
Jeffrey Zheng    Editor 

Variant 
Construction 
from Theoretical 
Foundation to 
Applications



Variant Construction from Theoretical Foundation
to Applications



Jeffrey Zheng
Editor

Variant Construction
from Theoretical Foundation
to Applications

123



Editor
Jeffrey Zheng
School of Software
Yunnan University
Kunming, Yunnan, China

ISBN 978-981-13-2281-5 ISBN 978-981-13-2282-2 (eBook)
https://doi.org/10.1007/978-981-13-2282-2

Library of Congress Control Number: 2018958351

© The Editor(s) (if applicable) and The Author(s) 2019. This book is an open access publication.
Open Access This book is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons licence and indicate if
changes were made.
The images or other third party material in this book are included in the book’s Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the book’s
Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copyright holder.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publi-
cation does not imply, even in the absence of a specific statement, that such names are exempt from the
relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

https://doi.org/10.1007/978-981-13-2282-2
http://creativecommons.org/licenses/by/4.0/


Dedicated to
I-Ching—First Variant Construction
Lan Z. Yin & Su M. Zheng—Mother & Father
Qing S. Gao—Mentor on Parallel Sorting
Algorithm & Computer Architecture
Tasiyasu L. Kunii—Master on Meta
Knowledge
Bob Beaumont—Adviser on Optimization
Ping Zhang—Wife
Graduate School of USTC & UCAS—40-th
Anniversary (1978–2018)



Foreword

Dr. Jeffrey Zheng was one of the first postgraduate students supervised by Prof.
Qingshi Gao (Member, Chinese Academy of Sciences) at the Institute of Computing
Technology, Chinese Academy of Sciences. I have known Dr. Zheng for 40 years
since then. Building upon his postgraduate work (Parallel Sorting Algorithm and 0-1
Transformation), Dr. Zheng has made significant contribution to the field of Variant
Construction, ranging from theoretical foundations to various applications. His
research has been published at many academic journals and conferences. For the
convenience of readers, Dr. Zheng compiled his representative works of 40 years
into two monographs with complementary contents. I believe that professionals in
related fields will find this book both an excellent reference and a source of inspi-
ration. Other readers will enjoy this book as an introduction to topics of Variant
Construction. I am very happy to recommend this book in the form of a foreword.

Beijing, China Yunmei Dong
April 2018 Professor, The Institute of Software

Chinese Academy of Sciences
Member, Chinese Academy of Sciences

As head of the R&D team for Lenovo Chinese Systems, I am very pleased to see
the research work of former colleague Dr. Jeffrey Zheng, which began 30 years ago
with the “Smoothly Enlarging Chinese Font Algorithm of 0-1 logic operations” at
the Institute of Computing Technology of the Chinese Science Academy. His most
recent work “Variant Construction” is summarized as a professional monograph.
I expect this new measurement system to be used efficiently for advanced crypto-
graphic tests in modern cyberspace security. I am pleased to give this foreword.

Beijing, China Guangnan Ni
April 2018 Professor, The Institute of Computing Technology

Chinese Academy of Sciences
Member, Chinese Academy of Engineering

vii



Dr. Jeffrey Zheng and I were in the first group of postgraduates major in Computer
Architecture at the Graduate School of the Chinese Academy of Sciences 40 years
ago. Professor Qingshi Gao (Member, Chinese Academy of Sciences) supervised
him in particular in the areas of parallel algorithm and computer architecture.

Dr. Jeffrey Zheng is one of the few classmates who continue to works in basic
research and advanced applications. It is great for Dr. Jeffrey Zheng to collect his
research work in a monograph. Variant Measurement Technology could be used in
the next generation of Quantum Cryptographic Communication Services.

On the occasion of the 40th anniversary of the Graduate School of Chinese
Academy of Sciences, I would like to express my good wishes as a classmate for
this monograph in the foreword.

Beijing, China Guojie Li
April 2018 Professor, The Institute of Computing Technology

Chinese Academy of Sciences
Member, Chinese Academy of Engineering
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Preface

Associated with the fast development of science and technology in the twenty-first
century, the modern computer and communication system in optical fiber com-
munication supporting the global Internet shows profound influence on society and
economy. As a result, globalization has become an extremely important issue in
social and economic systems. The Internet and optical fiber communication systems
have revolutionized the geographic and communication patterns of the world, by
creating an open era of integrated global Internet connectivity. Quantum key
communication technology and quantum entanglement experiments on a quantum
satellite represent typical examples of China’s world-leading science and technol-
ogy from the perspective of frontier application research. The latest achievements of
artificial intelligence, which is the lead of Alpha-Go, show the potential intelligence
prospect of advanced technology based on deep learning, artificial neural networks,
and knowledge-based support vector machine systems. Related achievements are
very attractive, such as poetry robots, service robots, industrial robots, face
recognition, gesture recognition, unmanned aerial vehicles, self-driving cars, and
unmanned underwater vehicles. A list of military and civilian high-tech achieve-
ments supports daily life with rich and colorful intelligent products.

From the viewpoint of mathematics and logics, the foundation framework to
design and simulate both modern computer systems and optical fiber communi-
cation networks is dependent on the 0-1 logical system and representations of
multiple bit states. For integrated circuits, the theoretical basis can be traced back to
the 1930s. Shannon developed the Boolean algebra to design circuits establishing
switch circuit theory, Turing proposed the Turing machine, and von Neumann
established a modern computer architecture. After more than 50 years of devel-
opment follows Moore’s Law: the observation that the number of transistors in a
dense integrated circuit doubles approximately every 2 years. Optimization of very
large-scale integrated circuit technology appears everywhere with evolution of
magical functions.
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Looking ahead, the development of advanced science and technology is subject
to the limitations of basic theory and applications on foundational supports. From
the perspective of basic research, how we can extend this classical level is a very
interesting issue and an extremely difficult research topic.

Purpose of This Book

After four decades of deep exploration on 0-1 logical systems, the authors expended
vector 0-1 logical systems to establish a variant logic framework in 2010. After
further research and development for one decade, three theoretical components
were established: variant logic, variant measurement, and variant map. At the same
time, various sample applications were investigated and developed. However,
because most published papers are scattered in professional journals, conference
proceedings, and academic books, it is difficult for other people to obtain com-
prehensive information on the topic.

In addition, each article may be focused on a specific issue, and it is difficult for
readers to understand the whole structure from a few papers. We are going to
organize relevant papers in this book, which will be the first book on variant
construction with intrinsic logical connections on the selected papers. Selected
papers are composed of different parts. Based on this architecture, different readers
can easily access suitable content from specific chapters.

The Need for a New Logic System

In modern computer and communication systems, the theory of switch circuits uses
multiple bits, states, and logic operations for state automata and combinatorial logic
units to design and implement complex computing and communication systems.
For solving linear equations with n variables as algebraic equation, Boolean
equation or differential equation, it is useful to apply a matrix associated with a set
of eigenvectors. Matrices and eigenvalues are valid to provide solutions on periodic
problems of special basis in periodic functions or periodic boundary conditions.
However, it is difficult for periodic models to resolve exhaustive cases on the
conditions of quasi-periodic, nonperiodic random, and chaotic forms. For example,
modern cryptographic generation/analysis systems such as block ciphers are
dependent on a Substitution–Permutation Net (SPN). This type of network con-
nection on n bit vectors of input/output transformation includes permutation
operations, where the total number of configuration functions is proportional to 2n!.
From a measuring viewpoint, cryptographic sequences need to have relevant
measurements, analysis models, and methods with huge complexity far beyond
based on state automata and combinational logic circuits.
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Modern digital computing and communication technologies are based on clas-
sical logic systems, the global Internet network with huge amounts of data models,
deep learning, artificial neural networks, and knowledge–based vector support
machines cannot meet internal states of exponentially increased models. Although
Fourier transform and wavelet transform are the most important tools for modern
spectrum analysis, there are significant limitations for this type of periodic schemes
to process arbitrary random state and aperiodic types of complex functions in big
data environments. It is difficult for random applications to obtain the convergence
results. Quantum mechanics and modern photonic–electronic applications are
confirmed the effectiveness of this frontier science.

Nobel Prize Winner G. t’Hooft proposed a cellular automaton interpretation of
quantum mechanics. The research results show that there is a commonplace
overlapped between classical logic and quantum mechanics, at the Planck scale in
10−43 range. It is necessary to use 0-1 vectors in permutation condition to represent
quantum states. From a counting viewpoint, the complexity of such structures is
related to 2n!.

In classical statistics, the Ising model provides an analysis mechanism on 0-1
states. Based on the assumption of exhaustive states, an exact solution can be
compared with the average field on one- and two-dimensional lattices. In general,
whether there is an exact solution under the condition of random permutation
distribution is an interesting topic worth further exploration. Modern experiments
made good progress in advanced nanotechnology, fiber optics, laser photonics, and
ultrafast laser pulse in quantum optics technology. Advanced experiments in nan-
otechnologies can be used to distinguish a series of the quantum block/surface/line
and dot macro- to nanostructures, and relevant emission and absorption spectrum
can be observed. Both wider continuous spectrum of thermal noises and narrower
discrete spectrum of coherent laser beams are observed. In current research prob-
lems, the measurement models and methods discussed are far different from the
quantum scale, and all results can be described in modern probability statistics.
However, the complex operation associated with the shift operations on the phase
space of permutations, modern statistical probability methods, and tools have dif-
ficulties to handle symmetric groups directly with arbitrary random permutation
requirements.

The advanced Quantum Key Distribution (QKD), from a stochastic analysis
viewpoint, needs to have effective measurement model and quantitative method to
identify the source of a random sequence. Is it generated from a quantum random
resource as a truly random sequence or a stream cipher as a pseudo-random
sequence? It is impossible to make a classification use the NIST random testing
package. This type of targets is also impossible to apply spectrum analysis and
linear equation tools. More advanced models and methods are required.

For a 0-1 vector with multiple bits, analysis tools use classical probabilistic
statistical models and methods. Since the specific problem of randomness testing is
far beyond the combinatorial analysis and state automata, it is difficult to handle the
demand of actual measurement and quantitative analysis due to ultra-complexity
of the substitution and permutation on complicated modes. Similar to modern
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physics applying classical statistics, it is necessary to establish a solid logic foun-
dation to support permutation and substitution operations in logic mechanism to
make extension of analytical frontier to support both theoretical foundation and
practical applications.

From mathematical logic, automatic control, quantum mechanics, artificial
intelligence, etc., using probability and statistics, the demand for random sequence
analysis and measurement uses the n variable 0-1 vectors and their linear combi-
nation cannot meet measurement requirements on various applications. Modern
measuring methodology and technology need to use permutation and substitution
operations on different levels of logic foundation to satisfy the frontier measure-
ments on quantum physics, cryptographies, and artificial intelligence. From a
measuring viewpoint, the emergence of a new measuring system is urgently
required to deal with advanced applications.

Overview of Modern Group Theory

From a discrete representative viewpoint, every abstract group is isomorphic to a
subgroup of the symmetric group of some set (Cayley’s theorem) and permutations
are the core basis in modern group theory.

The beginning of modern group theory can be traced back to Galois’ contri-
bution in the 1830s; Klein studied transformation group in the 1870s to propose
Erlangen program to show the group theory as an invariant structure for symmet-
rical patterns and transformations. Inspired by Klein, Lie used infinitesimal sym-
metry transformations to establish a Lie algebra system.

Using the multiple tuples of variable structures, Hamilton proposed complex and
quaternion expressions. Influenced by Gordon on invariant formula, Hilbert using
finite basis constructed a complete system of an algebraic structure on n variables.
In 1906, an infinite-dimensional Hilbert space of complex variables was developed.
Based on the series of automorphic functions, Poincáre was the first person to
discover a chaotic deterministic system which laid the foundations of modern
complex dynamic system, fractal and chaos theory.

Through Noether’s investigations on Einstein general relativity to determine the
conserved quantities for every physical laws that possess some continuous sym-
metry as Noether theorem. A series of studies on invariants and symmetries were
promoted the development of abstract algebra in the 1930s by refining algebraic
structures as groups, rings, algebras, fields, and lattices.

In the 1930s, Weyl established the group theory of quantum mechanics; the
theoretical basis of quantum mechanics was established based on the symmetry
operator. Since the 1940s, Hua developed a complex matrix representation under
symplectic group using the unit circle as the core. In the 1950s, Yang proposed the
gauge invariance that plays a foundation role in modern field theory. Chern
established the fiber bundle structure for the differential geometry of the complex
function.
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From 1980s, the gauge field theory became the basic mathematical tool of
modern physics. The eightfold/tenfold way of quark model plays a key role in the
standard model of particle physics and the exploration of grand unified theory; the
corresponding group structures are SU(3)/SU(5).

Brief History on 0-1 Logic Systems

From the perspective development of mathematical logic, the origin of the modern
0-1 logic system can be traced back to Leibniz’s invention on binary counting and
combinatorial analysis in the 1670s. In the 1850s, Boole proposed Boolean algebra;
in the 1900s, Logic school made logic as the foundation of modern mathematics.

In the 1930s, Gödel proposed incompleteness theorem to be unprovable in a
given formal system for Hilbert’s decision problem. In 1936, Turing used infinite
length of 0-1 sequence with read/write operation to be the Turing machine. Under
Church’s Lambda calculus, the Church–Turing thesis lays the theoretical founda-
tion of computable and recursive theory.

Using 0-1 variables and logic operators, Shannon in 1937 proposed switch
theory to provide module design, simulation, and implementation bases for modern
computers and communication systems of technical supports. After more than half a
century revolutionary development of semiconductor chips, electronic circuits from
discrete separated components to integrated circuits, and then very large-scale
integrated circuits, switch theory provides solid foundation on the basic theory,
application analysis, and design tools.

Although the modern logic system was original developed from Leibnitz, use of
permutation modes in state transformations can be traced back ancient time for
several thousand years ago in oriental history. In the I-Ching system developed
from the early days, Yin and Yang’s representations are identified as the roots. Five
thousand years ago, Fu-hsi proposed eight trigrams as an initial set that can be
represented as eight states of three 0-1 variables. Using modern mathematics, one
can see that the representations of the three layers of trigrams of Yin/Yang are
equivalent to the eight diagrams and eight states of three 0-1 variables. Three
thousand years ago, King Wen of Zhou dynasty proposed another order of eight
trigrams to be different from Fu-hsi, that is, a permutation of the Fu-hsi group. In
the 1050s, Shao Yung proposed a balanced binary tree as a natural order of a binary
system same as the Leibniz binary counting.

Ancient Oriental philosophers have developed the logical foundation of Chinese
traditional culture using this Yin/Yang symbol system. However, it must be pointed
out that subsets of states are contained in this system with various logic paradoxes
at different levels. This dialectical logic system based on the I-Ching is difficult to
meet a list of important characteristics in formal logic: consistency, completeness,
noncontradiction, soundness, etc.
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Modern 0-1 Vector Algebra

For using 0-1 vectors and logic operators in vector operation mode, it is a natural
way to extend parallel bit operations from a single bit to multiple bits. In addition,
in order that bit operations can be effectively performed on multiple bits, it is
necessary to implement permutation operations among bits. It is convenient to
define a pair of bits with a fixed distance and cyclic shift operations on a given
vector.

In the 1970s, Lee described cyclic shift operations in Modern Switch Circuit
Theory and Digital Design. From the formula of vector switching functions, the
canonical forms of vector switching functions are extremely complex and very
powerful transformations.

Associated with the advanced development on block ciphers in cryptography, a
new vector extension has been developed as Advanced Vector Extensions (AVS).
Specific development of the new instruction for AES cipher algorithm is AES-NI
package, which shows the latest achievements for block ciphers.

Under this type of vector permutation–substitution components, complex cryp-
tographic algorithms can efficiently perform encryption and decryption require-
ments under permutation and substitution commands.

Introduction to Variant Construction

In the 1980s, the author studied the sorting problem on a vector of N integer ele-
ments using the symmetric group under 0-1 vector control, and constructed
high-performance parallel sorting algorithms. Then, smoothly enlarging algorithms
for Chinese fonts were proposed using logic operations on 2D bitmaps. In the
1990s, multiple levels of invariants were used to organize a state set as a phase
space, and the conjugate classification and transformation of binary images was
established.

In 2010, a new vector logic system was proposed using two composite opera-
tions: permutation and complement, to form a new vector logic system: Variant
Logic. After 8 years of in-depth exploration, the variant construction is composed
of three core components: variant logic, variant measurement, and variant map.

Using four meta states, multiple probability and statistical measurements can be
constructed. By associating these measurements with quantitative expressions and
combinatorial projections, more than 60 research papers and book chapters were
published. Relevant contents are covered from theoretical foundation to sample
applications. Since all these papers are published in various places all over the
world, it is difficult for readers to systematically collect them for further reading.
This book is the first one to collect the most relevant papers from theoretical
foundation to sample applications to organize the variant construction as variant
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logic, variant measurement, variant map, meta model, and sample application
systematically.

The Organization of This Book

This book is composed of nine subparts in two main parts: theoretical foundation
and sample application. The theoretical foundation is composed of four subparts:
Variant Logic, Variant Measurement, Variant Map, and Meta Model.

Variant Logic describes n variable 0-1 vectors with 2n states which form a
variant configuration space with 2n!22

n
members.

Variant Measurement defines on n tuple 0-1 vectors, four meta measures, and ten
expansion operators established.

Variant Map illustrates 2n states and 22n transforming states, and multiple sta-
tistical probability distributions are investigated using four meta measures and their
combinations in higher dimensional distributions.

Meta Model describes a concept cell model of knowledge representation and a
multiple probability model on voting.

The part of ample application is composed of five subparts: Global Visualization,
Quantum Interaction, Random Sequence, DNA Sequence, and Multi-valued Pulse
Sequence. In Global Visualization, a list of function maps is used on medical image
analysis, cellular automata rule space on exhaustive arrangement. In Quantum
Interaction, conditional and relative probability distributions simulate two paths of
quantum interactive effects. Random Sequence provides variant random number
generators, a unified measurement model to handle both pseudo and truly random
sequences in modern cryptographic applications on variant maps. In DNA
Sequence, whole gene sequences are mapped on variant maps. In Multiple-valued
Pulse Sequence, bat echo/ECG sequences are mapped on variant maps.

Suitable Readers of This Book

This book includes a wide range of topics from theoretical foundation to sample
applications. Different parts may be suitable for specific groups. Variant Logic,
Meta Model, and Variant Measurement are useful for basic researchers on logic,
probability, statistics, analysis, and measures on mathematical foundation, combi-
natorial mathematics, metamathematics, quantum logic, and combinatorial group
theory on levels of researchers and graduate students; Variant Measurement and
Variant Map are suitable for application researchers and engineers in big data,
complicated system analysis, feature extraction, artificial intelligence, applied
mathematics, software engineers, senior college students, and postgraduate

Preface xv



students; Variant Map and sample applications are suitable for requirements of
complex system analysis/design, data engineer, big data engineer, artificial intelli-
gence engineer, application development engineer, postgraduate, and senior
undergraduate students.

Kunming, Yunnan, China Jeffrey Zheng
April 2018
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Part I
Theoretical Foundation—Variant Logic

I-Ching has three key properties: 1. Simple, 2. Variant, 3. Invariant.

—Zheng Xuan

The Monad, of which we shall here speak, is nothing but a simple
substance, which enters into compounds. By simple is meant without
parts.

—Gottfried W. Leibniz

Quaternions came from Hamilton after his really good work had been
done, and though beautifully ingenious, have been an unmixed evil to
those who have touched them in any way.

—Lord Kelvin

From a historical viewpoint, the first paper of variant logic foundation (A frame-
work to express variant and invariant functional spaces for binary logic) was
published in Frontiers of Electrical and Electronic Engineering in China, Higher
Education Press and Springer 5(2):163–167 (2010). An extensive book chapter
(Chapter “A framework of variant-logic construction for cellular automata”) was
published in the OA book of Cellular Automata—Innovative Modelling for Science
and Engineering:325–352 (2011) by InTech Press to describe a variant logic
framework systematically.

The Part I is composed of two chapters (1–2).
Chapter “Variant Logic Construction Under Permutation and Complementary

Operations on Binary Logic” is shown the core construction of variant logic under
two vector operations (Permutation, Complement) on 0-1 logic.

Chapter “Hierarchical Organization of Variant Logic” describes complex hier-
archical organization under variant logic construction to compare with other logic
systems.
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work is described using 4 levels of hierarchy: n variables, 2n states, 22

n
functions,

and 2n!22n
logic functionals. Under the proposed framework, it is possible to de-

termine higher level function complexity by analysing lower levels of organisation
characteristics. These characteristics can be determined quite accurately because the
symmetry conditions of variable and state organisations have invariant logic functions
and a corresponding logic functional organisation.More symmetrical arrangement at
state level creates more symmetrical permutations within the function space. Lower
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1 Introduction

Mathematical invariance [1, 2] is key in the understanding and development of new
scientific theories and technologies [3]. Most scientific theories rely on invariant
properties of group behaviour and transformations [4] to describe the rules of the
world we live in. Theories such as relativity and quantum mechanics all rely on
invariance properties for their constructs [5]. In the field of mathematical logic,
construction of theoretical frameworks [6, 7] focus upon three hierarchical levels:
variables, states and function spaces. Boolean algebra and switching theory [8, 9]
exploit combinatorial invariant properties, and use these foundational properties for
implementing new theories and applications.

For reasons of consistency and symmetry of structure, logical operations are
restricted to two types of canonical forms namely, the product-of-sums and the sum-
of-products approach. Any complex logic function can be rewritten as these two
canonical forms. The use of a truth table enables analysis and the transformation into
the canonical representations [6].

Following the introduction of Conway’s Game of Life [10], Stephan Wolfram
from the 1980s [11, 12] started to apply Boolean algebra to describe the behaviour
of Cellular Automata. His approach used a binary counting sequence to naming
different rules of behaviour based upon the functions generating the next iteration
in the game. Wolfram identified four classes of transformations within the rules of
Cellular Automata (CA). Results of findings are published in his book [13]—“ANew
Kind of Science”. The main method of analysis in this area of research chooses a CA
operation, recursively applying the operation to different initial conditions to find
emergent patterns from the process. This approach creates many interesting results
that can be visually identified [14, 15].

In the analysis of dynamic systems, it is essential to identify transformation spaces
with functional invariance [16, 17]. An example in physics is phase space [2]. The
phase space plays an essential role to describe key properties of a given dynamic
system. Phase characteristics are more difficult to construct under a logic framework.
A mechanism for linking lower level characteristics with higher levels properties
such as symmetry currently does not exist. Under combinatorial logic, different
permutations add no additional information to access information in phase space
[14].

1.1 Western and Eastern Logic Traditions

Beginning with Aristotle (384–322 B.C.), the foundations of Western logic have
played a key role in the development of today’s global society [18]. The modern
theory of logic systems comprise of a series of outstanding individuals and their
contributions to the theory of logic: G. Leibniz and the introduction of the Binary
Number System (1646–1716) [19, 20]; G. Boole and the development of Boolean
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Logic (1854) [21]; G. Cantor and Set Theory (1879); G. Frege and Conceptual
Logic (1879) [22, 23]; B. Russell and Russell’s Paradox (1910) [24]; J. Lukasiewicz
and Multiple-Valued Logic (1920); D. Hilbert and Foundations of Geometric Logic
(1923) [25], K. Gödel and his Incomplete Theorem (1931) [22], A. Turing and the
Turing Machine (1936) [26]; C. Shannon and Switching Theory (1937) [27]; H.
Reichenbach and Probability Logic (1949) [28]; as well as L. Zadeh and Fuzzy
Logic (1965) [29]. Development of such theorems and mathematical frameworks
have enabled Western culture to understand the operation of our world as a set of
implementable rules. Logic and the development of rules for the expression of logic
have provided a language that enabled the construction of today’s scientific societies.

In contrast to the binary on–off nature ofWestern logic, Oriental culture have been
influenced by spiritual traditions of balance and harmony. The theme of balance can
be summarised in the I-Ching or ‘The Book of Changes’, one of the most influential
books of classic Oriental literature [30–37]. The concept of Yin and Yang forces
and the subtle interplay of the two opposing forces yield combinations and permu-
tations of change. Orient philosophy believed that ‘the only constant phenomena is
change’ and such a worldview emphasised the dynamic nature of a system; rather
than focusing on the individual states of a system (on, off), prominence was instead
placed on operations that yield change (on to off, off to on). The structure of thought
introduced by the I-Ching allowed change to be systematically documented and anal-
ysed. Complex interactions, cyclic behaviour and the interplay of nature at all levels
of oriental culture—sociology, literature, medicine, astrology and religion—were
able to be described using the tools of dynamic logic provided by the I-Ching; the
framework remains a complete philosophy as well as a universal language and has
remained unchanged over the past two thousand years [38].

Leibniz in as early as 1690 realised that the balanced yin–yang structure proposed
by Shao Yong (1050) was equivalent to the binary number system [33, 38]. However
the Western scientific community have mostly disregarded the I-Ching; due mainly
to cultural and language barriers as well as local superstitions that cloud the essence
of the framework. In its ancient form of allegories and metaphors, the I-Ching is
unable to satisfy the logician’s requirement for completeness, consistence and other
such properties. The challenge then is to be able present this philosophy for modern
times, in the language of mathematics. Stripped of its colourful language, what
insights does this ancient system contain?What are the essential differences between
modern binary logic and the I-Ching’s dynamic binary structures? The unification
of these two schools of thought would bring greater understanding of the world we
live in [35]. As the modern formulation of Cellular Automata generates complexity
through binary logic whilst the I-Ching analyses complexity though binary logic, the
modern language of the I-Ching can be found in the creation of a structural definition
of CA.
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1.2 Logic and Dynamic Systems

In the field of mathematical logic, construction of theoretical frameworks focus upon
three spatial hierarchies: variables, states and function spaces [6, 7]. Boolean algebra
and switching theory exploit such properties, using the combinatorial invariance
of the framework for implementing new theories and applications [8, 9]. Logical
operations are restricted to two types of canonical forms, namely the product-of-sums
and the sum-of-products approaches. Any complex logic function can be rewritten
as these two canonical forms. This is done for reasons of consistency, simplicity
and symmetry of structure; as such the use of a truth table enables analysis and the
transformation into the canonical representations [6].

In the analysis of dynamic systems, it is essential to identify transformation spaces
with functional invariance [16, 17]. The Ising model is arguably the simplest binary
system that undergoes a nontrivial phase transition [14]. In modern physics, this
type of model uses a structure linked to phase space representation of a dynamic
systems [2]. The phase space plays an essential role to describe key properties of any
dynamic system, however under classical logic, phase characteristics are difficult to
construct. A mechanism for linking low-level representations such as variables and
states with higher level group properties such as symmetric conditions currently does
not exist. This is more a limitation of the language and the operations allowed by the
language. Classical logic is based on static combinatorial structures. Permutations,
which are intrinsic to phase space, cannot be expressed under such a framework
of classical combinatorial logic [14]. Cellular Automata frameworks [39], however,
are fully dynamic and have been used to describe phase space [2]. Inspired by the
traditional I-Ching hierarchical structures, new conditions, operations and relation-
ships have been proposed on top of the Classical Logic framework to incorporate
the dynamic nature of CA. The additional constructs provide support for CA using
framework that is logically consistent and complete [40].

The [40] proposal builds upon earlier studies of logic systems from a structural
viewpoint. Kunii and Takai [41] applied a n-cell structure for analysis, classification
and generation of visual objects using topology and homotopy tools in computer
graphics [42–46]. Zheng and Maeder [47] proposed a balanced classification on
binary images for conjugate classification and transformation of binary images on
regular plan lattices in 1990s to visualise different configurations [15, 48–50]. All
such work used partial constructs of the [40] framework. The proposed framework
supports classical logic, vector permutation and complementary operations. The new
construction requires five spatial hierarchies containing 22

n × 2n! functional config-
urations for any n variables. This structure is much larger than classical logic having
three spatial hierarchies supporting 22

n
functions for n variables. Newly defined sym-

metric properties play an important role in predictions and classifications of possible
recursive results. Using such properties, global behaviour can be identified and clas-
sified. A disadvantages of the new framework lies in its extreme complexity. It is
possible to use parallel computers to do analysis of the configurations contained by
n = 3 (the space already includes more than 107 configurations). It is impossible
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using today’s technology to process the n = 5 space due to the extreme growth of
structural complexity (232 × 32! configurations).

This chapter describes a logic framework, using invariant characteristics of per-
mutations and complementary operations to identify an invariant structure under such
mixed operations. This allows the definition of a phase space to be introduced into
logic. The transformation does not change the relevant function space. A proposed
2D representation provides additional properties to predict different behaviours from
permutations that influence higher level structures in a logic functional space.

2 Truth Table Representation for a Logic Function Space

The proposed framework describes three levels of a logic function space and the
truth table representation of the space.

2.1 Basic Definitions

f : X → Y ; Y = f (X); X, Y ∈ B N
2

X = X N−1X N−2 . . . X j . . . X1X0, Y = YN−1YN−2 . . . Y j . . . Y1Y0

X j , Y j ∈ B2, 0 � j < N

(1)

An example of a transform: the sequence X = 0001110100, N = 10 is an input for a
function operation f , the output is a sequence of the same length Y = 1101011001;
X, Y ∈ B10

2 .

Definition 1 Let . . . X j . . . be a n bit structure:

. . . X j . . . = xn−1xn−2 . . . xi . . . x1x0 = x

0 � i < n, 0 ≤ j < N , x ∈ Bn
2

(2)

where X j = xi is a corresponding position.

Y j = f (. . . X j . . .) = f (xn−1xn−2 . . . xi . . . x1x0) = f (x) (3)

In Boolean logic, n variables correspond to a full truth table with 2n × 22
n
entries.

The I th meta-state 0 ≤ I < 2n has n-bit number to occupy the I th column position,
the J th function T (J ) has the J th row with 2n bits 0 ≤ J < 22

n
, the function value

of the I th entry is determined by T (J )I . The full table can be represented as follows
(Table 1):
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Table 1 Truth Tables of n-variables

Method 1: Process Method of Truth Table

Input: x : n variables in a {0, 1} sequence, J : selected function number

Process: Using the input sequence x, the meta-state number I is to select

the I -th column of function T (J )

Output: Return T (J )I ’s value (1 for true and 0 for false) as output.

2.2 Permutation Invariants

Proposition 1 Sequential Mapping Under sequential order, T (J ) = J .

Proof The relevant output entries of T (J ) aremapped to the binary number J having
2n bits:

T (J ) = T (S2n−1(J2n−1)) . . . T (SI (JI )) . . . T (S0(J0))

= T (J )2n−1 . . . T (J )I . . . T (J )0 = J ∈ B2n

2

T (J )I = T (SI (JI )) = JI ∈ B2; 0 ≤ I < 2n, 0 ≤ J < 22
n

(4)

�

Definition 2 For any n binary logic variables, let Ω(N ) be a symmetric group with
N elements and P be a permutation operator, P ∈ Ω(2n), then for any J, ∃K , J, K ∈
B2n

2 , P(T (J )) = K , 0 ≤ J, K < 22
n
, the following permutation can be represented

in Truth Table form:

P : J → K

P(T (J )) = P(T (S2n−1(J2n−1))) . . . P(T (SI (JI ))) . . . P(T (S0(J0)))

= P(T (J )2n−1) . . . P(T (J )I ) . . . P(T (J )0)

= K2n−1 . . . K I . . . K0 = K ∈ B2n

2

P(T (J )I ) = P(T (SI (JI ))) = T (SP(I )(JP(I )))

= T (J )P(I ) = JP(I ) = K I ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22
n
, P ∈ Ω(2n)

(5)
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Proposition 2 The Truth Table under permutation operation on 2n meta-states can
generate 2n! sequences for 22

n
length of integers.

Proof For any P ∈ Ω(2n), 2n are independent, it is composed of Ω(2n)

elements. �

For the one-variable condition (i.e. n = 1), there are only two possible arrange-
ments. The initial sequence is represented as S = S1S0 = 10, and a permutation
operation generates the output P(S) = S0S1 = 01. The following shows two groups
of results:

For any permutation operation, the function T (J ) = P(T (J )) is always invariant.
The inequality J �= K = P(J ) holds in general.

3 Fourth Level of Organisation

Building upon the three levels (variables, states and functions), a fourth level of
organisation is introduced.

3.1 Complementary Operation

Definition 3 Complementary Operator, for any binary (0–1) variable y ∈ B2, let the
relevant index δ ∈ B2 be a complementary operator:

yδ =
{

ȳ δ = 0

y δ = 1
(6)

Definition 4 Complementary Function Operation, for any n variable function of
2n meta function vectors S = S2n−1 . . . SI . . . S0 LetΔ = δ2n−1 . . . δI . . . δ0, 0 ≤ I <

2n, δI ∈ B2,Δ ∈ B2n

2 .

For this type of complementary operations on function, Δ is
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Δ : T (J ) → K ; J, K ∈ B2n

2 , 0 ≤ J, K < 22
n

SΔ = S
δ2n−1

2n−1 . . . SδI
I . . . Sδ0

0 , SI ∈ Bn
2

T (J )Δ = T (S
δ2n−1

2n−1(J2n−1)) . . . T (SδI
I (JI )) . . . T (Sδ0

0 (J0))

= T (J )
δ2n−1

2n−1 . . . T (J )
δI
I . . . T (J )

δ0
0

= K2n−1 . . . K I . . . K0 = K ∈ B2n

2

T (J )
δI
I = T (SδI

I (JI )) = J δI
I = K I ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22
n
, δI ∈ Δ

(7)

3.2 Invariant Logic Functions Under Permutation and
Complementary

Definition 5 Permutation andComplementaryOperations. For anyof then variables
expressed as 2n meta vectors, Complementary Operations Δ ∈ B2n

2 and Permutation
Operations P ∈ Ω(2n) are expressed as

(P,Δ) : T (J ) → K ; J, K ∈ B2n

2 , P ∈ Ω(2n),Δ ∈ B2n

2

P(T (J )Δ) = P(T (S
δ2n−1

2n−1(J2n−1))) . . . P(T (SδI
I (JI ))) . . . P(T (Sδ0

0 (J0)))

= P(T (J )
δ2n−1

2n−1) . . . P(T (J )
δI
I ) . . . P(T (J )

δ0
0 )

= K2n−1 . . . K I . . . K0 = K ∈ B2n

2

P(T (J )
δI
I ) = P(T (SδI

I (JI ))) = J
δP(I )

P(I ) = K I ∈ B2

0 ≤ I < 2n, 0 ≤ J, K < 22
n
, P ∈ Ω(2n), δI ∈ Δ

(8)

3.3 Logic Functional Spaces

Theorem 1 (Logic Function Invariants under Permutation&Complementary Oper-
ations) For any logic function, the output of Method 2 provides an equivalent output
as the original Truth Table under all conditions.

Proof A J th row on the permutation and complementary table of P(T Δ) for any
I ∈ Bn

2 , J ∈ B2n

2 is constructed by

P(T (J )ΔI ) = T (J )
δP(I )

P(I ) =
{

¬T (J )I δP(I ) = 0

T (J )I δP(I ) = 1
(9)
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After using Method 2, the results are shown:

P(T (J )ΔI ) =
{

¬¬T (J )I = T (J )I δP(I ) = 0

T (J )I δP(I ) = 1
(10)

�
Theorem 2 (Permutation Group for Meta Function Vector) For 2n meta function
vectors, a total of permutation numbers is 2n!.
Theorem 3 (Permutation & Complementary Structure) Under permutation and
complementary operations, a total of 2n!22n

permutations can be generated to form
a logic functional space for the n variables.

4 Different Coding Schemes: One- and Two-Dimensional
Representations

The initial step to construct a series of logic functionals. Permutation and com-
plementary differences can be shown in the proposed invariant function structures.
Different coding schemes under different symmetric restrictions are established. Four
schemes are described, in which one of them is in one-dimensional representation
and other three schemes are two-dimensional representations. For binary sequences
in sequential counting order, the scheme is known as the SL (Shao Yong & Leibniz)
coding scheme.
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4.1 G Coding

The General Code (G) is used to map permutation & complementary operations. For
any state in the G coding scheme having 2n bits,

G : (J,Δ, P) → K ; J, K ∈ B2n

2 ;Δ ∈ B2n

2 , P ∈ Ω. (11)

4.2 W Coding

From the G coding scheme, their bit numbers are separated into two equal parts in
the same bits to form a 2D representation. This mapping mechanism can represent a
function space as a W coding scheme.

W : (J,Δ, P) → K = 〈J 1|J 0〉
J, K ∈ B2n

2 ; J 1, J 0 ∈ B2n−1

2 ; S1, S0 ∈ S,Δ ∈ B2n

2 , P ∈ Ω
(12)

Under this representation, a given logic functional for the function space is illustrated
as a fixed matrix.

{W (J )}22n

J=0 =

〈0|0〉 . . . 〈0|J 0〉 . . . 〈0|22n−1 − 1〉
. . . . . . . . .

〈J 1|0〉 . . . 〈J 1|J 0〉 . . . 〈J 1|22n−1 − 1〉
. . . . . . . . .

〈22n−1 − 1|0〉 . . . 〈22n−1 − 1|J 0〉 . . . 〈22n−1 − 1|22n−1 − 1〉

(13)

0 ≤ J 0, J 1 < 22
n−1; 0 ≤ J < 22

n

In the one-variable condition, there are eight cases in their logic functional spaces
as follows:
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For better visualisation and expression, the one-dimensional G coding scheme is
converted into a two-dimensional W coding scheme.

W =

Truth Δ-Variant
0 x̄ x 1
x 1 0 x̄
x̄ 0 1 x
1 x x̄ 0

Δ-Invariant False

PW =

Truth Δ-Variant
0 x x 0
x̄ 1 1 x̄
x̄ 1 1 x̄
0 x x 0

Δ-Invariant False

4.3 F Coding

Using 2D representation, symmetric condition can be added to arrange meta-states
into specific order. For each pair of states in W, if they satisfy following condition,
then a refined code: F coding scheme is determined.

J 1 the I th meta-state � J 0 the I th meta-state
	 F coding scheme 	

X ∈ S1 � X̄ ∈ S0

4.4 C Coding

In addition to a pair of states in complementary relationship, further structure is
introduced onto F code. When the pair of states in F have the same values in their
i th position, they form a C coding scheme.

S1 the I th � S0 the I th F coding scheme
	 C coding scheme 	 +

∀xi ∈ S1, xi = 1(0) � ∀xi ∈ S0, xi = 0(1) general conjugate

The C coding scheme, have the strongest symmetric conditions available. Only
a relatively small number among the three invariant groups can be identified within
this scheme.
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5 Two-Variable Cases

Four groups of the proposed schemes are selected as examples. Each group of a
logic functional represents 16 logic functions as 4×4 images. 4 groups are arranged
as 2×2 blocks to arrange as Truth/False, Δ-Variant/Δ-Invariant properties. The 2×2
blocks correspond to:
Truth Block Δ-Variant

Δ − Invariant False Block
. Each block contains 16 entries of function images as a

4×4 (22 × 22) configuration. Each image entry denotes a transformed number and its

function number in the form:
〈J 1|J 0〉

J
where K = 〈J 1|J 0〉 is a transformed number

and J is the function number. In all four figures, (a) 2×2 base blocks to represent
function images and (b) 2×2 vector blocks to represent relevant coding schemes
respectively.

In Fig. 1, the counting order of meta-states has been arranged as W coding (SL
code): P = (3210), P(Δ) = 1010. In this group, only Functions 6 and 9 can be
observed in complementary symmetric condition in main diagonal direction.

In Fig. 2, variation the configurations among W coding: P = (2301), P(Δ) =
0101 creates similar effects seen in Fig. 1.

In Fig. 3, the F coding scheme is shown: under this configuration, P = (2310),
P(Δ) = 0110. Six pairs (0:15, 1:7, 2:11, 4:13, 6:9, 8:14) of complementary func-
tions can be identified. The group has four blocks containing the same pairs of
configurations.

In Fig. 4, C coding has represented: P = (3102), P(Δ) = 1100. In addition to
six pairs as same as F coding, four corners are 4 functions (0, 5, 10, 15) in all blocks.
This makes most regular structures compared to all other coding schemes.
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Fig. 1 W coding (SL code): P = (3210), P(Δ) = 1010; a 2×2 base blocks b 2×2 vector blocks
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Fig. 2 W coding: P = (2301), P(Δ) = 0101; a 2×2 base blocks b 2×2 vector blocks
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Fig. 3 F coding: P = (2310), P(Δ) = 0110; a 2×2 base blocks b 2×2 vector blocks
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Fig. 4 C coding: P = (3102), P(Δ) = 1100; a 2×2 base blocks b 2×2 vector blocks
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6 Conclusion

It is shown in this chapter that the arrangement of binary function space using four
levels of classification can be used to add symmetry and regular structure onto the
entire space of binary functions. For ease of visualisation, it is convenient to apply 2D
representation mechanism that enables symmetric configurations of the system to be
analysed via different coding schemes. Binary functional spaces provide additional
optimal information to generate large numbers of potential configurations in order
to arrange and organise logic phase spaces.

The mechanism can be developed further to establish a solid logic foundation on
logic functional levels for theoretical explorations and practical applications.We aim
to make refined investigation on different coding schemes within the highest levels
of organisation in our future work.
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University.
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Hierarchical Organization of Variant
Logic

Jeffrey Zheng

Abstract In modern logic, various systems have been proposed extending classical
Boolean logic & switching theory. Such logic frameworks include multiple-valued
logic, probability logic, fuzzy logic, module logic, quantum logic and various other
frameworks. Although these extensions have been applied to many applications in
mathematics, in science and in engineering, all extensions to Boolean logic invali-
dates at least one of the six fundamental rules of Boolean logic shown in L1 to L6.
We propose a new framework of logic, variant logic, extending Boolean logic whilst
satisfying the six fundamental rules (L1–L6). By defining the Variant–Invariant be-
haviour of logical operations, this framework can be constructed using four types of
general operators. Main results of the chapter are summarized in Theorems 8–10,
respectively. To show significant differences between classical logic and new variant
logic, invariant properties of this hierarchical organization are discussed. Simplest
cases of one-variable conditions are illustrated. Variant logic can provide the nec-
essary framework to support analysis and description of Cellular Automata, Fractal
Theory, Chaos Theory and other systems dealing with complexity. Such applications
of this framework will be explored in future papers.
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1 Laws of Logic Systems

1.1 Laws in Classical Logic Systems

Classical logic identifies a class of formal logic that are characterized by a number
of properties [1–17].

Definition 1 For any logic system if all CL1–CL5 are satisfied, then it is a classical
logic system. The five properties of classical logic (CL1–CL5) are listed as follows:

CL1: Law of the excluded middle and double negative elimination
CL2: Law of non-contradiction
CL3: Monotonicity and idempotency of entailment
CL4: Commutativity of conjunction
CL5: De Morgan duality

Examples of such classical logic systems includeworks of philosophy and religion
(Aristotle’sOrganon;Nagarjuna’s tetralemma; andAvicenna’s temporalmodal logic)
as well as foundational logic systems such as reformulations by George Bool and
Gottlob Frege [4–17]. These properties can be rewritten as simplified equations
describing basic properties of a logic system using characteristics of the five classical
properties. The following equations (L1–L6) describe such a system.

L1: P ∪ P = P Idempotency
L2: P ∩ P = P …
L3: ¬P ∪ P = P Excluded Middle
L4: ¬P ∩ P = P …
L5: ¬¬P = P Double Negative Elimination
L6: P, P → Q

The set of equations can be applied in the analysis of modern logic systems
to determine if they are all satisfied. The equations will be defined as canonical
properties and a logic systemsatisfying all six propertieswill be defined as a canonical
system. If any logic system does not, they are categorized as non-canonical.

1.2 Current Logic Systems

Manymodern logic systems cannot satisfy the six canonical properties. Three-valued
logic proposed by Luckasiewicz 1920 can satisfy L3–L6, cannot satisfy L1–L4.
Probability logic proposed by Reichenbach 1949 can satisfy L5–L6, cannot satisfy
L1–L4. Fuzzy logic proposed by Zadeh 1965 satisfy L1, L2, L5, L6, cannot satisfy
L3–L4. Since they cannot satisfy canonical properties, they are all non-canonical
logic systems [1–22].
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2 Truth Valued Representation in Boolean Logic Systems

For any n-variable Boolean logic system, it is natural to establish 2n states. Under
either selected or not selected operation, it can be building up a truth table for a given
Boolean function. Collecting all possible selections, a full truth table is constructed
in 2n columns and 22

n
rows in presentation. We can list this table as follows:

0 ≤ I < 2n 2n − 1 ... I ... 1 0
0 ≤ i < n 1...1...1 ... In−1...Ii ...I0 ... 0...0...1 0...0...0

0 ≤ J < 22
n

0 0 ... 0 ... 0 0
1 0 ... 0 ... 0 1
2 0 ... 0 ... 1 0
... ...
J J2n−1 ... JI ... J1 J0
... ...

22
n − 2 1 ... 1 ... 1 0

22
n − 1 1 ... 1 ... 1 1

where there are three parameters: i, I, J : 0 � i < n, 0 � I < 2n, 0 � J < 22
n
cor-

responding to variable, state and function numbers, respectively. Under such con-
ditions, for any J , it is convenient to use Karnaugh map or relevant logic tools to
construct the given Boolean function in combination [6–17].

3 Cellular Automata Representations

Cellular Automata—CA uses a different mechanism [23–35] to represent a given
function. In a one-dimensional form of CA, a N -length binary sequence is

X = XN−1XN−2 . . . X j . . . X1X0, 0 � j < N , X j ∈ {0, 1} = B2

For a given function f , the output sequence is defined as follows: f : X → Y,Y =
f (X),

Y = YN−1YN−2 . . . Y j . . . Y1Y0, 0 � j < N ,Y j ∈ B2

It is feasible to use a moving window with a fixed length n to separate X into a local
kernel in length n. The kernel can be presented as

[. . . X j . . .] = xn−1 . . . xi . . . x0, xi ∈ B2.

For a given function f
y = f (xn−1 . . . xi . . . x0)
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It is necessary to assign a certain position i in the kernel for special care to associated
with j position of both sequences. We have

y = f (xn−1 . . . xi . . . x0) = f (. . . X j . . .) == Y j

or X j = Xt−1
j ,Y j = Xt

j i.e.

f : Xt−1
j → Xt

j , X
t−1
j , Xt

j ∈ B2

4 Variant Construction

4.1 Four Variation Forms

Considering f : Xt−1
j → Xt

j for any function of Boolean logic system to analyse
their variation properties [36–40], it is normal to have following proposition.

Proposition 1 For any f : Xt−1
j → Xt

j transformation, four forms of transforming
classes are identified: T A : 0 → 0, T B : 0 → 1, TC : 1 → 0, T D : 1 → 1.

Proof X j ,Y j are 0-1 variables, only four classes listed are possible. �

Definition 2 Four transforming forms are corresponding to following sets: TA: In-
variant class for 0 value, TB: Variant class for 0 value, TC:Variant class for 1 value,
TD: Invariant class for 1 value.

Under such definition, the following proposition can be established.

Proposition 2 Using four classes of transformation, four variant operations are
defined.

Type X j → Y j Truth Variant Invariant False
TA 0 0 0 0 1 1
TB 0 1 1 1 0 0
TC 1 0 0 1 0 1
TD 1 1 1 0 1 0

Proof Truth (False) values are determined by Y j (Ȳ j ) and Variant(Invariant) values
are determined by {TB, TC} for 1(0) and {TA, TD} for 0(1) respectively. �

Theorem 1 In { Truth, Variant, Invariant, False} groups, only two pairs of groups:
{Truth, False} and {Variant, Invariant} satisfy L1–L6 to form a canonic logic system.

Proof Both groups are composed of 0-1 variables, in addition, Truth/False, Vari-
ant/Invariant are formed complement relationships.Other combinations contain com-
mon parts, it is not possible for them to satisfy logic canonic conditions L1–L6. �
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Definition 3 Sequential number of binary is defined as SL coding to remember Y.
Shao and Leibniz contribution [41–49] on binary logic.

Definition 4 The operator BN : J → B converts an integer to its binary represen-
tation. The operator DC : B → J converts a binary number to its decimal represen-
tation.

Definition 5 TheSLcoding scheme is anorderingof binary table outputs T : B2n
2 →

J . An element JI ∈ SL at position I , where 0 � I < 2n represents function TI such
that the binary representation of TI is defined as

BN (J ) = T2n−1[J2n−1] . . . TI [JI ] . . . T0[J0]

For any n variable structure, J is composed of 2n bits to represent 0 � J < 22
n

numbers.

Definition 6 AGcoding scheme is defined as an ordering of binary table outputs T :
B2n
2 → J . An element JI ∈ SL at position I where 0 � I < 2n represents function

TI such that the binary representation of TI is defined as

G = {∀J |T (J ), 0 � J < 22
n };

T (J ) = T2n−1[Y (J2n−1)] . . . TI [Y (JI )] . . . T0[Y (J0)], 0 � I < 2n

Where {Y (JI ), 0 � I < 2n} are 22n length0-1vectors,Y (J2n−1) �= . . . �= Y (JI ) �=
. . . �= Y (J0), respectively.

Under G coding scheme, ordering number is an integer sequence with 22
n
po-

sitions. Different transformations will make this sequence extremely complex. In
convenient to do representation, a two-dimensional W coding scheme is proposed.

Definition 7 AW coding scheme is defined as an ordering pair of binary table out-
puts T : B2n

2 → 〈J 1|J 0〉. Each component is composed of 2n−1 bits in representation:

〈J 1|J 0〉 = T2n−1[Y (J2n−1)] . . . TI [Y (JI )] . . . T0[Y (J0)], 0 � I < 2n

J 0 = {∀I |BN (JImod2n−1), 0 ≤ I < 2n−1}

J 1 = {∀I |BN (JImod2n−1), 2n−1 ≤ I < 2n}

Under this construction, aGcoding scheme is transformed into aWcoding scheme
to represent two-dimensional structure for different permutation results. In general,
J 0 represents lower 2n−1 bits and J 1 represents higher 2n−1 bits, respectively. A
general structure of W coding is a 22

n−1 × 22
n−1

matrix shown in the following figure.
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〈0|0〉 . . . 〈0|J 0〉 . . . 〈0|22n−1 − 1〉
. . . . . . . . .

〈J 1|0〉 . . . 〈J 1|J 0〉 . . . 〈J 1|22n−1 − 1〉
. . . . . . . . .

〈22n−1 − 1|0〉 . . . 〈22n−1 − 1|J 0〉 . . . 〈22n−1 − 1|22n−1 − 1〉

0 ≤ J 0, J 1 < 22
n−1 {〈J 1|J 0〉}: 2D Space for 22

n
Functions

4.2 Complement and Variant Operators

Definition 8 In Bn
2 , the generalized complement Y Q, Q ∈ B2n

2 of a variable Y is
defined to be the element obtained from complementing the components of Y ac-
cording to the value of corresponding component of Q; YI is complemented or
un-complemented if QI is 0 or 1, respectively, where YI and QI designate the Ith
component of Y and Q.

For example, given B4
2 for Q = {0101, 0110} are as follows:

Y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
Y 0101 1010 1011 1000 1001 1110 1111 1100 1101 0010 0011 0000 0001 0110 0111 0100 0101
Y 0110 1001 1000 1011 1010 1101 1100 1111 1110 0001 0000 0011 0010 0101 0100 0111 0110

To apply Q operator on 2n meta vectors, a vector family can be generated.

Proposition 3 In B2n
2 , generalized complement operator Q ∈ B2n

2 has 22
n
different

cases.

Proof Q is a 2n bits vector, each position can be selected as 0 or 1, so a total of
selections is equal to 22

n
. �

Definition 9 For 2n meta states composed of vector Ψ , the i th vector Ψ (i), 0 ≤
i < n has 2n bits. Four vectors: {0, Ψ (i),¬Ψ (i), 1} in 2n bits can be selected as Q
operators. This special form of Q type operations is defined as QV operation.

Proposition 4 For a QV operator, QV ∈ {0, Ψ (i),¬Ψ (i), 1}, four QV vectors
provide following complement results respectively in transformation:

0 : False Operator
1 : Truth Operator

Ψ (i) : Invariant Operator
¬Ψ (i) : Variant Operator

Proof 1 operator keeps original truth table values; 0 operator reverses all values;Ψ (i)
operator makes invariant condition and ¬Ψ (i) operator generates variant property.

�
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Proposition 5 Undertaken QV operations, 2n+1 cases are generated as a comple-
ment variant group.

Proof Only 0 ≤ i < n selected, each position have two selections associated with i
plus two constant vectors. So a total of 2 × 2n = 2n+1 cases can be generated. �

Definition 10 For 2n meta vectors Y , its I th component Y (I ) ∈ B22
n

2 , Y (I ) has 22
n

bits. A permutation operator P makes the I th component into P(I )th component for
∀I, 0 ≤ I < 2n , respectively.

Proposition 6 Undertaken P operation to 2n meta vectors in Y , a total of 2n! per-
mutations can be generated.

Proof P operator is equal to permutation on 2n integers. This generates a symmetric
group contained 2n! members. �

Proposition 7 Undertaken Q and P operators in Y , a total of 22
n · 2n! cases can be

created. This creates a Complement Permutation Structure—CPS.

Proof Q and P operators are independent of each other. Their results can be multi-
plied together. �

Proposition 8 Undertaken QV and P operators in Y , a total of 2n+1 · 2n! cases can
be created. This creates a Complement Variant Structure—CVS.

Proof QV and P operators are independent each other. Their results can be multi-
plied together. �

4.3 Other Global Coding Schemes

Under QV + P and Q + P operations, more coding schemes can be defined.

Definition 11 The F coding scheme is defined as a subset W. For anyW code, if any
two meta state can be paired, such that ∀ j1, j1 − 2n−1 = j0, 0 ≤ j0 < 2n−1 ≤ j1 <

2n, I j1 = ¯I j0 indicate state I j1 be I j0 ’s complement.

F coding provides restricted pair conditions to the structure. Its corresponding
forms are as follows:

J 1 j-th meta state � J 0 j-th mate state
� F coding base �
X � X̄

Definition 12 A coding scheme satisfies general conjugate condition if ∀I j0 ∈ IJ 0 ,
for the selected position i,∀ai ∈ I j0 , ai = 0, 0 ≤ i < n.
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In other words, the general conjugate condition makes selected position on lower
part in 0 valued and higher part in 1-valued, respectively.

Definition 13 The C coding scheme is defined as a set of the F coding whereby
∀I j0 ∈ IJ 0 , for the selected position i,∀ai ∈ I j0 , ai = 0, 0 ≤ i < n.

C coding provides more strong restrictions to separate all 0-valued meta states in
lower part and all 1-valued meta states in higher part.

J 1 j-th mate state � J 0 j-th F coding
� C coding base � +

∀xi ∈ J 1, xi = 1 � ∀xi ∈ J 0, x j = 0 General Conjugate

Some coding samples are listed in following table:

No. 7 6 5 4 3 2 1 0 Normal sequential number
SL 111 110 101 100 011 010 001 000 Ordering sequence

Truth 0 0 0 1 1 1 1 0 G: J = 30; W: 〈1|12〉
Variant 1 1 0 1 0 0 1 0 G: J = 210; W: 〈13|2〉

W 111 110 010 011 001 000 100 101 General Conjugate, without pairs
Truth 0 0 1 1 1 0 1 0 G: J = 58; W: 〈3|10〉

Variant 1 1 0 0 1 0 1 0 G: J = 202; W: 〈12|10〉
F 111 110 101 100 000 001 010 011 Meta states in pairs

Truth 0 0 0 1 0 1 1 1 G: J = 23; F: 〈1|7〉
Variant 1 1 0 1 0 1 0 0 G: J = 212; F: 〈13|4〉

C 111 110 010 011 000 001 101 100 General Conjugate + pairs
Truth 0 0 1 1 0 1 0 1 G: J = 54; C: 〈3|5〉

Variant 1 1 0 0 0 1 0 1 G: J = 197; C: 〈12|5〉

4.4 Sizes of Variant Spaces

Definition 14 Under QV + P operations, W, F and C coding schemes are defined
as WV, FV and CV coding schemes, respectively.

Theorem 2 For a W coding scheme of n variables, it has a total of 22
n · 2n! cases

distinguished.

Theorem 3 For a WV coding scheme of n variables, it has a total of 2n+1 · 2n! cases
distinguished.

Theorem 4 ForaFcoding schemeof n variables, it has a total of22
n · 22n−1 · 2n−1! =

22
n(1+1/2) · 2n−1! cases distinguished.

Theorem 5 For a FV coding scheme of n variables, it has a total of 2n+1 · 22n−1 ·
2n−1! = 22

n+n+1 · 2n−1! cases distinguished.
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Theorem 6 For a C coding scheme of n variables, it has a total of 22
n · 2n−1! cases

distinguished.

Theorem 7 For a CV coding scheme of n variables, it has a total of 2n+1 · 2n−1!
cases distinguished.

Using definitions of different coding schemes, shown in various sequences of one
variable cases in the following table:

Function Truth W coding Variant W coding Invariant WV coding False WV coding
0 0 〈0|0〉 2 〈1|0〉 1 〈0|1〉 3 〈1|1〉
x̄ 1 〈0|1〉 3 〈1|1〉 0 〈0|0〉 2 〈1|0〉
x 2 〈1|0〉 0 〈0|0〉 3 〈1|1〉 1 〈0|1〉
1 3 〈1|1〉 1 〈0|1〉 2 〈1|0〉 0 〈0|0〉
0 0 〈0|0〉 1 〈0|1〉 2 〈1|0〉 3 〈1|1〉
x̄ 2 〈1|0〉 3 〈1|1〉 0 〈0|0〉 1 〈0|1〉
x 1 〈0|1〉 0 〈0|0〉 3 〈1|1〉 2 〈1|0〉
1 3 〈1|1〉 2 〈1|0〉 1 〈0|1〉 0 〈0|0〉

using 2D W coding to arrange 1D sequences into 2D matrices:

Original:

Truth Variant
0 x̄ x 1
x 1 0 x̄
x̄ 0 1 x
1 x x̄ 0

Invariant False

Permutation:

Truth Variant
0 x x 0
x̄ 1 1 x̄
x̄ 1 1 x̄
0 x x 0

Invariant False

5 Invariant Properties of Variant Constructions

It is interesting to notice that under QV operations, there are 2n + 2 vectors avail-
able to generate QVS. This makes significant differences among classical logic and
Variant logic construction [50–56]. The main results of this chapter are summarized
in the following theorems.

Theorem 8 (Four Invariant Points for One Variable Condition) For a W coding
scheme under one variable condition, four points of the structure correspond to four
functions: {0, x, x̄, 1}, respectively.
Proof When n = 1, four vectors are available for any Q or QV operations. �
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Theorem 9 (Two Invariant Points for Truth and False Schemes) For any n > 1,
W(WV) coding schemes, for any truth or false representation, only full 0 or full 1
valued vectors can be invariant undertaken P operations.

Proof Undertaken P operation, if there is any not full 0 or 1 vectors, its binary
number sequences will be changed. �

Theorem 10 (Four Invariant Points for C Coding Scheme) For any C (CV) coding
scheme in variant construction, four corner positions of 2D function matrix have
extreme invariant properties.

Proof Under C(CV) coding scheme, four functions:{0, x, x̄, 1} correspond as fol-
lows: x = 〈0|0〉; 0 = 〈22n−1 − 1|0〉; 1 = 〈0|22n−1 − 1〉; x̄ = 〈22n−1 − 1|22n−1 − 1〉.
Four positions are all corner points of the variant matrix. �

6 Comparison

It is convenient to list numeric parameters to compare the different coding schemes
in the following table.

Var State Function ExPower SL W coding WV coding C coding CV coding
n 2n 22

n
2n! 1 22

n
2n! 2n+12n! 22

n
2n−1! 2n+12n−1!

1 2 4 2 1 8 8 4 4
2 4 16 24 1 384 192 32 32
3 8 256 40320 1 10321920 645120 6144 384
4 16 216 16! 1 21616! 32 · 16! 216 · 8! 32 · 8!
5 32 232 32! 1 23232! 64 · 32! 232 · 16! 64 · 16!

where we use Var: variable number; State: state number; Function: function number;
ExPower: exponent power products; SL: SL coding number; W coding: W coding
number under Q + P operations; WV coding: WV coding number under QV + P
operations; C coding: C coding number under Q + P operations; CV coding: CV
coding number under QV + P operations in the table, respectively.

7 Conclusion

In this chapter, variant logic has been proposed to extend truth table representation
that describes variant properties of binary sequences. This extension is requiredto ex-
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pand traditional Boolean logic framework to a new variation space. Under two types
of vector operations, the new space has 22

n
2n! timesmore complexity than traditional

Boolean function space with 22
n
members. In order to manage this complexity, the

framework has proposed a series of global coding schemes encoded through sym-
metric properties representing the elements in a matrix as a 2D map. Under this
two-dimensional model, coding mechanism can be constructed and their invariant
properties can be discussed.

Boolean function space represents a core invariant functional space and the newly
expanded space broadens the descriptions and coding schemes used. Thus, a wide
area of variation coding can be developed. In essence, the space of binary sequence
functions can be thought of as a keyboard with 22

n
notes. Each note contains a

complete Boolean function set and its own representation. The set of notes can be
represented using a coding scheme that orders the notes in a particular sequence (SL
and G codes) or their 2D maps (W, F and C codes).

Under W coding representation mechanism, 2D matrix is suitable to visualize
permutation sequences of n variable logic structures. Using invariant properties,
classical logic and variant logic can be clearly identified. Further work on dynamic
behaviours of complex dynamic systems can be explored. This chapter outlines
the construction and notation of variant logic only. Future papers will show that
the proposed scheme, with its foundation in symmetry, will have definite uses for
predicting convergent and chaotic behaviour in dynamic binary systems such as the
analysis of cellular automata rules using various visual methodologies.
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Part II
Theoretical Foundation—Variant

Measurement

All of mathematics is a tale about groups.

—Henri Poincaré

In geometric and physical applications, it always turns out that a
quantity is characterized not only by its tensor order, but also by
symmetry.

—Hermann Weyl

Nothing exists until it is measured.

—Niels Bohr

A list of research papers were published on variant measurements during 2011–
2012. Two OA book chapters that are important to express core results of variant
measurements (Chapter “From Local Interactive Measurements to Global Matrix
Representations on Variant Construction, From Conditional Probability
Measurements to Global Matrix Representations on Variant Construction”) are
published in Advanced Topics in Measurements:339–400 (2012) by InTech Press.

Part II is composed of three chapters (3–5).
Chapter “Elementary Equations of Variant Measurement” provides the

elementary equation of variant measurement to discuss four meta measures under
permutative and associative properties. Two sets of sample partitions are expressed
as sum of product of binomial coefficients in the elementary equation. This is a
systematic approach to handle configuration space under four meta measures.

Chapter “Triangular Numbers and Their Inherent Properties” uses triangular
numbers to express inherent properties of 1D binary sequences under three
parameters as an elementary equation. A set of interesting properties were explored.



This scheme provides efficient partitions to handle rotational invariant properties on
binary sequences.

Chapter “Symmetric Clusters in Hierarchy with Cryptographic Properties”
describes symmetric clusters in hierarchy under multiple symmetric operations:
combination, crossing, variant, and rotation conditions. Rich clusters were observed
under various conditions.

38 Theoretical Foundation—Variant Measurement



Elementary Equations of Variant
Measurement

Jeffrey Zheng

Abstract Four variant measures are used to represent combinatorial functions
including binomial coefficients. These variant measures are based on two types of
m-bit vectors. Type A corresponds to non-periodic boundary conditions, while Type
B corresponds to periodic boundary conditions. For each type, groups containing
the four variant measures are formed, which are invariant against permutative and
associative operations. By mapping two group elements of Type B on coefficients of
binomial decompositions, patterns similar to Pascal’s triangle are observed.

Keywords Variant measurement · m variable vector · Multinomial coefficient
Permutative and associative operations · Global invariant

1 Introduction

For any n 0–1 variables, variant logic provides a 2n! × 22
n
-dimensional configuration

space [16, 17] to support measurement and analysis [14, 15], which is a real difficulty
for any practical activities [1, 9–11]. From ameasuring analysis viewpoint [6–8, 13],
it is essential to manipulate static states and their measuring clustering as effective
measures to be a core content of any 0–1 measuring framework. In this chapter,
starting fromm variables of a 0–1 vector, binomial expressions are applied to support
the four meta measures of variant partitions and associated multinomial expressions.
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Using permutative and associative operations, various variation and invariant
properties are investigated. From a global invariant viewpoint, various combinatorial
clustering properties are systematically explored.

2 Elementary Equation

Let x be an m-bit vector, x = x0x1 . . . xi · · · xm−1, xi ∈ {0, 1}, 0 ≤ i < m, x ∈ Bm
2 .

Each x is an m bit state. From a variation viewpoint, there are two types {A, B}
distinguished. Let {m⊥,m+,m−,m�} be four measuring operators.

2.1 Type A Measures

For a pair of (i, i + 1) elements, (xi , xi+1), 0 ≤ i < (m − 1) form partitions. (Non-
periodic boundary conditions)

Four measures can be calculated from the following equations.

m⊥(x) =
m−2∑

i=0

[(xi , xi+1) == (0, 0)] (1)

m+(x) =
m−2∑

i=0

[(xi , xi+1) == (0, 1)] (2)

m−(x) =
m−2∑

i=0

[(xi , xi+1) == (1, 0)] (3)

m�(x) =
m−2∑

i=0

[(xi , xi+1) == (1, 1)] (4)

m = m⊥(x) + m+(x) + m−(x) + m�(x) + 1 (5)

From a clustering viewpoint, the last bit of x , xm−1 can be used to distinguish
relevant combinatorial numbers. While xm−1 == 1, there are

( m−1
m++m�+1

)
and for

xm−1 == 0, there are
( m−1
m++m�

)
, possible x vectors, where m+ + m� is the number

of 1 elements in a vector. By adding both binomial coefficients, Pascal’s rule [4] is
obtained.

(
m

p

)
=

(
m − 1

p

)
+

(
m − 1

p − 1

)
, (6)

p(x) = m+(x) + m�(x) + 1, 0 ≤ p ≤ m, x ∈ Bm
2
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2.2 Type B Measures

Apair of (i, i + 1) elements is linked as a ring, (xi , xi+1(mod m)), 0 ≤ i < m (Periodic
boundary conditions).

m⊥(x) =
m−1∑

i=0

[(xi , xi+1(mod m)) == (0, 0)] (7)

m+(x) =
m−1∑

i=0

[(xi , xi+1(mod m)) == (0, 1)] (8)

m−(x) =
m−1∑

i=0

[(xi , xi+1(mod m)) == (1, 0)] (9)

m�(x) =
m−1∑

i=0

[(xi , xi+1(mod m)) == (1, 1)] (10)

m = m⊥(x) + m+(x) + m−(x) + m�(x) (11)

Let p be the number of 1 elements, p(x) = m+(x) + m�(x), then the number of
possible x vectors is

(
m

p

)
, 0 ≤ p ≤ m. (12)

3 Partition

Either Type A or B, internal parameters are associated with the four meta measures.
For a brief analysis, TypeBwill be selected as initial part,multinomial coefficients are
applied to partition relevant binomial coefficients. Using m variable, p number and
q branches, the following equations are formulated. Under the partition condition,
vector x can be ignored.

m = m⊥ + m+ + m− + m� (13)

p = m+ + m� (14)

m − p − q = m⊥ (15)

q = m+ = m− (16)

p − q = m� (17)
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Based on equivalent quantitative numbers, there are one-to-one corresponding on
the four meta measures and relevant quantitative measures:

{m⊥,m+,m−,m�} ↔ {m − p − q, q, q, p − q}

from a global restriction to establish an equivalent expressional framework.
From an expressional viewpoint, different partitions are investigated from a single

binomial coefficient to a set of multinomial coefficients with equivalent properties
among different expressions. Their partitions undertaken on various levels are illus-
trated in the following sections. From a binomial coefficient, there are multiple levels
of representations involved, the first level and the nth level can be connected as

(
m⊥ + m+ + m− + m�

p

)
→

p∑

k=0

n∏

l=1

(
fl(m⊥,m+,m−,m�)

gl(p, k)

)
(18)

0 ≤ p ≤ m 0 ≤ k ≤ m.

The core content of this chapter is to establish a global invariant framework using
n levels of representations by deriving the functions fl and gl .

4 Variation Space

Let {a,b,c,d} be a set of four distinct measures. Two operations, permutative and
associative, can be determined. For an ordered tuple with four measures (a, b, c, d),
Permutative operator π : (a, b, c, d) → (π(a), π(b), π(c), π(d)) to map one mea-
sure to another measure.

Associative operator α: {a, b, c, d} → α{a, b, c, d} to group one tomultiple mea-
sures keeping the initial ordering.

e.g. (a, b, c, d) → (b, d, a, c) is a permutative operation and
{a, b, c, d} → {a, b}{c}{d} is an associative operation.

A permutative operation changes the order of four tuple variables and an asso-
ciative operation changes sequential relationship on its neighbourhood elements. In
a normal arithmetical condition, two operations have conservative under add opera-
tions with global invariant properties. From an algebraic viewpoint, two operations
are independent.

Lemma 1 For an ordering structure with four measures under two operations: per-
mutative and associative, there are 192 configurations identified.

Proof For a vector with 4 members, there are a total of 24 distinct permutations
4! = 24. For an ordered set of 4 elements, 8 associated patterns are identified as
follows: {{a,b,c,d}; {a}{b,c,d}; {a,b}{c,d}; {a,b,c}{d}; {a}{b}{c,d}; {a}{b,c}{d};
{a, b}{c}{d}; {a}{b}{c}{d}}. Two operations are independent, so the whole system
contains 24 × 8 = 192 configurations.
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5 Invariant Combination

Using both permutative and associative operations, various combinatorial invariants
can be identified.

5.1 Type A Invariants

Five invariant groups can be distinguished.

Item Set Cluster
0 { } 1
1 {a,b,c,d} 1
2a {a}{b,c,d}; {b}{a,c,d}; {c}{a,b,d}; {d}{a,b,c} 4
2b {a,b}{c,d}; {a,c}{b,d}; {a,d}{b,c} 3
3 {a,b}{c}{d}; {a,c}{b}{d}; {a,d}{b}{c}; {b,c}{a}{d}; {b,d}{a}{c}; {c,d}{b}{a} 6
4 {a}{b}{c}{d} 1

Proposition 1 For a measuring structure with four members, Type A has 16 com-
binatorial invariants distinguished (0 item: 1 cluster; 1 item: 1 cluster; 2a item:
4 clusters; 2b item: 3 clusters; 3 item: 6 clusters; 4 item: 1 cluster).

Proof CheckingTypeAconditions listed, all combinatorial conditions are exhaustive
included.

5.2 Type B Invariants

For Type B, let b = c, following simplification can be performed.

Item Set Cluster
0 { } 1
1 {a,b,b,d} 1
2a {a}{b,b,d}; {b}{a,b,d}; {b}{a,b,d}; {d}{a,b,b}
→ {a}{b,b,d}; {b}{a,b,d}; {d}{a,b,b} 3
2b {a,b}{b,d}; {a,b}{b,d}; {a,d}{b,b}
→ {a,b}{b,d}; {a,d}{b,b} 2
3 {a,b}{b}{d}; {a,b}{b}{d}; {a,d}{b}{b}; {b,b}{a}{d}; {b,d}{a}{b}; {b,d}{b}{a}
→ {a,b}{b}{d}; {a,d}{b}{b}; {b,b}{a}{d}; {b,d}{a}{b} 4
4 {a}{b}{b}{d} 1
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Proposition 2 For a measuring structure with four members, Type B has 12 com-
binatorial invariants distinguished (0 item: 1 cluster; 1 item: 1 cluster; 2a item: 3
clusters; 2b item: 2 clusters; 3 item: 4 clusters; 4 item: 1 cluster).

Proof CheckingTypeBconditions listed, all combinatorial conditions are exhaustive
included.

6 Combinatorial Expressions of Type B Invariants

Applying m⊥ = m − p − q,m+ = m−,m� = p − q to replace {a, b, c, d}, there
are 11 effective formula:

Item Set of measures Cluster
1 {m} 1
2a {m − p − q}{p + q}; {q}{m − q}; {p − q}{m − p + q} 3
2b {m − p}{p}; {m − 2q}{2q} 2
3 {m − p}{q}{p − q}; {m − 2q}{q}{q}; {2q}{m − p − q}{p − q}; {p}{m − p − q}{q} 4
4 {m − p − q}{q}{q}{p − q} 1

Corollary 1 Type B invariants include 11 nontrivial expressions.

Proof Only 0 item is a trivial one.

7 Two Combinatorial Formula and Quantitative
Distributions

From a combinatorial viewpoint, 1. item formula is a binomial coefficient
(m
p

)
,

0 ≤ p ≤ m, to show various partition properties with relevant parameters. For conve-
nient illustration, two expressions are selected: {m − p}{p} and {2q}{m − 2q} from
2 clusters of 2b item of Type B.

7.1 Case I. {m − p}{ p}

In combinatorics, the following identity for binomial coefficients:

(
m + n

r

)
=

r∑

k=0

(
m

k

)(
n

r − k

)
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isVandermonde’s identity (orVandermonde’s convolution), for any nonnegative inte-
gers r,m, n. The identity is named after Alexandre-Théophile Vandermonde (1772),
although it was already known in 1303 by the Chinese mathematician Zhu Shijie
(Chu Shi-Chieh) [2, 3, 5, 12].

Applying Chu-Vandermonde’s identity to identify {m − p}{p} as f1 and f2 in
Eq. (18), the binomial coefficient in level n = 2 can be written as

(
m

p

)
=

p∑

k=0

(
m − p

k

)(
p

p − k

)
(19)

=
p∑

k=0

(
m − p

k

)(
p

k

)
, 0 ≤ p ≤ m.

In this way, each binomial coefficient
(m
p

)
is composed of p + 1 pairs of binomial

coefficient multiplications and a total of sums on relevant groups.

Theorem 1 For all coefficients of Type B, sum of all coefficients in {m − p}{p},
0 ≤ p ≤ m is equal to 2m.

Proof Since

∀m > 0,
m∑

p=0

(
m

p

)
= 2m,

p∑

k=0

(
m − p

k

)(
p

k

)
=

(
m

p

)
,

so
m∑

p=0

p∑

k=0

(
m − p

k

)(
p

k

)
= 2m .

According to Theorem 1, all parameters of {(m−p
k

)(p
k

)} are distributed in (m + 1)2

2D array.
For e.g., whilem = 10, all coefficients are in 11 × 11 region and nontrivial values

are composed of a triangle shape with reflect symmetric properties on p values.

m > 0, 0 ≤ k, p ≤ m, { f (m, p, k) =
(
m − p

k

)(
p

k

)
} :
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f (10, p, k) 0 1 2 3 4 5 6 7 8 9 10 p
10
9
8
7
6
5 1
4 15 25 15
3 35 80 100 80 35
2 28 63 90 100 90 63 28
1 9 16 21 24 25 24 21 16 9
0 1 1 1 1 1 1 1 1 1 1 1
k

7.2 Case II. {2q}{m − 2q}

Applying Chu-Vandermonde’s identity to identify {2q}{m − 2q} as f1 and f2 in
Eq. (18), the binomial coefficient in level n = 2 can be written as

(
m

p

)
=

p∑

k=0

(
2q

k

)(
m − 2q

p − k

)
(20)

0 ≤ p ≤ m, 0 ≤ q ≤ 	m/2


By using this formula, it is possible to select a special q value in {(2qk
)(m−2q

p−k

)} to
form 	m/2
 + 1 2D coefficient distributions.

Theorem 2 For Type B {2q}{m − 2q}, 0 ≤ p ≤ m, 0 ≤ q ≤ 	m/2
 equation,
selecting a proper value of q, all coefficients are distributed in 	m/2
 + 1 2D arrays
and the sum of total coefficients in a 2D array is equal to 2m.

Proof Since

∀m > 0, 0 ≤ q ≤ 	m/2
,
(
m

p

)
=

p∑

k=0

(
2q

k

)(
m − 2q

p − k

)
&

m∑

i=0

(
m

p

)
= 2m,

so
m∑

p=0

p∑

k=0

(
2q

k

)(
m − 2q

p − k

)
= 2m

According to Theorem 2, {(2qk
)(m−2q

p−k

)} coefficients are distributed in 	m/2
 + 1
levels of (m + 1) × (m + 1) 2D planes.
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For e.g., whilem = 10, all coefficients are arranged on 6 levels of 11 × 11 regions
with multiple symmetric properties.

m > 0, { f (m, q, p, k) =
(
2q

k

)(
m − 2q

p − k

)
} : 0 ≤ k, p ≤ m, 0 ≤ q ≤ 	m/2


m = 10, q = 0:

f (10, 0, p, k) 0 1 2 3 4 5 6 7 8 9 10 p
10 1
9 10
8 45
7 120
6 210
5 252
4 210
3 120
2 45
1 10
0 1
k· · ·

m = 10, q = 3:

f (10, 3, p, k) 0 1 2 3 4 5 6 7 8 9 10 p
10
9
8
7
6
5
4 1 6 15 20 15 6 1
3 4 24 60 80 60 24 4
2 6 36 90 120 90 36 6
1 4 24 60 80 60 24 4
0 1 6 15 20 15 6 1
k· · ·



48 J. Zheng

m = 10, q = 5:

f (10, 5, p, k) 0 1 2 3 4 5 6 7 8 9 10 p
10
9
8
7
6
5
4
3
2
1
0 1 10 45 120 210 252 210 120 45 10 1
k

7.3 Result Analysis

Two formulas selected from 2b item of Type B show completely different properties.
In Case I, for a given m, all coefficients are distributed in one triangle area with
reflection properties on p direction.

However, Case II provides multiple levels of 2D distributions and each one is
corresponding to a selected q value. From three listed conditions, q = 0 and q = 5
are linear structures, the first one is located on diagonal positions of the plane and
the second one is located on k = 0, p = {0, 1, . . . , 10} a horizontal region. While
0 < q < 5, all distributions are shown in as parallelograms. Each line is shown in
special symmetries.We can observe associatedwith variations of q values, horizontal
projection keeps the same, however, the vertical projection will be changed from
q = 0 binomial distribution, to be a pulse on q = 	m/2
 condition. This type of
controllable properties could be useful to explore future advanced applications.

8 Conclusion

A new approach to decompose binomial coefficients under permutative and asso-
ciative operations is proposed. Using this approach, it is feasible to investigate four
meta measures in global invariant spaces. The resulting set of 192 configurations is
categorized into standard group theory mechanism. From a statistic viewpoint, Type
A (Five levels in 16 clusters) and Type B (Five levels in 12 clusters) provide global
identifications on complicated partitions on wider restrictions, further theoretical
explorations and practical applications are deeply expected in the coming period.
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Triangular Numbers and Their Inherent
Properties

Chris Zheng and Jeffrey Zheng

Abstract A method to classify one-dimensional binary sequences using three
parameters intrinsic to the sequence itself is introduced. The classification scheme
creates combinatorial patterns that can be arranged in a two-dimensional triangular
structure. Projections of this structure contain interesting properties related to the
Pascal triangle numbers. The arrangement of numbers within the triangular struc-
ture has been named “triangular numbers”, and the essential parameters, elementary
equation, and sequencing schemes are discussed as well as visualizations of sam-
ple distributions, special cases, and search results. We believe this to be a novel
finding as sequences generated using this method are not contained in the On-Line
Encyclopedia of Integer Sequences or OEIS.

Keywords Binary sequence · Classification · Combinatorial patterns · Triangular
number · Elementary equation · Variant triangle

1 Introduction

Additive number theory [7], the study of integer subsets and their behavior under
addition, is a branch of mathematics related to combinatorics. The simplest con-
structs within this field are binomial coefficients [6]. The properties of binomial
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coefficients have been explored by many over the history of mathematics [8, 9]. One
generalization of the binomial coefficient is the multinomial coefficient [5, 8, 9].
Any multinomial coefficient can be expressed as the products of multiple binomial
coefficients:
(
k1 + k2 + · · · + km

k1, k2, . . . , km

)
=

(
k1 + k2

k1

)(
k1 + k2 + k3

k1 + k2

)
. . .

(
k1 + k2 + · · · + km
k1 + k2 + · · · + km−1

)
.

(1)
For this type of expansions, the simplest is the trinomial coefficient [10–13]:

(
r

k,m − k, r − m

)
=

(
r

m

)(
m

k

)
. (2)

1.1 Geometric Arrangement of Combinatorial Data

In discrete geometry [2], as the most basic 2D shape, triangular patterns are found
in such series as combinatorial triangle A102639, differential triangle A194005 [1],
additive triangle A035312, and Pascal triangle A007318 [8, 9, 11, 13].

This chapter proposes a novel method of classification of binary sequences that
is shown to be combinatorial properties in nature. By using a simple basis of binary
(0–1) sequences and applying simple classification rules, a triangular structure can
be generated. The set of results has been named “Generative Triangular Numbers”.
The term generative [3] is used to describe the technique of using a simple input
and a repeatedly applied process, creating emergent properties through repetition.
Generative science [4] is a multidisciplinary science that explores the natural world
and its complex behaviors as a generative process. Generative approaches can be used
to simulate describe behaviors in fractals, cellular automata, and various nonlinear
systems.

The generated patterns are not currently found in the On-Line Encyclopedia of
Integer Sequences (OEIS) potentially making them an interesting area for further
research.

1.2 Previous Work

The current scheme is a derivative of the work of Zheng et al. [16, 17] to organize
1D 0–1 sequences as certain N > 1 length vectors using three parameters in variant
measurement construction and classifications on hierarchical discrete phase spaces
in general.

A trinomial equation is proposed as an elementary equation using three control
parameters {q, p, N } [14, 15] to describe 0–1 vectors of N length as a subgroup,
where N is the length of a vector, p indicates the number of elements with 1 values,

http://oeis.org/A102639
http://oeis.org/A194005
http://oeis.org/A035312
http://oeis.org/A007318
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and q records the number of changes from either 0–1 or 1–0 as the vector in a
circular form to form a 2D array with nontrivial triangular numbers. This type of
elementary equation can be generatively applied tomake relevant triangular numbers
as a geometric distribution to form a hierarchical 3D array generatively. Based on
this hierarchical 3D array, different integer sequences can be observed from this
type of generative triangular numbers, and one projection on p direction is collected
by Vandermonde’s identities to show their correspondences to standard binomial
coefficients. Main results are provided by algorithms, theorems, and corollaries.
Sample cases are illustrated and possible meanings are discussed.

2 Definitions and Sample Cases

2.1 Definitions

Definition 1 Let X be a 0–1 vector, X = xN−1 . . . xi . . . x0 with N elements as a
state, xi ∈ {0, 1}, 0 ≤ i < N .

Definition 2 Let Ω(N ) denote a vector space contained all 0–1 vectors of N length
Ω(N ) = {∀X |0 ≤ X < 2N } as an initial data set.
Definition 3 Let

(n
k

)
be a binomial coefficient, it satisfies

(
n

k

)
=

⎧⎪⎨
⎪⎩
1, if n = k;
0, if n �= k, k > n or k < 0;

n!
k!×(n−k)! , otherwise.

(3)

Under this condition, |Ω(N )| = 2N forms a vector space with N length, respec-
tively.

Definition 4 For any selected vector X ∈ Ω(N ), p(X) can be determined by

p(X) =
N−1∑
i=0

xi , xi ∈ {0, 1}. (4)

Lemma 1 For a vector spaceΩ(N ), p provides a complete partition on a subgroup
and the number of vectors in the subgroup is a binomial coefficient.

Proof For a given p, 0 ≤ p ≤ N , its combinatorial property makes a total number
of

(N
p

) = N !
p!×(N−p)! vectors identified to partition the vector space Ω(N ).
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Definition 5 For a circular vector X ∈ Ω(N ), q(X) can be determined by

q(X) =
∑

0≤i<N

(xi ≡ 0)&(xi+1 ≡ 1); xi , xi+1 ∈ 0, 1, (i + 1) mod(N ), (5)

e.g., N = 10, X = 1110011001, p(X) = 6(i = {0, 3, 4, 7, 8, 9}); q(X) = 2(i =
{2, 6}).

2.2 Sample Cases

Under this construction, any selected vector can be evaluated by the three parameters.
Applying this set of parameters to create subgroups, interesting inner structures can
be identified. That is, N = 4, all 16 vectors in the vector space, can be distinguished
as six subgroups as a pair of (q, p) values shown in Table 1.

Each subgroup is linked to their corresponding vectors in Table 2
Enumeration numbers of relevant subgroup numbers are shown in Table 3.

Table 1 Six subgroups for N = 4 vector space in (q, p) partitions

q
∖
p 0 1 2 3 4

0 (0, 0) (0, 4)

1 (1, 1) (1, 2) (1, 3)

2 (2, 2)

Table 2 Six subgroups, vectors, and enumerating numbers

(q, p) {X}, N = 4 No.

(0, 0) {0000} 1

(0, 4) {1111} 1

(1, 1) {0001, 0010, 0100, 1000} 4

(1, 2) {0011, 0110, 1100, 1001} 4

(1, 3) {0111, 1110, 1101, 1011} 4

(2, 2) {0101, 1010} 2

Table 3 N = 4, (q, p) subgroup numbers and a projection

q
∖
p 0 1 2 3 4

0 1 1

1 4 4 4

2 2∑
∀q 1 4 6 4 1
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Table 4 Six levels of binomial coefficients and generative triangular numbers

N {p, N } Binomial Numbers {q, p, N } Generative Triangular Numbers

1 1 1 1 1

2 1 2 1
1 1

2

3 1 3 3 1
1 1

3 3

4 1 4 6 4 1

1 1

4 4 4

2

5 1 5 10 10 5 1

1 1

5 5 5 5

5 5

6 1 6 15 20 15 6 1

1 1

6 6 6 6 6

9 12 9

2

From Table 3, it is easy to verify that 16 vectors are sum of all possible num-
bers from six subgroups. Subgroup sequences of all numbers are as the same as
N = 4 binomial coefficients. Applying this corresponding from N = 1–6, six rows
of original binomial coefficients can be created generatively as three-dimensional
organization and each row {p, N } sequence corresponds a (q, p) triangular shape,
respectively, shown in Table 4.

This type of relationship can be expanded on generative mechanism from special
cases of N = 1–6 to general conditions for anygiven N value. The detailed generative
triangular mechanism is described in the next section.

3 Elementary Equations

Definition 6 Let f (q, p, N ) denote a function for generative triangular numbers
0 ≤ p ≤ N , 0 ≤ q ≤ �N/2�, for two initial and end subgroups p = {0, N }, q = 0,
let two functions of subgroups be f (0, 0, N ) = f (0, N , N ) = 1.

For other subgroups, each case 0 < p < N , 0 < q ≤ �N/2� is a subgroup under
a given condition. Elementary equation of generative triangular numbers is proposed
to use binomial coefficient expression in Eq. 6.

f (q, p, N ) = N

N − p

(
N − p

q

)(
p − 1

q − 1

)
. (6)
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Table 5 N = 5, f (q, p, 5) subgroup numbers

q
∖
p 0 1 2 3 4 5

0 1 1

1 5 5 5 5

2 5 5

Using this elementary equation, the list of values can be verified. For example,
f (1, 1, 5) = 5

4

(4
1

)(0
0

) = 5; f (2, 3, 5) = 5
2

(2
2

)(2
1

) = 5; . . . f (2, 4, 5) = 5
1

(1
2

)(3
1

) = 0.
All { f (q, p, 5)} calculations are listed in Table 5.
Corollary 1 The elementary equation has equivalent identities on a pair of {p, N −
p}.

f (q, p, N ) = N

N − p

(
N − p

q

)(
p − 1

q − 1

)

= N

N − (N − p)

(
N − (N − p)

q

)(
(N − p) − 1

q − 1

)
(7)

= f (q, N − p, N ).

Proof Using the elementary equation, we have

f (q, p, N ) = N

N − p

(
N − p

q

)(
p − 1

q − 1

)
: (equation 6)

= N

(N − p)

(N − p)!
(N − p − q)!q!

(
p − 1

q − 1

)

= N

q

(N − p − 1)!
(N − p − q)!(q − 1)!

(
p − 1

q − 1

)

= N

q

(
N − p − 1

q − 1

)(
p − 1

q − 1

)

= N

q

(
p − 1

q − 1

)(
N − p − 1

q − 1

)

= N

p

(
p

q

)(
N − p − 1

q − 1

)

= N

N − (N − p)

(
N − (N − p)

q

)(
(N − p) − 1

q − 1

)
: (equation7)

= f (q, N − p, N ).

p parameters are in the vertical direction. In general condition for any given N ,
triangular numbers can be arranged in Table 6 (Fig. 1).
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Table 6 N = 5, f (q, p, 5) subgroup numbers in vertical direction

p
∖
q 0 1 2

0 1

1 5

2 5 5

3 5 5

4 5

5 1

f (0,0,N)
f (1,1,N)

... ...
f (1,q,N) ... f (q,q,N)

... ... ...

... ... f (�N
2 �,�N

2 �,N)
... ... f (�N

2 �,�N
2 �,N)

f (1, p,N) ... f (q, p,N) ...
... ... ...

f (1,N−q,N) ... f (q,N−q,N)
... ...

f (1,N−1,N)
f (0,N,N)

0 ≤ q ≤ �N
2 �,0 ≤ p ≤ N

Fig. 1 Triangular numbers for a given N > 1

4 Local Propensities

It is necessary to investigate different relationships for symmetry properties from the
elementary equations to distinguish functions for generative triangular numbers.

4.1 Nontrivial Areas

Corollary 2 (A pair of symmetric properties) In either 0 < q ≤ p ≤ N − q or
q = 0, p = {0, N }, a pair of nontrivial trinomial coefficients on triangular num-
bers satisfies

f (q, p, N ) = f (q, N − p, N ). (8)

Proof Using the elementary equation, two cases are required.
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Case 1: If q > 0, Eqs. 6 and 7 provide relevant combinatorial identities. Case 2: If
q = 0, we have f (0, 0, N ) = f (0, N , N ) = 1 by Definition 6.

4.2 Trivial Areas

Corollary 3 (Five areas for trivial values) If case 1—q > 0, 0 < p < q; case 2—
N − q < p < N; case 3—q = 0, 0 < p < N; case 4—q > 0, p = 0; case 5—q >

0, p = N, then

f (q, p, N ) = 0. (9)

Proof For cases 1, 2 and 3, we have

f (q, p, N ) = N

N − p

(
N − p

q

)(
p − 1

q − 1

)

= N

N − p

(
N − p

q

)[(
p − 1

q − 1

)
= 0

]
, 0 < p < q : Case 1

= N

N − p

[(
N − p

q

)
= 0

](
p − 1

q − 1

)
, N − q < p < N : Case 2

− = N

N − p

(
N − p

0

)[(
p − 1

−1

)
= 0

]
, q = 0, 0 < p < N : Case 3

= 0.

For cases 4 and 5, we have

f (q, p, N ) = N

q

(
N − p − 1

q − 1

)(
p − 1

q − 1

)

= N

q

(
N − 1

q − 1

)[( −1

q − 1

)
= 0

]
, q > 0, p = 0 : Case 4

= N

q

[( −1

q − 1

)
= 0

](
N − 1

q − 1

)
, q > 0, p = N : Case 5

= 0.

5 Projection Properties

5.1 Linear Projection

In this section, the algebraic properties of linear projection are investigated.

Definition 7 Let L(p, N ) denote a function as a linear projection to collect all
possible values for a given p, 0 ≤ p ≤ N .
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Table 7 N = 5, f (q, p, 5) subgroup numbers and two projections

p
∖
q 0 1 2 L(p, 5) = ∑

∀q f (q, p, 5)

0 1 1

1 5 5

2 5 5 10

3 5 5 10

4 5 5

5 1 1

|Ω(5)| = ∑
∀q

∑
∀p f (q, p, 5) = 32

For the case of N = 5, two projections and their generative triangular numbers
are shown in Table 7, respectively.

Following theorems and corollaries are claimed.

Theorem 4 If L(p, N ) = ∑p
q=1 f (q, p, N ), 0 < p < N, then the projection func-

tion L(p, N ) is a binomial coefficient and

L(p, N ) =
(
N

p

)
. (10)

Proof For a fixed p, 0 < p < N , all possible { f (q, p, N )} are collected to form the
following equation:

L(p, N ) =
p∑

q=1

f (q, p, N )

=
p∑

q=1

N

N − p

(
N − p

q

)(
p − 1

q − 1

)

= N

N − p

p∑
q=1

(
N − p

q

)(
p − 1

q − 1

)

= N

N − p

p∑
q=1

(
N − p

q

)(
p − 1

p − q

)
;

(
n

k

)
=

(
n

n − k

)

= N

N − p

(
N − 1

p

)
;

(
x + y

n

)
=

n∑
k=0

(
x

k

)(
y

n − k

)

= N

(N − p)

(N − 1)!
(N − p − 1)!p!
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= N !
(N − p)!p!

=
(
N

p

)
.

For a complete sequence of binomial coefficients, it is necessary to include both
initial and end subgroups. Further corollaries can be established.

Corollary 5 For any given N > 0 under the listed condition, a set of projection
function {L(p, N )}, 0 ≤ p ≤ N is composed of the same sequence of binomial coef-
ficients

L(p, N ) =
(
N

p

)
. (11)

Proof For 0 < p < N condition, they are well determined by Theorem 5.1 and two
end subgroups p = {0, N }, (N0 ) = (N

N

) = 1 by defined initial conditions.

Corollary 6 The sum of all possible {L(p, N )}Np=0 is

N∑
p=0

L(p, N ) = 2N . (12)

Proof Collecting all possible numbers by Corollary 2, we have

N∑
p=0

L(p, N ) =
N∑
p=0

(
N

p

)

= (1 + 1)N

= 2N .

Corollary 7 For 0 ≤ p ≤ N, a pair of functions has an equivalent formula

L(p, N ) = L(N − p, N ). (13)

Proof By Corollary 2.1, both equations are equal.

Theorem 8 For any N > 0, the sum of all possible functions on { f (q, p, N }∀p,∀q
or {L(p, N )}Np=0 is equal to 2

N

∑
∀p

∑
∀q

f (q, p, N ) =
N∑
p=0

L(p, N ) = 2N . (14)

Proof By Corollary 6, two equations are equal.
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5.2 Triangular Sequence

Definition 8 For a given N ≥ 1, let T (N ) denote a 2D structure with all nontrivial
triangular numbers.

T (N ) = { f (q, p, N )| f (q, p, N ) > 0, 0 ≤ q ≤ �N/2�, 0 ≤ p ≤ N } (15)

Corollary 9 For a given N, if |T (N )| be a total number of distinguishable elements
for nontrivial triangular numbers, then |T (N )| has the following equation:

|T (N )| =
{
N 2/4 + 2; N ≡ 0, (mod 2)

(N 2 − 1)/4 + 2; N ≡ 1, (mod 2).
(16)

Proof By Corollary 2 for a given N , a triangular shape for nontrivial members is
composed of two parts: a triangular area and two q = 0 points. The triangular area has
(N − 1) length and �N/2� high. If N ≡ 0, (mod 2), the triangular area is a regular
triangle contained N 2/4 elements, so the total number of the generative triangular
shape is N 2/4 + 2. For an odd valued N , a triangular area has additional �N/2�
members side on a regular triangle with �N/2�2 elements, so the total number of
elements is �N/2�2 + �N/2� + 2 = (N 2 − 1)/4 + 2.

Definition 9 For a given N ≥ 1, let T S(N ) denote an integer sequence with |T (N )|
elements for all nontrivial triangular numbers in T (N )

T S(N ) := [ f (0, 0, N ), f (0, N , N ), . . . ,

. . . , f (q, q, N ), . . . , f (q, p, N ), . . . , f (q, N − q, N ), . . . ,

. . . , f (�N/2�, �N/2�, N ), f (�N/2�, 
N/2�, N )],
1 ≤ q ≤ �N/2�, q ≤ p ≤ N − q. (17)

5.3 Linear Sequence

Definition 10 For a given N ≥ 1, let L(N ) denote a 1D structurewith relevant linear
numbers.

L(N ) = {L(p, N )|0 ≤ p ≤ N } (18)

Corollary 10 For a given N, if |L(N )| be a total number of distinguishable elements
for linear numbers, then |L(N )| satisfies Eq. 19.

|L(N )| = N + 1 (19)
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Table 8 {T (4), T (5), T (6)}, {L(4), L(5), L(6)} subgroup numbers in three levels

N T (N ) q := 0 1 2 3 p L(N ) L(N )

1 0 1

4 1 4

4 T (4) := 4 2 2 L(4) := 6

4 3 4

1 4 1

1 0 1

5 1 5

5 T (5) := 5 5 2 L(5) := 10

5 5 3 10

5 4 5

1 5 1

1 0 1

6 1 6

6 9 2 15

6 T (6) := 6 12 2 3 L(6) := 20

6 9 4 15

6 5 6

1 6 1

Definition 11 For a given N ≥ 1, let LS(N ) denote an integer sequencewith |T (N )|
elements for all linear numbers in L(N ) (Table 8)

LS(N ) := [L(0, N ), . . . , L(p, N ), . . . , L(N , N )], 0 ≤ p ≤ N . (20)

From the listed six groups of {T (4), T (5), T (6)} and {L(4), L(5), L(6)} struc-
tures, two integer sequences are arranged as follows:

T S(4), T S(5), T S(6) := [1, 1, 4, 4, 4, 2, 1, 1, 5, 5, 5, 5, 5, 5, 1, 1, 6, 6, 6, 6, 6, 9, 12, 9, 2];
LS(4), LS(5), LS(6) := [1, 4, 6, 4, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 20, 15, 6, 1].

6 Sample Cases

Two sample cases are selected for N = {17, 18} to show their triangular numbers
and generative structures in Table 9. In relation to relevant integer sequences, both
{L(16), L(17)} and {T (16), T (17)} are shown in Table 9. Two integer sequences are
significantly different. The triangular number sequence in this case with a total length
of 140 integers is three times longer than the linear number sequence with a total
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Table 9 Triangular number arrays for N = {16, 17} cases
N L(N ) T (N )

16 L(16) :=

1

16

120

560

1820

4368

8008

11440

12870

11440

8008

4368

1820

560

120

16

1

1

16

16, 104

16, 192, 352

16, 264, 880, 660

16, 320, 1440, 1920, 672

16, 360, 1920, 3360, 2016, 336

16, 384, 2240, 4480, 3360, 896, 64

16, 392, 2352, 4900, 3920, 1176, 112, 2

16, 384, 2240, 4480, 3360, 896, 64

16, 360, 1920, 3360, 2016, 336

16, 320, 1440, 1920, 672

16, 264, 880, 660

16, 192, 352

16, 104

16

1

:= T (16)

|L(16)| = 17 |T (16)| = 66,
∑

∀q,∀p f (q, p, 16) = 65536 = 216

17 L(17) :=

1

17

136

680

2380

6188

12376

19448

24310

24310

19448

12376

6188

2380

680

136

17

1

1

17

17, 119

17, 221, 442

17, 306, 1122, 935

17, 374, 1870, 2805, 1122

17, 425, 2550, 5100, 3570, 714

17, 459, 3060, 7140, 6426, 2142, 204

17, 476, 3332, 8330, 8330, 3332, 476, 17

17, 476, 3332, 8330, 8330, 3332, 476, 17

17, 459, 3060, 7140, 6426, 2142, 204

17, 425, 2550, 5100, 3570, 714

17, 374, 1870, 2805, 1122

17, 306, 1122, 935

17, 221, 442

17, 119

17

1

:= T (17)

|L(17)| = 18 |T N (17)| = 74,
∑

∀q,∀p f (q, p, 17) = 131072 = 217∑ |LS(16), LS(17)| = 35 = |T (16), T (17)| = |T (16)| + |T (17)| = 140,

|T (16)| + |T (17)| ∑
∀q,∀p

∑17
n=16 f (q, p, n) = 196608 = 216 + 217
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lengthof 35 integers. Two integer sequences represent different partition results on the
same number 196608 = 216 + 217 for generative binomial and trinomial coefficients,
respectively.

7 Conclusion

Due to the proposed elementary equation of trinomial coefficients with excellent
symmetric properties on a 2D grid similar to binomial coefficients on a 1D line,
projecting operation makes 2D T (N ) array be 1D linear L(N ) array, respectively.
Two types of T S(N ) and LS(N ) integer sequences can be generated. As the simplest
expansion of multinomial coefficients, discrete 2D geometry could provide solid
combinatorial foundation to support multinomial explorations.

From a combinatorial geometry viewpoint, triangular numbers provide a key
construction to link between trinomial and binomial representation in mathemati-
cal foundation. Trinomial integer sequences, as representatives, need to be deeply
explored by modern combinatorial & discrete mathematical societies. Further explo-
rations are expected on detailed analysis and systematic construction on both and
practical applications.
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Symmetric Clusters in Hierarchy
with Cryptographic Properties
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Abstract Symmetric Boolean functions play a key role in stream ciphers.
Symmetric constructions provide core components in cryptographic applications. In
this chapter, four meta symmetric clustering schemes (combination, crossing, variant
and rotation) are organized in a hierarchy for n variables of 0–1 vectors in measuring
phase spaces. Local counting properties in a cluster and global counting properties
in a given level are formulated. From selected symmetric clusters, a number of vari-
ous symmetric Boolean functions are formulated. Counting properties on symmetric
clusters, vectors in selected clusters and special symmetric Boolean functions are
listed. Four sets of symmetric Boolean functions are compared. Properties of sym-
metric clusters and Boolean functions are discussed. Main results are expressed in
theorems and tables. Among four meta schemes, the variant scheme presents novel
properties approximately with O

(
n2/4

)
clusters on a 2D phase space different from

other schemes: combinatorial O (n), crossing O (n/2) and rotation O (2n/n) on 1D
measuring phase spaces, respectively. The variant pseudorandom number generator
is a similar approach on RC4 and HC128 stream ciphers using word-oriented 0–1
vectors. Further advanced researches and explorations on relevant optimal configu-
rations are required.
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1 Introduction

Symmetric Boolean functions [5] have being widely used as components of different
cryptosystems [25] (e.g. in stream ciphers, block ciphers or hash functions). In com-
binatorial mathematics [10], a symmetric Boolean function is a Boolean function
whose value does not depend on the permutation of its input bits [4], i.e. it depends
only on the number of ones in the input on n variables of 0–1 vectors [21]. A total of
2n vectors are composed of a vector space or a phase space for the construction [19].
For a specific symmetric Boolean function, it is necessary to have invariant properties
undertaken a special group of permutations [18]. For example, rotation symmetric
Boolean functions are invariant under the circular translation of indices. In addition
to rotation symmetric properties, multiple invariants (combination, crossing, reflec-
tion, translation) may be composed of various symmetric subgroups of permutations
[10, 22]. Various combinatorial counting schemes are explored [34–36].

1.1 Symmetric Functions—Combinatorial Invariant

From a combinatorial viewpoint, symmetric Boolean functions are a combinatorial
invariant that links to the number of one elements p, 0 ≤ p ≤ n in a vector [35]. In
combinatorics, this type of function has being linked to binomial coefficients, and
normally, there are n + 1 partitions to distinct the parameter of a measuring phase
space into various clusters [30]. Symmetric Boolean functions are characterized
[36] by the fact that their outputs only depend on the p numbers of their inputs.
The usefulness of symmetric functions in a cryptographic context has being widely
explored which possess good cryptographic properties [6, 7].

1.2 Crossing Number - Topological Invariant

A zero-crossing [23] describes a point where the sign of a mathematical function
changes (e.g. from positive to negative), represented by a crossing of the axis (zero
value) in the graph of the function. It is a commonly used term in electronics, math-
ematics, sound and image processing.

From a measuring viewpoint, a 0–1 vector with n bits can be expressed as a
circular ring that has a fixed crossing number q, 0 ≤ q ≤ � n

2 � distinguished a number
of derivative changes on either 0–1 or 1–0, respectively. This type of derivative
invariant is widely used in crypto-analysis for many years. In NIST random data
testing packages [1], binary derivative [3] and Runs tests [2] play an important role
to measure the randomness of a binary sequence formed by a pseudorandom number
generator for use in cipher systems. From an analytic viewpoint, this parameter is a
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topological invariant and different from a combinatorial invariant to provide another
type of partition capacities to organize a set of clusters in a measuring phase space.

1.3 Rotation Symmetric Functions - Geometric Invariant

In combinatorial mathematics, rotation symmetric properties are widely explored
from early stage of abstract group theories and symmetric group constructions [10,
22] as a geometric invariant. Filiol and Fontaine [12] were initially explored on
balanced Boolean functions with a good correlation immunity. Pieprzyk and Qu [26]
were applied in crypto-applications to use Rotation Symmetric Boolean Functions
(RSBF) as components in the rounds of a hashing algorithm.

Extensive R&D activities on RSBF are continuous for last decades, a list of
advanced works explored, such as degree and non-linearity [6], optimal algebraic
immunity [7], bent and semi-bent functions [8, 33], non-linearity of resilient, non-
linear Boolean functions [20, 28], balanced Boolean functions [12, 16], non-linear
balanced Boolean functions [31], weights and non-linearity [11], immune combining
functions [32], count and cryptographic properties [13, 29], etc.

1.4 Trinomial Coefficients

It is a natural approach [10, 18, 19] to apply binomial coefficients to partition a
measuring phase space on 0–1 vector sets. However, when parameters increase more
than three, a generalization [34–36] using multinomial coefficients may not provide
a general solution on further refined partitions, if the processed phase space is com-
posed of 0–1 vectors. It is convenient for us to use a trinomial expression to show
this fact.

Let n = n1 + n2 + n3, 0 < n,

(
n

n1, n2, n3

)
= n!

n1!n2!n3! ,

collecting all possible trinomial coefficients, we have

∑

∀n1,n2,n3

(
n

n1, n2, n3

)
= 3n �= 2n. (1)

From Eq. 1, it is interesting to notice that trinomial coefficients provide further
segments to partition three-valued 0–2 vectors. Due to this reason, extensions using
multinomial coefficients may not be directly relevant to binary-valued 0–1 vector
sets. Refined identity equations of combinatorics are required [14, 15].
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1.5 Variant Symmetric Schemes - Variant Invariants

Various schemes to use multiple invariants to partition special phase spaces have
being explored in binary image analysis and processing for many years. In 1990s,
Zheng [39, 40] proposed conjugate classifications to apply seven invariants in a
hierarchy to partition the kernels of four regular plane lattices onn = {4, 5, 7, 9} cases
for 2D binary images. For n-tuple 0–1 vectors, variant logic frameworks [41, 42]
are proposed in 2010s, various applications are explored, such as 3D visual method
[37], variant Pseudorandom Number Generator (PRNG) [38, 43], computational
simulation on quantum interactions [44–47] and non-coding DNA analysis [48–50].

1.6 Organization of the Chapter

In this chapter, an algebraic equation of variant trinomial will be proposed as a kernel
structure to arrange a hierarchical phase space. This extension provides a general
framework of multiple symmetric operations to support three numeric numbers:
combinatorial, crossing and variant in a hierarchy. Three meta clusters of measuring
phase spaces are identified by the three invariants: {n, p, q} and their combinations.
Refined levels can be compared with the rotation symmetric scheme under n =
{1, 2, 3, 4, 5} conditions. Similarities and differences among the four schemes are
explored.

In Sect. 2, symbols and local counting properties of symmetric clusters in mea-
suring spaces are defined, algebraic equations are formulated and two important
projections are discussed. In Sect. 3, variant symmetric clusters and their elemen-
tary equation are proposed. In Sect. 4, four number sets of symmetric clusters are
explored fromaglobal viewpoint. In Sect. 5, symmetricBoolean functions of selected
clusters are constructed and both algebraic and approximate numeric properties are
discussed. In Sect. 6, cryptographic properties of symmetric Boolean functions in
a hierarchy are discussed and special properties on the variant scheme are stressed.
Section 7 is the conclusion of the chapter. Main results of the chapter are expressed
in a list of theorems and corollaries in Sects. 2–5, respectively.

2 Symmetric Clusters in Measuring Phase Spaces

In this section, basic symbols, primary definitions and algebraic formulas are defined
for different clusters in their measuring phase spaces.
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2.1 Basic Symbols

Main symbols in this chapter are listed in Table 1.

2.2 Primary Definitions

Definition 1 (x an n-tuple vector on 0–1 variables) Let x be a 0–1 vector with n
length.

x = (xn−1, . . . , xi , . . . , x0), 0 ≤ i < n, xi ∈ {0, 1} = B2, x ∈ Bn
2 , (2)

e.g. x = 110010, n = 6.

Table 1 Basic symbols

Symbol Notes

n Number of 0–1 variables, 1 ≤ n

x 0–1 vector x = (xn−1, . . . , xi , . . . , x0), xi ∈ {0, 1} = B2, 0 ≤ i < n

I I (x) index for a vector x

Ω(n) Phase space of vector set {x}, Ω(n) = {∀x |0 ≤ I < 2n}
fΩ(n) Number of vectors in Ω(n)

R R(x, r) rotation operator

F F(x) reflection operator

p p(x) number of 1’s elements in x , 0 ≤ p ≤ n

q q(x) number of cyclic crossings either 0–1 or 1–0 in x

L(p, n) Combinatorial cluster of vectors in Ω(n), L(p, n) ⊂ Ω(n)

E(q, n) Crossing cluster of vectors in Ω(n), E(q, n) ⊂ Ω(n)

V (q, p, n) Variant cluster of vectors in Ω(n), V (q, p, n) ⊂ Ω(n)

G(m, n) m-th rotation symmetric cluster of vectors in Ω(n), G(m, n) ⊂ Ω(n)

fE (q, n) Crossing number of vectors in a cluster E(q, n)

fL (p, n) Combinatorial number of vectors in a cluster L(p, n)

f (q, p, n) fV (q, p, n) variant number of vectors in a cluster V (q, p, n)

fG(m, n) Rotation number of vectors in the m-th cluster G(m, n)

O(N ) Approximate number of N

CX (n) Approximate number of clusters in a set of {X (.)}, X ∈ {E, L , V, G}
fX (n) Approximate number of clusters in a set of {X (.)}, X ∈ {E, L , V, G}
SFX (n) Number of Symmetric Boolean Functions (SBF) in {X (.)}, X ∈ {E, L , V, G}
SFXb(n) Number of balanced SB FX in {X (.)}, X ∈ {L , V, G}, n = 0 mod 2

SFEb(n) Number of balanced SB FE in ∃q, {E(q, n)}, n = 0 mod 4
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Definition 2 (I index for a vector x) For a vector x , let I or I (x) be an index:

I = I (x) =
n−1∑

i=0

xi ∗ 2i , (3)

e.g. x = 110010, I (x) = 25 + 24 + 2 = 32 + 16 + 2 = 50.

Definition 3 (Ω(n) a full set of n-tuple 0–1 vectors) Let Ω(n) be a vector space or
a phase space of all n-tuple 0–1 vectors,

Ω(n) = {∀x |0 ≤ I < 2n, x ∈ Bn
2 } and Ω(n) = Bn

2 . (4)

Definition 4 Let fΩ(n) denote a number of vectors in Ω(n).

Lemma 1 fΩ(n) is equal to 2n.

Proof For a vector x ∈ Bn
2 from 0 . . . 0 to 1 . . . 1, its index I can cover a full region

of 0 ≤ I < 2n , so Ω(n) contains 2n distinct vectors and fΩ(n) = 2n .

Definition 5 (Measuring Phase Space) If a phase space can be organized by various
invariants, then it is a measuring phase space and its dimension is determined by a
number of active invariants.

Corollary 1 For any n > 0, Ω(n) is a measuring phase space in zero dimension.

Proof For any n > 0, Ω(n) is composed of one cluster of vectors as a single point.

Definition 6 (R rotation operator) Let R(x; r) be a rotation operator on a vector x
rotation −n < r < n positions:

R(x; r) = R(xn−1, . . . , xi , . . . , x0; r)

= (xn−1+r mod n, . . . , xi+r mod n, . . . , x0+r mod n), (5)

e.g. x = 110010, {R(x; r)}5r=0 = {110010, 100101, 001011, 010110, 101100, 011001}
with six distinct vectors.

Lemma 2 (Maximal cyclic structure) Initially from any vector x under a rotation
operator, at most n distinct vectors will be distinguished under the rotation operator.

Proof From any x , a set of {R(x; r)}n−1
r=0 with n vectors can be generated. If the listed

set of n vector sequences contains more than one cycle, then the number of distinct
vectors will be less than n.

For example, x = 110110, {R(x; r)}5r=0 = {110110, 101101, 011011, 110110,
101101, 011011}with only a set of three distinct vectors: {110110, 101101, 011011}.
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Definition 7 (F reflection operator) Let F(x) be a reflect operator,

F(x) = F(xn−1, . . . , xi , . . . , x0) = (x0, . . . , xi , . . . , xn−1), 0 ≤ i < n. (6)

Lemma 3 (A pair of reflections)For any vector x, only two results are distinguished
under F(x) operation: (1) F(x) = x; (2) F(x) �= x.

Proof (1) If F(x) = x , then the values of the vector x are distributed as a central
symmetric form; (2) if F(x) �= x , then the vector x does not have a symmetric
distribution.

For example, x = 110010, F(x) = 010011; y = 110011, F(y) = 110011.

Definition 8 (p number of one elements) Let p or p(x) be a number of one elements
in x ,

p = p(x) =
n−1∑

i=0

xi , 0 ≤ p ≤ n. (7)

For example, x = 110010, p(x) = 3; y = 110011, p(y) = 4.

Definition 9 (q number of cyclic crossings) Let q or q(x) be a number of cyclic
crossings either 0–1 or 1–0 in a vector x ,

q = q(x) =
∑

0≤i<n

(xi ≡ 0)&(xi+1 ≡ 1); xi , xi+1 ∈ B2, (i + 1) mod n;

=
∑

0≤i<n

(xi ≡ 0)&(xi−1 ≡ 1); xi , xi−1 ∈ B2, (i − 1) mod n;

0 ≤ q ≤ �n

2
�. (8)

For example, x = 110010, q(x) = 2; y = 110011, q(y) = 1.

2.3 Counting Properties on Rotation Clusters

Definition 10 (G(m, n) m-th rotation symmetric cluster) Let G(m, n) be an m-th
rotation symmetric cluster of vectors, G(m, n) = Ω(n|m) ⊂ Ω(n) in Ω(n), and let
a total number of rotation symmetric clusters be CG(n), 1 ≤ m ≤ CG(n),

Ω(n) =
CG (n)⋃

m=1

Ω(n|m) =
CG (n)⋃

m=1

G(m, n). (9)
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Corollary 2 A set of {G(m, n)}CG (n)
m=1 is composed of a measuring phase space in one

dimension.

Proof Using the parameter m, {G(m, n)}CG (n)
m=1 can be listed in a linear order.

Lemma 4 By Burnside’s lemma, φ being Euler’s phi-function,

CG(n) = 1

n

∑

k|n
φ(k)2

n
k . (10)

Proof A brief proof of this lemma can be found in [29].

Definition 11 Let fG(m, n) denote a number of vectors in the m-th cluster G(m, n).

Corollary 3 For any fG(m, n), 1 ≤ fG(m, n) ≤ n.

Proof Due to Lemma 2, each fG(m, n) ≤ n in general; for two special vectors in
{0 . . . 0, 1 . . . 1}, we have fG(m, n) = 1.

Corollary 4 Collecting all possible rotation clusters, the total number of vectors is
equal to fΩ(n)

CG (n)∑

m=1

fG(m, n) = 2n

= fΩ(n). (11)

Proof From Lemma 4 and Corollary 3, it contains a full set of 2n vectors in Ω(n).

Lemma 5 For a given n, CG(n) has an approximate number,

CG(n) ≈ O(
2n

n
). (12)

Proof Using Corollaries 3 and 4, each distinct cluster contains at most n vectors; it
is a natural to have such an approximate number in enumeration.

It is convenient to list defined rotation parameters in Table 2 for n = 4 condition.

2.4 Counting Properties on Measuring Phase Spaces

For any vector x ∈ Ω(n), three measuring parameters {n, p, q} are represented as
three invariants. Three measurements transfer a phase space into a set of measuring
phase spaces in a hierarchy.
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Table 2 Six rotation clusters, various vectors in {G(m, 4)}
(m, n) G(m, n) fG(m, n)

(1, 4) {0000} 1

(2, 4) {0001, 0010, 0100, 1000} 4

(3, 4) {0011, 0110, 1100, 1001} 4

(4, 4) {0101, 1010} 2

(5, 4) {0111, 1110, 1101, 1011} 4

(6, 4) {1111} 1

CG(4) = 6 fΩ(n) = 16

Definition 12 (L(p, n) combinatorial cluster) Let L(p, n) be a combinatorial clus-
ter of vectors in Ω(n), L(p, n) = Ω(n|p) ⊂ Ω(n). Two parameters {n, p} partition
the phase spaceΩ(n) to form a set of clusters {L(p, n)} in a measuring phase space.

Ω(n|p) = L(p, n) = {∀x |0 ≤ p ≤ n, x ∈ Ω(n)}. (13)

Corollary 5 A set of {L(p, n)}n
p=0 is composed of a measuring phase space in one

dimension.

Proof The parameter p is the active invariant to arrange the phase space in a linear
order.

Definition 13 Let CL(n) be a number of clusters in ∀p, {L(p, n)}.
Lemma 6 For a given n,

CL(n) = n + 1. (14)

Proof Using Definition 12, 0 ≤ p ≤ n and for any p, L(p, n) �= ∅, the parameter p
partitions the whole set Ω(n) into n + 1 distinct subsets as clusters.

Definition 14 ( fL(p, n) combinatorial number) Let fL(p, n) be a combinatorial
number of vectors in a cluster L(p, n).

Lemma 7 For a pair of {n, p} parameters,

fL(p, n) =
(

n

p

)
(15)

Proof Using Definition 12, this number is equal to a binomial coefficient selected p
elements from n positions.

It is convenient to list definedmeasuring parameters inTable 3 forn = 4 condition.
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Table 3 Five clusters, various vectors in {L(p, 4)}
(p, n) L(p, n) fL (p, n)

(0, 4) {0000} 1

(1, 4) {0001, 0010, 0100, 1000} 4

(2, 4) {0011, 0110, 1100, 1001, 0101, 1010} 6

(3, 4) {0111, 1110, 1101, 1011} 4

(4, 4) {1111} 1

CL (4) = 5 fΩ(4) = 16

Definition 15 (E(q, n) crossing cluster of vectors) Let E(q, n) be a crossing cluster
of vectors in Ω(n), E(q, n) = Ω(n|q) ⊂ Ω(n). Two parameters {n, q} partition the
phase space Ω(n) to form a set of clusters {E(q, n)} in a measuring phase space.

Ω(n|q) = E(q, n) = {∀x |0 ≤ q ≤ �n

2
�, x ∈ Ω(n)} (16)

Corollary 6 A set of {E(q, n)}�n/2�
q=0 is composed of a measuring phase space in one

dimension.

Proof The parameter q is the active invariant to arrange the phase space in a linear
order.

Definition 16 Let CE (n) be a number of crossing clusters in ∀q, {E(q, n)}.
Lemma 8 For a given n > 0,

CE (n) = �n

2
� + 1. (17)

Proof According to Definition 15 and each E(q, n) �= ∅, 0 ≤ q ≤ � n
2 �, the param-

eter q partitions the whole set Ω(n) into � n
2 � + 1 distinct subsets as clusters.

Definition 17 ( fE (q, n) number of vectors) Let fE (q, n) be a number of vectors in
a cluster E(q, n).

Lemma 9 For a pair of {n, q} parameters,

fE (q, n) = 2 ∗
(

n

2q

)
, 0 ≤ q ≤ �n

2
�. (18)

Proof Two cases can be distinguished: Case 1: q = 0; Case 2: 1 ≤ q ≤ � n
2 �.

Case 1: All n values are either 1 or 0, 2 ∗ (n
0

) = 2.
Case 2: For a given q, 2q crossing positions are composed of a pair of a 0–1 crossing
then a 1–0 crossing repeatedly for q times in a vector and this configuration has a
total of

( n
2q

)
vectors included, and the same pair of positions can be exchanged as a
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Table 4 Three clusters, vectors in {E(q, 4)} cases
(q, n) E(q, n) fE (q, n)

(0, 4) {0000, 1111} 2

(1, 4) {0001, 0010, 0100, 1000, 0011, 0110,
1100, 1001, 0111, 1110, 1101, 1011}

12

(2, 4) {0101, 1010} 2

CE (4) = 3 fΩ(4) = 16

pair of 1–0 and 0–1 crossings with the same number of different vectors, so a total
of 2 ∗ ( n

2q

)
vectors are involved in each q selection.

It is convenient to list above defined measuring parameters in Table 4 for n = 4
condition.

3 Variant Symmetric Clusters

Definition 18 (V (q, p, n) variant cluster) Let V (q, p, n) be a variant cluster of
vectors in Ω(n), V (q, p, n) = Ω(n|p, q) ⊂ Ω(n). Three parameters {n, p, q} par-
tition the phase space Ω(n) to form a set of clusters {V (q, p, n)} in a measuring
phase space.

Ω(n|p, q) = V (q, p, n) = {∀x |0 ≤ p ≤ n, 0 ≤ q ≤ �n

2
�, x ∈ Ω(n)} (19)

Corollary 7 A set of {V (q, p, n)}∀q,p is composed of a measuring phase space on
two dimensions.

Proof Both invariants q and p are two active invariants to arrange the phase space
on a 2D plane lattice.

Lemma 10 Both {L(p, n)} combinatorial clusters and {E(q, n)} crossing clusters
can be generated from special subsets of {V (q, p, n)} variant clusters.

Proof For a given p, L(p, n) can be determined by

L(p, n) =
� n
2 �⋃

q=0

V (q, p, n).

For a given q, E(q, n) can be determined by

E(q, n) =
n⋃

p=0

V (q, p, n).
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Table 5 Three sets of variant clusters for n = 4 in {V (q, p, n)} condition

Applying this set of partitions, three sets of relevant clusters can be identified.
For example, n = 4, all 16 vectors in the vector space, three sets of clusters can

be distinguished as six clusters {V (q, p, n)}, five clusters for {L(p, n)} and three
clusters for {E(q, n)} shown in Table 5, respectively.

Definition 19 Let CV (n) be a number of non-trivial variant clusters in ∀q, p,

{V (q, p, n)}.
In general condition for any given n > 1, three sets of variant clusters could be

shown in Fig. 1.

Theorem 1 For a given n, CV (n) satisfies Eq. 20

CV (n) =
{

n2/4 + 2; n ≡ 0 mod 2

(n2 − 1)/4 + 2; n ≡ 1 mod 2.
(20)

Proof From Fig. 1 for a given n, a triangular shape for non-trivial variant clusters
is composed of two parts: a triangular area and two q = 0 points. The triangular

Fig. 1 Three sets of variant clusters {V (q, p, n)}, {E(q, n)}, {L(p, n)} for n > 1
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area has (n − 1) length and �n/2� high. If n ≡ 0 mod 2, the triangular area is a
regular triangle contained n2/4 clusters, so the total number of this triangular shape
contains n2/4 + 2 clusters. For an odd valued n, a triangular area has additional
�n/2� clusters side on a regular triangle with �n/2�2 clusters, so the total number of
clusters is �n/2�2 + �n/2� + 2 = (n2 − 1)/4 + 2.

3.1 Variant Trinomial Coefficients – Elementary Equation

Definition 20 Let fV (q, p, n) or f (q, p, n) 0 ≤ p ≤ n, 0 ≤ q ≤ � n
2 � denote an

enumeration function for a number of 0–1 vectors in a variant cluster.

It is convenient to list relevant measuring parameters in Table 6 for n = 4 condi-
tions.

Definition 21 For two initial and end clusters p = {0, n}, q = 0, let two cases be
f (0, 0, n) = f (0, n, n) = 1. For other cases, each cluster 0 < p < n, 0 < q ≤ � n

2 �
contains a subgroup of vectors under a given condition.Avariant trinomial coefficient
for a number of vectors in a cluster is defined as an elementary equation in Equation
21,

f (q, p, n) = n

n − p

(
n − p

q

)(
p − 1

q − 1

)
. (21)

Applying variant trinomial coefficients in Eq. 21, there is no difficult to process
more complicated cases in enumeration. Global arrangements on their triangular
shapes are convenient to be arranged by p measures in vertical direction. Two cases
n = {4, 5} are shown in Table 7.

In a general condition for any given n > 1, three sets of various numbers can be
shown in Fig. 2.

Table 6 Six clusters, vectors in {V (q, p, 4)}
(q, p, n) V (q, p, 4) f (q, p, 4)

(0, 0, 4) {0000} 1

(0, 4, 4) {1111} 1

(1, 1, 4) {0001, 0010, 0100, 1000} 4

(1, 2, 4) {0011, 0110, 1100, 1001} 4

(1, 3, 4) {0111, 1110, 1101, 1011} 4

(2, 2, 4) {0101, 1010} 2

CV (4) = 6 fΩ(4) = 16
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Table 7 Three sets of vector numbers { f (q, p, n)}, { fE (q, n)}, { fL (p, n)};(a) n = 4;(b) n = 5

Fig. 2 Three sets of { f (q, p, n)}, { fE (q, n)}, { f (p, n)} variant numbers for n > 1

3.2 Combinatorial Projection on Variant Clusters

From an algebraic viewpoint, the following theorems and corollaries are established
for a general condition to meet any n ≥ 1 cases.

Lemma 11 If fL(p, n) = ∑p
q=1 f (q, p, n), 0 < p < n, then the projection func-

tion fL(p, n) is a binomial coefficient and

fL(p, n) =
(

n

p

)
. (22)

Proof For a fixed p, 0 < p < n, all possible { f (q, p, n)} are collected to form the
following combinatorial identities: [14, 15, 21],
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fL(p, n) =
p∑

q=1

f (q, p, n)

=
p∑

q=1

n

n − p

(
n − p

q

)(
p − 1

q − 1

)

= n

n − p

p∑

q=1

(
n − p

q

)(
p − 1

q − 1

)

= n

n − p

p∑

q=1

(
n − p

q

)(
p − 1

p − q

)
;

(
N

k

)
=

(
N

N − k

)

= n

n − p

(
n − 1

p

)
;

(
x + y

N

)
=

N∑

k=0

(
x

k

)(
y

N − k

)

= n

(n − p)

(n − 1)!
(n − p − 1)!p!

= n!
(n − p)!p!

=
(

n

p

)
.

For a complete sequence of binomial coefficients, it is necessary to include both
initial and end clusters. Further Theorem 2 can be established.

Theorem 2 For any given n > 0, a set of projection function { fL(p, n)}n
p=0 is com-

posed of the same sequence of binomial coefficients

fL(p, n) =
(

n

p

)
. (23)

Proof For 0 < p < n condition, the equation has been determined by Lemma 11
and two end clusters p = {0, n}, (n

0

) = (n
n

) = 1 are determined by Definition 21.

Corollary 8 The sum of all possible { fL(p, n)}n
p=0 is equal to fΩ(n),

n∑

p=0

fL(p, n) = fΩ(n) = 2n. (24)

Proof Collecting all possible numbers in Theorem 2, we have
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n∑

p=0

fL(p, n) =
n∑

p=0

(
n

p

)

= (1 + 1)n

= 2n

= fΩ(n).

3.3 Crossing Projection on Variant Clusters

Lemma 12 If fE (q, N ) = ∑n−q
p=q f (q, p, n), 1 ≤ q ≤ � n

2 �, then the enumeration
function fE (q, n) is a double of a binomial coefficient

fE (q, n) = 2

(
n

2q

)
. (25)

Proof For a fixed q, collecting all possible { f (q, p, n)}n−q
p=q , the following combina-

torial identities [14, 15, 21] are deduced:

fE (q, n) =
n−q∑

p=q

f (q, p, n)

=
n−p∑

p=q

n

n − p

(
n − p

q

)(
p − 1

q − 1

)

=
n−p∑

p=q

n

q

(
n − p − 1

q − 1

)(
p − 1

q − 1

)
; N

q

(
N − p − 1

q − 1

)
= N

N − p

(
N − p

q

)

= n

q

n−p∑

p=q

(
n − p − 1

q − 1

)(
p − 1

q − 1

)
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= n

q

(
n − 1

2q − 1

)
;

(
N + 1

r + s + 1

)
=

N−s∑

k=r

(
k

r

)(
N − k

s

)

= 2
n

2q

(n − 1)!
(n − 2q)!(2q − 1)!

= 2
n!

(2q)!(n − 2q)!
= 2

(
n

2q

)
.

Theorem 3 For any given n > 0 under the listed condition, a set of projection func-
tion { fE (q, n)}0≤q≤� n

2 � are composed of the subsequence of binomial coefficients,

fE (q, n) = 2

(
n

2q

)
. (26)

Proof For 1 ≤ q ≤ �n/2� condition, equations are determined by Lemma 12 and
for the initial subgroup, we have q = 0, fE (0, n) = (n

0

) + (n
n

) = 2
(n
0

)
.

Corollary 9 For n ≡ 0 mod 2, 0 ≤ q ≤ n/2, there are a pair of symmetric func-
tions

fE (q, n) = fE (n/2 − q, n). (27)

Proof Under n ≡ 0 mod 2 condition,

fE (q, n) = 2

(
n

2q

)

= 2

(
n

n − 2q

)
= 2

(
n

2(n/2 − q)

)

= fE (n/2 − q, n).

Corollary 10 For n ≡ 0 mod 4, q = n/4, fE (n/4, n) has the maximal value

fE (n/4, n) > fE (q, n), q �= n/4. (28)

Proof Under n ≡ 0 mod 4 condition,

fE (q, n) = 2

(
n

2q

)
< 2

(
n

n/2

)
= 2

(
n

2n/4

)
= fE (n/4, n).
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Corollary 11 The sum of all possible { fE (q, n)}0≤q≤� n
2 � is equal to fΩ(n),

� n
2 �∑

q=0

fE (q, n) = fΩ(n) = 2n. (29)

Proof Collecting all possible numbers, we have the following equations:

� n
2 �∑

q=0

fE (q, n) =
� n
2 �∑

q=0

2

(
n

2q

)

= 2

� n
2 �∑

q=0

(
n

2q

)
,

∑

k≥0

(
n

2k

)
=

∑

k≥0

(
n

2k + 1

)
= 2n−1

= 2 × 2n−1

= 2n

= fΩ(n).

3.4 Relationships of Four Symmetric Clusters

Theorem 4 For any n > 0, the sum of all possible functions on { f (q, p, n}∀p,∀q

or { fE (q, n)}0≤q≤� n
2 � or { fL(p, n)}n

p=0 or { fG(m, n)}, 1 ≤ m ≤ CG(n) is equal to
fΩ(n)

fΩ(n) =
∑

∀p

∑

∀q

f (q, p, n) =
� n
2 �∑

q=0

fE (q, n) =
n∑

p=0

fL(p, n)

=
CG (n)∑

m=1

fG(m, n)

= 2n. (30)

Proof From the results of Corollaries 4, 8 and 11, four schemes provide various
partitions to the same set of vectors on Ω(n) completely.

Corollary 12 Numbers of four symmetric clusters can be expressed by
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Table 8 Numbers of four symmetric clusters in 1 ≤ n ≤ 16

CE (n) = �n

2
� + 1;

CL(n) = n + 1;

CV (n) =
{

n2/4 + 2, n ≡ 0 mod 2

(n2 − 1)/4 + 2, n ≡ 1 mod 2
;

CG(n) = 1

n

∑

k|n
φ(k)2

n
k .

Proof Due to Lemmas 4, 6, 8 and Theorem 1, four equations for numbers of various
symmetric clusters are listed.

In convenient for comparison, their values on 1 ≤ n ≤ 16 are listed in Table 8,
respectively.

Checking real clusters in four schemes, the following corollaries can be provided.

Corollary 13 When n = {1, 2, 3}, three cluster schemes CL(n), CV (n), CG(n) pro-
vide the same partitions of clusters.

Proof Checking the three schemes,wehaveCL (1) = CV (1) = CG(1) = 2,CL(2) =
CV (2) = CG(2) = 3, CL(3) = CV (3) = CG(3) = 4. Relevant cluster contains the
same set of vectors.

Corollary 14 When n = {1, 2, 3, 4, 5}, two cluster schemes CV (n), CG(n) provide
the same partitions of clusters.

Proof Due to Corollary 13, we need to check n = {4, 5} cases. For the two schemes,
wehave (CL(4) = 5) �= (CV (4) = CG(4) = 6), (CL(5) = 6) �= (CV (5) = CG(5) =
8). Relevant cluster contains the same set of vectors.

Corollary 15 When n ≥ 6, four cluster schemes CE (n), CL(n), CV (n), CG(n) pro-
vide different partitions on their clusters.

Proof Due toCorollaries 13 and 14,we need to check n = {6, · · · } cases. For the four
schemes,CE (6) = 4, CL(6) = 7, CV (6) = 11, CG(6) = 14. Only a few clusters can
contain the same set of vectors.
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Corollary 16 When n ≥ 6, three cluster schemes: combinatorial, crossing and vari-
ant {CE (n), CL(n), CV (n)} may contain more symmetric properties than rotation
clusters on CG(n).

Proof Considering a special case on {n = 6, p = 3, q = 2}, V (2, 3, 6) = {001101,
011010, 110100, 101001, 010011, 100110, 011001, 110010, 100101, 001011, 010110,
101100}; this cluster contains twocycles: {001101, 011010, 110100, 101001, 010011,
100110} and {011001, 110010, 100101, 001011, 010110, 101100} with six vectors,
respectively. Both cycles have rotation symmetries only without reflection symme-
tries. It is possible to use reflection symmetric operators to distinct two relative cycles
to form a pure rotation symmetric structure. However, other clusters may contain
more cycles such as L(3, 6) with four cycles and E(2, 6) with six cycles, respec-
tively. It is necessary to apply other symmetric operators different from rotation for
further separations.

4 Four Number Sets of Symmetric Clusters

4.1 Four Approximates on Numbers of Clusters

Using the four numeric equations, relevant approximates can be expressed as follows.

Lemma 13 Four approximates can be expressed as

CE (n) ≈ O
(n

2

)
; (31)

CL(n) ≈ O (n) ; (32)

CV (n) ≈ O

(
n2

4

)
; (33)

CG(n) ≈ O

(
2n

n

)
. (34)

Proof Using the four equations, the following approximates can be expressed:

CE (n) = �n

2
� + 1 ≈ O

(n

2

)
;

CL(n) = n + 1 ≈ O (n) ;

CV (n) =
{

n2/4 + 2, n ≡ 0 mod 2

(n2 − 1)/4 + 2, n ≡ 1 mod 2
≈ O

(
n2

4

)
;

CG(n) = 1

n

∑

k|n
φ(k)2

n
k ≈ O

(
2n

n

)
.
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4.2 Four Approximates on Numbers of Vectors

Definition 22 Let fX (n), X ∈ {L , E, V, G} denote an approximate number of vec-
tors in X cluster.

Lemma 14 Four approximates can be expressed as

fE (n) ≈ O

(
2n+1

n

)
; (35)

fL(n) ≈ O

(
2n

n

)
; (36)

fV (n) ≈ O

(
2n+2

n2

)
; (37)

fG(n) ≈ O (n) . (38)

Proof Since all clusters partition the same phase space Ω(n) with 2n vectors, their
approximates for vectors in a cluster can be evaluated,

fE (n) = 2n

O
(

n
2

) ≈ O

(
2n+1

n

)
;

fL(n) = 2n

O (n)
≈ O

(
2n

n

)
;

fV (n) = 2n

O
(

n2

4

) ≈ O

(
2n+2

n2

)
;

fG(n) = 2n

O
(
2n

n

) ≈ O (n) .

It is convenient to list approximate numbers on clusters, vectors and dimension
of measuring phase spaces in Table 9.

Table 9 Four approximate numbers on both clusters and vectors

X CX (n) fX (n) Measuring phase
space

E O
( n
2

)
O

(
2n+1

n

)
1D

L O (n) O
(
2n

n

)
1D

V O
(

n2
4

)
O

(
2n+2

n2

)
2D

G O
(
2n

n

)
O (n) 1D
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5 Symmetric Boolean Functions for Selected Clusters

5.1 Four Numbers on Symmetric Boolean Functions

Definition 23 Let SFX (n) denote a number of Symmetric Boolean Functions (SBF)
in {X (.)}, X ∈ {E, L , V, G}.
Theorem 5 (Four types of symmetric Boolean functions) Total numbers of four
types of symmetric Boolean functions SFX (n), X ∈ {E, L , V, G} are

SFE (n) = 2CE (n) = 2� n
2 �+1; (39)

SFL(n) = 2CL (n) = 2n+1; (40)

SFV (n) = 2CV (n) =
{
2n2/4+2, n ≡ 0 mod 2

2(n2−1)/4+2, n ≡ 1 mod 2
; (41)

SFG(n) = 2CG (n) = O
(
2

2n

n

)
. (42)

Proof For any selected cluster, there are two selections for its symmetric Boolean
functions.

5.2 Four Numbers of Balanced Symmetric Clusters

Definition 24 Let SFXb(n) be a maximal number of balanced SB FX in {X (.)}, X ∈
{L , V, G}, n = 0 mod 2.

Definition 25 Let SFEb(n) be a maximal number of balanced SB FE in ∃q,

{E(q, n)}, n = 0 mod 4.

Lemma 15 Four selected numbers {CXb(n)}, X ∈ {E, L , V, G} for balanced sym-
metric clusters are

CEb(n) =
{
1, n ≡ 0 mod 4

0, n �= 0 mod 4
; (43)

CLb(n) = 1; (44)

CV b(n) = n

2
; (45)

CGb(n) = O

(
1

n

(
n

n/2

))
. (46)

Proof From Corollary 10 for Eb groups n ≡ 0 mod 4 cases, q = n/4 provides a
cluster with a maximal number of vectors in a balanced condition and other cases
cannot satisfy balanced conditions; for Lb groups n ≡ 0 mod 2 cases, p = n/2
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Table 10 Numbers of four balanced symmetric functions in 2 ≤ n ≤ 20

provides a cluster with a maximal number of vectors in a balanced condition; for V b
groups n ≡ 0 mod 2 cases, p = n/2, 1 ≤ q ≤ n/2, there are n/2 clusters involved
in a balanced condition; for Gb groups n ≡ 0 mod 2 cases, p = n/2, a total of

rotation symmetric clusters O
(
1
n

( n
n/2

))
could be involved in a balanced condition.

5.3 Four Numbers of Balanced Symmetric Boolean
Functions

Theorem 6 (Four balanced SYMMETRIC Boolean functions) Total numbers of
four balanced symmetric Boolean functions {SFX b(n)}, X ∈ {E, L , V, G} are

SFEb(n) = 2CEb(n) =
{
2, n ≡ 0 mod 4

1, n �= 0 mod 4
; (47)

SFLb(n) = 2CLb(n) = 2; (48)

SFV b(n) = 2CV b(n) = 2
n
2 ; (49)

SFGb(n) = 2CGb(n) = O
(
2

1
n (

n
n/2)

)
. (50)

Proof Each number of clusters in a selected scheme has been determined in Lemma
15. For any selected cluster in the scheme, there are two selections to form relevant
symmetric Boolean functions.

In convenient for comparison, four types of SB FXb numbers on 2 ≤ n ≤ 20 are
listed in Table 10, respectively.

6 Cryptographic Properties of Symmetric Boolean
Functions in Hierarchy

Boolean functions are of great importance in the design of randomnumber generators
for stream ciphers [25] that are widely used in modern network environment.
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Due to cryptographically secure consideration, the sequence produced by the ran-
dom number generator must satisfy the various properties [6, 8]: the longer period,
the period complexity and good statistical distributions. There exists a huge theoret-
ical knowledge of such combining generators [25].

A symmetric Boolean function must fulfil different necessary criteria to yield
a cryptographically secure scheme, at least to resist known attacks [11]. In this
direction, various measuring parameters play an important role such as balanced,
support set, hamming weight, hamming distance, balanced function, non-linearity,
correlation immunity, etc. [6, 8].

In relation to balanced properties, when n is even, the functions of highest non-
linearity are the bent functions, and it is well known that the bent functions cannot be
the balanced functions [28, 33]. From a structural viewpoint, the balanced functions
having the highest possible non-linearity need to be considered. However, finding
such functions is a very difficult problem [29, 31, 33]. When n is odd, exhibiting
functions of the highest non-linearity is a hard problem in itself. Among the available
candidates, balanced ones exist [16, 33].

To explore optimal functions in rotation symmetric Boolean function sets, many
researchers are faced extremely difficulties on computational complexity even for
n > 10 symmetric Boolean functions [29]. Exponentially increasing complexity
makes a complex exhaustive search be quickly impossible. Compared with both
variant and rotation schemes listed in Table 10, it is interesting to notice that the vari-
ant scheme takes a numeric complexity on n = 20 as same as the rotation symmetric
scheme on n = 10. Much faster computation on optimal functions could be feasibly
explored.

From a meta analytic viewpoint, measuring phase spaces provide multiple lev-
els of construction in a hierarchy linked to various symmetric Boolean functions.
They support an n tuple 0–1 vector construction as a word-based 0–1 vector to sat-
isfy various design and analysis purposes. The variant PRNG construction [38, 43]
is a similar approach to RC4 and HC128 stream ciphers [25] in their meta phase
spaces using the word-oriented vector structure with the higher speed and efficiency.
Measuring phase spaces could support advanced cryptographic applications on the
direction.

Due to significant differences betweenmeasuring phase spaces proposed and alge-
braic normal forms classically formulated, in addition to initial balanced symmetric
properties discussed in the chapter, other advanced comparison mechanisms need
to be established for all interesting cryptographic properties to satisfy practical and
optimal requirements for streamciphers. Further detailed researches and explorations
are required.

7 Conclusion

Symmetric clusters in a hierarchy provide the additional information to organize
various symmetricBoolean functions into hierarchical constructions asmultiplemeta
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levels of structures efficiently. The variant symmetric functions proposed in this
chapter provide a meta construction on a 2D measuring phase space to contribute
richer capacities compared with the three classical schemes (combinatorial, crossing
and rotation) on 1D measuring phase spaces.

From a measuring viewpoint, three schemes (combinatorial, variant and rotation)
in Tables 8, 9 and 10 have similar values in n = {1, 2, 3} and {4, 5} or different values
in n ≥ 6 conditions. The variant scheme provides a 2D intermediate structure differ-
ent from other two schemes in 1D structure. From an approximate viewpoint, both
combinatorial and rotation schemes are shown in stronger similar properties. Their
approximate number of clusters and number of vectors in a cluster can be exchanged
in Table 9. From an abstract system viewpoint, this pair of exchangeable measure-
ments may provide approximate symmetric properties for both combinatorial and
rotation schemes.

From a clustering viewpoint, the most important results are summarized in Theo-
rem 4 to show that the four symmetric cluster schemes are different partition schemes
on the same 0–1 vector set.

From a balanced analysis viewpoint, the key results of balanced symmetric
Boolean functions are summarized in Theorem 6 and Table 10. This set of results
provides a basic measurement to illustrate relevant computational difficulties to
explore further optimal properties in balanced symmetric conditions. Different from
other three schemes (combinatorial, crossing and rotation) in either very simpler
or extremely complex associated with n increasing, balanced variant symmetric
Boolean functions present very interesting patterns to support even n ≥ 20 cases
for future explorations.

Many advanced properties are existed to use a meta hierarchical construction to
manage relevant measuring phase spaces into multilevels of a hierarchical structure.
Various measuring parameters can be used as control parameters in detailed cases.
Refined design and analysis can be performed under this meta hierarchy to provide
powerful models and tools on design and optimization for future generations of
stream ciphers.
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Part III
Theoretical Foundation—Variant Map

Arc, amplitude, and curvature sustain a similar relation to each other
as time, motion, and velocity, or as volume, mass, and density.

—Carl Friedrich Gauss

As long as algebra and geometry have been separated, their progress
have been slow and their uses limited; but when these two sciences
have been united, they have lent each mutual forces, and have marched
together towards perfection.

—Joseph-Louis Lagrange

The arithmetical symbols are written diagrams and the geometrical
figures are graphic formulas.

—David Hilbert

In relation to variant map, a longer book chapter (Chapter “Interactive Maps on
Variant Phase Spaces”) was published in the OA book of Emerging Application of
Cellular Automata: 113–196 (2013) by InTech Press. This provides systematical
approaches under statistical mechanics in comparison. Possible projections and
their mapping mechanisms are explored.

Part III is composed of three chapters (6–8).
Chapter “Variant Maps of Elementary Equations” provides variant maps of

elementary equation to generate visual distributions using two cases of combina-
torial expressions. From two cases, it is interesting to see symmetric distributions
under various parameters and complex distributions are created by control
parameters shown in 2D and 3D distributions and their projections.

Chapter “Variant Map System of Random Sequences” describes variant map
system of random sequences; five types of maps are defined and proposed on two
types of 1D maps and three types of 2D maps. A sample sequences from the AES
cipher is selected and multiple maps are illustrated.

Chapter “Stationary Randomness of Three Types of Six Random Sequences on
Variant Maps” proposes a testing system for stationary randomness of random



sequences on variant maps. Three types of six random sequences are selected. Six
samples are composed of three random resources: two block ciphers, two stream
ciphers, and two quantum ciphers. Three variation categories are observed.

96 Theoretical Foundation—Variant Map



Variant Maps of Elementary Equations

Jeffrey Zheng

Abstract Using four measures in Type B, there are 11 invariant expressions to
form elementary equations of variant measurement. In this chapter, two invariant
expressions are selected to illustrate sample procedures from elementary equations
to relevant variant maps. Using various projections and multiple levels of represen-
tations, complicated binomial coefficients and their variations are illustrated under
various conditions. Using multinomial coefficients, multiple viewpoints are used for
references. Due to this type of variation framework contains rich structures, further
explorations are required from multiple levels on both theoretical foundation and
practical applications.

Keywords Variant measurement · Elementary equation · Variant map
Multinomial coefficient · Coefficient array

1 Introduction

Variant construction starts from n 0–1 variables to form 2n states and 22
n
func-

tions, via vector permutation and complement operations on state space to estab-
lish a variant logic framework to contain 2n! × 22

n
configurations as a variation

space. Variant measurement acts as a core of quantitative measurement, starting from
m 0–1 variables to explore relevant clustering conditions on 2m states. Since this type
of variations has a close relationship to partition and recombination using binomial
and multinomial coefficients under identically combinatorial expressions. Apply-
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ing the results in Chapter “Elementary Equations of Variant Measurement”, Type B
measures are composed of 11 nontrivial invariants. Two invariants are selected in this
chapter, their different partition properties are illustrated to use coefficients on 2D
and 3D distributions. Variant maps are generated from coefficient arrays as samples.

2 Measures and Maps

Two combinatorial invariants are selected: {m − p}{p} and {2q}{m − 2q}. Different
distributions on their coefficients are explored.

2.1 Case 1. {m − p}{ p}

For {m − p}{p} formula, relevant equation is

(
m

p

)
=

p∑
k=0

(
m − p

k

)(
p

k

)
(1)

A binomial coefficient is separated by sum of (p + 1) pairs of binomial coefficient
products. For a selected value p, coefficients {(m−p

k

)(p
k

)}, 0 ≤ k ≤ p are arranged in
a linear order.

This property is true for all p values. A special three tuple structure (m, p, k)
has 1–1 correspondence with a coefficient f (m, p, k) = (m−p

k

)(p
k

)
. While m value

increased, coefficient array will be increased as a 3D rectangular steps, eachm value
has a (m + 1)2 region.

The nontrivial coefficients are distributed as a triangle. LetF(m, p) = ∑
∀k

f (m, p, k), 0 ≤ p ≤ m and G(m, k) = ∑
∀p f (m, p, k), 0 ≤ k ≤ m, two projec-

tions {F(m, p),G(m, k)} can be projected. Coefficients and relevant four maps are
shown in Fig. 1.

Lemma 1 For {m − p}{p} equation, coefficients are distributed in (m + 1)2

and all nontrivial coefficients are clustered in 1/4 region and 3/4 regions has coeffi-
cient 0.

2.2 Case 2. {2q}{m − 2q}

Briefly {m − p}{p} and {2q}{m − 2q} are simple invariants. For {2q}{m − 2q}
invariant, it has the following equation.

http://dx.doi.org/10.1007/978-981-13-2282-2_3
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(a) (b) (c) (d)

Fig. 1 One set of coefficients and its two projections in four maps (a)–(d); a 3D f (10, p, k); b 2D
f (10, p, k); c 1D F(10, p); d 1D G(10, k)

(
m

p

)
=

p∑
k=0

(
2q

k

)(
m − 2q

p − k

)
(2)

where q is a free variable, 0 ≤ q ≤ �m/2�. Different from Case 1, this equation
can determine l f loorm/2� + 1 levels of coefficients according to different q values
selected to form a 3D coefficient structure.

Let f (m, q, p.k) = (2q
k

)(m−2q
p−k

)
under 0 ≤ q ≤ �m/2�, 0 ≤ k, p ≤ m conditions,

nontrivial coefficients are distributed in special shapes on multiple 2D regions.
Using color coding scheme, it is feasible to map coefficients into greyscale or

color pixels as variant maps.
A binomial coefficient can be separated as sum of (p + 1) pairs of coefficient

products {(2qk )(m−2q
p−k

)}, 0 ≤ k ≤ p to be a linear order.
This type of property is true for all p values, a special tuple of four parameters

(m, q, p, k) has 1–1 correspondence with coefficient
(2q
k

)(m−2q
p−k

)
. Each selected m

value is corresponding to (m + 1)2 × (�m/2� + 1) region to locate all coefficients.

Lemma 2 For {2q}{m − 2q} combinatorial invariant, all coefficients are restricted
in (m + 1)2 × (�m/2� + 1) region.
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3 Visual Results

It is convenient to use color coding to transfer each coefficient as a pixel in a variant
map. Invariant coefficients provide ideal conditions for a practical measurement, it
is feasible to check physical differences between an idea distribution and a practical
measurement.

From a quantitative viewpoint, multinomial expressions provide proper basis on
corresponding partitions to be a relative measurement in representation.

3.1 Case 1. Maps

Using
(m
p

) → {(m−p
k

)(p
k

)}, three maps are shown in Fig. 1 as 2D coefficients, 3D his-
tograms, and 2D projections on four parameters m = {10, 11, 15, 16}, respectively.

3.2 Case 2. Maps

Different from Case 1, each m is associated with one 2D coefficient. In
(m
p

) →
{(2qk )(m−2q

p−k

)} conditions, each q selection determines a 2D array of coefficients.
Under 0 ≤ q ≤ �m/2� conditions, �m/2� + 1 levels are required. For m = 10, it
is necessary to have 6 levels.

To observe global properties, a 3D color map is shown in Fig. 3 to illustrate 3D
coefficients under color coding.

4 Result Analysis

In maps of Figs. 1, 2, and 3, it is convenient to see variant maps transformed from
elementary equations. From a certain viewpoint, {m − p}{p} coefficients have sym-
metric properties on horizontal direction on p : m − p with reflective properties.
Nontrivial coefficients are located in 1/4 region of (m + 1)2 square. An isosceles
triangle is composed of all nontrivial coefficients. Selecting any m, there is only one
2D coefficient associated with to be a unified distribution.

{2q}{m − 2q} coefficients are corresponding to multiple 2D distributions under
various q values. While q = 0, each nontrivial coefficient is located on diagonal
position of p = k and each coefficient is a

(2q
k

)(m−2q
p−k

)
equation. In 0 ≤ q ≤ 5 con-

ditions, 2D coefficient matrices are shown in six groups of {0 : 10, 2 : 8, 4 : 6, 6 :
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(a1) (b1) (c1) (d1)

(a2) (b2) (c2) (d2)

(a3) (b3) (c3) (d3)

(a4) (b4) (c4) (d4)

Fig. 2 {m − p}{p} maps: m = {10, 11, 15, 16}; (a1)−(d1) m = 10; (a2)−(d2) m = 11;
(a3)−(d3) m = 15; (a4)−(d4) m = 16

4, 8 : 2, 10 : 0}, this can be described as (x + y)n+l = (x + y)n(x + y)l coefficient
distributions that can be illustrated in Fig. 2 {{(a0)−(c0)} − {(a5)−(c5)}} maps.
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q
=
3

(a2) (b2) (c2)

q
=
5

(a3) (b3) (c3)

q
=
0

(a0) (b0) (c0)

q
=
1

(a1) (b1) (c1)

Fig. 3 {2q}{m − 2q} maps: m = 10; (a0)−(c0)q = 0; (a1)−(c1)q = 1; (a2)−(c2)q = 2;
(a3)−(c3)q = 3; (a4)−(c4)q = 4; (a5)−(c5)q = 5
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Fig. 4 {2q}{m − 2q}
map:m = 10; 3D color map

5 Conclusion

It is a new exploration to use elementary equation to illustrate relevant variant maps.
Based on the described model and calculation, it is convenient to do various analysis
and visualization. It is an initial step to check two invariants from Type B for four
variant measures. Further explorations are required on five levels of 11 nontrivial
invariants in Type B. From results in this chapter, distinct distributions are observed
on the two selected invariants. Other nine invariants in Type B will be discussed in
future papers (Fig. 4).

Acknowledgements The author would like to thank Yifeng Zheng and Kaiyu Yang for generating
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Variant Map System of Random
Sequences

Jeffrey Zheng

Abstract Sequences of random variables play a key role in probability theory,
stochastic processes, and statistics to analyze dynamic behavior. Speckle patterns
have emerged as useful tools to explore space–time variations of random sequences
in various measurement applications of comprehensive properties in complex space–
time variation events. In this chapter, a variant map system is proposed to analyze
statistical properties of random sequences in visual representations. An input 0–1
sequence will be divided into multiple segments and each segment of a fixed length
will be transformed into a 2-tuple pair of measures. Five measuring sets are identified
and rearranged in a 1D or 2D numerical array as a histogram representing a visual
map. These five types of maps consist of two types in 1D format as classical maps
and three types in 2D format as variant maps. Properties are analyzed on all five
types of maps. A cryptographic sequence of the AES cipher is selected as a sample
stream. The five types of visual maps are generated and refined clustering character-
istics are organized into four groups on changes of segmented and shifted lengths for
visual comparisons on enlarged 2DP maps. Speckle patterns of various distributions
are observed. Three variant maps with distinct statistic distributions could be useful
to provide new visual tools to explore comprehensive cryptographic sequences on
complex nonlinear dynamic behavior in global network environments.

Keywords Variant map · Visual representation · Multiple segment · Statistical
probability distribution · Clustering characteristics
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1 Introduction

Associated with network communication and internet technology [1] in global appli-
cations, web communication, internet of things, cloud computing, big data, mobile
phone, and smart wireless technologies [2] are significantly developed in the last
decade and widely adapted over the world market. In the current situation, it is a key
issue for cryptographic researchers and applications [3] to use advanced technologies
of stream ciphers to protect data security of ultrafast and extra-big data streams in
global network environments.

1.1 Pseudo-Random Sequences

1.1.1 From Linear Stream Ciphers

Traditional stream ciphers [4] on LFSR Linear Feedback Shift Register structure (in
military cryptography) are used as pseudo-randomnumber generators, due to the ease
of implementation from simple hardware, long periods, and uniformly distributed
streams. The LFSR stream ciphers are the core in classical stream ciphers through
the mathematical theory of algebraic functions for system simulation and analysis.

However, an LFSR is a linear system leading to fairly easy cryptanalysis using the
Berlekamp–Massey algorithm. Important LFSR-based stream ciphers use A5/1 &
A5/2 in GSM cell phones and E0 in Bluetooth. But the A5/2 cipher has been broken
and both A5/1 and E0 have serious weaknesses [5, 6].

1.1.2 From Nonlinear Stream Ciphers

The new generation of stream ciphers [7, 8] are widely used in advanced web com-
munications. Three general methods are applied to improve security weaknesses in
LFSR-based stream ciphers:

1. Nonlinear Functions: Nonlinear combination of several bits from the LFSR
state [9].

2. NonlinearParts:Nonlinear combinationof the output bits of twoormoreLFSRs
or using Evolutionary algorithm for nonlinearity [10].

3. Clock Control: Irregular clocking of the LFSR, as in the alternating step gen-
erator [11].

With batch, a series of nonlinear algorithms have emerged [12]: nonlinear equiva-
lence [13], evolutionary methods [10], AES cipher [14], RC4 [15], ZUC [9], cellular
automata [16], and nonlinear dynamic system [17].

The new generation of stream ciphers are being shifted from the traditional mode:
LFSR [4] to various nonlinear modes: NLFSR [18, 19], clock control [11], nonlinear
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functions [9] etc., it is essential for ciphers to be integrated and implemented [20] to
satisfy security models. However, different from LFSR with well-established linear
mathematical theories and simulation tools, it is extremely difficult to use advanced
nonlinearmathematical theories, recursivemodels, descriptive tools, and implement-
ing schemes [17] in nonlinear dynamic environments.

How to evaluate cryptographic sequences generated from the nonlinear stream
ciphers is an urgent problem for modern stream ciphers.

1.2 Truly Random Sequences from Hardware Devices
and Speckle Patterns

In addition to pseudo-random sequences generated by stream ciphers, high-quality
stochastic oscillators of truly random sequences are generated from special hardware
devices such as laser photonics [21], nonlinear optics [22], quantum optics [23],
quantum noises [24], thermal noise [25], chaos, and fractal nonlinear dynamics [26].

A list of truly random number generators are developed to extract stochastic
information from speckle patterns [27], i.e., random bits from turbulence [28] to get
random numbers from the speckle positions, generation of random arrays using laser
speckle [29], 2D generation of random numbers by multimode fiber speckle [30],
Markov speckle for efficient random bit generation [31] and dynamic laser speckle
and applications [11].

Since various truly random sequences are created from specific physical models
with special principles and uncertain methodologies, it is extremely difficult for
cryptographic researchers to make proper measurements explore nonlinear dynamic
properties.

1.3 Statistic Testing Packages on Cryptographic Sequences

Randomness has been explored for many years [32] on a series of statistic testing
theories and methods. The NIST 800-22 testing package [33] is an effective statis-
tic package on random sequences collecting a set of 16 statistic testing schemes
in evaluations of statistic properties on cryptographic sequences. Statistic testing
packages are very useful to catch a list of quantitative measurements evaluating
randomness properties of cryptographic sequences in wider applications. However,
testing schemes in various packages are mainly focused on P-value or a list of static
properties of a testing sequence.

Since comprehensive behaviors in nonlinear dynamics may increase computa-
tional complexities tragically to involve complicated dynamic properties in the mul-
tivariate environment, those dynamic behaviors are completely ignored.
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1.4 Gaussian Distribution and Speckle Pattern

Multivariate normal probability distribution models are the most important and pow-
erful tools that are used to test stochastic characteristics of a random data sequence
[34] under the framework of probability, stochastic process, and statistics [35] for
nonlinear problems. In this kind of measuring models, when the data sequence is
sufficiently long, the high-dimensional probability distribution of the sequence [36]
is similar to the continuous Gaussian distribution.

A typical projection model is shown in Fig. 1a; the central part shows a Gaus-
sian surface with an unbalanced distribution in a 2D plane distributed as P(X,Y )

measures with pseudo-colors and its two 1D projections shown in both horizontal
P(X) and vertical P(Y ) planes, respectively. In Fig. 1b, a standard Gaussian surface
with symmetric shapes is illustrated and the 2D projection of its pseudo-color map
is shown in Fig. 1c with an ideal continuous distribution of color on the map. Dif-
ferent from ideally continuous distributions, in Fig. 1d, a real image generated from
the Laser speckle phenomena [37] is illustrated as an objective speckle pattern [38]
scattered by a laser beam from a plastic surface onto a wall. It is convenient for us
to compare different color maps in Fig. 1c, d, respectively.

From these set of figures, the relationship between the projection curve and two
1D Gaussian distributions can be observed in the multivariate normal probability
environment. Multivariate Gaussian probability distributions may support classical
schemes to analyze complex stochastic data sets of measuring sequences in many
applications in continuous conditions. But speckle patterns in Fig. 1d provide intrinsi-
cally discrete randompatterns thatmaynot be easily simulated by smoothedGaussian
map in Fig. 1c, further exploration on proper simulation and control mechanisms are
required.

1.5 Controlling Deterministic Chaos

Controlling deterministic chaos has been an active R&D field in nonlinear dynam-
ics over the past decades. From the pioneering work, significant progress has been
achieved in control spatiotemporal chaos [39], plasma device, laser systems [40],
chemical reactions, and biological systems both spatial and temporal dependence
considered. The complex Ginzburg–Landau equation (CGLE) system [41] describes
universal dynamics features near a supercritical Hopf bifurcation. It exhibits defected
mediate turbulence or spiral turbulence in a wide parameter region. The control by
generating a spiral wave seed has been described [42, 43] to grow into a stable spiral
in the CGLE system.

Systematic approaches on simulation of nonlinear behaviors, speckle phenomena
in optics [37] and pattern dynamics [44] have been actively explored.
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Fig. 1 Multivariate Gaussian Probability Distributions and an objective speckle pattern; aBivariate
normal distribution with two probability projections; b A symmetric bivariate normal surface with
pseudo-colors; c A 2D pseudo-color map of the symmetric bivariate normal surface; dAn objective
speckle pattern scattered by a laser beam from a plastic surface onto a wall. [38]

1.6 Poincaré Map

From a measuring viewpoint, spatial variations of a stochastic sequence will be
changed by overall macro characteristics showing statistic measurements of dis-
tributed patterns [45] in a vector space, so that a random sequence is measured by an
analytic space. From an analysis viewpoint, the Poincaré section [46] corresponds to
a discrete map proposed by the eminent French scientist Henri Poincaré 100 years
ago.
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The Poincaré map handles additional information from sequential changes of
ordered measurements in the phase space of classical dynamics, nonlinear dynamic
systems [47] and chaos.

The mapping mechanism of the Poincaré map may be useful to handle dynamic
patterns on cryptographic sequences of stream ciphers. This mapping scheme has
been applied to observe the global randomness of cellular automata sequences on
2D maps [48] 20 years ago.

1.7 Variant Framework

Various schemes following the top-down strategy are explored to use multiple mea-
sures to partition special phase spaces from a top state set to multiple bottom states
via multi-levels of a hierarchy in combinatorial algorithms [49], image analysis and
processing for many years.

The conjugate classification [50] is proposed to apply seven measures in a hier-
archy to partition the kernels of four regular plane lattices on n = {4, 5, 7, 9} cases
for 2D binary images. For 1D cellular automata sequences, global random behaviors
[48] are visualized in 2D maps.

For n-tuple bit vectors, the variant logic framework [51] was proposed and var-
ious applications were explored: 3D visual method on random number sequences
[52], variant Pseudo-Random Number Generator PRNG [53, 54], computational
simulation on quantum interactions [55, 56], noncoding DNA analysis [57] and bat
echolocation [58].

1.8 Proposed Scheme

For the purpose of system characterization based on comprehensive measurements
of cryptographic sequences, we propose a variant map system for a 0–1 stochastic
sequence with length N . Multiple segments M are divided from the sequence by a
given length m. A 2-tuple pair of measures can be extracted from a 0–1 segment that
is the number of a single element and the number of 01 patterns in the segment. All
paired measures are composed of a sequence of M pairs of measures as an ordered
measuring set with M elements.

The pairs of the measuring sequence are directly separated into two independent
measuring sequences to keep each parameter in the same order. Applying the pairing
scheme of the Poincaré section, one singlemeasuring sequence can be reorganized by
two consequent measures as a 2-tuple pair of measures. Two measuring sequences in
the Poincaré section and the original pairs of measuring sequence are arranged as the
three sequences of 2-tuple measures. So a total of five sequences of distinct measures
are constructed including two sequences on single measures and three sequences on
2-tuple measures.
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Following this approach, two sets of single measuring sequences are sorted as
two 1D numerical arrays as statistical histograms being classic 1D maps and three
sets of 2-tuple measuring sequences are sorted as three 2D integer arrays as statistic
histograms being three variantmaps. Under the controlling operations on the changes
of the segment lengths and shift displacements, multiple results of the five measuring
sequences are transformed into 1D statistic histograms and 2D pseudo-color maps
to show effective speckle patterns from the selected cryptographic sequence under
various conditions of the combination on the two controlling parameters.

1.9 Organization of the Chapter

This chapter describes the variant map system in diagrams of the system architecture
and the core modules with input/output and processing functions in Sect. 2. In Sect.
3, the relationships among measuring sequences and the five statistical distribution
maps are analyzed. In Sect. 4, an AES cipher sequence is selected to form a series
of statistical maps based on changes of the two control parameters. From the results
of the visual maps in Sect. 4, intuitive analysis and brief comparisons are carried out
in Sect. 5. Finally, in Sect. 6, the main results are summarized.

2 Framework of Variant Map System

2.1 Framework

For the variant map system, the block diagrams of the system framework and the core
modules of the system are shown in Fig. 2. The framework of the system architecture
in Fig. 2a is composed of three core modules: the Shift Segment Measurement SSM,
the Measuring Sequence Combination MSC, and the Projective Color Map PCM.
The three modules are shown in Fig. 2b–d in more detail, respectively.

2.2 Shift Segment Measurement SSM

The SSM module is shown in Fig. 2b.
Let X be a 0–1 vector with N elements as an input sequence,

X = X [0]X [1] · · · X [I ] · · · X [N − 1], 0 ≤ I < N ; X [I ] ∈ {0, 1} (1)
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SM

MSCInput: 0-1
Sequence SSM PCM Output:

Five Maps

VS
SSM In:
{X ,r,m}

SSM Out:
{(pi,qi)}
0 ≤ i < M

SCMS
MSC In:
{(pi,qi)},
0 ≤ i < M

MSC Out:
{pi}, {qi},
{(pi−1, pi)},
{(qi−1,qi)},
0 ≤ i < M

CMPA

PCM In:
{pi}, · · · ,
{(pi,qi)},
0 ≤ i < M

PCM Out:
{1DP ...
2DPQ}

Input: A 0-1 sequrence
SSM Shift Segment Measurement
MSC Measuring Sequence Combination
PCM Projective Color Map
Output: Five Maps

(a) The Architecture

Input: X ,N bits; r shift length, m segment length
VS Vector Shift
SM Segment Measurement
Output: A set of 2-tuple measures {(pi,qi)}M−1

i=0

(b) The SSM Module

Input: {(pi,qi)}, 0 ≤ i < M
MS Measuring Split
MC Measuring Combination
Output: {pi}, · · · , {(qi−1,qi)}, 0 ≤ i < M

(c) The MSC Module

Input: {pi}, {qi},{(pi−1, pi)}, {(qi−1,qi)}, {(pi,qi)}, 0 ≤
i < M
PA Projected Array
CM Color Map
Output: Five Maps {1DP, 1DQ, 2DP, 2DQ, 2DPQ}

(d) The PCM Module

Fig. 2 The framework of the variant map system for cryptographic sequences; a The system
architecture; b The SSM module; c The MSC module; d The PCM module

The SSM module consists of two processing units: the Vector Shift VS and the
Segment Measurement SM, respectively. The two input control parameters: {r,m}
are defined as shift length r and segment length m.

Let Y be a 0–1 vector with N elements, this vector is generated by the shift
operation under the loop displacement condition from the input sequence (i.e., a
cyclic shift right + or shift left −)

Y = X (r),Y [I ] = X [I ± r ], I ± r(mod N ), 0 ≤ I < N ; X [I ],Y [I ] ∈ {0, 1}(2)

The shifted vector is inputted into the SM unit for a segmentation process.
The input sequence will be divided from a long sequence with N elements into
M = �N/m� segments as a set of sub-vectors with m elements and each segment
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contains m bits. The i-th sub-vector 0 ≤ i < M on the j-th position 0 ≤ j < m is
denoted as Yi, j .

This sequence of sub-vectors after the segmenting operation forms the follow-
ing m × M matrix, m positions for the i-th complete row vector in the sequence
correspond to a pair of 2-tuple measures: (pi , qi ), and incomplete parts of the last
sub-vector are ignored.

Y =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Y0,0 Y0,1 · · · Y0, j · · · Y0,m−1
...

...
. . .

...
. . .

...

Yi,0 Yi,1 · · · Yi, j · · · Yi,m−1
...

...
. . .

...
. . .

...

YM−1,0 YM−1,1 · · · YM−1, j · · · YM−1,m−1

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(p0, q0)
...

(pi , qi )
...

(pM−1, qM−1)

· · ·

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

= {(pi , qi )}M−1
i=0

The pair of 2-tuple measures (pi , qi ) is determined by the following formula:

Yi, j = Y [J ] ∈ {0, 1}; J = i × m + j,

0 ≤ i < M, 0 ≤ j < m, 0 ≤ J < m × M ≤ N (4)

pi =
m−1∑
j=0

Yi, j ,Yi, j ∈ {0, 1}, 0 ≤ pi ≤ m; (5)

qi =
m−1∑
j=0

[(Yi, j−1,Yi, j ) == (0, 1)], j − 1(mod m), 0 ≤ qi ≤ �m/2�; (6)

i.e., X = 0011010010, N = 10, M = 2,m = 5; (p0 = 2, q0 = 1); (p1 = 2,
q1 = 2).

The parameter pi is the number of single elements in the i-th sub-vector, the
parameter qi is the number of 01 pattern overlapped in the i-th sub-vector in a cyclic
condition. For any segment m > 0, 0 ≤ pi ≤ m, 0 ≤ qi ≤ �m/2�, all segments are
transformed from a random sequence with N elements into a measuring sequence
with M elements.

The SSM module outputs the ordered pairs of 2-tuple measures {pi , qi }M−1
i=0 .

2.3 Measuring Sequence Combination MSC

The MSC module is described in Fig. 2c, the module is composed of two units: the
Measuring Split MS and the Measuring Combination MC. The MS unit processes
the SSM module’s output, and splits the measuring sequence with 2-tuple measures
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into two independent measuring sequences: {pi }M−1
i=0 , {qi }M−1

i=0 to keep the original
measuring number invariant.

Recombining each single measuring sequence by overlapping consequent ele-
ments as a pair, the MC unit will form two independent measuring sequences orga-
nized in 2-tuple measures: {pi }M−1

i=0 → {(pi−1, pi )}M−1
i=0 and {qi }M−1

i=0 →
{(qi−1, qi )}M−1

i=0 , i − 1(mod M) to provide appropriate sequences for subsequent pro-
cessing modules.

The MSC module produces the following four measure sequences:
{pi }M−1

i=0 , {qi }M−1
i=0 , {(pi−1, pi )}M−1

i=0 , {(qi−1, qi )}M−1
i=0) , respectively.

2.4 Projective Color Map PCM

The PCM module consists of two units: PA,CM. For five measuring sequences, 1D
and 2D measures will be processed separately.

ThePAunit processes relevantmeasuring sequences to transform them into integer
arrays and the CM unit will visualize these on either normalized histograms (1D
measures) or color maps (2D measures), respectively.

2.4.1 1D Measures

The 1D measures involve two measuring sequences: {pi }M−1
i=0 , {qi }M−1

i=0 . Let
P[m + 1], Q[�m/2� + 1] and N P[m + 1], N Q[�m/2� + 1] be two 1D (integer,
float) arrays to represent the corresponding elements, which are defined in the
following.

2.4.2 1DP Map

The 1DP statistic histogram: for a sequence {pi }M−1
i=0 , N P, P are two arrays (float,

integer) with (m + 1) elements. The j-th elements N P[ j], P[ j], 0 ≤ j ≤ m, can be
obtained from the following procedure:

Initialization: ∀N P[ j] = 0.0, P[ j] = 0, 0 ≤ j ≤ m;
Calculation: f or(i = 0; i < M; i + +){P[pi ] + +; }

Normalization: f or( j = 0; j ≤ m; j + +){N P[ j] = P[ j]/M; }

In the 1DPmap, the PA unit corresponds to Initialization and Calculation; the CM
unit handles Normalization.
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2.4.3 1DQ Map

The 1DQ statistic histogram: for a sequence {qi }M−1
i=0 , N Q, Q are two arrays

(float, integer) with (�m/2� + 1) elements. The j-th elements N Q[ j], Q[ j],
0 ≤ j ≤ �m/2�, can be obtained from the following procedure:

Initialization: ∀N Q[ j] = 0.0, Q[ j] = 0, 0 ≤ j ≤ �m/2�;
Calculation: f or(i = 0; i < M; i + +){Q[qi ] + +; }

Normalization: f or( j = 0; j ≤ �m/2�; j + +){N Q[ j] = Q[ j]/M; }

Using P, N P, Q, N Q arrays, it is possible to generate the corresponding 1D
statistical histograms as 1D maps.

In the 1DQ map, the PA unit corresponds to Initialization and Calculation; the
CM unit handles Normalization.

2.4.4 2D Measures

The 2D measures specially process three measuring sequences: {(pi−1, pi )}M−1
i=0 ,

{(qi−1, qi )}M−1
i=0 , {(pi , qi )}M−1

i=0 . Let P[m + 1 : m + 1], Q[�m/2� + 1 : �m/2� + 1],
P Q[m + 1 : �m/2� + 1] be three 2D integer arrays to represent the corresponding
elements, which are defined in the following.

2.4.5 2DP Map

2DP statistic histogram: for a sequence{(pi−1, pi )}M−1
i=0 , P is a 2D integer array with

(m + 1)2 elements. The i, j-th elements P[i, j], 0 ≤ i, j ≤ m, can be obtained from
the following procedure:

Initialization: ∀P[i, j] = 0, 0 ≤ i, j ≤ m;
Calculation: P[pM−1, p0] + +;

f or(i = 1; i < M; i + +){P[pi−1, pi ] + +; }
Pseudo-color: Matching proper color ∀P[i, j], 0 ≤ i, j ≤ m

In the 2DPmap, the PA unit corresponds to Initialization and Calculation; the CM
unit handles pseudo-color.

2.4.6 2DQ Map

2DQ statistic histogram: for a sequence {(qi−1, qi )}M−1
i=0 , Q is a 2D integer array

with (�m/2� + 1)2 elements. The i, j-th element Q[i, j], 0 ≤ i, j ≤ �m/2�, can be
obtained from the following procedure:
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Initialization: ∀Q[i, j] = 0, 0 ≤ i, j ≤ �m/2�;
Calculation: Q[qM−1, q0] + +;

f or(i = 1; i < M; i + +){Q[qi−1, qi ] + +; }
Pseudo-color: Matching proper color ∀Q[i, j], 0 ≤ i, j ≤ �m/2�

In the 2DQ map, the PA unit corresponds to Initialization and Calculation; the
CM unit handles Pseudo-color.

2.4.7 2DPQ Map

2DPQ statistic histogram: for a sequence {(pi , qi )}M−1
i=0 , P Q is a 2D integer array

with (m + 1) × (�m/2� + 1) elements. The i, j-th elements P Q[i, j], 0 ≤ i ≤ m,

0 ≤ j ≤ �m/2�, can be obtained from the following procedure:

Initialization: ∀P Q[i, j] = 0, 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�;
Calculation: f or(i = 0; i < M; i + +){P Q[pi , qi ] + +; }

Pseudo-color: Matching proper color ∀P Q[i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�

In the 2DPQ map, the PA unit corresponds to Initialization and Calculation; the
CM unit handles Pseudo-color.

Through the PCM module, five measuring sequences are transformed into two
1D arrays and three 2D arrays with (m + 1), (�m/2� + 1), (m + 1)2, (�m/2� + 1)2

and (m + 1) × (�m/2� + 1) clusters, respectively.
The final results of the variant map system are five maps: 1DP, 1DQ, 2DP, 2DQ,

and 2DPQ as expected statistic distributions of the input 0–1 sequence.

3 Sequence Analysis

3.1 Ideal Condition

From a viewpoint of sequence analysis, it is a classical technology to sort the {pi }M−1
i=0

measuring sequence as a 1D statistic histogram.When themeasuring sequencemeets
ideal conditions, the 1D statistical distribution is a binomial distribution.

Lemma 1 For an input 0–1 sequence, if the total number of segments is equal to
M = 2m, and each segment of m bits appears only once in the sequence, then the
1DP array satisfies the binomial distribution:

P[i] =
(

m

i

)
, 0 ≤ i ≤ m (7)
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Corollary 1 If the input sequence meets the conditions of Lemma 1, then the total
number of items in the 1DP array is equal to

m∑
i=0

P[i] = 2m = M (8)

Lemma 2 If the input sequence meets the conditions of Lemma 1, then the 1DQ
array satisfies the following relation:

Q[i] = 2

(
m

2i

)
, 0 ≤ i ≤ �m/2� (9)

Corollary 2 If the input sequence meets the conditions of Lemma 1, then the total
number of items in the 1DQ array is equal to

m/2∑
i=0

Q[i] = 2m = M (10)

3.2 General Condition

Theorem 1 For any 0–1 sequence with N elements, a 2DP array has two projections
in both vertical and horizontal directions and they are corresponding to the 1DP
array.

Proof A 2DP array is generated from a measuring sequence {(pi−1, pi )}M−1
i=0

and the 2DP array is {P[i, j]}m
i=0

m
j=0, from both directions P[i] = ∑m

j=0 P[i, j],
0 ≤ i ≤ m; P[ j] = ∑m

i=0 P[i, j], 0 ≤ j ≤ m; so {P[i]}m
i=0 = {P[ j]}m

j=0. Both pro-
jections are the same 1DP array.

Corollary 3 For an arbitrary input sequence, the total number of items in the 2DP
array is equal to

m∑
i=0

m∑
j=0

P[i, j] =
m∑

i=0

P[i] = M (11)

Theorem 2 For any 0–1 sequence with N elements, a 2DQ projection in both direc-
tions is the 1DQ array.

Proof A 2DQ array is generated from a measuring sequence {qi−1, qi }M−1
i=0 and the

2DQ array is {Q[i, j]}�m/2�
i=0

�m/2�
j=0 , from both directions Q[i] = ∑�m/2�

j=0 Q[i, j], 0 ≤
i ≤ �m/2�; Q[ j] = ∑m

i=0 Q[i, j], 0 ≤ j ≤ �m/2�; so {Q[i]}�m/2�
i=0 = {Q[ j]}�m/2�

j=0 .
Both projections are the same 1DQ array.
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Corollary 4 For an arbitrary input sequence, the total number of items in the 2DQ
array is equal to

�m/2�∑
i=0

�m/2�∑
j=0

Q[i, j] =
�m/2�∑
i=0

Q[i] = M (12)

Theorem 3 For any 0–1 sequence with N elements, a 2DPQ projection in two direc-
tions is corresponding to either a 1DP array or a 1DQ array, respectively.

Proof A 2DPQ array is generated from a measuring sequence {pi , qi }M−1
i=0 and the

2DPQ array is {P Q[i, j]}m
i=0

�m/2�
j=0 , from two directions P[i] = ∑�m/2�

j=0 P Q[i, j],
0 ≤ i ≤ m; Q[ j] = ∑m

i=0 P Q[i, j], 0 ≤ j ≤ �m/2�. So the two projections are cor-
responding to either a 1DP or a 1DQ array.

Corollary 5 For an arbitrary 0–1 input sequence, the total number of items in the
2DPQ array is equal to

m∑
i=0

�m/2�∑
j=0

P Q[i, j] = M =
m∑

i=0

P[i] =
�m/2�∑

j=0

Q[ j] (13)

Corollary 6 For an arbitrary input sequence, five measuring sequences are corre-
sponding to two 1D and three 2D arrays. Let |G| denote the number of associated pos-
sible clusters in G. If m > 3, then |2D P| > |2D P Q| > |2DQ| > |1D P| > |1DQ|
is satisfied.

Proof Five arrays: (2DP,2DPQ, 2DQ,1DP,1DQ) contain {(m + 1)2, (m + 1) ×
(�m/2� +1), (�m/2� + 1)2, (m + 1), (�m/2� + 1)} items, respectively. If m > 3,
then the inequalities are true.

3.3 Brief Discussion

From the listed statement in lemmas, theorems, and corollaries, Lemmas 1 and 2
described an ideal input sequence where each segment is a uniform distribution
which appears only once. Under this ideal condition, both 1DP and 1DQ arrays are
corresponding to a binomial distribution. Corollaries 1 and 2 have shown that both
1DP and 1DQ arrays meet the number of quantitative characteristics for the ideal
input sequence.

Theorems 1 and 2 establish projective conditions on any input sequence. A 2DP
or 2DQ array has its 1D projection of two directions on the same array. Theorem 3
claims that for any 2DPQ array, two projections are corresponding to both 1DP and
1DQ arrays, respectively.

Corollaries 3 and 4 treat 2DP and 2DQ arrays, respectively, in the total number of
summing conditions on their quantitative characteristics. Corollary 5 is associated
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with Theorem 3 on a 2DPQ array to share with other four projections the same
quantitative characteristics. In Corollary 5, the total number of each component on
five statistic arrays is equal to the total number of segments M , a 2DPQarray occupies
a central position in the projection to other arrays. Corollary 6 uses inequalities to
show five scales of numbers of items in five arrays to provide the maximal number
of items involved in the structure.

From a viewpoint of complex stochastic sequence analysis, this partition mode
corresponds to the maximum number of clusters distinguished in the condition of
multiple segments. Different from surface analysis based on the multivariate Gaus-
sian probability distribution, variant maps provide only a limited finite number of
lattice points that form space-related clusters on the projection position. Under the
condition of segments in larger length, the 2DP array has the maximum number of
distinct items and can be clearly distinguished among the five arrays to make the
most visible map showing the largest refined distribution in details.

4 Sample Maps

Since the ideal distribution may appear merely on specific conditions, it is very
difficult to use algebraic formulas to describemeasuring sequences on statisticalmaps
of an arbitrary cryptographic sequence. For complicated data sequences, the most
effective scheme is using the computational approach directly to generate relevant
maps and then to make feasible comparisons. Among the five maps generated from
an input 0–1 sequence, more 2DP maps are selected in this section to illustrate a
series of changes among segment lengths and shifting lengths for refined details.

In this section, one cryptographic sequence generated from an AES cipher is
selected as a sample sequence, and various control parameters will be changed. This
sample sequence has a fixed length N = 106 in one million stochastic bits. Various
changes are made on the length m of segment and shift displacement r . Five maps
will be applied to show their special statistical distributions.

4.1 Dramatically Changing the Segment Lengths: 1DP, 1DQ,
2DP, 2DQ, and 2DPQ Maps m = {8, 16, 128}, r = 0

Three groups of Figs. 3, 4, and 5 are involved in comparison based on the five maps.
In Fig. 3, nine maps from both 1DQ and 2DQ forms are selected in

m = {8, 16, 128}, r = 0 condition; (a)–(c) showing three 1DQ maps with differ-
ent segments; (d)–(f) showing 2DQ maps in normal sizes and (g)–(i) being the same
2DQ maps with enlarged sizes.

In Fig. 4, 12 maps from 1DP, 2DPQ, and 1DQ forms are selected in
m = {8, 16, 128}, r = 0 condition; (a)–(c) showing three 1DQ maps with differ-
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1D
Q

2D
Q

2D
Q

(a) m=8 (b) m=16 (c) m=128

(d) m=8 (e) m=16 (f) m=128

(g) m=8 (h) m=16 (i) m=128

Fig. 3 1DQ and 2DQ maps on m = {8, 16, 128}, r = 0; a–c 1DQ maps; d–f 2DQ Regular maps;
g–i 2DQ Enlarged maps

ent segments; (d)–(f) showing 2DPQ maps in normal sizes; (g)–(i) being the same
2DPQ maps with enlarged sizes and (j)–(l) illustrating 1DQ maps for convenient
comparison.

In Fig. 5, nine maps from both 1DP and 2DP forms are selected in
m = {8, 16, 128}, r = 0 condition; (a)–(c) showing three 1DP maps with different
segments; (d)–(f) showing 2DPmaps in normal sizes and (g)–(i) being the same 2DP
maps with enlarged sizes.

4.2 Small Changes in Segment Lengths: 2DP Maps;
Variation Series in Lengths of Segments
m = {125, 126, 127}, r = 0

Two groups of maps are compared in Fig. 6 based on slightly changing segment
lengths.
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(a) m=8 (b) m=16 (c) m=128

2D
PQ

(d) m=8 (e) m=16 (f) m=128

2D
PQ

(g) m=8 (h) m=16 (i) m=128

1D
Q

(j) m=8 (k) m=16 (l) m=128

Fig. 4 1DP, 2DPQ, and 1DQmaps on m = {8, 16, 128}, r = 0; a–c 1DPmaps; d–f 2DPQRegular
maps; g–i 2DPQ Enlarged maps; j–l 1DQ maps

In Fig. 6, nine maps from both 1DP and 2DP forms are selected in
m = {125, 126, 127}, r = 0 condition; (a)–(c) showing three 1DP maps with dif-
ferent segments; (d)–(f) being 2DP maps in normal sizes and (g)–(i) showing the
same 2DP maps with enlarged sizes.
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(a) m=8 (b) m=16 (c) m=128

2D
P

(d) m=8 (e) m=16 (f) m=128

2D
P

(g) m=8 (h) m=16 (i) m=128

Fig. 5 1DP and 2DP maps on m = {8, 16, 128}, r = 0; a-c 1DP maps; d–f 2DP Regular maps;
g–i 2DP Enlarged maps

4.3 Changing the Lengths of Shift Displacement: 2DP Maps
Change on Displacement Series m = 128, r = {1, 2, 8}

Two groups of maps are compared in Fig. 7 under changing shift lengths.
In Fig. 7, nine maps from both 1DP and 2DP forms are selected in m = 128,

r = {1, 2, 8} condition; (a)–(c) showing three 1DP maps with different segments;
(d)–(f) being 2DP maps in normal sizes and (g)–(i) showing the same 2DP maps
with enlarged sizes.
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(a) m=125 (b) m=126 (c) m=127
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(d) m=125 (e) m=126 (f) m=127
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(g) m=125 (h) m=126 (i) m=127

Fig. 6 1DP and 2DPmaps onm = {125, 126, 127}, r = 0; a–c 1DPmaps; d–f 2DPRegular maps;
g–i 2DP Enlarged maps

4.4 Enlarged Maps: 2DP Maps on m = {125, 127, 128},
r = {0, 8}

1DP maps are selected in both Figs. 8 and 9 on enlarged forms.
In Fig. 8, four maps from the 2DP form are selected in m = {125, 127, 128}, r =

{0, 8} condition; (a) r = 0,m = 125; (b) r = 0,m = 127; (c) r = 0,m = 128, and
(d) r = 8,m = 128. Four maps are showing the same 2DP maps on enlarged sizes.

In Fig. 9a and b, two maps of speckle patterns are selected from two distinct
resources for comparison. (a) a larger map from the 2DP form is generated in m =
128, r = 0 condition; (b) a larger map of Fig. 1d is illustrated for a laser beam
reflected from a plastic surface onto a wall. It is convenient for readers to observe
the two speckle pattern maps in refined details.
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Fig. 7 1DP and 2DP maps on m = 128, r = {1, 2, 8}; a–c 1DP maps; d–f 2DP Regular maps; g–i
2DP Enlarged maps

5 Result Analysis

5.1 Figures 3, 4 and 5

In Figs. 3, 4, and 5, six maps are listed on both 1DP (Figs. 4 and 5a–c) and 1DQ
(Figs. 3a–c and 4j–l) forms, their distributions are generally corresponding to bino-
mial coefficients. Under the changes of different lengths on segments, 1D maps are
showing distributions of binomial patterns in the symmetric bell curves with the
maximal value on the middle area.

From Figs. 3 and 5, six 2DQ maps (Fig. 3d–i) and six 2DP maps (Fig. 5d–i) are
listed, when m = {8, 16}, significant regular distributions along both horizontal and
vertical directions (Figs. 3d–h and 5d–h) appear as symmetric patterns. The central
cluster is collected the largest number of measures located on the center point of
relevant maps. But checking maps in Figs. 3f–i and 5f–i, regular patterns with the
central symmetry are severely destroyed when the length of segments is increased to
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721=m,0=r)b(521=m,0=r)a(

821=m,8=r)d(821=m,0=r)c(

Fig. 8 2DP larger maps on m = {125, 127, 128}, r = {0, 8}; a r = 0,m = 125 map; b r = 0,
m = 127 map; c r = 0,m = 128 map; d r = 8,m = 128 map

m = 128. Regarding the two maps in Figs. 3f and 5f, both maps show circular disks
with the central position at the highest number of collected measures. However, the
two enlarged maps in Figs. 3i and 5i clearly show that significant speckle patterns
are visualized around the central areas with stochastic higher numbers of measures.
By comparing the two maps in Figs. 3i and 5i, Figure 5i provides much more visible
asymmetry than Fig. 3i.

Because a 2DQ map covers only a quarter of a 2DP map, the damaging ratio of
its symmetric properties appears much weaker than on the 2DP map. Applying a
sufficiently larger segment length, central areas are observed with random speckle
patterns and visible symmetric properties significantly damaged.

In general, it is feasible for a 2DP map to observe its middle areas in an approx-
imately rotational symmetry in small sizes. But when the segment length is big
enough, significant speckle patterns emerge in the central area with stronger stochas-
tic properties.
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Fig. 9 Speckle patterns in
enlarged maps of the 2DP
form; a m = 128, r = 0; b
m = 128, r = 8

In the 2DPQ maps of Fig. 4d–i, when m = {8, 16}, there appears a single central
point as a key cluster to collect themaximal numberwith visible symmetrical patterns
on the horizontal direction, but without symmetrical pattern on the vertical direction
in Fig. 4d–h. However, when m = 128, the 2DPQ map of Fig. 4f appears as an
irregular disk with higher values in the central area.

From the 2DPQ map of Fig. 4i, the enlarged map shows that stochastic speckle
patterns appear in the central area with better horizontal symmetry than vertical
direction with significantly damaged details.
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5.2 Figure 6

In Fig. 6a–i, the nine maps are listed to show small changes on lengths of segments
m = {126, 127, 128}. By checking the three 1DP maps in Fig. 6a–c, three middle
areas appear slightly different from the bell shape: (a) left is higher than right; (b)
right is higher than left; (c) right is higher than left and the middle one is lower than
its nearest neighbors.

The three 2DP maps in (d)–(f) appear significantly as circular disks with an
approximate symmetry and higher clusters around central areas. In the three enlarged
2DP maps in (g)–(i), there appear various speckle patterns in central areas.

Comparing the six maps of (a)–(c) and (g)–(i), speckle patterns in the three 2DP
maps (g)–(i) are much easier identified than broken curving patterns in the three 1DP
maps (a)–(c).

5.3 Figure 7

In Fig. 7a–i, the nine maps are listed to analyze changes of the parameters m =
128, r = {1, 2, 8}. By checking the three 1DP maps in Fig. 7a–c, middle areas of
three maps appear slightly different from the regular bell shape: (a) left is lower than
middle and middle is equal to right; (b) left and right are lower than middle, and right
is higher than left; (c) left-middle-right are equal.

The three 2DPmaps in (d)–(f) appear as similar circular diskswith an approximate
symmetry and higher clusters around central areas. In the three enlarged 2DP maps
(g)–(i), there are various speckle patterns distinguishably placed in central areas.

Comparing the six maps of (a)–(c) and (g)–(i), distinguishable speckle patterns in
the three 2DP maps (g)–(i) are much easier identified than broken curving patterns
in the three 1DP maps (a)–(c).

5.4 Figures 8–9

In Fig. 8a–d, four enlarged 2DP maps are listed by using the parameters m =
{125, 127, 128}, r ={0, 8}. Threemaps (a)–(c) are createdwithm = {125, 127, 128},
r = 0 and two maps (c)–(d) with m = 128, r = {0, 8}. Four larger 2DP maps in
(a)–(d) show stronger speckle patterns distinguishable in their central areas with
significant distributions identified differently from mixed reflection and rotational
effects.

In Fig. 9a–b, two enlarged maps of speckle patterns are selected. Themap (a) with
m = 128, r = 0 provides refined details to illustrate stochastic speckle patterns in
the central area and the map (b) with m = 128, r = 8 has the same segment length,
but a different shift length. The highest color clusters of the map (b) appear more
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compact and simpler than the highest color clusters of the map (a). The two maps are
showing different speckle patterns as a result of simple geometric transformations.

By comparing the two enlarged speckle pattern maps, significant similarities and
differences in details could be recognized.

6 Conclusion

For any 0–1 sequence with N elements, the variant map system processes multiple
segments to transform each segment in a pair of measures. Using the cryptographic
sequence generated from the AES cipher, five statistic maps were created. Two 1D
maps showbinomial distributions towhichwe refer as classicalmaps. Three 2Dmaps
are constructed as variant maps. Selecting smaller segmented lengths, both classical
and variant maps were illustrated in four groups. With larger segmented lengths
increased, there are significant speckle patterns observed. From a brief comparison
of the two larger maps, the enlarged 2DPmaps in Fig. 9a, b show better refined visual
details than other smaller maps.

For the 2DPQmap, there are significant horizontal symmetries observed, however,
there is no reflection effect in the vertical direction.

From different 2DP maps with parameters m = {125, . . . , 128}, significant
changes are observed: various speckle patterns are developed by both changes
between lengths of segments and shift displacements. Enlarged maps are conve-
nient to illustrate stochastic speckle patterns visibly. Some significant clusters are
collected with speckle patterns associated to different control parameters in relevant
maps.

From a viewpoint of system operation, two types of control parameters: length of
segments and shift length of the sequence, provide an effective control mechanism
to form clear speckle patterns on 2D distributions. It is necessary for us to put more
attention on systematically exploring this type of issues, for refined researches on
further directions.

Thevariantmap system is different fromboth technologies: extracting information
of speckle patterns to form random sequences and NIST 800-22 statistic testing
package to use a single measurement of a P-value or a list of static parameters
for evaluation. The variant framework provides five maps to identify complicated
measurements through speckle patterns in details for any cryptographic sequence.
Three refined 2D maps have more accurate properties than two 1D maps to describe
nonlinear dynamic behavior as possible quantitative measurements.

In relation to the variant map system, future explorations on both theoretical
foundation and key applications on cryptographic sequences are urgently required.
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Stationary Randomness of Three Types
of Six Random Sequences on Variant
Maps

Jeffrey Zheng, Yamin Luo, Zhefei Li and Chris Zheng

Abstract Various random streams have different stationary properties. It is
necessary to use statistical probability and time series to evaluate quality of station-
ary randomness. In this chapter, a testing model is used on three maps for a random
sequence. Multiple segments are divided on the shifted sequence as three measuring
sets. For a map, the maxima are extracted and three maximal values are identified.
2D maps represent stationary randomness. Conditions of station random/stationary
sequences are investigated. Testing sets are collected from three types of six ran-
dom resources: AES, DES, A5, RC4, Australian National University (ANU), and
University of Science and Technology of China (USTC) (two block ciphers, two
stream ciphers, and two quantum ciphers). Six random sequences are selected. Mea-
surements of stationary randomness are compared. There are only 0.0034–4.27%
differences that are recognized. Using variation ratios, six samples are composed
of three variation categories on {AES, DES}, {A5, RC4}, and {ANU, USTC}, re-
spectively. From a measuring viewpoint, all six samples are showing distinguished
stationary randomness properties.
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1 Introduction

In modern cyberspace environment [1], network communication technologies play
the essential role to support advanceddevelopments of science, technology, and social
daily life in every aspect. From a security viewpoint of network communication,
Communication Security (COMSEC) systems [2] are the most important part. Every
COMSEC system depends on block cipher/stream cipher/hash technologies, and
its core component is linked to a random number generator for any cryptographic
applications.

Quantum satellite [3] using Quantum Key Distribution (QKD) systems [4] in
cryptographic applications is the most advanced ICT development to establish ultra-
secure quantum communications. For a QKD system, a truly random number gen-
erator [5], quantum random number generator, plays a key role.

From a reliable viewpoint, it is necessary to test stationary randomness degrees
on shift operations in evaluations. In this section, a list of relevant schemes, pseudo-
random/truly random sequences, P_value, statistical probability distribution, optical
statistics, stationary/nonstationary properties, and variant maps, are discussed.

1.1 Pseudorandom Sequences from Linear Stream Ciphers

Traditional stream ciphers [6] onLinear Feedback Shift Register (LFSR) structure (in
military cryptography) are used as pseudorandom number generators, due to the ease
of implementation from simple hardware, long periods, and uniformly distributed
streams. The LFSR stream ciphers are the core in classical stream ciphers through
the mathematical theory of algebraic functions for system simulation and analysis.

However, an LFSR is a linear system leading to fairly easy cryptanalysis using
the Berlekamp–Massey algorithm. Important LFSR-based stream ciphers A5/1 &
A5/2 are used in GSM cell phones and E0 is used in Bluetooth protocol. But from
cryptanalysis viewpoint, the A5/2 cipher has been broken and both A5/1 and E0 have
serious weaknesses [7, 8].

1.2 Pseudorandom Sequences from Nonlinear Stream
Ciphers

The new generation of stream ciphers [9, 10] is widely used in advanced cyber
communications. Three general methods are applied to improve security weaknesses
in LFSR-based stream ciphers:

1. Nonlinear Functions: Nonlinear combination of several bits from the LFSR
state [11];
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2. NonlinearParts:Nonlinear combinationof the output bits of twoormoreLFSRs
or using evolutionary algorithm for nonlinearity [12]; and

3. Clock Control: Irregular clocking of the LFSR, as in the alternating step gen-
erator [13].

With batch a series of nonlinear algorithms are emerged [14]: nonlinear equivalence
[15], evolutionary methods [12], AES cipher [16], RC4 [17], ZUC [11], cellular
automata [18], and nonlinear dynamic system [19].

The new generation of stream ciphers has being shifted from the traditional mode:
LFSR [6] to various nonlinear modes: NLFSR [20, 21], clock control [13], nonlinear
functions [11], etc.; it is essential for ciphers to be integrated and implemented
[22] to satisfy security models. However, different from LFSR with well-established
linear mathematical theories and simulation tools, it is extremely difficult to use
advanced nonlinear mathematical theories, recursive models, descriptive tools, and
implementing schemes [19] in nonlinear dynamic environments. How to evaluate
cryptographic sequences generated from the nonlinear stream ciphers is an urgent
problem for modern stream/block ciphers.

1.3 Truly Random Sequences from Hardware Devices

In addition to pseudorandom sequences generated by stream ciphers, high-quality
stochastic oscillators of truly random sequences are generated from special hardware
devices such as laser photonics [23], nonlinear optics [24], quantum optics [25],
quantum noises [26], thermal noise [27], and chaos and fractal nonlinear dynamics
[28].

Since various truly random sequences are created from specific physical models
with special principles and uncertain methodologies, it is extremely difficult for
cryptographic researchers to make proper measurements explore nonlinear dynamic
properties.

1.4 P_value Schemes—Statistical Tests on Cryptographic
Sequences

Randomness has being explored for many years [29] on a series of statistic testing
theories and methods. From a testing viewpoint, it is feasible to apply statistic testing
packages tomeasure randomness properties on agiven cryptographic sequence.NIST
800-22 package is a typical representative to provide more than 15 testing schemes
for evaluation. Using the testing package, it is essential to check whether P_value
>0.01 for the sequence. Since such measuring scheme provides static property, it
is difficult to use only P_value parameter to express complex dynamic behaviors
intrinsically involved in cryptographic sequences.
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Since comprehensive behaviors in nonlinear dynamics may increase computa-
tional complexities tragically to involve complicated dynamic properties in the mul-
tivariate environment, those dynamic behaviors are completely ignored in P_value
schemes.

1.5 Multiple Statistical Probability Distributions

Measuring cryptographic sequences under segment conditions, multiple statistical
probability schemes are useful to create various distributions to illustrate complex
spatial relationships.

Multivariate normal probability distributions are the most important and power-
ful tool to test stochastic characteristics of a random data sequence [30] under the
framework of probability, stochastic process, and statistics [31] for nonlinear prob-
lems. In this kind of measuring models, when a data sequence is sufficiently long,
the high-dimensional probability distribution of the sequence [32] is converted into
a continuous Gaussian distribution.

A typical projection model is shown in Fig. 1a; the central part shows a Gaus-
sian surface with an unbalanced distribution in a 2D plane distributed as P(X, Y )

measures with pseudo-colors and two 1D projections shown in horizontal P(X)

and vertical P(Y ) planes, respectively. In Fig. 1b, a standard Gaussian surface with

Fig. 1 Multivariate
Gaussian Probability
Distributions (a)–(c); a
Bivariate normal distribution
with two probability
projections; b A symmetric
bivariate normal surface with
pseudo-colors; c A 2D
pseudo-color map of the
symmetric bivariate normal
surface

0
2

4 0
2

4
0

0.2

0.4

P(Y ) P(X)

X Y

P

0
5 ·10−2

0.1

0.15

P(X ,Y )

(a)

0
5 −5

00

0.5

1

(b) (c)



Stationary Randomness of Three Types of Six Random Sequences on Variant Maps 137

symmetric shapes is illustrated and the 2D projection of its pseudo-color map is
shown in Fig. 1c with continuous distribution of color on the map.

From sample figures, the relationship between the projection curve and two 1D
Gaussian distributions are observed in the multivariate normal probability environ-
ment. Multivariate Gaussian probability distributions support various schemes to
analyze complex stochastic data set of measuring sequences in many applications in
continuous conditions.

1.6 Photon Statistic in Quantum Optics

Photon statistics is the theoretical and experimental approach on the statistical distri-
butions in photon counting experiments to analyze the statistical nature of photons
in a light source.

Three types of statistical distributions shown in Fig. 2 can be obtained by the light
source [33]: Poissonian, super-Poissonian, and sub-Poissonian. The variance and
average number of photon counts are identified for the corresponding distribution.
Both Poissonian and super-Poissonian light are described by a semi-classical theory
in which the light source is modeled as an electromagnetic wave and the atom is
modeled by quantummechanics. In contrast, sub-Poissonian light requires the quan-
tization of the electromagnetic field for a proper description and is a direct measure
of the particle nature of light.

Fig. 2 Three-photon
statistical distributions
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1.7 Stationary and Non-stationary Properties

In mathematics and statistics, a stationary process is a stochastic process [34] whose
joint probability distribution does not change when shift operations performed. Con-
sequently, parameters such as mean and variance, if they are present, also do not
change over time. Stationarity is an interesting property for many statistical proce-
dures in time series analysis.

In 1938, Kolmogorov established the basic theorems for smoothing and predicting
stationary stochastic processes [35, 36] that had major military applications during
the Cold War.

In applied mathematics, the Wiener–Khinchin theorem [37–39] states that the
Autocorrelation Function (ACF) of a wide-sense-stationary process has a spectral
decomposition given by the power spectrum of the process. One of the effective ways
identifying stationary times series is the ACF plot [40]. For a stationary time series,
the ACF will drop to zero relatively quickly, while the ACF of nonstationary data
decreases slowly [41].

1.8 Datastreams

1.8.1 Pseudorandom Number Resources

Four cryptographic sequences are selected: {AES,DES, A5, RC4}. For each cipher,
a cryptographic sequence of 100MB data streams is collected.

{AES, DES} are block ciphers [16] on OFB mode to transfer block cipher output
as a stream cipher stream.

A5/1 is a stream cipher [42] based around a combination of three LFSRs with
irregular clocking.

RC4 is a stream cipher [43] designed by Ron Rivest in 1987. The design of RC4
avoids the use of LFSRs, its structure is ideal for software implementation, and it
requires only byte manipulations.

1.8.2 Two Quantum Random Number Resources

Reliable and unbiased random numbers are important in cryptographic applications.
Many algorithms can be used to generate pseudorandom numbers, but they can never
be perfectly random or indeterministic.

Quantum random numbers can be generated from a physical quantum source of a
coherent laser light to be splitting a beam of light into two beams and then measuring
the power in each beam. Due to the light intensity in each beam, it fluctuates about the
mean. Those fluctuations can be converted into a source of random numbers [44–46]
being a stationary Poisson distribution.
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Two quantum cryptographic resources are selected: {ANU, USTC}. For each
quantum cipher, a truly random sequence of 1GB data streams is collected.

USTC resource: In theKeyLaboratory ofQuantum Information,USTC,CAS, true
random number sequences are generated [45]. This type of true random sequences
supports advanced quantum communication devices of QKD systems [47, 48].

More than 20GB quantum random number sequences are provided by USTC for
randomness testing.

ANU resource: The ANU Quantum Random Numbers Server is an open website
[49] to offer true random numbers to anyone on the Internet. Such random numbers
are generated in real time by measuring the quantum fluctuations of the vacuum.
The electromagnetic field of the vacuum exhibits random fluctuations in phase and
amplitude at all frequencies. By carefully measuring these fluctuations, ultra-high
bandwidth randomnumbers can be generated. Relevant data streams are downloaded.

1.9 Variant Framework

The conjugate classification [50] is proposed to apply seven measures in a hierarchy
to partition the kernels of four regular plane lattices on n = {4, 5, 7, 9} cases for 2D
binary images. For 1D cellular automata sequences, global random behaviors [51]
are visualized in 2D maps.

Various schemes following the top-down strategy are explored to use multiple
measures to partition special phase spaces from a top state set to multiple bottom
states via multilevels of a hierarchy in combinatorial algorithms [52], image analysis,
and processing for many years.

For n-tuple bit vectors, the variant logic framework [53] is proposed, and various
applications are explored: 3D visual method on random number sequences [54], vari-
ant Pseudorandom Number Generator (PRNG) [55, 56], computational simulation
on quantum interactions [57, 58], noncoding DNA analysis [59], and bat echoloca-
tion [60].

1.10 Proposed Scheme

For the convenience of testing stationary randomness on six cryptographic sequences,
we propose a testing system for a stationary random sequencewith length N ;multiple
segments M are divided from the sequence by a given length m; a 2-tuple pair of
measures can be extracted from a 0–1 segment that is the number of 1 element and
the number of 01 pattern in the segment. All paired measures are composed of a
sequence of M pairs of measures as an ordered measuring set with M elements.

The pairs of the measuring sequence are directly separated as two independent
measuring sequences to keep each parameter in the same order. A total of three
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sequences of distinct measures are constructed including two sequences on single
measures and one sequence on 2-tuple measures.

Following this approach, two sets of single measuring sequences are sorted as two
1D numeric arrays as statistical histograms corresponding to 1D maps, and the 2-
tuple measuring sequence is sorted as a 2D integer array as statistic histograms being
a 2D map. Under the controlling operations on the changes of shift displacement,
multiple results of the three measuring sequences are transformed into 1D statistic
histograms and 2D pseudo-color maps to show effective patterns from the generated
sequence under various positions and conditions on a list of shift operations.

1.11 Organization of the Chapter

This chapter describes a testing system for a stationary random sequence on diagrams
of the system architecture and the core modules with input/output and processing
functions in Sect. 2. In Sect. 3, the relationships among measuring sequences and the
three statistical distribution maps are analyzed. In Sect. 4, four random sequences
are generated from {AES, DES, A5, RC4} ciphers and two quantum cryptographic
sequences collected from the Key Laboratory of Quantum Information, USTC, CAS,
and ANU quantum number site. From the results of the visual maps in section IV,
numeric analysis and brief comparison are carried out in Sect. 5. And finally in Sect.
6, the main results are summarized.

2 Testing System

To describe the testing system, diagrams are shown in Fig. 3.

SMST
Input:
A 0-1

Sequence
CP

Output:
Three
Maps /

Maximals
Input: A 0-1 sequence
ST Shifted Transformation
SM Segment Measurement
CP Combinatorial Projection
Output: Three maps / Maximals

Fig. 3 The architecture of testing stationary random sequences
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2.1 System Architecture

This system is composed of five parts: Input, Shifted Transformation (ST), Segment
Measurement (SM), Combinatorial Projection (CP), and Output.

The input of the testing system is a selected 0–1 sequence, and its output is
composed of three maps, two in 1D and one in 2D for visual distributions, and three
maximals to be processed by ST, SM, and CP modules, respectively.

2.2 Core Modules

The testing system consists of three modules: {ST, SM CP}.
Input: X N = m ∗ M bit sequence; m segment length; M total segments; r shift
length;
Output: Three maps {1DP, 1DQ, 2DPQ}; Three maximals {1DPx , 1DQx , 2DPQx}
Process: Shifting r position from X to be Y = X (r) in ST. Making segment measur-
ing sequences in SM and then projecting three measuring sequences as three maps
and extracting three maximals in CP.

Let X, Y be 0–1 sequenceswith N elements, and the STmodule takes the sequence
X as input, then shift r position on the whole sequence to be the shifted sequence
Y = X (r) (i.e., a cyclic shift right + or shift left −).

Y = X (r), Y [I ] = X [I ± r ], I ± r(mod N ),

0 ≤ I < N ; X [I ], Y [I ] ∈ {0, 1} (1)

In the SM module, the shifted vector is inputted and will be divided from a long
sequence into M segments. For the i-th sub-vector, 0 ≤ i < M on the j-th position
0 ≤ j < m, denoted as Yi, j .

This sequence at the end of sub-vectors after the segmenting operation forms
an m ∗ M matrix, m positions for the i-th complete row vector in the sequence
correspond to a pair of 2-tuple measures: (pi , qi ).

Y = {Yi }M−1
i=0 (2)

Yi = {Yi,0, Yi,1, · · · , Yi, j , · · · , Yi,m−1} (3)

0 ≤ i < M, 0 ≤ j < m

Yi → (pi , qi ), 0 ≤ i < M (4)

{Yi }M−1
i=0 → {(pi , qi )}M−1

i=0 (5)
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The pair of 2-tuple measures (pi , qi ) is determined by the following formula:

Yi, j = Y [J ] ∈ {0, 1}; J = i ∗ m + j,

0 ≤ i < M, 0 ≤ j < m, 0 ≤ J < m ∗ M (6)

pi =
m−1∑

j=0

Yi, j , Yi, j ∈ {0, 1}, 0 ≤ pi ≤ m; (7)

qi =
m−1∑

j=0

[(Yi, j−1, Yi, j ) == (0, 1)],

j − 1(mod m), 0 ≤ qi ≤ �m/2�; (8)

That is, X = 0011010010, N = 10, M = 2, m = 5; (p0 = 2, q0 = 1); (p1 = 2,
q1 = 2).

The SM outputs the ordered M pairs of 2-tuple measures {pi , qi }M−1
i=0 .

The CP module consists of two units: Split and projection. The split adapts the
SM’s output as the input, and the 2-tuple measuring sequence {(pi , qi )}M−1

i=0 will
be splitted into two independent measuring sequences:{pi }M−1

i=0 , {qi }M−1
i=0 to keep the

original order invariant.
Three measure sequences are {pi }M−1

i=0 , {qi }M−1
i=0 , {(pi , qi )}M−1

i=0 .
The projection unit consists of three steps: Project Array (PA), Color Map (CM),

and Get Maximal (GM). For three measuring sequences, two types of 1D and 2D
measures will be processed separately.

The PA processes measuring sequences to transform them into integer arrays and
the CM will organize them on either normalized histograms (1D measures) or color
maps (2D measures), respectively.

The 1D measures involve two measuring sequences: {pi }M−1
i=0 , {qi }M−1

i=0 . Let
P[m + 1], Q[�m/2� + 1] and N P[m + 1], N Q[�m/2� + 1] be two 1D (integer,
float) arrays to represent the corresponding elements.

The 1DP statistic histogram is generated from a sequence {pi }M−1
i=0 , N P, P

two arrays (floating point, integer) with (m + 1) elements. For the j-th element
N P[ j], P[ j], 0 ≤ j ≤ m, and 1DPx the maximal element, the output can be ob-
tained by following procedure:

Initialization: ∀N P[ j] = 0.0,
P[ j] = 0, 0 ≤ j ≤ m;

Calculation: f or(i = 0; i < M; i + +)

{P[pi ] + +; }
Normalization: f or( j = 0; j ≤ m; j + +)

{N P[ j] = P[ j]/M; }
Get Maximal: 1DPx = max{N P[ j]|0 ≤ j ≤ m}

In the 1DP map, the PA corresponds to initialization and calculation; the MA
handles normalization and the GM identifies the maximal element of the map.
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The 1DQ statistic histogram is generated from a sequence {qi }M−1
i=0 , N Q, Q two

arrays (floating point, integer) with (�m/2� + 1) elements. For the j-th element
N Q[ j], Q[ j], 0 ≤ j ≤ �m/2�, and 1DQx the maximal element, the output can be
obtained from following procedure:

Initialization: ∀N Q[ j] = 0.0,
Q[ j] = 0, 0 ≤ j ≤ �m/2�;

Calculation: f or(i = 0; i < M; i + +)

{Q[qi ] + +; }
Normalization: f or( j = 0; j ≤ �m/2�; j + +)

{N Q[ j] = Q[ j]/M; }
Get Maximal: 1DQx = max{N Q[ j]|0 ≤ j ≤ �m/2�}

Using P, N P, Q, N Q arrays, it is possible to generate corresponding 1D statis-
tical histograms as 1D maps.

In the 1DQ map, the PA corresponds to initialization and calculation; the MA
handles normalization and the GM identifies the maximal element of the map.

The 2Dmeasures specially processes one measuring sequence: {(pi , qi )}M−1
i=0 . Let

P Q[m + 1 : �m/2� + 1] be a 2D integer array.
2DPQ statistic histogram is generated from a sequence{(pi , qi )}M−1

i=0 , P Q a
2D integer array with (m + 1) ∗ (�m/2� + 1) elements; For the i, j-th element
P Q[i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�, and 1DPQx the maximal element, their val-
ues can be obtained by following procedure:

Initialization: ∀P Q[i, j] = 0,
0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�;

Calculation: f or(i = 0; i < M; i + +)

{P Q[pi , qi ] + +; }
Pseudo-color: Matching proper color for

∀P Q[i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�
Get Maximal: 1DPQx = max{P Q[i, j]|0 ≤ i ≤ m,

0 ≤ j ≤ �m/2�}

In the 2DPQ map, the PA corresponds to initialization and calculation; the MA
handles pseudo-color and the GM identifies the maximal element of the map.

Through the CP module, three measuring sequences are transformed into two
1D arrays and one 2D array with (m + 1), (�m/2� + 1) and (m + 1) ∗ (�m/2� + 1)
clusters.

The outputs of the testing system are three maps {1DP, 1DQ, 2DPQ} and three
maximals {1DPx , 1DQx , 2DPQx} as expected statistic distributions and representa-
tives of the input 0–1 sequence, respectively.
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3 Association Analysis

It is a counting scheme to sort the {pi }M−1
i=0 measuring sequence as a 1D histogram.

When the measuring sequence meets ideal conditions, the 1D statistical distribution
is a binomial distribution.

Lemma 1 For an input 0–1 sequence, if the total number of segments is equal to
M = 2m, and each segment of m bits appears only once in the sequence, then the
1DP array satisfies the binomial distribution

p[i] =
(

m

i

)
, 0 ≤ i ≤ m (9)

Corollary 1 If the input sequence meets the conditions of Lemma 1, then the total
number of items in the 1DP array is equal to

m∑

i=0

p[i] = 2m = M (10)

Lemma 2 If the input sequence meets the conditions of Lemma 1, then the 1DQ
array satisfies following relation:

Q[i] = 2

(
m

2i

)
, 0 ≤ i ≤ �m/2� (11)

Corollary 2 If the input sequence meets the conditions of Lemma 1, then the total
number of items in the 1DQ array is equal to

m/2∑

i=0

Q[i] = 2m = M (12)

Corollary 3 For any 0–1 sequence with N elements, a 2DPQ projection in two
directions is corresponding to either a 1DP array or a 1DQ array, respectively.

Proof A 2DPQ array is generated from a measuring sequence {pi , qi }M−1
i=0 and

the 2DPQ array is sorted by {P Q[i, j]}m
i=0

�m/2�
j=0 , from two directions P[i] =

∑�m/2�
j=0 P Q[i, j], 0 ≤ i ≤ m; Q[ j] = ∑m

i=0 P Q[i, j], 0 ≤ j ≤ �m/2�. So two pro-
jections are corresponding to an either 1DP or 1DQ array.

Corollary 4 For an arbitrary 0–1 input sequence, the total number of items in the
2DPQ array is equal to

m∑

i=0

�m/2�∑

j=0

P Q[i, j] =
m∑

i=0

P[i] =
�m/2�∑

j=0

Q[ j] = M (13)
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In Corollaries 3 and 4, the total number of each component on three statistic arrays
is equal to the total number of segments M , and the 2DPQ array occupies a central
position in the projection to other two arrays.

Let {1DPx (r), 1DQx (r), 2DPQx (r)} denote three maximals on the selected se-
quence for 0 ≤ r ≤ m; three maximal sequences are {1DPx (r)}m

r=0, {1DQx (r)}m
r=0,

{2DPQx (r)}m
r=0.

For a 0–1 sequence with M segments, if each segment of m bits is composed of
a state and only one state is involved, then the sequence is a circular sequence.

Lemma 3 For a sequence 0 ≤ r ≤ m, the sequence is a circular sequence, iff
1DPx (r) = 1DQx (r) = 1 and 2DPQx (r) = M.

Proof For a circular sequence, shift operations do not change the pair of measures,
only a single (p, q) value is possible.

Theorem 1 For a sequence with stationary random properties, it has
1DPx (0) 	 · · · 	 1DPx (r) 	 · · · 	 1DPx (m) 
 1,
1DQx (0) 	 · · · 	 1DQx (r) 	 · · · 	 1DQx (m) 
 1, or
2DPQx (0) 	 · · · 	 2DPQx (r) 	 · · · 	 2DPQx (m) 
 1.

Proof In any random condition, it is necessary for pairs of {(p, q)} to have certain
states significantly different from a circular sequence in either 
 1 or 
 M condi-
tion. Under the stationary random condition, all maximals satisfy only 	 relations
under shift operations.

For a G map, let Gx be an average variation, ΔGx be a region of variations, and
G R

x = ΔGx/Gx be a variation ratio.

Theorem 2 For two {i, j}-th G maps Gi and G j on Gi
x 	 G j

x with variation ratios
Gi,R

x and G j,R
x , if a variation ratio has a minimal value, then the relevant map has a

better stationary random property than the maximal one.

Proof Since G R
x = ΔGx/Gx and Gi

x 	 G j
x , it is a relative measure on

∀r(max{Gx (r)} − min{Gx (r)})/Gx ≥ 0. So min{ΔGi
x ,ΔG j

x } ≤ max{ΔGi
x ,

ΔG j
x }, the minimal variation ratio indicates the better stationary random property.

Corollary 5 For different maps, it is better to compare various variation ratios
relevant to the same type of distributions.

Proof For variousmaps in the same type of distributions, relevant {Gx } should satisfy
the similar–equal condition.

4 Testing Results

Four pseudorandom sequences are generated by {A5,RC4,DES, AES} ciphers, and
two quantum cryptographic sequences are selected from both ANU and USTC re-
sources.
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Fig. 4 Six cryptographic sequences on r = 32 1DP, 2DPQ, and 1DQ maps
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Fig. 5 Six cryptographic sequences on r = 32 2DPQ maps

Typical results of testing stationary properties for six sequences on 18 maps of
{1DP, 2DPQ, 1DQ} are shown in Fig. 4. Each position contains nine shift values of
r = 32 selected. A total number of 18 maps are included. Six 2DPQmaps are shown
in Fig. 5 as enlarged maps. Each map has shift values of r = 32, respectively.

Three variation measures {Gx ,ΔGx , G R
x } for maps {1DP, 2DPQ, 1DQ } of six

sequences are shown in Table 1, and their sorted orders are listed in Table 2. Twenty-
four 2D maps of maximal curves for r = 0 − 128 are shown in Table 3. Three left
columns contain 18 enlarged variation maps of {1DQ, 1DP, 2DPQ} and the last
column contains six variation regions of 1DQ + 1DP + 2DPQ in six 2D maps. Six
enlarged 2Dmaps are shown in Table 4 and six larger 2Dmaps are shown in Table 5.
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In Table 6, 49 pairs of differences for variation ratios are listed in three 7 × 7
tables to illustrate refined quantity measures on three levels. There are seven entries
on diagonals with seven trivial 0 values. For other 42 nontrivial values, let dG R

x %
denote differences of G R

x %based on the basic variation ratios in Table 1, and various
differences of variation ratios among six samples are listed. Differences of three
variation ratios {d Q R

x %, d P R
x %, d P Q R

x %, } on seven items {∅, AES, DES, A5,
RC4, ANU, USTC} are illustrated.

5 Result Analysis

Eighteen maps in Fig. 4 are composed of three groups. Six 1DP maps have similar
distributions in bell shapes to illustrate Poissonian distributions. Six 2DPQ maps are

Table 1 Comparisons on
three variation measures for
six samples
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Table 2 Possible sorted orders of three types of variation measures; (a) Gx%, (b)ΔGx%, (c) G R
x %

2D distributions. They have a symmetry on left/right directions and have a broken
symmetry on up/down directions. Pseudo-color pixels on six maps indicate relevant
3D shapes. Compared with six 1DP maps, six 1DQ maps have similar distributions
and more narrow bell shapes to illustrate sub-Poissonian distributions. It is possible
to illustrate different maps on shift r = 32 for each map.

In Table 1, three pairs of maximal and minimal variation ratios are identified
and three full orders are sorted in Table 2. Compared with Gx sorted orders, both
{ΔGx , G R

x } variation ratios, six samples keep the same sorted orders as two groups:
1DQ and {1DP, 2DPQ} for their min-max variation ratios. Six enlarged 2DPQ
maps on shift r = 32 are shown in Fig. 5 to form three pairs {AES:DES, RC4:A5,
ANU:USTC}. Three pairs of six maps have similar visual distributions.

Twenty-four variation maps are shown in Table 3 as four groups. Each group
contains six 2Dmaps. For three groups of {1DQ, 1DP, 2DPQ}variation distributions,
eighteen enlarged 2D maps are shown in significant waveforms. For the group of
1DQ + 1DP + 2DPQ distributions, six maps are shown in three average variations
satisfying 1DQx > 1D Px > 2D P Qx , respectively. The fourth group of variation
measures combines three variations of 1DQ + 1DP + 2DPQ in one unified 2D maps.
From the six 2D maps, their stationary randomness of global variations are clearly
illustrated.

In Table 4, AES and DES map may have high frequent waves, and other enlarged
2Dmaps have stationary properties. In Table 5, larger waves appear and more details
could be identified. Although significant variations are appeared in different 2D
maps, it is difficult to make classification depending on their variation behaviors.
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Table 3 Variation distributions of six samples
1DQ 1DP 2DPQ 1DQ+1DP+2DPQ

A
E
S

D
E
S

A
5

R
C
4

A
N
U

U
ST

C

InTable 6, three variation ratios of differences are bounded in0.0034 ≤ |d Q R
x %| ≤

1.73, 0.056 ≤ |d P R
x %| ≤ 3.96, and0.073 ≤ |d P Q R

x %| ≤ 4.27, respectively. In gen-
eral, three groups of variation ranges on differences meet {d Q R

x %} ⊂ {d P R
x %} ⊂

{d P Q R
x %}. From a stationary testing viewpoint, 2DPQ shows the strongest distinct

property, 1DQ has the weakest numeric property, and 1DP provides the middle iden-
tifying property.
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Table 4 Six variations on 2D maps
A
E
S D

E
S

A
5

R
C
4

A
N
U U

ST
C

Since three groups can be identified by {AES, DES} block ciphers, {A5, RC4}
stream ciphers, and {ANU, USTC} quantum ciphers, stationary randomness quanti-
ties can be classified as three {AES, DES}-highest, {A5, RC4}-middle, and {ANU,
USTC}-lowest categories to provide distinct variation measures in the testing. Three
quantity categories may correspond to distinguish artificial, semi-artificial, and nat-
ural designs for various generating mechanisms of cryptographic resources.
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Considering all differences of variation ratios on six samples listed in Table 6,
there are only 0.0034–4.27% differences (thirty-four in one million to four percent)
are recognized. From a measuring viewpoint, all six samples are showing distinct
stationary randomness properties.

Table 5 Larger six variations on 2D maps

A
E
S

D
E
S

A
5

R
C
4

A
N
U

U
ST

C
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Table 6 Differences of variation ratios among three maximals of six samples

6 Conclusion

It is feasible to evaluate stationary properties for a random sequence using the test-
ing system. Using three maps {1DP, 1DQ, 2DPQ}, a series of variation measures
and their ratios are illustrated. Extracting maximal measures is identified for shift
r : 0 − m. For each sample, three 2D maps of variation curves provide refined char-
acteristics to evaluate stationary randomness properties in global. Sample varia-
tion maps are shown in exactly similar–equal relationships among the same group
of average variations. Further explorations and applications are required to check
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the testing system on other applications of cryptographic streams. Three quantity
categories of artificial, semi-artificial, and natural designs may be explored to get
intrinsic stationary randomness information from refined testing and future explo-
rations.
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Part IV
Theoretical Foundation—Meta Model

TAO produced the First—[Heaven].

The First produced the Second—[Earth].

These Two produced the Third.

The Third produced all things,

and these turn their back upon the Yin and embrace the Yang.

The intermingling of these two Afflati results in harmony.

—Lao Tzu (Tao Te Ching)

Knowledge has the form of a tree, and since metaphysics is the most
fundamental one of the theoretical disciplines, it represents the roots
of the tree.

—Gonzalo Rodriguez-Pereyra

Meta-design is much more difficult than design; it's easier to draw
something than to explain how to draw it.

—Donald Knuth

From a historical viewpoint, the meta model was developed early than variant logic
that provides useful concept and hierarchical organization to support this new logic
framework. The core paper of concept cell (Concept Cell Model for Knowledge
Representation) was published in Int. J. Inf. Acquisition 01, 149–168 (2004), World
Scientific Press. In relation to multiple probability approach, a research paper
(Voting Theory for Multiple Candidates to Resolve Intrinsic Uncertain Problems of
Election) was published in Journal of System Engineering Theory and Practices
(Chinese) 1000-6788(2002)12-0101-10. This paper proposed a useful multiple
probability model to resolve intrinsic uncertain properties in election.

Part IV is composed of two chapters (9 and 10).
Chapter “Meta Model on Concept Cell” outlines a meta model on concept cell

for knowledge representation to provide a brief core structure on this network
topology scheme for three levels of knowledge clusters.



Chapter “Voting Theory for Two Parties Under Approval Rule” describes voting
theory for two parties under approval rule to show multiple probability model also
useful in two-party conditions.
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Meta Model on Concept Cell

Jeffrey Zheng and Chris Zheng

Abstract Applying network topology schemes, two types of three levels of meta
knowledge representations have been established. This chapter proposes a meta
model on concept cell that provides a meta organisation of knowledge in natural
and artificial intelligent systems structurally.

Keywords Knowledge model · Meta representation · Three levels of concept
lattice · Description · Procedure · Core organisation

1 Introduction

A meta model on concept cell is outlined to represent knowledge in knowledge
systems (KSs). This model has novel features that are of considerable interest for
knowledge representation (KR).

Polanyi proposed a knowledge model in the 1940s. Knowledge is composed of
two categories: tacit and explicit [1, 2]. In the 1970s, Anderson from a cognitive
psychology identified knowledge with another two categories: declarative and pro-
cedural [3–5]. In the early 1990s, a procedural model was proposed by Nonaka who
identified four transformations: tacit → tacit (socialisation), tacit → explicit (exter-
nalisation), explicit → explicit (combination) and explicit tacit (internalisation) [6,
7]. In 2000, a model was proposed by Nickols to arrange four classes (tacit, explicit,
procedural and declarative) into three categories: tacit, explicit and implicit. In my
opinion, the Nickols model is unsatisfactory for three reasons:
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(i) it is a triangle of categories without a fixed order,
(ii) there is uncertainty in implicit category and
(iii) there is no structural correspondence to other KR methodologies.

To improve the first two weaknesses of Nickols approach, an executable knowl-
edge model was proposed. A triplet (tacit, implicit and explicit) is constructed
as a procedural structure. Implicit in it is the middle node linked with two other
nodes in four transformations: tacit→ implicit (externalisation), implicit→ explicit
(retrieval), explicit → implicit (category) and implicit → tacit (internalisation). In
addition, the model provides distinguishable foreground/background and human/
machine knowledge interfaces [8].

To explore different KS applications from philosophy, logic and digital libraries,
to gene, chemistry, software and system engineering [9–11], people arrange common
concepts to construct ontology libraries and procedures as core structures [12, 13].
Advanced system modelling tools such as ARIS [14], CIMOSA [15] and IDEF [16]
provide function, data and process models and ontology description capture method-
ologies for constructing modern intelligent knowledge systems [17]. Because many
contradictions, confusions, difficulties and unclear properties exist in KR foundation
levels [13, 18, 19], consistently categorising practical knowledge into tacit/explicit
and procedural/declarative is extremely hard for researchers, scientists, philosophers,
psychologists and knowledge workers [14–17, 20, 21].

Practical computer-aided modelling systems use pragmatic approaches to manip-
ulate simple structures (list, tree, stack, class and component) in real applications
[14–17, 21]. Usually, declarative concepts seem easier to capture than procedural
concepts. Based on this, many people believe that declarative knowledge is explicit
and procedural knowledge is tacit [16, 17, 22]. A radical extension of a knowledge
model in KR is proposed in a concept cell that arranges knowledge in KS for natural
and artificial organisation. This model can fully support the above-mentioned knowl-
edge models to consistently identify four categories of knowledge: tacit, explicit,
declarative and procedural. The model also provides a core ontology to distinguish
a hierarchy of structures within the core of a concept. According to convention, the
word concept is used as an equivalent to knowledge in this chapter.

2 Concept Cell Model

Let K denote a cell of concepts (a concept cell) that is composed of three parts: M
membrane, N nuclei and G gel. M is a frame that provides a container to hold both N
andG.G is a base description of the content andN establishes a foundation of the cell.
M inputs provide external concepts (externals) for N from deeper levels, and then
output current content to other upper level cells. N is composed of two components:
D declarative nucleus and P procedural nucleus. To illustrate this organisation, a cell
K = M, N, G is shown in Fig. 1.
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Fig. 1 A concept cell K. a A
slice, b hierarchy

For the convenience of construction, a special lattice is employed [23]. Only
directed graphs are used similar to themost popular signal flowgraphs [24] to analyse
and syntheses process control [9], computer architecture [10], electric circuits [25],
network topology [26–28] and dynamic systems [25, 29]. However, no lattices allow
containing a loop and all lattices are composed of directed acyclic graphs [26, 28].
In a lattice, a node represents a cell and lattice links are determined by dependencies
among nodes. Because themost complex part of a cell is its nuclei structures, detailed
interior organisation is necessary to explore meanings of knowledge. To simplify, a
simple cell (or a cell, if there is no confusion) is studied here, where nuclei of the
cell are composed of only one declarative lattice and one procedural lattice.

Using lattice language, a cell K is described in Fig. 2. Different graphic symbols
represent distinct forms of concepts as nodes. A rounded rectangle represents a
general node; an octagon is a specific node; a rectangle shows a declarative node
and an oval corresponds to a procedural node. A simple lattice cell is composed of
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Fig. 2 A concept cell in lattices

four levels: A node M that interfaces between externals and internals are the first
level. Two nodes of G and N link with an M node is the second level. The node G
contains the base description and the node N plays a foundation role in the cell. Two
nodes of D and P link with node N on the third level. Node D contains one lattice
in declarative dependency and node P contains one lattice that assumes procedural
dependency. Finally, two sets of nodes linked with nodes D and P at the fourth level.
Each node of D or P contains four nodes, respectively. Among each four nodes, two
links are associated with three nodes.

3 Core Components

The following four conditions can create the content of a concept cell:

(i) M acts as an interface to import a finite number of externals into nuclei and to
export the content to other cells.

(ii) G provides the base description of the cell and N collects all externals from M
for development.

(iii) Two lattices D, P are constructed from Ns externals to carry out two dependen-
cies.
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An N external corresponds to a D node. A declarative dependency is employed
to order all nodes of D as a declarative lattice. If two distinct nodes have declarative
dependency, then the nodewithmore general meanings is located at the first node and
a declarative link connects from the first to the second. After building up declarative
dependency among all nodes, D becomes a directed acyclic lattice.

Instances of an N external correspond to nodes of P satisfying procedural depen-
dency. P is composed of sequences of nodes by instances of externals. If two instances
represent two nodes, then the node that has to be handled earlier is specified as the
first node and a procedural link connects two nodes from the first to the second.
After all procedural dependencies are established among nodes, P is converted into
a directed acyclic lattice.

(iv) Two lattices are composed of eight distinguishable node sets:

Four sets of declarative nodes C, T, I, E are identified: C core, T tacit, I implicit
and E explicit, respectively.

Four sets of procedural nodes L, S, O, F are identified: L life cycle, S start, O
operation and F finish.

The meanings of the construction process can be explained as: In the first level
of kernel, M collects all externals to provide extra knowledge for its nuclei. The
second level has two parts: G, N. The G node provides the base description. To map
each external as a node, the number of N externals has the same number of nodes
in D. A declarative dependency is valid for all D nodes that create a directed acyclic
declarative lattice. Using instances of N externals as nodes, P has been assembled
using procedural dependency linked with selected nodes and finally to form P itself
as procedural lattice. Since both declarative and procedural lattices are organised
by ordered dependencies, declarative and procedural lattices are directed acyclic to
support wider requirements from theoretical foundations to practical applications. A
simple construction example is shown in Fig. 3(i–v).

For an acyclic lattice, four distinct node sets are notable in Fig. 3(vi). They are
(singleton, source, branch and sink) node sets, respectively, borrowed from network
topology [23, 26, 30]. A singleton node provides an isolated concept. A source node
exports a concept. A sink node imports concept(s) and a branch node transfers con-
cept(s) from input link(s) to output link(s). If there is only one external in N, then the
singleton set contains one single node and the other three sets are empty. If there is
more than one node in N, then the singleton set is empty. In this case, the source set
is composed of nodes that have at least one link to another node; however, a source
node does not have a link from other nodes. Each node must have at least one in
branch, or sink set consequently. In contrast to the source set, a sink set collects all
nodes with links from other nodes, without a link to a node. A sink node has to be the
last node in a node path of a lattice to which at least one node is linked, from branch
or source set. Unlike source and sink sets, a node in a branch set may link with at
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Fig. 3 External concepts, declarative and procedural lattices and node sets

least two nodes to and from source, sink, and branch sets. A branch node receives
from other node(s) and outputs to other node(s). These sequence nodes provide con-
nectivity among nodes. Although four node sets can be identified by their different
connectivity, it is not convenient to use the same vocabulary to describe two dis-
tinct lattices under different dependencies. For convenience, each node set includes
a proper name to indicate its specific relationship in familiar KR terms. D lattice
represents an invariant structure (the simplest cases: tree, list) similar to a traditional
data structure hierarchy. Because a sink node is equivalent to a factor data at the leaf
level (at the lowest location) of data structure, the sink node has to be represented as
an explicit knowledge. Therefore, the sink set of D is explicit. In contrast, a source
node provides invaluable knowledge from the highest level of externals. There is
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no link to this node and anyone wanting to explain the meaning of the node must
capture knowledge from other sources far beyond the node itself. Consequently, a
source node always contains deeper meanings than those can be articulated. Hence,
the source set of D is tacit. Different from sink and source sets, a node in a branch
set has connectivity from higher tacit node(s) and to higher explicit node(s). The
branch set of D represents a typical intermediate property. Consequently, the branch
set of D is implicit. A singleton node provides a complete concept. The node itself
is the central of the D lattice. Therefore, the singleton node set of the D lattice is
a core. Four node sets of P lattice satisfy different properties. The P lattice has a
close relationship to process modelling that provides a time arrow as controllable
sequences. A node in the P lattice is an instance of a node in the D lattice. The sin-
gleton node set of the P lattice is not empty if only one node is in the P lattice. The
singleton node set of procedural lattice represents a complete procedure of P itself.
Logically, the procedural singleton node set is a life cycle. When two or more nodes
are included, three node sets of the P lattice have to link together in sequential rela-
tionships. Time relevant sequences in finite numbers of connected nodes, must have
distinguishable commence and end nodes that correspond to start and finish condi-
tions respectively. In addition, all intermediate nodes provide operational capacities
to deliver knowledge to consequent nodes. Consequently, three node sets of the P lat-
tice are called: start, finish and operation, respectively. The relative properties of the
cell model with other schemes are compared in Table 1. In the table, TM represents
Theoretical Model that is used in KS applications. ST denotes Structural Theory that
uses structured organisations to represent complex dependency among members. ES
indicates Engineering Systems that provide mixed theories, experiences and skills
with commercial system modelling tools for pragmatic applications especially in
enterprise management, manufacturing and building industries, software and hard-
ware systems, global communication networks, web and Internet environment. ES
applies advanced TMmethodologies plus business experiences and engineering kills
to solve practical problems efficiently using system engineering methodologies in
global business explorations.

From this comparison, it is clear that existing systems that are the most similar to
the cell conceptmodel come from enterprisemodelling that provides all functionality
for ten meta nodes from engineering practices. However, other theoretical models
cannot support full functionality. This property indicates the potential capacity for
applying the cell concept model from theoretic foundations to practical applications.
Details of the concept cell have published [31] to represent further classifications,
recursive constructions, non-simple cells and sample applications for knowledge
construction systems.
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Table 1 Comparisons on different models

Ten basic symbols: {D, T, I, E, C}, { P, S, O, F, L}
D: Declarative; T: Tacit, I: Implicit, E: Explicit, C: Core;
P: Procedural; S: Start, O: Operation, F: Finish, L: Life cycle
Three types of models: {ST, TM, ES}
ST: Structural theory
TM: Theoretical model
ES: Engineering system
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Voting Theory for Two Parties Under
Approval Rule

Jeffrey Zheng

Abstract The Simple Ballot Model (SBM) and the Component Ballot Model
(CBM)—are proposed for solving uncertainty in an election when two candidates
gain the same number of votes under the approval rule. The SBM establishes a
framework to support counting. In separating the two candidates, it is essential to
extract additional information from dominantly valid votes. The CBM uses probabil-
ity matrices, vectors and permutation group as components. A stable-voting mecha-
nism under permutation invariant can be created to distinguish candidates. The result
of the chapter establishes a voting authority to resolve uncertainty of two candidates
under the approval rule.

Keywords Approval rule · Permutation invariant · Feature vector · Uncertainty
Voting system

JEL Classifications D72 · D81 · C34 · C31

1 Introduction

As a common practice in a modern democratic society, voting is a practical way
to resolve a contest where each candidate seeks to gain maximal support from the
electors. Approval voting is a voting procedure in which electors can vote for as
many candidates as they wish. Each candidate approved of receives one vote and
the candidate with the most votes wins. Approval voting, unlike more complicated
ranking systems, is easier and simpler for electors to understand and use. This voting
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method has beenwidely used today by various governments and organizations around
world (including the use by the United Nations to elect the secretary-general).

To keep healthy economic and political progress inmodern democracy societies, it
is necessary to apply reliable and convenient votingmethodologies and tools to ensure
fairness, efficiency and transparency and to overcome paradoxes and difficulties in
elections.

1.1 Brief Review of Voting Systems

We can find interesting voting-based models and practices in many ancient stories
from Chinese literature to Roman and Greek history. Just before the French rev-
olution in the French Academy, de Borda [1] and de Condorcet [2] proposed the
Borda rule and the Condorcet procedures. They wanted to use new voting methods
to resolve difficulties and unfair results under traditional plurality-based voting rules
in elections for the Academy. In 1920s, Hotelling [3] investigated the equilibrium
of spatial economic competition for two firms between location and price. During
World War II, von Neumann and Morgenstern [4] developed Theory of Games using
differential equations to investigate complicated competition behaviors. This theo-
retical foundation has a superior influence to develop analytical methodologies and
tools from applying pre-designed strategic policies to predicting practical election
outcomes. Under fairness conditions, Arrow [5] proved his famous Impossibility
Theorem which claims that there is no single election procedure to fairly decide the
outcome of an election involving more than three candidates. Various ideas, methods
and technologies have emerged to resolve voting difficulties [6–9].

1.2 Problems in the 2000 American Election

The most debatable problem in the 2000 American election, the 2K-election, is that

Whether the machine-rejected ballots need to be manually recounted?

The practical solution of the 2K-election problem was finally decided by the nine
judge’s votes in the US Supreme Court on the lawsuits from the Florida Supreme
Court.

This indicates that current voting theories and vote-counting models are all faults
to be an authority resolving the problem.

Although the 2K-election is under the plurality rule, not under the approval rule,
however the approval rule cannot guarantee to avoid the similar uncertainty when a
large number of electors are involved. It is necessary to establish relevant theoretical
structure to avoid possible problems in the future.
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1.3 Structure of the Chapter

This chapter proposes two models constructing a voting theory to resolve the 2K-
election-like problems and other paradoxes in voting practices. Only one voting
system under approval rule is concerned.

In Sect. 2, a Simple Ballot Model (SBM) is proposed. Using the SBM, the sep-
arable and uncertain conditions for the ballot papers are established. To show some
practical strategies and relevant problems in current votingmethodologies, four addi-
tional rules (reducing error probability, merging other candidate votes, re-election,
and court decision) that are commonly used in practical voting processes are dis-
cussed.

In Sect. 2.8, the error margin for the 2K-election problem is analyzed. Through
voting practice is not an accurate science, but the error margin of 0.233% in the
event still cannot be acceptable as an accurate measure. Although almost 99.8%
of the valid votes were counted, there is still no way of determining that who is
the winner. Therefore, the attentions shifts to the 0.2% votes which were already
deemed invalid. This problem highlights that the voting system needs to improve,
and a method of extracting additional information from valid votes to separate the
two candidates under uncertainty conditions becomes essential.

In Sect. 3, a new votingmodel—the Component BallotModel (CBM)—is defined
and constructed to provide the essential construction for extracting more informa-
tion from votes for comparisons. Based on multiple feature matrices (similar to con-
tingency tables in classical statistics), probability feature vectors and permutation
invariant group and other advanced mathematical tools, multiple pair sets of fea-
ture index families for two candidates are constructed. This mechanism establishes
a voting authority to make a decision for an election. After the mathematical defi-
nitions and constructions to feature matrix, feature vector, probability feature vector
and feature index, the most important results are summarized in Two-D Separable
Proposition and Voting Authority Proposition.

Taking into account only the valid votes, the election model will have intrinsic
stability for the reliable results immediately after the election. Confusion, frustration
and dissatisfaction as those experienced in the 2K-election can be avoided.

In the light of this research, some further research directions are suggested in
Sect. 4.

2 Simple Ballot Model

2.1 Key Words in Election

Key words used in an election event can be defined as follows.
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• Election—a special event based on counting votes for awinner (normallywhoever
attracts the most votes wins the election)

• Candidate—a person who has been nominated in an election
• Elector—a person who may legally vote in an election
• Ballot—a pre-designed form used to record choices of an elector
• Vote—a ballot on which the choices of an elector are recorded
• Poll—the collections of votes from all legal electors
• Decision—Za result on who wins the election.

The Simple Ballot Model simulates the simplest case scenario of whole voting
procedure based upon all ballots directly collected from an election under approval
rule. In this scenario, one elector can only create one vote for as many candidates
selected from a list of candidates.

2.2 Definitions

For an ideal election involving n (≥2) candidates, let C � {c1, c2, . . . , cn} be a
set of the selected candidates. A ballot B � 〈c1, c2, . . . , cn〉 is a pre-designed form
containing the list of candidates for whom the electors may vote.

A vote is a record of a ballot B. Let a vote denote v. It is valid if v �
〈v1, v2, . . . , vn〉, vi∈{0, 1}, i ∈ [1, n],

∑n
i�1 vi > 0, otherwise if ∃vi � x /∈

{0, 1}, i ∈ [1, n] or
∑n

i�1 vi � 0 (null selection), then the vote v is invalid; where
vi � 1 indicates selected the candidate ci , vi � 0 indicates not selected ci and
vi � x indicates invalid selection to ci . Normally a vote v has a value region from
〈0, 0, . . . , 0〉 to 〈1, 1, . . . , 1〉 … 〈x, x, . . . , x〉.

An elector can only create one vote and there are a total number of N (�n) votes
in the election.

A poll V is a vote collection in which all votes can be arranged as an array with
N entries:

V � (v(1), . . . , v(t), . . . , v(N )), t ∈ [1, N ]. (2.1)

where v(t) denotes the vote of the tth elector. As each candidate has a number, let
k ∈ v(t) denote the tth elector selected the kth candidate on the vote.

For example, n � 6, N � 8, a poll V is: V � (v(1), . . . , v(t), . . . , v(8)), t ∈
[1, 8]

v(1) � 〈0, 0, 1, 1, 0, 0〉, v(2) � 〈0, 1, 0, 1, 0, 0〉, v(3) � 〈0, 1, 0, 1, 1, 0〉,
v(4) � 〈1, 0, x, 1, 1, 0〉, v(5) � 〈0, 1, 0, 1, 0, 0〉, v(6) � 〈0, 0, 1, 1, 1, 0〉,
v(7) � 〈0, 0, 1, 0, 0, 0〉, v(8) � 〈0, 0, 0, 0, 0, 0〉

In this poll, {v(1), v(2), v(3), v(5), v(6), v(7)} are valid votes (v3(1) � v4(1) � 1
indicates the 1-st vote selected the third and forth candidates). In addition, v(4)
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contains an uncertain selection (v3(4) � x) and v(8) is a null selection, both votes
are invalid.

Let V0 denote the invalid-poll in the election. It collects all invalid votes from
the poll V. Let Vc denote a valid sub-poll in the election. Both sub-polls Vc and V0

partition the poll V . i.e.

V � V c ∪ V0.

Let Vk denote a sub-poll in the election. For any k ∈ [1, n], Vk collects all valid
votes from the poll V for the kth candidate.

Vk � {v(t)|vk(t) � 1, k ∈ [1, n], t ∈ [1, N ], v(t) ∈ V c}.

Let Ṽ denote a poll vector,

Ṽ � (V0, V1, . . . , Vk, . . . , Vn), k ∈ [1, n]. (2.2)

A SBM is a collection of a ballot form, all votes, poll and poll components for an
election.

SB M � (
B
∣
∣V ; Ṽ

)
(2.3)

Let NV c denote the number of votes in the valid poll V c, NV c � |V c|. Let Nk

denote the number of votes in the valid poll Vk , Nk � |Vk |, k ∈ [1, n] and N0 denote
the number of votes in the invalid poll V0.

The total number of votes in an election, N , is equal to the sum of the number of
the valid votes NV c plus the number of all invalid votes N0, i.e.

N � NV c + N0. (2.4)

Let pV c � |V c|/|V |� NV c/N denote a measure of the valid votes.
For any poll vector Ṽ , let pk � |Vk |/|V |� Nk/N , 1 ≤ k ≤ n denote a measure

of the kth candidate and p0 � |V0|
/ |V | � N0

/
N denote the measure of the invalid

votes.
Under the approval rule, there are many overlaps among different sub-polls. Con-

sidering two candidate sub-polls and their common parts, if ∃k, l ∈ [1, n], Vk, Vl ⊆
V c, Vk ∩ Vl 
� ∅, then

|Vk ∪ Vl | � |Vk | + |Vl | − |Vk ∩ Vl | (2.5)

In general, we have

|Vk ∪ Vl | ≤ |Vk | + |Vl | (2.6)
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Let �̃ denote a frequency vector,

�̃ � (p0, p1, . . . , pk, . . . , pn), k ∈ [1, n] (2.7)

2.3 One-Dimensional Feature Distribution

The frequency vector �̃ corresponds to a density distribution. There are equations
as follows.

1 � pV c + p0; (2.8)

1 ≥ pk ≥ 0, k ∈ [1, n]. (2.9)

Because there is no further partition among sub-polls, the vector �̃ is composed
of a one-Dimension frequency feature histogram.

Considering inequalities (2.6), (2.8) and (2.9), there is an inequality.

1 ≤
n∑

k�0

pk ≤ n. (2.10)

If sub-polls partition the poll, then there is 1 � ∑n
k�0 pk . In the worst case

scenario, if all valid votes select all candidates without invalid votes, then

p0 � 0, p1 � · · · � pn � 1,
n∑

k�0

pk � n

2.4 Separable Condition

When ∃i, j ∈ [1, n], pi , p j > p0, a decision between the candidates i and j can be
made if and only if

∣
∣pi − p j

∣
∣ > p0 (2.11)

This is the separable condition.

2.5 Uncertain Condition

However, therewill be intrinsic difficulties tomake a decision between the candidates
i and j simply from their measures pi and p j , if
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∣
∣pi − p j

∣
∣ ≤ p0 (2.12)

This is the uncertain condition.
Under the uncertain condition, there are no simple solutions to distinguish signals

clearly between pi and p j under the interference of p0.

2.6 Balanced Opposites

It is extremely hard tomake any decisionwhen both candidates gain the same number
of votes in an election. However, for any equilibrium dynamic system involving two
balanced opposites in competition, the most probable trends are p j � pi . In general,
more complicated feedback mechanisms are involved and balanced events occur
more frequently [10, 11].

2.7 Four Additional Policies

To resolve conflicts in an election, four additional policies may be useful: reducing
error probability (p0 → 0),mergingother candidate votes (Vi ∪Vl → Vi orVj∪Vl →
Vj ; i, j, l ∈ [1, n]), re-election (new pi , p j ) and court decision.

The reducing error probability policy works well in certain conditions involving
only a small number of electors. Using various controlled methods, e.g., the total
number of seats in Parliament being an odd number or some additional votes allowed
by Parliament Leaders, the worst case scenario where both candidates hold equal
votes without a decision can be eliminated. However, when an election involves a
large number of electors like sizes of the 2K-election, the voting system becomes
a naturally complex dynamic system and there is no way to make the error margin
(p0 → 0) negligible.

The merging other votes policy works in simple conditions at a single location.
To combine votes for candidates from multiple locations under approval rule would
be more difficult than under plurality rules since there are many overlaps among sub-
polls. There is no guarantee to ensure the policywork. In the best cases, old difficulties
may be temporarily solved, but new similar uncertainties could immediately emerge.

From a complex-dynamic system, re-election is as same as the original elec-
tion. Therefore, the re-election policy cannot provide improved separable property
between two candidates.

If other solutions can not be found by timing or other issues, then it is feasible to
use Courts to make decision. The court decision policy uses Courts to make decision,
it results in efficient decision-making but breaks down the election procedure and
it may loose fairness, transparency, self-determination and other advantages of the
election process.
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2.8 How Accurate Is Accurate?

It is well known that all measurements in physics and in all exact science are inaccu-
rate in some degree. So, what then is sufficient to be deemed accurate for an election?
Can we accept a 10% margin of error to be accurate? What about 1% or even 0.1%?

In real life, an error margin of 1%would be highly commendable and one of 0.1%
would be considered highly accurate.

Although, voting and pollingwere notmeant to be an exact science, polls and other
pre-election statistics had error margin of almost 5–10%. Yet in the actual election,
the margin of error was less in the disputed counties, e.g. Miami-Dada and Palm
Beach, only 14,000 votes from a total number of six million votes were rejected.
The margin of error was only 0.233%. Usually, this would be deemed a negligible
number, as almost 99.8% of votes were valid. However, it was not enough to separate
the two candidates, this margin would have to reduce the rejected votes from 14,000
to 100. In the condition, at least an error margin of 0.00016666% is required. This
is highly improbable due to the cost, time and other factors.

2.9 Shifting Attentions from Invalid Votes to Valid Votes

Almost 99.8% votes are valid. This indicates that in order to determine who will be
the winner under the uncertain condition, it is necessary to fetch additional infor-
mation to determine a victor from valid votes instead of reducing the error margin
by handling invalid votes. The total number of votes is far greater than the number
of candidates. This makes possible to extract additional information using cross-
classification methods based on contingency table-like techniques among multiple
categories. The cross-classified technique is a powerful toolkit in modern statistics
[12, 13, 14, 15].

Under additional categories such as location, age group and sex, valid voteswill be
categorized as two-dimensional classified feature distributions in respective contin-
gency tables. Such spatial or histogram-like feature distributions provide invaluable
information to support improving separable properties between two uncertain can-
didates. To represent this idea, a new model is proposed in next chapter.

3 Component Ballot Model

To overcome the intrinsic complexities and uncertain problems in approval voting
practices, a new model—the Component Ballot Model—is proposed in this chapter
to use multiple variables on a ballot for a better description and an easier comparison.
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3.1 Definitions

To be consistent with the previous notation, similar symbols (ballot paper) are used.
However, the contents of the ballot paper and other notations will be compounded
into vector forms.

Let C � {C1, C2, . . . , Cm} be a set of the selected conditions. The i-th item

contains ni distinct values for selections, Ci �
〈
ci
1, . . . , ci

j , . . . , ci
ni

〉
, j ∈ [1, ni ], i ∈

[1, m].
A ballot B (or a component ballot) is a vector composed of m items:

B �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1

. . .

Ci

. . .

Cm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
c11, . . . c1n1

〉

. . .
〈
ci
1, . . . , ci

j , . . . , ci
ni

〉

. . .
〈
cm
1 , . . . , cm

nm

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, j ∈ [1, ni ], i ∈ [1, m] (3.1)

Component items in a ballot provide additional information about elector to the
paper such as sex, voting time, location, age group, and minority, living area, social
security and employ situations.

For example, the first item contains 10 candidates, the second item presents
100,000 locations, the third item has 3 sex groups (male, female, neutral), the forth
item contains 150 age groups, and the fifth item indicates 1010 social security number.
Under above conditions, a ballot paper could be

B �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1

C2

C2

C4

C5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
c11, . . . , c110

〉

〈
c21, . . . , c2100000

〉

〈
c31, c32, c33

〉

〈
c41, . . . , c4150

〉

〈
c51, . . . , c51010

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

m � 5, n1 � 10, n2 � 100000, n3 � 3, n4 � 150, n5 � 1010.

A vote v (or a component vote) is a record of a component ballot B for which at
least one value for each m items has been assigned:
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v �

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1

. . .

vi

. . .

vm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

〈
v1
1, . . . , v

1
n1

〉

. . .
〈
vi
1, . . . , v

i
l , . . . , v

i
ni

〉

. . .
〈
vm
1 , . . . , vm

nm

〉

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, vi
l ∈ {0, 1, x}, l ∈ [1, ni ], i ∈ [1, m].

(3.2)

where ni is the upper limit of vi ; vi
l � 1 (or 0) means ci

l candidate selected (or not
selected), vi

l � x indicates ci
l being an invalid value.

More items are provided for each ballot to include more information. Further
distinctions of their valid regions are necessary. If for a vote v, the first item
satisfies i � 1,

∑ni
l�1 v1

l ≥ 1(more than one values selected) and all additional
items satisfy vi

l ∈ {0, 1}, l ∈ [1, ni ], i ∈ [2, m],
∑ni

l�1 vi
l � 1(one and only one

value selected), then the vote v is a valid vote. However, if ∃i, l, vi
l ∈ {x}, i ∈

[1, m], l ∈ [1, ni ] or there is one vi in additional items assigned multiple values,(∃i, vi
l ∈ {0, 1},∑ni

l�1 vi
l > 1, l ∈ [1, ni ], i ∈ [2, m]

)
then v is an invalid vote.

Normally the valid first item in a vote has a value region from 〈0, 0, . . . , 0, 1〉
to 〈1, 1, . . . , 1〉. A total number of 2n1 − 1 combinations are valid to allow one,
two or more candidates selected. However, for other additional items there is one
and only one value selected from 〈0, 0, . . . , 0, 1〉 to 〈1, 0, . . . , 0, 0〉. There are only
ni , i ∈ [2, m] selections allowed.

Additional information for electors may been accessed from existing election
databases somewhere, there is no any technical difficulty to merge them to be a
compound vote automatically using modern information technology.

There are enough rooms for an elector with various parameters on a vote and a
total number of N electors in voting.

A poll V is a vote collection in which all votes can be arranged as an array with
N entries:

V � (v(1), . . . , v(t), . . . , v(N )), t ∈ [1, N ]. (3.3)

Considering each vote has m items, a poll V can be represented as a 2D m×N
array.

V � (v(1), . . . , v(t), . . . , v(N ))

�

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(1)
. . .

vi (1)
. . .

vm(1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(t)
. . .

vi (t)
. . .

vm(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎜
⎜
⎝

v1(N )
. . .

vi (N )
. . .

vm(N )

⎞

⎟
⎟
⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

t ∈ [1, N ], i ∈ [1, m].

(3.4)
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3.2 Feature Partition

Let V c denote a valid poll and V0 denote an invalid poll, V c and V0 partition the poll
V i.e.

V c � {∀v|v is a valid vote, v ∈ V };
V0 � {∀v|v /∈ V c, v ∈ V };
V � V c ∪ V0. (3.5)

Let V i denote a sub-poll in the election. For any i ∈ [1, m], V i collects all valid
votes of the poll V for the ith item.

V i �
{

∀v(t)|v(t) ∈ V c, vi
l (t) ∈ {0, 1},

ni∑

l�1

vi
l (t) ≥ 1,

l ∈ [1, ni ], t ∈ [1, N ], i ∈ [1, m]} (3.6)

Zero-D Feature Lemma All
{

V i
}m

i�1 sub-polls contain the same votes as in the poll
Vc:

V c � V 1 � V 2 � · · · � V i � · · · � V m (3.7)

Proof Using Eqs. (3.5) and (3.6), a valid vote contains at least one valid value in
each category. No difference exists to project all valid votes as one group. �

Let V i
k denote a sub-poll in the election. For any i ∈ [1, m], V i

k collects all valid
votes of the poll Vc for the ith item in a special location k.

V i
k � {∀v(t)|v(t) ∈ V c, vi

k(t) � 1, t ∈ [1, N ], i ∈ [1, m], k ∈ [1, ni ]
}

(3.8)

One-D Feature Lemma All
{

V i
k

}
k∈[1,ni ]

sub-polls dissect a sub poll V i :

V i �
ni⋃

k�1

V i
k (3.9)

Proof By Eqs. (3.5)–(3.8), each vote has at least an identified value. To collect all
votes with the value, we have the result. �
One-D Feature Corollary If each vote contains only one value in the category item,
then all sub-polls

{
V i

k

}
k∈[1,ni ]

partition a sub poll V i :

|V i |�
ni∑

k�1

|V i
k | (3.10)
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Proof By Eq. (3.9), each vote has an identified value. There is no overlap among
possible sub-polls in relation to the category item. �

It can be noticed that only candidate category does not satisfy one-D feature corol-
lary under approval voting rule. Other additional categories satisfied the condition.

Different from the Zero-D feature lemma, the One-D feature corollary provides
non-trivial partition of the votes into multiple sub polls.

Let V 0 denote an invalid-poll in the election. It collects all invalid votes of the
poll V.

V 0 � {∀v(t)|v(t) /∈ V c, t ∈ [1, N ]} (3.11)

Since there is no any further distinction for votes in V 0, all votes in this poll
correspond to discarded votes.

Let V i, j
k,l denote a sub poll. It can be described as

V i, j
k,l �

{
∀v(t)|v(t) ∈ V c, vi

k(t) � 1, v j
l (t) � 1;

t ∈ [1, N ], i, j ∈ [1, m], k ∈ [1, ni ], l ∈ [1, n j ]
}

(3.12)

For any i, j ∈ [1, m], k ∈ [1, ni ], l ∈ [
1, n j

]
, collected votes of V i, j

k,l are the same

as the votes in V j,i
l,k .

If l 
� k, then votes in V i, j
k,l are different from the votes in V j,i

k,l .

Two-D Feature Lemma All votes in
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j]
dissect either V i

k or V j
l .

V i
k �

n j⋃

l�1

V i, j
k,l ; (3.13a)

or

V j
l �

ni⋃

k�1

V i, j
k,l . (3.13b)

Proof By Eq. (3.12) and one-D feature lemma, each vote in the sub-polls has other
identified values. To collect all votes with the value in relevant sub-polls, we have
the result. �
Two-D Feature Corollary If a valid vote contains a single value in the selected

category item, then all votes in
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
partition either V i

k or V j
l . For j

category,

∣
∣V i

k

∣
∣ �

n j∑

l�1

∣
∣
∣V

i, j
k,l

∣
∣
∣; (3.13c)
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Or for i category,

∣
∣
∣V

j
l

∣
∣
∣ �

ni∑

k�1

∣
∣
∣V

i, j
k,l

∣
∣
∣. (3.13d)

Proof When each vote in the sub-polls has only a single value in relation to the
selected category item, the sub-polls partition the selected poll. �

Under this construction, all votes in
{

V i, j
k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
dissect the valid poll Vc.

When single value condition satisfied, sub-polls can partition the valid poll.

3.3 Feature Matrix Representation

For a given pair i, j ∈ [1, m], let k corresponding to row number and l corresponding

to column number, for a given
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
sub polls, there is a unique feature

matrix representation.

3.3.1 Feature Matrix

Let V i, j denote a feature matrix,

V i, j �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

V i, j
1,1 . . . V i, j

1,l . . . V i, j
1,n j

. . . . . . . . .

V i, j
k,1 . . . V i, j

k,l . . . V i, j
k,n j

. . . . . . . . .

V i, j
ni ,1 . . . V i, j

ni ,l
. . . V i, j

ni ,n j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ∈ [1, ni ], l ∈ [1, n j ]. (3.14)

Using a statistical language, a featurematrixV i, j may correspond to a contingency
table based on cross-classified categorical data under two selected categories [13,
16, 17]. Each element of the matrix collects a sub-set of votes in a respective cross-
categorical meaning.

3.3.2 Feature Matrix Set

For a given
{

V i, j
k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
, there are a total number of 2 *

(
m

2

)

� m * (m −1)

distinction feature matrixes. It is composed of a matrix set VS,
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V S � {
V i, j |i, j ∈ [1, m]

}
. (3.15)

For a given pair i 
� j, i, j ∈ [1, m] in the set, each
{

V i, j
k,l

}

k∈[1,ni ],l∈[1,n j ]
or

{
V j,i

k,l

}

k∈[1,n j ],l∈[1,ni ]
corresponds to a uniquematrix or its translationmatrix.However

a given pair i � j, i, j ∈ [1, m], the matrix is equal to its translation matrix. So there
are a total of m * m − m different matrix representations.

For a fixed item (e.g. i � 1) as the first index, there are a total number of

m �
(

m

1

)

different matrices in the system to record different relations among

{
V i, j

k,l

}i, j∈[1,m]

k∈[1,ni ],l∈[1,n j ]
sub polls.

Let V SC(i) denotes the matrix set with first index fixed at i,

V SC(i) � {
V i, j | j ∈ [1, m]

}
. (3.16)

Selecting one category for both row and column values, for a given V SC(i), if
V i,i

k,l ∈ V i, i in V SC(i), a vote in the i th category contains only one valid value, then

V i,i
k,l can be determined as following.

V i,i
k,l �

{
∅, i f k 
� l;

V i
k , i f k � l;

k, l ∈ [1, ni ], i ∈ [1, m]. (3.17a)

In this case, the matrix V i, i is a diagonal matrix.
However, if V i,i

k,l ∈ V i, i in V SC(i), a vote in the i th category contains multiple

distinguishable values, then
{

V i,i
k,l

}
provides cross-classified sub-polls.

V i,i
k,l � V i,i

l,k , V i
k �

ni⋃

l�1

V i,i
k,l �

ni⋃

l�1

V i,i
l,k , k, l ∈ [1, ni ], i ∈ [1, m]. (3.17b)

In this case, the matrix V i, i is a symmetric matrix.
For a given V SC(i), V i, j

k,l ∈ V i, j in V SC(i), following equation is true.

V i
k �

n j⋃

l�1

V i, j
k,l k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m]. (3.18)

3.3.3 Probability Feature Matrix

Let Pi, j denote a probability feature matrix corresponding to the matrix Pi, j and{
pi, j

k,l

}
denote its element set, for any pi, j

k,l ∈ Pi, j ,
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pi, j
k,l �

⎧
⎨

⎩

|V i, j
k,l |/|V i

k |, V i
k 
� ∅;

0, V i
k � ∅.

(3.19)

Pi, j �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

pi, j
1,1 . . . pi, j

1,l . . . pi, j
1,n j

. . . . . . . . .

pi, j
k,1 . . . pi, j

k,l . . . pi, j
k,n j

. . . . . . . . .

pi, j
ni ,1 . . . pi, j

ni ,l
. . . pi, j

ni ,n j

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, k ∈ [1, ni ], l ∈ [1, n j ] (3.20)

For example, n1 � 6, n2 � 4, a probability feature matrix can be as follows:

P1,2 �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.04 0.26 0.1 0.6
0.42 0.2 0.3 0.18

0.14
0

0.21
0

0.42
0

0.23
0

0.008
0.33

0.022
0.01

0.75
0.23

0.22
0.43

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (3.21)

3.4 Probability Feature Vector

For any Pi, j , only at most ni row vectors in the matrix need to satisfy Eq. (3.22).

1 �
n j∑

l�1

pi, j
k,l , k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m]. (3.22)

The Eq. (3.22) can be established from Eq. (3.13c), if the column items partition
the sub-polls for the given row.

Because there is not any restriction among the columns of the probability feature
matrix Pi, j , such properties make flexible select different categories partitioning a

given vote set
{

pi, j
k,l

}
into multiple distributions in larger selection spaces to satisfy

complicated dynamic system requirements.
For a given Pi, j , if the ith item is a categorical index of candidates, then any

candidate k ∈ [1, ni ] has a probability feature vector corresponding to its probability
densities relevant to item j and denoted by �

i, j
k .

�
i, j
k �

(
pi, j

k,1, . . . , pi, j
k,l , . . . , pi, j

k,n j

)
, k ∈ [1, ni ], l ∈ [1, n j ], i, j ∈ [1, m] (3.23)
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3.5 Differences Between Two Probability Vectors

Let
{

V i
l

}
l∈[1,ni ]

sub-polls denote a vector Ṽ i � (
V0, V i

1 , . . . , V i
l , . . . , V i

ni

)
, l ∈

[1, ni ], this vote vector corresponds to a probability vector
�̃ i � (

p̃0, p̃i
1, . . . , p̃i

l , . . . , p̃i
ni

)
, l ∈ [1, ni ], let

p̃i
l � |V i

l |/(|V i |+|V0|) � Nl/N , l ∈ [1, ni ] (3.24)

and

p̃0 � |V0|/
(|V i |+|V0|

) � N0/N , i ∈ [1, m]. (3.25)

Let
{

V i
l

}
l∈[1,ni ]

sub-polls denote a vector V i � (
V i
1 , . . . , V i

l , . . . , V i
ni

)
, l ∈ [1, ni ]

and

pi
l � |V i

l |/|V i |� Nl/(N − N0), l ∈ [1, ni ] and i ∈ [1, m]. (3.26)

A vector V i is corresponding to a probability vector � i ,

� i � (
pi
1, . . . , pi

l , . . . , pi
ni

)
, l ∈ [1, ni ]. (3.27)

If the ith item of a vote indicates an ordinal number of candidates in an election,
a probability vector �̃ i is a special case of a linear spectral distribution.

For any lth candidate, if 1 ≥ p̃i
l >> p̃0 ≥ 0, then p̃i

l
∼� pi

l .
Considering the difference between the two probability measures,

pi
l − p̃i

l � Nl/(N − N0) − Nl/N

� Nl N0/N (N − N0)

� Nl/(N − N0) × N0/N

� pi
l × p̃0 ≥ 0 → 0. (3.28)

Equation (3.28) indicates that the probability measure of invalid votes is small
compared with the candidate measures. There is no significant difference for both
probability measures p̃i

l and pi
l for a candidate in two probability vectors �̃ i and � i

respectively.
If any lth and gth candidates gain a similar number of votes in an election to satisfy

the uncertain condition, then the difference between both probability measures pi
l

and pi
g are restricted by the uncertain condition too.

Considering probability measure difference under uncertain condition, their dif-
ference is
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| p̃i
l − p̃i

g| � | p̃i
l − pi

l + pi
l − p̃i

g + pi
g − pi

g|
� |pi

l − pi
g − ( p̃i

l − pi
l ) − ( p̃i

g − pi
g)|

� |pi
l − pi

g + (pi
l − p̃i

l ) + (pi
g − p̃i

g)| (3.29)

→
∵
(

pi
l − p̃i

l

)
+
(

pi
g − p̃i

g

) � (
pi

l + pi
g

) × p̃0 ≥ 0, (3.30)

∣
∣pi

l − pi
g

∣
∣ +

(
pi

l + pi
g

) × p̃0 ≤ ∣
∣ p̃i

l − p̃i
g

∣
∣ +

(
pi

l + pi
g

) × p̃0 ≤ p̃0 +
(

pi
l + pi

g

) × p̃0

∴
∣
∣pi

l − pi
g

∣
∣ ≤ 3 × p̃0. (3.31)

Equation (3.31) indicates that the new probability vector does not solve the uncer-
tain problem. To overcome the difficulty, other techniques need to be employed.

3.6 Permutation Invariant Group

For any �
i, j
k , a permutation invariant group �(i, j |k) can be constructed to collect

vectors using all elements in ψ
i, j
k as constructors of possible permutations.

3.6.1 Feature Index and Permutation Invariant Family

For a vector � ∈ �(i, j |k), if it is feasible to define a numeric measure (or feature
index) and all vectors ∀� ∈ �(i, j |k) have the same index, then the feature index λ

is an invariant of �(i, j |k).
For ∀� ∈ �(i, j |k),

{∃λ|λ(�) � λ(�) � c,� 
� �;�,� ∈ �(i, j |k), k ∈ [1, ni ], l ∈ [
1, n j

]
, i, j ∈ [1, m]

}
(3.32)

3.6.2 Polynomial Feature Index Family

For any probability vector � � (
p1, . . . , p j , . . . , pm

)
with m items and ∃k ∈

[1, m], pk > 0 a family of polynomial indexes {λn} is defined by Eqs. (3.33)–(3.36).

λ0(�) �
m∑

l�1

(pl)
0 � m; (3.33)

λ1(�) �
m∑

l�1

(pl)
1 � 1; (3.34)
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λ2(�) �
m∑

l�1

(pl)
2; (3.35)

…

λn(�) �
m∑

l�1

(pl)
n, n ≥ 0. (3.36)

For example, using the sample probabilitymatrix P1,2 ofEq. (3.21), its polynomial
indexes {λn} are

λ0(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

4
4
4

4
4
4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; λ1(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
1
1

0
1
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; λ2(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.437616
0.3388
0.293

0
0.611448
0.3468

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

;

λ3(P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.23464
0.11492
0.090664

0
0.43253416
0.127612

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

; . . .

3.6.3 Entropy Feature Index

For a probability vector� � (
p1, . . . , p j , . . . , pm

)
with m items, an entropy feature

index λE is defined by Eq. (3.37).

λE (�) � −
m∑

l�1

pl * ln(pl). (3.37)

In polynomial index family {λn(�)}n≥0, λ0(�) indicates the length of vector and
λ1(�) provides the normalized measure. In addition to {λn(�)}n≥0 family, λE (�)
provides another type of indexes in relation to the entropy measurement. Using one
of these indexes, it is feasible to distinguish two probability vectors in different
permutation groups.

For example, using the same probability matrix P1,2 of Eq. (3.21), its entropy
index λE is
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λE (P
1,2) �

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1.015748065
1.356003379
1.305367539

0
0.6714638476
1.113842971

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

3.7 Two Probability Vectors and Their Feature Indexes

Two probability vectors �
i, j
k and �

i, j
l , have two distinct index families{

λn

(
�

i, j
k

)}

n≥0
,
{
λn

(
�

i, j
l

)}

n≥0
and ∃τ, λτ (�

i, j
k ) 
� λτ (�

i, j
l ), 1 < τ ≤ λ0(�

i, j
l )

then the two vectors belong to two different permutation groups.
For two probability vectors �

i, j
k and �

i, j
l , each vector belongs to one permuta-

tion group and cannot be generated from another vector then ∃n > 1, λn

(
�

i, j
k

)

�

λn

(
�

i, j
l

)
, 1 < n ≤ λ0

(
�

i, j
l

)
.

Under such conditions, if two vectors have different index families, then they
are in different permutation groups. In another way, when two vectors cannot be
generated from another one, at least one indexes is distinguishable.

3.8 CBM Construction

Let CBM denote a Component Ballot Model. A CBM is a collection of a ballot
form, vote sequences, poll and poll component matrix collection, probability matrix
collections with normalized probability vectors plus the selected indexing family for
an election.

CBM � (
B
∣
∣V, V S,

{
Pi, j

}
, {λi }

)
. (3.38)

Compared with SBM (Eq. 2.3) and CBM (Eq. 3.38), it is clear that the SMB is
the simplest case of CBM and CBM provides more powerful properties for refined
descriptions and comparisons in complicated voting applications.

Two-D Separable Proposition For two candidates to gain similar number of votes
in the uncertain condition, it is always feasible to use other categorical information
(i.e. location, age group) to re-partition sub polls for each candidate. If the two refined
probability feature vectors belong to two permutation groups, then the uncertain
problem can be solved in most case scenarios by using the polynomial feature index
family or the entropy future index.
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Proof For most case scenarios, cross-classified categorical data make corresponding
probability feature vectors with significant differences in relation to respective den-
sity distributions. Under different categories without simple correspondences, this
mechanism makes it possible to use the same strategy to handle votes for candidates.
Since one party may be very strong in certain polices and relative weak in other
strategies, those differences create various probability feature vectors easier located
in different permutation groups. Even in the most balanced election events from a
global viewpoint, hugely distinguishable distributions exist in local regions. This
is the most important reason for two probability feature vectors making a pair of
significantly distinct feature indexes. �
In a complex dynamic system, equilibrium is themost probable statewhen the system
is in dynamic balance. However, there are significant differences among local areas
even in the most equilibrium conditions. This is the most powerful part of proposed
model for solving uncertainty in general for complex dynamic systems.

For an election to avoid uncertainty and frustrations due to the voting result in
uncertainty, it is necessary to pre-select additional oddm −1 ≥ 1 categories different
from candidates. Following main conclusion can be statement.

Voting Authority Proposition If two candidates in an election under approval rule
are in uncertainty, then additional categories (odd m − 1 ≥ 1) under pre-agreed
conditions could be used. These create the m −1 pairs of feature indexes for making
the decision for who will be the winner.

Proof According to the two-D separable proposition, each additional category can
provide a pair of significantly distinct feature indexes to separate the two candidates,
and all selected m −1 pairs have such properties. Considering m −1 an odd number,
each pair of indexes acts as an authority vote. So, there is no problem using the
majority rule to make the decision. �

4 Conclusion and Further Work

In the proposedComponent BallotModel,multiple probability-featurematrix collec-
tions are employed and component categories other than the candidate are proposed
on ballot papers to overcome confusion and frustration when two candidates are in
uncertainty.

Applying advanced invariant constructions to probability feature vectors and also
distinguishable properties among measurements in polynomial and entropy feature
index families, voting authority provides a stable indexing mechanism to make the
whole calculation based on valid votes. Distinguishable properties and invariant
properties among feature index families provide reliable measurements for election
outcomes.

The basic ideas, tools and technologies in the chapter are originated and created
from the author’s research works in 1990s for advanced content-based information
retrieval and image feature indexing [18–20].
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Because the approval rule is onlyoneof the rules in practical voting systems, reader
may read author’s other paper discussing related aspects of voting theoryunder plural-
ity and majority rules [21]. It is interesting to know whether the proposed newmodel
can apply to other voting systems (such as Borda rules, proportional-representation
system and preference voting systems) consistently. Similar uncertainty exists in
other voting mechanisms. This will be a natural extension of current study.

To satisfy practical voting systems, it is essential to establish testing frameworks
to make recommendations for the specific invariant properties contained in the pro-
posed or new indexing families. There is no doubt that different voting systems may
require various combinations of different feature indexing schemes to satisfy their
optimal properties. More case studies linking between theoretical models and prac-
tical applications should be conducted to solve complicated voting paradoxes and
other similar problems.
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Part V
Applications—Global Variant Functions

The only thing permanent is change.

—Immanuel Kant

The scientist needs an artistically creative imagination.

—Max Planck

The thought: A logical inquiry.

—Gottlob Frege

Extensive researches were focus on global function and their distributions published
in the period of 2000–2010. Conjugate transformation and content-based image
retrievals are typical examples for development. Using a hierarchical architecture of
knowledge model, multiple levels of balanced structures were developed in both
image analysis and processing, e.g., Towards Automated Mammographic Image
Analysis, Proceedings of the 2005 IEEE International Conference on Information
Acquisition 85–90, and content-based retrievals, e.g., Mixed Query Image Retrieval
System, Proceedings of the 2007 IEEE International Conference on Information
Acquisition DOI:https://doi.org/10.1109/ICIA.2007.4295776.

Associated with variant logic and various applications, wider explorations were
carried out in the fields of cellular automata functions under different symmetric
conditions that were examined. For example, Permutation and Complementary
Algorithm to Generate Random Sequences for Binary Logic, International Journal
of Communications, Network and System Sciences 4(5):345–350, 2011.

This part of global variant functions is composed of five chapters (11–15).
Chapter “Biometrics and KnowledgeManagement Information Systems” describes

a hierarchical framework to use concept cell model on Biometrics & KMIS applica-
tions. Searching for brides and fingerprints was samples of typical applications in
addition to process on SARS and fingerprint images.

Chapter “Recursive Measures of Edge Accuracy on Digital Images” uses
recursive measures to handle image edges under different conditions to compare
various edge algorithms, edge quality, and their accuracies. Conjugate maps and four

http://dx.doi.org/10.1109/ICIA.2007.4295776


other edge schemes {Gradient, Laplacian, Gaussian, Mathematical Morphology}
were selected.

Chapters “2D Spatial Distributions for Measures of Random Sequences Using
Conjugate Maps” to “3D Visual Method of Variant Logic Construction for Random
Sequence” use variant logic framework to illustrate 2D/3D and visual maps of
variant logic operations on n = 2 conditions to show global visual distributions in
their configurations of functional spaces.

192 Applications—Global Variant Functions



Biometrics and Knowledge Management
Information Systems

Jeffrey Zheng and Chris Zheng

Abstract Biometrics and knowledge management information systems are two
important fields in recent years to attractwider attentions fromdifferent social groups.
This chapter explores the use of hierarchical construction linking with biometrics
applications and knowledge management information systems. The key issues are
discussed and a sample case of information acquisition in content-based image
retrieval system has been illustrated.

Keywords Biometrics · Complexity · Hierarchical organization · Feature
classification · Content-based image retrieval

1 Introduction

Biometrics has attracted people attention in recent years due to terrorist attack and
rapid scientific development and advanced information technology. In the twenty-
first century, one of the most significant achievements in biology decodes a full
list of gene codes of human DNA sequences. Using advanced pattern recognition
technology, it is now convenient to make real-time face verification and fingerprint
identification.

This work was supported by Australian Commercialising Emerging Technologies, (COMET)
program.

J. Zheng (B)
Key Laboratory of Software Engineering of Yunnan, Yunnan University,
Kunming, China
e-mail: conjugatelogic@yahoo.com

C. Zheng
Tahto, Sydney, Australia
e-mail: z@caudate.me

© The Author(s) 2019
J. Zheng (ed.), Variant Construction from Theoretical Foundation to Applications,
https://doi.org/10.1007/978-981-13-2282-2_11

193

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-2282-2_11&domain=pdf
mailto:conjugatelogic@yahoo.com
mailto:z@caudate.me
https://doi.org/10.1007/978-981-13-2282-2_11


194 J. Zheng and C. Zheng

In general, all quantitative measures of living objects and activities from different
sources including biology, anatomy, sound, photo, electronics and nerve pulse could
link to biometrics. In such extremely complicated fields and areas, if we can effi-
ciently acquire essential information to be manipulated by knowledge management
information systems, then this mechanism will play an important role in the prac-
tices of applied biometrics. Useful concepts, methodologies and software/hardware
toolkits in the direction will be invaluably helpful biometric applications in practical
environments.

To resolve real-world problems, it is useful to apply system engineering schemes
using analysis and synthesis mechanisms. In this chapter, hierarchical construction
will be used as a framework to represent biometrics and knowledge management
information systems. The original concepts and methodologies used in the chapter
come from an established theoretical construction of dynamic systems conjugate
classification and transformation [1–3]. Main algorithms and methods from the con-
cepts have been implemented into software packages in advanced image analysis,
content-based image retrieval and image understanding systems.

Using these concepts and methodologies in biometrics is a new application. The
author would like to have this opportunity to sincerely discuss the possibility with
other experts of the field in detail.

2 Different Complexity Issues in Biometrics Applications

Different measurement may have variant forms and contents in practical biometrics
applications. In a measure space, measure data set can be relevant to length, position,
angles, time and other basic measurable quantitative. Using dimension number of
geometric spaces representing different biometrics objects has been shown extremely
useful in many applications. Very rich contents can be observed through representa-
tives of biometrics measures.

Infrared Detector for SARS detection (1D body temperature > 38 ◦C)
In protecting SARS virus distribution process, infrared detectors installed on the
major channels of airports, stations and customs played active roles in indirectly
measure body temperature whether higher than 38◦. This process has significantly
reduced the SARS virus fatal distributions.

DNA sequence (1.5D sequence)
A DNA sequence is composed of four types of gene codes forming of conjugate
pair linear structure. Since the sequence itself has very complicated combination
characteristics and also local grouping properties, this makes structure much more
complex than simple 1D linear sequence [4].

Face identification and early breast cancer detection (2D)
In most image analysis systems, especially face identification and early breast cancer
detection systems use of 2D features in manipulations. In larger applications or data
sets, those feature spaces are very complicated.
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CT scanning and reconstruction (3D and higher D)
Using modern CT scan medical imaging equipments, it is feasible to reconstruct 3D
images from multiple 2D image slice sequences to represent complicated projection
and dynamic properties of interested areas and organs. 3D visualization has much
more complicated properties than 2D image visualization process.

Retinal analysis and synthesis (higher D nerve network)
The detailed principles of retinal nerve network in human vision is not fully under-
stood. But their biological structures are well recognized by interconnected nerve
networks. This type of connectivity is much higher than three dimensions. The cor-
responding symptoms of distributions among brain surfaces and visual simulations
indicate hierarchical structures in optical nerve systems naturally [5].

Abstract Thinking (Super Hypercomplex Cells)
The capacity of abstract thinking may belong to super hierarchical organizations of
nerve systems. If there are real nerve objects, this structure could be super hyper-
complex cells or their superposition on extensive hierarchy [5].

From a certainty viewpoint, lower dimension cases have more certain properties
than higher dimensions. In addition, higher dimension structure expressed abstract
properties with more variables and richer possibilities in real-world cases.

3 Proper Concepts, Methods and Useful Toolkits

Usingmodernmathematical toolkits, concepts andmethods such as geometric topol-
ogy and combinatorial topology, it is feasible to use basic analysis on neighbourhood
relationship of kernel structure to partition complicated systems into non-reducible
invariant characteristics base family. Using non-reducible bases as generators, it is
possible to apply synthesis techniques to rebuild complicated systems in certain
forms [6]. In invariant and singularity analysis relevant applications, global topo-
logic characteristics play core roles using modern mathematics analysis toolkits [7].
Since connectivity belongs to one of the topological properties, higher dimensional
geometric problems could be represented as graph problems or other forms to use
common probability and statistical methods for practical calculations to resolve the
equivalent problems in certain degree [8]. It does not matter how to represent a cer-
tain problem in detail, and abstract concepts could be always represented as lattice
structures.

After systematic analysis ofmodern knowledgemanagement information systems
in concepts, principles and operational levels, a useful kernel structure Concept Cell
Model for knowledge management using directed acyclic lattices in hierarchical
constructions has been proposed for base construction toolkits of representation [9,
10]. The model can distinguish two similar lattices of three essential concept levels
in different abstract structures as building lattice constructions:



196 J. Zheng and C. Zheng

Time Invariant Structure: Descriptive Knowledge Lattice (Tacit, Implicit, Explicit)
Time Variable Structure: Procedure Knowledge Lattice (Start, Operation, Finish).

Undertaken hierarchical construction, it is convenient and efficient to represent
knowledge systems in information request, abstract representation, categories, orga-
nization and other statistic and dynamic application requirements.

Concept cells in hierarchies can efficiently represent from real measurement data
sets to higher levels of conceptual networks to represent application systems as mul-
tiple levels of organizations. This provides an operational knowledge management
framework to flexibly support from user cases, abstract design, and implementation
and operation requirements for system engineering practices. By applying concep-
tual categories, it is feasible to construct useful application systems with powerful
self-organization and self-learning capacities in wider engineering and social envi-
ronments.

To easily understand the main point, it is convenient to show an example to
represent a partial structure in implemented content-based image retrieval systems
using hierarchical concept structures shown in Fig. 1.

In the construction, a single index represents specific content-based information
extracted from an image. A set of images needs to correspond to a set of indexes,
respectively, and is organized as a list. It is convenient to use a multiple hierarchy
to organize the list of single indexes as its end nodes. Each intermediate node can
be established as a group of multiple indexes with strong similarity properties in
their contents as a combined index. By this way, a root node can be established by
combined individual nodes and intermediate nodes to be the representative of the
whole set of indexes. Three types of information can be distinguished as follows:

Fig. 1 Descriptive lattice in hierarchical representation
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Single index: individual information explicit
Combined index: group information implicit
Root index: whole information tacit.

Using descriptive lattice structure in multiple levels of representations, compli-
cated content-based image retrieval system can be mapped to a multiple layout net-
work structure. It provides efficient organization to do information acquisition and
organization linking with individuals, groups and the whole in information network
construction.

While search operation, the current index will check from root (tacit node) to
get the best match through combined indexes (implicit nodes) and single indexes
(explicit nodes) to obtain the best-matched cases in hierarchy. Using best match
information, a selected image group will be determined as output results.

In Fig. 2, two sets of implemented results on brides and fingerprint verification
are provided to illustrate visual qualities of retrieved output results. The 125th bride
image is selected and a list of similar brides as retrieved results. The 194th fingerprint
image has been selected as a query example, and the output result is shown in right
panel and arranged by similarity from higher to lower values in relation to the best
20 matched images from the image database in which the 194th, 193rd and 195th
images are strong relative fingerprints from the same person.

Two sets of image processing results are shown in Figs. 3, 4 and 5. In Fig. 3, four
enhanced results on an original SARS image are selected. In Figs. 4 and 5, various
results of a fingerprint image are processed in different parameters under special
enhanced functions.

4 Demand in Future Society

From biometrics measure viewpoint, measure data itself can be very accurate and
crystal certain as numeric values. However, through hierarchical construction, more
uncertainty will appear as higher level contents. Complicated interconnections will
be linked with simply single measures to complicated global organization. Using
hierarchical construction, it is feasible to organize single, group and whole informa-
tion through network construction to cover wider applications.

In rapid development of web-based network, high-speed interactive facility and
quick connections have changed traditional concepts and methods significantly. It
is a convenient approach to use knowledge management information system to do
information acquisition, intelligent analysis, combination and synthesis.
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Fig. 2 Search results: a Brides; b Fingerprints
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Fig. 3 Four image enhancements on SARS image (a–e); a Original; b Positive enhanced; c Valley
enhanced; d Hill enhanced; e Negative enhanced

Hierarchical operations become the most advanced parts of optimal control and
best operational strategies. In the current application environment, fast, convenient
and efficient design and implementation can get wider applications in many fields. It
can be expected to use automatic and intelligent methodologies to complete compli-
cated issues, especially on complex and time consumed design processes. Facing of
many practical applications, simple and unified concepts can help larger dynamic sys-
tem in forming stable structures. Global interactive connection and their evaluations
will be helpful for social environment in high speed and sustainable development.
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Fig. 4 Four image enhancements on fingerprint image (a–e); a Original; b Positive enhanced;
c Valley enhanced; d Hill enhanced; e Negative enhanced

5 Base Strategy of Development

Any theoretical scheme cannot ensure itself in practice operations successfully with-
out carefully matching environment requirements. In current social and economic
conditions, it is more important for biometrics to make a positive impact on social
economy to help the existing developments. Market-orientedmechanism can be used
to resolve key problems in applications. It is most important to identify core tech-
nology in the application and collect the required energies and resources to attack it
resulting in significant impact.

In knowledgemanagement information systems, content-based acquisition, repre-
sentation, indexing and retrieval components are the core components for automatic
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Fig. 5 Ten enhanced results of a fingerprint image (a–c); a Original; b1–b5 Hill enhanced; c1–c5
Valley enhanced; b1/c1 α = 30; b2/c2 α = 80; b3/c3 α = 128; b4/c4 α = 160; b5/c5 α = 220

organization and high-efficient retrieval. Ultra-fast and accurate retrieval technology
for databases and meta-knowledge bases can be widely used in many applications to
satisfy information acquisition, extraction, categories, and organization, storage and
retrieval requirements. Under global web-based environment, hierarchical organiza-
tion of knowledge management systems and biometrics will be further refined and
developed in health environment.
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Recursive Measures of Edge Accuracy
on Digital Images

Jeffrey Zheng and Chris Zheng

Abstract In this chapter, an edge accuracy model is proposed on digital images and
five types of edge detection methods are discussed as examples to investigate their
edge maps undertaken recursive operations. Using invariant criterion, it is possible
to compare different schemes in accuracy, consistency, completeness and simplicity.
This provides general mechanism in relation to accurate edge extractions from digital
images.

Keywords Edge detection · Accuracy · Invariant · Digital image

1 Introduction

Edge detection plays a fundamental importance in image analysis, processing and
computer vision applications. As the first step of visual perception, extensive R&D
has being focused for 40 years (more than forty thousand years—drawing arts in
human civilization). Many useful edge detection operators have been invented and
applied in wider applications.

From an operational viewpoint, edge detection creates edge maps from images
shown in Fig. 1a. Edge detection operators identify significant changes from visual
objects as their edges or contours. From a historical viewpoint, common edge detec-
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Edge 
Detection
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Extracted edge map
{=, ≈, ≠, Ø}
Recursive edge 
extraction map

Edge accuracy 
=   Accurate
≈   Almost accurate 
≠   Inaccurate 
Ø Trivial

{
(c)

Extracted edge maps Recursive edge maps

Edge 
Detection

Recursive loop

(b)

An image
An edge map

Edge Detection

(a)

Fig. 1 Recursive edge extraction. a Edge detection; b Recursive edge maps; c Edge accuracy
measures

tion approaches are divided into five approaches. Traditional edge detections have
three main categories: Gradient, Laplacian and Gaussian; another two categories are
mathematical morphology and conjugate. The five categories will be briefly intro-
duced as follows.



Recursive Measures of Edge Accuracy on Digital Images 205

1.1 Gradient

Gradient scheme has a direction corresponding to convolution operations; we can use
2×2, 3×3 matrices or more complicated schemes to construct relevant operators,
for example, Roberts operator uses 2×2 matrix to detect edges on main diagonal
or anti-diagonal directions. Prewitt, Sobel and Isotropic schemes take 3×3 matrices
using different parameters to extract horizontal or vertical edges from digital images
shown in Fig. 2a.

1.2 Laplacian

A typical Laplacian scheme is Marrs–Hildreth’s zero crossings. This scheme uses
the second differential information to determine zero crossings of the edges shown
in Fig. 2b.

1.3 Gaussian

Canny edgefilter plays a significant role in advanced edge detection applications from
late of 1980s. This scheme applies Gaussian smoothing filter first, then gradient oper-
ations and finally thinning processes and its final results shown in Fig. 2c. Different
from Gradient and Laplacian schemes, Canny edge detection provides controllable
parameters to balance noise levels and significant edge components. Because of its
controllable properties, this scheme widely used in many practical applications in
relation to significant edge components.

1.4 Mathematical Morphology

Mathematical morphology plays an important role in advanced image analysis and
processing applications from 1980s. Using discrete patterns asmorphological masks,
the method applies erosion and dilation, opening and closing operations on the pro-
cessed images. This method distinguishes edge and non-edgemasks. In general, only
translation invariant can be retained in operations. Each time of basic operation uses
one mask on either erosion or dilation corresponding to reduce or extend boundaries
of the visual objects. There is no simple relationship between the selected mask
states and edge states. Two edge maps using a crossing mask under either erosion or
dilation are shown in Fig. 2d. Each edge map has been calculated by either dilated
or eroded output image subtracted by the input edge map.
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(a) Gradient

(b) Laplacian (Zero crossing)

(c) Gaussian (Canny)

(d) Mathematical Morphology
Erosion Edge Map Dilation Edge Map 

Mask =
0 1 0
1 1 1
0 1 0

+
First Derivative

Gaussian Smoothing
Gradient Thinning

(e) Conjugate (Negative & Positive maps)

Negative map: 
Lena.NM.50.50.10.bABCDEFGHIJKLac.-4.256.256.gif

Positive map: 
Lena.PM.50.50.10.bABCDEFGHIJKLac.
-4.256.256.gif

Fig. 2 Different edge detection methods. a Gradient; b Laplacian; c Gaussian; d Mathematical
morphology; e Conjugate
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1.5 Conjugate

Conjugate scheme has been developed from1990s and based on a full pattern classifi-
cation of nearest neighbourhood relationship of discrete states on regular plan lattices
under rotation, reflection and translation invariants. This approach can express local
patterns into invariant groups such as isolated, inner, block edge and intersection to
organise whole pattern space as a hierarchical construction. Both background and
foreground information need to be represented as balanced structures in conjugate
phase space. Under certain conditions, it is feasible to use two types of edge maps
in representations. In Fig. 2e, two typical edge maps are illustrated to use conjugate
scheme:

• Negative (White edge map on black background) and
• Positive (Black edge map on white background).

From edge detection considerations, different operations provide special proper-
ties to be emphasised by various visual information from images. Simple convolution
filters may provide fast process; however, it is highly possible to be sensitively influ-
enced byminor noise levels. Among three traditional edge detection schemes, Canny
edge detector shows an important characteristic with a series of controllable edge
maps in reliable properties. Because distinct edge detectors have different behaviours,
it is very hard for applicants to make simple selections apply the best one among
schemes.Mathematical morphology applies discretemasks in operations. Since edge
maps normally do not correspond tomasks themselves directly, it is difficult to estab-
lish a link from relevant operations and edge detection results.

Considering edge detection operation extracts edge map from digital images.
Under this viewpoint, we need to establish a proper model in determining invariant
properties among edge detection schemes.

2 Recursive Model of Edge Accuracy

Different edge detectionmethods cover various applicationswith advantages inmany
aspects. From a practical viewpoint, it is hard for users to make proper judgment on
which method provides the best edge map to satisfy suitable applications. From
history of edge detection research, no model can provide general mechanism in
systematic comparison among distinguished methods. Since the target of different
edge detections creates edge maps, it is natural for us to determine under which
conditions the edge maps can represent true edge.
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2.1 Question

Could an extracted edge map be a true edge representation?
From amorphological viewpoint, true edgemap needs to have invariant properties

relevant to their geometric and topological constrains. In many theories and practices
in relation to dynamic systems and cybernetics, recursive methods and models have
been approved to be a foundational importance in detailed analysis tasks. A recursive
model has been applied in testing edge detection operators to explore their refined
properties shown in Fig. 1b. Using this feedback mechanism, edge map needs to
be looped back again undertaken the same type of edge detection operators. The
recursive loop shows an important magnification to identify dynamic behaviours
among input and output pairs directly.

3 Four Types of Edge Accuracy Measures

Under the recursive approach, a true edge representation must be the recursive
edge map itself. Such invariant of recursive operations can be observed as intrin-
sic properties in relation to the edge detection operators themselves. In addition to
invariant properties, many rich effects among input and output pairs need to be con-
cerned. Tomake proper judgment among recursive results, it is essential to apply four
different accurate measures shown in Fig. 1c. They are {=, ≈, ��, Ø} representing
accurate, almost accurate, inaccurate and trivial behaviours, respectively, between
input and output edge maps. From matched results between extracted edge map and
its recursive edge extraction map, it is feasible to determine the category in which
generated results need to be belonging to. This provides a general model independent
of a specific edge detection scheme. If anyone would like to check which category
could be belonging to a special scheme, the person can simply apply this recursive
mechanism to check specific method itself directly in explorations.

4 Four Sample Groups of Recursive Edge Maps

In Fig. 3a–d, four groups of recursive edge maps are generated in illustration. Two
operators are selected from Photoshop: Find edge (Gradient) Fig. 3a and trace con-
tour (Zero crossings) Fig. 3b. Find edge operation has a clear variant property, and
trace contour will have a flip-flop behaviour after certain operations. One example
is selected from Canny edge detector shown in Fig. 3c. Recursive results of Canny
operation show that two sets of examples are shown in Fig. 3d for mathematical mor-
phology. It is interesting to see dilation representing almost invariant properties and
erosion creating edge map similar to zero crossing effects. To show different recur-
sive properties of conjugate scheme, four sub-operators are illustrated in Fig. 3e1–e4.
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Table 1 Edge detection schemes and their accuracy properties

Operator Edge quality Noise sensitivity Accuracy Recursive maps

Find edge Good, fair Very high ± 2 pixels ��, Ø

Trace contour Better, good, fair High ± 1 pixels ��, ≈
Canny edge Better, good, fair Controllable ± 2 pixels ��
Mathematical
morphology

Better, good, fair High ± 1 pixels ≈, ��, Ø

Conjugate map Best, better,
good, fair

Full controllable ≤ 1 pixel
True edge

=, ≈, ��, Ø

Each group shows a specific category among three non-trivial results. In conjugate
edge detection operators, there are two types of controllable parameters that are
available corresponding to meta-shape parameters {A, …, L, a, …, l} and enhanced
ratio control {−8, …, 8}. Both controllable parameters can provide universal edge
representation on true edge map to support various edge representations undertaken
selected operations.

5 Comparison

Using the five categories, it is feasible to make summary in Table 1. This provides a
systematic way in comparison.
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(A). Photoshop: Find Edges (Gradient)

(A1) The first edge map

(A4) The fourth edge map(A3) The third edge map

(A2) The second edge map

(A1) ≠ (A2) ≠ (A3) ≠ (A4)     No invariant edge map available!
Recursive condition: Directly use find edges filter to each map

(B). Photoshop: Trace Contour (Zero Crossing)

(B1) The first map

(B4) The 54th map

(B2) The third map

(B1) ≠ (B2) ≠ (B3) ≈ (B4)        Flip flap variations after the 53rd operation
Recursive condition: Trace contour filter (level = 119, edge = low)

(B3) The 53rd map

Fig. 3 Recursive maps of different edge detection operators. a Find edges; b Trace edge; c Canny
edge detection; d Morphology; e Conjugate edge detection
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(C). Canny Edge Detection (Gaussian smooth + 
Gradient + Thinning)

(C1) The first edge map

(C4) The fourth edge map(C3) The third edge map

(C2) The second edge map

(C1)≠ (C2) ≠ (C3) ≠ (C4)     No invariant edge map available!
Recursive condition: Sigma = 1, high threshold = 8, low threshold = 7

(D11) The first edge map

(D14) The 4th edge map(D13) The third edge map

(D12) The second edge map

(D11) ≠ (D12) ≠ (D13) ≠ (D14)  Edge maps invariant
Recursive Condition: Erosion using a crossing mask

Fig. 3 (continued)
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(D). Mathematical Morphology

(D21) The first edge map

(D24) The 4th edge map(D23) The third edge map

(D22) The second edge map

(D11) ≈ (D12) ≈ (D13) ≈ (D14) Edge maps almost invariant
Recursive Condition: Dilation using a crossing mask

(E11) The first edge map

(E14) The 1000th edge map(E13) The 100th edge map

(E12) The fifth edge map

(E11) = (E12) = (E13) = (E14)  Edge maps invariant
Recursive Condition: NM 50 50 10 abcdefghijkl -2

Fig. 3 (continued)
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(E21) The first edge map

(E24) The fourth edge map(E23) The third edge map

(E22) The second edge map

(E21) ≈ (E22) ≈ (E23) ≈ (E24)     Similar edge maps with noise removing
Recursive Condition: NM.50.50.10.abcdefghijklABC.-2

(E31) The first edge map

(E34) The fourth edge map(E33) The third edge map

(E32) The second edge map

(E31) ≠ (E32) ≠ (E33) ≠ (E34) Changed edge maps 
Recursive Condition: PM.50.50.10. cdefCDEF.-2

Fig. 3 (continued)
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(E). Conjugate Edge Detection

(E41) The first edge map

(E44) The fourth edge map(E43) The third edge map

(E42) The second edge map

(E41) ≈ (E42) ≈ (E43) ≈ (E44)     Similar edge maps with noise removing
Recursive Condition: PM.50.50.10.ABCDEFGHIJKLabc.-2

Fig. 3 (continued)
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6 Conclusion

Existing edge detections are without unique recursive maps as their representations.
Conjugate technology provides full controls to create true edge maps in accuracy
and invariance.
True edge maps contain unique shape information in fundamental importance to
support all visual applications.
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2D Spatial Distributions for Measures
of Random Sequences Using Conjugate
Maps

Qingping Li and Jeffrey Zheng

Abstract Advanced visual tools are useful to provide additional information for
modern information warfare. 2D spatial distributions of random sequences play an
important role to understand properties of complex sequences. This chapter proposes
time sequences from a given logical function of 1D cellular automata in both Poincare
map and conjugatemap.Multiplemeasure sequences ofMarkov chains can be used to
display spatial distributions using conjugatemaps.Measure sequences are recursively
produced by different logical functions generating maps. Possible complementary
feature exists between pair functions. Conjugate symmetry relationships between a
pair of logical functions in conjugate maps can be observed.

Keywords Time sequence · Random property · Cellular automata
Spatial distribution · Conjugate symmetry

1 Introduction

Random sequences are widely used in many security-based applications such as
security communication, cryptology coding, and information security systems [1].
To make proper analysis, Markov chain methodologies and technologies provide a
series of important methods and tools to help analyzers decoding process [2–4]. In
modern information warfare, it is essential for analyzers to detect and decrypt the
opponent’s communications using information acquisition toolkits from real coding
sequences [5].
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Information Warfare describes terms of “actions” executed to achieve a sought
outcome—denial, exploitation, corruption and destruction of an opponent’s “infor-
mation” and related functions, and prevention of such “actions” executed by an
opponent [6].

The battle between the obscurers and thosewho sought to break the codes has been
a continual one, but it reached a new level of stature and importance duringWorldWar
II with its decryption of Germany’s Enigma messages. Historic events are approved
that statistical and probability tools are extremely important in Information Warfare
applications. This battle of wits fought by British mathematicians and statisticians
shortened World War II and ushered in the age of information warfare [7].

Prerequisite of executing these attack actions is thoroughly understood by the
mechanism of information encryption that opponent uses [8]. In informationwarfare,
secured communications among opposite partsmay use public networks. It is feasible
to capture relevant information for further analysis. Different quantitative tools and
methods are useful to provide additional information in decodingprocess.Variant fea-
tures play an important role for measurement and analysis of random sequences [9].

Because of the implicated expressionof functions that generate randomsequences,
it is hard to get the characteristic of random sequences from the function and coding
sequences themselves [10]. Traditionally, time sequence map and Poincare map are
the two most popular methods to take the measure features of a random sequence
in two dimensions [11]. From a visual viewpoint, current Markov chain schemes do
not provide efficient visual mechanism to display multiple measurement sequences
from the spatial characteristic of complex random sequences.

To extract further information from random sequences, this chapter establishes a
visual system to illustrate multiparameter measurement sequences of Markov chains
as conjugate maps. For a given set of measurement sequences, the conjugate map
proposed in this chapter can provide refined information of distributed structure than
present map technologies [12].

In the second section, respective characteristics of traditional methods and con-
jugate method are discussed. The measurement mechanism of logical function’s
spatial characteristics, disposal model, measuring model, and visualizing model, is
described in the third section. The results of maps and analysis of the results are
discussed in the fourth and fifth sections, and then, concluding remarks are provided
in the last section.

2 Traditional Methods and Conjugate Method

In this section, two typically traditional methods, time sequence map and Poincare
map, are discussed for comparison.

Time sequence map generates a 2D coordinate; X-axis is determined by the time
scale t, and Y -axis is determined by the value of measured parameter f (t), as shown
in Fig. 1a.
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Fig. 1 Simple time sequence map and Poincare map; a Time sequence map, b Poincare map

The measure sequence { f (t)}T−1
t�0 with length of T can form Poincare map accord-

ing to the matching pattern considering data correlation. Poincare method maps one
group of measures of time sequence to a 2D map. It detects spatial distribution of
sequence through the distribution of point cluster. In Poincare map, X-axis is deter-
mined by the value of f (t) while Y is f (t + l). It is vicinity-related patterns map
when l � 1, as shown in Fig. 1b.

Different from Poincare method based on one group of measures, new map pro-
posed in this chapter chooses two groups ofmeasures from relevant parallel measures
sequences. As two different groups of measures are acted simultaneously, the value
of each axis is determined by these two groups of measurements. It is convenient
to name new map as conjugate map to present this kind of multiple parameter mea-
surement map.

3 Generate and Measure Mechanism of Time Sequence

In this section, the Cellular Automata (CA) method is applied to generate time
sequence and then to make concomitant measurement sequence. First, the initial
sequence inputted, and the output sequence is generated by a given logical function
using 1D cellular automata. Using this data sequence, measurements are formed by
probability measurement according to pairs of input and output sequences. Finally,
the generated measure sequences can be used to construct a 2D conjugate map
showing 2D spatial distribution of the time sequence. The processing flow of the
mechanism is shown in Fig. 2.
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Fig. 2 Flow sheet of the produce and detect mechanism of time sequences

Table 1 I/O pattern of disposal model

Function f Input sequence X0, X1, . . . , Xi , . . . XN−1, Xi ∈ {0, 1}
Output sequence Y0, Y1, . . . , Yi , . . . YN−1, Yi ∈ {0, 1}

Table 2 Exhaustion of initial
input sequences

Serial number Input sequences

0 0 0 0 … 0 0 0

1 0 0 0 … 0 0 1

… …

2N − 2 1 1 1…1 1 0

2N − 1 1 1 1…1 1 1

3.1 Disposal Model

Consider a logical function f as a function of CA. The function generates equal-
length output sequence {Yi }N−1

i�0 for any initial input sequence {Xi }N−1
i�0 withN-length

bits. The I/O pattern is shown in Table 1.
A total of 2N states of N-length initial input sequence are exhaustively generated,

and the corresponding sequence under the logical function f : X → Y can be
generated. The input and the output sequences are in the same group corresponded
to each other; there are 2N groups of corresponding relationship [13]. Exhaustion of
all the initial input sequences is shown in Table 2.

3.2 Measure Model

The basic model of measurement can be confirmed to establish the transformation
relation between the input sequence {Xi }N−1

i�0 and the output sequence {Yi }N−1
i�0 for

each group.
In the transformation of f : Xi → Yi , 0 ≤ i < N , there are a total of four types of

transformations, each type determines a number, and corresponding relationships are
shown in Table 3. This type of measurement structure has a directly corresponding
relationship to the Markov chain mechanism [4].
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Table 3 Measure parameters

Transform type Number of types Number of 0, 1 in input
sequences

Total number

0 → 0 N00 N0 � N00 + N01
N � N0 + N1

� N00 + N01 + N10 + N11

0 → 1 N01

1 → 0 N10 N1 � N10 + N11

1 → 1 N11

Table 4 Probability measure Measure parameters Value of parameter

P00( j) N00( j)/N0( j)

P01( j) N01( j)/N0( j)

P10( j) N10( j)/N1( j)

P11( j) N11( j)/N1( j)

Consider j ∈ {0, 1, 2, . . . , 2N − 1} as the serial number of different initial input
sequences. There are four measurements that can be identified by the measurement
parameters above shown in Table 4 with Markov chain properties, respectively.

For different initial input sequences, there can be generated four groups of
measurements on the corresponding I/O sequences: {P00( j)}2N−1

j�0 , {P01( j)}2N−1
j�0 ,

{P10( j)}2N−1
j�0 , and {P11( j)}2N−1

j�0 .

3.3 Visualization Model

Based on the probability measurements presented above, two measurements are
chosen to construct 2D map, as two different groups of measurements are used
simultaneously, to name this kind of map conjugate map, of which the value of each
axis is determined by these two groups of measurements.

According to the construction pattern introduced above, there areC2
4 � 6 kinds of

different combinations as below: {P00( j), P01( j)}, {P00( j), P10( j)}, {P00( j), P11( j)},
{P10( j), P11( j)}, {P01( j), P11( j)}, and {P01( j), P10( j)}.

On the same group of sequences, construct 2D conjugate maps, respectively, by
using the combinations above as shown in Fig. 3.

This chapter chooses the typical combination {P01( j), P10( j)} constructing 2D
conjugate map to detect the special distribution of time sequences for N �13 con-
dition.
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Fig. 3 2D conjugate maps constructed by separate six pairs of measures of No. 6 function; N �13

4 Visualization Result

Because of the restriction of the structural complexity of the logical function, 16
functions of 2 variables are used to describe them in the way of exhaustion [14].
Output sequences are generated by different initial input sequences under the given
logical function and then obtaining various measure data from the corresponding
I/O sequence based on probability method. Then, the map is constructed using these
measurement data.

This chapter chooses No. 1, 5, 6, and 13 functions which are typical functions as
an example, observing the characteristic of three kinds of maps which are given in
Fig. 4.

In (a) group of time sequence maps, only one measurement sequence transforms
with time.

In (b) group of Poincare maps, different functions form different point clusters.

In (c) group of conjugate maps, the distribution of the points cluster has clear polar-
ized properties.

According to the variable-value logic theory, three kinds of encoding model can
be distinguished: W, F, and C [15].

The visualization information that can be acquired from a single function’s map is
rather limited. In order to compare the spatial property of different logical functions, a
4× 4 array is constructed using themaps that are generated from 16 logical functions
in different encoding patterns as shown in Fig. 5.
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Fig. 4 Time sequence maps, Poincare maps, and 2D conjugate maps. a Time sequence map; b
Poincare map; c 2D conjugate map

By assemble maps of total 16 logical functions under the models, the entire struc-
ture information among logical functions themselves can be observed.

To compare conveniently, combinations of 16 recursive images which generated
from 16 functions are given in this chapter under different codes. Recursive images
in W-code, F-code, and C-code from a given initial sequence are shown in Figs. 6,
7, and 8, respectively.
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F CW
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151114

0

10

Fig. 5 Assemble pattern of maps in W-code, F-code, and C-code

Fig. 6 Recursive images in W-code

The combination of time sequence map is shown in Fig. 9. The figure shows that
different functions have different distribution properties, and also reveals the trend
of single measurement’s transforming with time.

The combination of Poincare map in W-code is shown in Fig. 10. Dif-
ferent distribution properties of functions can be observed from the figure. It
is clear that there are four groups of configurations appeared in the figure:
{0, 8, 2, 10}, {1, 3, 9, 11}, {4, 6, 12, 14}, {5, 7, 13, 15}.
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Fig. 7 Recursive images in F-code

ForW-code, Poincare maps are shown in Fig. 10 and corresponding 2D conjugate
maps are shown in Fig. 11. Conjugate maps have polarized properties, and their
function pairs of 0:15, 1:7, 2:11, 4:13 and 8:14 have conjugate symmetry. In general,
16 conjugate maps are different from relevant maps generated by Poincare maps.

To arrange 16 Poincare maps and conjugate maps by F-code structure, F-code
maps are shown in Figs. 12 and 13, respectively.

Under C-code structure, Poincare maps and conjugate maps are shown in Figs. 14
and 15.

In the above maps, 2D conjugate maps not only show spatial distributions of
different logical functions but also have special holistic symmetries under the F- and
C-code conditions.

5 Analyze

Through three types of different maps, three different coding schemes can be
observed.
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Fig. 8 Recursive images in C-code

Time sequence map can show the simple trend of single measurement series with
time variations, but it was difficult for the scheme to describe spatial distributions of
time sequence.

Poincare map can apply a single measurement sequence; although the map can
be generated under different lengths in a correlation, information of distribution is
naturally limited by the selected measurement sequence.

A 2D conjugate map uses two groups of independent measurements simulta-
neously; this scheme can show differences and connections between spatial distri-
butions of logical functions; furthermore, through different coding models, it can
illustrate holistic relationships among different functions, i.e., function pairs of 0:15,
1:7, 2:11, 4:13, and 8:14 have clear conjugated symmetry in conjugate maps. In
addition, for C-code condition, the points of four functions on each edge of maps
are located on the same side of edge. For example, points clusters of (0, 4, 1, 5), (0,
2, 8, 10), (10, 14, 11, 15), and (5, 7, 13, 15) functions are separately located on four
sides of the 2D map space.
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Fig. 9 Time sequence maps of 16 functions constructed by {t, P0−1(t)} sequences
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Fig. 10 Poincare maps in W-code
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Fig. 11 Conjugate maps in W-code
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Fig. 12 Poincare maps in F-code
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Fig. 13 Conjugate maps in F-code
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Fig. 14 Poincare maps in F-code
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Fig. 15 Conjugate maps in C-code
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6 Conclusion

Refined property of various time sequences can be identified from 2D conjugate
maps to illustrate multiple measurement sequences under Markov chain mechanism.
Spatial property of time sequence plays an important role in the study of dynamic
sequence’s behavior. The stable distribution under visualization method can help
people understand relevant issues.

In comparison with Poincare maps and conjugate maps, there are additional prop-
erties in the complex dynamic sequences. Conjugate map method uses multiple
parameters of Markov chains to make independent measurements simultaneously.

Proposed technology can provide further structural information among multiple
measurements, and refined relationship via spatial distributions can be established. It
is possible for the scheme to use statistical and probability methodologies to enhance
visual tools of Markov chain mechanisms to resolve real problems and requirements
for modern information warfare and information security applications in near future.

Acknowledgements Thanks goes toMr. JieWan for helping him to generate data for this study and
the special fund of Information Security (No. 2010KS06), Software School of Yunnan University
to fund the project.
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Permutation and Complementary
Algorithm to Generate Random
Sequences for Binary Logic

Jie Wan and Jeffrey Zheng

Abstract Randomness number generation plays a key role in network, information
security, and IT applications. In this chapter, a permutation and complementary
algorithm is proposed to use vector complementary and permutation operations to
extend n-variable logic function space from 22

n
functions to 22

n ×2n! configurations
for variant logic framework. Each configuration contains 22

n
functions that can be

shown in a 22
n−1 × 22

n−1
matrix. A set of visual results can be represented by their

symmetric properties in W, F, and C codes, respectively, to provide the essential
support on the variant logic framework.

Keywords Logic function · Permutation and complementary · Variant logic
Symmetric distribution · Random sequence

1 Introduction

Random numbers play an important role in many network protocols and encryption
schemas on various network security applications [1], for example, digital signatures,
authentication protocols, key generation for PKI, RSA/AES [2], nonce frustrate,
and symmetric stream encryption. A better random number algorithm will enhance
encryption schemas, to do other applications. To satisfy different requirements, the
NIST has published a series of statistical tests as standards [3] to determine whether a
random number generator is suitable for a cryptographic application. After using the
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vector complementary and the permutation operations on binary logic, the variant
logical framework extends the traditional Logic function space from 22

n
functions

to 22
n × 2n! configurations [4]. Under the new extension conditions, it is possible to

use simple transformation to generate huge numbers of random sequences for future
applications.

Permutation and complementary algorithm is described in the chapter to express
different random properties through a series of binary image sequences undertaking
typical recursive operations.

2 Method

Cellular automata perform a natural way to generate random sequence. The principle
of binary cellular automata [5, 6] can be explained by an example as follows:

First, a sequence 001100 and a function f : {00 → 0, 01 → 1, 10 → 1, 11 → 0}
are selected.

Second, the sequence can be decomposed from left to right. The last bit is com-
posed to the first bit

.

Third, according to the decomposed sequences and the generating function, a new
sequence 010100 can be generated, i.e., f : 001100 → 010100.

Followed the algorithm, the space of the generation function can be extended
further; large numbers of random sequences can be generated. This mechanism can
increase the complexity of code breaking.

In variant logic framework, the logic function space has been extended from 22
n

to 22
n × 2n! by the permutation and the complementary operations. In two variable

functions of cellular automata, there are 16 generated functions, and the 16 functions
can be described in a truth table (Fig. 1a) with 16 entries.

2.1 Permutation Operation

The bit string of states {00, 01, 10, 11} in generating function can be converted to
decimal number {0, 1, 2, 3}. An example in Fig. 1b is shown to permute 3210 to
1320 of the table.
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(a).The Truth Table of 3210 (b).The Permutation Table of 1320

J 
P Status

K 3 
11

2 
10

1 
01

0 
00

0 0 0 0 0 0 
1 0 0 0 1 1 
2 0 0 1 0 2
3 0 0 1 1 3 
4 0 1 0 0 4 

13 1 1 0 1 13
14 1 1 1 0 14
15 1 1 1 1 15

P Status
K J 1 

01
3 
11

2 
10

0 
00

0 0 0 0 0 0
1 0 0 0 1 1 
2 1 0 0 0 8 
3 1 0 0 1 9 
4 0 0 1 0 2 

13 0 1 1 1 7 
14 1 1 1 0 14
15 1 1 1 1 15

1320
3210

P

Fig. 1 Permutation example

2.2 Complementary Operation

In the complementary operation, the complementary vector σ is applied to operate
the truth table.

It can be described as

yδ �
{
y, δ � 1

ȳ, δ � 0

In two-variable variant logic, σ is a binary sequence of 4 bits in {0000, . . . , 1111}.
In the example, the original table is σ � 1111 and shown in Fig. 2a given σ � 1100
in Table 2 which can be described as 1320(1100) � 11312000. Under such operation,
the sequence values of state 1 and 3 columns are invariant. But the values of columns
whose index is 0 and values of the permutation sequence in state 2 and 0 are changed
to their revised values, respectively.

After the complementary operation, Fig. 2a changes to Fig. 2b.

2.3 Visualization

For function f, once applied on the sequence 001100 to output 010100, then this
function can be applied on the sequence 010100 to output 111100. For such binary
sequence, select black for 1 and white for 0 to generate the visual patterns as follows
(Fig. 3).
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(a).The Permuata on Table of (b).The Complementary Table of 

σ

K 
1 1 0 0 

J P Status
1 
01

3 
11

2 
10

0 
00

0 
1 
2 
3 
4 

13
14
15

0 
0 
1 
1 
0 

0 
1 
1 

0 
0 
0 
0 
0 

1 
1 
1 

1 
1 
1 
1 
0 

0 
0 
0 

1 
0 
1 
0 
1 

0 
1 
0 

3 
2 
11
10
1 

4 
13
12

σ
1   1   1   1

J P Status K 
1 
01

3 
11

2 
10

0 
00

0 
1 
2 
3 
4 

13
14
15

0 
0 
1 
1 
0 

0 
1 
1

0 
0 
0 
0 
0 

1 
1 
1

0 
0 
0 
0 
1 

1 
1 
1

0 
1 
0 
1 
0 

1 
0 
1

0 
1 
8 
9 
2 

7 
14
15

Fig. 2 Complementary example

Fig. 3 Visualize the random
sequence

2.4 Matrix Representation

For example (Fig. 2b), the truth value of third function is 1010. It can be converted to
a binary coordinate 〈10|10〉 distinguished by left two and right two bits, respectively.
So the decimal coordinate is 〈2|2〉. Then Fig. 2b can be converted to Table 1.

Under such conversion, the 2D matrix can be represented in Table 2.

3 Algorithm and Properties

3.1 Permutation and Complementary Algorithm

Using permutation and complementary operations, an algorithm is extended to
express the n-ary variant logic functional space.
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Table 1 Coordinate map of
1320(1100)

σ Transformed
bracket

1 1 0 0

J P Status

1 3 2 0

01 11 10 00

0 0 0 1 1 〈0, 3〉
1 0 0 1 0 〈0, 2〉
2 1 0 1 1 〈2, 3〉
3 1 0 1 0 〈2, 2〉
4 0 0 0 1 〈0, 1〉
... … … …

...
...

... … … …
...

...

13 0 1 0 0 〈1,0〉
14 1 1 0 1 〈3,1〉
15 1 1 0 0 〈3,0〉

Table 2 2D matrix of the 1320(1100)

0, 0
5

0, 1
4

0, 2
1

0, 3
0

1, 0
13

1, 1
12

1, 2
9

1, 3
8

2, 0
7

2, 1
6

2, 2
3

2, 3
2

3, 0
15

3, 1
14

3, 2
11

3, 3
10

Algorithm: Permutation and Complementary:
Input: variable n
Output: a set of truth table of Pσ,∀P ∈ S(2n),∀σ ∈ B2n

2 .
Method:
Step 1. Initial T � {2n2n − 1 · · · · · · 10}
Step 2. Generate a permutation P for T
Step 3. From σ � 000 . . . 0 to 111…1 do vector complementary operation.
Step 4. Any new permutation?
Yes go to Step 2.
Step 5. End

where S (N) is a symmetry group with N member and BM
2 is an M variable Boolean

structure with 2M members.
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Table 3 2D matrix for n-ary
logic functions 〈0, 0〉 … … 〈0, 22n−1 − 1〉

〈1, 0〉 … … 〈1, 22n−1 − 1〉
...

...
...

...

〈22n−1 − 2, 0〉 … … 〈22n−1 −
2, 22n−1 − 1〉

〈22n−1 − 1, 0〉 … … 〈22n−1 −
1, 22n−1 − 1〉

Table 4 The number of W, F,
and C codes in 2-ary variant
functional space

Code system No

W 384

F 128

C 16

3.2 Representation Scheme

Every truth table has a 2D matrix to arrange visual results of random sequence. The
〈X,Y 〉 is the coordinate to allocate each visual result. So for n-ary logic function
space, the 2D matrix has a size of 22

n−1 × 22
n−1

as shown in Table 3.

3.3 W, F, and C

Three coding schemes can be distinguished in the algorithm.
W code [4] is a binary sequence of 2n bits. It separates into two parts,

(
J 1|J 0

)
.

Each part has 2n−1 bits.
F code is a subset of W code, and it is a symmetry code. In F code, if the Ith

meta-state in J 1 is 1 or 0, the Ith meta-state in J 0 is the negative state.
If a code is F code, the Ith meta-state in J 1 has the same value. Besides, four

corners of its matrix are included in {0, x, x̄, 1}; it is C code [4].
For example, (32|10)(1110|0100) is an element of W code. In the sequence, 1

is not the negative sequence of 3, and the 0 is not also the negative sequence of 2.
(32|01)(1110|0001) is an F code. It has the symmetry property. In the sequence, 0 is
the negative sequence of 3 and 1 is the negative sequence of 2. (13|20)(0111|1000)
is a C code. It has the symmetry property of F code, and four comers of 1320’s matrix
are included in {0, x, x̄, 1}.

The further definition of W, F, and C codes can be found in [4].
From the exhaustive of the binary variant function space, the number of W, F, and

C codes in binary variant function space [7] is shown in Table 4.
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4 Coding Simples

W Code:
Permutation sequence: 3210

The value of σ:1011

Fig. 4 The 2D matrix diagram and the visual result of 32101011

F Code:
Permutation sequence: 3201 

The value of σ: 1111

Fig. 5 The 2D matrix diagram and the visual result of 32011111
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C Code:
Permutation sequence: 1320

The value of σ:1100

Fig. 6 The 2D matrix diagram and the visual result of 13201100

5 Result Analysis

In Fig. 4,W code is shown as a general code.MajorityW code does not have apparent
symmetry property. W code covers all the code spaces which are formed from binary
input variable. These properties can be seen in Fig. 4.

All the F codes have overall symmetry in 2D distribution. Obvious symmetry
among functions in the 2D matrix can be observed in Fig. 5.

Simple is shown in a C code in Fig. 6. It is a small set of F code with complete
symmetry property. C code has the four-constant vertex property. The group of the
four vertexes in C code are located by 0, 15, 10, and 5 functions, respectively.

In the n-ary logical function permutation and complementary algorithm, the per-
mutation is operated for 2n!; the complementary exhaustive needs 22

n
operation for

each permutation operation. A total of computational complexity of an n-ary variant
logical function using permutation and complementary algorithm is O

(
2n!×22

n )
.

6 Conclusion

A permutation and complementary algorithm has been proposed for n-ary logical
function, and sample results are visualized. The visual results ofW, F, and C codes in
the variant and invariant properties support the variant logic system through exper-
imentation to use an algorithmic mechanism to generate a series of huge random
number sequences.
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3D Visual Method of Variant Logic
Construction for Random Sequence

Huan Wang and Jeffrey Zheng

Abstract As Internet security threats continue to evolve, in order to ensure
information transmission security, various encrypts and decrypts have been used in
channel coding and decoding of data communication. While cryptography requires
a very high degree of apparent randomness, random sequences play an important
role in cryptography. Both Cellular Automata (CA) and RC4 contain pseudorandom
number generators and may have intrinsic properties, respectively. In this chapter, a
3D visualization model 3DVM is proposed to display spatial characteristics of the
random sequences from CA or RC4 keystream. Key components of this model and
core mechanism are described. Every module and their I/O parameters are discussed,
respectively. A serial of logic function of CA is selected as examples to compare with
some RC4 keystreams to show their intrinsic properties in three-dimensional space.
Visual results are briefly analyzed to explore their intrinsic properties including sim-
ilarity and difference. The results provide support to explore the RC4 algorithm by
using 3D dimensional visualization tools to organize its interactive properties as
visual maps.

Keywords Pseudorandom sequence · CA · Stream cipher · RC4 keystream
3D maps

1 Introduction

Wireless Sensor Networks WSN and Wireless Networks WN are most popular and
widely used types of network of this era. Because of the openness these types of
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networks are not very much secure. To provide the security over the WSN and WN,
algorithm used must be fast enough which can encrypt and decrypt data compar-
atively in less amount of time to require less resource too. In this concern, Wi-Fi
Protected Access WPA and Wired Equivalent Privacy WEP protocols are used as
standard. These standards have adopted the RC4 stream cipher algorithm to secure
the data over the WN environment. These standard adopted RC4 algorithms because
RC4 algorithm gives speedy encryption and decryption of data, utilize less hardware
resource during processing, and easy to implement [1, 2]. Presently, RC4 algorithm
is not secure in many aspects. Lots of weaknesses and attacks have been detected by
the cryptanalysis [3, 4].

1.1 The Weakness of RC4

RC4 algorithm is a stream cipher under the symmetric ciphers algorithms. Typically,
in a stream cipher, the keystream is the sequence which is combined digit by digit
to the plaintext sequence for obtaining the ciphertext sequence. However, the data
encryption is equivalent to a simpleXORwith keystream. The keystream is generated
by a finite state automaton called the keystream generator [5, 6]. The encryption can
be broken if the plaintexts are encrypted using the same keystream. RC4 keystream
generated by RC4 keystream generator is completely compromising the security of
RC4.

Because it is very hard to trace the characteristics of keystream generators, ran-
dom characteristics of keystream can be investigated on spatial characteristics of the
keystream generator to test pseudorandom sequences. This chapter is the expansion
work of [7] by Qingping Li from 2D to 3D. In this chapter, random sequences from
given keystreams are collected in comparison with random sequences generated by
sample logical function of 1D Cellular Automata to show their intrinsic properties
in three-dimensional space of relationships.

1.2 CA

Cellular Automata is a great discovery in the twentieth century, and it forms a time
series according to a given function in an iterations process by introducing logic
function and related calculation methods in the natural pattern [8]. In 1985, S. Wol-
fram formed the sequential cipher from pseudorandom sequence generated from
logic calculation using cellular automata. Because of the implicated expression of
the logic function, the spatial characteristic cannot be directly observed from the
function formula [9].
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2 Architecture

2.1 Architecture

The architecture is shown in Fig. 1a. The three main components and their modules
are shown in Fig. 2b–d, respectively.

In the first part of this system, two types of data sets are generated by CACM
and RC4KCM, respectively. The data sets on either CACM or RC4KCM get into

(a) Architecture

(b) CM

(c) MM

(d) 3DVM 3D Visualization Model

Fig. 1 Variant 3D visualization system and key components
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(a1)  f=23 (b1)  k=12

(a2)  f=90                      (b2)  k=88

(a3)  f=253  (b3)  k=155

Fig. 2 Two sets of six 3D maps based on unified model in different conditions; a1–a3 for the file
CA; b1–b3 for the file RC4
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the MM module as input data. The main function of the VM is to output the four
vectors of variantmeasurements.Usingunifiedor non-unifiedmethod, six probability
measurements are created by PMmodule. In order to establish 3Dmaps, three vectors
of probability measurements are selected from the six probability measurements by
the SM module. Three vectors determine a 3D spatial position. All vectors generate
a 3D map using 3DVM.

There are six parameters in an input group, three sets of parameters in the inter-
mediate group, and one set of parameters in the output group.
Input Group:

An integer indicates the serial number of logic function or the value of the key
selected
An integer indicates which model is selected
An integer indicates the number of elements in the binary sequence
An integer indicates the number of elements in a segment
An integer indicates the method of selection mechanism
An integer indicates the control parameter for mapping

Intermediate Group:

A 0-1 vector generated by CA logic function or RC4 keystream generator
A set of four variant measures
A set of six probability vectors

Output Group:

3D maps

2.2 Computation Model of CA (CMCA)

CMCA module is used to measure the features of a logic function based on Cellular
Automata (CA). Consider a logic function ƒ: Y=ƒ (X) as a function of CA, the output
sequence Y can be generated by the given initial input sequence X with 2 states. For
N bits initial input sequence, a total of 2n states are generated under the logic function
ƒ: X→Y . A pair of vectors (X, Y ) could be collected for their correspondences on
the pair of input–output relationships. There are 2n groups of this corresponding
relationship.
Input Group:

X A 0-1 vector with N elements, X ∈ Bn
2

n An integer indicating a 0-1 vector with n elements,
f A function with 2 variables

Intermediate Group:

Y A 0-1 vector with N elements, Y ∈ Bn
2
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Output Group:

∀Y Exhaustive set of all states of N bit vectors with 2n elements

2.3 Computation Model of RC4 Keystream (RC4KCM)

For an L bits input keystream K , divided into G segments andW �L/G bits of each
segment with G<L. The value of parameter G determines the amount of points and
W determines the spatial distribution for the output keystream in the phase space.
Input Group:

A 0-1 vector with L elements generated by RC4 keystream generator

L An integer indicates the number of elements in an input sequence,
G An integer indicates the number of segments divided,
W An integer indicates the number of elements in a segment.

Output Group:

G sets of W bits 0-1 vectors

The CMRC4 component uses an input vector as input, under different segment
strategies to divide into several segments. The output of this component is G sets of
W bits 0-1 vectors.

2.4 Measure Mechanism (MM)

The MM component shown in Fig. 1c is composed of three modules: Variant Mea-
sure (VM), Probability Measurement (PM), and Selection Mechanism (SM). Three
parameters are listed as input signals; four variant measures are outputted from VM
module, six probability measurements are created from variant measures by Proba-
bility Measurement (PM), under the Selection Mechanism (SM) module, and a set
of triples interactive projections is selected.
Input Group:

V A symbol is selected from four types of transformations {⊥,+,−,T},
N An integer indicates the number of elements in an input vector

A 0-1 data vector
Intermediate Group:

V M
(
RV

)
A set of four variant measures

PM
(
PV

)
A set of four probability vectors
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Output Group:

U ⊂ V A set of three interactive projections under the SM condition, U ⊂ V
PM

(
PU

)
A set of three probability vectors

2.5 Variant Measure (VM)

Considering the transformation of every bit between input sequence {Xi }N−1
i�0 and

output sequence {Yi }N−1
i�0 , there are a total of four types of transformations: 0→0,

0→1, 1→0, and 1→1 [10, 11].
Define the variant representation as follows:

V �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥, Xi � 0,Yi � 0;

+, Xi � 0,Yi � 1; 0 ≤ i ≤ N , Xi ,Yi ∈ B2

−, Xi � 1,Yi � 0;

T,Xi � 1,Yi � 1;

For any N bit 0-1 vector X, X � X0X1 . . . Xi . . . XN−1XN , 0 ≤ i ≤ N , Xi ∈
B2, Xi ∈ BN

2 under 2-variable function ƒ, N bit 0-1 output vector Y,Y �
Y0Y1 . . . Yi . . . YN−1YN , 0 ≤ i ≤ N ,Yi ∈ B2,Yi ∈ BN

2 . Let� be the variant measure
function.

�(X → Y ) �
N−1∑

i�0

�(Xi → Yi ) � 〈R⊥, R+, R−, RT〉, N � R⊥ + R+ + R− + RT, R0

� R⊥ + R+, R1 � R− + RT

Example
N �13, Y=ƒ (X).

X � 1001011100101

Y � 0010110101100

�(X → Y ) � −⊥ + − + ᵀ − ᵀ⊥ + ᵀ−
〈R⊥ + R+ + R−, RT〉 � 〈3, 3, 4, 3〉, R0 � 6, R1 � 7, N � 13

Input and output pairs are 0-1 variables for only four combinations. For any given
function, the quantitative relationship of {⊥, +, −, �} is directly derived from the
input/output sequences. Four meta measures are determined [12].
Input Group:

V A symbol is selected from four types of transformations {⊥,+,−,T},
N An integer indicates the number of elements in an input vector

A 0-1 data vector
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Output Group:

V M
(
RV

)
A set of four variant measures

R0 An integer indicates the number of 0 in an input vector
R1 An integer indicates the number of 1 in an input vector

2.6 Probability Measurement (PM)

Variant measure parameters and the other three parameters are listed as input signals;
the output of probability signals is calculated as eight measurements in two groups
by following the given equations.

The first group of probability signal vectors ρ is called a non-unified model and
defined as follows:

⎧
⎨

⎩

ρ � RV

N � R⊥, R+, R−, Rᵀ

ρα � Rα

N , α ∈ {⊥,+, _,ᵀ}
&

⎧
⎨

⎩

ρ0 � R0
N

ρ1 � R1
N

The second group of probability signal vectors ρ̃ is called a unified model and
defined as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ̃ � RV

R0|R1
� R⊥, R+, R−, Rᵀ

ρα � Rα

R0
, α ∈ {⊥,+}

ρβ � Rβ

R1
, β ∈ {_,ᵀ}

&

⎧
⎨

⎩

ρ0 � R0
N

ρ1 � R1
N

Under such condition, the output signals of the PM module can be expressed as
a pair of probability vectors in quaternion forms PM

(
PV

) � {ρ, ρ̃}.
Input Group:

V A symbol is selected from four types of transformations {⊥,+,−,T},
N An integer indicates the number of elements in an input vector
V M

(
RV

)
A set of four variant measures

R0 An integer indicates the number of 0 in an input vector
R1 An integer indicates the number of 1 in an input vector

Output Group:

PM
(
PV

)
A set of four probability vectors
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2.7 Selection Mechanism Module

The SMModule is composed of twomodels: Non-unifiedModel and UnifiedModel.
Under different constructions, two models are established respectively as follows.

Non-unified Model

Selecting two measurements from four combinations {ρ̃⊥, ρ̃+, ρ̃−, ρ̃T}, there will be
C2
4 choices. And then selecting one measurement from two combinations {ρ0, ρ1},

there will be C1
2 choices. A 3-tuple S is defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

S � (
ρα, ρβ, ργ

)

S′ � (
ρβ, ρα, ργ

)
,

S � S′
α, β ∈ V, γ ∈ {0, 1}, α 
� β

Unified Model

Selecting two measurements from four combinations {ρ̃⊥, ρ̃+, ρ̃−, ρ̃T}, there will be
C2
4 choices. And then selecting one measurement from two combinations {ρ0, ρ1},

there will be C2
4 choices. A 3-tuple S̃ is defined as follows:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S̃ � (
ρ̃α, ρ̃β, ρ̃γ

)

S̃′ � (
ρ̃β, ρ̃α, ρ̃γ

)
,

S̃ � S̃′

α, β ∈ V, γ ∈ {0, 1}, α 
� β

Under such condition, the output signals of the SM module can be expressed as
a 3D visual model in 3-tuples forms S or S̃. Specifically ρα or ρ̃α determines the
value of X-axis, ρβ or ρ̃β determines the value of Y-axis, and ργ or ρ̃γ determines
the value of Z-axis.
Input Group:

PM
(
PV

)
A set of four probability vectors

Output Group:

U ⊂ V A set of three interactive projections under the SM condition, U ⊂ V
PM

(
PU

)
A set of three probability vectors

2.8 Visualization Model

Using a visual model, all possible measurements are calculated exhaustively on
all G-1 vectors. Each 3-tuple can be drawn as a point in three-dimensional space
(xyz-space). All G-1 points are constructed in the phase space for the selected keys.
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3 Sample Results on 3D Maps

In this section, two types of data sets are selected to illustrate their differences on
3D maps for comparison. The first type of data sets is generated by CA. The second
type of data sets is generated by RC4.

3.1 Visualization Results of Unified Model

See Fig. 2.

3.2 Visualization Results of Non-unified Model

See Fig. 3.

3.3 Visualization Results of CA with Different Length
of Initial Sequence

See Fig. 4.

3.4 Visualization Results of RC4 Keystream with Different
Segment Strategies

See Fig. 5.

4 Analysis of Results

The above 27 3D maps contain different information. Some important conclusions
will be discussed in detail in this section.

The first group of results shown in Fig. 2 presents two sets of six 3D maps
constructed by the unified model from two data files: CA and RC4 to illustrate
their 3D spatial characteristics. Three 3D maps of each group in Fig. 2a1–a3 show
3D spatial characteristics of CA with different logic functions. In this group, No.
23, 90, 253 functions are selected as examples to compare each other. And three 3D
maps of each group in Fig. 2b1–b3 show 3D spatial characteristics of RC4 with 20
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(a1)  f=23 (b1)  k=12

(a2)  f=90 (b2) k=88

(a3) f=253 (b3)  k=155

Fig. 3 Two sets of six 3D maps based on non-unified model in different conditions; a1–a3 for the
file CA; b1–b3 for the file RC4
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n=12:      (a1)               (b1) (c1) 

n=13:     (a2)               (b2)           (c2) 

Fig. 4 Three sets of nine 3D maps under different conditions; a1–a2 for the logic function f �15
and non-unified model; b1–b2 for the logic function f �100 and non-unified model; c1–c2 for the
logic function f �170 and non-unified model

bits of every segment and different given keys. In this group, keys: 12, 88, and 155 are
selected as examples to compare each other. From a distribution viewpoint, different
logic function can be distinguished by their three-dimensional spatial characteristics
from CA files, e.g., (a1–a3). Different from CA, for RC4 keystream, all spatial
distributions are always in a plane, e.g., (b1–b3).

The second group of results shown in Fig. 3 presents two sets of six 3D maps
constructed by non-unified model. It is interesting to observe that all maps (no mater
CA data files or RC4 keystream data files) have planar distribution, e.g., (a1–a3) and
(b1–b3).

The third group of results shown in Fig. 4 presents three sets of six 3D maps
constructed by non-unified model from CA data files with different lengths of the
initial sequence and given logic functions. Figure 4a1–a2 shows 3Dmaps for the No.
15 function, (b1–b2) shows 3D maps for the No. 100 function, and (c1–c2) shows
3D maps for the No. 170 function. The overall relationship of multiple-variable
logic functions for spatial characteristics can be shown clearly. For example, under
the non-unified model, no matter what logic functions are, all spatial distributions
are always in a plane, e.g., (a1–a2), (b1–b2), and (c1–c2). Different lengths of initial
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W=20:     (a1)                (b1)                       (c1) 

W=128:       (a2)                 (b2) (c2) 

W=256:     (a3)                    (b3)                       (c3) 

Fig. 5 Three sets of nine 3D maps under different conditions; a1–a3 for the key�90 and unified
model; b1–b3 for the key�90 and non-unified model; c1–c3 for the key�123 and non-unified
model

sequence (n�12, 13) have different spatial characteristics distribution with the same
given logic function, e.g., (a1–a2), (b1–b2) and (c1–c2).

The fourth group of results shown in Fig. 5 presents three sets of nine 3D maps
for the different conditions including segments strategies and keys. In this group,
three types of segment strategies (W �20, 128, 256) are proposed to compare.
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Combinations of three set use the same key e.g., (a1–a3), (b1–b3), and (c1–c3) to
observe them conveniently. The dispersity of points increased with reducing the bit
length of each segment. Obviously, the spatial distribution of points with 256 bits
of each segment is more concentrated than the distribution of points with 20 bits, as
shown in (a1–a2), (b1–b2), and (c1–c2). 3D map shows some commonalities of the
spatial distribution of different keys and different segment strategies. First, under this
construction, different keys can be distinguished by their three-dimensional spatial
characteristics in the model, e.g., (b1–c1), (b2–c2), and (b3–c3). Second, no matter
what keys or segment strategies are, all spatial distributions are always in a plane.
Third, the distribution features are varying from key to key and segment strategy to
segment strategy.

5 Conclusions

Both the similarities and the differences may indicate those maps with comparable
mechanism to express keystream with different given keys and in their high levels
of relationships applying to the stream cipher mechanism. The spatial property of
random sequence can be detected from the distribution of cluster point in the 3D
maps discussed in details. Different spatial distributions are illustrated to show var-
ious distributions on each phase space for relevant logic function or keystream. For
example, no matter what keys or segment strategies are, all spatial distributions are
always in a pane. And all maps (no mater CA data files or RC4 keystream data files)
are planar distribution under non-unified model. Spatial distribution properties like
this provide useful information for further exploring theRC4 stream cipher. This con-
struction could provide remarkable insights to spatial information on stream cipher
construction via 3D maps. Further explorations are required on this scheme.
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Part VI
Applications—Quantum Simulations

The best way to understanding is a few good examples.

—Isaac Newton

The true logic of this world is in the calculus of probabilities.

—James Clerk Maxwell

A deep truth is a truth so deep that not only is it true but it’s exact
opposite is also true.

—Niels Bohr

In the direction of quantum information, several papers were published in the period
of 2011–2013. For example, Variant simulation system using quaternion structures,
Journal of Modern Optics 59(5):484–492, 2012, “Chapter Interactive Maps on
Variant Phase Spaces”, Emerging Applications of Cellular Automata, https://doi.
org/10.5772/51635, In Tech Press 2013. In the Afshar experiment, variant scheme
has been cited, https://en.wikipedia.org/wiki/Afshar_experiment.

This part of quantum simulation is composed of two chapters (16 and 17).
Chapter “Synchronous Property—Key Fact on Quantum Interferences” describes

synchronous property in quantum interferences simulation on double path
experiment.

Chapter “The nth Root of NOT Operators of Quantum Computers” proposes a
typical operator on the nth root of NOT operators as an algebraic solution.

http://dx.doi.org/10.5772/51635
http://dx.doi.org/10.5772/51635
https://en.wikipedia.org/wiki/Afshar_experiment
http://dx.doi.org/10.1007/978-981-13-2282-2_16
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Synchronous Property—Key Fact
on Quantum Interferences

Particle Simulation on Double Path Experiment

Jeffrey Zheng

Abstract Double-slit experiment plays a key role in Quantum Theory to distinct
particle and wave interactions according to Feynman’s claims. In this chapter, dou-
ble pathmodel and variant logic principle are applied to establish a simulation system
for exhaustive testing targets. Using Einstein quanta interaction, different measure
quaternion structures are investigated. Under Symmetry/Anti-symmetry and Syn-
chronous/Asynchronous interaction conditions, eight groups of statistical results are
generated as eight histograms to show their distributions. From this set of simulation
results, it can be recognized that the synchronous condition is the key fact to generate
quantum wave interference patterns and, in addition, the asynchronous condition is
the key fact to make classic particle distributions. Sample results are illustrated and
explanations are discussed.

Keywords Double path · Interaction · Probability · Statistics · Simulation

1 Introduction

Feynman explored quantum measurement puzzles deeply [1, 2] and emphasized:
“The entire mystery of quantum mechanics is in the double-slit experiment.” This
experiment directly illustrates both classical and quantum interactive results. Under
single and double slit conditions, dual visual distributions are shown in particle and
wave statistical distributions linked to von Neumann’s measure theory [3].
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From the 1970s, piloted by CHSH [4], Aspect used experiments to test Bell
inequalities [5–7]. After 40 years of development, many accurate experiments [8–10]
have been performed successfully worldwide using Laser, NMRI, large molecular,
quantum coding, and quantum communication approaches [5–8, 11–26].

In this chapter, a double path model is established using the Mach–Zehnder inter-
ferometer. Different approaches of quantum measures: Einstein, CHSH, and Aspect
are investigated by quaternion structures. Under multiple-variable logic functions
and variant principle, logic functions can be transferred into variant logic expres-
sion as variant measures. Under such conditions, a variant simulation model is pro-
posed. A given logic function f can be represented as two meta-logic functions
f+ and f− to simulate single and double path conditions. N bits of input vectors
are exhausted by 2N states for measured data, recursive data are organized into
eight histograms. Results are determined by symmetry/anti-symmetry properties evi-
dent in these histograms. Both results are obtained consistently from this model on
synchronous/asynchronous conditions. Based on this set of simulation results, syn-
chronous condition shows significant relationship linked to interference properties.

2 Double Path Model and Their Measures

2.1 Mach–Zehnder Interferometer Model

The Mach–Zehnder interferometer is the most popular device [6, 20] to support
Young’s double-slit experiment.

In Fig. 1a, a double path interferometer is shown. An input signal X under control
function f causes Laser LS to emit the output signal ρ under BP (Bi-polarized filter)
operation output a pair of signals: ρ+ and ρ−. Both signals are processed by SW
output ρ+

L and ρ−
R , and then IM to generate output signals IM(ρ+

L , ρ
−
R ). In Fig. 1b, a

representation model has been described with the same signals being used.

Fig. 1 Double path model a Mach–Zehnder double path model, b Description model
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2.2 Emission and Absorption Measures of Quantum
Interaction

Einstein established a model to describe atomic interaction [27–30] with radiation in
1916. For two-state systems, let a system have two energy states: the ground state E1

and the excited state E2. Let N1 and N2 be the average numbers of atoms in the ground
and excited states, respectively. The numbers of states are changed from an emission
state E2 to E1 with a rate dN21

dt , in the same time; the numbers of ground states are
determined by absorbed energies from E1 to E2 with a rate dN12

dt , respectively. Let
N12 be the number of atoms from E1 to E2 and N21 be the numbers from E2 to E1.
In Einstein’s model, a measurement quaternion is 〈N1, N2, N12, N21〉.

CHSH proposed spin measures testing Bell inequalities [4, 6]. They applied⊥ →
+ and ||→ − to establish a measurement quaternion

〈N++(a, b), N+−(a, b), N−+(a, b), N−−(a, b)〉.

Experimental testing of Bell inequalities was performed by Aspect [5] in 1982.
Four parameters aremeasured: transmission rate Nt , reflection rate Nr , correspondent
rate Nc, and the total number Nω inω time period. This set ofmeasures is a quaternion
〈Nt , Nr , Nc, Nω〉. Among these, Nc is a new data type not in Einstein and CHSH
methods, this parameter could be an extension of synchronous/asynchronous time-
measurement.

3 Simulation Systems

3.1 Simulation Model

Using variant principle described in the next subsections, a N bit 0-1 vector X and
a given logic function f , all N bit vectors are exhausted, variant measures gener-
ate two groups of histograms. This variant simulation system is composed of three
components: Pre-process, Interaction, and Post-process, respectively, and shown in
Fig. 2.

In Fig. 2a, three components of the variant simulation model are presented. At
the pre-process, a N bit 0-1 vector X and a function f feed in to output a signal
ρ. After interactive component process, two groups of signals are the output: u
for symmetry group and v for anti-symmetry group. In the post-process, all N bit
vectors are processed by pre-processing and interactive components until all of the
2N data set has been processed to transform symmetry and anti-symmetry signals into
eight histograms: four for symmetry distributions and another four for anti-symmetry
distributions.
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Fig. 2 Variant simulation
system; a Variant simulation
system; b interactive
component

(a) Variant Simulation System

(b) Interaction Component

X uρ
Post-processInteractionPre-process

{ }( | )H v fβ

{ }( | )H u fβ

X∀

v
f

ρ+

ρ−

ρ+

ρ−

ρ
u1 ρ−−

v
SW IMBP

In Fig. 2b, only the interaction component is selected, input signal ρ processed
by BP to generate two signals {ρ−, ρ+}. SW output triple signals {ρ−, 1 − ρ−, ρ+}
though IM to generate two groups of signals u and v.

3.2 Variant Principle

The variant principle is based on n-variable logic functions [31–33]. For any n-
variables, x � xn−1 . . . xi . . . x0, 0 ≤ i < n,xi ∈ {0, 1} � B2. Let a position j be
the selected bit 0 ≤ j < n, x j ∈ B2 be the selected variable. Let output variable y
and n-variable function f, y � f (x), y ∈ B2, x ∈ Bn

2 . For all states of x , a set S(n)
composed of the 2n states can be divided into two sets: S j

0 (n) and S j
1 (n).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

S j
0 (n) � {

x |x j � 0,∀x ∈ Bn
2

}

S j
1 (n) � {

x |x j � 1,∀x ∈ Bn
2

}

S(n) �
{
S j
0 (n), S

j
1 (n)

}

For a given logic function f , there are input and output pair relationships to define
four meta-logic functions { f⊥, f+, f−, fT }:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f⊥(x) �
{
f (x)|x ∈ S j

0 (n), y � 0
}

f+(x) �
{
f (x)|x ∈ S j

0 (n), y � 1
}

f−(x) �
{
f (x)|x ∈ S j

1 (n), y � 0
}

fT (x) �
{
f (x)|x ∈ S j

1 (n), y � 1
}



Synchronous Property—Key Fact on Quantum Interferences 269

Two logic canonical expressions: AND-OR form is selected by { f+(x), fT (x)}
as y�1 items, and OR-AND form is selected from { f−(x), f⊥(x)} as y�0 items.
Considering { fT (x), f⊥(x)}, x j � y items, they are invariant themselves.

To select { f+(x), f−(x)}; x j 
� y forming variant logic expression. Let f (x) �
〈 f+|x | f−〉 be a variant logic expression. Any logic function can be expressed as
a variant logic form. In 〈 f+|x | f−〉 structure, f+ selected 1 item in S j

0 (n) as same
as the AND-OR standard expression, and f− selecting relevant parts as same as
the OR-AND expression 0 items in S j

1 (n). For a convenient understanding of variant
representation, two-variable logic structures are illustrated for its 16 functions shown
in Table 1.

For example, checking two functions f �3 and f �12:

{ f � 3 :� 〈0 | 3〉, f+ � 11 : �〈0 | φ〉, f− � 2 :� 〈φ | 3〉}
{ f � 12 :� 〈2 | 1〉, f+ � 14 : �〈2 | φ〉, f− � 8 :� 〈φ | 1〉}

3.3 Variant Measures

Let � be variant measure function [23, 33].

� � 〈�⊥,�+,�−,�T 〉

� f (x) � 〈�⊥ f (x),�+ f (x),�− f (x),�T f (x)〉
� 〈� f⊥(x),� f+(x),� f−(x),� fT (x)〉

� fα(x) �
{
1, if f (x) � fα(x), α ∈ {⊥,+,−,T}
0, others

For any given n-variable state there is one position in � f (x) to be 1 and other
three positions are 0.

For any N bit 0-1 vector X; X � XN−1 . . . XJ . . . X0, 0 ≤ J < N , XJ ∈ β2, X ∈
βN
2 under n-variable function f , n bit 0-1 output vector Y , Y � f (X ) � 〈 f+|X | f−〉,

Y � YN−1 . . . YJ . . . Y0, 0 ≤ J < N , Yj ∈ β2, Y ∈ βN
2 .

For the Jth position, be x J � [. . . XJ . . .] ∈ βn
2 to form YJ � f (x J) � 〈

f+|x J| f−
〉
,

let N bit positions be cyclic linked. Variant measures of f (X ) can be decomposed

�〈X : Y 〉 � � f (X ) �
N−1∑

J�0

� f (x J ) � 〈N⊥, N+, N−, NT 〉

as a quaternion 〈N⊥, N+, N−, NT 〉.
For example, N �10, given f , Y � f (X).
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Table 1 Two variable logic functions and variable logic representation (n �2, j �0)



Synchronous Property—Key Fact on Quantum Interferences 271

X � 0 1 1 0 0 1 1 1 0 0
Y � 1 0 1 0 1 0 1 0 1 0
�(X : Y) � + − T ⊥ + − T − + ⊥

� f (X ) � 〈N⊥, N+, N−, NT 〉 � 〈2, 3, 3, 2〉, N � 10

Input and output pairs are 0-1 variables on the four combinations. For any given
function f , the quantitative relationship of {⊥,+,−, T } is determined directly from
input/output sequences.

3.4 Measurement Equations

Using variant quaternion, signals are calculated by following equations. For any N
bit 0-1 vector X, function f , under � measurement: � f (x) � 〈N⊥, N+, N−, NT 〉,
N � N⊥ + N+ + N− + NT Signal ρ is defined by

ρ � � f (x)

N
� 〈ρ⊥, ρ+, ρ−, ρT 〉

ρα � Nα

N
, 0 ≤ ρα ≤ 1, α ∈ {⊥,+,−, T }

Using {ρ+, ρ−}, a pair of signals {u, v} are formulated:
⎧
⎨

⎩

u � 〈u0, u+, u−, u1〉 � {
uβ

}

v � 〈v0, v+, v−, v1〉 � {
vβ

}

β ∈ {0,+,−, 1}

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u0 � ρ− ⊕ ρ+

v0 � (1 − ρ−)/2 ⊕ (1 + ρ+)/2
u+ � ρ+

v+ � (1 + ρ+)/2
u− � ρ−
v− � (1 − ρ−)/2
u1 � ρ− + ρ+

v1 � (1 − ρ− + ρ+)/2
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where 0 ≤ uβ, vβ ≤ 1, β ∈ {0,+,−, 1},⊕: Asynchronous addition, +: Synchronous
addition.

Using {u, v} signals, each uβ (vβ) determines a fixed position in the relevant
histogram to make vector X on a position. After complete 2N data sequences, eight
symmetry/anti-symmetry histograms of

{
H (uβ | f )}({H (vβ | f )})β ∈ {0,+,−, 1}

are generated.

4 Simulation Results

The simulation provides a series of output results. In this section, two cases
are selected: N � {12, 13}, n � 2, j � 0, { f � 3, f+ � 11, f− � 2}, and
{ f � 12, f+ � 14, f− � 8}. Corresponding to double path, right path, left path,
symmetric and nonsymmetric conditions, respectively. For the convenience of com-
parison, sample cases are shown in Fig. 3a–c. In Fig. 3a, representation patterns
are illustrated. Figure 3b represents f �3 conditions and Fig. 3c represents f �12
conditions, respectively. Eight histograms of H (u+| f ) � H (u−| f ) are shown with
results represented by symmetric meta-functions in four groups.

5 Analysis of Results

5.1 Visual Distributions

In H (u+| f ) � H (u−| f ) conditions, {H (u1| f ), H (v1| f ) } have significant interfer-
ence patterns different from other conditions. Output results are balanced.

5.2 Particle Statistical Distributions

For all symmetric or nonsymmetric cases under⊕ asynchronous addition operations,
relevant values meet 0 ≤ u0, v0, u−, v−, u+, v+ ≤ 1.

Checking {H (u0| f ), H (v0| f ) } series, {H (u+| f ), H (u−| f )} and
{H (v+| f ), H (v−| f ) } satisfy the following equation:

{
H (u0| f ) � H (u−| f ) + H (u+| f )
H (v0| f ) � H (v−| f ) + H (v+| f )

The equation is true even N and n in different values.
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Fig. 3 Results of symmetric meta distributions
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(c) N={12，13}, f = 12, Histograms of Symmetric Meta Distributions 

Fig. 3 (continued)

5.3 Wave Interference Patterns

Different interference properties are observed clearly in H (u+| f ) � H (u−| f ) and
H (v+| f ) � H (1 − v−| f ) conditions. Under+synchronous addition operations, rel-
evant values meet 0 ≤ u1, v1, u−, v−, u+, v+ ≤ 1.

Checking {H (u1| f ), H (v1| f ) } distributions especially in Fig. 3b–c
{u1, v1 } cases extremely strong interferences appeared and compared with
{H (u+| f ), H (u−| f ) } and {H (v+| f ), H (v−| f ) }, there are significant differences.
Spectra in different cases illustrate wave interference properties. From listed
histogram distributions, they are all satisfied
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{
H (u1| f ) 
� H (u−| f ) + H (u+| f ) � H (u0| f )
H (v1| f ) 
� H (v−| f ) + H (v+| f ) � H (v0| f )

Single and double peaks are shown in interference patterns as classical double-slit
distributions.

5.4 Quaternion Measures

It is interesting to see the relationship between the variant quaternion and other
measures.

In the variant quaternion,� f (x) � 〈N⊥, N+, N−, NT 〉, N � N⊥ +N+ +N− +NT .
In Einstein’s two-state system of interaction 〈N1, N2, N12, N21〉 allows the fol-

lowing equations to be established:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N1 � N⊥ + N+

N2 � N− + NT

N12 � N+

N21 � N−
N � N1 + N2

From the equations, the measured pair {N21, N12 } has a 1-1 correspondence to
{N−, N+ }.

Selecting + → 1, − → 0, CHSHs N±,∓(a, b) measures meet
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N+,+(a, b) → NT

N+,−(a, b) → N−
N−,+(a, b) → N+

N−,−(a, b) → N⊥

(N++, N+−, N−+, N−−) → (NT , N−, N+, N⊥),

Let N � N++ + N+− + N−+ + N−−, CHSH quaternion is a permutation of the
variant quaternion.

Aspect’s quaternion (Nt , Nr , Nc, Nω) have the following corresponding:
⎧
⎪⎨

⎪⎩

Nt → N−
Nr → N+

Nω → N

There is no parameter in the variant quaternion for the parameter Nc. It indi-
cates joined action numbers to distinguish single and double paths, corresponding to
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{u0, v0 } and {u1, v1 } times. In an actual experiment, this parameter is significant.
In a simulated system, the parameter is a control coefficient that separates two types
of measured paths {u0, v0 } and {u1, v1 } in the integration of comparisons on real
experiments.

6 Conclusions

Analyzing N bit 0-1 vector and its exhaustive sequences for variant measurement,
this system simulates double path interference properties through different accurate
distributions. Using this model, two groups of parameters {uβ } and {vβ } describe
the left path, right path, double paths for particle, and double path for wave with
distinguished symmetry and anti-symmetry properties.

Only synchronous conditions, double path systemprovideswave-like interference
patterns different from classical ones.

Comparedwith the variant quaternion and other quaternion structures, it is helpful
to understand possible properties of usages and limitations for variant simulation
systems.

The complexity of n-variable function space has a size of 22
n
. Whole simulation

complexity is determined by O(22
n × 2N ) as ultra exponent productions. How to

overcome the limitations imposed by such complexity and how best to compare and
contrast such simulationswith real-world experimentationwill be key issues in future
work.

Acknowledgements Thanks to Mr. Colin W Campbell for making English edition, Mr. Jie Wan
for generating the simulation data, and Mr. Qingping Li for making the statistical histograms.
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The nth Root of NOT Operators
of Quantum Computers

Jeffrey Zheng

Abstract This chapter proposes a novel approach to resolve the nth root of NOT
problem for quantum computers using (−1, 0, 1) permutation matrices. Only logic
NOT and exchange operations are required. This result provides a complete solution
to design and implement the nth root of NOT operators of quantum computers.

Keywords Quantum simulator · Quantum computation · Square root of NOT
n-th root of NOT · Permutation matrix · Quantum logic gate

1 Introduction

Feynman [1] first proposed ‘universal quantum simulator’ towards a true quantum
computer. Since then, research and development activities of quantum computation
and quantum computers have become the new frontal of next-generation computers
for two decades [2, 3]. Classical quantum mechanics use complex number vectors in
Hilbert space to represent quantum states [4]. Any complex number is composed of
two parts: a real part and an imaginary part. The imaginary number i � √−1 plays
the essential role in the quantum mechanics construction. However, the mystery of
the imaginary number causes severe difficulties for its manipulation, imagination and
understanding [4–6]. Considering thatmodern computers are constructed byBoolean
logic principles, how traditional logic structure is used to implement

√−1 has been
puzzling and deeply entangled in quantum computing for at least two decades [7–10].
Nothing in the published literature has described a way to implement this untamed
operator using traditional logic operations [2, 11, 12].
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1.1 The Square Root of NOT Problem

Following traditional logic, negation corresponds to logic NOT (¬). Initiated by
Feynman [1] and further developed by Deutsch [9, 13], this problem has been rep-
resented as

√¬ ‘the Square Root of NOT’ as one of the most difficult issues in
quantum computation especially in general quantum gates. They suggested resolv-

ing¬ �
(
0 1
1 0

)
equation using logic operations for the solution.Maglicki andWang

[11] provided an example of how to resolve the problem this way.

Let ¬ operation reverse two quantum spin states |0〉 �
(
0
1

)
, |1〉 �

(
1
0

)
,

¬|0〉 �
(
0 1
1 0

)(
0
1

)
�

(
1
0

)
� |1〉

¬|1〉 �
(
0 1
1 0

)(
1
0

)
�

(
0
1

)
� |0〉

To apply unitary rotational matrices,
√¬ operator can be expressed as

√¬ � 1√
2

(
eiπ/4 e−iπ/4

e−iπ/4 eiπ/4

)
� 1

2

(
1 + i 1 − i
1 − i 1 + i

)

In the equations, both eiπ and i symbols are involved. From a representative view-
point, equations are useless because the symbols i and

√¬ are both logic equivalent.
The equations are in circular definitions.

To explore how to use traditional logic implementing
√¬, it is necessary to

analysewhat has been established at the foundation levels ofmodern complexnumber
construction.

1.2 Complex Number in History

The origin and development of complex number has a long and mysterious history
[14–16]. In the nineteenth century, Gauss and Euler [15] made their foundation con-
tributions to formally identifying imaginary parts as the most essential components
to resolve solutions from nth algebraic equations. After their work, the imaginary
number has been gradually accepted by mainstream mathematicians to be one of the
most important parts of mathematics [15]. Hamilton established consistent opera-
tions on complex number in 1837 [17]. He constructed a complex number a + bi as
an ordered number pair (a, b).

For example, let a + bi and c + di be two complex numbers. Four essential
operations: {±, •, /} can be expressed as
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(a, b) ± (c, d) � (a ± c, b ± d)

(a, b) • (c, d) � (ac − bd, ad + bc)

(a, b)

(c, d)
�

(
ac + bd

c2 + d2
,
bc − ad

c2 + d2

)

Using ordered pair representation, complex number operations are firmly estab-
lished on real number operations. No further mysterious characteristics of imaginary
numbers remain in the equations because all operations are well defined in real
number construction.

2 Solution of the Square Root of NOT Problem

If we apply an imaginary number to an ordered pair, we have

i : (a, b) → (−b, a)

When we do not restrict
√¬ solution in {0, 1} field but extend the field to {−1,

0, 1}. A permutation matrix can be constructed.
Let

I2 �
(
1 0
0 1

)
, I +2 �

(
1 0
0 −1

)
, I−

2 �
(

−1 0
0 1

)
, Z2 �

(
0 1

−1 0

)
, Z⊥

2 �
(
0 −1
1 0

)
,

Z2 : (a, b) → (−b, a)

(−b, a) � (a, b)

(
0 1

−1 0

)

Because Z2 provides the same result as the imaginary number when applied to
the pair, it is necessary for us to explore Z2 features in details.

Two eigenvalues of Z2 can be determined from its determinant.

|λI2 − Z2| �
∣∣∣∣∣
λ −1
1 λ

∣∣∣∣∣ � 0

λ2 + 1 � 0, λ2 � −1, λ � ±√−1

This corresponds to either

(
i 0
0 −i

)
or

(
−i 0
0 i

)
as the solution. There are two

unitary matrices U+,U− and two Hermite conjugate matrices U ∗
+ ,U ∗− undertaken

similarity transformation on Z2 to produce the two diagonal matrices:
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i I±
2 �

(
i 0
0 −i

)
� U+

(
0 1

−1 0

)
U ∗

+ ;

i I∓
2 �

(
−i 0
0 i

)
� U−

(
0 1

−1 0

)
U ∗

−

Although three matrices belong to one matrix group under similarity transforma-
tion, five matrices can be distinguished without any direct equality.

i I2 	� i I±
2 	� Z2 	� i I∓

2 	� −i I2

To apply the five matrices twice separately, they all equal to −I2.

(±i I2)
2 �

(
±i 0
0 ±i

)(
±i 0
0 ±i

)
�

(
−1 0
0 −1

)
� −I2

(
i I±

2

)2 � (
i I∓

2

)2 �
(

±i 0
0 ∓i

)(
±i 0
0 ∓i

)
�

(
−1 0
0 −1

)
� −I2

and

Z2
2 �

(
0 1

−1 0

)(
0 1

−1 0

)
�

(
−1 0
0 −1

)
� −I2

Therefore, the Z2 matrix is an equivalent form of the imaginary number under the
transformation.

For any ordered pair (a, b),

(Z2)
2 : (a, b) → (−a,−b)

(Z2)
2 : (a, b)

Z2−→ (−b, a)
Z2−→ (−a,−b)

(Z2)
2 � −I2

Z2 � √−I2

So,
√¬ operation can be constructed originally from one-one correspondences

from the Z2 matrix.
Let 〈x | be a quantum state, ¬〈x | � 〈x̄ |. For a non-zero element of Z2, two values

{−1, 1} of the elements map

⎧⎨
⎩−1 : 〈x | ¬−→ 〈x̄ |

1 : 〈x | → 〈x |
then a

√¬ operator is generated

from a Z2 operator.
For an ordered state pair (〈x |, 〈y|),
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(〈x |, 〈y|)
√¬−→ (〈ȳ|, 〈x |)

√¬−→ (〈x̄ |, 〈ȳ|) � ¬(〈x |, 〈y|)

Therefore, Z2 is a homologous form of the
√¬ operator.

Under this construction, the square root of NOT problem in quantum computation
is solved entirely. Only two elementary operations are involved in the transformation:
logicNOToperation andpair–state exchange, respectively. They can be implemented
readily using traditional logic constructions.

3 General Solution of the nth Root of NOT Operation

In this part, a general solution of n
√¬ ‘the nth root of NOT’ for quantum computers

is explored.
Let Jn denote a conjugate permutation matrix which contains n columns and n

rows and each row (column) has one non-zero element.

Jn � (
Ji, j

)
, 1 �

n∑
i�1

∣∣Ji, j ∣∣ �
n∑

i�1

∣∣Ji, j ∣∣, Ji, j ∈ {−1, 0, 1}, i, j ∈ [1, n]

Let In be a unit matrix, Ii, j � 1, i � j ; Ii, j � 0, i 	� j, i, j ∈ [1, n].

For example, matrices

⎛
⎝ 1 0 0
0 −1 0
0 0 1

⎞
⎠,

⎛
⎝ 0 −1 0
1 0 0
0 0 1

⎞
⎠,

⎛
⎜⎝
0 0 −1
0 −1 0
1 0 0

⎞
⎟⎠, I3 �

⎛
⎝ 1 0 0
0 1 0
0 0 1

⎞
⎠

are Jn matrices.
Let Pn be a (0, 1)-permutation matrix in which each column (row) contains only

one element, and PS(n) denote a permutation space containing all Pn matrices.
Let J S(n) denote a conjugate permutation space.

Lemma For a given n, PS(n) contains a total number of n! distinguishablematrices,
that is, |PS(n)| � n!.

Theorem For a given n, J S(n) contains a total number of 2nn! distinguishable
matrices, |J S(n)| � 2nn!.

Proof Each non-zero element of Jn has two values {−1, 1}, and n different elements
have 2n selections. The n elements can select a total number of n! different posi-
tions. Both symbol and position selections are independent, and each combination
determines a Jn matrix. So there are 2nn! distinguishable matrices.

Corollary J S(n) is a matrix space that is 2n times larger than PS(n).

Theorem Amatrix group of simple rotation in J S(n)may contain 2n distinguishable
matrices.
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Proof Using a rotation matrix Zn ∈ J S(n),

Zn �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
0 0 1 0 . . . 0 0
0 0 0 1 . . . 0 0

. . .

. . . . . . . . .

0 0 0 0 . . . 0 1
−1 0 0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Ji,i+1 � 1, i ∈ [1, n], Jn,1 � −1 and a vector

X �
(
1 2 3 . . . n − 1 n

)
.

To apply 2n Zn matrices sequentially to the vector X, the following 2n vectors are
produced:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

X � X Z2n
n

X Zn

. . .

X Zn
n

X Zn+1
n

. . .

X Z2n−1
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 . . . n − 2 n − 1 n
−n 1 2 . . . n − 3 n − 2 n − 1

. . . . . . . . .

−1 −2 −3 . . . −n + 2 −n + 1 −n
n −1 −2 . . . −n + 3 −n + 2 −n + 1

. . . . . . . . .

2 3 4 . . . n − 1 n −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

That is, 2n distinguishable matrices
{
Z j
n

}2n

j�1
, Z0

n � Z2n
n � In are included.

Because of X
Zn
n−→ −X

Zn
n−→ X , there are Zn

n � −In and Z2n
n � In , that is,

Zn
n � −In .

Theorem For a Zn, there are n eigenvalues {λi }ni�1, λi � n
√−1, i ∈ [1, n].

Proof

|λIn − Zn| �

∣∣∣∣∣∣∣∣∣∣∣

λ −1 0 . . . 0 0
0 λ −1 . . . 0 0

. . . . . . . . .

0 0 0 . . . λ −1
1 0 0 . . . 0 λ

∣∣∣∣∣∣∣∣∣∣∣
� λn + 1 � 0.

Therefore, Zn � n
√−In .

For non-zero values,

{
1 : 〈x | → 〈x |

−1 : 〈x | → 〈x̄ | map Zn → n
√¬.
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Theorem For any state vector X, X
(

n
√¬

)n � ¬X.

Proof

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

X

X
n
√¬

X
n
√¬n−1

X
n
√¬n � ¬X

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

〈1| 〈2| 〈3| . . . 〈n|
〈n̄| 〈1| 〈2| . . . 〈n − 1|
. . . . . . . . . . . . . . .〈
2̄
∣∣ 〈
3̄
∣∣ 〈
4̄
∣∣ . . . 〈1|〈

1̄
∣∣ 〈
2̄
∣∣ 〈
3̄
∣∣ . . . 〈n̄|

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

4 Conclusion

Using (−1,0,1) permutation matrices as basic tools, the nth root of NOT operators
for quantum computers can be constructed and implemented by the traditional logic
structure. Considering that this problem has puzzled advanced research of quantum
computer for 20 years, this solution can provide quantum computer designers to
practically implement quantum computers using traditional logic. The details of this
construction will investigate in other places and the relationships among conjugate
logic, quantum logic, quantum gates and complex number structures will be explored
for foundation ofQuantumcomputers and quantumcomputation of future computers.
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Part VII
Applications—Binary Sequences

Unity can only be manifested by the binary.

Unity itself and the idea of Unity are already two.

—Buddha

Every axiomatic (abstract) theory admits, as is well known, an
unlimited number of concrete interpretations besides those from
which it was derived.

Thus we find applications in fields of science which have no relation
to the concepts of random event and of probability in the precise
meaning of these words.

—Andrey Kolmogorov

At its most fundamental, information is a binary choice, in other
words,

a single bit of information is one yes-or-no choice.

—James Cleick

Various approaches of variant construction on binary sequences were developed
from 2011 on cellular automata data sequences to construct 2D/3D maps. From
2014, different binary sequences generated from stream ciphers have been exten-
sively examined and combinatorial maps were developed. For example, Variant
Pseudo-Random Number Generator, Hakin9 Extra, Issue 6, 2012 (13), 28–31.
http://hakin9.org/hakin9-extra-62012/, Interactive Maps on Variant Phase Spaces in
Emerging Application of Cellular Automata, InTech Press, 113–196, 2013. http://
dx.doi.org/10.5772/51635.

Further results were published, e.g., Cryptographic Sequence on Variant Maps,
ASONAM 2017: 1065–1071. https://doi.org/10.1145/3110025.3110152, and
Stationary Randomness of Quantum Cryptographic Sequences on Variant Maps, the
2017 IEEE/ACM International Conference, ASONAM 2017:1041–1048. https://doi.
org/10.1145/3110025.3110151.

This part of binary sequences is composed of five chapters (18–22).

http://hakin9.org/hakin9-extra-62012/
http://dx.doi.org/10.5772/51635
http://dx.doi.org/10.5772/51635
http://dx.doi.org/10.1145/3110025.3110152
http://dx.doi.org/10.1145/3110025.3110151
http://dx.doi.org/10.1145/3110025.3110151


Chapter “Novel Pseudorandom Number Generation Using Variant Logic
Framework” proposes a novel PRNG using variant logic framework to apply mixed
operations of permutation and complement in variant tables to generate random
sequences under various control parameters.

Chapter “RC4 Cryptographic Sequence on Variant Maps” uses binary sequences
of RC4 stream cipher on 1DP and 2DP variant maps. Different characteristics of
visual distributions can be observed.

Chapter “Refined Stationary Randomness of Quantum Random Sequences on
Variant Maps” checks three quantum random sequences {ANU, USTC, USTC0}
stationary randomness, significant measuring differences identified.

Chapter “Using Information Entropy to Measure Stationary Randomness of
Quantum Random Sequences” uses information entropy to measure stationary
randomness of quantum random sequences. Data streams from USTC are selected
and their quantitative measurements are compared.

Chapter “Visual Maps of Variant Combinations on Random Sequences” pro-
poses visual maps of variant combinations on random sequences that provide a
flexible framework to support various projections under complicated combinations.
Typical maps are illustrated.
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Novel Pseudorandom Number
Generation Using Variant Logic
Framework

Jeffrey Zheng

Abstract Cybersecurity requires cryptology for the basic protection. Among differ-
ent ECRYPT technologies, stream cipher plays a central role in advanced network
security applications; in addition, pseudorandom number generators are placed in
the core position of the mechanism. In this chapter, a novel method of pseudoran-
dom number generation is proposed to take advantage of the large functional space
described using variant logic, a new framework for binary logic. Using permutation
and complementary operations on classical truth table to form relevant variant table,
numbers can be selected from table entries having pseudorandom properties. A sim-
ple generation mechanism is described and shown, and pseudorandom sequences
are analyzed for their cycle property and complexity. Applying this novel method, it
can play a useful role in future applications for higher performance of cybersecurity
environments.

Keywords Pseudorandom number generation · Variant logic · Cryptology

1 Introduction

In advanced cyber environment, cybersecurity mechanism plays a guider role to pro-
tect the secure information communicated and stored in network facilities [1, 2]. To
achieve adequate network security effects, cryptology has to be placed in the essential
position [1]. Different from block ciphers that operate with a fixed transformation on
a large block of plaintext, stream ciphers operate with a time-varying transformation
on individual plaintext digits. Under the stream cipher methodology, Pseudorandom
Number Generator (PRNG) is placed in the central part of the mechanism.
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From2000 to 2003,NewEuropean Schemes for Signatures, Integrity, andEncryp-
tion (NESSIE) were started [3]. During 2004–2008, another European stream cipher
project: eSTREAM selected four software and three hardware schemes for ECRYPT
stream ciphers [4]. Such extensive international activities on ECRYPT methodolo-
gies are showing the ultra-importance of stream cipher technologies in cyber envi-
ronments for wider security applications.

From a cyber resilience viewpoint [5–7], a set of researchers focus attention
on leakage-resilient pseudorandom generator. This direction has shown interesting
results to protect valuable information from side-channel attack aspects.

Since PRNG plays a key role in stream cipher applications and is the heart of
cryptology [1, 8–10].Manymathematicalmethodologies are applied to this field such
as linear automata, cellular automata, Galois fields, and other algebraic constructions
[1, 9, 11–14]. In cryptology, Boolean logic operations are essential to create highly
effective cryptology systems [1, 9, 15, 16] as binary logic generates the greatest
efficiency through manipulation of only 1’s and 0’s. Therefore, it is advantageous to
investigate potential mechanisms in binary logic due to the follow-on effect it has in
cryptology.

2 Classical Logic Function Table

A classic logic function in n variables can be represented as a truth table [8, 9]. For
a classic sequence in an ordinary number sequence, each table contains 2n columns
and 22

n
rows with a total of 2n · 22n bits, respectively. An example of the standard

truth table can be seen in Fig. 1a.

(a) Truth Table Example (b) Variant Table Example

Fig. 1 n variable truth table and variant table under P and � operators
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3 Variant Logic Function Table

Variant logic construction is a new proposed theoretical structure [17, 18] to extend
classical logic from the three basic operators: {∩,∪,¬}. Two additional vector oper-
ators: permutation P and complementary � are included with the original three to
form the five basic operators within the novel framework. Let S(N ) denote a permu-
tation groupwithN elements, then S(N ) contains a total of N ! permutation operators.
Let BN

2 � {0, 1}N denote a binary group with N elements, then BN
2 contains a total

of 2N complementary operators.
The permutation (P) and complementary (�) operators are two vector operators

performed on each column vector of 22
n
bits. For a given P and �, two operators

transform the truth table into a variant table. Permutation operators change positions
of relevant columns but do not change their values. Complementary operators (�) do
not change the position for each column, but may change entire values of the column.
Two given operators can be performed together to generate a variant table for further
usages. There are 2n columns in the table as permutation elements, so this permutation
group S(2n) contains a total of 2n! permutation operators, and its complementary
group B2n

2 includes a total of 22
n
complementary operators. An example of the variant

table can be seen in Fig. 1b.

4 Variant Method of Pseudorandom Number Generation

Input: n, P,�,m, L variables, n ∈ N , P ∈ S(2n),�, L ,m ∈ B2n
2

Output: {Km, Km+1, . . . ., Km+L−1}L · 2n bit sequences
Method: The process for pseudorandom number generation can be seen in Fig. 2.
n is the input variable number. Using n variables, a standard truth table can be
constructed in 2n columns and 22

n
rows. P is a given permutation operator P �

(P2n−1 . . . PI . . . P0), P ∈ S(2n), where PI corresponds to the I-th column. A given
complementary operator � ∈ B2n

2 , � � (�2n−1 . . . �I . . . �0), �I ∈ B2 shows that
the operator is performed on the I-th column, if �I � 0, all values of the column are
reversed and if �I � 1, all values are invariant. 0 ≤ m < 22

n
is an initial position

for output sequences; from Km , L conditions, {Km+i }L−1
i�0 are output generated 0–1

bit sequences.

5 Sequence Generation Example

For convenient understanding procedure, an example is selected to show in the n
= 2 case shown in Fig. 3. Parameters are initialized to arbitrary values: n �2, P �
(1203), and �� (0110).
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After the table is generated, the pseudorandom sequence can read off the table.
Form�4 and L �6 conditions, a random number starting at position 4 of the variant
table containing six elements can be found.

Fig. 2 Variant method of random number generation

Fig. 3 Example for generation of pseudorandom sequence
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6 Complexity Analysis

Froman application viewpoint, it is important to have the exact complexity evaluation
for the method. In the initial stage, it is necessary to manipulate 2n columns and each
column with 22

n
rows; the total numbers of 2n · 22n bits are required. The total

complexity is of order O(2n · 22n ).
To generate variant table values, P operations need at least to manipulate bits once

and � operations to manipulate the same number of bits, i.e., O(2n · 22n ).
Selecting L · 2n bits from the variant table, it is necessary to perform O(L · 2n)

operations.
If a full table needs to be generated as a random resource, O(2n · 22n ) computa-

tional complexity is required. In general, their computational complexity is O(L ·2n)
− O(2n · 22n )0 < L < 22

n
.

Maximal cycle length: under this construction, the maximal length of the pseu-
dorandom number sequence is 2n · 22

n
bits. For any short sequences, the output

sequence has a length less than this number. No clear cycle effects can be directly
observed.

7 Conclusion

It is important to design this new PRNG method to use variant logic construction.
Since P and � potentially have a huge configuration space 2n!×22

n
times larger

than classical logic function spaces. Exploring how difficulties for this mechanism
to be decoded will be the main issue for coming cryptologist’s theoretical targets. In
addition, it is important to understand what type of distribution will be relevant to this
generation mechanism. Owing to intrinsic complexity of variant logic construction,
this provides potential barriers to protect this type of sequences decoded directly.

Considering PRNG placed in the central part of stream cipher mechanism, and
stream cipher technologies are more and more important in advanced network secu-
rity environment, higher performancemethodology and relevant implementationwill
be useful in this field. Ongoing approaches will focus on whether this mechanism
provides better PRNG methods to help different protections on side-channel attacks
[1–7, 19, 20] in wider network applications to resolve practical leakage-resilient
issues in the future.
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RC4 Cryptographic Sequence on Variant
Maps

Zhonghao Yang and Jeffrey Zheng

Abstract In modern cyberspace environment, big data streams are the most
important issue in people’s daily lives, each person produces a larger number of
data streams every day from personal computer, cell phone, and kinds of wearable
smart device. Security risks of storage and transmission of data streams may lead
to personal privacy disclosure, it is important for network security to have useful
tools facing challenges. Randomness testing provides useful tools to secure results
of stream ciphers. Based on multiple statistical probability distributions, this chapter
presents a visual scheme, variant maps, to measure a whole cryptographic sequence
into multiple 1D and 2D maps. Mapping mechanism and sample cases are provided.

Keywords Random sequence · Big data · Variant map

1 Introduction

In modern cyberspace environments, more than 2.5 EB data streams per day are
generated from global network environments [1]. Huge network companiesmanaged
massive data streams in PB every day [2]. The development of artificial intelligence
fields makes it easier to extract valuable information from big data [3–5]. Big data
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and big data technology provide modern societies so much convenience to many
places, and with several threats to network security [6, 7].

Stream ciphers are the most useful scheme to protect the security of data streams
in both transmission and storage processes. Pseudorandom number sequences are
generated by various algorithms based on recursive computational models, and true
random number sequences are generated by different physical methods. The typical
stream ciphers are RC4 and Salsa20. Stream ciphers can be built using block ciphers
in OFB or CTR model. In this chapter, an RC4 stream cipher is selected to generate
pseudorandom sequences for testing.

From a testing viewpoint, randomness tests focus on three aspects: probability,
autocorrelation, and unpredictability. NIST 800-22 provides a list of randomness
testing method based on p-value [8].

In this chapter, two types of 1D and 2D statistical probability maps are used to
visualize a longer pseudorandom number sequence generated from an RC4 stream
cipher.

2 Related Work

Variantmap is an emerging technology proposed in 2010s to handlemultiple 0–1 vec-
tors in phase spaces on variant framework [9–11]. Different applications are explored
for variant maps on ECG data sequences [12], bat echolocation call sequences [13],
gene sequence [14], and cryptographic sequences [15–17].

3 Mapping Model

This chapter uses twomapping schemes on 1D and 2D statistical probability distribu-
tions as variant maps for an input N-length 0–1 sequence. The architectural diagram
of the mapping model is shown in Fig. 1. It is composed of three components: seg-
mentation, measurement, and visualization.

segmentation Measurement Visualization
spamtnairav:tuptuoecneuqes1-0:tupni

Fig. 1 Architecture of variant map for cryptographic sequence



RC4 Cryptographic Sequence on Variant Maps 299

Fig. 2 Measurement

 Measurement
si pi

 Measurement
si pi

3.1 Basic Symbol

(1) S: an input 0–1 sequence,
(2) si : the i-th segment of the input sequence,
(3) N : length of the input sequence,
(4) M: count of segments,
(5) m: length of a segment, and
(6) p: number of 1’s elements in the segment.

3.2 Mapping Model

Three components can be described as follows.

• Segmentation

Input data is a 0–1 sequence S of length N . It can be divided intoM segments and
each segment has m elements.

M �
⌊
N

m

⌋

S � {s0, s1, . . . , si , . . . , sM−1}, 0 ≤ i < M

• Measurement
For each segment si of S, the following analysis is performed to obtain the one
feature pi of the segment, that is, the number of 1 of si , and 0 ≤ p ≤ m. For
example, for two segments s1 � 00011 and s2 � 10110, and two measurements
are p1 � 2 and p2 � 3 (Fig. 2).

Calculating all segments of S, a set of p measurements are determined.

{p0, . . . , pi , . . . , pM−1} � {pi }M−1
i�0 , 0 ≤ i < M

• Visualization

From the generated sequence ofmeasurements, two types of diagrams can be created:
The first one is a 1D map, 1DP sorted from {pi }M−1

i�0 directly shown in Fig. 3a. The
second one is a 2D map, 2DP sorted from a pair of measurements {pi , pi+1}M−1

i�0
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Fig. 3 Two maps; a 1DP; b 2DP

created from {pi }M−1
i�0 shown in Fig. 3b. This mapping scheme is one of Markov

chain models.

4 Random Sequence Data Sources

In this chapter, a pseudorandom generator is based on an AES block cipher on the
OFB mode. A total amount of 120 MB cryptographic sequences has been generated.

5 Mapping Results

The input sequence is mapped with a list of various lengths on different segmenta-
tions. Three sets of various m lengths are selected and two types of relevant 1DP
and 2DP maps are shown in Fig. 4a–c, for (a) m � {8, 16, 32, 64, 128, 256}, (b)
m � {80, 100, 120, 140, 160}, and (c)m � {126, 127, 128, 129, 130}. Four enlarged
2DP maps are shown in Fig. 5 for m � {126, 127, 128, 129} and two enlarger 2DP
maps are shown in Fig. 6 for m � {128, 130}, respectively.

6 Result Analysis

In Fig. 4, both 1DP and 2DP maps are illustrated. When the input sequence is larger
enough to m × 2m , the results of 1DP maps are corresponding to binomial distribu-
tions. It is interesting to see significant changes when various lengths of segments
are applied.
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m 8 16 32 64 128 256 
1D
P

2D
P

m 80 100 120 140 160 
1DP

2DP

m 126 127 128 129 130 

1DP

2DP

m 126 127 128 129 130 

1DP 

2DP

(a)

(b)

(c)

(d)

Fig. 4 1DP and 2DP maps. a m � {8, 16, 32, 64, 128, 256}; b m � {80, 100, 120, 140, 160}; c
m � {126, 127, 128, 129, 130}; d enlarged 1dp and 2dp, m � {126, 127, 128, 129, 130}

For various 2DP maps in Figs. 4, 5, and 6, 2D distributions are represented as
pseudocolor to illustrate relevant 3D structures. From smallermaps to enlargedmaps,
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Fig. 5 Enlarger 1DP maps. a m �126; b m �127; c m �128; d m �129

many interesting features can be identified and significant symmetric or nonsymmet-
ric properties could be identified. Enlarger maps can see further refined patterns in
detail.

7 Conclusion

Mappingmodel in this chapter is a focus on a single sequence for two types of 1DPand
2DP maps. 1DP maps are corresponding to classical statistical maps and 2DP maps
are represented as various Markov chains. Further researches and experiments are
required to explore useful tools on cryptographic sequences in detail (Figs. 7 and 8).
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Fig. 6 Enlarged 2DP maps. a m �126; b m �127; c m �128; d m �129
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Fig. 7 Enlarger 1DP maps. a m �128; b m �130
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Fig. 8 Enlarger 2DP maps. a m �128; b m �130
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Refined Stationary Randomness
of Quantum Random Sequences
on Variant Maps

Jeffrey Zheng, Yamin Luo and Zhefei Li

Abstract In this chapter, a testing model is used to apply statistical probability in
multiple distributions on three maps for a selected sequence to check refined sta-
tionary randomness on quantum sequences. Three random data sequences are col-
lected from two quantum random resources: one fromAustralianNational University
(ANU) and two (initial and secure) from University of Science and Technology of
China (USTC). Multiple results are created on three maps, and measurements of
stationary randomness are illustrated and compared. Three samples show distinct
stationary properties.

Keywords Variant maps · Quantum random sequence · Chaotic random sequence
Ordered measures ·Maximal; Stationary randomness

1 Introduction

In advanced social network environment, multimedia signal sequences of big data
streams are composed of time series processes. Quantum experiments in quantum
satellite using quantum key distribution (QKD) systems [1] is themost advanced ICT
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development to establish ultra-secure quantum communications. For a QKD system,
a truly random number generator [2] play a key role. From an analysis viewpoint,
it is necessary to test stationary randomness in time variations. In this section, a list
of relevant schemes: pseudo/truly random sequences, P_value, statistical probability
distribution, optical statistics, stationary properties, and variant maps, are discussed.

1.1 Pseudo/True Random Sequences

1.1.1 Pseudorandom Sequences

Traditional stream ciphers [3] on linear feedback shift register structure (LFSR) are
used as pseudorandom number generators. The LFSR stream ciphers are the core in
classical stream ciphers.

The new generation of stream ciphers has being shifted from LFSR [3] to nonlin-
ear modes: NLFSR, clock control [4] and nonlinear functions, etc. It is difficult to
use nonlinear mathematical theories, recursive models, descriptive tools, and imple-
menting schemes in nonlinear dynamic environments.

1.1.2 True Random Sequences

Differently from pseudorandom sequences generated by stream ciphers, high-quality
stochastic oscillators of truly random sequences are generated from special hardware
devices such as laser photonics [5], nonlinear optics, quantum optics [6], quantum
noises, thermal noise, chaos, and fractal nonlinear dynamics [7].

1.2 Testing Schemes

1.2.1 P_value Schemes

Various statistic testing packages measure randomness properties on a given random
sequence. NIST 800-22 package [8] is a typical representative to provide more than
15 testing schemes. Using the package, it is essential to check whether P_value
>0.01 for the sequence. Since such measuring scheme provides a static condition,
it is difficult to use only P_value parameter to express complex dynamic behaviors
involved in random sequences.

1.2.2 Multiple Statistical Probability Distributions

Measuring random sequences under segment conditions, multiple statistical proba-
bility schemes are useful to create various distributions to illustrate complex spatial
relationships.
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Multivariate normal probability distributions are the most important and powerful
tools to test stochastic characteristics of a random data sequence under the frame-
work of probability, stochastic process and statistics [9] for nonlinear problems. In
this kind of measuring models, when a data sequence is sufficiently long, the high
dimensional probability distribution of the sequence [10] is converged to a contin-
uous Gaussian distribution. Multivariate Gaussian probability distributions support
various schemes to analyze complex stochastic data set of measuring sequences in
continuous conditions.

1.2.3 Photon Statistic in Quantum Optics

Photon statistics is the theoretical and experimental approach on the statistical distri-
butions in photon counting experiments to analyze the statistical nature of photons
in a light source.

Three types of distributions can be obtained by the light source [11]: Poissonian,
super-Poissonian, and sub-Poissonian. The variance and average number of photon
counts are identified for the corresponding distribution. Both Poissonian and super-
Poissonian light are described by a semi-classical theory in which the light source is
modeled as an electromagneticwave and the atom ismodeled by quantummechanics.
In contrast, sub-Poissonian light requires the quantization of the electromagnetic field
for a proper description and is a direct measure of the particle nature of light.

1.2.4 Stationary Properties

In mathematics and statistics, a stationary process is a stochastic process [12] whose
joint probability distribution does not change when shift operations performed. Con-
sequently, parameters such as mean and variance, if they are present, also do not
change over time. Stationarity is an interesting property in time series analysis.

In applied mathematics, the Wiener–Khinchin theorem [13], states that the Auto-
correlation Function (ACF) of a wide-sense stationary process has a spectral decom-
position given by the power spectrum of the process. One of the effective ways for
identifying stationary times series is the ACF plot [14]. For a stationary time series,
the ACF will drop to zero relatively quickly.

1.3 Quantum Random Resources

Quantum random numbers can be generated from a physical quantum source of a
coherent laser light to be splitting a beam of light into two beams and then measuring
the power in each beam. Due to the light intensity in each beam fluctuates about the
mean. Those fluctuations can be converted into a source of random numbers [15–17]
being a stationary Poisson distribution.
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1.3.1 ANU Resource

The ANU Quantum Random Numbers Server is an open website [18] to offer true
random numbers to anyone on the internet. Such random numbers are generated in
real-time bymeasuring the quantum fluctuations of the vacuum. The electromagnetic
field of the vacuum exhibits random fluctuations in phase and amplitude at all fre-
quencies. By carefully measuring these fluctuations, ultra-high bandwidth random
numbers can be generated.

About 1GB data streams are downloaded and 100MB data streams are used for
the testing.

1.3.2 USTC Resource

In the Key Laboratory of Quantum Information, USTC, and CAS, true random
number sequences are generated [16]. This type of true random sequences supports
advanced quantum communication devices of QKD systems [19].

More than 20GB quantum random number sequences are provided by USTC
for random streams testing. Two data sequences are represented as USTC0 (initial)
and USTC (secure), respectively. About 100MB data streams are selected for each
sequence.

1.3.3 Refined Properties

From an analysis viewpoint, a Toeplitz hash algorithm has used to get an initial
sequence USTC0 as input and USTC sequence as output. Checking such refined
variations, this is an interesting property for us to make a detailed identification.

From a random testing viewpoint, initial sequences have some difficulties to pass
NIST tests and secure sequences are ensured to pass NIST tests. Some refined dif-
ferences on random characteristics could be distinguished.

1.4 Variant Framework

Various schemes following the top-down strategy are explored to use multiple mea-
sures to partition special phase spaces from a top state set to multiple bottom states
via multilevels of a hierarchy in combinatorial algorithms [20], image analysis and
processing for many years.

The conjugate classification [21] is proposed to apply seven measures in a hier-
archy to partition the kernels of four regular plane lattices on n = {4, 5, 7, 9} cases
for 2D binary images. For 1D cellular automata sequences, global random behaviors
are visualized in 2D maps.



Refined Stationary Randomness of Quantum Random Sequences … 311

For n-tuple bit vectors, the variant logic framework [22] is proposed, various
applications are explored: 3D visual method on random number sequences [23],
variant Pseudorandom Number Generator (PRNG) [24], computational simulation
on quantum interactions [25], noncoding DNA analysis, bat echolocation [26], and
stationary randomness [27].

1.5 Proposed Scheme

For the convenience of testing stationary randomness on random sequences, we
propose a testing system for a stationary random sequence with length N , multiple
segments M are divided from the sequence by a given length m, a 2-tuple pair of
measures can be extracted from a 0-1 segment that are the number of 1 element
and the number of 1 pattern in the segment. All paired measures are composed of a
sequence of M pairs of measures as an ordered measuring set with M elements.

The pairs of the measuring sequence are directly separated as two independent
measuring sequences to keep each parameter in the same order. A total of three
sequences of distinct measures are constructed including two sequences on single
measures and one sequence on 2-tuple measures.

Following this approach, two sets of single measuring sequences are sorted as two
1D numeric arrays as statistical histograms corresponding to 1Dmaps and the 2-tuple
measuring sequence is sorted as a 2D integer array as statistic histograms being a 2D
map. Under the controlling operations on the changes of shift displacement, multiple
results of the three measuring sequences are transformed into 1D statistic histograms
and 2D pseudo-color maps to show effective patterns from the generated sequence
under various positions and conditions on a list of shift operations.

1.6 Organization of the Chapter

This chapter uses a testing system for a stationary random sequence on the system
architecture in Sect. 2. In Sect. 3, test results are provided for two quantum random
sequences. From the results of the visual maps in Sect. 3, result analysis and brief
comparison are described in Sect. 4. And finally in Sect. 5, the main results are sum-
marized.

2 Testing System

To describe the testing system, diagrams are shown in Fig. 1.
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SMST
Input:
A 0-1

Sequence
CP

Output:
Three
Maps /

Maximals
Input: A 0-1 sequence
ST Shifted Transformation
SM Segment Measurement
CP Combinatorial Projection
Output: Three maps / Maximals

Fig. 1 The architecture of testing stationary random sequences

2.1 System Architecture

This system is composed of five parts: Input, Shifted Transformation (ST), Segment
Measurement (SM), Combinatorial Projection (CP), and Output.

The input of the testing system is a selected 0-1 sequence and its output is com-
posed of three maps, two in 1D and one in 2D for visual distributions, and three
maximals to be processed by ST, SM, and CP modules, respectively.

Further technical details are described in Chapter. Stationary Randomness of
Three Types of Six Random Sequences on Variant Maps of this book.

3 Testing Results

Three quantum random sequences are selected from ANU and USTC resources.
Typical results of testing stationary properties for three sequences in nine maps

are shown in Fig. 2. Three sets of results are shown in Fig. 3a, b. In Fig. 3a, six values
of r = {0, 16, 32, 96, 112, 128} are selected to show three pairs of corresponding
maps: 1DP, 2DPQ, and 1DQ for three sequences on the top part. Nine 2D maps of
maximal curves for r = 0− 128 are shown to illustrate refined properties in sta-
tionary random curves on the bottom column. In Fig. 3b, three maximal curves on
three 2D maps are compared. In Fig. 4a–c, three larger maps on r = {48, 64, 80}
are shown corresponding to (a) 1DP, (b) 2DPQ, and (c) 1DQ for three cases. Three
larger maps of three maximal curves are shown in Fig. 5.

3.1 Quantitative Measurements

For a G map, let Gx be an average variation, ΔGx be a region of variations and
GR

x = ΔGx/Gx be a variation ratio. In convenient in comparison, let {Max, Min}
be the {largest, smallest} value on a maximal curve; Max-Min is its difference and
|ANU −USTC | is an absolute difference between ANU and USTC measures.

http://dx.doi.org/10.1007/978-981-13-2282-2_8
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ANU USTC USTC0
1D

P
2D

PQ
1D

Q

Fig. 2 ANU, USTC and USTC0 random sequences on 1DP, 2DPQ, and 1DQ maps

Let (Max − Min)/|ANU −USTC | be a relative ratio between (Max-Min) and
|ANU −USTC |.

4 Result Analysis

Nine maps in Fig. 2 are in three columns. Three 1DP maps have similar distribu-
tions in bell shapes to illustrate Poissonian distributions. Three 2DPQ maps are 2D
distributions and there are different symmetric distributions. Maximal elements in
ANU, USTC, and USTC0 maps show stronger vertical oriented features. Three maps
have a symmetry on left/right directions and have a broken symmetry on up/down
directions. Pseudo-color pixels on three maps are shown in 3D shapes. Compared
with three 1DP maps, three 1DQ maps have similar distributions and more narrow
bell shapes to illustrate sub-Poissonian distributions.

Six groups of results on shift r : {0, 16, 32, 96, 112, 128} are shown in Fig. 3a on
the top columns and each group contains nine distributions in three columns. Three
random sequences have stronger stationary randomness that makes all maps in the
similar stylewithminor changes on shift operations. Largermaps on r = {48, 64, 80}
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Fig. 3 ANU, USTC and USTC0 random sequences on three maps and maximals (a), (b); a Three
pairs of nine variant maps in six groups and three pairs of nine maximal maps; b Three 2D maps of
three maximal curves for ANU, USTC, and USTC0

in Fig. 4a–c provide refined visual information to show their variations in details.
Enlarged and larger maximal curves are shown in Figs. 3b and 5 for r : 0− 128 as
nine 2D maps with values of average variation and region of variations. From the
maximal and minimal stationary regions, there are 1–2% variation ratios for 1DP
and 1DQ and 5% variation ratios for 2DPQ observed. Three curves of maximals on
three 2D maps are illustrated in Figs. 3b and 5.
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1DP ANU USTC USTC0
r=

48
r=

64
r=

80
(a)

2DPQ ANU USTC USTC0

r=
48

r =
64

r=
80

(b)

Fig. 4 ANU, USTC, and USTC0 random sequences random sequences on enlarged maps, r =
{48, 64, 80}; a 1DP; b 2DPQ; c 1DQ
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1DQ ANU USTC USTC0
r
=
48

r
=
64

r
=
80

(c)

Fig. 4 (continued)

4.1 Relative Ratios on Differences

Details of three maximal measures are compared in Table 1. Three parameters
{Qx ,ΔQx , QR

x } on 1DQ maps have 1 values on Max-Min and |ANU −USTC |
ratios; there are 81 on Px and 1.6 on PR

x and there are 65 on PQx and 7.9 on PQR
x

observed.
From this set of testing results, two samples of ANU and USTC are showing

similar stationary properties and USTC0 with different stationary properties among
the three sequences. Significant differences of relative ratios are observed from2DPQ
variation measurements.
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Fig. 5 Three enlarged 2D
maps of three maximal
curves for ANU, USTC, and
USTC0
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Table 1 Comparisons on three measures for ANU, USTC, and USTC0 samples

5 Conclusion

It is feasible to evaluate stationary randomness for a random sequence using the
testing system. From three maps {1DP, 1DQ, 2DPQ}, maximals are identified for
shift r : 0− m. Three 2D maps of maximal curves provide refined characteristics to
evaluate stationary randomness. Further explorations and applications are required
to check the testing system on other applications.
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Using Information Entropy to Measure
Stationary Randomness of Quantum
Random Sequences

Weizhong Yang, Yamin Luo, Zhefei Li and Jeffrey Zheng

Abstract Different statistical measurements can be used to determine stationary
randomness for random sequences. This chapter proposes a testing scheme for ran-
dom sequences using information entropy as measurements. Datasets are collected
from University of Science & Technology of China (USTC), three quantum random
sequences are selected for testing.Multiple results are created on threemaps, entropy
curves, andquantitativemeasurements of stationary randomness are compared.Three
differences ofMax-Min entropy variation ratios are bounded in [0.08, 0.09]%region.
The whole structure has measurable stationary properties.
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1 Introduction

From a statistical viewpoint, various parameters of statistical process [2–4, 7] could
be stationary invariant [6] under shift operations on random sequences. Using variant
maps [8], it is a normal approach to transfer a long random sequence into 1D and 2D
statistical distributions as three maps: 1DP, 1DQ, and 2DPQ [9]. For each map, it is
easy to divide each number by the total number to transfer a counting number into
a probability measure. By this way, three sets of probability measures can be gen-
erated. Applying information entropy function to summarize all pairs of probability
parameters, one map corresponds an information entropy measurement determined
by the distribution for stationary randomness.

2 Test Methodology

The test for a stationary randomness requires a sequence with length N . For the given
input sequence,multiple segmentsM are divided from the sequence by a given length
m, a 2-tuple pair of measures can be extracted from a 0-1 segment that are the number
of 1 element and the number of 1 pattern in the segment. All paired measures are
composed of a sequence of M pairs of measures as an ordered measuring set with
M elements.

The pairs of the measuring sequence are directly separated as two independent
measuring sequences to keep each parameter in the same order. A total of three
sequences of distinct measures are constructed including two sequences on single
measures and one sequence on 2-tuple measures.

Following this approach, two sets of single measuring sequences are sorted as two
1D numeric arrays as statistical histograms corresponding to 1Dmaps and the 2-tuple
measuring sequence is sorted as a 2D integer array as statistic histograms being a 2D
map. Under the controlling operations on the changes of shift displacement, multiple
results of the three measuring sequences are transformed into 1D statistic histograms
and 2D pseudo-color maps to show effective patterns from the generated sequence
under various positions and conditions on a list of shift operations.

2.1 Dataset

2.1.1 USTC Resource

In the Key Laboratory of Quantum Information, USTC, CAS, and quantum random
number sequences are generated [5]. This type of true random sequences supports
advanced quantum communication devices of QKD systems [1].
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SMST
Input:
A 0-1

Sequence
CP

Output:
Three
Maps /

Entropies

Input: A 0-1 sequence
ST Shifted Transformation
SM Segment Measurement
CP Combinatorial Projection
Output: Three maps / Entropies

Fig. 1 Methodology for information entropy testing stationary random sequences

More than 20GB of quantum random number sequences are provided by USTC
for random streams testing. Three sequences from eight sequences are selected from
three stages (1 Initial, 2 Secure, and 4 Filtered). Each random sequence has a length
of about 8MB.

3 Method

3.1 Methodology

This method consists of five steps (Fig. 1): Input, Shifted Transformation (ST), Seg-
ment Measurement (SM), Combinatorial Projection (CP), and Output.

The input of the testing system is a selected 0-1 sequence and its output is com-
posed of three maps, two in 1D and one in 2D for visual distributions, and three
maximals to be processed by ST, SM, and CP.

3.2 Description of Steps

The testing system consists of three steps: {ST, SM CP}.

Input: X N = m ∗ M bit sequence; m segment length; M total segments; r shift
length;
Output: Three maps {1DP, 1DQ, 2DPQ}; Three Maximals {1DPx , 1DQx , 2DPQx}
Process: Shifting r position from X to be Y = X (r) in ST. Making segment measur-
ing sequences in SM and then projecting three measuring sequences as three maps
and extracting three maximals in CP.

Let X,Y be 0-1 sequences with N elements, ST takes the sequence X as input,
then shift r position on the whole sequence to be the shifted sequence Y = X (r)
(i.e., a cyclic shift right + or shift left −).
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Y = X (r),Y [I ] = X [I ± r ], I ± r(modN ), (1)

0 ≤ I < N ; X [I ],Y [I ] ∈ {0, 1}

SM takes the shifted vector as inputted and divides the vector into M segments. For
the i th sub-vector 0 ≤ i < M on the j th position 0 ≤ j < m, denoted as Yi, j .

This sequence at the end of sub-vectors after the segmenting operation forms an
m ∗ M matrix,m positions for the i th complete rowvector in the sequence correspond
to a pair of 2-tuple measures: (pi , qi ).

Y = {Yi }M−1
i=0 (2)

Yi = {Yi,0,Yi,1, . . . ,Yi, j , . . . ,Yi,m−1} (3)

0 ≤ i < M, 0 ≤ j < m

Yi → (pi , qi ), 0 ≤ i < M (4)

{Yi }M−1
i=0 → {(pi , qi )}M−1

i=0 (5)

The pair of 2-tuple measures (pi , qi ) is determined by the following formula:

Yi, j = Y [J ] ∈ {0, 1}; J = i × m + j, (6)

0 ≤ i < M, 0 ≤ j < m, 0 ≤ J < m × M

pi =
m−1∑

j=0

Yi, j ,Yi, j ∈ {0, 1}, 0 ≤ pi ≤ m; (7)

qi =
m−1∑

j=0

[(Yi, j−1,Yi, j ) == (0, 1)], (8)

j − 1(mod m), 0 ≤ qi ≤ �m/2�;

That is, X = 0011010010, N = 10, M = 2,m = 5; (p0 = 2, q0 = 1); (p1 = 2,
q1 = 2).

The output from SM are M pairs of ordered 2-tuple measures {(pi , qi )}M−1
i=0 .

CP consists of Split and Projection steps. Split adapts the 2-tuple measuring
sequence {(pi , qi )}M−1

i=0 , splitting it into two independent measuring sequences:
{pi }M−1

i=0 , {qi }M−1
i=0 to keep the original order invariant.

The Three measure sequences are {pi }M−1
i=0 , {qi }M−1

i=0 , {(pi , qi )}M−1
i=0 .

The Projection step turns the sequence into histograms: Project Array (PA), Color
Map (CM), and Get Entropy (GE). For three measuring sequences, two types of 1D
and 2D measures will be processed separately.

The PA processes measuring sequences to transform them into integer arrays and
the CM will organize them on either normalized histograms (1D measures) or color
maps (2D measures), respectively.
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The 1D measures involve two measuring sequences: {pi }M−1
i=0 , {qi }M−1

i=0 . Let
P[m + 1], Q[�m/2� + 1] and N P[m + 1], NQ[�m/2� + 1] be two 1D (integer,
float) arrays to represent the corresponding elements.

The 1DP statistic histogram is generated from a sequence {pi }M−1
i=0 , N P, P

two arrays (floating point, integer) with (m + 1) elements. For the j th element
N P[ j], P[ j], 0 ≤ j ≤ m, and 1DPe the entropy element, the output can be obtained
by the following procedure:

Initialization: ∀N P[ j] = 0.0,
P[ j] = 0, 0 ≤ j ≤ m;

Calculation: f or(i = 0; i < M; i + +)

{P[pi ] + +; }
Normalization: f or( j = 0; j ≤ m; j + +)

{N P[ j] = P[ j]/M; }
Get Entropy: 1DPe = −∑m

i=0 N P[ j] ∗ log2(N P[ j])
In the 1DP map, the PA corresponds to Initialization and Calculation; the MA

handles Normalization and the GE determines the entropy element of the map.
The 1DQ statistic histogram is generated from a sequence {qi }M−1

i=0 , NQ, Q two
arrays (floating point, integer) with (�m/2� + 1) elements; For the j th element
NQ[ j], Q[ j], 0 ≤ j ≤ �m/2�, and 1DQe the entropy element, the output can be
obtained from the following procedure:

Initialization: ∀NQ[ j] = 0.0,
Q[ j] = 0, 0 ≤ j ≤ �m/2�;

Calculation: f or(i = 0; i < M; i + +)

{Q[qi ] + +; }
Normalization: f or( j = 0; j ≤ �m/2�; j + +)

{NQ[ j] = Q[ j]/M; }
Get Entropy: 1DQ e = −∑�m/2�

j=0 NQ[ j] ∗ log2(NQ[ j])

Using P, N P, Q, NQ arrays, it is possible to generate corresponding 1D statis-
tical histograms as 1D maps.

In the 1DQ map, the PA corresponds to Initialization and Calculation; the MA
handles Normalization and the GE identifies the entropy element of the map.

The 2Dmeasures specially processes one measuring sequence: {(pi , qi )}M−1
i=0 . Let

PQ, N PQ be two 2D (integer, float) arrays.
A 2DPQ statistic histogram is generated from a sequence {(pi , qi )}M−1

i=0 , PQ,

N PQ 2D arrays with (m + 1) × (�m/2� + 1) elements. For the i, j th element
PQ[i, j], N PQ[i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�, and 2DPQe the entropy element,
their values can be obtained by the following procedure:
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Initialization: ∀PQ[i, j] = 0,
0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�;

Calculation: f or(i = 0; i < M; i + +)

{PQ[pi , qi ] + +; }
Pseudo-color: Matching proper color for

∀PQ[i, j], 0 ≤ i ≤ m, 0 ≤ j ≤ �m/2�
Normalization: f or( j = 0; j ≤ m; j + +){

f or( j = 0; j ≤ �m/2�; j + +)

{N PQ[i, j] = PQ[i, j]/M; }}
Get Entropy: 1DPQe = −∑�m/2�

j=0

∑m
i=0 N PQ[i, j] ∗ log2(N PQ[i, j])

In the 2DPQ map, the PA corresponds to Initialization and Calculation; the MA
handles Pseudo-color, Normalization and the GE identifies the entropy element of
the map.

Through the CP module, three measuring sequences are transformed into two
1D arrays and one 2D array with (m + 1), (�m/2� + 1) and (m + 1) × (�m/2� + 1)
clusters.

The output of the testing system are three maps {1DP, 1DQ, 2DPQ} and three
entropies {1DPe, 1DQe, 2DPQe} as expected statistic distributions and representa-
tives of the input 0-1 sequence, respectively.

4 Results

Three quantum random sequences are selected from USTC {1, 2, 4} streams.
Typical results of testing stationary properties for three sequences in nine maps

are shown in Fig. 2. Top part contains three 2D maps of global entropy curves on
r = 0 − 128 condition. Three 2Dmaps of entropy curves for r = 0 − 128 are shown
to illustrate refined properties in stationary random curves. Three sets of variant maps
in r = 0 and their enlarged entropy curves on r = 0 − 128 are shown in three columns
to illustrate corresponding 1DP, 1DQ, and 2DPQ maps for three sequences. Three
larger maps of three global entropy curves are shown in Fig. 3.

For a G map, let Ge be an average entropy variation, ΔGe be a region of entropy
variations, and GR

e = ΔGe/Ge be an entropy variation ratio. Three entropy curves
on three 2Dmaps are compared. Three entropy measurements and {Max, Min, Max-
Min} values for three sequences are listed in Table1. Three variation ratios and their
numeric quantities are listed in Table2.

5 Result Analysis

Three 2D maps of global entropy curves show stronger stationary randomness under
shift operations on r = 0 − 128. Three entropy curves on each map are three stable
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Fig. 2 Three USTC random sequences:{1, 2, 4} on 2DPQ, 1DP, and 1DQ maps and r = 0 − 128
entropy curves
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Fig. 3 Three enlarged 2D
maps of global entropy
curves for three USTC
random sequences
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Table 1 Comparisons on three measures for three USTC samples

Table 2 Qe + Pe : PQe measures

horizontal lines. From a global viewpoint, there are significant differences compared
with entropy curves between No. 1 (PQ and P) and No. 2 & 3 cases. Both No. 2 and
3 are in similar measures.

Nine variantmaps in 2DPQ, 1DP, and 1DQ, three 2DPQmaps are 2D distributions
and there are different symmetric distributions. Maximal elements in three maps
show stronger vertical-oriented features. Three maps have a symmetry on left/right
directions and have a broken symmetry on up/down directions. Pseudo-color pixels
on three maps are shown in 3D shapes. Three 1DP maps have similar distributions
in bell shapes to illustrate Poissonian distributions. Compared with three 1DP maps,
three 1DQ maps have similar distributions and more narrow bell shapes to illustrate
sub-Poissonian distributions.

However, nine enlarged entropy curves for each type have significantly different
variations and distributions. Local curves are bounded in narrow regionswith random
variations.

It is difficult to tell detailed differences from entropy curves. Quantitative mea-
surements in Table 1 are helpful to use numeric values in comparison. The difference
of entropy variation ratios are on three sets, QR

e : [0.26, 0.35]%, PR
e : [0.19, 0.27]%,
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and PQR
e : [0.12, 0.20]%. Three Max-Min values of {QR

e , PR
e , PQR

e } are bounded
in [0.08, 0.09]%. The whole structure illustrates measurable stationary properties.
In Table 2, it is interesting to notice that Qe + Pe ∼ PQe.

All variation measurements are shown in distinct stationary randomness to be
measured by entropy approaches.

6 Conclusion

Information entropy is a useful measurement to determine stationary randomness.
Three quantum random sequences are used, distinct stationary randomness can be
identified from both variant maps and numeric measurements. To explore various
conditions of stationary properties, further investigations are required to explore
theoretical boundaries on variant maps.
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Visual Maps of Variant Combinations
on Random Sequences

Jeffrey Zheng and Jie Wan

Abstract Random sequences play the key role in network security applications.
Randomness testing schemes are very important to ensure the randomness qualities
for relevant sequences. This chapter proposes a visual scheme based on variant
construction tomeasure sequences to intuitively show some combinatorial properties
of key stream generated by stream ciphers. Basic models are described. This scheme
provides a flexible framework for the variant measure method on the key stream of
stream ciphers to describe randomness in various combinatorial maps.

Keywords Visual scheme · Variant measure · Combinatorial projection
Random sequence

1 Introduction

Random numbers play an important role in many network protocols and encryption
schemas on various network security applications [1], for example, visual crypto,
digital signatures, authentication protocols and stream ciphers. To determinewhether
a randomsequence is suitable for a cryptographic application, theNISThas published
a series of statistical tests as standards.
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In network security applications, the stream ciphers play a key role that have faster
throughput and easier to implement compared to block ciphers [2]. RC4, the famous
stream cipher, is suitable for large packets in Wireless LANs [3]. It has been used
for encrypting the internet traffic in network protocols such as Sockets Layer (SSL),
Transport Layer Security (TLS), Wi-Fi Protected Access (WPA), etc. [2].

eSTREAM project collected stream ciphers from international cryptology soci-
ety [4] to promote the design of efficient and compact stream ciphers suitable for
widespread adoptions. After a series of tests, algorithms submitted to eSTREAM are
selected into two profiles. One is more suitable for software and another one is more
suitable for hardware. Non-linear structures and recursive are playing the essential
roles in new development.

Different visual schemes are required to test randomness of random sequences on
different stream ciphers. Along this direction, this chapter proposes a flexible frame-
work to handle a set of mete measurements on different combinatorial projections.

2 Variant Combinatorial Visualization

Architecture of variant visualization is shown in Fig. 1.
The variant visualization architecture is separated into four core components:

EAC, SCC CC and VC.

• RGC Randomness Generate Component generate a random sequence;
• VSC Variant Statistic Component handles the statistic process using the variant
measure method [5];

• CC Combinatorial Component chooses combinations;
• VC Visualization Component makes visualization based on SCC measures and
CC vectors.

VSC Variant Statistic Component; 
CC Combinatorial Component 
 VC Visualization Component 

Fig. 1 Visualization architecture
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The input n is the length of the binary sequence. The stream ciphers could be
changed to any stream cipher that can generate binary sequence. This section focuses
on the variant measure module and the visual method module.

A visual example of RC4 will be described in Sect. 2.5.

2.1 Variant Logic Framework

The variant logic framework has been proposed in [6]. Li [7] used the variant mea-
sure method to generate different symmetry results [5] based on cellular automata
schemes [8]. Under such construction, even some random sequences show symmetry
properties in distributions.

Under variant construction, the variant conversion operator can be defined as
follows:

C(x, y) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥, x � 0, y � 0

+, x � 0, y � 1

−, x � 1, y � 0

�, x � 1, y � 1

(1)

It is convenient to list relevant variant logic variables shown in Table 1.
In the variant measure method, each sequence is converting from binary

sequence to probability which generated by counting the number of each variable
in {⊥,+,−,�} and computes the probability of each variable. The measurement
method is shown in Table 1.

Table 1 The variant measure method

(a) Counting method (b) Probability computing

Variant variable Number of type Total number Measure
parameters

Number of type

⊥ N⊥ N � N⊥ + N� +
N+ + N−

P⊥ N⊥/N

� N� P� N�/N
+ N+ P+ N+/N

− N− P− N−/N
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The variant measure method provides a set of results in measures of different
0–1 sequences. The following mechanism can transfer stream cipher sequences as
relevant measures.

The essential models of variant scheme are described as follows.

2.2 VSC Variant Statistic Component

The VSC component converts the binary sequence to variant sequence in VCM
module, and to compute probabilities and entropies in PECM module, respectively.
The component is shown in Fig. 2.

VCM Variant Conversion Module
VCM module transfers input binary sequences by following steps:

Step 1. Generate an n bit binary sequence S � S1S2S3 . . . Sn by a stream cipher.
Step 2. Shift X to left by M bit (M is the length of shifting) and generate a new

binary sequence S′ � S′
1S

′
2S

′
3 . . . S

′
n−M � S1+MS2+M . . . Sn .

Step 3. Convert two sequences: S and S′ to a variant sequence V � Vi �
C

(
Si,S′

i

)
, i � 1, 2, 3 . . . (n − M).

Step 4. Separate V into n/N parts. N is the length of each part and M ≤ N ≤ n to
form a set of variant sequence groups

G � {
G1,G2, . . . ,Gn/N

}

� {{V1, V2, . . . , VN }, . . . , {Vn−N , Vn−N+1, . . . , Vn}}

Step 5. Separate each item in G into N/M parts to establish a sequence group

G � {{{V1, . . . , VM }, . . . , {VN−M+1, . . . , VN }}, . . . ,
{{Vn−N , . . . , Vn−N+M }, . . . , {Vn−M , . . . , Vn}}}

VCM Variant Conversion Module 
PECM Probability and Entropy Computing Module 

Fig. 2 Variant statistic component
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PECM Probability and Entropy Computing Module
PECM converts a variant sequences group to separate it into several parts to com-
pute probability and entropies. The equations computing the parameters have been
described in Table 1. The main steps are performed as follows:

Step 6. Compute the probability vector P � {P⊥, P+, P−, P�} of each part in G′;
Step 7. Calculate the distribute probability vector D � {D⊥, D+, D−, D�} of each

part in G based on P vector;
Step 8. Evaluate the entropy vector {E⊥, E+, E−, E�} from the D vector.

2.3 CC Combinatorial Component

IIn the CC component, it can be separated into two modules. One is SM module to
form the vector selecting and another one is VDM module to perform the visualiza-
tion.

Visual data is a set of E vectors as input for VC. For E vector, choose a projection
as a visual vector to compute the visual result from E vectors. So there will be 16
visual results.

Base on the same number of variables in a combination, the combination set can
be integrated into 5 parts. i.e. The selected number of variables in the combination
is in 0-4.

Let the classification be EC � {EC0, EC1, EC2, EC3, EC4}. Since the EC0 is
empty, it can be ignored. Only four distributions are of concern in Sect. 2.4.

2.4 Visualization Component

According to the variant measure method, in the rectangular axis, let E⊥ be the
positive axis of X, E� be the negative axis of X, E+ the positive axis of Y , E− be the
negative axis of Y . The axis is shown in Fig. 3.

For EC1 � {{E⊥}, {E+}, {E−}, {E�}}, points are distributed to the axis.
For EC2 � {{E⊥, E+}, {E⊥, E−}, {E⊥, E�}, {E+, E−}, {E+, E�}, {E−, E�}},

points are distributed in the shadow area in Fig. 4.
For EC3 � {{E⊥, E+, E−}, {E⊥, E+, E�}, {E⊥, E−, E�}, {E+, E−, E�}}, points

are distributed in the area of EC1 and the area of EC2.
For EC4 � {{E⊥, E+, E−, E�}}, points are distributed in Fig. 5.
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Fig. 3 Visualization axis

Fig. 4 Distribution areas of
EC2

Fig. 5 Distribution areas of
EC4
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2.5 Example

An example is given step by step to show how the algorithm runs. In the example,
n, N and M are, respectively, assigned to 40, 16 and 8.

Step 1. Input a 35 bit binary sequence, {010100101110101100101101011
1101101010101}

Step 2. Generates S′, {11101011001011010111101101010101}.
Step 3. GeneratesV , {+�+−+⊥�+−−�⊥�+−�⊥+�+�+−�⊥�−�−+−�}.
Step 4. Separate V into a G vector. The G vector is

{{+� + − + ⊥� + − − �⊥� + −�}, {⊥ + � + � + −�⊥� − � − + − �}}.
Step 5. Separate the G into the G′ vector. The G′ vector in the example is

{{+� + − + ⊥�+,− − �⊥� + −�}, {⊥ + � + � + −�,⊥� − � − + − �}}.
Step 6. Generate probability vector P of each sequence in G′. The P vector of

{+� + − + ⊥�+} is {P⊥ � 0.125, P+ � 0.5, P− � 0.125, P� � 0.25}.
Step 7. Compute the distribute probability vector D of each sequence in G from P.

The D vector of {+� + − + ⊥�+,− − �⊥� + −�} is shown in Fig. 6.

Step 8. Compute the entropy vector E of each sequence in G from D. The E vector
of {+� + − + ⊥� + − − �⊥� + −�} is shown in Fig. 7.

Fig. 6 D vectors of {+� + − + ⊥�+,− − �⊥� + −�}

Fig. 7 E vectors of {+� + − + ⊥� + − − �⊥� + −�}
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Fig. 8 Visual result of the example

Step 9. Compute visual results from E vectors. In the E vectors of
{+� + − + ⊥� + − − �⊥� + −�}. If the selection is {E⊥}, points will
be (0.0, 0.0). If the selection is {E⊥, E�}, points will be (0.0,−0.693147)
and (0.0, 0.0). If the selection is {E�, E−}, points will be {E− − |E�|} �
(0.0, 0.0) and (0.0, 0.693147). If the selection is {E⊥, E�, E−}, points
will be {E⊥, E− − |E�|} � (0.0, 0.0) and (0.0, 0.693147).

Step 10. Separate visual results to EC classification. Visual results of the G in the
example are shown in Fig. 8.
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3 Result

3.1 Visual Result of RC4

The initial: {n : 128,000,N : 128,M : 16}
The visual result (Fig. 9).
The initial: {n : 128,000,N : 128,M : 24}
The visual result (Fig. 10).
The initial: {n : 128,000,N : 1000,M : 8}
The visual result (Fig. 11).
The initial: {n : 100,000,N : 100,M : 24}
The visual result (Fig. 12).

Fig. 9 Visual result of RC4 {n : 128000,N : 128,M : 16}
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3.2 Visual Result of HC256

The initial: {n : 128,000,N : 128,M : 16}
The visual result (Fig. 13).
The initial: {n : 128,000,N : 128,M : 24}
The visual result (Fig. 14).
The initial: {n : 100,000,N : 100,M : 8}
The visual result (Fig. 15).
The initial: {n : 100,000,N : 100,M : 16}
The visual result: (Fig. 16).

Fig. 10 Visual result of RC4 {n : 128000,N : 128,M : 24}



Visual Maps of Variant Combinations on Random Sequences 343

Fig. 11 Visual result of RC4 {n : 128000,N : 1000,M : 8}
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Fig. 12 Visual result of RC4 {n : 100000,N : 100,M : 24}
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Fig. 13 Visual result of HC256 {n : 128000,N : 128,M : 16}



346 J. Zheng and J. Wan

Fig. 14 Visual result of HC256 {n : 128000,N : 128,M : 24}
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Fig. 15 Visual result of HC256 {n : 100000,N : 100,M : 8}
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Fig. 16 Visual result of HC256 {n : 100000,N : 100,M : 16}
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4 Conclusion

The visual results show the similar symmetry property of sequences generated by
RC4 and HC256. They are showing interesting distributions and can be significantly
distinguished from their combinatorial maps. From our models and illustrations,
various maps can be integrated by their combinatorial projections to show different
spatial distributions on random sequences. Under this configuration, the variant mea-
sure method provides a new analysis tool for stream cipher applications in further
explorations.
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Part VIII
Applications—DNA Sequences

Random numbers should not be generated with a method chosen at
random.

—Donald Knuth

Natural selection is anything but random.

—Richard Dawkins

Biology is the most powerful technology ever created.

DNA is software, proteins are hardware, cells are factories.

—Arvind Gupta

Initial approaches of variant construction on DNA sequences were developed from
2012. For example, Randomness Measurement of Pseudorandom Sequence Using
different Generation Mechanisms and DNA Sequence. Journal of Chengdu
University of Information Technology. 27(6): 548–555, 2012; 2D Conjugate Maps
of DNA Sequences, Journal of Information Security Vol. 4 No. 4 (2013), https://
doi.org/10.4236/jis.2013.44021; Pseudo DNA Sequence Generation of Non Coding
Distributions Using Variant Maps on Cellular Automata. Applied Mathematics 5:
153–174, 2014; Variant Map Construction to Detect Symmetric Properties of
Genomes on 2D Distributions. J Data Mining Genomics Proteomics 5:150, 2014;
Variant Maps to Identify Coding and Non-coding DNA Sequences of Genomes
Selected from Multiple Species, Biol Syst Open Access 2016, 5:1. https://doi.org/
10.4172/2329-6577.1000153 and Mapping Whole DNA Sequence on Variant
Maps, Asunam 2017: 1037–1040. https://doi.org/10.1145/3110025.3110140.

This direction contains extensive results among various applications.
This part of DNA sequences is composed of two chapters (23 and 24).
Chapter “Variant Map System to Simulate Complex Properties of DNA

Interactions Using Binary Sequences” describes to use binary sequences to simulate
DNA interactions under four meta basis. Different stream ciphers and real DNA
sequences are applied in comparison. Their maps are illustrated similarity and
differences among selected sequences.

http://dx.doi.org/10.4236/jis.2013.44021
http://dx.doi.org/10.4236/jis.2013.44021
http://dx.doi.org/10.4172/2329-6577.1000153
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http://dx.doi.org/10.1145/3110025.3110140


Chapter “Whole DNA Sequences of Cebus capucinus on Variant Maps” applies
whole DNA sequences of Cebus Capucinus (White Face Monkey) on variant maps.
This set of maps has shown in various distributions of complex characteristics.
Further researches are required.
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Variant Map System to Simulate
Complex Properties of DNA Interactions
Using Binary Sequences

Jeffrey Zheng, Weiqiong Zhang, Jin Luo, Wei Zhou and Ruoyu Shen

Abstract Stream cipher, DNA cryptography and DNA analysis are the most impor-
tant R&D fields in both Cryptography and Bioinformatics. HC-256 is an emerged
scheme as the new generation of stream ciphers for advanced network security. From
a random sequencing viewpoint, both sequences of HC-256 and real DNA data may
have intrinsic pseudo-random properties respectively. In a recent decade, many DNA
sequencing projects are developed on cells, plants and animals over the world into
huge DNA databases. Researchers notice that mammalian genomes encode thou-
sands of large noncoding RNAs (lncRNAs), interact with chromatin regulatory com-
plexes, and are thought to play a role in localizing these complexes to target loci
across the genome. It is a challenge target using higher dimensional visualization
tools to organize various complex interactive properties as visual maps. The Variant
Map System VMS as an emerging scheme is systematically proposed in this chapter
to apply multiple maps that uses four Meta symbols as same as DNA or RNA rep-
resentations. System architecture of key components and core mechanism on the
VMS are described. Key modules, equations and their I/O parameters are discussed.
Applying the VM System, two sets of real DNA sequences from both sample human
(noncodingDNA) and corn (codingDNA) genomes are collected in comparisonwith
pseudo DNA sequences generated by HC-256 to show their intrinsic properties in
higher levels of similar relationships among relevant DNA sequences on 2D maps.
Sample 2D maps are listed and their characteristics are illustrated under controllable
environment. Visual results are briefly analyzed to explore their intrinsic properties
on selected genome sequences.
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Keywords Pseudo-random number generator · Stream cipher · HC-256
Binary to DNA · Pseudo DNA sequence · Large noncoding · DNA analysis
2D map · Visual distribution · Variant map system

1 Introduction

Stream ciphers [1, 2] play a key role in modern network security [3, 4] especially
in multimedia network environments; its core component—pseudo random number
generation mechanism [5–7]—takes the central position in modern cryptography
[8, 9]. Associated with advanced development of bioinformatics, advanced DNA
sequencing and analyzing techniques [10, 11] have significantly progressed over the
past decade.

1.1 DNA Cryptography

DNA cryptography makes joined research in the field of DNA computing and cryp-
tography. Scholars over the world focused on this field and different results are
published such as simulating DNA evolution [12], DNA pseudorandom number
generator [13–16], DNA cryptography [9, 17, 18] and so on. However in current sit-
uation, DNA cryptography is still at an earlier stage as an emerging area of advanced
cryptography.

In typical results of DNA cryptography on encryption, different coding schemes
could be randomly selected. E.g. the algorithm in paper [17] applies an encoding for-
mula to express the plaintext onDNAsequence: {00→C, 01→T , 10→A, 11→G};
however in paper [18], the same author uses the coding formula {00→A, 01→T ,
10→C, 11→G} for the plaintext on DNA sequence. In encryption environment, all
4!�24 possible encoding methods could be equally used in different applications.

1.2 Stream Cipher HC-256

Stream ciphers are an important class of encryption algorithms. A stream cipher
is a symmetric cipher which operates with a time-varying transformation on indi-
vidual plaintext digits. The ECRYPT Stream Cipher Project (eSTREAM) [1] was
a multi-year effort, running from 2004 to 2008, to promote the design of efficient
and compact stream ciphers suitable for widespread adoption. HC-256 is a stream
cipher designed to provide bulk encryption in software at high speeds while permit-
ting strong confidence in its security. A 128-bit variant was submitted in 2004 as an
eSTREAM cipher candidate; it has been selected as one of the four final contestants
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in the software profile [2, 4] in 2008 as the most advanced scheme for stream cipher
applications in advanced network environment.

1.3 Large Noncoding DNA and RNA

In relation to DNA analysis, visualization methods play a key role in the Human
Genome Project (HGP) [19]. After HGP completed successfully, a public research
consortium—the Encyclopedia of DNA Elements (ENCODE) were launched by the
National Human Genome Research Institute (NHGRI) in 2003 to find all functional
elements in the human genome as one of the most critical projects by NHGRI to
explore genomes after HGP.

In 2012, ENCODE released a coordinated set of 30 papers published in key
Journals ofNature,GenomeBiology andGenomeResearch.These publications show
that approximately 20% of noncoding DNA in the human genome is functional while
an additional 60% is transcribedwith no known function [20].Much of this functional
non-coding DNA is involved in the regulation of the expression of coding genes [10].
Furthermore the expression of each coding gene is controlled by multiple regulatory
sites located both near and distant from the gene. These results demonstrate that
gene regulation is far more complex than was previously believed [11]. Mammalian
genomes encode thousands of large noncoding RNAs (lncRNAs), many of which
regulate gene expression, interact with chromatin regulatory complexes, and are
thought to play a role in localizing these complexes to target loci across the genome
[21]. Associated with different international projects, larger numbers of Genome
Databases are established and mass Genome-wide gene expression measurements
are developed.

Due to huge amount of DNA sample collections and extremely difficulties to
determine their variation properties in wider applications [19, 22–27], it is essential
for us to extend advanced DNA analysis models, methods and tools in further exten-
sions to explore emerging models and concepts to interpret complex interactions
among complicated sets of DNA sequences in real environments.

1.4 DNA Analysis

DNAanalysis plays a key role inmodern genomic application [19]. TheHGP is heav-
ily relevant to advanced DNA sequencing and analysis techniques. DNA sequences
are composed of fourMeta symbols on {A, T, G, C} as basic structure. Classical DNA
double helix structure makes the first level of pair construction of DNA sequences
with A & T and G& C complementary structures as the first level of symmetric rela-
tionships. A typical DNA sequencing result is shown in Fig. 1a. Four Meta symbols
could be separated as four projective sequences.
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Fig. 1 Modern DNA
sequencing and their
correspondences on Variant
Logic; a a sample DNA
sequencing and its four
projection sequences; b four
Meta DNA symbols and
linkages to variant logic

(a) (b)

DNA  
Sequences

Variant 
Logic

G 0-0 : 

A 0-1: 

T 1-0: 

C 1-1: 

In ENCODE, recent Genomic analysis results are indicated that encoded
sequences have only 20% in human genomes and around 80% genomes look like
useless sequences. Under further assumptions, it seems that additional symmetric
properties are required to satisfy the second, third and higher levels of structural
constructions to explore complex interactive properties [10, 11, 19–29].

In current situation, it is necessary for advanced researchers to shift targets in
computational cell biology from directly collecting sequential data tomaking higher-
level interpretation and exploring efficient content-based retrieval mechanism for
genomes. Using higher dimensional visualization tools, their complex interactive
properties could be organized as different visual maps systematically.

1.5 Variant Construction and DNA

Variant construction is a new structure composed of logic, measurement and visual-
izationmodels to analyze 0–1 sequences under variant conditions. The further details
of this construction can be checked on variant logic [30, 31], 2D maps [32, 33], vari-
ant pseudo-random number generator [34], DNAmaps [35] and variant phase spaces
[33]. Since the variant system uses another set of four Meta symbols {⊥,+,−,�} to
describe system, a typical correspondence shown in Fig. 1b may provides a natural
mapping between DNA and variant data sequences.

Since DNA sequences are played an essential role to explore different symmetric
properties based on analysis approaches, in this chapter, measurement and visual
models are proposed systematically to use a fixed segment structure to measure four
Meta symbols distributions in their spectrum construction. Under this construction,
refined symmetric features can be identified from various polarized distributions and
further symmetric properties are visualized.
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1.6 Target of This Chapter

The target of this chapter is to establish the Variant Map System (VMS) as a uni-
fied framework to analyze complex DNA interactions on both artificial and natural
DNA sequences. The VMS has designed to use variant logic schemes [30–35] apply-
ing multiple maps on four Meta symbols as DNA or RNA representations. System
architecture of key components and core mechanism on the VMS are described. Key
modules, equations and their I/O parameters are discussed. Applying the VM Sys-
tem, two sets of real DNA sequences from both human (noncoding DNA) and corn
(coding DNA) genomes are collected in comparison with pseudo DNA sequences
generated artificially by HC-256 to show their intrinsic properties in higher levels of
similar relationships among DNA sequences on 2D maps. Further descriptions and
discussions are provided respectively.

2 System Architecture

In this section, system architecture and their core components are discussed with the
use of diagrams. The refined definitions and equations of this system are described
in the next section—Variant Map System.

2.1 Architecture

The four components of a variant map system are the Binary To DNA (BTD), the
Binary Probability Measurement (BPM), theMapping Position (MP), and the Visual
Map (VM) as shown in Fig. 2.

The architecture is shown in Fig. 2a with the key modules of the four core com-
ponents being shown in Fig. 2b–e respectively.

In the first part of the system, the t-th sequence Y t on either {0, 1} or {A, G, T,
C} are input data to get into the BTD module. The main function of the BTM is to
output a unified sequence Xt either to transfer a 0–1 sequence or to keep a DNA
sequence as a pseudo or pure DNA sequence under a set of controlled parameters.

Using this unified DNA sequence, four vectors of probability measurements are
created from the t-th selected DNA sequence with Nt elements as an input. Multiple
segments are partitioned by a fixed number of n elements for each segment; at least
mt segments can be identified by the BPM component. Next component uses the four
vectors of probability measurements and a given k value as input data, a pair of posi-
tion values are created for each Meta symbol. Four pairs of values are generated by
the MP component. Then, in order to process multiple selected DNA sequences, all
selected sequences are processed by the VM component and each sequence may pro-
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Fig. 2 Variant Map System VMS and key components a Architecture; a BTD component; b BPM
component; c MP component; d VM component

vide a set of pair values to generate relevant variant maps to indicate their distribution
properties respectively.

With eight parameters in an input group, there are three sets of parameters in the
intermediate group and one set of parameters in the output group.
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The three groups of parameters are listed as follows.

Input Group:

t An integer indicates the t-th DNA sequence selected, 0 ≤ t < T
r An integer indicates a relationship distance among elements in a binary

sequence, r ≥ 1
mode An integer indicates the mode of elements in a sequence, mode ∈ {0, 1, . . .},

mode�0 for a DNA sequence, mode�1 for a binary sequence
Nt An integer indicates the number of elements in the t-th DNA sequence, Nt 	

r
Y t An input data vector with Nt elements, Y t ∈ {

DNt | mod e�0, BNt | mod e�1
}

n An integer indicates the number of elements in a segment, n > 0
V A symbol is selected from four DNA symbols {A, G, T, C} � D, V ∈ D
k An integer indicates the control parameter for mapping, k > 0.

Intermediate Group:

Xt A unified DNA vector with Nt elements, Xt ∈ DNt
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D{(

xkV , ykV
)}

Four paired values, k > 0, V ∈ D

Output Group:
{
MapV

}
Four 2D maps, V ∈ D

2.2 BTD Binary to DNA

The BTD component shown in Fig. 2b is composed of one module: BTD itself. Five
parameters are shown as input signals and one unified vector is generated by the
BTD component as the output group.

Input Group:

t An integer indicates the t-th DNA sequence selected, 0 ≤ t < T
r An integer indicates a relationship distance among elements in a binary

sequence, r ≥ 1
mode An integer indicates the mode of elements in a sequence, mode ∈ {0, 1, . . .},

mode�0 for a DNA sequence, mode�1 for a binary sequence
Nt An integer indicates the number of elements in the t-th DNA sequence, Nt 	

r
Y t An input data vector with Nt elements, Y t ∈ {

DNt | mod e�0, BNt | mod e�1
}

Output Group:

Xt A unified data vector with Nt elements, Xt ∈ DNt
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The BTD component uses an input vector on either binary or DNA format as
input, under a set of input parameters to process transformation. The output of the
BTD component is composed of a unified vector of DNA format in a given condition.

2.3 BPM Binary Probability Measurement

The BPM component shown in Fig. 2c is composed of two modules: BM Binary
Measure and PM Probability Measurement. Three parameters are listed as input
signals; four vectors of binary measures are outputted from the BM component as
an intermediate group and four sets of probability measurements are outputted as an
output group.

Input Group:

n An integer indicates the number of elements in a segment, n > 0
V A symbol is selected from four DNA symbols {A,G, T,C} � D, V ∈ D
Xt A DNA vector with Nt elements, Xt ∈ DNt

Intermediate Group:
{
Mt

V

}
Four 0–1 vectors with Nt elements, Mt

V (I ) ∈ {0, 1} � B, Mt
V ∈ BNt , V ∈

D

Output Group:
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D

The BPM component transforms a selected DNA sequence to generate four 0–1
vectors by BM module for the input DNA sequence. Then four probability vectors
are generated by the PM module as the output of the BPM under a fixed length of
segment condition.

2.4 MP Mapping Position

TheMP component shown in Fig. 2d is composed of three modules: HIS Histogram,
NH Normalized Histogram and PP Pair Position. Two parameters are listed as input
signals; four histograms and four normalized histograms are generated from the HIS
component and the NH component as intermediate groups respectively. Four paired
values are generated by the PP component as the output group.

Input Group:
{
ρV
l

}
Four sets of probability measurements with 0 ≤ l < mt , V ∈ D

k An integer indicates the control parameter for mapping, k > 0
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Intermediate Group:
{
H (ρV )

}
Four histograms for relevant probability measurements, V ∈ D{

PH (ρV )
}

Four normalized histograms for relevant probabilitymeasurements, V ∈
D

Output Group:
{(
xkV , ykV

)}
Four paired values, k > 0, V ∈ D

The MP component uses probability measurements as input, under a given k
condition to generate each relevant histogram and its normalized distribution. The
output of the MP component is composed of four paired values controlled in a given
condition.

2.5 VM Visual Map

The VM component shown in Fig. 2e is composed of one module: VM Visual Map.
Three parameters are input signals. Collected all selected DNA sequences, four 2D
maps are generated by the VM component as the output result.

Input Group:

∀t All DNA sequences are selected, 0 ≤ t < T
Y t An input data vector with Nt elements, Y t ∈{

DNt | mod e�0, BNt | mod e�1
}

{(
xkV , ykV

)}t
Four paired values for the t-th DNA sequence, k > 0, V ∈ D

Output Group:
{
MapV

}
Four 2D maps, V ∈ D

The VM component processes all selected DNA sequences as input to generate
paired values for each sequence. The output of the VM component is composed of
four 2D maps to show the final visual distribution for the system.

3 Variant Map System

In this section, definitions and equations are provided to describe the VMS. In addi-
tion to the initial preparation, seven core modules are involved in the BTD, BM, PM,
HIS, NH, PP and VM components respectively.
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3.1 Initial Preparation

Let r an input parameter make all pairs of elements with r distance in a binary
sequence to be a pseudo DNA vector, mode a controlled parameter indicate various
pairs of operations performed if mode ≥ 1. Denote B � {0, 1} a binary base and
D � {A,G, T,C} a DNA base respectively.

3.2 BTD Module

Let Y an input sequence with N elements,0 ≤ I < N , Y (I ) ∈ {BN | mod e≥1, Y (I ) ∈
DN | mod e�0}. This input vector could be expressed as follows.

Y � (Y (0), . . . ,Y (I ), . . . ,Y (N − 1)), 0 ≤ I < N

Y (I ) ∈ {BN |mode≥1, Y (I ) ∈ DN |mode�0}. (1)

Let X denote a DNA sequence with N elements, D denote a symbol set with four
elements i.e. D � {A,G, T,C}. This type of a DNA sequence can be described by
a four valued vector as follows:

X � (X(0), . . . , X(I ), . . . , X(N − 1)),

0 ≤ I < N , X(I ) ∈ D � {A,G, T,C}, X ∈ DN (2)

From this input and associated parameters, following operations are performed.
If mode�0, for all I , Y (I ) ∈ D, the output vector is equal to the input vector.

∀I, X(I ) � Y (I ), 0 ≤ I < N (3)

If mode�1, for all pairs of I and I +r(modN ) elements of Y , Y (I), Y (I + r) ∈ B,
the I-th output element X(I ) can be determined by the corresponding conditions
shown in Fig. 1b as follows.

X(I) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

G, if Y(I) � 0 & Y (I + r) � 0

A, if Y(I) � 0 & Y (I + r) � 1

T, if Y(I) � 1 & Y (I + r) � 0

C, if Y(I) � 1 & Y (I + r) � 1

, (4)

In both conditions, X will be a unified vector with four values as the output of the
BTD shown in Fig. 2b.

E.g. Let a binary sequence Y � 100111001011, N � 12, three pseudo DNA
sequences (r � 1, r � 2, r � 3) can be represented as follows.

Y � 100111001011
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Xr�1 � TGACCTGAT ACC

Xr�2 � T AACT T AGCACT

Xr�3 � CAAT TCGACAT T

Y ∈ B12, X ∈ D12

Selecting a certain r value, a relevant pseudo DNA sequence can be generated
from an input binary sequence.

3.3 BM Module

For a given I-th element, four projective operators can be defined and denoted as
{MA(I ), MG(I ), MT (I ), MC (I )}.

MA(I ) �
{
1, if X(I ) � A;

0, Otherwise;
MG(I ) �

{
1, if X(I ) � G;

0, Otherwise;
MT (I )

�
{
1, if X(I ) � T ;

0, Otherwise;
MC(I ) �

{
1, if X(I ) � C ;

0, Otherwise;
(5)

Applying the four operators to all elements, the DNA sequence X can be reorga-
nized into the four binary sequences of 0–1 values. i.e.

MV : {X(I )}N−1
I�0 → {MA(I ), MG(I ), MT (I ), MC(I ),}N−1

I�0 ;

MV (I ) ∈ B � {0, 1}, V ∈ D (6)

E.g. Let a DNA sequence X � CTGAT T AGCCAT, N � 12, its four binary
sequences can be represented as follows.

X � CTGAT T AGCCAT

MA � 000100100010

MG � 001000010000

MT � 010011000001

MC � 100000001100

It is interesting to notice that the basic relationship between aDNAsequenceX and
its four MV sequences are exactly same as in a modern DNA sequencing procedure
to separate a selected DNA sequence into the four Meta symbol sequences shown in
Fig. 1a. This correspondence could be the key feature to apply the proposed scheme
naturally in simulating complex behaviors for any DNA sequence.

The projection MV provides the essential operation in the BM component as the
first module shown in Fig. 2c.



364 J. Zheng et al.

3.4 PM Module

For this set of the four binary sequences, it is convenient to partition them into m
segments and each segment contained a fixed number of n elements.

For the l-th segment, let 0 ≤ l < m, 0 ≤ j < n, the I-th position will be
I � l ∗ n + j , four probability measurements {ρA, ρG, ρT , ρC ,} can be defined.

ρV
l �

∑(l+1)∗n−1
I�l∗n MV (I )

n
, V ∈ D, 0 ≤ I < N � n ∗ m (7)

Under this construction, four sets of probability measurements established.

ρV : {MA(I ), MG(I ), MT (I ), MC(I ),}N−1
I�0 → {

ρ A
l , ρG

l , ρT
l , ρC

l ,
}m−1

l�0 (8)

The probability operator ρV generates four probability measurement vectors in
the PM component as the second module shown in Fig. 2c. After the BM and PM
processes, the whole procedure of the BPM component is complete in Fig. 2c.

3.5 HIS Module

Since the BPM generates four sets of probability measurement, it is necessary to
perform further operations in the MP component shown in Fig. 2d as follows.

In the HIS component as the first module in Fig. 2d, each probability sequence{
ρV
l ,

}m−1
l�0 , V ∈ D can be calculated from n positions, at most n +1 distinguished

values identified in a vector. Under this organization, a histogram distribution can be
established.

Let H(.) be a histogram operator, for each position, it satisfies following relation,

H
(
ρV
l

) �
{
1, if ρV

l � i
n , V ∈ D;

0, Otherwise, 0 ≤ i ≤ n.
(9)

Collecting all possible values, a histogram distribution can be established,

H
(
ρV

) �
m−1∑

l�0

H
(
ρV
l

)
(10)

The histogram H
(
ρV

)
is the output of the HIS module. Four histograms are

generated after HIS process. Further normalized process will be performed in the
NH component as the second module in Fig. 2d.
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3.6 NH Module

Under this construction, a normalized histogram can be defined as

PH
(
ρV

) � H
(
ρV

)
/m (11)

After the NH component processed, its output provides the PP component for
further operations as the third module in Fig. 2d.

3.7 PP Module

Relevant probability vectors have (n+1) distinguished values; four sets of normalized
vectors can be organized as a linear order as follows,

pVi �
m−1∑

l�0

H

(
ρV
l |ρV

l � i

n

)
/m, 0 ≤ i ≤ n (12)

Under this condition, four linear sets of probability vectors are established,

PH
(
ρV

) � {
pA
i , pGi , pTi , pCi ,

}n
i�0,

pVi ∈ [0, 1], V ∈ D, 0 ≤ i ≤ n (13)

For four vectors, their components can be normalized respectively,

n∑

i�0

pVi � 1, V ∈ D (14)

Four sets of probability vectors are composed of a complete partition on their
measurements.

Using this set of measurements, two mapping functions can be established to
calculate a pair of values to map analyzed DNA sequence into a 2D map as follows.

Let y � F(P, V, k) and x � F(P, V, 1/k) or
(
xkV , ykV

)
be a pair of values defined

by following equations,

ykV � F(P, V, k) �
(

n∑

i�0

k

√
pVi

)k

&

xkV � F(P, V, 1/k) � k

√√√√
n∑

i�0

(
pVi

)k
, V ∈ D (15)
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Fig. 3 A sample 2D map of
VM on multiple sequences

In the PP component, four paired values are generated and each pair indicates a
specific position on a 2D map for the selected DNA sequence. The core operations
of three key components: BTD, BPM and MP for a selected sequence are performed
in Fig. 2b–d.

3.8 VM Module

Since only one point of a 2D map is determined for a selected DNA sequence, it
is essential to apply relative larger number of DNA sequences as inputs to generate
visible distributions. This type of operations will be performed in the VM component
shown in Fig. 2e.

In a general condition, the VM component processes a selected data set
{
Y t

}T−1
t�0

composed of T sequences, the t-th sequence with Nt elements can be expressed
by Y t � (

Y t (0), . . . ,Y t (I ), . . . ,Y t (Nt − 1)
)
,Y t ∈ Y (I ) ∈ {BNt |mode≥ 1, Y (I ) ∈

DNt |mode�0}. Each sequence can be processed to apply the same procedures of the
BTD, BPMandMP components. Since for each segment, its length nwill be fixed for
all selected sequences, it is essential to make number of segments be mt � �Nt/n

in convention to match each sequence. Under this expression, the last module VM
collects all T pairs of positions on relevant 2D visual maps as follows,

VM :
{
Xt

}T−1
t�0 →

{(
xkV , ykV

)t}T−1

t�0
→ {MAPV }, V ∈ D (16)

A sample 2D map of VM is shown in Fig. 3; this provides an assistant illustration
for this type of visual maps on a case of multiple sequences.

Under this construction, a total number of T DNA sequences are transformed as
T visual points on four 2D visual maps that would be help analyzers to explore their
intrinsic symmetry properties among four binary sequences.
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4 Sample Results on 2D Maps

Two types of data sets are selected for comparison. The first type of data sets are
real DNA data sequences collected from both human and plan genomes to illustrate
their differences on 2D maps. The second type of data set is collected from the
Stream Cipher HC-256 to generate a pseudo random binary sequence under a certain
condition.

4.1 DNA Data Resources

It is important to use some real DNA sequences to illustrate various test results of
the VMS. Two sets of DNA sequences are selected and relevant resource features
are described as follows.

The first data set originally comes from the human genome assembly version
37 and was taken from the reference sequences of 13 anonymous volunteers from
Buffalo, New York. Hi-C technology [5] used to analyze chromatin interaction role
in genome. From a genomic analysis viewpoint, this set of data may contain more
complex secondary or higher level structures. A special structure nearly the GRCh37
DNA sequence has been identified to explore their spatial characteristics. After pos-
itive and negative sequencing, each data file contain 2700 DNA sequences and each
sequence has around 500 elements stored in two files left and right respectively.

The second DNA data set are selected from some plant gene database for com-
parison. One set of DNA sequences of Corn genomes are stored in file 201–500 that
contains 2700 DNA sequences and each sequence has around 200–600 elements. It
may be ordinary single sequences without complex secondary structures.

4.2 Pseudo DNA Data Resources

The Stream Cipher HC-256 has being used to generate a binary sequence on a
total length of 2700 × 500 bits in the file hc256 that has been partitioned as 2700
subsequences and each sub-sequence in 500 bits.

Using the VMS in various parameters, three sets of pseudo DNA sequences are
generated and their 2D maps are illustrated, analyzed and compared in following
subsections.
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4.3 Sample Results

Using the three files of DNA sequences and one pseudo binary sequence in three
parameters, six sets of 2D maps are listed in Figs. 4, 5, 6, 7, 8 and 9 under different
conditions to illustrate their spatial distributions using the VMS in a controllable
environment.

In Fig. 4, three groups of eighteen 2D maps are shown in the range of n � 3 ∼
50, k � 7, N ∼� 200 ∼ 600, T � 2700 for comparison; (a1–a6) six MapA maps
for the file Right; (b1–b6) six MapG maps for the file 201–500; (c1–c6) six MapA
maps for the file hc256 respectively.

In Fig. 5, four groups of sixteen 2Dmaps for the file right are listed in the range of
n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; (a) group (a1–a4) four MapA maps;
(b) group (b1–b4) four MapT maps; (c) group (c1–c4) four MapG maps; (d) group
(d1–d4) four MapC maps.

In Fig. 6, four groups of sixteen 2D maps for the file hc256 are listed in the range
of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T � 2700, r � 1,mode � 1; (a) group
(a1–a4) four MapA maps; (b) group (b1–b4) four MapT maps; (c) group (c1–c4)
four MapG maps; (d) group (d1–d4) four MapC maps.

In Fig. 7, four groups of sixteen 2Dmaps for the file right are selected in the range
of n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; (a) group (a1–a4) fourMapA maps;
(b) group (b1–b4) four MapT maps; (c) group (c1–c4) four MapG maps; (d) group
(d1–d4) four MapC maps.

In Fig. 8, three groups of twelve 2D maps for the file hc256 are compared in the
range of n � 12, k � 7, N ∼� 500, T � 2700, r � {1, 2, 3},mode � 1; (a) group
(a1–a4) four MapV maps r �1; (b) group (b1–b4) four MapV maps r �2; (c) group
(c1–c4) four MapV maps r �3.

In Fig. 9, three groups of twelve 2D maps for two files right and hc256 are
compared in the range of k � 7, N ∼� 500, T � 2700; (a) the file right n �15,
mode�0; (b) the file hc256 n �12, mode�1, r �1; (c) the file hc256 n �12,
mode�1, r �3; (a1–c1) MapA maps; (a2–c2) MapT maps; (a3–c3) MapG maps;
(a4–c4) MapC maps.

4.4 Result Analysis of 2D Maps

Six groups of 2D maps contain different information, it is necessary to make a brief
discussion on their important issues as follows.

The first group of results shown in Fig. 4 presents three sets of eighteen 2D maps
from three data files: right, 201–500 and hc256 undertaken various lengths of basic
segment from 3 to 50 to illustrate their variations respectively. Six 2D maps of each
group in Fig. 4 (a1–a6) show significant trace on their visual distributions; the num-
bers of main visible clusters identified are decreased when the length of segment
has being increased e.g. (a3–a6). However lesser length of segment does not pro-
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(a1) k=2        (a2)  k=3 

(a3) k=4    (a4)  k=7 

(a)

(b1) k=2        (b2)  k=3 

(b3) k=4    (b4)  k=7 

(b)

(c1) k=2            (c2)  k=3 

(c3) k=4             (c4)  k=7 

(c)

(d1) k=2              (d2)   k=3 

(d3) k=4              (d4)  k=7 

(d)

Fig. 5 Four groups of sixteen 2D maps in the range of n � 15, k � {2, 3, 4, 7}, N ∼� 500, T �
2700; a group (a1–a4) four MapA maps; b group (b1–b4) four MapT maps; c (c1–c4) four MapG
maps; d (d1–d4) four MapC maps for the file right

vide refined visual distinctions with larger region in fuzzy areas e.g. (a1–a2). From
a structural viewpoint, middle ranged numbers of length provide better clustering
results e.g. (a3–a5) for further analysis targets. To check another six 2D maps of
Fig. 4 (b1–b6) for the file 201–500, significantly different visual distributions can be
observed than (a1–a6); the numbers of main visible clusters identified are decreased
when the length of segment has being increased less significantly e.g. (b4–b6). How-
ever lesser length of segment does not provide refined visual distinctions with wider
regions in fuzzy areas e.g. (b1–b3). In general, middle ranged numbers of length still
provide better clustering effects e.g. (b4–b6) for further analysis purpose. To check
six 2D maps of Fig. 4 (c1–c6) for the file hc256 r=1, similar visual distributions can
be observed than (a1–a6) and significantly differences are observed than (b1–b6);
the numbers of main visible clusters identified are decreased when the length of
segment has being increased less significantly e.g. (c3–c6). However lesser length of
segment does provide refined visual distinctions with regions in fuzzy areas e.g. (b1).
In general, middle ranged numbers of length still provide better clustering effects
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(a1) (a2)  k=3 

(a3)  k=4           (a4)  k=7 

(a)

(b1) k=2              (b2)  k=3 

(b3) k=4          (b4)  k=7 

(b)

(c1) k=2           (c2)  k=3 

(c3) k=4 (c4)  k=7 

(c)

(d1) k=2            (d2)  k=3

(d3) k=4          (d4)  k=7 

(d)

Fig. 6 Four groups of sixteen 2D maps in the range of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T �
2700 for the file hc256, r � 1,mode � 1; a group (a1–a4) four MapA maps; b group (b1–b4) four
MapT maps; c (c1–c4) four MapG maps; d (d1–d4) four MapC maps

e.g. (c2–c4) for further analysis purpose. From their distributions, groups (a) and (c)
have shared much stronger similar properties than group (b).

It is interesting to observe different maps when control parameter k changed.
Four groups of sixteen 2D maps for the file right are shown in Fig. 5 on the range of
n � 15, k � {2, 3, 4, 7}, N ∼� 500, T � 2700; four groups in (a)–(d) provide four
maps to share the same other parameters with different k values. Checking visible
clusters in different maps, it is important to notice nearly same numbers of clusters
identified in the same group, but different groups may contain significantly different
numbers. Lesser k value (e.g. k �2) makes a tighter distribution and larger k value
(e.g. k �7) takes better separation on the maps. Through k �7 maps provide better
separation effects, it is easy to observe their y axis values already in 108 range.

Four groups of sixteen 2Dmaps for the file hc256 are shown in Fig. 6 in the range
of n � 12, k � {2, 3, 4, 7}, N ∼� 500, T � 2700, r � 1. This group of 2D maps
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(a1) (a2)  

(a3) (a4)  

(a) Four maps for the file left

(b1) (b2) 

(b3) (b4) 

(b) Four maps for the file right

Fig. 7 Two groups of eight 2D maps in the range of n � 15, k � 7, N ∼� 200 ∼ 600, T � 2700;
a group (a1–a4) four MapV maps for the file left; (b) group (b1–b4) four MapV maps for the file
right

(a1) (a2)  

(a3) (a4)  

(a) Four maps for the file hc256 r=1 mode=1

(b1) (b2) 

(b3) (b4) 

(b) Four maps for the file hc256 r=2, mode=1

(c1) (c2) 

(c3) (c4) 
(c) Four maps for the file hc256 r=3, mode=1

Fig. 8 Three groups of twelve 2D maps in the range of n=12, k=7, N=500, T=2700 for the file
hc256, r= {1,2,3}, mode=1; a group (a1–a4) four MapV maps r=1; b group (b1–b4) four MapV
maps r=2; c group (c1–c4) four MapV maps r=3

can be compared with 2D maps in Fig. 5. Under the same parameters, similar visible
effects and feature clustering properties could be observed if various k values are
selected.
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Using a set of selected parameters, two groups of eight 2D maps are compared
in Fig. 7 for two files: left, right to explore higher levels of symmetric properties
for secondary or higher levels of structures potentially contained in DNA sequences.
Selected parameters are in the range of n � 15, k � 7, N ∼� 500, T � 2700. Group
(a) provides fourMapV maps (a1–a4) for the file left; group (b) uses fourMapV maps
(b1–b4) for the file right.

In convenient description, let~be a similar operator, for groups (a) and (b), four
pairs of {(a1)~(b1), (a2)~(b2), (a3)~(b3), (a4)~(b4)} maps i.e. (left-A~right-A,
left-T~right-T, left-G~right-G, left-C~right-C) have a stronger similar distribution
between left & right. In addition, only two clustering classes could be significantly
identified as {(a1)~(a2)~(b1)~(b2), (a3)~(a4)~(b3)~(b4)} i.e. (left-A~right-A~left-
T~right-T, left-G~right-G~left-C~right-C) respectively. This type of similar cluster-
ing distributions may strongly indicate eight maps with intrinsically higher levels of
DNA sequences with extra A–T and G–C pairs of symmetric relationships between
two files: left & right.

Using a set of selected parameters, three groups of twelve 2D maps are listed
in Fig. 8 for the file hc256, r= {1,2,3} to explore properties for their higher lev-
els of structures potentially contained in pseudo DNA sequences. Selected param-
eters are in the range of n � 12, k � 7, N ∼� 500, T � 2700. Group (a) pro-
vides four MapV maps (a1–a4) for r=1; group (b) uses four MapV maps (b1–b4)
for r=2 (c) uses four MapV maps (c1–c4) for r=3. Using a similar operator,
for groups (a–c), four pairs of {(a1)~(b1)~(c1), (a2)~(b2)~(c2), (a3)~(b3)~(c3),
(a4)~(b4)~(c4)}maps i.e. (A(r=1)~A(r=2)~A(r=3),…,C(r=1)~C(r=2)~C(r=3))
have a stronger similar distribution among r= {1,2,3}. In addition, only two clus-
tering classes could be significantly identified as {(a1)~(a2)~(b1)~(b2)~(c1)~(c2),
(a3)~(a4)~(b3)~(b4)~(c3~c4)} i.e. threemaps are shown in (A~T,G~C) respectively.

In a convenient comparison, using a set of selected parameters, three groups of
twelve 2D maps are compared in Fig. 9 for the files: right and hc256, r= {1,3} to
check their distribution properties contained in both DNA and created pseudo DNA
sequences. Group (a) provides four MapV maps (a1–a4) for the file right; groups (b)
and (c) provide four MapV maps (b1–b4) for hc256, r=1 (c) and (c1–c4) for hc256,
r=3.

Using a weak similar operator�, for groups (a–c), four pairs of {(a1)�(b1)~(c1),
(a2)�(b2)~(c2), (a3)∼(b3)~(c3), (a4)∼(b4)~(c4)} maps have a stronger simi-
lar distribution between r= {1,3} and a weak similar distribution on A and T
cases. In addition, only two clustering classes could be significantly identified as
{(a1)~(a2)�(b1)~(b2)~(c1)~(c2), (a3)~(a4)~(b3)~(b4)~(c3)~(c4)} i.e. three maps
are strongly shown in relationships among (A~|�T, G~C) for different cases respec-
tively.

In addition, this set of results illustrates directly visual comparisons with stronger
similarity between DNA and pseudo DNA on VMS maps, their similarly clustering
distributions may indicate those maps with comparable mechanism to express real
DNA sequences with extra A–T and G–C pairs of symmetric relationships in their
higher levels of relationships applying the Stream Cipher mechanism.
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5 Conclusion

This chapter proposes architecture to support theVariantMap System.Using a binary
random sequence as input, a set of special pseudo DNA sequences can be generated.
Under variant measures, probability measurement and normalized histogram, a pair
of values can be determined by a series of controlled parameters. Collecting relevant
pairs on multiple DNA sequences, four 2D maps can be generated.

The main results of this chapter provide the VMS architecture description in
diagrams, main components, modules, expressions and important equations for the
VMS. Core models and diagrams, sample results are illustrated to apply two types
of data sets selected from real DNA sequences and generated from the pseudo ran-
dom sequences from the Stream Cipher HC-256 for comparison under the VMS
testing. After proper set of parameters selected, suitable visual distributions could
be observed using the VMS. Results in Figs. 4, 5, 6, 7, 8 and 9 provide useful evi-
dences systematically to support proposed VMS useful in checking higher levels of
symmetric/similar properties among complex DNA sequences in both natural and
artificial environment.

This construction could provide useful insights to spatial information on complex
DNA expressions especially on large encoding RNA/DNA construction via 2Dmaps
to explore higher levels of complex interactive environments in near future.
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Whole DNA Sequences of Cebus
capucinus on Variant Maps

Yuyuan Mao, Jeffrey Zheng and Wenjia Liu

Abstract DNA sequences as a big data stream have been researched for years.
However, researches on whole DNA sequences have various limitations to use exist-
ing research methods. A new scheme is proposed to map whole DNA sequences
as 2D maps in this chapter, the whole DNA sequence of Capuchin monkey (Cebus
capucinus) in apes was used as an example to demonstrate the mapping results.

Keywords Gene sequence · Cebus capucinus · Mapping method
Sequential model · Variant map

1 Introduction

In modern biologics, DNA sequences are being sequenced from wider species from
human to simple cells in DNA data banks as big data streams. It is difficult to
process various DNA streams for classification and identification on various species
from whole sequences. The main task of present genomic research [1, 2] is to obtain
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more biological information by processing and analyzing of the DNA sequence from
multi-angles and multilevels [4–7]. In recent years, the processing and utilization of
biological gene data are being carried out in a variety of ways, such as gene feature
extraction, gene sequence location [7–9], and so on.

Variant map is an emerging technology to handle four symbols as meta-structure
to process random sequences from cryptographic sequences, DNA sequences [3,
10] to ECG signals. Multiple statistical probability distributions are generated from
selected sequences to form 2D–3Dvisualmaps in representation. This schememakes
whole data sequences more compact and effectively visualized, and mapping results
may be useful to explore nonlinear complex behaviors of whole genomics. A whole
DNA sequence of a night monkey has mapped [11] on variant maps.

In this chapter, a special scheme is proposed to show a series of mapping results
from a selected gene sequence of a capuchin monkey.

2 Process Model

A. Architecture

The architecture of the process model is shown in Fig. 1a. The process model
consists of five parts: input, processing, measurement, projection, and output. There
are three modules: Processing, Measurement, and Projection.

Input: A DNA sequence
Output: A 2D map
Modules: Processing, Measurement, and Projection
Process: From a selected DNA sequence, multiple segments are divided by a

fixed length m on the whole sequence sequentially in the Processing module. Each
segment needs to count four symbols: {A, C, G, T} in the segment to transfer all
segments into a measuring sequence of four measures in Measurement module. A
special combination on X: {AT} and Y : {AG} is selected to determine four measures
in a projection position and the whole measuring sequence projected to be a 2D map
in Projection module.

B. Processing Module

From an input DNA sequence, multiple segments can be separated by a fixed
length m to generate a sequence of segments.

Input: a DNA sequence
Output: a sequence of segments

C. Measurement Module

In this module, shown in Fig. 1b, each segment counts four numbers of {A, G, C,
T} in each proportions, respectively. As the result, each count is an integer number
between 0 and m to transfer a segment sequence into a measuring sequence of four
measures.
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Input: a sequence of segments
Output: a sequence of four measures

D. Projection Module

The projection module is shown in Fig. 1c as two units: Position and Projecting.
For each four measures, two axis positions are determined by X(AT ) and Y (AG),
respectively. When all measures are processed, a 2D histogram is established as a
statistical distribution as a 2D map.

Input: a sequence of four measures
Output: a 2D map

(a)

(b)

(c)

Processing Measurement Projection

Input: A 
sequence

Output: 2D 
maps 

Counting Projection

Input:
{segment} 

Output: 
{four measures}

Position Projecting

Input: {four
Measures}

Output: {A 
2D map} 

}}

Fig. 1 Architecture of mapping scheme (a)–(c). a Architecture; bMeasurement module; c Projec-
tion module



382 Y. Mao et al.

3 Details

A. Relevant Parameters

m: segment length
V : Two bases of combination: {AT , AG}

num(AT ) � num(A) + num(T );

num(AG) � num(A) + num(G);

Pv � num(V )

Pv: The proportion of a base or combinatorial base
(XPAT ,YPAG ): a pair of XY mapping positions.

B. Parameter in Module

Since the output quality of generating maps is dependent on the number of projec-
tion points, it is necessary for a refined map to include a larger number of coordinate
points. The mapping projection forms the superposition to add up a larger number
of coordinate points in 2D histogram representing a color map.

C. Measurement module.

• m: subsection length of a DNA sequence
• num(AT ) � num(A)+num(T )
• V : AT or AG, {AT , AG} ∈D.
• Pv: The proportion of AT or AG on the length of the sequence M.
• Pv � num(V )/m
• P: The proportion of AT
• PAG : The proportion of AG

•
(
Xi

PAT
,Y j

PAG

)
: a pair of XY mapping coordinates. i, j are different subsections.

D. Parameter in Module

Calculating the proportion of AT and AG in the subsection according to the basic

rules of mathematics. Two proportions can form a coordinate
(
Xi

PAT
,Y j

PAG

)
, which

map a point on the two-dimensional graph.
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The mapping relation between x and y:

X : PAT

Y : PAG

It is necessary for a distinct graph that includes a large number of coordinate
points. Only a large number of DNA sequences can get a large number of coordinates
points and pretty projection results. The graphics projection module completes the
superposition of a large number of coordinate points.

4 Results Display

4.1 Maps on Various Segmented Length

Different parameters are shown in Fig. 2a–l for m � {20, 30, 40, 50, 60, 70, 80, 90,
100, 120, 150, 200}, Fig. 3a–f for m = {54, 56, 58, 60, 62, 64}, Fig. 4a–d for m �
{59, 60, 61, 62} and Fig. 5 for m � 60, respectively.

In the map, similar color of pixels indicates the similar number of segments in the
cluster.

4.2 Brief Analysis

From Fig. 2, it is interesting to notice that when m <50, maps have more symmetric
properties than larger numbers. Changing segmented lengths, significant patterns
appear in m � 54–64 region shown in Fig. 3 and refined lengths are shown in Fig. 4.

From a visual observation, when m � 60, the map has shown the better effects.

5 Conclusion

Using the proposed mapping scheme, it is feasible to transfer a whole DNA
sequence as a color map with significant visual features. In addition to mapping
method and selected functions, a set of sample sequences in various segmented
lengths illustrate colorful distributions as variant maps.

Checking symmetric information among different maps, it is possible to identify
specific spatial features under different configurations.
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Fig. 2 Variant maps of Cebus capucinus on various segmented lengths (a)–(l) m � {20, 30, 40,
50, 60, 70, 80, 90, 100, 120, 150, 200}. a m � 20; b m � 30; c m � 40; d m � 50; e m � 60; f m
� 70; g m � 80; h m � 90; i m � 100; j m � 120; k m � 250; l m � 200
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Fig. 3 Variant maps of Cebus capucinus on various segmented lengths (a)–(f) m � {54, 56, 58,
60, 62, 64}; a m � 54; b m � 56; c m � 58; d m � 60; e m � 62; f m � 64
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Fig. 4 Variant maps of Cebus capucinus on various segmented lengths (a)–(d) m � {59, 60, 61,
62}. a m � 59; b m � 60; c m � 61; d m � 62
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Fig. 5 Variant maps of Cebus capucinus on segmented lengths m � 60

Since this is an initial step to make a whole DNA sequence in mapping operation,
further researches and explorations are required.
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Part IX
Applications—Multiple Valued

Sequences

Experience without theory is blind,

but theory without experience is mere intellectual play.

—Immanuel Kant

Make everything as simple as possible, but not simpler.

—Albert Einstein

Science cannot progress without reliable and accurate measurement

of what it is you are trying to study.

The key is measurement, simple as that.

—Robert D. Hare

Processingmultiple valued sequences, it is necessary to usemore complex structures in
transformation. Various signals such as ECG, EEG, and BEC (Bat Echolocation Calls)
were tested. From 2016, various papers were published on ECG processing. For
example, Variant Maps on Normal and Abnormal ECG Data Sequences, Biol Med
(Aligarh) 8:336. https://doi.org/10.4172/0974-8369.1000336; Mapping ECG Signals
on Variant Maps, https://doi.org/10.1145/3110025.3110134; Visualization of P wave
characteristics in ECG, https://doi.org/10.1109/CISP-BMEI.2017.8302247.

This part of multiple valued sequences is composed of two chapters (25 and 26).
Chapter “Successful Creation of Regular Patterns in Variant Maps from Bat

Echolocation Calls” processes BEC signals on variant maps to identify variant
maps into two distinct groups.

Chapter “Visual Analysis of ECG Sequences on Variant Maps” uses visual
analysis of ECG sequences on variant maps; various normal and abnormal ECG
sequences are selected in comparison. Significant characteristics of various distri-
butions are observed.

http://dx.doi.org/10.4172/0974-8369.1000336
http://dx.doi.org/10.1145/3110025.3110134
http://dx.doi.org/10.1109/CISP-BMEI.2017.8302247


Successful Creation of Regular Patterns
in Variant Maps from Bat Echolocation
Calls

D. M. Heim, O. Heim, P. A. Zeng and Jeffrey Zheng

Abstract We created variant maps based on bat echolocation call recordings and
outline here the transformation process and describe the resulting visual features.
The maps show regular patterns while characteristic features change when bat call
recording properties change. By focusing on specific visual features, we found a
set of projection parameters which allowed us to classify the variant maps into two
distinct groups. These results are promising indicators that variant maps can be used
as basis for new echolocation call classification algorithms.
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Quaternions
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1 Introduction

The identification of echolocation calls is essential to the research and conservation
of bat species [1]. However, automatic classification algorithms have not yet been
proven capable of providing 100% correct classifications or getting close enough
to this ideal performance [2]. Since our approach of using variant maps [3] shows
already promising results, we are confident that it will continue adding valuable
contributions to the field of automatic bat call identification.

Automated bat echolocation call identification algorithms were developed since
the late 1990s [4–7]. At that time, multivariate discriminant function analysis or
neural networkswere used for the classification of the calls. Since then, othermethods
havebeen applied, e.g., algorithmsof pattern recognition [8], support vectormachines
[9], hierarchical ensembles of neural networks [9, 10], geometric morphometry [11],
machine learning [12], CART [13], and random forest classification [14]. For a
critical analysis of the performance of the applied methods, we refer to [2] and the
references therein.

Using variant maps for the classification of bat echolocation calls differ com-
pletely from these conventional techniques. The main difference is the preprocessing
step, where the recordings are transformed into variant maps. This step offers the
possibility to analyze the bat call recordings from a completely different point of
view. It provides additional degrees of freedom which allow a further optimization
of the identification process, e.g., by supplementing the information obtained from
a Fourier analysis of the bat calls.

Our method to transform the bat call recordings is based onmeasures proposed by
Zheng [15] in the 1990s to partition special phase spaces in binary image analysis.
These methods were extended in the 2010s [3, 16] and successfully used to classify
quantum interactions [17, 18], differently encrypted messages [19], and noncoding
DNA [20, 21].

Similar to theseworks,we transform the bat call recordings using variantmeasures
to obtain variant maps. Each recording contains several calls of one bat species. We
used calls of four aerial-hawking bat species in this study. Recordings were made at
three types of crop fields far away from woody vegetation. The created variant maps
have a regular structure, but characteristic features vary strongly with each recording.
These results show that variant maps can be used to extract usable information from
bat echolocation recordings.

2 Transformation

The processed bat echolocation calls were recorded with a sampling rate of 500kHz
and saved as “raw” 16-bit audio files. In the following, we describe in four steps
(A–D) how we transformed these files into variant maps.
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Step A: From analogue to digital audio
In a recording of data length N , the amplitude of the bat echolocation calls is stored
in N samples. Each sample corresponds to a floating-point number of 16 bits. For
simplicity, we transformed the floating-point numbers to integer numbers of 16 bits.

Step B: From digital audio to quaternions
Next, we transform the integer sequence into a sequence of four metastates {⊥,+,

−,�} which resemble the quaternions {Bottom, Plus, Minus, Top}. For this step,
we select the i-th sample Ai and its next neighbor Ai+1 and define the difference
ΔA = Ai+1 − Ai and local average L = (Ai + Ai+1)/2. Additionally, we require
the maximum Amax and minimum Amin of the current sequence to define a middle
value V = (Amin + Amax)/2 and we define a tolerance T . Using these values, we
transform the integer sequence A1 · · · AN into a sequence of quaternions B1 · · · BN

using the rules

if ΔA < T and L > V : Bi = �
if ΔA < T and L ≤ V : Bi = ⊥
if ΔA ≥ T and Ai > Ai+1 : Bi = −
if ΔA ≥ T and Ai < Ai+1 : Bi = + .

As an example, the values T = 4 and V = 10 lead to the sequence

Ai 0 3 3 2 0 8 20 20 11
Ai+1 3 0 8 6 4 3 15 18 13
Bi ⊥ ⊥ + + + − − � �

.

Step C: From quaternions to meta-measures
We subdivide the quaternion sequence into segments of length M and obtain, in
this way, S = N/M segments. For each segment, we define four meta-measures
{M⊥, M+, M−, M�}. One measure represents the number of associated quaternions
in one segment. These meta-measures satisfy the relations 0 ≤ M⊥, M+, M−, M� ≤
M and M⊥ + M+ + M− + M� = M . The quaternion sequence with N units is now
represented by S segments where each segment contains four meta-measures.

Step D: From meta-measures to variant maps
There are many possibilities to combine meta-measures for the creation of variant
maps [3, 15–21]. To transform the bat echolocation calls into 2D color maps, we
defined for each segment of meta-measures the axis values X = M+ + M⊥ and
Y = M⊥ + M− + M�. One Z value is obtained by counting the number of segments
where one specific X–Y combination was found. Each Z value is represented by a
color in an (M + 1) × (M + 1) matrix.

As an example, we depicted in Fig. 1 the variant map of an echolocation call
recording from the bat species Nyctalus noctula. It has a data length N = 967,139
and we chose a segment length M = 237. At the position X = 80 and Y = 200
marked by a white circle, the color indicates a value Z = 10. That is, we found 10
segments where the conditions M+ + M⊥ = 80 and M⊥ + M− + M� = 200 apply.
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Fig. 1 The variant map of an echolocation call recording from the speciesNyctalus noctula created
by following the processing steps A–D described in Sect. 2. We highlighted the position X = 80
and Y = 200 by a white circle to illustrate the processing step D. At this position, the conditions
M+ + M⊥ = 80 andM⊥ + M− + M� = 200 apply. Further visual features are discussed in Sect. 3
in more detail

White areas indicate regions without any projection point on this sequence. For a
discussion of further visual features which appear in this figure we refer to Sect. 3.

These types of maps offer the possibility to visualize long data sequences with
>106 samples on compact matrices. We use this scheme to transform each bat call
recording into a 2D color figure. It can be optimized for the identification of bat
species, recording locations or times.

3 Variant Maps

Our main result is that all variant maps created from bat echolocation calls show
regular patterns while characteristic visual features vary with each recording. In the
following, we describe the data we processed in detail and discuss the visual features
we observed.
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3.1 Data Description

We processed 44 files which were recorded in August 2012 in the Uckermark region
(Brandenburg, Germany) [22]. Each recording contains only calls of one of the four
European bat speciesNyctalus noctula,Pipistrellus nathusii,Pipistrellus pipistrellus,
or Pipistrellus pygmaeus. These files were recorded on arable fields cultivated with
three different crop types: corn (C), rapeseed (R), or wheat (W). The record length
varies between 30s and 2min.

3.2 Visual Features

We transformed all 44 files of bat calls into variant maps by steps A to D described in
Sect. 2. That is, we used the axis values X = M+ + M⊥ and Y = M⊥ + M− + M�
and a segment length M = 237. By focusing on the visual features, we clustered the
resulting maps into two groups. A typical member of each group is shown in Fig. 2.

One group consists only of maps showing patterns which have two significant
maxima with values >105. We call members of this group double-maxima maps.
The example shown in Fig. 2a hasmaxima at the positions X =0,Y =237 and X =120,
Y =200. Besides these two maxima, there are distinct positions on diagonal areas
with values of the orders 1–103.

All othermaps belong to the group of non-double-maximamaps. As an example,
the map in Fig. 2b has its significant maximum at the position X =0, Y =237 while
other projection regions have values of the orders 1–103. In addition, most values of
interest are located around a diagonal region and form a slat band on the map.

All 44 resulting maps are shown in Figs. 3 and 4. They are separated into double-
maxima maps (Fig. 3) and non-double-maxima maps (Fig. 4). In principle, it is
possible to further subdivide the variant maps by identifying additional visual fea-
tures. However, since we did not yet find a direct connection between visual features
and bat call properties, a further subdivision goes beyond the scope of thismanuscript
and will be the topic of a future publication.

3.3 Discussion

On all generated maps, the positions on the left-down triangle area are empty. This
is because our choice of axis obeys X + Y ≥ M . Empty positions in the right-upper
area appear because the bat call recordings consist of discrete short pulses with a
longer time period of silence in between.

Similarly, other visual characteristics in the colored areas can be directly related to
properties of the bat call recordings. As an example, a signal of constant frequency
can be transformed into a single position on a variant map by choosing suitable
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(a)

(b)

Fig. 2 Variant maps of a Pipistrellus nathusii and b Nyctalus noctula, both recorded on a rapeseed
field. The figures were created by applying the transformation process described in Sect. 2. a which
shows a typical double-maxima map with two significant maxima, while b belongs to the group
of non-double-maxima maps
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Fig. 3 These variant maps show double-maxima patterns. They have two significant maxima with
values >105. The axis ranges are the same as in Fig. 2. Each map origins from a bat echolocation
recording on a corn (C), rapeseed (R), or wheat (W) field

parameters. This means that by optimizing the variant map transformation, it is
possible to focus on features of the initial bat echolocation call for the creation of
variant maps.

This is the first time to our knowledge that quaternion structures have been used
to transform bat calls. Our transformation process could be used to add optimizing
parameters to current bat call identification schemes and in this way form the basis
for a new identification algorithm.
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Fig. 4 These variant maps show non-double-maxima patterns. That is, they explicitly do not have
two distinct maxima with values >105 in contrast to the double-maxima maps shown in Fig. 3

4 Summary and Outlook

We transformed 44 bat echolocation files into variant maps. All created variant maps
have a similar structure and can be classified by focusing on specific visual features.
As an example, we found a set of projection parameters which allowed us to classify
the recordings into double-maxima and non-double-maxima maps.

Features like this can be traced back to the signal nature of the recordings. In
this way, variant maps offer the possibility to focus on individual features of bat
echolocation calls. Since there are multiple numbers of possible combinations to
create variant maps, we are very positive that a suitable projection combination can
be found to fulfill our ultimate goal of identifying single bat species.

In order to meet this target, it is necessary to process a much higher number of
bat calls to create a sufficiently large database for the effective determination of
possible projections and associated maps. This would form the perfect basis for the
development of a new echolocation call identification algorithm.
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Visual Analysis of ECG Sequences
on Variant Maps

Zhihui Hou and Jeffery Zheng

Abstract This chapter presents the variant measurement based on the variant logic,
which uses the ECG sequence as the signal source, and outputs the variant maps
of ECG sequences. It provides a supplementary study for ECG detection. Samples
of ECG signal are collected from the First People’s Hospital of Yunnan Province.
Under variant maps, main parameters of various interval values are checked and
corresponding maps are illustrated.

Keywords Arrhythmia · Visualization · ECG sequences · Variant map

1 Introduction

The world is concerned about the cardiovascular disease [1]. Mainly relying on the
detection of ECG signals to promote research on related issues of cardiovascular
diseases. The electrocardiogram represents cardiac function and graphic signals [2],
which is an important means of diagnosing abnormal cardiac activity.

ECG signals are the product of a wide range of clinical ECG techniques. In recent
years, research methods for ECG signals have made significant progress, such as
using machine learning [3], neural network, clustering [4], partial fractal dimension
[5], wavelet transform [6], and other methods to classify the detection of arrhythmia.
Themost typical representative of the emerging ECG researchmethod is ECG scatter
gram [7–9].
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Fig. 1 The overall structure of the variant map for ECG

The variant method is an emerging technique for dealing with spatial changes in
signal phase. Since the 1990s, the application of the variant method in processing
binary image classification and transformation [10, 11] had been proposed, and the
variant method has been perfected until now [12, 13]. Variant method is applied to
different data samples: quantum sequences [14, 15], random sequences [16], non-
coding DNA [17–19], bat echo signals [20], and electrocardiographic signals [21,
22], and effective research results have been obtained in these samples.

This chapter is a further study of the use of variant measurements in the detection
of ECG sequences. The sample ECG signals are provided by the First People’s
Hospital of Yunnan Province. In this chapter, two groups of signals are used: normal
ECG signal and abnormal ECG signal groups. In the second part of this chapter, we
describe variant map for ECG. Showing sample results and making a brief analysis
in the third part, the last part is the summary of the chapter.

2 Variant Map for ECG

Variant map for ECG is composed of six parts: Input, Processing, Segmenting, Statis-
tics, Mapping, and Output. Figure 1 is the overall structure of the variant map for
ECG, which specific content about each part in the following description:

A. Input Part

Testing ECG signals are provided by the hospital as a data source. Let ECG signals
be p with N elements.

p � {
p0, . . . , pN−1

}

B. Processing Part

In processing part, a multivalve ECG signal sequence will be transformed into a
four-valued pseudo-DNA sequence.
Input: the ECG sequence

p � {
p0, . . . , pN−1

}

Parameters: W sliding window value; R interval value.
Output: a four-valued pseudo-DNA sequence
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q � {q0, . . . , qN−1}

Processing:
Let pi be an average value; r be a range value; ti be a conversion value. Three

values are calculated in the equations:

p̄i �
N−1∑

i�0

pi
W

pmax � max{pi}, 0 ≤ i < N − 1

pmin � min{pi}, 0 ≤ i < N − 1

r � (pmax − pmin) ∗ R

2

ti � 2(pi − p̄i )

r ∗ R

Transforming rules: 0 ≤ i < N − 1

if ti > R > 0 : qi � A; if 0 < ti < R : qi � G;

if 0 > ti > −R : qi � C ; if 0 > −R > ti : qi � T ;

C. Segmenting Part
Input: q � {q0, . . . , qN−1}.
Parameters: m is a segment value.
Output: Q � {

Q0, . . . , Q j , . . . , QM−1
}
, 0 ≤ j < M; M is segments and N = m *

M.
Processing: the j-th element in Q � {

Q0, . . . , Q j , . . . , QM−1
}
;

Q j � {
q j∗m, . . . , q j∗m+i , . . . , q j∗m+m−1

}
, 0 ≤ i < m, 0 ≤ j < M.

D. Statistics Part
Input: Q � {

Q0, . . . , Q j , . . . , QM−1
}
, 0 ≤ j < M

Output: S �
{
SA
j , S

C
j , S

G
j , S

T
j

}
, 0 ≤ j < M

SA
j is value of the number of A element in Q j
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SCj is value of the number ofC element in Q j

SGj is value of the number ofG element in Q j

STj is value of the number of T element in Q j

E. Mapping Part

Selecting a pair of two elements in S �
{
SA
j , S

C
j , S

G
j , S

T
j

}
, 0 ≤ j < M , as a

mapping object. This chapter selects
(
SCj , S

G
j

)
. SCj is corresponding to the X-axis

and SGj is corresponding to the Y -axis. All M pairs are mapping to the 2D map as
output.

F. Output

The results of the mapping are output in the form of 2D variant maps.

3 Sample Results and Brief Analysis

Visualization results of ECG signal obtained by variant map for ECG show that the
morphological features of ECG signals have regular changes. Sample results are
illustrated and a brief analysis is described.

A. Data Source Description

The ECG signals in this chapter are provided by the First People Hospital of Yunnan
Province. The ECG signals contain a total of 202,626 cases. There are 104,742
normal cases and 97,884 abnormal cases of records. For this experiment, 97,884
normal cases and 97,884 abnormal cases were selected.

Since ECG signals have multiple attributes, this chapter chooses the attributes of
the P wave samples to be processed. Figure 2 is the sample of part of abnormal ECG
data source.

B. Visualization Features

Using the variant map for ECG, multiple maps can be generated.
The interesting finding is that the changes of the parameters affect the spatial

characteristics and phase changes of the maps.
Overall in Fig. 3, two 2D maps are illustrated for two normal/abnormal maps,

parameters are W � 24, R � 0.95, m � 50. X and Y are
(
SCj , S

G
j

)
0 ≤ j < M , the

ECG variant map shows the regular characteristics. In Fig. 3a, a normal map for P
wave is an oval. In Fig. 3b, an abnormal map for P wave is a stick.

In Fig. 4, a list of normal maps for P wave on parameters R �
{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2}. When the parameter R increases, the feature
of relevant maps has a nonlinear displacement along the top right corner of the
image.
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Fig. 2 The sample of part of abnormal ECG data source

(b) An abnormal map for ECG P wave (a) A normal map for ECG P wave

Fig. 3 The example of normal and not ECG variant map

In Fig. 5, a list of abnormal maps for P wave on parameters R �
{0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2}. When the parameter R increases, the feature
of relevant maps has a nonlinear displacement along the top right corner of the
image.

Comparing with Figs. 4 and 5, differences between normal and abnormal map
features.

4 Summary and Prospect

Electrocardiogram (ECG) detection is the key to clinical diagnosis of heart dis-
ease and has important clinical value. At present, the automatic analysis function of
dynamic ECG detection is not satisfactory. There are also problems that the features
of waveform lesions are small and cannot be marked, and even the characteristics of
lesions are neglected. Therefore, excavating the effective information existing in the
massive ECG signal can avoid the blind area of ECG analysis to some extent, which
has certain application value.
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Fig. 4 A list of normal maps for P wave on parameters R � {0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2};
a–f maps on R � {0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2}

This chapter presents a new scheme of statistical distribution, variant map for
ECG. This method can process massive ECG data sequences as 2Dmaps with visual
characteristics. The sample results show classification of arrhythmia characteristics
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Fig. 5 Alist of abnormalmaps forPwaveonparameters R � {0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2};
a–f maps on R � {0.6, 0.72, 0.84, 0.96, 65, 1.08, 1.2}

to identify the normal ECG signals and abnormal ECG signals significantly different.
Further explorations and more experiments are required.
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