let us consider that the
implicit quantification of statements can have a major influence on the construction
of the negation of such statements.

25.2.3 Implication

A formula of the type P xð Þ ) Q xð Þ, where P and Q are predicates, is interpreted
with an open statement. For any element a in the discourse universe, P að Þ ) Q að Þ
is a material implication. It is false only if P að Þ is true and if Q að Þ is false. In the
other cases, it is true. We will say in these cases that a satisfies the formula
P xð Þ ) Q xð Þ. Therefore, the connector ) in predicate calculus is defined from the
material implication and is called open implication. As in proposition calculus,
the contrapositive of the open implication P xð Þ ) Q xð Þ is the formula
:Q xð Þ ) :P xð Þ. It is an open implication equivalent to the preceding formula.

The formula P xð Þ ) Q xð Þ is interpreted in a structure by an open statement; it
can be closed with a universal or existential quantifier.

The universal enclosure of the previous statement is 8x;P xð Þ ) Q xð Þ, which is
called formal implication (Russell 1910/1989) or conditional cluster (Quine 1950).
This proposition is true when in every instance of x the derived material implication
is true. Therefore, it is obvious that to define the formal implication
8x;P xð Þ ) Q xð Þ, one should introduce each material implication P að Þ ) Q að Þ,
defined for a given series of objects.

Formal implication will generate two fundamental rules of deduction:

1. If 8x P xð Þ ) Q xð Þð Þ and P að Þ, then Q að Þ.
2. If 8x P xð Þ ) Q xð Þð Þ and :Q að Þ, then :P að Þ.

A formal implication being true can be inferred only in two cases:

When for an instance a of x;P að Þ is true, or when :Q að Þ is true.
For the rest, it is not possible to decide without further information.
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It is worth noting that mathematical theorems are generally given in the form of a
formal implication, but very often the quantifier is omitted. This expert practice
does not always enable students to draw the distinction between an open statement
and its universal enclosure: This can generate errors in the use of those statements.

25.2.4 Conclusion

We have made a short presentation of some elements of predicate calculus that
make it possible to specify the vocabulary that we will use thereafter. Furthermore,
unlike proposition calculus, where the sentence is considered as an entity, predicate
calculus takes into account quantification and the status of the letters. It provides
tools for analyzing complex statements.

The concepts encountered in this framework present a certain complexity in their
use (Ben Kilani 2005; Durand-Guerrier 2003; Epp 1999; Njomgang Ngansop 2013;
Durand-Guerrier et al. 2014). One finds them in statements whose logical level of
complexity is high, because of the structure of these statements and in the way in
which concepts are interwoven with them. We intend to highlight the complexity of
two mathematical statements based on their logical analysis. This research shall be
based on the logical elements presented above; they shall equally enable us do a
priori and a posteriori analysis.

25.3 Examples of Logical Analysis of Mathematical
Statements

As the students progress in their curriculum, they face mathematical statements that
have increasing complexity. This is the case at the university level with the defi-
nition of the continuity of a numerical function of a real variable at point x0. In
secondary school, this definition is introduced with the notion of limit, while at
university, it is the mixed or formal language that is used (Bloch and Ghedamsi
2005), but it is not always within the students’ reach. This linguistic and mathe-
matical complexity reinforces difficulties in the treatment of statements, but we are
not going to linger on it.

In accordance with Quine (1950), we hold that the formalization of mathematical
statements contributes to conceptual clarification. This is what guides the logical
analyses of the two statements that we propose to examine.

The first statement that we suggest for our analyses is in elementary number
theory, and the second one is in calculus.
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25.3.1 The First Conjecture of Goldbach

(Pb1) An even integer greater or equal to 4 is the sum of two prime numbers.
We specify that the universe in consideration is the set of natural numbers.
We chose this statement for the following reasons:

– It is stated in common language and is apparently simple and understandable by
the reader.

– It is a universally quantified conditional statement whose quantification is
implicit. As pointed out in Sect. 25.1.2., this practice is a source of difficulties
for students.

– Its initial form hides what must be done to prove this conjecture, while its
logical structure shows it.

The formalization of this statement requires removing the implicit aspects
inherent to natural language.

The proposed statement is in the form “Every A is B,” where A stands for “even
integer greater or equal to 4” and B stands for “the sum of two prime numbers.”
According to Epp (1999), this form can be changed to “for all x, if A(x), then B(x),”
which is formalized as:

8x;A xð Þ ) B xð Þ:

We are going to paraphrase statement (Pb1) in view of determining the logical
structure.

Making explicit the conditional
Suppressing the bounded quantification and introducing a variable

(P1) “For every integer n, if n is even and greater or equal to 4 then, n is the sum of
two prime numbers.”

The variable n takes its values from the set of integers.
We have a formal implication where the universal quantification depends on the

variable n. The antecedent is “n is even and greater than 4” and the consequent is
“n can be written as the sum of two prime numbers.”

Up to that point, the formulation of the consequent is not explicit; it concerns
formalizing this property: “to be the sum of two prime numbers” by introducing two
letters of variable.

Making explicit the existential quantifier
To say “the integer n is the sum of two prime numbers” implies that “one can find
two prime numbers of which n is the sum,” or, still, that “there are two prime
numbers p and q such that their sum is equal to n.” This clarification thus highlights
the underlying existential quantifier.
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This conjecture is stated thus:

For every integer n, if n is even and greater than 4, then there are two prime
numbers p and q such as their sum is equal to n.

We note:

P: the property interpreted as “be even”
Q: the property interpreted as “be greater than or equal to 4”
S: the ternary relation interpreted as “be the sum of . . . and . . .”

We obtain the formal writing:

P2ð Þ8n P nð Þ ^ Q nð Þð Þ ) 9p; 9q; ðP pð Þ ^ P qð Þ ^ Sðn; p; qð Þð Þ

This highlights the statement form, which is a universally quantified conditional.
Its antecedent is the conjunction of two atomic formulas, and its consequent is an
existential statement.

In the clarification of the conditional which is done above, the limited quan-
tification can be maintained within the set of even integers. The formulation
obtained is:

(P3) For every even integer n, if it is greater or equal to 4, then there are two prime
numbers whose sum is n.

After the clarification of the existential quantifier in the consequent it becomes:

(P4) For every even integer n, if it is greater or equal to 4, then, there exists two
prime numbers whose n is the sum.

We can still delete the limited quantification; this brings about the appearance of
a new implication:

(P5) For every integer n, (if n is even, then (if n is greater or equal to 4, then there
exist two prime numbers whose sum is n)).

Written formally:

P6ð Þ8n; P nð Þ ) Q nð Þ ) 9p; 9q;P pð Þ ^ qð Þ ^ Sðn; p; qð Þð Þ½ Þ�

The (P6) written form is equivalent to (P2), for we have the logical equivalence:

p ) q ) rð Þ½ � � p ^ qð Þ ) r½ �

The only variable that appears in the writing of (P1) is n, yet in (P2), we need
three variables n; pð , and qÞ defined in N� P� P. It is possible to have more
variables by raising the formalization level of the statement: That is the case if we
have to clarify that “p and q are prime numbers” and “n is even.”

The paraphrase and the formalization helped us highlight:
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1. The logical structure of the statement,
2. The pertinent variables for its treatment, and
3. The hidden existential quantifier and implicit universal quantifier at the begin-

ning of the statement.

The logical structure of this conjecture gives us guidelines on what to do to make
sure a given integer satisfies the implication.

25.3.2 A Fixed-Point Theorem

unð Þ designates a series defined by recurrence with the form “unþ 1 ¼ f unð Þ”,
where f is a continuous function in R. We therefore have the following result:

(Pb2) If the series unð Þ is convergent, then its limit is the solution to the
equation f xð Þ ¼ x.

The logical reasons for the choice of this statement stem from the fact that:

– we are dealing with a theorem that is stated in combined language and simple at
first sight;

– it contains non-explicit quantifiers, which makes its formalization complex; and
– the construction of its contrapositive in common language raises a problem

caused by the presence of the anaphora.

Let us start with the study of the logical structure of statement (Pb2).
The study relies on the analyses of Durand-Guerrier (1996, pp. 151–153).
The initial formulation is not the same, but the changes bring it to the same

formulation as ours.
We specify that the stated general theorem is well known in Terminal class. It is

found in the Terminale C mathematics book in the syllabus in Cameroon4 and also
in the first-year university calculus course.

We are in the presence of a conditional statement whose structure is complex. It
involves three distinct mathematical objects: the series (un), an equation, and the
numerical function f which links the first two objects. The limit, which is mentioned
in the consequent, is implicit in the antecedent. Indeed, to say a series converges
means it admits a limit.

(Pb2) can boil down to the minimal statement where the equation is no longer
explicit:

If the series (un) converges, then its limit is a fixed point of the function.

4In the collection CIAM manual Terminal S, it is in Chap. 13 (numerical series), paragraph 3,
(complements on series), p. 286.
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According to Durand-Guerrier (1996),

La simplicité apparente de cet énoncé cache en fait une structure complexe qui apparait
lorsqu’on cherche à le formaliser, même partiellement. L’énoncé donné est d’ailleurs un
intermédiaire nécessaire; en effet, pour formaliser l’énoncé, la présence d’un pronom nous
oblige à introduire l’objet “limite.” (p. 151)5

In fact, saying that the function converges, means admitting the existence of a
real number l such that limn!þ1 un ¼ l. In order to formalize this, the author uses
as a discourse universe the reunion of the following sets: the set R of real numbers,
the set of defined and continuous functions in R and with values in R, and the set of
numerical series.

She also chooses:

– a symbol for a two-place relation, R, that states that a series converges towards a
given real; R u; lð Þ is interpreted by “the series u ¼ unð Þ converges towards the
real l;

– a predicate with two places denoted as S that expresses the relation between a
series and the associated function: S(u, f) is interpreted as “unþ 1 ¼ f unð Þ”; and

– a two-place predicate T that expressing the relation between a function and a
fixed point: T(f, l), which is interpreted as “l is a fixed point in function f.”

When we are in the discourse universe, the theorem is formalized as:

8u; 8f ; 8l; S u; fð Þ ^ R u; lð Þ ) T f ; lð Þ ðaÞ

Given that S u; fð Þ is true, the statement (Pb2) is going to be written:

R u; lð Þ ) T f; lð Þ ðbÞ

Which is interpreted as “If the series (un) converges towards l, then l is a fixed
point of f .” This statement is actually quantified. It is written as:

8l;R u; lð Þ ) T f; lð Þ ðcÞ

And it is interpreted as:

8l; limn!þ1 un ¼ l ) f lð Þ ¼ l ðdÞ

The real l is an intermediary object, necessary in the treatment of this situation,
where the objects at stake are the series (un) and the equation f xð Þ ¼ x.

5The apparent simplicity of this statement hides in fact a complex structure that appears in the
formalization process, even partially. The given statement is moreover a necessary intermediary;
indeed, to formalize the statement, the use of a pronoun makes us present the object “limit.” [our
translation].
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Contrary to what one might think, the letter l is connected to the universal
quantifier, which the whole statement is on the scope. If that letter is introduced
with the existential quantifier, which refers to the antecedent to convey the con-
vergence of the series, we obtain the following open statement in l:

8f ; 8ðunÞ; 9l; limn!þ1 un ¼ lð Þ ) f lð Þ ¼ l ðeÞ

This is in contradiction with the fact that a theorem is a closed statement.
Besides, this formulation produces a contrapositive which no longer bears its
original meaning, namely, “if the equation f(x) = x does not have a solution, then
the series (un) does not converge.”

25.3.3 Conclusion

We have analyzed two mathematical statements and highlighted their logical
structures.

In the first statement, we move from a sentence with a linear structure (subject/
copula/attribute) to a universally quantified conditional whose consequent is an
existential statement. The analysis reveals complex logical structure. We will see in
Sect. 25.4.2. that many students do not succeed recognizing the logical structure of
this statement.

The second statement, given in mixed language, contains non-explicit quantifiers.
To make them appear and to determine their real scope is fundamental for the use of
the statement, mainly for the construction of its contrapositive, as we will see later.

25.4 An Experiment with Mathematics Undergraduate
Students

InDecember 2010, we administered a questionnaire to 68mathematics undergraduate
students from the Higher Teachers Training College of Yaounde. After administering
it, in January 2011 we organized a follow-up module with eight voluntary students
who had previously answered the questionnaire. The aim consisted of identifying the
representations that these students had when using logical concepts on the one hand
and in teaching situations to clarify such concepts on the other hand. In this paper, we
are interested in the justifications that the students gave.

The findings that we give stem from:

– For Problem 1, answers to the aforementioned questionnaire by 68 students,
referred to as S1 to S68.

– For Problem 2, a task with eight voluntary students who had answered the
questionnaire. We divided them into two groups of four people each. The work
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was first carried out by each group, and then we put together the results of the
two groups. The following results concern the students from the second group,
who will be referred to as E5 to E8.

There was a week gap between the two experiments. Results from Problem 1 are
from the questionnaire, while those from Problem 2 come from the workshop that
followed the questionnaire administration.

25.4.1 Problem 1

Students were asked to write in formal language the following statement:

(Pb1) Every even integer n greater or equal to 4 is the sum of two prime numbers.

While administering the questionnaire, we specified to students that the scope
was the set of integers.

Let us recall the formal writing of that statement

P6ð Þ8n; P nð Þ ) Q nð Þ ) 9p; 9q;P pð Þ ^ P qð Þ ^ Sðn; p; qð Þð Þ½ Þ�

where:

• Property P is interpreted as “be prime,”
• Property P is interpreted as “be even,”
• Property Q is interpreted as “be greater or equal to 4,” and
• The ternary relation S is interpreted as “be the sum of . . . and . . . “

25.4.1.1 Results Analysis Grid

The clarification of both the antecedent and consequent underlines several levels of
possible formalizations of this statement and brings us to consider possible answers
according to two axes:

1. There is global structure of the sentence and explicit domain of quantification at
the beginning of the sentence or not. We distinguish:

a. There are universally quantified conditional statements where the antecedent
and the consequent are respectively the correct expression or not in the
formalized language in “n is an even integer greater than 4,” and “n can be
written as the sum of two prime numbers”

b. An equivalence
c. Formulations that are not conditional statements and that we have called

“linear.” It is a series of conjunctions or statements separated with a comma.

25 Relevance of Learning Logical Analysis … 451



2. Translation of properties and introduction of variables (with or without
quantifier).

We will adopt the coding below.
Following the first axis:

UQS: universally quantified conditional statement
NoQCS: non-quantified conditional statement
EquQ: universally quantified equivalence
EqunonQ: non-quantified equivalence
LQS: linear universally quantified statement
LnonQS: linear non-quantified statement

Following the second axis:

FrV: free variable

We do not signal bound variables because all should be bound given that we
deal with a closed statement.

Examples of classification:

B designates the set of prime numbers
8n 2 N; 9k 2 N; n ¼ 2kð Þetn� 4ð Þ ) 9 p; qð Þ 2 N� N; n ¼ pþ qð Þð Þ;

with p and q prime
ð25:1Þ

8n 2 N; n ¼ 2k; et n� 4 ) n ¼ pþ q; p and q prime ð25:2Þ

8n 2 A; 9 p; qð Þ 2 B� B; n ¼ pþ qð Þwhere A ¼ n 2 N=n� 4 and n evenf g
ð25:3Þ

8n 2 2N; and n� 4; 9 p; qð Þ 2 B2; n ¼ pþ q ð25:4Þ

Statement Structure Be even and greater than 4 Be the sum of two prime
numbers

(1) Universally
quantified
conditional in N

UQS

Correctly stated Prime numbers are
introduced by the
universal quantifier
(UQ) but the property
“to be prime” is stated at
the end

(2) A priori
universally
quantified
conditional in N

UQS

Is stated with a free variable
to express that n is even
k: FrV

The prime numbers are
designated with letters
of free variables and the
property is stated at the
end of the consequent
FrV: p, q

(continued)
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(continued)

Statement Structure Be even and greater than 4 Be the sum of two prime
numbers

(3) Linear universally
quantified on the
set of even
numbers greater
than 4
LQS

It characterizes the set A, and
is correctly stated

Prime numbers are
introduced at the
beginning of the
consequent by the UQ.
The formulation is
correct

(4) Linear universally
quantified
statement in
2N

The domain is made up of
even numbers, and it is stated
that the property be greater
than 4

The prime numbers are
introduced by the UQ.
The formulation is
correct

In consideration of what precedes, beyond a small number of possible global
structures, we can expect to come across a wide range of formulations for this
statement; this is all the more so as the mathematical uses are not homogenous from
this viewpoint.

25.4.1.2 A Posteriori Analysis of the Results

Among the 68 students who took the test, only 25 proposed a formally written
version of the item.

As we might have expected, productions are different from one to another in
general, but we all the same find similar structures. We will present the answers of
the students according to the first axis of our a priori analysis. In this table we delete
the EqunonQ and LnonQS because all the students who answered the questionnaire
proposed the universally quantified statements (Table 25.1).

Analysis according to the first axis
There is global structure of the sentence and explicit domain of quantification at the
beginning of the sentence or not.

We have come across four types of formulations:

– Universally quantified conditional statements
– Non-quantified conditional statement
– Equivalence
– Linear quantified statements.

About the quantity of the sentence, except for the answers of two students, the
scope of the universal quantifier binding the integer n was not specified, thus
making the status of the letter n ambiguous: One cannot say with certainty whether
the variable is free or is a generic element. But in the formal point of view, the
variable is considered free.

We can attribute relative imprecisions about the quantifiers to school habits
where the use of parentheses to mark the scope of the quantifier at the beginning of
the sentence is not very common. It is when the quantifier is “internal” to the
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statement that we specify the scope. Therefore, we can devise a hypothesis for those
answers: that the quantifier covers the whole sentence.

The conditional statements
Of the 10 students who produced universally quantified conditional statements, for
eight of whom the quantification domain is N. Among these eight answers, the
clarification of the conjunction of “n is even” and “� 4” is present only once. In the
antecedents of other answers, these two statements are separated with a comma:

S15 : 8n 2 N; n� 4ð Þ; 9k 2 N
�; n ¼ 2k ) 9p1; p2 2 P=n ¼ p1 þ p2

S30 : 8n 2 N; n even; n� 4 ) 9p; q 2 P; n ¼ pþ q

S16 : 8n 2 N; n ¼ 2k; k 2 N n� 4 ) 9p1 and p2 2 N; prime=n ¼ p1 þ p2

We make the hypothesis that it is the literal version of “every even integer n,
greater or equal to 4.”

Five consequents of the conditional statements are existential statements as in
the three examples above; the others are not.

Linear statements
As is the case with conditional statements, we get the literal version “Every even
integer n greater than or equal to 4” in some linear statements:

S27 : 8n; n ¼ 2k k 2 Z
2
þ

� �
n[ 4; 9n1and n2 prime as n ¼ n1 þ n2

S31 : 8n 2 2N; 9 p; qð Þ 2 P2 such as � 4 ^ n ¼ pþ q; withP a set of prime numbers

S31’s statement has incorrect syntax, and this leads to a modification in the
meaning of the initial sentence. We paraphrase that answer thus:

For every even integer n, there is a couple of prime numbers p; qð Þ such that n is
greater than 4 and is the sum of these two prime numbers.

The formulation is unsuitable because 2 is a counter-example to the associated
open statement. Besides, we shall note the disappearance of the implication.

Analysis according to the second axis
Translation of properties and introduction of variables

Subsequently, we analyze the answers according to the second axis, that is to
say, according to the manner in which the properties are expressed and the variables
introduced. According to the clarification of the structure of the statement, except n,
which is given in the initial sentence, subsidiary variables are introduced to define
the two prime numbers and eventually the parity of an integer. The difficulty at this
level could come from introduction of these hidden variables.

Table 25.1 Distribution of
answers according to the
structure

UQS NoQCS EquQ LQS No answer

10 1 1 13 43
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In Table 25.2, we have classified the students’ answers according to the structure
and the different free variables that they contain.

Let us give the name k to the variable which permits us to define the parity and p
and q the variables that designate the two prime numbers.

According to the variable n
In S29’s answer, if because n is a free variable in the consequent and is bound to

the antecedent, then we have an open statement:

S29 : 8n 2 N; 9p 2 N � 0; 1f g; n ¼ 2pð Þ ) 9p; q 2 N; p and q prime=n ¼ pþ qð Þ

This is due to an error in writing the parentheses; the universal quantifier binding
n only marks the antecedent.

According to the variable k
We recall that this variable is used to algebraically define the parity of the integer

n. Fourteen students chose to explicate the parity as shown below.
Twelve students produced statements where k is a free variable (type (k FrV and

k; p; q FrV)). Among their answers, incorrect syntaxes are found:

S16 : 8n 2 N; n ¼ 2k; k 2 N n� 4 ) 9p1 and p2 2 N and prime=n ¼ p1 þ p2
S40 : 8n 2 2kf g; k 2 N; n� 4; n ¼ p1 þ p2 with p1; p2prime

In S16’s answer, one may think the two variables p1etp2 have been bound, but
the syntax is incorrect.

In S40’s answer, the property “be prime” is at the end, whereas it ought to appear
before the writing of n, and the prime numbers ought to have been bound with the
existential quantifier.

Three students (S15, S29, and S42) used the existential quantifier to introduce it;
k is a bound variable in their answer.

The other students did not make use of it as they have used sets in which the
parity of the elements is a characteristic.

According to the variables p and q
The variables p and q should appear in the formalization of the statement in the

writing of n as the sum of the two prime integers. They are introduced by the
existential quantifier. A student (S02) has introduced them with the universal
quantifier, which changes the significance of the statement, becoming: “every even

Table 25.2 Structure of statements and status of variables

k FrV p,q FrV k,p,q FrV n FrV Closed statements Total

The conditional statements 1 3 2 1 4 11

The linear statements 3 2 3 0 5 13

The equivalence 1 1
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integer greater or equal to 4 is the sum of two prime numbers whatsoever.” The
variables p and q appear as free variables in 10 statements produced by the students
(eventually with another name). For example:

S26 : 8n 2 2Z; n� 4n ¼ aþ b with a; b of whole prime numbers

S67 : 8n ¼ 2p; p� 2; p 2 N ) n ¼ T1 þ T2 and D T1ð Þ ¼ 1; T1f g;D T2ð Þ ¼ 1; T2f g

Among the 25 students who responded to this item, 16 produced open state-
ments. Among the latter, four students (S40, S41, S44, and S67) neither introduced
the letters referring to prime numbers nor the variable k; three students (S26, S39,
and S45) did not introduce the letters which refer to prime numbers; three students
(S16, S42, S68) did not introduce k. Formally, the letters in their answer are free
variables.

In the 16 responses aforementioned, the students specified the variables’ domain
after writing them:

¼ 2k; k 2 N

n ¼ pþ q; p; q prime

n ¼ pþ q;where p and q are prime integers. . .

We can hypothesize that there are generic elements for those students that they
introduced in some way.

25.4.1.3 Conclusion

This exercise has enabled us to account for the difficulties faced by a number of
students to identify the implicits in the formulations in common language on the
one hand and the management the students made of the variables on the other hand.
We can draw the following conclusions:

– The transformation of a statement in the form “all A is B”: into a statement in the
form “8x; A xð Þ ) B xð Þð Þ” is not obvious: The students’ answers are close the
congruent statements of the initial statement, mostly regarding the antecedent.
When the domain is N, the formalization of the expression of “n even and
greater than 4” is not made in the form of a conjunction.

– None of the conditional statements which have been suggested is correct.
– The syntax in the use of symbols is approximate and the phenomenon of imi-

tation that has been seen with students (Gueudet 2008) is clearly there. Before,
some denotations that the teachers had used are found in their work.

– The status of variables is not always taken into consideration. Some students
gave as a symbolic formulation open statements where several free or generic
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variables often appear. The nature of these variables is specified, but in an
incorrect syntax from a logic point of view.

– The absence of the existential quantifier produces statements congruent to the
initial statement that do not express this statement.

– We find again in the students’ productions the same phenomena spotted by
Selden and Selden (1995), namely, the poor capacity of students in making
explicit the logical structure of informal statements.

In testing our results, we questioned 25 second-year students studying mathe-
matics at the Higher Teachers Training College of Yaounde in 2015 who have
given responses similar to the those that undergraduate students gave: None were
correct.

In general, the results of the test a priori show that the academic standard does
not have any major influence on the students’ ability to satisfactorily perform the
language shift. We come across practically the same formulations as those of
first-year students, whereas the practice of formalism for at least an academic year
let us assume that they would be more capable of handling this issue.

25.4.2 Problem 2

This problem is about inference rules: We are interested in the issue of identifying
situations that permit or do not permit making deductions. Let us recall the
statement:

In what follows, unð Þ is a series defined by recurrence as “unþ 1 ¼ f unð Þ,” where
f is a continuous function on R. We then have the following result:

(Pb2) If the series unð Þ is convergent, then its limit is the solution to the equation f
(x) = x.

The question: What can we say about the convergence of the series unð Þ if
equation “f(x) = x” does not have a solution?

The table below presents the repartition of responses to this item in the
questionnaire.

25.4.2.1 A Problematic Construction of the Contrapositive of (Pb2)
by Students

We present and analyze in this part a sequence that happened between students of a
group.

Answering the question asked, the students unanimously said that the series does
not converge.
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1 E6: If the equation fðxÞ ¼ x does not have a solution, we immediately deduce that
f is not convergent. Because if we try to have a look at the . . . the reciprocal . . . the
contrapositive of if f . is convergent, its limit is the solution of fðxÞ ¼ x, heuuu, no,
wait a moment.
5 E5: fðxÞ ¼ x. It is false. You see a little moment, so that seems a bit clear in my
head if, that the position . . .
6.1,6 so, if fðxÞ ¼ x does not have a solution, then un is not convergent. To me, it
looks crystal clear.

In their attempts to justify their answer, finally, the students decide to use the
contrapositive of the statement that they formulate in common language as follows:

25 E5: And the contrapositive is very clear! The contrapositive says “if the limit of
the series un” . . .
26 E7: . . . is not a solution to the equation fðxÞ ¼ x

The two interventions can be summarized thus:

If limn!þ1 un ¼ l and f lð Þ 6¼ l then; limn!þ1 un 6¼ l ðfÞ

The construction of the contrapositive helps to discover the difficulties related to
the implicit quantification. In common language, the literal expression of the
contrapositive underlines a contradiction between the negation of the consequent “if
the limit of the series does not satisfy the equation” and the negation of the ante-
cedent “the series is not convergent,” which means that the series does not have a
finite limit. This is due to the phenomenon of anaphora.

The formal writing permits clarification of the implicit quantification on the
object limit in expressing the convergence of the series unð Þ; this object might have
been introduced by the universal quantifier. This writing permits building the
contrapositive because it dispels the ambiguity on the status of limit. The difficulties
due to passing to the contraposition are dealt with in the debates below.

Regarding the contradiction stated in 25 and 26:

34 E5: I don’t think the word limit can be in . . .
35 E7: what will be the contrapositive?
36 E6: Because the limit must first of all exist. Because if they say limit . . ., if you
say now that . . .
37 E5: Hum, if the limit . . ., if the limit of the series unð Þ is the solution of . . ., that
is to say, . . .
38 E6: if the limit . . ., it already exists, you see, don’t you? It already exists . . .
39 E5: . . . and to say after that the series unð Þ is not convergent, this doesn’t have
meaning. You are following me, so for me I now say that as contrapositive we must
say that if the equation f xð Þ ¼ x does not admit a solution in R, then the series is not
convergent. To me, I think that it is the contrapositive. Because as soon as they put

6“6.1” is the number of the question in the questionnaire given to the students.
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the word limit, it creates a sort of misunderstanding; we no longer understand
anything.

Having identified the contradiction in the first proposition of the contrapositive,
the students use pragmatic arguments to construct it (37, 38, and 39).

These exchanges underline the difficulties related to the relations between the
different objects introduced. E5 must substitute (Line 39) the word limit for the
transformation of the sentence in order to be able to state the contrapositive. He
obtains the correct contrapositive that corresponds to the one we have proposed
further to the formalization of the initial statement in universally quantifying the
letter of the variable that designates the limit. Indeed, the contrapositive of (c) is:

8l; non T f; lð Þ ) nonRðu; lÞ ðgÞ

Which is interpreted as:

8l; f lð Þ 6¼ l ) limn!þ1 un 6¼ l ðhÞ

That is to say, if the equation fðxÞ ¼ x does not have solution, then, the series
unð Þ does not converge. This is E5’s formulation. The latter highlights the difficulty
created by the presence of limit (39).

25.4.2.2 Conclusion

Table 25.3 shows that, of the 47 students who answered to this question in the
questionnaire that has been proposed, 83% answered correctly. This result can be
explained by the fact that this theorem is well known to students.

Exchanges above highlight difficulties students feel in justifying their answers
through the construction of contrapositive of (Pb2) because of:

– The presence of anaphora and
– The non-explicit quantifiers.

The strategy of the students will be to eliminate the word limit (Line 34) in the
antecedent of the contrapositive.

Moreover, the status of the series and the variable x remain ambiguous in their
proposition of the contrapositive; they seem to be generic elements.

(1) From these exchanges, we can infer that the statement (Pb2) is appropriate to
work, on one hand, on the choice of quantifiers in the formalization activities,
and, on the other, on the importance of making quantifiers explicit in order to
build the contrapositive of a statement. This problem could also permit making
explicit some inference rules that will contribute to lighten certain reasoning.
This problem is quite appropriate to work on the choice of quantifiers, firstly in
formalization activities and secondly on the importance of clarification of
quantifiers in constructing the contrapositive of a statement. This exercise could
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also clarify certain rules of inference that would contribute to lighten certain
reasoning.

Conclusion and perspectives
We have shown the logical analysis of two mathematical statements:

– The first statement is the first of Goldbach’s conjecturesThe hose clarification of
the it logical structure that displays in the consequent, the existential quantifier
that the formulation in common language was hiding;

– The second is an analysis theorem on R whose knowledge of the contrapositive
is necessary in solving a problem.

These analyses highlight the complexity of those statements. This therefore
urges us to question the capability of the students to effectively determine their own
structure in their usage of proof-making activities.

Problem 1 shows that the transformation of a statement in the form “All A is B”
into a statement in the form “8x; A xð Þ ) B xð Þð Þ” is not obvious: The students’
answers are close to congruent statements to the initial statement. The syntax in the
usage of symbols is approximate and the phenomenon of imitation seen in students
by Gueudet (2008) is quite visible.

About Problem 2, the sequences of exchanges show that the knowledge of
logical structure on one hand helps dispel the language ambiguities: An alternative
among the possible interpretations of a given statement in common language has to
be made. On the other, savings in the cognitive point of view can be achieved by
students when they know the form of the statements they are working out.

Making the logical structure of mathematical statements explicit is an activity
that, given its importance, should be regularly practiced, with an emphasis on the
semantic aspect. As a matter of fact, the teacher lecturer has to led the students to
give a meaning to the symbols that they use. A perspective of this work is to
elaborate situations that will enable students to become familiar with this type of
exercise based on statements used in mathematics classes. Another prospect would
be to develop the reverse activity, which consists of moving from formal language
to common language. Indeed, the switch from formal to common language permits
a good understanding of a statement. We believe that such an activity can help
develop linguistic and language competences of the subject being learned.

Table 25.3 Students’ responses

The series does not converge Nothing can be said Other answer No answer

Size 39 3 5 21
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Chapter 26
Understanding and Visualizing Linear
Transformations

Asuman Oktaç

Abstract The aim of this chapter is to give an overview of the research that we
have been conducting in our research group in Mexico about the linear transfor-
mation concept, focusing on difficulties associated with its learning, intuitive mental
models that students may develop in relation with it, an outline of a genetic
decomposition that describes a possible way in which this concept can be con-
structed, problems that students may experience with regard to registers of repre-
sentation, and the role that dynamic geometry environments might play in
interpreting its effects. Preliminary results from an ongoing study about what it
means to visualize the process of a linear transformation are reported. A literature
review that directly relates to the content of this chapter as well as directions for
future research and didactical suggestions are provided.

Keywords Linear transformation � Visualization � Representation
Dynamic geometry � Linear algebra

26.1 Introduction

Linear transformation is one of the more abstract concepts studied in linear algebra.
It is also one of the concepts with which students experience considerable diffi-
culties (Sierpinska 2000; Sierpinska et al. 1999). Some of these difficulties may be
related to their previously constructed function conceptions, since a linear trans-
formation is a special kind of function between vector spaces. Trigueros and
Bianchini (2016) observed that in the context of a modelling problem this rela-
tionship becomes clearer for students. Uicab and Oktaç (2006) observed that some
students required an explicit formula for a transformation involved in a problem
even in situations where it is not needed, as also mentioned in Sierpinska (2000).
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Karrer and Jahn (2008) report other types of difficulties such as conversion
between registers, especially from the graphic register to others; belief that linear
transformations can only be applied to polygonal objects; and thinking that a
transformation that conserves straight lines is necessarily linear. These authors
suggest the use of a dynamic geometry environment in which students can observe
a linear transformation in three registers (graphic, algebraic, and matrix) simulta-
neously as well as the effect of making a change in one register on the others, in
order to overcome these difficulties.

In our research group, we have been studying the linear transformation concept
from different angles, including how it is constructed, associated difficulties, con-
ceptions that students might develop, and representations. In this chapter the
intention is to bring to the attention of an international audience selected work that
has been conducted in Spanish about the learning of this notion. The findings
reported here form part of a larger ongoing project about the understanding of
Linear Algebra concepts. Although the data reported comes from studies conducted
in Mexico and Chile, the observed phenomena might shed light on difficulties that
students experience in other parts of the world as well.

26.2 Linear Transformations and Intuitive Models

One of our early interests in starting to study the understanding of linear trans-
formations was to determine the kinds of intuitive models, in Fischbein’s (1989)
sense, that students develop in relation with this concept. Our first study in this
direction (Molina and Oktaç 2007) placed emphasis on geometric contexts, since
these are favored less in linear algebra courses. Indeed, after analyzing some linear
algebra textbooks, Karrer and Jahn (2008) concluded that the graphic register is the
least used. In our study, five master’s students in mathematics education were given
pairs of figures such as the one shown in Fig. 26.1 that showed a region or some
vectors in the plane and were asked if there could exist a linear transformation that
mapped the configuration in the figure on the left to the figure on the right. When

T?
T(A)

A 

B T(B)

Fig. 26.1 Possible linear transformation given by its effect on two vectors (adapted from Molina
and Oktaç 2007)
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confronted with the problem in Fig. 26.1, which corresponds to a shear transfor-
mation, all the students responded in the same manner, saying that there was no
such linear transformation; they explained their answer by reasoning that a linear
transformation cannot leave one vector fixed and change the other one. Later we
observed this phenomenon with graduate students in scientific fields in the case of a
reflection about the y-axis as well (Ramírez Sandoval and Oktaç 2012).

Hermes, one of the interviewed students, thought for a long while when he saw
the next problem, shown in Fig. 26.2. He then suddenly grabbed the previous
question (Fig. 26.1) and said that it was possible to have such a linear transfor-
mation and that his previous answer was wrong. We wondered what had happened.
What made him change his mind and how were these two questions related? When
we asked him about it he said that he was considering only special transformations
such as rotation and dilation (Molina and Oktaç 2007). Actually, it seems that there
are two things that led him to change his mind: First, he assumed that in the second
problem such a linear transformation exists, probably because of textbook illus-
trations and classroom examples showing that rectangular regions are mapped to
rectangular regions under linear transformations. Second, he saw that in the image
figure one side of the rectangle shrank and the other side expanded, and this made
him realize that his argument that a linear transformation should do “the same
thing” to both vectors does not hold in general. In other questions that showed the
effect of general linear transformations where no immediate geometric interpreta-
tion was observable, the same difficulty was observed, since the students were
looking for prototype transformations.

The tendency to think in prototype transformations such as rotation, reflection,
and dilation was present in all the students we interviewed. A similar phenomenon
was reported in Sierpinska (2000). Some students were able to think in terms of
compositions of these known transformations, but not beyond. However this is not
to say that rotation is a simpler transformation than shear; it all depends on the
context. For example, Trigueros and Bianchini (2016) observed that students had a
more difficult time finding the formula of a rotation (since it contains trigonometric
functions) when working on a modelling problem than with the formula of a shear
transformation; in this context rotation is considered more complex.

T?

Fig. 26.2 Possible linear transformation given by its effect on a region (adapted from Molina and
Oktaç 2007)
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As Hillel (2000) comments, not all linear transformations have simple geometric
interpretations, even in two and three dimensional spaces. However, for students
these prototypes that are associated with certain movements in the plane replace the
definition, giving rise to intuitive models that act as substitutes for mathematical
theory (Fischbein 1989). These models impose certain “results” in the substitute
theory; for example, “a linear transformation does the same thing to all vectors.”
Since this statement is a simplified version of what happens to the plane geomet-
rically under a linear transformation, “doing the same thing” is also interpreted in a
simplistic way visually. According to Fischbein (1989) “the intuitive model
manipulates from behind the scenes, the meaning, the use, the properties of the
formally established concept. The intuitive model seems to be stronger than the
formal concept” (p. 10).

Another conception that we came across in this study is the one that associates a
linear transformation to each vector instead of thewhole plane. A similar phenomenon
was also observed inDreyfus et al. (1998). Textbook illustrations that showone vector
and its rotated image, in order to exemplify a rotation, for example,might contribute to
students developing this viewpoint. One of the conclusions at which we arrived is that
some students focus on the objects involved, such as vectors, and not on the processes
that are transforming them (Molina and Oktaç 2007).

After this first study, we wanted to know whether these intuitive models pre-
vailed only in geometric contexts or they were also present in algebraic contexts
and, if so, in what way. This time we designed an interview (Ramírez Sandoval and
Oktaç 2012; Ramírez Sandoval 2008) that consisted of two parts. In the first part we
included questions similar to the ones presented in Molina and Oktaç (2007), and
the second part consisted of equivalent problems presented algebraically, asking
whether a linear transformation could exist that maps a given pair of vectors to
another. The intention was, if students’ answers to algebraic problems differed from
geometric ones, to confront them and see how they reconciled the conflicting
responses. The interview was applied to five master’s students who were special-
izing in different science subjects.

Geometrically, we observed the same kinds of conceptions and intuitive models
that students had developed as in the previous investigation. Algebraically, though,
this was not the case. Algebraic symbols, as opposed to images of geometric
objects, are not “given directly to the mind” (Sierpinska 2000, p. 233); the effect of
the transformation on the vectors is not readily available in the tuple notation. In
this context, algorithmic thinking dominated. Confrontation of different answers to
the equivalent problems in geometric and algebraic contexts helped students to
recognize their mistakes, but we are not sure to what extent it was helpful in
constructing the concept.
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26.3 How Is the Linear Transformation Concept
Constructed?

Subsequently we wanted to understand how the linear transformation concept can be
constructed in the mind of an individual. In order to research this we adopted APOS
(Action–Process–Object–Schema) theory as a framework and made a genetic
decomposition that consisted of descriptions of mental structures and mechanisms
throughwhich studentsmight come to comprehend the topic in question (Roa-Fuentes
and Oktaç 2010). According to Arnon et al. (2014) these structures and mechanisms
“involve a spiral approach where new structures are built by acting on existing
structures” (p. 26).We contemplated that the construction of the linear transformation
concept can start in one of two ways: Either the student constructs a general trans-
formation concept first and then the linear transformation is constructed as a special
case, or the linearity properties can be constructed without reference to a transfor-
mation concept; in either case the function schema assimilates the vector space object
so that new kinds of functions with domain and range as vector spaces can be con-
sidered (Roa-Fuentes and Oktaç 2010). We did not find empirical evidence for the
version that starts with the construction of the transformation concept (Roa-Fuentes
and Oktaç 2012), probably because the instruction that the student participants fol-
lowed was not based on that approach.

According to our validated genetic decomposition, students with an Action
conception can verify the linearity conditions for specific vectors and linear
transformations but have difficulty in imagining the verification of the conditions
for all the vectors of the domain and thinking about the concept of linear trans-
formation in a general way. When these actions get interiorized, they give rise to
Processes related to the two conditions of linearity, which are then coordinated to
construct a new Process that can be called the Process of linear transformation. In
this way, the sum and multiplication by scalar properties can be combined in a
linear combination version, which unites them. The importance of this coordination
was evidenced with the observation of a student who was able to cite the properties,
but when it came to verifying whether a given transformation was linear, relied only
on one of them (Roa-Fuentes and Oktaç 2012). This also shows the difference
between the mathematical definition and the cognitive construction of a concept.
When there is need to apply actions on this Process, it is encapsulated into an
Object that can be modified; these actions can consist of composing linear trans-
formations or asking questions about their general properties, such as the conditions
for a linear transformation to be invertible (Roa-Fuentes and Oktaç 2012). Due to
lack of previous research from an APOS perspective on the topic, in this study we
took into consideration only the algebraic representation as a starting point.
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26.4 Role of Registers of Representation

Conscious of the role that different registers of representation (Duval 1993) and their
interplay might have on the understanding of the linear transformation concept, we
undertook a study (Ramírez-Sandoval et al. 2014) inwhichwe identified, on one hand,
successful cases of coordination of different registers and, on the other, different ways
in which this attempt proves unsuccessful; we also discussed a phenomenon called
mixing of registers. We defined this notion as the simultaneous use of more than one
register without coordination: “The mixing of registers consists in the use of repre-
sentations without respecting the rules of formation of the register that they suppos-
edly belong to, mixing rules of formation of two or more registers” (p. 244).

In a study that made use of representations, Wawro (2009) set up a teaching
experiment in order to determine the connections that students might make between
the matrix representation of a linear transformation defined on R2 and its geometric
effect on the plane, as well as to provide a context for feeling the need for a change
of basis and exploring this notion. This way students were able to realize how
different components of a matrix contributed to the geometric effect of a linear
transformation, especially in the case of stretch and shear. Now, in order to illustrate
the notion of mixing of registers, we give an example from our study in which
during an interview the student Franco was working on the following problem
adapted from Wawro (2009).

In Fig. 26.3 the letter M appears first in 12-point normal font, and then in
16-point italics font. Can you find a matrix that transforms the M on the left to the
one on the right?

Franco’s strategy consisted of taking a pair of vectors from the image on the left
and from the image on the right, converting these graphical representations to
algebraic ones and forming a system of equations whose solution would give the
entries of the matrix. His strategy was reasonable, but when he started working on
the graphical register he began mixing the rules of the synthetic graphical register
and the Cartesian graphical register. After he drew the shape in Fig. 26.4, he
assigned the coordinates (0, 3) to the vertical vector and (1, −2) to the diagonal one.

Fig. 26.3 Looking for a
matrix that transforms the
M on the left to the one on the
right (adapted from Wawro
2009)
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This means that he was reading the coordinates as in the Cartesian plane, but
placing a vector to start with the end point of another one as in the synthetic graphic
register, leading to an existence of two distinct origins for the two vectors
(Ramírez-Sandoval et al. 2014); this prevented him from solving the problem
successfully. Wawro et al. (2012) also reported that some students placed the
starting point of a vector on the tip of another, giving rise to a “floating origin”.

As a result of this study we note that in the literature there is a lack of consensus
on the names and characteristics of registers of representation in linear algebra. We
offer a characterization of two graphical registers (synthetic and Cartesian) as well
as algebraic and matrix registers (Ramírez-Sandoval et al. 2014).

26.5 Integrating Dynamic Geometry Software

Dreyfus et al. (1998) designed a course using a dynamic geometry environment so
that students could have a coordinate-free geometric entry into linear algebra in
which they could experiment with linear as well as non-linear transformations; in
this approach the linearity conditions were interpreted geometrically. They sustain
that a dynamic geometry environment

gives far more visibility to transformations than a paper and pencil environment. In fact, a
variable vector and its variable image under the transformation can be placed on the screen
simultaneously. In this situation, the effect of a transformation is directly observable, thus
indirectly lending some visibility to the transformation itself. (pp. 218–219)

They also warn us against the pitfalls of computer environments and related
designs, since students tend to develop conceptions of a linear transformation as the
image of a vector as opposed to a function transforming the plane.

In a study that we conducted (Romero Félix and Oktaç 2015a, b), university
students went through instruction on the topic of linear transformations using
GeoGebra applets, after which they were given a questionnaire and then inter-
viewed with the aim of characterizing their mental constructions in the presence of

Fig. 26.4 Franco’s
M (adapted from
Ramírez-Sandoval et al.
2014)
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static and dynamic representations. The activities that were used during instruction
were specially designed to motivate the construction of mental structures antici-
pated by the genetic decomposition. For example, students worked with problems
of the type shown in Fig. 26.5, where they could trace the image of a particular
region under a transformation and observe the differences between the effect that
corresponds to a linear transformation and the one that corresponds to a non-linear
one; the aim of this kind of activity was to aid in the interiorization of actions into
processes where students can start thinking about the image of a region instead of
images of particular vectors. After having worked with these kinds of activities,
even when asked to produce graphical representations in paper and pencil envi-
ronments, students generated images that showed traces of vectors, obviously with
the influence of this dynamic environment (Fig. 26.6).

In this study it was found that the dynamic geometry environment together with
the instructional design that was directed towards helping students construct the
conceptions expected by the genetic decomposition aided in the interiorization of
Actions. About constructing a Process conception, Romero Félix (2016) points out
the following:

Fig. 26.5 Image of a region under a non-linear transformation (Romero Félix 2016, p. 93)

Fig. 26.6 Static
representations with the
influence of dynamic ones
(adapted from Romero Félix
2016)
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Interiorization toward Processes requires analyzing a sufficient quantity of repetitions in
order to achieve an internal version of them; the sufficiency is reached when a significant
reflection that permits taking control of the steps of the Actions is made. Dynamic repre-
sentations make a greater quantity of information available for students, practically in an
immediate and continuous manner, through intuitive manipulations of representations.
(p. 167)

We propose that dynamic graphical representations work for the students as catalysts of the
mechanism of interiorization. (p. 168)

In general, the Object conception is hard to reach and even after completing
undergraduate courses, students do not show evidence of being able to apply
actions on processes (Arnon et al. 2014). Care was taken during instruction to
provide students with activities that were intended to aid in the encapsulation of
processes. For example, after they had to come up with a linear transformation that
sends a square region to itself, they had to modify it so that this time it would send
the same square region to a bigger square or a general rectangle. Students in this
study in general were able to develop an Object conception for linear transforma-
tions in the plane, but not outside of this context. This points out the importance of
providing students with the opportunity to work with transformations in different
vector spaces. According to Romero Félix (2016) “because of the analog nature of
graphical registers, treatments in these without reference to the represented Objects
would be difficult.... [I]n this way formation or interpretation of graphical repre-
sentations refers to the properties of Objects more directly” (p. 167).

To the best of my knowledge, this was the first time dynamic geometry software
was used in relation with research from the viewpoint of APOS theory. As a result
of this study, a genetic decomposition of the linear transformation concept that
includes representations was produced (Romero Félix 2016), as well as an articu-
lation between the theoretical approaches of APOS (Arnon et al. 2014) and registers
of representation (Duval 1993).

26.6 Visualization of Linear Transformations

Visualization of linear transformations has applications in computer graphics and
robotics and in general where a study of geometrical representation of objects and
their motion and transformation are involved. There have been different didactic
suggestions in the literature as to how to visualize linear transformations. Monagan
(2002) proposes both the use of CAS to display the images of different objects, such
as circles, instead of the square regions that are normally used to illustrate the effect
of a linear transformation and the use of animations to get an idea of the effect on
the whole plane. Triantafyllou and Timcenko (2013) recommend displaying the
matrix of a linear transformation and a geometric object on the screen so that when
changes are introduced in the matrix the effect on the object and on the whole grid
covering the screen can be observed. Hern and Long (1991) argue that three
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dimensions are necessary in order to study the effect of a linear transformation
visually, making use of shapes such as a cube, a sphere, or a tetrahedron.

Dubinsky (1997) makes a distinction between visualization of objects and
visualization of processes:

One observation I would make about Harel’s approach is that it focuses on the objects of
linear algebra that is, vectors and their various relationships such as membership in a
subspace, geometric and coordinate representations, etc. All of these objects can be visu-
alized geometrically—at least in the lower dimensions. It is quite a different matter to
visualize the linear algebra processes which transform these objects, that is, linear trans-
formations. According to Piaget, visual perception (which is the main tool used by Harel) is
possible for static objects, but not for dynamic processes. To visualize the latter, he argues,
it is necessary to perceive a set of static phenomena and to reason about them in making
mental constructions of dynamic processes. (p. 91)

Indeed Piaget and Inhelder (1969), in an experiment about anticipatory images,
asked children aged 5 through 9 to draw the steps of the process through which an
arc becomes a straight line. The children’s drawings in which the intermediate
states lacked the important characteristics of the transformation gave evidence of
their static view. These authors contemplate the following:

No matter how adequately we try to visualize the transformation of an arc into a straight
line or vice versa, our images proceed in jumps and do no more ... than to take instanta-
neous ‘snapshots’ amid the continuum, instead of attaining it as a transformation.... Thus,
images cannot exhaust the operation.... The results are: inability to anticipate in imagina-
tion, inadequate intermediate images and ... evaluation based only on the starting and
finishing points. At the operational level, on the other hand, there appears a new type of
image based on symbolic imitation of these operations which succeeds in multiplying
‘snapshots’ to stimulate a continuum and in anticipating approximately the continuation of
the sequence thus evoked. (p. 119)

About the visualization of function transformations, Eisenberg and Dreyfus
(1994) make a difference between a static view which consists in “moving a graph
from an initial state to a final one with the graph having moved and changed
throughout a transformation” (p. 58) and a dynamic view that consists in viewing “it
as a mapping which is moving every point in the plane to a new location” (p. 58). In
the first approach, the emphasis is on the two static states, and in the latter approach
the focus is on the dynamic movement, which starts with the initial state and ends in
the final one. Cognitively speaking, they imply the involvement of different
structures or conceptions. In their experiment Eisenberg and Dreyfus observed that
for the majority of the students “there was no view of the process, no view of a
transformation performing some change” (p. 59).

When classifying student concept images about functions and linear transfor-
mations, Zandieh et al. (2012) discuss morphing, which

involves a beginning state of an entity that changes or is morphed into an ending state of the
same entity. There must be a clear sense that the beginning entity did not simply move to
the new location (ending entity), nor was it replaced by the new output (ending entity), but
that there was actually a metamorphosis of the beginning entity into the ending entity.
(p. 527)
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This has to do with imagining the process of linear transformation dynamically.
Considering the problem described in this section, we decided to investigate the

perception of processes. Beyond the visibility, which might refer to objects such as
vectors and their images under a linear transformation, we wanted to explore how
the process of a linear transformation might be conceived (Camacho Espinoza and
Oktaç 2017). We decided to interview a linear algebra instructor in order not to deal
with difficulties concerning knowledge of the content. Luis, the linear algebra
instructor whom we interviewed, was asked the following question:

Can you describe how the linear transformation associated to the matrix
1 �1
�1 1

� �

transforms the plane geometrically?

He had to his disposition the GeoGebra software, which he made use of, as we
will see. We wanted to find out how he was thinking about the linear transformation
and if he made use of arguments about a continuum in his discussion of it. We will
now go through his reasoning as he works on this problem.

To determine the image of the whole plane under this transformation, Luis first
talks about sweeping the plane with vertical lines, as can be seen from his drawing
in Fig. 26.7. Subsequently considering a generic x ¼ a line and after doing some
algebraic calculations, he identifies its image as the line y ¼ �x; surprised by the
result and gesturing with his hands, he says “But what do you know? Not only this
line, but all the vertical lines will be transformed into only one. It is very interesting
that all this will be only one” (Fig. 26.7). Not satisfied with the result that he

Fig. 26.7 Sweeping the
plane with vertical lines and
finding their image
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obtained, he then decides to sweep the plane with horizontal lines and when he
arrives at the same image, still surprised, he says: “It is interesting that all the
horizontal lines will go to one line. Obviously, in this way you are sweeping the
whole plane. So don’t tell me the whole plane will collapse into the minus identity”
(Fig. 26.8).

Still not content, this time he wonders what the image of a square would be
(Fig. 26.9) and calculates it (Fig. 26.10).

“It will go to a line segment. I am squashing it, but something tells me that it’s
not true,” he says.

What would happen, instead of straight lines, ... because maybe I was wrong about the
geometrical object ... because this is how you sweep the plane, right? We will leave the lines
and we will use something more interesting. We will sweep the plane with concentric circles.

Fig. 26.8 Sweeping the
plane with horizontal lines

Fig. 26.9 A square whose
image is to be calculated
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Shortly he realizes that the calculations would be quite messy and gives up on it.
It turns out that from the beginning he was thinking that the transformation was a

rotation. In other words, the image that he was obtaining as a result of his calcu-
lations and the image that he had in mind did not coincide. He gets convinced of the
image being a line only after realizing that the rank of the transformation is 1. At
that point he decides to explore with the dynamic geometry software and works
with an applet previously designed for this linear transformation that shows a vector
and its image simultaneously on the screen (Fig. 26.11). The applet made possible
to move a vector on the screen while observing the effect on the image vector; it
was also possible to activate a box that allowed visualization of a chosen line and its
image. Manipulation of this applet helped Luis identify the kernel of the linear
transformation as well as determine the images of specific regions of the plane.

The interviewer tries to find out how he is thinking about the process of this
particular linear transformation.

I: With what you have observed so far, can you describe how the transformation deforms
the plane?

Luis: It maps it into a line.

I: OK, the image of the plane is a line under this transformation. But can you describe how
it does it?

Fig. 26.10 Image of the
square in Fig. 26.9

Fig. 26.11 Screen showing a
vector and its image
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Luis: All the vectors that are above the line y ¼ x are mapped to the second quadrant, and
all the vectors below the line y ¼ x are mapped to the fourth quadrant.

Luis: When you start approaching the identity line you start decreasing the norm, because
the identity line is the kernel.

By his own initiative, Luis also determines the image of a circle with center at
the origin as the line segment lying on the line y ¼ x whose middle point is the
origin. He also identifies the images of the two semicircles determined by the line
y ¼ x as the two segments of the line y ¼ �x, lying above and below the origin
(Fig. 26.12).

When the interviewer insists on finding out how he thinks about the process of
the linear transformation, Luis gets uncomfortable:

I: Can you describe in which way the vectors of the plane are being transformed?

Luis: Wow! That’s a very intimate and strong question.

I: We can determine the images of different objects. But can we describe how those images
are being obtained? What is happening to the plane?

Luis: No, actually, I wouldn’t be able to find the elements to do that.

Luis: I understand what you mean. You want a geometric argument explaining how this
happens, but I don’t think so....

Luis: The only precise manner in which I showed how it happens is when I swept the plane
with lines, point by point. I didn’t get to do it with the circles, but anyway we would have
reached the same conclusion.

Luis: You take little pieces: All you have to do is to segment it into little pieces, that’s the
simplest way.

Luis went back and forth between static-geometric (he was drawing on the
board), algebraic (writing on paper), and dynamic-geometric (software) environ-
ments. The applet helped him discover the importance of the line y ¼ x, which was
not shown on the screen. He focused on objects and their images, through which the
linear transformation started revealing itself. However he was reluctant to make
further statements about how the deformation of the plane took place.

The visualization of the process may not be too difficult in the case of prototype
transformations such as rotations and projections, but even with a slight increase in

Fig. 26.12 The image of a circle (Camacho Espinoza and Oktaç 2017)
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complexity, such as when two transformations are composed, it becomes consid-
erably harder, as in this case where a projection and a dilation are involved.

Dreyfus et al. (1998) mention the following when discussing the effect of a
dynamic environment on the conceptions that students may develop of a linear
transformation:

A variable vector has an unstable existence. Only while being dragged does it exist as such:
a variable vector. When dragging stops, only a very partial record remains on the screen:
An arrow with given, potentially variable length and direction. The variability remains only
potential, in the eye (or mind) of the beholder. If the student looking at the screen is not
aware of this variability, the variable vector has ceased to exist as such. (p. 218)

According to Piaget:

Given sufficient practice, geometrical intuition can enable one to “see in space” the
transformations themselves, even at times the most complex and the furthest removed from
common physical experience. This is because the image rests on a spatialized imitation of
operations which are themselves spatial. (Piaget and Inhelder 1969, p. 137)

Zazkis et al.’s (1996) definition of visualization is in line with this point of view:

Visualization is an act in which an individual establishes a strong connection between an
internal construct and something to which access is gained through the senses. Such a
connection can be made in either of two directions. An act of visualization may consist of
any mental construction of objects or processes that an individual associates with objects or
events perceived by her or him as external. Alternatively, an act of visualization may
consist of the construction, on some external medium such as paper, chalkboard or com-
puter screen, of objects or events that the individual identifies with object(s) or process(es)
in her or his mind. (p. 441)

26.7 Didactical Suggestions and Future Direction
for Research

The combined use of different techniques may help in understanding and inter-
preting the different aspects of the process of a linear transformation. As discussed
earlier in this chapter, the use of dynamic geometry software and specially designed
applets may form part of these strategies. Working on particular transformations as
well as studying the effects of changing the entries of a matrix representation on the
image obtained (of geometric objects and of the whole plane) may help in this
direction.

Another visual representation of linear transformations of the plane consists in
generating a vector field;1 for that, vectors (in the sense of physics) showing the

1I thank Franz Pauer for bringing it to my attention after my talk at ICME-13.
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images of selected points under the transformation are placed in the plane, as if they
were translated from the origin to those points, and then usually those vectors are
scaled down proportionally so that they do not overlap. For example the trans-

formation represented by the matrix
1 �1
�1 1

� �
has as its formula

T x; yð Þ ¼ x� y;�xþ yð Þ. The associated vector field is shown in Fig. 26.13.
This approach might be worth exploring, taking into account that giving

meaning to this kind of representation would require another kind of interpretation.
For example, for the vector field in Fig. 26.13, the y ¼ x line should be interpreted
as the kernel, since there are no vectors lying on it. The fact that all the vectors have
the same direction (but not the same orientation) should be interpreted as the image
being a line whose equation can be calculated using the slope of the vectors; the
magnitudes of the vectors also provide clues about where the images lie. As
mentioned before, combined with other strategies, vector fields might prove useful
in visualizing the effect of the linear transformation on the whole plane.

In order to help students develop intuitive models compatible with mathematical
theory, we suggest working with linear transformations in the two dimensional
plane as well as outside of it, where domain and range vector spaces are different.
Making use of different registers of representation to help in their coordination is
recommendable for establishing relationships between these representations.

Fig. 26.13 Vector field associated with the linear transformation T x; yð Þ ¼ x� y;�xþ yð Þ
(generated by the vector field generator Desmos at https://www.desmos.com/)
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Currently we are working on incorporating characteristic values and vectors into
our research with the aim of assisting the understanding and visualization of linear
transformations. Our hope is to characterize this process, which would in turn lead
to recommendations for overcoming difficulties as well as for constructing the
concept.
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Chapter 27
Mapping the Relationship Between
Written and Enacted Curriculum:
Examining Teachers’ Decision Making

Janine Remillard

Abstract I offer an approach to representing and examining the relationship
between curriculum resources and the performance of teaching, for the purpose of
analyzing teachers’ design work. The approach builds on the assumptions that
teaching is a design activity, that curriculum resources are tools that convey
complex instructional ideas, and that, in using these tools, teachers interact with
them and selectively leverage resources to design and enact instruction. I introduce
the instructional design arc as a unit of analysis, referring to an episode in a lesson,
prompted by the teacher, and that require the teacher to make instructional design
decisions in the moment. When compiled into a lesson map, these design arcs
model the episodic and emerging contours of the enacted lesson, representing
teachers’ planned and in-the-moment decisions. Using data from 3rd to 5th grade
mathematics classrooms in the USA, I analyze instructional design arcs within
mathematics lessons, focusing on teachers’ design work.

Keywords Written curriculum � Enacted curriculum � Teaching
Mathematics instruction

27.1 The Relationship Between Written and Enacted
Curriculum

In his exploration of the “teacher-tool relationship,” Brown (2009) uses sheet music
and different artists’ renditions of the same classic jazz song, Take the A Train,1 to
illustrate the ways the same song, as written, can be performed in substantially

This lecture was based on analysis reported in Remillard et al. 2015.
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different ways. Both performances, Brown points out, have “essential similarities,”
yet they “sound distinctly different” (p. 17). Curriculum materials, Brown (2009)
goes on to argue, have similarities to sheet music, both in terms of their form and
role in guiding performance. They are both “static representations” of intended
activity and the “means of transmitting and producing” it, but they are not the
activity itself.

Curriculum materials and sheet music are also similar in that “they are intended
to convey rich ideas and dynamic practices,” but they do so “through succinct
shorthand that relies heavily on interpretation” (Brown 2009, p. 21). At the same
time, curriculum materials are often designed to “influence common practice by
introducing innovative approaches and ideas.” Most critically, and often over-
looked, curriculum materials “require craft in their use; they are inert objects that
come alive only through interpretation and use by a practitioner” (p. 22).

The relationship between sheet music and musical performance is also apt as a
metaphor for teaching and the curriculum-teacher relationship because, in many
ways, teaching is a live performance. Like different performances of the same
musical score, different enactments of the same written curriculum will not only
vary in style, pace, and emphasis, they are likely to also vary in quality. Some
teaching performances come closer than others to meeting the mathematical and
pedagogical goals specified in the curriculum or intended by the teacher. This
variation in quality may be attributed to a teacher’s grasp of the mathematics, ability
to connect to learners, or manage a classroom. For those using curriculum materials,
I suggest, the quality of instruction is related to the teachers’ ability to interpret,
make decisions about, and leverage the resources in this tool as she designs and
enacts instruction.

27.2 Research Questions and Analytical Focus

The analysis presented in this paper is particularly concerned with examining the
relationship between curriculum resources and the performance of teaching. My
approach draws on Brown’s (2009) and others’ idea that teaching is a design
activity; that curriculum materials are tools that convey complex instructional ideas
and that, in using them, teachers interact with these tools and selectively leverage
available resources to design and enact instruction. Using video recordings of
elementary teachers’ mathematics lessons, together with interviews and artifacts
detailing their reading of the teacher’s guide, I consider the following conceptual
question:

How can enacted lessons be conceptualized and represented for the purpose of analyzing
the design work teachers do during enactment?

This question is conceptual, requiring us to build a model of the work of
teaching that can be used to analyze teaching performance and its relationship
between the written curriculum guides. As described later in the results section,
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I introduce the concept of instructional design arcs to model instructional episodes
in a lesson that are prompted by the teacher and that require the teacher to make
instructional design decisions in the moment. These arcs not only model the epi-
sodic and emerging contours of the enacted lesson, but serve as units of analysis in
my effort to examine teachers’ design work during the enacted curriculum and its
relationship to the written or planned curriculum. My aim in this analysis is to build
a tool to examine empirical questions about the relationship between the enacted
and written curriculum, including how to understand variation across teachers and
different types of curriculum resources.

27.3 Theoretical and Conceptual Perspectives

This study builds on three overlapping, framing perspectives: an adaptive view of
curriculum (Stein et al. 2007; Remillard and Heck 2014), teaching as design work
(Brown 2009), and a participatory view of teachers’ use of curriculum materials
(Remillard 2005).

27.3.1 Curriculum Enactment as an Adaptive Process

An adaptive perspective asserts that instantiations of curriculum unfold and develop
over several temporal phases, from the ideal indicated by official policy, to the
written, the teacher intended, and the enacted (Remillard and Heck 2014; Stein et al.
2007). Valverde et al. (2002) described textbooks and instructional materials as
mediators between the intended and implemented curriculum. They are written to
work on the behalf of teachers and students “as the links between the ideas pre-
sented in the intended curriculum and the very different world of the classroom”
(p. 55). Rather than focusing on fidelity of implementation, research from this
perspective examines how curriculum artifacts are transformed by policy makers,
textbook authors, teachers, and students from one phase to the next, such as written
to enacted, and considers factors that influence these transformations.

27.3.2 Teaching as Design and Curriculum Use
as Participatory

Teachers, then, are critical decision makers within this adaptive framework. I draw
on Brown’s (2009) assertion that teaching involves design work, even when using
curriculum materials. Teachers make design decisions when they read curriculum
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materials and moblize them to plan a lesson. They also make design decisions while
enacting lessons (Brown 2009).

Further, I view teachers’ use of curriculum materials as a participatory process,
involving interactions between the teacher and the curriculum resource. This view
emphasizes the interactive and transactional nature of this work, framing curriculum
use as a dynamic and ongoing relationship between teachers and resources, a
relationship shaped by both the teacher and characteristics of the resource
(Remillard 2005).

A fundamental theoretical thread running through these perspectives is
Vygotsky’s (1978) notion of practice as inseparable from tools, both employed and
produced through the process and as deeply rooted in the particular context.
Whereas some views of teaching and, most notably, curriculum use emphasize
implementation or brokering of existing, fully formulated resources, this perspec-
tive frames teaching as a design activity and curricular resources as contributing
partners in the generative work (Brown 2009; Remillard 2005).

27.3.3 Curriculum Fidelity

Many studies of teachers’ use of curriculum materials focus on fidelity or the
closeness of the enacted curriculum to that specified in the teacher’s guide
(O’Donnell 2008). Some scholars have suggested that fidelity is a complex and
underspecified concept, often used in problematic ways. At the same time,
Remillard (2005) notes, “It would be inaccurate and irresponsible to conclude that
all interpretations of a written curriculum are equally valid.” As a result, the field is
“in need of ways to characterize reasonable and unreasonable variations or
instantiations of a particular curriculum that are tied to features most central to its
design” (pp. 239–240). Brown et al. (2009) offer an approach to studying cur-
riculum use that differentiates fidelity to the written curriculum from fidelity to the
authors’ intended opportunities to learn. My analysis aligns with efforts by these
researchers to conceptualize fidelity between the written and enacted curriculum as
alignment to the intended opportunities to learn.

The conceptual and methodological work described in this paper is aimed at
representing the curriculum enactment process in relation to the curriculum
resources being used. I am interested, to some extent, in the alignment between
intended opportunities to learn suggested in the curriculum guides and those
opportunities made available in the classroom. More importantly, however, I am
interested in understanding and describing the processes through which the enacted
curriculum is designed by teachers’ decisions, both when planning lessons and
when enacting them.
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27.4 Methods

My data were drawn from the corpus of qualitative data collected for the ICUBiT2

study. A principal goal of research project was to identify key components of the
capacity required for elementary teachers to use curriculum resources productively
in their mathematics teaching.

27.4.1 Data Sources

Data collection relied on a teaching set methodology (Cobb et al. 2009; Simon and
Tzur 1999), which involves collecting video records of multiple lessons along with
associated artifacts and then using specific events or practices observed in the data
as a basis for teacher interviews. The ICUBiT study collected teaching sets for 25
teachers. For the analysis in this paper, I selected four teachers, two using
Investigations in Numbers, Data, and Space (TERC 2008) and two using Math in
Focus (Kheong 2010). See Table 27.1 for details.

Two teaching sets were collected for each teacher, one in the fall and one in the
spring. The teaching set included 3 video recorded lesson observations, a completed
curriculum reading log (CRL) for the lessons taught during the week of observa-
tion, and a follow-up interview. Prior to the fall teaching set, each teacher com-
pleted an introductory interview, during which the teachers provided information
about professional background and curriculum use. The CRLs consisted of a copy
of the relevant lesson in the teacher’s guide on which teachers used colored
highlighters to indicate which parts of the guide they read for various reasons.
During the follow-up interview, the interviewers asked teachers to respond to
questions about the observed lessons and the CRL.

27.4.2 Data Analysis

Each lesson was divided into episodes (arcs), identified by a distinct mathematical
purpose held by the teacher. Each episode began with a prompt by the teacher.
Based on my analysis of the lesson, the CRL, and the follow-up interview, I coded
each prompt as written, adapted, inserted, or improvised, to indicate its relationship
to the lesson as described in the guide. These terms overlap with those introduced
by Brown (2009) to characterize how teachers use curriculum resources, offload,

2The Improving Curriculum Use for Better Teaching is directed by Janine Remillard and
Ok-Kyeong Kim.
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adapt, and improvise, as follows. A written prompt was drawn from the curriculum
guide and aligns closely with the mathematical topic and objectives of the text, even
if the teacher makes minor modifications. Brown used the term offload to refer to
episodes during a lesson that a teacher relied on fully the written lesson. Similar to
Brown, I labeled Adapted prompts as instances when the teacher used the cur-
riculum guide as a resource, but made modifications in structure, approach, or
objective. Brown used the term improvised to refer to all instances in which the
teacher replaced elements of the written lesson with different activities or approa-
ches. My codes differed, depending on whether the revision was planned or
unplanned. I coded prompts as inserted if they were not resourced from the tea-
cher’s guide, but were planned in advance. I used Improvised to refer to prompts
that were not in the teacher’s guide, but appeared to be developed in the moment, in
response to classroom situations. I also identified omissions from the curriculum
guides and coded as significant those that I deemed to be fundamental to the
designed lesson plans, with respect to accomplishing the learning objectives of the
lesson. The coded lessons were then used to build a lesson map, as described in
the section that follows.

27.5 Conceptualizing and Representing the Enacted
Curriculum

In the section below I describe my approach to analyzing and representing the
enacted curriculum in relation to teachers’ design decisions. In the process, I pro-
vide a brief introduction to each of the four teachers analyzed for this paper. I also
discuss how this analytical approach might be used to examine teachers’ design
decisions, their pedagogical design capacity, and the relationship between the
written and enacted curriculum.

Table 27.1 Participating teachers

ID Namea Grade Curriculum Full years
teaching

Years using
Curriculum

008 Maya Fiero 4 Math in focus 9 2

009 Meredith Frankl 5 Math in focus 1 1

061 Ingrid Navarra 5 Investigations 14 13

063 Irma Nelson 4 Investigations 25 12
aAll names are pseudonyms
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27.5.1 Two Types of Design Decisions

My analysis of video recorded lessons in relation to teachers’ planned curriculum
(measured through CRLs), supplemented by follow-up interviews revealed the
range of design decisions teachers make when enacting instruction. For this anal-
ysis, I distinguish between two types of decisions: (a) planned decisions, made in
advance of the lesson, and (b) in-the-moment-design decisions (IMDDs), made
during the enacted lesson. Planned decisions refer to those made in advance. They
include identifying the goals and tasks of the lesson. Often, they involve designing
what Castro et al. (2007) refer to as instructional moves, instructions, questions,
guidelines, or other types of prompts offered by the teacher during a lesson. I think
of them as initiating prompts because they are designed to prompt student
engagement or participation in some sort of mathematical work.

When using a curriculum-use lens, planned decisions also reflect the teacher’s
decisions in relation to the designed, specified, or suggested moves described in the
teacher’s guide. That is, they involve determining which parts of the written lesson
to use and how to use them. In my analysis of planned decisions, I considered
(a) which elements in the teacher’s guide teachers chose to use or omit, (b) whether
teachers used the elements as written or adapted them in some way, and (c) the
types of insertions teachers made to the written curriculum.

Not all decisions teachers make during a lesson can be pre-planned. During any
lesson, a teacher must make instructional-design decisions in the moment, in
response to how students respond to her initial prompt. I call these decisions in-the-
moment design decisions (IMDDs). Unlike pre-planned initiating prompts, these
teacher moves are all responsive in nature. Consider the following illustration.

On December 7th, Irma Nelson, introduced her 4th grade students to the first
activity in the lesson entitled Strategies for Multiplication. The lesson, the third
session in a set of four on doubling and halving, was near the end of Book 3,
Multiple Towers and Division Stories, in the Investigations program.

To introduce the activity, the teacher’s guide instructs the teacher to write two
expressions on the board, taken from a workbook page the students had completed
two days prior: 16 � 3 and 16 � 6.

The teacher’s guide offers the following prompt to begin the session:

Let’s look again at these two problems. How are they related to each other?

How are the two answers related?

The guide then suggests the teacher collect a few responses about why the
product is doubled when one factor is doubled. Then ask students to share story
contexts or representations from their previously completed work that show why
this is true. Finally, the guide suggests that if no student suggests using an array, the
teacher should introduce it herself by drawing two open arrays on the board rep-
resenting 16 � 3 and 16 � 6.
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Ms. Nelson wrote these expressions on the overhead projector and began by
asking: “Ok, um, let’s take a look at, um, a problem 16 times 3 and another problem
that’s similar is 16 times 6, ok? What’s the first thing that you notice about these
problems?”

Although Ms. Nelson did not begin with the question worded exactly as it was in
the guide, she initiated the task as designed by the authors. Then, as suggested, she
called on a student and the following exchange transpired, which included several
opportunities for IMDDs:

Ana: 3 is double 6.
Teacher: 3’s double 6? Or…is 3 twice as big as 6? Ok, what you said makes me

think that 3 is twice as large as 6.
Ana: 3 is, uh, two put together is 6.
Teacher: Ok so if you double up 3 you’re gonna get 6. Carl, what do you notice?
Carl: I know that the 16’s are still the same.
Teacher: The 16’s are still the same.
Lana: Since the 3 is half of the 6, when you get your answer for 16 times 3, um,

you’ll just have to double that.
Teacher: Only doubling it then, all right so that will make it easier to solve the

second problem. Kent?
Kent: She got it.
Teacher: She got yours? All right. Um, how could you show this if you wanted to

do that in an array? How might you show that?

In the example above, Ms. Nelson displayed the suggested expressions and
asked an open question that prompted students to make observations about simi-
larities between them. As the guide suggested, she collected students’ responses
about the relationship between the factors in and product of the two expressions.
I assess that she decided to use this part of the guide as written.

What transpired in the minute after offering the initiating prompt appears to
reflect the intent of the curriculum authors; students made observations about the
similarities between the two expressions. The particulars of the intended exchange
are not specified in the guide, which advises teachers to collect students’ responses
about why the product is doubled using story contexts or representations. The
teacher must enact these decisions in the moment. In this short example, Ms.
Nelson made IMDDs in order to respond to several students’ observations about the
two expressions. She questioned Ana’s partially correct response, accepted Carl’s
observation without further probing, and restated Lana’s suggestion, pointing out
that her observation could help them solve the second expression.

My analysis revealed that, regardless of the detail of planned decisions, made in
advance of the lesson, teachers experience multiple opportunities to make addi-
tional design decisions while the lesson was being enacted. Simply put, any time a
teacher asks a question or prompts students to respond in some way, she must then
navigate their responses in relation to her intended objective. Teachers, for exam-
ple, make decisions about which students to call on and how to respond to what
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they say, be their responses correct, partially formulated, incorrect, or unrelated.
They must decide when their specific objective underlying the prompt has been met
and it is appropriate to move on or whether an additional instructional move needs
to be improvised.

The need for teachers to make IMDDs is not necessarily a reflection of poor
planning or underdeveloped resources. Rather, they reflect the substantive dis-
tinction between the written, planned, and enacted curriculum (Remillard and Heck
2014; Stein et al. 2007). Like the distinction between sheet music and a musical
performance (Brown 2009), the enacted curriculum is richer, more detailed and
varied than the succinct representation of a lesson in a teacher’s guide. Even more
significant is the fact that enacted lessons are co-constructed with students; they are
shaped by students’ actions and teachers’ moves in relation to them. In a study of
professional development sessions, Remillard and Geist (2002) used the term
openings in the curriculum to describe similar instances, which required the
facilitator to make “on-the-spot decisions, about how to guide the discourse”
(p. 13).

27.5.2 Instructional Design Arcs

Through my analysis of teachers’ decisions during mathematics lessons, I observed
that these enacted lessons were comprised of a series of instructional episodes that
typically begin with a planned instructional prompt and follow with a segment of
time during which the teacher guides classroom interactions toward a particular
mathematical purpose. An instructional episode ends when the teacher initiates a
new prompt, usually, but not always, because the purpose has been met. I refer to
these episodes as instructional design arcs.

I see instructional design arcs as the basic building block of an enacted lesson.
They are not unanticipated, but they cannot be fully planned. Navigating these arcs
is at the heart of the work of teaching. To varying degrees, curriculum authors
anticipate these arcs and provide guidance to help teachers navigate them.
Regardless, I posit, understanding how teachers make IMDDs in order to guide
instructional arcs, including how they mobilize curriculum resources in the process,
is critical to understanding the work of teaching. In the following sections, I
describe my use of lesson maps to represent teachers’ instructional prompts, the
instructional design arcs that result, and their relationship to elements and supports
in the teacher’s guide.
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27.5.3 Using Lesson Maps to Model the Enacted
Curriculum

I use the following four examples of lessons, one from each of the four teachers in
this analysis to illustrate the different analytical features of the lesson maps. These
examples were also selected to introduce the four teachers in my analysis.

27.5.3.1 Example 1: Ms. Nelson’s Enacted Lesson

The lesson map for Ms. Nelson’s 12.05.2012 lesson, which took place two days
before the lesson introduced earlier (comparing 16 � 3 and 16 � 6), is shown in
Fig. 27.1. The timeline along the bottom of the map represents the time of the
lesson in minutes. The solid circles represent instructional prompts, introduced by
the teacher, and defined by an identifiable mathematical purpose. The arcs that
follow represent the instructional design arcs that resulted. An arc ends when a new
prompt was offered, which usually occurred when the teacher’s mathematical
purpose was met or the teacher deemed a new prompt was appropriate.

In this lesson, all prompts fall on the lower horizontal line, which indicates that
they were drawn from the teacher’s planned lesson. The color of circles indicates
the source of the arcs in relationship to the curriculum guide. The first arc began
with an inserted prompt, marked by the red circle, which represents a timed mul-
tiplication exercise that the teacher inserted into the lesson from outside of the
curriculum guide. Then, at minute 5:48, Ms. Nelson began the lesson based on the
teacher’s guide. She directed students to a story problem in their workbook: Ms.
Santos has 168 apples. She wants to pack them into boxes of 28. How many boxes
does she need? She asked, “Is this a multiplication problem or a division problem?”
This arc aligned with the curriculum guide and is therefore coded as written,
indicated by a black circle. After the class discussed the problem and various ways
to solve it, at minute 10:56, Ms. Nelson directed the students to solve the division
problem using a strategy suggested by one of the students. This arc was coded as
adapted because the teacher significantly changed the mathematical purpose of the
task, indicated by the gray circle.

The remainder of the lesson, represented by the lesson map, was comprised of
several more arcs sourced from the teacher’s guide as written. The long arc, ini-
tiated at time 39:52 min involved students working in small groups to complete a
page of practice problems included in the lesson, while the teacher circulated.
Typically, segments involving small group or individual student work were coded
as a single arc, based on a single objective, even though the teacher’s interactions
with individual students or groups might have been initiated by distinct prompts.3

Occasionally, although not in this case, I found that teachers interrupted

3Project video records do not provide us with a reliable record of these exchanges during
small-group work periods.
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small-group work periods to engage the entire class in an exchange; these were
coded as new prompts. The lesson ended after 64 min, at the end of the long arc.

27.5.3.2 Example 2: Ms. Navarra’s Improvised Arcs

Not all prompts initiating design arcs came from the teacher’s planned curriculum.
It was not unusual for a teacher to initiate a new arc with an improvised prompt,
based on an IMDD. These prompts are marked with a yellow circle, placed on the
improvised line on the map. As described above, within each instructional arc,
teachers make many IMDDs. An IMDD becomes a prompt, initiating a new arc
when it has a distinct mathematical objective. I considered an arc improvised when
there was evidence that it had occurred spontaneously, often in response to an event
that occurred during the previous episode. I also consulted the follow-up interview
transcript and the teacher’s CRL to determine whether a prompt had been
preplanned.

Ingrid Navarra’s lesson on decimals on 02.06.2012 illustrates an improvised arc,
along with inserted and adapted arcs (Fig. 27.2). Ms. Navarra, a 5th grade teacher
also using Investigations, taught a lesson drawn from Book 6, Session 1.3:
Decimals on the Number line. Like Ms. Nelson’s, her lesson map shows she began
the lesson with an inserted prompt. Ms. Navarra’s inserted prompt was in the form
of a review. She asked students to tell her some things they knew about decimals.

At 2:30 min, Ms. Navarra moved into Activity 2 in the teacher’s guide, called
Introducing Decimals on a Number Line. The teacher’s guide recommends drawing
a number line on the board that begins at 0 and ends at 2, and having students place

Fig. 27.1 Lesson map represents prompts and design arcs in Irma Nelson’s 12.05.2011 lesson

Fig. 27.2 Lesson map of Ingrid Navarra’s 02.06.2012 lesson
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the following numbers on it: 0.3, 0.5, 1.25, 1.8. Ms. Navarra drew a number line
that went from 0 to 1 and modified the numbers students were asked to place,
writing them as follows: 0.3, 0.5, 1.25, 0.05. She then pointed to the four numbers
and offered the prompt: “Who goes where?” I coded this prompt as adapted because
these modifications changed the objective of the task. In the follow-up interview,
when asked about the addition of 0.05 to the list of numbers, Ms. Navarra
explained, “They have a hard time with this book knowing the difference between
what 0.05 is and 0.5 or 0.2 and 0.02. So, I’m always trying to throw those in there.”

She initiated an improvised arc at 13:19 min. Students were working on the
activity in the lesson labeled Ordering Tenths and Hundredths. Using a set of
decimals cards, which included decimals to the hundredths place, the students were
to place the cards in order from smallest to largest. The guide also suggests the
teacher check students’ decimal ordering after they finish their work. Ms. Navarra,
following the mathematical objective of the activity in the text, which is “ordering
decimals and justifying their ordering through reasoning about decimals represen-
tations, equivalents, and relationships,” asked students to explain the strategy they
used to order the Decimal Card set. A student explained that his group counted by
5’s. At that point, Ms. Navarra initiated an improvised arc by asking how much
0.05 (pointed at the number) would be if it were money. As the excerpt below
illustrates, she pointed to several decimal numbers and asked students to give the
value in money.

Teacher: You counted by 5’s. All right, if this were money, how much would this
be?

Student: 5 cents.
Student: A nickel.
Teacher: How much would this be? [Points to other numbers on the overhead]
Student: 50 cents, a half dollar.
Student: 2 quarters.
Teacher: 2 quarters a half dollar, 50.
Student: Three quarters…
Student: One quarter.
Student: A dime.
Student: Uh, 90 cents.
Student: 9 dimes.
Teacher: Ok, now. It’s gonna get a little harder…

This improvised arc lasted approximately two minutes and was aimed at pushing
students to connect the value of decimal numbers to related amounts of money.
Typically, improvised arcs are initiated by what is happening in the enacted lesson.
In this case, the counting by 5’s strategy used by a group prompted her to be sure
they understood what those “5’s” represented. In the follow-up interview, Ms.
Navarra said: “This is a nickel versus two quarters. And I always take it back to
money, ‘cause they like money” (Follow-up Interview, Spring 2012).
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Ms. Navarra’s lesson map also includes one significant omission (open red
circle) in minute 45. I discuss omissions in the following section.

27.5.3.3 Example 3: Ms. Fiero’s Significant Omissions

I use Ms. Fiero’s lesson on multiplying 2-digit numbers by multiples of tens to
illustrate my identification of significant omissions. All five of the curriculum
programs in the study include more options than can possibly be used in a single
lesson. They also include tasks and suggestions that are designed to be optional,
allowing the teacher to tailor the curriculum to the particular students (Remillard
and Reinke 2012). It is my expectation that teachers will make adaptations to the
written curriculum based on their assessments of students’ need and their prefer-
ences. Thus, I anticipate that teachers will omit certain suggestions and I do not
attempt to capture all of them in the lesson maps. I do, however, identify omissions
that I assess to be fundamental to accomplishing the learning objectives of the
designed lesson plans.

Maya Fiero, a 4th grade teacher using Math in Focus, made what I consider
significant omissions during her 12.05.2011 lesson. One of the lesson objectives
listed in the teacher’s guide was for students to “Multiply by 2-digit numbers with
or without regrouping.” In the first part of the lesson students are introduced to the
multi-step approach to multiplying numbers by multiples of 10 based on the
associative property of multiplication, shown on the student page in Fig. 27.3.

The teaching notes that accompany this introductory page state:
Students learn to multiply by 2-digit numbers in the form of tens.

• Help students recall the strategy for multiplying a number by tens by working
through the examples in the Student Book.

• In the first example, express 10 as 1 ten. So 4 � 10 = 4 � 1 ten = 4 tens = 40.
• Using the strategy, work through the second example with students.
• First, express 20 as 2 tens. So 3 � 20 = 3 � 2 tens = 6 tens = 60.
• For students who cannot visualize multiplying by tens, use a place-value chart to

show the connection.

The teacher’s guide also suggests beginning the lesson with the following
5-minunte warm up:

• Have students work in pairs. Each partner takes turns giving and solving a
multiplication problem to multiply 1-digit numbers by tens and hundreds
mentally, for example, 6 � 100.

• Repeat with 2-digit numbers. Encourage students to identify the pattern.
• This activity helps recapitulate the previous lesson and provides a warm-up for

this lesson. (p. 86)

Ms. Fiero’s lesson map is shown in Fig. 27.4. The lesson began, as is typical for
Ms. Fiero, with a warm up drawn from another source, indicated with a red
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“inserted circle; this one involved practicing 2- by 1-digit multiplication. As a
result, she omitted the warm up, which involved students practicing multiplying
single-digit numbers by 10 and 100. This omission is marked with an open circle
because facility with multiplying numbers by 10 is anticipated in the introduction to
multiplying numbers by multiples of 10.

Before moving onto this introduction page of the lesson, Ms. Fiero guided
students through a review of the previous day’s multiplication work on 1- and 2-
digit multiplication. Because these activities involved material drawn from the
previous days’ lesson, I coded each prompt as adapted. At 25:52 min, Ms. Fiero
began the introduction shown in Fig. 27.4. They began with a short discussion of

Fig. 27.3 Curriculum guide excerpt from MATH IN FOCUS: The Singapore Approach.
Copyright © 2009 by Houghton Mifflin Harcourt Publishing Company. All rights reserved.
Reprinted by permission of Houghton Mifflin Harcourt Publishing Company

Fig. 27.4 Lesson map of May Fiero’s 12.05.2011 lesson
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title, objective, and key vocabulary listed on the first page of the student workbook.
With the next prompt, at 29:41, she moved the class to considering how to multiply
numbers by 10. The guidance in the teacher’s guide states: “Help students recall the
strategy for multiplying a number by tens by working through the examples in the
Student Book.” Rather than using the examples in the student book, Ms. Fiero,
reminded the students that they had multiplied numbers by 10 previously. She
wrote 81 � 10 on the white board to illustrate. For the next several minutes, the
students struggled to provide an answer. Even when she moved the class onto
working with the two examples on the page (Fig. 27.3), students had difficulty
recognizing that 4 � 10 was equivalent to 4 tens or 40. The teacher’s guide
included the following suggestion: “For students who cannot visualize multiplying
by tens, use a place-value chart to show the connection.” Even though the place
value charts were on the student page, Ms. Fiero did not refer students to these
models once. I marked this as another significant omission.

My review of the lesson description in the curriculum, in light of the difficulties
students were having multiplying numbers by 10, 20, or other multiples of 10,
suggests that the omissions described above left out critical steps of the designed
learning sequence. For this reason, I coded them as significant omissions.

It is important to note that identifying omissions of lessons closely tied to the
curriculum is easier than lessons that have little relationship to the curriculum. The
following example illustrates a lesson comprised fully of inserted arcs, from which
omissions are not indicated.

27.5.3.4 Example 4: Ms. Frankl’s Inserted Arcs

Meredith Frankl was a 5th grade teacher using the Math in Focus program.
Her CRL, which provides details of her planned lesson, indicates that she used the
mathematical topic of the lesson, the relationship between area and perimeter, to
guide the design of the lesson. As the lesson map (Fig. 27.5) indicates, the lesson
was comprised of 9 instructional design arcs, all inserted by the teacher. Although
the mathematical topic of the lesson overlapped with the lesson in the written
curriculum, the enacted lesson did not reflect the written curriculum in objective,
structure, tasks, or approach. For this reason, it was not possible to identify omitted
tasks.

Fig. 27.5 Lesson map of Meredith Frankl 03.15.2012 lesson
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Ms. Frankl’s lesson map illustrates that regardless of the role the written cur-
riculum plays in shaping it, the enacted lesson can be represented in terms of
mathematical episodes initiated by the teacher and through which the teacher must
steer the students. The coding system also allows researchers to represent the
relationship between these episodes and the written curriculum. In the following
section, I discuss some empirical possibilities and next steps based on this
approach.

27.6 Conclusion and Next Steps: Using Lesson Maps
to Examine the Enacted Curriculum and Factors
that Influence It

In addition to representing the contours of the enacted lesson, I see lesson maps as
analytical tools to examine the relationship between the written and enacted cur-
riculum, factors that influence this relationship including teacher and curriculum
capacity, and implications for lesson quality. I conclude by discussing some pos-
sible uses of lesson maps to pursue initial questions in this area.

27.6.1 Examining Patterns in Teachers’ Enacted
Curriculum

Lesson maps allow us to explore patterns and themes in an individual teacher’s
lesson and make comparisons to other teachers. Examining several maps of one
teacher’s lessons along side those of another allows us to explore possible patterns
and contrasts. I have found a great deal of internal consistency among each tea-
cher’s lesson maps, but have, thus far, observed little similarity between the maps
of different teachers using the same curriculum program (Remillard et al. 2015).
Lesson maps, and patterns across them, provide a starting place to probe individual
teachers’ design decisions more deeply. For instance, patterns in the placement of
inserted or adapted prompts, or significant omissions, can point to a teacher’s
interpretation and goals that merit further study. Further, particular types of arcs
might be associated with teachers’ steering moves during other lesson episodes. Ms.
Fiero’s decision to omit the warm-up (see Sect. 27.5.3.3) might be related to
difficulties students experienced later in the lesson and the IMDDs that followed.

Patterns in lesson maps across teachers can raise additional questions for further
analysis. For instance, Ms. Fiero was not the only teacher who began her lesson
with an inserted arc in the form of a warm-up task, omitting the initial task in the
written curriculum. This pattern is seen in all the maps in Sect. 27.5 and was noted
in many other maps in the data set. This tendency may reveal an important
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phenomenon in teachers’ design decisions that merits further exploration.
Understanding these decisions can provide insight into factors that influence the
quality of the enacted lessons.

27.6.2 Understanding in-the-Moment-Design Decisions

The lesson maps provide a skeletal representation of the lesson in terms of structure
and source, but offer limited detail about the interactions that take place within
instructional design arcs. Further analysis is needed to examine the interactions
within the arcs in order to understand how the enacted lesson unfolds, including
how teachers’ decisions during instruction influence this unfolding. I introduce the
term IMDD to refer to the decisions teachers make during these instructional epi-
sodes. More work is needed to understand IMDDs in context and their conse-
quences for the quality of the enacted lesson. I see promise in uncovering patterns
in the types of IMDDs teachers make and the factors that influence them, including
tracing possible influences that the teacher’s guide has on IMDD’s. I hypothesize
that a teachers’ ability to make high quality IMDDs is a critical component of
pedagogical design capacity (Brown 2009).
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Chapter 28
Building Bridges Between the Math
Education and the Engineering Education
Communities: A Dialogue Through
Modelling and Simulation

Ruth Rodriguez Gallegos

Abstract This chapter shows the importance of building communication bridges
between two apparently disconnected academic communities: the mathematicians’
and the engineers’. The starting point is an overview of an approach to teach
mathematics through modeling and simulation of real problems at a private uni-
versity in the northeast of Mexico that mainly focuses on the training of future
engineers. The need to build communication bridges between the mathematics and
the engineering education communities seems to be fundamental in order to rethink
mathematics education’s goals of being prepared to face the challenges posed by
today’s increasingly changing environment. The results and experience of mathe-
matics professors teaching engineering students show some of the advantages of
incorporating new ways of visualizing and understanding phenomena. Furthermore,
these new ways allow students to have a new vision of mathematics and a deeper
understanding of several math concepts.

Keywords Engineering � Mathematics � Modelling � Simulation
Holistic

28.1 Introduction

The objective of this chapter is to show the importance of building communication
bridges between two apparently disconnected academic communities: the mathe-
maticians’ and the engineers’. The main goal is to show the importance of intro-
ducing a new register of a concept in a mathematics course in order to improve the
students’ understanding and learning. This new register is the result of the inter-
action between mathematics education and engineering education. This idea sheds
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light on how to teach mathematics based on a specific engineering point of view
and context.

28.2 Literature Review

From an international perspective, studies such as the report of the Program for
International Student Assessment (PISA; OECD 2009) state the need to train people
in developing the skills of mathematical literacy to solve problems in the future.
PISA defines mathematical literacy as

the capacity to identify, to understand, and to engage in mathematics, and to make
well-founded judgments about the role that mathematics plays, as needed for an individ-
ual’s current and future private life, occupational life, social life with peers and relatives,
and this individual’s life as a constructive, concerned, and reflective citizen. (p. 17)

This idea of applying mathematics in the context of the students leads us to visit
the theme of teaching and learning of mathematics, which has been treated for more
than 40 years by the mathematics education community, mainly from the per-
spective of modeling (Blum et al. 2007) and simulation of real phenomena.
A particular example of this is a study that focused on the training of future
engineers (Rodríguez 2015) and even using technology (Rodríguez and Quiroz
2015) at a private university in the northeast of Mexico. Previous studies (such as
Rodríguez 2015; Rodríguez and Quiroz 2015) allow us to highlight the richness of a
work where students can improve their understanding of the mathematical notions
learned in class when faced with the idea that they can describe several phenomena.

In Sect. 28.1.2, we show some theoretical background on the teaching and
learning of mathematics through an overview of modeling.

28.2.1 The Field of Engineering Education

In the context of engineering education, studies (Bourn and Neal 2008) focusing on
a very specific population of future engineers have asserted the prevailing need that
an individual’s basic education should develop generic skills to complement and
reinforce disciplinary skills. The generic skills (Bourn and Neal 2008, p. 12) listed
below aim to develop the global dimension in shaping the future engineer and stress
the need and importance of these skills in several areas different from mathematics.

Generic skills

1. Holistic thinking, critical enquiry, and analysis and reflection
2. Active learning and practical application
3. Self-awareness and empathy
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4. Strong communication and listening skills

Its first place in the list shows the importance of developing students’ holistic
thinking, as they will also play a vital role as engineers and citizens of the 21st
century. The authors suggest that the key to understand global skills is to recog-
nize the complex nature of the world we live in and that the future is uncertain and
there is not necessarily a series of easily identified solutions.

Hence, the need to develop holistic thinking as an important skill for students
and future citizens of the 21st century is made explicit.

Zeroing in on these assertions has led us to rethink the teaching of mathematics.
Unlike traditional methods that have a prescribed order of contents and structure,
developing competences for the 21st century entails introducing complexity,
changes, uncertainty, interconnectedness, multiple meanings, and interpretations in
an unstructured universe. We believe that holistic thinking can contribute to
enriching the modeling-based teaching of mathematics to meet the unknown needs
of the 21st century. Bourn and Neal (2008) state that holistic thinking “requires
understanding not only the complexities within the engineering systems but also the
relationship between engineering systems and their context” (p. 8). Previously,
Jowitt (2004; cited in Bourn and Neal 2008) stated that “a more holistic/systems
view of the world is now required—one in which engineers need to be more fully
aware of the economic, social and environmental dimensions of their activities and
more skilled in meeting their objectives (p. 8).”

In essence, systems thinking is the ability to see a problem or situation holis-
tically from multiple perspectives and understand the relationships, interconnec-
tions, and complexities between the different parts that make up the whole
(Meadows 2008).

Based on the request to train students of basic education in this area, we decided
to explore the importance of developing holistic thinking in future engineers. Since
holistic thinking is also related to systems thinking (ST), our proposal is to think
how ST skills can be included in math education. Bourn and Neal (2008) report the
work done by Senge (2006) in this regard—learning about organizations from a
business approach—and it became the trigger to show the advantages and benefits
of incorporating systems thinking in a math class. Therefore, we want to emphasize
that the idea of introducing ST in a math course is not new, but it has been studied
little in recent research, at least in the math education community. In this section,
we want to revisit some important works in this direction.

Several authors (Bourguet and Pérez 2003; Bourguet 2005; Fisher 2001, 2011a,
b; Caron 2014) in the literature consider that introducing concepts of system
dynamics (SD) is very natural in mathematics. SD models explore possible futures
and ask “what if” questions. SD is a specific technique of ST where the use of
simulators such as iThink or STELLA helps to show a representation of the model
and operate with it. Bourguet and Pérez (2003) establish in their work that the SD
models and differential equations are two effective representations to express the
changes of things over time. SD uses symbolic and graphical representations as
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well as computer simulation models to represent and understand the dynamics of a
situation (Table 28.1).

Some reflections made from a particular theoretical perspective are presented to
undertake more comprehensive studies in engineering education for the 21st cen-
tury. It is our belief that math colleagues could require several generic skills to
expand their vision of the first approach to modeling and simulation of complex
phenomena as well as those of a social nature (Rodríguez 2015; Rodríguez and
Bourguet 2014).

28.2.2 Teaching and Learning in Math Education:
A Differential Equations Course

All over the world, and specifically in Mexican universities, the teaching of dif-
ferential equations (DE) predominantly focuses on analytical methods rather than
on qualitative and numerical methods. In spite of the wealth of knowledge of both
approaches in the teaching of DE (Artigue 1995; Arslan et al. 2004), this and other

Table 28.1 A language of systems thinking in mathematics courses (based on Fisher 2001,
2011a)

Concept Mathematical form Vensim form Vensim
button

Stock
This represents the main amount
that is to be accumulated. The
values increase or decrease over
time, and this shows the way
things are

Current amount = A(t)
(This is an unknown
or dependent variable;
time or t is usually the
independent variable)

Flow
This represents actions or
activities that cause the stock
value to increase or decline over
time

Flow = dA
dt

(This is a rate of
change or derivative)

Arrow/connector
This serves as an information or
action wire showing the relations
between the unknown (variable A
(t)) and its derivative(s)

(These are the
assumptions or
hypotheses that we
make or the physical
laws that govern the
phenomenon.)

Variable/converter
This is used to represent
additional and important logic to
the model. (It is often a modifier
for the flow.)

(This is a parameter of
the equation, usually
called k)
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developments have been evidenced in the community of mathematics education for
over 20 years (Blanchard 1994; Blanchard et al. 2006).

In contrast, some changes have been reported in daily classroom activities.
While successful innovative proposals for teaching DE (especially internationally)
have been documented over the past few years (Blanchard 1994; Kallaher 1999;
Blanchard et al. 2006; Nathan and Klingbeil 2014) and some other research on the
subject has been published, few changes can be observed in classrooms and aca-
demic programs at various universities nationwide, particularly in the area of
engineering.

This proposal aims to acknowledge the importance of the changes in three
registers (algebraic, numeric, and graphic: “rule of three”; Douady 1986; Janvier
1987; Duval 1988, 1995; Artigue 1992; Fisher 1997, 2001, 2011a, b), the modeling
approach (Blum et al. 2007; Rodríguez 2015), and the effective use of technology in
the teaching/learning process of DE (Rodríguez and Quiroz 2015). We also
incorporate a fourth register, the verbal (word problems: “rule of four”; Fisher
1997), and in the last years, we have recognized the importance of dealing with
“reality” through physical experiments (such as building an electric circuit;
Rodríguez 2015) and the effective use of technology in the teaching/learning pro-
cess of DE (Rodríguez and Quiroz 2015) or a simulated “reality” through the use of
simulators. In this study, we propose the necessity of integrating a new register (the
fifth? “rule of five”? Senge 2006; Fisher 1997, 2001; Caron 2014) to work in a math
course. We consider that the introduction of the fifth register in a DE course could
help to promote another kind of perspective and way of regarding the problems and
contexts studied in this course. In the next section, we want to further explain this
specific technique from the system dynamics viewpoint. It is our hope to shed some
light on the wealth of integrating the two seemingly separate disciplines, systems
thinking and mathematics.

Figure 28.1 illustrates different ways in which technology allows “bringing
reality” into the classroom in several ways:

a. Experimenting with physics and using sensors to “see” what happens to the
magnitudes under study. Some of the sensors are portable technology. Texas
Instruments calculators; voltage sensors; and temperature, motion, and various
graphical interfaces are also used (Rodríguez and Quiroz 2015; Rodríguez 2015;
Quezada-Espinoza and Zavala 2014; Wang et al. 2014).

b. Understanding the phenomenon through remote labs (e-labs), where a real
phenomenon may occur. Students manipulate and study at a distance (Ramírez
and Macías 2013).

c. Studying a phenomenon that is videotaped and studied through video analysis
software such as Tracker (Olmos 2012).

d. Simulation of an experiment that failed when conducted in the classroom is
possible as the University of Colorado (United States) proposed in PhET
(Quezada-Espinoza et al. 2015; Rehn et al. 2013).

e. Building simulations with open/free simulators. At a slightly more advanced
level, students are invited to build simulations using Vensim (Rodríguez and
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Bourguet 2014) and/or more sophisticated and specific software such as
MatLab/Simulink (Smith and Campbell 2011) for the particular case of control
theory.

28.2.2.1 Some Theoretical Background About Representations
in Math Education

This section is devoted to the analysis of a theoretical framework regarding
researchers in didactics of mathematics on the idea of representations.

Let us analyze a theoretical framework related to researchers in didactics of
mathematics on the idea of representations. In 1987, Janvier presents the impor-
tance of the processes of conversion between representations. Duval (1988, 1995)
independently emphasizes the importance of articulating representational registers
and the importance of analyzing representations by identifying visual variables (for
example, in a graphical representation of a function) that allow them to be linked to
significant symbolic units. Duval (1995) provides an approach in the learning of
mathematics by studying cognitive problems in depth when performing the pro-
cesses of conversion between representations. Table 28.2 is a concrete example
about the DE notion as explained by Rodríguez (2015).

In Douady’s (1986) previous work, used by Artigue (1995) to discuss a problem
in differential equations, she proposes the use of frames of representation, allud-
ing to the importance of a student being able to transit, convert, and recognize a

Fig. 28.1 Different uses of technology to portray “reality”
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mathematical concept in its different classical representations as an object (nu-
merical, graphical, and algebraic; “rule of three”; Fisher 1997; also verbal repre-
sentation). In this work, Artigue basically explains how the graphic and qualitative
records are left aside for a long time due to the increasing use of technology in the
classroom, which puts the qualitative analysis at stake even though it is a funda-
mental part of the solution in a DE course. It is precisely at that point that we
concluded that a fourth valuable representation is not only the verbal (word
problem), but the real one in the sense that the student recognizes the real context
that the DE models or simulates (Rodríguez 2015; the so-called “real” represen-
tation or simulated using an experiment). Finally, the purpose is to investigate
whether a fifth representation—diagrams of stocks and flows using SD modeling—
would help students make better sense of it considering that they are learning how
to model real phenomena for the first time.

For this chapter, and in the following sections, we want to show a specific
development of an educational research study about ways to improve the teaching
of mathematics using modeling and simulations built by the students themselves
(Item e in the list above). In particular, this is exemplified by the introduction of
holistic and/or systemic thinking in the training of sophomore students of engi-
neering in a specific course on differential equations. Through the introduction of a
new language and vision of the phenomena, qualitative studies can give feedback
that allows the introduction of a new vision, a new approach, and a new language
for modeling (Fisher 2011a, b). The goal is then to study how the introduction of a
new representation in a math course (DE course) in a university in Mexico helps the
students better understand the topic.

28.3 The Research Question

Our major interest in our previous project was to explore and identify the most
important uses of the mathematical objects engineers frequently utilize. This study
is part of a bigger project whose purpose is to give some examples of the use of

Table 28.2 Different representations of a DE notion in an electrical context

Graphical
representation

Numerical
representation

Analytical
representation

Word problem (verbal
representation) or physical
representation

DE:
R dq

dt þ 1
C qðtÞ ¼ EðtÞ;

qð0Þ ¼ qo
Solution of the DE:
qðtÞ ¼ E

C 1� e
t

RC
� �
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mathematics in other specialty subjects. In this case, for this chapter, we focus our
attention on a specific kind of engineering. In Rodríguez and Bourguet (2014), we
presented and justified our interest in a particular community of industrial engi-
neering students with a minor in systems engineering, focusing in particular on the
uses and meaning related to the DE math object. Considering the above, we
identified some useful information on how math professors can obtain some
important ideas of the DS approach (see Rodríguez and Bourguet 2014) to promote
generic skills in addition to the mathematical ones to better educate the new global
engineer of the 21st century, in particular, those skills related to the importance of
holistic thinking.

I decided that some important DS ideas would be designed and implemented in a
DE course. Based on Fisher’s work (1997, 2001, 2011a, b) and on interaction with
an expert in system engineering who teaches a system dynamics course, the series
of activities devised and used is shown in Sect. 28.4.1. Finally, the research
question for this chapter is:

How does the introduction of DS-based activities using a new representation in a DE course
affect our students, the future engineers?

The answer to this question will be the result of describing the methodology used
when introducing a new fifth representation. This representation helped the students
better understand the DE notion as an object or as a model of different situations
and contexts.

28.4 Methodological Approach

The methodology for this exploratory and descriptive study was mainly a quali-
tative analysis (Creswell 2013) that had the purpose of leading us to have a more
comprehensive outlook on the importance of how the student received this new
representation.

It is very important to highlight that the design of the activities was the result of
two years of collegiate work between a math professor and an industrial engi-
neering professor. During this time, we had two-hour weekly meetings (32 weeks
per year, 64 total) to discuss the elements in common between both disciplines.
Each professor analyzed the course, the textbooks, the technology used, and their
counterpart’s evaluation. (Both professors attended each other’s 16-week course).
Finally, each professor established the advantages and disadvantages of each oth-
er’s approach. This work was the basis to establish two phases. Specifically, the
design phase (Phase 1), which inspired this study, was fully documented in
Rodríguez and Bourguet (2014).

The methodological part of this study was divided into two phases, as follows:

Phase 1: The qualitative analysis from October 2013 to January 2014. We
designed a series of two activities to be implemented in two sessions of
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1.5 h each. We presented four exercises (see Sects. 28.4.2.1–28.4.2.4),
with the last one (28.4.2.4) was specially built and analyzed by the
students themselves. We focused on the part of using software to build a
new representation of the exercise proposed, what the students’
perception of this new language was, and how students would solve
real problems in the DE course. This last exercise represented a kind of a
real problem that is not usually studied in a traditional DE course,
because the context is more on the social side, related to an ecological
issue. The kind of DE proposed was not easy to solve by hand; thus, the
use of specific technology was important and so was the mathematical
difficulty of the DE, which was emphasized since one of the models was
a non-linear DE.

Phase 2: The qualitative analysis from November to December 2014. We decided
to use the results of an institutional survey related to three specific
indicators to know more about the student’s perceptions regarding this
kind of modelling in a DE course (including the use of software to
introduce and use a new representation of a DE).

In this chapter, we analyze the design of the activity eventually implemented and
the results of the students’ perceptions about the introduction of a new represen-
tation (issued from a system dynamics approach) in a math/DE course.

28.4.1 Sample

A total of 123 students completed an activity (during two sessions) and subse-
quently answered a survey at the end of the course. These students belonged to 24
different engineering majors. Of the four analyzed groups, two were honors courses.
An honors course has a maximum number of 25 students. These students have a
grade point average of between 90 and 100 points, and they speak at least one
foreign language (usually English). Overall, the academic profile of these students
is higher from the rest.

28.4.2 The Design Process: Instruments for Phase 1

28.4.2.1 Test Over the 2014 Fall Term: Session 1, Part A. Total Time:
90 Min; Time for Part A: 45 Min

During the first 45 min of the session, the Vensim software and the philosophies of
systemic thinking and system dynamics were introduced. During this time, a
mathematical model previously developed in class (Week 5) involving the filling of
a water tank was discussed. How to model the system of a water tank being filled
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and emptied as a function of its incoming and outgoing flows of water was shown
(see Fig. 28.2). This was interesting for the students because of the use of software
and was a way to help the students become familiar with the graphic language used
by Vensim.

28.4.2.2 Session 1, Part B. Total Time: 90 Min; Time for Part B:
45 Min. Week 14 of 16

In the second part of the session, during the last 45 min, the students were asked to
observe the software for a second time so that they could adapt it to the studied
situation in class. They first studied the system of two tanks, but then salt was added
to the incoming flow. At the time, what we were concerned about was the variable
amount of salt in the tank S(t). Figure 28.3 shows an example of a tank of water
mixed with salt.

28.4.2.3 Session 2, Part C. Total Time: 90 Min; Time for Part C:
45 Min

The philosophy of system dynamics was presented again in a new problem during
the first 45 min of the session. Over that time, a mathematical model previously
developed in class (Week 3) involving the infection of a virus was discussed (see
Fig. 28.4).

LoW(t) = Level of water
IroW = Inflow rate of water
OroW = Outflow rate of 
water

0)0(; VtVRR
dt
dV

oi ==−=

Fig. 28.2 Example 1 of Vensim diagram

dS
dt
dS
dt
dS
dt
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Fig. 28.3 Example 3 of a diagram in Vensim for a tank with water mixed with salt
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28.4.2.4 Session 2, Part D. Total Time: 90 Min; Time for Part D:
45 Min

Later on, the students were asked to solve another problem that was designed based
on Blanchard et al. (2006, p. 18, exercise 15 and 16, see Fig. 28.5) but rewritten in
the case format.

Question d was included in the problem, and it was the professors’ decision to
address it since it was not originally posed in the problem. During the 2014 Fall
Term, the statement of this exercise was modified to introduce it as a case study.
The way it was written changed it considerably, giving the student the freedom to
make decisions according to the situation described. This time, the problem led the
students to think of a scenario in which they had to make a decision based on three
possible ways of fishing. They also had to support their answers based on the
simulator according to the statement of the problem in the book (see Fig. 28.6).

It is important to emphasize that the 3 ODE are not linear, hence the difficulty in
obtaining the analytical solution for the analytical methods. Thus, the use of the
simulator Vensim was well suited to solve this case and to allow each team of
students take a position on the last question asked:

Fig. 28.4 Example of a diagram in Vensim (stock and flow diagram) and graphical representation

15. Suppose a species of fish in a particular lake has a population that is modeled by the logistic 
population model, with a growth rate k, carrying capacity N, and time t measured in years. Adjust 
the model to account for each of the following situations.
a) 100 fish are harvested each year.
b) One third of the fish population is harvested annually.
c) The number of fish harvested each year is proportional to the square root of the number of fish in 
the lake.
(From Exercise 16). Suppose that the growth rate parameter is k = 0.3 and the carrying capacity is N
= 2,500 in the logistic population model of Exercise 15. Suppose P(0) = 2,500.
d) Which situation, a, b, or c, is the most threatening to the environment? Support your answer. 

Fig. 28.5 Exercise 15 and 16 in Blanchard et al. (2006, p. 18)
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Which situation, a, b, or c, is the most threatening to the environment? Support your answer

In the next section, we show a student’s analytical response obtained using the
simulation software Vensim.

28.4.2.5 Findings: A Student’s Abridged Analytical Response
in Phase 1

It is important to note that this answer was finally obtained with the simulator by the
students themselves during their experience. We may notice that Option a causes
greater damage to the environment while the other two remain constant.
Furthermore, Option b is less harmful than c.

In the rest of this section, we want to reflect about the comments and decisions
made by the students in studying this case in a differential equations course. In both
groups, the students concluded that Option b was less harmful.

However, the focus in this paper is on the richness of the discussion among the
students in each team after analyzing the question and making their decision using
the results shown by the simulator.

For example, over the class discussion, we aimed at having the fishing company
behave in a responsible manner. From the financial point of view, the company would
make greater profit by catching more fish. However, if they wanted the company to
behave in an environmentally friendly manner, Option b was the right one. Finally,
many students agreed on an “intermediate” option, Option c. Another important matter
discussedwaswhether to seekmorebenefit ormore stability in the short tomedium term
(8 years) or in the long term. (It is worthwhile noticing how the time domain was
simulated over a period of 100 years). Something interesting to note was that in one
group, a couple of teams proposed alternative solutions of the first 3 proposals.
A student proposed that instead of catching 100 fish per year to consider 150 (a variant
of b). Prior to this proposal, they had to modify the value of the parameters using
Vensim, an issue that we wanted to promote in using this software in this case.

Fig. 28.6 Example of the student representation for the case proposed
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In the second part of Session 2, the logistic model was presented from the view
of system dynamics. The answers of 21 students were analyzed and are presented in
Fig. 28.7.

The problem presented was not an easy task to solve in class. This caused the
different teams to rethink their answers, and, although the problem seemed easy, it
was not possible to give a unique answer. Furthermore, the students had difficulties
in establishing a conclusion without the help of the software. We had assumed that
incorporating a systemic viewpoint in order to understand the complete setting of
the problem would be helpful. Some matters of social, ethical, and sustainable
development interest appeared within the arguments the students gave to the
problem. This kind of modeling practice observed in most of the cases of engi-
neering fields is seldom addressed in a traditional math class.

To conclude this part, we would like to comment that the qualitative results
obtained in the answers for the activity/case led us to think that it is advisable to
include software such as Vensim in the DE course. This allows a new represen-
tation of the DE object to be given from the system dynamics viewpoint.

Regarding our research question, we have established that the most relevant
aspects of introducing the systems perspective in a math course (or DE course) and
using this software are related to the students’ learning of how to make adjustments
in the parameters of the DE, understanding behaviors and setting relationships
between variables in the equation, and understanding the meaning of the numerical
and graphical solutions of a DE: All of these are beyond the analytical methods and
solutions. We consider that this evidence observed in the answers of the students in
this exercise gave us some useful information to show the richness of introducing a
systemic approach in the teaching of a mathematics course such as the DE course.

Fig. 28.7 Students’ answers to the exercise
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28.4.3 Phase 2: Qualitative Analysis (2 Semesters:
Fall 2014)

In this last phase, we analyze some results of an institutional survey from a
descriptive, statistical point of view.

28.4.3.1 About the Student Opinion Survey

We focused our attention on four questions. Since the Likert scale is used insti-
tutionally, it was decided that this survey would use the same scale. We considered
that these questions could help us have a general idea of how the new exercises in a
math class using simulation with systems thinking viewpoint would allow the
student to have better understanding of how mathematics is relevant in real and
work life.

Question TR: Theory and Reality (TR). “The professor implemented learning
activities that allowed students to understand the relationship of the content of the
course with reality.” It is important to emphasize that the indicator theory and
reality is usually lower for math classes, especially because of the traditional and
near-sighted perspective that stops students from realizing the importance of math
and its applications in their everyday life. It is also worthwhile noticing that this
question is related to Generic Skill 2, active learning and practical application.

Question CC: Comprehension of Concepts (CC). “The professor facilitated the
understanding of the content through clear explanations.” It is mentioned in the
mathematical section of this paper that the introduction of the systems perspective
and the use of a simulator such as Vensim is to allow the students to have another
representation (the fifth representation: stock-and-flow diagrams) of the DE for
them to have better understanding of this math concept.

Question RDL: Research Documents in Library (RDL). “The professor pro-
moted the use of the query library materials (books, magazines, digital library, and
databases) to support learning activities.” This question is about how to deal with
complex problems, beyond those traditionally seen in a math class; therefore, there
is the need to search information in other sources in addition to the one found in the
textbook of the math class.

Question IC: Intellectual Challenge (IC). “The professor always demanded your
best while maintaining a high intellectual challenge to favor your learning.” This
question refers to how to deal with complex problems beyond those traditionally
seen in a math class. We also included space for the students to express a general
opinion about the professor’s overall performance during the semester. We called
this indicator GOP, General Opinion about the Professor (GOP). We considered it a
signal of the complete design of the differential equations course. It is very
important to remember that this course is based on active learning and modeling
and simulation practices.
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We compared two different honors groups and in Fall 2013, this group (F13H,
see Fig. 28.8) did not consider an SD modelling approach including the new
representation.

Figure 28.8 shows charts of the 2013 and 2014 fall semesters.
Figure 28.8 shows that there are three important differences concerning the

introduction of systems thinking in the four analyzed indicators in these two years:

(a) The CC indicator decreases from 1.44 to 1.18 (−0.26 points).
(b) The TR indicator decreases from 1.25 to 1.06 (−0.19 points).
(c) The IC indicator decreases from 1.24 to 1.06 (−0.18 points).
(d) The RDL indicator decreases from 1.18 to 1.06 (−0.12 points).

28.4.3.2 Findings: A Brief Analysis of Students’ Responses in Phase 2

As a result of the changes implemented in the course, we can conclude that students
perceived that the professor facilitated the understanding of the content through
clear explanations (CC indicator). We could infer that the design and incorporation
of these activities in the DE course helped to better understand what a DE is by
studying the different representations of this object (analytical, numerical, graphi-
cal, stocks and flows diagrams, and real situation). The students acknowledged the
importance of the DE object since it was helpful to model other real situations (like
social/ecological issues, shown in the TR indicator) in addition to those related to
physical phenomena (traditionally studied in a math course). The students also
highlighted the use of the intellectual challenge (IC indicator) that the course
imposed for the activities carried out (including this one) as well as the necessity to
search for additional materials different from the textbooks (RDL indicator).

With respect to our research question, we consider that the results of this
institutional survey allowed us to give elements that visualize the effects of intro-
ducing SD activities such as those shown in Sect. 28.3.2. We consider it important
to comment that in the institution where the activity was developed, the TR and CC
indicators are difficult to improve since mathematics traditionally has little relation
to real problems. We believe that an approach like the one shown above could help

Fig. 28.8 Student sample and results in fall 2013 and 2014 (Honors)
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the students make sense of the math concepts by linking them with real contexts,
especially one that interests them such as concern for the environment.

28.5 Conclusions

The intention of the chapter arises from the idea of improving the teaching and
learning of mathematics at all educational levels by incorporating basic ideas from
an engineering field. The first part showed our interest in improving the under-
standing the future engineers have of a math concept. As an example, we identified
that the differential equation tool is of great value for professionals at all levels in
many disciplines. We identified the uses of differential equations that industrial
engineers with a minor in systems engineering use in a specific course: systems
dynamics. We also mentioned that the math professors could obtain some important
ideas of the SD approach to promote generic skills such as holistic thinking/systems
thinking, active learning, and practical application. We think that these ideas can be
obtained from engineering tools from other discipline areas. Based on the results
obtained in the methodological part with the students’ surveys, we observed that
they perceived that the introduction of a new representation such as that offered by
SD modeling in terms of a dynamic programming with stocks-flows allowed the
students to better understand the notion of DE. This new representation helped
students to give another meaning to the components involved in a specific context
and their connections, but above all, we found that the richness of having this new
way of representing a DE could give students a control tool to use to model more
complex problems in addition to the numerical methods already available. Hence,
we consider that future studies in this direction would be valuable.
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Chapter 29
Constructing Dynamic Geometry: Insights
from a Study of Teaching Practices
in English Schools

Kenneth Ruthven

Abstract Any technology retains a degree of fluidity in its conception, shaped not
just by its designers but by its subsequent users. This chapter applies this per-
spective to one form of software which has attracted particular attention in math-
ematics teaching: dynamic geometry. Drawing on a study conducted in
professionally well-regarded mathematics departments in English secondary
schools, the chapter sketches the wider curricular context, provides an overview of
each of three contrasting cases of teaching practices making use of dynamic
geometry, and presents cross-cutting themes through which these contrasts can be
characterised. Critical variables include the degree to which teachers see student use
of the software as promoting mathematically-disciplined interaction, analysis of
apparent mathematical anomalies as supporting learning, and dragging as a means
of focusing attention on continuous variation. The chapter concludes by discussing
how teaching practices might productively be developed, and how such develop-
ment might be supported by further research.

Keywords Case study � Dynamic geometry � School mathematics
Teaching practices � Technology integration

29.1 Overview

In recent years, dynamic geometry has attracted attention in mathematics education.
However, like any mathematical software, it leaves the user considerable scope to
interpret how it might serve as a curricular and pedagogical resource. After
sketching the wider context, this chapter outlines three illustrative cases of teaching
practices featuring use of dynamic geometry in lower-secondary mathematics les-
sons in English schools (drawn from Ruthven et al. 2008). Initially, the focus is on
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the way in which the teacher within each case characterises their teaching practice
and offers a supporting rationale for it. Next, taking a researcher perspective
informed by relevant literatures, these cases are compared in terms of cross-cutting
themes intended to capture commonalities and contrasts between them. The chapter
concludes by discussing how teaching practices might productively be developed
further, and how such development might be supported.

29.2 The Evolving Design of Dynamic Geometry
and Framing of Its Use

In the field of social studies of technology, the idea of ‘interpretative flexibility’
(Kline and Pinch 1999) acknowledges that conception of a technology remains fluid
beyond the initial stage of the design of a product, continuing into the subsequent
stage in which it is taken up by users. The ways in which a technology is employed
become aligned with user concerns and adapted to the situations in which use takes
place. This opens the way to variation in modalities of use between different user
groups and between different settings for use, and to change in these modalities
over time. Similarly, in research on the diffusion of educational resources, it has
come to be recognised that teachers act as interpreters and mediators of curriculum
materials (Remillard 2005). Teachers typically select from and adapt curriculum
materials, and they necessarily incorporate these materials into wider systems of
classroom practice (Ball and Cohen 1996). Both these traditions, then, highlight the
scope for interpretation of an innovative resource such as dynamic geometry

Two particular packages served to define the new class of software which came
to be known as ‘dynamic geometry’. Geometer’s Sketchpad was originally con-
ceived simply as a program “to draw accurate, static figures from Euclidean
geometry” (Goldenberg et al. 2008, p. 58). In the course of its development,
however, the idea of creating a dynamic—rather than static—figure was borrowed
from contemporary drawing software, so that points and segments of a figure could
be dragged while preserving the properties defining it. Inspired by earlier software
for visualizing discrete graphs, dragging was designed into Cabri Geometry from
the start, although views on its significance differed considerably (Laborde and
Laborde 2008). Relatively rapidly, however, dragging became accepted as the key
defining feature of dynamic geometry software.

Although dynamic geometry systems were developed with educational purposes
in view, neither Cabri nor Sketchpad was initially devised with a particular peda-
gogical approach in mind (Goldenberg et al. 2008). However, pioneering work by
mathematics educators associated dynamic geometry with a pedagogical orientation
in which such software served “to create experimental environments where col-
laborative learning and student exploration are encouraged” (Chazan and
Yerushalmy 1995, p. 8). Nevertheless, a substantial national survey conducted in
the United States (Becker et al. 1999) conveyed a rather different picture. Although
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Sketchpad was chosen by more than one in five high school mathematics teachers
who nominated a ‘most valuable’ software title, further evidence indicated an
association between teachers nominating Sketchpad and reporting
skill-development as their main objective for computer use (p. 46). This suggests,
then, that modes of use of dynamic geometry in mainstream classrooms may differ
markedly from the exploratory orientation advocated by many proponents.

Much of the pioneering development of dynamic geometry systems took place in
countries—notably France and the United States—which have retained a more
strongly Euclidean spirit within their school geometry curriculum (Hoyles et al.
2001). This Euclidean lineage of dynamic geometry might be expected to fit poorly
with a national curriculum which refers—as did the English one framing the
practice to be studied here—not to Geometry but to Shape, Space and Measures.
However, the scope to employ the software as a means of supporting observation
and measurement resonates with a longstanding orientation of English school
mathematics. In her comparative ethnography, Kaiser (2002) noted the predomi-
nance in English mathematics classrooms of example-based checking as a means of
validating results, not just employed by students, but also encouraged by their
teachers. Exemplifying this trend, she cites a lesson in which one of the ‘circle
theorems’ was established by the teacher setting each student to draw and measure
three diagrams to test the result, and then arguing for its acceptance on the strength
of these accumulated checks.

At the time of the study to be discussed, some use of dynamic geometry at
lower-secondary level had been given official endorsement and more detailed
expression in a government-sponsored elaboration of the English national cur-
riculum (Department for Education and Employment 2001). The emphasis of many
of the illustrations was on empirical exploration, but some examples presented
observation of a dynamic figure as a precursor to proving with static diagrams.
While this official guidance explicitly recognised the knowledge required to use
classical manual tools for the construction and measurement of geometric figures, it
overlooked equivalent aspects of using dynamic software. For instance, while the
knowledge required to make use of a protractor to measure angles by hand was
carefully specified, no attention was given to the distinctive knowledge required to
measure angles with dynamic software.

29.3 Study Design

The objective of this study was to understand what mathematics teachers at
lower-secondary level in England regarded as successful use of dynamic geometry.
To address this objective, a multiple case-study design was chosen, employing
methods which aimed at characterising teachers’ thinking and practice, first in their
own terms, and then in terms of broader constructs informed by the research lit-
erature. The cases which I discuss here were identified through a process intended
to elicit professionally well-regarded practice in using digital tools in mathematics
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teaching. Relatively few schools nominated on this basis reported making use of
dynamic geometry: cases were then chosen for further study so as to capture the
range of approaches reported and to follow up teachers who had been particularly
informative. Data portfolios for each case were assembled through a procedure
involving classroom observation followed up by teacher interview, including the
copying of associated curricular resources. These portfolios were analysed the-
matically in two stages. The first stage of analysis was within-case, adopting an
emic approach intended to capture and distil into a case narrative the terms in which
the teacher responsible characterised and explained the case and offered a sup-
porting rationale for it. The second stage was cross-case, adopting an etic approach,
taking a researcher perspective informed by relevant literature, and aimed at
identifying important commonalities and contrasts across cases. Full details of the
design of the study and methods employed can be found in the original report
(Ruthven et al. 2008). Equally, the individual case narratives and the cross-case
analysis are reported there in full.

29.4 Case Outlines

These case outlines (adapted from Ruthven et al. 2008; Ruthven 2012) summarise
each case in terms of the main emic themes identified in the analysis (as indicated
by the titles of subsections). They characterise the practice associated with each
case as elaborated by the teacher responsible. Each case is summarised in terms of
four main themes, encapsulated in the subsection titles and then expressed in the
teacher’s own words.

29.4.1 Case N

This example, focusing on angle properties in the circle (see Fig. 29.1), was
nominated in these terms by the teacher concerned:

The one that I do like to do is the one with the circle theorem that says the angle at the
centre is twice the angle at the circumference, because that covers the same theorem as the
angles in the same segment, and the angle at the semi-circle is 90 degrees, and you can
cover a lot of different circle theorems by doing that one demonstration. And the students
find it very, very difficult to believe if they don’t see it on the computer… And yet when
you’re dragging it round this circle using Cabri… it just gets that they start to believe a lot
more and they are more convinced of its truth.

A corresponding 40-minute lesson started with 25 minutes of activity led by the
teacher, during which he constructed and manipulated a dynamic figure, projected
from his computer onto an ordinary whiteboard. This was followed by individual
student activity on a (pencil and paper) textbook exercise.
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29.4.1.1 Maintaining Students’ Attention and Lesson Progression
Through Dynamic Presentation and Tactical Questioning

The teacher valued dynamic geometry presentation for holding the attention of
students:

I think that holds their attention more. The fact that they can see that you can pick up and
drag these shapes around, and then the angles change as well automatically, so all the
numbers are changing… That sort of movement, that dynamism, helps to keep their
attention.

He used tactical questioning of carefully chosen students with a view to sup-
porting the progression of the whole-class segment of the lesson towards a target
result:

[I] pick on students that I think may have a problem with it… If students that I think are
going to have a problem with it understand it, then I can be fairly confident that the others
understand it as well… If [I] ask a student a question and they don’t know the answer, I
won’t give up on them, I’ll carry on asking or trying to get the correct response out of
them… Not only is it benefiting the student you’ve asked, everybody else is trying to come
to the correct solution as well. And so I do that to help reinforce what’s being presented.

29.4.1.2 Making Properties Apprehensible and Convincing
to Students Through Purposive Dragging

The teacher saw purposive dragging of the figure as a powerful means through
which he could make properties—such as the unchanging measure of the angle at
the circumference—apprehensible and convincing to students:

If you do it on the board and you drag the thing round, then they tend to be much more
convinced by what they see. So, I think the technology helps because they can actually see
it getting dragged round, they see the angle doesn’t change and they are much more
convinced.

Fig. 29.1 Figure used in
Case N lesson
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To make underlying relationships between changing measures—such as
between the angle at the circumference and the angle at the centre—discernible by
students, the teacher led a process of dragging the figure to generate pairs of values
from which students themselves could identify the target pattern:

Trying to get across the point that the angle at the centre is twice the angle at the outside…
Because the angle automatically changes as you drag the point round, you can write up
pairs of values, [and] the students can deduce that themselves… So the technology helps a
great deal in that respect because you’re not just telling them a fact, you’re allowing them to
sort of deduce it and interact with what’s going on.

29.4.1.3 Making It Easy for Students to Identify Properties
by Pre-empting Possible Confusions

The teacher took great care to anticipate and pre-empt situations which might
confuse students:

[I] keep things running through the lesson in my own head, and looking for possibilities
where students may become confused, or things that might cloud the issue, so that I can do
something about that before it becomes an issue in the classroom.

In particular, he designed the dynamic figures that he used and manipulated them
in ways intended to make target properties as readily discernible by students as
possible:

I obviously pre-prepared the circle with the lines and angles already marked in. Also for this
group, I made sure the angles were always integer values… That way you don’t have half
angles to deal with. So the angle at the centre was always an even number of degrees
because that way the angle at the outside can be halved quite successfully… So I did that to
help make it a little bit easier for them to spot the rule.

For example, the teacher avoided dragging figures into positions where an angle
—such as the angle at the centre of the circle—would become reflex, resulting in
the measure of its smaller counterpart angle being shown by the software:

When you move things around, if the three points you are measuring swap over somehow,
then it starts measuring a different angle.

29.4.1.4 Avoiding the Disadvantages of Software Use by Students
Through Teacher Presentation

The teacher limited software use to his giving a presentation so as to avoid demands
and difficulties of students having to use it:

If I wanted the students to do it, it, it would take a long time in order for them to master the
package and I think the cost benefit doesn’t pay there… And there’s huge scope for them
making mistakes and errors, especially at this level of student.
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He was not persuaded that the educational returns from students learning to use
the software were sufficient given a curriculum which was more factual than
investigative, and with relatively few topics which would benefit from dynamic
geometry treatment:

It’s a difficult program for the students to master… The return from the time investment …
would be fairly small… And the content of geometry at foundation and intermediate level
just doesn’t require that degree of investigation. So they need to learn certain facts… but
most of those facts can be learned quite well enough without Cabri.

29.4.2 Case P

This example, focusing on angle properties in various configurations, was nomi-
nated in these terms by the teacher concerned:

All of our angle work at [lower secondary] is done [with Cabri]… Most of the tasks are…
designed with what we want to achieve from it in mind. So if we want them to see that the
angles on a straight line add to 180 it’s designed exactly for that purpose… So they should
come to the right conclusion but… they feel that they’ve done it on their own and they’ve
explained it.

A corresponding 50-minute lesson started with 15 minutes of activity led by the
teacher, using an interactive whiteboard. This was followed by the students working
in trios at a computer, guided by a teacher-devised worksheet, to investigate the
angle sums of dynamic polygons that they themselves constructed (see Fig. 29.2).

29.4.2.1 Developing Students’ Broad Understanding of Space
and Shape Through Exploring Dynamic Figures

The emphasis of the investigation in this lesson was more on promoting students’
broad understanding of shape and space than their knowledge of specific results:

Fig. 29.2 Figure used in
Case P lesson
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The work on angles in polygons is not so important; that is extension work, and we do it
again, that topic, later in the year… So it’s sort of a lead up for that as well. But in terms of
key concepts, it’s not really the curriculum topic that’s important, but the understanding of
space and shape in geometry, and how that works.

While other investigations which aimed at establishing specific results were
more structured, this lesson was concerned with developing broader spatial
awareness, and so was more fluid:

[This] lesson was more about them getting to know the software, them having an awareness
of space, and thinking how shapes grow and what happens to some of the corners as they
grow, and whether that’s related to the shape. And that was much more fluid… I was a bit
more adding on to the end of a topic, and you can be a bit wilder there, and not have to
follow the curriculum as such.

29.4.2.2 Giving Students Experience of Geometrically-Principled
Interaction with the Software

The teacher saw an important feature of the software as being the way in which its
design around geometrical principles shaped student interaction with it:

The package is geometry-based, and it is from-first-principles geometry… One of the main
parts of this lesson was that they could learn the software, and have some idea of how
shapes and points relate to each other, and to see that the software works geometrically.

In particular, the teacher could build on students’ experience of making use of
the software to draw out the way in which they had been enacting geometrical
principles:

When they were trying to measure the angle, that really brought out the idea of what is an
angle… Just the action of doing it really made a fuss about that for them, and they really
understood that angles, these three points that are on two lines, and what it means.

29.4.2.3 Focusing Students’ Attention on Mathematical Essentials
Through Structured Software Use

In more focused investigations, the teacher preferred to structure students’ use of
the software around the dragging of simple prepared figures in order to focus on
mathematical essentials:

It does add complications, because it’s quite a difficult piece of software. So that’s why we
structure the work so they just have to move points. So they don’t have to be complicated
by that, they really can just focus on what’s happening mathematically.

She saw the ease with which figures could be dragged to create multiple
examples as contributing to achieving this focus:
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As they move the shapes around, they can see what’s actually happening, as if they were
drawing it on a page, and doing different drawings. But it obviously removes the need for
them to have to redraw things. So it’s easier for the kids who find it hard to draw well. So it
really helps them, and they can focus on the learning of how the angles match, and what
they add up to.

29.4.2.4 Supporting Students in Questioning Unexpected Results
and Learning from Them

The teacher sought to promote students’ learning through supporting them in
identifying and analysing the sometimes confusing way in which the software
measured angles:

I wanted to draw attention to… how the software measures the smaller angle, thus rein-
forcing that there are two angles at a point and they needed to work out the other… Because
a lot of them had found that they’d got the wrong answers, and [that] it measured the obtuse
angle rather than the reflex angle, so I highlighted that, because that was important in terms
of understanding the software. Next lesson, we’ll talk a lot more about what we learned
from it.

She valued anomalous situations of this type for developing students’ critical
mathematical thinking about results produced by the software:

For me, success is when the kids produce something and then say “This can’t be right
because it’s not what I expect”… Because they’re going to make mistakes. But if they look
at it… they can sense that there’s something wrong… So we talked about how we’d
overcome that… I think that happened in slightly different ways around the room, but it was
one of the key things that the kids learned, that you can’t assume that what you’ve got in
front of you is actually what you want, and you have to look at it… and question it, which
is very powerful.

This reflected her wider emphasis on supporting students in thinking through
apparently conflicting states of affairs to a coherent resolution:

Where there is a conflict like that and the child’s not understood something or finds there’s
something not right, I question them about what’s not right and why it’s not right, and
therefore what do they think it should be?… All the time [I’m] subconsciously thinking,
what will challenge this child, what will open the door for them to take this step through.

29.4.3 Case Q

This example, focusing on the idea of the ‘centre’ of a triangle (see Fig. 29.3), was
nominated in these terms by the teacher concerned:

We’d done some very rough work on constructions with compasses and bisecting triangles.
And then I extended that to Geometer’s Sketchpad on the interactive whiteboard… And
we… bisected the sides of a triangle. And [the pupils] noted that [the perpendicular
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bisectors] all met at a point… And we moved it around and it wasn’t the centre of the
triangle. Sometimes it was inside the triangle and sometimes outside… So we had… the
whole lesson, just discussing what’s the centre of a triangle.

The corresponding lesson extended over two 45-minute sessions on consecutive
days. Both sessions started with 10–20 minutes of teacher-led activity, using an
interactive whiteboard. This was followed by student activity at individual com-
puters, guided by a teacher-devised worksheet. In the first session, students them-
selves constructed a dynamic triangle and the perpendicular bisectors of its edges,
in order to investigate the properties of the bisectors. In the second session, they
investigated how changing the shape of the triangle affected the position of the
point of concurrence.

29.4.3.1 Giving Students Experience of Finding Rules and Patterns
Within Abstract Geometry

The teacher reported that the lesson followed on from work on construction by
hand, extending this beyond the official curriculum:

Geometry’s so vague in school maths at the moment… I mean the… national curriculum
way would be to do the construction, and then on loci and stuff like that… [But] I went on
more of the geometry way.

This involved learning to explore the properties of familiar shapes and con-
ceptualise them in more abstract geometric terms:

The main thing is the idea that you can look at a shape that you’re fairly familiar with and
do things to it, and find new ideas. It’s this idea of coming across abstract geometry and
finding rules and patterns within it, which is what geometry’s all about really.

The teacher’s focus was more on students learning about geometrical explo-
ration than on their mastering particular content:

Fig. 29.3 Figure used in
Case Q lesson
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It’s less about learning the actual facts, than about the ideas of exploring an abstract
geometrical idea, and finding that there’s lots of different rules… They will have manip-
ulated shapes, they’ll have got used to… the idea of trying to describe things. There’s a lot
of maths there that isn’t directly learning facts, and I think that’s a really important part of
doing that sort of exercise.

29.4.3.2 Emphasising Mathematical Rules Through Clarifying
Student Instructions to the Computer

The teacher saw the way in which the software required clear instructions to be
given in mathematical terms as a key characteristic:

I always introduce Geometer’s Sketchpad by saying “It’s a very specific, you’ve got to tell
it. It’s not just drawing, it’s drawing using mathematical rules.”… They’re quite happy with
that notion of… the computer only following certain clear instructions.

The teacher helped students to identify mistakes in their constructions and
analyse them mathematically:

[Named student] had a mid-point of one line selected and… a perpendicular line to another,
and he didn’t actually notice… When I was going round to individuals; they were saying
“Oh, something’s wrong”; so I was [saying] “Which line is perpendicular to that one?”

He saw such difficulties as helping him to draw out the mathematical ideas at
stake:

A few people… drew random lines… because one of the awkward things about it is the
selection tool… [But] quite a few discussions I had with them emphasised which line is
perpendicular to that edge… So sometimes the mistakes actually helped.

29.4.3.3 Making Mathematical Properties Stand Out for Students
Through Prompting Dragging

The teacher noted the crucial part he played in making key mathematical properties
stand out for students by prompting them to drag vertices of the dynamic triangle—
for example, so as to bring out the concurrence of the perpendicular bisectors:

They didn’t spot that they all met at a point as easily. I think it just doesn’t strike them as
being particularly unusual… I don’t think anybody got that without some sort of
prompting. It’s not that they didn’t notice it, but they didn’t see it as a significant thing to
look for.

Through similar prompting of dragging he helped students to appreciate how the
position of the point of concurrence—inside or outside the triangle—could be
related to the size of the largest angle of the triangle—acute or obtuse:
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It was nice to see the way that the point, the central point, went from inside to outside. They
were able to move that around and look how the angle was changing. And what sort of
rules… I led them very closely on that.

29.4.3.4 Making Learning Less Vague Through Getting Students
to Write a Rule Clearly

Getting students to formulate their findings in explicit mathematical terms was an
important issue for the teacher:

They’ve got to actually write down what they think they’ve learned. Because at the
moment, I suspect they’ve got vague notions of what they’ve learnt but nothing concrete in
their heads.

Accordingly, he sought to sharpen the precision with which students expressed
their conclusions:

I was focusing on getting them to write a rule clearly. I mean there were a lot writing “They
all meet” or even, someone said “They all have a centre”… So we were trying to discuss
what ‘all’ meant, and a girl at the back had “The perpendicular bisectors meet”, but I think
she’d heard me say that to someone else, and changed it herself; “Meet at a point”.

This refining of mathematical expression was assisted by the provisionality of
the text box in which students entered accompanying sentences alongside their
figures on the screen:

The fact that they had a text-box… and they could change it and edit it; they could actually
then think about what they were writing, how they describe. I could have those discussions.
With handwritten, if someone writes a whole sentence next to a neat diagram and you
say…“Can you add this in?”, you’ve just ruined their work. But with technology you can
just change it, highlight it and add on an extra bit, and they don’t mind.

29.5 Cross-Cutting Themes

The second stage of analysis sought to identify and conceptualise salient issues
across cases, in broader analytic terms. The resulting themes identify important
dimensions of practice, comparing the cases so as to characterise commonalities
and contrasts in each dimension. Each subsection heading encapsulates a theme and
extracts from quotations from the case outlines are included in the subsequent text
to signal the evidential base for the theme.
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29.5.1 Employing Dynamic Geometry to Support Guided
Discovery

In all of the cases, teachers appealed to some notion of learning through guided
discovery, although the practical expressions of this idea differed. In one case,
discovery by the whole class was closely guided by the teacher who found that “the
technology helped a great deal” by making it easier for students to “spot the rule”,
and thus for the teacher “to get the correct response out of them”, so that “you’re
not just telling them a fact, you’re allowing them to sort of deduce it and interact
with what’s going on” [N]. In other cases, the classroom approaches involved more
delegation to students working individually or in pairs, through tackling ‘investi-
gations’ intended to develop their general understanding of shape and skills of
inquiry. Ultimately, however, this activity was structured with the intention that
students “should come to the right conclusion but… feel that they’ve done it on
their own” [P]. In this respect, teachers acknowledged their important role in
“drawing attention to” [P] and “prompting” [Q] target results.

29.5.2 Evaluating the Costs and Benefits of Student
Software Use

In all of the cases teachers alluded to benefits of dynamic geometry—compared to
classical manual tools—in facilitating extensive work with figures. However, there
were important differences of perspective on whether the software should be used
by students, leading to approaches based variously on avoiding, minimising, or
exploiting its demands. In some cases, the teachers viewed dynamic geometry as “a
difficult program for the students to master” with “huge scope for… mistakes and
errors” [N]; as “quite a difficult piece of software” which “does add complications”
[P]. In one of these cases, then, the software was used only for teacher presentation
on the grounds that “it would take a long time… for [students] to master the
package” and “the return from the time investment… would be fairly small”, so that
“the cost benefit doesn’t pay” [N]. In the other case where concerns about the
accessibility of the software to students were expressed, unless the required figure
was straightforward for students to construct for themselves, the normal pattern was
“to structure the work, so [that students]… don’t have to be complicated by that
[and]…can just focus on what’s happening mathematically” through providing
them with a prepared figure [P]. Such concerns were not expressed in the final case
[Q], perhaps because the teacher treated the construction of dynamic figures by
students, and the development of their proficiency with the software, as a vehicle
for developing and disciplining their geometrical thinking and expression.
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29.5.3 Handling Apparent Mathematical Anomalies
of Software Operation

A further challenge for teachers was in handling apparent mathematical anomalies
in the way in which the software operated, such as those arising when figures were
dragged to positions where an angle becomes reflex (with the software displaying
the measure of the associated acute or obtuse angle), or where an arithmetical
relationship between angle measures was obscured by values being rounded. In one
case, the teacher took great care to avoid exposing students to such anomalies,
through vigilant dragging [N]. The other case tackling the same type of topic (and
indeed an identical topic in one lesson) provided a striking contrast. The teacher
actually sought “to draw attention to… how the software measures the smaller
angle” so that the apparent anomaly of measurement for reflex angles could be
resolved through mathematisation, “thus reinforcing that there are two angles at a
point and [that students] needed to work out the other” [P]. Moreover, in this case,
the teacher considered that “one of the key things that the kids learned” was “that
you can’t assume that what you’ve got in front of you is actually what you want,
and you have to look at it… and question it” [P]. These strategies differed, then,
between—in the first case—concealing anomalies of software operation and—in
the second case—capitalising on them for purposes of mathematical knowledge
building.

29.5.4 Supporting Learning Through Analysis
of Mathematical Discrepancies

Capitalising on such anomalies formed part of a wider teaching strategy in which
“where there is a conflict like that and the child’s not understood something or finds
there’s something not right”, the teacher’s preferred response was to “question them
about what’s not right and why it’s not right” [P]. The further case in which
students worked with the software also emphasised the value of exploiting errors
and anomalies so as to promote mathematical thinking and knowledge building.
This teacher suggested that, where students encountered difficulties in constructing
figures with the software, “sometimes the mistakes actually helped”, by leading to
discussions which drew out the mathematical ideas at stake [Q]. In the final—and
contrasting—case, one of the reasons that the teacher offered for not having stu-
dents themselves work with the software was the “huge scope for them making
mistakes and errors”. As already noted, this teacher sought to avoid exposing
students to such anomalies by himself manipulating the software; and, while he
reported that through questioning he would “pick on students that… may have a
problem” and “carry on… trying to get the correct response out of them”, this
seems to have been more a means of managing lesson pace and progression than of
supporting rethinking [N].
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29.5.5 Promoting Mathematically-Disciplined Interaction
Through the Software

In both the cases where students did construct figures using the software, teachers
stressed the mathematical discipline involved. Experiencing “from-first-principles
geometry” was intended to help students “see that the software works geometri-
cally”, and to give them “some idea of how shapes and points relate to each other”
[P]. Likewise, the ideas of “the computer only following certain clear instructions”
and of the software “not just drawing [but] drawing using mathematical rules” were
made explicit to students [Q]. In addition, in this case, getting students to formulate
their conclusions as a mathematically precise sentence was helped by using the
software “text-box [to] change it and edit it… [so as to] actually then think about…
how [to] describe” [Q].

29.5.6 Privileging a Mathematical Register for Framing
Figural Properties

One case [Q] was distinctive in going beyond the official curriculum to a more
classical emphasis on use of a geometrical register to frame and analyse figural
properties. A concern that students should have experience of “finding rules and
patterns” in “abstract geometry” led to them being asked to “write a rule clearly” as
a means of “trying to describe things” in directly geometrical terms [Q]. By con-
trast, in the other cases, figural properties were inferred less directly from arith-
metical patterns in the numerical measures generated by a dynamic figure. Because
“you can pick up and drag these shapes around… so all the numbers are changing”,
students could “see [that] the angle doesn’t change”, or use “pairs of values… [to]
deduce [for] themselves” the relationship between two angles [N]. By using a
dynamic figure emphasising this more familiar arithmetical register—privileged by
an official curriculum placing emphasis on the development of numeracy—students
could “focus on the learning of how the angles match, and what they add up to” [P].

29.5.7 Incorporating Dynamic Manipulation
into Mathematical Discourse

Finally, the case records show how mathematical discourse was developing to
incorporate dynamic manipulation. Quite often, dragging was presented simply in
terms of moving or changing a figure to generate discrete static examples: “move
the triangle around and try different triangles within seconds” [Q]; “change it and
you’ve got then an unlimited number of shapes” [P]. However, dragging was
sometimes framed in more dynamic terms. Working in the directly geometrical

29 Constructing Dynamic Geometry: Insights from a Study … 535



register, for example, attention was drawn to “the way that the point, the central
point, went from inside to outside [the triangle]” so that students “were able to
move that around and look how the angle was changing” [Q]. Working in the more
prevalent arithmetic register, attention was focused more sharply on the constancy,
variation and covariation of measures; so that, for example, students “can actually
see it getting dragged round, they see the angle doesn’t change” or by “dragg[ing]
these shapes around… so all the numbers are changing” [N].

29.6 Discussion and Conclusion

In line with the idea of interpretative flexibility, this study found important dif-
ferences in teachers’ ‘constructions’ of dynamic geometry, even if their teaching
practices all appealed to some idea of employing the software to support guided
discovery. Teacher assessments of the costs and benefits of software use by students
were influenced by the extent to which such use was seen as promoting
mathematically-disciplined interaction. Approaches to handling apparent mathe-
matical anomalies of software operation depended on more fundamental peda-
gogical orientations towards analysis of mathematical discrepancies as a means of
supporting learning. Dynamic manipulation entered mathematical discourse when
dragging was used to focus attention on continuous variation rather than being
treated as an efficient means of generating multiple static figures. In summary, then,
not only is there a considerable gap between the aspirations of advocates for the
educational potential of dynamic geometry and actual patterns of use in mainstream
teaching but patterns of use vary markedly within that mainstream practice.

These teaching practices observed in England did share some basic character-
istics that the ICMI Study on Mathematics Education and Technology identified in
projects aiming to implement use of digital technologies at a national scale (Sinclair
et al. 2010). In particular—in line with the ICMI findings—dynamic geometry was
treated more as providing pedagogical support than as provoking curriculum
change, and patterns of classroom (inter)activity tended to be less open than the
accompanying pedagogical rhetoric suggested. In England, these characteristics
reflected a statutory curriculum privileging the paper-and-pencil medium and
classical instruments of hand construction; references to dynamic geometry in
curricular guidance that were sporadic, optional and superficial; and high-stakes
external assessment that excluded any use of dynamic geometry.

Indeed, recent developments in England have exacerbated these conditioning
factors with a new curriculum in which the main substantive guidance on use of
digital tools is now simply that “teachers should use their judgement about when
ICT tools should be used” (Department for Education 2013, p. 2), with one sub-
sequent fleeting reference to the possibility of using such tools to “derive and
illustrate properties of… plane figures… using appropriate language and tech-
nologies” (p. 8), against a default assumption that classical tools should be privi-
leged, for example, for “standard ruler and compass constructions” (p. 8).
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Consequently, recent graduate students that I have supervised have had great dif-
ficulty in tracking down examples of dynamic geometry use in English schools,
with those found largely following the patterns exhibited in Cases N and
P. Nevertheless, recently we have been able to describe one example of more
developed practice in greater detail (Bozkurt and Ruthven 2016).

Under such circumstances, it is easier to envisage success for developments in
teaching practice that treat dynamic geometry as a pedagogical aid in enriching the
existing curriculum. In the English context, for example, such lines of development
might encourage use of tasks which incorporate a richer system of related arithmetic
patterns, and of figures which provide better visual support for directly geometric
reasoning (for illustrations, see Ruthven 2005). However, a stronger aspiration for
development would see dynamic geometry treated (for both curriculum and
assessment) as a standard mathematical tool rather than as a marginal and occa-
sional pedagogical aid. In the discussion after the lecture on which this chapter is
based, there were suggestions that curriculum schemes (notably textbooks) in some
educational systems (specifically California USA, Denmark and France) were now
integrating use of dynamic geometry in a more systematic way. It would indeed be
interesting to have analyses of such developments reported at future ICME con-
ferences, examining the manner in which dynamic geometry is interpreted and its
use developed, both in the curriculum materials themselves and in the teaching
practice associated with their use.

In effect, the field of mathematics education is itself still ‘constructing’ dynamic
geometry. With the many varieties of dynamic geometry software, convergence
towards mature common standards remains limited (Mackrell 2011). However a
major European project, Intergeo, has sought to facilitate exchange and use of
dynamic geometry resources by teachers through creating an online repository with
the potential to enrich the readily available range of tried and tested dynamic tasks
(Kortenkamp and Laborde 2011). While these resources were developed by indi-
vidual members of the community, the project sought to enhance their collective
usability in three particular ways:

• by specifying a common file format based on open standards, so enabling
teachers to employ their software of choice;

• by tagging each resource with metadata, so helping teachers to search for rel-
evant resources;

• by developing a standard quality questionnaire to be completed by users of a
resource, so providing prospective users with reviews.

Although such developments are of considerable value, they have also high-
lighted continuing obstacles. Following the introduction of the quality question-
naire, for example, the overwhelming majority of responses were made without the
reviewer actually having trialled the resource in the classroom (Trgalova et al.
2011).

Indeed, it is arguable that the field of mathematics education has only scratched
the surface in generating the knowledge needed to support a more thorough
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integration of dynamic geometry. Some areas where productive development could
take place are clear. Arzarello et al. (2002) have identified a rich range of dragging
techniques, each associated with particular patterns of geometrical reasoning.
However, in the teaching practices observed in English schools, only a small subset
of these techniques were used, largely tacitly: Dragging defining points of a figure
to generate multiple examples; Dragging defining points of a figure to explore
patterns of dynamic (co)variation. Development of this aspect would be supported
if the field were to build a tighter mathematical theorisation of dragging, establish a
more widely accepted register for discussing it, and create well-tested curricular
sequences (with supporting didactical analyses) which make effective use of a range
of dragging techniques and provide widely accepted norms for these. Developing a
robust practical framework of this type would provide a firmer basis for developing
more reflective use of a richer repertoire of dragging techniques by teachers and
students.

Likewise, Laborde (2001) has identified an important gradation in curricular
scenarios which make use of dynamic software, increasingly challenging for
teachers to conceive and implement:

• Facilitates material aspects of familiar task: e.g. constructing a diagram showing
a triangle and its perpendicular bisectors.

• Assists mathematical analysis of familiar task: e.g. through dragging vertices of
a dynamic triangle to identify concurrence of the perpendicular bisectors as an
invariant property.

• Substantively modifies a familiar task: e.g. through dragging vertices of a
dynamic triangle to identify conditions under which its circumcentre is posi-
tioned internally or externally.

• Creates task which could not be posed without dynamic software: e.g. through
constructing circles sharing a common free centre but each passing through a
different vertex of the triangle, then dragging that free centre to identify posi-
tions where the circles become concurrent (see Fig. 29.4).

The challenge here is not just to devise dynamic geometry scenarios at those
latter two levels which go beyond the classical curriculum. Rather it is to move
beyond creating relatively isolated scenarios to establishing well-articulated
sequences of scenarios which provide a sound basis for developing the mathe-
matical and technical (i.e. instrumental) knowledge of students in a coordinated and
progressive manner. (For example, one can imagine a curricular progression in
which the task shown in Fig. 29.4 occurs earlier in a sequence leading to the tasks
used in Case Q). More thoroughgoing integration of dynamic geometry into the
curriculum as a mathematical tool depends on the development of progressive
sequences of this type, and of a principled basis for their design (see, for example,
Coutat et al. 2016).
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Chapter 30
Exploring the Contribution of Gestures
to Mathematical Argumentation Processes
from a Semiotic Perspective

Cristina Sabena

Abstract A multimodal perspective on mathematics thinking processes is
addressed through the semiotic bundle lens and considering a wide notion of sign
drawing from Vygotsky’s works. Within this frame, the paper focuses on the role of
gestures in their interaction with the other signs (speech, in particular) and inves-
tigates the support they can provide to mathematical argumentation processes.
A case study in primary school in the context of strategic interaction games pro-
vides data to show that gestures can support students in developing argumentations
that depart from empirical stances and shift to a hypothetical plane in which gen-
erality is addressed. In this regard, by combining synchronic and diachronic anal-
ysis of the semiotic bundle, specific features of gestures are pointed out and
discussed: the semiotic contraction, the condensing character of gestures, and the
use of gesture space in a metaphorical sense.

Keywords Argumentation � Gestures � Multimodality � Semiotic contraction
Semiotic bundle

30.1 Introduction

At the turn of the millennium, in 2000, the provocative essay Where Mathematics
Comes From by George Lakoff and Rafael Núñez pointed out the crucial role of
perceptual and bodily aspects on the formation of abstract concepts, including
mathematical concepts (Lakoff and Núñez 2000). The new stance emphasized
sensory and motor functions, as well as their importance for successful interaction
with the environment. Criticizing the platonic idealism and the Cartesian mind–
body dualism, Lakoff and Núñez advocated that all kinds of ideas, including the
most sophisticated mathematical ideas, are founded on our bodily experiences and
develop through cognitive metaphorical mechanisms.
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The book aroused a great interest in mathematics education and prompted many
research studies highlighting the role of bodily and kinesthetic experiences in
mathematical learning (Arzarello and Robutti 2008; de Freitas and Sinclair 2014;
Edwards 2009; Ferrara 2014; Nemirovsky 2003; Radford 2014; Roth 2009; for an
overview, see Gerofsky 2015).

More recently, embodied stances seem to receive a certain confirmation by
neuroscientific results on “mirror neurons” and “multimodal neurons,” which are
neurons firing when subjects performs actions, when they observe somebody else
doing the same action, and when they imagine it (Gallese and Lakoff 2005). On the
basis of these results, Gallese and Lakoff (2005) provide a new theoretical account
on how the brain works, according to which “action and perception are integrated at
the level of the sensory-motor system and not via higher association areas” (p. 459).
In particular, such an integration would appear to be crucial not only for motor
control, but also for planning actions, an activity typical of what is generally
understood as “thinking.”

The terms multimodal and multimodality come therefore to indicate a feature of
human cognition opposed to “modularity.” On the other hand, in the communi-
cation field the term multimodal is used with reference to multiple modalities that
we have to communicate and express meanings to our interlocutors: words, sounds,
images, and so on (Kress 2004). These communicative affordances have been
acquiring increasing attention due the diffusion of new technological affordances,
which are constantly developing new possibilities of interaction with them through
our body.

In this paper, in line with Radford et al. (2009), multimodality refers to the
importance and mutual co-existence of a variety of cognitive, material and per-
ceptive modalities or resources in the mathematics teaching-learning processes, and
more in general in the formation of mathematical meanings: “These resources or
modalities include both oral and written symbolic communication as well as
drawing, gesture, the manipulation of physical and electronic artifacts, and various
kinds of bodily motion” (pp. 91–92). Including the embodied aspects in the analysis
of mathematical thinking and learning brought to the fore the study of gestures as
an important cognitive and communicative manifestation.

On the other hand, the attention to embodied and multimodal aspects needs to
come to terms with the consideration of the social, historical, and cultural aspects in
the genesis of mathematical concepts (Schiralli and Sinclair 2003; Radford et al.
2005). Mathematics is indeed “inseparable from the symbolic instruments” and the
act of knowing is a “culturally shaped” phenomenon (Sfard and McClain 2002,
p. 156) in which use of tools and signs play an important role.

This paper takes a semiotic stance to analyze gestures not as isolated variables,
but rather as part of the multimodal resources at the students’ disposal in order to
bridge the gap between everyday experience and formal mathematics. The multi-
modal resources will be considered as signs entering in meaning-making processes,
and will be analyzed through the semiotic bundle lens (Arzarello 2006). Previous
research from this perspective has suggested that gestures can contribute not only to
the semantic content of mathematical ideas but also to the logical structure that
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organizes them in mathematical arguments (Arzarello and Sabena 2014). In this line
of research and adopting a case study methodology, the following research question
will be addressed:

What specific contribution can gestures, when they are considered as signs in semiotic
bundles, provide to students’ argumentation processes?

In the next sections, the theoretical framework for the research is presented: It is
constituted by theoretical elements and results from gesture studies in psychology
and by a semiotic perspective for multimodality grounded on Vygotsky’s account
of signs and on the semiotic bundle notion. Afterwards, selected data from a case
study in primary school in the context of strategic interaction games will be ana-
lyzed and discussed according to an analytical generalization stance.

30.2 Gestures as Multimodal Resources

Gestures accompanying discourses are a widespread phenomenon (not only
Italian!), as the pioneering work by Kendon has documented since the 80s (Kendon
1980). Since then, psychological and psycholinguistic studies have been stressing
that speech and gestures are closely linked and that gesturing is relevant in com-
munication and thinking processes (McNeill 1992, 2005; Goldin-Meadow 2003).

McNeill (1992) found speech and gestures to be closely linked in many respects:
They are temporally synchronous in phonological (the central phase of the gesture
coinciding with the peak of the phonological phrase), semantic (at the meaning
level), and pragmatic (their function in the discourse) aspects. Also, in child
development, gesture and speech proceed together. At the cognitive level, some
scholars have identified their function being important in lightening the working
memory, offering the possibility for cognitive resources to do their best to reor-
ganize (Goldin-Meadow et al. 2001).

These cognitive interpretations provide elements that can explain, for example,
why we gesticulate in telephone conversations (de Ruiter 1995), why when we are
prevented gesturing our discourse becomes less fluid, or why even blind from birth
use gestures while speaking. These phenomena cannot be explained only in terms
of interpersonal communicative dimension, and so gestures are claimed to have a
constitutive role also in thinking processes.

Vygotsky (1934/1986) had already stressed the constitutive role of language in
thinking by saying that “thought is not merely expressed in words; it comes into
existence with them” (p. 218); since then psychological studies on gestures have
pushed in the direction of extending this constitutive role of language to the
speech-gesture unity. Quoting McNeill (1992), we can say that “gestures do not just
reflect thought but have an impact on thought. Gestures, together with language,
help constitute thought [emphasis original]” (p. 242). It is within this Vygotskian
hypothesis that I frame the role of gestures in mathematical activities.
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Gesture studies have provided other tools of analysis, such as categories for their
classification. McNeill (1992) has classified gestures as:

• Iconic: if they bear a relation or resemblance to the semantic content of dis-
course (for example, inclining two hands to indicate a roof);

• Metaphoric: similar to iconic gestures, but with the pictorial content presenting
an abstract idea that has no physical form (a classical example is the hand in the
act of holding an object, when referring to idea of “a certain topic” in the
discourse);

• Deictic: if they indicate objects, events, or locations in the concrete world.
• Beats: if they contribute to stress some parts of the discourse.

Deictic gestures are usually performed with the extended forefinger (sometimes
with hand-held objects, such as a pen) and are also called pointings. Apparently
simple, pointing is indeed a complex act. Besides concrete pointings (such as
indicating a book on the table), research has also identified abstract pointings, when
the hand or fingers are extended in the space as to indicate something, but the space
it actually empty. In McNeill’s (1992) interpretation, “the speaker appears to be
pointing at empty space, but in fact the space is not empty; it is full of conceptual
significance. Such abstract deixis implies a metaphoric use of space in which
concepts are given spatial forms” (p. 173). Such a classification is not based on the
physical features of gesture, but by considering the relationships with contextual
information: this entails that the interpretative process needs to take into account the
broader context in which a gesture is performed. A second remark concerns the fact
that the same gesture may belong to more than one category; therefore, the cate-
gories have to be considered dimensions along which a gesture can be featured,
more than in a classificatory view.

Furthermore, gestures are sometimes characterized by repetition: distinct fea-
tures of a gesture recur over the length of a discourse (although not necessarily in
consecutive gestures), and the recurrence can be signaled by the form of the hand
shape, its location, orientation, motion, rhythm, and so on (McNeill et al. 2001).
This phenomenon is called catchment and may be related to discourse cohesion:

By discovering the catchments created by a given speaker, we can see what this speaker is
combining into larger discourse units – what meanings are being regarded as similar or
related and grouped together, and what meanings are being put into different catchments or
are being isolated, and thus are seen by the speaker as having distinct or less related
meanings. (McNeill et al. 2001, p. 10)

Catchments may therefore be of great importance because they can give infor-
mation on the underlying meanings in speech and dynamics. In a classroom setting,
studying the catchments could provide clues on the evolution of meanings in stu-
dents. In addition, catchments can contribute to the organization of an argument at a
logical level, as discussed in Arzarello and Sabena (2014).
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30.3 A Semiotic Approach to Multimodality

The choice of adopting a semiotic approach to study the role of multimodality and
gestures in mathematical activities stems basically from two considerations. The
first is epistemological, dealing with the assumption that mathematical objects are
not directly perceivable using our senses and need by their nature to be mediated by
signs, such as the graph of a function for the function concept. Indeed, signs and
transformations between them are at the heart of the mathematical activities:

The significance of semiosis for mathematics education lies in the use of signs; this use is
ubiquitous in every branch of mathematics. It could not be otherwise: The objects of
mathematics are ideal, general in nature, and to represent them—to others and to oneself—
and to work with them, it is necessary to employ sign vehicles, which are not the math-
ematical objects themselves but stand for them in some way. (Presmeg et al. 2016, pp. 1–2)

The second consideration is psychological, concerning how meanings are
formed and evolve. In Vygotsky’s account of human cognitive development (or
cultural development), signs play a crucial role (Vygotsky 1931/1978). By virtue of
their social meaning, signs serve individuals as a way to exert voluntary control on
their behavior, in a way similar to the way that road signs signal events to indi-
viduals to regulate their conduct. Analogous with tools in labor activities, signs
work, on the individual psychological level, as “stimuli-means” standing for some
characteristic or aspect of the socially shared experience and steering one’s own
mental processes:

The invention and use of signs as auxiliary means of solving a given psychological problem
(to remember, compare something, report, choose, and so on) is analogous to the invention
of tools in one psychological respect. The signs act as instruments of psychological activity
in a manner analogous to the role of a tool in labor. (Vygotsky 1931/1978, p. 52)

From this perspective, signs are considered in their functional role as psycho-
logical tools that allow the subjects to reflect and plan actions and act as cultural
mediators (Radford and Sabena 2015). This is a very general idea of a sign that does
not assign prescriptions on what can be a sign and which specific features it should
have: A gesture can also be considered a sign, as Vygotsky himself highlighted in
his famous example of the pointing gesture to illustrate the internalization process
starting from the meaning assigned by the mother to the child’s hand movement
(Vygotsky 1931/1978).

In order to include gestures as well as other more classical registers, Arzarello
developed the semiotic bundle construct (Arzarello 2006; Arzarello et al. 2009) as a
system made of different signs (or semiotic resources) and their mutual relation-
ships that are produced by students and possibly the teacher during mathematics
activities: words (spoken or written), written diagrams, gestures, tools, and so on.
Similarly to Radford’s idea of “semiotic system” (Radford 2002), the semiotic
bundle includes both the classical registers, with precise and codifiable rules of
productions and transformation (Duval 2006), and the embodied ones, allowing us
to provide a semiotic account of the multimodal processes occurring while learning
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and teaching mathematics. An example can be constituted by students’ words,
gestures, and drawn figures while solving a geometrical problem.

The semiotic bundle is characterized by two key features:

• A systemic character, revealed by a synchronic analysis of the relationships
between the different kinds of signs at a certain moment (like a sort of “semiotic
picture”)

• A dynamic nature revealed by a diachronic analysis focusing on the evolutions
of signs and of their transformations over time (a sort of “semiotic movie”)

Synchronic and diachronic analysis—which are distinguished only for the sake
of analysis—are performed by considering closely the video recordings from
classroom activities students are engaged in, together with their multimodal tran-
scripts (i.e., transcripts that include not only words but also record gestures and
other kinds of signs). It is interesting to remark how the possibilities offered by new
technologies for the study of the interaction between students and the teacher in the
classroom gave a boost to considering multimodal aspects in mathematics learning.
Although in the early 90s attention to the “classroom discourse” in the teaching
learning of mathematics had already emerged, it was the use of video recordings
that opened up the possibility to observing phenomena that had hitherto been
unnoticed due to its undetectability. Gestures and other embodied resources have
thus begun to be considered among the resources through which communication
and conceptualization are realized. In other words, the strong push towards new
theories that has come from methodological aspects has required new analytical
tools, such as the semiotic bundle.

In the following, the semiotic bundle lens is applied to empirical data on
mathematical argumentation processes carried out by primary students. The anal-
ysis will use a fine-grain focus on video-recording data with the aim of identifying
and theorizing key gestural phenomena that play a role in such processes.

30.4 A Case Study: The Race to 20

The case study is based on a strategic interaction game called “Race to 20,” which
was used by Brousseau to illustrate the theory of didactical situations (Brousseau
1997). The case study is part of a design-based research project on the use of
strategy games for fostering problem-solving and argumentation processes from
primary to secondary school.

The game is played by two players who struggle to reach the number 20 by
adding alternatively small numbers. Specifically, the first player chooses a number
between 1 and 2, then the second player must add 1 or 2 to the previous number and
say the result, then the first player adds 1 or 2, and so on. The player saying 20 wins
the game. In game theory, it is a perfect information game with complete infor-
mation, based on sequential decision-making. As the reader may know or can
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check, the winning strategy consists of starting as the first player and in following
the number sequence 2-5-8-11-14-17-20. In this kind of game, the player needs to
determine, for any move by the opponent player, the right move in order to win the
game. These processes may be related to the logical scheme of coordinating a
universal qualifier with an existential one, as it is the case in many mathematics
theorems.

I will refer to data from a classroom discussion in Grade 4. The discussion
follows some lessons in which the students played the game in pairs by writing the
added numbers on the top of arrows from left to right and the results in a line from
left to right (similar to Fig. 30.1).

This semiotic template was introduced by the teacher in order to allow the
students to keep record of both the winning numbers and the added ones. This
record was meant to support them in determining regularities that are at the base of
the winning strategy.

The discussion is engineered right after the students have finished a classroom
team tournament, in which representatives of each team have played the matches at
the blackboard (the last match is shown in Fig. 30.1). The teacher initiates the
discussion by making explicit the goal of providing a strategy to win the game and
justifying it.

We will focus in detail on the specific contribution of some children—Giulio,
Eliana, and Elisa—but first let us give some contextual information, in order to
make the analysis understandable.

As the discussion starts, numbers 14 and 17 are soon identified as winning
numbers: In some cases justifications are based on the possible moves of the two
players, as Marta states:

Marta You have to get first to 14 and then to 17. Because if you do 14 plus 1 and you get 15
and then you do plus 2 and you get to 17, then . . . you do plus 1 to arrive to 18 and the
other does 2 and gets to 20. Whereas if from 14 you do plus 2, you arrive at 16 and the other
one does plus 1 to arrive at 17, the other 19 if he does plus 2, you do plus 1, and you get 20.
So however, from 14 to 17 you arrive anyway to 20.

In other cases, they rely on the empirical observation of what did actually happen
during the tournament. Through backward induction, the number 11 begins to be
identified as a winning number and related to 14 and 17:

Fig. 30.1 Semiotic template introduced by the teacher to play the Race to 20
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Diego: 11 maybe is an important number, because maybe my team adds 2 and it is
13, the other team adds 1 and arrives at 14, I add 1, 15, they add 2 and it is
17.

At this point, after about 20 min of classroom discussion, Giulio proposes a
general rule to identify all winning numbers:

Giulio: I think that for the winning numbers you always remove 3: from 20 you
remove 3 and you arrive at 17; from 17 you remove 3 and you arrive at 14,
I think that another winning number could be 11, could be . . . 8, could
be . . . 5, could be . . . 2.

Giulio’s strategy identifies all winning numbers starting from the winning result,
20, and moving backwards through repeated subtractions in a process of backward
induction, as described in game theory.

The strategy is expressed verbally in general terms, without simulations of
moves, and it is accompanied by several gestures. Table 30.1 reports the transcript
of the initial part of Giulio’s utterance, enriched with the gesture component and the
Italian original words. The underlined words indicate that they are co-timed with
the shown gesture and the same convention will be used in the following tables.

When saying “you always remove 3,” Giulio moves his hand from right to left
(from the child’s perspective): This movement can be interpreted as indicating
subtraction, with reference to the number line, which is often used in the Italian
curriculum. With this interpretation, the gesture can be classified as a metaphoric
gesture indicating subtraction. I remark that in the original Italian version, Giulio
uses the term togli, which is used both in everyday contexts to say “remove, take
away” and in mathematical context in primary school to indicate “subtract.”

Table 30.1 Multimodal transcript of the first part of Giulio’s strategy

I thik that for the
winning numbers you
always remove 3

From 20 you remove 3 and you arrive at
17

Secondo me dato che i
numeri vincenti si
toglie sempre 3

Da 20 togli 3 e arrivi a 17

Open hand moving
from right to left

Three extended
fingers

Three extended moving
from right to left

Abstract pointings
downwards
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The hand movement from right to left is repeated when the rule is applied in
order to identify which are the winning numbers. From Table 30.1 (Pictures b and
c) it can be noticed that when Giulio is saying “from 20 you remove 3,” his hand is
moving leftwards. Now, three fingers are pointed out, and overall we find two
metaphorical references condensed in a single gesture:

• right-to left movement ! subtraction
• three fingers ! number 3

When completing the sentence and uttering the winning numbers, Giulio is
performing abstract pointing gestures downwards that are co-timed with the uttered
numbers (in Table 30.1, the case of 17 is reported in the last column).

If we consider the whole sequence, we see that the subtraction of 3 is repeated in
order to obtain 14; this repetition is also expressed by the repetition of the same
gesture configuration of the three fingers extended (pictures are not reported for
reasons of space). The same metaphorical gesture is hence repeated in a catchment
expressing that number 3 is always subtracted, in order to get all the winning
numbers.

Afterwards (“I think that another . . .”), we can notice a type of semiotic con-
traction occurring within the semiotic bundle: Speech reduces, mentioning only the
winning numbers, and shifts to a hypothetical level (“could be . . .”); also, gestures
appear to reduce in their movements, ending up with quick abstract pointing left
and downwards co-timed with the utterance of the winning numbers (8, 5, and 2).

At this point, the teacher asks Giulio to explain his idea. Here it is the verbal
transcription of Giulio’s argument:

Teacher: Explain well this idea.
Giulio: Because . . . that is I don’t know, if I arrive at 2 . . . I don’t know, I begin, I

make 1, no Imake 2, he arrives andmakes 1, I put 2 and I arrived at 5, which
I think is another winning number . . . yes, arrived at 5 . . . it is a winning
number, I think. Then . . . he adds 2, say, I add 1 and I arrived at 8, which is
another winning number. She adds 1, I add 2 and I arrive at . . . 11, which is
a winning number. He adds 2, I add 1, and I arrive at 14, which is another
winning number, he adds 1 I add 2, we arrive at 17 which is a winning
number, he adds 1 or 2, I add 1 or 2, and I win.

The subtraction turns now into an onward movement that starts from the very
first move (number 2) of an imagined match between himself and another player.
This movement is produced by means of a repetition of the same linguistic struc-
ture: “He adds . . . I add . . . and I arrive at . . . , which is a winning number.” This
repetition is not just a mere repetition of words, but is performed with a rhythmical
structure in sound, which is preserved along the entire sentence and contributes to
convey the general character of the found rule (similar to what was discussed in
algebraic context in Radford et al. 2007).
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Gestures are constantly present, starting from the first simulated move to the last
(winning) one. Table 30.2 reports some pictures of gestures accompanying the very
first part of Giulio’s sentence.

While uttering the moves of an imagined match, Giulio is performing again two
kinds of metaphoric gestures. When indicating his own moves, the gesture indicates
the uttered numbers by pointing out the correspondent number of fingers, i.e., two
fingers when saying 2 (Pictures a and c in Table 30.2). When referring to the other
players’ moves or to the obtained result, the hand is held open upwards as con-
taining something (Pictures b and d in Table 30.2): In this case the metaphoric
reference is made to underline a certain kind of generality of the uttered numbers.

At a certain point, when mentioning an opponent move, Giulio uses a linguistic
expression that in English may be translated as “say” or “for example” (in Italian it
is tipo) and that can be interpreted as expressing the germs of the concept of “any
number.”When uttering “say,” the student performs a gesture consisting of an open
hand quickly turned around (Table 30.3, Picture a).

The gesture is again metaphoric and the semiotic bundle of words and gestures
underlines that the number 2, chosen to indicate the opponent’s move, is to be
considered as one possibility among others (all the possible moves): It is one
generic move. This is indeed a very delicate logical relationship to manage: the
articulation between a universal qualifier (for any move from my opponent player)
with an existential one (the move that I choose after him). We see that the
gesture-speech combination allows the students to successfully manage it.

From this moment on, when uttering the imagined moves by the two players,
abstract pointing gestures are enacted with left-right spatial alternation, which
indicates visually the alternation between the two players in the game (Table 30.3,
Pictures b and c). This spatial alternation can be interpreted as helping the student to
keep control of the argument at the local level, that is to say, to control the choice of

Table 30.2 Multimodal transcript of the first part of Giulio’s argument

I begin . . . , I make
2

he arrives and puts 1 I put 2 and I arrived at 5

Io inizio . . . , faccio
2

lui arriva lì e mette 1 Io metto 2 e sono arrivato a 5

Two fingers pointed
out

Hand held open
upwards as
containing something

Two fingers pointed
out

Hand held open
upwards as
containing something
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the moves and counter-moves in the imagined sequence. The gesture spatial
alternation is repeated several times (catchment) for any couples of moves and
counter-moves, realizing the same rhythm of the accompanying words. As indi-
cated by McNeill (2005), gesture catchments provide the discourse with cohesion.
In this case, it contributes in structuring the entire argument at a global level.

The written template through which the game has been played has possibly
helped Giulio in developing his strategy, working as an interiorized tool. As a
matter of fact, when saying the general rule, he is looking at the blackboard
(Table 30.1, Picture a), where the record of last match is still written (see Fig. 30.1).
We remark that this match had not been played according to Giulio’s strategy and
that after this initial moment, we do not find any explicit reference to performed
matches, for instance, with pointing gestures to the blackboard or to his notebook:
This could be another index of the general level reached by Giulio in his argument.

The discussion focuses then on Giulio’s strategy. Some students immediately
agree with Giulio and produce their own argumentations, such as Eliana:

Eliana: I agree with Giulio because practically any time you have to reach a lucky
number you must add 3, because first you add 1 and then you add 2 or first
you add 2 and then add 1.

Eliana makes explicit that winning or “lucky” numbers can be reached by adding
3 (while Giulio mentioned subtraction by 3) and produces an argument for this by
referring to the two numbers 1 and 2 that can be played in the game. When she says
“you must add 3,” she accompanies her speech with a gesture with the right hand
turning from left to right (Table 30.4, Picture a), which may be referring to the
addition on the number line.

Eliana explains also where this number 3 comes from, i.e., the combination of
the possible subsequent moves of the two players. When uttering the numbers
added to compose 3, she moves first the left hand from left to right (Picture b in
Table 30.4), then the right hand with the same movement (Picture c in Table 30.4);

Table 30.3 Multimodal genericity conveyed within the semiotic bundle

Then . . . he adds 2, say . . . She adds 1, I add 2

Poi…lui aggiunge 2, tipo, … lei aggiunge 1, Io aggiungo 2

Open hand quickly turned
around

Abstract pointing at the left Abstract pointing at the right
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she mentions the two possible combinations (1 + 2 or 2 + 1) and repeats the
gestural combination in a catchment (Pictures c and d in Table 30.4).

As in the case of Giulio, we can notice the spatial alternation left-right as a
metaphoric reference for the alternation of the two players, and again we can notice
a catchment. But differently from the case of Giulio, now the fact that there are two
alternating players is expressed by Eliana only through her gesture, because in her
speech she uses always the pronoun “you,” possibly in impersonal sense.

Again, we may identify two metaphoric components condensed in a single
gesture:

• left-to-right movement ! addition
• spatial alternation ! players alternation

Right after Eliana, Elisa intervenes:

Elisa: So overall . . . if you play . . . you add 3 every time, and so if you can
arrive at the numbers that there are 3 [pointing out index and thumb;
Picture a in Table 30.5], that is if . . . Overall it is 3 [shifting the pointed
fingers from left to right; Picture b in Table 30.5], because if you add 1
[placing the pointed fingers at her left; Picture c in Table 30.5] and the
other adds 2 [placing the pointed fingers at her right, Picture d in
Table 30.5], if you add 2 and the other adds 1 [repeating the sequence
with pointed fingers at her left and then right as in Pictures c and d in
Table 30.5], overall it is 3 [shifting again the pointed fingers as in
Picture b in Table 30.5] and so you must be able to pick the numbers
that are . . .

Teacher: At a distance . . .
Elisa: . . .of 3.

Elisa accompanies her speech with a gesture performed with two fingers pointed
as if they were holding a little stick. This gesture is performed for the first time

Table 30.4 Eliana’s argument on the strategy of adding 3

you must add 3 because first_you add
1

and then you add 2 or first you add 2 and then add 1

devi aggiungere 3 perché prima
aggiungi 1

e poi aggiungi 2 o prima aggiungi 2 e poi aggiungi 1

Right hand turning
from left to right

Left hand moving
from left to right

Right hand moving
from left to right

Left hand moving from
left to right

Right hand moving
from
left to right
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when she says “there are 3” (Picture a in Table 30.5) and is kept until the end of the
sentence. It indicates metaphorically a fixed distance, similar to what has been
described in an early calculus context in previous studies (Arzarello et al. 2009;
Sabena 2007, 2008). The word distance is never uttered (it will be uttered imme-
diately later, after a prompt from the teacher): The gesture is complementing her
words and providing further meaning to her multimodal discourse.

When saying “overall it is 3,” the holding-stick gesture is shifted from left to
right (Picture b in Table 30.5): The left-to-right movement indicates that the fixed
distance (of 3) allows one to pass from a winning number to the following one in
the sequence. The girl is keeping her eyes towards the blackboard, where the last
match played is still written, according to the template chosen by the teacher
(Fig. 30.1). In this template, the subsequent moves are written one after the other, in
a horizontal way. The horizontal movement of Elisa’s gesture may be interpreted
against this background, suggesting that the semiotic choice of the teacher has been
useful for developing the students’ argument. At the same time, the gesture may be
referring metaphorically to an addition on the interiorized number line. We find
another example of a gesture condensing different meanings through its metaphoric
references and its dynamism. Through the condensing character of the gestures and
in synergy with speech, the different meanings come to be connected to build an
important part of the argument.

Through a gesture repetition or catchment, the condensing gesture is then
combined with spatial alternation referring again to the two players (Pictures c and
d in Table 30.5): The catchment provides support in shifting from a relationship

Table 30.5 Elisa’s condensing gesture

and so if you can arrive
at the numbers so that
there are 3

that is if . . . overall it is 3 because if you
add 1

and the other
adds 2

e quindi se tu riesci ad
arrivare ai numeri in
cui…in cui ci sono 3

cioè se…in tutto fa 3 perché se tu
aggiungi 1

e l’altro
aggiunge 2

Gesture performed with
two pointed fingers as
holding a little stick

Holding-stick gesture shifted
from left to right

Holding-stick
gesture placed
at left

Holding-stick
gesture placed
at right
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between moves to a relationship between numbers that can justify the moves and
indicates that such a distance does not vary over the entire winning sequence in the
game.

30.5 Discussion

This paper adopted a multimodal perspective on mathematics teaching and learning
processes and chose a semiotic tool in order to address it: the semiotic bundle, with
its wide notion of sign drawing from Vygotsky’s works, and its systemic and
dynamic features. It focused in particular on the role of gestures in interaction with
the other semiotic resources used in the classroom—speech first of all, but also
written signs—and addressed primary students’ mathematical argumentation pro-
cesses in the context of strategic interaction games.

Through a case study and qualitative-interpretative analysis, it has been shown
that gestures may contribute to carrying out argumentations that depart from
empirical stances and shift to a hypothetical plane in which generality is addressed.
From this case study, we can get also some insights on how gestures can do this. In
particular, specific features have been identified: semiotic contraction, the con-
densing character of gestures, and the use of gesture space in a metaphorical sense
combined with catchments. They will be briefly discussed, referring to the data
analysis reported above.

When Giulio identifies and/or expresses (we do not have sufficient data to
determine) the general rule of “always removing 3,” we see his sentences becoming
shorter and shorter and at the end just expressing the winning numbers, accom-
panied by abstract pointing gestures (Table 30.1, Fig. d). This is a type of semiotic
contraction that has also been found in other contexts and at different ages, such as
pattern generalization and function graphs (Sabena et al. 2005; Sabena 2007). From
an epistemological point of view, semiotic contraction characterizes modern
mathematical symbolism, and from a cognitive point of view it is a precious
mechanism. Radford (2008) relates contraction to focusing attention to the elements
that are relevant for a certain situation and to a deeper level of consciousness:
“Contraction is the mechanism for reducing attention to those aspects that appear to
be relevant. This is why, in general, contraction and objectification entail forgetting.
We need to forget to be able to focus” (p. 94).

Semiotic contraction can be found also in what Vygotsky (1934/1986) calls
“inner speech,” which is described discussing language as a paradigmatic signs
system. Inner speech is described at a structural level by syntactic reduction and
phasic reduction and at semantic level by agglutination. Syntactic reduction is a
specific form of abbreviation that curtails the subjects of sentences and leaves pure
predication. Syntactic articulation results are therefore minimized to the pure jux-
taposition of predicates. Phasic reduction consists of minimizing the phonetic
aspects of speech, namely curtailing the words themselves (for example, writing “u”
instead of “you”). Agglutination consists in combining words, gluing different
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meanings (concepts) into one expression (for example, “highway,” formed by
“high” and “way”). Nowadays, instant messaging communication systems on our
smartphones extensively exploits semiotic contractions (combined with additional
iconic features, such as the emoticons), typically in informal communication by
people sharing most of the contextual information.

With syntax being reduced, Vygotsky (1934/1986) claims that semantics
undertakes a contrary movement, with meaning coming to the fore: “With syntax
and sound reduced to a minimum, meaning is more than ever in the forefront. Inner
speech works with semantics, not phonetics” (p. 244).

We may observe that gestures, because of their spatial and kinesthetic nature, do
not need processes of agglutination to combine meanings, as some languages do: It
is their enactment itself that may produce the same result of combining meanings as
agglutination does. A specific form of semiotic contraction characterizing gestures
is in fact what I call blending or condensing gestures, which are gestures expressing
(at least) two different meanings. We have seen two examples above:

• Giulio, with the right-to-left gesture with three fingers pointed out, indicates
both the number 3 and subtraction (Table 30.1, Pictures b and c).

• Elisa, with two fingers pointed as if she were holding a little stick, shifted from
left to right, which may interpreted as indicating both a fixed distance and the
fact that this distance allows one to pass from one winning number to the next
one (Table 30.5, Pictures b and c). The co-timed speech specifies that this
distance is 3, obtained as the sum of 1 and 2.

In both examples, gestures condensed or blended two meanings by combining a
dynamic component with the hand shape: This dynamic feature has been observed
also by Calbris (2011) in what she calls “polysign gestures.” In previous studies in
the mathematical domain (Sabena 2007, 2008, 2010), the condensing or blending
character of gestures has been identified in functions and graphs contexts and
associated with iconic features of gestures. In the reported study, this feature is
shown in an arithmetic domain and associated with the metaphoric feature of
gestures, as McNeill (1992) classified them. Condensing two different meanings,
each of these gestures establishes two different kinds of metaphorical references,
one of which calls into play the number line, a didactical tool suggested in the
Italian curriculum. By exploiting space in order to reason about numbers, the
number line itself has a metaphorical nature. A double or even multiple blending
process seems therefore to be activated by some metaphorical gestures typical of the
mathematical domain. This theme requires deepening the reflection of what
“metaphorizing” means at a cognitive and at a semiotic level, and further research is
needed (for preliminary results using cognitive metaphors and blended spaces, see
Sabena et al. 2016).

Metaphoricity appears to be related also to the use of gesture space with spatial
alternation, as we have seen in Giulio and in Eliana. Giulio moves his hand left and
right when mentioning the moves and countermoves in his imagined match
(Table 30.3, Pictures b and c), while Eliana alternates her left and right hand for the
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same purpose (Table 30.4, Pictures b and c and Pictures d and e). Through gesture
spatial alternation, empty spaces acquire meanings, which in the data appear related
to a sort of local level, either in the game (imagined subsequent moves, in the case
of Giulio), or in the mathematical argument (numbers to add to compose 3, in the
case of Eliana).

As seen in the analysis, such a spatial alternation is repeated many times,
realizing what in gesture studies is called a catchment and is interpreted as pro-
viding the discourse with cohesion (McNeill 2005). In this case study, gesture
catchment is interpreted as supporting the students in structuring the entire argu-
ment at a global level. Previous results about how opposite spatial locations are
exploited gesturally to indicate mutually excluding cases seem to confirm this
interpretation (Arzarello and Sabena 2014).

For the sake of analysis, the different gestural features contributing to providing
general meaning and structure to the argumentation process have been discussed
here one after the other. However, as can be observed going back to the data
analysis, many of these features intertwine; furthermore, the analysis of gestures
needs to take into account the entire semiotic bundle. For example, only a systemic
analysis of words and gestures can show how, even if it is describing a certain
hypothetical match between himself and another player, Giulio’s argument contains
essential aspects conveying generality: the rhythmical repetition of the same lin-
guistic structure, accompanied with a corresponding catchment (Tables 30.2 and
30.3); the use of generic words accompanied by a generic gesture (Table 30.3,
Picture a); and the use of abstract pointings while uttering the possible moves
(Table 30.3, Pictures b and c). In the case of Eliana’s argument, it is striking to
observe how gestures and words complete each other in a synchronic way.

If we analyze the children’s contribution in a diachronic way, further observa-
tions may be drawn that provide elements to describe the classroom discussion
evolution in a multimodal perspective. To give an example, it is interesting to see
how Giulio’s spatial alternation with his right hand evolves in Eliana’s alternation
of the two hands one after the other (see Table 30.4); in this latter case, the subject
in her speech is not changing (it is always “you”), showing a tension towards the
arithmetical relationships rather than on the strategic game interaction. This
paves the way to the following Elisa’s intervention about the “numbers so that there
are 3.”

A final consideration is reserved for the didactical implications of such a
fine-grained analysis. In this paper, little attention has been devoted to the didactical
variables of the situation. Of course, the teacher’s choices are never neutral with
respect to the use of any semiotic resource in the classroom, gestures included. An
example in the data is the semiotic template through which the Race to 20 has been
presented to the students and through which they play the game (Fig. 30.1). We
have seen that this choice—which resonates with the didactic tool of the number
line—has provided an essential tool for the students not only to play the game, but
also for developing argumentations about how to win it. In particular, Elisa’s
multimodal argument about the “distance of 3” between winning numbers shows a
relation to the semiotic written template through which the game was played.
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The results of this analysis appear therefore to offer elements for validating the
choice of the teacher. It is beyond the scope of the analysis, however, to discuss
why for Elisa (and for some students) it did work, whereas for others, further
reflection was needed. Classroom discussion appears indeed to be a suitable means
for allowing the development of multimodal argumentations such as the one
described, in which the students may exploit gestures as semiotic resources. This
requires, of course, that gestures are considered legitimate in the classroom (as it
happens in the analyzed case: The teacher supports Elisa in her multimodal argu-
ment by considering the contribution of her gesture and offering her the missing
word). Even more, the teacher can contribute to classroom mathematical activity
through her gestures in order to make the mathematical discourse evolve towards
culturally established mathematics forms (see the “semiotic game” in Arzarello
et al. 2009). Ongoing research indicates that the teacher can have an important role
in the evolution of signs within the semiotic bundles and in building “multimodal
semiotic chains” that make mathematical meaning progress through argumentation
processes (Maffia and Sabena 2015, 2016). Further extensive research is still nee-
ded in order to unveil and exploit fully the potentiality of gestures as didactical
means in the classroom.
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Chapter 31
Improving Mathematics Pedagogy
Through Student/Teacher Valuing:
Lessons from Five Continents

Wee Tiong Seah

Abstract This chapter focuses on the construct of values/valuing, using the find-
ings of the large-scale, ‘What I Find Important (in mathematics learning)’ [WIFI]
study to explore how values/valuing promotes effective (mathematics) pedagogy.
The analysis of some 16,000 questionnaires collected from 19 economies reveals
the absence of any relationship between values and specific actions, suggesting that
the actions that reflect what are being valued are culturally-dependent. Students in
economies which perform well in the PISA assessments were also found to value
connections, understanding, communication, and recall in their mathematics
learning, whereas their peers at the other end of the league table appeared to value
relevance and practice more. The notion of intrinsic and extrinsic valuing will be
discussed. In acknowledging the presence of value differences and conflicts that
arise from inter-personal interactions in mathematics lessons, teachers’ capacity to
engage with values alignment is highlighted.

Keywords Values � Intrinsic/extrinsic valuing � Values alignment
Volition � Conation

31.1 Introduction

Hattie’s (2015) more than 1200 meta-analyses of some 65,000 studies involving
about 250 million students has identified factors associated with students’ academic
success at school. Amongst the 195 factors, 89 of these displayed effect sizes of 0.4
or more, which Hattie considered to be the hinge point above which the factors are
worth employing to advance student learning. Six key findings were summarized
from these 89 interventions that mattered, suggesting that the key to effective
teaching lies in the valuing of just a couple of main ideas. One of these key findings
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refers to heightened impact on student learning “when teachers base their teaching
on students’ prior learning” (Hattie 2015, p. 81), emphasizing the valuing of prior
learning. Another key finding identifies teachers setting “appropriate levels of
challenge” (p. 81), suggesting the importance and valuing of challenge. The
message here is that effective teaching practices can be described in ways which are
generic, focusing just on the essence that is of value. Thus, for example, for the
intervention ‘appropriate levels of challenge’, challenge is being valued and is the
focus; what constitute appropriate levels and indeed what they look like seem to be
flexible and able to be defined in context.

This focus on values and valuing to account for effective or successful learning
has also been evidenced in individual studies, some of which would have been
analyzed by John Hattie in his meta-analysis exercise. For instance, a Nuffield
Foundation-commissioned review asserted that

high attainment may be much more closely linked to cultural values than to specific
mathematics teaching practices. This may be a bitter pill for those of us in mathematics
education who like to think that how the subject is taught is the key to high attainment. But
study after study shows that countries ranked highly on international studies – Finland,
Flemish Belgium, Singapore, Korea – do not have particularly innovative teaching
approaches. (Askew et al. 2010, p. 12)

This chapter focuses on these culturally-situated values, using the findings of a
large-scale research study to explore the sorts of values/valuing that are associated
with effective (mathematics) pedagogy. It will begin with a review of research that
had been conducted on values and valuing in the context of mathematics education.
This review would highlight the process of valuing as involving both cognition and
affect, how its evaluation is complicated by the fact that values are invisible,
implicit, and not always activated, and how it provides one with the want to
embrace it. This will be achieved through reflecting on the findings of the
large-scale, ‘What I Find Important (in mathematics learning)’ Study. The dis-
cussion will be presented next, emphasizing that constituent actions of values are
culturally-dependent rather than absolute. The notion of intrinsic and extrinsic
valuing will be discussed, with a tentative proposal of how these might be related to
mathematical performance. The absence of correlation between values and con-
stituent actions will be discussed. Lastly, the inevitable and prevalent instances of
values alignment will be highlighted in the context of the data analysed.

31.2 The Nature of Values and Valuing in Mathematics
Education

Although the concept of values and valuing in school education is not new (e.g.
moral education programs), the acknowledgement of its role in the teaching and
learning of individual school subjects is a relatively recent research activity. Values
in mathematics and in mathematics education were first proposed by Bishop
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(1988a, 1996) respectively. For the former, “the three value components of culture -
White’s sentimental, ideological and sociological components - appear … to have
pairs of complementary values associated with mathematics” (Bishop 1988b,
p. 185), namely, rationalism and objectism, progress and control, mystery and
openness.

While Seah and Andersson’s (2015) conception are rather similar, it is also more
explicit in highlighting two aspects of values and valuing in mathematics education.
One aspect acknowledges that the values that are being espoused in mathematics
education need not stem from mathematics lessons alone, but from the wider
sociocultural context as well. The other aspect that is more explicitly stated is that
the valuing that are inculcated through mathematics education goes beyond being in
students’ memories, and they in fact ‘swing back’ to affect the quality of mathe-
matics learning. For them, values and valuing reflect

the convictions which an individual has internalised as being the things of importance and
worth. What an individual values defines for her/him a window through which s/he views
the world around her/him. Valuing provides the individual with the will and determination
to maintain any course of action chosen in the learning and teaching of mathematics. They
regulate the ways in which a learner’s/teacher’s cognitive skills and emotional dispositions
are aligned to learning/teaching in any given educational context. (p. 169)

31.2.1 Values and Valuing as Involving Both Cognition
and Affect

Seah and Andersson’s (2015) definition above implies that values are neither
cognitive nor affective constructs per se. Instead, valuing is regarded as being both
cognitive and affective in nature (see also, Hartman, n.d.; Huitt 2004).

Rather than being an affective construct as it was generally known (e.g. Bishop
1996; Krathwohl et al. 1964), the process and act of valuing invariably involve
reasoning and thinking. Even though Krathwohl et al.’s (1964) taxonomy of edu-
cational objectives might refer to the affective domain, the ‘organization’ phase
involves the individual relating the values s/he subscribes to amongst themselves
such that these values co-exist, which is a task that involves thinking and reasoning.

Similarly, Raths et al. (1987) conception regards successful attainment of a value
as involving all seven criteria, namely, choosing freely, choosing from alternatives,
choosing after thoughtful consideration of the consequences of each element,
prizing and cherishing, prizing through affirming to others, acting with the choice,
and acting repeatedly in some pattern of life. Clearly, the choosing components
involve reasoning, whilst the prizing components involve affect.
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31.2.2 Values and Valuing as Being Socio-cultural

Values and valuing is also socio-cultural in nature. What we value reflect years of
learning and influence from our historical experiences and social interactions as
members of the cultures we belong. Indeed, the notion of cultures has been regarded
as “an organised system of values which are transmitted to its members both
formally and informally” (McConatha and Schnell 1995, p. 81).

The discussion thus far has signaled a perspective to learning where the learner’s
objectivised actions are culturally and symbolically mediated by values, and which
can be examined through activity theory. Activity theory provides a useful theo-
retical framework also in that it explains how the mediation gets internalised within
cultures, giving the learner a particular identity that characterises him or her in
culturally unique ways. In particular, the Cultural Historical Activity Theory
[CHAT] embodies the construct of values very well. CHAT represents the third
generation of the activity theory approach to understanding learning and education.
While the first and second generations were associated with Vygotsky’s sociocul-
tural theory of teaching and learning, in which students participate in negotiation
and co-construction of knowledge (Haenen et al. 2003), and Leontiev’s activity
theory, the set of specific notions, claims, and arguments that consider the rela-
tionship between a subject (typically an individual human) and the object
(Kaptelinin and Nardi 2012). In this third-generation interpretation of the activity
theory, Engeström’s activity system model extended Leontiev’s original concept of
subject-object interaction to become a three-way interaction between ‘subject’,
‘object’, and ‘community’. The new theory went beyond a focus on activity sys-
tems to emphasise the interactions between and amongst activity systems, so that
learning is meaningful through a process of multi-voicedness, difference, and
conflict negotiation. Gummesson (2006) had argued that the main outcome of this
process is value co-creation. In the classroom, for example, pedagogical activities
take place through the interaction of what students, teachers, and indirectly, the
wider community value. The interactions have brought together the different things
that teachers and their students value similarly and differently, and the co-creation
of values can be perceived as the agreed-upon, aligned values that facilitate the
continued functioning of the activity systems in interaction. Importantly, while the
first generation of the activity theory focuses on the individual learner, and
the second generation directs the attention to the community within which learning
takes place, CHAT considers as the unit of analysis joint activity amongst indi-
viduals in the learning environment. In relation to values, thus, we can imagine
values not only as being acquired over time, but that the negotiations of values
between and amongst activity systems would also lead to values being challenged
and refined on an ongoing basis, depending on the opportunities for one’s values to
come into contact with values from other activity systems.
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31.2.3 Values and Valuing Driving Performance

Research evidence has also supported the belief that mathematics performance is
related to students’ valuing. In addition to the Nuffield Foundation-commissioned
report (Askew et al. 2010) mentioned above which highlighted the role of cultural
values, there is also more recent research by Jerrim (2014), who sub-divided the
Australian dataset for PISA 2012 by broad student ethnicity, specifically,
high-performing East Asian, low-performing East Asian, Indian, British, and native
Australian. Given that the students in the sample were second-generation immi-
grants experiencing an Australian mathematics education with their native
Australian peers, it can be assumed that the factors underlying the differences
existed beyond the school level, with their different emphases and valuing on
different aspects of school education.

Schukajlow’s (2017) study with 192 Years 9/10 students in Germany demon-
strated a similar relationship between student valuing and mathematics perfor-
mance. Differences were found, however, between performance on problems
related to real-life scenarios and problems which were not. Schukajlow had flagged
this for further investigations, and it represents existing research effort into
understanding how values might be used to further enhance the mathematics
learning experience of young children.

Such an association between valuing and mathematics performance is important,
and even more so given that what are being valued also affect the cognitive pro-
cesses and affective states that in turn influence the quality of mathematics learning.
As such,

the extent to which the educational aspirations of students and parents are the result of
cultural values or determinants of these, and how such aspirations interact with education
policies and practices is an important subject that merits further study. (OECD 2014, p. 20)

In responding to this call, the guiding assumption is that students’ possession or
acquisition of relevant valuing allows each of them to apply appropriate cognitive
skills and to develop positive affective states which promote desirable outcomes in
mathematics learning, whether these be related to measurable performance or to
relational understanding.

In addition to being culturally-referenced, what is being valued is also invisible
and implicit. Due to the inevitable presence of competing and overriding values
(Seah 2005), what one values is not articulated in all situations. Indeed, Takuya Baba
had likened values and valuing to the underground roots of a tree, which are not only
invisible and implicit, but also crucial to supporting and nurturing the healthy growth
of what is visible of the tree above the ground, such as student results.

Herein lies one of the most important aspect of values and valuing, that is, how it
supports the development of cognitive functioning and nurturing of affective states.
It is as if attending to the cognitive and affective development of mathematics
learners alone is not sufficient to bring about meaningful learning. The learner
should want to engage, to understand, to learn, and perhaps to achieve as well in the
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first place. As the saying goes, ‘you can bring a horse to the water, but you can’t
make it drink’. That is, facilitating the valuing of relevant attributes in mathematics
learning by the learners themselves is a crucial—and often forgotten—component
of mathematics pedagogy, for this in turn supports the development of cognitive
functioning and nurturing of affective states that would more directly impact on the
quality of learning.

31.3 The ‘What I Find Important (in Mathematics
Learning)’ [WIFI] Study

In fact, the ‘What I Find Important (in mathematics learning)’ [WIFI] study was
conceptualised with this guiding assumption in mind. The objective of the WIFI
study has been to find out what students in the last two years of primary schooling
and what 15-year-old students value in their mathematics learning experiences.

The desire to facilitate a ‘mapping of the scene’ has necessitated a large-scale
study, which also highlighted the need for a methodology that allowed for the
assessment of student values in time-efficient ways. Thus, instead of adopting the
qualitative approaches such as in Chin and Lin (2000) or in Clarkson et al. (2000),
the WIFI study made use of the questionnaire method. This way, a large number of
students could be surveyed for the attributes of mathematics education which they
personally find important, and also so that the data collected could be interpreted
efficiently using the SPSS software.

The WIFI questionnaire is divided into four sections. Section A is made up of 64
items, each of which being a mathematics classroom activity (e.g ‘outdoor math-
ematics activities’, ‘explaining my solutions to the class’) or a pedagogical norm
(e.g ‘shortcuts to solving a problem’). Student respondents were expected to rate on
the 5-point Likert scale the extent to which an activity or norm was important to
each of them. Section B is made up of 10 continuum dimension items, in which
opposing values are located on both ends of each continuum dimension (e.g ‘how
the answer to a problem is obtained’ vs. ‘what the answer to a problem is’) and
student respondents needed to indicate where s/he stood in relation to the two
opposing values. Section C is an open-ended, scenario-stimulated responses sec-
tion, providing for another means of identifying what students valued in their
mathematics learning. Students’ demographic and personal information were col-
lected in Section D. Examples of the questionnaire items and of the layout can be
seen in Seah et al. (2016). The WIFI questionnaire can also be accessed online at:
https://www.surveymonkey.com/r/WIFI_maths.

The questionnaire was administered in class, that is, student participants filled in
the questionnaire individually in their own classroom setting, with the exercise
facilitated by their mathematics teachers. The questionnaire is available in hardcopy
and online versions, and any participating school will select one of the two possible
formats for all its student participants.
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To date, some 20,000 questionnaires have been completed (with more than
16,000 analysed) across the 19 different economies. Only the findings from the
analysis of responses to Section A items are reported in this chapter. These items
are listed in the Appendix.

Each participating economy is represented by a team of local researchers. Each
team was responsible for administering the questionnaire in its own context. The
quantitative analysis of the questionnaire data was conducted centrally by the
Australian research team, however. The results generated by SPSSwin® were then
returned to the respective research teams, the intention being that the sense-making
could be done in a culturally-meaningful manner by their own researchers.

Upon receipt of the raw data from each participating economy, initial data
screening was carried out to test for univariate normality, multivariate outliers
(using Mahalanobis’ distance criterion), and homogeneity of variance-covariance
matrices (using Box’s M tests). A Principal Component Analysis (PCA) with
Varimax rotation was used to examine the questionnaire items. The significance
level was set at 0.05, while a cut-off criterion for component loadings of at least
0.45 was used in interpreting the solution. Items that did not meet the criteria were
eliminated. For each economy’s data, the Kaiser-Meyer-Olkin (KMO) measure of
sampling adequacy was noted, and Bartlett’s test of sphericity (BTS) (Bartlett 1950)
was also checked for significance at the 0.001 level, so that factorability of the
correlation matrix could be assumed, which demonstrated that the identity matrix
instrument was reliable and confirmed the usefulness of the PCA. According to the
cut-off criterion, the number of items that were removed from the original 64 was
understandably different between economies.

The research team in each participating economy then interpreted these com-
ponents, assigning a value label to each. This is a distinguishing feature of this
study, in that the cultural-situatedness of valuing has meant that the researchers
from each participating economy analysed and interpreted their own PCA com-
ponents, and no attempt was made for each group’s criteria for interpretations to be
shared or made consistent across all participating economies.

31.4 What the Top Performers Value

The key research question guiding the conduct of the WIFI Study is: What do
students value in their respective mathematics learning? As we saw above, it is
expected that the students’ valuing is shaped in context, that is, influenced by
societal, ethnic, religious, family, school and other institutional cultures.

This chapter, however, focuses on what students in the top performing
PISA2012 economies valued in mathematics learning. Given the relationship
between student valuing and mathematics performance (see above), and given the
interest in many countries across the world to understand how the top performing
economies consistently lead the pack in different ranking exercises, it is hoped that
the findings reported in this chapter can inform researchers on the valuing that
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might account for students’ mathematics achievement at the national level, thereby
deepening what we understand about excellence in mathematics learning.
Table 31.1 shows these valuing for Hong Kong, Taiwan, Korea and Macau, which
were placed third, fourth, fifth and sixth by student performance in PISA2012.
These economies continue to lead the world in subsequent PISA tests. For example,
in PISA2015, they were ranked second, fourth, seventh, and third respectively
(Thomson et al. 2016).

The number of attributes listed for each economy is different from that of another
economy, since these are associated with the number of components that were
elicited from the respective PCA. The attributes had been named independently by
the respective research teams, based on each team’s cultural interpretation of the
questionnaire items which had loaded onto the components. The order of listing of
the attributes in Table 31.1 reflects, for each economy, the order of the components
that were derived from the PCA exercises. As shown in Table 31.1, it may be said
that generally, the top performing economies have students which valued con-
nections, understanding, communication, recall, and ICT.

It is also necessary to check if students in the economies which did not perform
as well might have been valuing the same aspects in mathematics education.
Accordingly, the students’ valuing for Turkey and Thailand—ranked 44th and 50th
respectively amongst the 65 surveyed economies—were referred to, as shown in
Table 31.2.

Given that students in Turkey and Thailand valued ICT as well, it is unlikely that
information and communication technology in general would have contributed to
student achievement in mathematics. It might well be that certain aspects within
ICT use would enhance or promote student learning and achievement, whereas
other aspects of ICT use might have the opposite effect, such that its valuing was
nominated by different groups of students. While this may be a possibility (which
will be briefly explored below)—and indeed, this signals further research about
how different groups of students might value different aspects of ICT—it is also
reasonable to remove it from the list of attributes associated with top performing

Table 31.1 What students in top performing economies valued

HKG [3/65] TWN [4/65] KOR [5/65] MAC [6/65]

Understanding Connections Understanding Achievement

Control Recall Connections Humanism

Effort Effort Fun Practice

Ideas Exploration Fluency Technology

Recall Openness Accuracy Communication

ICT Communication Collaborative reflection Mathematical development

Feedback Efficiency

Connections Communication

Learning approach Mystery

HKG Hong Kong, TWN Taiwan, KOR Korea, MAC Macau
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students’ valuing. In other words, it can be deduced that students from top per-
forming countries in the PISA2012 assessment valued connections, understanding,
communication, and recall.

It is reassuring that many of these values are being explicitly promoted in many
current-day mathematics curriculum documents. For example, amongst the 5 pro-
cess standards identified for the NCTM ‘Principles and Standards for School
Mathematics’ (2000) are connections and communication. Incidentally, the other
two values—that is, understanding and recall—are being reflected in the current
Australian Curriculum (ACARA 2016) and Victorian Curriculum (VCAA 2017)
for Mathematics, if we associate recall with being an aspect of fluency.

These attributes are observed to be different in nature from those which were
valued by countries like Turkey and Thailand (see Table 31.2), which did not
perform as well relative to the other participating countries. The valuing of con-
nections, understanding, communication, and recall was concerned with paying
attention to the attributes of the nature or structure of the mathematics discipline.
These values might thus be considered to be intrinsic in nature. On the other hand,
the valuing of relevance and practice by students in Turkey and Thailand highlights
the importance given to what can be done with mathematical knowledge and skills,
or what can be done externally to the discipline itself to acquire the knowledge and
skills. These values can thus be considered to be more extrinsic. It appears that
students’ mathematical performance might be related to not just valuing of indi-
vidual attributes, but also, to the extent to which the valuing is related to intrinsic
characteristics.

31.5 Valuing and Constituent Actions

As suggested by the questionnaire format, the invisible nature of valuing is com-
pensated for in this study by focussing on the observable actions that are expressed
by the valuing associated to it. Given the cultural nature of valuing, it was assumed
that the same valuing can take different forms in different settings. This was
investigated by examining the questionnaire items that loaded onto the same

Table 31.2 What students in Turkey and Thailand valued

TUR [44/65] THA [50/65]

Relevance Process

Practice Fact

ICT Practice

Collectivism Relevance

Objectism ICT

Learning from others

TUR Turkey, THA Thailand
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valuing across different economies. Table 31.3 shows the constituent actions cor-
responding to the valuing of ICT in Hong Kong, Japan and Ghana, for example.

Although it may initially look as if the valuing of ICT can be described by a
common set of classroom actions, it is important to note that no one action can be
found across all three economies. The interplay between valuing and its constituent
actions is indeed complicated. While the valuing of ICT is associated with the
learning of mathematics content with the computer and with internet in Hong Kong
and Japan, these actions could not be found amongst the Ghana data, even though
Ghanaian students also valued ICT. At the same time, Japanese students’ valuing of
ICT was uniquely associated with mathematics games.

It needs to be noted that the similarity of activities emphasised in different
education systems does not necessarily increase the chance of these cultures valuing
the same attribute. In the example above, the classroom activities embraced by the
Japanese students were similar to what their peers in Korea seemed to be preferring
too. Yet, the cultural interpretations of these classroom activities in Japan and in
Korea were such that the sets of activities were seen to reflect different valuing;
while they referred to a valuing of ICT in Japan, it was a valuing of fun in Korea.

It is worthy to consider the impact on the effectiveness of mathematics pedagogy
in different education systems when the same valuing is emphasised differently
across the institutions. We can see this in the three economies’ valuing of ICT
above, where it was speculated that an economy’s infrastructure might be a con-
tributing factor to this difference. On the other hand, the differences might come
about through culturally different conceptions of pedagogy and of education. Here
we may consider Macao and Ghanaian students’ valuing of achievement through
their preferences for 15 and 16 classroom activities respectively. Although 6 (e.g.
‘understanding concepts/processes’, ‘working out the mathematics by myself’) of
these preferred activities were common between the two economies, there were still
up to 10 activities which were regarded by students to be important in their
respective education systems. In Macao, the students’ valuing of achievement
through understanding and working out the mathematics individually was sup-
ported by activities such as ‘shortcuts to solving a problem’ and ‘practising how to
use mathematics formulae’, which both pointed to means of achieving in

Table 31.3 How ICT was valued across three economies

HKG JPN GHA

Using the calculator to check
the answer

Learning mathematics with
the computer

Using the calculator to check
the answer

Learning mathematics with
the computer

Learning mathematics with
the internet

Using the calculator to
calculate

Using the calculator to
calculate

Using the calculator to check
the answer

Learning mathematics with
the internet

Mathematics games

HKG Hong Kong, JPN Japan, GHA Ghana
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mathematics through efficient and fluent working-out. Students in Ghana also aimed
to achieve in mathematics through efficient and fluent practices, though these
appeared to take on different forms. There, the preferred means were ‘teacher
asking us questions’ and ‘remembering the work we have done’.

Even amongst the top performers which are generally perceived to be of similar
culture (i.e. East Asian), the same attribute being valued is portrayed through
different classroom actions. Table 31.4 provides an example for Korea and Hong
Kong’s valuing of connections. Although there are three actions which were in
common across the two economies, that is, ‘relating mathematics to other subjects
in schools’, ‘connecting mathematics to real life’, and ‘appreciating the beauty of
mathematics’, in each economy the students were also demonstrating their valuing
of connections through other actions. For example, students in Korea appeared to
regard their explanations of their solutions ‘in public’ in class as a means of valuing
connections, possibly through the need for the presenting students to be able to
establish how concepts and knowledge are interconnected in their respective
solutions. However, this classroom action was not identified with the valuing of
connections by their peers in Hong Kong classrooms, even though such a classroom
activity is also commonly found there.

31.6 Determining Valuing from Particular Actions

In the same way that any attribute of mathematics learning and teaching can be
valued through different classroom activities, any activity needs not point to any
one particular valuing. Rather, the implementation of any activity in a mathematics

Table 31.4 How students in Korea and Hong Kong valued connections

KOR HKG

Relating mathematics to other subjects in
schools

Relating mathematics to other subjects in
schools

Appreciating the beauty of mathematics Appreciating the beauty of mathematics

Connecting mathematics to real life Connecting mathematics to real life

Stories about recent developments in maths
Stories about mathematics
Explaining my solutions to the class

Learning the proofs

Students posing maths problems
Looking out for maths in real life
Making up my own maths questions
Mathematics puzzles
Mathematics debates

Looking for different possible
answers

Investigations

KOR Korea, HKG Hong Kong
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classroom can point to the valuing of one or more of several possible valuing. What
this means for the assessment and identification of valuing is that some kind of
triangulation is needed through the observation of multiple supporting activities.

This other aspect of the absence of a one-to-one correspondence between
valuing and classroom activities was observed earlier on in the study, when the
different research teams were aligning individual questionnaire items of classroom
activities with the valuing that was assumed to being reflected. For example, the
emphasis given by students in Turkey for small-group discussions would reflect the
valuing of one or more of the following attributes of mathematics education: col-
laboration, communication, efficiency, fun, humanism, openness, question posing,
practice, and representation. Thus, whatever a teacher’s intention or valuing is
when small-group discussions is part of his/her professional practice in the math-
ematics classroom, students may not be able to understand what teacher valuing is
being espoused through it. However, to the extent that the teacher is able to express
whatever is being valued through a variety of classroom activities, students will be
able to triangulate these to understand this valuing. There are implications here for
research designs involving data collection through lesson observations: Multiple
observations might be needed for the teachers (and students) to display a range of
actions and activities, so that the underlying intentions, philosophies and valuing
can be ‘sieved out’ from amongst the possible attributes valued. If repeated
observations is not possible, then post-lesson interviews or discussions with the
participants involved would be necessary to clarify these underlying valuing.

Elsewhere, Clarke’s (2004) documentation of the Japanese classroom practice of
teacher between-desk instruction—which the Japanese educators called
‘kikan-shido’—might lead the Western academic community to associate it with
teacher elicitation of student difficulties and subsequent teacher individualised
explanation. However, this classroom practice has been noticed in Shanghai
(Lopez-Real et al. 2004) and German mathematics lessons too. Of importance is
how this similar act of teacher between-desk instruction actually expresses different
valuing amongst the three economies. In Shanghai, teachers made use of their
monitoring of student work to encourage students to think further. In Germany,
however, the monitoring and correction of student work seemed to be absent, where
the teachers appeared to be using the opportunities to ask questions for the purpose
of stimulating students’ mathematical thinking. Thus, even though kikan-shido
might be observed in German, Japanese and Shanghai mathematics lessons, the
teachers across these three cultures were portraying different valuing with regards to
mathematics pedagogy.

Similarly, analysed data from the TIMSS Video Study (Hiebert et al. 2003) have
suggested that even though the classroom activity of problem-solving may be
embraced in many mathematics education systems, this same form should not be
taken to imply that the same attributes of mathematics pedagogy are being valued.
Indeed, it is instructive to note that the high performing mathematics education
systems emphasise connections that are facilitated through the problem-solving
tasks, whereas many of the other mathematics education systems emphasise pro-
cedure. Thus, doing what effective mathematics education systems do does not
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imply that the same benefits will be gained. Rather, culturally-appropriate class-
room activities are means through which the features of mathematics learning that
matter are valued, expressed and operationalised.

31.7 Implications for Teacher Practice

The analysed data from the top performing PISA2012 economies suggest that
student performance in mathematics was related to students’ valuing of connec-
tions, understanding, communication, and recall. Given that PISA items assess
students’ ability to apply their mathematical knowledge in novel problems—which
would require students to demonstrate knowledge, skill and application—the four
attributes being valued do cover the various aspects of being able to excel in the
assessment. Many of Hattie’s (2015) top classroom interventions (which refer to
school education generally and which also include background variables such as
‘home environment’ and ‘ethnicity’) are related to these four attributes, such as
classroom discussion (effect size = 0.82), feedback (effect size = 0.73), formative
evaluation (effect size = 0.68), concept mapping (0.64), and mastery learning
(effect size = 0.57). Significantly, none of the last 50 interventions in the list of 195
appeared to relate to these four valuing.

This student valuing of connections, understanding, communication, and recall
reflect intrinsic valuing, as opposed to extrinsic valuing which would emphasise
such valuing as application and relevance. There are implications here for pro-
fessional practice in the mathematics classroom, even though curriculum docu-
ments might emphasise both these categories of attributes. This is important, not
least because the inculcation of extrinsic valuing can be more appealing to students
and can also be easier to convey to them. On the other hand, it is likely that
teachers’ efforts to prompt students’ appreciation and subsequent valuing of
intrinsic valuing can actively be derailed by students routinely asking questions
such as, “when are we ever going to use this?” It thus appears that students need to
appreciate the utilitarian aspects embedded within intrinsic valuing.

Mathematics pedagogical approaches or strategies can be defined by what they
value with regards to the teaching and learning of mathematics. At the level of the
intended curriculum, the valuing that is embedded in these pedagogical approaches
or strategies may not be explicitly linked to the specific approaches or strategies, but
are rather merely mentioned in the introductory or rationale sections only. As a
result, too, these valuing are not explicitly stated in the text or by the teacher. To the
extent that this valuing can be considered the heart and soul of the particular
pedagogical approach or strategy, it is important that preservice or in-service
teachers who are being introduced to it is made aware of the underlying valuing.

The data collected from different economies have indicated that merely ‘trans-
planting’ a new pedagogical approach or strategy in one’s classroom might not
make clear to students the underlying valuing that is being advocated or taught.
This is why expensive projects which attempted to introduce Japanese classrooms
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in the USA and Chinese classes in the UK have largely failed to achieve their
respective objectives. Teaching students with the new approach or strategy alone is
likely not able to realise its intended benefits to mathematics learning. The pro-
fessional discourse might need to change from ‘we are learning skill ABC or
technique DEF’ or similar, to one of ‘through this skill ABC or technique DEF, we
are learning to value attribute XYZ’ or similar.

In this way, it adds another dimension to how values and valuing play a key role
in (mathematics) lesson planning. Not only is a focus on valuing in lesson planning
expected to promote students’ cognitive and affective engagement, it also allows
teachers to adopt/adapt and reap maximal potential out of teaching approaches or
strategies they are introduced to.

31.8 Shaping Student’s Valuing

The discussion above assumes that students’ valuing can be and are being shaped in
the mathematics education process. After all, that values are internalised and stable
variables does not imply that they cannot be modified. Furthermore, modification
and (re-)shaping may be easier when the individual is still young.

From a practical perspective, the data collected from around the world have also
provided empirical evidence that value change takes place between the primary and
secondary school years. In Japan, primary school students surveyed valued process,
but their secondary school peers were valuing product, which can be viewed as the
opposing attribute to process when considering the engagement with and com-
pletion of mathematical tasks. On the other hand, in Hong Kong, it was found that
when students progressed from primary to secondary schools, they experienced a
drop in their valuing of understanding, recall and control. Of course, given Hong
Kong’s excellent performance in international assessments and this relationship to
the students’ valuing of understanding and recall, it is also reasonable to assert that
the reduced valuing was still significant enough to be highly regarded by 15-year
old Hong Kong students who aspire to work excellently.

Teachers thus play the role of value agents even as they engage in mathematics
teaching. In many ways, one can argue that this has always been a role that is
played out by teachers everywhere. Teacher agency in shaping and modifying
students’ valuing is very real indeed, although it can be more explicit than it
normally is. In fact, this teacher role is also often advocated in curriculum
statements.

Teacher teaching, shaping and modification of student valuing can take on
different forms. One of the more innovative forms is the introduction of role-play
activities in mathematics lessons, either through students taking on roles which
correspond to particular nominated valuing (e.g. being a student who values pro-
gress), or taking on the role of teacher or peer tutor, which would necessitate
student evaluation of the valuing that underlies effective teaching/tutoring.
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31.9 Values Alignment

Interactions between teachers and students, as well as teachers’ pedagogical tasks
and activities in class, both bring to the fore what teachers and their students valued
similarly and differently. Teacher effectiveness can depend on the extent to which
teachers are able to negotiate these inevitable value differences, so as to bring about
a learning environment in which everyone’s valuing are aligned and inter-personal
relationships are in harmony. After all, “all relationships … are claimed to be
strengthened by aligned values” (Branson 2008, p 381). Value alignment thus
involves teachers making in-the-moment decisions, acknowledging that teacher
practice is situated in a socially co-constructed setting. Several teacher strategies of
value alignment have been reported by Seah and Andersson (2015), and further
research is being conducted in this area to empower teachers to recognise, align and
shape the valuing that underlies cognitive and affective functionings of mathematics
teaching and learning.

Thus, values alignment should be regarded as already being part of day-to-day
interactions. When individuals come together with their own value systems, they
will always need to negotiate about different preferences and intentions to ensure
that the interaction is successful. This calls for values alignment to take place, and it
does not mean that one party needs necessarily to impose his/her/their values to the
rest. There can always be middle-path compromises, for example. At the same time,
it is important to note that any consideration of values being aligned (or not) is
mutual between and amongst the individuals involved, both teachers and their
students. In this manner, student agency is acknowledged.

31.10 Summarising Ideas

Valuing refers to an individual’s embrace of convictions which are considered to be
of importance and worth. It provides the individual with the will and grit to
maintain any ‘I want to’ mindset in the learning and teaching of mathematics. In the
process, this conative variable shapes the manner in which the individual’s rea-
soning, emotions and actions relating to mathematics pedagogy develop and
establish. The argument in this chapter is that more effective teaching and learning
can only take place by paying attention to what are being valued by teachers and
students respectively, and through teachers’ purposeful shaping of students’ valuing
and alignment of the diverse values that are enacted upon by these teachers and
their respective students.

Data collected and analysed from the various economies participating in the
WIFI Study have demonstrated that any particular valuing is manifested in one of
many possible classroom practices. Similarly, any one classroom practice is not
reflective of any one valuing only.
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The quantitative WIFI Study has allowed us to identify what students valued in
mathematics learning across 19 different economies. It was found that students in 4
top performing mathematics education systems in PISA2012 (i.e. ranked third to
sixth) generally valued connections, understanding, communication, and recall. On
the other hand, students in two of the education systems which did not perform well
were valuing relevance and practice. A distinction between intrinsic and extrinsic
valuing is proposed; further studies are recommended to explore the extent to which
intrinsic valuing fosters greater mathematical performance. In addition, ICT was
valued across both types of mathematics education systems. Thus, there is a need to
further examine the effectiveness in student valuing of relevance, practice and ICT.

School-aged students are in the process of defining and internalising what they
each value in life and in mathematics learning. Teachers’ awareness of what they
themselves value, and purposeful and explicit portrayal of these valuing, are
expected to facilitate students’ development of what they value in mathematics and
in mathematics learning. Additionally, given the inevitable opportunities for dif-
ferences in what teachers and their students value, teachers assume an important
task of aligning the different and potentially conflicting valuing, such that mean-
ingful mathematics learning is facilitated.

Appendix 1: WIFI Questionnaire (Section A Only)

Note that the questionnaire layout has been altered here, to suit the publication
guidelines.

The Third Wave Project

Study 3: What I Find Important (in Maths Learning)

Student Questionnaire

Section A
For each of the items below, tick a box to tell us how important it is to you when
you learn mathematics.
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Absolutely
important

Important Neither
important
nor
unimportant

Unimportant Absolutely
unimportant

1. Investigations

2. Problem-solving

3. Small-group discussions

4. Using the calculator to calculate

5. Explaining by the teacher

6. Working step-by-step

7. Whole-class discussions

8. Learning the proofs

9. Mathematics debates

10. Relating mathematics to other subjects in school

11. Appreciating the beauty of maths

12. Connecting maths to real life

13. Practising how to use maths formulae

14. Memorising facts (e.g. Area of a rectangle = length X
breadth)

15. Looking for different ways to find the answer

16. Looking for different possible answers

17. Stories about mathematics

18. Stories about recent developments in mathematics

19. Explaining my solutions to the class

20. Mathematics puzzles

21. Students posing maths problems

22. Using the calculator to check the answer

23. Learning maths with the computer

24. Learning maths with the internet

25. Mathematics games

26. Relationships between maths concepts

27. Being lucky at getting the correct answer

28. Knowing the times tables

29. Making up my own maths questions

30. Alternative solutions

31. Verifying theorems/hypotheses

32. Using mathematical words (e.g. angle)

33. Writing the solutions step-by-step

34. Outdoor mathematics activities

35. Teacher asking us questions

36. Practising with lots of questions

37. Doing a lot of mathematics work

38. Given a formula to use

39. Looking out for maths in real life

40. Explaining where rules/formulae came from

41. Teacher helping me individually

42. Working out the maths by myself

43. Mathematics tests/examinations

44. Feedback from my teacher

45. Feedback from my friends

46. Me asking questions

(continued)
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(continued)

Absolutely
important

Important Neither
important
nor
unimportant

Unimportant Absolutely
unimportant

47. Using diagrams to understand maths

48. Using concrete materials to understand mathematics

49. Examples to help me understand

50. Getting the right answer

51. Learning through mistakes

52. Hands-on activities

53. Teacher use of keywords (e.g. ‘share’ to signal
division; contrasting ‘solve’ and ‘simplify’)

54. Understanding concepts/processes

55. Shortcuts to solving a problem

56. Knowing the steps of the solution

57. Mathematics homework

58. Knowing which formula to use

59. Knowing the theoretical aspects of mathematics (e.g.
proof, definitions of triangles)

60. Mystery of maths (example: 111 111 111 � 111 111
111 = 12 345 678 987 654 321)

61. Stories about mathematicians

62. Completing mathematics work

63. Understanding why my solution is incorrect or correct

64. Remembering the work we have done

65. Comments (if any)
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Chapter 32
About Collaborative Work:
Exploring the Functional World
in a Computer-Enriched Environment

Carmen Sessa

Abstract The purpose of this paper is to address two main concerns in mathe-
matics education. The first is finding ways of bridging the gap between the
worldviews of a university research team and secondary school mathematics
teachers. The second is meaningful and implementable ways of introducing tech-
nological tools in regular classrooms in order to teach and explore functional
relationships. Whereas these two issues have been discussed in the literature, this
contribution blends these two issues in the context of Argentina while proposing
general insights for the mathematics education community at large. This paper
outlines and describes the different stages of the formation and functioning of a
collaborative team of researchers and teachers and discusses some didactical
complexities encountered.
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32.1 The Journey that Led Me to Work in a Collaborative
Group1

I have been working in the area of didactics in mathematics for the last 25 years.
I originally trained in mathematics, and my shift towards didactics was accompa-
nied by an important change in the conception of teaching that I held at the time.
I went from considering the problem of teaching as a question of organizing a
discourse (logically organized and attractive for the listener/student) to considering
it as a double interaction process: the interaction between the students and a
problem or task and the interaction between teachers and their students regarding
their productions.2

Looking at teaching in this way obliges one to attend to various matters: first, the
need for powerful tasks that promote varied and rich productions from the students
and, second, a teacher’s management of classroom activities that fosters the stu-
dents’ work and, based on their production, is able to build relations between this
work and the knowledge wished to be consolidated in the classroom.

The beginning in didactics of mathematics. The first years of research into the
didactics of mathematics were the result of teamwork with many colleagues3 and
were centered on understanding how the teaching system works at the beginning of
the learning of algebra. This led us to get in touch with teachers and students and to
analyze and interpret different programs and curricular documents. This was a very
rich period during which the findings of research in this field provided us with
conceptual tools for the analysis.

The didactic engineering4 stage. Not long after starting, we needed to test and
study how the situations we created with the objective of provoking specific work
from the students would function in a classroom situation. Briefly, the work process
was the following: First, we produced a teaching situation or sequence, then we
contacted various teachers who were willing to teach it in their classrooms. Next,
we undertook to communicate to the teachers the greater and smaller objectives of
the overall sequence and of its individual parts. (This instance was usually very
delicate. How to convey the subtlest objectives of each part of the sequence,
without imposing the teacher as a script to follow? Then there was the fact that the

1These are the teachers who now form the collaborative group in which I work: Marina Andrés,
María Brunand, Marité Coronel, Rosa Escayola, Claudia Kerlakian, Sabrina Maffei, Esteban
Romañuk, Débora Sanguinetti, Marina Torresi, and Martín Tornay. Gema Fioriti,
from the National University of General San Martin, has participated in this group since its very
beginnings and in all these years; the interaction with her has enriched my work. I must mention
too that most of the ideas on this paper came about in interaction with the members of the research
team at the Pedagogical University: Betina Duarte, Enrique di Rico, Mara Cedrón, Valeria
Borsani, Juan Pablo Luna, and Rosa Cicala.
2These are the central issues of Guy Brousseau's Theory of Situations. See, for example, Brousseau
(1997).
3Among them, I want to mention Patricia Sadovsky and Mabel Panizza.
4See, for example, Artigue (1998).
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teacher was time for joint meetings). After this, we went to the classroom to take
notes on the set up of the situation, and finally we analyzed the work produced with
a small group of “specialists.”

This research model proved to be unsatisfactory. We observed it locked inside
our academic university environment. Although the work spoke of the classroom
and of teaching, it was far away from it. We were not satisfied with the kind of
relation we had with the teachers: It was always respectful but distant.

The emergence of a collaborative group: Associate teachers with our
research. In 2006, we could form a group made up of secondary school teachers,
academics specializing in mathematical didactics, and students in pre-service tea-
cher training, with the objective of thinking together about the teaching of math-
ematics. The group’s work was based on the design and analysis of teaching
situations that the group’s teachers then implemented in their classrooms. The
practical realization of these situations was then once again analyzed by the
group. Our work could be considered a kind of collaborative didactics engineering
(Sensevy 2011). I have been working in this collaborative group ever since, and it
has undergone different periods and continues to undergo changes in its
conformation.

32.2 Different Stages in the Consolidation
of the Collaborative Group

We can identify four stages in the development of the collaborative group’s work.
Stage 1. This stage corresponds to a period in which the usual work environment

in the classrooms of Argentina involved pencil and paper and blackboard. During
this stage, we developed a teaching proposal centered on quadratic functions. The
proposal and its findings were set out in a curricular document: Mathematics,
Quadratic Functions, Parabolas, and Second-Degree Equations. Contributions to
Teaching. Middle School. the document was completed in 2009 and was published
in 2014 (Sessa et al. 2014).

It was the founding moment for associating teachers with our research. In the
development of didactic engineering, the university team provided important
experiences and didactic proposals. The necessary symmetry5 was in the process of
building.

Stage 2. Beginning in 2009 and for 2 years, the group worked in one of its most
autonomous periods and decided to call itself the “Grupo de los lunes” (“Monday
Group”) because of the day it used to meet on. At the same time, the nationwide
distribution of netbooks in secondary schools begins to take place, with the idea of

5We take from Sensevy (2011) the central idea that to install collaboration, it is necessary to build
a symmetry between researchers and teachers. This is based on an equalization of legitimacy in
relation to the work carried out, rather than in the denial of differences.
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providing “one for each student” and with the manifest intention of “closing the
technological gap” among different sectors of society. Computers started to reach
schools, and the Monday Group wanted to study how to incorporate them into the
proposals it was making. Considering this challenge, we elaborated a didactic
proposal about an introduction to polynomial functions (Fioriti and Sessa 2015).

With different formations and concerns, the problem we faced was new for all;
achieving real progress in building the symmetry required for the group work.

Each person’s contribution was merged in the production and analysis of the
elaborated proposal. The dynamism of the GeoGebra program and the possibility of
obtaining multiple and linked representations on the screen were the two poten-
tialities of this program that we “learned” during this work. On the other hand, we
were able to identify in this stage new concerns, including how to manage the
collective spaces of work in the classroom and how the students would keep a
record of their work on the computers.

In 2012 the collaborative group found a place within the Universidad
Pedagógica, the institution where I have been working for the last 5 years. Two
more stages took place in this period.

Stage 3. Once in the institutional framework of the Universidad Pedagógica, the
group reconsidered the proposal it had elaborated in Stage 1, which was originally
designed to teach the quadratic function in a paper and pencil context, and worked
on adapting it so that the computer could be incorporated into the students’ work.
The modification of the original proposal was thought of not only in terms of new
tasks designed to work with GeoGebra files, but fundamentally in relation to the
new aspects that had to be taken into account for the students’ and teachers’ work.

A fundamental concern was to preserve the didactic intentions of the original
proposal or to eventually enrich them, but, while teachers felt secure and in control
of the proposal that had been elaborated at Stage 1 with paper, pencil, and black-
boards, the adaptation that we developed was done in a constant backdrop of
uncertainty, a sensation provoked by the process of migrating towards work being
done using the computer.

Many questions surfaced at this stage: How will mathematical knowledge be
transformed? How can the work and interaction with the software be done inde-
pendently by the students and be linked and integrated to the moments of collective
dialogue and discussion? How can we solve unforeseen situations that will surely
arise in the students’ work in their interaction with the software, about which we
had no previous repertoire? Some of these questions were anticipated while others
arose from the classroom work with this new presence. In the classroom, we could
see the need for a teaching action to organize and sustain the students’ work, both
individually and collectively. The notion of instrumental orchestration (Trouche
2004a; Drijvers and Trouche 2008) gave us tools to conceptualize this space of
teachers’ decisions.

Stage 4. This stage is currently underway. From new additions in Monday’s
Group, we decided to think of situations for the introduction to working with
functions that involved some aspect of modeling and were directed towards
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students in the initial years of secondary school. The research of Arcavi and Hadas
(2000) and Arcavi (2008) was discussed in the collaborative group and served as
inspiration for the proposals we made.

We want to pay special attention to the students’ mathematical work; in par-
ticular, we will try to identify the existence of knowledge more closely related to
technological contexts and more anchored in mathematics. In relation to the
teachers’ work and considering our earlier stages, we hope to design a possible
orchestration that will take into account teachers’ room for movement in the
management of their classes. In particular, we want to develop didactic techniques
that will allow teachers to recover their students’ productions made with GeoGebra.

Some remarks about the Monday Group and the incorporation of the
GeoGebra

Looking at all the work in retrospect and before commenting on some specific
examples, we will add some general questions regarding the Monday Group’s
work.

Our shared vision of a math class. The members of the Monday Group share
some principles regarding mathematical work in the classroom. Our objective is to
involve students in the real activity of producing knowledge. To do so it will be
necessary to propose challenging problems to the students and generate an envi-
ronment in the classroom that will encourage them to explore, produce different
solutions, and contribute ideas. Attempts, solutions, and ideas are the raw material
with which a teacher organizes classroom interaction. The collective space for
discussion is appropriate for studying the validity of reasoning processes and
procedures, advancing in terms of precision, presenting new problems, speculating,
and making conjectures and studying them. In this space, students can get involved
in the elaboration of mathematical theory.

Where do these preoccupations lead us when we consider the incorporation of a
program like GeoGebra into classroom work?

Changes to take into account. The inclusion of work that uses educational
software in the teaching and learning processes establishes the need to take into
account changes in relation to the students’ mathematical work and the
mathematical-didactic work of the teachers.

When referring to the students’ activity, changes appear in both the problems
and tasks that can be proposed and in the possible techniques that are constituted.
Tasks will be created that are unthinkable without the computer.

The instrumental approach, which recognizes the complexity of the teaching of
mathematics mediated by technology, gives us theoretical elements with which to
think about our work. In this approach, the use of a technological tool implies a
process of instrumental genesis in which the object or artifact becomes an instru-
ment. This instrument is a psychological construct, combining the artifact and
schemas (in the sense of Vergnaud 1990) that the user develops to use for specific
types of tasks (Drijver et al. 2010).
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The construction of the instrument must be understood in a double movement: a
movement directed towards the artifact, where users take the artifact in their hands
and adapt it to their work habits (instrumentalization), and a user-oriented move-
ment in which both the limitations imposed by the device and the possibilities
offered by it contribute to structuring user activity (instrumentation; Trouche
2004b).

In terms of the teachers’ work, new spaces requiring decision taking have
appeared in collective planning and other more personal spaces have come into play
in the management of each teacher’s classroom. We found the idea of instrumental
orchestration (Drijvers and Trouche 2008) relevant in order to pay attention to
these teacher decision-taking spaces when working with the inclusion of computers.
This notion includes both those spaces related to the tasks and the ways of solving
them (which includes the methods and techniques that the students are expected to
develop) as well as those related to the instruments and their organization for
individual and group work.

In terms of the way the group works, I would like to highlight the fact that the
production of classroom activities is developed in interaction with the teachers’
work. The presence of teachers-in-activity as part of the research group makes it
possible to constantly question the feasibility of what is being proposed.

I have borrowed words and concepts from Fernanda Delprato, a young
Argentine woman researcher at the University of Cordoba, when we talk about the
search for the (re)signification and reciprocity of different knowledges and mean-
ings that are made possible by the mutual recognition of different visions arising
from the spaces occupied by each member of the group (be they teachers or
researchers (Delprato 2013).

These are ideas that we find once again in authors such as Gerard Sensevy, in
discussions about cooperative engineering. Sensevy criticizes a position of a certain
duality that exists in the world of education regarding how teachers and researchers
are considered. “According to this duality, teachers are seen as ‘practical agents’
trapped in a practical relation with their work, while investigators uphold a theo-
retical position. In this division of work, educational research must be an applied
research (in which the practical agents must apply the ‘scientific results’ to their
practice)” (Sensevy et al. 2013, p. 1032).

The paradigm of design-based research—which the author places in cooperative
engineering—positions itself in contrast to this duality, proposing a different form
of relationship between teachers and researchers.

Using the words of these authors, I would say that, for the Monday Group, the
idea of the cooperative elaboration of a proposal and the posterior analysis of how it
was developed in certain classrooms supposes eliminating the classic duality about
persons who “think” and persons who “act,” because all the participants get
involved in the conceptual work and, at the same time, think about its concrete
realization.
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Looking in perspective, we can identify three dimensions in the production of
the collaborative work:

– The collaborative production of a teaching sequence for a particular curriculum
subject, with the incorporation of the computer into the mathematical work of
students in the classroom.

– The study of didactical phenomena associated to computer mathematical work
in the secondary school classroom.

– The reflection on the collaborative working device itself, a device that is
modified in the search for the genuine conformation of a collaborative group in
which we are included.

Based on the last two dimensions, necessarily imbricated, I have tried so far to
point out different questions and challenges that the group has to face in the dif-
ferent stages and the ways they faced them. Although both themes have been
studied in the literature, the expected contribution of this paper is to reflect on the
convergence of both and the synergy and problems that occur when the two per-
spectives are merged for a common production.

In the next three examples, I will try to show some didactical complexities
encountered in the work of the Monday Group.

32.3 Three Examples Which Illustrate Products
and Processes in the Working Group

In the rest of this paper, we will present three examples, each one chosen from each
one of the three stages during which the Monday Group has worked with com-
puters. We will illustrate some areas of both products and processes through the
work of the Monday group.

First example: New tasks for students involving new didactic questions that
teaching must consider

This example corresponds to our first encounter with computers being used in
the mathematical work of the students. The teaching proposal we developed to
introduce students to working with polynomials and polynomial functions focused
on:

– The production of higher degree functions as a result of the product of two lower
degree functions. Basically, we created higher degree functions as a result of
linear and quadratic functions.

– The strong presence of graphs, to the point that both the students and the
teachers/researchers talked of “multiplying” straight lines and parabolas.

– The possibility of working with high degree polynomials with roots of multi-
plicity 2, 3, or more, their formulas and their graphs.
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Within this context and after many days of work, the students were expected to
come up with the formula and the graph of a sextic function without zeroes or be
able to justify that the required function did not exist.6 Although the students had no
problem coming up with functions like this by multiplying three parabolas without
zeroes, they were not always able to produce a screen in which the factor parabolas
and the resulting sixth-degree function could be seen simultaneously. Let’s see
three different students’ answers to this.

– The first two students explained:

A sixth-degree function can, in fact, not cross the x axis because it contains three
parabolas that can never have a zero. An example is shown in Fig. 32.1.

The sextic function has values for “y” that are so negative that they can’t be seen
by the naked eye.

– A second pair of students was able to zoom in sufficiently so as to be able to see
the sextic equation on the screen (Fig. 32.2).

– A third pair of students explained that they modified the coefficients of the
parabolas so that they became a little flatter, thus making it possible to see the
sextic equation on the screen (also by zooming in a little; Fig. 32.3).

I bring this first example to identify a new task to be solved in the classroom,
inherent in the work carried out by the computer: to make something look good on
the screen. The previous examples illustrate a variety of positions that can be taken
when faced with this task:

– Not dealing with it.
– Solve it using the program’s tools.
– Solve it using mathematical knowledge.

Although in this case the work was done in written form and included individual
feedback, the example shows the new questions that teachers will have to deal with
in the classroom: handling the interaction among student’s solutions when they
were elaborated from such different positions.

A more general reflection as a result of this specific example. Because of our
work throughout the years and on different teaching proposals, we have run into
very different and often unexpected answers and ways of solving problems pro-
posed by students with computers. They range, as in this example, from answers
based on computer skills and program-provided tools to answers based on math-
ematical knowledge specified by the students. And in between there are a wide
range of gray areas and variations. It is then up to the teacher to find ways of
working in the classroom to relate these varied solutions. Regarding this, we find
ourselves confronted with the following questions: How can we make a mathe-
matical question about a student’s answer that focuses mainly on the program’s

6This represents a new task in the high school classroom. Teachers stated they had never worked
on high degree functions, even less so if they were factorized and were presented with their graphs.
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tools and is described in terms of actions on the computer? How can we move the
most non-mathematical actions and discourses towards others that incorporate
mathematical relations?

We will return to this question in our third example.

Fig. 32.1 The image presented by the first pair of students

Fig. 32.2 Screen the second pair of students got
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Second example: The rounding and the autonomy of the students

In the next stage, while working on the transformation of the proposal we had
already thought up for quadratic functions, we ran into problems due to the
“rounding off” that the program does. We show two episodes where the group had
to make decisions about it. They were different, not only because of the mathe-
matical activity required in each case, but also because of our growing confidence
in mathematical work with the program.

Second example, first episode. The unexpected appearance of the “rounding
off” took place in a classroom while students were working with the first problem of
the proposal. That obliged us to take some “controlling measures.”

Students were studying how the area of rectangles inscribed in a right-angle
isosceles triangle with sides measuring 11 varied (Fig. 32.4). They had a dynamic
model of this on a GeoGebra screen to explore.

At one point, they must calculate the area of a rectangle having “base 2.” Using
GeoGebra, some of them came up with the following screens (Figs. 32.5 and 32.6):

In both cases, they saw a rectangle with base 2 and therefore with a height of 9
and, nevertheless, the program gives an area different from 18. Since the calculation
was easy to do by hand, it was very clear for the students that the program had made
a mistake. This produced a chaos in the classroom! Some students even went so far
as to shut their computers off.

In many cases, the area values that the program displayed when the different
rectangles were dragged in did not match with the base values that it showed.

Fig. 32.3 Screen the third
pair of students got
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The machine used many more decimal digits to calculate than it showed on the
screen and, in fact, the students did not reach the value of 2 but rather some value
sufficiently close to 2.7

As the whole purpose of the activity was to study the variation of the rectangle’s
area as a function of the length of one of its sides, measurements played an
important role. When thinking about students being introduced to the study of the
variation of sizes via dynamic models, these difficulties can contribute to the fact
that they will not use the model to answer the questions they are asked, as occurred
in the classes we just mentioned.

Fig. 32.4 Drawing of one of
the rectangles of the family

Fig. 32.5 Screen with a
rectangle of base 2 and area
different from 18

7The issue was that the problem could not be fixed by asking the program to display more
rounding off decimal digits. Even if we allow more decimal digits for the base values, the program
would calculate the area using more digits than that anyway. So it would once again display a
result for the area that would not be the right one.

32 About Collaborative Work: Exploring the Functional … 591



Faced with this situation, for the following presentation of this problem in
another classroom, we decided to alter the file so that everything would turn out
happily exact. We established the working area: We regulated the mouse’s
movement by setting up a sufficiently small grid and we included attractors in it and
then we fixed the number of decimal places it would display. Additionally, we
offered the students a file with the pre-constructed triangle to insure a certain
position on the screen. In this way, the rectangles—that they built to begin the work
—would necessarily have sides on the grid. In this way, we were able to control the
values the students passed over when moving the mouse and the values the program
would use to do the calculations for the values displayed on the screen. Finally, it
displayed the complete result without any rounding off. We decided to share with
the students some superficial information about this file.8

Second example, second episode. One of the problems we designed to work
with GeoGebra was assigned at an exploratory place, but, as a way of making some
of the mathematical relations in play more explicit, we introduced some numeric
values into the problem so that the final answer could not be completed by the
program and would require some paper and pencil work. Below is the specific
problem from the proposal.

Fig. 32.6 Other screen with
a rectangle of base 2 and area
different from 18

8For more detail see Sessa et al. (2015).
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Problem 5 (to be done with GeoGebra)

– Enter the points (1; 7) and (5; 7).
– Enter the parameters a and c and the function f(x) = a(x – 2.9)2 + c
– Modify the values for a and c so that, if possible, the graph of f(x) passes

through the given points.

We wanted the students to explore this on a GeoGebra screen by moving
parameters. In Fig. 32.7, you can see an attempt that gives an approximate answer.

They might be able to “visualize” a solution in the graphic view (Fig. 32.8).
They would then go to the algebraic view to verify whether the function really

had a value of 7 at 1 and at 5. We expected that the algebraic view would show that

Fig. 32.7 An approximation to the requested parabola

Fig. 32.8 Screen with an apparent solution

32 About Collaborative Work: Exploring the Functional … 593



it did not happen. So the idea was that they should leave the program and find the
reasons why it could not be done. However, when we asked GeoGebra for the
evaluation of the function obtained from f(x) = 0.01 (x − 2.9)2 + 6.96 at 1 and 5,
the program answered 7 for both values. We were now once again facing the
problem of incompatibility of information between the graphic view and the
algebraic one, and even within the algebraic view. The function, of course, is not a
solution, and if we zoomed in more, we would that in fact its graph does not pass
through the points in question.

This time, we thought we could control this problem if we could anticipate the
number of digits the calculation would have. To do this, we decided to set the file
with a parameter of a 2-decimal digit and “rounding off” using 4 decimal places. In
this way, we would be able to make it display the complete result. Doing that in the
previous function, we get f(1) = 6.991 and f(5) = 7.0041.

This time, unlike the episode above, we thought that we could share these
decisions with the students. We feel that the fact that they can estimate the number
of figures in the result has a formative value both in mathematics as well as in the
mathematical work done with the program. This would allow the students to
understand more about how the machine works in order to prepare it to respond to
the working necessities in each future problem. The decision to share this with the
students was also the result of the more solid position that the group had in referring
to the mathematical work with the program.

We as teachers also go through a process of instrumental genesis (Trouche
2004b). We believe we have advanced a little, but there is much left to do:

– Creating situations in which students can work in spite of coming up with
“rounded off” results.

– Working in classrooms in which each student will have a different configuration
of their working area.

All of this will occur if we maintain the objective of building greater student
autonomy in working with GeoGebra.

Third example. From the actions on the computer to mathematical question

This is an example of our current work. On one hand, there was a change in the
subject: We went back into the curriculum. On the other hand, we have incorpo-
rated new teachers while others had to discontinue their participation in the
group. As the group settled again, some discussions reappeared. But it was never
the same discussion because the people were not the same. Some of us already had
history in the Monday Group and our ideas were different than they had been in the
beginning. Among the new members, there were some teachers who were already
using computers, so they brought new experiences to the discussion. Also, there
were new members who had not used the computer in their classes yet and came to
the Monday Group to see what it would be like. I will refer briefly to a question that
arose in the shared planning stage, which is what we are going through at the
moment. We are designing a small teaching sequence around a problem that we
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read in an article by Arcavi (2008). In a GeoGebra file, a dynamic construct is
presented (Fig. 32.9).

Students can move point E to obtain other triangles. They must study the
function that relates the base of the triangle with its area. They are 13-year-old
eighth graders who do not know how to calculate the area of one of these triangles
knowing only the base. But they can calculate the area when the base is 4 or 2. We
ask them to calculate those values and then invite them to draw those points in the
second graphical view by entering the ordered pair in the entry bar. To continue the
graph of the function, we decided to present the “dynamic point” tool. This tool
allows us to get a representation coordinated with the dynamic figure of the triangle.

The decision to introduce the “dynamic point” tool makes us take into account
the complexity of this kind of representation of a function:

– It is linked to a dynamic situation in which two variables have been chosen.
Each state of this situation, i.e., each specific triangle, determines both the first
and the second coordinate of point P.

– As a representation of the function, it always requires some time to become a
representation. It is not a representation at any given moment. Moreover, the
representation requires our movement. Therefore, it is a representation in action.

In our sequence, we invite students to move E in Graphical View 1 and observe
the path of the point P in Graphical View 2, especially noticing that P passes over
the points already marked (Figs. 32.10 and 32.11).

At first, we decided not to activate the trace of P. We propose the following task:

(5) Explore the path of point P in the second graphical view and answer the
questions.

(a) What is the area of the triangle when the base AE = 3?
(b) What will be the base of a triangle that has an area equal to 6?

In each case, explain how you reached those answers.

Fig. 32.9 One of the
triangles of the dynamic
model
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The lack of computer presence in middle and high school math classes and our
group’s work path led to a shortage in our repertoire of student responses to
working with the computer. Moreover, in the face of certain tasks we do not have
experience that allows us to anticipate how they could be carried out. These two
issues reconfigure the planning task, forcing us to pass ourselves through the
experience of producing answers by working with the computer. In tune with this,
at a meeting of the Monday Group we all set out to explore the task, working in
pairs.

The work focused on appealing to tools of the program that allowed visual-
ization and greater precision (zoom, changes in the configuration, “stretching” the
axes, putting on a grid, etc.). It was work that took a long time and in which we did
not put into play many mathematical relationships, and it left the pairs with a an
unpleasant feeling about the task. In the final discussion of Monday Group it

Fig. 32.10 Screen with a triangle and the associated point P

Fig. 32.11 Another triangle and its corresponding point P
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seemed that the balance was inclined to the side of giving little epistemic value to
both the anticipated gestures of the students and the possibility of discussing them
in the classroom.

The university team resumed this discussion at their weekly meeting, trying to
identify what could be discussed in the classroom as a result of Problem 5 and the
more accurate search work. Along these lines we had separate two issues:

1. On the one hand, in the search for precision, you first have to move the point
E in Graphical View 1 to achieve a triangle of the family that fulfills the
requested conditions: in Part a, the measurement of the base, in Part b, the
measurement of the area. These measurements are read in the Cartesian plane
that appears in Graphical View 2 from the location of P that is determined. Once
point P is located, the problem involves obtaining information about the other
magnitude as accurately as possible. This necessary coordination between a
triangle and a point on the Cartesian plane is an opportunity to speak again of
the link between the Cartesian graph of the relation and the geometric situation
that allows us to define the relation.

2. On the other hand, once we locate point P, because we, perhaps visually, have
ensured the value of one of the coordinates and we want to know the value of the
other, tools such as scaling, the use of zoom, the “stretching” of the axes, and the
addition of a grid all bring the appearance of new values on the screen for the
coordinates of point P. These actions do not modify point P (because point E was
not moved in Graphical View 1); however, some students may consider that they
have obtained, for example, different area values for base 3. This last fact would be
an opportunity to talk about the necessary uniqueness of the area value for a single
triangle (which shows in Graphical View 1). Making explicit these questions in the
classroom can contribute to the understanding that the base-area relationship is a
function and to the understanding of the concept of a function itself.

These two questions refer to Lagrange (2000), who states, about the actions of a
user and the responses produced by software, that it is necessary to distinguish
which actions produce changes in the mathematical object and which produce
changes in what can be seen from the representation that the program makes of that
mathematical object.

We take from semiotic mediation theory (Mariotti 2009) the idea of pivot sign
and extend it to the idea of question pivot. We think that a teaching intervention
promoting a reflection on what is realized by and about the response given by the
software allows construction of mathematical meanings in relation to the signs of
the artifact. A question from the teacher such as “When we zoom, will point
P change?” would allow reflection on the most artefactual actions in terms of
mathematical objects.

This event refers us to what was formulated in first example:

– How can we make a mathematical question about a student’s answer that
focuses mainly on the program’s tools and that is described in terms of actions
on the computer?
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– How can we move the most non-mathematical actions and discourses towards
others that incorporate mathematical relations?

32.4 Coda

In this paper, we wanted to show some aspects of the didactic complexity that
involve the incorporation of the computer in the mathematical work of the students.
We did this by showing the close work of a collaborative group of school teachers
and university team who faced this problem. We think that the convergence of
views and approaches and the diversity of experience that characterize our col-
laborative group create good conditions for thinking about teaching and learning in
key transformations for real and proper integration of TIC.

As part of a process, we raise some issues that also mark a way forward in our
study:

– Gaining greater confidence in our work as teachers and greater autonomy in the
work of students.

– Thinking about gestures and teacher discourse that allow us to weave bridges in
the collective space of the classroom between work that is more focused on the
tools of the program and the mathematical knowledge to which it is pointed.

– Advancing in the co-construction of working devices in the collaborative
group.9
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Chapter 33
Re-centring the Individual in Participatory
Accounts of Professional Identity

Jeppe Skott

Abstract Studies of professional identity are generally conducted using partici-
patory frameworks and from the perspective of a particular development initiative.
They provide understandings of teachers’ move towards more comprehensive
participation in the practices the initiative promotes. Studies in line with this main
trend, however, leave questions of teacher identity unanswered when teachers are
not enrolled in long-term development programmes. I argue that to address such
questions a different framework is needed, one that maintains the participatory
stance, but focuses on the individual teacher rather than a development initiative. It
is the intention of the Patterns-of-Participation framework (PoP) that I introduce to
re-centre the individual in this sense. To make my point, I discuss how research
frameworks may be conceptualized and compared and use the resulting “frame-
works framework” to contrast studies of the main trend with the intentions of PoP.

Keywords Professional identity � Teacher development � Research frameworks
Social practice theory � Patterns of Participation (PoP)

33.1 Introduction

The notion of professional identity has attracted increasing attention in research on
and with teachers over the last decade, both in mathematics education and beyond.
The construct of identity is generally conceived in processual and participatory
terms, and often the intention is to understand how teachers’ experiences with
programmes for educational development inform and transform their tales of
themselves as professionals as well as their contributions to the practices that evolve
at their schools and in their classrooms. In this sense the research interest in identity
may be seen as a supplement and to some extent as a challenge to most research on
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teachers’ knowledge and beliefs, which to a greater extent relies on constructivist
interpretations of human learning.

In what follows I build on this relatively recent, participatory approach.
However, I argue that there is also a need for frameworks that re-centre the indi-
vidual in studies of teacher identity. I present one such framework called Patterns of
Participation, PoP, and ask how it differs from other participatory approaches to
research on and with teachers, including what it has to offer in terms of interpretive
potential of teachers’ professional identities. The moral of the story is that both
approaches are needed, and that PoP is helpful for understanding teacher devel-
opment in the majority of cases in which they are not involved in comprehensive
programmes for teacher development (TD programmes).

To make my argument, I first discuss the notion of a research framework before
outlining perspectives on identity in key references beyond mathematics education.
These two sections form the backdrop for a discussion of a general trend in identity
studies in mathematics education (Sect. 33.4). I then discuss identity as conceived
in symbolic interactionism, a further inspiration for the PoP-approach, which I
present in Sect. 33.6. I round off by comparing and contrasting the general trend
and PoP studies of identity.

33.2 Theories and Frameworks

Mathematics education research is characterised by a mixture of what Steiner
(1984) calls theoretical imports and home-grown theories. Consequently the role of
and mutual relationships between different theoretical approaches is a recurrent
theme in the field. Phrasing this discussion in terms of theory networking,
Bikner-Ahsbahs and Prediger (2010) place propensities to engage with a variety of
theoretical perspectives on a continuum ranging from ignoring other theories to
integrating them globally. Comparing and contrasting different theories are placed
approximately in the middle of the continuum.

It is not obvious what it takes for an approach or a framework to qualify as
theory and what role theories may have in mathematics education research.
Apparently with inspiration from mathematics, Niss argues that a theory is a
hierarchically ordered network of concepts and a related set of claims about some
field of investigation (Niss 2007). The claims are, according to Niss, either “fun-
damental” in the sense of being beyond justification within the theory itself, or
derived from some such set of claims by formal or experimental/experiential means.
Romberg (1998) talks about research conducted by the National Center for
Research in Mathematical Sciences Education and says that by theory he and his
colleagues mean “a set of statements about the causal relationships between and
among a number of variables used to describe features of classroom communication
in mathematics” (p. 387).

Adopting a somewhat broader perspective, Radford (2008) argues that a theory
may be thought of as an ordered triple of basic Principles, Methodologies, and
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paradigmatic Questions. The Principles are the system of views and statements that
serves to “delineate the frontier of what will be the universe of the discourse and the
adopted research perspective” (p. 320). As an example Radford mentions how
cognition is considered important, but is interpreted differently depending on what
system of principles (e.g. constructivist or socio-cultural) is adopted. The
Methodology is the set of methods used, but also the reasons for using them, and
the arguments for turning pieces of data material into data, that is, making them
worthy of analysis. The paradigmatic Questions are the ones that were addressed
initially in the field and that continue to orient it with regard to what and how
questions are asked. Like Bikner-Ahsbahs and Prediger (2010), Radford is inter-
ested in theory networking and suggests that (P, M, Q)-triples may be helpful for
instance for considering how to link the Principles of one theory with the
Methodology of another.

My intention at present is not to suggest ways of combining certain elements of one
theory with different elements from another. Instead I discuss a compare-and-contrast
approach to networking in the particular case of frameworks currently used in the
study of professional identity. In particular I discuss differences and similarities
between what I see as a major trend in mathematics education research on identity on
the one hand and PoP on the other. To do so, I begin by discussing the notion of a
research framework. I have previously used this “frameworks framework” to consider
the relationship between main-stream belief research and PoP (Skott 2015a). The
differences are in this case more obvious than the ones I am pointing to in the present
context. However, I suggest that the approach is also useful when comparing
frameworks currently used to study professional identities.

The notion of a framework carries different metaphorical connotations irre-
spectively of whether it is—or in the particular case functions as—a theoretical, a
conceptual, or a practical one (cf. Eisenhart 1991). It may limit what one can see or
focus on (cf. a picture frame); it may be a support structure that upholds the
interpretations made and ensures that they are sound and do not “collapse” (cf.
construction frameworks for buildings); or it may allow one to go to places from
where one can see well-known landscapes from new vantage points or even to
travel to new territories and experience things never before imagined (cf. a bicycle
frame). Irrespectively of whether any or all of these metaphors carry weight in a
particular case, the framework constitutes an argument for why the approach
adopted makes sense for the purposes of the particular study. A framework is “a
basic structure of the ideas (i.e., abstractions and relationships) that serve as the
basis for a phenomenon that is to be investigated” (Lester 2010, p. 69).

In this section I draw on and extend Radford’s (2008) discussion of the (P,M, Q)-
triple, even though the frameworks that I compare, those used in participatory studies
of professional identity, may not qualify as theory in the sense of Niss or Romberg (cf.
above). The rationale is that it is also helpful to be able to compare and contrast these
more loosely structured approaches to empirical study.

I use the notion of a framework in a narrow and in a broader sense (see
Fig. 33.1). In the narrow sense it includes
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F(1) a set of key concepts: in research on and with teachers the set may include
mathematical knowledge in or for teaching; beliefs; participation; practice;
interaction; identity;

F(2) a theoretical stance: used to interpret the meaning, relative significance of,
and relationships among the concepts in F(1). For instance, primarily
acquisitionist and primarily participatory approaches to understanding the
acts of teaching may be used to develop different interpretations of concepts
that are nominally the same or similar;

F(3) a rationale: the reasons for engaging in a line of study, such as developing
novel understandings of issues under investigation, supporting educational
development, or some combination of the two.

In a wider sense a research framework includes also the unit of analysis, the
paradigmatic research questions, and the methodology. In line with Radford (2008),
I consider the methodology a triad of M(1): the methods used; M(2): the reasons for
using them; and M(3): how issues and relationships in data material (e.g. transcripts
from a video recorded classroom observation) become data, that is, worthy of
attention in the subsequent analysis.

As indicated by the arrows in Fig. 33.1, the elements of the frameworks-
framework are considered reflexively related. It is not assumed that the choice of
framework (in the narrow sense) or the methods follow linearly from the research
questions. There is in this interpretation no unidirectional and almost causal rela-
tionship between the questions and the other elements of the framework (in the
broader sense). The elements of the frameworks-framework are considered mutu-
ally dependent, as for instance the meaning of the research questions is elusive, if
other elements are not considered.

Methodology: 
M(1); M(2); M(3).

Unit of analysisResearch questions

Framework (narrow 
sense): F(1): Key concepts

F(2): Theor. stance
F(3): Rationale

Fig. 33.1 The “frameworks-framework”
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33.3 Researching Identity—Inspiration from Outside
Mathematics Education

The participatory and situative orientation is apparent in many studies of identity
(e.g. Beauchamp and Thomas 2009; Beijard et al. 2004; Brown and McNamara
2011; Cobb and Gresalfi 2011; Diversity in Mathematics Education Center for
Learning and Teaching 2007; Hodgen and Askew 2007; Horn et al. 2008; Teacher
Education Quarterly 2008). Key references and main sources of inspiration come
from discourse analysis and social practice theory and include people like Gee
(2000–2001), Holland et al. (1998), Lave (1988, 1996), and Wenger (1998). Far
from considering identity a stable personality trait, these scholars view it as
ever-evolving and constantly renegotiated in social practice.

Gee (2000–2001) describes identity as “being recognized as a certain kind of
person in a given context” (p. 99). Such recognition is based on “a combination” of
for instance ways of speaking, acting, dressing, and feeling that actively invites or at
least leaves one open for interpretations of being a particular kind of person in that
particular situation. Identities may be viewed (and have been viewed) as primarily
the result of forces of Nature (e.g. being an identical twin); as related to one’s
position in an Institution (e.g. being a university professor); as Discursively
established (e.g. being a charismatic person); and based on one’s allegiance to and
involvement with a set of practices in an Affinity group. (e.g. being a Star Trek fan).
These N-, I-, D-, and A-identities interrelate in a myriad of ways. For instance, the
N-identity of being a child with ADHD may be Institutionally sanctioned when the
child gets a diagnosis, and there are Affinity groups that arrange support activities
for ADHD children. Gee asks two questions about how identities are established
and sustained. A macro-level question concerns how institutions and discourses
function so as to make recognition of some “combination” possible in a particular
context? A micro-level counterpart is how “a combination” becomes recognised,
contested, or renegotiated in particular face-to-face interactions?

Social practice theory views individual identities as contextually embedded and
dependent, and therefore multiple, fluctuating, and always in-the-making. Holland
et al. (1998) define identity as “the imaginings of self in worlds of action”, and as
identities are “lived in and through activity [they] must be conceptualized as they
develop in social practice” (p. 5). There are two interrelated aspects to this, one of
which concerns how people position themselves and each other in everyday
interactions. The other aspect is related to figured worlds, that is to “socially and
culturally constructed realm[s] of interpretation, in which particular characters and
actors are recognised, significance is assigned to certain acts, and particular out-
comes are valued over others’’ (Holland et al. 1998, p. 52). Such imagined and
collective as-if worlds and their related discourses and practices orient action and
sense-making and serve in open-ended ways to “figure the self” (p. 28). Figured
identities, then, concern narrativised versions “that make the world a cultural
world” (p. 127).

33 Re-centring the Individual in Participatory Accounts … 605



Also working in social practice theory, Wenger (1998) argues that identity may
be viewed as negotiated “ways of being a person in [a] context” (p. 149). He
elaborates on this for instance by saying that “identity […] is a layering of events of
participation and reification” connected to a practice (p. 151). Practice is viewed as
a process and outcome of collective learning. Engaging with one another in the
pursuit of a joint enterprise, people use or jointly develop a repertoire of modes of
participation in the practice, negotiating its meaning and the character of their own
membership in the community in question in the process.

Although Wenger’s distinction between participation and reification does not
parallel the one from Holland et al. between positional and figurative identities,
both pairs of concepts point to the emerging interplay between immediate social
encounters and social markers or identifiers (e.g. being recognised as a qualified
teacher) as sources of identity. Empirical studies informed by and contributing to
social practice theory have focused on a range of different social constellations,
from Alcoholics Anonymous in the US to tailors in Liberia and emphasised how
individuals gradually come to participate more profoundly in the practices involved
(cf. Wenger 1998) or orient themselves towards the figured worlds in question (cf.
Holland et al. 1998).

One difference between the concepts of practice and figured world is that the
latter may gain a social existence for the individual without her or his involvement
in the renegotiation of the meaning of the broader enterprise. It has been argued, for
instance, that the current reform movement in mathematics education (the reform)
may qualify as a figured world for a teacher (e.g. Ma and Singer-Gabella 2011).
Within the reform discourse there are certainly certain characters that are recognised
and certain acts and outcomes that valued over others (cf. the definition of figured
world above). In spite of that, the reform hardly qualifies as a practice in which the
teacher contributes to the renegotiation of its broader social meaning, although (s)he
may of course renegotiate its role and meaning as it is dealt with in a particular
development initiative or among her colleagues and as it relates to his/her own
contributions to the practices of the classroom. In spite of the difference, however,
both practices and figured worlds may significantly orient contextually dependent
identities as they evolve in classrooms and at schools.

33.4 Mathematics Education Research on Identity

Significant parts of the growing scholarship on mathematics teachers’ professional
identities draw on the broader scholarship on identity outlined above (Cobb and
Gresalfi 2011; Cobb et al. 2009; Hodgen 2011; Hodgen and Askew 2007; Horn
et al. 2008; Ma and Singer-Gabella 2011; Sfard and Prusak 2005). In what follows I
do not claim to do justice to the field as a whole, but refer to four studies that I
consider representative for a reasonably significant part of the field. Or rather, the
four studies are non-representative in the sense that they are more comprehensive
and better documented than most, but at least somewhat representative for my
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present purposes, that is, as far as their frameworks are concerned. In this sense I
suggest that they are representative of a somewhat general trend in mathematics
education research on professional identity.

Hodgen and Askew (2007) refer to Holland et al. (1998) in their report on a case
study of a primary teacher, Ursula, and analyse how her emotional relationships
with mathematics develop over the 3½ years of her participation in a TD initiative.
In their analysis, Hodgen and Askew relate emotion to the teachers’ “figured” and
“positional” identities (cf. above), that is, aspects of identity that are either relatively
stable in the sense of cutting across teachers’ participation in different communities
of practice or more local and position them in relation to one particular context.
They argue that a focus on identity helps understand why professional change is
difficult to achieve, not least in mathematics, and use the construct to interpret how
Ursula develops from distancing herself from mathematics to challenging dominant
norms for school mathematics and “constructing a strong and powerful image of a
different mathematics teaching” (p. 482).

Cobb and Gresalfi (2011) seek to document how teachers relate to and come “to
identify with the vision of high quality mathematics instruction” promoted by the
TD initiative in which they take part (p. 271). Cobb and Gresalfi argue that it is
useful to view identity as “a set of practices and expectations that shape partici-
pation in particular contexts” (pp. 273–274), and they focus on the extent to which
teachers in the study identify with “others’ expectations for competent teaching”
(p. 275). They draw on Gee’s (2000–2001) distinction between institutional and
affinity identity and investigate how middle school teachers involved in the com-
prehensive TD programme react to tensions and conflicts between the “normative
affinity identities for teaching” established within the TD programme and the
normative institutional identities of the schools at which the teachers work.

A somewhat similar approach has been taken to prospective teachers. Both Horn
et al. (2008) and Ma and Singer-Gabella (2011) draw on Holland et al.’s notion of
figured world, and investigate how prospective teachers’ identities develop. Horn
et al. define identity as “the way a person understands and views himself, and is
often viewed by others, at least in certain situations—a perception of self that can
be fairly constantly achieved” (p. 62). Working with secondary teachers, they
investigate the reflexive relationships between such identities and two different
contexts, the university-based teacher education programme (TEP-world) and the
prospective teachers’ experiences from their school placements (Field-world). They
focus on how research participants’ descriptions of what a good teacher is and of
themselves as teachers-to-be relate to their engagement in these two different
“worlds” of their pre-service education, while acknowledging that “the figurative
RealWorlds of the interns’ own past experience” (p. 63) also play a part. Ma and
Singer-Gabella work with prospective elementary teachers and—like the other
authors mentioned above—distinguish between the reform and the traditions of
school mathematics. They argue that teacher education programmes that value the
reform must move beyond teaching relevant content and
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make students familiar with and participants in the figured world [of the reform], both
reshaping their various models of identity of children and teachers and introducing or
promoting an appropriate construction of mathematics. (p. 10)

All the studies above emphasise changes in professional identity as teachers
become involved in two distinct sets of practices, one of which represents the
traditions of school mathematics, while the other introduces current reform rec-
ommendations for the subject as taught in school. The delineation of these two sets
of practices constitutes a normative dimension in these studies. Further, the
ambition is generally to understand and support teachers’ gradual engagement with
the latter of the two sets of practices. The analytical focal point, then, is on teachers’
identity trajectory as they are introduced to TD-practices promoting the figured
world of the reform. It is generally implied that identity change is a long-term
endeavour that it takes more than yet another course in mathematics for teachers to
accomplish. It requires teachers to become “a ‘different’ teacher and a ‘different’
person” (Hodgen and Askew, p. 474). The extent to which programmes are suc-
cessful in this constitutes the empirical and analytical dimension of the studies.

I suggest that the two dimensions of the studies referred to above, the normative
and the empirical/analytical, indicate a trend in studies of mathematics teachers’
professional identities. In general, reform-oriented practices become the centre of
attention. Phrased differently the trend is to prioritise a particular set of practices,
those related to the PD or teacher education programme, and a related figured
world, the reform. In passing it should be noted that this is in line with the theo-
retical references for this line of research, as most studies in social practice theory in
a somewhat similar sense foreground a particular practice or figured world, be it
claims processing at an insurance company (Wenger 1998), girl scouts selling
cookies (Rogoff 1995), or romance at a university campus (Holland et al. 1998).
Centring the reform does not entail a disregard for how individual teachers engage
with the practices that the reform promotes. Indeed, these and other studies of
professional identity explicitly analyse how individuals or groups of teachers
construct new narratives about themselves in relation to school mathematics
(Hodgen and Askew 2007); come to identify with practices promoted by the PD
initiative (Cobb and Gresalfi 2011); use practices and meaning systems of teacher
education contexts as “resources for them to understand their own emerging sense
of themselves as teachers” (Horn et al. 2008, p. 67); or focus on “relationships
among prospective teachers’ identities as learners, doers, and teachers of mathe-
matics and the contexts and practices in which they are situated” (Ma and
Singer-Gabella 2011, p. 9). The overall intention may be phrased metaphorically in
the terminology of Lave and Wenger (1991), as attempts to support prospective or
practising teachers’ movement from peripheral to more comprehensive or sub-
stantial modes of participation in practices envisaged by the figured world of the
reform (cf. Fig. 33.2).

Mathematics education research on identity, as exemplified above, has con-
tributed with significant understandings of the potentials of different approaches to
professional development, including the challenges that may arise if the intentions
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of PD initiatives are in conflict with dominant traditions of school mathematics.
However, this line of research leaves questions related to professional identity and
teacher learning unanswered in the majority of cases in which teachers are not
engaged in long-term development programmes. I suggest that there is a need to
supplement this line a study and adopt a somewhat different approach, if the
intention is to address such questions.

Such an approach should not prioritise, but also does not disregard, current
reform efforts, and studies need to comply neither with the normative nor with the
empirical/analytical dimension of other identity studies as outlined above. Rather
than foregrounding and centring current recommendations for reform, I suggest
addressing the latter of the two questions that Gee asked (cf. Sect. 33.3), the one
concerned with how micro-interactions develop and sustain identities, and to
re-centre the individual by focusing on the experiences of the teacher in those
interactions. In fact the suggestion is to define professional identity as teachers’
experiences of being, becoming, and belonging as school and classroom interac-
tions unfold. In order to develop such a perspective, I seek inspiration from sym-
bolic interactionism.

33.5 Interactionist Approaches to Identity

A part of symbolic interactionist writing on professional identity has focused on
socially constructed, individual meaning making and pays attention to “the expe-
rience of work from the point of view of those who engage in it” (Shaffir and
Pawluch 2003, p. 894). This includes how individuals become part of an occupation
by engaging in the practices involved in ways that are deemed appropriate and
legitimate within the community. This line of research concerns the key concept of
self as developed by Mead (1913, 1934) and the inherent I-me duality. According to
Mead, the me is the result of a reflective approach to oneself, that is, of viewing
oneself from the perspective of others. One takes the attitude of others to oneself,

Being a teacher 
according to 
”the reform”

Fig. 33.2 Moving towards
more comprehensive
participation in practices
promoted by the reform
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interpreting their actual or expected actions symbolically, including their possible
reactions to one’s own behaviour. In this terminology “‘the me’ [is] that group of
organized attitudes to which the individual responds as an ‘I’” (Mead 1934, p. 186).

There are different theoretical and methodological approaches to identity in
symbolic interactionism. Structural symbolic interactionists view self as a set of
multiple identities, each a result of internalising role expectations stemming from
particular positions within social structures. In this tradition identities are defined as
“the meanings that persons attach to the multiple roles they typically play in highly
differentiated contemporary societies” (Stryker and Burke 2000, p. 286). Although
identities are multiple as they relate to a variety of different organisations, groups,
or institutions, they are considered relatively stable in terms of time and space. They
do vary, though, in terms of salience, that is, in terms of the probability that they are
invoked in social interaction. From this perspective the self is viewed as a salience
hierarchy of identities from different, but somewhat durable social constellations
(Stryker 2008; Stryker and Burke 2000). Smith-Lovin (2007) builds on Stryker’s
work, but suggests that in highly segregated institutional settings people rarely
encounter situations in which a multitude of high-salience identities are activated at
the same time. According to her, people may have multiple identities and complex
selves; but they rarely enact more than one significant identity in the same context.

Other symbolic interactionists, working more in Blumer’s tradition (Blumer
1966, 1969), adopt a less structural and more dynamic and situated perspective.
According to Blumer “Mead saw the self as a process” (1966, p. 535). In this
interpretation the I acts, but the individual instantaneously views her- or himself
through the eyes of individuals, specific groups, or generalised others and adjusts
her/his actions accordingly. Identity may then be seen as related to the shifting
versions of the self that emerge in social interaction. This perspective has
methodological implications, and Blumer suggests what he calls a naturalistic
approach to empirical research. In contrast to the structural perspective that seeks to
develop generalizable hypotheses that may be refuted by quantitative means,
Blumer’s perspective is qualitative and interpretive. He describes the methods in
terms of exploration and inspection (Blumer 1969).

Exploration is the primarily descriptive phase of “getting close to social life” by
using a range of qualitative approaches, that is, “any ethically allowable procedure
that offers a likely possibility of getting a clearer picture of what is going on in the
area of social life” (Blumer 1969, p. 41). Such procedures may include for instance
observations, interviews, text analyses, and discussions among people closely
connected to the focus of the study. Inspection is, in Blumer’s terminology, the
phase of developing theoretical accounts of what he refers to as the analytical
element of the study. The analytical element may for instance be processes, modes
of organization, networks, and relations among networks. As an example he
mentions the assimilation of girls in organized prostitution and argues that
inspection should consist of the “careful scrutiny of [empirical] instances with an
eye to disengaging the generic nature of such assimilation” (Blumer 1969, p. 44).
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33.6 PoP and Teacher Identity: Re-centring the Individual

Elsewhere I have categorised different approaches to research on teachers’ beliefs,
two of the categories being belief enactment and belief activation (Skott 2015b).
They share the view of teachers’ mathematics related beliefs as relatively stable
mental constructs that are at least potentially important for teachers’ contributions to
classroom practice; the main difference between them is the extent to which it is
expected that teachers’ beliefs impact practice. To some extent the view of beliefs
as mental constructs embedded in the individual parallels the perspective on
identity in structural symbolic interactionism as outlined above, although the
belief-activation approach to beliefs is less focussed on structure and more on
immediate interaction. The resemblance is that structural symbolic interactionists
(Stryker 2008; Stryker and Burke 2000) conceive of identities as affectively laden
and relatively stable cognitive schemas that are activated to different degrees in
different situations. They are not, then, situated, but variably salient and therefore
differentially enacted in different situations.

The PoP framework grew out dissatisfaction with how belief research tends to
ignore the field’s conceptual and methodological problems. As a result PoP chal-
lenges—among others—both the belief-enactment and the belief-activation
approaches (Skott 2013, 2015b). Conceptually the argument is that there is little
to gain by assuming the existence and behavioural impact of reified mental con-
structs in the form of temporally and contextually stable beliefs, and that a more
dynamic perspective may be helpful when seeking to understand teachers’ acts and
meaning-making. From this perspective teaching is not seen as enactment or acti-
vation of temporally and contextually stable beliefs, but as constant negotiation of
the teacher’s own contributions to the practices that unfold at the instant in view of
her/his prior engagement in other practices and figured worlds. This perspective on
teachers’ acts and meaning-making is based on empirically grounded analyses of
teaching-learning processes in novice teachers’ classrooms. My argument in the
present context is that it provides a useful approach also to understanding teacher
identity.

For a very brief illustration of the use of PoP in identity studies I refer to a study
of Anna, a young, Danish novice teacher of mathematics for middle and lower
secondary school. I followed Anna in four two-week periods over the first three
years of her teaching career at Northgate Primary and Lower Secondary School, a
well-functioning school with relatively few social problems in a well-to-do area of a
major city in Denmark. The data for the study are from interviews and informal
conversations with Anna, including some using stimulated recall; from classroom
observations; from observations of team meetings and short teacher development
initiatives; and from interviews with the leadership and with the three other teachers
in Anna’s team. The team is a group of teachers, who teach almost all subjects to
the three classes in a year group. In the first year of the study Anna’s team teaches
year 7 and the team follows the same three classes until they leave the school after
grade 9.
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At the time of her graduation from college, Anna is highly committed to her
profession. She says that the four years of her pre-service education were
tremendously important to her, and that she developed from seeing teaching as
something she wanted to study to seeing it as “something that has become part of
you” (interview 1). Part of her commitment is to the reform and Anna consistently
emphasizes student communication, reasoning, and modelling as important parts of
school mathematics. She also distances herself from the other mathematics teachers
at Northgate, convinced that they think and act differently when teaching the
subject. However, her team is important to Anna and she explicitly wants to learn
from older team members. Talking about Ian, who has 25 years of teaching
experience, she says that she wants to “maybe copy a little of what [he] does”
(second interview). One reason for this is that she finds the other team-members’
interest in building close relations with the students much in line with her own. In
the first half of the study Anna consistently talks about her positive relationship
with the students and half-jokingly describes it as being “somewhere between a
mother and a friend”.

Over the three years of the study, Anna’s allegiance shifts. She has, she says,
been recognized as a good mathematician by the other teachers of mathematics.
Also, she has developed a trusting relationship with the leadership, and they now
often ask for her advice on administrative and educational matters. Besides, Anna is
increasingly aware that everybody at Northgate considers it a privilege to work at
the school, but one that comes with some obligations. Both her team and the
leadership talk about the high level of ambition among everybody employed at the
school and say that you are expected to be committed and take your own initiatives.
While all of this indicates a stronger allegiance to her colleagues and to the school
in general, Anna’s commitment to the reform has weakened. Also, she now con-
siders herself so much older than the students that the significance and character of
her relation to them has changed.

Neither Anna’s position among her colleagues nor her awareness of the high
expectations connected to teaching at Northgate outline in detail what it entails to
teach mathematics to a class of lower secondary students. However, these devel-
opments coincide with and are probably related to Anna’s fading commitment to
the reform and to a change in her initial interpretation of what it means to have good
relations with the students. Taken together this changes Anna’s experiences of
being a teacher; of when she is doing a good job and what it means to become
better; of what it takes to be recognised as competent colleague; and of what it
means to belong at Northgate.

This brief outline of the study of Anna indicates that in line with the main trend
in other studies of identity, the PoP framework draws the concepts of practice and
figured worlds as developed by Wenger (1998) and Holland et al. (1998) respec-
tively. However, and somewhat in contrast to that trend, PoP does not focus on a set
of practices in a particular development initiative and on the figured world(s) it
promotes (e.g. the reform). Drawing on symbolic interactionism, PoP re-centres the
individual teacher and foregrounds a situated view of identity (Fig. 33.3).
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Interpreting or envisaging students’ reactions to her own behaviour, the teacher
may take the attitude to herself of the students in question and for instance seek to
overcome their frustration with a problem solving task, promote or sustain her own
mathematical or professional authority, support the students’ self-confidence, solve
an evolving disciplinary problem, and many more. But doing so, she may also draw
on practices and figured worlds beyond the classroom, such as those stemming from
her teacher education programme or a recent development initiative; from more or
less systematic collaboration with her colleagues; from a dominant discourse about
the school as promoted by the leadership; from recurrent discussions with parents at
PTA meetings or with others with an interest in the running of the school; and even
from practices and figured worlds that are less immediately related to school life.
Such practices and figured worlds may function as generalized others for the tea-
cher in question as she interacts with her students. And conversely, as teachers work
in teams, communicate with the leadership and the parents, individually prepare for
tomorrow’s teaching, or engage in other professional activities, they may draw on
and discursively reengage with each of the other practices as well as with previous
classroom interaction. If and how the teacher experiences herself as a good
mathematician, a close ally of the students, a valued colleague, a trusted profes-
sional, a promoter of the reform, or as any of the opposites to these or other positive
characteristics of being a teacher depends on the attitudes she takes to herself at the
instant. And as the significance of and relationships among practices and figured
worlds beyond the classroom change, so does the experience of being in it.

From this perspective and in the terminology of symbolic interactionism, pro-
fessional identity relates to the shifting versions of the me that evolve in interaction.
More specifically, it may be defined as the experiences of being, of becoming, and
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Fig. 33.3 Recentring the individual
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of belonging that emerge as teachers engage in the acts of teaching. In this defi-
nition the term of teaching is used in a broad sense as encompassing all forms of
engagement in the profession.

33.7 Comparing Frameworks

It is apparent from Sects. 33.4 and 33.6 above that there are many similarities
between the framework used in main-trend studies of identity and the one used in
PoP. However, there are also significant differences. In this section I use the
frameworks framework (cf. Sect. 33.2) to compare and contrast the two.

Similarities between the approaches are apparent when comparing two aspects of
the frameworks in the narrow sense, the key concepts and the theoretical stance.
Beyond the construct of identity, key concepts of both include the ones of interaction,
practice, participation, and figured world. Also, and as reflected in these key concepts,
the theoretical stance is similar to the extent that both approaches are inspired by social
practice theory and/or discourse analysis. This is non-trivial, as other studies of
identity draw on for instance personality theory or psycho-social theory (Skorikov and
Vondracek 2011). Also, it means that the concept of identity is in both cases con-
sidered dependent on individual engagement with particular social practices.

There are also similarities between the frameworks in the broader sense. In both
cases the unit of analysis is concerned with the individual-practice(s) interface. In
terms of methodology, both use a multitude of qualitative techniques (observations,
interviews, text analyses) in longitudinal studies in order to analyse changes in the
relation between research participants and significant social practices. Also, both lines
of study tend to analyse data without a ready-made set of codes and categories, and
often they make explicit reference to coding procedures inspired by grounded theory.

There are, however, also significant differences between the frameworks. In the
case of the main trend, the rationale of supporting teachers to move towards
comprehensive participation in practices promoted by the reform has implications
for other parts of the framework. The research questions concern “the changes that
teachers go through as they determine whether it is worthwhile to attempt to change
their teaching practice” (Cobb and Gresalfi 2011, p. 270); “how teachers can
become engaged with professional development (PD) in primary mathematics”,
despite the emotionally problematic relationship they often have with mathematics
(Hodgen and Askew 2007, p. 470); and understanding “what, exactly, are the
contributions of teacher education to teachers’ eventual practice?” (Horn et al.
2008, p. 61). The paradigmatic question that orients this field seems to be if and
how educational innovation may support identity change so that teachers may relate
more productively to the intentions of the reform.

In contrast studies using the PoP framework have no element of intervention at
present, and the ambition is to develop understandings of teacher learning in the
vast majority of cases in which teachers are not enrolled in long-term development
initiatives.
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The limited emphasis on interventions and normative issues in PoP leads to
differences also in other parts of the framework when compared to the general
trend. The key concept of identity is also in PoP a social construct, but it is not
linked to a set of practices that are prioritised in advance. It follows that two key
questions are what and how prior practices and figured worlds play a part for a
teacher’s experiences of being, becoming, and belonging as she engages with others
(students, colleagues, the leadership, short-term development opportunities, etc.) as
part of her profession? Another question is what changes there are in the signifi-
cance of and mutual relationships among these prior practices and figured worlds
over time? The unit of analysis may still be phrased as person-in-practice(s), but in
PoP the expectation is that there are multiple practices involved, rather than merely
the ones of the reform and the tradition, and it is an open question what practices
and figured worlds turn out to be important.

Finally there are differences in methodology although the methods used are
mainly the same. Studies in line with the general trend use methodological trian-
gulation to provide different modes of access to the same unit of analysis (the
research participants’ engagement with traditional and reform-oriented practices).
In PoP multiple methods are used for a different reason, as it is not assumed that
classroom observations, interviews, and other methods shed light on the same key
construct. In line with the theoretical stance adopted, the experiences of being a
teacher, of becoming increasingly recognised as one, and of belonging in a par-
ticular professional context is expected to be decidedly different in a research
interview, in a team meeting with colleagues, and in a classroom interaction. The
purpose of using different methods is exactly that they provide some access to the
teacher’s participation in and experiences from different practices and figured
worlds. Such access may be helpful for understanding her contributions to the
practices that evolve in the classroom. Further, the parts of the data material that are
turned into data are not only those that relate fairly immediately to reform or
tradition in school mathematics. Rather, any data material that point to any practice
or figured world that appears to orient the teacher’s action or meaning making as
they relate to the profession becomes data.

As mentioned before, there are obvious advantages to researching how teachers
engage with the practices promoted by TE- or PD initiatives, and how aspects of the
reform become a figured world they can attend to when teaching. However, I do
suggest that a different approach is needed, if the intention is also to understand
how teachers’ identities relate to instruction and to their participation in school life
in general when they are not engaged in long-term PD initiatives. The suggestion is
that there is a need to re-centre the individual, while maintaining the participatory
approach of other studies of identity. PoP is one way to do that. Studies of for
instance Anna (cf. Sect. 33.6) indicate that there are issues much beyond those
related to the teaching and learning of mathematics that orient teachers’ acts and
meaning-making, issues that are elusive, if we limit the focus to the traditions and
reform of the school subject. Phrased in more positive terms, PoP and other
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approaches that re-centre the individual may shed light on how unexpected prac-
tices and figured worlds come to play a role for teachers’ contributions to their
interactions with others at their schools. Referring to the metaphorical description of
a framework as a bicycle frame (cf. Sect. 33.2), I suggest that PoP allows one to go
to unexpected places and see things never imagined before. And although the initial
emphasis in PoP is not on interventions, such new experiences may even allow us
to look at potentials and problems of educational innovation in new ways. Maybe
they are needed for productive educational development.
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Chapter 34
Enactive Metaphorising in the Learning
of Mathematics

Jorge Soto-Andrade

Abstract We argue that an approach to the learning of mathematics based on
enactive (bodily acted out) metaphorising may significantly help in alleviating the
cognitive abuse millions of children worldwide suffer when exposed to mathe-
matics. We present illustrative examples of enactive metaphoric approaches in the
context of problem posing and solving in mathematics education, involving
geometry and randomness, two critical subjects in school mathematics. Our
examples show to what extent the way a mathematical situation is metaphorised and
enacted by the learners shapes their emerging ideas and insights and how this may
help to bridge the gap between the ‘mathematically gifted’ and those apparently not
so gifted or mathematically inclined. Our experimental background includes a
broad spectrum of prospective secondary math teachers, in-service primary teachers
and their pupils, first-year university students majoring in social sciences and
humanities and university students majoring in mathematics.

Keywords Metaphor � Enacting � Enactivism � Learning � Mathematics

34.1 Introduction

In our view, the most critical issue in mathematics education is the fact that millions
of schoolchildren worldwide are exposed to mathematics in a way that turns out to
be an inescapable torture for most of them. This phenomenon has been rather
recently acknowledged as ‘cognitive abuse’ or ‘cognitive bullying’ in the English
literature (Johnston-Wilder and Lee 2010; Watson 2008) and has been described as
a practice that is ‘at best marginally productive and at worst emotionally damaging’
(Watson 2008, p. 165).
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Indeed a consequence of this abuse, besides stress, frustration, math anxiety and
phobia, to begin with, is that many children and adolescents experience mathe-
matics as a senseless ritual and remain mathematically maimed and crippled for the
rest of their lives. Illusory understanding and amnesia follow, as pointed out by
Shulman (1999). The ‘fatal pedagogical error’, denounced by theologian Tillich
(cited by Weissglass 1979) as ‘throw[ing] answers like stones at the heads of those
who have not yet asked the questions’ (p. 59), is ubiquitous and recurrent. The same
point is made by Freire in his criticism of a pedagogy based on answers to
non-existent questions (Freire and Faúndez 2014). Moreover, many teachers
unwittingly, or unwillingly under systemic pressure, are functional to this often
unseen and unacknowledged situation. Hall’s (1959) famous saying fully applies
here: ‘Culture hides more than it reveals, and strangely enough what it hides, it
hides most effectively from its own participants’ (p. 39).

From our perspective, there is an urgent need to democratize, even to humanize,
the learning of mathematics (Cantoral 2013; Freire 1970; Gattegno 1971), and we
hypothesise that an approach that takes advantage of metaphorising and acting out
—natural cognitive mechanisms evolved in our species, but thwarted by traditional
teaching—may significantly help in alleviating the current cognitive abuse and its
sequels.

In this paper then, we intend to investigate from an enactivistic perspective to
which extent the way a mathematical situation is metaphorised and enacted (i.e.,
acted out) by the learners shapes the ideas and insights that may emerge in them.
Also, how metaphorising and enacting may help to bridge the gap between the
‘mathematically gifted’ and those apparently not so gifted or mathematically
inclined and facilitate sense making of mathematics for the latter.

After recalling below the basics of (conceptual) metaphorising and enactivism in
cognitive science, and arguing about their implications for mathematics education,
we discuss some down-to-earth illustrative classroom examples of what we call
enactive metaphorising in the context of mathematical problem posing and problem
solving involving geometry and randomness, two especially critical subjects in
contemporary school mathematics and beyond.

34.2 Theoretical Background and Research Questions

34.2.1 Metaphorising in Mathematical Education

Increasing awareness has been emerging during the last decades in the mathematics
education community that metaphors are not just rhetorical devices but powerful
cognitive tools that help us in building or grasping new concepts, as well as in
solving problems in an efficient and friendly way (Chiu 2000; Díaz-Rojas and
Soto-Andrade 2015; English 1997; Lakoff and Núñez 2000; Libedinsky and
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Soto-Andrade 2015; Sfard 2008, 2009; Soto-Andrade 2006, 2007, 2015; and many
others).1

In a broader perspective, increasing agreement has arisen in cognitive science
that metaphorising (looking at something and seeing something else) serves as the
often unknowing foundation for human thought (Gibbs 2008). As suggested by
Johnson and Lakoff (2003), our ordinary conceptual system, in terms of which we
think and act, is fundamentally metaphorical in nature. Lakoff and Núñez (2000)
highlight the intensive use we make of conceptual metaphors that appear—
metaphorically—as inference-preserving mappings from a more concrete ‘source
domain’ into a more abstract ‘target domain’, enabling us to fathom the latter in
terms of the former.

Elementary examples of (conceptual) metaphors in mathematics education are
the two foremost metaphors for multiplication, to wit, the ‘area metaphor’ and the
‘grafting metaphor’ (Soto-Andrade 2014), illustrated in Fig. 34.1 for the case of 2
times 3 and 3 times 2.

Notice that the area metaphor allows us to see commutativity of multiplication as
invariance of area under rotation. We ‘see’ that 2 � 3 = 3 � 2, without counting
and knowing that it is 6. On the contrary, the grafting (or concatenated branching)
metaphor does not allow us to ‘see’ at a glance the commutativity of multiplication.
As realised by Lakoff and Núñez (Núñez, personal communication, December
2012) this fact suggests that multiplication is not really commutative. In more
precise terms, there might be ‘multiplications’, inspired by the grafting metaphor,
that are not commutative! Indeed, think of composition of permutations, of matrices
and of operators. We have here then two different metaphors for the ‘same’
mathematical object, each with a different scope. The first one, the area metaphor,
which is quite close to East Asian crossing metaphor for multiplication, where you
count the number of crossings of, in this case, 2 lines and 3 lines, is quite friendly
and lets us see immediately the commutativity of multiplication. The second one
(multiplication is concatenation), points in a different direction, does not exhibit
commutativity (Mac Lane 1998) as an obvious property and is in fact more pro-
found: It reshapes our understanding of multiplication and it unfolds into category
theory in contemporary mathematics. A case of a felicitous metaphor opening up
the way to deep and far-reaching generalisations of a seemingly innocent ele-
mentary concept (see Manin 2007)!

Notice that, as argued by Sfard (1997), metaphorising appears here as a circular
autopoietic process (Maturana and Varela 1980) rather than as a unidirectional
mapping. So a more appropriate metaphor than the arrow metaphor to describe
metaphorising would be the ouroboros (the snake eating its own tail), an out-
standing metaphor of circularity, self-reference and organisational closure in living
systems (see Soto-Andrade et al. 2011). The ouroboros indeed plays an important
role in Maturana and Varela’s theory of autopoietic systems (Maturana and Varela
1980), appearing even on the cover of the first Spanish edition of their work

1For a recent survey of the role of metaphor in mathematics education, see Soto-Andrade (2014).
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(Maturana and Varela 1973; see also Soto-Andrade et al. 2011, Fig. 34.1), and in
cognition as enaction (Varela et al. 1991). Recall that the latter was also
metaphorised by Varela by the famous Drawing Hands lithograph by Escher, where
each hand draws the other into existence.

Our approach to the learning of mathematics emphasises the poietic (from the
Greek poiesis = creation, production) role of metaphorising, which brings concepts
into existence. For instance, we bring the concept of probability into existence
when, while studying a symmetric random walk on the integers, we look at the
walker (a frog, say) and we see it splitting into two equal halves that go right and
left instead of jumping equally likely right or left (Soto-Andrade 2007, 2014, 2015).
This ‘metaphoric sleight of hand’ that turns a random process into a deterministic
one allows us to reduce probabilistic calculations to deterministic ones where we
just need to keep track of the walker’s splitting into pieces: The probability of
finding the walker at a given location after n jumps is just the portion of the walker
landing there after n splittings.

We remark that a different metaphoric way of bringing mathematical notions
into existence, called reification by Sfard (2008), where a process is seen as an
object, is exemplified by the case of fractions: Splitting a whole into 3 equal parts
and keeping 2 of them becomes the number 2/3. Of course, splitting the whole into
6 equal parts and keeping 4 is a different (but equivalent) process whose reification
is the same number, 4/6 = 2/3. Saying that 4/6 and 2/3 are just equivalent fractions
instead of equal fractions is here a sign of incomplete reification.

Although in the literature metaphor and representation are often used as syn-
onyms, we draw here a distinction: we metaphorise to construct concepts (as in the
above example) and we represent to explain concepts. Typically, metaphors are
arrows going upwards, from a down-to-earth domain to a more abstract one, and
representations are arrows going downwards, i.e., the other way around. In this
connection, it is pertinent to recall that in the German school of didactics of
mathematics, originally mostly concerned with primary mathematics education and
going back to Pestalozzi (Herbart 1804; vom Hofe 1995), representation and
metaphor were quite present: as Darstellung—representation aiming at explaining
something to others—and Vorstellung—a personal way to figure out or
fathom something, operationally equivalent to metaphor (Soto-Andrade and
Reyes-Santander 2011). So metaphorising was already recognised and appreciated
at the beginning of the 19th century in German didactics of mathematics, well
before its irruption from cognitive psychology and linguistics into mathematics
education (Lakoff and Núñez 2000).

Fig. 34.1 Area metaphor (left) and grafting metaphor (right) for multiplication

622 J. Soto-Andrade



The ubiquity of metaphor in mathematics education should not be underesti-
mated: Besides bringing into existence mathematical concepts or objects or helping
learners to fathom them, unconscious metaphorising often dramatically shapes the
way teachers teach, for instance. A foremost example is afforded by the metaphor
‘teaching is transmitting knowledge’. Indeed, when confronted with it, many
teachers reply: This is not a metaphor, teaching is transmitting knowledge! What
else could it be? Unperceived here is the ‘acquisition metaphor’ (Sfard 2009;
Soto-Andrade 2007) for learning, dominant in mathematics education, that sees
learning as acquiring an accumulated commodity. The alternative, complementary
metaphor is the ‘Participation Metaphor’: learning as participation (Sfard 2009).
This dichotomy is well expressed in Plutarch’s metaphor: ‘A mind is a fire to be
kindled, not a vessel to be filled’ (Sfard 2009, p. 41).

Paraphrasing Bachelard (1938), who advocated epistemological vigilance, we
suggest nowadays to practise metaphorical vigilance, i.e., the art of noticing (Mason
2002) our unconscious or implicit metaphors, that shape our way of interacting with
the world and particularly our approach to teaching and learning.

Last but not least, metaphorising plays also a key epistemological role: We have
claimed elsewhere (Díaz-Rojas and Soto-Andrade 2015) that—metaphorically—a
theory is in fact just the ‘unfolding’ of a metaphor (the involved unfolding process,
however, may be laborious and technical).

A paradigmatic example is the ‘tree of life’ metaphor in Darwin’s theory of
evolution. Also, Brousseau’s theory of didactical situations (Brousseau and
Warfield 2014) may be seen as an unfolding of the ‘emergence metaphor’ that sees
mathematical concepts emerging in a situation instead of being parachuted from
Olympus as in traditional and abusive teaching. The ‘grafting’ metaphor above for
multiplication (Soto-Andrade 2014) unfolds into category theory in mathematics
Mac Lane (1998). We use in fact the metaphorical approach as a meta-theory to
describe other theories relevant to us in terms of their generating metaphors,
something more helpful to fathoming how they arise than just describing them a
posteriori. We exemplify this below in the case of Varela’s enaction.

34.2.2 Enactivism in Mathematics Education

An unfolding metaphor for enaction is Antonio Machado’s famous poem (Machado
1988, p. 142; Thompson 2007; Malkemus 2012): ‘Caminante, son tus huellas el
camino, y nadamás; caminante, no hay camino, se hace camino al andar’ [‘Wanderer,
your footsteps are the path, nothing else; there is no path, you lay down a path in
walking.’], cited by Varela (1987, p. 63) himself when he introduced what he called
the enactive approach in cognitive science (Varela et al. 1991). In his own words:
‘Theworld is not something that is given to us but somethingwe engage in bymoving,
touching, breathing, and eating. This iswhat I call cognition as enaction since enaction
connotes this bringing forth by concrete handling’ (Varela 1999, p. 8).
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Notice en passant to what extent the ‘laying a path in walking’ metaphor is
transversal to the traditional one for learning as following a well-marked path given
in advance.

Before proceeding any further, however, to avoid confusion given the somewhat
polysemic current status of the terms enactivism, enactivist, enaction, enact, en-
acting and enactive, we will adhere to the following usage.

The now prevalent terms enactivism and enactivist will always refer to Varela’s
anti-representationalist ‘enactive program’ (Varela et al. 1991, p. xx), which sees
cognition as embodied action, more precisely, cognition as enaction, as metapho-
rised by Machado’s verse. Key aspects of enaction are: perceptually guided action,
embodiment and structural coupling through recurrent sensorimotor patterns
(Varela et al. 1991; Reid and Mgombelo 2015). In an aphorism: ‘All doing is
knowing, and all knowing is doing’ (Maturana and Varela 1992, p. 26). We will
speak then of an ‘enactivist approach’ to problem solving or to mathematics edu-
cation. We will also use the term ‘enaction’ exclusively in Varela’s sense (Maturana
and Varela 1992).

On the other hand, unless otherwise explicitly stated, ‘enact’, ‘enacting’ and
‘enactive’ are to be understood in the sense of everyday language and also in the
sense of Dewey (1997) and Bruner (1966), i.e., as synonyms of ‘acting out’ or
‘acted out’, in an embodied way. So ‘enacting a metaphor’ just means ‘to act it out’,
with your body (see Example 34.4.1). This fully coincides with the use of ‘enactive’
in Gallagher and Lindgren (2015), where they refer to ‘enactive metaphors’
(metaphors in action, that we act out bodily) as opposed to what they call ‘sitting
metaphors’. We use ‘enactive metaphorising’ below in this sense.

As mentioned above, in mathematics education the term enaction may be traced
back to Bruner (1966), who was following the traces of Dewey’s (1997) ‘learning
by doing’. Bruner’s enaction, which means essentially acting out or doing, is
however far less radical than Varela’s, in that it does not challenge the notion of a
given reality ‘out there’ that we perceive or represent more or less successfully.
Dewey, however, already emphasised the role of sensorimotor coordination in
perception, acknowledging that movement is primary and sensation is secondary
(Dewey 1896; Gallagher and Lindgren 2015).

In particular, the enactivist notions of structural determinism and structural
coupling (Maturana and Varela 1992; Varela 1999; Varela et al. 1991) have pro-
vided new insights on learning, problem solving and problem-posing processes:
Learning is not determined by a didactical environment but arises from the inter-
action of the learner’s structure and environment, which plays at most the role of a
‘trigger’. Traditionally, however, problem solving entails problems given before-
hand, lying ‘out there’ in the world, waiting to be solved, independently of us as
cognitive agents. In the enactivist perspective, because of our structural coupling
with the world (Varela 1996; Varela et al. 1991), we bring forth emergent prob-
lematic situations instead. This is what Varela calls problem posing. This diverges
from the usual gas fitter metaphor for problem solving, where solvers look into their
toolboxes of predefined strategies and choose the appropriate one for solving the
problem at hand (Soto-Andrade 2007; Proulx 2008). In the enactivist perspective,
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mathematical strategies emerge continually in the interaction of solver and prob-
lematic situation (Proulx 2013; Thom et al. 2009).

At present, an enactivist didactics of mathematics unfolds where the teacher is an
enactivist practitioner acting in situation and learning appears as an emergent,
situated and embodied process (Brown 2015; Brown and Coles 2012; Proulx 2008,
2013; Proulx and Simmt 2013). For a recent survey of enactivist theories, see
Goodchild (2014).

According to Varela, we are always ‘enacting’ a world, most of the time
unconsciously. So we cannot choose to enact or not to enact (in Varela’s sense);
enaction is just the way we cognise as living beings. We may nevertheless entertain
the ‘representationalist illusion’ (a privilege of humankind!) that we are perceiving
and representing an objective reality ‘out there’. Also, we can choose to enact (in
the everyday sense of the word of bodily acting out) a given metaphor or situation
or not, for instance. Paradoxically, we are definitely able to teach in a way that
ignores enaction (in Varela’s sense) and does not allow for enacting (as bodily
acting out): a non-enactivist stance that paves the way for cognitive bullying. Our
enactivist approach to education, distilled in the ‘lying down a path in walking’
metaphor for cognition and learning, leads us on the contrary to foster metaphor
enacting among the learners.

34.2.3 Research Questions

Along the lines of our stated research aim in the Introduction, we intend to address
here the following research questions:

– When and how does metaphorising arise from learners in a problem-solving
situation, particularly idiosyncratic metaphorising?

– How does metaphorising correlate with the emergence of new ideas or insights
to tackle challenging situations?

– Is metaphorising enactive most of the time? How relevant for learning are
action-based enactive metaphors?

– What is the influence of learners’ non-metaphoric enacting in mathematical
problem-solving situations?

34.3 Methodology

Our methodology adheres to the enactivist perspective, where we focus on the
learners doing and knowledge is not metaphorised—by the researcher—as an object
to be captured or held by a learner (Sfard 2008, 2009).
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According to this and our research objectives, we suggest and propose various
challenging situations to the learners and observe how they tackle them. We pay
attention to the whole spectrum of emerging strategies, to whether they metaphorise
or enact and how the emergence and the quality of their ideas and insights correlate
with their metaphorising and enacting. We do not focus on trying to measure their
knowledge over time but on monitoring their being mathematical as a means to
tackle a challenge co-emergent with their doing.

Our experimental methodology relies on qualitative approaches and field
observation, especially multiple case study (Yin 2003); participant observation
techniques and ethnographic methods (Spradley 1980; Brewer and Firmin 2006).
Our experimental background includes a broad spectrum of learners (seven cohorts)
with whom we carried out didactical experiences based on a metaphor-intensive
enactivist approach in 2015 and 2016 that included the following:

A. Fifty students in a one-semester first-year mathematics course in the social
sciences and humanities option of the Baccalaureate Programme of the
University of Chile (two cohorts: 2015 and 2016).

B. Thirty-five prospective secondary school physics and mathematics teachers in a
one-semester course in probability and statistics at the same university (two
cohorts: 2015 and 2016).

C. Twenty (5 graduate and 15 undergraduate) students majoring in mathematics in
an optional course on random walks at the University of Chile (2015).

D. Fifty participants in a two-session workshop, each session consisting of 1.5 h,
on enactive metaphoric approaches to mathematical problem solving, held at
the annual meeting of the Chilean Mathematics Education Society, in
Valparaiso (2016). Participants included in-service secondary and primary
school teachers, prospective secondary teachers, post-graduate students in
mathematics education, researchers in mathematics education and some
undergraduate and graduate math students.

E. Twenty in-service primary school teachers engaged in a 15-month professional
development programme (mathematics option) at the University of Chile at
Santiago (2016).

These cohorts were chosen because they constituted a rather broad spectrum
of learners with whom our overarching approach could be tested while performing
our usual teaching duties at the university and facilitating invited workshops
elsewhere.

Regarding data recollection, learners, working most of the time in random
groups of three to four, were observed by the teacher or facilitator and an assistant,
the latter assuming the role of participant observer or ethnographer. Field notes and
transcripts of the generated dynamics were taken (especially of critical moments of
the work sessions, such as emergence of metaphors, horizontal confrontations
between the students, and didactic tension build up), snapshots of their written
output (on paper or whiteboard) in problem-solving activities were taken,
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short videos of their enacting moments were recorded. We recall that all these data
are also acts of interpretation, where a researcher learns in co-emergence with a
research situation (Reid 1996).

Regarding data analysis, categories involved in the initial phase of the obser-
vation included:

– Learners’ participation and engagement (level estimates).
– Questions and answers (from teacher and learners, frequency, relative weight,

spaces for pondering).
– Horizontal (peer) interaction (level estimate).
– Metaphors, especially idiosyncratic ones (emergence, spontaneously or under

prompting, variety).
– Arising of gestural language of learners and teacher.
– Expression and explicit acknowledgement of affective reactions from the

learners.
– Enacting (acting out) of metaphors and situations by the learners.

Recall that in an enactivist methodological framework the initial categorical grid
evolves according to the flow of activity in the classroom and the reactions of
learners and teachers in an autopoietic way (Reid 1996; Maheux and Proulx 2015).

To address our research objective we kept track of ideas and actions emerging
after either spontaneous or prompted metaphorising (see examples below).

From data analysis, we compared cognitive and affective reactions of the dif-
ferent cohorts and inferred the profile and strength of the prevailing didactical
contract (Brousseau et al. 2014), usually installed during secondary math education
for most learners.

Moreover, learning in Cohorts A, B and E was assessed through monthly tests
(where students had to solve contextual problems in a limited time), compulsory
and optional exercises and challenges as homework (Cohorts A, B, C and E).
Process assessment was also done by observing their acting and behaviour and
recording their production during individual and group work sessions and lectures
(all cohorts).

34.4 Illustrative Examples of Enactive Metaphorising

We report and discuss below two types of examples of enactive metaphorising in
challenging mathematical situations that we experimented with in the above
cohorts.

34 Enactive Metaphorising in the Learning of Mathematics 627



34.4.1 The Sum of the Exterior Angles of a Polygon
and the Inner Acute Angles of a Star
(Cohorts D and E)

34.4.1.1 Problem: Everybody Knows About the Inner Angles
of a Triangle and Their Sum. But What About the Exterior
Angles? And Their Sum? Also What About the Same
for a General Polygon?

As suggested by our enactivist perspective, we prompt the learners to notice and to
voice their reactions, cognitive and affective, to this 45-min challenge. We intend in
this way to facilitate a circular interaction between the problem and the learners that
could trigger a reshaping of the challenge. Most of them, however, have trouble in
acknowledging a negative reaction. After renewed prompting some dare to ask:
Why should we be interested in the exterior angles of a polygon and their sum? A
few (in-service and prospective teachers alike) complain about the prescriptive way
this sort of geometry is usually taught. After a while, most of them agree that one
needs to re-signify exterior angles: What are they good for?

After some polling, we found that a majority of learners (students as well as
teachers) prefer inner angles to exterior angles and wonder about the meaning,
usefulness or relevance of exterior angles.

We observed that to tackle this problem almost every in-service and prospective
secondary mathematics school teacher in our country calculates first the sum of the
inner angles (usually by triangulating), finding that it depends on the number n of
sides of the polygon, as (n − 2) times 180°. Then, replacing each interior angle by
180° minus the corresponding exterior angle and calculating, they wind up dis-
covering that the sum of all exterior angles of a (convex) polygon is 360°, inde-
pendently of its number of sides! This is surprising for most of them! At this point
some students (more often girls than boys, in our courses) ask: Isn’t there a simpler
way to get this? Others feel frustrated because they have ‘calculated blindly’ and
without insight.

This is the usual way in which teachers and students ‘get into’ the proposed task
(Proulx 2013). Unfortunately, this is the only approach found in almost every
textbook, where the mathematical content ‘exterior angles of a polygon’ is then
checked as having been covered.

Our metaphoric approach suggests, however, prompting the students to
metaphorise a polygon first (not just recite its definition) to help them to get into the
problem in more transparent ways. Their metaphorising will depend, of course, on
their previous history and experiences. We observed the rather slow emergence of
two main competing metaphors:

– A polygon is an enclosure between crossing sticks (most popular among
in-service primary teachers).
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– A polygon is a closed path made out of straight segments. Interestingly, some
learners say that a polygon is a closed plane figure, while drawing a circuit in
the air with their index!

Notice that the first metaphor carries the viewpoint of the eagle (who sees from
above) and the second one, the viewpoint of the ant (who crawls down to earth).
A high-speed version of the second one is quite familiar to children nowadays in
video games.

Among primary school teachers (Cohorts D and E), enacting the first metaphor
triggers the idea of manipulating the sticks, translating them in convenient ways, so
as to make clearly visible the exterior angles first, and then shifting them parallel to
themselves to shrink the polygon to a minimum, preserving its shape. So in fact
they zoom out the polygon! In this way they see that the sum of all exterior angles is
clearly 360o instead of getting this value by blind calculation.

Enacting the second metaphor also allows the learners to see that the sum of
exterior angles is a whole turn, when ‘laying down a polygonal path in walking’.

Indeed, we observed that the in-service primary teachers in Cohort E, working in
groups, had one of them (who had trouble seeing in this way that the sum of
exterior angles was a whole turn) ‘lay down a polygon in walking’, following the
instructions of his peers: Walk 5 steps, stop, turn 45° to your left, walk 7 steps, and
so on. In this way they realized that exterior angles rather than inner angles were the
necessary and convenient data to inflect or bend the path of the walker as desired.
Addition of all exterior angles occurred when the walker made a complete circuit
and came back to his starting point with his nose pointing in the same initial
direction. Learners also noticed that this metaphor suggests a natural generalisation,
involving a signed sum, for the case of a non-convex polygon!

Recently a third metaphor was suggested by one of our former mathematics
students:

– A polygon is a wheel of the Flintstones’ car.

Learners realised quickly that when the Flintstones’ car runs, its wheels turn, and
when they complete a whole turn, their exterior angles (arising as the successive
angles between the wheel’s sides and the ground) add up to a whole turn!

We see in this example that metaphorising and enacting can make a dramatic
difference in understanding that is within the reach of ‘everybody’, as opposed to
the ‘blind’ unappealing calculation found everywhere. Our appraisal of inner and
exterior angles also changes: Exterior angles appear now to be more natural and
friendlier than inner angles: a dissident view indeed! In particular, learners realised
that it is smarter to figure out first the sum of all exterior angles of the polygon and
then deduce the value of the sum of the inner angles, which is contrary to the usual
procedure and a valuable idea for the next challenge.
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34.4.1.2 The Five-Pointed Japanese Star Problem, The Enactive Way

A typical challenge in Hosomizu’s little red book (Hosomizu 2008) is to calculate
the sum of the inner acute angles of a five-pointed star (eventually non-regular).
Several clever approaches are discussed there, although none of them are enactive
or metaphoric. We posed this problem to Cohorts D and E. When posed from
scratch, before Problem 34.4.1.1, everybody tackled it in a geometric-algebraic
way: Some learners in Cohort D even wrote down a whole system of equations,
taking advantage of the inscribed pentagon in the star. Most took the star to be
regular and computed dutifully the value of each inner acute angle. Then they
conjectured that the total sum would remain constant if the star were deformed. So
they more or less converged to the approaches illustrated in Hosomizu (2008),
although less clever on the average. Nobody thought of ‘laying down a star in
walking’ (following the circuit usually used to draw the star) to instantly see that
the sum of all exterior angles at the points of the star equals 2 whole turns and from
there get the sum of all inner acute angles (as 5 half turns minus 4 half turns = 1
half turn). Several in-service secondary teachers avowed nevertheless that they
preferred the algebraic approach that they felt more at home with.

Learners in Cohort E, who worked on this problem after having worked out
Problem 34.4.1.1, wondered for a while which closed path to walk to lay down the
star before settling for the one they use to draw the star. After learners in Cohort D
solved this problem using ‘angular yoga’, as in Hosomizu (2008), we proposed to
them Problem 34.4.1.1, which they discussed and finally solved metaphorically and
enactively. They went then back to the five-pointed star to find a friendly circuit to
walk and solve the problem. Learners in Cohorts D and E noticed that this enactive
metaphoric approach worked equally well for irregularly drawn seven-pointed stars
and more generally for stars with an odd number of points.

34.4.2 Probabilistic Enacting

34.4.2.1 Falk’s Urn and Fischbein’s Test

The following challenging question (Falk and Konold 1992; Fischbein and
Schnarch 1997) was proposed to learners in Cohorts A, B and C.

John and Mary each receive a box containing 2 black marbles and 2 white marbles.

John extracts a marble from his box and finds out that it is white. Without replacing this
marble, he extracts a second marble. Is the likelihood that this second marble is also white
smaller than, equal to or greater than the likelihood that it is black?

Mary extracts a marble from her box that she puts in her pocket without looking at it. Now
she extracts a second marble that turns out to be white. Is the likelihood that the marble in
her pocket is white smaller than, equal to or greater than the likelihood that it is black?
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Learners had no trouble with John’s drawings, but roughly 60% of learners in
Cohort A and 40% of learners in Cohorts B and C thought that the fact that Mary’s
second marble be white had no effect whatsoever on the likelihood of the first one
being black. The remaining learners thought intuitively that since the second one
was white it was more likely that it was drawn from a box with more white than
black marbles, so it was more likely that the first marble was black. Just a few
learners in Cohorts A and B had the idea of simulating many times to figure out
what would be more likely. Others (learners in Cohort C included) metaphorised
the whole process as a two-step random walk on a binary tree, or better on a grid,
and computed diligently the non-required probabilities (the question was qualitative
and couched in everyday language, not in probabilistic language). They found
correctly that the probability of the marble being black in both cases is 2/3. They
realised, however, that they did not really see why probabilities were the same and
why ‘there was no time arrow’.

Following our enactivist perspective, we prompted the students to enact (act out)
the experiment. Extracting the marbles, they ended up with two marbles by the box,
in the first case the first one being white and the second one being hidden under a
cap, in the second case, the first one being hidden and the second one being white.
They realised then that they had just extracted two marbles from the box and hidden
one of them, the other one being white!

A variant of this enactment that we suggested to the students, inspired from a
remark by M. Borovcnik (personal communication at ICME 13, July 27, 2016),
starts by grabbing a marble from the box with one hand and then another one with
the other hand, keeping both fists closed. They realise then by themselves that it is
just a matter of opening first one fist or the other and that they could have also
grabbed the two marbles simultaneously.

34.4.2.2 Drawing Balls from an Urn Without Replacement:
Metaphorising as a Random Walk and Enacting (Proposed
to Learners in Cohorts B and C)

Problem: From an urn containing 3 red balls and 5 blue balls, 5 balls are drawn
one after another at random without replacement. How likely is that the 5th ball
drawn is red?

We have discussed this problem, proposed to learners in Cohort C, in detail
elsewhere (Soto-Andrade et al. 2016) in the simpler case of the 3rd ball drawn from
a (2, 3) urn instead of a (3, 5) urn. We comment here on further experimentation
with learners in Cohort B in 2016 and new ways of enacting it (acting it out).

We observed that most students in Cohort B, when exposed to the problem in a
test, dutifully calculated the requested probability with the help of a lush possibility
tree with probabilities assigned stepwise using a hydraulic metaphor (that sees
probabilities as portions of one litre of water that drained downwards from the
‘root’ of the tree). Nevertheless most of them did not realise that the probability of a
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red ball at any drawing was always 3/8, because they did not even notice that for the
second drawing it was 21/56 = 3/8! One or two intuited that order did not matter,
but most of them were quite surprised in a subsequent stage, when working in
groups in the classroom they finally found that the probability of the nth ball drawn
being red was the same for all n up to 8. We then prompted them to enact the
process by actually drawing marbles from a (3, 5) bag. Some were a bit reluctant to
do so. A good performing student said bluntly:

I do not see how enacting can help me to solve the problem. What else do I get from
enacting that I do not get from thinking? I just need to think about it!

Nevertheless, afterwards he gave the following intuitive argument to see that all
probabilities were the same. Keeping the first 4 drawn marbles in his closed left
hand, he said:

Now I have to choose a 5th one from the 4 marbles remaining in the bag. But it is clear that
this is equivalent to choosing one of the hidden 4 marbles in my left hand! So it amounts to
choosing 1 marble from the whole bunch of 8 marbles!

All other students put the drawn balls carefully in a line, one by one (they did not
throw them away!). This helped several of them to see the invariance of the
probability of drawing a red marble. No one put them insightfully in a circle, as an
undergraduate female student2 in Cohort C did for the (2, 3) bag in 2015, but they
really appreciated the idea when told.

Now, a new enaction, suggested by M. Borovcnik (personal communication at
ICME13, July 27, 2016) is to grab sequentially first, five marbles from the bag, with
five hands (of three students) keeping the five fists closed, and subsequently
opening them in the same sequence, or in another one, e.g. the fifth fist first.
Eventually the grabbing could be also simultaneous! Enacting in this way all stu-
dents saw the invariance of the probability of ‘red’, not just a few clever eidetic
students.

To get a better grasp of the drawing process, learners also metaphorised it as a
2D random walk—from the source (3, 5) to the sink (0, 0) or from the source (8, 3)
to the sink (0,0)—that in turn they metaphorised as a splitting process, whose
transition probabilities they calculated with the help on a hydraulic metaphor. They
realized then that the associated (deterministic) ‘barycentric walk’ provides a
friendly metaphor for the ‘expected walk’ of the walker. They intuitively guessed
that the barycentric walk should proceed geodesically along a line whose slope
corresponds exactly to the probability of red at any drawing in the case where they
represent the initial state of the urn by (8, 3).

2Notwithstanding that Chile’s boys-girls PISA math performance gap is extreme among OECD
countries (OECD 2016, p. 198).
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34.5 Discussion and Conclusions

Motivated by an enactivist perspective, we have shown by way of illustrative
examples how metaphorising and enacting (acting out) mathematical objects,
processes and situations can make a significant difference in the ideas and insights
that may emerge from learners tackling a mathematical challenge. In the cases
considered (34.4.1 and 34.4.2) concerning geometry and probability, we observed
notably that there was a dramatic contrast between blind calculation before
metaphorising and sudden insight when metaphorising or enacting. We also saw
how different insights were triggered by different metaphors or enactings. In
Problem 34.4.1.1, for instance, we collected in all one blind calculation and three
different insights leading to the answer triggered by three different metaphors for a
polygon with different levels of enactivity (bodily engagement), the foremost one
being ‘laying down a polygon in walking’.

Very concretely, we observed that when they enact, learners have to make up
their minds: What do I do with the balls I draw from the urn? Throw them away?
Keep them in my hand or in my closed fists? Put them carefully in a row or a circle
on the table? Each way of enacting—determined primarily by the solvers’ structures
and histories—suggests various different ideas and insights that do not emerge so
easily when they just think about a problem. Our learners working on the challenges
in Cases 34.4.1 and 34.4.2 indeed discovered unforeseen mathematical relations or
facts in their bodily actions (see Abrahamson and Trninic 2015).

We nevertheless found that, surprisingly, metaphorising and enacting were quite
difficult for most of the observed learners. Persistent prompting and plenty of time
was often needed to elicit both among them. Notice that learners in Cohort A, for
instance, came straight from secondary school (where cognitive bullying prevails).
Even so, students in Cohort A and in-service primary school teachers were more
prone to metaphorise than prospective or in-service secondary school math
teachers.

Particularly, we noticed that metaphorising a polygon, for instance, was a very
unusual challenge for students, prospective and in-service teachers alike: a violation
of the prevailing didactical contract. But once they felt they were allowed to, even
prompted to, metaphors began to arise among them, shyly and slowly at first. They
came later to gradually appreciate the operational virtues of metaphorising.

In fact, we observed chains of metaphors emerging that completely transformed
a given problem (e.g., Sects. 34.4.1.1 and 34.4.2.2) and allowed learners to better
fathom what was going on. From an enactivist perspective, they were not just
reacting to a problem out there or looking for a solving strategy that had been
stocked beforehand in their personal toolkit but rather shaping and transforming the
problem, eventually because they did not like it (see Proulx 2013). Moreover,
metaphorising a mathematical object, such as a polygon, may show them the way to
guess and discover meaningful or significant properties amidst the huge set of
properties entailed by its formal definition.
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Interestingly, no more than one student out of 20 on the average tried sponta-
neously to enact (act out) an opaque problematic situation. Some prospective
teachers even voiced their disbelief regarding the usefulness of enacting, because
math problems are just a matter of thought!

Recalling the well-documented strong negative feelings of school children
towards mathematical content taught the traditional way, it seemed to us a bit
paradoxical to observe widespread ‘emotional anaesthesia’ in most of our learners,
who had trouble in acknowledging and expressing their emotional reactions,
especially negative ones, towards mathematical content. Only primary school
teachers and students in Cohort A escaped this condition to some extent. We
interpret this syndrome as a consequence of the didactic contract (Brousseau et al.
2014) associated to the prevailing cognitive abuse in our culture, where students are
expected to understand a mathematical content or not, but not to like or dislike it.
Expression of affect is then ignored and repressed.

This phenomenon seemed important to us because we observed that metapho-
risation, for instance, may be often triggered by disliking of a proposed problem:
The learner tries to metaphorise it in order to see it otherwise, wearing friendlier
attire. So in fact negative emotions may foster creativity!

We noticed a remarkable convergence of our claims and experimental findings
regarding the positive incidence of enacting in the arising of new insights in
problem-solving situations with very recent research in cognitive science (e.g.,
Glenberg 2015; Vallée-Tourangeau et al. 2016; Abrahamson and Trninic 2015).

We may conclude that metaphorising and enacting (in the sense of bodily acting
out) play indeed a key role in the learning of mathematics, especially for
non-mathematically inclined learners who have been cognitively abused by tradi-
tional learning. Since cognitive bullying is to a great extent institutionalised by the
prevailing unspoken didactic contract that is functional in thwarting metaphorising,
enacting and affect in teaching and learning contexts, it seems urgent to reshape this
contract to allow for and foster these processes. This endeavour deserves further
research, taking into account the relevance of collaborative group work and
learners’ horizontal interaction and participation.

As an open end, we would like to extend longitudinally our study to involve the
pupils of in-service and pre-service teachers we have worked with, to further
investigate the incidence of metaphorising and enacting in their learning and their
role as an antidote to cognitive bullying.
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Chapter 35
Number Sense in Elementary School
Children: The Uses and Meanings Given
to Numbers in Different Investigative
Situations

Alina Galvão Spinillo

Abstract This research investigated number sense in second grade Brazilian
children (7–8 years old) from different social backgrounds. Study 1 (interview)
aimed to identify the general uses given to numbers by children in everyday life
situations. Study 2 (multiple choice tasks) examined how children assign meaning
to numbers by asking the participants to make judgments about numerical situations
involving both numbers and measurement and to provide justifications for their
responses. The uses given to numbers in Study 1 were classified into different types:
school uses, outside school uses, intellectual abilities and professional uses. The
data in Study 2 were analysed according to correct responses and the types of
justifications given. Both studies showed that there are some differences between
children from different social backgrounds. On the whole, the children presented
number sense that needs to be taken into account in the school setting.

Keywords Number sense � Children � Social backgrounds � Uses and meaning of
numbers

Numbers and quantities, in a broad sense, are part of our daily life, from childhood
to adulthood, in the most diverse contexts: at home, on the streets, at school and at
work. They are part of the activities we carry out and the plans and the decisions we
make. We are surrounded by numbers, and in order to function properly and
efficiently in this environment we need to be numerate.

Being numerate involves familiarity with the world of numbers: to be able to
think quantitatively in a variety of situations, to be able to employ efficient systems
of representation and to understand the logical rules that govern the mathematical
concepts inserted in these situations (Nunes and Bryant 1996). Being numerate is
related to what in the literature is called number sense.
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One may say that number sense is a cognitive ability that allows individuals to
interact successfully with the various resources that the environment provides so
that they can generate appropriate solutions to deal with daily activities that involve
the use of mathematics. According to several authors (Cebola 2007; Greenes et al.
1993; Greeno 1991; Reys 1989), number sense can be defined as good intuition
about numbers, their uses, meanings and relationships, which allows the individual
to handle, in an efficient and flexible manner, situations which involve numbers and
quantities. It is a skill that develops gradually from knowledge about the properties
and meanings of numbers in varied contexts and from the construction of rela-
tionships that are not restricted to the use of algorithms.

Reys (1989) defines number sense as an understanding of numbers and opera-
tions that allows the application of appropriate resolution strategies and the pro-
cessing of information, interpreting and communicating it accordingly. Similarly,
Greenes et al. (1993) stress that number sense is the capacity for understanding the
mathematical relationships involved in problem situations. Godino et al. (2009) and
McIntosh et al. (1992) stress that this understanding needs to be flexible, given that
the same strategies do not apply to all situations.

Faced with such a broad definition, it is important to be able to identify, both
from a psychological and an educational point of view, what the indicators of
number sense would be.

Spinillo (2006), based on an analysis of the literature on the subject (e.g., Greeno
1991; Yang et al. 2004), points out some indicators of numerical sense with the
objective of contributing to a conceptual understanding of this topic and the cre-
ation of educational alternatives that will effectively make students numerate.
Without intending to exhaust all possibilities of manifestation of a numerical sense,
the author presents and exemplifies several indicators: estimating; performing
flexible numerical computation; making quantitative judgments; establishing
inferences; using anchors; recognising the plausibility of a result; recognising the
absolute and relative magnitude of numbers; understanding the effect of operations
on numbers; being able to use and recognise that one instrument or representation
medium may be more useful or appropriate than another; and being able to
recognise uses, meanings and functions of numbers in different situations.

Flexible numerical computation, mental calculations and estimates, assessed
using oral problem-solving tasks, have been the most frequently investigated
indicators (Yang 2003; Yang et al. 2004). Spinillo and colleagues, by means of
judgment tasks, have investigated the effect of operations on numbers (Spinillo
2011); situations involving measurements (Spinillo and Batista 2009); and the
meanings, uses and functions of numbers in different situations (Ribeiro and
Spinillo 2006).

The understanding of the meanings and uses numbers can have in everyday life
has been highlighted in curricular proposals (NCTM 1989) and by researchers.
Cebola (2007), for example, states that children gradually discover what numbers
are for and gradually begin to understand that numbers are what allow us to count,
order or name something. Children realise that it is through numbers that one can
(i) indicate the number of elements in a set (number as cardinal), (ii) say in which
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position an athlete has arrived in relation to other athletes (number as ordinal) and
(iii) refer to a car number plate (number as nominal). According to the author, when
thinking about numbers and when using them, children broaden their numerical
sense. The present paper discusses, based on data obtained in two different studies,
the meanings and uses that children assign to numbers in their daily life.

Like any other mathematical knowledge, number sense has its origin in everyday
activities performed in the most different social contexts: at home (Blevins-Knabe
and Musun-Miller 1996; Clements and Sarama 2007; Siegler 2009), at school
(Brocardo and Serrazina 2008; Cebola 2007; Jordan et al. 2009) and on the streets
and in the workplace (Nunes et al. 1993; Gainsburg 2005). In terms of
socio-economic levels, Clements and Sarama (2007) observed that middle-class
parents engage more frequently in mathematical activities with their children than
low-income parents. According to Siegler (2009), children from low-income fam-
ilies have experiences which are less favourable to the development of number
sense, and begin school with a limited knowledge of mathematics. For Nunes et al.
(1993), who have studied low-income children and adolescents who carry out
selling and buying activities on the streets, these children present a well-developed
mathematical knowledge, although they adopt ways of reasoning different from
those valued at school.

On the whole, these studies show that children from different social classes have
different mathematical experiences in their daily lives that generate distinct types of
mathematical knowledge (not necessarily better or worse). Thus, it seems relevant
to examine whether children from different social classes would differ in their
ability to intuitively understand numbers and operations. This is the issue addressed
in this paper.

Given the large variety of number-sense indicators, the present study focuses
specifically on one of these indicators: the uses and meanings assigned to numbers.
The purpose of this paper is to discuss the results derived from two different
investigative situations. In both studies, the participants are low-income and
middle-class Brazilian children (7–8 years old), attending the second grade of
elementary school in the city of Recife, Pernambuco, Brazil. None of the partici-
pants was engaged in any type of informal commercial activity.1

1It is important to mention that children from low-income families whose parents work as street
vendors usually help them with their informal commercial transactions, such as selling snack foods
(popcorn, popsicles, sweets, cupcakes etc.) and seasonal fruits. For more details about these
informal commercial activities see Carraher et al. (1985) and Saxe (1991). The study conducted by
Saxe also describes the four-phase cyclical structure of this practice.
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35.1 Study 1

Study 1 consisted of clinical interviews whose objective was to identify the general
uses given to numbers by children in everyday life situations. Three key questions
were presented to each child: (1) What are numbers for? (2) What are sums for? and
(3) Why do we measure things? These questions are associated with three fields of
mathematical knowledge considered relevant in the national curricular proposal for
elementary school in Brazil: numbers, arithmetic operations and measures (MEC/
SEF 1997).

Forty children, 20 from a low-income background and 20 from a middle-class
background, took part in the interviews. Each interview was recorded and the
responses given were analysed and classified into different types according to the
use given to numbers, to operations and to the activity of measuring. The responses
were classified by two independent judges between whom the reliability of coding
assessment was 82.5%. The cases of disagreement were evaluated by a third
independent judge and the final classification was determined by agreement
between two of the three judges. The types of responses are described and exem-
plified below:

Type 1 (school uses): Children provide answers in which they give
school-related uses to numbers, operations and measurements.2

What are numbers for?

‘To do the homework’.
‘To have good grades at school’.

What are sums for?

‘To learn what is on the board, in the book, in the notebook’.

Why do we measure things?

‘So that we know the size of something if the teacher asks’.

Type 2 (outside-school uses): Children provide answers in which they relate
numbers, operations and measurements to everyday situations:

What are numbers for?

‘So that we know how many biscuits there are in a packet, for example’.

What are sums for?

‘To know the total, to count money, to pay the electricity and the water bill’.
‘So that we always get the right change’.

2None of the answers given have included more than one type of usage.
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Why do we measure things?

‘To know how tall someone is. I am taller than my sister’.
‘To know how big a wardrobe is and see if it can go through the door’.

Type 3 (professional uses): Children provide answers in which they relate
numbers, operations and measurements to professional activities:

What are numbers for?

‘We need to know how to add, subtract. If we want to work, we need to study a lot’.

What are sums for?

‘To find a job when we grow up’.
‘To have a good salary in the future’.

Why do we measure things?

‘Because I want to be a dressmaker when I grow up, and I’ll have to measure
things’.

‘To be a good engineer. To build something like a house’.

Type 4 (intellectual abilities): Children provide answers in which they associate
numbers, operations and measurement activities with intellectual success/
achievements:

What are numbers for?

‘To be clever’.

What are sums for?

‘Because if we don’t know how to add, to subtract, we are stupid’.

Why do we measure things?

‘To learn things’.
‘To know more’.

As it can be seen in Table 35.1, and revealed by the Mann-Whitney U test,
middle-class children assigned outside-school uses to numbers more often than
low-income children did (U = 8, p = 0.0290), while low-income children assigned

Table 35.1 Percentage of types of responses in each group

Low-income (n = 60) Middle-class (n = 60)

School uses 46.7 40

Outside school uses 30 43.4

Professional uses 13.3 5

Intellectual abilities 10 11.6
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professional uses to numbers more often than middle-class children did (U = 106,
p = 0.0078).

For low-income children, school uses were more frequent than other uses
(Friedman test: X = 15.529, p = 0.001), whereas for middle-class children, school
uses and outside-school uses were approximately the same and more frequent than
the other uses (Friedman Test: X = 11.571, p = 0.003). It is important to mention
that future uses related to professional activities were rarely observed among
middle-class children (only 5%).

Relating these uses to the three fields of mathematical knowledge investigated
(numbers, operations and measures), it was observed that, according to the
participants:

(1) Numbers were assigned school uses primarily associated with performing
arithmetic operations (‘Numbers serve to solve the problems in the book, don’t
they?’). There were no uses or meanings related to the ordering or naming of
things, which, according to Cebola (2007), are relevant aspects. When assigned
outside-school uses, numbers were associated with counting situations (‘They
serve to count the things we have. To know how many things we have.’).

(2) Arithmetic operations were essentially associated with school uses (‘To find the
answer to the math problem.’).

(3) Measuring activities were mostly associated to outside-school uses (‘To know
the height of the person, to see if they have already grown.’).

On the whole, children in both groups tended to give school-related uses to
numbers and to sums in particular, whereas they tended to give outside-school uses
to measurement.

To explain this result, it seems necessary to look at the mathematical activities
the participants perform both in and out of school contexts, particularly in their
living context. It is possible that the children in this study consider the activity of
counting as a school-context activity. This is because in Brazil, mathematics text-
books directed to the first years of elementary school tend to favour the solution of
arithmetic operations, either alone or in the solution of word problems (Mandarino
2009). On the other hand, measuring activities are not often proposed at school, so
they were not associated with school uses. The opposite, however, seems to occur
in the family context, as observed by Spinillo and Cruz (2016). Through natural
observations in two different living contexts—home and orphanage—the authors
verified that situations requiring measurements were the most frequent ones,
especially among children living with their families. The children often had to
measure the length of objects (e.g., the height of a wardrobe) or the distance
between them (e.g., between the wardrobe and the bed), whereas arithmetic oper-
ations were performed mainly when doing homework. This was the case in both the
family home and orphanage contexts. This possible explanation needs to be
investigated further in future research through systematic observations of the school
and living contexts of children from different social backgrounds.
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35.2 Study 2

The aim of Study 2 was to examine how children assign meaning to numbers. The
participants were 40 children, 20 from a low-income background and 20 from a
middle-class background. Each child was shown a number on a card, and asked to
say what that number meant, choosing one of three alternatives presented orally.
The multiple choice task consisted of 12 trials, and the alternatives referred to
meanings assigned to numbers in everyday life, for example: ‘Do you think this
number (child is shown a card with the number 6) is (a) the age of a person, (b) a
car number plate or (c) the number of books in a library?’ and ‘Do you think this
number (child is shown a card with the number 401) is (a) the number of pills
someone took in one day, (b) the number of a flat or (c) someone’s age?’

In order to understand better the child’s way of thinking, when the correct
answer was chosen,3 the examiner asked the child why that number could not
correspond to one of the other two alternatives (that is, the incorrect ones). The
answers were audio-recorded and classified as vague or as precise, as exemplified
below:

Do you think this number (shows a card with the number 82) is (a) the number of
cars in someone’s garage, (b) someone’s age or (c) someone’s telephone number?

Vague justification:

Child: It is someone’s age.
Examiner: And why can it not be, for instance, someone’s phone number?
Child: Because it can’t.
Examiner: But why not?
Child: It just can’t.
Examiner: Then explain to me why it cannot be.
Child: Because it’s impossible.

Precise justification:

Child: It is someone’s age.
Examiner: And why can it not be, for instance, someone’s phone number?
Child: Because a phone number is a very long number. It has got many numbers.
82 only has two numbers, it is too short to be someone’s phone number.

Do you think this number (shows card with the number 5900) is (a) the total
number of pages in a comic book, (b) the amount of money someone has in the
bank or (c) the number of floors in a building?

3The order in which the correct alternative was presented was randomized, so that in the first four
trials the correct answer was presented as the first alternative, in the following four trials as a
second alternative and in next four trials as the third.
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Vague justification:

Child: An amount of money.
Examiner: And why could it not be the number of pages in a comic book?
Child: Because it cannot. This is money. I know it.
Examiner: And how do you know this? Can you explain it to me?
Child: I just know it.

Precise justification:

Child: The amount of money in a bank.
Examiner: And why could it not be the number of pages in a comic book?
Child: No. Comic books are not like this. It would be too many pages and no child
would read a comic book with so many pages.

The percentage of correct responses did not vary between the two groups (Low
income: 65.4% and Middle class: 67.9%), but the types of justifications varied (see
Table 35.2).

As shown in Table 35.2, the results differ between groups due to the percentage
of vague justifications being significantly higher among low-income children than
the percentage of precise justifications (Friedman test: X = 17.316, p = 0.026). The
opposite is observed among middle-class children (Friedman test: X = 29.746,
p = 0.000). Also, vague justifications occurred more often among low-income
(Mann-Whitney U test: U = −2.919, p = 0.004) than among middle-class children,
whereas precise justifications were more frequently observed among the
middle-class children (Mann-Whitney U test: U = −3.163, p = 0.002).

Thus, it is possible to say that children from different social backgrounds are able
to successfully identify the different meanings assigned to numbers by society. The
meanings assigned to numbers that were explored in this study were essentially
number as a quantity of elements (number as cardinal, e.g., the number of books in
a library) and as an identity (number as a nominal, e.g., a car number plate or a
phone number). It would be interesting to investigate whether the two groups of
children would differ in relation to the other different meanings that numbers may
have in daily life beyond those examined in this study. For example, number as an
ordinal (an athlete’s position in relation to other athletes in a competition) and
number as a measure (different dimensions such as length, volume, etc.).

However, the groups of children who participated in this study differ in their
ability to express the foundations that underlie their judgments, since middle-class
children can provide more precise justifications than lower-income children.
A possible explanation for this result is given below.

Table 35.2 Percentage of the types of justifications given to the correct answers per group

Low income (n = 157) Middle class (n = 163)

Vague justification 62.4 28.2

Precise justification 37.6 71.8
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35.3 General Discussion and Conclusions

Taken together, the results from both studies show that there are some similarities
and some differences between children from different social backgrounds with
regard to the uses and meanings attributed to numbers in everyday life.

The first similarity is that children in both groups were able to identify the
different meanings attributed to numbers in society. Regardless of their social
background, they tended to attribute school uses to numbers and sums in particular,
and to give outside-school uses to measurement. Also, although somewhat infre-
quent, there were children in both groups who associated mathematical knowledge
with intellectual gains.

However, the groups also differ in some respects. Whereas low-income children
tended to assign school uses to numbers, operations and the activity of measuring,
middle-class children tended to attribute both school and extra-curricular uses to
numbers. This suggests that middle-class children perceive a greater diversity of
uses for numbers than low-income children, for whom numbers are mainly asso-
ciated with the school context. It is important to mention that the uses related to
professional activities are more frequently given by low-income children, who
associated mathematical knowledge with work and subsistence.

Another aspect to be stressed is a child’s ability to explain the bases that guide
their judgments when they attribute meaning to numbers. The most remarkable
difference between the groups is that middle-class children provided more accurate
justifications than low-income children. This result can be explained in the light of
Vergnaud’s theory (1983, 1997), specifically in relation to what he calls ‘theorems
in action’, which can be briefly defined as a non-explicit knowledge. Therefore, one
can assume that low-income children have knowledge in action that allows them to
appropriately assign different meanings to numbers. They are not, however, able to
verbally state the basis of their judgments. On the other hand, middle-class children
have a propositional knowledge that allows them to assign different meanings to
numbers, as well as to verbally express the way they think, that is, explain the bases
of their judgments. A possible explanation for this is that middle-class children are
more used to giving explanations about the bases of their judgments than
low-income children. However, it is necessary to be cautious when interpreting
such data since, while insightful, the results derived from the reported studies are
not definitive and other explanatory alternative hypotheses need to be considered in
future research.

While the concept of number seems to be related to logical development, fol-
lowing a similar path independent of social environment (see Piaget’s (1965) ideas
about conservation of quantity and class inclusion, for instance), number sense
seems to be a type of knowledge subject to greater variability, being dependent on
the social experiences that individuals have with numbers in their everyday life.
One may say that number sense is not the same for all: In other words, it is not
equally distributed in society. This possibility needs to be further explored in future
research with regard to number sense. However, based on results obtained in

35 Number Sense in Elementary School Children: The Uses … 647



previous studies, such as those conducted by Nunes et al. (1993) and Saxe (1991), it
is possible to assume that children acquire their mathematical knowledge from the
interplay of activities they perform at home, at school and on the streets.

Teachers and researchers need to be fully aware of this fact. Teachers need to
take it into account in school settings, especially during the early years of ele-
mentary school. Researchers should consider the relevance of using a variety of
methodological recourses and investigative contexts when examining number sense
in children. Different investigative contexts allow us to explore different aspects of
number sense and to go beyond. For instance, future research could investigate, at
least partially, where number sense comes from and use natural observations to look
at the mathematical activities that children perform at home. Comparisons between
children from different social backgrounds and also from different home environ-
ments, such as family and orphanage, could be of great importance, as the partial
results of a recent exploratory study indicate (Spinillo and Cruz 2016). Such studies
can help to identify and describe the mathematical activities performed by children
in their home context, a context that has been little investigated with relation to
mathematical knowledge.
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Chapter 36
Uncovering Chinese Pedagogy:
Spiral Variation—The Unspoken
Principle of Algebra Thinking Used
to Develop Chinese Curriculum
and Instruction of the “Two Basics”

Xuhua Sun

Abstract Many international research studies are conducted in the Western
deductive tradition strongly influenced by a geometric perspective. During the past
decades, the missing paradigm from an algebraic tradition has rarely been explored.
I intend to present the algebraic perspective that structures inductive tradition in an
effort to understand Chinese curriculum and instruction of the “Two Basics” and its
unspoken principle, spiral variation. This study can deepen our understanding how
the inductive reasoning that underpins early Chinese algebra provides a founda-
tional cultural perspective for interpreting “indigenous” principles and their appli-
cation. This discussion can enlighten our understanding of the Chinese tradition of
mathematics education, which can in turn shed light on the research into algebra
education from the perspective of problem variation.

Keywords Chinese curriculum � Spiral variation � Algebra history
Chinese mathematics history

36.1 Introduction

Algebra is one of the most daunting branches of school mathematics (Radford
2015), yet it is generally considered an essential worldwide language for any study
of advanced mathematics, science, or engineering and also for such applications as
medicine and economics. Cross-national studies have provided insight into the
cultural and educational factors that may influence the learning of mathematics
(e.g., Cai and Wang 2006). A range of studies on the differences in the mathe-
matical thinking of students have found that Chinese students prefer to use
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symbol-based strategies and algebraic solutions and U.S. students prefer concrete,
pictorial-based strategies in problem solving (e.g., Cai 2000). A corresponding
difference in the approach of teachers is that U.S. teachers put more emphasis on the
use of concrete examples to aid student understanding, while Chinese teachers tend
to emphasize the abstract reasoning beyond the concrete after presenting concrete
examples (e.g., Cai and Wang 2006). Some corresponding studies have made an
effort to document and analyze how the Chinese curriculum and instructional
practice supports the development of algebraic thinking in students (e.g., Cai and
Knuth 2005). This historic-cultural aspect of algebraic development may allow us
to examine the deeper educational roots beyond the current curricula and instruc-
tion, which have been insufficiently explored. This study will examine the legacy of
ancient China’s algebraic development (China in this paper denotes mainland China
exclusively from a historical perspective). I intend to discuss how the inductive
reasoning that underpins early Chinese algebra provides a foundational cultural
perspective for interpreting “local” principles and their application. I will begin with
an introduction to the Chinese tradition of mathematical education from an alge-
braic perspective, where has been unknown in the West.

36.2 The Legacy of Ancient China: Generalization
of a Solution Method, an Algebraic Development
Framework

The detailed Chinese tradition of algebra has rarely been reported in Western
historical literature. For example, Chinese history is omitted from the classic
mathematical literature edited by Kline (1972) and the history of algebra’s devel-
opment (Sfard 1995). As Wu (1995) points out: “there are two core thoughts/paths
through the mathematical history of the world. One is axiomatic thought from the
Greek Euclidean system. Another is mechanistic thought which originated in China
and influenced India and the whole world” (cited in Guo 2010). For example, the
Chinese remainder theorem, the solution of modular equations, was discovered in
the fifth century CE by the Chinese mathematician Sunzi and described by
Aryabhata in the sixth century. Special cases of the Chinese remainder theorem
were also known to Brahmagupta in the seventh century and appeared in
Fibonacci’s Liber Abaci in 1202 (Pisano and Sigler 2002; Li 2005). The axiomatic
method is renowned for its influence on the development of geometry and
non-Euclidean geometry, the foundation of real analysis, and Cantor’s set theory,
which stands for rigor, clarity, and absolute truth (Guo 2010). However, mecha-
nistic thought, also called the algorithmic method, which aims to find invariant
strategies by performing calculations, processing data, and automating reasoning,
has received little attention, despite being the representative system of traditional
Chinese arithmetic and algebra from which most of the classic works of ancient
Chinese mathematics originated. The most brilliant example of the application of
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the algorithmic method is the arithmetic algebra system known as The Nine Chapters
on the Mathematical Art (JZSS;1000 BC–200 AD). Using this logical tool, Chinese
mathematicians attempted to convert geometric problems into algebraic problems
(Guo 2010), in contrast to the Greek approach of converting algebraic problems into
geometric problems. This directly influenced Asian countries such as Korea, Japan,
Mongolia, Tibet, and Vietnam (Martzloff 1997, pp. 105–110). Although Chinese
algebraic development was limited by the nature of its language which lacks letters
(characters rather than letters were and continue to be used in China), a flourishing
series of advanced classic algebraic works were developed. In contrast to Greek
geometry, various algorithms for solving equations were the main focus, from
high-degree polynomial equations to linear equations. Even indefinite equations
were created from applied mathematics (Guo 2010; Li 2005), for example, by
providing algorithms to calculate the extraction of square/cube roots and the rules for
calculating positive and negative numbers as a foundation for solving equations and
equation systems (irrational numbers and negative numbers were first identified in
ancient China (Guo 2010)). Eighteen problem-solving methods for systems of linear
equations with 2, 3, 4, and 5 unknowns were presented in JZSS. Gaussian elimi-
nation (19th century), was first introduced about 2000 years earlier (Shen et al.
1999). Compared with the approaches to find two numbers, known as syncopated
algebra from the Arithmetica of Diophantus (250 AD), this was considerably earlier
and more systematic, presenting the first systematic use of irrational and negative
numbers. In fact, the concept of variable, called tian yuan shu (天元术), was in
systematic use in China long before that of Francois Viete (1540–1603). Tian yuan
shu denotes a strategy of the heavenly unknown, which played an important role in
the Chinese algebraic approach to solving polynomial equations in the 13th century.
It first became known through the writing of Li Ye in his work Ceyuan Haijing (测
圆海镜) in 1248. Meanwhile, tian yuan shu spread to Japan, where it was called
tengen jutsu in Suanxue Qimeng (算學啟蒙), authored by Zhu Shijie, and played
important role in the development of Japanese mathematics (wasan) in the 17th and
18th centuries (Mikami 1913). In fact, the general root of high-degree equations to
solve the numerical solution of the program zheng fu kai fangshu (正负开方术), the
mechanical algorithm in Shushu Jiuzhang (数书九章), was written by Qin Jiushao.
The algorithm for eliminating and solving polynomial equations with four
unknowns, Si Yüan Yü Jian (四元玉鑒; The Jade Mirror of the Four Unknowns,
with the four elements, heaven, earth, man, and matter, representing the four
unknown quantities) was written by Zhu Shijie in 1303 AD. This deals with
simultaneous equations and with equations of degrees as high as 14, marking the
peak in the development of Chinese algebra (Guo 2010).

Shu (术), a term broadly used in problem solving, played an important role in the
development of the ancient Chinese mathematical system, which stemmed from the
spirit of “generalmethods” in the problem-oriented tradition ofAsianmathematics “to
produce new methods from real problems, promote them to the level of a general
method, generalize them into shu, and deploy these shu to solve various similar
problems which are more complicated, more important, and more abstruse” (Wu
1995, p. 46). In some of Liu Hui’s commentary on JZSS, du shu (都术, “the basic
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algorithm”) was highlighted to describe basic algorithms that are much more gener-
alized than specific algorithms for a specific class, and can thus be applied to broader
classes of problems (Guo 2010). Jinyou shu (今有术) is one of these (Guo 2010).
Although algebra (e.g., equations and systems of equations) existed in several ancient
civilizations, including the Babylonian, Greek, Egyptian, Indian, Chinese, Arab, and
European, the clear framework for a more generalized solution appeared only in the
Chinese literature in terms of the generalization pu shixing (普適性) and du shu (都术,
“the basic algorithm”), an algebraic framework beyond a question-answer algorithm,
wen-da-shu (問答术), which is in the form of a statement of a concrete problem
followed by a statement of the solution and an explanation of the procedure that led to
the solution. In contrast to the axiomatic approach—a strategy for deducing propo-
sitions from an initial set of axioms in the geometric tradition of Egypt andGreece that
has dominated the intellectual world since the time of Greek philosophers such as
Thales, Anaximander, and Aristotle—the inductive approach was always the more
dominant tool of abstraction in ancient China (Wu 1995). Other Chinese treatises that
contain structures similar to those in the JZSS usually emphasize the algebraic
framework too includeHaidao Suanjing (海島算經), Zhang Qiujian Suanjing (張丘

建算經),Wuchao Suanjing (五曹算經),Wujing Suanshu (五經算術),Figu Suanjing
(緝古算經), Shushu Jiyi (數術記遺), and Xiahou Yang Suanjing (夏侯陽算經).

The inductive reasoning used within the algebraic framework, as opposed to
deductive reasoning, is in fact frequently used today in science, philosophy, and the
humanities because it can lead to unknown predictions and new knowledge, which
deductive reasoning cannot. Its application has been questionable, however, due to
uncertain conclusions drawn from relatively limited cases or experiences. However,
algebraic thinking is to some extent born of the inductive reasoning system rather
than deductive reasoning. It is worth noting that although algebra was developed in
the West from ancient Babylonian mathematics (Høyrup 2002), it does not use the
clear algebraic framework described above, but rather the concrete-problem and
concrete-solution method [e.g., the tablet AO8862 1800/1600 BC (Spagnolo and Di
Paola 2010, p. 52)]. The classic early algebra work of mathematician Mohammed
ibn Musa al-Khowarizmi, the author of Aljabr w’al muqabala, which provided the
modern word algebra also failed to emphasize general solutions beyond the con-
crete in the way the Chinese mathematical literature did (Guo 2010). Chemla (2009)
showed that some of the algorithms in JZSS were built not just to solve a specific
problem but rather the general class of problems they represented. The whole
structure of JZSS seems to call for this general procedure and encourages the search
for general formulations in algebraic rhetoric, as pointed out by Spagnolo and Di
Paola (2010).

However, it is interesting to note that the ancient Chinese developed algebra
only, not geometry (Euclid’s Elements was introduced into China in the 17th
century). This encourages us to enquire whether there was a specific ecology in
China that was conducive to the development of algebra. The historical, social, and
cultural foundations of the development of algebra have been neglected from the
international perspective. In this paper, we attempt to fill in the gap of lack of
recognition of the historical beginnings of algebra in China and, in particular,
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provide an argument that the inductive reasoning that underpins early Chinese
algebra provides a foundational cultural perspective for interpreting pedagogical
approaches.

36.3 What Are the Key Features of Ancient Chinese
Mathematics?

Jiu Zhang Suan Shu (九章算术), the most classic work of Chinese mathematics,
used 246 word problems categorized into nine categories to spread mathematical
knowledge, which also reflects ancient China’s pedagogical approach. The structure
of Jiu Zhang Suan Shu (as pointed out by Liu Hui) emphasizes lu (率; Sun and Sun
2012), jin you shu (“ratio equation”), and the qitong theorem as the core ideas (Sun
and Sun 2012), and its mathematical problems are arranged into nine categories by
the idea of categorization (Guo 2010).

The ideas of categorization stressing the above invariance-variation concept
appeared in the preface below as the central guiding spirit in Liu Hui’s commentary
in the 2000-year-old Chinese textbook, JZSS, which has played a similar role in
Asian countries to that of Euclid’s Elements: “Although they (knowledge tree) are
diverse, their branches grow from the same root” (“故枝條雖分而同本榦者,知發

其一端而已”; Guo 2010, p. 178).
The invariance-variation relationship is represented by the idea of categorization

in the JZSS, described as the ideology of “categorizing to unite categories (以類合

類)” in ancient China (Guo 2010, p. 76). The concept of categorization was
illustrated by classifying the 246 variant problems into the nine categories (歸類)
below.

1. Fangtian (方田): rectangular fields
2. Sumi (粟米): millet and rice, the exchange of commodities at different rates,

pricing
3. Cuifen (衰分): proportional distribution, the distribution of commodities and

money at proportional rates
4. Shaoguang (少广): the lesser breadth, division by mixed numbers
5. Shanggong (商功): consultations on works, volumes of solids of various shapes
6. Junshu (均输): equitable taxation
7. Yingbuzu (盈不足): excess and deficit, linear problems solved using the prin-

ciple known later in the West as the rule of false position
8. Fangcheng (方程): the rectangular array, systems of linear equations
9. Gougu (勾股): base and altitude, problems involving the principle known in the

West as the Pythagorean theorem.

After the emergence of the JZSS, the concept of categorizing became the model
for mathematical task design in traditional applied mathematics, which has played a
role as an associated pedagogy of the JZSS.
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Almost all problems in ancient China were placed into categories in the classic
mathematics texts by Wucao (五曹算經) and Xiahouyang (夏侯陽算经; Wang
1996). Before the Western system was imposed on the Chinese curriculum, the
categorizing model was the unspoken task design framework. For example,
mathematical problems grouped into the following categories were typical of the
Chinese curriculum (Wang 1996):

1. Difference/sum category
2. Speed category
3. Tree-planting category
4. Age category
5. Availing category
6. Engineering category
7. Profit category.

Through the traditional logic of the Greeks, the axiomatic approach has remained
the cornerstone of mathematics in theWest. Accordingly, a definition/theorem-based
model stressing content knowledge gradually formed the fundamental idea of
mathematical task design in theWest. This has played an important role in the history
of Western mathematical education, where word problems, labeled application
problems (应用题), play a role in knowledge application. In contrast, the
problem-solving approach and applied mathematics in JZSS mainly remained the
cornerstone of mathematics in the East. Its associated categorization model in JZSS
gradually formed the unspoken but fundamental framework of mathematics task
organization/design in China (Sun 2013). It is interesting to note that this model
stresses the category-based inductive tradition rather than the definition/
theorem-based deductive tradition of the West, where word problems with varia-
tions play a role in relation-oriented knowledge introduction (Bartolini Bussi et al.
2013). In short, the idea of categorization reflects the ancient curriculumpractice using
the variant–invariant (from concreteness to abstract logic) spirit above.

36.4 The Key Features of Chinese Pedagogy in Current
Teaching Practice: From a Single Problem to a Class
of Problems with Variation

The tradition of categorizing was not implemented after the Western mathematics
curriculum was imported into China in 1878 (Wang 1996). However, Chinese
curriculum developers emphasized the Two Basics and, after 1878, developed an
associated pedagogy with variation problems stressing the categorization process,
from the variant concreteness to the invariant abstract application. This pedagogy of
problem design centered on the idea of expanding a single problem to a class of
problems with variation problems. It also aimed to establish the necessary and
sufficient conditions to determine each category of problem set using two similar
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and important parameters of mathematical structure, the dimensions of possible
variation, and the associated range of permissible change, as pointed out by Watson
and Mason (2005, 2006). This practice is called bianshi (變式) in Chinese, where
bian stands for changing and shi means form. Although it has spread into a wide
range and variety of forms in China (Sun 2007), “indigenous” variation practice in
mathematics refers to the “routine” daily practice commonly accepted by Chinese
teachers, the local experience used broadly in the design of examples or exercises to
extend the original examples, known widely as “one problem, multiple changes”
(OPMC,—題多變, “varying conditions and conclusions”), “one problem, multiple
solutions” (OPMS,—題多解, “varying solutions”), and “multiple problems, one
solution” (MPOS, 多題一解, “varying presentations”; Sun 2007, 2011a, 2016).

According to Kieran (2004, 2011), the global meta-level algebra activities
essential to the other generational, transformational activities of algebra include
studying change, generalizing, analyzing relationships, and noticing structure for
which algebra is used as a tool. The “routine” activities of varying conditions and
conclusions, varying solutions, and varying presentations above play the role of
concept connections, solution connections, and presentation connections (Sun
2011a, b, 2016). Systematically, they provide a platform to support analyzing
relationships and noticing structure and, therefore, can support meta-level algebra
development.

This practice, rarely apparent in the West, is a typical daily routine in the local
curriculum and regarded as a natural strategy for deepening understanding, which
perhaps makes this practice distinctive. This strategy, easily found in school
teaching materials (such as textbooks or teaching plans) and any piece of learning
material (such as student exercises or worksheets) is followed after school in China.
As mentioned before, Chinese arithmetic development, textbooks, textbook refer-
ence books, and particular variation practices provide useful clues for under-
standing the Chinese mathematics education system rarely known outside of the
Chinese community.

In contrast to variation problems, contextualization problems are prioritized as
the general curricular trend in the West (Clarke 2006). However, contextualization
problems to facilitate engagement mainly provide examples of the same concept
and solution method, missing the chance to make timely connections between
concepts and methods. In this light, variation problems suggest a way in which
Western counterparts can learn from the content-oriented curricula in China.
Compared to contextualization problems, variation problems are clearly a
double-edged sword that can increase the learning challenge because they require
the use of multiple concepts, solutions, and conceptual development.
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36.5 Why Is the Task Design Principle Important?

In seeking a basic algorithm as a demonstration tool, the problem variations
described earlier aim to avoid heuristic trial and error (such as arithmetic) by
eliciting reasoning, using variation as scaffold for discerning the invariant, a kind of
pre-algebraic thinking. It could be a helpful transition from arithmetic thinking to
algebra. For example, here is a prototype example of an OPMC variation in which
the concept of subtraction is always introduced in the Chinese textbook below as:
1 + 2 = 3, 2 + 1 = 3, and 3 − 1 = 2. Within the problem set, there are two con-
cepts of addition and subtraction behind three similar problems made with 3, 2, and
1. Clearly, this OPMC provides a setting in which learners can reflect and gener-
alize between the concepts of addition and subtraction in order to concentrate on the
relationships, a kind of pre-algebraic thinking, involved. In contrast, the concept of
subtraction is introduced in some U.S. textbooks using a problem set such as this: 4
− 1 = 3, 5 − 3 = 2, and 3 − 2 = 1. Within the problem set, instead of embedding
two concepts as done above, only the concept of subtraction is included. Clearly,
the variation of solutions, conditions/conclusions, and presentations can be used to
emphasize the invariant elements as a possible way of generalization, providing
the transition from arithmetic thinking to algebra. In contrast, the
“one-thing-at-the-time” design based on the notion of consolidating one topic or
skill before moving on to another that is broadly used in most textbook develop-
ment in Europe and throughout the world would clearly provide fewer opportunities
for “making connections” (Sun 2011a, b) compared to those of contemporaneous
variation approaches (e.g., Rowland 2008).

The variations described earlier elicit the idea that variability is at the heart of
algebra, and aim to provide a platform to transit from arithmetic thinking to the
relational algebraic thinking. Variation plays the role of meta-logic to access
algebra. From the perspective of the Chinese philosophy (Hua 1999) and language,
it is an important framework for algebraic thought development from the arithmetic
stage rooted in Chinese cultural logic (Sun 2016). In contrast to the deductive
Western cultural thinking derived from Euclid’s Elements and Aristotle’s logic,
variation can support another kind of inductive reasoning to discern invariance,
which does not rely on logic to refer to the type of divalent but rather on extensive
use of the idea of variability as the initial form of expression. This serves as a bridge
or a schema for relational thinking to transition from arithmetic to algebra, which
indicates the process of generalization: a new logic for algebraic development using
the idea of variability (Sun 2016).

Based on this perspective, it is easy to note the difference when we compare
Chinese and Western curricula (Sun et al. 2013). For example, different task design
features for addition and subtraction are found in Chinese versus Portuguese
textbooks, featuring invariant versus variant concept/solution methods embedded in
their examples. In Chinese textbooks, addition and subtraction are almost always
connected using the OPMC transformation principle rather than separated into
different chapters as in a Portuguese textbook. Although Chinese textbook authors
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appear to use multiple concepts for every example, the underlying invariant concept
is about part-part-whole relations and the invariant knowledge is about relations
between numbers. In contrast, the addition examples in the Portuguese textbook use
multiple underlying concepts, such as counting, combining, and adding. The sub-
traction examples also use multiple concepts such as subtracting, comparing, and
identifying inverse operations, but do not connect these simultaneously to addi-
tional concepts.

Although Chinese textbook authors use multiple solution methods in every
example, the particular methods in the Portuguese textbook that depend on counting
and doubling are rarely introduced. Only one specific solution method, “make 10,”
is explicitly addressed among all the addition/subtraction examples in the first six
chapters (Sun et al. 2013). In contrast, the additional examples in the Portuguese
textbook suggest multiple solution methods, such as “doubles,” “doubles plus 1,”
“compensation,” (e.g., 6 + 8 = 7 + 7 = 14), and “reference number” (e.g.,
6 + 7 = 5 + 1 + 5 + 2 = 10 + 3 = 13). The subtraction examples use multiple
solution methods such as “counting back,” “tables for addition to subtraction,” and
“identifying the inverse operation of subtraction as addition.” Thus the learner
might get a temporary sense of these methods from being offered a variety of
suitable examples without getting an overall understanding of the whole additive
relation. The underlying Portuguese design principle is not made explicit, but we
can infer that it is about learning “one thing at a time” and is hence more frag-
mented and less dependent on laying down basic foundational principles for future
work (Sun et al. 2013).

36.6 The “Indigenous Principles” in Mathematics: Spiral
Variation

In addition to the Chinese philosophy and language conductive to algebraic
thinking mentioned above (Sun 2016), it is not surprising to note that the Two
Basics is not only regarded as the explicit principle of local curriculum design (Sun
et al. 2013) but also the central aspect of the unified teaching framework of the
Ministry of Education (1963, 2001). The Two Basics, i.e., basic knowledge and
basic skills, is a Chinese term stressing the basic facts, basic concept, basic prin-
ciples, invariant aspects behind the variant–invariant (from concreteness to abstract
logic) idea or inductive, algebraic thinking mentioned above. They are described as
“indigenous” principles for designing educational tasks (Zhang 2006). However,
some research indicates that variation plays a more important role in the Chinese
curriculum. For example, as Marton (2008) argued:

Chinese students do very well when compared to students from other cultures. Teachers
spend much more time on planning and reflecting than teachers in other countries, and they
develop their professional capabilities by the teaching, in which patterns of variation and
invariance, necessary for learning (discerning) certain things, are usually brought about by
juxtaposing problems and examples, such as illustrations that have certain things in
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common while resembling each other in other respects. By such careful composition, the
learner’s attention is drawn to certain critical features … instead of just going through
problems that are supposed to be examples of the same method of solution. … [There] is a
very powerful pedagogical tradition in the Chinese culture. (p. 1)

In fact, the statement above is consistent with the two most repeated local terms in
the Chinese mathematical pedagogy, the Two Basics and “variation teaching” (變式

教学), which indicates that, on one hand, the invariant aspect should be stressed for
curriculum development and, on the other, the variation aspect should be stressed for
instruction as its tool. They indicate the original local notions of teaching practice,
stressing the invariant and variant elements, respectively, which may be related to
the categorization approach of Chinese language, “grasping ways beyond cate-
gories” (yifa tongli, 以法通類) and “categorizing to unite categories” (yilei xiang-
cong,以類相從), discussed above. Here, a distinct instructional feature of the
problems is to develop the ability to identify the category to which a problem (识类)
belongs and to discern the different categories (归类), in other words, to discern the
invariant from the variant elements of different problems and recognize the category
each problem belongs to (Sun 2011a, 2016). The process of discerning the invariant
from the variant elements can provide the chance to generalize the common feature
and see the deep structure behind different problems, which is needed in the process
of algebraization (Mason 1996, 2011). Obviously, both Two Basics in the traditional
Chinese curriculum and instruction and the model of the spiral variation focus on the
variant–invariant (from concreteness to abstract logic) idea. The Two Basics stress
the aspect of knowing the invariant aspect: the cognitive product. The model of
spiral variation stresses the aspect of the cognitive tool: the variation process. To
elucidate the “hidden” principles of task design, we use spiral variation to illustrate
the structural aspects, emphasizing the core (“month” is the central idea for month
naming in Chinese) and line variation (the naming stresses the expression of order in
a linear way). This directly reflects the meta-rule of grouping by category (以類合

類) of the Chinese language and philosophy (Sun 2016). In our past and present
research, we follow previous studies (e.g., Gu et al. 2004; Marton 2008; Sun 2007)
in seeking a theoretical model for designing a mathematical curriculum based on
China’s local language (Marton et al. 2010), philosophy, and practice. We thus
propose the spiral variation curriculum model: an invariant, relation-oriented model
based on the practice of variation (Fig. 36.1).

The spiral variation theory of learning emphasizes perception of the underlying
invariant as a necessary condition for learners to be able to discern the old aspects
of an object of algebra learning. Thus, spiral variation theory spells out the con-
ditions of inductive learning and explains algebra learning failures in a specific
way: When learners do not learn what was intended, they have not discerned the
necessary invariant aspects. So, the very core idea of spiral variation theory is that
perception of the underlying invariant aspects is a necessary condition of algebra
learning: What aspects we attend to or discern are of decisive significance for how
we understand or experience the object of algebra learning. Algebra learning cannot
happen without the learner having perceived the underlying invariant, local term of
“Two Basics.” The spiral variation model for curriculum design denotes how a
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relationship-oriented model aims to achieve the “Two Basics” through systematic
problem variation. The model is situated in the context of a content-focused and an
exam-driven, textbook-centered system. It emphasizes three important aspects of
variation in task design to develop the hypothetical learning trajectory (Sun et al.
2006; Sun 2007, 2013).

1. Variation (the vertical aspect of task design) is key to developing learning in a
new light and provides a chance to link new concepts with old ones. The issue
of variation in problem sets directly reflects the old Chinese proverb, “no
clarification, no comparison” (沒有比較就沒有鑒別), rather than “consolidat-
ing one topic or skill before moving on to another,” and highlights invariance
through variation (變中发现不變) and the application of invariance to variant
situations (以不變應萬變). It also reflects “grasping ways beyond categories”
and “categorizing to unite categories,” namely, the dynamic categorization
approach above.

2. Emphasizing of the underlying invariance (a lesson’s key points [重点], difficult
points [难点], and critical points [关键点] as the central aspects of Chinese
lesson plans (Yang and Ricks 2012); “key” pieces or “concept knots” as the
central aspect of Chinese knowledge organization (Ma 1999); “Two Basics” as
the central aspect of the Chinese curriculum goal) is necessary condition for
developing algebra learning (making learning stable and coherent).

3. The horizontal, vertical, and central aspects combine to form a spiral structure (a
similar principle in physics states that spiral movement can be decomposed into
horizontal, vertical, and centripetal movements).

Many international research studies are conducted in the Western deductive
tradition based on a geometric perspective. During the past decades, the missing
paradigm from algebraic tradition has rarely been explored. The rationale for the

Fig. 36.1 Spiral variation model for curriculum design based on Chinese practice (Sun 2016,
p. 22)
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model to articulate the framework is more aligned to the cultural roots of algebra. In
addition, it is in line with the argument that the variation theory of learning
emphasizes variation as a necessary condition for learners to be able to discern new
aspects of an object of learning and how variation can be used to enhance students’
learning, evidence of which been reported (e.g., Huang and Yeping 2017; Watson
and Mason 2006). This framework enriches the specific perspective from algebra
development. It could be helpful to reconsider the significance of algebra devel-
opment through the widespread daily practice of variation (Sun 2011a, b; Sun et al.
2007), its curriculum significance (Sun et al. 2006), its significance for the reform of
the Chinese curriculum (Sun 2016), and its relationship to the cultural background
of Chinese mathematical education (Sun 2011b). It has also been piloted with
efficient results in non-mainland China as a proposed practical design framework
for curriculum development (Sun 2007, 2016; Wong et al. 2009). The explicit
discussion on the curriculum framework of design and variation practice in task
design in China for development of algebraic thinking could be helpful in reflecting
China’s own hidden tradition. For example, the current reform in China that
completely follows the Western strand model may not be wise for development of
the algebraic thinking (Ma 2013; Sun 2016). Due to space limitations, we will not
elaborate further.

36.7 Application in Italy and Hong Kong:
Transposition of Problems with Variation
in Italy and in Hong Kong

Bartolini Bussi et al. (2013) reported two cases of transposition of problems with
variation in Italy and Hong Kong. To try to find “cues” in the problem text and link
addition to subtraction, the system of the nine problems in Table 36.1 has been used
as a prompt in teacher education and development and tested by practicing teachers
in several classrooms from second grade onwards to foster this approach to alge-
braic reasoning as early as possible. Teacher-researchers who collaborated in the
pilot study did not implement the same Chinese task but redesigned it to tailor it to
the Italian tradition (see Table 36.1) and to their individual teaching styles and
belief systems.

This is a system of nine problems involving addition and subtraction where the
organization in rows refers to the already mentioned combination, change, or
comparison categorization and the organization in columns refers to the same
arithmetic operation (either addition or subtraction; see MPOS above). In each row
there is a problem (in the shaded cell) and two variations (see OPMC above). The
“routine” activities of varying the conditions above play the role of concept
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connections that provide a platform to support analyzing relationships and noticing
structure. Therefore, they can support the meta-level algebra development.

In 2006, an experiment was carried out and tested in three schools on a treatment
group where a textbook was developed that heavily emphasized relationships with
problem variations in the division of fractions. In the control group in another three
schools, the traditional Hong Kong textbook was used, which was heavily influ-
enced by English principles and placed only light emphasis on relationships. The
experimental treatment group achieved a better conceptual understanding of frac-
tions, division, and multiplication compared with the control group (Sun 2007).
Similar experiments in other content areas (ratio, volume, and columns) confirmed
these findings (e.g., Wong et al. 2009).

Table 36.1 A summary system of problems with variation in second grade from Bartolini Bussi
et al. (2013, p. 558)

First solve the nine problems below. Then explain why they have been arranged in rows and columns in this way, 
finding relationships.

(1) In the river there are 45 white 
ducks and 30 black ducks. Altogether, 
how many ducks are there?

(2) In the river there are white ducks 
and black ducks. Altogether there are 
75 ducks. 45 are white ducks. How 
many black ducks are there?

(3) In the river there are white ducks 
and black ducks. Altogether there are 
75 ducks. 30 are black ducks. How 
many white ducks are there?

(1) In the river there is a group of 
ducks. 30 ducks swim away. 45 ducks 
are still there. How many ducks were 
in the group at the beginning?

(2) In the river there are 75 ducks. 
Some ducks swim away. There are 
still 45 ducks. How many ducks 
swam away? 

(3) In the river there are 75 ducks. 30 
ducks swim away. How many ducks 
are still there?

(1) In the river there are 30 black 
ducks. There are 15 more white ducks 
than black ducks. (There are 15 fewer 
black ducks than white ducks.) How 
many white ducks are there? 

(2) In the river there are 30 black 
ducks and 45 white ducks. How many 
more white ducks are there than black 
ducks? (How many fewer black ducks 
are there than white ducks?) 

(3) In the river there are 45 white 
ducks. There are 15 fewer black 
ducks than white ducks. (There are 15 
more white ducks than black ducks.)
How many black ducks are there?
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36.8 Conclusion

Obviously, many international studies are conducted from a Western perspective
under the influence of Western deductive tradition dominated by the geometric
perspective (Spagnolo and Di Paola 2010). The rationale of algebraic education is
mainly transferred from the Western system. The rationale of algebraic education
from the Eastern system has rarely been explored. In this paper, I attempt to present
the algebraic perspective derived from the inductive tradition dominant in China in
the hope of understanding the Chinese curriculum with its instructions on the Two
Basics and its unspoken principle, spiral variation, derived from the local philos-
ophy and language (Sun 2016). These have been neglected to date. In the light of
cultural aspects of mathematical education, such as ethnomathematics (D’Ambrosio
1992) and mathematical enculturation (Bishop 1988), this study can deepen our
understanding of the Chinese tradition of mathematical education and shed light on
research into algebra education. Specially, a Chinese rationale of mathematical
education based on its own historical tradition rather than the Western system could
be far more meaningful for both local and non-local curriculum and instruction
development. This rationale could be useful for task design in developing algebra
curricula in ways that avoid missing the chance to develop the concept of gener-
alization at the arithmetic stage using problem variation.
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Chapter 37
Digital Pedagogy in Mathematical
Learning

Yahya Tabesh

Abstract Digital pedagogy is a learning paradigm that can allow learners to be
active partners in discovering and developing their own mathematical knowledge.
In this sense, Piaget’s constructivist principles lay the foundation for developing
digital pedagogy. In the paper that follows, we present a novel, intuitive, digital
mathematical learning model. The model is focused on problem solving through
computational thinking and is targeted to empower teenagers. More features and
outcomes of this model will be discussed as well. As a foundation moving forward,
the “use-modify-create” framework offers a helpful progression for developing
computational thinking over time. It illustrates the benefits arising from engaging
youth with progressively more complex tasks and giving them increasing owner-
ship of their learning. The gained knowledge and skills of this cognitive learning
both empower learners and enhance creativity. In its essence, we aim to develop the
utopia of digital pedagogy in mathematical learning.

Keywords Digital pedagogy � Computational thinking � Gamification of
education � Project-based learning � Problem solving

37.1 Introduction

We review an effective digital pedagogy for mathematical learning. We intend to
present a way to create a cognitive-learning digital environment in today’s ubiq-
uitously connected world and align with the surrounding and dynamic cultural
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trends of the mobile computational device. Smart computational devices compose a
medium for digital pedagogy and affect in the way people think and learn.

To enhance creativity, connecting the developmental psychology of Piaget
(1966) to the digital pedagogy in mathematics learning is key to developing an
innovative learning model. In the modern approach towards teaching and learning
mathematics, students should be partners and active agents in the learning process
and problem solving (Boaler 2008). This modern approach in mathematics learning
is more experimental and collaborative based on “learning by doing” (Dewey
1897), and students’ learning gain is organic as they are partners in the learning
process. They learn and develop their own knowledge step by step through inno-
vative and creative thinking, experiences and discoveries, and collaboration and
teamwork. Access to information and online resources has the potential to change
the means of learning, allowing for a personalized and collaborative learning
environment that is no longer restricted to schools and classes. The gained
knowledge and skills of such cognitive learning empower students for everyday
activities such as data analysis, reasoning, and problem solving. Digital pedagogy is
a way to create such an environment for cognitive learning that requires rich
toolkits rather than force-fed knowledge. Nevertheless, an interactive learning
platform and digital resources are needed to develop the new paradigm for cog-
nitive learning.

The growth mindset is also another important aspect of the digital pedagogy. In a
growth mindset, students understand that their talents and abilities can be developed
and expanded through effort, good learning, and persistence. In contrast, a fixed
mindset proposes that students’ basic abilities, intelligence, and talents are inherent
characteristics and thus are not expandable: They have a certain amount of
“smartness” and that’s that. In the growth mindset, students do not necessarily
believe everyone possesses the same intelligence, but they suppose anyone can get
smarter if they work at it (Dweck 2006; Boaler 2016). Digital pedagogy is the
ultimate paradigm to attract learners and support a growth mindset. Problem solving
ability or “smartness” grows with experience on the digital pedagogic platform.

We intend to present a digital platform for mathematical learning through
problem solving that enables creative engagement, develops mathematical skills,
and supports a growth mindset. Briefly, we go through the background of digital
pedagogy, introducing a theoretical model for the digital platform, and finally we
discuss a case study and some experimental results.

37.2 Background

Digital pedagogy of mathematics learning is a legacy of Seymour Papert (Blikstein
2013); we summarize his work to touch on how his ideas have affected mathematics
education. We take the opportunity to adapt his approach to the advancements of
computational technology. We will go also describe the Piagetian learning path, but
in the context of Papert, who connected it to digital pedagogy.
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We proceed to see how Piagetian developmental psychology has been connected
to digital learning through Papert’s work, reflected in Mindstorms (Papert 1980),
but we discuss technological advancements as well.

37.2.1 Mindstorms

Innovative learning models must reflect on what is happening in the surrounding
culture and use dynamic cultural trends as media to carry educational interventions.
It has become commonplace to say that today’s culture is marked by a ubiquitous
smart computational device. Smart computational devices can contribute to mental
processes, not only as instruments we improve at using (e.g., touch screens), but
also in more essential conceptual ways, influencing how we may think. Smart
computational devices will enter the private worlds of learners everywhere and can
create a new paradigm to form new relationships with knowledge in a personalized
way. In this regard, the whole process of mathematics learning should be involved
in a dialectical interaction between new technologies and new ways of learning
mathematics.

Digital pedagogy is essential in reflection of the Piagetian learning path, and in
this sense we should create an environment in which learners surf and interact with
their environment to learn how to “talk mathematically” as a means to capture
mathematical concepts and ideas implicitly. Smart computational devices are the
best tools to create such a new paradigm for a learning environment that can help
learners learn and develop their own mathematical knowledge organically.
Computational devices can address personalized learning; they are unique in pro-
viding us with means to counteract what Piaget saw as an obstacle.

37.2.2 Piagetian Learning Path

To touch and understand how computational technology and a digital learning
environment can be a medium for knowledge development, we should look at the
Piagetian learning path.

Piaget is the leading theorist of learning without deliberate teaching. This,
however, does not imply a spontaneous atmosphere that leaves the learner alone;
rather, it means supporting learners to build their own intellectual structures. In this
sense, we are looking for an environment where mathematics can become a natural
vocabulary, a learning environment with the proper emotional and cultural support
where learners can learn not only that they can excel at mathematics but also that
they can share the joy of mathematical experiences. This concept shows how to use
computational devices as vehicles to develop digital pedagogy in a new
environment.
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We are focused on the Piagetian learning path as the natural, spontaneous
learning of people in interaction with their environment. Piaget’s thoughts have
been underplayed because they offered no possibilities for action in the world of
traditional education. But in the learning environment of the digital pedagogy,
enriched by smart computational devices and supported by artificial intelligence,
Piaget’s principles can come to fruition. For many years his ideas could not be
expanded due to lack of means of implementation, but digital pedagogy is going to
make it available.

37.3 A Model

Our dream is to create a digital learning environment in which the task is not to
learn a set of formal rules but to develop sufficient insight for mathematical con-
cepts. We look for a digital environment to grow learners’ mathematical mindsets
through experience and a flourishing joy of mathematics. We expect an empow-
ering platform to enhance creativity and develop mathematical skills and naturally
explore domains of mathematical ideas in the sense of Piagetian learning path. We
would like to present a model for such a learning paradigm as an online interactive
“learning-by-doing” environment. We consider problem solving and algorithmic
thinking as the means of exploring mathematical concepts on a platform that can
expose computational thinking.

37.3.1 Characteristics

We consider a gamified learning environment that utilizes the computational
thinking process and computational mathematical skills. It should be a personalized
and collaborative learning platform targeted towards teenagers.

Computational thinking concepts were envisioned by Papert (1980, 1996) and
involve how to use computation to enhance thinking, create new knowledge, and
change patterns of access to knowledge. More recently, however, Wing (2006)
brought a different approach and new attention to computational thinking. She
considered the topic a fundamental skill for everyone’s analytical ability, along with
reading, writing, and arithmetic, and as a process to formulate a complicated
problem and algorithmically solve it. We consider computational thinking based on
Papert’s enhancement of thinking, but specifically with a problem-solving approach
in the sense of algorithmic thinking. In brief, computational thinking combines
critical thinking with the computing power as the foundation for innovating solu-
tions to real-life problems.

We also consider the gamification of mathematical concepts as a framework.
Games bring a new approach to pedagogy (Gee 2007; Devlin 2011) and possess the
potential to create interaction and insert motivation; players are driven to their
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virtual goals and learn by doing. Allowing players to make mistakes through
experimentation in a risk-free environment brings about learning by doing
implicitly through mistakes: Players “feel” their way around games, and, by
receiving instant feedback to their actions, they can adjust their problem-solving
strategies accordingly. Put simply, games bridge the gap between formal knowl-
edge and intuitive understanding. Another crucial aspect of games is the immense
amount data generated by players that can be used as feedback for assessment of the
learning process. The basic idea is to implicitly ease learners into the world of
mathematics while they are enjoying themselves.

37.3.2 Playground

We consider computational thinking as the process for problem solving on the
proposed platform; we also go for functional programming as a tool to formalize
intuition about the problem-solving process.

Computational thinking is a four-stage problem-solving framework consisting of
decomposition, pattern recognition, abstraction, and algorithm design, as shown in
Fig. 37.1. We have enriched and connected the stages with a “playground” as a
place for experimental problem solving.

In this model, the playground is an easily accessible place where learners can
tackle problems through experimentation.

We also consider functional programing as a toolbox on the playground for
problem solving. The functional programming paradigm explicitly supports a pure
functional approach to problem solving, which involves composing the problem as
a set of functions to be executed. Functional programming is a style that avoids
changing state, so it is a powerful tool that can be used in a modular form for
problem solving. Such modularity is key, as it specifically empowers learners to
utilize what they have built in the past for future solutions.

Gained knowledge in this model empowers learners in reasoning, problem
solving, and algorithmic thinking in a gamified fashion. We can gather users’ data
and analyze them through the design-based research method (Brown 1992), which

Fig. 37.1 Four steps around playground
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should be embedded in the platform. Results of the analyzed data can be used to
improve the platform and also bring recommendation and feedback to the learners.

37.4 A Case Study

Piaget (1966) showed how learners construct a world out of materials in their
environment. Papert (1980) has also mentioned that experience with games is a
bridge between formal knowledge and intuitive understanding. In this sense, we
have developed and considered a gamified digital learning platform as a case study.

To develop a case study for the first approach, we went through digital math-
ematical puzzle games in an interactive fashion, but we found they only attracted
students who showed a proclivity for mathematical thought rather than the general
population. But, in the revised version we considered that the following objectives
should be achieved by the platform:

• Enable creative engagement
• Develop mathematical skills
• Support a growth mathematical mindset
• Be collaborative and social.

We went through the next version (Polyup 2016) to look for the above objec-
tives, and we received positive responses to the prototype from a variety of teen-
agers in focus groups. We will present the platform and have a brief look at the
results of test cases.

37.4.1 Platform

The developed platform (Polyup 2016) for mobile computational devices is about
problem solving on a functional programming platform through computational
thinking. Functional programming is achieved with lambda calculus (Revesz 1998)
and provides a theoretical framework for describing functions and their evaluation.
Functional programming is a style of building structures and elements in a modular
form that treats computation as the evaluation of mathematical functions and avoids
changing-state and mutable data. To develop computation through functions, we are
using a postfix, or Reverse Polish Notation, to avoid parentheses in expressions and
computation (McCarthy 1960).

The platform is a user friendly environment where the user is equipped with
numbers, operations, and basic functions. The user can do computation in a
functional modular form; computation simply goes top to bottom with postfix.
Users can drag and drop numbers and operations on stacks to script a program and
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run it to calculate the output of the desired function. The platform and an example
are shown in Fig. 37.2.

The platform is a collaborative and social playground for problem solving
through personal experiences and also supports growth of a mathematical mindset.
Many puzzles are preloaded in a step-by-step fashion for users to develop their own
knowledge in a gamified interactive platform. To make the platform social, users
can develop their own puzzles and share them with friends.

Despite its simplicity, the platform is Turing complete. It also features a chatbot
as a sidekick, or a mentor, to help problem solvers. Users’ data are gathered on the
platform to be used through a smart system for analytics, which provides puzzle
recommendations for users and is also used for advancement of the platform.

Advanced functional techniques such as recursion also are a central part of the
learning environment and are shown visually; an example script to compute tri-
angular numbers, as well as its visual running form, is shown in Fig. 37.3.
Developed functions in a modular form can be reused to address more complex
problems.

37.4.2 Feedback

We have tested the platform in a variety of classes and schools, from middle
schools to high schools. A summary of students’ feedback from seven different
classes is shown in Table 37.1; the figures shown are the mean of students’
responses on a scale of 1–10.

Fig. 37.2 Computational thinking playground

37 Digital Pedagogy in Mathematical Learning 675



Fig. 37.3 Triangular numbers on the playground

Table 37.1 Feedback of students

Grade level 8 9 8 9 10 8 11

Number of students 17 12 19 16 13 18 18

How much did you like the
platform?

6.94 7.33 7.40 6.93 7.38 7.22 8.13

How much do you like the script
language?

6.76 6.08 7.05 6.5 6.46 7.11 6.88

How did you like the training
puzzles?

6.82 6.42 6.00 5.85 6.85 6.50 6.61

How would you like ability to
control digital art with the
functions that you can develop on
the platform?

7.18 7.50 8.10 5.62 8.23 8.17 7.50

How would you like the ability to
control robots with the functions
that you can develop on the
platform?

6.19 7.17 8.10 6.18 7.77 7.83 7.63

How much do you like working
with another player on a shared
playground?

6.71 6.92 6.95 5.5 6.62 7.00 6.75

How likely would you be to
recommend the platform to your
friends?

6.71 7.17 7.30 6.62 6.62 6.78 7.38
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Tests consisted of one-hour sessions, starting with introducing the platform to
the students and then having them solve 10–15 selected puzzles while learning
implicitly about functional programming. In the last 10 min, they had a chance to
develop their own puzzles, in which significant achievements were observed.

Feedback was generally positive. As observed in the live sessions, students were
very well engaged and would also recommend the platform to their friends, as
supported by the first and last questions of the survey. Another important obser-
vation lies in how students got involved in the technicalities of scripts and func-
tional programming, a learning path we observed to be very natural and organic.

Another key observation lies in the questions that asked if they were interested in
controlling robots or developing digital arts through functional programming. Their
very high levels of interest show how important it is to reconcile mathematical
problem solving with applicable skills. With a connected functional programming
environment, users can become creatively engaged with the software and hardware
tools in their daily lives and change these objects’ functionality to better suit their
interests and needs.

37.5 Conclusion

We studied significant works of Seymour Papert as a pioneer in developing digital
pedagogy, and these works provided the base for our adaptation to the recent
advancement of mobile computational technology. We found the opportunity to
develop a digital learning environment that can engage learners in an experiential
and growth-mindset fashion such that they can develop their own knowledge.

We also received positive feedback from the users, which provides motivation
for further development of digital pedagogy in mathematical learning. The interest
of users to develop applicable skills reveals the deficiency that current platforms
have in connecting problem-solving ability to real-life applications such as digital
arts and robotics. With the modularity of functional programming and the creativity
of computational thinking, modification of various objects is natural. Once these
tools are available, the process of “use-modify-create” will bring opportunities for
endless creativity among the youth.

The translation of problem solving to allow it to have a tangible impact outside
the educational environment is a novel approach that will attract and motivate a
greater general audience to become engaged in computational thought. Through
digital experiences, learners will develop their own mathematical ability and ulti-
mately spread the joy of mathematics.
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Chapter 38
Activity Theory in French Didactic
Research

Fabrice Vandebrouck

Abstract The theoretical and methodological tools provided by the first generation
of activity theory have been expanded in recent decades by the French community
of cognitive ergonomists, followed by a sub-community of researchers working in
the didactics of mathematics. The main features are, first, the distinction between
tasks and activity and, second, the dialectic between the subject of the activity and
the situation within which this activity takes place. The core of the theory is the
twofold regulatory loop that reflects both the codetermination of the activity by the
subject and by the situation and the developmental dimension of the subject’s
activity. This individual and cognitive understanding of activity theory mixes
aspects of Piaget’s and Vygotsky’s frameworks. In this paper, it is first explored in
association with a methodology for analysing students’ mathematical activities. We
then present findings that help to understand the complexity of student mathe-
matical activities when working with technology.

Keywords Mathematics � Tasks � Activity � Mediations � Technologies

38.1 Introduction

Activity theory is a cross-disciplinary theory that has been adopted to study various
human activities, including teaching and learning in ordinary classrooms, where
individual and social levels are interlinked. These activities are seen as develop-
mental processes mediated by various contextual elements—here we consider the
teacher, the pair and the artefact (Vandebrouck et al. 2012, p. 13). Activity is
always motivated by an object: a characteristic that distinguishes one activity from
another. Transforming the object into an outcome is another key feature of activity.
Subjects and objects form a dialectic unit: subjects transform objects, and at the
same time subjects are transformed, mainly in Vygotsky’s sense of internalisation
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(Vygotsky 1986). This framework can be adapted to describe the actions and
interactions that emerge in the teaching/learning environment and that relate to the
subjects, the objects, the artefacts and the outcomes of the activity (Wertsch 1981).

Activity theory was originally developed by Leontiev (1978), among others.
A well-known extension is the systemic model proposed by Engeström et al.
(1999), which is referred to as the third generation of activity theory. It expresses
the complex relationships between the elements that mediate activity in an activity
system. In this paper, we take a more cognitive and individual perspective. This
school of thought has been expanded over the course of the past four decades by
French researchers working in the domain of occupational psychology and cogni-
tive ergonomics and has since been adapted to the didactics of mathematics. The
focus is on the individual as a cognitive subject and an actor in the activity, rather
than the overall system—even if individual activity is seen as embedded in a
collective system and cannot be analysed outside the context in which it occurs.

An example of this adaptation has already been well established internationally.
Specifically, it refers to the distinction between the artefact and the instrument,
which is used to understand the complex integration of technologies into the
classroom. The notion of instrumental genesis (or instrumental approach) was first
introduced by Rabardel (1995) in the context of cognitive ergonomics, then
extended to didactics of mathematics by Artigue (2002), and it is concerned with
the subject-artefact dialectic of turning an artefact into an instrument. In this paper,
we draw upon and try to encompass this instrumental approach.

First, we describe how activity theory has been developed in the French context.
These developments are both general and focused on students’ mathematical
activity. Next, we present a general methodology for analysing students’ mathe-
matical activity when working with technology. We then develop an application
example and describe our findings. Finally, we present some conclusions.

38.2 Activity Theory in the French Context

The first notable feature of activity theory in the French context is the distinction
between tasks and activity (Rogalski 2013). Activity relates to subjects, while tasks
relate to objects. Activity refers to what subjects engage into complete tasks:
external actions but also inferences, hypotheses, thoughts and actions they decide to
take or not. It also concerns elements that are specific to subjects, such as time
management, workload, fatigue, stress, enjoyment and interactions with others. As
for the task—as described by Leontiev (1978) and extended in cognitive ergo-
nomics—this refer to the goal to be attained under certain conditions (Leplat 1997).

Activity theory draws upon two key concepts: the subject and the situation. The
subject refers to an individual person, who has intentions and competencies (potential
resources and constraints). The situation provides the task and the context for the task.
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Together, situation (notably task demands) and subject codetermine activity. The
dynamic of the activity produces feedback in the form of a twofold regulatory loop
(Fig. 38.1) that reflects the developmental dimension of activity theory (Leplat 1997).

The concept of twofold regulation reflects the fact that the activity modifies both
the situation and the subject. On the one hand (upper loop), the situation is mod-
ified, giving rise to new conditions for the activity (e.g., a new task). On the other
hand (lower loop), the subject’s own knowledge is modified (e.g., by the difference
between expectations, acceptable outcomes and the results of actions).

More recently, the dialectic between the upper and lower regulatory loops
(shown in Fig. 38.1) has been expanded through a distinction between the pro-
ductive and constructive dimensions of activity (Pastré 1999; Samurcay and
Rabardel 2004). Productive activity is object oriented (motivated by task comple-
tion), while constructive activity is subject oriented (subjects aim to develop their
knowledge). In teaching/learning situations, especially those that involve tech-
nologies, the constructive dimension in the students’ activity is key. The teacher
aims for the students to develop constructive activity. However, especially with
computers, students are mostly engaged in producing results, and the motivation of
their activity can be only towards the productive dimension. The effects of their
activity on students’ knowledge—as it is stipulated by the dual regulatory loop—
are then mostly indirect, with fewer or without any constructive aspects.

The last important point to note is the fact that French activity theory mixes the
Piagetian approach of epistemological genetics with Vygotsky’s socio-historical
framework in order to specify the developmental dimension of activity. As Jaworski
writes in Vandebrouck (2013, p. vii):

The focus on the individual subject—as a person-subject rather than a didactic subject—is
perhaps somewhat more surprising, especially since it leads the authors to consider a
Piagetian approach of epistemological genetics alongside Vygotsky’s sociohistorical
framework.

Fig. 38.1 Codetermination
of activity and twofold
regulatory loop
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Rogalski (Vandebrouck 2013, p. 20) responds:

The Piagetian theory looks from the student’s side at epistemological analyses of mathe-
matical objects in play while the Vygotskian theory takes into account the didactic inter-
vention of the teacher, mediating between knowledge and student in support of the
students’ activity.

The dual regulation of activity is consistent with the constructivist theories of
Piaget and Vygotsky.

The first author (Piaget 1985) provides tools to identify the links between
activities and development through epistemological analyses. Vergnaud (1982,
1990) expands the Piagetian theoretical framework regarding conceptualization and
conceptual fields by highlighting situation classes relative to a knowledge domain.
We therefore define the students’ learning—and development—with reference to
Vergnaud’s conceptualization.

On the other hand, Vygotsky (1986) stresses the importance of mediation within
a student’s zone of proximal developmental (ZPD) for learning (scientific con-
cepts). Here, we refine the notion of mediation by adding a distinction between
procedural and constructive mediations in the context of the dual regulation of
activity. Procedural mediations are object oriented (oriented towards the resolution
of the task), while constructive mediations are more subject oriented. This dis-
tinction can be seen as an extension to what Robert and Hache (2008) call teachers’
procedural and constructive aids. A more detailed exploration of the complemen-
tarity of Piaget and Vygotsky can be found in Cole and Wertsch (1996).

38.3 General Methodology for Analysing Students’
Mathematical Activities

Following activity theory, we postulate that students’ learning depends directly on
their activity, even though other elements can play a part—and even if activity is
partially inaccessible to us and differs from one student to another. Students’
activity is developed through the actions that are carried out to complete tasks.
Through their actions, subjects aim to achieve goals, and their actions are driven by
the motivation for the activity. Here, we draw upon the three levels originally
introduced by Leontiev (1978): activity associated with a motive, actions associated
with goals and operations associated with conditions. Activity takes place in a
specific situation, such as in the classroom, at home, or during a practical session.
The actions involved by the proposed precise tasks can be external (i.e., spoken,
written, or performed), or internal (e.g., hypotheses or decisions) and partially
converted in operations. As Galperine (1966) and Wells (1993) note, the three
levels are relative and, for instance, operations can be considered as actions that
have been routinised.

Here, we use the generic term mathematical activities (rather than activity) to
refer to students’ activity on a specific mathematical task in a given context.
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Mathematical activities refer to everything that surrounds actions and operations
(also non-actions, for instance). They are a function of a number of factors (in-
cluding task complexity, but extending to the characteristics of the context and all
mediations that occur as tasks are performed) that contribute to regulation and
intended development in terms of mathematical knowledge.

Two methodological levels can be adopted from the dynamic of activity within
the twofold regulatory loop. First of all, regulations can be considered at a local
level as short-term adjustments of activities to previous actions and as procedural
learning (also called functional regulations; upper loop in Fig. 38.1). Secondly, at a
global level, regulations are mostly constructive ones (also called structural regu-
lations) and correspond to the long-term development of the subject (linked with
conceptualization).

38.3.1 The Local Level

At the local level, the analysis focuses on students’ activities in the situation, in the
form of tasks, their context and their completion by students with or without direct
help from the teacher. The initial step is an a priori analysis of the tasks given to
students (by the teacher, the computer, etc.), which is closely linked to the situa-
tional context (e.g., the students’ academic level and age). We use Robert (1998)
categorization to characterise these tasks.

First, we identify the mathematical knowledge to be used for a given task: the
representation(s) of a concept, theorem(s), definition(s), method(s), formula(s),
types of proof, etc. The analysis aims to answer several crucial questions: Does the
mathematical knowledge to be used already exist for students or is it new? Do
students themselves have to find the knowledge to be used? Does the task only
require the direct application of this knowledge without any adjustment (technical
task) or does it require adaptations and/or carrying out subtasks? A list of such
adaptations can be found in Robert and Horoks (2007): mix of knowledge, the use
of intermediaries, change of register (Duval 1995), change of mathematical domain
or setting (Douady 1986), introduction of steps or choices, use of different points of
view, etc. Tasks that require the adaptation of knowledge are referred to as complex
tasks and encourage conceptualization, as students become able to more readily and
flexibly access the relevant knowledge, depending, however, on the implementation
in the classroom.

The a priori analysis of tasks leads us to describe what we have called the
intended students’ activities associated with the tasks. Here we draw upon
Galperine (1966) functions of operations and adapt them to mathematical activities.
Galperine distinguishes three functions: orientation, execution and control. Next,
we use three ‘critical’ mathematical activities that are characteristic of complex
tasks (Robert and Vandebrouck 2014).
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• First, recognizing activities refer mainly to orientation and control. They occur
when students have to recognise mathematical concepts as objects or tools that
can be used to solve the tasks they are given. Students may also be asked to
recognise modalities of application or adaptation of these tools.

• Second, organizing activities refer mainly to orientation: Students have to
identify the logical and temporal steps in their mathematical reasoning, together
with any intermediaries.

• Third, treatment activities refer to all of the mathematical activities associated
with execution on mathematical objects. Students may be asked to draw a figure,
compute, substitute, transform expressions (with or without giving the steps),
change registers, change mathematical domains, etc.

Following Vygotsky, we supplement our local analysis of intended students’
activities by developing ways to analyse classroom teaching (a posteriori) and to
approach effective students’ activities as functions of the different mediations that
occur. For this, we use videos and observations in the classroom. We also record
students’ discussions, teachers’ discourses and writings and capture students’
computer screens to identify observable activities. The data that is collected con-
cerns how long students spend working on tasks, the format of their work (the
whole class, in small groups, by pairs of students, etc.), its nature (copying, reading,
calculation, investigation, written or oral, graded or not, etc.) and all elements of the
context that may modify intended activities. This highlights, at least partially, the
autonomy given to students, the nature of mediations and opportunities for students
to show initiative in relation to the adaptation and availability of knowledge.
Multiple aspects of mediations are analysed with respect to their assumed influence
on student activities. Some relate to their format (interactions with students,
between students, with teacher, with computers, etc.), while others concern the
specific ways of taking into account the mathematical content (mathematical aids,
assessment, reminders, explanations, corrections and evaluations, presentation of
knowledge, direct mathematical content, etc.).

Two types of mediations have already been introduced: modifying intended
activities or adding to activities (effective or when last observed). The first are
object oriented; here we use the term procedural mediations. These mediations
modify intended activities and correspond to instructions given by the teacher, the
screen, or other students, directly or indirectly, before or during task completion.
They are often seen in open-ended questions from the teacher such as ‘What
theorem can you use?’ They can be given by the computer giving feedback that
transforms the task to be performed or with some limitations in the provided tools
that give indirect indications to students about the way to perform the task. These
procedural mediations may lead to the subdivision of a complex task into subtasks.
They usually change knowledge adaptations in complex tasks and simplify the
intended activities in such a way that it becomes more like a technical task (for
instance, students having to apply a contextualised method).

The second type of mediation is more subject oriented; here we use the term
constructive mediations. They are designed to add something to the students’
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activities and the knowledge that can emerge from these activities. They can take
the form of a simple summary of what has been developed by students, an
explanation of choices, a partial decontextualisation or generalization, assessments
and feedbacks, a discussion of results, etc. On some computers, the way students
have achieved a geometrical figure can be replayed in order to help them recall the
order in which the instructions have been given without any mistakes.

It should be noted here that our framework leads to the hypothesis that there is an
internal transformation of the subject in the learning process: Constructive medi-
ations aim to contribute to this process. However, the mediations can be con-
structive for some students and remain procedural for others. On the contrary, some
procedural mediations can become constructive for some students, for instance, if
they are able on their own to extract a generalization from a local indication.
Moreover some constructive mediations—but also perhaps productive—can belong
to some students’ ZPD in Vygotsky’s sense or they can remain out of the ZPD.
When they belong to the ZPD, their identification can help to appreciate the explicit
links between the expression of the general concepts to be learned and their precise
applications, in contextualised tasks, based on the necessary dynamic between
them. Distinguishing between the kinds of mediations and the way they do or do
not belong to some students’ ZPD can be very difficult.

38.3.2 The Global Level

The local level can be extended to a global level that takes into account the set of
mathematical activities, the link with the intended conceptualization (long-term
constructive loops) and teaching practices in the long term. We link students’
mathematical activities to the intended conceptualization of the relevant mathe-
matical notion, establishing a ‘relief map’ of this mathematical notion. This relief
map is developed from an epistemological and mathematical analysis of the notion,
the study of the curricula and didactical analyses (e.g., students’ common diffi-
culties). This global analysis focuses on the similarity between students’ activities
(intended, observed, or effective) and the set of activities that characterise the
intended conceptualization of the relevant notion.

However, the didactical analysis of one teaching session is insufficient. It is
necessary to take into account, on a day-to-day basis, all of the tasks students are
asked to complete and teachers’ interventions. We use the term scenario to describe
a sequence of lessons and exercises on a given topic. The global scenario could be
understood as a long-term ‘cognitive road’ (Robert and Rogalski 2005).
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38.4 Example of Application: The ‘Shop Sign’ Situation

To illustrate the utilization of our activity theory, this section presents an example
of a situation that aims to contribute to students’ conceptualizations of the notion of
function. Some limitations of the methodology at the global level are then outlined.

The example relates to a GeoGebra family of figures for learning functions. This
family refers to mathematical situations that lie at the interface between two
mathematical domains: geometry and functions. There are many possible examples.
We call them “shop sign” situations because they share the idea that some coloured
areas of the figures are the lit areas of shop signs (Artigue et al. 2011), which
depends on some moving variables in the figure.

In Fig. 38.2, ABCD is a square, with A at the origin and AB = 4. E is a mobile
point on the segment [CD]. We consider the sum of the areas of the square (DFGE)
and the triangle (ABG). The task is to find the minimum of the sum of the areas as
E moves.

The task is set for Grade 10 students (15 years old). One solution is to identify
DE as an independent variable x. Then f(x), the sum of the two areas, is equal to x2

(for the square) plus 4(4 − x)/2 (for the triangle): equivalent to x2 − 2x + 8. In the
French curriculum at Grade 10, the derivative is not known and students must
compute and understand the canonical form (x − 1)2 + 7 as a way to identify the
minimum 7 for the distance DE = 1 (which is the actual position on the figure).

Students work in pairs on computers. They have already worked with functions
in the traditional pencil-and-paper context, and they also have manipulated
GeoGebra for geometrical tasks that do not refer to functions. In this new situation,
GeoGebra helps them to begin the task by making conjectures about the minimum.
Students can also trace the graph of the function, as shown in Fig. 38.6. Then, in the
algebraic register, they can find the canonical form of the function f(x) and the
characteristics of the minimum.

Fig. 38.2 Shop sign

686 F. Vandebrouck



We first identify the relief map of the notion of function and the intended
conceptualization. We then give the a priori analysis of the task and the intended
students’ activities. We finish with the observation of two pairs of students to
identify observable and effective activities.

38.4.1 The Global Level: Relief Map of the Notion
of Function and Intended Conceptualization

The function is a central concept in mathematics and links it to other scientific fields
and real-life situations. It both formalises and unifies (Robert and Hache 2008) a
diversity of objects and situations that students encounter in secondary school:
proportionality, geometrical transformations, linear, polynomial growth, etc.
A diversity of systems of representations (numerical, graphical, algebraic, formal,
etc.) and a diversity of perspectives (pointwise, local and global) are frequently
combined when working with them (Duval 1995; Maschietto 2008; Vandebrouck
2011). As it is summarised by Artigue et al. (2007), the processes of teaching and
learning of function entail various intertwining difficulties that reinforce one another
in complex ways.

Educational research (Tall 2006; Gueudet 2008; Hitt and Gonzalez-Martin 2016)
shows that an efficient conceptualization of the notion requires a rich experience
that illustrates the diversity illustrated above and the diversity of settings in which
functions are used (Douady 1986). It also means that functions are available as tools
for solving tasks and can be flexibly linked with other concepts. There must be a
progression from embodied conceptualizations (where functions are highly
dependent on physical experience) to perceptual conceptualizations (where they are
considered dialectically and work both as processes and objects), paving the way
for more formal conceptualizations (Tall 2004, 2006).

At Grade 10, the intended conceptualization can be characterised by a set of
tasks in which functions are used as tools and objects. They can be combined and
used to link different settings (including geometrical and functional); numerical,
algebraic and graphical representations; and the dialectic between pointwise and
global perspectives. The shop sign task is useful in this respect, as students have to
engage in such mathematical activities. A priori optimization tasks in geometrical
modelling help to build the intended functional experience and link geometrical and
functional settings.

Technology provides a new support for physical experience, as the modelling
process provides new systems of representation and helps to identify the dynamic
connections between them. It also offers a new way to approach and connect
pointwise and global perspectives on functional objects and supports the building of
rich functional experiences. Arzarello and Robutti (2004) famous contribution uses
sensors to introduce students to the functional domain. The framework is already an
activity theoretical framework together with more semiotic approaches, but it is not
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in a context of dynamic geometry. There have been many experiences that involve
learning functions through dynamic geometrical situations. For instance, Falcade
et al. (2007) studied the potential of didactical engineering with Cabri-Géomètre.
The authors take a Vygotskian perspective about semiotic mediations that is more
precise than our adaptation of Vygotsky inside activity theory, but which is also
more restrictive in the sense that they do not consider deep connections between
given tasks and mathematical activities. Moreover, it does not concern ordinary
classrooms. More recently, Minh and Lagrange (2016) analysed students’ activities
on functions using Casyopée. This software is directly built for the learning of
functions and the authors adopted the model of mathematical working spaces
(Kuzniak et al. 2016). They built on three important challenges for students in the
learning of functions: to consider functional dependencies, to understand the idea of
independent variable and to make sense of functional symbolism. The aims of the
shop sign family is consistent with such a progression, which is close to Tall’s
introduced above (Tall 2006).

38.4.2 The Local Level: A Priori Analysis of the Task
and Students’ Intended Activities

The task is to identify the position of E on [DC] in order that the sum of the areas
DFGE and AGB are minimal (Fig. 38.2). This requires actual knowledge about
geometrical figures and functions. However, it assumes that the notion of function is
available, i.e., students have to identify the need for a function by themselves.

In a traditional pencil-and-paper environment, students first draw a generic
figure. They can try to estimate—using geometrical measurements—some values
for the areas for different positions of E. They can draw a table of values, but this
kind of procedure is usually not enough to obtain a good conjecture of the mini-
mum value. Moreover such a procedure can reinforce the pointwise perspective
because it does not bring the continuous aspects of the function at stake. Usually,
the teacher quickly asks students to produce algebraic expressions of the areas.
Students try themselves to introduce an algebraic variable (DE = x), or the teacher
gives them procedural aids.

In the example given here, the teacher provided students with a sheet of paper
showing a figure similar to the one given in Fig. 38.2 and the instructions as
summarised in Fig. 38.3.

Figure 38.3 shows that the overall task is divided into three subtasks. Organizing
activities are directed by procedural mediations (functional regulation), which is a
way to ensure that most students can engage in productive activity.
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38.4.2.1 A Priori Analysis of the First Subtask: The Construction
of the Figure

In the geometrical subtask, students have to identify the fixed points (A, B, C, D),
the free point (E) on [DC] and the dependent points (F and G). The order of
construction is crucial to the robustness of the final figure, but is not important in
the paper-and-pencil environment. Consequently, organizing activities—the order
of instructions—are more important in the GeoGebra environment.

This subtask also requires students to make choices. It is possible to draw either
G or F first, and the sequence of instructions is not the same. Moreover, there are
other choices that have no equivalent in the paper-and-pencil environment: whether
to define the polygons (the square and triangle) with the polygon instruction or by
the length of their sides, whether to use analytic coordinates of fixed points or a
geometrical construction, whether to use a cursor to define E, etc. These choices
refer not just to mathematical knowledge but also to instrumental knowledge
(following the instrumental genesis approach). This means that treatment activities
include instrumental knowledge and are more complex than in the traditional
environment. Once the construction is in place, students can verify its robustness—
a treatment that is also specific to the dynamic environment.

38.4.2.2 A Priori Analysis of the Second Subtask: The Conjecture

There is no task really equivalent to this subtask in the paper-and-pencil environ-
ment. This again leads to specific treatment activities. These are engaged with the
feedback provided by the software, which assigns numerical values of the areas
DFGE and AGB, according to the position of E. However, students are required to
redefine DFGE and AGB as polygons if they have not already used this instruction
to complete the first subtask (Fig. 38.5). They also have to create in the GeoGebra
environment a new numerical value that is the sum of the two areas in order to
refine their conjecture. It is not clear to what extent these specific treatment
activities refer to mathematical knowledge, and we will return to this point later.

First: construc on of the figure (with GeoGebra)
Second: conjecture (experimenta on and observa ons with GeoGebra)

Third: algebraic proof

Fig. 38.3 Main instructions given to students
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38.4.2.3 A Priori Analysis of the Third Subtask: The Algebraic Proof

This subtask appears similar to its equivalent in the paper-and-pencil environment.
However, as students already know the value of the minimum, the motivation for
activity is different and only relates to the proof itself. The most important step is
the introduction of x as a way to pass from the geometrical setting to the functional
setting. This step brings recognizing activities (students must recognise that the
functional setting is needed), which is triggered by a procedural mediation (the
instructions given on the sheet).

Students have to determine the algebraic expression of the function. Existing
knowledge about the area of polygons must be available. They also have to
recognise a second-order polynomial function associated with specific treatments.
The treatment activity that remains is obtaining the canonical form (as students have
not been taught about derivatives, they must be helped in this by the teacher).
Finally, the recognition of the canonical form as a way to obtain the minimum of
the area and the position of E that corresponds to this minimum correlates with the
importance of the dialectic between pointwise and global perspectives on functions.

38.4.3 A Posteriori Analysis: Observable and Effective
Activities

Students worked in pairs. The teacher only intervened at the beginning of the
session (to ensure that all students were working) and at the end (to summarise the
session). Students mostly worked autonomously, although the teacher helped
individual pairs of students. The following observations are based on two pairs of
students: Aurélien and Arnaud, and Lolita and Farah.

38.4.3.1 Analysis of the First Pair of Students’ Activities: Aurélien
and Arnaud

This pair took a long time to construct their figure (more than 20 min). They began
with A, B, C, D in sequence, using coordinates and then drawing lines between pairs
of points. This approach is closest to the paper-and-pencil situation, and while it is
time-consuming it is not crucial for global reasoning. They then introduced a cursor
—a numerical variable j that took a value between 0 and 4—in order to position
E on [D, C]. However, the positioning of F at (0, 3) was achieved without the
cursor, which led to a wrong square (Fig. 38.4). G was drawn correctly. After they
had completed their construction, they moved the cursor in order to verify that their
figure was robust; an operation which revealed that the figure was not (Fig. 38.4).

This mediation from the screen is supposed to be a constructive mediation: It
does not change the nature of the task and is supposed to permit a constructive
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regulation of students’ activities (the lower loop in Fig. 38.1). However, the
mediation does not encounter the students’ ZPD, and it is insufficient for them to
regulate their activity by their own. In fact, the mediation supposes new recognizing
activities specific to dynamic geometry on computers that these students are not
able to develop.

In this case, the teacher makes a procedural mediation and helps the students to
rebuild their figure (‘You use the polygon instruction to make DFGE… then again
to make the polygon ABG.’). Once the two polygons have been correctly drawn, the
values of their areas appear in the numerical window of GeoGebra (called poly1 and
poly2, shown on the left-hand side of the screens presented in Fig. 38.5).

In the conjecture phase (second subtask, 8 min), the students made the conjecture
that the sum is always 8 (‘Look, it’s always 8…’), by computing poly1 + poly2 in their
mind. The numerical window of GeoGebra now shows 18 different pieces of infor-
mation, including the areas of DFGE (poly1) and ABG (poly2). Students must
introduce another numerical variable, poly3, that is equal to the sum of poly1 + poly2.
However, this requires new organizing activities that GeoGebra does not help with.

Fig. 38.4 Exploring the robustness of the shop sign

Fig. 38.5 Exploration of varying areas by moving the point E on [DC]

38 Activity Theory in French Didactic Research 691



In fact, there is already toomuch information in the numericalwindow.Here again, the
teacher provides direct procedural assistance (‘introduce poly3 = poly1 + poly2’).

In the algebraic phase (third subtask, 20 min), the students are unable to express
the areas DFGE and ABG as functions of x. Analyses reveal that again new rec-
ognizing activities are awaited to switch from the computer environment to the
paper and pencil environment. These new recognizing activities are not evidence
for the students. They suppose both mathematical knowledge and instrumental
knowledge about the potentialities of software and the mathematical way of proving
the existence and the values of the minimum. Students then attempt to implement
DE = x in the input bar, which leads to feedback from GeoGebra (in the form of a
syntax error), which informs them that their procedure is wrong—but does not
provide any guidance about what to do instead. It is difficult to know whether to
categorise this kind of mediation as procedural or constructive as it does not add
any mathematical knowledge.

The teacher asks the students to try to find a solution with pencil and paper
(procedural assistance). However, the introduction of x, which is linked to the
change of mathematical setting (adaptation of knowledge), seems very artificial.
The students start working on their algebraic formula by looking at their static
figure, with E positioned at (1, 4). The base of the triangle measures 4 and its height
is 3. One of the pair suggests that ‘it depends on x’, meaning that each algebraic
expression ends in x, as the following dialogue between the two students shows:

Student 1: This is 4x
Student 2: Base times height… so the base is 4
S1: 4x… it’s 4 times x, because it’s a function of x
S2: Oh? The height?
S1: Yeah the height… 3x
S2: No, it can change
S1: Yeah but in this case
S2: Look, (he moves the cursor) this isn’t 3x here
S1: Humm… OK, listen…
S2: Before for the square we found it because x squared is always the area… this

isn’t more complicated than that… the base is always 4…
S1: No it’s not more complicated but…
S2: The base doesn’t change
S1: It’s 4x times…
S2: The base doesn’t change
S1: Yes it’s sure but we have to find the height…

At this point, the teacher provides another direct procedural assistance. This once
again shows that although the mediation of GeoGebra helps students to discuss and
progress, it is insufficient for them to correctly regulate their activity. Without
procedural assistance from the teacher, they are unable to find the formula for the
area of triangle. In the end, the students do not have enough time to finish the task
by themselves.

692 F. Vandebrouck



At end of the session, the teacher gives a procedural explanation to the whole
class of how to find the canonical form (as ‘x2 − 2x + 8 = (x − _)2 + _’). Although
Aurélien and Arnaud write it down, they do not make the link between it and their
classroom work. Consequently, they do not understand the motivation for the
activity and cannot make sense of the explanation of the canonical transformation
given by the teacher.

Then the teacher gives a constructive explanation about the meaning of the
coefficients in the canonical form and the way they give the minimum and the
corresponding value of x. However, based on what we see in Aurélien and Arnaud’s
activities, it is too early, and they do not make the link with their numerical
conjecture. In other words, the collective mediation of the teacher seems too far
from the students’ ZPD, and it is not at all constructive for this pair of students.

38.4.3.2 Analysis of the Second Pair of Students’ Activities: Lolita
and Farah

Lolita and Farah are better students and quickly draw their robust figure. Their
numerical conjecture is correct and the teacher gives them another subtask: Find a
graphical confirmation of their conjecture. The procedural instruction is to find a
new point, M, whose abscissa is the same as E and ordinate is the value poly1 +
poly2 (Fig. 38.6).

Fig. 38.6 The shop sign task showing part of the graph of the function
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When moving the cursor, the trace of M can be interpreted as the graph of the
function f(x). However, Lolita and Farah do not recognise this. One says ‘this is not
a curve’ and then ‘the minima, we have seen this for functions but here…’

They only recognise the trace as a part of a parabola (geometrical setting) and
associate its lowest point with the value of the minimum area.

The graphical observation confirms to Lolita and Farah that their numerical
conjecture was correct. However, this is a proof for them and they do not under-
stand the motivation of the third subtask, which does not make sense to them.
Although they succeed in defining the algebraic expression of the function and they
find the canonical expression, they do not make the link with their graphical
observation.

Here again, the teacher’s summary of how to obtain the canonical form of the
function, the value of the minimum, and the corresponding value of x is not useful
for this pair, as it is not the problem they encountered. A constructive intervention
about the motivation for the third subtask and how the canonical form was linked to
the conjecture would have been a mediation that was closer to their ZPD.

38.5 What Does This Tell Us About Students’
Mathematical Activities?

The main result concerns complex activity involving technology: Here the com-
plexity is introduced by mathematical activities that require either mathematical or
instrumental knowledge, particularly knowledge about the real potentialities of
technologies in contrast with what is supposed to be solved within the paper and
pencil environment. This leads also to new treatment activities (e.g., in the con-
struction and conjecture subtasks) and new recognizing activities. New onscreen
representations appear, typically dynamic, and students must recognise them as
mathematical objects or not. The example of Aurélien and Arnaud shows how
difficult it was for them to recognise a robust figure and dynamic and numerical
representations of variations in areas. Similarly, it was difficult for Lolita and Farah
to recognise the trace of M as a special part of the graph of a function.

The second main result concerns the increase in recognizing activities and the
new balance between the three types of critical activities. While in a traditional
session, a teacher can point out the mathematical objects to use while the screen
presents far more information to students, meaning that they have to recognise what
is most important in their treatment activities. Organizing activities also increase,
both before treatment activities related to construction and during conjecture. For
instance, Aurélien and Arnaud failed in the conjecture task because they were not
able to introduce a third numerical variable by themselves. Classroom observation
(Robert and Vandebrouck 2014) has led to the idea that most of effective students’
activities are treatment activities, as the teacher must make procedural interventions
before most students can begin the task. Recognizing and organizing activities are
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mostly activities for the best students. These students often have an idea of how to
begin the resolution of the task, are able to adapt quickly their knowledge and
develop all three types of critical mathematical activities, whereas weaker students
find it difficult to engage in the task, waiting for any procedural assistance from the
teacher. In classroom sessions that use technology, students are confronted with all
of these critical activities and have to deal with them by themselves, which may
help to explain the difficulty of weaker students.

A further finding concerns mediations. In such sessions, a teacher’s mediations
are mostly procedural and clearly aim to foster productive activity. Onscreen
mediation leads to specific new recognizing activities (dynamism) but is insufficient
for all students—not only weaker students—to regulate their own activity. It
appears that most of the time this mediation is not procedural or constructive
enough, leading to more teacher intervention. Moreover, it seems that onscreen
mediation is always associated with treatment activities and does not help students
in their recognizing or organizing activities.

The last point concerns constructive mediation and the heterogeneity of the
students’ knowledge (and ZPD). Student activities in classroom sessions that use
technology are difficult for teachers to evaluate. Even if they try to manage the best
‘average’ constructive mediations for all students, our examples show that this is
very challenging. This raises the question of what the real impact of such sessions is
with respect to the intended conceptualization. The availability and recognition of
functions as tools to complete such tasks was not really investigated, in the sense
that the independent variable x was given to students (on paper) and none of them
returned to the geometrical setting as in the traditional modelling cycle as described
by Kaiser and Blum (Maass 2006). Moreover, Aurélien and Arnaud did not explore
the dynamic numerical-graphical-algebraic flexibility, which was one of the aims of
the session, while Lolita and Farah did, but lacked the constructive mediations
needed to complete the cycle.

38.6 Conclusion

We have presented activity theory in the context of French didactics, notably the dual
regulation found in the activity model, which was first developed in ergonomic psy-
chology and then adapted to didactics of mathematics in order to study students’
activities. Other works, which we have not discussed here, have looked at teachers’
practices in some different ways (Robert 2012; Robert and Rogalski 2005). An
important component of this model is the impact of activity on subjects, which repre-
sents the developmental dimension of students’ activity. This focus highlights the
commonalities and complementarities of the constructivist theories of Piaget (extended
to Vergnaud’s conceptual fields) and Vygotsky. The connection between activity
theory, the work of Piaget and Vygotsky and didactics of mathematics provides a
theoretical foundation for a dual approach to students’ activity from the viewpoint of
mathematics (the didactical approach) and subjects (the cognitive approach).
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Our analysis does not provide a model of students’ activity (or teachers’ prac-
tices). However, it leads to the identification of similarities and differences in terms
of the relations between subtasks, students’ ways of working, mediations, and
mathematical activities and compares this complex task with the traditional
paper-and-pencil environment. One of the specificities of our approach is the deep
connection between the students’ activities analysis and the a priori task analysis,
including mathematical content. But we do not look for the teacher’s own intention,
unlike what is done in some English research (for instance, Jaworski and Potari
2009). Moreover, we do not attempt to raise the global dynamic between individual
and collective interactions and learning. We should take now a threefold approach
to the investigation of students’ practices: didactical, cognitive and socio-cultural.
As Radford (2016) argues, with respect to Mathematical Working Spaces (Kuzniak
et al. 2016), the individual-collective dynamic remains difficult to understand in
both our activity theory and Mathematical Working Spaces, which are discussed
together. This represents a new opportunity to better investigate the socio-cultural
dimension of activity theory—especially as developed by Engestrom—and inte-
grate it into our didactical and cognitive approach.
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Chapter 39
The Effect of a Video-Based Intervention
on the Knowledge-Based Reasoning
of Future Mathematics Teachers

Naďa Vondrová

Abstract The article focuses on the professional vision of pre-service mathematics
teachers. Drawing on literature about its development in video-based interventions,
the article focuses on the effect of a video-based intervention on pre-service
teachers’ (n = 32) knowledge-based reasoning as a component of professional
vision. The intervention had features compatible with situated cognition learning
theory. The participants’ knowledge-based reasoning was tracked in participants’
written reflections on mathematics lessons shown on video before and after the
intervention. An important feature of the intervention lies in balancing the videos to
avoid the learning effect and a possible influence of the video content. The study
showed a decrease in subjective judgments and negative comments about the les-
sons; however, there was a decrease rather than increase in higher-level interpre-
tations. Possible reasons for this are discussed against results of similar intervention
studies. Implications for teacher education are given.

Keywords Professional vision � Noticing � Pre-service mathematics teachers
Knowledge-based reasoning � Evaluation � Interpretation

39.1 Introduction

Pre-service teachers (PSTs) must develop a range of skills, including a certain type
of noticing skill, that is different from lay people’s skills. When observing a
mathematics lesson, either live or on video, during their mathematics education
programme, they are expected to notice aspects of the lesson that are deemed
important for the development of pupils’ knowledge. Yet the complexity of a
mathematics lesson is such that if they direct attention to something, they do so at
the expense of something else. Much research has been undertaken in recent years
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focusing on what it is that PSTs do and do not notice in a mathematics lesson and
how they make sense of it.

Teacher education programmes contribute to the development of noticing in
different ways. For example, in our previous research (Simpson et al. 2017), we
found that a two-year master’s programme for future mathematics teachers without
a focus on noticing and with two short school practice placements does not sig-
nificantly influence PSTs’ patterns of attention when observing a videoed lesson.
On the other hand, there is a body of research showing that video-based inter-
ventions do influence noticing in important ways (see Sects. 39.2.4 and 39.5). In
the above research, we were interested to see in what way a quite short video
intervention spanning three seminars would or would not influence future mathe-
matics teachers’ patterns of attention. In many ways, we confirmed the results found
in existing literature. The PSTs increasingly focused on the mathematical aspect of
the lesson and on students rather than on the teacher, and their comments were more
specific than general. We also looked briefly at their knowledge-based reasoning
and found that the PSTs increasingly described and evaluated less, but also inter-
preted less when reflecting on what they saw in the video. The aim of this article is
to elaborate on the above research and to present some further findings about the
nature of PSTs’ knowledge-based reasoning and how it was affected by the video
intervention.

39.2 Theoretical Background and a Review of Literature

39.2.1 Teacher Noticing

The concept of noticing is usually described as consisting of the processes of
attending to particular events in the lesson and making sense of these events.
Probably the most influential in the field is the characterisation by van Es and
Sherin (2002; cited in Sherin and Star 2011), who propose three aspects of noticing:

(a) identifying what is important or noteworthy about a classroom situation; (b) making
connections between the specifics of classroom interactions and the broader principles of
teaching and learning they represent; and (c) using what one knows about the context to
reason about classroom events. (p. 573)

In this paper, ‘pattern of attention’ will be used to refer to the first process, while
the other two processes will both be referred to as ‘knowledge-based reasoning’.
The concept of noticing is often conflated with professional vision, which is
characterised as seeing phenomena in a scene from the area of expertise that are
different from those arising from lay viewings of the same scene (Goodwin 1994).
For example, Sherin et al. (2011) understand noticing as ‘professional vision in
which teachers selectively attend to events that take place and then draw on existing
knowledge to interpret these noticed events’ (p. 80).
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It is obvious, given the complexity of observing a lesson, that observers must
split their attention between what they see as noteworthy and what they choose to
neglect; it is not a passive process. Moreover, as Schoenfeld (2011) points out, the
observer’s knowledge, beliefs and orientations will have an impact on where
attention is actually directed.

Much research has been aimed at the patterns of PSTs’ attention in general. It
mostly concludes that they pay more attention to the teacher and classroom man-
agement than to students or mathematical content and its implementation in the
lesson (e.g., Santagata et al. 2007; Alsawaie and Alghazo 2010). Moreover, PSTs’
comments are found to be rather evaluative. Generally, studies do not distinguish
between ‘more and less important’ moments to be noticed. Some even say that
before teachers are able to attend to important moments, they have to develop the
ability to notice trivial classroom features (Star et al. 2011). However, they do add
that it is not clear ‘whether it is better to focus first on improving teachers’
awareness of the full range of (trivial and important) events (as was done here [in
their course]) or to focus explicitly on only important events from the outset’ (Star
et al. 2011, p. 132). In some studies, the authors speak about salient features of
mathematical instruction to be noticed (e.g., Mitchell and Marin 2015).

Naturally, the ability to ‘identify noteworthy events in a teaching situation
depends on one’s image of what is important in teaching’ (Alsawaie and Alghazo
2010, p. 227). Further, what the authors of a video-based intervention see as
important in teaching mathematics will also have an impact on such ability for the
participants. For the presented study, the important moments are the ones that are
generally accepted as playing the key role in pupils’ learning of mathematics: the
types of tasks used by teachers and the kinds of discourses that they orchestrate
when implementing them (Hiebert et al. 2003). Moreover, in line with the con-
structivist view of learning, pupils’ active role in developing their mathematics
knowledge is emphasised. Thus, the concept of opportunity to learn is important;
namely: ‘[the] circumstances that allow students to engage in and spend time on
academic tasks such as working on problems, exploring situations and gathering
data, listening to explanations, reading texts, or conjecturing and justifying’
(Kilpatrick et al. 2001, p. 333).

It includes ‘considerations of students’ entry knowledge, the nature and purpose
of the tasks and activities, the likelihood of engagement, and so on’ (Hiebert and
Grouws 2007, p. 379) and is seen as the single most important predictor of pupils’
achievement.

In the review of literature, I will restrict myself to studies on video-based
interventions with future mathematics teachers aimed at noticing.

39.2.2 Structure of Video-Based Interventions

The instructional strategy employed when embedding classroom videos into a
course is informed by the learning goal and purpose at hand (Blomberg et al. 2014).
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In literature, we can find courses based on situated cognition learning theory, which
suggests ‘that learning should be rooted in authentic activity; that learning occurs
within a community of individuals engaged in inquiry and practice; that more
knowledgeable “masters” guide or scaffold the learning of novices; and that
expertise is often distributed across individuals’ (Whitcomb 2003, p. 538). In such a
case, ‘video is used as a problem anchor to elicit learners’ mental action. Video thus
represents a complex example from which learners can collectively derive princi-
ples or rules’ (Blomberg et al. 2014, p. 447). Another approach is based on cog-
nitive learning theory, according to which learning involves the storage and access
of knowledge in long-term memory; it is necessary to avoid overloading the lear-
ner’s working memory, so prompts are used and explicit guidelines are given, etc.
In such interventions, videos are used as illustrations of previously taught principles
and rules (Blomberg et al. 2014).

The learning goal and purpose influence the way videos are embedded in tasks.
Video-based interventions utilise various scaffolds to develop noticing. Their
leaders provide participants with some framework that draws their attention to
particular features of the lesson and that they can use to account for what they
notice. An example is the Mathematical Quality of Instruction (MQI) analysis
framework (Mitchell and Marin 2015), which utilises aspects such as teacher
mathematical error or imprecision, use of mathematics with pupils, cognitive
demand of task and student work with mathematics. Roth McDuffie et al. (2014)
provided participants with ‘four lenses of analysis of lessons’ (namely, teaching,
learning, task, and power and participation). The Lesson Analysis Framework
draws attention to four aspects of the lesson and particularly to connections between
them: the learning goal of the lesson, pupils’ learning, specific and instructional
activities and alternative strategies (Santagata et al. 2007; Santagata and Angelici
2010; Santagata and Guarino 2011; Santagata and Yeh 2014; Yeh and Santagata
2014). Participants in Star and Strickland (2008) study used a ‘five observation
categories framework’ to observe a lesson, namely, classroom environment,
classroom management, tasks, mathematical content and communication.

Video-based interventions vary in length, ranging from short interventions, such
as four sessions within one month (Santagata and Angelici 2010), five sessions in
10 weeks (Mitchell and Marin 2015) or eight sessions in three months (Blomberg
et al. 2014) to whole-semester courses (e.g., Star and Strickland 2008) and differ in
the type and number of videos used. For example, Santagata and Angelici (2010)
only used one video of the whole mathematics lesson, while Santagata et al. (2007)
used three and Alsawaie and Alghazo (2010) used 10. Others (e.g., Blomberg et al.
2014; Roth McDuffie et al. 2014) used video clips only. Some also used videos of
interviews with individual pupils (e.g., Santagata and Guarino 2011; Yeh and
Santagata 2014). Some used videos of the participants’ own teaching (e.g., Mitchell
and Marin 2015), and some interventions were complemented with a field expe-
rience (Stockero 2008; Santagata and Guarino 2011).
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39.2.3 Measuring Effects of Video-Based Interventions

Some video-based interventions use an ‘experimental vs. control group’ design
(Alsawaie and Alghazo 2010; Blomberg et al. 2014; Santagata and Yeh 2014).
Others investigate effects of two different types of scaffolds (Blomberg et al. 2014;
Santagata and Angelici 2010). Still others do not have a control group and examine
the effect of the intervention only (Santagata et al. 2007; Mitchell and Marin 2015;
Roth McDuffie et al. 2014).

There are basically two types of measures used in video-based interventions. In
the first (Stockero 2008; Roth McDuffie et al. 2014), the participants’ responses are
treated together. The development in noticing is usually studied in group discus-
sions. The second measures in what way the individual responses differ before and
after the intervention (e.g., Santagata et al. 2007; Star and Strickland 2008;
Alsawaie and Alghazo 2010; Santagata and Angelici 2010; Santagata and Guarino
2011; Blomberg et al. 2014; Mitchell and Marin 2015). The tasks used for the
individual pre- and post-tests are usually based on the analysis of videos of teaching
of the whole lesson or its parts (an exception is the use of learning journals in
Blomberg et al. 2014). In some studies, the same video is used in both tests
(Santagata et al. 2007; Santagata and Angelici 2010; Santagata and Guarino 2011;
Yeh and Santagata 2014; Mitchell and Marin 2015) while in others, videos of
different lessons are analysed (Star and Strickland 2008; Stockero 2008; Alsawaie
and Alghazo 2010; Santagata and Yeh 2014). Simpson et al. (2017) have noted
problems with both. In the former, it is difficult to discount the learning effect
(especially for short-term interventions): Is any change in the participants’ pattern
of attention the result of the intervention or the fact that they see the video for the
second time? In the latter, it is not taken into account that different videos may
provide participants with different stimuli—the post-test video may include more
moments (and/or more visible moments) in which students appear in the foreground
than in the pre-test video; thus, it is no wonder that more student-centred comments
appear in the post-test. In the study presented in this text, this problem is dealt with
by balancing videos (see Sect. 39.3.3).

For the analysis of comments, different frameworks are used. van Es and Sherin
(2008, 2010) framework is widely used. It identifies four dimensions with several
codes. The first is Actor, which splits into the focus of Teacher and Student (or
students); Curriculum Developer (a comment referring to a textbook author, cur-
riculum documents, etc.); Self (observers discuss themselves in relation to the
video) and Other. The second dimension is Topic and it includes Classroom
Management, Climate (the social environment), Mathematical Thinking, Pedagogy
and Other. The third dimension is Stance, which overarches the pattern of attention
and knowledge-based reasoning. It includes Describe (a recounting of what is seen),
Evaluate (a judgment about what is seen) and Interpret (making inferences or links
to what is seen which might help account for it or understand it). Finally, the
dimension of Specificity captures whether the comment relates to a specific event in
the lesson (Specific) or to some aspect of the whole class or whole lesson or makes
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a generalization beyond the class (General). In some studies (such as van Es and
Sherin 2010), the authors also coded whether the comment was related to the video
or not.

Other authors have developed the framework further. An example is Stockero
(2008), who, using Manouchehri (2002) levels of reflection to better capture the
quality of reflection, elaborated Stance into: Description, Explanation (connecting
interrelated events and exploring cause and effect issues), Theorizing (adding
support to an analysis by a reference to research or course reading or providing
‘substantial evidence from transcripts and/or student written work as justification’,
p. 377), Confronting (considering alternate explanations for events and/or consid-
ering others’ point of view) and Restructuring (showing evidence of Theorizing and
Confronting by considering alternative instructional decisions and ‘of re-examining
his or her fundamental beliefs and assumptions about teaching and learning’,
p. 377). Similarly, Roth McDuffie et al. (2014) distinguished four quality levels,
from descriptions with general impressions and evaluative comments at Level 1 to
the analysis and interpretations of relationships between teaching strategies and
students’ thinking at Level 4.

39.2.4 Results of Video-Based Interventions and Our
Previous Work

All the above studies report changes in the pattern of attention and
knowledge-based reasoning after video-based interventions. PSTs increasingly
focus on students rather than the teacher, and they are better observers of the
mathematical content. They use fewer subjective evaluative comments. There is
mixed evidence in terms of the development of the interpretation skill. To avoid
repetition, results of related research will be further elaborated in Sect. 39.5.

Simpson et al. (2017) report on an intervention study of the pre- and post-test
design whose aim was to find how pre-service mathematics teachers developed in
regard to their pattern of attention following their participation in a video-based
intervention.1 The data were coded using Sherin and van Es’ framework and
quantitative methods were used to look for statistically significant differences in
PSTs’ comments in the pre- and post-tests.

The PSTs’ written reflections were significantly longer after the intervention—
on average more than 50% longer than those before it. The PSTs commented less
on self in relation to the video and more on students in the video. There was an
increase in the frequency of the mathematical thinking code after the intervention,
i.e., the PSTs noticed mathematical aspects of the lesson more at the expense of
Classroom Management and Pedagogy. Their comments became more descriptive

1The intervention and the methodology of the study whose results are reported here are given in
Sect. 39.3.
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and less evaluative, but at the same time also less interpretative. The responses were
significantly more specific after the intervention. To sum up, the study suggested a
markedly similar shift in attention to that seen in other studies (e.g., Santagata et al.
2007; Mitchel and Marin 2015) except for interpretation, which has been reported
to increase in some studies (e.g., Stockero 2008; Alsawaie and Alghazo 2010; Roth
McDuffie et al. 2014).

Our previous work has mostly been focused on the pattern of attention. In this
article, I will look at the second process of professional vision, that is,
knowledge-based reasoning. I will revisit the same data from the intervention study
for further analysis to answer the research question:

In what way is the PSTs’ knowledge-based reasoning as demonstrated in the written
analysis of a lesson on video affected by a video-based intervention?

Our previous research has also shown that there are differences in the pattern of
attention which depend on the lesson observed. Thus, the second research question is:

Are there any differences in PSTs’ knowledge-based reasoning that depend on the lesson
observed?

39.3 Methodology

39.3.1 Participants

The participants were Czech mathematics PSTs in the first semester of a
four-semester master’s programme. They had completed bachelor degrees in either
Mathematics or Mathematics with a Focus on Education, but had had no formal
education in teaching mathematics. Most were in their early or mid-20s. Five
students were already qualified as teachers of other subjects and wanted to widen
their qualification for mathematics. Six students had limited experience teaching
mathematics. In total, 32 PSTs participated in the study. There was no selection
made, all the PSTs in that year level participated.

39.3.2 Intervention

The intervention formed part of a mathematics education course that was taught by
the author and was attended by all participants of the study. During the intervention,
no school practice placement was assigned to the participants. In this course, prior
to the intervention, PSTs were introduced to a theory of concept development
process in mathematics, constructivist approaches to the teaching of mathematics
and the division of mathematics tasks into procedural and making-connections
types (taken from TIMSS). The theory was illustrated by either written cases or
short video clips of mathematics lessons. Concrete prompts directing the PSTs’
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attention were used and thus this video use was more aligned with the cognitive
learning theory approach.

As stated above, the course’s main aim was for the PSTs to develop their ability
to notice features of the lesson salient to its success, and the tasks prepared for the
intervention complied with it. The intervention was based on the situated cognition
learning theory. There were online (through the Workshop module in Moodle, in a
virtual learning environment [VLE]) and in-person (in sessions) opportunities for
participants to work cooperatively, which follows the social cognition view
approach.

The intervention spanned three guided-observation sessions (each about
120 min), with home study tasks, over a three-month period (see Table 39.1). The
tasks consisted of watching videos of mathematics lessons and were set within the
Moodle VLE. The videos were purposefully selected from a pool of videos used in
preceding years with PSTs in which noteworthy events were visible and were
motivating for PSTs to comment upon. In line with video-based courses in teacher
education, the lessons were not used as examples of good practice. For example,
Seago (2004) found that ‘the most useful video clips were based on situations
where there was some element of confusion (either the students’ or the teachers’)
that typically arises in classrooms’ (p. 267). This was confirmed by Sherin et al.
(2009), who say that ‘video clips should provide something for teachers to puzzle
over or speculate about… it is through this process of inquiry that teacher learning
will likely occur’ (p. 215).

Table 39.1 Description of the video-based intervention

Home
study

Task 1: PSTs watched a Czech lesson CZ2 (TIMSS 1999 video study), answered
questions and suggested an alternative to the core of the lesson

Session 1 Discussion about the PSTs’ responses to Task 1
Two clips from two Czech Grade 8 mathematics lessons on tasks in geometry
with very different approaches shown and discussed
Short discussion about the Pythagorean theorem and its teaching

Home
study

Tasks 2 and 3: PSTs watched two Czech lessons from Grade 8, both focussing on
the Pythagorean theorem and its use but with different enactments of the
objective. PSTs analysed them from the point of view of phenomena identified in
Session 1 and chose a moment in the lessons where (a) a learning opportunity is
lost, (b) the teacher reacts to a pupil and (c) a pupil’s (mis)understanding is
visible. After uploading their responses, the PSTs were assigned responses from
two of their peers to comment upon (in Moodle module Workshop)

Session 2 Discussion about the PSTs’ responses to Tasks 2 and 3

Home
study

Tasks 4 and 5: The same as for Tasks 2 and 3. The two videos were Swiss and
Czech lessons from Grade 8 with contrasting practices. PSTs described moments
in which (a) the teacher reacts to pupils’ mistakes and (b) pupils’ (mis)
understanding is visible and the strategies the teacher uses to make pupils more
active. The Workshop module was used again

Session 3 Discussion about PSTs’ responses to Tasks 4 and 5
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Some videos were of lessons from other countries as ‘the exposure to alternative
practices helps observers to become aware of their own cultural routines’ (Santagata
et al. 2007, p. 127). Recordings of whole lessons were used for home tasks and
clips for sessions. In the whole-lesson video, all important elements to understand
the lesson are present: ‘goals for students’ learning, instructional activities, strate-
gies for monitoring students’ thinking and assessing their learning, curriculum and
pedagogy, and so on’ (Santagata et al. 2007, p. 127).

During the sessions, the PSTs’ responses to home tasks were discussed. The
course teacher was drawing their attention to important moments (see Sect. 39.2.1)
that they might not have noticed, e.g., by asking one PST to present his or her
comments and inviting others to comment on them, or by showing the appropriate
part of the video. To reduce PSTs’ inclination towards criticism of the teacher in the
video, the course teacher repeatedly reinforced the norms that ‘included respecting
others’ ideas and providing evidence for claims’ (Stockero 2008, p. 376).

39.3.3 The Pre- and Post-tasks

Two videos were selected for the pre- and post-intervention tasks: HK01 and HK04
(both from TIMSS 1999 Video Study). They capture Grade 8 lessons and are about
half an hour in length. The topic of HK01 is square roots and HK04 is about linear
identities. The piloting of the videos with an earlier group of PSTs had shown that
they were lessons with which the participants could identify (Brophy 2004); despite
the cultural differences between Hong Kong and the Czech Republic, the approach
taken to teaching mathematics and to managing and organizing the class resembled
a common approach taken in the Czech Republic.

The lessons were provided to the participants on a disk and they were accom-
panied by Czech subtitles. The PSTs were asked to write a reflection of the lesson;
no prompts for the reflection were provided. There was no time or word limit and
the PSTs were assured that they were not being assessed or judged on their
responses. They were encouraged to write about what they found interesting and/or
important.

To balance the videos and to avoid possible confusion caused by the use of the
same or different videos for the pre- and post-tasks (see Sect. 39.2.3), the PSTs
were randomly assigned to comment on one of the two videos before the first
session and the complementary video after the last session. The videos were not
discussed during the sessions.

39.3.4 Analysis

The PSTs’ written responses were divided into units of analysis, each representing
some articulated observation. They were usually whole sentences; however, in
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some cases they were a clause where a sentence appeared to contain a shift of focus
(e.g., from the teacher to a student). Across the pre- and post-intervention
responses, there were 1591 units of analysis.

39.3.4.1 Pattern of Attention

We used the framework developed by van Es, Sherin and their colleagues. The
process of analysis is described in detail in (Simpson et al. 2017); however, as our
new analysis is based on it, it should also be briefly mentioned here. Each unit of
analysis was allocated codes based on the four dimensions given in Sect. 39.2.3.
The descriptions of the categories in van Es and Sherin (2008, 2010) were used to
create a coding manual and an inductive process of coding scripts and agreeing on
meanings of codes was undertaken by two coders. ‘Inter-rater reliability was
assessed using Janson and Olsson (2001) multidimensional extension of Cohen’s
kappa, and once a good-to-excellent level of agreement (i = 0.71) was achieved,
the coders were randomly assigned all remaining responses to code’ (Simpson et al.
2017).

Examples of units of analysis and their codes are in Table 39.2.

39.3.4.2 Knowledge-Based Reasoning

Based on the study of literature and mainly on Stockero (2008),2 a more refined
framework to capture the nature of PSTs’ reasoning about events was developed. It
was used for the units of analysis which were coded as Evaluate and Interpret in the
Stance category. Table 39.3 presents the framework and gives examples. For the
sake of completeness, I also include Description, even though only statements that
go beyond description and in which an observer engages with the information,
makes judgements about it and/or interprets it are relevant in this text.

Statements from all the categories (except for Alteration I) were also given a
value describing the way the PST saw their content. It could be rather negative
(‘The teacher does not prompt further to find out if the pupil understands what the
mistake was.’ Q2), positive (‘I appreciate that the lesson was conducted through
simple questions, clear for pupils.’ Q2) or neutral (‘The approach I offer seems to be
oriented more to a concept: what I am learning, rather than process; this is the way
to proceed.’ Q4). Alteration I statements were rather negative in nature as the PSTs
typically suggested an alternative when they did not like what had been done in the
lesson. However, there were cases in which the PST did not openly criticise the

2Stockero (2008) used her five levels of reflection on the analysis of group discussion and her units
of analysis were much broader than in the presented study. After trying it on our data, I found it
impossible, for example, to apply Confronting and Restructuring to the very short units of analysis
I had. Thus, I modified the framework.
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event but suggested an alternative action anyway. Thus, Alteration I statements
were not given any value.

Without the units coded Describe in the first stage of analysis, 1046 units of
analysis were left. The coding was done by the coders in a manner similar to that in
the first stage.

39.3.4.3 Quantitative Methods

Finally, I used statistical methods to find differences between PSTs’
knowledge-based reasoning in pre- and post-tests. Due to the small number of
comments coded as Interpretation, Alteration II and Prediction, this was done only
for Evaluation, Explanation and Alteration I.

Table 39.2 Examples of coding for the pattern of attention

Unit of analysis Actor Topic Stance Specificity

The teacher does not react to mistakes Teacher Pedagogy Describe General

However, the teacher says herself why the
result cannot be −4

Teacher Mathematical
thinking

Evaluate Specific

I find it interesting how often the class
laughs at the pupil at the blackboard

Student Climate Evaluate General

Table 39.3 Framework for knowledge-based reasoning

Code Description Example

Q0 Description Reproducing facts with no
further elaboration

The teacher walked around and
checked pupils’ work

Q1 Subjective
evaluation

Judgement of what is seen
in the video

I find this way of teaching really
useful and sense making

Q2 Explanation Simple explanation of what
is seen

She tried to make pupils use proper
terms to develop mathematical
vocabulary

Q2a Alteration I Suggestion of general or
trivial alternative actions

The pupils should be given an
opportunity to find it for themselves

Q3 Interpretation Explanation of what is seen
based on a theory

I find it important because thanks to
the fact that the solving steps were
not difficult, the pupils were
attentive and did not lose motivation

Q4 Alteration II Suggestion of elaborated
alternative actions based on
a theory

[A detailed proposal of teaching
equations in a different way through
concrete equations]

Q5 Prediction Considering the effect of
what is seen on pupils’
knowledge in the future

The importance of a square root as
inverse to squaring was shown, and
something was hinted at that will
later help pupils understand
binomial equations
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First, the assumptions of normality and homogeneity of variance were assessed.
The results of the Shapiro-Wilk test were significant for Q1 Evaluation (W = 0.93,
p = 0.035). This suggests that the difference is unlikely to have been produced by a
normal distribution. A Q–Q scatterplot was used to further evaluate the normality of
data, which showed that normality cannot be assumed. Thus, the Related-Samples
Wilcoxon Signed Rank test, which does not require normality, was used for
Evaluation. For Q2 Explanation (W = 0.97, p = 0.413) and Q2a Alteration I
(W = 0.95, p = 0.138), the Shapiro-Wilk test showed that normality can be
assumed, thus a paired samples t-test was conducted in these cases. The same
applies to the negative/positive/neutral nature of comments for which normality
assumption and assumption of homogeneity of variances was met (both
Shapiro-Wilk and Levene’s tests were not significant).

As observed by Simpson et al. (2017), a difference was found in comments
related to HK01 and to HK04 in the PSTs’ pattern of attention. I was therefore
interested to see whether any differences might also occur in the knowledge-based
reasoning. The Shapiro-Wilk test showed that normality can be assumed and thus a
paired samples t-test was used.

39.4 Results

39.4.1 Knowledge-Based Reasoning

Table 39.4 shows that prior to the intervention, the most statements on average
were coded as Explanation, followed by subjective Evaluation. PSTs provided little
interpretation of what they saw. Furthermore, they did not suggest elaborated
alternative actions and make predictions. On the other hand, the task in the pre-test
did not encourage them to do so explicitly.

It is also worth pointing out that one fifth of the comments are of an evaluative
nature; that is, the PSTs make a judgement without providing a plausible expla-
nation for it. Statements such as ‘I like the structure of the lesson’ or ‘I did not like
the lesson at all’ were common.

Table 39.4 and Fig. 39.1 depict the development in the quality of comments
beyond description between the pre- and post-tests. The only significant difference
was found in Q1 Evaluation (the result of the Related Sample Wilcoxon Signed
Rank Test was significant, with standardised test statistic of 2.724 and p = 0.006).

Table 39.4 Relative number of codes in the pre- and post-tests

Description Evaluation Explanation Alteration
I

Interpretation Alteration
II

Prediction

Pre (%) 26 20 38 9 6 1 1

Post (%) 36 13 41 4 0 1 6
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This suggests that the PSTs had significantly more evaluative comments before the
intervention. In the pre-test, the evaluative comments appeared on average in 20%
of cases (M = 0.20, SD = 0.13), while in the post-test it was only in 13%
(M = 0.13, SD = 0.10). For 72% of individual PSTs, the percentage of evaluative
comments decreased in the post-test compared to the pre-test (Fig. 39.1 on the
right: The black colour represents the PSTs with more evaluative comments in the
post-test and the grey colour PSTs with more evaluation in the pre-test).

It should be noted that PSTs increasingly described after the intervention and
evaluated less (Simpson et al. 2017), which was taken as a sign of learning. The
lower level of Q1 Subjective evaluation observed here can be seen in a similar way.
The PSTs gained new knowledge in the course and the intervention and were more
cautious about jumping to evaluative conclusions than before the intervention.
Rather, they included more descriptions in their reflections, showing that they
noticed more events: These descriptions are more specific after the intervention.

There are small shifts in the other code values, but none of them are significant.
There is a small increase in Explanation and Prediction, which goes in the direction
of expert-like, knowledge-based reasoning. The decrease in Alteration I also does
not have to be a negative result, as the PSTs suggested rather general or trivial
alternative actions not based on theory.

In terms of the negative/positive/neutral nature of comments, the only difference
that proved to be significant is in neutral comments (t(31) = 4.36, p < 0.001). After
the intervention, the PSTs made significantly more neutral comments (on average
41%, M = 0.41, SD = 0.14) compared to the situation at the beginning when only
24% of all non-descriptive comments were neutral (M = 0.24, SD = 0.17). When
looking at individual PSTs, for 26 of them (81%), the percentage of neutral com-
ments increased in the post-test (Fig. 39.2).

Fig. 39.1 Codes for knowledge-based reasoning and their distribution in the pre- and post-tests
(left) and the change in Q1 Evaluation between pre- and post-tests (right). Source SPSS
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39.4.2 Differences for HK01 and HK04

In Simpson et al. (2017), we found differences in comments about the two lessons
used in the pre- and post-tests. Namely, responses for HK04 focused less on
Teacher and more on Curriculum Developer (Actor category) and less on
Classroom Management and more on Mathematical Thinking (Topic). There was
no difference for Stance and Specificity between the two lessons. In the re-analysis
of data, no statistically significant difference in terms of knowledge-based reasoning
(Q1–Q5) was found. The only significant difference appeared in comments with a
negative tinge (t(31) = 4.29, p = 0.000). The mean of negative comments related to
HK01 (M = 0.37, SD = 0.23) was significantly higher than the mean for HK04
(M = 0.21, SD = 0.23). For HK01, an average 37% of comments that went beyond
description were critical in nature, while it was only 21% for HK04. This adds a
further argument to being cautious when using different videos in the pre- and
post-tests. The content of the lesson matters and might distort results.

39.5 Discussion and Conclusions

The study explored the influence of a video-based intervention on PSTs’
knowledge-based reasoning. In previous research, it was established that this par-
ticular intervention led to changes in the pattern of attention that were markedly
similar to changes seen in the literature. The exception was the category related to
the levels of knowledge-based reasoning, i.e., Interpretation. In contrast to some
other studies, the PSTs, rather than providing more interpretation after the inter-
vention, provided less interpretation. With a more refined framework, I reached the
conclusion that the PSTs did make progress in their knowledge-based reasoning,
but only at a lower level. They provided fewer evaluative judgments and more
explanation. This finding accords with, for example, Mitchell and Marin (2015) and
Stockero (2008). Still, the participants in the presented study did not display more
interpretation, elaborated alternatives or predictions.

Fig. 39.2 The change in
neutral comments between
pre- and post-tests

712 N. Vondrová



The question is why statements coded as Interpretation disappeared after the
intervention, considering that the participants underwent the intervention and the
mathematics education course within which it was embedded and in which some
theoretical notions were introduced. Why were there at least some attempts to
interpret events before the intervention and after it none, considering that the task of
the pre- and post-tests was the same? At least two explanations are plausible. First,
the pre-test was done immediately after the part of the mathematics education
course in which the theory mentioned was introduced (see Sect. 3.2). Thus, the
PSTs had it fresh in their mind and used it in the pre-test. The post-test followed
after three months and the theory may have been forgotten. This has an important
implication for the course: The theory was probably not continually reinforced and
the PSTs could not apply it. Another explanation is that the PSTs not only became
more reluctant to make judgments but also grew reluctant to interpret things, as if
the more they had learned, the more they had realised how complex the
teaching-learning situations were and that there were no easy interpretations. In
fact, the significance of increase in neutrality3 of comments further confirms the
above consideration. The PSTs after the intervention did not jump easily to con-
clusions and did not make as many critical comments. The increase in neutral
comments at the expense of both negative and positive ones (the change was not
statistically significant) may point to the PSTs’ attempt to avoid evaluation and be
impartial.

In Simpson et al. (2017), two patterns of results across relevant studies were
noted:

In the studies by Sherin and van Es (2009) and van Es and Sherin (2010), there is a very
direct movement towards increased interpretation with roughly balanced decreases in
description and evaluation. However, Mitchell and Marin (2015), Blomberg et al. (2014),
and our [video-based intervention] all show increases in description, generally at the
expense of evaluation.

These differences may be attributed to several factors, some of which concern
the methodology of research. First, some researchers may have a different threshold
for coding a comment as interpretation. However, in the presented study, there was
no significant change even if the codes of Explanation and Interpretation are taken
together. Second, Sherin and van Es (2009, 2010) used a group measure in their
studies. The same applies for Roth McDuffie et al. (2014), who report that by the
end of their course, PSTs regularly analysed and interpreted what they attended to.
The data in their study were transcriptions of group discussions throughout the
course. The group discussions may be deeper in that their participants picked up on
one another’s ideas and developed the interpretation further. For instance, if one
person provides an interpretation, even the ones who would have not been able to
come up with it themselves as individuals may grasp it. Such a discussion will
likely produce more cases of interpretation.

3This is in contrast with studies that report a movement from positive comments to more critical
ones and to proposing alternatives (e.g., Santagata et al. 2007; Santagata and Angelici 2010).
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Third, if we look at another study that reports a significant change from no
interpretation to interpretation supported by evidence and offering pedagogical
alternatives (Alsawaie and Alghazo 2010), we can see that, unlike in the presented
study, their task in the pre- and post-tests directly called for such knowledge-based
reasoning (‘Highlight and critique important events in the lesson. If you were the
teacher, how would you handle things differently? If you were a student in this
class, would you be able to learn what was taught in the lesson well?’, p. 229).
Thus, seeing more interpretation in their case might be at least in part due to the task
itself.

Next, Simpson et al. (2017) suggest that one possible reason for an increased
interpretation might lie in the way the video-based intervention was organised and
in the tasks used. Indeed, studies comparing two different forms of video-based
interventions, such as Santagata and Angelici (2010) and Blomberg et al. (2014),
showed that there were important differences in knowledge-based reasoning
between the participants of the two interventions. Thus, the tasks PSTs undertook in
our intervention might not have motivated them to use theory, so they did not feel
they needed to do so in the post-task. The same may help account for the increased
interpretation reported in Mitchell and Marin (2015). Their intervention was similar
to the presented study in that it aimed at salient features of mathematical instruction,
but they used a very specific framework (MQI), which provided PSTs with guid-
ance in the analysis of lessons during the intervention and which they could use
when doing the post-test. Perhaps a more detailed look at the intervention tasks
would make this conclusion more secure.

Interestingly, Blomberg et al. (2014) found that only the group of PSTs who
took the situated strategy course were able to maintain a focus on engaging con-
sistently in higher-level categories of evaluating, which in their case included
detailed explanations, and integrating. This would mean that the intervention in the
presented study did not sufficiently implement the situated strategy. However, there
was also an important difference between our study and Blomberg et al. (2014). Our
data consisted of a written analysis of one lesson at one point of time, while
Blomberg and colleagues coded a learning journal that the participants were to
write during the course. After each session, they were asked to write what they
learned and while doing so, they were guided by eight questions (e.g., ‘Provide
examples… that confirm and/or contradict what you learned today.’, p. 451). This
may motivate the PSTs towards deeper reflection, adding support to the effects of
the intervention itself. An implication may be to also include learning journals in
video-based interventions. This does not explain, however, why the cognitive group
in Blomberg et al. (2014) did not do so well as the situated learning group.

Note that in our previous research it has been found that the two-year master’s
programme that included two 4-week school practice placements did not lead to any
changes in the pattern of attention (Simpson et al. 2017). Stockero (2008) showed
that a video-based intervention followed immediately by field experience leads to
significant gains in higher level reflection. The same applies to research by
Santagata and Guarino (2011). An implication for teacher education would be to
couple the video-based intervention with school practice placement.
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For Sherin and van Es’ research (2008, 2009, 2010), there is another possible
reason for increased interpretation. Their participants were experienced teachers
and, moreover, they learned from reflecting on the videos of their own teaching.4

To sum up, the question is whether it is reasonable to expect that PSTs at the
beginning of their master’s studies with very limited or no teaching experience are
able to make high-level professional reasoning. In Simpson et al. (2017), we
speculate that ‘teacher education programs might need two distinct phases to
develop noticing: the first concentrated on shifting attention and second on theo-
rizing’. Thus, there is a question of whether we would get greater gains in
knowledge-based reasoning if the video-based intervention was organised later in
the master’s programme when PSTs have more knowledge of mathematics edu-
cation concepts.

The study presented above has its limitations. First, a one-to-one correspondence
is presumed between what is written down and what is actually noticed. The PSTs
were able to notice an event but for whatever reason chose not to record it. Second,
with different measures, we might have reached different results, for example, if we
used a group measure or if we asked more targeted questions in the pre- and
post-tasks. Third, even though the study provided more insight into the nature of
PSTs’ knowledge-based reasoning, its quality was not investigated. For example,
further exploration could be undertaken of whether the explanations or alternatives
proposed by the PSTs are plausible and coincide with an expert’s (e.g., experienced
teachers or educators) view. The question also arises of what the results for inter-
pretation would be if no theory was presented in the course prior to the intervention
or if the intervention was organised later in the two-year master’s programme.
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Chapter 40
Popularization of Probability Theory
and Statistics in School Through
Intellectual Competitions

Ivan R. Vysotskiy

Abstract Since 2004, in accordance with the Federal Educational Standards,
probability theory and statistics has been included into teaching practice in Russian
schools. This paper focuses on one form of this work: organization of intellectual
competitions on probability theory and statistics for school students. Since 2008,
the Moscow Center for Continuous Mathematical Education has conducted the
Internet Olympiad for students in school years 6–11. In addition to the traditional
problems, participants are offered a choice to write an essay on a proposed topic.
This article attempts to classify those topics and highlight the most popular ones
among the students. In addition, this paper makes a short overview of selected
problems that from the organizers’ point of view represent promising and
prospective trends in the teaching of probability and statistics at school. The article
is addressed to education specialists, teachers, and researchers who specialize in
probability theory and statistics.

Keywords Probability � School math education � Olympiad on probability
Math intellectual competition � Moscow center for continuous mathematical
education

40.1 Introduction

In 2004, elements of probability theory and statistics were introduced into the
school mathematics curricula in Russia in accordance with the federal educational
standards. Since 2012, problems on probability and data representation have been
included in the Unified State Exam in mathematics. The Concept of Development
of Mathematical Education in Russia was approved by the government in
December 2013. It states that probability theory and statistics are important sections
of school mathematics. In 2015, the Federal Exemplary Curricula were developed,
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where probability and statistics appear as complete sections that determine content
for each educational level.

Meanwhile, educational practices have caused serious difficulties that have been
inescapable when forming a new school subject that is completely different from the
traditional courses that are being taught in universities. Difficulties in the prepa-
ration of teachers have followed from these difficulties.

This paper focuses on only one of the popularization dimensions aimed at the
formation of public inquiry into the field of mathematics: the methodology and
practice of intellectual competitions for school children on probability theory and
statistics. The example considered was the Olympiad that has been held by the
Moscow Center for Continuous Mathematical Education (MCCME) since 2008.

The Olympiad Organizing Committee is ready to cooperate with colleagues from
all countries. In particular, we can provide English versions of all Olympiad
materials.

40.2 Background

We often hear from mathematicians that because probability theory and statistics
are too difficult, they should not be taught in school. This opinion has grown out of
complications that follow studying probability theory in universities, which tradi-
tionally is deductive and based on combinatorics and wide knowledge of calculus.
A combinatorial approach to probability theory is typical for many generations and
has grown from the Soviet period, when probability theory was torn out of statistics
upon being announced as “a social science.” In fact, combinatorics is not directly
related to basic ideas of statistics and probability.1 This is just a way to enumerate
elements of vast probabilistic spaces and prove theorems. Experience and intuition
are primary, and no combinatorial tricks are useful without them. One should
meaningfully consider chances of events, especially unlikely events that play a
significant role in daily life.

The problem is that events are less obvious than figures or numbers, while
concepts of chance and volatility are not as intuitive as length, area, or volume. An
event and its chances make special types of abstract objects and their formalization
into mathematical notions is much more complex than a formalization of a picture
(transition to geometry) or a quantity (to arithmetic or algebra).

The second problem is that for the majority of children, the concept of volatility
and instability of events is alien to them until a certain age. At what age a child is
ready to perceive changeable models and determine which models they should be
has yet to be discovered. In the Soviet period, the science of the laws of cognitive

1In talking about the probability theory in school, we often omit “theory” to simplify the text and
follow the tradition that has been formed in Russian educational terminology.
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activity was destroyed (Petrovsky 1991). Its place was taken by the paradigm of “a
clear sheet of paper.”

However, if in early childhood the rejection of variability possibly serves as a
defensive mechanism that simplifies adaptation to social and natural conditions and
minimizes the number of necessary rules of behavior, then later an absence of
general ideas of randomness and volatility starts to hinder efforts to understand
abstract concepts of probability and statistics. Study of statistics in adulthood does
not improve this situation (Kakihana and Watanabe 2013).

The first thing to take care of is to make basic concepts of probability and
statistics clear and familiar to math teachers who have difficulty in the transition
from teaching abstract mathematical facts to applying mathematical concepts and
laws to the solution of practical problems.

In addition, one of the most important aspects of education is the popularization
of knowledge. If algebra, geometry, and other sections of traditional school
mathematics show no shortage of additional popular scientific and popular literature
for adults and children of all ages, an analysis of the situation in the area of
probability theory has shown a distinct lack of a popular literature and other forms
of popularization (Bunimovich et al. 2009a, b). A number of popular books for
school children were published in the Soviet Union, mainly in the 1950s through
the 1980s (see, for example, Kolmogorov et al. 1982; Mosteller 1985). The number
of new materials appearing in Russia is vanishingly small, even if we take into
account translations of foreign publications on probability and statistics for students
(e.g., Chjun and Ait-Sahlia 2007). At the same time, the amount of popularization
literature on statistics and probability theory in the world has been increasing. This
is partly due to the increasing importance of teaching probability and statistic at
school and partly due to the growth of the role of stochastic methods in different
sectors of the global economy (Bunimovich et al. 2009a). Popularization activities
should be carried out in various forms. In addition to special literature and math-
ematics circles, Olympiads and other intellectual competitions of different levels for
children and adults are of great value. Recent years have shown a spontaneous
increase in number and quality of Internet sites dedicated to popular mathematics,
in particular in the field of probability theory and statistics.

40.3 The Olympiad, Its Main Principles and Description

In 2008, the first Olympiad was administered by MCCME on the initiative of Yuri
Tyurin, Alexei Makarov, and Ivan Yaschenko. In following years, many mathe-
maticians and educators (E. Bunimovich, V. Bulychev, P. Semenov, et al.) par-
ticipated in the selection and preparation of Olympiad problems. The rules of the
Olympiad and its requirements for participation are simple. The Olympiad is open
to everyone and is held during a calendar month. Olympiad problems are designed
for students in Grades 6–11.
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The Olympiad has two rounds. The first round, which is invitational, happens in
schools. In 2015, the number of participants was 2450 and in 2016 it was 2890. In
2016, an intramural final round was added that consisted of two contests: first, a
competition involving a statistical experiment and, second, problem solving.

The problems in the Olympiad are designed to be recommended to students
starting from a certain grade level. For example, a task that can be solved using only
intuitive ideas, finite enumerations, and classical probability definitions is recom-
mended for students in Grade 6 and older. If a solution requires the use of simple
transformations within the algebra of events, the task is recommended for students
in Grade 7 and older. A problem involving the characteristics of random variables
will be offered to students in Grade 8 and older. There is no upper limit to the ‘age’
of a problem Age differentiation occurs at the stage of grading solutions and
awarding the winners.

Olympiad problems are placed on the website for free access for about a month.
According to the rules of the Olympiad, participants can use any help, reference
books, etc. Only “openly hiring adult labor” is considered non-sporting and is
discouraged.

Materials from previous years are published on the Olympiad website in the
Archive section at http://ptlab.mccme.ru/olympiad.

Olympiads from 2008 to 2017 have been published. Articles dedicated to this
competition have been published in (Vysotskiy 2012; Vysotskiy et al. 2009).

40.4 Essay Tasks

A distinctive feature of the Olympiad is that it also includes essay tasks in addition
to problems. The essays are evaluated separately, regardless of the age. The essays
turned out to be important and most attractive part of the Olympiad.

Participants are required to analyze the offered situation and write a short essay
on a given topic. These essays immerse students in uncertain situations that require
imagination and activities involving estimation that take into account real limita-
tions and the nature of the data. Actions in an uncertain situation play a crucial role
in the formation of the statistical and mathematical culture of students, because
instead of performing the steps of a known or studied algorithm, Olympiad par-
ticipants become researchers who plan experiments themselves. Students have to
determine important and unimportant factors of random experiments, interpret the
results, invent a method to describe the data, and form a hypothesis. None of
the proposed essays requires students to check the formulated hypothesis, as the
mathematical tools available to school students are clearly insufficient for that.

In some situations, the creation of a hypothesis itself is a very complicated task
that requires a high culture of regulatory activity from a student. Moreover, situ-
ations often arise where the number of possible plausible hypotheses is large. In
such cases, the authors try to repose the situation in such way that either it contains
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a hypothesis formulated explicitly or the task implicitly directs the students’ actions
(see two examples below). The most important part of the essay task for a student is
to search for data with the aim of finding a pattern or checking the data’s corre-
spondence with certain assumptions. Some tasks require students to collect data
independently through short surveys. The others demand an independent search on
the Internet.

Some essay tasks are designed to generate critical scientific thinking in students,
immersing students in situations where the arguments provided deliberately contain
an inaccuracy of some kind, an error, or an unreasonable conclusion. Students are
invited to understand the shortcomings of the study and make research steps. In my
experience, tasks of this type appeared to be the most attractive to the participants.
Among the submitted essays there have been very bright and original works, which
we placed on the Olympiad website in the Solutions section.

Below we provide several essay tasks from previous years.
All essays can be classified by their educational objectives and the methods used

to perform them:

1. Checking a statement using either independently collected data or raw data
provided in the essay task. In this case, the essay usually offers to an Olympiad
participant a partially proposed algorithm of actions.

2. A study that may require a survey of the student’s classmates, friends, and
parents followed by data processing with the formulation of a plausible
hypothesis or the refutation of an implausible one. A student’s ability to orga-
nize collected data, present it in the most appropriate way, and produce
hypotheses are important here.

3. A search for a statistical method for solving a problem (see Essays 1 and 2).
This is aimed at developing constructive thinking and skills. An unbounded
search appears very attractive to students. An essay about the estimation of a
number of people in a crowd was the most frequently selected among partici-
pants of all age groups in 2013. None used a method that the authors of the
problem considered the most natural; instead we received many original ideas.

4. A search of an error in a complex and extensive reasoning presented in the
formulation of the task (see, e.g., Essay 6). Solving tasks of this type helps to
develop a critically destructive way of thinking, which is an integral part of
intellectual culture. Speaking specifically on the implementation of an essay
about the relationship between air humidity and levels of snowfall, we note that
many students succeeded in noticing flaws in the author’s arguments, but the
main problem—the unsuitability of the linear regression for the case—was not
mentioned by any of them.

This shows that the basic ideas of statistics stay on the border between intuitive
and conscious.

Examples of essay tasks

1. The number of people in a crowd (2012). The photo on Fig. 40.1 shows a
crowd of people. How one can estimate (approximately calculate) the number of
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people in this crowd? Try to develop an appropriate method, use it and make
such estimation. Describe your method in detail, explain why it works correctly
and how to use it, and what you got using it. We are looking forward to your
answer: How many people are there in the photo?

2. Which way is faster (2014)? Is it true that an aircraft takes a different amount of
time when it flies east and west? Is it always so? Go to the site of a large airport
or a major airline; it is even better if you consider several airlines or airports.
Select flights from east to west and vice versa. Collect and process the necessary
information. How different are the durations of flights one way and the other?
Does it depend on the distance? You need to come up with a statistical measure
that describes the difference. Is it stable? The difficulty is that a mere difference
between the time there and the time back does not give us much: We have to
take into account not only very long flights but also relatively short ones. If such
a difference does exist, what causes it? Is it possible to estimate consistency and
power of this amazing factor? Are east and west really guilty? Maybe a similar
pattern can be observed with other flights, for example, from north to south and
back? Many questions arise. Try to locate, describe, and analyze data and use
your imagination.

3. Haga’s problem (2011). Professor Kazuo Haga from the University of Tsukuba
is the inventor of origamics (geometrical origami). Once he posed an interesting
question: A paper square is divided into light and dark parts by four semicircles
(Fig. 40.2, left), giving a graceful ornament that resembles a flower.
If we choose a point in a light part and then make folds so that all vertices meet this
point, we get a pentagon (Fig. 40.2, right). So the union of light parts is a “domain

Fig. 40.1 The number of people in a crowd
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of pentagons” or simply a “5-domain.” The dark parts make a “6-domain.” The
four vertices and the center of the square give quadrangles. Professor Haga writes:
“I noticed that when asked to choose a random point, themajority of people mark a
point leading to a hexagon. Pentagons are much rarer. Very few choose points that
make quadrangles. The question is: Is the number of those who choose a point in a
certain domain proportional to the domain’s area?”
If sides of the square measure 1 unit, then each semicircle on the left figure has
radius of 0.5 and its area is p=8. Therefore, the area of the petals (6-domain)
equals p=2� 1 � 0:57, while all the rest (5-domain) has the area of about 0.43.
The difference is not too big. The ratio of those who choose points in the
corresponding domains does not fit the ratio of the areas. What is the reason for
this: Why are points outside the petals less attractive than points inside?
Conduct an experiment. You will need some a number of paper squares. Ask as
many people as possible to mark a point on the clear square. Putting all points
together on a new square gives the distribution of the points. Maybe some
properties of the distribution will help to explain why “hexagon admirers”
appear more often than Professor Haga could anticipate, having compared the
domain areas.

4. Height correlation (2009). A teacher once decided to show her students that
heights of boys and girls are independent random values. In order to do this, she
did some research. In every class, she chose 10 girls and 10 boys at random,
then composed random boy/girl pairs and wrote down their heights as xk and yk
for every pair. When she was done and had put all the results on the scatter chart
(Fig. 40.3), she found to her horror that all the points were grouped around a
slanted line. This meant that there was an obvious correlation between heights of
boys and heights of girls! How could this be?
Write a short essay in which you try to explain whether the teacher made a
mistake in her findings and, if so, what her misjudgment likely was.

5. Insurance (2010). The insurable value of a car depends on its age. Agents of
insurance company ABC estimate the depreciation in a very simple way:

Fig. 40.2 Haga’s problem
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Cars older than two years old lose 10% of their value yearly. Using http://www.
auto.ru and other available sources, conduct research on the topic of whether the
price policy of the company ABC corresponds to actual practice in the used car
market. In your research, take into account that among the cars there are some
vehicles whose values do not meet the average for the cars of the same model
and age.

40.5 Problems That Require a Solution

In addition to three essays, the Olympiad traditionally includes 16 problems in
statistics and probability theory. Some problems are easy and admit a very simple
solution by brute force or short reasoning. More complex problems require, in
addition to looking for the key to the problem, students to have the ability to
perform operations on events and some knowledge of probability properties.
Finally, there are some very complex problems that surrender only to those who
devote enough time to thought and attempts and who have studied the literature and
problems from previous years. Authors deliberately include in the Olympiad special
problems whose solution requires complex transformations. Such problems are few,
but they must be in an online competition, as participation in this type of problem
implies that the participant has done scientific research. A few examples are listed
below. We wanted to give a sample of problems that show a wide range of methods
and topics used in probability. The difficulty of each problem is indicated by its
number of points and recommended grade.

Fig. 40.3 Height correlation
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Examples of problems

1. Defective coins (sixth grade and older, 1 point). For the anniversary of the
Saint Petersburg mathematical Olympiad, the mint produced three commemo-
rative coins. One coin was made correctly, the second coin had tails on both
sides, and the third coin had heads on both sides. The Director of the Mint chose
one of these coins without looking, tossed it, and it came up tails. Find the
probability that the second side of this coin also is a tail.

2. Three targets. A shooter fires on three targets as many times as needed to hit all
three. The probability to hit for one shot is p.

(a) (Seventh grade and older, 2 points). Find the probability that the shooter
will fire exactly five times.

(b) (Eighth grade and older, 2 points). Find the expected value for the number
of shots.

3. Intersecting diagonals (ninth grade and older, 3 points). In a convex polygon
with an odd number of vertices equal to 2nþ 1, two random diagonals are
chosen independently. Find the probability that these diagonals intersect inside
the polygon.

4. Draws (ninth grade and older, 6 points). Two hockey teams of equal strength
have agreed that they will play until the total score reaches 10. Find the expected
value for the number of times a draw will happen.

5. Stunning news. A conference is attended by 18 scientists, of whom 10 know
some stunning news. During a coffee break, all scientists are randomly divided
into pairs and in each pair a scientist who knows the news tells it to the other if
the other did not know it yet.

(a) (Ninth grade and older, 1 points). Find the probability that after the coffee
break the number of scientists who know the news will be equal to 13.

(b) (10th grade and older, 4 points). Find the probability that after the coffee
break the numbers of scientists who know the news will be equal to 14.

(c) (Ninth grade and older, 3 points). Denote by X the number of scientists
who will know stunning news after the coffee break. Find the expected
value of X.

6. Mini-Tetris. A tall rectangle of width 2 is open at the top, and randomly
oriented L-shaped triminos fall into it. (A trimino is a piece that looks like a
domino piece but consists of 3 squares. There are two types of trimino, straight
and L-shaped.)

(a) (Ninth grade and older, 3 points). Let k triminos fall into the rectangle.
Find the expected value of the height of the resulting polygon.

(b) (10th grade and older, 6 points). Let 7 triminos fall. Find the probability
that the resulting figure will have a height of 12.
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40.6 The Statistical Experiment Contest

In 2016, the Olympiad had three rounds for the first time. In the final (intramural)
round, participants were offered a topic where they were to develop a statistical
experiment. Organizers took a well-known scheme of taste tests as a base for it. All
participants asked to design an experiment aimed at revealing the threshold of
sensitivity to sweetness using a weak aqueous solution of sugar. All participants
were asked to remember the following.

1. Hygiene. It is unacceptable to have more than one person drink water from the
same cup.

2. Various effects that distort the result are possible. For example, a person may be
less sensitive to a less saturated sugar solution after a stronger one. How can this
effect be reduced?

3. There may be many tiny factors that affect taste. Should we regard them all as
non-significant? Should some of them be taken into account?

4. How to process the collected data. We do not assume a deeply scientific
approach, but we hope that a proposed procedure will be convincing.

Participants presented several plans for such an experiment. After a discussion,
the best-justified plan was implemented. (On Fig. 40.4, left: the course of the
experiment; right: the best plan author Amelia, fifth grade,2 Republic of
Bashkortostan.)

During the discussion about this form of work, the organization committee came
to the following conclusions:

1. This experiment may become the most dynamic and exciting part of the
Olympiad.

2. The topic of the experiment should be chosen carefully and designed so that
learners should be able to replicate the experiment in the existing conditions
within the announced time.

3. The form of the experiment should be chosen in such a way that all participants
can take part together with their parents, accompanying persons, etc., regardless
of age.

4. The experiment should be planned so that all participants will be busy at all
times or will at least have a chance to busy themselves by performing tests,
collecting statistics, processing collected data, etc. Optimally the experiment
should be organized so that work is done in groups with different duties for all
members in a group.

2Not a mistake. We have announced the Olympiad for 6–11 grades but if a fifth grader wants to
take part—why not? She is a really smart girl.
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40.7 Conclusion

The experience of the Olympiad on probability theory shows that despite the fact
that this branch of mathematics has traditionally been considered difficult and
unusual for school learning, interest in it is gradually increasing.

In 2015, the Olympiad school tour was held for the first time and was attended
by 2465 students from 20 regions of Russia, and in the 2016 tour, 2859 students
from 41 regions participated, as the Olympiad was joined by leading schools in
many regions where such a competition had not previously been known.

Growth has also been indicated by the increasing number of requests from
teachers and students to provide methodological support for teaching and learning.
During the 2014–2015 study year, the methodological site for teaching of proba-
bility and statistics (http://ptlab.mccme.ru) received 876 queries. During the 2015–
2016 school year (up to May 13) the number of such inquiries was 1764. The
proportion of queries related to the Olympiad only (applications, rules, results,
appeals, etc.) was 20% (downloads). These statistics show that the Olympiad plays
an important role in the popularization of probability theory and statistics as a
school subject.

Of course, the Olympiad should not be the only means of promoting this subject.
In addition, there must be math circles (out-of-class activities), numerous publi-
cations on probability and statistics in teachers’ and popular magazines (such as
Mathematics, Mathematics in School, Kvant, and Kvantik). At the same time, the
number and variety of probabilistic problems on the national exam for primary and
high school courses has increased.

Unlike the problems from the regular school course, the Olympiad tasks are
much more diverse in subject matter and level of difficulty. Taking advantage of
this, the Olympiad developers are gradually expanding the range of tasks and
inventing new forms, some of which later will be included in school courses and
methods.

Fig. 40.4 Left: the course of the experiment; right: the best plan author Amelia, fifth grade
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Chapter 41
Noticing in Pre-service Teacher
Education: Research Lessons as a Context
for Reflection on Learners’ Mathematical
Reasoning and Sense-Making

Helena Wessels

Abstract Professional noticing of learners’ mathematics reasoning is a crucial
ingredient of a mathematics teacher’s set of teaching competencies. Research les-
sons in the lesson study process, with its focus on learner reasoning, provide a
structured environment for the building of mathematical knowledge as well as for
reflection and the development of teacher professional noticing and sense-making.
This paper reports on the depth and growth in noticing of three pre-service teachers
during research lessons in their third and fourth years, using the Van Es noticing
framework. The study showed that two of these teachers’ noticing shifted to higher
levels over the two years, with greater focus on learners’ mathematical reasoning
and sense-making than on teacher actions and teaching. Prospective teachers need
well-structured and focused opportunities, individually as well as in groups, to learn
to notice and make sense of learner thinking and reasoning.

Keywords Professional noticing � Lesson study � Research lessons
Mathematical reasoning � Reflective practice

41.1 Introduction

The preparation of pre-service teachers to teach mathematics for understanding is
an important focus in mathematics education, and the development of reflective
practice is one of the cornerstones in this process. Teaching for understanding goes
hand in hand with a problem-centred approach to the teaching of mathematics as
described in the work of Murray et al. (1998), Hiebert et al. (1997) and Stein et al.
(2008). The problem-centred approach is based on the premise that learners build
their own conceptual knowledge and mathematical understanding through solving
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problems independently or through interaction with others. Preparing pre-service
teachers to teach for understanding using a problem-centred approach is challenging
as it is so different from the more traditional way of teaching that they have usually
been exposed to during their own school years as well as during school practicums
during their studies (Santagata 2011). Prospective teachers therefore need profes-
sional development and experience to scaffold their ability to consider children’s
mathematical responses through a different lens, interpret what they see, and to
‘imagine themselves in the future acting responsively and freshly rather than
habitually. The mark of improving research capacities for individuals lies in their
being able to imagine themselves in the future acting (responding) more appro-
priately than before’ (Mason 2011, p. 38). Research studies have shown that
prospective teachers lack in this kind of noticing and lesson analysis skills
(Barnhart and Van Es 2015; Santagata 2011).

Pre-service teachers also need repeated opportunities for reflection over time:

[They] are not likely to develop such a complicated array of knowledge, skills, and dis-
positions simply by watching a video or demonstration lesson or reading standards or
articles; they are likely to need repeated cycles of study, trial in the classroom, reflection,
refinement, and trial again. (Takahashi et al. 2013, p. 243)

Designing teacher preparation programs that foster the appropriate knowledge,
skills and dispositions for pre-service teachers has been an enduring challenge in
mathematics education (Hiebert et al. 2003). At Stellenbosch University, lesson
study has been implemented in their preparation program for prospective founda-
tion phase teachers for the past five years to develop pre-service teachers’ knowl-
edge, skills and dispositions through reflective practice and to scaffold their
awareness and interpretation of learners’ mathematical reasoning, specifically
during lessons (Paolucci and Wessels 2017). The focus of the research described in
this paper is on determining the growth and depth of pre-service teachers’ noticing
of the mathematical reasoning of learners during research lessons over a two-year
period in this preparation program.

41.2 Literature Review

41.2.1 Reflection and Professional Noticing

The linking of theory and practice is one of the crucial issues in teacher education
and systematic, purposeful reflection is considered vital in this process (Dewey
1933; Korthagen et al. 2006).

Schön (1987) distinguishes between reflection-in-action and reflection-on-ac-
tion. Reflection-in-action (in-the-moment decisions) entails teachers’ ability during
a lesson to reshape what they do while they are doing it, think on their feet and use
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knowledge and experience to interpret the situation and act on it. Thorough
preparation and anticipating learner strategies and misconceptions provide points of
reference for reflection-in-action and enable didactical flexibility.
Reflection-on-action (looking back), on the other hand, entails the
often-documented looking back after an experience and reflecting on what hap-
pened and why it happened. Both these notions play an important role in preparing
pre-service teachers to bridge the gap between theory and practice and become
reflective practitioners. However, pre-service teachers often do not know what to
reflect on or how to reflect in lessons they observe: ‘Without structured support and
appropriate framing, pre-service teachers’ analyses tend to focus on the actions and
behaviors of the teacher rather than student thinking, learning and sense-making
and tend to be judgmental and lack evidential support and coherence’ (Barnhardt
and Van Es 2015, p. 84).

Noticing can be described as one of the core practices in mathematics teacher
education (Choy 2016; Grossman et al. 2009) and can provide appropriate support
and framing for the development of productive reflection on learners’ mathematical
reasoning during lessons. A growing number of researchers regard teacher noticing
as a useful framework for promoting adaptive and responsive teaching and for
in-service and prospective teachers to learn from their teaching by focusing on
learner mathematical reasoning (Sherin et al. 2011a). Galbraith (2015) describes
noticing as ‘an essential ability of a perceptive and effective mathematics teacher’
(p. 151). It entails attending to student mathematical reasoning and making sense of
this information to inform teaching decisions and teacher moves. Noticing is
referred to in different ways in the literature: a discipline and an intentional sys-
tematic set of practices (Mason 2002), the sizing up of students’ ideas and
responding (Ball et al. 2001), a set of skills (Jacobs et al. 2010), two processes
(Sherin et al. 2011a) and a goal-oriented decision-making process (Schoenfeld
2011). Noticing progresses through three interrelated phases: attending to learner
mathematical reasoning in classroom interactions, the interpretation of learner
reasoning in this setting and deciding what actions should be taken based on
inferences from this analysis (Barnhart and Van Es 2015; Jacobs et al. 2010; Van Es
2011). The three phases can entail reflection-in-action of the teacher during the
lesson as well as reflection-on-action during the post-lesson discussion by observers
and the teacher who taught the lesson (Schön 1987). The three phases are inter-
twined: ‘three component skills, but also an integrated set’ (Jacobs et al. 2010,
pp. 173, 174).

Noticing can be influenced by several factors, including mathematical knowl-
edge for teaching (Kazemi et al. 2011; Schoenfeld 2011; Seidel and Stürmer 2014),
beliefs (Erickson 2011; Goldsmith et al. 2014; Schoenfeld 2011), prior experience
(Erickson 2011), context (Mitchell and Marin 2015; Seidel and Stürmer 2014) and
pedagogical commitment of the teacher (Erickson 2011). It is therefore important
that noticing be regarded ‘within the wider context of the teachers’ growing
knowledge (resources), goals, and orientations’ (Schoenfeld 2011, p. 237).
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41.2.2 Frameworks for Analysing Professional Noticing

With the increase in research studies on teacher noticing, different frameworks have
been developed to analyse and assess teachers’ noticing. Examples are the
Mathematical Quality of Instruction (MQI) analysis framework of Hill et al. (2008)
as used by Mitchell and Marin (2015) to support noticing, the Van Es (2011)
framework for learning to notice, the Santagata (2011) lesson analysis framework
and the Choy (2015) FOCUS framework for task development. Other frameworks
are focused on specific mathematical content, for example, the Fernández et al.
(2013) framework for the development of teachers’ noticing of students’ mathe-
matical thinking in the context of proportionality.

The Van Es (2011) framework was chosen for the research study in this paper as
its focus on the content and levels of noticing and the trajectory for the development
of noticing was useful to analyse growth and depth in pre-service teachers’
reflections over time. The Van Es framework (Table 41.1) first focuses on two

Table 41.1 Framework for learning to notice student mathematical thinking (Van Es 2011,
p. 139)

What teachers notice How teachers notice

Level 1
Baseline

Attend to whole class environment,
behaviour, learning and teacher pedagogy

Form general impressions of what
occurred

Provide descriptive and evaluative
comments

Provide little or no evidence to
support analysis

Level 2
Mixed

Primarily attend to teacher pedagogy
Begin to attend to particular students’
mathematical thinking and behaviours

Form general impressions and
highlight noteworthy events

Provide primarily evaluative with
some interpretive comments

Begin to refer to specific events and
interactions as evidence

Level 3
Focused

Attend to particular students’ mathematical
thinking

Provide interpretive comments

Refer to specific events and
interactions as evidence

Elaborate on events and interactions

Level 4
Extended

Attend to the relationship between particular
students’ mathematical thinking and
between teaching strategies and student
mathematical thinking

Provide interpretive comments

Refer to specific events and
interactions as evidence

Elaborate on events and interactions

Make connections between events
and principles of teaching and
learning

On the basis of interpretations,
propose alternative pedagogical
solutions
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central dimensions of noticing: what teachers notice and how teachers analyse what
they notice. What teachers notice includes whom they notice (learners as class or
group, individual learners, teacher, self) as well as the topic of their noticing
(learner behaviour, mathematical reasoning, teacher pedagogy). How they analyse
refers to an analytic, evaluative, interpretive or deep analysis of what they notice.
Second, the framework provides a trajectory of four levels of development in the
two dimensions: baseline, mixed, focused and extended noticing, as described in
Table 41.1.

The practice of noticing is more likely to develop in contexts of collaborative
sense-making of learner reasoning where teachers plan, observe and reflect on
lessons together (Takahashi et al. 2013), such as lesson study.

41.2.3 Lesson Study as a Context for the Development
of Noticing

Reflection and noticing are essential components of Japanese lesson study, a form
of professional development aimed at the improvement of instruction (Lewis and
Tsuchida 1998; Takahashi et al. 2013). Lesson study is the systematic and col-
laborative planning and reviewing of a research lesson by a community of teachers
and a ‘knowledgeable other’ to bring together theoretical and practical learning in
an authentic way. The lesson study cycle entails the collaborative planning of a
lesson, the observation of the research lesson, and an in-depth post-lesson discus-
sion (Lewis 2002; Pothen and Murata 2006). In some cases, the lesson is then
revised and taught again, with another post-lesson reflection. The focus of a
research lesson is on sense-making, building of mathematics concepts and problem
solving. A lesson study group goes through multiple cycles of such inquiry over
time, which leads to an improvement of their mathematical knowledge for teaching
(Takahashi et al. 2013). This process fosters high-quality learning through
high-quality teaching (Nishimura 2016). The improvement of teachers’ professional
knowledge and skills enables them to become expert teachers (high-quality
teaching) who can progressively provide learners with opportunities for deep
learning of content and in the process become independent learners and problem
solvers (high-quality learning) (Sugiyama 2008; Takahashi et al. 2013). Groves
et al. (2016) suggest that lesson study be adapted for other cultures and situations
rather than adopting the Japanese model as is.

Noticing plays an important role in a lesson study cycle from the planning of the
research lesson to observing and reflecting on the lesson. Mason’s (2002)
description of noticing as a set of practices that includes reflecting systematically,
recognising choices and alternatives, preparing and noticing possibilities, and
validating with others (p. 87) bears similarity to lesson study as deliberate practice
(Miller 2011), as well as to the Gibbs’ (1988) reflection cycle often used as a guide
for pre-service teachers’ reflection.
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Professional noticing resonates strongly with the goals of lesson study—plan-
ning for student learning, noticing how the tasks and activities foster or hamper
learning during the lesson, interpreting what happened during the lesson and
deciding how to plan and teach the lesson more efficiently in the future.

41.3 Method

In a longitudinal project, a cohort of pre-service teachers’ reflections in a
problem-centred mathematics teaching and learning context over a period of two
years were investigated. The purpose of the project was to explore pre-service
teachers’ reflections on their own and observed research lessons in order to improve
the structure and development of reflective mathematical practice in an under-
graduate teacher education program. The research questions driving the larger
investigation dealt with aspects of the problem-centred approach that pre-service
teachers reflect on and their noticing during mathematics lessons. This paper only
focuses on the latter: the development of prospective teachers’ noticing over a
two-year period.

41.3.1 Context and Participants

At Stellenbosch University, mathematics teacher education for prospective foun-
dation phase teachers specialising to teach in Grades R to 3 (6- to 9-year-olds) is
nested in a problem-centred approach to the teaching of mathematics as described
in the work of Murray et al. (1998), Hiebert et al. (1997) and Stein et al. (2008). To
facilitate and support pre-service teachers’ in adopting a problem-centred approach
and develop the relevant knowledge, skills and dispositions, an adapted form of
Japanese lesson study is implemented as one of the contexts for their professional
development. Structured reflection opportunities during lesson study cycles help
bridge the theory-practice gap in this mostly unfamiliar context for the prospective
teachers.

Pre-service teachers conduct school observations for two weeks in the beginning
of the second and third years and nine weeks of school practicum in their second,
third and fourth years. These practicum experiences are supplemented by two
cycles of micro lessons (Fishbowl1) in the first semester of the third year and a
service-learning project in the first semester of the fourth year.

1The Fishbowl micro lessons comprise the teaching of a lesson by a pre-service teacher to a small
group of learners while the lecturer and other pre-service teachers are observing behind one-way
glass.
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Lesson study is used in the mathematics education module for foundation phase
(Grades R to 3) during Fishbowl in the third year and school practice in the fourth
year. In the third year, students participate in groups of six or seven of their own
choice and complete two lesson study cycles. The Fishbowl lesson study cycles are
the first exposure of pre-service teachers to lesson study. In the fourth year, three to
seven pre-service teachers are grouped together based on the locations of their
school practice schools for one lesson study cycle. The lecturer acts as ‘knowl-
edgeable other’ during the lesson study processes. Pre-service teachers in groups
study the curriculum and mathematics content area of their chosen topic and for-
mulate an over-arching goal as well as specific goals for their research lesson.
Lesson planning includes considering a possible learning trajectory for the topic
and where the lesson would fit into this trajectory, developing a real-world task for
the lesson, anticipating possible learner strategies and misconceptions, considering
connections between the possible strategies, planning questions to elicit learner
reasoning and planning how to summarise the lesson at the end. The research lesson
is then presented by each of the group members in their own classes and observed
by some of the other group members. The lesson subsequently is refined and finally
presented by one of the group members while the lecturer as ‘knowledgeable other’
and all other group members observe. A post-lesson discussion with thorough
reflection-on-action by all observers follows. The mentor teachers at the schools
where the pre-service teachers are doing school practice are not involved in the
lesson study process. After a lesson study cycle, pre-service teachers are required to
submit individual written reflections on the research lessons as a consolidation of
learning (Lewis et al. 2009). These reflections have to be submitted a week after the
research lesson and are guided by questions based on the Gibbs reflection cycle
(Gibbs 1988). This reflection framework, used by all lecturers in the Department of
Curriculum Studies, focuses on what transpired during the lesson, an analysis of
what went well or wrong and why in order to make sense of the situation and the
exploration of alternatives and culminates in an action plan.

Participants were undergraduate prospective teachers preparing to teach math-
ematics at the foundation phase level (6- to 9-year-olds in Grades R to 3). They
were all female, as most of the population of foundation phase teachers in the region
are. Participants’ experience of noticing before the Fishbowl lesson study cycles in
the third year was limited to doing video analyses of a number of lessons in class.
Although the terminology and framework of noticing were not used, the lesson
analysis was focused on noticing learner reasoning and strategies and using
inferences from what they noticed in order to plan subsequent lessons. In the fourth
year, a unit of lectures on noticing precedes the school practicum. In the research
and lesson planning phases in the lesson study cycles in the third and fourth years,
specific attention is given to anticipated learner strategies and planning for noticing
of children’s mathematical reasoning, and examples are discussed. Due to logistical
arrangements, lesson study groups for the two lesson study cycles in the third year
are the same, but change for the cycle in the fourth year. For the same reason,
post-lesson discussions are shorter in the case of the two Fishbowl research lessons
than they are for the research lesson in the fourth year. The post-lesson reflection
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colloquia of the different lesson study groups in the fourth year are videoed to
capture student teachers’ reflections, but they are not in the third year. All ethical
requirements of Stellenbosch University were adhered to in the research study.

Fifty-six out of the cohort of 59 fourth-year pre-service teachers volunteered
their third and fourth year reflections for analysis in the study. Participants were
from different language groups (Afrikaans, English and Xhosa), and research les-
sons were taught in either Afrikaans or English. Post-lesson colloquia were con-
ducted in Afrikaans, English or both, depending on the mother tongues of the
participants; pre-service teachers often switched between languages, as groups
consisted of students from different language groups. Written reflections were in the
language of their choice.

Students’ reflections did not yield many rich descriptions of learner reasoning.
After scrutinising all reflections, eight students whose reflections included
descriptions of learner reasoning in at least one of the three data sets were selected
and their reflections further analysed using the Van Es (2011) framework. Due to
space constraints, three prospective teachers’ noticing as evidenced in their
reflections on three research lessons have been selected to be developed as case
studies for this paper. These three pre-service teachers were not members of the
same group in any of the three lesson study cycles.

41.3.2 Data Generation

Data were generated at the end of three lesson study cycles, two in the third year
and one in the fourth year, and comprised videoed post-lesson discussions and
written reflections after each of these lesson study cycles. During Fishbowl lesson
study cycles, only written reflections were generated, whereas written and verbal
reflections were collected during the school practicum lesson study cycles. The
reflections of pre-service teachers were on research lessons they either observed or
taught themselves and were on entire lessons, as in the research of Santagata
(2011), and not only on video clips of lessons. During post-lesson reflections,
students’ individual accounts of what they noticed during lessons were recorded for
analysis. Further elaboration from the group on individuals’ noticing was not
included in the analysis covered in this paper.

41.3.3 Analysis

Video and document analysis of verbal and written reflections were conducted
using the Van Es (2011) framework for learning to notice student reasoning to
determine what and how pre-service teachers noticed during research lessons and to
determine how their noticing developed over the two-year period. Pre-service
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teachers’ written and videoed reflections were coded according to the four levels of
the Van Es (2011) framework and an independent researcher checked the
researcher’s interpretations of the data.

41.4 Results

To determine growth and depth in noticing over a period of two years, pre-service
teachers’ written reflections on two research lessons for Fishbowl in the third year
and one verbal or written reflection on a research lesson in the fourth year were
analysed. Reflections were in some cases on lessons the pre-service teachers
themselves taught and in some cases on observed lessons.

41.4.1 Case Studies

In the three case studies below, unless stated that the student teacher taught the
lesson being discussed, all reflections were on observed research lessons.

Case Study 1: Myra (participants’ real names are not used)

Myra’s written reflections on observed Fishbowl research lessons in the third year
were analysed, as were her reflections on her own lesson during the fourth-year
lesson study.

Fishbowl research lesson 1: Myra’s written reflection on the Grade 2 lesson
about money focused on the whole class and the teacher (whom), her noticing
comprised teacher pedagogy and learner behaviour (what) and she gave general
impressions and evaluative comments (how). Examples: ‘Learners were interested
in the theme of the lesson’ and ‘The teacher did not tell the learners how to solve
the problem, she gave them space to decide on their own strategies’. Myra’s
noticing for this research lesson has been categorized as Level 1 (baseline;
Table 41.2).

Fishbowl research lesson 2: In her written reflection, Myra’s noticing during this
Grade 2 lesson on capacity measurement again was general and evaluative,
focusing on learner behaviour and teacher pedagogy. Examples: ‘The activities
were focused and well explained’ and ‘The learners were so carried away with the
water and activity that they did not focus on the math’. Her noticing still was on
Level 1 (baseline; Table 41.2).

School practicum research lesson: Myra taught this Grade 2 lesson on capacity
measurement, and her reflections (during the videoed post-lesson discussion and
written reflection) showed noticing about the learners as group but also shifted
towards particular learners’ mathematical behaviour and reasoning with comments
such as ‘When they were estimating, I asked “What do you think?” One learner
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guessed 84, the next one said another number and the third thought deeply and then
said “I will then say 82”’ and ‘Christian said that the group tried to get their
measurement close to their estimation’. She evidently was starting to notice par-
ticular learners’ mathematical behaviour and reasoning, albeit primarily evaluating
comments. Myra’s noticing therefore shows progress from Level 1 in the second
year to Level 3 (focused) in the fourth year (Table 41.2).

Case Study 2: Ruda

Fishbowl research lesson 1: Ruda’s noticing in her written reflection for this 3-D
geometry research lesson for Grade 2 was on Level 1 (baseline; Table 41.2). Her
comments were of a general and evaluative nature and concerned learner behaviour,
teacher pedagogy and classroom control as the following three examples show:
‘The lesson showed me how important classroom control is’, ‘The teacher used
normal household objects; they were easy to relate to and when learners go home,
they will be able to apply the knowledge they had learnt’ and ‘Learners were
excited; the teacher did not tell them how to sort the objects, they were able to use
their own ideas’.

Fishbowl research lesson 2: The Grade 2 fraction research lesson that Ruda
taught elicited the following comments from her in a videoed post-lesson discus-
sion: ‘There were slight differences in how learners shared the last chocolate bar.
Some continued to share 1–1 until they were finished, some just drew 2 lines to the
same chocolate and others shared it in pieces with a line’ and ‘Even though they
didn’t know the terminology, they knew it wasn’t a whole chocolate that each
person received’. She noticed and interpreted the mathematical behaviour and
reasoning of both the learners as a group and specific learners but did not suggest
any teacher moves based on these responses; therefore, her reflections can be
categorised as Level 3 (focused; Table 41.2).

School practicum research lesson: Ruda’s noticing in this Grade 2 lesson on
multiplication that she taught again was on Level 3 (focused; Table 41.2). In a
videoed post-lesson discussion, she referred to and elaborated on individual
learners’ mathematical reasoning, interpreting their reasoning. Examples: ‘When
you ask them to explain, they don’t explain what they did. Like Max, he counted 1,
2, 3, 4, 5, 6, 7, 8. He’s not counting in 4s, he’s counting in ones. But when you ask

Table 41.2 Noticing levels of pre-service teachers in the sample

Baseline Mixed Focused Extended

Research lesson 1
Fishbowl (3rd year)

Myra3 Ruda3 Charlie3

Research lesson 2
Fishbowl (3rd year)

Myra3 Charlie3 Ruda1,3

Research lesson 3 School
practicum (4th year)

Charlie2, 3 Myra1,2,3 Ruda1,2,3

1Taught research lesson
2Verbal reflection
3Written reflection
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him, he says “I’m counting in 4s”. I am sure if I asked him, he would be able to
count 4, 8, 12…’ and ‘And like Melissa, she drew groups first, then she made lines
in them, and then I asked “What did you do” and she said “I am counting in 4s”.
They don’t always explain how they did it; they know they are supposed to be
counting in 4s, so they say “I counted in 4s”’.

Ruda’s noticing therefore progressed over the period of two years, from the
Level 1 in the lesson study cycle one to the Level 3 in cycles two and three.

Case Study 3: Charlie

Fishbowl research lesson 1: This written reflection was on a Grade 2 lesson on
mass measurement. Charlie highlighted a noteworthy event during the lesson and
drew inferences from learner mathematical reasoning, but generalized her com-
ments to the group of learners rather than commenting on individual learners’
reasoning: ‘Six out of 10 learners approached the problem incorrectly or miscal-
culated. It could be that they are not used to coming up with their own strategies or
that the problem was too difficult for them to make sense of it’. Charlie tended to
generalise individuals’ reasoning to collective reasoning of the group. Her noticing
for this lesson study cycle was categorised as Level 2 (mixed), bordering on Level 3
(focused; Table 41.2).

Fishbowl research lesson 2: This Grade 2 lesson also was on mass measurement.
Charlie noticed and provided evaluative comments about an individual learner’s
mathematical behaviour and reasoning in her written reflection on the lesson: ‘One
boy’s measurement units (he used nuts) were not quite enough to measure—he was
quite confused when his first strategy didn’t work. It was fantastic to see how he
came up with another plan to solve the problem’. Her comments were descriptive
and not interpretive; therefore, her comment is categorised as Level 2 (mixed;
Table 41.2).

School practicum research lesson: This Grade 2 lesson on length measurement
prompted comments about teacher pedagogy and the mathematical understanding
of groups of learners as well as of individuals in a videoed post-lesson discussion:
‘The focus shifted and a valuable discussion was lost. Learners did not have a
discussion about how the different ways of measuring can influence their mea-
surements and what they should be doing to get similar answers’ and ‘The teacher
over-emphasised the way they should hold their hands when they are measuring.
This became a requirement instead of the class understanding the concepts of
measurement and the necessity to measure accurately’. Reference to and interpre-
tation of specific events and actions show Level 2 noticing (mixed) bordering on
Level 3 noticing (focused; Table 41.2).

41.4.2 Case Studies Summary

From Table 41.2 it is evident that verbal reflections during post-lesson discussions
were on Level 2 or 3, while written reflections were spread over the first three

41 Noticing in Pre-service Teacher Education: Research Lessons … 741



levels. Furthermore, student teachers’ reflections (Ruda: Lessons 2 and 3; Myra:
Lesson 3) on their own lessons were all on the level of focused noticing (Level 3).
Five of the six reflections in the third year (the first two lesson study cycles) were
on the first two levels, with a shift to a higher level of noticing during the school
practicum (third lesson study cycle) in the fourth year for two of the three
pre-service teachers.

41.5 Discussion

In this study, which has been framed by research on reflection, noticing and lesson
study, the Van Es (2011) framework for learning to notice has been used to track
the development of pre-service teachers’ noticing over the last two years of their
studies. The backdrop of a problem-centred approach to the teaching of mathe-
matics and a focus on the development of mathematical reasoning was especially
important in the prospective teachers’ four-year course as well as in the lesson study
cycles during which the data were generated.

The findings indicate that two of the pre-service teachers made a positive shift
towards higher levels of noticing from the third to the fourth year, although not to
the highest level of extended noticing. This finding corroborates Korthagen et al.
(2006) statement that pre-service teachers do not always adopt what they learn
during their preparation programs. The third student teacher stayed on the same
level for all three lesson study cycles. This is in line with Jacobs et al. (2010) and
Santagata (2011) research, which indicated that a considerable number of
pre-service teachers have trouble with noticing and attending to specific learner
strategies. Post-lesson discussions elicited more productive noticing than written
reflections, with more explicit references to individual learners’ reasoning and more
attempts at interpreting what they noticed. In written reflections, pre-service
teachers tended to generalise individual learners’ reasoning or comment on indi-
viduals’ reasoning as being the collective reasoning of a group or the class.
However, in written reflections, pre-service teachers made stronger connections
between learner reasoning and behaviour and principles of teaching and learning,
suggesting possible alternative teacher questions and moves. This might be a result
of the nature of the four Gibbs (1988) reflection questions, which encourage more
of a summary of what has been noticed, resulting in more general than specific
comments.

Reflections on lessons that pre-service teachers themselves taught also showed
more productive noticing than reflections on observed lessons. This could be due to
the fact that the pre-service teacher teaching the lesson was more familiar with the
learners in the classroom (Sherin et al. 2011b). Furthermore, although the lessons
have been planned jointly, pre-service teachers may have taken more ownership of
the lessons they taught (Takahashi et al. 2013) and may therefore have been more
attuned to learners’ reasoning during the lesson than the rest of the observing group.
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During post-lesson discussions, the lecturer as ‘knowledgeable other’ first
facilitated pre-service teachers reflections, where she focused their attention on the
reasoning of individual learners, pointing out other alternatives and asking them to
make sense of learner reasoning and its implications for teaching, therefore intro-
ducing her own higher level noticing and modelling the practice of noticing. This
modus operandi is consistent with the practice of lesson study where the role of the
‘knowledgeable other’ includes bringing new knowledge about research and the
curriculum, pointing out connections between theory and practice and helping
teachers’ ‘to learn how to reflect on teaching and learning’ (Takahashi 2013, p. 12).
In the research of Van Es (2011), the facilitators of the video club also offered
alternative perspectives and modelled to participants in the video club how to
engage in the practice of noticing and reasoning about learner reasoning. This
‘helped the group recognize multiple valid interpretations of a student idea and the
value of further inquiry as ways to clarify the issue under discussion’ (p. 148) and
resulted in ‘more substantive analyses of student thinking’ (p. 148).

Kassim (2016), in a study of a cohort of pre-service foundation phase teachers at
the end of their third year who were all following the same course at the same
university, found that pre-service teachers perceived an improvement in their
mathematical knowledge for teaching during their third year, enabling them to
create effective mathematical instruction using learners’ understanding and rea-
soning and to address their misconceptions. Participants in Kassim’s study also
perceived a marked change in their beliefs towards implementing a problem-centred
approach ‘where learners express their own understanding of the problem, engage
learners’ interactive discussions to enhance their reasoning and understanding’ and
‘assist learners to solve problems using their own strategies’ (p. 377). It can
therefore be speculated that a change in pre-service teachers’ beliefs and mathe-
matical knowledge during the third year might have contributed to their higher level
of noticing in the fourth year.

The fact that participants were from different language groups and switched
between languages during discussions could have had an influence on their
expression of what and how they noticed. Although all prospective teachers are
bilingual, they sometimes struggle to express themselves clearly in their second
language (Setati et al. 2002; Webb and Webb 2008).

Research by Choy (2015), Posthuma (2012) and Takahashi et al. (2013) points
to lesson study as a productive environment for reflection and the development of
noticing in a teacher preparation program. These authors highlight aspects of lesson
study that contribute to making it a productive context for fostering reflection and
noticing. These aspects include focus on the development of mathematical thinking
(Takahashi and McDougal 2016), a very thorough process of planning for student
learning (Choy 2016), noticing of how tasks and activities foster learning during a
lesson, interpretation of learner thinking during the lesson, and decision making
about ways to plan and teach the lesson more efficiently in future (Lewis et al.
2009).

Pre-service teachers’ noticing in the current study did not all progress as hoped,
and more research is needed to determine the reasons behind these findings. Gaps in
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the pre-service teachers’ preparation and the influence of different aspects in the
process of lesson study such as group size, format of the reflections, limited time
reflection after Fishbowl and the knowledge and beliefs of the pre-service teachers’
could all have an influence and will have to be investigated.

41.6 Limitations and Future Research

The findings in this small-scale study cannot be generalised. Larger-scale longi-
tudinal studies are needed to track the development of prospective teachers’
noticing during their preparation programs and even into their first years of practice
(Barnhart and Van Es 2015). The lesson study process fostered the development of
more productive noticing, but pre-service teachers’ noticing may also have been
influenced by lecturers in other subjects encouraging them to reflect or the use of
specific protocols to structure reflection. The noticing framework does not make
provision for noticing of task characteristics or how learners responded to the task
and can be extended to include such aspects of lessons.

More research is needed on the difference between prospective teachers’ verbal
and written reflections and the influence of their mathematical knowledge for
teaching on their noticing and development of reflection skills. The role of lesson
topics in noticing is also not clear.

41.7 Conclusion

Pre-service teachers need purposeful, structured opportunities and appropriate
experiences to reflect on and make sense of learner mathematical reasoning: ‘This
expertise can be learned and … both teaching experience and professional devel-
opment support this endeavor’ (Jacobs et al. 2010, p. 191). Lesson study as situated
in a problem-centred context where learners’ mathematical reasoning takes centre
stage has proven a productive context for such professional development and
experiences. Noticing frameworks are useful for not only assessing growth and
depth in noticing but should also be used as guides for scaffolding pre-service
teachers’ noticing skills when observing live as well as videoed lessons. Teaching
for understanding is one of the hallmarks of a problem-centred approach to the
teaching of mathematics, and noticing in teacher preparation programs needs to be
framed in the bigger picture of learning to teach mathematics for understanding.
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Chapter 42
Dialogues on Numbers: Script-Writing
as Approximation of Practice

Rina Zazkis

Abstract Script-writing is a novel pedagogical approach and research tool in
mathematics education. The goal of this chapter is to introduce the approach and
exemplify its implementation. A script-writing task presents a prompt, which
usually includes an incomplete argument or erroneous claim of a student.
Prospective teachers address the prompt by creating a script for a dialogue—pre-
senting an imaginary interaction between a teacher and her students, or among
different students. In this chapter I exemplify several results of implementing
script-writing tasks and discuss advantages of this approach. In particular, I focus
on the concepts related to elementary number theory, prime numbers and factors of
a number, and demonstrate how the understanding of these concepts can be
explored and refined, as script-writers create characters who discuss particular
claims. I suggest that engaging prospective teachers in script-writing is one possible
way to support and improve preparation of mathematics teachers.

Keywords Script-writing � Prime numbers � Role-play � Approximation of
practice � Lesson play

42.1 Introduction

How can we support and improve teacher development? Mathematics educators
and researchers are investigating the issue and developing a variety of approaches
by which the preparation of future teachers can be enhanced. In this chapter I
present one such approach—script-writing—describe how it emerged and illustrate
its implementation in several cases.

Watson and Mason (2005) suggested that “the fundamental issue in working
with teachers is to resonate with their experience so that they can imagine [my
italics] themselves ‘doing something’ in their own situation” (p. 208). I attempt to
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access this imagination by inviting prospective teachers to write scripts that
describe instructional interactions between a teacher and students.

42.2 Script-Writing as Approximation of Practice

Script-writing (or scripting) is a valuable pedagogical strategy and an innovative
research tool which I adopted and developed within the context of mathematics
teacher education. In its initial implementations, this method was referred to as
“lesson play” (Zazkis et al. 2013); however, the term script-writing extends to
account for interactions that are not necessarily part of a lesson. Script-writing is a
tool related to “approximations of practice” (Grossman et al. 2009), which “include
opportunities to rehearse and enact discrete components of complex practice in
settings of reduced complexity” (p. 283), and advocated as an essential part of
teacher preparation.

I consider scripting as a form of role-playing in one’s imagination. As such, I
briefly describe role-playing in 2.1, focusing explicitly on role-playing on teacher
education in 2.2, and then turn in 2.3 to script-writing and the use of script-writing
in mathematics education. As teachers’ scripts provide a lens to explore their
knowledge, in 2.4 I attend briefly to the notion of knowledge of mathematics for
teaching.

42.2.1 On Role-Playing

Role-playing is an unscripted “dramatic technique that encourages participants to
improvise behaviors that illustrate expected actions of persons involved in defined
situations” (Lowenstein 2007, p. 173). In other words, role-playing is “an ‘as-if’
experiment in which the subject is asked to behave as if he [or she] were a particular
person in a particular situation” (Aronson and Carlsmith 1968, p. 26). Role-playing
is used as an effective pedagogical strategy in a variety of fields (e.g., Blatner 2009),
a few of which are mentioned here.

Traditionally role-playing is used in social studies classrooms in order to provide
participants with more authentic experiences of historic events and people who
experienced them (e.g., Cruz and Murthy 2006). It is used to explore the com-
plexities of social situations, such as prejudice, and ethical issues (e.g., Lawson
et al. 2010; McGregor 1993; Plous 2000). Participants, after engaging in
role-playing, reported being better prepared to deal constructively with everyday
instances of prejudice (Plous 2000) and generated more effective responses to
prejudiced comments (Lawson et al. 2010). Additionally, role-playing was used
with English language learners, where teachers used role-playing in an attempt to
move from a prescribed dialogue to an improvisational one. In this context, Shapiro
and Leopold (2012) suggested that implementing role-playing in a classroom
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provides a “space between practice and play [which] is a fertile ground for cog-
nitive and linguistic growth” (p. 128).

Role-playing is used in the education of various groups of professionals in
organizational research, where, for example, participants assume roles of perfor-
mance evaluators or interviewers of job applicants (Greenberg and Eskew 1993). It
is also prevalent in the training of health professionals, where the participants play
the roles of a care-giver and a patient, practicing their clinical, diagnostic and
patient management skills, and as such developing empathy and tolerance in a
low-risk environment (e.g., Joyner and Young 2006). However, among various
uses in developing professionals, the use of role-playing in teacher education is
rare.

42.2.2 On Role-Playing in Teacher Education

In considering role-play in teacher education, Van Ments (1983) described it as
experiencing a problem under unfamiliar constraints, as a result of which one’s own
ideas emerge and one’s understanding increases. In this sense, role-playing can also
be seen as role-training. It is aimed at increasing teachers’ awareness of various
aspects of their actual work. Yet, despite the known advantages, role-playing in
teacher education is underdeveloped. While some authors advocate for this method
and report on its implementation, this is most often done in the form of self-reports
and anecdotal evidence of participants’ experiences.

Kenworthy (1973) described a method in which one participant takes on a
teacher-role while others take on the roles of various students (e.g., a slow student, a
gifted student, a disruptive student). He considered this type of role-playing to be
“one of the most profitable, provocative and productive methods in the education of
social studies teachers” (p. 243). He claimed that engagement in role-playing
activities helped participants anticipate difficulties they encounter in their class-
rooms and, as such, gain security from their successful experiences should they face
similar situations on the job. Assigning participants teacher and student roles was
also used in a skill training workshops to deal with disturbing behaviour (Jones and
Eimers 1975). Teacher training via role-playing reduced disruptive student beha-
viour and demonstrated gains in productivity for most students.

More recently, in Palmer (2006) study, pre-service teachers took on the roles of
children as their professor modelled science teaching. It was reported that teachers’
self-efficacy increased and they were more open to the idea of implementing
role-playing in their teaching. In Howes and Cruz (2009) research, students in an
elementary science methods class were invited to assume roles of scientists and take
part in an “Oprah Show” interview. In addition to learning about contributions of
different scientists, this activity sharpened the prospective teachers’ understanding
of what science is and what image of science they wished to convey to their
students.
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In mathematics teacher education, role-playing tasks were used to provide an
opportunity to imagine personal responses to a variety of situations (e.g., Maheux
and Lajoie 2011; Lajoie and Maheux 2013). To extend participation, Lajoie and
Maheux engaged groups of prospective teachers in planning the roles of different
players in a given instructional situation, and then called upon representatives from
the groups to enact the role-play.

42.2.3 On Script-Writing

Despite the recognized advantages, time and participation logistics cause significant
limitations in role-playing. If we engage students in role-playing during class, only
a few will be active players, while the majority will serve as the audience. To afford
all students the opportunity to participate in a player’s role, I introduced imagined
role-playing, i.e., writing a script for a dialogue between characters: teacher and
student(s). In this approach, participants are presented with a prompt that describes
a problematic situation, a disagreement, a student error, or inappropriate reasoning.
The script-writing task is to devise a dialogue between the characters that leads to a
resolution.

Script-writing is novel in mathematics education research. Its roots, however,
trace to the Socratic dialogue, a genre of prose in which a wise man leads a
discussion, often pointing to flaws in the thinking of his interlocutor. The method
echoes the style of Lakatos (1976) evocative Proofs and Refutations in which a
fictional interaction between a teacher and students clarifies mathematical concepts
and claims.

Initially, script-writing was introduced in mathematics teacher education as a
“lesson play” (Zazkis et al. 2009, 2013). Juxtaposed to a classical lesson plan
describing merely content and activities, the lesson play reveals how a
teaching-learning interaction unfolds. Using the theatrical meaning of the word
‘play’, lesson play refers to a task in which teachers are asked to write a script for a
lesson, or part of a lesson, presented as a dialogue between a teacher and students.
The task was developed as a result of dissatisfaction with the traditional approach of
creating “lesson plans”, often used in teacher education. The lesson play was
advocated as a tool for preparing to teach, as a diagnostic tool for teacher educators,
and as a tool for researchers studying issues of didactics and pedagogy (Zazkis et al.
2013).

The evolution of lesson play tasks from a general request to create a ‘play’ to
carefully designed prompts on which plays are based is described in Zazkis et al.
(2013). In short, in the initial implementation of lesson plays, it was noted that
prospective teachers attempted to avoid any ‘problematic’ situations, such as
dealing with explicit student mistakes or misconceptions. We then refined the
general instructions, asking teachers to address in their plays a student mistake or
some “problematic issue”. The resulting plays exemplified some variation of the
following template: the teacher asks a question, student-A provides a wrong
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answer, a teacher asks whether someone has a different answer, student-B provides
a correct answer, the teacher reiterates the correct answer, praises student-B and
moves to a new question.

The explicit instruction that the plays should address some problematic situation
made us realize that prospective teachers had a very limited repertoire of potential
problems that students experience. Therefore, in later implementations, prospective
teachers were presented with the beginning of a dialogue, referred to as a ‘prompt’,
and asked to continue the conversation. The prompts usually presented a student’s
erroneous answer; the teachers were asked to identify what could have led to this
error and how a conversation could guide a student towards a resolution.
Furthermore, the teachers were explicitly asked to describe the setting, as they
imagined it, in which the presented prompt took place.

Script-writing is both an instructional tool and a research tool for data collection.
For example, in recent studies it was implemented to investigate prospective
teachers’ understanding of particular proofs (Koichu and Zazkis 2013; Zazkis 2014;
Zazkis and Zazkis 2016), central concepts in geometry and number theory
(Kontorovich and Zazkis 2016; Zazkis and Zazkis 2014), and the use of particular
symbols (Zazkis and Kontorovich 2016). The participants had to identify prob-
lematic issues in the presented proofs or topics, and then clarify these by designing
a scripted dialogue. The scripts revealed participants’ personal understandings of
the mathematical concepts involved, as well as what they foresaw as potential
difficulties for their imagined students, and how they may address these difficulties
by building on their knowledge of mathematics for teaching.

42.2.4 Scripts as a Window on Knowledge of Mathematics
for Teaching

Knowledge of mathematics in and for teaching has received significant attention in
mathematics education research (e.g., Rowland and Ruthven 2011). What appears
to unify different and seemingly opposing perspectives is a view that teachers’
mathematical knowledge is complex and has distinctive features that deserve
research attention.

In this chapter, I illustrate how teachers’ scripts provide a window to explore,
and subsequently an opportunity to enhance, their knowledge of mathematics, and
of teaching mathematics. Sections 42.3 and 42.4 exemplify research-informed
design of prompts and provide excerpts from scripts composed by prospective
elementary school teachers in response to these prompts. The excerpts are chosen to
illustrate particular repeating approaches in imagining instructional interaction. At
the time of data collection, the participants completed a unit on number theory
(focusing on concepts of divisibility, factors and multiples, prime and composite
numbers) in a “Principles of Mathematics” course designed explicitly for elemen-
tary school teachers.
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42.3 Identifying Prime Numbers

What exactly is a prime number and how can it be identified? To investigate how
prospective elementary school teachers address this question, they were invited to
develop scripts (lesson plays) starting with the following prompts:

(A) Teacher Why do you say 143 is prime?
Johnny Because 2, 3, 4, 5, 6, 7, 8 and 9 don’t go into it.

(B) Teacher Why do you say 37 is prime?
Johnny Because 2, 3, 4, 5, 6, 7, 8 and 9 don’t go into it.

These prompts were developed based on the experience of teaching prospective
elementary school teachers and on research conducted on their understanding of
number theory related concepts. In particular, Zazkis and Liljedahl (2004) demon-
strated that frequently the primality of a number is determined by checking the
divisibility of a given number by small numbers only, at times focusing only on
numbers for which divisibility rules were known. This served as a basis for prompt A.

In prompt B there is no apparent mistake; unlike 143, 37 is indeed a prime
number. This prompt aimed at focusing prospective teachers’ attention on the
strategy the student employed to determine primality, rather than on working
towards a correct answer.

The teachers were asked to develop an instructional situation in which they
address Johnny’s response. They could include other students in the conversation,
as they found appropriate.

42.3.1 Following Prompt A

The main approaches1 used in scripting a conversation were: attending to the size of
possible factors and inviting students to consider factors larger than 9 (see
Sect. 42.3.1.1), and using the divisibility rules (see Sect. 42.3.1.2).

42.3.1.1 On the Size of Factors

The following excerpt invites students’ reflection on the existence of factors larger
than 9. The conversation presented below continues after it has been confirmed that
the numbers 2–9 were not factors of 143.

1My goal in this chapter is to exemplify several ideas attended to in the scripts, rather than to
enumerate the occurrences.
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T: Can a number that is bigger than 9 be a factor for a number?
S: I do not know, maybe.

[…]

T: Well now let’s take the number 100 for a moment because it is nice and simple.
Can 2 go into 100?

S: Yes.
T: How do you know?
S: Because 2 � 50 = 100.
T: And what is the divisibility rule that we just learned that can also help us?
S: 100 is an even number that ends in zero, so it is divisible by 2.
T: Good. So we know that 2 is a factor of 100, but is 50 not also a factor of 100?
S: Yes, 50 is a factor.
T: But 50 is a lot bigger than the number one and it still counts?
S: I guess so.
T: Okay, so knowing that a number can have factors that are bigger than nine, I

want everyone to get out their calculators and see if they can find other factors
for 143. It’s fine to use trial and error for this question.

The play proceeds with the expected discovery of the factors of 143 and the
expected conclusion. However, while this excerpt clearly shows a number
(100) with a factor greater than 9 (50), it does not necessarily address the source of
Johnny’s difficulty, because 100 also has small number factors, like 2 and 5.
However, the claim in the prompt that a number that is not divisible by 2–9 is prime
is not based on the belief that a number cannot have a ‘large’ factor; rather, it is
based on the belief that a small factor is always present. Such a belief was explored
in Zazkis and Campbell (1996b) and in Zazkis and Liljedahl (2004). In particular,
participants in these studies expected divisibility of composite numbers by “small
primes,” and this expectation co-existed with their awareness of infinitely many
primes. This expectation is explained by a student in Zazkis and Campbell (1996b)
study, who reasons that “when you factor a number into its primes […] just the
whole idea of factoring things down into their smallest parts […] gives me an idea
that those parts are themselves going to be small” (p. 216). As such, finding factors
of 143 (with the help of a calculator), as the teacher directs students to do at the end
of this excerpt, changes the students’ ideas with respect to the primality of 143, but
does not address the source of the presented confusion.

42.3.1.2 Focus on Divisibility Rules

While most scripts made use of divisibility rules (to determine or to confirm that
numbers from 2 to 9 are not factors of 143), the following excerpt features the
introduction of the divisibility rule for 11. But before getting to this divisibility rule,
the class is invited to revisit what a prime is and what a factor is; then the play
continues.

42 Dialogues on Numbers: Script-Writing as Approximation of Practice 755



T: Okay class, did you wonder if 143 is divisible by numbers bigger than 9?
Johnny: No, because if 2–9 won’t divide into 143 then any number made up of

those numbers won’t divide into it.
T: I see, well, what if we look at numbers higher than 9… what about 10?
Johnny: No, because the number would have to end in a zero to be divided by 10,

like 100.
T: I see. Well do we know the rules for numbers higher than 10?
Johnny: No, I do not remember learning them.

[…]

Sue: Well, I tried 11.
T How did you try 11?

(Sue shows a calculator)

T: Does anyone know the divisibility rule for 11?
Bobby: Yeah. For 11 you take the number (T writes 143 on the board) subtract the

last digit from the first two, which equals 11 (writes 14 − 3 = 11). The
answer is 11 so yes, 143 is divisible by 11.

(Johnny writes down the rule and tries to solve the problem himself)

Johnny: Well I see now that 11 goes into 143… so what is the other number?
T: Well, why don’t we do the long division as a class. 11/143… How many

times? Please work it out on your paper and put your hand up when you
have the answer.

As is often the case in the plays, there is at least one student who recalls the
desired rule. In fact, only a particular case of divisibility by 11 is demonstrated, but
this does not appear to bother the teacher.

Sue’s discovery of 11 being a factor 143, with the help of a calculator, is pushed
aside by the teacher, who prefers to focus on divisibility rules. Further, the sug-
gested strategy to find “the other number,” that is, the other factor of 143, is to use
long division. The developed script leaves the impression that performing division
with a calculator is insufficient to reach a conclusion related to divisibility, that
preference is given to rules or algorithms.

When it is confirmed that the ‘rule’ applies to 143, Johnny asks about the other
factor of 143. The teacher invites the class to work on long division “as a class”
(and it is interesting to consider why the teacher wants everyone to do it) in order to
answer Johnny’s question. But another way of addressing Johnny would be to ask
whether the other factor is indeed needed. The teacher could use this opportunity to
help students realize that only one factor is required to conclude that 143 is a
composite number.

It is rather surprising that the script-writer assumed that elementary school
students would be familiar with divisibility rules for 11 or 13. Those rules, which
can be developed for any prime number, reveal some fascinating relationships
among numbers (Eisenberg 2000). However, divisibility tests in the “calculator era”
have little utility. The divisibility rules for 7 and beyond 10 are rarely discussed in
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current curricula for elementary school students or for prospective teachers of
mathematics. Instead of using the rule as a method for determining divisibility, we
see its role today more as an opportunity to engage in mathematical reasoning:
either to develop, test and refine conjectured rules or to try to understand how and
why the rules work.

Overall, teachers’ dependence on divisibility rules presents a concern. It appears
that, for them, the notion of divisibility is connected to a specific rule rather than to
the multiplicative relationship of numbers. The rule is valued much more than other
means of determining divisibility, such as long division or a calculator.

42.3.2 Following Prompt B

Even though all the scripts either acknowledged or checked that indeed 143 is not
divisible by numbers smaller than 10, no script-writer seemed to question this
strategy. That is, having acknowledged that the number is not divisible by 2 and 3,
why was there a need to check for divisibility for 4, 6 or 9? It was in order to focus
on the strategy, rather than the correctness of the decision, that script-writers were
presented with prompt B.

In this case, the number under investigation is indeed prime, but the suggested
student’s answer includes unnecessary information and may again hint at an
inappropriate strategy for checking for primes. However, the student strategy,
refined in Sect. 42.3.2.1, was not the focus of most plays, rather, the focus was on
the definition of primes (see Sect. 42.3.2.2) and on divisibility rules
(Sect. 42.3.2.3).

42.3.2.1 Focus on Prime Factors (Only)

In the following excerpt, the strategy for determining primality of a number was
explicitly acknowledged by a student-character. The conversation between two
students in the excerpt below takes place after the teacher asked the class whether
they agreed with the conclusion presented in the prompts and attributed to Student 1.

Student 2: We only need to divide 37 by other primes. That is, for 37 you could try
2, 3, 5 and 7. You could stop at 7, as 7 � 7 = 49 which is bigger than
37. All the other numbers are composite numbers using these primes. So
if the primes don’t divide the number the composite cannot either.

Student 1: So I do not need to try and divide all the numbers into 37 to see if it is
prime?

Student 2: All you have to do to find out if a number is prime is divide it by other
prime numbers that if multiplied by themselves would be less or equal
to the number you are looking at.
(the lesson continues in a different direction)

A correct strategy, which is an alternative to “try and divide all the numbers into
37,” is attributed to Student 2. However, while the strategy is correctly summarized,

42 Dialogues on Numbers: Script-Writing as Approximation of Practice 757



the reason for it is not mentioned by the student and is not sought by the teacher.
Further, the implementation of the strategy exemplified in this excerpt is different
from the description of the strategy. That is, according to the description, one can
stop at 5, while Student 2 explicitly claims “You could stop at 7, as 7 � 7 = 49
which is bigger than 37.” Of course, there is no harm in checking divisibility by an
additional prime number, even if it is inconsistent with the cited approach. It often
happens that teachers can correctly describe the strategy for determining primality
of a number, likely reciting what was learned, but they seem to lack trust in
implementing it (Zazkis and Liljedahl 2004). That is, having checked divisibility by
all the primes whose square is less than the number in question, they continue to
check divisibility by other numbers, both prime and composite, “just in case” or “to
be on the safe side.” These actions are often connected to an inability to explain
why only particular primes are to be considered. The lack of confidence in
implementing the described strategy points to the potential lack of understanding of
the strategy.

42.3.2.2 Focus on the Definition of Primes

The following excerpt begins with a discussion about the definition of primality,
which exemplifies a common move (return-to-definition) in the lesson plays. There
is no challenge to the approach used by Johnny.

T: What you say is true, but that’s not how a prime number is defined. Do you
remember the definition of a prime number?

S: Yea, sort of. A number that you can only divide by itself and one. Like 2, right?
T: Exactly. It can divide itself evenly. So what do we know about 37, if it is

prime?
S: That it can be evenly divided by 1 and 37.
T: Great. So let’s talk about the numbers you picked to try to divide 37. From 2 to

9. Can you please explain why you concluded that these numbers don’t work?
S: I guess and checked with numbers 2–9 and I proved that it was prime. No

matter what the divisor, unless it is 1 and 37, will not work.
T: Excellent. I think what we talked about is really useful; after all, the idea of

prime numbers is quite difficult. I think I will get the class to stop their work
and get them in their groups talking about prime numbers.

Let us focus on the teacher’s response to a student’s reasoning about why 37 is a
prime number. Initially, the teacher appears satisfied with the student’s conclusion,
but not the reason for it because “that’s not how a prime number is defined.” It
appears that there is an implicit expectation that a definition for a prime will be
cited, rather than the results of checking for primality. A student recalls a definition
of a prime as “A number that you can only divide by itself and one. Like 2, right?”.
Here, while the language attributed to a student can be improved, the teacher’s
rephrasing—“it can divide itself evenly”—does not communicate the idea of a
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number being prime. An extended discussion on the language related to number
theory concepts is found in Zazkis et al. (2013). I bring this issue here to
demonstrate that the scripts provide an opportunity to address the language of
mathematics used by prospective teachers, both as a venue for analysis, and as a
discussion in class.

Further, when the student offers the example of 2, the teacher does not take the
opportunity to explore other examples, especially ones that are not even (and that
might push on the student’s idea of what dividing evenly might mean). Yet again I
highlight this point to demonstrate that focusing on the examples found in scripts
provides an additional layer of analysis, as well as the basis for a discussion with
teachers on the choice of instructional examples.

42.3.2.3 Searching for a Number with Prime Factors Larger Than 9

In the next excerpt, the script-writer attempts to work on the problematic strategy
proposed by Johnny. The following dialogue takes place after the definition of
prime numbers was revisited.

Ms. L: Turn to your group of 3 and I’ll give you your challenge. Your
challenge is to find a number that is not a prime number and is also not
divisible by 2, 3, 4, 5, 6, 7, 8 or 9. I will tell you that you don’t need to
look higher than 150.

Student 1: We have to test every number between 100 and 150 to see if it’s
divisible by 11 and 13.

Student 2: We don’t need to test any even number since we know it’s already
divisible by 2.

Student 3: Oh yeah! And we don’t have to test the numbers that end in 5 or 0
because they can be divided by 5!

Student 2: Here, let’s use the whiteboard and write al the numbers it could be.
(Students write 101, 103, 107, 109, 111, etc. to 150.)

Student 1: Oh, and remember Ms. L said that a number that has all its digits add
up to something that can be divided by 3 means the whole number can
be divided by 3. Yeah, that’s one of the rules we wrote.

Student 2: Guys! Why don’t we just use that list of divisibility tricks we made up
in the first part of the class to cross off the other numbers? Then we
won’t have to do so much division. Our rules are still up on the board.
Is that right, Ms. L.?
(Students cross off numbers and are left with this list: 101, 103, 107,
109, 113, 121, 127, 131, 137, 139, 143, 149.)

Student 2: Now all we have to do is to test if those 12 numbers are divisible by 11
and 13
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(Sharing the long division work, students find 121 and 143.)
Student 3: Ms. L., Look, we figured it out. It’s 121 and 143! All the rest of the

numbers up there are prime.
Ms. L: And 121 and 143 are what then?
Student 3: 121 and 143 are numbers that are not prime but they also don’t divide

by 2, 3, 4, 5, 6, 7, 8 or 9.
Ms. L: So are the divisibility rules from 2 to 9 always going to work to

discover non-prime numbers?
Student 1: Nope!

Here, the attention has been diverted from the specific case of 37, and the students
are working explicitly to produce an example where testing divisibility by the
numbers from 2 to 9 is insufficient to conclude primality of a number. The students
first sieve out multiples of numbers smaller than 10 from the list of numbers from
100 to 150, relying on divisibility rules that “are still up on the board”, then check
divisibility of the remaining numbers by 11 and 13, which results in identifying 121
and 143.

Students discover that checking divisibility by numbers from 2 to 9 is insuffi-
cient, or, in the words of the teacher not “always going to work to discover
non-prime numbers.” It is interesting to note that while the intention in this prompt
was to focus on unnecessary steps in checking for primality of 37, this playwright
focused on the strategy as being insufficient in some cases.

Despite the strength of this approach, there are further opportunities for the
teacher to focus students’ attention more squarely on the notion of primality than on
numerical operations (division, especially). For example, while the students used
their knowledge of divisibility rules and long division to find 121 and 143, the
teacher might have intervened to show how these numbers can be constructed
multiplicatively as 11 � 11 and 11 � 13. While it is possible that this particular
script-writer will direct students’ attention to the matter in the next lesson, research
has shown that the connection between multiplication and division is frequently
unaddressed in dealing with number theory related tasks. For example, prospective
elementary teachers, when asked to find a ‘large’ 5-digit number divisible by 17
prefer to check for divisibility with calculator, rather than construct such a number
by multiplying 17 by a 3 or 4-digit number (Hazzan and Zazkis 1999). Further,
when asked to find a number with exactly 4 factors, participants’ preferred strategy
was to guess and check, rather than construct such a number as product of 2 primes
(Zazkis and Campbell 1996a). As such, the strategy of sieving multiples of 2–9 on
the list of numbers from 100 to 150 might have been the main approach that was
available to the script-writer. As mentioned previously, presenting this approach for
the scrutiny of prospective teachers can enrich their understanding of mathematics,
which, in turn, shapes their pedagogical approaches.
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42.4 Numbers and Their Factors

Is there a relationship between the size of a number and the number of its factors?
To discuss this relationship, prospective teachers were presented with the following
scenario:

Bonnie and Clyde are discussing numbers and their factors. Bonnie claims that the larger a
number gets, the more factors it will have. Clyde disagrees.

This prompt was developed as a result of having faced the repeated belief of
students that the larger a number gets, the more factors it is expected to have
(Zazkis 1999). This belief is consistent with the family of “intuitive rules” of the
kind “more of A, more of B” discussed by Stavy and Tirosh (1996, 2000). For
example, the erroneous idea that rectangles with a larger perimeter have larger areas
is a frequent result of the reliance on this rule.

Prospective teachers were asked to develop a script for a conversation between
these two characters that included their exchange of arguments. In particular, they
were asked to consider examples and experiences that could have led Bonnie to this
conclusion, the arguments that both sides use to convince each other, and what each
one of them finds convincing. They were further asked to annotate the script
analyzing the arguments of the characters and their examples.

The common tendency related to true or false decisions is exemplified in
Sect. 42.4.1, a tendency to consider disconfirming evidence as particular coun-
terexamples is discussed in Sects. 42.4.2 and 42.4.3. Furthermore, the particular
role of the choice of examples to build a convincing, or a more convincing,
argument is attended to in Sect. 42.4.4.

42.4.1 Who Is Right?

While no participant agreed with Bonnie (that larger numbers have more factors),
there were various degrees of disagreement. A few scripts demonstrated a view in
accord with mathematical convention by clearly rejecting Bonnie’s claim. This is
exemplified in the following:

Clyde: The answer to “True or False”: As a number gets bigger the more factors it
will have” is False. It may sometimes have more factors, but to say that it
always does would be incorrect.

However, the verdict of ‘false’ to a statement that is ‘sometimes true’, or true in a
large number of cases, is inconsistent with everyday reasoning. As such, even when
a mathematically correct conclusion was drawn, some participants attempted to
amend the theory by referring to a limited scope of applicability. Theory amend-
ment is in accord with a mathematical/scientific norm in response to disconfirming
evidence (Chinn and Brewer 1993), however, the amendment itself was usually
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incorrect. For example, consider the following views included in the commentary:
“Large numbers do not always have more factors. […] Her statement could be true
for even numbers that are increasing but it is not true for all numbers as a
collective”.

This statement exemplifies that a common tendency was to consider that Bonnie
was “not totally wrong”, “not completely right”, or “only partly correct”. This is
consistent with intuitive application of fuzzy logic (e.g., Zazkis 1995) to a math-
ematical situation. Further, prime numbers were the most notable exceptions from
the perceived ‘rule’, which is in accord with Chinn and Brewer (1993) category of
“excluding data from the currently held theory”, as is exemplified below.

42.4.2 Prime Numbers as Exceptions

Prime numbers immediately falsify Bonnie’s initial claim. All script-writers
attended to prime numbers, but this attention had different forms. Initial examples
of small primes—such as 5 has fewer factors than 4, or that 7 has fewer factors than
6—were initially treated by Bonnie in many of the scripts as an anomaly. Consider
the following reaction to disconfirming evidence:

Clyde: Exactly! Now haven’t we just shown that larger numbers don’t always
have more factors?

Bonnie: Damn you and your tricks! No, I refuse to give in, maybe you have just
selected the only two numbers that this general rule does not apply to.
Maybe you chose an anomaly, the only exception to the rule; it’s going to
take more than just one counter example to persuade me!

Providing evidence that supports the claim was the usual reaction to the initial
disconfirming evidence. However, as exemplified on the following commentary,
“Bonnie is selecting only composite numbers, and that is her mistake, she seems to
be forgetting that there are more than just composite numbers.” This comment
implicitly suggests that the script-writer may believe the statement to be correct for
all composite numbers, that is, leaving out the primes. Other script-writers attrib-
uted this perception to their characters explicitly, as exemplified in the following
excerpt:

Bonnie: The larger the number, the more factors it has.
Clyde: True, unless it’s a PRIME NUMBER.
Bonnie: Why didn’t you tell me this rule before, it could have helped save so

much time!
Clyde: I wasn’t sure myself either, I just didn’t want you to think you were right

so I denied it.

Students’ tendency to reject evidence that is not in accord with their held beliefs
was noted in several studies (e.g., Chinn and Brewer 1993; Edwards 1997). Given
that script-writers were prospective teachers, this tendency of their script characters
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exemplifies their awareness of such behavior among students. However, in the
assignment the participants were asked to acknowledge the erroneous claims of
their characters in the accompanying commentary. When the characters’ erroneous
decisions were not noted, they are likely to be in accord with the script-writers’
personal views. Excluding prime numbers from the generally accepted ‘rule’ was
the most frequent conclusion attributed to Bonnie’s character.

42.4.3 Powers of Primes as Exceptions

While prime numbers were the most frequently acknowledged exceptions, they
were not seen as the only exceptions to the ‘rule’. The other conclusion was to
exclude powers of primes from the general assertion. The following dialogue was
presented after several examples of prime numbers have been considered.

Bonnie: Prime numbers are the exception to the rule. They do not behave like
other numbers. […] The numbers that I am talking about when I say that
the factors increase as the value of the numbers increase, are any number
other than a prime.

Clyde: Okay, so what about the squares of prime numbers. For example, the
square of 7 is 49, so its only factors are 1, 7 and 49. That means that a
smaller number, like 12, actually has more factors than the larger number
which is 49. I am confused.

Bonnie: Again, Clyde, we are looking at prime numbers in this situation. Any
square of a prime will only have three factors just like you said. The same
thing happens when you find the number of factors in the cube of a prime.
But remember what I said before: prime numbers are the exception to the
rule. […] when leaving out numbers that can be factored into the base of
a prime number, like you said, the rule does hold true.

Here Bonnie acknowledges prime numbers as exceptions, but later she is invited to
look at squares of primes. As a result, the ‘exceptions’ to the rule are extended to
include powers of primes. Though the expression “numbers that can be factored
into the base of a prime number” used by both characters is colloquial, it is clear
from the examples that this phrase refers to numbers whose prime factorization is a
power of a single prime. This is yet another example of theory amendment, while
the amendment itself is incorrect. As the script-writer does not comment on
Bonnie’s conclusion—that “the rule does hold true” once some numbers are
excluded—it is likely that the teacher shared this belief. Other possible clusters of
possible ‘exceptions’, such as the product of two large primes, were not discussed
in any of the scripts.
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42.4.4 On Counterexamples and Large Numbers

In all the scripts one counterexample was insufficient in convincing Bonnie to
abandon her claim (recall Bonnie’s claim in Sect. 42.4.1, “it’s going to take more
than just one counter example to persuade me!”). This shows the awareness of
script-writers of the possible robust beliefs of their potential students, beliefs that
they themselves may also possess. The following statement in a script-write’s
commentary summarizes this phenomenon:

Bonnie insisted she was right until Clyde did more examples to prove her wrong. In order
to thoroughly prove that this theory is a reliable one (without just taking someone’s word
for it), one must test the theory multiple times with various numbers. After picking a few
strategic numbers, only a few examples are required before the trend can be seen that the
size of the number does not influence the number of factors.

The tendency to treat counterexamples as exceptions, as in the case of ‘large
primes’, was mentioned previously. However, counterexamples that included
‘large’ composite numbers that were close to each other had more convincing
power than others. For example, comparing the number of factors of 512 (having 10
factors) and 513 (having 8 factors), or, in a different script, comparing the factors of
3800 and 3600 helped Bonnie reconsider her position. The script-writers demon-
strated not only that several examples are essential, but also that examples with
large numbers are—using a notion introduced by Mason (2006)—more ‘exem-
plary’, that is, are more likely to serve the intended purpose.

Attention to large numbers is an additional extension to the list of responses to
“anomalous data” identified by Chinn and Brewer (1993): rechecking the evidence
with additional and more convincing examples. Perhaps this extension is applicable
to mathematics settings more than science settings.

42.5 Discussion

There are numerous advantages of the script-writing task for teachers, for teacher
educators and for researchers. For teachers, advantages include the opportunity to
examine their personal responses to students’ erroneous perspectives, understand
their origin and consider how students can be helped in overcoming their errors.
Furthermore, scripting presents teachers with an opportunity to examine and extend
their personal understanding of mathematics, without the need to “think on their
feet”, and to develop personal repertoires of general strategies to be used in future
improvisations. As an “approximation of practice” (Grossman et al. 2009),
expressing ideas in a form of a scripted dialogue affords a more thoughtful and
pre-planned (rather than “real-time”) response.

For mathematics teacher educators and researchers, there is an assumption that,
when writing scripts, the writers present their personal views in the teacher’s role.
My experience suggests that even when a script involves a conversation among
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students, such as in the Bonnie and Clyde scenario, one of the characters acts in a
“teacherly” mode. As such, advantages of scripting tasks for teacher educators
include the opportunity to highlight a variety of appropriate pedagogical responses
and direct teachers’ further attention to learners. It is an opportunity to move
beyond traditional “lesson planning”, as a preparation for instruction. Script-writing
introduces further variety to the tasks for prospective teachers in the design of
“methods” courses.

For researchers, implementing scripting tasks provides a lens to examine
teachers’ ideas and discourse via their imagined actions and chosen words. It
provides an opportunity to analyze both mathematical understanding and the chosen
instructional approaches.

The goal of this chapter is to present an argument for, and exemplify the use of,
script-writing tasks in mathematics teacher education and research. In the examples
presented in Sect. 42.3, it is clearly demonstrated that prospective teachers are more
comfortable to attend to student errors (reacting to the claim that 143 is prime) than
to correct claims (that 37 is prime) followed by inefficient and incomplete justifi-
cations. This creates the need for further development of prompts in which correct
answers are presented as a result of incorrect or insufficient reasoning and to extend
a conversation with teachers that strengthens their attention to students’ reasoning
rather than to the correctness of the answer.

Furthermore, the examples presented in Sect. 42.4 highlight the teachers’ ten-
dency to implement fuzzy logic (e.g., Zazkis 1995), where the “middle ground” is
sought between true and false. This accentuates the need for an explicit conver-
sation on how the truth value of mathematical statements is determined, the issue
that often remains implicit when mathematical encounters for prospective ele-
mentary teachers are considered.

Seeking ways to support and improve mathematics teacher education is a con-
tinuous challenge. I argue that engaging prospective teachers in script-writing is one
possible way to address this challenge. Overall, the script-writing tasks, and the
scripts written by prospective teachers, contribute to mathematics education on two
arenas: they inform research on teachers’ knowledge, and support instructional
design in teacher education courses.
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Chapter 43
Equity in Mathematics Education:
What Did TIMSS and PISA Tell Us
in the Last Two Decades?

Yan Zhu

Abstract Equity in education has been a concern of almost all countries, whether
developed, transitional, or in the progress of developing. It is believed that unequal
education implies that human potential is being wasted. The present study focused
on students with different characteristics as aggregate groups in an examination of
similarities and differences in mathematics learning. The information analyzed here
was mainly based on data from TIMSS and PISA databases. This investigation aims
to paint an overall picture about gender equity, socioeconomic status, and indi-
genity equity in mathematics education over the last twenty years. It is hoped that
the study can provide useful insights to individual education systems and further
help them to identify more promising practices to narrow or even eliminate the
existing between-system as well as within-system gaps.

Keywords Gender equity � Socioeconomic status equity � Immigrant background
equity � PISA � TIMSS

43.1 Equity in Mathematics Education

Equity has been on the agenda of mathematics education research for at least four
decades. For instance, Fennema’s (1974) seminal work was about male-female
differences in mathematics achievement and Fennema and Sherman (1977)
approached the topic via affective perspectives. In the first Handbook of Research
on Mathematics Teaching and Learning (Grouws 1992), there are two chapters
dealing with this issue. Year 1995 witnessed the publication of two books that
concerned research on equity within mathematics education (Rogers and Kaiser
1995; Secada et al. 1995). Pais (2012) noted that this interest in equity has pro-
liferated theories in mathematics education research that progressively deempha-
sized cognitive psychology as an interpretative framework for mathematics learning
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in favor of more socio-cultural oriented frameworks. Consistently, Gutiérrez (2010)
has claimed that “sociocultural theories, once seen on the fringe of a mainly cog-
nitive field, now take their place squarely within mainstream mathematics education
journals like JRME” (p. 2). The National Council of Teachers of Mathematics, in
Principles and Standards for School Mathematics (NCTM 2000), identifies as its
first guiding Principle that “Excellence in mathematics education requires equity—
high expectations and strong support for all students” (p. 11).

While the growing attention to equity in mathematics education promotes ‘talk’
of equity becoming more mainstream in the mathematics education community
(Gutiérrez and Dixon-Roman 2011), the term often has different meanings to dif-
ferent people. In fact, when referring to educational equity, the term equality is
often used interchangeably. It can be seen that the two terms have close similarities
but with important distinctions. The Oxford English Dictionary defines equity as
“the quality of being fair and impartial” and equality as “the state of being equal,
especially in status, rights, or opportunities”. Based on these two definitions, the
former appears to be more about being impartial with the latter more about being
the same. In this sense, differences related to individual needs and requirements are
recognized and treated in the notion of equity; in contrast, everyone will be
regarded and treated in the same manner without focusing on specific needs and
requirements in the notion of equality.

Regarding the subject of mathematics, NCTM (2000) has highlighted that equity
does not mean that every student should receive identical instruction; instead,
reasonable and appropriate accommodations should be made to promote access and
attainment for all students. Similarly, Secada (1989) argued that the two notions are
not synonymous, remarking that rather than striving for equality, people should
work towards equitable inequalities that reflect the needs and strengths of indi-
viduals. In fact, as Volmink (1994) described mathematics as a field that is the “sole
creation of a few, singularly brilliant … individuals” (p. 51), it is unrealistic to
expect all individuals to achieve equally in this elitist field. Correspondingly, it
would become more important and meaningful to investigate the source of the
differences as well as identify the reasons underlying so as to pursue equitable
inequalities that reflect individuals’ specific strengths and needs.

Arnaud (2001) and Arnesson (2001), respectively, did some concise analyses on
equity and equality in a more general sense, and their work problematized the
conceptualization of the two notions. Arnaud commented that, due to being asso-
ciated with fairness and impartiality, the notion of equity could possibly be regarded
as a means to bring harmony into progressive societies and/or solve conflicts in
some legal cultures. Arnesson, on the other hand, proposed that, as equality has
been linked to the basic idea of being the same, it could bring up with two issues:
one is about who should be the same and the other is about how important to be the
same. Although there exist ambiguities and disagreements with respect to the two
notions, Arnaud (2001) pointed out that the relationship between them appears to be
a newly contemporary and significant notion (also see Herrera 2007). To a certain
extent, this idea supports Hutmacher’s (2001) call for the need of a clear conceptual
framework with the potential to be a starting point in studying equity and equality.
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Not only are there similar concepts to equity, but also the notion itself can be
understood in many different ways. For instance, the Organization for Economic
Cooperation and Development (OECD) defines equity in education through two
dimensions: fairness and inclusion (Field et al. 2007). This suggests that, by fair-
ness, equity implies ensuring that personal and socio-economic circumstances (e.g.,
gender, ethnic origin, family background) should not be obstacles to achieving
education potential, while by inclusion, it implies ensuring all students to reach at
least a basic minimum level of skills. It shall be noted that the two dimensions are
closely intertwined. More specifically, equitable education is expected to support
students to reach their learning potential without either formally or informally
pre-setting barriers or lowering expectations (OECD 2012). In this sense, tackling
school failure may help to overcome the effects of social deprivation, which often
causes school failure (Field et al. 2007).

The NCTM research committee also remarks that there are multiple concepts
encompassed in the notion of equity and they can be classified into either conditions
of learning or the outcomes. According to Lipman (2004), the former can be
described as “equitable distribution of material and human resources, intellectually
challenging curricula, educational experiences that build on students’ cultures,
languages, home experiences, and identities, and pedagogies that prepare students
to engage in critical thought and democratic participation in society” (p. 3). From
the perspective of outcomes, Gutstein (2000) defined equity as “obliterating the
differential and socially unjust outcomes in mathematics education” (p. 26). The
mentioned outcomes could include students’ achievement and participation in
mathematics, their powers of analyzing and reasoning, and their abilities to “cri-
tique knowledge or events” (Gutstein et al. 2005).

Brown (2006) differentiated equity into horizontal equity and vertical equity.
Correspondingly, horizontal equity refers to equal treatment of those who are
similar to each other and vertical equity refers to unequal but equitable treatment of
those with different needs, which is designed to reduce inequality. It is suggested
that horizontal equity is a starting point that can be used to help achieve vertical
equity. In this sense, vertical equity will look into whose situation can be improved,
and then how to make the improvement.

Gutiérrez (2009) proposed a four-dimension model for the notion of equity in
mathematics learning including: access, achievement, identity, and power. In par-
ticular, access relates to the tangible resources that students have available to them
to participate in mathematics, and achievement refers to observable results for
students at all level of mathematics. The two were further characterized by
Gutiérrez as the dominant axis of equity, which measure how well students “play
the game” of mathematics as it currently stands. Moreover, access is suggested to
be a precursor to achievement. The dimension identity concerns not only students’
pasts (e.g., the contributions of their ancestors), but more about a balance between
themselves and others. In other words, students need to have opportunities to see
themselves reflected in the curriculum while having a view onto a broader world.
The issue of power is raised because equity is more than having students “be
themselves and better themselves” via doing mathematics. According to Gutiérrez
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(2007), it cannot be called equity if mathematics as a filed and/or people’s rela-
tionship has no changes. Gutiérrez further proposed identity and power to make up
the critical axis of equity, as they challenge the static formalism embedded in
traditions. This axis relates to students’ ability to “change the game”. On this axis,
identity can be regarded as a precursor to power.

Although there are different understandings and interpretations about the notion
of equity, it is suggested that the relevant research in mathematics education can be
used to help in understanding the causes for the inequalities and identifying
strategies to reduce the disparities and the effects of these inequalities (Rohn 2013).
Furthermore, some researchers have even claimed that only focusing on equity and
equality is not enough, and additional attention should be further given to libera-
tion. Liberation refers to working to challenge and reverse the effects of structural
oppression in society. No matter what standpoints people take, it has generally been
believed that high performing education systems are those that combine equity and
quality, where all students are given opportunities for a good quality education.

43.2 Factors Contributing to Inequity in Education

There are many factors that may influence inequitable opportunities and outcomes
in education, such as gender, income and socio-economic status, ethnicity, indi-
geneity, culture, religion, language, geographical location, etc. (Wood et al. 2011).
Different countries usually would use different sub-sets from this set of categories to
define diversity, and assess how equitable their education systems are. Among these
factors, gender, typically, appeared to be the most widely used category (Clancy
and Goasstellec 2007).

Within the field of mathematics education research, gender was historically the
initial dimension of equity researched widely, and later served as the springboard
for emphases on, or in combination with, the other dimensions of equity (Forgasz
and Rivera 2012). In earlier times, a wide range of international research studies
reported gender inequities, with most favoring males. For instance, Maccoby and
Jacklin’s (1974) review of close to 1600 studies of gender differences concluded
that boys were better in mathematics and physical sciences, whereas girls were
better in reading and writing. Later reviews, adopting more sophisticated
meta-analytical techniques, consistently reported similar patterns of gender differ-
ence, although the magnitudes of the differences were smaller (e.g., Wider and
Powell 1989; Willingham and Cole 1997). In fact, mathematics was traditionally
stereotyped as a male domain and societal influences tended to suggest that
mathematical learning was not particularly appropriate for girls (e.g., Damarin
1995; Fennema 2000; Leder 1992).

In order to explain the potential gender gap in mathematics learning, various
theories have been explored (see Wider and Powell 1989). One strand of such
explorations looks into biological differences to support innate differences in spatial
ability, higher order thinking, or brain development. Nevertheless, some researchers
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have pointed out that such differences are small and their relationships with
mathematics test performance are tenuous (e.g., Guiso et al. 2008). Kane and Mertz
(2011) further argued that if gender differences are primarily a consequence of
innate, biologically determined differences, they should be expected to be similar
across countries, regardless of culture, and should remain constant across time.
Another strand of research emphasizes societal factors, highlighting how girls are
socialized into believing that mathematics is not important, useful, doable, or part of
a girl’s identity. For instance, West and Zimmeran (1987) remarked that a person’s
gender is not simply an aspect of what one is, but more fundamentally it is
something that one does recurrently in interaction with others; they called this
“doing gender”. According to Kaiser (2003), the social construction of gender
forms the theoretical base of many empirical studies on the relationship between
gender and mathematics.

In more recent studies, however, researchers have observed that the gender
differences in mathematics have not only narrowed substantially over time, but
sometimes have even been eliminated (e.g., Halpern et al. 2005; Hyde and Mertz
2009; Spielman 2008). In fact, there are some researchers who have started
including boys’ educational needs into their work on gender (e.g., Forgasz and
Leder 2001; Lingard et al. 2002; Weiner et al. 1997). Regarding the complexity of
the gender gap in mathematics achievement, Ellison and Swanson (2010) attributed
it to the differences that exist between tests and systems.

Compared to gender, students’ socioeconomic status (SES) was not enunciated
as a problem in the field of mathematics education until the 1980s, when the “social
turn” was advanced (Lerman 2000, 2006). Since the 1990s, the number of studies
investigating the relation between SES and students’ mathematics achievements has
increased, with growing importance given to periodic, international, standardized,
comparative studies as TIMSS and PISA (Valero and Meaney 2014). On the other
hand, studies investigating the connection between people’s social and economic
position and school achievements emerged much earlier, at the beginning of the
20th century (see Valero et al. 2015). The Coleman Report (Coleman et al. 1966)
was one of the first large scale national surveys that acknowledged socioeconomic
status as a major predictor of educational achievement (Knapp and Woolverton
2004).

No matter whether it is education in general, or specific to mathematics edu-
cation, the existing research consistently demonstrates a positive correlation
between students’ socioeconomic status and their academic achievement level.
Such findings have been reported in both international large-scale assessments, and
school level assessments. Sirin’s (2005) meta-analysis on SES and academic
achievement in journal articles published between 1990 and 2000 revealed a
medium to strong association. Rothman and McMillan (2003) further identified that
the relationship within schools was relatively small, although significant; while that
between schools was much larger and significant.
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Following the “age of migration” (Castles and Miller 2003), many countries now
host a substantial and growing population of immigrants, a considerable number of
whom are children. Consequently, immigrant children’s educational performance
has become one of policymakers’ core concerns. The observations that the edu-
cational performance of children with an immigration background often differs
from that of their host countries, and is also different from their countries of origin;
these two important macro-level factors invite explanations. At the individual level,
the relevance of classic background attributes for explaining the educational
achievement of immigrant children has been well documented (Kao and Thompson
2003). Some frequently mentioned attributes include socioeconomic status, parental
income, and cultural capital (e.g., number of books at home), language spoken at
home, and age of arrival in the host country.

Focusing on the learning of mathematics, it is suggested that there is a lot to
learn for a newcomer, and the least problematic may be mathematics (Bishop
2006). Besides the subject, a learner’s mathematics practices would be shaped and
negotiated by classroom participants with various levels of shaping power. In
particular, classroom teachers have power of the formal and institutional kind,
classmates or peers play a fundamental role at the level of being near equals, that is,
equality between the one who chooses to exercise influence and the one who is
chosen to be influenced. In some sense, the learner has the most power over his/her
own learning, such as choosing how much effort to expand, whom to listen to, and
whose views to respect. Moreover, the learning is also a product of the learner’s
cultural and social history, shaped in large by his/her family life and outside-school
life experiences. In this regard, parents are particularly influential.

While a variety of factors at different levels (i.e., macro, mezzo, micro) could
cause inequality in education, it should be noted that the inequalities and injustices
often do not work in isolation, but rather a combination of two or more of this
diversity of dimensions. For instance, the status of being poor and living in a rural
area could increase disadvantage several times over (Morely et al. 2009; UNESCO
2008). Moreover, in many countries, some of these factors have clear historical
roots and trajectories. Consequently, co-occurrences of low achievement among
some ethnic minority groups and those of low socio-economic status are then not
unusual. In fact, in some countries that were regarded as ‘highly developed’,
structural inequalities also existed (United Nations Development Program 2009).
For instance, in the UK and the US, ethnicity and low socioeconomic status
appeared to be two of the main risk factors for students’ underperformance in
schools. While a list of such contributory attributes is far from exhaustive, identi-
fying causal relations between the sources and consequences of educational dis-
advantage is important for making effective policy recommendations.
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43.3 What Do TIMSS and PISA Tell About Equity
in Mathematics Education?

43.3.1 TIMSS Versus PISA

The Trends in International Mathematics and Science Study (TIMSS) is one of the
studies established by the International Association for the Evaluation of
Educational Achievement (IEA). It aims to measure the extent to which students
have mastered the topics and skills as appeared in school curricula. A Pilot Twelve-
Country Study, conducted in 1959 to 1962, was the very first IEA study, and
increasingly more education systems participated in its later cycles. The term
TIMSS first appeared in 1995, known as the Third International Mathematics and
Science Study, and was renamed the Trends in International Mathematics and
Science Study in 1999 and onwards. Meanwhile, the series of studies were con-
ducted in regular four-year cycles from 1995. The most recent study was TIMSS
2015 with more than 60 systems participating. In most of the cycles, 4th and 8th
graders’ achievement in mathematics and science were assessed. TIMSS uses the
curriculum as its major organizational aspect. Three curriculum layers are envis-
aged: intended curriculum (i.e., the subject intended for students to learn, and how
the education system should be organized to facilitate this learning); implemented
curriculum (i.e., what is actually taught in the classroom, who teaches it, and how is
it taught); and attained curriculum (i.e., what it is that students have learned, and
what they think about the subject).

The Program for International Student Assessment (PISA) is another worldwide
large-scale study, which is under the auspices of the Organization for Economic
Co-operation and Development (OECD). It aims to look “at young people’s ability
to use their knowledge and skills in order to meet real-life challenges rather than
how well they had mastered a specific school curriculum” (OECD 2005, p. 9).
The PISA study series was first implemented in 2000 and then repeated every three
years. The most recent was PISA 2015, with 71 countries/economies participating.
Due to its focus on the practicalities of students’ skills, PISA uses the term literacy
referring to “the capacity of students to apply knowledge and skills in key subject
areas and to analyse, reason and communicate effectively as they pose, solve and
interpret problems in a variety of situations”.

Coessens et al. (2014) differentiated the two international large-scale studies
from four perspectives. The first is that TIMSS focuses on curriculum-related tasks,
while PISA is literacy based. This links to the second difference, that is, TIMSS
items are more knowledge oriented, while PISA items are aimed at life skills. Third,
TIMSS focuses on the extent to which students have mastered mathematics and
science as they appear in school curricula, while PISA aims to capture the ability to
use mathematical and scientific knowledge and skills to meet real-life challenges. In
short, TIMSS focuses more on pure mathematical performance, while PISA focuses
more on the practicalities of mathematical skills. Fourth, TIMSS is explicitly
organized around two frameworks, a curriculum framework and an assessment
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framework, while PISA focuses on skills for future life rather than on the grasp of
the school curriculum. There are also researchers differentiating the two studies
from the perspective of targeted populations. For instance, Harlen (2001) high-
lighted that while TIMSS assessed the progress of students at particular grade
levels, and so at different ages for countries, PISA was concerned with 15-year-old
students’ performance as an indicator of the outcomes of compulsory education.
Similarly, Lester (2007) summarized the difference as TIMSS holding a
grade-specific structure versus PISA holding an age-specific structure.

Regarding the issue of equity, it appears that PISA gives it more explicit
attention. In particular, PISA defines the notion of equity as “to provide all students,
regardless of gender, family background or socio-economic status (SES), with
opportunities to benefit from education” (OECD 2013a, p. 13). In this sense, equity
implies more than everyone having the same results, but everyone, regardless of
his/her background, should be offered access to quality educational resources and
opportunities to learn. As a result, one’s gender, SES, or immigrant background
should then have little or no impact on his/her performance. The following sections
of this chapter will focus on what TIMSS and PISA have found regarding equity in
mathematics education in the last two decades, from the perspectives of three
important personal background aspects: gender, socioeconomic status, and immi-
grant background.

43.3.2 Gender Equity

Gender equity has become one of the most prominent issues in education reform
efforts worldwide, with international organizations and governments having
increasingly recognized that gender equity strengthens democracy, and serves as a
hallmark of an inclusive society that values and capitalizes on the contributions of
all its members.

Related to the subject of mathematics, gender has always been an issue of
concern that is investigated in the IEA study series. As early as in the Pilot Twelve-
Country Study (13-year-olds), girls were, in general, observed to be outperformed
by boys. In the First International Mathematics Study (FIMS), Keeves (1973)
found that boys performed better than girls in all ten original FIMS countries in
terms of overall mathematics achievement, with some variations in the magnitudes
of the differences at the 13-year-old level (Population I) across the countries. Based
on the data from all the twelve FIMS countries, Steinkamp et al. (1985) again
reported that boys outperformed girls in 10 countries in overall mathematics
achievement, and in eight countries the differences reached statistical significance.
Husén (1967) further claimed that while the gender differences in favor of boys
appeared to be a global phenomenon, the differences in favor of girls were observed
within some countries, although overall, the differences were insignificant. Besides
test performance, Steinkamp et al. further identified three important contextual
variables for gender differences in mathematics learning including: student
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attitudes, the opportunity to learn, and the amount of homework. Compared to the
differences at the secondary school level, those at the pre-university level
(Population II) were greater (Keeves 1973). Harnisch et al. (1986) suggested that
the gender differences were pervasive across cultures, and that non-biological
factors played a role in determining the magnitudes.

Interestingly, the terms used in the discussion of differences between the sexes
changed from FIMS to SIMS (Second International Mathematics Study), with
“gender differences” gaining prominence over “sex differences”. Hanna (2000)
argued that such a change may imply that “gender” could be a term more appro-
priate for describing psychological, social, attitudinal, and cultural characteristics,
while “sex” could be one reserved for immutable biological characteristics.
The SIMS revealed that boys outperformed girls significantly in seven out of the 19
countries, girls outperformed boys significantly in four, and no significant gender
differences were found in the remaining eight countries (Baker and Jones 1993).
Based on the results, Baker and Jones pointed out that the gender differences in
SIMS varied in both size and direction among countries. Furthermore, Hanna
(2000) claimed that while the gender differences varied widely from country to
country, between-country differences were smaller than within-country ones.

In the Third International Mathematics and Science Study (TIMSS) at the fourth
grade, the mathematics achievements in most countries were approximately the
same for boys and girls, although in three countries statistically significance dif-
ferences were found in favor of males. Similarly, the differences at the eighth grade
level were also small or negligible overall. However, all the statistically significant
differences were consistently found to favor male students (in eight countries).
A rather different finding was revealed at the twelfth grade, where males in most
countries had significantly higher average achievement than females in both
mathematics literacy and in advanced mathematics.

Based on the review of gender differences in mathematics achievement from
FIMS to SIMS to TIMSS, Hanna (2003) proposed “the end of gender differences”
(p. 209). According to Baker and Wiseman (2005), among the countries partici-
pating in only the 1960s and 1990s assessments, and those in just the 1980s and
1990s assessments, the proportion of countries with statistically significant
male-dominated gender differences in mathematics scores declined from 33 to 9%
from the 1960s to 1990s, and from 35 to 18% from the 1980s to 1990s.

Such a diminishing tendency further continued in the later TIMSS studies. In
particular, most of the gender differences found in TIMSS 1999 were negligible,
and no country showed a significant increase in difference over time. In TIMSS
2003, gender differences in favor of girls matched gender differences in favor of
boys in terms of number and magnitude. TIMSS 2007 revealed negligible gender
differences at the fourth grade in roughly half of the participating countries; in the
remaining countries, girls had higher achievement in about half and boys had higher
achievement in the other half. Interestingly, at the eighth grade, TIMSS 2007 found
that, on average, girls had higher achievement than boys. In TIMSS 2011, female
fourth graders’ average mathematics score was only 1 point lower than that of male
students, while female eighth graders’ average mathematics score was 4 points
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higher than that of male students. Moreover, at the fourth grade, of the 50 partic-
ipating countries, about 24 had significant gender differences with all but four in
favor of boys; at the eighth grade, of the 42 countries, about 20 had significant
gender differences, with seven favoring boys and 13 favoring girls.

While TIMSS is more concerned about school curriculum related mathematics
achievement, PISA focuses on everyday skills-related mathematics achievement.
Based on the PISA data, Forgasz and Hill (2013) argued that the gap between boys
and girls on mathematics literacy had widened. It can be seen that in the first PISA
study, boys tended to perform at somewhat higher levels in most countries, with an
average gap of 11 points, and 17 out of the 42 participating countries (40.5%)
revealed statistically significant differences in favor of boys. The PISA 2003
mathematics assessment consistently revealed an overall gender difference of 11
score points in favor of boys. Of the 41 participating countries, 27 (65.9%) revealed
a gender difference in favor of boys, and one with a difference in favor of girls.
PISA 2006 similarly revealed more than 60% of the participating countries (35 out
of 57) having boys outperforming girls in mathematical literacy at a significant
level. In both PISA 2009 and PISA 2012, the proportions of countries with an
advantage in favour of boys in mathematics literacy went down to 61.4% and
56.9%, respectively. Researchers claimed that a wider gender gap among the least
and most able students was actually masked (OECD 2013b). In fact, in most
countries, the most able girls lagged behind the most able boys. For instance, in
PISA 2009 it was found that only 3.4% of girls compared to 6.6% of boys were at
the top performance in mathematics literacy.

Based on both the TIMSS and PISA databases, Baye and Monseur (2016)
analyzed gender differences, from an international perspective, from 1995 to 2015
via the use of effect sizes and variance ratios. The results showed that the sizes of
the gender differences varied according to student proficiency levels. In particular,
at the lower tail of the distribution, effect sizes were close to zero or in favor of girls,
while systematically at the upper tail, boys were more proficient. The largest gender
difference in mathematics literacy was observed on PISA 2003 for the most pro-
ficient students (i.e., percentile 95). Baye and Monseur claimed that such a tendency
was more obvious at the secondary level of education, and in PISA rather than in
TIMSS. In fact, at the eighth grade level, the TIMSS data revealed that the tendency
for boys to outperform girls at the upper end of the distribution had decreased over
time, which is consistent with the overall pattern.

43.3.3 Socioeconomic Status Equity

Regarding students’ socioeconomic status, PISA constructs a composite index,
Economic, Social and Cultural Status (ESCS), which is derived from three vari-
ables related to family background: highest level of parental education, highest
parental occupation, and the number of possession in the home. While information
about parental education and home possessions were also collected in TIMSS, the
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study constructed a composite index in a less consistent way. In particular, TIMSS
1999 and TIMSS 2011 created an index of Home Educational Resources
(BSDGHER), while in other years the emphasis in the investigation was more
focused on the item base.

In general, no matter whether the influence of students’ socioeconomic status on
their mathematics achievement was investigated via individual items or via a
composite index, all the TIMSS studies consistently revealed that students having
more books in the home and parents with more education achieved better scores in
mathematics. This pattern was observed in all of the participating countries and in
all of the years. On the other hand, the data also revealed that students at the high
level of Home Educational Resources were relatively rare in most countries.
In TIMSS 1999, there were just 9% of eighth graders in this category on average,
and their mathematics achievement was 109 score points higher than those in the
low category (19%). Similarly, in TIMSS 2011, about 17% of fourth graders were
in the high category (i.e., many resources), and their mathematics achievement was
109 score points higher than those in the low category (i.e., few resources: 9%);
about 12% of eighth graders were in the high category and their mathematics
achievement was 107 score points higher than those in the low category (20.5%).

PISA 2003 shows that although poor performance in school does not auto-
matically follow from a disadvantaged home background, home background
remains one of the most powerful factors influencing performance. The average
performance gap in mathematics between students in the top quarter of the PISA
index of occupational status and those in the bottom quarter amounts to an average
93 score points, which is more than one-and-a-half proficiency levels in mathe-
matical literacy. PISA 2012 confirms that in all countries, students from socioe-
conomically disadvantaged backgrounds show lower levels of mathematics
achievement than their better-off peers. In particular, the performance difference
between the advantaged (the top quarter of socio-economic status) and the disad-
vantaged (the bottom quarter of socio-economic status) students is 90 score points,
which is equivalent of more than two years of schooling and more than one PISA
proficiency level.

In order to investigate the influence of students’ socioeconomic status on their
mathematics achievement in both TIMSS and PISA, Adamson (2010) constructed
the SES index for TIMSS which mirrored the PISA index, although only including
the variables for home possessions and parental education, followed by assigning
students to SES quintiles. Taking national economic conditions into account,
Adamson found that when income per capita increases, students’ mathematics
achievement also increases for both low and high SES students. However, the
achievement differences between the two groups of students remained large. In
particular, the difference is about one SD on PISA 2003 and nearly three-quarters of
a SD on TIMSS 2003. Furthermore, the study revealed that country-level income
inequity interacted with SES in a way that partially negated the SES significance on
PISA. Comparatively, a straightforward relationship between income inequality and
achievement was shown on TIMSS, with increasing income inequality correlating
significantly with lower mathematics achievement in all models. In addition, as
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income inequality increased, high SES students achieved even higher mathematics
scores than their lower SES peers.

43.3.4 Immigrant Background Equity

While both TIMSS and PISA ask students about their birthplaces, as well as their
parents’, the two study series look into the issue in different ways. In particular,
PISA identified three immigrant backgrounds including: native students (who have
at least one parent born in the country of assessment), second-generation students
(who were born in the country of assessment but whose parents were foreign-born),
and first-generation students (who were foreign-born and whose parents were also
foreign-born). TIMSS also classified three immigrant backgrounds but with par-
ents’ birthplaces being the main indicators: native students (both parents born in the
country of assessment), half-and-half immigrant students (one parent born in the
country of assessment), and immigrant students (neither parent born in the country
of assessment).

Hastedt (2016) adopted PISA’s immigrant definitions to analyze trends in the
percentages of immigrant students in both fourth and eighth grades, as well as
achievement differences between immigrant and native students using TIMSS data
from the 1995 to 2007 cycles. The results showed that for both grade levels, the
percentage of immigrant students increased incrementally over the years. In par-
ticular, the first-generation immigrant population increased between 1995 and 2007
in a large number of countries. Regarding students’ mathematical literacy perfor-
mance, the data overall revealed that immigrant students were outperformed by
native students. For instance, in TIMSS 1995, native eighth grader students sig-
nificantly outperformed first-generation immigrant students in 17 out of 37 coun-
tries (46%), as well as second-generation immigrant students in 10 countries (27%).
The corresponding percentages of countries in TIMSS 1999, TIMSS 2003, and
TIMSS 2007 were 32 and 16%, 76 and 31%, and 76 and 38%, respectively.

PISA 2012 reported that across OECD countries, 11% of the students had an
immigrant background and they tended to be socioeconomically disadvantaged in
comparison to their native peers (OECD 2015). In the mathematical literacy
assessment, the students with immigrant background scored an average of 34 points
lower than native students, and an average of 21 points lower after accounting for
socioeconomic differences. In fact, immigrant students are 1.70 times more likely
than native students to perform in the bottom quarter of the performance distri-
bution. The achievement differences were even larger in PISA 2003, although the
percentage of students across OECD countries who had an immigrant background
was slightly lower (9%). In that year, immigrant students scored 47 points lower in
mathematical literacy than their native peers, and 33 points lower when controlling
for socioeconomic status. There is one promising finding from the comparison
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between PISA 2003 and PISA 2012: immigrant students’ socioeconomic status
profile was slightly more advantaged than that of immigrant students in 2003. This
appears to suggest that, on average across OECD countries, immigrant students face
less socioeconomic and performance disadvantage. On the other hand, the signif-
icant disadvantage in mathematical literacy performance was still evident among
immigrant students in PISA 2012.

Andon et al. (2014) did a quantitative synthesis of the immigrant achievement
gap across OECD countries using data from both TIMSS and PISA between 2000
and 2009. The study found a significant mean effect size for mathematics
(d = 0.38). Moreover, the analysis revealed a larger gap in TIMSS than PISA.
Andon et al. argued that this may be due in part to the type of content assessed, that
is, TIMSS evaluated formal mathematics knowledge, and PISA items are more
applied in nature and posed within real-world scenarios which require mathematics.
They suggested that immigrant students fared better on items that tell a story,
provide more context, and allow them to apply their experience and knowledge, as
in the PISA. Consequently, immigrant students performed less poorly on PISA than
on TIMSS relative to native students.

43.3.5 Concentration of Disadvantages Related to Inequity

It is suggested that underperformance of students with particular personal charac-
teristics can be partly linked to the fact that these students tend to be concentrated in
groups. For instance, immigrant students may settle in neighborhoods with other
immigrants when they move to a new country. Similarly, students with low
socioeconomic status may also more often group together. The potential result of
such a concentration is that large differences in student performance are likely to
exist at both the school and national levels.

Focusing on mathematics, two cross-national comparisons in students’
achievement outcomes have been conducted on the TIMSS and PISA, respectively.
With the analysis of the data from TIMSS 1995, TIMSS 1999, TIMSS 2003 and
TIMSS 2007, Zopluoglu (2012) found that the proportions of differences that
occurred at the student level were, in general, decreasing at both the fourth and
eighth grade levels. For instance, there was about 58% of the difference in fourth
graders’ mathematics achievement related to students’ individual differences in
TIMSS 1995, and the percentage decreased to 25% in TIMSS 2007. Although the
magnitude of the change was smaller, the shrinking pattern was also clearly
observed at the eighth grade (TIMSS 1995: 50% vs. TIMSS 2007: 36%).
Comparatively, the change in the proportions of school-level differences across the
years was smaller at the fourth grade level (TIMSS 1995: 16% vs. TIMSS 2007:
21%) and nearly maintained at the same level at the eighth grade level (TIMSS
1995: 25% vs. TIMSS 2007: 25%). In fact, a greater change was revealed at the
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national level. The proportion of national level differences at the fourth grade in
TIMSS 2007 (54%) is more than twice that in TIMSS 1995 (26%) and about 1.5
times that at the eighth grade (TIMSS 1995: 25% vs. TIMSS 2007: 39%).

Similar to Zopluoglu’s (2012) findings, Uno’s (2013) analysis with PISA
mathematical literacy data also revealed that the differences of students’ perfor-
mances largely occurred at the individual student level. However, some inconsis-
tences were also revealed in the PISA-based investigation. For instance, the
proportion of student-level differences nearly remained at the similar level from
PISA 2003 (56%) to PISA 2012 (54%). While Zopluoglu’s TIMSS-based study
found that the proportion of national level differences generally increased, Uno
reported that the differences in students’ mathematics performance in PISA
occurred at the national level decreased between 2003 (16%) to 2012 (10%). Two
differences in the research design between TIMSS and PISA may be related to these
results: content focus and grade level. More investigations are needed for clarifi-
cation. Furthermore, another common pattern can be found from Zopluoglu’s study
of TIMSS data and Uno’s study of PISA data. Both found that the differences at the
school level revealed a tendency to widen.

43.4 Final Remarks

It is clear that inequity in mathematics learning could be associated with individual
students’ personal characteristics (e.g., gender, family socioeconomic status,
immigrant background) and their combinations. Inequity is also related to the
countries, the schools, and the communities where the students are studying and
living, which, to a certain extent, can be regarded as a concentration of effects.
Although general large-scale international student assessments such as PISA and
TIMSS may not be the best means to pinpoint the origin of the differences in
students’ mathematics learning outcomes, they may be the best means to observe
changes in the differences in students’ mathematics achievement (Forgasz 2010).
Flores (2007) made a comment that efforts to document and eliminate the
achievement gap are appropriate and necessary, as achievement gap is more of a
symptom than a root issue.

On the other hand, while most equity-based mathematics education research
appears to focus on “gap gazing”, Lubienski and Gutiérrez (2008) have called for a
broader focus to address equity issues such as identity and experience. Referring to
Gutiérrez’s (2009) four-dimension model of equity, equity-based research in
mathematics education should move beyond the “dominant axis (i.e., access and
achievement) and include the “critical axis” (i.e., identity and power) so as to allow
students not only to play with mathematics but also to change mathematics.
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