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This book introduces systems epidemiology, which is a new scientific discipline 
borne by novel technologies. These have opened up the potential for studies of 
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methylation. Systems epidemiology is an integrated approach based on epidemio-
logical methods with biobanks designed for studies of the trajectories or curves of 
functional genomics moving from before diagnosis, at diagnosis and postdiagnos-
tic. It demands new epidemiological designs, the globolomic one, new statistical 
methods for description and analyses of time changes and incorporating basic 
knowledge from reductionist experiments and clinical outcomes including mole-
cular biomarkers of cancer tissue and normal tissues.   
 
The authors go through the many steps necessary for understanding the benefits 
systems epidemiology can bring to cancer research. Systems epidemiology inte-
grates approaches from a range of different scientific discipline: epidemiology, 
biostatistics, basic research, and clinical research, challenging the barriers between 
these disciplines. 
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Preface
In the autumn of 2007, the EU launched its new European Research Council. One
of the new funding mechanisms was the “Advanced researcher grants”, so-called
ERC AdGs. Applications were to be written by one researcher with one novel idea.
I spent that same autumn as a visiting researcher at MAP5, Université René
Descartes, Paris V. I immediately felt that I had an idea that was unique and novel.
I called it Systems Epidemiology. Together with colleagues we discussed the con-
tent of the application, particularly the need for novel statistical methods. Back in
Tromsø, a small writing group continued the work of searching through all data-
bases in order to be sure that we had a novel idea. With that in mind I submitted
the application under the title “Transcriptomics in cancer epidemiology”—
TICE—in winter 2008. Six months later we received what was, for us, the sensati-
onal news that our application had been accepted—but it had to be a single-
researcher project.

The project started in the winter of 2009, a decade ago. Here we will look at the
potential of our novelties. The reviewers used a term that inspired us: high risk—
high gain. Our intention is to demonstrate that the gain has been high. In 2015 we
received a “Proof of concept” ERC grant for the development of TICE findings
towards a diagnostic patent for breast cancer based on gene expression profiles. We
acknowledge all of the women who gave their time to fill out questionnaires, and
donated blood and even tumor and healthy breast tissues biopsies.

I am thankful to all those I have held discussions with over these years, someti-
mes ending in nothing, sometimes another step forward.

Eiliv Lund
The Cancer Registry of Norway, Oslo
UiT The Arctic University of Norway, Tromsø
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/




This work is licensed under the Creative Commons Attrib
To view a copy of this license, visit http://creativeco

Lund, E. (Ed.) (2020). Advancing Systems Epidemiology in 
Cancer. Exploring Trajectories of Gene Expression. 

Oslo: Scandinavian University Press.
DOI: https://doi.org/10.18261/9788215041193-2020-01
1. Challenges in Systems 
Epidemiology in Cancer
Eiliv Lund

Abstract  Systems epidemiology is a new research discipline that seeks to integrate
pathways analyses into observational study designs to improve the understanding of
biological processes in human organisms as time-dependent changes or trajectories
of functional genomics. This chapter guides the reader on the different aspects of the
book. The aim is to improve the understanding of the structures of data from complex
study designs, data handling, new statistical methods and the interpretation of the
results.

Keywords  trajectories | processual research | analogy | carcinogenesis | statistical 
methods

ABOUT THE BOOK
This chapter gives an overview of challenges to improving systems epidemiology
in cancer. As a new research discipline, systems epidemiology has confronted
many problems related to design, laboratory work, statistics and biological inter-
pretation. It is important throughout this book that most of the gene expression
analyses originate from whole blood, thus representing the body’s defense through
the immune system. This response is not a copy of the carcinogenic process.

With the description of the human genome in 2001 (Lander et al. 2001, Venter
et al. 2001), medical scientists were promised a dramatic paradigmatic shift in
future research. In epidemiology at that time, the main focus was on risk estima-
tion. After the Second World War, epidemiology shifted from studies of infectious
diseases towards risk factors for cancer, from studies of tuberculosis to long-term
effects of carcinogens. The first success in this risk estimation era was the finding
that the rapidly increasing incidence of lung cancer in many western countries was
due to smoking. It is almost 70 years since Doll and Bradford Hill published their
landmark paper linking smoking to lung cancer (Doll and Bradford Hill 1950).
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.
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There then first followed a huge number of case-control studies, with a later shift
towards large prospective studies covering most aspects of modern lifestyle such
as diet, hormonal treatment, physical activity, body mass index, alcohol and so on.
Almost all analyses used linear relationships, mostly proportional hazard models
and multiplicative models.

In the genomic research era that followed, single nucleotide polymorphisms,
(SNPs) became the major interest for studies of individual risk for chronic diseases
such as cancer. In traditional epidemiology, an SNP is an ideal exposure, easy to
measure and constant throughout life. The genomic research fitted well into the
standard statistical methods, only confronted by the multiple test problem (Reiner
et al. 2003). Studies of functional genomics, here mRNA (messenger Ribonucleic
acid), miRNA (micro Ribonucleic acid) and methylation, had only been part of
epidemiology to a minor extent, and then in the same risk context as other expo-
sures. The challenge of performing studies of the time-dependent dynamics of
functional genomics was left unresolved. In 2008, systems epidemiology was
defined as studies of functional genomics in an epidemiological design (Lund and
Dumeaux 2008). The concept was dedicated to a new research discipline different
from the traditional risk estimation paradigm of epidemiology. Focus was on the
description of changes in functional genomics as part of the study of the carcino-
genic process over time (Lund et al 2015). Ten years later, the definition provided
by National Cancer Institute, NCI (Workshop to Facilitate Cancer Systems 2019)
was research

directed towards systems modelling based on approaches which account for
multiple dimensions, integration over diverse data and changes over time, all
needed to better understand contributors to disease and treatment outcomes
and provide clues for improved intervention.

The NCI text from the invitation to the meeting Workshop to Facilitate Cancer
Systems Epidemiology Research is included as a supplement at the end of this
chapter, together with their selected Systems Epidemiology Key references show-
ing an overview of relevant literature.

The introduction of new sampling methods of human biological material, high-
throughput technologies and new laboratory analyses have made possible new
studies of functional genomic. There are important differences between the time-
dependent changes within the functional classes of transcriptomics i.e. mRNA and
miRNA, changing rapidly, even during the same day, and methylation changing
over years (Guida et al. 2015).
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The new research discipline, systems epidemiology, seeks to integrate pathway
analyses into observational study designs to improve the understanding of biolog-
ical processes in the human organism. Systems epidemiology is the observational
counterpart to systems biology, which has many definitions, such as

a discipline that seeks to determine how complex biological systems function
by integrating experimentally derived information through mathematical and
computing solutions (Imperial College London, Institute of Systems and Syn-
thetic Biology).

One could eliminate both terms and use the common term ‘‘systems science’’
(Green 2006), but this would not emphasize the emerging approaches and designs
necessary for the optimal use of new technologies. Systems epidemiology could be
seen as a discipline that merges epidemiologic research with biological mechanis-
tic analysis by investigating gene expression patterns related to metabolic path-
ways.

The aim of this book is to advance systems epidemiology in cancer. After some
years of research in systems epidemiology in cancer, several issues have been
solved, but in order to advance the following major issues will be proposed as
future challenges.

HIGH DIMENSIONAL, TIME-DEPENDENT DYNAMIC 
CURVES—THE PROCESSUAL CHALLENGE
The conceptual differences between risk-estimating epidemiology and functional
genomic epidemiology can best be described through some added definitions and
terminology. A more comprehensive description is found in Lund et al. (2015).
First, the curves of functions describing time-dependent gene expression or meth-
ylation profiles can be named as trajectories. These trajectories have mostly
unknown distribution according to lifestyle or outcome. At present there exists no
library of gene expression profiles according to different exposures.

The change in approach can be illustrated through the change in the mathemat-
ical model.

A classic prospective GWAS (genome-wide association studies) design includes
genomics and exposures measured at the start of the study and uses the time
elapsed since the beginning of the study, defined as the follow-up time, in survival
analyses. The failure time for a case-control pair corresponds to the diagnosis of
the case. The main issue adopted is as follows: Given the values of some covari-
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ates—genomics and environmental—what is the risk of developing a cancer at
some time? Thus, genomics and exposure variables are considered as risk factors
for cancer, and the relationship may be expressed in terms of a survival analysis
model:

P[T|G,E]

where T is the failure time, G the genomics measurements, and E the exposures.
The processual analysis of transcriptomics raises a different question: How are

transcriptomics affected by the carcinogenic process? Transcriptomics are there-
fore analyzed as potential biomarkers of the carcinogenic process, and the statisti-
cal quantity of interest is the distribution of the gene expression GE as a function
of the time to diagnosis T and the exposures E:

P[GE|T,E]

Ideally, repeated measurements should be available, but for practical reasons a sin-
gle measurement at time of inclusion may be the only one for each individual. In
this case, transcriptome measurements collected from distinct individuals at diffe-
rent times before diagnosis may be considered as consequences of the same carci-
nogenic process. This point of view is commonly adopted in lab experiments, e.g.
when dissections performed at different time points on different animals are ana-
lyzed as a longitudinal study. In an epidemiological context the individual variabi-
lity is expected to be much higher due to the heterogeneity of cancer. This appro-
ach relies on the assumption that available information on the outcome allows
stratification according to different biological processes, such as positive or nega-
tive node status at time of diagnosis.

NOVEL DESIGNS—INTEGRATED SYSTEMS 
EPIDEMIOLOGY APPROACH
The inclusion of biological material for analyses of transcriptomics both in periph-
eral blood and in tissues such as breast cancer tumors has created what can be
called the beauty of complex designs. This is demonstrated in Chapter 2. At the
same time, due to the complexity of the data and the scientific need to store previ-
ous work for later replication, a strong platform for data storing and handling has
been developed; see Chapter 3. The logistics and ethical issues for sampling biop-
sies from women is a necessary part of the realization of the new designs for anal-
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yses. The procedures for sampling biopsies from breast tissue in healthy women,
with related ethical questions, is given in Chapter 4.

For many of the functional genomic analyses, the number of other studies is lim-
ited due to the cost of laboratory analyses or limitations in access to biological sam-
ples or samples collected under suboptimal conditions. Since different cohorts
reflect different populations with different lifestyles, this implies that the estimates
should be adjusted for other risk factors. But with little knowledge about the gene
expression pattern of most lifestyle factors, this is an uncertain undertaking. As an
example, should all users of hormonal replacement therapies be excluded due to
unknown effects on gene expression pattern?

Partly to solve the problems of lack of power and mass significance, a novel
design has been proposed by us (Lund et al. 2018), named an integrated systems
epidemiology approach. The integrated systems epidemiology approach is based
on a two-step integrated analysis in the same cohort. The first step is the explora-
tion of hypotheses describing the mathematical relationship between an exposure
such as parity and breast cancer incidence in the overall study. This should be done
in a large study in order to give unbiased and precise estimates of effects. The
results of the explorative research can then be used as hypotheses in the second
level of analyses. In a random sub-cohort of the overall cohort, blood sampling can
be performed with biological samples with high quality to test the hypotheses. The
hypotheses of the relationships between the exposures, the gene expression and
outcome can then be tested directly. The random sampling will control the level of
lifestyle factors between the full cohort and the sub-cohort. This will be most
important with weak or small associations, which could be the reality for most
associations between exposures and gene expression. This will reduce the need for
adjustment. An example of such an analysis is shown in Lund et al. 2018, demon-
strating the statistical strength of the design. Each pregnancy showed a reduction
in breast cancer risk of 8% in a linear model. Translated into gene expression as a
hypothesis, the testing showed that hundreds of genes showed a similar linear
reduction.

STATISTICAL CHALLENGES OF SPARSELY SAMPLED 
CURVES
For most cancer sites, the incidence rates are lower than 300 per 100 000 person
years. Consequently, a cohort study must be rather large, such as the NOWAC
postgenome cohort with 50 000 women. The power of the study is improved due
to the selection of only one gender. Still, the distribution of new cases, with
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breast cancer as an example, will be around 150 cases annually. The age distribu-
tion in postmenopausal breast cancer increases only slowly with age. The prob-
lem of small data and statistical power in statistical analyses of genomic data is
debated in Chapter 5, with emphasis on explorative versus hypothesis-driven
research.

Information on changes in gene expression over time will consequently be based
on rather few measurements. This gives sparsely sampled curves or trajectories.
This has motivated the three new statistical methods described in Chapter 6.
Increasing the follow-up time expands the time dimension, but does not increase
the incidence rate, i.e. the sparse density remains the same. In a standard cohort
design with repeated sampling of biological material with 4-6 years intervals, con-
structing the trajectories will be almost impossible due to a lack of measurements
in between the repeated measurements.

Another challenge is two major issues working mostly together. First, the distri-
bution or curve shapes of the trajectories are mostly unknown in relation to differ-
ent exposures or outcomes like cancer. To assume linearity would be a simplifica-
tion. At the same time, the number of genes is up to 20 000, giving a false positive
problem. Using FDR (false discovery rate) is a conservative procedure in explora-
tive research. Each explorative analysis or subgroup analysis or stratification gen-
erates an immense cloud of results, approaching chaos.

Since a p-value can only be used once, new approaches are important in a situ-
ation where the explorative analyses are expected to be followed by predictions in
the same material. Today, there are limited numbers of large cohort studies with
large-scale analyses i.e. analyses of thousands of individuals for test-retest analyses.
One proposed solution is leave-one-out procedures. These stratifications reduce
the statistical power dramatically. The use of the curve group analysis in Lund et
al. 2016 Chapter 8 is an example of using different measures at each level of the
analysis; first mean and standard deviations for grouping of curves, then a signifi-
cance test using p-values.

FROM MICE TO WOMEN—SEVEN LEVELS OF 
ANALOGICAL FALLACIES
“Analogy is a comparison between things that have similar features, often used to
help explain a principle or idea” (Cambridge Dictionary). The use of analogies is
common in daily life and in science. However, the validity of the analogies should
always be considered; see Chapter 7. There are no standard criteria for valid
transfer over species or for the use of analogies. The interpretation of pathways or
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single genes is traditionally proposed by reviewers expressing a belief in the valid-
ity for humans of the genetic findings from mostly animal or in vitro cell experi-
ments. The lack of consistency has been described in an analysis of single genes
in the epidemiological study of pregnancies and risk of breast cancer in Lund et
al. 2018.

The rapidly growing interest and potential for analyses of functional genomics
in human studies, systems epidemiology, confronts researchers with interpreta-
tions of statistical associations based on biological knowledge. There are differ-
ences in human versus animal or in vitro experiments, between the observational
study designs in epidemiology and the experimental designs in basic biological
research, and in the interpretations of findings especially concerning the compa-
rability or validity of transferring information from one biological species to
another—humans. The transfer is often based on analogical thinking, often with
little knowledge about the nature of these biological and methodological differ-
ences. Analogy was one of Bradford Hill’s original criteria of causality (Bradford
Hill 1965, Häfler 2005, Fedak et al. 2015), but was dismissed after some years and
lost its meaning due to the potential for fallacious thinking, and it became difficult
to assume that results from one study could be generalized to other research areas.

Today, epidemiologists working with analyses of functional genomics import
knowledge of function from databases with information on basic biology. This
might be experiments on mice, cell lines or humans. Our concern is that the infor-
mation collected for systems biology cannot necessarily be used for interpretations
of the biology of statistical associations. In order to avoid analogical fallacies, we
should aim to classify more of the information in databases according to human
parameters. What is the sum total of the conditions around each experiment com-
pared to human observations?

Taking gene functions from mice to humans or vice versa is a journey through
many levels of analogical fallacies. The critical view on the transfer of knowledge
over the borders of species has grown over recent years as a consequence of the
rapidly increasing use of annotation of gene functions in the interpretation of
results from clinical or epidemiological studies.

EXPLORING THE TRAJECTORIES OF GENE EXPRESSION
Examples of statistical methods for the analyses of trajectories are shown in Chap-
ters 8 and 9. The chapters illustrate two new methods for longitudinal analyses of
gene expression trajectories before and after a diagnosis of breast cancer.
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TWO THEORIES OF IMMUNE DYSFUNCTION AND 
RESISTANCE DURING CARCINOGENESIS
Over recent decades, many theories of carcinogenesis have been proposed. Com-
mon to most of them is the lack of integration of knowledge from many scientific
research disciplines such as epidemiology, biostatistics, immunology, basic biology
and clinics. Consequently, cancer could be viewed as an intracellular process or as
an exposure-driven process. Models have been built on mathematical modelling of
incidence rates or hallmarks of cancer. On the other hand, lay people talk about the
disease using the metaphor of “the war on cancer”, in French “la dernière lutte” or
in Norwegian “sin livs kamp”. The essence of these metaphors has been neglected
both historically and today, despite over 120 years of diverse experiences. The first
observations of the potential effect of the immune system on cancer was back in
1895, when injections of serum from infested mice led to the reduction of tumor
masses in humans (Kaplon and Dieu-Nosjean 2018). In the interwar period, a
number of experiments were performed and a toxin was even produced as a treat-
ment (Kucerova and Cervinkova 2016). Unfortunately, many of the experiments
went wrong, with death of the cancer patient due to infection rather than due to
the cancer. After the Second World War this became an obscure idea as cancer was
considered as a multistage process that was in some ways deterministic (Tomasetti
and Vogelstein 2015, Perduca et al. 2019).

In systems epidemiology the fundamental change is the methodological posi-
tion, from a study design with information only on the driving forces of carcino-
genesis (Lund 2011) to the implementation of measures of the immune response,
mainly through gene expression analyses in peripheral blood.

While the research on carcinogens has been both prioritized and highly valua-
ble, any understanding of the carcinogenic process must involve measures of the
immune defense. Immune evasion as a concept was introduced a few years ago
(Hanahan and Weinberg 2011), but at that time with limited knowledge about its
mechanisms. However, the idea of carcinogenesis as a war between the tumor cells
and the immune system should take into account the lack of consistency between
the gene expression in the tumor and in peripheral blood. Instead, these two bio-
logical tissues represent these two forces.

Further support for this theory is the increasing importance of infectious agents
as risk factors for cancers, such as helicobacter pylori and stomach cancer, HPV
(Human papillomavirus) and cervical (and now also pharyngeal) cancer, hepatitis
C, liver cancer and Burkitt’s lymphoma. Recently there have been indications of an
association between leukemia among children and viruses, demonstrating the
importance of the immune system for development of several cancer sites. Vacci-
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nation against HPV clearly demonstrates the potential of using the immune sys-
tem for prevention, and possibly also for treatment.

The assembled evidence supports the hypothesis or model of cancer develop-
ment as balancing act or war between two opponents. Most breast cancers remain
invasive and will only kill women slowly due to ulcerations and infections. Meta-
stases, however, will kill.

Understanding the balancing act between the two dimensions—the tumor gene
expression profiles representing the carcinogenic process as the aggressor, and the
immune cells’ gene expression representing the defense—might be vital for the
future success of cancer research.

In Chapter 10, the old carcinogenic theory of aviatism is therefore discussed.
The atavistic hypothesis postulates that white blood cells responses to cells under
threat continue to run their core functionalities, preserving its most vital func-
tions. The findings are essentially in accordance with the atavistic hypothesis,
showing that the gene expression of white blood cells under threat from a cancer
run their core functionalities, preserving their most vital functions. Chapter 11
is a model of carcinogenesis based on the overall findings in TICE in relation to
the complexities of the evolution of the immune system, tumor tissue gene
expression, the carcinogens, and the immune response as seen in peripheral
blood.

WHEN SYSTEMS EPIDEMIOLOGY MERGES WITH SYSTEMS 
BIOLOGY
So far, information on functional genomics runs from reductionist experiments
with animals or cells to epidemiological findings. Huge repositories have collected
all information from experiments or from systems biology. In epidemiology this
information is used to explain the findings from explorative epidemiological stud-
ies with analogical fallacies as a potential source of poor validity of interpretations.
However, recently the process was reversed. After several studies of mice in rela-
tion to systemic dysfunction and plasticity of the macroenvironment in mice mod-
els, the authors turned to open access data from a case-control study of breast can-
cer in the NOWAC postgenome biobank. The human information was used as a
validation of the mice results (Allen BM et al., Nature Medicine). This opens up for
complicated study designs combining mice experiments with systems epidemiol-
ogy studies.
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THE FUTURE
The list of challenges could have been extended with several others, such as chang-
ing technologies and multilevel omics. Both issues would have added highly spe-
cific technical and statistical methods, considered to be outside the scope of
explaining systems epidemiology. The focus on transcriptomics was chosen as it
most clearly defines the challenges of time-dependent functional genomic studies.

EPILOGUE: EXPLORATIVE RESEARCH AS SAILING IN 
UNCHARTED WATERS
The ten years of our ERC project TICE has a metaphor in the North Pole expedi-
tion of Frithjof Nansen—ten years in uncharted waters. Everybody could dream of
reaching the pole, but nobody had managed to survive. Nansen had extensive
experience of travel in the North and had one observation—perhaps he was the
only one who understood the consequences: that a small part of the French ship
Jeanette, which was crushed by the ice, took three years to travel from East Siberia,
where it had sunk, across the Arctic Ocean, ending up in Greenland. He then went
to a famous Norwegian shipwright, who constructed the ship Fram. The vessel was
constructed like a nutshell in order to withstand the pressure of the ice and serve
as a base during his years of drifting. But he ignored all polar people who told him
that the Arctic Ocean was shallow, perhaps no more than 100–200 meters deep,
and that his boat would be destroyed against a rock or an island. Nansen found that
the Polar sea was 3000 meters deep. As he departed for an expedition that would
last 4–5 years, he claimed that reaching the North Pole would be nice, but the real
endeavor was to explore the Arctic Ocean. He returned without reaching the pole,
but with a wealth of knowledge that others were able to use.
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2. The Beauty of Complex 
Designs
Jo Inge Arnes and Lars Ailo Bongo

Abstract  The increasing use of omics data in epidemiology enables many novel
study designs, but also introduces challenges for data analysis. We describe the pos-
sibilities for systems epidemiological designs in the Norwegian Women and Cancer
(NOWAC) study and show how the complexity of NOWAC enables many beautiful
new study designs. We discuss the challenges of implementing designs and analyz-
ing data. Finally, we propose a systems architecture for swift design and exploration
of epidemiological studies.

Keywords  Systems epidemiology | Norwegian Women and Cancer | study 
designs | hypothesis exploration | computer systems

INTRODUCTION
Analytical observational epidemiology was, and primarily still is, about disease
risk estimation. In the past, most studies used simple case-control designs with
data from questionnaires, registers, and health records. The analyses relied on Cox
and classical survival analysis methods. Because case-control designs are prone to
selection and recall bias, prospective cohorts with nested designs are increasingly
used, but typically still focus on risk estimation. However, there is a shift in epide-
miology towards more basic research in which we study how diseases affect bio-
logical systems at a biomolecular level over time – for example, to understand the
dynamics of human carcinogenesis.

This shift was motivated by the sequencing of the human genome, officially
completed in April 2003 (The Human Genome Project), which led to the incorpo-
ration of genetic variants into epidemiological studies, primarily single nucleotide
polymorphisms (SNPs). SNPs are ideal as exposures because they do not change
over a lifetime. Hence, risks can be estimated using classical statistical methods.
There are also many hospital and research biobanks with samples usable for SNP
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


Arnes and Bongo | Advancing Systems Epidemiology in Cancer24
analyses, such as biobanks incorporated in the European Prospective Investigation
into Cancer and Nutrition (EPIC) (Bingham and Riboli 2004). In the ensuing dec-
ade, considerable resources were spent on genome-wide association studies
(GWAS), but the studies repeatedly failed to find robust, replicable associations
between SNPs and common diseases (Lund and Dumeaux 2008). The focus, there-
fore, shifted to functional genomics to find biological markers associated with
environmental exposures, lifestyle, age, or disease.

In 2008, Lund and Dumeaux (Lund and Dumeaux 2008) introduced systems
epidemiology and proposed the globolomic design. Systems epidemiology incor-
porates functional genomics and observes how diseases affect human biological
systems over time. The globolomic design extends the existing prospective design
by integrating functional genomics analyses from blood and tissue. In 2015, Lund,
with collaborators, introduced a processual approach to systems epidemiology
(Lund et al. 2015). The processual approach differs from traditional risk-related
research in that we view disease as a multi-stage process and use functional
genomics to observe disease-associated changes over time. In connection with the
new direction in epidemiology, there was a need for new statistical methods. An
example is a statistical method for longitudinal gene expression analysis using the
concept of curve groups (Lund et al. 2016, Chapter 8), developed in cooperation
with the Norwegian Computing Center.

Omics (Vailati-Riboni et al. 2017) plays an essential part in systems epidemiol-
ogy. The different omics are, unlike genes, affected by exposures and diseases. By
integrating omics in nested case-control studies, we can find altered levels of gene
expressions or methylation that are biological markers of the disease. For example,
studies have discovered changes in pre-diagnostic DNA methylation associated
with breast and lung cancer risk (Baglietto et al. 2017, Fasanelli et al. 2015, van
Veldhoven et al. 2015). Other studies have found changes in the inflammatory
transcriptome in adults related to early-life socioeconomic status (Castagne et al.
2016). We can also use other types of biological data that contain changes associ-
ated with a disease, including epigenetics, gene expressions, proteins, and metab-
olites. Finally, we can combine different types of omics and observe them together
in a multi-omics approach (Hasin et al. 2017).

In systems epidemiology, we observe how diseases affect human biological sys-
tems at the molecular level over time in order to gain more knowledge about the
mechanisms involved throughout the natural history of a disease. The develop-
ment of cancer, for example, is a multi-stage process (Foulds L 1958, Grizzi and
Chiriva-Internati 2006). The omics may be affected differently at different stages
of the process. Thus, the temporal aspects are essential – for example, the time to
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diagnosis. Systems epidemiology can help to bridge the gap between epidemiology
and research in biological sciences. The study findings can provide input into
research on molecular level biological systems, which can enhance our under-
standing of diseases, e.g. through pathway analysis (Garca-Campos et al. 2015).
We can, therefore, see systems epidemiology as a shift in epidemiology from
applied research towards basic research. The emphasis on the dynamic nature of
biological systems and processes in systems epidemiology can be seen as a coun-
terpart to systems biology, which is a discipline that seeks to determine how com-
plex biological systems function by integrating experimentally derived informa-
tion through mathematical and computing solutions (Institute of Systems and
Synthetic Biology).

We can integrate systems epidemiological designs into existing prospective
studies if the studies include omics and relevant questionnaire data. The Norwe-
gian Women and Cancer study is an example of a complex prospective study with
extensive data from questionnaires and registers, nested studies, different types of
preserved biological samples, and omics data.

However, many opportunities remain unexplored due to the time-consuming
and expensive steps required to conduct a full systems epidemiological project. We
could reduce the problem by making it possible to quickly design studies and
explore potential hypotheses at an early stage, before starting thorough research
projects.

In this paper, we show that many novel systems epidemiological studies are pos-
sible by utilizing existing data from population-based prospective cohort studies.
We also propose a computer systems architecture enabling the swift design of stud-
ies and exploration of hypotheses.

COMPLEX DESIGNS
Systems epidemiological study designs can be nested within existing cohort stud-
ies, such as the Norwegian Women and Cancer (NOWAC) study. The novel studies
thus become part of a larger, complex design. Here, we describe the NOWAC study
and data types, and we show that the existing cohort enables many novel study
design possibilities. We give a stepwise example of a systems epidemiological
design process. We also provide examples of two other variations of study designs
to show that there are several ways to design studies. Lastly, in this section we dis-
cuss the potential for realizing more of the potential for designing studies and
exploring hypotheses.
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NORWEGIAN WOMEN AND CANCER STUDY
In this paper, we use the Norwegian Women and Cancer (NOWAC) Study (Lund
et al. 2008) to describe the systems epidemiological design process. NOWAC is a
population-based prospective cohort study approved by the Regional Committee
for Medical Research Ethics and the Norwegian Data Inspectorate (P REK NORD
141/2008 Biobanken KVINNER OG KREFT). It was initially designed for breast
cancer research and has later been used to research other types of cancer. The
cohort includes 172 556 Norwegian women born between 1926–1965 (Gram et al.
2013). Invitations to the study were sent by mail in different batches for different
time periods (The Norwegian Women and Cancer Study, NOWAC). Most of the
women were recruited between 1991–1997 (179 387 invited, 102 540 recruited)
and 2003–2006 (130 577 invited, 63 232 recruited) (Lund et al. 2008). All of the
invited women had been randomly drawn from the Norwegian Central Person
Register. Each woman in the study has participated in surveys with questionnaires
covering a wide range of topics, from smoking, alcohol, diet, and physical activity
to the use of oral contraceptives and hormonal replacement therapy, reproductive
history, and diseases in the family.

The women have answered follow-up surveys with intervals of between four to
six years, resulting in a total of one to four answered questionnaires per woman.
The latest follow-up was in 2017. NOWAC periodically updates data with infor-
mation from the Norwegian Cancer Registry and the Cause of Death Registry.

There are also blood and tissue samples. The number of women in NOWAC
born 1943–1957 is about one-third of all Norwegian women born in those years,
and between 2003–2006, the NOWAC postgenome cohort study (Dumeaux et al.
2008) collected blood samples from about 50 000 of these participants. At the time
of blood sampling, the participants filled out an accompanying two-page question-
naire. The samples were collected using the PAXgene™ Blood RNA System (PreA-
nalytiX GmbH, CH–8634 Hombrechtikon, Switzerland) with buffers specially
designed for the conservation of RNA (Barnung et al. 2018).

Other types of samples also exist for a smaller portion of the women, such as
biopsies from both malignant tumors (Dumeaux V 2017) and healthy tissue
(Chapter 4). NOWAC produced its first microarray-based gene expression dataset
in 2009 and later miRNA, DNA methylation, metabolomics, and RNA-Seq data-
sets (Fjukstad 2019).

The samples have been preserved with the future in mind. Assessment of the
mRNA quality in whole blood samples after 15 years has been reassuring (data not
shown). We are still early in the post-genomic era, and the omics field is rapidly
evolving. In the future, new or improved types of assays will be developed. We can
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then use the preserved samples together with these assays. Also, tissue and blood
samples can be analyzed in new ways as new areas of interest emerge in cancer
research. For example, the immune system’s role in cancer is promising (de Visser
et al. 2006). In the future, other areas may attract attention.

Systems epidemiology’s use of biological samples from human participants has
a number of advantages compared to the alternatives. In biomedical research, for
example, it is common to conduct experiments either on live laboratory animals
(in vivo) or in Petri dishes and test tubes (in vitro). It is reasonable to assume that
there are relevant differences between humans and laboratory mice that must be
taken into account when studying human diseases (Breschi et al. 2017, Mestas and
Hughes 2004). In their daily lives, humans experience very different exposures
compared to laboratory mice. Systems epidemiological designs make it possible to
investigate gene expression profiles resulting from the complex real-life situations
of the participants, with hundreds of different exposures that interact with genetic
predispositions to cancer (Lund and Dumeaux 2008).

A prospective study, such as NOWAC, will often start as a cross-sectional study
in which data collection is done at a defined time. The study will usually involve
surveys about the past and data originally collected for other purposes. Cross-sec-
tions of the cohort can be made, but the temporality desired in a prospective study
is still missing. For each following year, some percentage of the participants will be
affected by cancer or another disease, which forms the basis for the prospective
aspect of the study. Additionally, the cohort needs to be followed up. Follow-ups of
a cohort can involve mailing follow-up questionnaires, updating data from disease
and cause-of-death registers, and possibly blood and tissue sampling.

The NOWAC study was designed as a prospective cohort study from the begin-
ning. The aim of the study was initially to research hormonal contraceptives and
breast cancer risk, but the surveys included questions covering a far broader scope.
This is the reason why NOWAC can be used to research many other cancers and
risk factors. In addition to the original study, there are different nested studies
within NOWAC. These are mostly case-control studies. An advantage of nesting
case-control studies in prospective cohorts is the reduction of recall and selection
bias. Other study designs can be nested, as well. Some studies exist that only use
the controls from a nested case-control study.

We can use the data in NOWAC for many novel epidemiological studies (Figure
2.1). Before any diagnosis, most participants have answered multiple surveys and
donated blood samples. Data from the surveys give an insight into the participants’
prior exposures and risk factors related to lifestyle, family history, socioeconomic
status, and health status. This information is supplemented with data from passive
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follow-up based on cancer and death register data, and active follow-up based on
collaboration with 11 major Norwegian hospitals and the Norwegian Breast Can-
cer Group (NBCG). Blood samples were collected and stored in a way that makes
new functional genomics analyses possible. Because the blood was collected before
diagnosis, the time between blood sampling and diagnosis varies for different
cases. In addition to the pre-diagnostic blood samples, some post-diagnostic sam-
ples were collected as well. NOWAC also includes tissue samples from hospital
biobanks for many of the participants that developed cancer. The study even has
four hundred biopsies from healthy women; see Chapter 4. The blood and tissue
samples are analyzed using several omics technologies. All this data can be com-
bined in many different ways, enabling many system epidemiology studies, which
we will show in the following section.

Figure 2.1. NOWAC cohort overview; biological samples and data types.

DESIGNING SYSTEMS EPIDEMIOLOGICAL STUDIES
Here, we describe how novel systems epidemiological studies can be designed
using data from NOWAC. We first describe limitations of the data material before
moving on to the many possible combinations of data that exist. We then provide
an example of the design process.

Limitations
Before we describe the many possibilities in a prospective cohort, we first discuss
the limitations. One type of limitation is when the data material does not contain
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the necessary information. A trivial example is that a cohort without male partic-
ipants probably does not have the data needed for prostate cancer research.

When it comes to questionnaire data, it is important to be aware that not all
groups respond to surveys to the same extent. The validity of studies concerning
high alcohol consumption can be problematic because people who suffer from
alcoholism answer questionnaires to a lesser extent than others. Consequently,
data on this group may be insufficient. However, studies involving other groups
can still be valid. The validity of the questionnaire items can also be of concern—
have the participants understood the questions? Furthermore, the types of data
obtainable from samples are limited by the technology used for collection and cold
storage. To conserve RNA in blood, we must use technologies such as PAXgene or
similar.

The size of the cohort is another limiting factor. In studies involving subgroups,
statistical power can often become a problem due to too few participants. One way
of counteracting the problem is through international collaborations. The Euro-
pean Prospective Investigation into Cancer and Nutrition (EPIC) (Bingham and
Riboli 2004) is one such international collaboration. EPIC is one of the largest pro-
spective cohort studies in the world. It has 521 000 participants and has been fol-
lowed for almost fifteen years. The cohort is composed of other cohorts from ten
European countries, including NOWAC.

A significant problem internationally is the follow-up of mortality and disease.
In Norway and the other Nordic countries, follow-up is easier thanks to public reg-
ister data. All Nordic countries have a central person register, cause-of-death reg-
ister, disease registers, and other public registers. Although not perfect in every
respect, the Nordic registers have long been celebrated as a ‘gold mine’ for research
(van der Wel et al. 2019).

The many possible studies
When we design a study, there are many types of choices that we can make depend-
ing on the research hypothesis. The different types of choices comprise a high
number of possible studies when combined.

Figure 2.2 shows the intersection of seven different types of choices as separate
dimensions. There are many options for each dimension, and the intersection of
the dimensions results in an ample decision space where each combination is a
potential study design. In the following, we describe the different choice dimen-
sions.
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The first dimension (1) concerns choices related to the study design’s time
aspect, which is an integral part of most epidemiological study designs. In system
epidemiological designs, we define a timeline dimension explicitly. We can divide
the timeline into the time before diagnosis, time of diagnosis, or time after diag-
nosis. For some samples, such as biopsies taken at diagnosis, the time will coincide
with the time of diagnosis, but we can combine this with other samples taken
before or after diagnosis. We can also further divide the timeline into intervals, e.g.
0–1 years before diagnosis, 2–3 years before diagnosis, and 3–5 years before diagno-
sis, which is useful for statistical analyses.

The second dimension (2) is the exposures and risks dimension. Many different
types of exposures can increase the risk of a condition. In NOWAC’s prospective
questionnaires, we find information about each participant’s risk factors, such as
lifestyle, use of medication, conditions in the family, number of births, and much
more. Additionally, genetic variants can be viewed as risk factors that can be iden-
tified by analyzing blood samples.

The third dimension (3) is the different types of measurements and assays that
we can choose. In the NOWAC context, each assay is an omics or multi-omics
assay – for example methylation, gene expressions, and metabolomics.

However, there are more than three dimensions. Instead of adding more axes,
we label the remaining dimensions with lower case letters a–d on a cube (see label
4 in the figure). Each cube in the figure will have these four additional choice
dimensions, which differentiate the many possible studies.

The fourth dimension (4a) represents the possible diagnoses that can be studied.
In NOWAC, we have information about various diagnoses from the Norwegian
Cancer Registry and the Cause of Death Registry.

The fifth dimension (4b) is the participant selection dimension. This dimension
concerns the criteria for choosing and grouping participants for the study. A typi-
cal example is a case-control study in which we select cases from the cohort based
on criteria that we choose. We then choose controls nested in the cohort matched
on the cases. The criteria that we use to match controls to cases can vary from
study to study, while selecting controls with the same sex and similar age since the
case is quite common. There will usually be far more possible controls than cases
available for selection in a study. A ratio of about a thousand to one is not uncom-
mon. The statistical power is dependent on the number of available cases and the
number of controls drawn for each case.

The sixth dimension (4c) is the sample type dimension. Usually, it matters where
the analyzed sample was acquired from; it can be a blood sample, a tissue sample,
or a sample of specific types of immune cells. We can compare results from differ-
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ent sample types from each participant, such as comparing methylation levels in
peripheral blood and tumor tissue.

The seventh dimension (4d) applies to stratification and de-confounding. The
purpose is to adjust for underlying factors that skew the results, and we usually use
exposure and risk factor data for this. An example of how we can adjust for smok-
ing exposure when analyzing biomarkers for lung cancer is given in a later descrip-
tion of a three-level study design.

We have now described the many available choices that exist when designing
studies. Each dimension consists of many options, and the number of possible
studies becomes very large when we combine different dimensions. The reason for
the high number of combinations is that the number of options for each dimension
must be multiplied together. The total number of combinations then becomes:
(The number of ways to arrange the timeline) * (The number of exposures) * (The
number of available measurements and assays, e.g. for single or multi-omics) * (The
number of available diagnoses) * (The number of ways to select participants) * (All
sample types and relevant combinations) * (The de-confounding and stratification
factors)

After we have chosen the study parameters from the described dimensions, we
will have a clearer understanding of the selection of data we need for a study. The
next step is to apply the data selection to systems epidemiological designs.

Figure 2.2. The different dimensions that can be combined for each study design.
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Applying data to systems epidemiological designs
After deciding on the parameters and data for our study, we apply the data within
a systems epidemiological design. We now give a stepwise example of a systems
epidemiological design process using existing data from a prospective cohort
study with omics data, such as NOWAC.

In systems epidemiology, imagine that we organize our sample data points along
several axes, where one is the timeline (Figure 2.3). We usually split the timeline
into the time before diagnosis, of diagnosis, and after diagnosis. It is also possible
to split the timeline by an event other than the diagnosis. The decision on how to
split the timeline was described earlier as one of the dimensions from which we
choose our study parameters.

Figure 2.3. Time to diagnosis, time of diagnosis, and time after diagnosis.

Each sample in our data has a temporal distance to the time of diagnosis (Figure
2.4). We therefore place the data points on the timeline relative to how long before
or after diagnosis the sample was collected. The second axis is a value axis. The val-
ues of the data points can be the raw measured values, such as the expression levels
for a gene, but they are often the results of a function that takes one or more meas-
ured values as parameters. For example, the vertical position of the data point may
represent the difference between cases and controls (Formula 2.1).

Formula 2.1. In the formula, x is a case-control pair’s expression levels for a gene or
other omics value.
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Figure 2.4. Sample data points positioned by distance from diagnosis. The value
axis does not have to be linear; it can be logarithmic or other.

Next, we can group data points into strata that we are interested in comparing (Fig-
ure 2.5). By observing data points at a group level, we can envision a curve or tra-
jectory for each stratum (Figure 2.6). If we compare the trajectories and find sig-
nificant differences between the strata, this could potentially be of importance not
only for future research on differential diagnosis or prognosis, but also for under-
standing which biological systems are involved.

It is not mandatory to stratify by grouping data points as described. If the data
point values come from a function that represents a comparison of different sam-
ples, then this too is a type of stratification. When using Formula 1 for data point
values, the height of the curve is a case-control comparison. Consequently, multi-
ple levels of stratification can be achieved through a combination of grouping and
use of functions.

Figure 2.5. Stratification of data points. In this example, the white-filled circles rep-
resent women with metastasis, and the grey-filled circles represent women without.
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Figure 2.6. An illustration of estimated curves or trajectories for each stratum. The
curves for the two strata are different.

Because the measured values are from biological processes that interact as part of
a system, it is interesting to compare the curves of many types of values simultane-
ously (Figure 2.7). The figure shows three curves per stratum, one for each type of
gene expression.

Figure 2.7. For each biological sample, we can measure the levels of many different
expressed genes. For each, we can imagine a separate curve per strata. In the illus-
tration, only the expression levels for “Gene 1” differ between the two strata. Note
that we are not restricted to gene expressions. Other omics can be used.

However, the reality is more challenging than illustrated in Figure 2.7. For exam-
ple, we can measure the expression levels for 19 950 protein-coding genes from
each blood sample and present each expressed gene as a separate curve along the
timeline. Curves for other omics can be included as well, such as methylation. The
results can thus consist of thousands of intersecting curves per stratum, which is
too much information to be presented as an overview of the data. Therefore, we
must use other techniques for analyzing the data. Many methods exist for analyz-
ing high-dimensional omics data. Usually we use methods related to clustering or
dimensionality reduction techniques for high-dimensional data (Breschi et al.
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2017). Examples of dimensionality reduction techniques include principal compo-
nent analysis (PCA), multidimensional scaling (MDS), and t-distributed stochas-
tic neighbor embedding (tSNE). An alternative approach is to map the omics data
to a biological context, e.g. we can map gene expressions to where they occur in
biological pathways. We are also interested in including the temporal aspect as part
of the data analysis, which is a hallmark of systems epidemiology.

We have now described how studies can be designed by applying existing cohort
data, for example, a combination of questionnaire data and high-dimensional
molecular data from NOWAC. The steps in the design process described in this
section can be summarized as:

• Establish an axis for the time to diagnosis (or another event) and an axis for
values

• Define strata
– For example, cases with spread or without spread

• Calculate data point values and position them in the coordinate system
– The basis for the values is analyzed samples, taken from different participants

at different times. Pre-diagnostic samples acquired from the cases will usually
have different distances to the time of diagnosis

– The data point values can be the raw measured values from samples, but more
often we use derived values from computations and statistical methods that
include values from case-control pairs

• Imagine curves for each similar type of data point belonging to the same stratum
– For example, all data points for a specific mRNA that involve cases with

spread belong to the same curve
• For high-dimensional data, there will be too many curves to comprehend, and

advanced clustering or dimensionality reduction techniques are thus needed
• Compare the strata to find differences

– Statistical methods, data explorations, and visualizations

TWO ALTERNATIVE TYPES OF STUDY DESIGN
In the previous section we based the studies on comparing cases and controls, but
there are other possibilities. Here we describe two design variations.

The NOWAC study has tissue samples that we can analyze and compare to
peripheral blood. That is, we compare samples from different locations in the same
person instead of between cases and controls. NOWAC includes case-control pairs
for which diagnostic blood and tissue samples exist both for cases and matching
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controls, which means that women allowed health-care professionals to take biop-
sies of healthy tissue for research purposes. For these participants, we can design
studies that compare tissue and blood samples and also include the case-control
aspect (Dumeaux et al. 2017).

Figure 2.8 It is also possible to define study designs with more than one level of
nesting. For example, we can create a three-level design comprised of the cohort, a
nested case-control study, and a cross-sectional study that only includes the con-
trols (Figure 2.8). The following case exemplifies this type of design: For some dis-
eases, such as lung cancer, a large percent of the cases has a history of smoking
exposure. As a result, it can be hard to separate the early biological effects of cancer
from the effects of smoking. We can solve this problem by first finding biomarkers
for smoking exposure in the controls. In the cross-sectional study, the controls are
stratified based on exposure data from the cohort’s prospective questionnaires.
The gene expressions are then analyzed to find the biological markers of smoking.
In the parent case-control study, the findings can be used for de-confounding pur-
poses to prevent smoking markers from being misinterpreted as cancer markers.
A study similar to this has been conducted by (Baiju et al. 2020) as part of the Id-
Lung project. The same type of design was used by to demonstrate altered gene
expression levels in the NOWAC cohort associated with coffee consumption (Bar-
nung et al. 2018).

Figure 2.8. An illustration of a three-level design. Case-control pairs are selected
from the prospective cohort. The cross-sectional study selects controls from the
case-control study. The controls are stratified by exposure, which in this case is
smoking status. The smoking statuses are calculated from the cohort study’s ques-
tionnaires, and the biological samples are also from the cohort. The gene expres-
sion data is part of the case-control study. The cross-sectional study analyzes the
gene expressions to find exposure markers.
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TOWARDS REALIZING THE POTENTIAL
We have shown that it is possible to combine data in numerous ways to design
many different studies. Unfortunately, a lot of time and resources are needed to
carry out full epidemiological studies. Consequently, many opportunities that lie
in the prospective cohorts may be left unrealized.

If, instead, we had carried out lightweight studies in a simple way in advance
wherein we could quickly explore potential hypotheses, then we could have had a
better starting point when deciding whether it would be worth going ahead with
larger projects.

To realize more of the potential that lies in the NOWAC data and similar studies,
we suggest that a computer system should be created that supports the rapid design
of studies, analysis of data, and exploration of hypotheses. In the following sec-
tions, we propose a computer systems architecture for this purpose.

COMPUTER SYSTEMS ARCHITECTURE
In systems epidemiology, we design complex studies with many types of data,
including high-dimensional molecular data. Computer systems are essential for
managing data and performing computations. In the previous section we dis-
cussed the possibility of a computer system helping to realize more of the potential
in cohort data by enabling the users to explore different hypotheses quickly. How-
ever, no such unified system presently exists for systems epidemiology.

Here, we propose a systems architecture that enables the swift design of studies,
analysis of data, and exploration of hypotheses. The aim is to explore different
hypotheses quickly at a preliminary stage of research, or explained with a meta-
phor: “We wish to explore the data by swimming and delving into it.” (Lund 2019,
personal communication)

There exists a range of software tools and systems that are used in systems epi-
demiology. Examples are tools that are concerned with processing omics data in
pipelines, data management, or reproducibility in science. Fjukstad et al. 2018
(Chapter 3) used a combination of such tools to organize data storage and docu-
mentation and to standardize the analysis of gene expression data in NOWAC.
Various unrelated tools and scripts for statistical analyses of omics also exist. None
of these tools and systems constitute a unified system for the swift design of stud-
ies, epidemiological analysis, and exploration of hypotheses. We present a high-
level, conceptual architecture for this missing system.
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Figure 2.9 shows a conceptual view of the proposed system’s architecture. The
system is illustrated as having a pipelined architecture in which one part’s output
becomes the next part’s input. The arrows between the parts represent the flow of
data. Each part may be composed of loosely coupled subsystems.

Figure 2.9. A high-level conceptual view of a computer system for systems epide-
miology.

In addition to designing each part of the system, we must design good abstractions
for the interfaces between them. We can view most of the system’s parts as separate
black boxes; the outside does not know the details of how the part functions on the
inside. The outside can only interact with it through limited interfaces and is not
permitted to manipulate its inner state and workings directly. An abstraction is a
well-defined view or model that only includes what is relevant and excludes all that
is irrelevant. The art is to define abstractions that are correct for use, flexible and
general enough to include relevant variations, yet simple and coherent. We com-
monly prefer interfaces and data structures with these properties. We implement
them by using the available features for declaring data types, functions, and sche-
mas in our programming languages, software frameworks, and environments. The
conscious use of abstractions when designing systems is an important tool for
avoiding accidental complexity, and it provides the system with clean and simple-
to-understand façades (Kleppman 2017). Abstractions also help to clearly separate
the system’s different concerns and make it more flexible to changes.

First, we provide an example use case describing the system from the
researcher’s point of view. Next, we discuss the five main parts of the system. We
additionally touch upon the importance of reproducibility in science.
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Example use case: Design a study in an interactive notebook
In this section, we describe how the researcher can use the system through an
interactive notebook. Interactive notebooks are increasingly popular in data sci-
ence and scientific computing. The notebooks enable researchers to create
dynamic documents containing a mix of text and runnable code fragments. We
use the notebooks as interactive development environments and share them with
others. Two examples of notebook environments are R Notebook (Chapter 3.2 in
Xie et al. 2019) and (The Jupyter Notebook). We provide a casual use case (Cock-
burn 2000) describing a notebook approach to designing studies.

A researcher wants to design a study in order to explore a hypothesis. The
researcher has already opened a notebook and loaded the required packages
belonging to the system. The researcher types in and runs a simple command (or
function-call) telling the system to create a workspace for the study. The system
creates a data structure representing an empty workspace, which becomes availa-
ble in the researcher’s notebook. Included in the workspace is a default study
design specification. The researcher specifies the study’s overall design by adding
groups and stratifications to the design specification. The system keeps a data
structure representing this design within the study design specification. The
researcher specifies the data sets that will be used, including the target versions.
The system keeps this information in the workspace. The researcher then defines
queries for the different groups and strata. The system keeps the queries but does
not yet run them to fetch data. At this point, the researcher wants to inspect the
data, which is an optional step. The system runs the queries on demand and makes
the data available. After inspecting the data, the researcher defines how data will
be analyzed by composing statistical methods and computations from standard or
custom packages. These can be associated with specific groups or strata, and
sequences of computations can be defined. The system keeps this in the work-
space. The researcher instructs the system to execute the entire study, and the sys-
tem executes the study by fetching necessary data and running computations as
specified. It does this by delegating work to the storage and computational systems,
such as data lakes and Apache Spark. It makes the resulting data available in the
researcher’s notebook environment. The researcher can then further explore and
visualize the results with other tools.

The researcher can save the workspace at any point. Previously saved work-
spaces can be loaded and run. The researcher can modify individual parts of the
workspace and execute the updated study.
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Design study
To easily specify new study designs, we must provide a user interface (UI) to the
system that is user-friendly and practical. Several options exist:

• A graphical UI for specifying study designs
• A human-readable text-based format for defining studies (XML, JSON, YAML)
• A software package integrated into a development environment commonly used

in the researcher’s field (R-studio)
• A domain-specific language (DSL) for defining study designs

Regardless of how we present the study design specification UI to the researcher,
the specified designs must internally be represented in a machine interpretable
manner that is useable later for the automatic execution of the study. The study
design specifications describe what the researcher wishes to do, but not the details
of how. The exact decision on how data retrieval and execution is performed is left
to other parts of the system. This type of abstraction ensures that changes in imple-
mentation details, or even the replacement of whole subsystems, can be contained
to the parts that retrieve data and execute the study without requiring changes to
other parts. Equally important, the abstraction makes it possible automatically to
optimize how the study is performed.

Data storage
Data is central in epidemiological research, but managing all the technical aspects
of data is complicated and bears little relevance to the researcher’s aims. For exam-
ple, a considerable amount of time is spent on data wrangling due to impractical
data structures or lack of consistent structures. Each project typically operates on
smaller, custom data sets that have been extracted manually from the primary data
sets. The data sets are stored in simple text-based formats on shared disks. The
included fields and names are inconsistent across data sets. Sometimes the
researchers will make personal copies of the data set file, with various changes that
they have made. With the advent of multi-omics, the amount of data can poten-
tially become very large, which will require a more professional approach to data
management. The system should hide the technical details surrounding data and
instead provide the researchers with simple, uniform data access.

Today, a variety of production-quality data storage solutions are available. It is
crucial to investigate which type of solution best suits the system because there are
significant differences between them. Examples of storage types are:
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• Relational database management systems (RDBMS), including data ware-
houses: PostgreSQL, MS-SQL

• Key-value stores: Redis, Memcached
• Column stores or column formats: Cassandra, Parquet
• Graph databases: Neo4j, OrientDB
• Files in distributed file systems: Hadoop Distributed File System (HDFS), Tachyon
• A combination of the above, termed polyglot persistence (Sadalage and Fowler

2013)
• Data lakes (Miloslavskaya and Tolstoy 2016): Azure Data Lake, AWS Data Lake

A layer of abstraction should be created for easy and uniform access to the data,
hiding the underlying data structures and storage systems. By abstracting the
underlying storage mechanisms away from the rest of the system, it is easier to
evolve or replace the storage solution as we discover opportunities for improve-
ments. ADAM (Massie et al. 2013) is a set of formats, APIs, and processing stage
implementations for genomic data. It has a layered design with a “narrow waist” in
the middle, also termed an hourglass model (Beck 2019). The narrow-waist layer
consists of a data schema, implemented with Apache Avro (The Apache Avro Pro-
ject) that separates the details of the storage layers from the overlying layers. A
similar approach may prove useful in our system.

Fill study design with data
After specifying a study design, the researcher must be able to query and retrieve
the data for the study. First, one or more data sources are chosen. We should enable
access to the data in a uniform manner and structure the data according to stand-
ard schemas. Next, the researcher defines queries that select and transform data for
the study’s different groups and strata, such as cases, controls, with spread, without
spread. The queries are attached to the study design specification.

From the technical side, the queries should be attached to the study design but not
immediately executed. The system should be allowed to run queries in the same con-
text as the computations. This can prevent inefficient spilling of data to disk between
the steps. It can also enable automatic query optimizations. There are several options
for query languages, e.g., the query syntax could be SQL-like or fluent (Fowler 2005).
LINQ (Torgersen 2007) or Resilient Distributed Datasets (RDD) (Zaharia et al.
2012) are examples that support deferred execution and both types of syntaxes.

The resulting data must have a structure recognizable by the computational and
statistical methods in the next step of the workflow. Again, we need good abstractions.
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Computations and statistical methods
The researcher should be able to choose from ready-made calculations and statis-
tical methods and possibly define custom ones. Functions for common computa-
tions and statistical methods can be packaged in a reusable manner that is inde-
pendent of a particular study. The statistical methods for curve groups (Lund E
2016) and classify strata (Holden 2015) are candidates for such packages. Novel
statistical methods for systems epidemiology will likely be developed in the future.
The system must support both ready-made packages, as well as custom packages.
A statistician can implement functions, possibly in collaboration with scientific
programmers, and epidemiologists can then apply the functions in various studies.
A challenge is to define standards for functions and packaging that covers the
needs of existing and future statistical methods.

The computations involved in omics analysis are often time-consuming and
resource-heavy. Care should be taken to choose an underlying platform that per-
forms well for the computations encountered in systems epidemiology. Apache
Spark (Zaharia et al. 2010) is a unified analytics engine for large-scale data process-
ing that could be used as an integral part of the system. Recent versions of Spark
support R (The R Project for Statistical Computing), which is a programming lan-
guage and environment for statistical computing often used in epidemiology.

Structure results for further exploration and visualization
After applying computations and statistical methods, it should be easy for the
researcher to explore and visualize the data further. Because many general-pur-
pose tools and software packages already exist that are excellent for data explora-
tion and visualization, the results generated by the system should be usable within
the context of such software packages and tools. We can achieve this by structuring
data in a standard format so that the researcher can either use the result datasets
directly or import them into their software tool of choice, such as an R environ-
ment.

Reproducibility
It has been claimed that there is a reproducibility crisis in science. Nature (Baker
2016) asked 1576 researchers questions about reproducibility. They found that
90% answered that there was either a slight or significant crisis. More than 70%
had tried and failed to reproduce other scientists’ experiments. More than half of
the scientists had experienced that they were unable to reproduce their own exper-
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iments. There are several reasons for the crisis – for example, selective reporting or
low statistical significance. At other times it can be challenging to know how to
repeat the experiment correctly. In the latter case, we can benefit from having a
system that can automatically rerun previous experiments using the same steps
and data.

The system’s study design specifications, dataset selections, queries, and statisti-
cal methods can be saved together as a complete workflow. As long as the under-
lying data stay unchanged, the experiments can be reloaded and automatically
repeated. The system must track changes to data and support data versioning. By
specifying target data versions for the workflows, we can ensure that the experi-
ment’s data stays the same between runs.

CONCLUSION
We have described the complex NOWAC study, the many different types of data,
and that the data can be combined in a large number of ways. The many combina-
tions allow us to create many new system epidemiological study designs. We have
also given a step-by-step example of a system epidemiological design.

The beauty of complex studies such as NOWAC is the opportunities for new
studies that arise. However, opportunities can be lost because extensive studies are
time-consuming and costly. By finding a quick way to create designs using existing
data, we can perform initial explorations to investigate if a hypothesis is worth
researching more extensively.

As a solution, we have proposed a computer systems architecture to support the
swift design of system epidemiological studies and exploration of hypotheses.
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Abstract  Standardizing and documenting computational analyses is necessary to
ensure reproducible results. We describe an R-based implementation of data man-
agement and preprocessing that is well integrated with the analysis tools typically
used for statistical analysis of omics data. We have used these tools to organize data
storage and documentation, and to standardize the analysis of gene expression
data, in the Norwegian Women and Cancer study.
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INTRODUCTION
Reproducibility is necessary to advance science and to leverage scientific results
(Reality check on reproducibility 2016). This requires the implementation of best
practices for data management and analysis. Such best practices are also necessary
for large and complex projects in which data collection, analysis, and interpreta-
tion may span decades, and is therefore done in several iterations, by different peo-
ple. We have observed this need in systems epidemiology (Lund and Dumeaux
2008). In addition, the need is recognized in the STROBE-ME (Gallo et al. 2011)
initiative to strengthen the reporting of observational studies in molecular epide-
miology.

There are many approaches, systems, and tools for data storage and processing
that solve many of the technical challenges of ensuring reproducible analyses (Ivie
and Thain 2018). To make it easy to find relevant data for re-analysis or re-inter-
pretation, the data can be organized in file system structures, databases, or in other
indexable storage systems. To keep track of different versions of files, we can use a
versioned file system, or version control systems, such as git, that are widely
ons Attribution 4.0 International (CC BY 4.0).
reativecommons.org/licenses/by/4.0/.
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adopted in software engineering. To document the tools, parameters, and refer-
ence databases used in an analysis we can use frameworks such as CWL (Amstutz
et al. 2016), Galaxy (Afgan et al. 2016), Snakemake (Köster and Rahmann 2012),
Spark (Zaharia et al. 2016) or an in-house solution such as our Walrus system
(Fjukstad et al. 2018). All of these frameworks provide an interface to set up an
analysis pipeline, either as a text file or using a Graphical User Interface (GUI), and
then execute it. To record provenance and keep track of the intermediate files, we
can implement and run the analysis in, for example, Galaxy, Spark or Pachyderm
(Pachyderm – Scalable, Reproducible Data Science 2019). However, there is a need
to adapt these systems and tools to the needs of typical omics data analysis work-
flows.

In this paper we describe our lessons learned throughout 10 years of transcrip-
tomics data analysis in the Norwegian Women and Cancer (NOWAC) study
(Lund et al. 2008). We use these to propose an approach to maintain, preprocess,
and facilitate statistical analyses in complex systems epidemiology datasets. The
approach ensures reproducibility, and we believe that it is well adapted for omics
data analyses. It enables us to achieve reproducible research through the four
steps described above. First, we use R since it has many up-to-date and actively
maintained packages for analyzing, plotting, and interpreting data (for instance,
Bioconductor (Gentleman et al. 2004) and the Comprehensive R Archive Net-
work (The Comprehensive R Archive Network 2019). Second, we have devel-
oped an R pipeline package with code and the datasets from the NOWAC study.
We document all datasets thoroughly and use version control to track both data-
sets and code over time. Third, we have developed an interactive web applica-
tion, the Pippeline, to perform the standardized preprocessing steps for gene
expression datasets. Fourth, we export the data as a git repository and RStudio
project file to encourage reproducible analyses. Fifth, we have developed our
own best practices to report results and share analyses through reproducible
analysis reports.

The article is organized as follows. After the description of the datasets at hand
and the given context, we detail how omics data analysis was done previously, and
what challenges this implied. We then discuss the requirements for our new
approach and describe the solution in detail, together with an explanation of the
corresponding methodology and best practices. We briefly discuss limitations of
our work before concluding.
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DATA ANALYSIS LESSONS LEARNED IN THE NORWEGIAN 
WOMEN AND CANCER STUDY
Our approach is based on the 10 years of transcriptomics data analysis in the
NOWAC study. This is a prospective population-based cohort that tracks 34%
(170 000) of all Norwegian women born between 1943 and 1957 (Lund et al. 2008).
We started the data collection in 1991 with surveys that cover topics including: the
use of oral contraceptives and hormonal replacement therapy, reproductive his-
tory, smoking, physical activity, breast cancer, and breast cancer in the family. We
also periodically update the study with data from the Norwegian Cancer Registry,
and the Cause of Death Registry. In addition to the questionnaire data, we col-
lected blood samples from 50 000 women, as well as more than 300 biopsies. From
the biological samples we generated the first microarray-based gene expression
dataset in 2009, and later miRNA, DNA methylation, metabolomics, and RNA-seq
datasets.

The data in the NOWAC cohort allows for a number of different study designs.
While it is a prospective cohort study, we can also draw a case-control study from
the cohort, or a cross-sectional study. We have published papers analyzing the
questionnaire data (e.g. Busund et al. 2018, Gram et al. 2016), and many research
papers that investigate the questionnaire data together with the gene expression
datasets (e.g. Olsen et al. 2013, Dumeaux et al. 2010). We have also used the gene
expression datasets to explore gene expression signals in blood and interactions
between the tumor and the blood systemic response of breast cancer patients
(Holden et al. 2017, Dumeaux et al. 2017). Some analyses have resulted in patents
(Dumeaux and Lund 2014) and commercialization efforts. There are still, how-
ever, many unexplored areas in the NOWAC datasets.

In the NOWAC study we are a group of researchers, PhD students, post docs,
technical staff, and administrative staff. The researchers are from statistics, medi-
cine, epidemiology, and computer science. The administrative and the technical
staff are responsible for managing the data—both data collection and data delivery
to researchers. The interdisciplinary work and the complexity of the studies makes
data management and analysis especially challenging.

Data management and analysis
Surveys are the traditional data collection method in epidemiology. Today, how-
ever, questionnaire responses are increasingly integrated with molecular data, but
surveys are still important for designing a study that can answer particular research
questions. In this section we describe how such omics data analysis was done in
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NOWAC before we developed our approach. We believe many studies have been, or
are still, analyzing epidemiological data using a similar practice, and that our
approach and lessons learned presented here will be useful for these studies.

In the NOWAC study we have stored the raw survey and registry data in an in-
house database. Researchers apply to get questionnaire data variables exported
from the database by scientific staff. This was typically done through SAS scripts
that did some preprocessing, e.g. selecting applicable variables or samples, before
the data was sent to researchers as SAS data files. The downstream analysis was
typically done in SAS. Researchers used e-mail to communicate and send data
analysis scripts, so there was no central hub with all the scripts and data.

In addition to the questionnaire data, the NOWAC study also integrates with
registries (cancer and death) that are updated regularly. The datasets received from
the different registries are typically delivered as comma-separated values (CSV)
files to our scientific staff, which are then processed into a standardized format.
Since the NOWAC study is a prospective cohort, some women are expected to get
cancer and move from the list of controls into the list of cases. This also requires
updating their status in the analyses using gene expression data, and makes it nec-
essary to keep track of the case-control changes.

In the NOWAC study, we have analyzed our biological samples in labs outside
our research institution. The received raw instrument datasets are then stored on
a local server and made available to researchers on demand. Because of the com-
plexity of the biological datasets, many of these require extensive preprocessing
before they are ready for analysis.

Issues in previous practice
Over nearly a decade of experiences from transcriptomics data analysis, we iden-
tified a set of issues with our previous practice that prevented us from fully ensur-
ing reproducible data analysis:

1. It was difficult to keep track of the available datasets, how they were combined,
and to determine how these had been processed. We had no standard data
storage platform or structure, and there were limited reports for exported da-
tasets used in different research projects.

2. There was no standard approach to preprocessing and initiating data analysis.
This was because the different datasets were analyzed by different researchers
at different points in time, and there were few practices for the sharing reusable
code between projects.
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3. It became difficult to reproduce the results reported in our published research
manuscripts. This was due to the lack of standardized preprocessing, sharing of ana-
lysis tools in their various versions, and full documentation of the analysis process.

ENABLING REPRODUCIBLE DATA ANALYSES
To solve the above issues and enable easily reproducible research in the NOWAC
study, we developed a system for managing and documenting the available data-
sets, a standardized data preprocessing and preparation system, and a set of best
practices for data analysis and management. We first identified a set of require-
ments for a system to manage and document the different datasets:

1. It should provide users with a single interface to access the datasets, their re-
spective documentation, and utility functions to access the raw and prepro-
cessed data.

2. It should be capable of handling datasets in the order of a few gigabytes and si-
multaneously retain interactive computation time for the analyses.

3. It should provide version history for the data and analysis code and tools.
4. The system should provide reproducible data analysis reports for modified datasets.
5. It should be portable and reusable by other systems or applications.
6. The system should be able to handle access management, data protection, and

privacy concerns such as anonymization.

To satisfy the above requirements we developed the NOWAC R package, a soft-
ware package in the R programming language to provide access to all data, docu-
mentation, and utility functions.

We also identified a set of requirements for this data preprocessing and prepa-
ration system:

1. The data preprocessing and preparation system should provide users with an
interactive point-and-click interface to generate analysis-ready datasets from
the NOWAC study.

2. It should use the NOWAC R package to retrieve datasets.
3. It should provide users with a list of possible options for filtering, normaliza-

tion, and other options required to preprocess a microarray dataset.
4. It should generate a reproducible report along with any exported dataset.
5. It should export the data in a format that encourages following best practices

for reproducible research in further downstream analyses.
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Finally, we developed a set of best practices for data analysis in our study. In the
remainder of the section we detail how we built the NOWAC package, the Pippe-
line, and discuss best practices for data analysis.

The NOWAC R package: data management
The NOWAC R package is our solution for storing, documenting, and providing
utility functions to parse and process the raw omics data in the NOWAC study (Fig-
ure 3.1). We use git to version-control both the analysis code and datasets and store
the repository on a self-hosted git server. We bundle together all datasets in the
NOWAC package. This includes questionnaire, registry, and gene expression data-
sets. Because these are small by modern standards (currently all datasets are less than
10 GB), we are able to distribute them with our R package. Some datasets require pre-
processing and quality control steps such as the removal of observations marred by
technical artefacts (we sometimes refer to this as outlier removal) before the analysts
explore the datasets. For this, we store the raw datasets and the results of quality
assessment. We store links to the raw datasets in their original file format and as R
data files to simplify importing in R. In addition, we store the R code we used to gen-
erate the R objects. For clarity, we decorate the scripts with specially formatted com-
ments that can be used with knitr (Dynamic Documents with R and knitr) to auto-
matically generate data analysis reports. The reports highlight the transformation of
the data from raw to processed and detail all information necessary to reproduce the
entire processing, such as the specification of removed samples.

We have documented every raw dataset in the NOWAC R package. The docu-
mentation includes information such as data collection date, instrument types, the
persons involved with data collection and analysis, and pre-processing methods.
When users install the NOWAC R package, the documentation is used to generate
interactive help pages which they can browse in R, either through the command
line or through an integrated development environment (IDE) such as RStudio.
We can also export this documentation to a range of different formats, and
researchers can also view them in the RStudio interface. Figure 3.2 shows the user
interface of RStudio where the user has opened the documentation page for one of
the gene expression datasets.

We use a single repository for the R package and put each dataset into a git submod-
ule (Figure 3.3). This allows us to separate access to the datasets from the documenta-
tion and analysis code for data security and privacy reasons. Everyone with access to
the repository can view the documentation and analysis code, but only a few have
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access to the data. Submodules allow us to keep the main repository size small, while
still versioning the data. The NOWAC R package also provides various utility functions
to process the raw datasets, and helper functions to retrieve questionnaire data.

Figure 3.1. The standardized data processing pipeline for gene expression data pre-
processing in the NOWAC study. Steps with a dashed border are optional, while
steps with a solid border are mandatory. Further details are available in Bolstad et al.
2003, Johnson et al. 2007, Xie et al. 2009, Günther et al. 2014, Bøvelstad et al. 2017.
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sults
Figure 3.2. A screenshot of the user interface in R Studio, viewing the documenta-
tion help page for the “Biopsies” dataset in the NOWAC study. The right-hand panel
shows the documentation generated by the code in the top left panel. The bottom
left panel shows the R command that brought up the help page.

Figure 3.3. NOWAC R package and Pippeline deployment.
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Pippeline: Interactive Preprocessing Web Application
The use of the biological data in the NOWAC study in a research project comprises
four steps (Figure 3.1). First, as explained above, the raw datasets are added to the
NOWAC R package and documented thoroughly by a data manager. Second, we per-
form manual quality assessment of the biological datasets. We add information about
technical outliers to the NOWAC R package along with reports that describe why an
observation is marked as an outlier. Third, the data manager generates an analysis-
ready gene expression dataset for subsequent analysis using the interactive Pippeline
tool as described below. Fourth, researchers further analyze the exported dataset with
their tools of choice, following best practices for reproducible data analysis.

We have developed our preprocessing pipeline for gene expression data as a
point-and-click web application called Pippeline. Pippeline generates an analysis-
ready dataset by integrating biological datasets with questionnaire and registry
data, all found in our NOWAC package. It allows selecting study design, removing
already-discovered technical outliers, data normalization methods, filter values,
and questionnaire fields. It presents the user with a list of possible processing
options. We provide summary statistics for samples and probes about the changes
made on each processing step in real time, so Pippeline users can see how each pre-
processing step changes the number of samples and probes in the dataset (Figure
3.4). Pippeline exports the analysis-ready R data files, an R script that has all the
choices and selections made during the preprocessing, and an R markdown which
contains a human-readable report that can be used in the Methods section of a
paper. The R script enables reproducing the output and intermediate data if
needed.

Pippeline is implemented in R as a web application using the Shiny framework.
It uses the NOWAC R package to retrieve all datasets. Intermediate data processing
is implemented by creating temporary R files with the necessary functions for
steps that are executed when the user interacts with the web application. Since our
microarray datasets are small, the processing is very fast. Usually the Pippeline
processing takes about 40 seconds. In the final step of Pippeline we create a git
repository with the output files, clone the repository to a folder on the user's home
directory, and create an RStudio project.

Study-specific data analysis and result interpretation using R
Study-specific analyses are done by researchers using their methods and tools of
choice, for example in RStudio. To encourage best practices for reproducible
research, we provide the following measures:
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First, Pippeline exports the data as an RStudio project file with the data stored in
a git repository. RStudio provides a graphical user interface for using git to version
the code and data. This makes it easy to start using version control for any researcher.

Second, the NOWAC R package provides documentation about datasets. Miss-
ing information and corrections can be added either as suggested changes to the
package or as issues to the package repository. This makes it easy to keep the docu-
mentation up to date.

Third, we provide a server with the necessary computational resources and soft-
ware for the analysis, and we do not allow the data to be copied to another system.
This makes it easy to keep all the data and code in one system, and to employ
proper access management.

Finally, we encourage using best practice regarding software and data management
in our research group, and we give tutorials and workshops to teach these practices.

Figure 3.4. A screenshot of Pippeline’s web interface. In the filtering step, users
specify the p-value and filtering limit for excluding gene expression probes in the
dataset.
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Deployment of the NOWAC R package and Pippeline
We have deployed the NOWAC R package and Pippeline on two machines, and in
addition we use our University’s storage system for raw data storage, and a data-
base server for the questionnaire data. The storage machine runs the git and git-lfs
servers used by the NOWAC package, and by the individual research projects.
Only a few selected users have access to this machine. Another computer is used
by the NOWAC researchers for their study-specific analyses to run the Pippeline.
This machine has an RStudio server that the user can access through the browser.
The machine also has home directories for the research projects. Finally, the
researchers have their own laptops and workstations, used solely to establish a con-
nection to the servers. No data should be copied out of the servers.

Datasets stored in NOWAC R package and processed by Pippeline
To date we have used the NOWAC package and Pippeline for our 11 microarray
datasets, but we are in the process of adding other data types also including
microRNA, targeted RNA-seq, and methylation. The storage usage for the
NOWAC package is 1.6 gigabytes including all R data objects. The total Pippeline
output is 917 megabytes. The raw microarray (text) files are 8.7 gigabytes in size,
but the corresponding R objects are more efficiently stored.

Best practices for reproducible epidemiological data analysis
From our experiences we have developed a set of best practices for data analysis.
These apply to researchers, developers, and the technical staff managing the data
in a research study:

First, document every step in the analysis. Analysis of modern datasets is a com-
plex exercise with the potential to introduce errors at every step. Analysts often use
different tools and systems that require a particular set of input parameters to pro-
duce results. Thoroughly document every step from raw data to the final tables
that go into a manuscript.

In the NOWAC study, we write help pages and reports for all datasets, and the
optional pre-processing steps.

Second, generate reports and papers using code. With tools such as R Markdown
and knitr there are few reasons for decoupling analysis code from the presentation
of the results through reports or scientific papers. Doing so ensures the correctness
of reported results from the analyses, and greatly simplifies reproducing the results
in a scientific paper.
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In the NOWAC study we produce reports from R code to document preprocess-
ing of delivered data. When a researcher requests access to a dataset, we export the
dataset with R, and produce a report that contains information on what is in the
dataset, possible filtering that have been made, and who exported the data.

Third, version-control everything. We track changes to source code and datasets
with modern version control systems (VCS). Both code and data change over the
course of a research project. With VCS it is possible to retrace changes and the per-
son responsible for them. It is often necessary to roll back to previous versions of
a dataset or analysis code, or to identify the researchers who worked on specific
analyses. In the NOWAC study we encourage the use of git to version control both
source code and data.

Fourth, collaborate and share code through source code management (SCM)
systems. Traditional communication through e-mail makes it difficult to keep
track of existing analyses and their design choices both for existing project mem-
bers and new researchers. With SCM hosting systems such as GitHub, GitLab or
Azure DevOps, the development of analysis code becomes more transparent to
other collaborators, and encourages collaboration. It also simplifies the process of
archiving development decisions such as choosing a normalization method.

In the NOWAC study we collaborate on data analysis through a self-hosted Git-
Lab installation, the first single application for the entire DevOps lifecycle. We
believe the ready-made git repository output from Pippeline encourages good soft-
ware development practices and provides a good foundation for effective collabo-
rative work.

Limitations
A potential drawback of using an R package that is version-controlled in git to
manage, document, and analyze research datasets for researchers, is the requisite
programming skills. While the topic of software engineering best practices may be
absent in the current research training of many researchers, we believe such skills
will become increasingly common in the scientific community.

One possible limitation of our NOWAC R package is its size. Microarray data-
sets are relatively small compared to sequencing data, so new datasets may require
using extensions to git such as git-lfs, as we used in Walrus (Fjukstad et al. 2018).
Since we are currently expanding the NOWAC package and creating interactive
pipelines like the Pippeline workflow for RNA-seq, methylation, and microRNA
datasets, this may become necessary.
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CONCLUSIONS
We have proposed an approach to enabling reproducible analyses for epidemiolog-
ical omics data analyses. Our solution consists of several software tools embedded
in the proper methodology, as well as best practices, and solves a number of chal-
lenges previously encountered in omics studies. Among the advantages of our
approach are the proper separation of datasets and tools, access management,
anonymization, tracking of software versions and dataset changes, documentation
of processing steps and corresponding parameters, as well as cross-platform sup-
port, and an easy-to-use graphical interface. It is also very fast. While we have
applied our approach to a specific epidemiological research study for successful
verification, we believe that it is generalizable to other biomedical analyses and
even other scientific disciplines.

The NOWAC R package, without our data and data documentation, is available
at: https://github.com/uit-hdl/nowaclite

Pippeline and a description of our microarray preprocessing pipeline are avail-
able at: https://github.com/uit-hdl/pippeline

A demo dataset from Bøvelstad et al. 2017 is available at: https://doi.org/
10.18710/FGVLKS
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Normal Breast Tissue Biopsies—
Part of the NOWAC Post-
Genome Cohort
Sanda Krum-Hansen and Karina Standahl Olsen

Abstract  For tissue-based studies of breast cancer, getting access to truly normal,
well-annotated tissue can be a challenge. To address that need, we collected 368
breast tissue biopsies and buffered blood samples from healthy postmenopausal
women. Volunteers were part of the Norwegian Women and Cancer (NOWAC) Post-
genome cohort, recruited through the national mammography screening program.
The NOWAC normal breast tissue biobank for gene expression analysis will provide
a correct basis for comparison in case-control studies.

Keywords  normal breast tissue | biobank | breast cancer

BACKGROUND
Epidemiology and risk factors of breast cancer
Breast cancer is the most frequent type of cancer among females worldwide. The
latest GLOBOCAN report estimated approximately 2.1 million newly diagnosed
breast cancers in 2018 (Bray et al. 2018).The incidence of breast cancer varies sig-
nificantly around the world, but is increasing in most countries (Bray et al. 2018).
The high incidence in developed countries has to some extent been counterbal-
anced by a reduction in mortality. Early diagnosis due to mammographic screen-
ing, improved treatment, secondary prophylaxis and follow-up have improved the
outcome for breast cancer patients. The 5-year survival rate in Norway is 90.4%—
yet breast cancer is the leading course of cancer-related deaths among females
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(Cancer Registry of Norway 2017). The increasing incidence and improved sur-
vival rate results in high prevalence of the disease. Since the treatment is associated
with severe side effects over a long period, the burden of the disease is large.

The current body of evidence suggests that genetic structure and internal and
external risk factors, as well as their interactions, combine to constitute the causes of
breast cancer. Two major risk factors are gender and age. Other causal factors relate to
the levels of endogenous hormones determined by age at the first menstruation, age
at menopause, age at first birth, and number of births, as well as use of oral contracep-
tives and hormone therapy (HT) (Kaminska et al. 2015). Lifestyle factors regarded as
risk factors include lack of physical activity, obesity, alcohol consumption, smoking,
night shift work, exposure to radiation, and possibly diet (Sun et al. 2017). Hereditary
breast cancer accounts for 5–10% of cases (Apostolou and Fostira 2013), making non-
hereditary risk factors the major drivers of incidences of breast cancer.

Breast cancer characteristics
Breast cancer is a heterogeneous disease both etiologically and genetically. It con-
sists of several sub-types with different molecular profiles, and biological and clin-
ical behavior. Different sub-groups are associated with different risk profiles and
present a big challenge for clinical management. In clinical practice, an array of
methods is used to determine which sub-type the patient has: tumor-node-meta-
stasis (TNM) staging, histological sub-typing, tumor grade, tumor invasion in
lymphatic and vascular tissue, axillary lymph node status, immune-histochemical
staging providing estrogen and progesterone receptor status, presence of human
epidermal growth factor receptor 2 (HER2) receptor, and Ki67 marker. These fac-
tors describe the tumor biology regarding hormone sensitivity and tumor aggres-
siveness, guide decision-making for treatment, and predict the prognosis.

Today there are efficient surgical and medical treatments available, but we are
unable to determine specifically which type of treatment the individual patient
needs, often implying overtreatment. There is a need for better prognostic and pre-
dictive markers to individualize the treatment in order to provide the best treat-
ment for patients with high-risk profiles, and to avoid overtreatment of patients
with a low risk profile.

Normal breast tissue histology and development
The human breast is an apocrine gland designed to produce milk, and breast tissue
is heterogeneous and complex in composition. The breast consists of three main
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components: the skin, containing areola and nipple, the subcutaneous adipose tis-
sue (white fat tissue), and the glandular tissue (functional tissue of the breast)
including both parenchyma and stroma. The parenchyma is divided into 15–25
lobes, each made up of 20–40 lobules. The structure is based on a branching duct
system that leads from the collecting ducts to the terminal duct-lobular units
(TLUs). The TLUs are the functional unit of the breast tissue and sites of milk pro-
duction. The terminal collecting ducts drain the milk from TDLUs into 4–18 lac-
tiferous ducts, which drain to the nipple. The inter- and perilobular connective tis-
sue surrounding the TLUs and lobules contain fibrovascular tissue and white
adipose tissue. Fibrous stroma provides the background architecture for the glan-
dular tissue, as well as nutrition and protection. The proportion of adipose and
fibrous tissues varies from one woman to another and changes in the same person
over time.

Breast tissue development occurs in defined stages: embryonic, pre-pubertal,
pubertal, pregnancy, lactation and involution. The tissue only reaches its final level
of development during the last stages of pregnancy, and if pregnancy does not
occur, it is never reached. During menopause, the glandular tissue is progressively
atrophied. The lobules decrease in size and number, mainly through progressive
involution of the milk-producing acini. Fibrous tissue is also replaced by adipo-
cytes. However, the extensive use of hormonal replacement therapy has consider-
ably changed the appearance of this postmenopausal breast tissue.

Biobanking of normal breast tissue for research
Tissue-based studies of breast carcinogenesis utilize breast cancer tissue and differ-
ent types of non-cancerous breast tissue, sometimes called normal breast tissue, as
control for comparison. Most commonly used non-cancerous breast tissue is
derived from reduction mammoplasty either from breast cancer patients, of unaf-
fected breast for symmetry in breast cancer patients, or from healthy women oper-
ated for cosmetic purposes. Other sources of non-malignant breast tissue used in
research include tissue from prophylactic mastectomy, neighboring breast tissue
from women with benign breast lesions, excess tissues with benign histological
appearance collected from surgical procedures, or unaffected ipsilateral or con-
tralateral breast tissue from patients with breast cancer.

Usually there is a medical reason to surgically remove tissue—for example in
prophylactic mastectomy for high risk of breast cancer due to gene mutations, or
removal of benign lesions due to pathological features. Therefore, this type of tis-
sue is not suitable for use as “normal” tissue. Breast tissue collected by reduction
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mammoplasty, selected on the basis of convenience, may be the best representative
of normal tissue. It is plentiful and removed for cosmetic reasons, not because of
clinical abnormalities or high-risk profiles. However, none of these tissues have
been found suitable as a substitute for truly normal breast tissue in studies of breast
cancer carcinogenesis (Ambaye et al. 2009, Graham et al 2010, Degnim et al. 2012,
Tadler et al. 2014, Acevedo et al. 2019).

Today there are several breast cancer tissue biobanks around Europe, North and
South America, Asia and Australia, but to our knowledge the only biobank that
collects truly normal breast tissue is the Susan G Komen for the Cure Tissue Bank
(KTB) at Indiana University Simon Comprehensive Cancer Center in the USA
(Sherman et al. 2012). There, tissue has been collected from volunteers of all eth-
nicities aged 18 and upward. Several articles have been published using this mate-
rial. Radovic et al. 2014 concluded that breast tissue from healthy volunteers acts
as a superior normal breast tissue control. The same source of tissue has been used
in Pardo et al. 2014, where the author analyzed the transcriptome of normal,
healthy, pre-menopausal breast tissue using next-generation sequencing.

In order to move breast cancer research forward, there is a need for well-anno-
tated collections of breast tissue from healthy women (Thompson et al. 2008,
Eccles et al. 2013). Adequate control tissue will help shed light on pre-clinical
molecular events, and provide the correct basis for comparison in case-control
studies. The overall goal of this study was to establish a biobank of normal breast
tissue biopsies. The biobank was established for the purpose of describing baseline
gene expression patterns in normal breast tissue of postmenopausal women. We
will also explore the variation of gene expression in normal breast tissue following
exposure to known breast cancer risk factors (smoking, alcohol consumption, HT
use, obesity and parity), and finally, we will use the normal breast tissue in future
case-control studies.

METHODS
The normal breast tissue biopsy study, part of the NOWAC 
Postgenome cohort
This study is part of the Norwegian Women and Cancer (NOWAC) Postgenome
cohort. NOWAC is a national, prospective study started in 1991, where breast can-
cer is the most important endpoint (Lund et al. 2008). The study included 150 000
women born 1943–1957, who to date have answered between one and three ques-
tionnaires. During the period 2003–2006 we built a unique biobank by collecting
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blood samples, buffered to protect the mRNA gene expression profile, from 50 000
NOWAC participants. These samples constitute the major part of the NOWAC
Postgenome cohort. Furthermore, starting in 2006 and in collaboration with 11
Norwegian hospitals, we collected buffered blood samples and tissue samples from
400 women with breast cancer tumors at the time of diagnosis. These women were
also participants in NOWAC, they were born between 1943–1957, and were diag-
nosed with breast cancer during the period 2006–2011. Until that time, there was
no suitable tissue material available that expressed the normal pattern of variation
in gene expression in the relevant age group. To address that need, during the
period 2010–2012 we collected breast tissue and buffered blood samples from 368
healthy women. Volunteers for this part of the study were recruited from the
NOWAC cohort through the national mammography screening program, which
they were participating in at the time.

Recruitment of study participants
Recruitment to the study and the tissue collection took place at the Breast Diag-
nostic Center at the University Hospital of Northern Norway (UNN), Tromsø,
Norway. Inclusion criteria were as follows: enrolled in the NOWAC cohort, born
between 1943 and 1957, and consent given. The radiographer (not affiliated with
the NOWAC study) asked women, when presenting at the mammography screen-
ing unit, if they would consider participating in this study. If answering positively,
the candidate would meet after the screening procedure for written and oral infor-
mation and to get answers to any questions they may have had. The women who
agreed to participate were asked to sign a written, informed consent form. All par-
ticipants completed a two-page questionnaire regarding menopausal status,
weight and height, exposure to smoking and alcohol consumption, use of HT and
other medication. Exclusion criteria included previous history of breast cancer,
positive mammogram, other relevant malignant diseases, and use of anticoagula-
tion therapy with Coumadin (Marevan), Heparin, Persantine, or Plavix. Use of
acetylsalicylic acid was not an exclusion criterion.

Procedures for tissue and blood sampling
Core biopsies of normal breast tissue were obtained immediately after mammo-
graphy, from the gland tissue of the upper lateral quadrant of the left breast. The
tissue biopsy was taken with the women in declined position on the examination bed.
The skin was disinfected with chlorhexidine solution in alcohol prior to incision.
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Intradermal local anesthesia was applied using 2 ccl of 1% Lidocaine. A 3 mm skin
incision was performed with a scalpel. With ultrasound guidance, a cylinder
biopsy was taken with a needle size 14 gauge in a biopsy pistol, by an experienced
radiologist. Compression bandage was placed at the biopsy site, which was to be
kept in place until the next day. No further activity restriction was advised. During
the study, no systematic follow-up has been undertaken. The biopsy was immedi-
ately placed in RNAlater for RNA stabilization (Qiagen, Hilden, Germany), and
kept at room temperature for <24 hours until storage in a freezer at –70˚C.

Two vials of blood were taken by standard venipuncture (phlebotomy) with
hypodermic butterfly needle on a closed system to the vacuum test tubes. One of
the blood samples was taken using the PAXgene Blood RNA collection system (Pre-
analytix/Qiagen, Hombrechtikon, Switzerland), which contains a buffer for stabi-
lizing the mRNA gene expression profile during long-term storage. The other blood
sample was mixed with standard citrate solution. Blood samples were kept at –70˚C
until further use. The blood sampling was performed before the tissue sampling.

RESULTS
We collected 368 biopsies of normal breast tissue from postmenopausal women.
The rate of inclusion of all women invited to participate was 64%. A linkage to the
Norwegian Cancer Registry 3 years after the sampling period ended resulted in
five biopsies being excluded due to breast cancer diagnosis within 3 years after the
biopsy was taken, and one due to a prior lymphoma diagnosis with unknown treat-
ment. We used 16 biopsies for testing of different laboratory methods. A total of
311 biopsies were included for further analysis, which matched the number of can-
cer biopsies in our biobank collected for a comparative study.

All participants were advised to contact a physician in case of any suspicion of
adverse reaction or complication such as hematoma, infection, or pain. No case of
allergic reaction to the local anesthesia was registered. One participant directly
reported a hematoma at the biopsy site. She was examined by a surgeon, who
found a 3 cm hematoma, but no treatment or follow-up was considered necessary.

Characteristics of women included in this study
Characteristics of the 311 women included in the final study sample is summari-
zed in Table 4.1. All participants were post-menopausal, and the average age was
60 years. The population, as a whole, were slightly overweight after WHO stan-
dard, with average BMI 26,2. Most of the women had given birth (have completed
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full term pregnancy), and the average number of children was 1,9. The highest
number of children was 8. A majority of the women (79%) had consumed alcohol
during the week before sampling, and 21 % had been smoking during the week
prior to biopsy sampling. Very few participants (8,4 %) used HT for menopausal
symptoms. The majority of participants (70 %) used different types of medication
in the week prior to blood sampling, either alone or in combination. The most fre-
quent types were blood pressure medication, anti-cholesterol drugs, and synthetic
thyroid hormone, followed by ASA (aspirin) and NSAIDs.

Table 4.1. Characteristics of the study population (n=311)

Abbreviations: BMI, body mass index; HT, hormone therapy; NSAID, non-steroidal anti-inflammatory 
drugs; SD, standard deviation.

Characteristics Mean/Frequency Missing

Age, mean (SD) 60,1 (3,9) 0

BMI, mean (SD) 26,2 (4,5) 4

Parity (n, %) 0

Yes 256 (82,3)

No 55 (17,7)

N children (mean, SD) 1,9 (1,2) 0

Smoking (n, %) 0

Yes 66 (21,2)

No 245 (78,8)

HT use (n, %) 1

Yes 26 (8,4)

No 284 (91,6)

Alcohol (n, %) 6

Yes 241 (79)

No 64 (21)

Medication use (n, %)

Any medication 216 (70,8) 6

Blood pressure alone or in comb. with antiarrhythmic 56 (18,4)

Anti-cholesterol 36 (11,8

Levaxin (synthetic thyroid medications) 30 (9,8)

Asthma/allergy 23 (7,5)

NSAIDs alone or in combination with Paracetamol 22 (7,2)

Albyl (acetylsalicylic acid) 19 (6,2)

Other 30 (9,8)
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DISCUSSION
Above we have described the process of establishing a biobank of normal breast
tissue biopsies from 311 postmenopausal women. In the following we discuss
practical aspects of establishing the biobank, as well as ethical considerations, and
highlight some factors that enabled the successful establishment of the NOWAC
normal breast tissue biobank.

Where to find volunteers and how to recruit them?
The process of recruiting healthy volunteers for an invasive procedure may, if not
planned properly, render the final study sample heavily affected by selection bias,
subsequently reducing the generalizability of any findings. To reduce selection
bias, our starting point was the nationally representative NOWAC study, as well as
the national mammography screening program. The screening program invites all
Norwegian women aged 50–69 years to mammography every other year, free of
charge. Hence, an important success factor for this study was the use of the local
screening facility, which enabled us to contact all eligible women in the region.

Prior to our work, the same facility had completed two small surveys (unpub-
lished) to start the process of assessing the feasibility of collecting tissue biopsies
from healthy women. The first was conducted to register discomfort and possible
complications associated with the biopsy procedure and was based on interviews
with 100 women who had undergone this procedure. The women were asked
about pain, bleeding, hematoma, and infections. The result was consistent with the
impression from the clinical work that biopsy taking is virtually painless and there
is a very low risk for complications associated with the procedure. The second sur-
vey aimed to determine whether it would be possible to collect breast tissue biop-
sies from healthy women. We asked 81 women who participated in the mammo-
graphy screening program if, hypothetically, they would be willing to have a breast
biopsy taken to be used for research purposes. After receiving written and oral
information, 12% answered no, 14% needed more information, and 74% answered
yes. These results gave important cues on feasibility.

Collaboration with clinicians
The local mammography screening facility handles about 40 invitations every day.
The NOWAC study has been collaborating with the facility since March 2002,
when approximately 2 000 blood samples were collected for a different NOWAC
project. The facility also played an active role in recruiting partners for a cancer
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biopsy study at eleven of the country’s hospitals. This close and long-standing col-
laboration is another important success factor for the present project. The screen-
ing facility already had valuable experience in contributing to research during
their clinical everyday setting. Though the environment was familiar with
research, it was necessary to make a detailed plan and spend time to figure out the
most feasible way to complete all the steps with the clinical personnel involved.
This included having the same person involved every day, who was familiar with
the hospital environment and the department’s work, as well as being involved in
the research project.

The biopsy procedure involved is virtually painless, with a very low complica-
tion rate, and was performed by an experienced radiologist within the well-estab-
lished framework of the screening facility, minimizing the risk of unforeseen inci-
dents. All women were given information on actions to be taken in the case of
complications. Since the procedures took place in the hospital setting, any compli-
cation or injury would be reported as a patient injury according to established
national guidelines. Women were encouraged to contact the screening facility if a
suspicion of a complication should arise after leaving the department. Complica-
tions requiring immediate treatment outside opening hours would be attended by
the staff in the emergency room. These actions were largely comparable to actions
to be taken in case of complications after any breast tissue biopsy procedure, and
put no extra burden on the clinical staff.

Ethical aspects
In accordance with legal requirements for research on human biological material
and personal data (The Health Research Act, Chapters 3-7), the Regional Committee
for Medical and Health Research Ethics of Northern Norway (REC North) approved
the protocol for the present study, and the Data Protection Authority granted a
license for the use of health-related data. However, the project was planned some
years ago, before the European Union issued the new General Data Protection Reg-
ulation (GDPR) in 2018. In Norway, GDPR was implemented at the national level
through a new Personal Data Act, also in 2018. The risk of misuse of personal infor-
mation, or the risk of loss of control of the personal information, is present in the
current project, but this risk is by no means greater here than in comparable projects.
These aforementioned risks are the focus of GDPR, and after its implementation,
data-handling procedures have also been improved for the NOWAC project.

The need for close regulation of biomedical research dates back to atrocities
during the Second World War, which led to the emphasis on human rights in the
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Nuremberg Code of 1947. A main point in the Code stated that participation in
research must be voluntary. Furthermore, the World Medical Association’s Decla-
ration of Helsinki (1964) focused on obligations of the researchers and the
research institutions, and stressed the concept of informed consent (Fisher 2006).
That the consent must be voluntary or free means that the individual included in
the research shall not decide his/her position through a process characterized by
coercion or pressure. Likewise, situations that do not include direct coercion can
mean an unacceptable weakening of the consent that was given. Our participants
were already part of the NOWAC study when they were invited for the biopsy
study. Potentially, this could contribute to a feeling of pressure to participate in the
biopsy study. We, the researchers, regarded this project as a continuation of the
ongoing NOWAC study, and this backdrop may have put an indirect pressure on
the women at the point of invitation. Still, the option to decline participation was
always clearly communicated, both orally and in writing, hence we conclude that
the principle of voluntary participation was never challenged.

The principle of informed consent entails that the individual being subjected to
research must be aware of the study’s methodology/procedures, purposes, and the
type of results expected. The information given to participants must include a
description of any expected inconvenience, discomfort, or risk that may be
inflicted. This principle may be regarded as particularly important when perform-
ing an invasive procedure on healthy volunteers who would not otherwise undergo
such procedures. Further, as the material collected in our study will be used for
genomic profiling (mRNA gene expression analysis and potentially DNA profiling),
care must be taken to ensure that participants understand the information that was
given. The participants may have different experiences and assumptions when they
internalize and interpret the information. We did not undertake any evaluation of
the participants’ understanding of the scientific content of the project, but each
woman spoke personally to our radiologist, with ample opportunity to ask ques-
tions. Legislation on this topic focuses only on groups of people that may be non-
competent to give consent (e.g. persons under the age of 18, or for medical reasons).
Hence, some questions may be ethically interesting, but will not have any practical
consequences for our project. As examples, one might ask if it would be ethically
acceptable to include participants if we discovered that they had not understood the
information correctly. In addition, what about individuals who did not want to read
the information that was given, but nonetheless wished to participate in the project?

One of our pre-study surveys assessed the healthy women’s willingness to donate
a breast tissue biopsy. The majority (74%) were willing to donate, and many
women expressed a high degree of motivation to continue contributing to research
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on breast cancer. Contributing biological sample material to research may be
viewed in different ways. The biopsy may be a viewed as a gift or a donation, with
no expectation of receiving anything in return. It may also be viewed as a transac-
tion. It that case, the regional ethical committee would act as the real estate agent,
looking out for the donors rights, and the consent form may be regarded as the
contract between the two parties in the transaction. Viewed as a transaction, there
is an expectation of receiving something in return, in this case somewhat distant
“payments” such as knowledge of breast cancer, and better treatment. Another
option for how to view the act of contributing a biopsy would be as an act of reci-
procity. Modern-day medicine is an empirical science which has been built on the
knowledge generated from the general population and from patients. Patients
today expect to receive the latest treatments that are developed on the basis of this
knowledge, and as such, they are morally obliged to contribute to that same knowl-
edge base. In this normative ethics setting, the consent may be viewed as an expres-
sion of gratitude toward previous sample donors, of acknowledgment of the moral
obligation to contribute, of the will to contribute, and of trust in that the donated
material will be used as intended.

We do not have information on each woman’s motivation to contribute to the
study, but some external factors may also be at play. The city of Tromsø is small,
with only 72 000 inhabitants. The city’s one university is young and was founded in
1968 during a period of strong growth for the city, and, naturally, its foundation
contributed to this growth. Today, the university is one of the city’s two largest
workplaces, along with the university hospital. These aspects contribute to the fact
that the university is a strong part of the city’s identity and the inhabitants are well
known for contributing to research (Jacobsen et al. 2012). Hence, the feeling of reci-
procity, grounded in normative ethics, and supported by favorable local conditions,
may be important aspects for the high participation rates in the present study.

There is an ongoing debate on whether researchers should be obliged to return
information on health-related aspects to research participants (Klingstrom et al.
2018). However, the present study and its analytical methodology is purely explor-
ative in nature. No clinical relevance of potential findings based on our chosen
analytical methods has been established (low clinical validity), and any findings
would be non-actionable (i.e. the participant or clinicians could not take action to
improve the risk or progression of a potential disease) (Klingstrom et al. 2018).
Based on the limited clinical relevance of any findings in this project, any results
were unlikely to affect the patient’s need for further information, or for their con-
sent. Hence, in this project giving feedback to participants was not considered as
relevant, and this was stated in the information given to participants.
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Strength and weaknesses
Firstly, the women were recruited from the mammography screening program, not
referred from a physician due to symptoms or suspicion of breast pathology. Their
biopsies are therefore representative of truly normal breast tissue, and the women
have the same risk of developing breast cancer as any other women in the same age
group. Since all women were NOWAC participants, extensive information on
exposures in the past can be retrieved from questionnaires answered prior to the
initiation of the biopsy study. Further strengths of the study include the high inclu-
sion rate (64%) and the high number (368) of biopsies sampled via a standard pro-
cedure, which ensures low technical variability. The blood samples were taken at
the same time as the biopsies, enabling a valid comparison of gene expression pro-
files in two different tissues.

One weakness of the study pertains to the risk of selection bias. Our participants
were recruited at the mammography screening facility in Tromsø, hence, at one
single location. As a consequence, there is the possibility of geographical differ-
ences compared to the average Norwegian population regarding the gene expres-
sion in relation to different types of exposures. It should be mentioned that the
blood and tissue samples were collected by random and continuous invitation dur-
ing the whole 2-year period, so we expect minimal influence of seasonal bio-
rhythms.

Due to heterogeneity of breast tissue, one single biopsy is not representative of
the entire breast. Studies have shown intra-individual variability in composition of
breast biopsies, and its impact on gene expression (Chollet-Hinton et al. 2018).
This fact has important implications for studies based on normal breast tissue,
including our own study. Since our inclusion rate was high and the complication
rate turned out to be almost nil, we could have chosen to sample several biopsies
from different areas of the same breast via the same skin incision. This can be con-
sidered for future trials, taking the varying biopsy composition into account. On
the same note, our biopsies are whole tissue biopsies containing multiple cell types
which may confound gene expression results. The biopsies were not histologically
controlled/evaluated, so we do not have information on the ratio between different
cell types. The biopsies were taken from the upper lateral area of the breast, known
for a higher density of glandular tissue, in order to reduce the amount of adipo-
cytes and increase mRNA output amounts. However, the biopsies were collected
from postmenopausal women. The quantity of glandular tissue decreases with age,
and our biopsies likely contain a higher proportion of fat and less glandular tissue
compared to samples taken from younger women.
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CONCLUSION
The work presented shows that establishing a collection of normal breast tissue
samples is feasible and doable. Enabling factors for the present study included
largely unbiased access to eligible participants, and close collaboration with clini-
cians during all steps of the sampling procedures. Furthermore, the source popu-
lation of the present study has a high degree of health literacy and willingness to
participate in research, which contributes to a high participation rate. The
NOWAC normal breast tissue biobank for gene expression analysis will provide
much-needed information on pre-clinical molecular events and a correct basis for
comparison in case-control studies.
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Abstract  Omics researchers routinely use hypothesis tests. These tests can lead to
highly inefficient use of omics data. Through a familiar example, we show the need
for exploratory approaches and show how common statistical tools such as p-values
and confidence intervals can be used for exploratory omics research. We discuss the
often-misunderstood hypothesis test and emphasize its lesser known flexibility. This
work is an effort to improve the use of statistical tools in omics by non-statisticians.
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TO BE TRAPPED BETWEEN TOOLS AND MATERIALS
Red herrings and missed opportunities
In the world of omics, where so little is known about the biological mechanisms, and
the potential clinical impact of new discoveries is beyond what we can imagine, there
are pitfalls everywhere. The researcher can easily get stuck in the middle between the
dataset and the statistical tools for data analysis. The researcher uses statistical tools
to aid them in describing and understanding the data, and ultimately the underlying
biology that led to the observations in the data at hand.

The statistical toolbox for omics research is enormous and ever-expanding. New
tools are invented, and old ones are refined, according to how data generation
changes with technological development and how new computational approaches
arise.

Still, the omics researcher reaches for the good old familiar toolset, some out of
sheer habit, others for the very good reason that results are better when using a
simple but familiar tool than some really great tool that you don’t know how to
operate.
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.
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The human brain is wired to find patterns. It is, on the other hand, highly unre-
liable in the face of randomness, demonstrated famously in e.g. Tversky and Kah-
neman 1971. We can easily find patterns where there are none. But as researchers
we hope to avoid falling into the ditch of red herrings, and we hope that trusting
what others publish does not lead us into this ditch. Our statistical tools can help
us weigh patterns against randomness.

But neither do we wish to end up in the other ditch, that of missed opportunity,
where important biological findings are not communicated because of the uncer-
tainty that surrounds them. Statistical tools cannot be used to answer biological
questions, but are excellent at quantifying the uncertainty in the connections
between data, assumptions, and underlying biological mechanisms.

Common tools: hypothesis tests, p-values, and confidence 
intervals
The hypothesis test is arguably the statistical workhorse of our time. This tool is
designed to give a yes/no answer to a certain claim and is used in studies with a
simple and focused research question. The most common null hypothesis is that
the mean level of the observations is 0, the difference between the mean levels of
two groups is 0, or the mean difference between paired observations in two groups
is 0. Researchers too seldom devote their time to stating a different null hypothesis,
e.g. the mean level of the observations is smaller than X, where X then represents
some threshold for an interesting finding, or biological or clinical significance.
Even more rarely, the researcher states a hypothesis about something else than the
mean, e.g., the variance or the effect size. In the following, we use the most com-
mon null hypotheses as examples not to lose our readers in unfamiliar mathe-
matical details. However, we emphasize that hypothesis testing as a statistical tool
is not about the mean and 0; the choice of test statistic and null hypothesis is a
choice to be made by the researcher.

The hypothesis test requires the calculation of a p-value to be compared against
a threshold for “statistical significance,” α. This α is usually governed by conven-
tions particular to a certain research area.

The α has a direct impact on the scientific literature. Figure 5.1 shows the distri-
bution of p-values below .1 published in a selection of top medical journals. Note
the spikes at round numbers. There is reason to suspect that many have ended up
in the ditch of missed opportunity due to p-values that were just above the α and
hence never communicated their results at all.
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Figure 5.1. Distribution of p-values below .1 reported in various top medical journals.
Figure generated from data in Jager and Leek 2014.

For those findings that are published, the p-value is presented to the reader, who
can make up their own opinion about whether the uncertainty is acceptable for
whatever further action they might want to take. The confidence interval and the
p-value are closely related: If the 95% confidence interval excludes the specific
amount stated for the hypothesis test (the 0 or the X), the null hypothesis will be
rejected at a 5% level.

For some reason, the confidence interval is often not reported, despite being
available—literally—at the push of a button. Whereas the p-value says something
about the uncertainty, the confidence interval complements that information per-
fectly by providing the likely range of the mean (or variance or effect size) sup-
ported by the data.

SCIENTIFIC RAW MATERIALS: DATASET SIZES
Figure 5.2 shows typical sample sizes in transcriptomic studies based on humans
over the years since 2001. The middle 90% of this distribution today lies between
3 and 84 observations. These quantiles have barely moved since the beginning. In
other words, the majority of transcriptomic datasets has been of modest size for
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the past 15 years, and this does not seem to be changing soon. The larger data sets
are likely to be from consortia that pool many smaller data sets; the largest one
comprises over 13 000 observations.

Figure 5.2. Sizes of human-derived transcriptomics data published in the Gene Ex-
pression Omnibus between January 2001 and August 2018. The plotted sizes are
logarithmic, but the axis annotation is in the real sizes.

THE LIMITS OF OUR TOOLS
Since most people seem to be working with fewer than 100 observations, it is a valu-
able exercise to explore what is feasible to achieve with a standard type of analysis.
As an example, consider data that comprise a single gene expression level on 100
subjects; assuming convenient, nearly normal data, conventional power calcula-
tions tell us that the smallest gene expression level we can reliably detect with 95%
confidence (“detection” here interpreted as a confidence interval excluding zero)

is, roughly, . Here, σ is the standard deviation with which the data

came to be (for technical details, see the appendix).
Usually we are interested in comparing groups, such as smokers and non-smok-

ers, or cancer cases and controls without a cancer diagnosis. If we have our 100
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subjects partitioned into two groups of 50, assuming equal variances, the smallest
difference in gene expression we can detect increases to .8σ.

Often, we are also interested in some stratification of the target population. Per-
haps we know that the cancer cases naturally split into two subgroups that we
expect to have different gene expression levels—say, metastatic and non-metastatic
cancers. We split the cancer cases into two subgroups of 25. We estimate the gene
expression level in each subgroup, and can expect to detect a gene expression level
no smaller than 1.1σ. If we wish to compare the two subgroups against one another,
their true difference can be no smaller than 1.6σ. To clarify: if the gene expression
level in one subgroup is 1.6σ, it has to be nothing at all or at least 3.2σ in the other.

REALITY CHECK
Observations from the real world
A particular microarray dataset from the Norwegian Women and Cancer
(NOWAC) study (Lund et al. 2008) contains gene expression measurements from
blood samples. Upon providing a blood sample, the women who participate in this
study fill out a questionnaire. One of the questions on this form is whether the par-
ticipant has recently been smoking. It is plausible that this affects blood gene
expression in the short term, see Huan et al. 2016.

Figure 5.3. Mean observed gene expression level as number of estimated stand-
ard deviations in a Norwegian Women and Cancer dataset. The ticks along the x
axis show all genewise means estimated in 88 case-control pairs.
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If we compare log2 expression levels of current smokers and nonsmokers in 6664
genes, we get Figure 5.3, which shows the distribution of differences in number of
σs for all genes in these data. A difference of .8σ is rare. Only 1 in 200 differences
are greater than .4σ. However, keep in mind that the blood transcriptome is noto-
riously variable, and it is natural to expect no difference in most genes.

Testimation bias
With 100 observations and sample mean on the scale of Figure 5.3, there is clearly
some friction between what we would like our tools to be able to do and what we
can realistically hope for. Our tools are underpowered to deal with such small dif-
ferences in means: the ditch of missed opportunity opens up before us.

Missing an opportunity, the making of a “Type 2 error” in the technical lan-
guage, is one kind of error we might make with an underpowered test. Another
interesting and worrisome type of error we might make is one of magnitude.

The magnitude error or “Type M error” (Gelman and Tuerlinckx 2000) is the
expected absolute ratio of the estimated mean (the sample mean) to the true mean
(the population mean). This is a measure of exaggeration. A Type M error of 2
implies that the estimated means are on average two times the size of the true
means. This is half-jokingly called “testimation bias” as it results from looking at
the estimate only after it passes a statistical test.

Figure 5.4. Magnitude (or exaggeration ratio) errors comparing two groups of 50
for a range of true differences and a selection of confidence levels. The horizontal
grey line denotes no exaggeration.
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Figure 5.4 shows the M error for sample means between 0 and 1σ. Once we start
losing statistical power (recall the smallest-detectable mean of .8σ) the M error
shoots up quite quickly, and overestimating the mean gene expression level by a
factor of 2 is quite realistic.

What can we expect?
Assume that Figure 5.3 is representative of gene expression in the whole-blood
transcriptome (it need not be, but they are real, plausible data): 90% of the sample
means are smaller than .2σ. But we do not expect 90% of all genes to be active in
any given process, far from it. For now, assume we are looking for the top 10%,
those sample means larger than .2σ, or about 600 genes in these particular data. If
we assume σ = 1, this .2σ corresponds to a fold change of about 1.15.

Table 5.1. Overestimation and power for the largest 10% of mean gene expressions
in Figure 5.3

Under the assumptions above, Table 5.1 shows the expected power and M error for
different confidence levels. We can expect population means to be overestimated
by a factor of 1.5–2. Depending on what types of error we want to make (which
ditch we prefer to fall into), it might make sense to work at unconventionally low
confidence levels: at 70% confidence we’re starting to see tolerable power.

Familiar tools—new applications
Omics studies containing several thousand features (as the 6664 genes in the above
example) are not simple and focused studies that are cut out for hypothesis testing.
Even if they were simple and focused, the data we generate comprise too much
noise and too few observations for hypothesis testing to be useful. Whereas it is
certainly possible to draw statistically valid conclusions by applying adjustment for
multiple testing (e.g., Bonferroni or FDR), the minimum detectable difference
increases, and hence the power to detect small differences drops; see Figure 5.5 and
Figure 5.6.

Confidence 99% 95% 90% 80% 70%

Magnitude error 2.3 2.0 1.8 1.6 1.5

Power 12% 28% 39% 53% 63%
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Figure 5.5. Smallest detectable difference between two groups of 50 as a function
of the number of hypotheses.

Figure 5.6. The power to detect a given difference between two groups of 50 with
a single test at various confidence levels.
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Figure 5.7 show the statistical power to detect differences when doing various
numbers of parallel tests, corrected by a Bonferroni adjustment. With 1000 tests we
struggle to detect differences smaller than 1σ at the 95% level.

Figure 5.7. The power to detect a given difference between two groups of 50 at
95% confidence level, when we perform a certain number of parallel tests and
adjust by the Bonferroni method.

Studying thousands of features is rarely about answering yes/no questions, but
rather about seeing how the land lies so that more focused studies can be directed
towards interesting questions. The design is clearly exploratory. The main question
for the exploratory omics researcher is not “Are my findings statistically signifi-
cant?” but “Which findings are biologically interesting?”.

Exploratory research is not an easy way out of weak statistical findings. It requires
the same rigor as anything that labels itself as scientific. “Which findings are biolog-
ically interesting?” is a question that needs an answer before the data are analyzed,
in the same way that a hypothesis needs to be stated before the data are analyzed.
The answer requires knowledge about the specific field of study. It is not a statistical
matter; it is biological, medical, or otherwise. The answer needs to be as clear as any
hypothesis, e.g. “effect size larger than X” or “difference larger than Y.”

The exploratory analysis does not stop with identifying interesting findings.
There is still a need to quantify the uncertainty of the relation between the findings
in the sample and the underlying population from which the sample is drawn. For-
tunately, we already possess the tools to do so: confidence intervals and p-values!
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EXPLORATORY OMICS ANALYSES
Exploratory p-values
Results from scientific studies are never reported as a yes/no answer to a hypothe-
sis test: they are always accompanied by p-values and discussion on the possible
impact of the findings. One such impact is change in medical procedures, an area
where omics research has made contributions (Vieira and Schmitt 2018). Errone-
ously changing a cancer treatment procedure is much more costly than choosing
to carry on as usual when, in fact, a change would have been better. This is also true
in many other aspects of real life and science. A key aspect in hypothesis testing is
an agreement on how strong the statistical evidence must be to conclude that the
results from the study support e.g. a change in cancer treatment procedure. The
statement of the null and the alternative hypotheses must be tailored to answer a
specific question of clinical, biological, societal or scientific interest.

Most omics studies are not designed to support a decision regarding medical
procedures—they are conducted with the sole aim of gaining more knowledge,
and their results are published to communicate that knowledge.

Fisher 1955 describes the alternative to the yes/no hypothesis testing framework
as follows:

The worker’s real attitude in such a case [i.e., where p-values are large] might
be, according to the circumstances:

The possible deviation from truth of my working hypothesis, to examine 
which the test is appropriate, seems not to be of sufficient magnitude to 
warrant any immediate modification.

Or it might be:

The deviation is in the direction expected for certain influences which seemed
to me not improbable, and to this extent my suspicion has been confirmed; but
the body of data available so far is not by itself [emphasis added] sufficient to
demonstrate their reality.

He goes on:

What we look forward to in science is further data, probably of a somewhat dif-
ferent kind, which may confirm or elaborate the conclusions we have drawn;
but perhaps of the same kind, which may then be added to what we have
already, to form an enlarged basis for induction.
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As an example of exploratory analysis, consider again the 6664 genes:

• Decide what is an interesting finding, e.g. mean gene expression above X, from
the biological perspective.

• Identify the subgroup among your 6664 genes that have a mean gene expression
larger than X.

• Calculate the confidence interval of the mean gene expression for each of the
genes in that group.

• Calculate the p-value (under the assumption that the mean value is smaller than
X) for each gene.

• Present mean value, confidence interval and p-value to the reader.

Ultimately, the results will form the basis for a decision, e.g. to conduct a new study
with 50 genes on a similar population. At this point it might make sense to start
thinking of sharp hypothesis tests.

A bulwark against overexcitement
The overestimation of sample means mentioned earlier is an unfortunate reality
for the omics researcher no matter whether they choose interesting genes based on
a p-value, or a threshold for the sample mean or sample effect size. Clearly, we can-
not report on the biological implications for all genes: some selection has to hap-
pen. Once you select some candidates because they stand out against the rest, you
can expect “regression to the mean” to apply (Senn 2011). That is, it is very likely
that the population mean of the top candidates on average are smaller than they
appear in the data.

In fact, even if the population mean is 0, large sample means are likely if varia-
tion is large, which it will be if the sample size is small, if there are large natural
variations in the data, or if the data is noisy. This is illustrated in Figure 5.8. Under
the narrow distribution an observed mean larger than  is unlikely, but under
the broad distribution it should not provoke too much surprise. Both are, however,
centered on 0: no effect.

x  3
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Figure 5.8. Two distributions centered at 0: one broad, one narrow.

Given Figure 5.3, should we believe that the sample mean of size 2σ reflects a popu-
lation mean of the same size? Probably not. There are ways to guard against mas-
sive overestimates due to noise. Those who prefer to make Bayesian arguments
ameliorate the problem by assigning less credence to extreme results, essentially
requiring stronger evidence for large effects than for small effects. To do this we
summarize our assumptions about realistic effects and their uncertainty with a
probability distribution, the prior distribution, and augment this with a model for
the data through Bayes’ rule, a basic result from probability theory.

What results is the posterior distribution: a probability distribution for a variable
given prior assumptions and data. This distribution lies somewhere between the
prior assumptions and the data likelihood, and yields both our estimate and
its uncertainty, e.g. by its mean and the middle 95% of the distribution (called a
credible interval to mark the philosophical distinction from a confidence interval).

The estimate of the mean likewise lies somewhere between the observed effect
and the prior assumptions, the exact location depending on the strength of the
data.

Such an analysis is not entirely different from the usual mean estimate and con-
fidence interval approach, in fact i) the classical confidence interval and mean esti-
mate result from assigning equal prior probability to all observations in a Bayesian
argument; and ii) the two approaches are identical when there is ample data.

But we do not have ample data, so the prior assumptions matter. For our pur-
pose of comparing groups, the value in making a stronger prior assumption lies in
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the fact that as long as we place most of our credibility around 0, the Bayesian
approach will be more conservative than the frequency approach. It both pushes
estimates closer to 0 (known as “regularization” or “shrinkage”) and yields broader
uncertainty intervals (Gelman and Tuerlinckx 2000).

An explorative Bayesian analysis might proceed as follows:

• Decide what is an interesting finding, e.g., in terms of mean value, etc., from the
biological perspective.

• Decide what is a reasonable assumption about the variable a priori. Using
Figure 3.6 we might decide that a normal centered on 0 with a standard devia-
tion of perhaps .15 is reasonable (for this example found eyeballing the fit). The
normal is also a reasonable data model since we are comparing means.

• Calculate the posterior distribution of the mean given data.
• Use the posterior mean as population mean estimate, use it to identify interest-

ing genes.
• Use the middle (e.g.) 95% of the posterior distribution as credible interval.
• Report prior assumptions, data likelihood, and posterior summaries.

For technical reasons, the Bayesian argument usually requires more compute-
intensive procedures. This probably deters more people than it should. For com-
mon analyses, such as the comparison of two groups, or basic regression models,
most modern statistical software provides comparatively simple interfaces, such as
the brms package for R. It is a larger challenge that the approach requires different
thinking from what is usually taught, so a researcher must find the use of regular-
izing priors valuable enough that they are willing to invest time in understanding
the framework.

DISCUSSION
The critique against hypothesis testing (or more specifically the null hypothesis
significance testing, NHST) has been going on for decades. Besides the early cor-
respondence-like articles of Fisher and Neyman and Pearson, it is rarely clear who
the critique is aimed at. Surely, it makes no sense to criticize the hypothesis test for
merely existing, as in the much-cited and much-discussed paper of Cohen 1994:

What’s wrong with NHST? Well, among many other things, it does not tell us
what we want to know. 
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This is like criticizing a saw for not being a hammer. To be fair, Cohen finishes the
same sentence with

…and we so much want to know what we want to know that, out of despera-
tion, we nevertheless believe that it does!

It is not clear who “we” are in this scenario. If you are truly after the effect size, or
predicting the outcome of individuals, or estimates of posterior probabilities, it is
a waste of time to reach for the NHST tool, and it is not clear who (if anyone) is
forcing “us” to do so.

Trafimow and Rice 2009 also criticize the hypothesis test for not answering the
question to which they want an answer: the probability of the null hypothesis being
true. Interestingly, none of the alternatives to NHST that they list, including their
own, gives an answer. This is not strange. The Truth of the null lies outside of statis-
tics: we represent the null by an idealized mathematical construct that can never be
strictly speaking True. It has never been more or less than a model. But the model
can be (and is) very useful for measuring evidence and uncertainty. Trafimow’s very
important contribution to the NHST discussion is his statement as an editor (Trafi-
mow 2014), where he welcomes alternatives to NHST, and so-called null findings.

Most omics studies are interested in the characteristics of a population. Findings
regarding 100 specific breast cancer patients are interesting (to others than the
patients themselves) only if they also say something about the population of breast
cancer patients. This requires quantification of the findings’ uncertainty. There are
many ways to quantify this uncertainty—many tools in the statistical toolbox to
choose from. Many tools require certain training in statistics and programming.
All tools require correct use in order to avoid making invalid conclusions. In addi-
tion, for publishing purposes, the editors, reviewers and readers must be given the
opportunity to understand the tools that were used.

The data we generate in omics do not for now support a confirmatory testing pro-
cedure. This is OK. Exploratory research has value in itself; we cannot know where
to go in this young field unless we open our eyes and look at some data. The use of
statistical tools is an important part of both exploratory and confirmatory analyses,
but the biologist’s expertise is just as important. There is no way for a statistician
without biological training to say what an interesting effect is, just as there is no way
for a biologist without statistical training to say what a valid data analysis is.

However, not all biologists have access to a statistician, and not all statisticians
have access to a biologist. We have made some brief suggestions for approaches to
keep in the toolbox for those who feel caught in the conflict between tools and raw
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materials. We have done so because we suspect that many who work with omics
data do not have a clear idea of what their raw materials can support, and that
many feel as though the NHST tool is the only way to lend legitimacy to a scientific
argument.

P-values and confidence intervals are tools that the omics researcher already has
in their toolbox. They can legitimately and fruitfully be used in exploratory analy-
sis. Bayesian tools are not necessarily better, worse, or more complicated, but they
are different and require a different mindset. They might therefore be more diffi-
cult to communicate to reviewers and readers in the omics world.

TECHNICAL DETAILS
Below we provide some technical details. Everywhere we have assumed that we
know σ, which of course we never do; adjusting for this will widen confidence
intervals and make smaller effects harder to discern from noise. We have also
mostly assumed a normal model, which is probably too light in the tails compared
with real-world scenarios. Adjusting for this will widen confidence intervals, etc.

The calculation of smallest detectable means
We base the calculations of means and differences of means on the rudimentary
facts of the normal distribution. A rule-of-thumb says that 95% of the mass of a nor-
mal distribution lies within two standard deviations of the mean (the truth is closer
to 1.96). Since any particular realization from a normal distribution can easily fall
(i.e. about 95% of the time) within two standard deviations of the mean μ, and since
we put a confidence interval ±2σ around this realization, it follows that μ must lie
four standard deviations away from 0 for the interval to reliably exclude 0.

The rest follows from the standard error of the mean: . Assuming two

independent groups of 50 with equal variances, the difference in their means has a

standard error of . So finally, we require that .

In the Bonferroni multiple testing scenario, we have simply extended this calcu-
lation using the implied number of standard errors for different confidence levels

from the appropriate quantiles of a t50 distribution ( ).




̂ 
n

2
2

50 25
2

2


 

̂      
4

25
8.

 / 2

M



Holsbø and Møllersen | Advancing Systems Epidemiology in Cancer92
Power calculations
The power is the probability of detecting what we set out to detect, e.g. mean value
larger than X, if the true mean value is in fact larger than X. The power depends on
the size of the dataset, the variance, the true value of the mean, and assumptions
regarding the hypothesis statements, e.g. a Gaussian or a Student’s t distribution.
In the examples of this manuscript, the important take-home message is the
approximate magnitude of the power or the mean value.

The power calculations have been conducted using the R function power.t.test.

MAGNITUDE ERRORS
These errors are straightforward derivations assuming a hierarchical model where
μ ~ N(0, τ) and y ~ N(μ, σ); see Gelman and Tuerlinckx 2000. We use the R package
retrodesign to compute them.

Real-world expectations of error
For the real-world expected errors in Table 5.1, we perform a Monte Carlo integra-
tion over the empirical distribution of sample means, displayed in Figure 5.3. We
isolate the sample means larger than .2σ and sample from a kernel density estimate
of their distribution to calculate the different quantities on display.

P-values and confidence intervals for variances and effect sizes
When doing hypothesis testing, and calculating p-values and confidence intervals
regarding the mean, the calculations are based on the assumption that the sample
mean has a specific Gaussian distribution. When doing hypothesis testing regar-
ding variances or effect sizes, we need an assumption regarding the sample vari-

ance or effect size. For the sample variance, it can be shown that  has a

 distribution, for a Gaussian distributed population, and from that p-values
and confidence intervals are calculated the same way as for the mean.

The term effect size refers to the mean or difference in means relative to the var-
iance. Its confidence interval is slightly more complicated, but certainly within
reach. Kelley 2007 offers an introduction to the confidence intervals and an expla-
nation of the much-used Cohen’s d effect size, including its bias, and a method and
an R package for the confidence interval based on the non-central t-distribution.
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Bayesian data analysis
Gelman et al. 2014 is probably the best-known textbook on Bayesian data analysis.
It is quite technical. McElreath 2018 focuses much more on the practicalities of
doing such analyses and is quite light on mathematical theory. Spiegelhalter,
Abrams and Myles 2004 provide a wealth of healthcare applications.
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Abstract  We develop new statistical methods for analyzing sparsely sampled
curves that vary in time. The typical dataset is differences in log gene expressions
from case-control pairs for a large number of genes sampled relative to time of diag-
nosis. We focus on weak signals in the gene expression in many genes instead of
strong signals in a few genes. The methods are based on moving windows in time,
hypothesis testing, dimension reductions and randomization of the time to observa-
tion.

Keywords  Sparsely samples curves | case control differences | time to diagnosis | 
hypothesis testing | randomization

INTRODUCTION
In this chapter, we describe statistical methods for analyzing the data described in
the previous paragraphs. The methods may, however, be applied more generally.
We only need observations on irregular points in time from one or several strata
from many different response variables, and we test whether the response variables
are stationary and whether there are differences between the strata. The
approaches are based on using a moving window in time and hypothesis testing.

The lack of repeated samples, in addition to irregularly sampled data and the
quite small number of case-control pairs (around 400–500 or less), is a challenge,
especially in analyses stratified on important clinical parameters. The aim of some
of the analyses is therefore to show that there are changes over time or between
strata, but without identifying single differentially expressed genes or gene sets.
Normally, when identifying such genes or gene sets, we test multiple hypotheses
and consequently need to adjust for this, for example by controlling the false dis-
covery rate (FDR). For some of our datasets, we would then find no or very few
genes. We therefore need approaches with fewer tests that include many genes in
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/


Holden and Holden | Advancing Systems Epidemiology in Cancer96
order to avoid the problem of low power, noisy data, and multiple testing. Such
approaches can be viewed as an effective method for dimension reduction in stud-
ies of functional genomics.

In such approaches, we need to decide how many genes to include when testing
different kinds of hypotheses. Assume the genes have been ranked so that those
that are varying most significantly have the highest rank. In (Holden 2015a,
Holden 2015b), we showed that if there is a difference in average value of Xg,c
between the strata for some of the genes, but we do not know which genes, and the
difference is normally distributed, then the statistical tests are strongest for a small
rank. We concluded that if the distribution has heavier tails than the normal dis-
tribution, we should focus on the few genes with the strongest signal. On the other
hand, if the distribution has a less heavy tail, for example a constant difference in
the average value, then the statistical test is strongest for a larger rank, often larger
than (closer to) the number of genes with a difference in average value between the
strata.

This chapter discusses the analysis of functions fa,g(t) for different strata a,b, ...
and many genes g where the function varies with time t. These functions may be
denoted as trajectories. The challenge in our case is that the functions are sparsely
sampled, the different strata are sampled at different points in time, and there is
considerable noise in the sampling. We wish to identify the time dependency in the
data and the differences between the strata. We expect to find small differences in
many genes instead of larger differences in one or a few genes. This chapter sum-
marizes some of the applied work.

In order to study how gene expression profiles vary with time in the years before
or after a cancer diagnosis, several datasets showing gene expression in blood have
been collected. Each such dataset consists of cases diagnosed with cancer and
healthy controls. Each case and control belong to one case-control pair. The case
and control of a case-control pair each gave one blood sample, and they are
matched by time of blood sampling and year of birth. In the statistical analyses, we
use the differences of the log2 gene expression levels, Xg,c, for each case-control
pair c and gene g. Here, c = 1, ... , M, where M is the number of case-control pairs,
and g = 1, ... Ng, where Ng is the number of genes. As the time intervals between
blood sampling and cancer diagnosis vary from case to case, the case-control pairs
provide information on the sparsely sampled curves describing gene expression
over time some years before or after diagnosis.

Let tc be the time interval between blood sampling and cancer diagnosis for
case-control pair c, where t1 ≤ t2 ≤ ... ≤ tM. We assume the log2 gene expressions
Xg,c follow a smooth function in time fs(c),g(tc) = E{Xg,c}, where s(c) is the stratum
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of case c. We estimate the function fs(c),g(t) by taking an average of the observations
Xg,c from stratum s(c) in an interval in time. The variance of Xg,c is estimated from
the variance of the observations in the same interval.

METHODS FOR ANALYZING COMPLEX CURVES
Moving window in time
A central part of the statistical methodology is to examine how gene expression
varies with time. By dividing the entire time period into shorter time periods and
computing different kind of statistics for each such time period, we simplify the
problem to examining how these statistics vary with time. We use overlapping time
periods by using a moving window in time. The statistics computed for a time
period are independent of time. As the distribution of the gene expressions may
vary with time, the lengths of the time periods should be chosen such that we
obtain as short time periods as possible. However, to obtain as good estimates as
possible for each time period, there should be as many case-control pairs as possi-
ble within each time period. There is a trade-off between these two wishes. To con-
clude, we define M – L + 1 time periods [t1, tL], [t2, tL+1], ... , [tM–L+1, tM] where L
is chosen such that we obtain short time periods with many case-control pairs.
Typically, we let L ≈ M/4.

Compared to an approach where the time periods are not overlapping, an
advantage with the moving window approach is that we are better able to identify
the points in time relative to diagnosis where changes in gene expression occur.

Randomization for estimating null distributions and p-values
In most hypothesis tests, we compute p-values by estimating the null distribution
for the statistic of the hypothesis test by randomizing the data, i.e. interchanging
covariates (time to diagnosis, case/control, etc.) between the patients. In the rand-
omization we preserve critical properties of the genes (level of expression, complex
correlation between genes, etc.) and randomize only what is connected to the
changes in time, stratum or case/control status. This randomization defines the
null distribution for the test statistic that is used when finding the p-value.

We can randomize the data either by randomizing the case and control in each
case-control pair, by randomizing the case-control pairs between the periods, or
by randomizing between the two strata within the time period. Note that all three
randomization strategies maintain the correlation structure between the genes for
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each case-control pair. Also note that each randomization of the data leads to a dif-
ferent ordering of the genes if the genes are ordered according to the statistic of the
hypothesis test.

The p-value of the test is set to , where NS is the total number of rando-

mizations and K is the number of randomizations out of NS with a more extreme
statistic than the statistic for the real data. When we test one hypothesis for each
gene, we take multiple testing into account by using the Benjamin-Hochberg
procedure for controlling the false discovery rate, FDR (Reiner et al. 2003).

Extracting information from a time period
When extracting information for a time period, we use the gene expression data in
that time period and ignore information about time when we compute different
kinds of statistics, identify differentially expressed genes etc. We have used the fol-
lowing statistics for a time period:

Ordered standard deviation, mean and weight for a time period
Let mp,g be the sample mean and sp,g be the sample standard deviations for the dif-
ferences in log2 gene expressions for gene g in time period p. The variable mp,g is
an approximation to fs(c),g(tc) = E{Xg,c} and sp,g an approximation to the standard
deviation of Xgc in the interval. Let mp,g,a(mp,g,b) be the sample mean and sp,g,a
(sp,g,b) be the sample standard deviations for the differences in log2 gene expres-
sion for gene g in time period p for stratum a (b). We define the statistics sp,(g),
mp,(g), and wp,(g) from these sample means and standard deviations as follows:

• sp,(g) = sp,gʹ, where sp,gʹ has rank g when the sp,g’s for period p are sorted in
increasing order. Rank 1 corresponds to the smallest of the sp,g’s for period p.

• mp,(g) = |mp,gʹ|, where |mp,gʹ| has rank g when the |mp,g|’s for period p are sorted
in decreasing order. Rank 1 corresponds to the largest of the |mp,g|’s for period p.

• Let  be the weight for gene g in time period p, i.e. a measure

of the difference between the two strata. wp,(g) = |wp,g| where |wp,gʹ| has rank g
when the |wp,g|’s for period p are sorted in decreasing order. Rank 1 corresponds
to the largest of the |wp,g|’s for period p.

In some approaches, we use the sample mean mp,g directly, without ranking.
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The number of differentially expressed genes for a time period
We identify the significantly differentially expressed genes in the time period using
the Bioconductor R-package limma, linear models for microarrays (Ritchie et al.
2015), where the response is Xg,c, i.e. the difference in log2 gene expression
between the case and the control of a case-control pair.

In the next section, we describe how these statistics can be used for examining how
gene expression varies over time, between strata, and between cases and controls

Using information extracted for time periods
Finding signal in the data
The objective is to be able to identify small changes that vary slowly in time and/
or between strata, by using a large number of genes in each hypothesis test and pre-
dictor.

For examining whether there are differences between cases and controls, bet-
ween strata or in time, we test following hypotheses using the three statistics’ stan-
dard deviation, mean and weight defined in the previous section:

H0-case-ctrl: The expectation of Xg,c is zero. This means that there is no difference
between the expectations of the log2 gene expression values for the cases and con-
trols. It implies that fs(c),g(tc) = 0. If the null hypothesis is false, the expectation will
be different from zero for some periods and genes. We test the hypothesis by using
the statistic mp,(g).

H0-time: The distribution of Xg,c is not associated with the time to diagnosis. This
means that the expectation and standard deviation of Xg,c are the same in all time
periods. It implies that fs(c),g(tc) is constant in time. If the null hypothesis is false,
the standard deviation for some periods will be lower than the standard deviations
for the entire time period for some genes. Also, the absolute value of the expecta-
tion for some periods will be higher than the absolute value of the expectation for
the entire time period for some genes. We test the hypothesis first by using the sta-
tistic sp,(g), and then by using the statistic mp,(g).

H0-node: The expectation of Xg,c is not associated with stratum. This means that
the expectations for the two strata are equal for all genes g and time to diagnosis t.
It implies that fs(c),g(tc) is the same for all strata. If the null hypothesis is false, the
difference in expectation will be different from zero for some periods and genes.
We test the hypothesis by using the statistic wp,(g).
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The null distribution of each statistic will be estimated by randomizing the data,
and we compute p-values by comparing the statistic for the data to the estimated
null distribution.

We will reject the H0-case-ctrl hypothesis if the hypothesis mp,(g)>0 is rejected
for at least one time period p and rank g, where g belongs to a subset of the Ng
ranks. In practice, we have chosen to let the subset of ranks consist of ranks bet-
ween approximately 1% and 25% of the number of genes, so that the subset con-
tains both relatively low and high ranks. This means that H0-case-ctrl is rejected
based on a very large number of hypotheses, that are also highly positively corre-
lated, and we therefore needed to adjust for multiple testing. The approaches for
rejecting the H0-time and H0-node hypotheses are similar. Besides rejecting the
three null hypotheses, the hypothesis tests for the statistics for each time period
and rank can be used for illustrating how the p-values are associated with the time
to diagnosis.

Changes in the number of differentially expressed genes over time
In this approach, we examine changes in gene expression over time by examining
how the number of differentially expressed genes between cases and controls var-
ies with time. The time curve in this case consists of the number of differentially
expressed genes in each time period. Such time curves give an indication of when
there is a large difference between cases and controls before or after diagnosis. For
comparing different strata, we can compare the time curves of the strata.

When testing whether the number of differentially expressed genes are different
for two strata, we use ns, the number of genes that are differentially expressed
between cases and controls in at least one time period, as test statistic for stratum s.

When comparing stratum a and stratum b, we cannot directly compare na and
nb if Ma, the number of case-control pairs in stratum a, is much larger than Mb, the
number of case-control pairs in stratum b. To use the same number of case-con-
trols pairs when comparing the strata, we test the following hypothesis.

H0-strata1: The number of differentially expressed genes between cases and con-
trols is different for stratum a and b. Assume Mb < Ma. We want to estimate the null
distribution for na when the sample size of stratum a is Mb, and then compare this
distribution to nb. The null distribution is found using simulation by repeatedly
sample Mb case-control pairs from stratum a, and then compute the number of dif-
ferentially expressed genes for each sampled dataset. The p-value of the hypothesis
test is computed by comparing the samples of the null distribution to nb.
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Identifying significant genes based on area between curves
In this section we also estimate the function fs(c),g(tc) = E{Xg,c} by taking the mean
of observations of Xg,c in an interval of time. However, here we analyze the prop-
erties of the function in the entire time period at the same time instead of for each
interval in time separately. Then we are able to analyze all the data from a gene
instead of focusing on properties in an interval. This may be used to identify genes
that are significantly different between strata and predict strata from the gene
observations.

We estimate the area between two curves fa,g(t) and fb,g(t) by the test statistics
Vg = |fa,g – fb,g| = ∫|fa,g(t) – fb,g(t)|dt where the two strata are denoted a and b,
respectively. This is equal to the weighted sum of the absolute value of the differ-
ences in average gene expression between the two strata in each time interval,
where the weight depends on the length of the time interval. The area is large if
there is a large difference between the curves and we neglect whether this is due to
different average value or one is increasing and the other is decreasing in time.

We test the following hypothesis:

H0-strata2: The functions fa,g(t) and fb,g(t) are equal. For each gene g, we compare
the observed Vg with the same variable from a simulated distribution where we
resample the variables Xg,c for all the genes simultaneously by randomizing the
stratum s(c) for the case-control pairs. We maintain the observations for each gene
and the number of observations from each stratum. We have made Ng simultane-
ous tests and need to use the methods for adjusting for multiple testing.

Prediction of stratum based on local statistics
The weights wp,(g) can be estimated for each rank g from data in period p for a
training dataset. The stratum of the case of a new case-control pair, i.e. a case-con-
trol pair that does not belong to the training set, can then be predicted based on
the score

,

where x(g) is the difference in log2 gene expressions of the new case-control pair
and δp,(g) is 1 if the weight wp,gʹ is positive, and –1 otherwise, where |wp,gʹ| = wp,(g).
The n genes with highest absolute value of the weights are used for computing the
score, where n is a number less than or equal to the number of genes, Ng. Large
values of z indicate that the new case belongs to stratum a. If z > c, for some arbi-
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trary threshold c we conclude that the new case belongs to stratum a, otherwise we
conclude that the new case belongs to stratum b. We may set c = 0 if it is not more
important to avoid false classification in one stratum relative to the other and if

,

where mp,(g),a and mp,(g),b are the sample means that are used when computing
wp,(g). Increasing (decreasing) c results in fewer false positives (negatives) at the
cost of more false negatives (positives).

The available datasets are too small to be divided into a training and validation
set. When predicting the stratum of the cases in a dataset, we should therefore use
a leave-one-out or k-fold cross validation approach. When using the leave-one-out
approach, we predict the stratum of case j using weights wp,(g) that have been esti-
mated using the dataset where case-control pair j has been excluded. The k-fold
cross validation approach is similar, except that we divide the dataset into k folds
and predict the stratum of the cases in fold f using weights wp,(g) that have been
estimated using the dataset where the case-control pairs in fold f have been
excluded.

EXAMPLES OF USE OF THE METHODS
In this section, we give examples from papers where the methods described above
have been used.

Finding signal in the data
In a previous methodological study, time was categorized in three non-overlap-
ping periods (Lund et al. 2016); see Chapter 8. The aim in that study was to show
that there is signal in the data, but without showing where in time the changes in
gene expression occurred or which genes were involved. The main idea used in the
paper is that genes can be grouped into curve groups, each curve group corre-
sponding to genes with a similar development over time (Figure 6.1). Based on
these curve groups, we tested a set of hypotheses that determined whether there is
development in gene expression levels over time, and whether this development
varies among different strata. For a breast cancer dataset in the Norwegian Women
and Cancer (NOWAC) postgenome cohort, the curve group analysis revealed that
development of gene expression levels varied in the last years before breast cancer
diagnosis, and that this development differed by lymph node status and participa-

g

n

p g p g

p g a p g b
w

m m


   

   



1 2

0 , ,

, , , ,



6. Statistics of Sparsely Sampled Curves 103
tion in the Norwegian Breast Cancer Screening Program. The effect of the partici-
pation may be due to different treatment for the participating women representing
the majority of the population.

Figure 6.1. Examples of curve groups according to time to diagnosis. Example of
two different curve groups: curve group ‘123’ (upper panel, gene expression values
increasing with time) and curve group ‘132’ (lower panel, highest gene expression
value in the middle time period). In the left panels curves with the gene expression
differences for 20 genes from the given curve group are plotted. For illustrational
purposes, the curves have been estimated from the data using splines. In the mid-
dle panels the data for one of the 20 genes are shown with the corresponding
spline-estimated curve. The points represent the differences in gene expression for
each case-control pair. The mean value in each or the three time periods is shown
in red. The right panels are similar to the middle panels except that the data points
that are plotted are the mean values computed over the 20 genes in the left panel.

Partly to be able to better identify the points in time relative to cancer diagnosis
where changes in gene expression occur, we developed methods based on a mov-
ing window in time. This approach includes time in a more continuous manner
than the approach based on curve groups. In Holden et al. 2017 we used moving
windows and randomization for the same dataset as we used in Lund et al. 2016,
Chapter 8. The null hypotheses of no differences between cases and controls, no
time-dependent changes, and no differences between different strata were all
rejected. The main conclusion of the analyses was that there are time-dependent
changes of the blood transcriptome up to eight years before breast cancer diagno-
sis.
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Changes in the number of differentially expressed genes over 
time
In Chapter 9 we examined the changes in gene expression after diagnosis for a
breast cancer dataset in the Norwegian Women and Cancer (NOWAC) postge-
nome cohort. We stratified stage in invasive or metastatic breast cancer, and vital
status in dead or alive at the end of follow-up, and observed a significant increase
of differentially expressed genes among women with metastatic disease who later
died both compared to invasive cases that survived (p = 0.001) and to metastatic
cases that survived (p = 0.024). To illustrate the difference between strata, we made
heatmaps for the most differentially expressed genes over time; see Figure 6.2
below.

We also observed a second transient increase in blood gene expression a few
years after diagnosis in metastatic cases, hypothetically representing a capitulation
of the immune system.

Identifying significant genes based on area between curves
The analysis of complex curves was extended in order to identify genes that are sig-
nificantly different between two strata The method tests differences in a non-para-
metric time development relative to time of diagnosis of the gene expressions from
different strata using the area between the curves in a long time period.

The method was tested on case-control differences in log2 gene expressions in a
post diagnostic time period separating between the women who survived and the
women who died of breast cancer. The method clearly showed non-linear changes,
with rapid transient mostly increasing fold changes, in cases who later died. Sur-
vivors had no changes. For cases that died, this transient increase was followed by
a regression towards the gene expression profiles of survivors. For 9786 genes, the
integrated area from 18 months to 8 years was highly significant (p < 0.00001)
among women who died. There were indications of a stronger relationship in
metastatic cases alone.

Figure 6.3 below shows the fs(c),g(tc) curves for the 100 most significant genes in
the period after diagnosis for the women that survived and died of breast cancer.
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Sum

136

227

363
Figure 6.2. Heat maps with 74 selected genes in each stratum; invasive versus meta-
static and alive or dead at end of follow-up. The heat maps show log fold change
for each gene (y-axis) for each quarter of the years after diagnosis (x-axis).

Died Survived

Metastatic cases 39 97

Invasive cases 22 205 

Sum 61 302
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Figure 6.3. The 100 most significant genes in the period after diagnosis of breast
cancer. The data is scaled such that variance in the data is 1 for all the genes. Hence,
the vertical axis does not give information about the fold change.

This systems epidemiology approach provides a proof of concept for the use of
gene expression as an individualized biomarker of prognosis related to death or
not. Since we had no prior knowledge of the shape of differences in gene expres-
sions as a function of time relative to diagnosis, we needed a non-parametric
model that identified all possible changes in trajectories. The aim of the study was
to explore single gene expression trajectories from immune cells in blood over the
first years after diagnosis as predictors of later vital status, dead or alive.

Prediction of stratum based on local statistics
In Holden et al. 2017, we described Prediction of stratum based on local statistics,
to illustrate how the predictive power of the test varies with time. In Figure 6.4
below, we observe that for screening detected cancers the probability of correct
prediction of metastasis status was best in year 1 before diagnosis compared to year
3 and 4 before diagnosis for clinically detected cancers.
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Figure 6.4. Prediction results. a) Correctly (green) or wrongly (red) classified cases plot-
ted against time to diagnosis for the screening (upper panel) and the clinical group (low-
er panel). A circle is plotted above every fifth case. Long vertical lines are plotted to
indicate the years. On the y-axis “with” means cases with metastases and “without”
means cases without metastases. b) Fraction of correctly classified cases with (red) and
without (black) metastases over time for the screening (upper panel) and the clinical
group (lower panel). The fraction for each point in time is computed using a moving win-
dow of one year (clinical) or 100 days (screening). The resulting curve is then smoothed
using a median filter with a window size of one year (clinical) or 100 days (screening).
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Identifying significant genes with only one time period
The mortality of breast cancer is strongly associated with parity, i.e. the number of
children to whom a woman has given birth (Lund 1990). In Lund 2018, we used
one of the breast cancer datasets in the Norwegian Women and Cancer (NOWAC)
postgenome cohort mentioned in the previous sections to examine whether there
is an association between gene expression and parity. In that study we used only
one time period, which means that we ignore information about time and as a con-
sequence will mainly be able to identify genes with expressions that do not vary
with time in the years before/after diagnosis. As there is a large body of evidence
demonstrating the long-lasting protective effect of each full-term pregnancy (FTP)
on the development of breast cancer (BC) later in life, this is reasonable.

We used the Bioconductor R-package Limma, linear models for microarrays
(Ritchie et al. 2015), to identify the genes that were influenced by parity. In the lin-
ear model, the responses were Xg,c, the differences in the log2 gene expression for
each case-control pair, while we included the parity of the control and the parity of
the case as covariates. In the analyses, we merged parities 1–3 and 4–6 so that the
parity data consisted of three different values: 0, 1–3, and 4–6. The merging was
done in order to reduce the effect of the highest parities. We identified gene sets
that were influenced by parity using Limma in the same way as we did for individ-
ual genes, by using enrichment scores for gene sets instead of differences in the
log2 gene expressions as responses in the linear model. The enrichment scores for
gene sets were obtained from the Xg,cs using the Bioconductor R-package gene set
variation analysis, GSVA (Hänzelmann et al. 2013).

We found that 756 genes showed linear trends in cancer-free controls, false dis-
covery rate (FDR) 5%, but this was not the case for any of the genes in the breast
cancer cases. Gene Set Enrichment Analysis, GSEA of immunologic gene sets, C7
collection in Molecular Signatures Database, MSigDB (GSEA MSigDB, Subrama-
nian et al. 2005) revealed 215 significantly enriched human gene sets (FDR 5%).
These marked differences in gene expression and enrichment profiles of immuno-
logic gene sets between breast cancer cases and healthy controls suggest an impor-
tant protective effect of the immune system on breast cancer risk.
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7. Seven Levels of Analogical 
Fallacies—From Mice to Women
or from reductionist experiments in 
mice to functional transcriptomics in 
humans
Eiliv Lund

Abstract  Interpretations of findings in transcriptomic analyses as part of systems
epidemiology are usually based on analogies from mostly reductionist experiments
on mice. Such transfer of knowledge from one scientific discipline to another
depends on the validity of comparisons. The potential fallacies of analogical thinking
cover all aspects of the differences between mice and humans, genetically and in
lifestyle. We need better classification of the experimental information in standard
databases.

Keywords  Analogical fallacy | reductionist experiment | observational data | 
immunology | lifestyle

The interpretations of results from gene expression analyses in humans are heavily
dependent on reductionist experiments in animal or in human cell lines. The most
commonly used animal is the mouse (Breschi et al. 2017). However, to go from
mice experiments to human evidence is a long and winding path signposted with
analogies. The traditional definitions of analogy is a comparison between “things
that have similar features, often used to help explain a principle or idea” (Cam-
bridge Dictionary) “or one thing or another, typically for the purpose of explana-
tion or clarification” (Oxford Dictionaries).

Systems epidemiology (Lund and Dumeaux 2008), the rapidly growing interest
and potential for analyses of functional genomics in human studies, confronts
ons Attribution 4.0 International (CC BY 4.0).
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researchers with interpretations of statistical associations based on biological
knowledge. The explanations of the epidemiological findings will depend mostly
on information from animals, particularly mice. This confrontation could deepen
the canyon between the scientific disciplines of basic biology and epidemiology,
especially concerning the comparability or validity of transferring information
from one biological species to another. We will discuss the use of information from
reductionist experiments in the interpretations of functional genomics—from
mice to men, as the editorial of Nature Medicine put it (Editorial 2013); or, in our
case, from mice to women. The transfer is mostly based on analogies with little
specific knowledge about the nature of these biological and methodological differ-
ences in different species. In epidemiology, analogy was originally one of the cri-
teria of causality (Bradford Hill 1965), but over time lost its meaning due to the
potential for fallacious thinking, and it became difficult to assume that results from
a study on one disease could be generalized to other research areas. Today, epide-
miologists working with analyses of functional genomics import knowledge of
function from databases of information on basic biology. It is a concern that the
information collected for systems biology cannot necessarily be used for interpre-
tations of the biology of statistical associations.

The purpose is to describe some of the many analogical fallacies that should be
considered, from mice reductionist experiments to human lifestyle, and in addi-
tion to discuss the upcoming issue of the validity of mice experiments in relation
to the immune system.

SEVEN LEVELS OF ANALOGICAL FALLACIES
The wide variety of analogical fallacies, from reductionist experiments to observa-
tional studies of humans, can be classified into at least seven levels. Normally, these
levels are not discussed in depth in epidemiological papers. Here we will focus on
the use of information gathered from mice experiments and its relevance for the
interpretation of functional genomic findings in epidemiology. The seven levels
are shown in Box 7.1, where the epidemiological use of information is compared
to the reductionist situation.
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Box 7.1
One: genomic differences
In most mice, experiments are inbred mostly from the same strain or gene-
tically modified. In women there are large differences between individuals
of the genome at the level of single nucleotide polymorphisms. The reduc-
tionist experiments can consequently say nothing about the effect of
genetic variation in the mice model. For humans, enormous efforts have
been made over the last two decades to understand the importance of this
genetic variation on cancer risk.

Two: lifestyle
Mice are normally treated in the lab with standard diets. It is observed that
changing the diet also changes the effect of experiments related to diet.
Among women, diets are very different, from vegans to people on low-
carb, high-fat diets. Many diets still depend on local conditions and culture.
This diversity of diets influences the gene expression or functional geno-
mics, and must be taken into account in the analyses.

Three: sterile labs
Most labs are built for being non-pathogenic. The mice are living under a
controlled infection environment. The women attract continuously through
life new infections from bacteria and viruses. This has an important conse-
quence for studies of the immune system. In blood of laboratory mice, the
immune system shows no effects of a long infectious life, in fact the
immune system more like human newborn. In women the immune system
accumulates experiences over years.

Four: physiology, hormones, and immune system
There are many differences in physiology and hormone levels in mice and
women. Most important for female cancers are probably differences rela-
ted to fertility and lactation. Mice have no regular cycles while women
have a regular complicated hormonal regulation of the menstruation
giving her opportunity for a pregnancy every month in a period of more
than 30 years. In addition, mice have an immune system more directed
towards the old innate system versus humans with a more developed
adaptive. During pregnancy, the fetus acts like a pseudo semi-allocraft.

Five: differences in tissue sampling
Mice will often be killed at time for sampling of biological material. Sam-
ples can therefore be from liver, bone marrow or spleen. In humans blood
sampling is the most easy and common sampling procedure. Some human
studies use blood from umbilicus at time of birth.
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Example: Gene set enrichment analysis
The following is an example of the differences of the parameters between mice and
human information taken from an analysis of gene expression in relation to parity
among breast cancer patients and controls; for its design, see Lund et al. 2018.

Six: gender or sex
Most mice experiments have used male mice. This had some consequen-
ces for studies of hormone related products. The gender is not always
given in the articles or different to find. In human gender is a standard
factor for stratification. The use of specific gender in the experiments are
often not discussed. In epidemiology almost no studies use analyses of
male and female together.

Seven: nature of tumors
In mice most tumors are induced. They are not malignant. The incidence of
cancer in mice naturally is lower than in human with no outcome studies in
cancer. While epidemiology has hundreds of thousands of participants a
lab cannot hold more than a few mice over their lifetime. The construction
of tumors is therefore either chemically or through genetic manipulation.
There is more heterogeneity in breast cancer in women than in mice.
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Table 7.1. Top 10 gene sets for humans and mice with information on experimental
design (Lund et al. 2018)

I – innate immune system, A – adaptive immune system, DC – dendritic cells, PBMCs – peripheral 
blood mononuclear cells, HSCs – hematopoietic stem cells, CLPCs – common lymphoid progenitor 
cells M – male, NA – not applicable, F – female

gene-
SetID

score-
Diff

p-
value

FDR 
q-value

source immune 
system

parity cells s

Human

GSE3982 0.023 3.4E-05 0.027 Cord blood I NA Macrophages N

GSE2770 -0.026 5.9E-05 0.027 Cord blood A NA CD4+ T cells N

GSE16385 0.047 7.0E-05 0.027 Blood I NA Monocytes N

GSE1460 0.034 1.0E-04 0.027 Cord 
blood

Blood A NA CD4+ T cells N

GSE13411 -0.035 1.6E-04 0.027 Spleen A NA B cells M

GSE2770 0.027 1.7E-04 0.027 Cord blood A NA CD4+ T cells N

GSE29618 -0.029 1.9E-04 0.027 Blood I NA DC N

GSE17974 0.028 1.9E-04 0.027 Cord blood A NA CD4+ T cells N

GSE2770 -0.028 1.9E-04 0.027 Cord blood A NA CD4+ T cells N

GSE29615 0.038 2.2E-04 0.027 Blood I A NA PBMCs N

Mouse

GSE17721 0.018 1.1E-05 0.027 Bone marrow I NA DC

GSE14769 0.032 1.2E-05 0.027 Bone marrow I NA Macrophages N

GSE3691 0.037 3.3E-05 0.027 Various tissues I NA DC

GSE37301 0.035 3.6E-05 0.027 Bone marrow I A NA HSCs, CLPCs N

GSE32034 0.028 3.7E-05 0.027 Various tissues I NA Monocytes

GSE17721 0.026 4.5E-05 0.027 Bone marrow I NA DC

GSE21063 0.036 4.5E-05 0.027 Spleen A NA B cells N

GSE11924 -0.029 6.5E-05 0.027 Spleen A NA CD4+ T cells N

GSE28237 0.035 7.7E-05 0.027 Spleen A NA B cells N

GSE13547 0.034 7.8E-05 0.027 Spleen A NA B cells N

Cord blood Blood Spleen Bone 
marrow

Various tissues Innate immune 
system

Adaptive immune 
system

Male Female
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A total of 588 gene sets were identified from the C7 collection in Molecular Signa-
tures Database (GSEA MSigDB) that were significantly enriched when the parity
of the controls varied (FDR 5%). Experimentally produced gene sets are submitted
to MSigDB from researchers using both in vivo and in vitro material, as well as
both human cells or tissues and animal models. Of our 588 enriched gene sets, 215
were derived from human data and 373 were derived mostly from mouse data.
Detailed information on the top 10 gene sets from each species showed a discrep-
ancy in the tissues analyzed: blood and cord blood in humans versus bone marrow
and spleen in mice (Table 7.1). These tissue sources are closely related to the
immune system; in humans, cord blood is related to the innate immune system
and blood is mainly related to the adaptive immune system, while for mice bone
marrow is associated with the innate immune system and spleen with the adaptive
immune system. We had information on gender for only one of the top 10 human
gene sets, and four of the mouse gene sets, even after contacting the main authors
of the associated publications. The five gene sets from human cord blood mostly
represented the adaptive immune system, but immune signatures from cord blood
have not been found to be representative of adult immune response, instead
resembling a newborn response (Beura et al. 2016). None of the MSigDB gene sets
from either humans or mice included information on the number of full-term
pregnancies. Female laboratory mice are generally nulliparous for breeding rea-
sons.

In Gene Set Enrichment Analysis, GSEA we focused our analysis on the C7 col-
lection in Molecular Signatures Database, MSigDB (GSEA MSigDB), consisting of
gene sets related to the immune system. Interestingly, the greatest portion of these
gene sets was obtained from animal studies. It is nearly impossible to make an
unambiguous conclusion from these results due to the complexity of the gene sets’
data and lack of essential information in the gene sets’ descriptions (e.g. we were
unable to ascertain the gender of blood donors for most human experiments even
after contacting the authors of publications). We observed a clear interspecific dif-
ference between components of the immune system to which the gene sets are
related (in mice, most of the gene sets are of innate immunity origin, while in
humans the immunity origin is adaptive) and between the sources of the cells for
the experiments. While the latter can be explained by technical and ethical conside-
rations, the former raises yet another concern on the validity of results obtained in
animal models.
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DISCUSSION
We have proposed at least seven levels of analogical fallacy; some could think of
more. In addition, an intense debate is ongoing related to the scientific validity of
reductionist experiments (Gould et al. 2015). Surprisingly, many experiments can-
not be repeated due to lack of information, and many that have been repeated show
different results. Together, this has raised the question of the use of experimentally
derived information to find new drugs and for the testing of human patient popu-
lations. In spite of attempts to improve the scientific standard, not much has been
achieved (Enserink 2017).

Comparative transcriptomics in humans and mice have shown a number of limi-
tations (for an overview, see Breschi et al. 2017). These include incomplete tran-
scriptomic characterization, difficulties in identifying orthologue phenotypes and
cells. Emerging technologies could improve our understanding of the conditions
under which the mouse is an acceptable model of human physiology. Current limi-
tations of mouse models are well known in the research into carcinogenesis. Due
to differences in duplication time, lifespan and cancer susceptibility, the success
rate of translation from animal models to human clinical trials has been less than
10% (Editorial 2012).

While the similarities between the human and mouse genome are acceptable for
mechanistic research, the murine genome being 12% smaller. Around 90% of each
genome can be portioned into conserved syntenic regions, but only 40% of the
nucleotides. The remaining 60% might be due to changes during evolution. For
protein-coding genes, around 20-30% are either one-to-many or many-to-many
orthologous relationships. Since these changes could reflect human disease pheno-
types, care should be taken with interpretations. For the long-coding RNAs the situ-
ation is even more diverse, and even more so for small-coding RNAs (miRNA)
where only a small fraction has a defined orthology.

Comparison of different mouse models of breast cancer showed that many of
the characteristics gave tumors with distinctive and homogenous expression pat-
terns within each strain, but none of the models had all of the expression profiles
of a specific human subtype (Herschkowitz et al. 2007). In fact, in mice the devel-
opment of spontaneous mammary tumors is linked to the infection of mice with
either exogenous or endogenous viruses (Russo 2015).

Consequently, similarities in gene expression between species do not necessarily
reflect the functional gene expression signals in humans. The immune system
could be the most challenging field for comparative transcriptomics. As an exam-
ple, the transcriptional responses to trauma such as burns or accidents have highly
similar genomic responses in humans, while the responses in corresponding
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mouse models correlate poorly with human conditions. No such patterns can be
identified in mice (Seok et al. 2013). Even if new RNA-seq technology is intro-
duced that can give more detailed information, the mouse and human samples are
not comparable since the former is taken from animal tissue while the latter mostly
comes from peripheral blood. Another important aspect of comparative transcrip-
tomics is the growing concern that laboratory mice do not reflect relevant aspects
of the human immune system (Beura et al. 2016, Maizels and Nussey 2013). Lab-
oratory mice are inbred and genetically similar, with genetic manipulations. In
addition, they live in abnormally hygienic conditions in sterile laboratories. It has
been shown that laboratory mice have an immune system more like that of new-
borns, not adult humans. They lack effector-differentiated and mucosally distrib-
uted memory T-cells. Altering the life conditions of the mice changes the cellular
composition of the innate and adaptive immune system to be more like adult
humans. Restoring physiological microbial exposures in the laboratory could
improve the relevance of mice models for studies of immunology in free-living
humans (Beura et al. 2016). These results can also be discussed from an evolution-
ary setting (Maizels and Nussey 2013) in which the immune system has evolved
over years. The genuine importance of the environment limits the generalization
of results obtained in good, controlled laboratory settings compared to the chal-
lenges of life in the wilderness.

In addition, there are many more methodological and statistical problems in the
experimental research on cancer (Holman et al. 2016). Small sample sizes, loss of
animals randomly or as outliers, and the statistical testing of many hypotheses can
all increase the probability of false positive results.

Very specifically, gender is often forgotten in environmental toxicology, and
often in other studies too (Liang et al. 2018). This will result in noise in the analyses
if there are different transcriptomic effects of chemicals or other lifestyle factors.

There is also very sparse comparative data about transcriptional changes associ-
ated with the carcinogenic process over time.

The translation of results from basic biology reductionist experiments to human
drugs or tests have been high on the research agenda for many years. In one com-
ment in 2012, the question was how to raise standards for preclinical cancer
research in order to increase the reliability of preclinical cancer studies (Begley and
Ellis 2012). Six years later, an editorial in BMJ had the heading “We need better ani-
mal research, better reported” (Goodlee 2018). Another comment in Nature bore
the title “Consider drug efficacy before first-in-human trials” (Kimmelman and
Federico 2017). Some specific problems are related to the use of translational
mouse models in oncology drug development (Gould et al. 2015). The misleading
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mouse studies have wasted medical resources, but what is worse, led to unneces-
sary clinical trials with thousands of patients (Perrin 2014). The sloppy reporting
on animal studies continues in 2017 (Enserink 2017).

CONCLUSION
Epidemiologists should be very careful in using animal model (non-human)
experimentally derived information in order to interpret findings of functional
genomics as part of systems epidemiology. The databases should more clearly
define the methodology of the design in reductionist experiments.
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BACKGROUND
The assumption of systems epidemiology (Lund & Dumeaux, 2008) is that func-
tional aspects of the human carcinogenic process can be detected in the blood as
gene expression patterns before cancer diagnosis, either as active signals or as pas-
sive information. A recent editorial in Nature Medicine (“Of men, not mice”, 2013)
stressed that if we are to understand the carcinogenic process, research needs to
shift from mouse models to a “human model”. However, the peculiarities and
timescale of cancer development in humans essentially force us to rely on observa-
tional studies. The prospective design is clearly the best design if one wants to
incorporate the time aspect of carcinogenesis and changing exposures. However,
practical considerations frequently force us to use a nested case-control design
within the cohort, which keeps part of the advantage of the previous design. Analy-
ses of somatic mutations in cancer genome studies have revealed the huge diversity
of mutational processes that occurs during carcinogenesis (Alexandrov et al.,
2013). One explanation for this observation could be that multiple mutational pro-
cesses operate differently within biological processes depending on subtypes of
cancer, thus giving a jumbled composite signature. In order to avoid jumbled com-
posite signatures, functional analyses in observational studies must be stratified by
important clinical information such as lymph node status and exposures to poten-
tial carcinogens.

One approach for prospective functional genomic studies is to compile trajecto-
ries based on measurements from many case-control pairs in order to study the
carcinogenic process (Lund & Plancade, 2015). The trajectory of a gene is defined
as the curve showing the changes in gene expression levels in the blood as a func-
tion of time to cancer diagnosis, and consists of a nested case-control design of the
differences in gene expression levels between cases and controls.

Our overall aim was to develop statistical methods for exploring the changes in
gene expression in years before diagnosis as part of a processual approach (Lund
& Plancade, 2015), not to estimate risk.

There is no prior knowledge about the form of the trajectory of gene expression
for any of the thousands of genes. This lack of a priori information normally
demands an agnostic approach (Spitz & Bondy, 2010), i.e. considering all genes as
equal and adjusting for multiple testing using a false discovery rate (Reiner, Yeku-
tieli, & Benjamini, 2003). Here, however, we present a new statistical method to
study trajectories. We applied this new method in a prospective analysis of women
with breast cancer in the Norwegian Women and Cancer (NOWAC) postgenome
cohort (Dumeaux et al., 2008). The trajectories were analyzed within strata of dif-
ferent biological stages in carcinogenesis of breast cancer within the screening or
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outside as clinical cancer, but without identifying single genes or conducting path-
way analyses.

METHODS
The new statistical approach is described below. As a “proof of concept” we carried
out an analysis in a nested case-control design in the Norwegian Women and Can-
cer postgenome cohort. For each incidence of breast cancer identified through
linkage to the Norwegian Cancer Registry, a control was drawn from blood sam-
ples collected at the same time and year of birth. This ensured the same storage
time and no effect of age between cases and controls. The pairs of cases and con-
trols were kept together throughout all laboratory procedures in order to reduce
batch effects. For more details, see later under Epidemiological design and study
population.

Statistical methods
The new statistical method for curve group analyses is based on a set of hypothe-
sis testing that we developed in order to detect changes in gene expression levels
over time, and whether these changes, if they exist, differ among strata. This
method is able to identify small changes that vary slowly over time and/or among
strata, by using a large number of genes in each analysis. In order to define test
statistics that measure the development of differential gene expression levels over
time and differences among strata, we have introduced the concept of curve
groups, where each curve group consists of genes that have a similar development
over time, i.e. similar differential trajectories. These methods are described in
detail below:

Let Xg,p be the log2-expression difference for gene g and the matched case-
control pair p. Each case-control pair belongs to a stratum s and a time period t.
We wanted to test whether Xg,p is independent of the time period, and whether
there is no difference among the strata, i.e. Xg,p is independent of stratum. Figure
8.1 gives an overview of the different tests and the variables used in these tests,
the strata used in the analyses, and the table and figures where the results are
shown.
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Figure 8.1. Overview of hypothesis tests, variables, strata, tables and figures.
A. Illustration of the relationship between the data X g,p, the different hypothesis
tests, the variables used in these tests, and which tables and figures that show the
results from the tests. B. Overview of the different strata.

In the illustrative application, analyses were either conducted within strata of
lymph node status at breast cancer diagnosis (positive or ‘with spread’, and nega-
tive or ‘without spread’) or with respect to breast cancer screening visits (detection
categories); cancers diagnosed during screening visits were considered ‘screen-
detected cancers’; cancers diagnosed within 2 years of last screening visit were
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considered ‘interval cancers’; and cancers diagnosed clinically in women that did
not attend screening or had not attended screening for more than 2 years were
considered ‘clinical cancers’ (Table 8.1).

Table 8.1. Number of case-control pairs in each stratum and time period with gene
expression data X g,p

aDiagnosed at a screening visit.
bDiagnosed within 2 years of a screening visit.
cDiagnosed clinically and did not attend the screening program or diagnosed clinically more than 2 
years after a screening visit.

Hypothesis test for development over time in each stratum
For each stratum, we tested whether Xg,p is independent of the time period in a
global test since we are interested in weak signals from many genes, not signals that
may only be identified in a single gene. To define a test statistic that measures
development over time, we used curve groups. The follow-up time was divided
into three time periods t = 1,2,3 where t = 1 is 0–1 year before cancer diagnosis,
t=2 is 1–2 years before cancer diagnosis, and t = 3 is 3–5 years before cancer diag-
nosis.

• For a given stratum s, a gene g can belong to zero or one of six curve groups
based on the average (mean) of the data over all case-control pairs in the stratum
in each of the three time periods. These averages were denoted Xg,3,s, Xg,2,s and
Xg,1,s, respectively, and the curve groups are defined based on the ordering of
these three averages. In order to search for curves with changes over time, we
defined six potential curve groups that changed from time period to time
period, called ‘123’, ‘132’, ‘213’, ‘231’, ‘312’, and ‘321’, respectively. The three num-
bers that denote each curve group represent the level of the average gene expres-

Strata Year before diagnosis 
(time period)

Detection category Lymph node status 5-3 (3) 2 (2) 1 (1)

Screen-detected cancersa With spread 41 11 6

Without spread 118 42 43

Interval cancersb With spread 28 9 6

Without spread 30 15 10

Clinical cancersc With spread 11 8 10

Without spread 28 12 13
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sion of time period 3 (left number), the level of the average gene expression of
time period 2 (middle number) and the level of the average gene expression of
time period 1 (right number). For example, if Xg,3,s < Xg,2,s < Xg,1,s, and these
three averages are not too similar (to be defined later), gene g belong to curve
group ‘123’, indicating an increasing gene expression level over time when
approaching the time of diagnosis, with gene expression level 1 in time period
3, gene expression level 2 in time period 2 and gene expression level 3 in time
period 1 (closest to the time of diagnosis). If the three averages are too similar,
gene g does not belong to any curve group. See Figure 8.2 for an illustration of
the concept of curve groups.

Figure 8.2. Examples of curve groups according to time to diagnosis. Example of
two different curve groups: curve group ‘123’ (upper panel, gene expression values
increasing with time) and curve group ‘132’ (lower panel, highest gene expression
value in the middle time period). In the left panels curves with the gene expression
differences Xg,p for 20 genes from the given curve group are plotted. For illustra-
tional purposes, the curves have been estimated from the data using splines. In the
middle panels the data Xg,p for one of the 20 genes are shown with the correspond-
ing spline-estimated curve. The points represent the differences in gene
expression Xg,p for each case-control pair. The mean value in each time period,
Xg,3,s, Xg,2,s and Xg,1,s, is shown in red. The right panels are similar to the middle
panels except that the data points that are plotted are the mean values computed
over the 20 genes in the left panel.

• Each curve group included only genes with a significant change in expression
level over time. This was done by testing whether the smallest and largest values
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of Xg,3,s, Xg,2,s and Xg,1,s were different using a two-sample t-test (assuming un-
equal variances). Let pg,c be the p-value of this test. Depending on the statistical
question at hand, we defined two alternative criteria for concluding that a
gene g belongs to the curve group c:

• Inclusion criterion 1: Gene g belongs to curve group c if pg,c is below a prede-
fined limit α.

• Inclusion criterion 2: Gene g belongs to curve group c if gene g is among the M
genes with lowest pg,c. See more in the next section.

To test for the development of gene expression levels over time, for each stratum
we counted the number of genes that belong to the curve group using inclusion
criterion 1. We then performed seven hypothesis tests: one global test and one for
each of the six curve groups in each stratum. In the global test the test statistic is
the total number of genes that belong to any one of the six curve groups, while in
the test for individual curve groups the test statistic is the number of genes that
belong to the curve group in question. If the conclusion of the hypothesis test was
that there were more genes in the curve groups than what was expected by chance,
we concluded that there was a significant development over time for some of these
genes.

Hypothesis test for comparing two strata
Let us consider in our illustrative example two strata, such as “with spread” and
“without spread” at the time of diagnosis. We wanted to test whether there were
differences in gene expression levels between these two strata, using information
from several genes. For each curve group c, stratum s and case-control pair p, we
defined a curve group variable Zc,s,p as follows: we selected the genes that belonged
to curve group c for stratum s using inclusion criterion 2 with M=100. Let Gc,s
denote this set of genes. The curve group variable Zc,s,p for case-control pair p was
then computed as the average value of the data Xg,p over the genes in Gc,s:

.

We could then test whether the variables Zc,s,p were different between the two
strata for case-control pairs p either for all time periods combined or for each time
period separately. Note that the genes were selected based on data from stratum s,
but the variable may have been calculated for case-control pairs p in any stratum.
For example, assume that we wanted to test if there was a difference in gene expres-
sion level between case-control pairs in the stratum with spread versus the stratum

Z Xc s p g G g p
c s

, , ,
,


1

100
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without spread for curve group ‘123’. Assume that the set of 100 genes
G123,with spread was selected using criterion 2 in the stratum with spread. We would
then have calculated Z123,with spread,p for all case-control pairs p in the stratum
with spread and Z123,with spread,p’ for p’ in the stratum without spread, and tested if
the difference was larger than expected by chance. Note that testing the strata with
spread versus without spread may also be performed with the set of genes
G123,without spread selected from the without spread stratum or from any of the
other defined strata.

An alternative statistic for comparing two strata
The test described above focuses on genes that belong to the same curve group. We
also constructed a hypothesis test to compare the difference in development over
time between two strata that did not depend on curve groups. This test statistic
was constructed by first computing the two-sample t-statistic Tg,t and comparing
the difference in gene expression levels between the two strata for each gene g and
time period t. We defined Fg = ∑twt|Tg,t| as the weighted sum of the absolute val-
ues of the t-statistics for gene g with weight wt. Furthermore, the test statistic was
defined as Lk = ∑gϵGkFg, where Gk is the set of genes with the k largest Fg values,
i.e. Lk is the sum of the k largest Fg values. We observe that Lk is a weighted sum of
t-statistics. We used equal weights wt=1/3 for each time period. Alternatively, the
weights could be selected either as proportional to the number of case-control
pairs in each time period or with larger values for the case-control pairs in a time
period closer to the time of diagnosis. We then performed a global test including
all three time periods, and separate tests for each time period, in which only data
corresponding to each time period were included. This test performed very well
on several simulated datasets with a different development over time or different
gene expression levels for some genes for two strata. For details see Holden (2015).

Computing p-values—permutation tests
We computed p-values in all the tests described above by estimating the null dis-
tribution for the statistic of the hypothesis test by randomizing the data. In the ran-
domization, we preserve critical properties of the genes (level of expression, com-
plex correlation between genes, etc.) and randomize only what’s connected to the
evolution over time and stratum. This randomization defines the null-distribution
for the test statistic that is used when finding the p-value. In hypothesis tests for
development over time in a single stratum, the null model was estimated by ran-
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domizing case-control pairs for that stratum between time periods, while in the
hypothesis tests comparing two strata, the null model was estimated by randomiz-
ing case-control pairs between the two strata for each time period. Note that these
randomization algorithms maintained the correlation structure between the genes
for each case-control pair. Also note that the curve groups were redefined before a
sample of the null model was computed from a randomized dataset. The p-value
of the test was set to (K + 1)/(N + 1), where N is the total number of randomiza-
tions and K is the number of randomizations out of N with a more extreme statistic
than the statistic for the real data (Phipson & Smyth, 2010). In the results presented
we used N = 1000.

Illustrative example: epidemiological design and study population
The NOWAC study is a nation-wide population-based cancer study that was initi-
ated in 1991 (Lund et al., 2008), and the postgenome cohort has been described
previously in detail (Dumeaux et al., 2008). Briefly, random samples of women
were drawn from the Central Person Register by Statistics Norway based on their
unique national birth number. Selected women were sent an invitation that
included information on blood sample collection and an 8-page questionnaire, on
which their national birth number was replaced by a serial number. The linkage
file for the national birth number and the serial number was kept at Statistics Nor-
way. The questionnaires were returned to the Department of Community Medi-
cine, University of Tromsø. Non-responders were mailed one or two reminders. Of
all invited women, 97.2 % agreed to give a blood sample. These women were sent
a blood sampling kit including another 2-page questionnaire and one PAXgene
tube (PreAnalytiX GmbH, Hembrechtikon, Switzerland) with a buffer or stabiliza-
tion agent for mRNA in order to improve the quality of gene expression for
genome-wide microarray analyses. These kits were mailed in batches of 500, with
one reminder sent after 4–6 weeks. Blood was primarily drawn at family doctors’
offices with the doctors then sending the samples as biological material overnight
to Tromsø, where they were immediately frozen. Between 2003 and 2006, 48 692
blood samples were included in the NOWAC postgenome biobank, and these
women make up the NOWAC postgenome cohort.

A nested case-control design was chosen in order to reduce batch effects in the
laboratory and also for the high cost of each analysis. For each case of breast can-
cer, a control from the same batch of 500 women in the postgenome cohort was
assigned, matched by time of blood sampling and year of birth, to be analyzed
together with the case.
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The controls are used to establish the average (mean) gene expression level in
individuals without cancer and to allow exposure-adjusted analyses to be per-
formed. The expression level of a gene not involved in the carcinogenetic process
will exhibit variability dependent on day-to-day changes in exposures such as envi-
ronment and nutrition, resulting in random fluctuations of the difference in gene
expression between case and matched control around a population-average con-
stant over time, whereas the difference in expression level of genes related to dif-
ferent stages of the carcinogenetic process may vary over time in a non-random
way, thus exhibiting some non-random trend. The changes in genes related to the
carcinogenic process could be complicated by other effects of exposures to the car-
cinogens (Lund & Plancade, 2012).

Follow-up and registry information
Cases of invasive breast cancer diagnosed in the NOWAC postgenome cohort
through the end of 2009 were identified through linkage to the Cancer Registry of
Norway. Altogether, 637 cases of invasive breast cancer were reported. After
removing outliers and ineligible cases including women with distant metastases,
the study consisted of 441 case-control pairs. Information on lymph node status at
breast cancer diagnosis was based on the pTNM information included in the Can-
cer Registry of Norway. Detection categories were also obtained from the Cancer
Registry of Norway, which updates this data regularly through linkage to the
screening database kept by the National Breast Cancer Screening Program
(Hofvind, Geller, Vacek, Thoresen, & Skaane, 2007).

Ethical issues
The NOWAC study was approved by the Norwegian Data Inspectorate and the
Regional Ethical Committee of North Norway (REK). The linkages of the
NOWAC database to national registries such as the Cancer Registry of Norway
and registries on death and emigration was approved by the Directorate of Health.
The women were informed about these linkages. Furthermore, the collection and
storing of human biological material was approved by the REK in accordance with
the Norwegian Biobank Act. Women were informed in the letter of introduction
that the blood samples would be used for gene expression analyses.
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Laboratory procedures
Microarray data
The extraction and microarray services were provided by the Genomics Core Facil-
ity, Norwegian University of Science and Technology, Trondheim, Norway. To con-
trol for technical variability such as different batches of reagents and kits, day-to-day
variations, microarray production batches, and effects related to different laboratory
operators, each case-control pair was kept together throughout all extraction, ampli-
fication, and hybridization procedures. RNA extraction was performed using the
PAXgene Blood miRNA Isolation kit according to the manufacturer’s instructions.
RNA quality and purity were assessed using the NanoDrop ND 8000 spectropho-
tometer (ThermoFisher Scientific; Wilmington, Delaware, USA) and Agilent bio-
analyzer (Agilent Technologies, Palo Alto, CA, USA), respectively. RNA amplifica-
tion was performed on 96 plates using 300 ng of total RNA and the Illumina
TotalPrep-96 RNA Amplification Kit (Ambio, Inc., Austin, Texas, USA). The ampli-
fication procedure consisted of reverse transcription with a T7 promotor and Array-
Script, followed by a second-strand synthesis. In vitro transcription with T7 RNA
polymerase using a biotin-NTP mix produced biotinylated cRNA copies of each
mRNA in the sample. All case-control pairs were run on either the IlluminaHu-
manAWG-6 version three expression bead or the HumanHT-12 version 4. Outliers
were excluded after visual examination of dendrograms, principal component anal-
ysis plots and density plots. Individuals that were considered borderline outliers were
excluded if their laboratory quality measures where below given thresholds (RIN
value <7, 260/280 ratio <2, 260/230 ratio <1.7, and 50<RNA<500).

Preprocessing of microarray data
The dataset was preprocessed as previously described (Günther, Holden, &
Holden, 2014). The dataset, which consisted of 441 case-control pairs and 30 046
probes, was background-corrected using negative control probes and normalized
on the original scale using quantile normalization. Data from the two Illumina
chips (HumanWG-6 v3 and HumanHT-12 v4) were combined on identical nucleo-
tide universal identifiers (Du, Kibbe, & Lin, 2007). We retained probes present in
at least 1 % of the individuals, i.e., in at least nine of the 882 individuals. If a gene
was represented with more than one probe, only one was selected, resulting in a
dataset with 11 431 probes. The probes were translated to genes using the Illumi-
naHumanAll.db database (Carlson, n.d.). Finally, the log2-differences of the gene
expression levels for each case-control pair were computed and used in the statis-
tical analyses. Additional adjustments for possible batch effects were unnecessary
as the case-control pairs were kept together throughout the laboratory processes.
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RESULTS
Hypothesis tests for development over time in each stratum
A time trend was considered to be present if there were more genes in the curve
groups than expected by chance. The number of case-control pairs stratified
according to lymph node status and detection category is shown in Table 8.1. First,
we stratified all case-control pairs by lymph node status (Tables 8.2 and 8.3). The
results were not significant, indicating no changes in gene expression levels over
time. We then stratified all screening and interval cancers by lymph node status,
which rendered a highly significant global test (p=0.01), and more p-values less
than 0.05 than expected by chance (Tables 8.2 and 8.3). Finally, we stratified by all
detection categories and lymph node status. This analysis showed that the effect
was mainly restricted to interval cancers with spread (global test; p=0.02). In these
tests the inclusion criterion 1 had value α=0.01. The results depend on the α-
value, but the results were not very sensitive to the choice of α-value (data not
shown). Tables 8.4 and 8.5 show the observed number and the expected number
of genes in each curve group analysis in Tables 8.2 and 8.3. Here it is important to
note that the number of genes in each curve group is not too small (Tables 8.4 and
8.5). If this had been the case, it would have indicated that the chosen α-value -
value was too small, weakening the power of the test.

Table 8.2. P-values obtained when testing whether there are more genes in the
curve groups than what is expected by chance in different strata

p-value

Curve 
group

Screen-detected, 
interval, and clinical 

cancers
with spread

Screen-detected, 
interval, and clinical 

cancers
without spread

Screen-detected 
and interval 

cancers
with spread

Screen-detected 
and interval 

cancers
without spread

Global 0.78 0.27 0.01 0.20

123 0.61 0.23 0.02 0.39

132 0.49 0.13 0.008 0.11

312 0.88 0.18 0.13 0.11

321 0.41 0.74 0.02 0.66

231 0.74 0.68 0.50 0.57

213 0.58 0.17 0.48 0.13
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Inclusion criterion 1 was used with α = 0.01. P-values below 0.05 are highlighted in yellow.

Table 8.3. P-values for curve group variables Zc,s,p in the strata “screen-detected
and interval cancers with spread” versus “screen-detected and interval cancers
without spread”

P-values below 0.05 are highlighted in yellow. ‘N1’ is the number of case-control pairs in the stratum 
“Screening or interval with spread” in the time period t, while ‘N2’ is the number of case-control 
pairs in the stratum “Screening or interval without spread” in the time period t.

p-value

Curve 
group

Screen-detec-
ted cancers 
with spread

Screen-detec-
ted cancers 

without spread

Interval 
cancers 

with 
spread

Interval 
cancers 
without 
spread

Clinical 
cancers 

with 
spread

Clinical 
cancers 
without 
spread

Global 0.36 0.43 0.02 0.46 0.40 0.81

123 0.10 0.33 0.21 0.89 0.06 0.34

132 0.38 0.19 0.009 0.32 0.51 0.63

312 0.83 0.30 0.07 0.21 0.98 0.81

321 0.18 0.90 0.05 0.40 0.22 0.66

231 0.33 0.63 0.21 0.83 0.94 0.93

213 0.70 0.27 0.29 0.16 0.90 0.59

p-value

Genes selected based on stratum s1 = 
“Screen-detected and or interval 

cancers with spread”
Zc,s1,p

Genes selected based on stratum s2 = 
“Screen-detected and interval 

cancers without spread”
Zc,s2,p

Time period t 3 2 1 3 2 1

N1 69 20 12 69 20 12

N2 148 57 53 148 57 53

Curve group c

123 0.22 0.59 0.02 0.53 0.11 0.08

132 0.90 0.005 0.004 0.71 0.11 0.009

312 0.80 0.27 0.15 0.04 0.009 0.001

321 0.12 0.98 0.24 0.35 0.72 0.15

231 0.26 0.45 0.78 0.34 0.38 0.23

213 0.53 0.45 0.65 0.36 0.04 0.08
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Table 8.4. Observed number of genes in each curve group with expected number
of genes in parenthesis

Table 8.5. Observed number of genes and expected number in each curve group
in the strata “screen-detected and interval cancers with spread” versus “screen-
detected and interval cancers without spread”

Cases with a p-value below 0.05 is highlighted in yellow.

Hypothesis tests for comparing two strata
Based on the results from each stratum, we restricted our analysis to comparing gene
expression levels in the strata “screening or interval with spread” and “screening or
interval without spread” using the curve group variable Zc,s,p described in the meth-
ods section. P-values were obtained by testing whether the curve group variables Zc,s,p

Observed number of genes (expected number of genes)

Curve 
group

Screen-detected, 
interval, and clinical 

cancers 
with spread

Screen-detected, 
interval, and clinical 

cancers 
without spread

Screen-detected 
and interval 

cancers 
with spread

Screen-detected 
and interval 

cancers 
without spread

Global 305 (513) 609 (535) 1360 (482) 708 (547)

123 47 (76) 97 (82) 259 (70) 69 (86)

132 69 (100) 171 (103) 518 (99) 205 (107)

312 37 (102) 145 (105) 171 (105) 203 (108)

321 66 (82) 40 (82) 314 (77) 46 (82)

231 38 (77) 44 (81) 48 (66) 51 (82)

213 48 (76) 112 (82) 50 (65) 134 (83)

Observed number of gene (expected number of genes)

Curve 
group

Screen-detec-
ted cancers 
with spread

Screen-detec-
ted cancers 

without spread

Interval 
cancers 

with 
spread

Interval 
cancers 
without 
spread

Clinical 
cancers 

with 
spread

Clinical 
cancers 
without 
spread

Global 475 (464) 490 (547) 1233 (485) 471 (525) 448 (491) 302 (502)

123 139 (75) 78 (85) 101 (81) 33 (90) 233 (84) 83 (83)

132 81 (91) 141 (106) 515 (92) 96 (97) 52 (84) 54 (90)

312 43 (96) 107 (109) 237 (89) 123 (96) 18 (82) 40 (92)

321 115 (82) 29 (82) 213 (81) 71 (83) 101 (83) 45 (77)

231 63 (63) 46 (82) 92 (70) 31 (78) 21 (77) 27 (77)

213 34 (58) 89 (83) 75 (73) 117 (81) 23 (81) 53 (83)
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were different in the two strata; many were below 0.05 and some were smaller than
0.01 (Table 8.5). In Figure 8.3, we illustrated how to use the gene expression data to
separate these two strata by showing the curve group variable Zc,s,p for each case-con-
trol pair p in the different strata. The plot shows that the difference between the two
strata changes over time for the two most significant Zc,s,p variables. The differences
between the strata with spread and without spread were larger in the year before diag-
nosis compared to earlier years, but even these differences were comparatively small.

Figure 8.3. Distribution of case-control pairs for two curve groups stratified on 
spread in each time period. Plot of two of the most significant curve group varia-
bles, Z132,with spread,p and Z312,without spread,p, for the three time periods. These vari-
ables are the sum of gene expression differences Xg,p for genes selected from
curve group 132 (high values in middle period) based on data with spread and curve
group 312 (low values in middle period) based on data without spread. The data
with spread (without spread) are first used to select two sets of genes, one set for
each of the two curve-group variables. We may calculate both Z132,with spread,p and
Z312,without spread,p for all case-control pairs from all strata. Note that the difference
between the two strata varies between the periods. 
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In the methods section we introduced the statistic Lk, a weighted sum of t-statis-
tics, as an alternative to the curve group variables Zc,s,p for comparing the gene
expression levels of two strata. In Figure 8.4 we plot the p-value in a hypothesis test
with Lk as test statistic against the number of genes k. The plot shows that the gene
expression levels are different in the two strata. Lk is the sum of the k-largest
weighted sums of t-statistics. Note (in Figure 8.4) that when we add more and
more terms in the sum, the observation becomes more significant. When we used
50 genes, the p-value was about 0.05, and the p-value decreased to below 0.02
when we used the 1000 most significant genes. This indicates that the difference
between the strata is present in a large number of genes, but so weak that the
strongest result was only obtained when including a large number of genes. Also,
time period 1, i.e. 0-1 year before diagnosis, contributed the most to the low p-val-
ues, which is in accordance with the results shown in Figure 8.3 and Table 8.5.

Figure 8.4. The relationship of p-values to number of genes in the test statistic Lk. 
The p-value in a hypothesis test with test statistic Lk, a weighted sum of t-statistics,
plotted against the number of genes k used in the calculation of Lk. The two strata
that are compared in the t-statistics that are used for computing Lk are “Screening
or interval with spread” and “Screening or interval without spread”.
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DISCUSSION
This methodological analysis has shown that it is possible to significantly discrim-
inate the time trend of gene expression patterns observed before breast cancer
diagnosis. The findings are based on an original approach for the statistical analy-
sis of time-dependent curves of gene expression levels in the NOWAC postgenome
cohort. These methods could also be used for other aspects of functional genomics
such as methylation.

From a statistical point of view, since the publication of the seminal work by Cox
(1972), the Cox proportional hazard model and its extension have been largely
used by epidemiologists to analyze cohort studies with time-dependent covariates.
This model has also been adapted to case-control designs (Aalen, Borgan, & Gjess-
ing, 2008) and some extensions have been proposed for covariates measured with
noise (Hu, Tsiatis, & Davidian, 1998) and time-dependent coefficients (O’Quigley,
2008). More recently, the adjunction of numerous covariates such as gene expres-
sion data has added some challenging statistical issues (Benner, Zucknick,
Hielscher, Ittrich, & Mansmann, 2010). While the characteristics and the basic
assumptions of the Cox model have been adapted to the dimensionality and the
very specific paired design of the NOWAC postgenome cohort, the Cox model
cannot be fully adapted to the estimation of changes in gene expression curves or
to the biological interpretations of gene pathways.

The curve group approach can be viewed as an effective method for dimension
reduction in studies of functional genomics. The grouping of the curves is not
dependent on the individual testing of the curves for the more than 10 000
expressed genes; thus it mostly eliminates the false discovery rate of multiple test-
ing. The strength of the curve group approach can be seen in the statistical power
that was achieved even in strata with a low number of cases, such as the six cases
with spread in two strata. We stratified the data based on the detection category
and lymph node status. The Norwegian Breast Cancer Screening Program uses
mammographic screening and started in 1996, with coverage of the entire popula-
tion starting in 2005 (Hofvind et al., 2007). It has been estimated that the introduc-
tion of population-based breast cancer screening in Norway gave a mean sojourn
time for invasive cancer of 4.0 years in women aged 50–59 years and 6.6 years for
those 60–69 years (Weedon-Fekjaer, Lindquist, Vatten, Aalen, & Trettli, 2008).
Analyses of breast carcinogenesis as a time-dependent process should therefore
take into consideration that cases diagnosed within the screening program are
diagnosed at an earlier phase of carcinogenesis and thus are not directly compara-
ble to clinically detected cases. Lymph node status has been the most important
prognostic factor for breast cancer survival for 100 years (Todd, Shoag, & Cadman,
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1983; Cancer Registry of Norway, 1975). At time of diagnosis, we had a censored
distribution of tumors where detection category determined the time of diagnosis,
irrespective of the underlying carcinogenic process.

The prospective analyses of gene expression levels in the years preceding breast
cancer diagnosis as assessed by the log-fold change between cases and controls
showed significant differences in the curve groups after stratification by lymph
node status and detection category. The analyses showed the ability to discriminate
between different stages of the carcinogenic process. A previous analysis of a case-
control study within NOWAC showed that differences in gene expression mainly
reflect immune responses, but also genes related to cell control (Dumeaux et al.,
2015). The analyses of trajectories could aid in understanding the time-dependent
interaction between the immune response and carcinogenesis. Our findings
should be further interpreted in relation to the biology of both single genes and
gene pathways.

An agnostic search for time trends depends on a sensitive statistical approach.
We have presented two novel statistical methods that demonstrated that the gene
expression levels varied over time in the last years prior to breast cancer diagnosis,
and that the development over time differed by lymph node status among women
who attended the National Breast Cancer Screening Program in Norway (i.e.,
those with screen-detected or interval cancers). One of the methods focused on
identifying genes with specific changes over time within a given lymph node sta-
tus. The other method focused on differences in gene expression levels between
lymph node statuses in the different time periods. Both methods focused on dif-
ferent aspects of functional time dependency of gene expression levels relative to
time of breast cancer diagnosis, and both methods gave significant results when
many genes were used. As gene expression data are very noisy, our methods used
information from several genes simultaneously to increase the power of the
hypothesis tests.

A potential weakness of the curve group approach is the increasing number of
curve groups as observation time periods increases. When there are four time
periods, 24 curve groups will be needed, and even more will be needed for five
time periods.

Studies of gene expression levels in peripheral blood are challenging and have
many difficulties and pitfalls. Most biobanks suffer from ubiquitous degradation
by RNase, which reduces the quality of mRNA for whole genome analyses. Only
samples that contain a specific buffer or are directly frozen in liquid nitrogen can
be used for whole genome analyses. The signals related to carcinogenesis in the
blood are expected to be much weaker than those in tumor tissue and can be con-
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founded by signals from exposures to carcinogens or other lifestyle factors. The
problem of noise due to the complicated study of carcinogenesis, the need for an
adequate epidemiological design including exposure information and blood sam-
pling, complicated technology, and the development of robust statistics, could
make the approach unsuccessful. The prospective design of our study made it dif-
ficult to increase the statistical power, so our results should be interpreted with
care.

To the best of our knowledge, the NOWAC postgenome cohort is the largest
population-based prospective cancer study designed for transcriptomics due to
the presence of buffered RNA. All parts of the analyses were done within the
framework of the NOWAC study. In the NOWAC postgenome cohort, a single lab-
oratory processed all samples using the same technology, thus reducing analytical
bias and batch effects. The cohort design reduced selection bias. A weakness of a
prospective study could be possible changes in case-control status as controls
became cases over time, thus reducing the differences in gene expression levels
within a case-control pair. We removed all case-control pairs in which controls
were diagnosed with breast cancer or any other cancer within 2 years of blood
sampling. The matching was done only for storage time and year of birth. Match-
ing on other variables will eliminate the inclusion of these lifestyle factors in the
analyses. If matched on e.g. smoking, we could not estimate the effect of smoking
or any interactions with other risk factors. Unfortunately, there was no repeated
sampling of blood, and no additional questionnaires were completed. Repeated
measurements would secure better analyses, making it possible to use intra-indi-
vidual comparisons over time.

CONCLUSIONS
The proposed statistical methods are sensitive for finding curve groups of genes,
even for strata with few case-control pairs. This made it possible to describe and
test non-linear relationships. Our findings could be viewed as a proof of concept
of systems epidemiology, indicating the potential to include gene expression for
functional analysis in prospective studies of cancer.
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Abstract  Using the time-dependent dynamics of gene expression from immune
cells in blood, we aimed to explore single gene expression trajectories as biomark-
ers for death after a diagnosis of breast cancer introducing a new statistical method
denoted Difference in Time Development Statistics (DTDS). This shows as proof of
principle that the gene expression profiles from immune cells in blood differed in the
postdiagnostic period are dependent on later vital status.

Keywords  gene expression | breast cancer | systems epidemiology | death | 
statistical method

The gene expression analyses of 394 breast cancer cases and age-matched controls
were obtained from the Norwegian Women and Cancer (NOWAC) postgenome
biobank (N = 50 000) performed in blood taken 0–8 years after a breast cancer
diagnosis. The tube contained a protective buffer that preserved the mRNA in the
blood. Cancer diagnosis and cause of death were based on linkage with the Nor-
wegian Cancer Registry. The new statistical method was designed to test the dif-
ference in the time development between two strata using a non-parametric rep-
resentation of the time development of the gene expression and used the area
between the curves, i.e. the integral between the cures, as test statistics.

The time-dependent curves or trajectories exerted clearly non-linear changes
with rapid transient mostly increasing fold changes, in cases who later died. Survi-
vors had no changes. For cases who died this transient increase was followed by a
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.
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regression towards the gene expression profiles of survivors. For 86 genes, the inte-
grated area from 18 months to 8 years post diagnosis was highly significant
(p<0.00001) among women who died. There were indications of stronger relation-
ship in metastatic cases alone.

INTRODUCTION
In 2017, the number of cancer deaths in Norway exceeded that of cardiovascular
deaths for the first time (Norwegian Institute of Public Health, Norway, 2018).
While the number of cancer deaths has remained fairly stable over recent years, the
number of cardiovascular deaths has decreased rapidly. This points to the urgent
need for further improvements in cancer treatment for an ageing population. For
women in Norway, breast cancer is the most common invasive cancer, constituting
23% of all cancers diagnosed among women in 2017 (Cancer Registry of Norway,
2018). Although significantly improved, the majority of breast cancer deaths are
due to metastasis, not the tumor. One hundred years ago the survival for women
with metastatic cancer was only 5% after five years, while today the ten-year sur-
vival rate of metastatic breast cancer is 85% (Reddy et al., 2018). In order to further
improve cancer diagnosis, personalized treatment is moving forward (Jeibouei et
al., 2019). Individualized treatment should be based on predictors for individual
outcome. The potential of immune response has become evident through the
recent use of immune therapy (Stroncek et al., 2017). Biomarkers in blood or liquid
biopsies could be functional genomics i.e. transcriptomics or methylation, or
metabolites or proteins.

We proposed the compilation of time trajectories of gene expression in blood
from many independent case-control pairs as a potential liquid biopsy in order to
study the impact of the immune system on carcinogenesis (Lund et al., 2016). A
gene’s trajectory corresponds to a curve that represents the changes in gene expres-
sion as a function of time, consisting of differences of gene expression between
many case-control pairs. Healthy controls establish the level of expression for
genes not involved in carcinogenesis, and is assumed to be constant over time.
Genes related to the immune system and/or carcinogenesis (expressed in cases)
may change over time. Lack of a priori knowledge of the shape of the trajectories
demands an agnostic approach (Spitz & Bondy, 2010) including adjustment for
multiple testing (Reiner, Yekutieli, & Benjamini, 2003). Gene expression is ana-
lyzed as a potential biomarker of carcinogenesis/metastasis, and the statistical
quantity of interest is the distribution of the gene expression as a function of time
after diagnosis.
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In a recent study of gene expression profiles in the years after diagnosis stratified
on clinical stages significant differences in the overall gene expression profiles
were found (Lund submitted PLOS).

The aim of this study is to explore single gene expression trajectories from
immune cells in blood over the first years after diagnosis as predictors of later vital
status, dead or alive. In order to use the cumulated evidence over time for clinical
follow-up a new statistical method, denoted Difference in Time Development Sta-
tistics, was developed; see below.

METHODS
This new statistical method, denoted Difference in Time Development Statistics
(DTDS), is designed to test differences in time development in a non-parametric
manner of two variables or the same variable for two different strata. In this paper,
the method is used in order to identify genes where the gene expressions in blood
samples have a different time development after diagnosis of breast cancer. The
dataset consists of case-control pairs in which the case is diagnosed with the dis-
ease and the control is healthy. The data is the difference in log2 gene expression
in blood samples between the case and the control. The gene expression profiles
that are measured represent an aggregate of the transcriptional activity of all the
blood cells at the time of blood collection. The DTDS method will be used on the
postdiagnostic or clinical follow-up in the NOWAC postgenome cohort, where
each blood sample, regardless of disease status, was collected at a random follow-
up time. We will first describe the epidemiological design necessary for studies of
the postdiagnostic trajectories, and then describe the statistical concepts.

MATERIAL
The overall NOWAC postgenome biobank
Recruitment for the prospective Norwegian Women and Cancer (NOWAC) study
started in 1991 (Lund et al., 2008). Women were randomly sampled from the Nor-
wegian population register in Statistics Norway. The women were mailed a letter
of invitation and a questionnaire. Follow-up was based on linkage to the Cancer
Registry of Norway and the register of deaths were based on the unique national
birth number given to all Norwegian inhabitants. Repeat questionnaires were
mailed with intervals of some years. In the years 2002–2006, women were invited
to participate in a subcohort, the NOWAC Postgenome cohort study; for further
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details see Dumeaux et al., 2008. The main purpose was to establish a biobank
suitable for analyses of functional genomics, in particular transcriptomics. Ran-
dom samples of NOWAC women were drawn in weekly batches of 500 women
until 50 000 women had responded positively. Women were invited to fill in
another questionnaire and donate a blood sample at a health-care institution such
as a GP’s office. The blood samples were sent overnight to the institute by special
post for biological samples. The tube contained a protective buffer that preserved
the mRNA in the blood (PAX gene blood RNA system), allowing frozen storage
over time and optimizing sensitivity of the analysis.

The present analysis used a subsample of the NOWAC postgenome biobank par-
ticipants. Women who had both filled in a questionnaire in 1996–1998 and had
given a Postgenome blood sample were eligible, a total of 31 101 women. Since col-
lection of blood was at random without knowledge of disease status, the procedure
gave a uniform distribution of gene expression measurement over time.

In 2010, breast cancer cases diagnosed between 1996 and 2006 were identified
through a linkage to the national cancer registry. An age-matched control was
drawn at random from the same batch of 500 women. A total of 394 incident breast
cancer cases were identified. Those rendered non-eligible were six technical outli-
ers, seven cases with unknown metastases, seven cases with another incidence of
breast cancer before blood collection, ten controls diagnosed with cancer before
blood donation, and one who emigrated, leaving 363 case-control pairs for the
present analyses.

A linkage to the register of vital status in Norway gave a complete follow-up after
blood donation until the end of the study on 31.12.2014, or death or emigration.
Causes of death according to different strata of metastatic/invasive cancer at time
of diagnoses are given below.

In order to update changes in clinical stage or a second breast cancer and to
remove controls with an incidence of cancer, another linkage was performed in
2018 with the Cancer Registry of Norway. For six women with metastases and ten
cases with another incidence of breast cancer, the updated information was used
to change the start of follow-up.

Of the 363 case-control pairs, 85 were omitted since the follow-up time for the
cases that are observed before 18 months from diagnosis are heavily influenced by
the treatment. We therefore first analyze a dataset of 39 cases who died from can-
cers and compare them with 239 cases who did not die of cancer, i.e. a total dataset
of 278 case-controls. Later, we reduce this to a dataset consisting of 23 cases with
metastatic breast cancer who died of breast cancer and 79 cases with metastatic
breast cancer who did not die of cancer; see Table 9.1.
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Table 9.1. Further classification of the data and specification of the two analyzed
datasets with 278 and 102 case-control pairs

STATISTICAL METHODS
The dataset consists of two strata of women with breast cancer in which the cases
died or did not die of cancer and the observation time is the time after the last diag-
nosis. For each gene and stratum, we estimate the differences between cases and
controls in gene expression as a smooth function using a moving window in time.
We then estimate the differences in the time development between the two strata
by calculating the area between the two estimated curves for the smoothed gene
expression for the two strata. If there is a systematic difference in the level or the
time development of the gene expression between the two strata, this area is large.
We will test three hypotheses. The first hypothesis, H0A, concerns individual gene
trajectories, while H0B looks at all genes together. We also predict the vital stage,
dead or alive, of each case using cross-validation. H0C states that this prediction is
independent of vital stage.

H0A: Identify genes with different time development
We first focus on identifying genes with a different time development. Let Xc,g be
the difference in log2 gene expression for case-control pair c = 1,2, ... , M for gene
g = 1,2, ... Ng. Further, let tc be the time of observation relative to diagnosis for the
case in the case-control pair c. We assume Xc,g~N(fs(c),g(tc), σg) where σg is the
standard deviation and s(c) is the stratum of case c. We estimate the function fs,g(t)

Strata Died of 
breast 
cancer

Died from 
non-breast 

cancer

Sum died 
of cancer

Survived Died, not 
cancer

Sum, not 
died of 
cancer

Sum

Metastatic 32 4 36 97 3 100 136

Invasive 11 5 16 205 6 211 227

Sum 43 9 52 302 9 311 363

Dataset one where data before 18 months are excluded 

Metastatic 27 82 109

Invasive 12 157 169

Sum 39 239 278

Dataset two where data before 18 months are excluded

Metastatic 23 79 102
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by taking an average of the observations Xc,g from stratum s(c) in an interval that
includes the n nearest observations in time, i.e. the n/2 observations with largest tc
but tc < t and the n/2 observations with smallest tc but tc > t. The number n is a
tradeoff between precision and resolution. It should be large enough that the esti-
mate in an interval should not depend on a single data point and at least smaller
then M/4 in order to get resolution in time. If there is a large difference in the time
development between the two strata, the test statistic or area Vg = |fa,g –
fb,g| = ∫|fa,g(t) – fb,g(t)|dt describing the area between the curves, will be large

where the two strata are denoted a and b, respectively. This estimate is the sum of
the absolute value of the differences in average gene expression between the two
strata in equally spaced time points assuming the controls have similar values. The
integral is evaluated in a time interval where there are observations from both
strata.

We make Ng, independent hypotheses, i.e. one hypothesis for each gene:
H0A: For gene g, the time development of Xc,g is independent of the stratum s(c),

i.e. fa,g = fb,g.
For each gene g, we compare the observed Vg,o with the variable V from a simulated

distribution where we use a standardization of the same variables Xc,g for all the genes
simultaneously, but where we randomize the strata s(c) of the cases. We maintain the
observations for each gene and the number of observations from each stratum. From
the Nu simulations, we estimate the probability distribution g(v) = P(V > v) that is
independent of the genes. Based on this, we find a p-value pg = p(V > Vg,o) = (k + 1)/
(NuNg + 1) for each gene g if k of the NuNg simulations have V > Vg,o. We correct for
multiple testing using the (Benjamini & Hochberg, 1995).

We estimated the functions fs,g with a moving average, where the window size is
one-quarter of the respective datasets, i.e. 9 and 59 points, respectively. These
functions were evaluated in regularly spaced points, making it easy to evaluate the
functions when the observations for each stratum changes position in time. The
integral was evaluated in the largest interval such that there were data points from
the two strata before and after the interval making the interval equal to (547, 2255)
days after diagnosis. The method was applied on a dataset with Ng = 8400 genes.
The analysis is performed for standardized gene expressions for each gene

where the standard deviation σg is taken over the case-controls pairs for each gene.
This normalization is necessary in order to compare area between the curves since
we want to focus on the differences in time development and not in the mean value
and the variance. The results were based on simulations with Nu = 1000 realizations.

Y X
M

Xc g c g c c g g, , ,( ) /  1
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H0B: Identify difference in gene development for all genes 
simultaneously
We will also make a weaker hypothesis where we analyze all the genes simultane-
ously:

H0B: For all genes, the time development of Xc,g is independent of the stratum
s(c), i.e. for all genes fa,g = fb,g.

Note that we only make one hypothesis here. We perform the same Nu simula-
tions as in the hypothesis test for H0A, but we use the test statistics
V(1),o > V(2),o > ··· which is the Vg,o variables for all the genes that are sorted in
decreasing order. From the simulation, we find the probability for the ordered var-
iables gm(v) = P(V(m) > v) for m = 1,2, ..., and the p-value for the hypothesis test
p(m) = P(V(m) > V(m),o = (k + 1)/(Nu + 1) if k of the Nu simulations have
V(m) > V(m),o. Here, we have many highly correlated test statistics V(m),o for
m = 1,2, ..., for testing the same hypothesis H0B. The integer m is chosen by the
user. m = 1 means that we are only interested in the most extreme gene and m = 10
means that we are interested in the 10 most extreme genes. This method is most
interesting for 3 < m < 50, i.e. where no single gene is significant, but several/many
genes have deviating values and where we avoid the multiple testing problem. Ide-
ally, m should be decided before the data is analyzed, but this is not as critical as
when alternative test statistics are independent of each other.

H0C: Prediction of strata
It is also possible to use the same technique in order to predict the stratum of a
case. The idea is to find out if the observations Xc,g for g = 1,2, ..., Ng is closest to
fa,g(tc) or fb,g(tc) for the genes with lowest p-values in the hypothesis test H0A
above. Our ambition is only to find the quality of the prediction, not to make a
diagnosis for each case. Hence, we make the following hypothesis:

H0C: The prediction Pa,c, that the case c belongs to stratum a, is independent of
the stratum s(c).

We test the hypothesis using cross-validation. The case-control pairs are divided
into the D1, D2, ... DNd groups, which are described in more detail further down.
For each of the pairs c ϵ Dk we find

where fa,g,k(tc) is the estimated gene expression for gene g and stratum a at time tc,
i.e. the time of observation Xc,g based on all the data except the data in Dk. This is

A w X f tc a g s c a

N

g c g a g k c
g

, , , , ,( )   
   1

2
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based on the assumption that Xc,g~N(fs(c),g,k(tc), σg). The weight wg may be set
equal to , possibly modified based on the correlation between the gene
expressions for different genes and how significant this gene is for the prediction.
How important gene g is for the prediction is estimated from pg,k, the p-value for
hypothesis test HOA estimated from all the data except Dk. The prediction that the
observation Xc,g is from stratum a is then

This model gives probabilities that are approximately uniform in (0,1), see Figure
9.1. If we had assumed Xc,g~N(fs(c),g,k(tc), σg) independently for each gene g, then
most Pc,a would be close to 0 or 1, which does not correspond to our ignorance in
the classification. We use the test statistics

which is the L1 distance between the prediction for stratum a and the indicator for
stratum a. We may randomize Pc,a between the observations and find a distribu-
tion for S. The p-value for the hypothesis test H0C is found from the distribution
for S, i.e. p = P(S < So). 

We used cross-validation and therefore needed to divide the dataset into sepa-
rate groups. The 39 case-control pairs where the case died of cancer and 239 case-
control pairs where the case did not die of cancer were divided into 13 groups, D1,
D2, ... D13. The data in each stratum was divided into three time periods for each
of the two strata with an (almost) equal number of observations. Each of the 13
groups had (almost) the same number of observations from each stratum in each
of the three time periods. For each group k we find the values pg,k from the hypoth-
esis test H0A based on all the data except the data in Dk based on 1000 randomi-
zations of the strata s(c).

1 2/ g
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Figure 9.1. Log2 gene expression from the 12 case-control curves with the smallest
p-value of the 8400 genes. The 12 p-values less than 0.00001. The figure uses nor-
malized data as is used in the test statistics. The black continuous and the red
dashed curves are the log2 gene expression from the case-controls who survived
and died, respectively.

RESULTS
The data used in all the analyses are the differences in log2 gene expression
between cases and controls in the period after diagnosis that are shown in Table
9.1, i.e. 278 case-control pairs.

Testing H0A
Results from testing the H0A hypothesis are shown in Table 9.2. The function of
the top 10 is shown in Chapter 10.

1000 1500 2000 2500

5
0

5
0

5
0

CCM2, p=0.0000002

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

CBX3, p=0.000001

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

LOC389293, p=0.000002

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

C14orf45, p=0.000001

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

LOC650898, p=0.000001

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 15

5
0

5
0

5
0

ARL4A,

Time af

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 15

5
0

5
0

5
0

Time af

1000 1500 2000 2500

5
0

5
0

5
0

LOC646783, p=0.000002

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

FSTL4, p=0.000002

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 150

5
0

5
0

5
0

C5orf30,

Time aft

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 150

5
0

5
0

5
0

Time aft

1000 1500 2000 2500

5
0

5
0

5
0

BPGM, p=0.000002

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 1500 2000 2500

5
0

5
0

5
0

RBM4, p=0.000002

Time after diagnosis

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 1500 2000 2500

5
0

5
0

5
0

Time after diagnosis

1000 150

5
0

5
0

5
0

AHSP, p

Time aft

Lo
g 

ge
ne

 e
xp

re
ss

io
n

1000 150

5
0

5
0

5
0

Time aft



Lund, Holden, Thalabard, Busund, Snapkov and Holden | Advancing Systems Epidemiology in Cancer150
Table 9.2. The 50 genes with smallest p-value from the 39+239 dataset with meta-
static and invasive cancer. The columns show the name, p-value, q-value and area
between the smooth curves between the cases who survived and died.

Gene p-value q-value ∫|fa,g(t) – fb,g(t)|dt

CCM2 2.38e-07 0.0016 1997

C14orf45 7.14e-07 0.0016 1883

LOC650898 1.07e-06 0.0016 1869

ARL4A 1.07e-06 0.0016 1867

CBX3 1.36e-06 0.0016 1842

LOC646783 1.90e-06 0.0016 1823

FSTL4 1.90e-06 0.0016 1820

C5orf30 1.90e-06 0.0016 1816

LOC389293 1.90e-06 0.0016 1812

BPGM 2.07e-06 0.0016 1798

RBM4 2.17e-06 0.0016 1789

AHSP 2.28e-06 0.0016 1788

CA1 3.21e-06 0.0020 1775

RP11-529I10.4 3.33e-06 0.0020 1766

ISCA1L 3.69e-06 0.0021 1757

NCBP1 4.42e-06 0.0023 1739

DARC 8.09e-06 0.0040 1697

HPS1 9.43e-06 0.0043 1686

TSTA3 9.65e-06 0.0043 1686

PDSS1 1.16e-05 0.0046 1668

STOM 1.19e-05 0.0046 1667

DHX29 1.21e-05 0.0046 1666

RBBP4 1.41e-05 0.0051 1658

RNF11 1.51e-05 0.0051 1653

FZD1 1.51e-05 0.0051 1652

RIPK4 1.75e-05 0.0053 1643

RBM28 1.81e-05 0.0053 1639

XK 1.88e-05 0.0053 1636

KIAA0174 1.92e-05 0.0053 1633

LOC646508 1.92e-05 0.0053 1633
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The q-values are the FDR-corrected p-values. From 8400 genes, 733 genes had q-
values below the given threshold for hypothesis test H0A (97 with q<0.01 and
636 with q<0.05). The result shows that many genes have a different time devel-
opment between the two strata. The reduced dataset with only metastatic breast
cancer is too small to get significant results on this test. Figure 9.2 shows the
functions fdied,g(t) and fsurvived,g(t) separately for each of the 12 most significant
genes of the 8400 genes (p<0.000001). The test statistics is the area between the
pair of curves.

GYPB 1.94e-05 0.0053 1632

MGC13057 2.06e-05 0.0053 1627

LOC649604 2.06e-05 0.0053 1627

BNIP3L 2.28e-05 0.0055 1618

TRIM10 2.29e-05 0.0055 1616

SLC14A1 2.36e-05 0.0055 1615

C14orf124 2.41e-05 0.0055 1615

EWSR1 2.88e-05 0.0062 1603

TRAK2 2.89e-05 0.0062 1603

SELK 3.34e-05 0.0070 1592

HMBS 3.39e-05 0.0070 1590

NUDT1 3.67e-05 0.0071 1585

SRRD 3.79e-05 0.0071 1583

WDR89 3.81e-05 0.0071 1583

NR1D1 3.85e-05 0.0071 1581

SLITRK1 3.91e-05 0.0071 1579

HEMGN 3.96e-05 0.0071 1577

DNAJB1 4.24e-05 0.0074 1570

LOC649044 4.31e-05 0.0074 1569

PPIA 4.66e-05 0.0075 1563

Gene p-value q-value ∫|fa,g(t) – fb,g(t)|dt
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Figure 9.2. Log2 gene expression from the case-controls curves for the 12 genes
with smallest p-value of the 8400 genes. The black continuous and the red dashed
curves are the log2 gene expression from the case-controls who survived and died,
respectively.

As shown for most genes, the gene expression increases. Noticeably, fsurvived,g(t) is
almost constant and close to 0 in the entire period while fdied,g(t) is closer to 1 or
–1 in the period (1000,1500) days and then for many genes closer to 0 after 1500
days. The normalization (1) implies that the data for each gene have average value
0 and standard deviation 1 in order to compare data between genes. Since the stra-
tum that survived is much larger, it is natural that the average of these curves is
smoother and close to 0. The statistical test shows that deviation in averages value
between the strata is significant for many genes. The p-value depends on whether
there is a systematic difference in level or time variation of the gene expression, not
the size of the difference in average value between the strata since this is removed
in the standardization.
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H0B: identify difference in gene development for all genes 
simultaneously
We also want to test all the genes simultaneously. Since we only make one test, it is
easier to reject the hypothesis for a smaller dataset. First, we test hypothesis H0B
on the dataset with 39 and 239 case-control pairs. There is only one hypothesis, but
we have many different test statistics, one for each of m ordered V(m) test statistics
for the area between the two curves. The different test statistics indicate whether
there is a strong difference in the time development in one or a few genes com-
pared to a smaller difference in many genes. The test for each of the ordered vari-
ables is highly correlated. Table 9.3 shows the p-values from the H0B.

Table 9.3. The p-values from hypothesis test H0B for each of the ordered variables.
The upper row is from the 39+239 dataset with metastatic and invasive cancer and
the lower line is from the 23+79 dataset with metastatic cancer. “<0.001” means that
we have not observed any simulated values above the observed value from the
data. The lower row shows the p-values from hypothesis test H0B for the reduced
dataset on metastatic breast cancer.

Notice that we get very significant results and that many genes have a different
time development between the two strata.

This test is also performed on the reduced dataset with only metastatic breast
cancers. There are only 23 and 79 case-control pairs in the two strata (Table 9.1),
those with metastases who died of breast cancer and those who did not die of can-
cer, respectively. We still get significant p-values, but much larger values than in
the larger data set with both metastatic and invasive cancer; see Table 9.4. The dif-
ferently ordered variables are highly correlated and give typically p-values between
3–6%.

H0C: Prediction of strata
We also want to test whether it is possible to predict the stratum of each case by
testing hypothesis H0C. The 13 different datasets leaving out one of the groups Dk
give a slightly different rankings of the importance of the different genes. The
mean correlation between the rankings of the genes for these 13 datasets is 0.85.

Ordered 
variables

1 5 10 25 50 100 500 1000

39+239 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002

23+79 0.003 0.061 0.043 0.036 0.037 0.034 0.045 0.052
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Table 9.4 shows that there is a large overlap in the most important genes in the 14
different datasets when we include the ranking using all the data. On average, four
of the five genes with the lowest p-value when using the entire dataset were among
the 10 smallest p-values in the reduced datasets. We have marked the five genes
with the smallest p-values when using all the genes with colors. Notice that many
of the same genes have small p-values for the different subsets.

Table 9.4. Ranking of the 10 most important genes when we leave out Dk from the
dataset. The lowest line is the most important genes when we use all the data.

We have tested different predictions methods, i.e. different choices of the weights
wg,k. The different choices give highly correlated probabilities. We have found out
that wg,k = 1/pg,k for the 50 genes g with smallest pg,k value for each group is a quite
robust choice. Figure 9.3 shows the predicted probabilities for each of the 278 case-
control pairs after time of follow-up. Ideally, we wanted all the 39 red and yellow
circles to be equal to 1 and the remaining circles equal to 0.

Dk Ranking of the most important genes for each of datasets 

1 CCM2, C14orf45, LOC650898, BPGM, FSTL4, AHSP, CA1, C5orf30, LOC389293, ISCA1L 

2 CCM2, LOC650898, C5orf30, C14orf45, BPGM, RBM4, LOC389293, RP11-529I10.4, ARL4A, 
CA1 

3 CCM2, LOC646783, C5orf30, CBX3, FSTL4, RBBP4, LOC650898, RBM4, AHSP, PPIA

4 FSTL4, ARL4A, CBX3, LOC650898, C14orf45, LOC389293, DARC, CCM2, LOC646783, ISCA1L 

5 CCM2, LOC650898, C14orf45, CBX3, ARL4A, C5orf30, BPGM, AHSP, RBM4 

6 CCM2, C5orf30, C14orf45, ARL4A, CBX3, BPGM, FSTL4, LOC650898, RBM4, AHSP 

7 LOC646783, ARL4A, NCBP1, CBX3, CCM2, C5orf30, LOC650898, LOC649604, C14orf45, 
LOC389293

8 CCM2, CBX3, C14orf45, BPGM, ARL4A, NCBP1, RP11-529I10.4, LOC646783, LOC389293, CA1 

9 CCM2, FSTL4, TSTA3, ARL4A, C14orf45, KIAA0174, AHSP, LOC389293, RP11-529I10.4, 
ISCA1L 

10 C14orf45, LOC389293, LOC646783, ARL4A, LOC650898, FSTL4, ISCA1L, RP11-529I10.4, CBX3, 
FZD1 

11 CCM2, C14orf45, RBM4, C5orf30, LOC389293, ISCA1L, LOC650898, LOC646783, PDSS1, CA1 

12 CCM2, ARL4A, CBX3, LOC650898, NCBP1, C14orf45, RP11-529I10.4, LOC389293, LOC646783, 
CA1 

13 CCM2, C5orf30, FSTL4, LOC650898, DMD, CBX3, RBM4, ARL4A, CXCR4, LOC646783

all CCM2, C14orf45, ARL4A, LOC650898, CBX3, C5orf30, FSTL4, LOC389293, LOC646783, BPGM 
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Figure 9.3. The prediction of dying from cancer for the cases who died of breast
cancer, died of other types of cancers and died, but not from cancer, and cases who
survived for each of the 278 case-control pairs. The figure to the left shows predic-
tions for cases with invasive cancer, while the figure to the right shows prediction
for cases with metastatic cancer.

Based on these variables, we find Pc,a, So and the p-value p = P(S < So) based on the
10 000 randomization of Pc,a We find the p-value less than 0.004 indicating that
the prediction is far from random. Table 9.5 gives another presentation of the pre-
diction based on whether Pc,a > 0.3 or not.

Table 9.5. Prediction for each of the 278 cases based on a threshold equal 0.3

Increasing the thresholds from 0.3 will decrease both the number of true positive
and the number of false positive. The threshold 0.3 is chosen as a balance between
false positive and false negative. This gives a sensitivity equal 0.56 and specificity
equal 0.69. The mean prediction value for the 39 cases who died is 0.32 and the
mean prediction value for the 239 cases who survived is 0.23. The predictions are
also shown in the boxplot in Figure 9.4.

Sum Pa,c > 0.3 Pa,c < 0.3

Cases who died of cancer 39 22 17

Cases who did not die of cancer 239 75 164
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Figure 9.4. Boxplot of prediction of death from cross-validation of cases after 18
months from diagnosis. Horizontal lines describe 0.25, 0.5 and 0.75 quantiles. The
number of cases and mean in the four categories are metastatic cancer where case
died, no: 27, mean 0.33, invasive cancer where case died, no: 12, mean 0.29, meta-
static cancer where case survives, no: 82, mean: 0.29, invasive cancer where case
survives no: 157, mean: 0.22.

Notice that the invasive cases who died and the metastatic cases who survived have
a relatively similar prediction which is between the prediction of the metastatic
cases who died and the invasive cases who survived.

DISCUSSION
We have shown that the trajectories of gene expression after diagnosis of breast
cancer were mostly significantly upregulated for hundreds of genes in the years
after a diagnosis of metastatic breast cancer compared to invasive cancer, as shown
in Figure 9.4. These signals may be considered as signals of an upcoming death due
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to cancer. Fewer genes were downregulated. After some years, most upregulated
genes levelled off while downregulated genes slowly returned to the normal
expression level. Among women with invasive breast cancer, no significant trajec-
tories were found. These results were based on a new statistical approach using the
differences in the area between the trajectories of gene expression between dis-
eased and healthy women.

For practical and economic reasons, only one single measurement at time of
inclusion was available for each individual in the NOWAC postgenome cohort.
Hence, the processual approach relies on the assumption that the gene expression
in distinct individuals at different times before or after diagnosis is a consequence
of the same carcinogenic process (Lund & Plancade, 2012). Semi-parametric mod-
els with time-varying covariates, e.g. the Cox model (Cox, 1972), cannot be esti-
mated from a prospective design including only one unique measurement at time
of inclusion, unless covariates are assumed to be constant over time. Consequently,
this assumption would not allow us to address changes in gene expression over
time.

The DTDS is a further development of the LITS method (Holden, Holden,
Olsen, & Lund, 2017), where we used a moving window and summary statistics for
all genes for each of the stratum and time period. The genes that were significant
in each time interval varied between the intervals, making the LITS method not
suitable for identifying genes with different time development. In contrast, the
DTDS method is able to identify genes with different time development. Both
methods use the same method for simulation and randomization of gene expres-
sions between the case-control pairs with cases from the different strata.

The distribution of measurements of gene expression must follow a constant
function, i.e. with measurements spaced over the time interval. Most cohort stud-
ies have repeated measurements, but usually they are collected for all participants
with several years of spacing and can be used as repeated measurements only.

We cannot predict the outcome for single individuals, only on a group level. The
results can be looked upon as a proof of concept for the idea that gene expression
measured repeatedly over time after diagnosis can be used as a predictive test for
the vital outcome.

Little is known about the changes in gene expression in the blood in the period
after a breast cancer diagnosis, i.e. the time period after the primary treatment
(Lund & Plancade, 2012). In the stratified analysis, both invasive and metastatic
cases were compared to healthy women without known cancers. The consistent
and highly significant differences between the two strata adds information that
can be used toward a new hypothesis of metastatic breast cancer and its high
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lethality. For hundreds of genes, the integrated area between the two curves for
each stratum accumulates during follow-up, indicating ongoing dysregulation of
important genes. These strong changes in gene expression from the immune cells
can be viewed as signals of upcoming death. The intention here was to explore the
unknown trajectories of gene expression after diagnosis of breast cancer. The
interpretation of each gene was outside the scope of our exploration. Still, some
hypotheses can be put forward.

Human model of carcinogenesis—interpretation of highly 
expressed genes
No unifying theory exists for human carcinogenesis; the number of proposals is
many (Vineis, Schatzkin, & Potter, 2010). To date, most mechanistic or pathways
analyses have been experimental in-vitro or animal studies. With the increasing
knowledge about human carcinogenesis in tumor tissues or in blood at time of
diagnosis, some disturbing facts about the validity of the animal models for human
carcinogenesis have been brought up. First, the biology of mice and men is com-
paratively different (Mak, Evaniew, & Ghert, 2014; Anisimov, Ukraintseva, & Yas-
hin, 2005), and a controversial Nature editorial (“Of men, not mice”, 2013) advo-
cated the need for human functional studies. Similarly, the translational value of
mouse models in oncology drug development was recently questioned (Gould,
Junittila, & de Sauvage, 2015). While cancer can be manufactured in mice quite
easily, these models do not necessarily apply to humans (Mak et al., 2014). Conse-
quently, an increasing number of studies use functional genomics as biomarkers,
looking both at the exposure relationship and the outcome. While interesting, this
approach lacks the distinct focus on the time-dependent process of carcinogenesis.
Few, if any, prospective studies have been designed for longitudinal analyses of
functional genomics related to the processes of carcinogenesis and metastasis.

Table 9.6. Annotated functions of the most significant genes from Table 9.2

CCM2 Regulate angiogenesis and formation of new blood vessels

C14orf45 Gene responsible for cilia orientation. One paper shows as low-expressed gene associated 
with poor survival in BC (higher number of cylia is necessary for improved migration of 
breast cancer cells)

ARL4A Increase cell migration

CBX3 Shown to be overexpressed in BC and associated with low survival, might block 
differentiation and promote self-renewal of cancer stem cells
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The interpretation of these genes points towards important changes in genes
known to be affected at breast cancer, and in addition some more general ones.

During the different laboratory steps, several decisions had to be taken on level
of noise and the use of specific distribution of noise. Further, since a gene maybe
not expressed in all individuals, the percentage of cases or controls with sufficient
signals had to be decided. The stronger the criteria moving towards hundred per-
cent, the harder the exclusion.

The strength of the study is the unique biobank created with the purpose of gene
expression analysis in peripheral blood. This gave a unique opportunity to study
the immune response since the mRNA in blood came from immune cells. This
opened for the view that the carcinogenic process not only included exposures to
carcinogens, but also has an important counterforce in the immune system. This
has been known for more than a hundred years, and today documented through
the new immune therapies.

The design has been population-based with a complete follow-up on cancer
incidence, emigration and death based on linkage to national registers using the
unique national birth number given to all residents in Norway from 1960. In addi-
tion, we had access to updated information on metastases and second breast can-
cers in the time between inclusion and blood donation. This somewhat reduced
the noise from carcinogenic processes hidden at the time of diagnosis.

CONCLUSION
In this systems epidemiology approach, we have given a proof of concept for the
use of gene expression as an individualized biomarker of prognosis related to death
or not. The design of NOWAC is population-based and the results should be vali-
dated in a more specific clinical setting. With improved technology and individual
repeated measurements gene expression followed over time could offer a unique
opportunity for personalized treatment of metastatic breast cancer.

FSTL4 Shown to be involved in BC cell migration in mice. Was discussed in relation to late distant 
metastases in BC here without any conclusions (Mittempergher et al., 2013)

C5orf30 Known to be expressed in BC and especially in lymph-node metastases. Promote 
inflammation and hypothesized to reduce immune response against cancer cells

RBM4 Known tumor suppressor in BC
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10. Hypotheses of Carcino-
genesis—The Atavistic Theory
Lill-Tove Rasmussen Busund

Abstract  A deep comprehension of what cancer is as a biological phenomenon is
lacking. Several theories have been proposed and many of them do not necessarily
contradict each other. One of the theories is the intriguing hypothesis that a cancer
cell may be triggered by mutations, but is basically a self-activated throwback to an
ancestral cell phenotype running its ancient core functionality by preserving its vital
functions, such as survival and uncontrolled proliferation.

Keywords  ancestral cell phenotype | core functionality | atavism

After decades of extensive research, our knowledge of the carcinogenic process has
grown. Cancer is currently widely regarded as random oncogenic mutations accu-
mulating in cells, leading to an evolutionary process of emerging hallmarks
(Hanahan and Weinberg 2011) that are reminiscent of unicellular organisms.
However, a deeper comprehension of what cancer is as a biological phenomenon
is still lacking. Several theories have been proposed and many of them do not
necessarily contradict each other.

One of the theories is the intriguing hypothesis that a cancer cell is a throwback
to an ancestral cell phenotype. That essential idea was proposed in 1914 by Theo-
dor Boveri, who characterized the malignant tumor cell as a previously normal and
“altruistic” tissue cell changed into an “egoistical” mode with loss of functions. The
latter cell had lost normal reactivity to the rest of the body by releasing its multi-
plication from restraint and tending toward primitive, unicellular properties
(Boveri 2008). In recent decades, essential elements of Boveri’s idea have been res-
urrected in an atavistic hypothesis of cancer which regard cancer as an ancient and
systematic program of emergency survival procedures that preserves the two most
vital core functions—survival and proliferation—in response to a damaging envi-
ronment. Since cell survival and proliferation is deeply integrated in normal cell
ution 4.0 International (CC BY 4.0).
mmons.org/licenses/by/4.0/.
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physiology, upregulated genes coding for these normal traits are more likely to
escape rather than alarm the immune system’s surveillance, which is one of the
hallmarks of carcinogenesis. The hypothesis further suggests that carcinogenesis
may be triggered by mutations, but its basic cause is a self-activation of a very old,
programmed and deeply embedded toolkit of emergency survival programs
(Davies and Lineweaver 2011). Evidence supporting this hypothesis has long
remained non-observational, until recently.

More than one hundred years ago, William Coley noticed that some cancer
patients showed spontaneous remission following severe infection (Hoption Cann
et al. 2003). The traditional explanation was that infection boosted the reactions of
the immune system, which then destroyed the cancer by chance. The atavistic
hypothesis, on the other hand, proposes that at least part of the reason for Coley’s
results is that cancer tumors are more vulnerable to infection than the rest of the
body because, via their throwback to the ancestral phenotype, they have decoupled
from the adaptive immune system. In other words, the tumor has regressed to an
immunocompromised state and is thereby left unprotected against infection.

The role of immune system cells in carcinogenesis has been studied for decades,
and the particular importance of the adaptive immune system has been unraveled.
The basic idea behind immunotherapy, which has received increasing attention as
a new way to combat cancer, is to boost the body’s immune system—both the
innate and the adaptive—through a diversity of sophisticated strategies in order to
improve the immune response against cancer (Dempke et al. 2017). The early
results are encouraging; combinations of immunotherapy, novel targeted thera-
pies, and conventional chemotherapy might be especially promising. Nevertheless,
additional basic, translational and clinical studies with long follow-up time are
crucial to unraveling immunotherapy as a breakthrough in cancer treatment.

Another discovery made by Otto Warburg a century ago showed that cancer
cells often switch to fermentation, especially when the oxygen tension is low and
the glucose concentration is high (Otto 2016). Fermentation processes create less
energy but more biomass compared to normal human cells, which use oxygen to
generate energy. The atavistic hypothesis seems to suggest that the ancestral cancer
cells have proliferative advantages in low oxygen surroundings, since they are
reversed to the evolutionary time more than one billion years ago when the first
multicellular organisms evolved in a far less oxygen-rich atmosphere. Based on the
Warburg effect, hyperbaric oxygen combined with a low-glucose have been stud-
ied in vitro and in patient trials. The mechanisms are complex and combinations
of graded oxygen-glucose concentrations with novel therapeutics need to be stud-
ied in further detail.
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The majority of cancers follow a predictable pattern of clinical development: a
tumor grows in an organ, and if it is not cured, some of the cancer cells leave the
primary tumor, spread via lymph or blood and invade remote organs, where they
create metastases. Metastatic cancers are often beyond being cured and the vast
majority of patients who die from cancer die from their metastases, not from their
primary tumors. Cancer development goes through several distinctive functional
hallmarks, including survival of the neoplastic cells, uncontrolled proliferation,
increased motility, evasion of the immune system, and establishment of its own
blood supply (Hanahan and Weinberg 2011). All these traits improve the survival
and sustainability of the cancer cells over a relatively short period of time. The
somatic mutation theory has challenges in explaining how random mutations
accumulating in cells over time can confer so many improved functions in a single
tumor. It also seems paradoxical that increasingly damaged genomes are able to
code for proteins, resulting in gained functions in such a systematic and predicta-
ble behavior, acquiring the various hallmarks. Further, the non-neoplastic cells in
a tumor—i.e. the non-mutated cells of the microenvironment—have shown tre-
mendous impact on the overall survival of cancer patients. The predictable way
that cancer progresses through its various stages of malignancy, both clinical and
pathophysiological, indicates that cancer is not a case of randomly, damaged cells
but a primitive cellular defense mechanism consisting of a systematic, pro-
grammed strategy as a response to environmental challenges.

Paul Davies, director of the Beyond Center for Fundamental Concepts in Sci-
ence at Arizona State University, USA, describes the atavistic theory of cancer as

a default state in which a cell under threat runs on its ancient core functionality,
thereby preserving its vital functions, of which survival and uncontrolled pro-
liferation is the most ancient, most vital and best preserved (Davies and Line-
weaver 2011).

They have brought novelty to the atavistic theory through phylostratigraphic stud-
ies of the ages of genes by comparing how gene sequences diverge across many spe-
cies, thereby enabling them to trace the evolutionary origin of genes involved in
carcinogenesis (Bussey et al. 2017). In the general phylogenetic tree, the most
widespread properties of the different organisms are usually the oldest, and can
often be traced back to a common ancestor in the distant past. The atavistic theory
hypothesizes that the oncogenes are clustered around the age of onset of multicel-
lular organisms. The earliest traces of unicellular life can be dated back about 3.5
billion years and the onset of multicellularity first emerged about 1.5 billion years
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ago. Through using gene databases, they found that evolutionary roots of cancer
can be traced back to the early transitional phase from unicellularity to multicel-
lularity, about 600 million years ago, before complex metazoans emerged. An esti-
mation of the evolutionary ages of the genes in the human genome showed that
genes younger than about 500 million years were more likely to be mutated in can-
cer, while genes older than a billion years tended to have fewer mutations than
average. This is in accordance with the atavistic theory’s prediction that older
genes are likely to be less mutated than younger genes in cancer, since the oldest
genes are expected to be responsible for the ancient core functions of the aggressive
cancer cell. A comprehensive study has recently characterized cancer driver genes
and mutations from several thousand tumor exomes (Bailey et al. 2018); another
study shows that older genes are expressed at higher levels when cancer progresses
to a more aggressive and advanced stage (Trigos 2019).

By investigating the functionality of the oncogenes, they have shown that genes
older than 950 million years are strongly enriched for two core functions: control
of the cell cycle, and repair of DNA double-strand breaks (Cisneros et al. 2017).
The evolutionary history of these genes revealed that cancer genes implicated in
DNA repair match up with mutated genes in stressed bacteria employed for a crit-
ical survival function. These ancient and essentially identical genes, discovered in
the DNA of bacteria and cancer, are known to be associated with poor patient
prognosis. Elevated mutation rates in neoplastic cells are among the main reasons
why chemotherapy falters when neoplasms evolve drug-resistant variants.

Other phylostratigraphic studies suggests a link between cancer genes and the
emergence of multicellular life. By analyzing the expression profile of xenograft
tumors at different stages and various tumor samples, Chen et al. demonstrated an
evolving convergence from multicellular state towards unicellular state in cancer
expression profile and functional status (Chen et al. 2018) Although together these
evidences demonstrated a general trend toward atavism in carcinogenesis, there
are still large elements of the atavistic hypothesis that remain unanswered. In par-
ticular, the answer as to whether cellular atavism from multicellularity to unicellu-
larity is the cause or the result of carcinogenesis remains elusive.

GENE EXPRESSION INFORMATION FROM THE NOWAC 
STUDY
Mutations induce disturbed gene regulatory networks at a very early stage in the
carcinogenic process, leading to changes in the flow of signals between genes and
between cells. The Norwegian Women and Cancer Study, NOWAC (Lund et al.
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2008) is trying to identify early carcinogenic signatures of these gene network
changes in blood. We aim to identify distinct gene signature hallmarks of cancer
in white blood cells that may precede the clinically noticeable changes in tumor
cells and tissues, thus providing an early warning of upcoming cancer.

In Chapter 8 we identified a gene profile in white blood cells in those women
who died from their cancer within a few years. Some of these signals are upregu-
lated, pre-vertebrate genes maintaining core functions such as survival, mainte-
nance of cytoskeleton, proliferation, cilia orientation, nuclear membrane proteins,
DNA damage repair, and oxygen utilization (Table 9.1). The intriguing finding—
that the signals from the white blood cells disappeared after a short time—might
be a result of decoupling and thereby a default surveillance of the aggressive, ances-
tral phenotype of the cancer cells by the phylogenetically more novel adaptive
immune system. At the time of diagnosis, another study showed no strong corre-
lation between genes expressed in cancer tissue compared to white blood cells,
except for some highly immunogenic breast cancer subgroups (Dumeaux et al.
2017).

These findings are essentially in accordance with the atavistic hypothesis show-
ing that white blood cells’ responses to cells under threat run their core function-
alities, preserving its most vital functions. These data are exclusively from Gene-
Cards®. They should be further analyzed in comprehensive, inventory databases
and applied by gene classification tools organizing genes around their function.

Table 10.1. Name of the ten most significantly upregulated genes in breast cancer
during follow-up with their function taken from table 9.2 (Chapter 9). Function from
the human gene database GeneCards®

Gene Function

Significant up-
regulated genes

Mainly basic cell functions like cytoskeleton, cilia orientation, DNA damage, oxygen 
utilization

CCM2 Cerebral Cavernous Malformations 2 is required for normal cytoskeletal structure, 
cell-cell interactions, and lumen formation in endothelial cells.

C14orf45 May act by mediating a maturation step that stabilizes and aligns cilia orientation.

ARL4A ADP Ribosylation Factor Like GTPase 4A is related to Mesodermal Commitment 
Pathway. Gene Ontology annotations related to this gene include GTP binding and 
GTPase activity. An important paralog of this gene is ARL4C.

LOC650898 Involved in inducing the expression of cellular antiviral genes, including the inter-
feron-β gene, in response to Pattern Recognition Receptors which modulate the 
strength and duration of the innate immune responses.
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Abstract  Over the decades, many theories or models of carcinogenesis have been
proposed. Based on the systems epidemiology research on gene expression from
immune cells in peripheral blood, the concept of the dynamic interface between the
immune system and the carcinogen driven carcinogenesis is put forward. This com-
bines traditional exposure research in cancer epidemiology with upcoming knowl-
edge of the immunological response to cancer, from clones of cancer cells to clones
of immune cells.

Keywords  Immune system | risk factor | carcinogenesis | tumor tissue | blood | 
clones

This novel theory of carcinogenesis introduces the concept of a lifelong dynamic
interface between the immune system and carcinogen-driven carcinogenesis.
Through the analyses of trajectories of gene expression in peripheral blood from
immune cells, the introduction of time-dependent changes in functional genomics
has documented the responses of the immune system to the carcinogenic process.
This dynamic interface could be looked upon as a balance or war between clones
of immune cells and tumor cells. In a systems epidemiology design, the two forces
can be weighed against each other: the traditional carcinogen-driven model
against the immune defense system. The metaphor of war follows from lay state-
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ments about cancer: the “war on cancer”, “la lutte” (in French) or “sin livs kamp”
(Norwegian). In popular speeches, researchers call TD8+ cells “killer cells”.

The aim is to discuss the observational background for the theory, its relation to
other models, the need for scientific collaborations between different disciplines,
and finally, new challenges.

SYSTEMS EPIDEMIOLOGY STUDIES OF GENE 
EXPRESSION FROM PERIPHERAL IMMUNE CELLS IN 
BLOOD
We have demonstrated the potential for studies of trajectories in Chapters 8 and 9,
The trajectories before (Lund et al. 2016, see Chapter 8, Holden et al. 2017) and
after diagnosis (Chapter 9) demonstrate the time-dependent difference in gene
expression from immune cells dependent on stage. Important for the interpretation
of the interface is the finding of lack of correlation between gene expression in
blood and in tumor tissue in the same individual at time of diagnosis; see
Dumeaux et al. 2017. Blood is not a surrogate for tissue studies. The findings tell
us that there is a dynamic interface between the immune system and the effect of
carcinogens on the tissue cells changing over time. While invasive cancer shows
few changes, in metastatic cancer relatively rapid changes are seen around and
before diagnosis. More dramatic are the changes in gene expression after diagnosis
in metastatic cases, with a second, transient increase. This effect can be found even
more clearly in cases where the patient later dies (Lund submitted PLOS).

In other studies we found that hundreds of genes change their gene expression
in blood as a consequence of increasing parity, the major protective factor for
breast cancer; the more pregnancies, the more experiences of the immune system
of the semi-allograft or fetus (Lund et al. 2018a). Here, the fetus is protected
through a redirection of response away from the adaptive system towards the
innate, a balance that is restored just before, at and after birth. The proposal that
later the immune system will consider the cancer as a pseudo-semi-allograft, and
with more experience immune cells or clones of cells, the better the success rate of
elimination (Lund et al. 2018b).

HISTORICAL THEORIES
Over the last century, many theories of causes of cancer have been proposed by
basic researchers and epidemiologists. In a review of carcinogenic models (Vineis
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et al. 2010), five different models with their statistical methods were proposed: the
mutational, genome instability, non-genotoxic, Darwinian, and tissue organiza-
tion. Over the years, epidemiologists tried to use incidence rates to estimate the
necessary number of stages for a cancer to develop, starting with the Armitage-
Doll assumption of at least five stages (Armitage and Doll 1954). The number of
stages was later reduced to two, the two-hit model proposed by Knudson (Knud-
son 2001). Today, most epidemiologists argue that cancer is caused by environ-
mental carcinogens like smoking and radiation. In the paper by Peto and Doll in
the early 1980s, “bad luck” was not necessary to explain the cancer epidemic (Doll
and Peto 1981). Epidemiologists primarily use the relative risk between a carcino-
gen and cancer to discuss causality and prevention, but with no information on
time dependency in the semi-parametric proportional hazard models. In basic
research, the Hansemann-Boveri aneuploidy theory (Holland and Cleveland
2009) was based on observations of asymmetric mitoses in skin cancer. Warburg’s
theory was based on observations that cancers metabolize glucose via glycolysis
(Hsu and Sabatini 2008). Today, basic researchers propose multistep carcinogene-
sis, such as the “bad luck” hypothesis explaining cancer as intrinsically random,
and, therefore, unavailable, mutagenic events that dominate tumorigenesis (Toma-
setti and Vogelstein 2015). This theory is unsupported by individual data and has
been rejected by epidemiologists (Perduca et al. 2019).

Clinical researchers have mostly relied on basic research findings for new thera-
pies. Now there is increasing concern about analogies from mice to human, from
constructed diseases to human conditions (for further detail see Chapter 7).

THE IMMUNE SYSTEM AND CANCER—A LONG HISTORY
Accounts of the effects of the immune system on cancer patients have been
recorded for centuries, such as the spontaneous regression of cancer, mostly in
relation to serious infection (Hoption Cann et al. 2002). One of the first treatments
of cancer was introduced in 1850 by French doctors, and they succeeded in treat-
ing two patients (Kaplon and Dieu-Nosjean 2018). Before and after the First World
War, researchers performed systematic experiments on humans by injecting vari-
ous bacteria, viruses and toxins (Kucerova and Cervinkova 2016). The high mor-
tality due to the virulent disease used in the injections killed many patients,
although many were cured too. After the Second World War, these accounts were
dismissed and the spontaneous elimination of tumors in patients was considered
impossible. Due to vaccinations and the more effective treatment of infectious dis-
eases, it is possible that such cases were no longer seen. From basic research, many
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studies pointed towards the concept of immune evasion (Hanahan and Weinberg
2011, Wang et al. 2017, Steven and Seliger 2018). This concept is partly compatible
with the novel theory, but lack information on the exposures that are the driving
forces. It is hard to imagine that the carcinogenesis of hormone-related breast can-
cer should be similar to smoking-induced lung cancer or HPV-induced cervical
cancer. Thus, due to the different methods, observational confirmation has been
lacking. New therapies called immunotherapies are based on several mechanisms
in the tumor and the use of immune cells to kill the tumor cells. The new immu-
notherapies (De la Cruz and Czarniecki 2018) have changed the direction of can-
cer treatment towards immunology. Today, “hot” and “cold” cancers refer to the
number of immune cells in the matrix around the cancer and the consequences for
prognosis.

Another important aspect in understanding the role of the immune system in
cancer and the novel theory is the increasing understanding of the role infections
play in cancer development as causes or co-factors. In an overview the PAF (pop-
ulation-attributable factor) risk was calculated to be around 16% worldwide, but
with large geographic differences (de Martel et al. 2012).

Infection is the main cause of HPV in cervical (Cohen et al. 2019) and pharyn-
geal cancer (Chen et al. 2019), some lymphomas (Molyneux et al. 2012), hepatitis
C (Mina et al. 2015), and partly act as co-factors for helicobacter pylori in stomach
cancer (Pereira-Marques et al. 2019). Research has been ongoing to link cancer of
colon to the biota (Collins et al. 2011). The importance of chronic inflammation
as an additional driver in many cancer sites has become a major research area (Qu
et al. 2018). Other aspects of immunology and cancer promise new immunothera-
pies (De la Cruz and Czarniecki 2018) such as monoclonal antibodies and check-
point inhibitors. Both cancer vaccines and oncolytic immunotherapy have the
potential to improve survival (Guo et al. 2019). Epidemiologists should include
inflammatory biomarkers in cancer research in order to obtain some indications
of the reaction of the immune system towards the carcinogenic process (Brenner
et al. 2014).

THE NEED FOR COLLABORATION ACROSS SCIENTIFIC 
DISCIPLINES
The different carcinogenic paradigms still exist side by side due to the lack of inter-
action between scientists of the differing traditions. The main reason has been the
lack of models that might incorporate information from all three research disci-
plines in cancer (basal, clinical, and epidemiological research). Basic research uses
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reductionist experiments with little option for experiments with different expo-
sures over extended time, as in humans. In addition, the mice model is usually
based on animal experiments in non-pathogenic laboratories, leaving the adult
mice with an immune system comparable to a newborn human. We postulated
that the experiences of the immune system could be important for the power of
protection against transformed cancer cells. Clinicians almost only have studies of
the cancer patient, with no possibility of looking back on lifestyle.

Obviously, new designs and technologies are necessary for an understanding of
the dynamic interface between the immune system and the effect of carcinogens
on tissue cells around the body. Through the systems epidemiology concept we
have built a new biobank giving us the opportunity to follow up on gene expression
in the blood from before diagnosis, at diagnosis, and after diagnosis. At the same
time, we can collect either fresh tumor or normal tissue cells, or collect biopsies
from the paraffin-embedded samples used for diagnostics of cancer. From the
basic traditional prospective design, we can introduce different lifestyle factors
through questionnaire information or the use of biomarkers. It is easy to add
genomic information such as single nucleotide polymorphisms (SNPs).

The crucial difference between the dynamic interface theory and previous pro-
posals is the willingness to view the different scientific disciplines as equally
important. A novel theory must be able to synthesize previous ones.

The strength of the proposed theory is the combination of information from all
three cancer research disciplines with the core concepts of dynamics over time and an
interface in which tumor cells encounter the immune cells struggling for life. Here,
immunology as both a basic research discipline and well-accepted disease-related
research meets new possibilities in epidemiology that also include basic cell studies.

CHALLENGES OF THE DYNAMIC INTERFERENCE THEORY
This novel theory has some important implications or new hypotheses:

• Any substance inhibiting the immune system will work as a carcinogen. Carcin-
ogens are the drivers of change from normal to cancer tissue cells. The immune
system acts on the interface of the tissue to attack transformed cells. This illus-
trates the balance or war on cancer, but any substance inhibiting the immune
system could act as driver of carcinogenesis.

• What is the effect of previous experiences of the immune system? The accumu-
lated experiences of the immune system could be important for later resistance
towards cancer development.
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• An interesting hypothesis could be to search for the memory cells in the
immune system, for the immune cells’ victories, or the carcinogens’ lost battles.
Should we expect to find successful clones of immune cells, and if yes, how many
different clones over a long life?

EPILOGUE
The metaphor of clone wars was chosen without knowledge of the clone war in
Star Wars. Still, the metaphor is a nice one: The good guys create clones of 12 000
soldiers to defend their empire, but the bad ones among them implant a chip into
the heads of the soldiers. When the command “Order 66” is given, the soldiers kill
the good guys, the officers or the leaders. Fortunately, however, one good guy sur-
vives.
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OVERVIEW
The availability of high-throughput -omic technologies, novel devices for expo-
sure assessment, and electronic medical records have the potential to facilitate a
more comprehensive study of risk factors contributing to development of and out-
comes from cancer.

Despite individual successes at identifying genetic, biological, and environmen-
tal risk factors for cancer, much of the etiology remains unexplained. This may be
due in part to the limited focus of many studies on a single or small set of risk fac-
tors or data types (i.e. measures such as DNA sequence, methylation data, variables
from questionnaires). Moreover, many studies fail to consider the complexities
and interrelations among multiple risk factors and associated outcomes. For exam-
ple, each individual risk factor, such as a single dietary component or genetic poly-
morphism, occurs in a broader biological (e.g. pathways) or societal (e.g. individ-
ual in social network) context which could modulate the effect of individual risk
factors on disease. Further, many risk factors for disease can be highly correlated
with possible interactive, synergistic, or attenuating effects. Importantly, risk fac-
tors can change over time.

A more comprehensive, systems modeling-based type of approach, which
accounts for multiple dimensions, integration of diverse data types, and changes
over time, is needed to better understand contributors to disease and treatment
outcomes and provide clues for improved intervention.
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PURPOSE
The objective of this workshop was to facilitate interdisciplinary discussion about
the application of systems modeling approaches for population-based cancer epi-
demiology research. By bringing together scientists from various fields that use
systems modeling, the workshop aimed to:

• Identify ideas and strategies to improve understanding of systems modeling
among population scientists and epidemiology amongst modelers

• Share lessons learned in the application of systems approaches from other fields
(e.g. cancer biology)

• Identify potential high-impact use cases for systems modeling in population sci-
ence

• Increase understanding of potential barriers to and facilitators of taking a sys-
tem modeling approach in population science (including dataset availabilities,
data and methods needs)

• Establish new collaborative interdisciplinary relationships between statisticians,
mathematicians, computer scientists, bioinformaticians, epidemiologists, and
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