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Chapter 1

Synthesis and Types of 
Selenoproteins and Their Role  
in Regulating Inflammation  
and ER Stress Signaling Pathways: 
Overview
Volkan Gelen, Adem Kara and Abdulsamed Kükürt

Abstract

Selenium (Se) is one of the trace elements that play an important role in many 
biological processes in the living body. Selenium acts in the body mainly in its forms 
called selenoprotein. Selenoproteins play a role in various events such as oxidative 
stress, immunity, cancer, inflammation, and endoplasmic reticulum stress. In sele-
nium deficiency, the expression of selenoproteins and thus their activity decrease. 
In this case, some reactions such as increased oxidative stress, weakened immunity, 
endoplasmic reticulum stress, and inflammation cannot be prevented. The main 
source of selenium is food, and a diet poor in selenium causes selenium and therefore 
selenoprotein deficiency. This chapter will present information about the synthesis of 
selenoproteins and their role, especially in inflammation and endoplasmic reticulum 
stress response.

Keywords: selenium, selenoproteins, ER stress, inflammation, oxidative stress

1. Introduction

Selenium (Se) is a trace element and must be taken from outside. Selenium was 
first discovered in 1817 [1]. Research on the effects of Se on the organism has gained 
momentum over time. Se has an important role in the regulation of many functions 
in the organism such as reproductive physiology, muscle functions, cardiovascular 
system, nervous system, and immune system [2]. Selenium is mainly found in many 
products such as soil, water, vegetables, fruits, meat, milk, eggs, and fish [3, 4]. Both 
excess and deficiency of selenium cause some problems [2]. Selenium deficiency 
causes a number of problems such as acute heart failure, arrhythmia, muscular dys-
trophy, short stature, and short extremities [5–7]. On the other hand, excessive intake 
of Se causes hair loss, deterioration in nail structure, and nervous system anomalies 
[1, 2]. In other words, as it can be understood, excess and deficiency of selenium 
cause a number of problems. Selenium can be taken into the body in organic Se and 
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inorganic forms. The inorganic forms of selenium are mostly selenate and selenite. Its 
organic form is selenomethionine (Se-Met) and selenocysteine (Sn) [8, 9]. Sec and 
Se-Met have many biological roles. The structures formed by proteins that combine 
with Se are called selenoproteins [10]. Selenoproteins are also involved in various bio-
logical functions such as maintaining homeostasis in the organism, oxidative stress, 
hormone release, regulation of the immune system, inflammation, and stress on the 
endoplasmic reticulum [11]. Selenium or selenoprotein deficiency is generally due to 
insufficient intake of foods [12]. The most common forms of Se are selenate, selenite, 
Sec, and Se-Met [13]. These forms are very active in homeostasis. In addition, it has 
been stated that they have many effects on cancer [14]. In line with this informa-
tion, in this section, we aimed to explain the mechanism of action by discussing the 
synthesis of selenoprotein forms of Se, which is of such importance for the organism, 
their types, and their roles in inflammation and ER-stress.

2. Synthesis of selenoproteins

Selenium shows its effect on living things through selenoproteins. Its main 
biological form is selenocysteine, and its synthesis begins with the binding of the 
serine amino acid to tRNA [15]. Selenocysteine is similar to cysteine, but it has a 
selenium atom instead of sulfur in its structure and is ionized at physiological pH. 
In the study, replacing selenocysteine with cysteine dramatically reduces enzyme 
activity [16–19]. This supports the critical role of the ionized selenium atom [20]. 
Selenoproteins contain one or more selenocysteine residues in their primary struc-
ture [21]. According to current information, all selenoproteins, except Selenoprotein 
P, take part in redox reactions, are located in the catalytic regions of enzymes, and 
show enzymatic activity. Although selenoproteins have many similar functions in 
general, their amino acid sequences, tissue distributions of enzymatic activities, and 
interactions with other molecules vary widely [18, 19], looking at the selenoprotein 
synthesis steps (Figure 1).

3. Types of selenoproteins

Selenium can enter the body in various forms, but its absorption is mainly in the 
form of selenoprotein [3]. As a result of various studies, 25 selenoproteins, 5 of which 
are glutathione, have been isolated in humans. These selenoproteins are selenium 
phosphorylate synthetase (SPS), selenoprotein S (SELENOS), selenoprotein H 
(SELENOH), peroxidases (GPXs), 3 thioredoxin reductases (TrxRs), 3 iodothyronine 
deiodinases (DIOs), selenoprotein P (SELENOP), selenoprotein W (SELENOW), 
selenoprotein M (SELENOM), SELENON), selenoprotein I (SELENOI), selenopro-
tein K (SELENOC), selenoprotein N (selenoprotein O (SELENOO), selenoprotein 
T (SELENOT), selenoprotein 15 (15 kDa), selenoprotein R (SELENOR), and sele-
noprotein V (SELENOV) [17, 21]. Selenoproteins are found in various parts of the 
cell such as mitochondria, endoplasmic reticulum, nucleus, cell membrane, and 
Golgi membrane. And where they are found, they have various functions such as 
antioxidant, anti-inflammatory, hormone metabolism, and regulation of ER stress 
[22, 23]. The types, names, locations, and functions of some human selenoproteins 
are summarized in Table 1.
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4. Roles of selenoproteins in inflammation

Glutathione peroxidase, which protects cells against oxidative damage, is found 
in the cytoplasm of cells and originates from hydrogen peroxide (H2O2). In this way, 
it prevents the formation of OH from H2O2. Glutathione peroxidase has four protein 
subunits. Each of the subunits contains a selenium atom. Two main types of gluta-
thione peroxidase enzymes have been identified. The first is selenium-dependent 
glutathione peroxidase (Se-GPx), which has selenium in its active site. Selenium-
dependent glutathione peroxidase has an active role against organic hyper oxides 
and H2O2. Selenium-independent glutathione peroxidase (GST) is known to be more 
active in the formation of organic hydroperoxides. GPX1 suppresses inflammation 
in the cell by affecting proinflammatory cytokines and preventing ROS accumula-
tion. Here, the Nrf2/ARE pathway plays an important role [24]. GPX also catalyzes 
glutathione in various tissues, preventing peroxidation of free radicals and preventing 
oxidative stress-induced DNA damage in the cell [17, 25–28]. Some studies have shown 
that Se supplementation increases GPx and SOD activity and decreases MDA levels 
[29]. In these studies, it inhibits cell inflammation and apoptosis by suppressing ROS-
mediated NF-κB production [24, 30]. It has been determined that GPx2 and GPx1 
suppress inflammation in intestinal epithelial cells [31–33]. It has been found that vas-
cular inflammation is stimulated in Se deficiency [20]. In another study, it was shown 

Figure 1. 
Synthesis of selenoproteins [20].
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Selenoproteins Short name Main function Location

Glutathione 
peroxidase 1

GPx1/cGPx Antioxidant (detoxification of hydrogen 
peroxide)

Cytoplasm

Glutathione 
peroxidase 2

GPx2/GI 
(gastrointestinal)-
GPx2

Antioxidant (detoxification of hydrogen 
peroxide)

Cytoplasm

Glutathione 
peroxidase 3

GPx3 Antioxidant (detoxification of hydrogen 
peroxide)

Secreted

Glutathione 
peroxidase 4

GPx4/PH 
(Phospholipid 
hydroperoxide)-
GPx

Antioxidant protects against lipid 
peroxidation

Cytoplasm, 
mitochondria, 
nucleus, and 
memberanes

Glutathione 
peroxidase 6

6 GPx6 Antioxidant (detoxification of hydrogen 
peroxide)

Secreted

Thioredoxin 
reductase 1

TR1 Reduction of thioredoxins and other 
substrates

Cytoplasm, 
nuclear

Thioredoxin 
reductase 2

TR2 Reduction thioredoxin disulfide bond 
isomerization, thioredoxin/glutaredoxin/ 
glutathione reductase

Mitochondria

Thioredoxin 
reductase 3

TR3 Mitochondrial, 
nuclear, 
cytoplasm?

Deiodinase 
type I

Dio1 Thyroid hormone metabolism ER membrane

Deiodinase 
type II

Dio2 Thyroid hormone metabolism Membrane?

Deiodinase 
type III

Dio3 Thyroid hormone catabolism Cell and 
endosome 
membrane

Selenophosphate SPS2 Conversion of selenide to selenophosphate Unknown

Selenoprotein P SePP Se transport and delivery/anti-oxidant Secreted

Selenoprotein W SelW antioxidant? Antioxidant? Cytoplasm

Selenoprotein K SelK ER Antioxidant? regulates Ca2þ flux ER

15 kDa 
Selenoprotein

SeP15 Protein folding ER

Selenoprotein S SePS/SelS Inflammatory response, regulation cytokine 
production, protection against ER-stress-
induced apoptosis

ER

Selenoprotein M SelM Antioxidant? Or calcium homeostasis? ER

Selenoprotein N SelN Antioxidant? calcium homeostasis? role in 
muscle function

ER membrane

Selenoprotein T SelT Unknown Golgi/ER

Selenoprotein H SelH Nucleolar oxidoreductase, nuclear-localized 
DNA-binding protein?

Nuclear, 
nucleolar?

Selenoprotein I SelI Unknown Unknown
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that increased selenoprotein activity in vascular endothelial cells suppressed adhesion 
induced by a proinflammatory cytokine [34, 35]. In addition, it has been determined 
that selenoproteins protect the structure of the vessel wall by dissolving the choles-
terol accumulated in the blood vessel wall [36]. In another study, it was reported that 
SELENOS has preventive effects on atherosclerosis and hypertension [20].

5. The function of selenoproteins in inhibiting ER stress

The endoplasmic reticulum is an organelle in the eukaryotic cell that spreads 
throughout the cell, especially involved in protein synthesis. When the ER is opened 
too much, the ER stress response occurs due to misfolded proteins and imbalances 
in calcium homeostasis. This causes cell apoptosis [34]. Some selenoproteins, 
SELENON, SELENOK, SELENOM, specifically the 15 kDa selenoproteins DIO2, 
SELENOS, and SELENOT, regulate ER stress [35–38]. Selenoproteins located in the 
ER is involved in regulating oxidative stress, inflammation, and intracellular Ca 
homeostasis. SELENON acts as a cofactor for the ryanodine receptor on the ER mem-
brane and thus regulates the intracellular Ca level [20], while Sep15 is also involved 
in protein folding [39]. Aforesaid, GPx1 can reduce the accumulation of proinflam-
matory factors and increase the body’s antioxidant capacity and expression [40]. It 
is affected by the Nrf2/ARE pathway [41]. When the body is exposed to oxidative 
stress, Nrf2 dissociates from the Keap1 protein, enters the nucleus, and binds to ARE, 
activating the Nrf2/ARE pathway, enhancing downstream GPx1 gene expression, 
and attenuating oxidative stress [42, 43]. Selenoprotein expression can reduce the 
expression of inflammatory factors and attenuate the NO-induced proinflammatory 
response [38]. NADPH oxidase (NOX) can mediate excessive ROS production [44, 
45], thereby suppressing ER stress that oxidative stress induces. In addition, seleno-
proteins increase the enzyme level of DNA methyltransferase 1 (DNMT1) and protect 
the cell against oxidative stress and ER stress [46] (Figure 2).

6. Function of selenoproteins in various diseases

In various studies, it has been reported that there are some differences in seleno-
protein types and levels in some diseases. Selenium deficiency causes muscle disorders 
in humans and animals. White muscle disease is a disease in animals characterized by 
a selenium deficiency. In this disease, skeletal and cardiac muscles show white streaks 
due to calcium deposition. White muscle disease can affect both the skeletal and 
cardiac muscles in which SelW is highly expressed [21]. SelW derives its name from 
white muscle disease, and SelW levels are upregulated in muscle cells in response to 

Selenoproteins Short name Main function Location

Selenoprotein O SelO Unknown Unknown

Selenoprotein V SelV Unknown Unknown

Table 1. 
Types of selenoproteins in humans, their names, location, and functions [23].
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exogenous oxidants [47, 48]. In the case of oxidative stress, damage to vascular endo-
thelial cells occurs, in which case atherosclerosis, hypertension, and congestive heart 
failure are exacerbated [49]. Selenoproteins prevent the progression of damage due to 
their antioxidant properties in cardiovascular system diseases [50]. As a result of vari-
ous studies, selenium supplementation increases the expression and the activity of 
GPX1, GPX4, and TRXR1, thus protecting the cardiovascular system against oxidative 
damage [51, 52]. Various studies have shown that selenoproteins have important roles 
in cancer [53]. Many selenoproteins have been reported to be associated with various 
types of cancer. For example, polymorphisms of GPX1 have been associated with 
various types of cancer, including breast, prostate, lung, head, and neck cancer [54, 
55]. Polymorphisms in GPX2, GPX4, and SelP have been associated with colorectal 
cancer, Sep15 polymorphisms with lung, SelS promoter polymorphisms with stom-
ach, and SelP polymorphisms with prostate cancer [56–59]. Studies have shown that 
selenoproteins play an important role in preventing neurological disorders. Some of 
the dietary selenium is stored in the brain tissue and it has been determined that it has 
a protective effect on the brain tissue in nervous system diseases such as ROS-induced 
Alzheimer’s, Parkinson’s, and ischemic brain damage [60–62]. In some studies, it has 
been determined that selenoproteins are protective against hyperglycemia-induced 
increased ROS production and resulting tissue damage in diabetes mellitus [63, 64].

7. Hazards of selenium supplementation

Apart from these mentioned issues, excessive intake of selenium causes harmful 
effects on the organism. If selenium absorption is excessive, selenium excess, in other 

Figure 2. 
The effects of selenoproteins in ER stress and inflammation [40].
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words, selenium poisoning, selenium toxicity, or selenosis occur [65]. In the case of 
selenosis, mood changes are seen due to fatigue, vomiting, diarrhea, changes in nail 
structure, hair loss, or nerve damage [66]. In addition, excess selenium can cause 
such severe damage to the liver or heart tissue that they cannot adequately perform 
their liver and heart functions [67]. In case of damage to the liver tissue to this extent, 
cirrhosis, heart failure, which leads to damage to the heart and deterioration of heart 
functions, occurs [68]. When selenium comes into contact with the skin and mucous 
membranes, it also damages these organs [69]. Damage to the skin and mucous 
membranes is manifested, among other signs, by skin blistering. Excess selenium 
in the organism may lead to the development of malignant tumors other than those 
listed above [70]. For this reason, selenium in the composition of cigarettes is thought 
to cause cancer.

8. Conclusion

Selenium shows its effect on living things through selenoproteins. Its main biologi-
cal form is selenocysteine, and its synthesis begins with the binding of the serine 
amino acid to tRNA. Selenocysteine is similar to cysteine, but it has a selenium atom 
instead of sulfur and is ionized at physiological pH. In the study, replacing selenocys-
teine with cysteine significantly reduces enzyme activity. This supports the critical 
role of the ionized selenium atom. Selenoproteins contain one or more selenocysteine 
residues in their primary structure. Selenium can enter the body in various ways, but 
its absorption is mainly in the form of selenoprotein. As a result of various studies, 
25 selenoproteins, 5 of which are glutathione, have been isolated in humans. These 
selenoproteins are GPXs, TrxRs, DIOs, SPS, SELENOS, SELENOO, SELENOT, 
SELENOH, SELENOP, SELENOW, SELENOM, SELENON, SELENOI, SELENOC, 
15 kDa, SELENOR, and SELENOV. Selenoproteins are found in various parts of the 
cell such as mitochondria, endoplasmic reticulum, nucleus, cell membrane, and Golgi 
membrane. And where they are found, they have various functions such as antioxi-
dant, anti-inflammatory, hormone metabolism, and regulation of ER stress. In this 
study, the synthesis, types, locations, and roles of cell proteins in inflammation and 
ER stress are explained.
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Chapter 2

An Overview of the Antioxidant 
and Anti-Inflammatory Activity of 
Selenium
Mehmet Başeğmez

Abstract

Selenium, whose name comes from the Greek word for “Selene,” has been a topic 
of interest as a micronutrient ever since it was described in 1817 as a by-product 
of sulfuric acid manufacturing. Selenium, the most important micronutrient for 
both humans and animals, must be consumed daily to support the body’s natural 
metabolism and homeostasis. The small intestine is responsible for the absorption 
of selenium in both its organic and inorganic forms. Selenium is then able to be 
widely distributed throughout the body’s diverse tissues, where it plays an important 
role in the regulation of the synthesis of selenoproteins. The synthesis of human 
selenoproteins involves the incorporation of a selenium-containing homolog of 
cysteine in each of the 25 selenium-containing proteins that make up this series. 
Many selenoproteins, including glutathione peroxidase (GPX), thioredoxin reductase 
(TrxR), and iodothyronine deiodinases (IDD), function as crucial cellular defenses 
against oxidative stress. Therefore, selenium is extremely important in boosting 
antioxidant defense. Recent studies have also shown that there is a close relationship 
between selenium and inflammation, and that selenium has regulatory effects on 
inflammation by affecting the expression of various cytokines. This chapter’s goal 
was to thoroughly review the research on how selenium is related to antioxidant and 
anti-inflammatory activity.

Keywords: antioxidant, anti-inflammatory, human nutrition, selenium, selenoproteins

1. Introduction

Selenium, which takes its name from the Greek word “Selene,” has been attract-
ing attention as a trace element since 1817 as a by-product of sulfuric acid [1]. 
Both environmental and endogenous factors affect body selenium homeostasis 
[2]. Selenium can be absorbed by the small intestine in both organic and inorganic 
forms, after which it can be distributed throughout the body and perform important 
biological functions, most particularly by controlling the synthesis of selenoproteins 
[3]. Selenoproteins play an important role in many biochemical and physiologi-
cal processes in both humans and animals because of their antioxidant properties 
[4]. They have antioxidant and anti-inflammatory properties that help to regulate 
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immune cell functions [5]. Twenty-five genes in the human genome are responsible 
for the coding of selenocysteine-containing proteins. The selenoprotein family, 
whose functions are known, is named according to these functions: glutathione 
peroxidases (GPX1, GPX2, GPX3, GPX4, and GPX6), thioredoxin reductases 
(TrxR1–3), iodothyronine deiodinases (DIO1–3), selenophosphate synthetase 
2 (SEPHS2), methionine sulfoxide reductase B1(MSRB1), SEP15 (SELENOF), 
SELH (SELENOH), SELI (SELENOI), SELK (SELENOK), SELM (SELENOM), 
SELN (SELENON), SELO (SELENOO), SELP (SELENOP), SELS (SELENOS), SELT 
(SELENOT), SELV (SELENOV), and SELW (SELENOW) [6]. The primary function 
of multiple selenoproteins is to protect cells from oxidative damage by taking action 
as major antioxidants.

In this review, I want to show how selenium affects many biological effects, mostly 
through selenoproteins, as well as how it affects the physiological and biochemical 
processes it interacts with. Furthermore, the effect of deficiency and excess selenium 
in the body on the antioxidant and anti-inflammatory systems and the most recent 
findings on human health are highlighted.

1.1 Selenium requirement in the human body

Selenium is a crucial trace element required for the proper working of all organ-
isms. It is emphasized that very high and very low selenium levels in humans are 
harmful to health [7]. For instance, not getting sufficient selenium can cause oxida-
tive stress, which decreases the concentrations of selenoproteins, such as GPx and 
TXNRD, in the body. On the other hand, too much selenium can cause oxidative stress 
by oxidizing and cross-linking protein thiol groups, which causes reactive oxygen 
species to form [8]. The amount of this element, which varies according to bioavail-
ability, geographical region, and nutrition, plays an important role in selenium 
homeostasis in the organism. It has been determined that 40–70 micrograms [9] of 
this element is optimal for normal biochemical and physiological processes [10, 11]. 
The World Health Organization suggests that adults consume 55 μg of selenium per 
day [12]. The US Food and Nutrition Board determined it to be 40–70 μg for men and 
45–55 μg for women [13–15]. The determination of reference values for selenium in 
adults is based on saturation of the plasma selenoprotein P (SePP) level with adequate 
selenium intake. SePP saturation was reached in people with an average body weight 
of 58 kg who lived in areas with low selenium levels by giving them 49 microgram of 
selenium every day [16]. This is equivalent to getting about 1 micrograms of selenium 
per kilogram of body weight every day [17]. Reference values for children and teens 
are based on values made for adults, with their body weight and growth factors taken 
into account. Estimated values for selenium intake by age groups and body weights 
are as follows: 15 μg/day for 1 to 4 years old, 20 μg/day for 4–7 years old, 30 μg/day for 
7 to 10 years old, 45 μg/day for 10 to 13 years old, and 60 μg/day for 13 to 15 years old. 
The estimated daily value of selenium intake for boys aged 15 to 19 is 70 micrograms, 
while for girls of the same age, it is 60 micrograms Daily [17]. The determination of 
selenium requirements in newborns and 4-month-old infants is based on the sele-
nium content of breast milk [17]. A daily average of 750 ml of breast milk [18] results 
in a selenium intake of nearly 11 μg/day. An estimate of optimal selenium intake for 
breastfed infants between new-born and 4 months of age is 10 micrograms. However, 
considering the average body weight differences and solid food intake processes in 
infants aged 4–12 months, an estimated daily 15 micrograms was determined for 
infants (Table 1) [17].
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1.2 Source of selenium in the human body

Selenium is mostly orally taken into the human organism. Plant and animal 
products are the main sources of this element. Selenium can be found in foods and 
biological materials as inorganic compounds, as well as organic compounds [20, 21]. 
Plants store selenium in the form of inorganic compounds called selenate (IV) or (VI) 
and then convert them into organic forms such as selenomethionine and selenocys-
teine [7]. Selenocysteine levels are high in animal-derived products [22]. Selenium 
is found in low concentrations in vegetables and fruits, but in high concentrations in 
seafood, grains, and meat products [23, 24]. On the other hand, protein-rich foods 
contain higher levels of selenium than foods low in protein [7]. Cereal products 
provide approximately 50% of the daily selenium intake, while meat, fish, and 
poultry products provide approximately 35%. Water and beverage products provide 
about 5–25% of selenium. Fruit, on the other hand, meets about 10% of the selenium 
demand (Table 2).

2. The role of selenium in oxidative stress, inflammation, and immunity

Oxidative stress is a disruption of the balance between the prooxidant and 
antioxidant systems in the body [27, 28]. In normal circumstances, the prooxidant 
system and the antioxidant system work together to maintain the body’s homeostasis. 
However, increased prooxidant system activity and deterioration of the antioxidant 
system (Table 3) result in oxidative stress. The development of many chronic dis-
eases, including diabetes [30], cancer [31], antiviral agents [32], and various aging-
related and central nervous system (CNS) disorders [33], can result in high levels 
of reactive oxygen and nitrogen species production. In addition, reactive oxygen 

Selenium μg/day References

Age Male (μg) Female (μg)

Birth–4 months 10

4–12 months 15

1–4 years 15

4–7 years 20

7–10 years 30

10–13 years 45 [17, 19]

13–15 years 60

15–19 years 70 60

19–25 years 70 60

25–51 years 70 60

51–65 years 70 60

Pregnant women 60

Lactating women 75

Table 1. 
Values predicted to ensure sufficient selenium consumption.
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production causes intense lipid peroxidation in cells, causing the breakdown of cell 
membranes [5]. As a result, cellular homeostasis is disrupted, and human health is 
affected. Antioxidant activity as a free radical scavenger is linked to protecting cells 
from autooxidation and keeping their structure so that the immune system can work 
at its best [34].

In the process of regulating antioxidant activities, various selenoproteins are 
essential players [35]. Glutathione peroxidase GSH-Px, which contains one selenium 
atom in each subunit, was one of the first highly effective selenoproteins [36]. The 
glutathione peroxidase enzyme reduces reactive oxygen and nitrogen species by 
converting hydrogen peroxide (H2O2) to water (H2O) and organic hydroperoxides 
(ROOH) to alcohol (ROH) [14, 37]. The selenium dependent (GPXs 1–4) signifi-
cantly detoxifies cellular peroxides that protect against reactive oxygen species [38]. 
Glutathione peroxidase 1 (GPX1) is the most common selenoprotein that protects the 
body from oxidative stress caused by reactive oxygen and nitrogen [39]. On the other 

Selenium 
Source

Food Selenium 
concentration(mg/kg)

Selenium forms References

Meat 
and meat 
products

Beef 0.042–0.142 Selenomethionine [19, 25]

Lamp 0.033–0.260

Chicken 0.081–0.142 Selenomethionine/
Selenocysteine

Pork 0.032–0.198 Selenomethionine/Selenate

Fish 0.1–5.0 Selenomethionine/Selenite/
Selenate

[19]

Milk and 
dairy 
products

Milk 0.01–0.03 Selenocysteine/Selenite

Vegetable 
products

Broccoli 0.5–1.0 Selenomethionine/Selenate

Garlic 0.05–1.0 Selenomethionine/
Selenocysteine

Potatoes 0.12 Selenomethionine [19, 25]

Mushrooms 0.01–1.40 Selenomethionine/
Selenocysteine/ 

Selenomethylselenocysteine

[26]

Onions 0.02–0.05 Selenomethionine/
Selenocysteine

[19]

Grain 
products

Bread 0.01–30 Selenomethionine/Selenate

Cereal 0.02–35

Lentils 0.24–0.36 [19, 25]

Rice 0.05–0.08 Selenomethionine

Other food 
products

Yeast 0.6–15 [19]

Eggs 3–25 Selenomethionine/
Selenocysteine

Table 2. 
Selenium concentrations in various foods.
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hand, GPX1 may also decrease the concentration of lipid hydroperoxides and other 
hydroperoxides once they have been released from membrane lipids [40]. In the 
same way, as GPX1 does, GPX2 neutralizes H2O2 and fatty acid hydroperoxides [41]. 
This selenoprotein, which was expressed in the intestinal tract in the early 1990s, 
has also attracted attention with its antioxidant activities by affecting apoptosis and 
regulating the self-renewal of the intestinal epithelium [42]. GPX3, found in plasma 
and milk [38], is an important selenoprotein that serves as a source of extracellular 
antioxidant capacity, especially in the kidney proximal tubule epithelial cell [43], 
by reducing oxidative stress in the heart, liver, lungs, skeletal muscle, and thyroid 
gland [44, 45]. GPX4 is unique among GPXs in that it has the ability to catalyze 
the reduction of hydrogen peroxide and other lipid hydroperoxides in addition to 
reducing phospholipid hydroperoxides [46]. GPX6 enzyme expression was detected 
only in the embryo and olfactory epithelium [47]. In an in vivo study, supplementa-
tion of selenium-rich, rice-extracted selenoproteins to male mice modeled aging by 
abdominal D-galactose injection and increased GSH-Px and superoxide dismutase 
(SOD) enzyme activation in the liver and serum of mice compared to the control 
group [48]. TrxR enzymes, which function in concert with NADPH to clear the 
redox system in mammals, have been identified in three different forms [49]. Trx1 is 
responsible for the reduction of thioredoxins in the cytosol, TrxR2 for the reduction 
of thioredoxins in the mitochondria, and TrxR3 for the reduction of glutathione 
and glutaredoxin [50]. DNA synthesis, which occurs at the beginning of cellular 
processes, relies on the existence of selenium in the catalytic region of TrxR [51]. 
Furthermore, mammalian TrxRs are selenoproteins that play an essential function in 
many cellular processes by modulating the action of the core redox molecule thio-
redoxin, as well as directly reducing a variety of substrates [50]. DIOs are members 
of the selenoprotein family that include the three enzymes (DIO1, DIO2, and DIO3) 
that catalyze the activation (DIO1) and inactivation (DIO2) of the thyroid hormone 

Radicals Non- Radicals

Reactive oxygen species O2.-, Superoxide H2O2, Hydrogen peroxide
HOCI, Hypochlorous acid
1O2, Singlet oxygen
O3, Ozone

OH., Hydroxyl

RO2., Peroxyl

RO., Alkoxyl

HO2., Hydroperoxyl

NO., Nitric oxide

NO2., Nitrogen dioxide

Reactive nitrogen species NO., Nitric oxide
NO2., Nitrogen dioxide

HNO2, Nitrous acid

N2O4, Dinitrogen tetroxide

N2O3, Dinitrogen trioxide

ONOO-, Peroxynitrite

ONOOH, Peroxynitrous acid

NO2+, Nitronium cation

ROONO, Alkyl peroxynitrites

Table 3. 
Reactive oxygen and nitrogen species [29].
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thyroxine (T4), respectively [52]. DIO1 is involved in T3 production in the thyroid 
gland and controlling circulating T3 levels, while DIO2 and DIO3 are involved in 
local deiodination processing processes at the tissue and organ level [53]. Increased 
oxidative damage in thyroid tissue has been associated with decreased DIO and GPx 
activity in the organism and insufficient GPx concentration [54]. In mammals, sele-
nophosphate synthetase 2 (SEPHS2) is a selenoprotein involved in the biosynthesis 
of the amino acid selenocysteine, which catalyzes the formation of selenophosphate 
from selenide and ATP [55, 56]. SelR, commonly referred to as methionine-R-
sulfoxide reductase B1 (MsrB1), is a protein that helps reduce oxidized methionine 
(Met) residues (methionine sulfoxides) [57]. SelR comprises a redox effective 
selenoprotein containing a particular enzymatic activity that is necessary for oxida-
tive protein repair [50]. SEP15 is the first selenoprotein [58] to be widely distributed 
across multiple organs including the brain, lung, testis, liver, thyroid, and kidney 
[59]. Sep15, belonging to the class of thiol-disulfide oxidoreductase-like selenopro-
teins [60], is a selenoprotein exhibiting redox activity [61]. Selenoprotein K is mainly 
expressed in the heart and skeletal muscle, but it is also found in other tissues such as 
the placenta, liver, and pancreas. Increasing levels of SELK in the organism exhibit 
antioxidant properties in the heart by reducing intracellular ROS levels and protect-
ing cardiomyocytes against oxidative damage [62]. Selenoprotein M, a selenoprotein 
distantly related to Sep15, acts as a redox regulator with the amino acid selenocyste-
ine [63]. SELM, induced by sodium selenite, which has prooxidant properties, has 
a functional role in catalyzing free radicals [64]. SELN, which is an endoplasmic 
reticulum glycoprotein and has important functions in muscle tissue, has been 
associated with myopathies [65]. SELN, which draws attention with its cell prolifera-
tion and regeneration, is significantly effective in the early embryonic development 
process [66]. It plays an important role in the redox system by contributing to cal-
cium homeostasis in the organism [67] and protecting the cells from oxidative stress 
[68]. SelO, which is located in the mitochondria of the organism and draws attention 
with its feature of being the biggest selenoprotein [69], plays a role in oxidative stress 
by controlling S-glutathionylation levels [70]. Selenoprotein P is estimated to contain 
50% of plasma selenium [71]. The plasma concentration of SELP varies depending 
on selenium supplementation. These changes in selenium intake, together with its 
concentration at the plasma SELP level, may reflect an indication of the amino acid 
protein residues of selenite in its molecule [72]. SELP, which exhibits antioxidant 
properties, has been shown to protect astrocytes [73] and endothelial cells from 
oxidative stress [74, 75]. In addition, it has been demonstrated that SELP prevents 
the oxidation of low-density lipoproteins [76]. Selenoprotein S, one of the resident 
proteins of the endoplasmic reticulum, is a selenoprotein involved in the reduc-
tion of reactive oxygen species and redox signaling [77]. This selenoprotein plays 
critical functions in protein quality control processes, cytokine modulation, and 
signaling [78]. Selenoprotein T is the only protein among the selenoproteins located 
in the membrane of the endoplasmic reticulum. The decrease in the expression of 
selenoprotein T, known for its suppressive effect on reactive oxygen and nitrogen 
species, has been shown as a possible factor in the deterioration of the antioxidant 
balance [79]. Selenoprotein V, which is predominantly localized in the intracellular 
cytoplasm, plays an important role, such as other selenoproteins, in the elimination 
of oxidative stress by protecting against endoplasmic reticulum stress and apoptosis 
caused by prooxidants [80]. Selenoprotein W, which is expressed in every tissue, 
is one of the well-known selenoproteins with antioxidant properties that are very 
important for the proper growth of the brain and embryo [81, 82].
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Selenium, which plays an important role in antioxidant defense for body homeo-
stasis, also plays an important role in the regulation of different inflammatory 
processes in the organism [83]. Adequate selenium supplements are essential for 
the immune system. For example, selenoprotein expression is affected in male mice 
supplemented with selenium, and immune response pathways, such as Interferon-γ 
and IL-6, are supported [84]. Interleukin IL-2, IL-4, IL-5, IL-13, and IL-22 cytokine 
levels were significantly higher in plasma and peripheral blood mononuclear cells 
in people who ate 200 mg of selenium-rich broccoli per serving for three days [85]. 
A previous study showed that increasing selenium supplements increased antigen-
specific CD4+ T cell responses. In addition, high selenium diets increased interferon-
gamma (IFN-γ) and IL-2 expression levels compared to low and moderate selenium 
diets [86]. The higher contents of selenium in the blood of older individuals have been 
shown to have a positive correlation with a higher percentage and activity of natural 
killer (NK) cells [87]. In patients with acute respiratory distress syndrome, intrave-
nous selenium supplementation attenuated inflammatory responses and significantly 
improved respiration by restoring the antioxidant capacity of the lungs via IL-1β and 
IL-6 proinflammatory cytokine levels [88]. Selenium supplementation significantly 
affects both innate immunity (neutrophils, macrophages, and NK) and acquired 
immunity (T and B lymphocytes) [89]. The phagocytosis functions of macrophages 
and the T cell activities of the body were significantly boosted by selenium-containing 
proteins [90]. Selenoprotein K plays an important role in the regulation of immunity 
by affecting the proliferation of T cells and the transport of neutrophils as a cofactor 
for the enzyme involved in the maturation of proteins in the endoplasmic reticulum to 
support calcium influx [5, 91].

3. Conclusions

These findings suggest that adequate selenium supplements may contribute to the 
body’s immune homeostasis. It also shows that the selenoprotein family can prevent 
damage to cellular proteins by directly scavenging reactive oxygen and nitrogen 
species. In this respect, selenium appears to have both a protective and a therapeutic 
role in immune dysfunction, and further research is needed to understand the effect 
of selenium at different pharmacological doses, different administration methods, 
and in different age and gender groups. However, with new studies to be done, it is 
necessary to reveal the mechanisms that play a role in selenium homeostasis depend-
ing on oral or parenteral supplements in humans and animals. In addition, due to 
the fact that the drugs used in the treatment of chronic diseases all over the world, 
including in our country, have both side effects and are expensive, it leads to an 
increase in health costs and causes countries to determine new principles in health 
services. In recent years, scientists have accelerated their studies to find more acces-
sible, inexpensive, and low side effect products such as selenium instead of expensive, 
prescription-only pharmacological agents with high side effects. As a result of the 
promising findings on the effects it creates in the organism, selenium supplements 
may be used as a potential pharmacological agent in the prevention of oxidative stress 
and regulation of inflammation in the near future.
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Chapter 3

Vascular System: Role of Selenium 
in Vascular Diseases
Muhammed Fatih Doğan

Abstract

The trace element selenium is crucial for cellular defense against oxidative stress 
and inflammatory reactions. Balanced selenium levels are important for the vascular 
system, whereas dysregulation can damage vascular reactivity. Reports have also 
supported the strong relationship between oxidative stress and vascular inflammation, 
which are induced by either the overproduction of reactive oxygen species (ROS) or 
the lack of antioxidant defense proteins. The damage of vascular smooth muscle and 
endothelium layer are frequently linked to vascular disorders such as hypertension, 
hypercholesterolemia, and atherosclerosis. Vascular diseases can result in life-
threatening serious cardiovascular complications, such as blood clots, heart attack, 
and stroke. Selenium levels are crucial for preventing vascular damage; however, 
either low or extremely high amounts of selenium intake may contribute to the 
pathophysiology of vascular disorders. Selenoproteins are proteins such as glutathione 
peroxidase containing selenium in the form of the 21st amino acid, selenocysteine. 
Selenoproteins have the capacity to protect vascular smooth muscle and endothelium 
by lowering harmful ROS, which allows them to regulate normal vascular functions 
including vasoreactivity. The current chapter’s goal was to carry out a thorough evalu-
ation of the literature on the connection between selenium and vascular disorders.

Keywords: selenium, selenoproteins, vascular system, vascular disease, hypertension

1. Introduction

Selenium is a cofactor of enzymes that are responsible for antioxidant protection 
in the body. It is abundant in the environment at varying levels and plays an important 
role in the regulation of inflammatory processes in the body [1]. Adequate bioavail-
able levels of selenium in the organism are functionally important for many aspects 
of human biology, including the cardiovascular system, central nervous system, male 
reproductive biology, endocrine system, muscle function, and immunity [2]. Selenium 
is an essential component of selenoproteins, which play an important role in a variety 
of biological functions including antioxidant defense, thyroid hormone formation, 
DNA synthesis, fertility, and reproduction [3]. Many selenoproteins have been identi-
fied in the organism, including glutathione peroxidases (GPXs), thioredoxin reductase 
(TrxR), iodothyronine deiodinase, selenoprotein P, and selenoprotein W [4]. GPXs of 
the selenoprotein family are antioxidants that play an important role in oxidative stress 
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and vascular tissue damage [5]. When the oxidative-antioxidant balance function 
is disrupted as a result of oxidative stress, several pathogenic processes can occur in 
vascular system. Oxidative stress and the formation of reactive oxygen species (ROS) 
contribute to the progression of tissue injury by activating the inflammatory response 
via the release of proinflammatory cytokines and the accumulation of inflammatory 
cells in tissues [6]. Endothelial dysfunction is important in the development of vas-
cular diseases, and selenium reduces endothelial damage and prevents disruption of 
endothelial-dependent relaxation [7]. While a lack of selenium can lead to a variety of 
diseases, an excess of selenium can be toxic and result in the selenosis condition [8]. 
Low or excessive selenium consumption has been linked to different vascular diseases 
such as hypertension, hypercholesterolemia, and atherosclerosis [9]. The fundamental 
pharmacological, physiological, and pathophysiological properties of selenium in 
vascular disease are presented in this chapter.

2. The relationship between selenium and vascular diseases

Vascular smooth muscle (VSM) tone in the arterial vessels determines peripheral 
vascular resistance and blood pressure. Endothelial cells regulate VSM tone and 
subsequently blood flow by producing and releasing relaxants such as nitric oxide 
and contractile substances such as endothelin. The defective function of VSM and 
endothelial layer are commonly associated with impaired vascular responses [10]. 
The coexistence of dyslipidemia and oxidative stress is a major risk factor for the 
development of vascular diseases such as atherosclerosis and hypertension [11]. 
VSM and endothelial cells function properly and maintain an appropriate oxidant/
antioxidant balance when selenium and selenoproteins are present in the proper 
amounts [12]. A sufficient concentration of selenium-dependent GPXs is required to 
maintain an active endogenous antioxidant system, which prevents vascular diseases 
caused by hypertension, hypercholesterolemia, and atherosclerosis [13]. Overall, the 
GPX family is one of the best-studied selenoprotein families in cardiovascular biol-
ogy. There are five different types of GPX isoforms, with GPx-3 being the only one 
found in the extracellular space [14]. GPx-3 deficiency causes a prothrombotic state 
and vascular dysfunction, which promotes platelet-dependent arterial thrombosis 
[9]. The link between low selenium intake and cardiovascular pathologies is due to 
increased oxidative stress and its consequences in the development of non-infectious 
vascular diseases [15]. Decreased amount of selenium in the body is associated with 
an increase in adhesion molecules and a decrease in the expression of selenoproteins 
despite endothelial cell integrity and function [16]. A potentially harmful relationship 
was discovered between high selenium levels and carotid wall thickening, despite a 
long-term vascular protective effect between arterial stiffness and blood pressure in 
people with normal selenium levels [17]. All of this points to a significant relationship 
between selenium and the vascular system. Table 1 summarizes studies demonstrat-
ing the effect of selenium on vascular diseases.

2.1 Hypertension

Because of its high prevalence and associated risks of cardiovascular and kidney 
disease, hypertension is a major public health issue worldwide [30]. Endothelial 
dysfunction, inflammation, hypertrophy, apoptosis, cell migration, fibrosis, and 
angiogenesis have all been linked to vascular remodeling in hypertension [31]. 
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Ozturk et al. reported that selenium reduced the disruption of endothelium-depen-
dent vasorelaxation in the diabetic aorta and improved vascular responses and 
endothelial dysfunction in diabetes by regulating antioxidant enzymes and nitric 
oxide release [29]. Many studies have been conducted to investigate the relation-
ship between hypertension and low and high dietary selenium intake. Selenium 
deficiency in rats caused an increase in H2O2 production by decreasing GPx1 
expression and increased renal angiotensin II type 1 receptor expression by increas-
ing NF-κB activity, resulting in sodium retention and an increase in blood pressure 
[22]. It has been reported that men with antioxidant selenium deficiency (selenium 
concentration lower than 20 μg/l) have higher blood pressure and a higher risk of 
developing hypertension [32]. Obese elderly people may require more antioxidants, 
particularly selenium, to counteract the increased oxidative stress that leads to 

Disease Species Method Conclusion References

Hypertension Human Selenium deficiency Higher risk in pregnancy-
induced hypertension

[18]

Hypertension Human Higher selenium levels Lower risk in ischemic stroke [19]

Hypertension Human Higher selenium levels Selenium protects vascular 
function

[20]

Hypertension Human Higher selenium levels Higher prevalence of 
hypertension

[21]

Hypertension Rat Selenium deficiency Increase in AT1 receptors and 
blood pressure

[22]

Hypertension Rat Higher selenium levels Increase in systolic blood 
pressure

[23]

Dyslipidemia Human Selenium deficiency Low HDL levels, high LDL 
levels

[24]

Hyperlipidemia Human Selenium deficiency Selenium may prevent 
hyperlipidemia

[25]

Dyslipidemia and 
atherosclerosis

Rabbit 0.5% dietary cholesterol-
induced dyslipidemic 
rabbits

Co-supplementation of 
vitamin K2 and selenium 
improved metabolic profile 
and atherosclerosis

[26]

Hyperlipidemia Mice Selenium nanoparticles Selenium reduces 
hyperlipidemia and vascular 
injury

[27]

Hyperlipidemia Mice High fat diet-induced 
dyslipidemia

Selenium-rich Cordyceps 
militaris polysaccharides 
could prevent hyperlipidemia

[28]

Endothelial 
dysfunction

Rat Homocysteine-induced 
endothelial dysfunction 
and apoptosis

Selenium protects against 
homocysteine-induced 
dysfunction and apoptosis of 
endothelial cells.

[7]

Endothelial 
dysfunction

Rat Streptozotocin-induced 
diabetic aorta

Selenium improved vascular 
responses and endothelial 
dysfunction

[29]

Table 1. 
Selenium research in vascular disease.
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vascular oxidative dysfunction [33]. Increased plasma selenium levels were found 
to be significantly associated with a lower risk of first stroke and ischemic stroke 
in hypertensive adults [19]. Selenium has been shown to lower the incidence of 
mercury-related hypertension and protect vascular function among Inuit in Canada 
[20]. Lower serum selenium levels in early healthy pregnancy were linked to an 
increased risk of pregnancy-induced hypertension and served as a risk marker for 
this potentially dangerous disease [18]. High selenium intake appeared to be a blood 
pressure protective factor, particularly in people living in low selenium areas [34]. 
On the contrary, some studies have found that a high selenium intake is associated 
with vascular system damage. Increasing selenium levels above the recommended 
daily intake is not beneficial for vascular health and may even cause hypertension, 
hyperlipidemia, and diabetes [35]. According to Laclaustra et al., there is a strong 
correlation between elevated serum selenium levels and a high prevalence of hyper-
tension in the US population [21]. Similarly, long-term selenium supplementation 
(2 and 6 mg/L) resulted in a significant increase in systolic blood pressure in rats 
after 42 days [23]. The cause of hypertension caused by high selenium intake may 
be related to endothelial dysfunction via a mechanism involving cell death mediated 
by ROS production induced by endoplasmic reticulum stress [36]. While a high 
selenium intake is generally beneficial through an antioxidant mechanism, it may 
also be a factor in the development of hypertension.

2.2 Hypercholesterolemia and atherosclerosis

Hyperlipidemia, caused by hypercholesterolemia and/or hypertriglyceridemia, is 
a critical condition that plays a significant role in the pathogenesis of atherosclerosis 
[37]. Apoptotic VSM cells, which are found in advanced atherosclerosis, cause plaque 
instability and rupture, which results in thrombosis and the clinical symptoms of a 
heart attack or stroke [38]. Selenoproteins can destroy cholesterol that has accumu-
lated in the vascular lumen. Inadequate plasma selenium levels can lead to vascular 
disease by lowering selenoprotein levels [39]. Optimal Se uptake prevents atheroscle-
rosis by reducing oxidative stress, inflammation, endothelial dysfunction, vascular 
cell apoptosis, and vascular calcification [40]. Selenium supplementation increases 
GPX1, GPX4, and TRXR1 expression and activity in vascular endothelial or smooth 
muscle cells. As a result, it prevents oxidative stress, cell damage, and apoptosis 
caused by oxidized low-density lipoprotein (LDL), a cytotoxic hydroxylated choles-
terol derivative found in human blood, cells, tissues, and atherosclerotic plaques [41]. 
The selenoenzyme GPX uses GSH as an electron donor to neutralize hydroperoxide 
and protects against arsenic-induced atherosclerosis in a mouse model [42]. In healthy 
young subjects, a negative relationship was found between serum triglycerides and 
sialic acid, an inflammation marker, and dietary selenium intake [43]. Experimental 
studies have shown that selenium is used in combination with other substances and 
improves hyperlipidemia more strongly. It was reported that concomitant administra-
tion of vitamin K2 and selenium improved metabolic function, markers of cardio-
vascular health, and atherosclerosis in dyslipidemic rabbits [26]. Yu et al. also found 
that consuming a high dose of selenium-rich Cordyceps militaris polysaccharides could 
prevent high fat diet-induced dyslipidemia and dysbiosis of the gut microbiota, and 
that it could be used as a functional food [28]. Vascular dysfunction occurs in patients 
with a high selenium deficiency, and there is a positive correlation between HDL and 
selenium in dyslipidemic patients [24]. Selenium levels tend to decrease with age, and 
high selenium status may be beneficial in preventing hyperlipidemia in young adult 
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females [25]. Selenium nanoparticles could significantly reduce hyperlipidemia and 
vascular injury in apolipoprotein E deficient mice, possibly by regulating cholesterol 
metabolism and reducing oxidative stress via antioxidant selenoenzymes/selenopro-
teins, and could be a potential candidate for atherosclerosis prevention [27].

3. Conclusions

These findings suggest that adequate selenium intake may contribute to prevent-
ing the development of hypertension, hyperlipidemia, and atherosclerosis by reduc-
ing oxidative stress and inflammation associated with vascular diseases. Furthermore, 
the findings emphasize the importance of consuming or supplementing with an 
adequate amount of selenium to optimize vascular system function. Selenium appears 
to have both a protective and a therapeutic role in the vascular dysfunction, and more 
research on the effect of selenium on the vascular system is required. As a result of 
the recent studies, it is understood that people living in low selenium-containing 
regions should be protected from vascular damage by taking selenium supplements. 
Selenium, which regulates blood pressure and reduces atherosclerosis caused by 
hyperlipidemia, could be used as a potential pharmacological agent in the prevention 
of vascular diseases in the near future.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Chapter 4

Efficacy of Selenium for 
Controlling Infectious Diseases
Poonam Gopika Vinayamohan, Divya Joseph, Leya Susan Viju 
and Kumar Venkitanarayanan

Abstract

Selenium, an essential micronutrient for both animals and humans, has been 
documented to possess antimicrobial properties against a wide range of pathogenic 
microorganisms. One of the primary mechanisms by which selenium exerts its 
antimicrobial activity is through the generation of reactive oxygen species that can 
damage microbial cells. Besides its direct antimicrobial effects, selenium can enhance 
the immune response to infections, making it a potential tool in the prevention and 
treatment of infectious diseases. Given the growing threat of antibiotic resistance and 
the need for alternative therapeutic options, the antibacterial properties of selenium 
are of interest to the scientific community. This book chapter will summarize the cur-
rent state of knowledge on the antibacterial properties of selenium, and its potential 
clinical applications as a therapeutic agent against infectious diseases. Further, the 
chapter explores the limitations and challenges associated with the use of selenium as 
an antibacterial agent.

Keywords: selenium, nanoparticles, immune response, antimicrobial effect, human 
health

1. Introduction

Selenium, a trace element discovered in 1817 by the Swedish chemist Jöns Jacob 
Berzelius, has since been demonstrated to be an indispensable micronutrient for 
human health. Although initially recognized for its practical value in preventing nutri-
tional myopathies and vascular disorders in livestock, subsequent research revealed the 
numerous ways in which selenium contributes to overall human health and well-being.

Selenium has emerged as an essential component of several selenoproteins that 
play a crucial role in various physiological processes in humans. These processes 
include antioxidant defense, immune function, thyroid hormone metabolism, and 
redox homeostasis. The importance of selenium in human health became apparent 
when researchers discovered its role in glutathione peroxidase (GPx) in 1973, as well 
as its ability to prevent liver necrosis in vitamin E-deficient rats. This enzyme, which 
contains selenium as an integral part of its structure, is a potent antioxidant that 
neutralizes harmful reactive oxygen species (ROS) and protects cells from oxidative 
damage.
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Selenium’s role in human health received increased attention with the observation 
that selenium deficiency could lead to serious diseases such as Keshan disease, an 
endemic cardiomyopathy affecting people in selenium-deficient regions of China [1]. 
This discovery prompted further investigation into the geographical distribution of 
selenium intake and its impact on public health. Subsequent research has established 
that selenium deficiency is associated with a higher risk of certain cancers, impaired 
immune function, and cognitive decline. On the other hand, selenium toxicity, 
although rare, can occur when excessive amounts of the element are consumed, lead-
ing to conditions such as selenosis, which is characterized by symptoms such as hair 
loss, brittle nails, and gastrointestinal disturbances [2].

In recent years, the antimicrobial properties of selenium and its potential applica-
tions in combating pathogens of public health significance have become an area of 
growing interest. Recent advancements in nanotechnology have led to the development 
of selenium nanoparticles (SeNPs), which exhibit enhanced antimicrobial properties 
due to their increased surface area and unique physiochemical properties. SeNPs have 
been shown to exert direct antimicrobial effects, disrupt biofilms, and to improve host 
immune responses, making them a potential therapeutic agent against many pathogens.

Despite the growing body of evidence supporting selenium’s antimicrobial 
properties, our understanding of its multifaceted functions in the human body 
remains incomplete. In this chapter, we will delve into the intricate mechanisms 
through which selenium exerts its immunomodulatory, antibacterial, and antiviral 
effects, and explore the potential applications of selenium in medicine and disease 
prevention. By providing a comprehensive understanding of the potential benefits 
of selenium in the context of human health and disease prevention, this chapter will 
shed light on its pivotal role in combating pathogens of public health significance.

2.  Enhancement of immune response and combating pathogens with 
selenium and selenium nanoparticles

Selenium is renowned for its capacity to enhance immune responses against infec-
tions through multiple mechanisms. It can increase the number of T cells, improve the 
proliferative responses of lymphocytes to mitogens, stimulate the secretion of the cyto-
kine IL-2, and enhance the activity of natural killer (NK) cells. These combined effects 
contribute to the strengthening of immune defences against various pathogens [3]. 
Selenium’s ability to boost the immune system and reduce inflammation can be mainly 
attributed to its antioxidant properties where its primary role is to regulate the func-
tion of GPx. Gpx in turn, decreases the levels of hydrogen peroxide and phospholipid 
hydroperoxides, preventing the generation of free radicals and ROS [4]. It also decreases 
hydroperoxide intermediates in the metabolic pathway of arachidonic acid, consequently 
reducing the production of inflammatory prostaglandins and leukotrienes [5].

The main mechanism of action for selenium involves its interaction with seleno-
proteins, which include antioxidant enzymes like GPxs and thioredoxin reductases 
(TrxRs). Selenoproteins are composed of the amino acid selenocysteine (Sec), 
which is integrated into the protein structure during translation. This occurs after 
the conversion of O-phosphoseryl-transfer RNA (O-phosphoseryl-tRNA) [Ser]Sec 
into selenocysteyl tRNA[Ser]Sec [6]. Selenium deficiency as well as small changes 
in the expression and genetic variations of certain selenoproteins have been linked 
to cancer and immune dysfunction. Among the 25 genes encoding human seleno-
proteins, immune cells express most of them pointing towards its immune potential. 



45

Efficacy of Selenium for Controlling Infectious Diseases
DOI: http://dx.doi.org/10.5772/intechopen.111879

Notably, the GPx isoenzymes GPx1 and GPx4 exhibit the highest expression levels in 
both T lymphocytes and macrophages [7]. Studies have demonstrated that selenite 
supplementation can enhance the production of 15-deoxy-D(12,14)-prostaglandin 
J2, an anti-inflammatory compound derived from arachidonic acid, by upregulating 
prostaglandin D2 synthase. Additionally, selenite has been found to reduce the pro-
duction of the proinflammatory prostaglandin E2 (PGE2) in murine macrophages [8]. 
Selenium supplementation in patients with low selenium status activated the proin-
flammatory cellular (Th1-type) immune response against pathogens, while prevent-
ing excessive immune system activation and tissue damage by favoring macrophage 
differentiation to the more anti-inflammatory M2 phenotype [9].

Research has indicated that the addition of selenium to poultry diets can result in 
elevated expression of interferon and ISG (interferon-stimulated genes) in lymphoid 
tissue cells playing a crucial role in enhancing the antiviral responses of these cells 
[5]. Additionally, selenium enhances the activity of various immune cells such as 
neutrophils, macrophages, NK cells, and T lymphocytes. It also promotes the produc-
tion of antibodies and regulates the production of cytokines, including an increase 
in IL-2 and a reduction in TNF and IL-8. Moreover, selenium has  preventive effects 
against inflammatory diseases by reducing the activation of Nuclear Factor kappa 
B (NF-κB) and the production of pro-inflammatory cytokines. Selenium exhibits 
cytotoxic effects and has the potential to induce apoptosis in tumor cells. Selenium 
also offers protection against UV radiation, reduces viral virulence, and contributes to 
the prevention of atherosclerosis and cardiovascular diseases [9].

Selenium nanoparticles (SeNPs) have also shown the capability to modulate 
autophagy in different cancer cells, a process commonly associated with the induction 
of cancer cell death or apoptosis. SeNPs lead to the formation of autophagosomes 
and enhance autophagy by regulating specific proteins involved in autophagy, such 
as Beclin-1, LC3-II, and p62 [10]. Importantly, autophagy plays a role in regulating 
immune functions that can impact the infection and survival of pathogens within 
host cells. Moreover, selenium nanoparticles have demonstrated significant immu-
nomodulatory effects by influencing various immune cells and modulating essential 
signalling pathways associated with the immune response. With the emergence of 
chimeric antigen receptor T-cell (CAR-T) therapy, immunotherapy has become a 
promising new treatment for malignant tumors [11].

Studies have demonstrated that the inclusion of dietary chitosan-selenium nanopar-
ticles (CTS-Se NPs) can improve the immune response and disease resistance in zebraf-
ish when exposed to the bacterium Aeromonas hydrophila [12]. Following treatment 
with CTS-Se NPs, zebrafish splenocytes exhibited higher proliferation when stimulated 
with lipopolysaccharide (LPS) and concanavalin A (ConA). The immune response of 
splenocytes against ConA was found to be associated with the up-regulation in IL-2 and 
IL-12 production. Moreover, SeNPs can promote host antibacterial immunity by induc-
ing host cell apoptosis, autophagy, and M1 anti-bacterial polarization, which signifi-
cantly enhances the intracellular Mycobacterium tuberculosis killing efficiency [13].

3. Antibacterial activity of selenium and selenium nanoparticles

Selenium has recently gained attention for its potential antibacterial properties. 
Research has demonstrated its ability to interfere with the growth and metabolism 
of various bacterial species, making it a promising candidate for the prevention and 
treatment of bacterial infections. Selenium has been shown to inhibit the growth 
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of several pathogenic bacteria, including Staphylococcus aureus, Escherichia coli, and 
Helicobacter pylori. Furthermore, selenium can enhance the antibacterial effects 
of conventional antibiotics, potentially reducing antibiotic resistance. This section 
delves into the mechanisms underlying selenium’s antibacterial properties and its 
prospective applications in the prevention and treatment of bacterial infections.

In both eukaryotes and prokaryotes, selenium plays essential roles in diverse 
biological processes, including redox homeostasis, thyroid hormone metabolism, and 
immune function. Prokaryotes express a wide range of selenoproteins, with approxi-
mately 20% of sequenced prokaryotic genomes encoding at least one trait for selenium 
utilization. These selenoproteins participate in multiple selenium-dependent enzymes 
(such as formate dehydrogenase in Methanococcus jannaschii and glycine reductase in 
Clostridioides difficile) and may confer increased fitness to prokaryotes in the presence 
of selenium, similar to the benefits observed in humans and other mammals [14].

This intricate interplay between host and pathogen during infection poses a 
challenge for the mammalian host, as both parties compete for the limited selenium 
resources. Despite its importance, limited information is available regarding the role 
of selenium in bacterial physiology, virulence, and overall pathogenesis. The litera-
ture documenting the antimicrobial activity of selenium toward various pathogenic 
microorganisms is summarized below.

3.1 Staphylococcus aureus

Staphylococcus aureus is an opportunistic Gram-positive bacterium that can cause 
illnesses ranging from mild skin infections to more severe illnesses such as necrotizing 
pneumonia and bacteremia. Besides this, there is an increasing concern for antibiotic 
resistance among S. aureus including methicillin-resistant strains. As a result, there is 
a growing interest in exploring selenium as a potential therapeutic agent for control-
ling S. aureus infections [15].

The immune system’s response to S. aureus infection involves the activation of 
NF-κB and mitogen-activated protein kinase (MAPK) signaling pathways, which play 
central roles in inflammation and the production of pro-inflammatory cytokines, 
including TNF-a, IL-1B, and IL-6 [16]. S. aureus has developed various strategies to 
evade the host’s immune response, such as producing virulence factors to resist the 
mitochondrial agents generated by phagocytosis and competing with inducible nitric 
oxide synthase (iNOS) for the shared substrate arginine. Selenium, as an antioxidant 
and a vital component for optimal immune cell functioning, may aid in the host 
response to S. aureus infection.

Selenium-supplemented macrophages have been shown to produce reduced 
amounts of nitric oxide (NO) while increasing ROS production, particularly hydrogen 
peroxide. This supplementation also decreases bacterial arginase activity, limiting the 
bacterium’s tolerance to oxidative stress. Furthermore, selenium enhances phagocy-
tosis and increases the bactericidal capacity in a dose-dependent manner [15]. In the 
context of S. aureus infection, selenium supplementation has been found to decrease 
inflammatory cytokine gene expression and protein levels, such as TNF-a, IL-1b, and 
IL-6. Selenium inhibits the activation of both NF-κb and MAPK signaling pathways 
by suppressing the phosphorylation of IkBa, p65, Erk, jnk, and p38, thereby attenuat-
ing the overall inflammatory response [16].

Selenium has also been demonstrated to possess an immunoregulatory function 
on inflammation in mammary epithelial cells and glandular tissue during S. aureus-
induced mastitis [17] and selenium supplementation was shown to decrease mastitis 
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incidence in dairy cattle [18]. Selenium deficiency results in increased pro-inflamma-
tory cytokine levels, while supplementation promotes anti-inflammatory cytokine 
expression and inhibits NF-κB activation [19]. Additionally, selenium inhibits S. 
aureus infection of the uterus and reduces the activation of toll-like receptor-2 (TLR-
2) inflammatory signaling, decreasing caspase activity [20].

S. aureus is known to produce biofilms, which contribute to antibiotic resistance 
and chronic infections. The use of selenium nanoparticles (SeNPs) has shown 
promise in addressing this challenge. SeNPs have demonstrated significant inhibitory 
effects on S. aureus growth during the early stages of infection, potentially preventing 
biofilm formation [21]. Furthermore, SeNPs exhibit both anti-adherence and anti-
microcolony formation properties against S. aureus biofilms indicating their potential 
to disrupt biofilm formation [22].

A practical application of SeNPs has been observed in coating titanium implants. 
These coatings have demonstrated potent antimicrobial activity against drug-resistant 
strains, such as methicillin-resistant S. aureus (MRSA) and methicillin-resistant 
Staphylococcus epidermidis. The SeNP-coated implants effectively inhibited biofilm 
formation and reduced bacterial viability [21]. This suggests the potential use of sele-
nium nanoparticle coatings as an effective anti-infective barrier for orthopedic medi-
cal devices, offering a novel approach to combating biofilm-associated infections.

Diabetic foot wounds, which are often infected by antibiotic-resistant bacteria 
such as MRSA, require alternative antimicrobial drugs. A hybrid nanostructure 
comprising selenium, chitosan, and mupirocin has demonstrated significant antimi-
crobial activity against MRSA. This system played a crucial role in wound healing by 
reducing the minimum inhibitory concentrations (MIC) of mupirocin, and promot-
ing wound contraction, angiogenesis, fibroblastosis, collagen production, and growth 
of hair follicle and epidermis [23].

Selenium holds promise as a therapeutic agent for controlling S. aureus infection, 
with research highlighting its potential in enhancing the immune response, prevent-
ing biofilm formation, and promoting wound healing. Additional studies are needed 
to ascertain the ideal dosage and explore its applications in clinical settings.

3.2 Escherichia coli

Escherichia coli is a Gram-negative bacterium that typically resides in the lower 
intestinal tract of humans and animals. Though the majority of E. coli are harmless, 
some can cause severe infections, such as gastrointestinal illness, urinary tract infec-
tions, and meningitis. The emergence of antibiotic-resistant strains of E. coli has led 
to a growing need for alternative treatments.

Selenium deficiency, especially in conjunction with vitamin E deficiency, has been 
found to exacerbate the pathology of gastrointestinal tract diseases caused by patho-
genic E. coli such as those caused by enteropathogenic E. coli (EPEC) [24]. Deficiency 
in these nutrients leads to heightened oxidative stress, which in turn causes increased 
pro-inflammatory signaling and tissue damage. On the other hand, selenium-
enriched probiotics have demonstrated protective effects against pathogenic E. coli in 
the gut, enhancing antioxidant performance, inhibiting pathogenic bacterial coloni-
zation, and bolstering immunity [25].

Selenium-enriched probiotics have been found to outperform sodium selenite in 
raising serum selenium levels, most likely due to the improved absorption of organic 
selenium compounds over inorganic ones [14]. These probiotics adhere to the intes-
tine, effectively preventing pathogenic bacteria such as E. coli from interacting with 
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potential binding sites. This emphasizes the capacity of selenium-enriched probiotics 
to support gut health by improving antioxidant performance, preventing pathogenic 
bacterial colonization, enhancing immunity, and reducing enteric illnesses.

Selenium supplementation has been reported to aid in the resolution of chronic 
bacterial prostatitis (CBP) caused by E. coli, especially when used in conjunction with 
antibiotics [26]. The current primary treatment against CBP involves the use of antibi-
otics, which necessitate small molecular weight and fat-soluble properties to facilitate 
diffusion across the prostate epithelial membrane. Combining selenium with the 
antibiotic ciprofloxacin resulted in a significant reduction of E. coli in the CBP model 
and a considerable decrease in inflammatory cell infiltration within the prostate tissue.

Selenium has also exhibited inhibitory effects on biofilm formation in uro-
pathogenic E. coli (UPEC), which is responsible for 80% of urinary tract infections. 
Selenium reduces exopolysaccharide synthesis and downregulates biofilm-associated 
genes (fimA, fimH, papG, focA, sfaS) [27]. Moreover, it has proven effective in deacti-
vating pre-established UPEC biofilms on urinary catheters.

In the context of enterohemorrhagic E. coli O157:H7, a foodborne pathogen, 
selenium has been shown to inhibit biofilm formation by reducing attachment, 
decreasing EPS production, and downregulating genes involved in biofilm production 
[28]. Additionally, selenium supplementation lowered extracellular and intracellular 
verotoxin levels, downregulated verotoxin genes, and reduced Gb3 receptor synthesis 
(receptor for verotoxin) in lymphoma cells by downregulating the LacCer synthase 
gene involved in Gb3 synthesis [29].

Although sodium selenite does not directly exhibit antibacterial properties against 
E. coli and other bacteria (Bacillus subtilis, Bacillus mycoides, and Pseudomonas spp.), 
it has been found to enhance the inhibitory effects of ampicillin and streptomycin on 
these bacterial growth [30]. This suggests that selenium supplementation may func-
tion as an adjuvant, complementing conventional antibiotic therapy in the treatment 
of E. coli infections.

3.3 Helicobacter pylori

Helicobacter pylori is a Gram-negative, microaerophilic, helix-shaped bacterium 
that colonizes the gastric mucous layer or adheres to the epithelial lining of the 
stomach [31]. Present in approximately 50% of the human population worldwide, H. 
pylori is responsible for causing 90% of duodenal ulcers and 80% of gastric ulcers [9], 
with infected individuals facing an increased risk of developing gastric cancer and 
mucosal-associated-lymphoid type lymphoma [31].

Currently, the treatment for H. pylori infection in humans involves a combination of 
proton pump inhibitors, amoxicillin, and clarithromycin [31]. However, H. pylori has 
shown to develop resistance to clarithromycin, leading to decreased eradication rates.

During H. pylori infection, micronutrient homeostasis, including that of sele-
nium, is frequently disrupted, with equilibrium typically restored upon successful 
eradication of the pathogen [32]. Interestingly, whole plasma selenium level remains 
consistent between patients with or without H. pylori induced inflammation, and 
antral mucosa of individuals with H. Pylori-associated gastritis exhibits higher levels 
of selenium [33–35]. Moreover, increased inflammation scores of the antral mucosa 
correlate with elevated tissue selenium concentrations [33].

This increase in selenium concentration at the infected mucosa may be a protective 
response, where selenium acts as an antioxidant to prevent further damage caused by 
ROS or mediated the resolution of inflammation. This is supported by the decrease in 
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gastric tissue selenium observed in patients after successful eradication of H. pylori 
[33]. A combination of antioxidants, including vitamins A, C, and E, and selenium, 
has been shown to protect against H. pylori infection and reduce gastritis severity in 
guinea pigs, highlighting the potential benefits of dietary antioxidant supplementa-
tion in the prevention and management of H. pylori-associated diseases [36].

It is essential to note that selenium deficiency has been identified as a risk factor 
for the conversion of precancerous gastric lesions into carcinomas [33]. The decline 
in selenium may be due to long-lasting mucosal inflammation, which results in an 
altered gastric microenvironment leading to gastric carcinogenesis. These findings 
suggest that selenium supplementation could aid in preventing the onset of gastric 
carcinogenesis in chronically infected individuals and reduce mortality in those 
who already have gastric ulcer [37]. Furthermore, one study indicates a correlation 
between selenium status and location of gastric cancer [38]. Additional research is 
needed to investigate why selenium levels drop before carcinogenesis and the mecha-
nisms behind this occurrence.

3.4 Vibrio species

Selenium has demonstrated potential in combating infections caused by Vibrio 
species, such as Vibrio cholerae and V. parahaemolyticus. These pathogenic bacteria 
cause toxin-mediated diarrhea and seafood-related gastroenteritis in humans, 
respectively, and can lead to severe dehydration and even death in untreated patients. 
Innovative strategies to control and prevent such infections are necessary for 
enhanced public health.

Selenium has been shown to reduce V. cholerae’s motility, intestinal cell attach-
ment, and cholera toxin production. The reduction in motility, an essential step in 
the pathogenesis of V. cholerae, may be due to alterations in membrane integrity that 
affect flagellar structure. These findings suggest that selenium supplementation can 
benefit the host by enhancing their immune response, while simultaneously decreas-
ing the virulence of the bacterial pathogen [39].

Biogenic selenium nanoparticles stabilized using seaweed have exhibited significant 
antibacterial activity against V. parahaemolyticus. Scanning electron microscopy analysis 
revealed that the nanoparticles interact with the bacterium, attaching to the cell mem-
brane and causing non-viability [40]. Similarly, selenium nanoparticles synthesized 
from marine macroalgae have demonstrated antimicrobial activity against pathogenic 
V. harveyi and V. parahaemolyticus [41]. This finding suggests the potential applicability 
of these nanoparticles in combating a broader range of Vibrio species in aquaculture.

3.5 Clostridioides difficile

Clostridioides difficile is a pathogenic bacterium causing toxin-mediated enteric 
disease in humans, mainly affecting hospital inpatients and the elderly undergoing 
prolonged antibiotic therapy. The rise of hypervirulent strains has resulted in C. dif-
ficile being listed as one of three urgent threats to human health. Although antibiotics 
are the drug of choice for treating C. difficile infections, the emergence of antibiotic 
resistance has led to the investigation of alternative treatments. The use of sodium 
selenite as an alternative therapeutic agent was shown to reduce the virulence of C. 
difficile by reducing exotoxin production without affecting the growth of beneficial 
bacteria commonly found in the human gastrointestinal tract. Furthermore, sodium 
selenite significantly increased the sensitivity of C. difficile to ciprofloxacin [42].
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3.6 Acinetobacter baumannii

Acinetobacter baumannii is a multidrug-resistant pathogen that causes wound infec-
tions in humans. Due to its ability to form biofilms and colonize epithelial cells, A. bau-
mannii infections can be difficult to treat. A study exploring the potential of selenium in 
inhibiting A. baumannii’s ability to form biofilms and colonize human skin keratinocytes 
was found to reduce bacterial adhesion and invasion of human skin keratinocytes, disrupt 
biofilm architecture, and downregulate genes associated with biofilm production [43].

3.7 Selenium nanoparticles for bacterial infections

Selenium nanoparticles (SeNPs) have garnered attention for their unique 
 physicochemical properties, which include size, surface charge, and concentration, all 
of which influence their antimicrobial activity. The differential antimicrobial effects 
of SeNP on Gram-positive and Gram-negative bacteria, as well as fungi like Candida 
species, have been explored in several studies. For example, SeNPs synthesized by 
Providencia vermicola BGRW exhibited a strong inhibitory effect on the growth of 
several Gram-positive pathogens (such as S. aureus, B. cereus, methicillin-resistant S. 
aureus, and Streptococcus agalactiae) and E. coli, but most Gram-negative bacteria and 
Candida albicans were not inhibited [44].

The surface charge of SeNPs, which can be either positive or negative depending on 
the synthesis method, affects their interaction with bacterial cells. Studies have shown 
that negatively charged nanoparticles exhibit higher antimicrobial activity against 
Gram-positive bacteria due to electrostatic attraction between the negatively charged 
nanoparticles and the positively charged bacterial cell surface [14]. On the other hand, 
negatively charged SeNPs do not exhibit the same effect on Gram-negative bacteria, as 
the small size of penetration channels in their cell walls and the insufficient negatively 
charged regions on the cell wall hinder the attachment of positively charged SeNPs.

SeNPs also exhibit potential as an antimicrobial agent in combination with con-
ventional antibiotics. By increasing the bioavailability of these agents and reducing 
the likelihood of antibiotic resistance, SeNPs can enhance the effectiveness of existing 
treatments. For instance, Menon et al. [45] demonstrated that Klebsiella sp. was the 
most susceptible to SeNP administration at a concentration of 100 μg/ml, with Serratia 
sp. and S. aureus also exhibiting significant growth reduction. SeNPs can be produced 
by lactic acid bacteria at ambient temperatures and pressures, providing a cost-effec-
tive and environmentally friendly alternative to chemically based methods [46].

3.7.1 Selenium nanoparticles against foodborne pathogens

The biosynthesized SeNP from Bacillus licheniformis has been shown to effectively 
control growth and biofilm formation of foodborne pathogens such as B. cereus, 
Enterococcus faecalis, E. coli O157 H7, S. aureus, Salmonella Typhimurium, and S. enteritidis. 
Although they did not completely remove established biofilms, a concentration of 75 mg/
ml showed a slight effect, and SeNPs demonstrated no toxicity on Artemia larvae, making 
them a promising agent for preventing biofilm formation by foodborne pathogens [47].

3.7.2 Selenium nanoparticles against Pseudomonas aeruginosa

The antibacterial activity of SeNP synthesized by Stenotrophomonas maltophilia and 
Bacillus mycoides was assessed against clinical isolates of Pseudomonas aeruginosa. These 
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SeNPs demonstrated inhibitory effects on bacterial growth at concentrations ranging 
from 8 to 512 mg/ml. Conversely, the SeNP displayed no inhibitory activity against 
Candida albicans and Candida parapsilosis species [48]. These findings suggest that 
antibacterial activity of SeNP may be bacterium specific. Consequently, researchers have 
sought to optimize the physicochemical properties of SeNP, such as stabilization and 
interaction with biological molecules to broaden their spectrum of antimicrobial activity.

3.8 Selenium interactions with antimicrobials

SeNPs have demonstrated promising synergistic activity when combined with 
other antimicrobials. In a study that explored the potential synergistic effects, SeNPS 
were generated using a simple wet chemical method and combined with a set concen-
tration of lysozyme, creating a nanohybrid system incorporating both SeNPs and lyso-
zyme. Antibacterial tests were conducted on S. aureus and E. coli, revealing that SeNPs 
played a crucial role in inhibiting bacterial growth at very low protein concentrations. 
Furthermore, individual nanoparticles effectively suppressed bacterial growth even in 
the presence of high lysozyme concentrations when used in the modest amounts [49].

Huang et al. developed a synergistic nanocomposite by conjugating quercetin and 
acetylcholine to the surface of SeNPs, which are synthesized by chemically reducing 
Na2SeO3 [50]. According to their findings, the nanoparticles interacted with the bac-
terial cell wall, causing permanent damage to the membrane, and exhibiting remark-
able synergistic antibacterial activity against MRSA at low doses. The results suggest 
that the synergistic effects of quercetin and acetylcholine increase the antibacterial 
activity of SeNPs [50].

Cihalova et al. reported that SeNPs possess potent inhibitory action when combined 
with conventional antibiotics. Using an impedance method, they observed a greater 
disruption of biofilms after applying antibiotic complexes containing SeNPs compared 
to those treated with antibiotics alone. In comparison with bacteria without antibacte-
rial compounds, the nanoparticles inhibited the formation of MRSA biofilms by up to 
94% ± 4%, while drugs without SeNPs only suppress MRSA by up to 16% ± 2% [51]. 
This evidence highlights the potential for SeNPs to enhance the efficacy of antimicro-
bial treatments through synergistic interactions with other antimicrobials.

4. Antiviral activity of selenium and selenium nanoparticles

Beyond its involvement in bacterial infections, selenium has also been implicated 
in viral infections. Studies have indicated that selenium deficiency can exacerbate 
the pathogenicity of certain viruses, while adequate selenium levels contribute to 
improved immune responses and viral clearance. Selenium is vital in defending the 
host system against viral infections in various infectious diseases. Nutritional defi-
ciencies in selenium can affect both the pathogenicity of a virus and the immune sys-
tem’s response [52]. Selenium compounds, such as selenite, can inhibit viral invasion 
of healthy cells and reduce their infectiousness [53]. Moreover, selenium and vitamin 
E supplements have shown to increase resistance to respiratory viral infections [3].

4.1 SARS-CoV-2

The COVID-19 pandemic, caused by severe acute respiratory syndrome corona virus 
2 (SARS-CoV-2), emerged in 2019 and has globally affected about 530 million people, 
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causing 6.3 million deaths [54]. Selenium may protect the host due to its critical role as a 
cofactor for enzymes that work with vitamin E to reduce the generation of ROS, which can 
cause oxidative damage in both pathogen and host cells [55]. The main SARS-CoV-2 prote-
ase interacts with glutathione peroxidase1 (GPX1), a crucial selenium-dependent enzyme 
responsible for viral replication [56]. Notably, the GPX1 mimic synthetic selenium 
compound ebselen is a potent inhibitor of SARS-CoV-2 virus main protease enzyme [57].

Sodium selenite can oxidize the thiol groups on the surface of the coronavirus 
protein disulfide isomerase, preventing it from penetrating healthy cell membranes. 
Wang et al. demonstrated the potential of SeNPs for COVID-19 diagnosis using a 
lateral flow immunoassay kit based on SeNPs-modified SARS-CoV-2 nucleoprotein, 
which detected anti-SARS-CoV-2 IgM and IgG in human serum within 10 minutes 
with the naked eye [58].

4.2 Human immunodeficiency virus

Human immunodeficiency virus (HIV) is an RNA virus in the Lentivirus genus 
that causes acquired immunodeficiency syndrome (AIDS), leading to a compromised 
immune system by infecting immune cells. HIV currently affects over 37 million 
individuals and causes 1.5 million annual deaths [59]. Selenium has been shown to sup-
press HIV in vitro due to its antioxidant properties as a component of GPx and other 
selenoproteins. Many studies have reported low serum selenium levels in HIV-positive 
individuals, and serum selenium levels decrease as the disease progresses. Several 
cohort studies have established a link between selenium deficiency and the develop-
ment of AIDS. Although some randomized controlled trials have shown that selenium 
supplementation can improve CD4+ cell counts and reduce hospitalizations and diar-
rheal morbidity, additional follow-up studies are needed to confirm this finding [60].

4.3 Influenza virus

Influenza virus affects the respiratory tract, and acute pneumonia is diagnosed in 
30–40% of hospitalized individuals with laboratory-confirmed influenza. Influenza 
A is the most common viral cause of acute respiratory distress syndrome (ARDS) in 
adults [61]. Selenium therapy has been shown to modify the response to the influenza 
vaccination in older adults, which was associated with elevated IFN-γ levels following 
vaccination [62, 63]. Li et al. developed oseltamivir adorned SeNPs to treat the H1N1 
virus. These compounds significantly hindered the H1N1 influenza virus’s ability to 
bind to host cells by preventing the activities of hemagglutinin and neuraminidase 
[13, 64]. SeNPs have demonstrated potential in combating the H1N1 influenza virus 
by blocking the ROS-mediated AKT and p53 signaling pathways, thereby preventing 
apoptosis, DNA fragmentation, chromatin condensation, and ultimately, cell death 
[28, 65]. Moreover, SeNPs can prevent cellular and lung tissue damage caused by the 
H1N1 virus [66]. Studies in broiler chickens revealed that while hexanic extracts of fig 
and olive fruit, along with nano-selenium, induced some immunity against the H9N2 
avian influenza virus, they were unable to prevent anamnestic reactions or infections 
[67]. Research by Shojadoost et al. indicated that selenium supplementation enhances 
the immunity provided by vaccines, as shown by increased antibody levels (IgM 
and IgY) and reduced virus shedding in chickens treated with organic and inorganic 
selenium [68]. In mice, a ruthenium-selenium metal complex exhibited antiviral 
mechanisms by inhibiting viral assembly and replication, controlling virus-mediated 
apoptosis, and reducing lung tissue inflammation [69].
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4.4 Acute respiratory distress syndrome

Acute respiratory distress syndrome (ARDS), a common cause of respiratory 
failure in critically ill patients, is characterized by noncardiogenic pulmonary edema, 
hypoxemia, and mechanical ventilation requirements [70]. A case study investigated 
the impact of sodium selenite on ARDS and found that patients treated with it for 
10 days experienced reduced airway resistance, improved lung compliance, increased 
fraction of inspired oxygen (FiO2), higher arterial oxygen pressure (PaO2), shorter 
hospital stays, and lower mortality rates. Selenium supplementation was found to 
restore lung antioxidant capacity, regulate inflammatory responses via interleukin 
(IL)-1 and IL-6 levels, and significantly enhance respiratory mechanics [71, 72].

4.5 Hepatitis virus

Viral hepatitis, which causes over 1.3 million deaths annually worldwide, is a 
major global health concern [73]. Although current anti-HIV drugs help control the 
epidemic, side effects and drug resistance call for safer and more effective treatment 
options. Sodium selenite has been found to inhibit Hepatitis B virus (HBV) protein 
expression, transcription, and genome replication in hepatoma cell cultures in a 
dose-dependent manner [13, 74]. By administering SeNPs and the hepatitis B anti-
gen vaccination, Mahdavi et al. devised a method that could increase IFN-g levels, 
stimulate a Th1 response, and thus improve vaccine efficacy by activating the immune 
system toward a Th1 state [75].

4.6 Enterovirus

Enterovirus 71 (EV71) is the primary pathogen responsible for severe cases of 
hand, foot, and mouth disease (HFMD), for which there is currently no effective 
treatment [76]. Oseltamivir, a potent antiviral drug, was loaded onto SeNPs to 
enhance its antiviral activity against EV71. The functionalized SeNPs improved 
oseltamivir’s efficacy by inhibiting EV71 growth, preventing cell death, and reducing 
caspase-3 activity and ROS generation [76]. Additionally, SeNPs were used to load 
small interfering RNA (siRNA) targeting the EV71 Vp1 gene, with polyethylenimine 
(PEI) decorating the surface (Se@PEI@siRNA). In nerve cell line, Se@PEI@siRNA 
demonstrated high interference efficiency and protected cells from infection [77].

5. Antifungal activity of selenium and selenium nanoparticles

Selenium has emerged as a promising agent in mitigating the harmful effects of 
mycotoxins such as aflatoxin B1 (AFB1) and ochratoxin A (OTA), which pose signifi-
cant health risks and economic losses due to their prevalence in foods. Further, SeNPs 
have recently gained interest for their superior antifungal properties and ability to 
inhibit the growth of multidrug-resistant fungus, offering potential strategies against 
mycotoxin-induced health issues.

AFB1 is a potent mycotoxin produced by certain strains of Aspergillus fungi (such 
as Aspergillus flavus and Aspergillus parasiticus), and is a prevalent contaminant in 
food, contributing to health issues in humans. Chronic exposure to AFB1 has been 
associated with immune toxicity, carcinogenicity, genotoxicity, hepatotoxicity, and 
reproductive disorders. AFB1 undergoes bioactivation in the liver to a highly reactive 
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form exo-AFB1–8,9-epoxide (AFBO) that can cause DNA damage. Selenium-fortified 
yogurt has been shown to mitigate the harmful effects of aflatoxins in mice, such as 
weight loss and reduced food intake, by enhancing aflatoxin detoxification pathways 
and preventing AFB1-DNA adduct formation [78]. AFB1 can also trigger oxidative 
stress by generating ROS, potentially necessitating cytochromeP450 (CYP450) activa-
tion. Dietary selenium was shown to mitigate AFB1-induced liver damage in chickens 
by inhibiting CYP450 activation of AFB1 and enhancing antioxidant responses 
through selenoprotein gene upregulation [79]. AFB1 has also been reported to impair 
immune function, increasing susceptibility to infectious diseases. However, selenium 
supplementation, especially in the form of organic selenium, selenomethionine 
(SeMet), has demonstrated promising results in ameliorating AFB1-induced immune 
toxicity. The protective effects of SeMet were largely attributed to its ability to boost 
the expression of GPx1 and selenoprotein S, key element in antioxidant defense [80]. 
Selenium has also been the subject of extensive research due to its potential role in 
activating testosterone synthesis. Research has demonstrated the protective effects of 
selenium against AFB1-induced testicular toxicity. Specifically, selenium was found 
to improve testes index, sperm functional parameters (including concentration, 
malformation, and motility), and serum testosterone levels in AFB1-exposed mice. 
These findings suggest that selenium can effectively mitigate the oxidative stress and 
impaired testosterone synthesis induced by AFB1 exposure [81].

Kashin-Beck disease (KBD) characterized by severe osteoarthritis has been associ-
ated with low environmental selenium and the involvement of mycotoxins. A study 
conducted by Hong et al. has shown that selenium influences the growth of Fusarium 
strains and decreases chondrocyte injury indicators when chondrocytes are exposed 
to extracts from these fungal cultures. These findings suggest a link among environ-
mental selenium levels, fungal metabolite production, and chondrocyte damage, 
which warrants further exploration [82].

Ochratoxin A, a mycotoxin produced by Penicillium and Aspergillus molds, poses 
significant health risks due to its widespread presence in crops and its ability to cause 
kidney and liver lesions, immune dysfunction, and genotoxicity in humans and 
animals. The exact mechanism of OTA’s toxicity, which has been linked to oxida-
tive stress and cytotoxicity, remains under investigation [83, 84]. However, recent 
research suggests that selenium may counteract OTA’s cytotoxicity and oxidative 
stress damage. Various studies have shown that selenium can enhance cell survival 
after OTA exposure, activate the antioxidant response, and reduce oxidative stress 
and apoptosis in OTA-induced kidney injury [85]. Both SeMet and sodium selenite 
have demonstrated protective effects, possible through upregulation of antioxidant 
enzyme expression and the downregulation of apoptosis-related factors [86]. In 
combination with zinc, selenium was found to alleviate ochratoxin A-induced fibrosis 
in human kidney cells by blocking ROS dependent autophagy offering a new perspec-
tive on nutritional interventions against mycotoxin-induced health issues [87].

More recently, the role of biosynthesized selenium nanoparticles has gained 
attention due to their enhanced antifungal properties. Studies have shown that SeNP, 
biosynthesized using plant extracts or Aspergillus oryzae fermented lupin extract, 
can effectively inhibit the growth of multidrug-resistant bacteria and pathogenic 
fungi [88]. These nanoparticles have also demonstrated an effect on the expression 
of CYP51A and HSP90 antifungal resistance genes in Ammophilus fumigatus and 
A. flavus [89]. In Candida albicans isolates, biogenic SeNP was found to reduce the 
expression of ERG11 and CDR1 genes that are associated with azole resistance [90]. 
Furthermore, when compared to gold and silver nanoparticles, SeNPs exhibited 
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superior antifungal properties against amphotericin B-resistant Candida glabrata 
clinical isolates [91]. Furthermore, the capacity of biogenic SeNPs to disrupt biofilms, 
particularly those formed by C. albicans, a primary causative agent of hospital-related 
infections stemming from biofilms on medical devices, has also been effectively 
demonstrated [92] without being cytotoxic to human embryonic kidney cells, thereby 
highlighting their potential as safe and efficacious agent in combating such infections.

To summarize, selenium, whether in its organic form or as biosynthesized 
nanoparticles, displays significant antifungal properties. By mitigating mycotoxin-
induced toxicity and inhibiting the growth of various fungal species, selenium serves 
as a potential candidate for the development of novel antifungal strategies.

6. Limitations and toxicity of selenium

While selenium is an essential micronutrient with numerous health benefits, its 
toxicity and potential adverse effects must be considered. The toxicity of selenium 
depends on its chemical form, with organic selenium compounds generally being less 
harmful than their inorganic counterparts. However, the lethal dose (LD50) values 
can vary significantly based on the duration of exposure, the model employed, and 
the blood levels reached [93].

Recent studies have shown that intravenous administration of sodium selenite at a 
dose of 500 μg/day is non-toxic [94], and even relatively high dosages (up to 2000 μg/
day) were well tolerated in individuals with peritonitis [95]. Nevertheless, excessively 
high selenium blood levels (>1 mg/L) can lead to selenosis, a condition characterized by 
gastrointestinal disturbances, hair loss, white blotchy nails, garlic breath odor, fatigue, 
irritability, and mild nerve damage [96]. The sodium selenite LD50 dose for rats is 
4100 μg/kg body weight, which is 100 times higher than the dose typically used in 
humans [53]. In human serum, selenium concentrations range from 400 to 3000 μg/L, 
with levels above 1400 μg/L being non-toxic [93]. It is generally believed, though not 
definitively proven, that hazardous levels of selenite begin at 600 μg/day [53].

Given the potential toxicity of selenium at high doses, it is crucial to control the 
therapeutic dose. Plant-based nanoparticles may help mitigate the harmful effects 
of selenium, as they have been found to be less toxic than inorganic selenium [97]. 
Various physical and chemical methods have been employed to produce SeNPs, 
involving the use of different chemical compounds and physical processes. However, 
the high cost of these technologies and the potential contamination of nanoparticles 
with harmful chemical residues limit SeNPs therapeutic application in the phar-
maceutical and medical industries [97]. As research into selenium’s antimicrobial 
properties continues, it is essential to maintain a balance between its therapeutic 
benefits and potential adverse effects.

6.1 Microbial resistance to selenium

Although selenium has demonstrated antimicrobial properties, the potential for 
microbial resistance to selenium remains an area that requires further investigation. 
Researchers have predominantly focused on the reduction of selenium to less toxic 
or harmless SeNPs and methylated selenium, but not all bacteria can reduce toxic 
oxyanions, and the resulting selenium species may not be methylated [98]. Moreover, 
there is currently limited information on the mechanisms of selenium resistance in 
bacteria, such as efflux and sorption of selenium oxyanions [98].
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Interestingly, when use at the nanoscale, SeNPs have been shown to inhibit the 
dissemination of environmental antibiotic resistance genes, providing effective 
antibacterial properties without complicating the scale-up harvesting process [99]. 
As research into selenium’s antimicrobial potential continues, it is crucial to expand 
our understanding of microbial resistance mechanisms to ensure the effective and 
sustainable use of selenium-based treatments.

6.2 Variability in selenium availability in different population

Variability in selenium intake across the globe is influenced by several factors, 
including selenium concentration in soil, as well as factors affecting its availability in 
the food chain, such as the type of selenium, soil pH, organic matter content, and the 
presence of ions [100]. Most of Europe has lower selenium content in the soil com-
pared to the United States, with Eastern Europe having a lower selenium intake than 
Western Europe. It is estimated that 15% of the global population experiences sele-
nium deficiency, and selenium intake varies significantly between countries. Dietary 
selenium intake is approximately 40 μg per day in Europe, while in the USA, daily 
selenium intake ranges from 93 μg/day in women to 134 μg/day in men [101, 102].

Considering gender differences, the recommended daily selenium allowance in the 
United Kingdom is 75 μg/day for men and 60 μg/day for women [103]. This variability 
in selenium intake across different regions can lead to deficiency-related diseases in 
areas where intake is insufficient. Consequently, populations in these areas become 
more vulnerable to infectious disease due to the inadequate selenium consumption.

7. Conclusions

Selenium has been demonstrated to possess antimicrobial properties against vari-
ous public health pathogens. In addition, its potential to modulate immune responses, 
generate ROS, and disrupt microbial processes highlights its importance in the fight 
against infectious diseases. Despite these promising findings, challenges remain, such 
as bioavailability, toxicity, and development of microbial resistance. Overcoming these 
obstacles necessitates further research, collaboration, and well-designed clinical trials. 
As we deepen our understanding and develop innovative solutions, selenium may 
emerge as a vital addition to our arsenal of antimicrobial agents, playing a crucial role 
in safeguarding public health, especially in light of rising antimicrobial resistance.
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Abstract

Physiological processes exhibit distinct rhythmic patterns influenced by external 
cues. External cues such as photic signal play an important role in the synchronization 
of physiological rhythms. However, excess of or indiscriminate exposure to photic 
signals exerts profound effects on physiological processes, disrupting normal hor-
monal secretory rhythms, altering sleep/wakefulness cycle, and impairing reproduc-
tive function. Alteration in sleep/wakefulness cycle, impairment in reproductive 
cycle, and disruption of normal hormonal secretory rhythms characterize risk groups 
for photic stress such as night workers, trans-meridian travelers, and night-active 
people. Evidence from primary studies is increasing on the tendency of selenium to 
reset internal biorhythms by targeting circadian proteins and melatonin. The review 
highlights the chronobiological roles of selenium.

Keywords: selenium, chronobiotic, photic stress, circadian proteins, melatonin, 
rhythm, chronobiology

1. Introduction

Virtually all physiological processes including gene expressions exhibit rhythmic 
patterns. These patterns are influenced by external cues such as light, temperature, 
metabolic activity, and diet. Indiscriminate exposure to external cues affects the 
pattern of the rhythms [1–3]. For instance, light is necessary as an external cue to 
reset circadian pacemakers situated in the suprachiasmatic nucleus; indiscriminate 
exposure to light and photic stress will affect the functionalities of these pacemakers, 
causing alteration in the rhythmic pattern of gene expressions with attendant impair-
ments in physiological functions [4, 5]. This may cascade into a raised risk level for 
a number of medical conditions including cancer, diabetes mellitus, cardiovascular 
disorders, reproductive derangements, and sleep problems [6]. With continuous 
proliferation, popularization and utilization of artificial light during nighttime, night 
workers, trans-meridian travelers, and night-active people tend to be at a higher risk 
of adverse consequences of circadian misalignment and desynchronization if no 
precautionary measures are observed.
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Besides lifestyle changes and precautionary measures to minimize and mitigate 
circadian disruptions occasioned by alterations in external cues, most especially light, 
the roles of nutritional factors cannot be overemphasized [7–9]. Selenium is one of 
the essential micronutrients for mammals. It is chiefly available in soil and water in 
variable levels. Its level the plant and animal foods is determined by the soil and water 
concentration of selenium [10]. It can also be added to food as a supplement. The 
daily recommended intake of the mineral is 55 micrograms/day for both females and 
males [11].

As far as its functions are concerned, selenium plays roles as a cofactor for gluta-
thione peroxidase, an enzyme that catalyzes the peroxidation of glutathione to form 
water. This implies that the mineral is necessary for the regulation of oxidative stress, 
maintenance of oxidant/antioxidant homeostasis, and prevention of DNA oxidation 
[12], among others. Second, it acts as a cofactor for iodothyronine deiodinase, an 
enzyme that converts thyroxin to 3,6,3′-tri-iodothyronine. 3,6,3′-Tri-iodothyronine is 
an active form of thyroid hormone and far more active than thyroxin. Therefore, the 
deficiency of selenium may lead to the deficiency of thyroid function, and this can 
manifest as disorders in all organs where thyroid hormone is needed.

Selenium has also been reported to exhibit the tendency to synchronize bio-
rhythms. This ability is an important corrective measure for desynchronization. A 
study by Zhang and Zarbi [13] indicated how selenium increased the expression of a 
circadian protein ‘PER2’. PER2 acts as a negative regulator of circadian rhythm, inhib-
iting the expression of BMAL1 proteins and CLOCK. Primary studies are available to 
support the roles of selenium as a therapeutic option for desynchronization. The aim 
of the work was to highlight the chronobiological roles of selenium.

2. Light pollution and photic stress

The quest for fortune has overwhelmed human affinity for nature and natural 
mechanisms, one of which is natural light/dark cycle [14]. Nowadays, prolonged 
exposure to light at night is one of the most common forms of light pollution, 
an inducer of photic stress [5]. It is characterized by alterations in photoperiod. 
Conditions associated with light at night include night work and insomnia [4].

The genesis of photic stress can be traced back to the discovery of electric bulb 
by the renowned American inventor Thomas Alva Edison, who developed a deep 
vacuum incandescent lamp with a carbon cotton filament [6]. However, the first 
successful attempt to use electricity for lighting was earlier made by Humphrey Davy 
in 1801, who discovered the incandescence of an energized conductor [6]. Nowadays, 
due to rapid electricity proliferation, electric lighting has replaced most traditional 
lighting sources, making human population virtually independent of natural photo-
period of 12 hour light/12 hour dark cycle. As a matter of fact, over one-third of the 
world population is estimated to live under light polluted areas [15].

The effects of photic stress are of two types: image-forming effects and photope-
riodic effects. While the former are characterized by discomfort and disability glare 
[16], the latter are characterized by disruption of the circadian rhythm, the internal 
clock that regulates physiological functions [17].

A major impact of exposure to light at night is the inhibition of melatonin produc-
tion and shift in the circadian phase [4]. Blue light has been shown to be the most 
effective in the suppression of melatonin secretion [6]. Light-induced suppression 
of melatonin is due to reduction in postganglionic noradrenergic neural discharge to 



69

Photic Stress and Rhythmic Physiological Processes: Roles of Selenium as a Chronobiotic
DOI: http://dx.doi.org/10.5772/intechopen.110294

pineal glands. Since melatonin rhythm is an efferent mechanism that blends exoge-
nous cycle (light/dark cycle) with endogenous cycle, suppressed nocturnal melatonin 
secretion represents impairment in synchronization [18].

The desynchronization of the circadian rhythm leads to many clinical condi-
tions. For example, studies have shown the link between exposure to artificial light 
at night and fatigue [19], reduced work productivity [20], diabetes mellitus [21], 
many different forms of cancer [20], and derangement in female reproductive 
functions [22]. In humans, a shift in light/dark cycle characterizing shift work and 
chronic jetlag suppresses the expression of PER1 and PER2 in the suprachiasmatic 
nucleus and causes delay in acrophases of the circadian expression of PER1, PER2, 
BMAL-1, and D-site binding protein (DBP) in the liver [23]. There is a difference 
between the expression pattern of circadian genes in suprachiasmatic nucleus and 
peripheral tissues. Yamazaki et al. [24] reported that suprachiasmatic nucleus 
rapidly adjusts to light shifts, but peripheral tissues shift more slowly. For example, 
PER2 expression in the ovary peaks at light offset delayed by 4–6 hours relative 
to its expression in the suprachiasmatic nucleus [25]. Also, the duration of light 
exposure determines whether there will be shifts in the circadian rhythm in both 
humans and animals [26].

3. Photic stress and rhythmically controlled physiological processes

Biorhythms are periodic variations in physiologic events occurring within a time 
frame. Important attributes of biorhythms include orderliness, entrainability, self-
sustenance, and endogeny [1, 27, 28]. Biorhythms that are completed in less than 
24 hours are called ultradian rhythms (example is ultradian LH secretion). It takes 
more than 24 hours for infradian rhythms to be completed (example is LH surge). 
Those that are completed in approximately 24 hours are circadian rhythms (example 
is melatonin secretion).

Circadian rhythms work through a set of expressed proteins known as circadian 
proteins situated in the suprachiasmatic nucleus in the highest density and other 
nucleated cells. PER, one of the circadian proteins, interacts with other PER proteins 
as well as the E-box regulated, clock controlled proteins CRY1 and CRY2 to create a 
heterodimer, which translocate into the nucleus. At this point, it inhibits CLOCK-
BMAL-1 activation [29]. The PER1 mRNA is expressed in all cells as a component of a 
transcription-translation negative feedback mechanism, which creates a cell autono-
mous molecular clock. PER1 transcription is controlled by protein interactions and 
with its 5 E-box and 1 D-box elements in its promoter region. Heterodimer CLOCK-
BMAL1 stimulates E-box elements present in the PER1 promoter as well as activates 
the E-box promoters of other components of the molecular clock such as PER2, CRY1, 
and CRY2 (Figure 1) [5].

Activators include BMAL1 (B); CLOCK (C) and repressors include period (per) 
and cryptochrome (cry) and are expressed rhythmically and phosphorylated by Casein 
kinases (CK) in granulosa cells. Transactivation by BMAL1:CLOCK is indicated 
by (+); repression of BMAL1:CLOCK activity by PER:CRY is indicated by (−). 
Arrowheads attached to sine waves indicate rhythmic transcription/translation. 
Curved arrows indicate nuclear translocation. Abbreviations: arachidonic acid (AA); 
prostaglandin E2 (PGE2); prostaglandin F2α (PGF2α); phosphorylation (P); Casein 
kinase 1,2 (CK1,2).

Cyclooxygenase-2 (COX-2), an enzyme involved in prostaglandin synthesis, 
contains E-box sequences in its promoter region. Studies by Morris and Richard [31] 
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and Liu et al. [32] showed that CLOCK:BMAL1 heterodimers may activate COX-2 
transcription. Circadian rhythms of COX-2 mRNA expression may result in rhythmic 
buildup of COX-2, which may then result in rhythmic synthesis and accumulation of 
prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). High levels of prostaglan-
din synthesis, particularly in response to a surge in LH secretion, orchestrate follicular 
rupture and ovulation.

Hormone secretory pattern and sleep and wakefulness cycle are rhythmic physi-
ological processes. They are influenced by external cues such as light, temperature, 
and anthropogenic factors, among others. Excess of these cues may abolish these 
processes. For instance, a study conducted by Attarchi et al. [33] on a risk group 
for light pollution (night shift workers) indicated an increase in FSH levels both in 
daytime and in nighttime and a decrease in melatonin in daytime and nighttime. 
FSH secretion is known to peak in the morning and reach nadir level at night, while 
melatonin is known to peak at around 2.00 am at night and reach nadir during 
the daytime. The findings of Attarchi et al. showed derangement in the normal 
secretory pattern of FSH and LH. Enormous studies have reported how prolonged 
exposure to light including light at night affects sleep onset, sleep quality, and sleep 
duration [4, 5]. Exposure to light before bedtime has been known to delay sleep 
onset, reduce sleep duration, and impair quality of sleep [34]. Such disruption 
in sleep/wakefulness cycle increases the risk of individuals acquiring a disease or 
exacerbates the symptoms of a preexisting condition. Shift work has been associ-
ated with an increased risk of mood disorders, depression, cardiovascular disease, 
endometriosis, and dysmenorrhea as well as an increased incidence and risk of 
breast cancer [4, 35, 36].

Reproduction involves barrage of rhythmical physiological processes to come 
by. For instance, at puberty, it is not secretion of gonadotropin-releasing hormone 
(GnRH) that triggers the episode of changes characterizing the stage but pulsatile 

Figure 1. 
Molecular mechanism of circadian rhythm in relation to ovulation [30].
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secretion of the hormone (occurs every 90 minutes). The circadian rhythms of clock-
gene expression noticed in brain areas concerned with reproduction indicate that 
this neural timing system elicits neuroendocrine events that produce pre-ovulatory 
luteinizing hormone (LH) surge and ovulation [30]. Works have documented that 
suprachiasmatic nucleus (SCN) is essential for normal functioning of the hypotha-
lamic pituitary gonadal (HPG) axis [30]. SCN communicates with GnRH neurons 
through arginine vasopressin (AVP) and vasoactive intestinal peptide (VIP) [25]. The 
principal afferent pathway to SCN is the photic signal-related retino-hypothalamic 
pathway. These photic signals are conveyed by light-sensitive retinal ganglionic cells, 
which do not participate in vision [4, 5], resulting in the control of melatonin produc-
tion by pineal gland and shift in the circadian phase. Melatonin plays an important 
role in the photoperiod-induced timing of physiological functions including the 
cascade of reproductive functions [5, 37].

Excess exposure to light brings about adverse health and reproductive features 
since circadian clocks are entrained by light duration. For example, shift duty, an 
employment practice meant to provide service round the clock [38] that is character-
ized by altered photoperiod and desynchronization of circadian clock, results in 
health and reproductive problems [5].

Indiscriminate exposure to light has been shown to impair hormonal rhythm, most 
especially in the hypothalamic hypophyseal ovarian axis, which determines the repro-
ductive cycle and fertility [39]. For instance, continuous illumination was reported to 
modulate normal nighttime reduction in FSH secretion in women [40]. Other studies 
indicate that a shift in light/dark cycle by 6 hours caused desynchronization for more 
than 6 days but requires 6–12 days for clock genes rhythms to completely adjust with 
different peripheral tissues [24]. Ovarian clock was not fully resynchronized 6 days 
after exposure to 6 hours shift in light/dark cycle. It took 12 days for full restoration to 
occur.

Shift workers and trans-meridian travelers tend to have activity, body tempera-
ture, and hormonal rhythms that are out of phase with environmental cues [4]. 
Such disruption may result in endometriosis, dysmenorrhea, as well as an increased 
incidence and risk of breast cancer [4, 35]. Women working an evening shift, night 
shift, or irregularly scheduled shifts showed altered menstrual cycle length, increased 
menstrual pain, and changes in the duration and amount of menstrual bleeding [41]. 
These symptoms are followed by alterations in patterns of ovarian and hypophyseal 
hormone secretion, such as an increase in follicular stage length and changes in fol-
licular stimulating hormone (FSH) concentrations [41].

Shift duty is one of the risk factors for photic stress. Female shift workers have 
been shown to exhibit a higher risk of producing premature or low birth weight 
babies, spontaneous abortion, and subfecundity [4]. Photopollution has been docu-
mented to result in the prolongation of estrous cycle length [15, 42–44], increase 
in estrous cycle ratio [1, 15, 42, 43], depression in LH, estradiol and progesterone 
secretions, and increase in estradiol/progesterone ratio [15, 42, 43].

4. Selenium

Selenium is a period IV and group VI element. The major dietary origins of 
selenium in most countries are plants [10, 45]. Hence, soil selenium concentrations 
are principal determinants of the minerals in plants and humans [46]. The level of the 
mineral in the body also depends on state of activity, dialysis, oral contraceptive use, 
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diurnality, pregnancy, and lactation [47, 48], among others. The daily allowance of 
the mineral is 55 micrograms according to the National Institute of Medicine without 
gender-related variation.

5. Chronobiotic roles of selenium: Effect on circadian genes

Selenium has been known to be essential for the execution of many physiological 
functions. As a co-factor for glutathione peroxidase, it is essential for the regulation 
of oxidative stress. As an antioxidant, glutathione peroxidase helps in the membrane 
integrity maintenance, prostacyclin production protection, and control of oxidations 
of macromolecules such as lipids, lipoproteins, and deoxyribonucleic acid (DNA) 
[49]. As a co-factor for iodothyronine deiodinase, the mineral plays crucial roles 
in the conversion of tetraiodothyronine (thyroxine) to triiodothyronine, with the 
latter being an active form of the former [10, 45, 46]. Triiodothyronine is a metabolic 
hormone. Thus, it exerts its effect on virtually all body tissues. Selenoprotein P is the 
principal supplier of selenium to tissues [50]. Therefore, free selenium is present in 
gonads, adrenal gland, thyroid gland, liver, and muscles, among others, whose func-
tions remain sketchy. Selenoprotein P is the main provider of selenium to tissues [50]. 
Yet low blood and tissue selenium levels have been identified in a number of patho-
logical conditions including HIV infections, cardiomyopathy, and kidney disorder, 
among others [46, 51].

Another stunning function of selenium is its role in synchronization of circa-
dian clocks. This is predicated by its ability to increase the expression of circadian 
genes. Synchronization of circadian clocks is essential not only in health but also in 
copious disease conditions. Since circadian rhythm derangements characterize shift 
or rotatory work schedule and jetlag and are known as an important risk factor 
for tumor development (in breast, colon, and prostate), the role of selenium as a 
chronobiotic cannot be undersized. A study by Hu et al. [52] indicated the roles of 
selenium on circadian gene. L-methyl-selenocysteine was shown to up-regulate 
BMAL1 in cultured cells and in vivo study using mice at the transcription level. 
As far as the cultured cells were concerned, the authors reported that selenium 
executed its effects by disrupting TIEG1-induced BMAL1 repression. Conversely, 
in CLOCK mutant mice deficient in BMAL1, selenium could not orchestrate 
protection. BMAL1 plays an important role in the positive regulation or activa-
tion of circadian rhythm by bringing about the expression of PERIOD genes and 
CRYPTOCHROME.

Circadian genes control DNA repair mechanisms, and DNA repair mechanisms 
are normal responses to DNA damage. Zarbl and Fang [53] reported that methyl-
selenocysteine improved PER2 expression in experimentally induced mammary 
carcinogenesis, thus resulting in the inhibition of mammary tumor development. 
In an early study, Zhang and Zarbi [13] showed that methylselenocysteine dietary 
administration at 3 ppm caused time-related and progressive elevation in circadian 
controlled transcription factor DBP and PER2 gene expression in mammary gland. 
Conversely, rats placed on standard chow exhibited little or no circadian fluctuation. 
In N-nitroso-N-methylurea-induced mammary carcinogenesis, selenium administra-
tion reduced circadian controlled transcription factor DBP and PER2 gene expression 
over time, while no change was noticed in those that were on normal standard chow, 
but the proteins were more expressed in selenium-treated carcinogenic rats than in 
untreated carcinogenic rats.
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DNA methylation, gene expression, and histone protein modification are con-
trolled by circadian rhythms. Xiang et al. [54] observed that treatments with selenite 
reduced DNA methyltransferase mRNA expression and 1 and 3A and protein levels of 
DNA methytransferase 1 in human prostatic carcinoma cell line (LNCaP cells). The 
effect of selenium administrations on PER1 expression in normal and desynchronized 
rats has been reported [44]. In the study, rats were desynchronized through exposure 
to experimental model of light pollution and photic stress for 1 week and 8 weeks. 
Dampening of PER1 expression was observed when compared to rats maintained 
under a natural 12-hour light/12-hour dark cycle. Conversely, administrations of 
selenium to normal rats for 8 weeks increased the expression of the clock gene. There 
was also an increase in PER1 expression when selenium was administered for 1 week 
and 8 weeks to desynchronized rats. The findings of the study suggest the tendency of 
selenium to resynchronize rats and provide insights into potentials of using selenium 
as a nutritional alternative for the prevention of diverse adverse alteration induced 
by excessive exposure to light as occurs in shift duty workers and people who may be 
exposed to artificial light (Figure 2).

6. Chronobiotic roles of selenium: Effect on melatonin synthesis

Another important facet of chronobiology has to do with the regulation of melato-
nin rhythms. Melatonin is a renowned chronobiotic; it shifts in circadian phase [55], 
thereby affecting sleep–wake timing, blood pressure regulation, and reproduction 
[56]. Melatonin synthesis regulation is one of the principal outputs of light-related 
retino-hypothalamic pathway. During daytime, light rays enter the superior cervical 
ganglion through the retino-hypothalamic tract and reduce the expression of arylaky-
lamine N acetyl transferase (ANAT), a rate-limiting enzyme that converts serotonin 
to melatonin. Hence, serotonin, a mood and alertness chemical messenger, becomes 

Figure 2. 
Effect of selenium and photic stress on circadian clock. Thick black line (stimulation), thick red line (inhibition); 
+VE (activation), –VE (negative feedback).
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high in the day. Reverse occurs in the night. Epinephrine induces the expression of 
ANAT, raising melatonin level. Melatonin then binds with its receptors in the hypo-
thalamus, retina, and anterior pituitary gland and reduces cAMP. This culminates into 
reduction in metabolic activities and sleep.

Administration of melatonin to subjects with impaired sleep/wakefulness cycle 
leads to resynchronization and normalization of the sleep/wakefulness cycle. Any 
underlying mechanism may include the influence of melatonin on clock gene expres-
sion. A study by Adeniyi et al. [44] indicated a positive correlation between nocturnal 
melatonin secretion and ovarian PER1 expression.

Works have shown the influence of selenium on melatonin secretion in living 
organisms. Adeniyi et al. [28] reported that selenium supplementation increased 
melatonin secretion when compared with rats that were not administered selenium. 
But when rats were maintained under prolonged dark condition and concomitantly 
treated with selenium, there was reduction in melatonin secretion. Selenite admin-
istered exogenously increased the endogenous secretion of melatonin. This occurs 
through the control of melatonin synthesis genes such as TDC, T5H, SNAT, and 
COMT [57]. In a similar pattern, Sun et al. [58] reported that selenite at a dose of 
96 micrograms/kg increased melatonin synthesis. At 100 micrograms/kg and 150 
micrograms/kg of selenium administrations, there was an increase in melatonin 
secretion in rats. In rats that were exposed to excess light, selenium administration at 
150 micrograms/kg increased melatonin secretion after 1 week and 8 weeks of treat-
ments [44].

7. Discussion

Suprachiasmatic nucleus of the hypothalamus is known as a master clock as it 
contains the largest amounts of circadian proteins PERIODS, CRYPTOCHROME, 
BMAL1, and CLOCK [25]. These proteins are also present in peripheral tissues in the 
body, where they regulate the timing and oscillation of gene expressions and biologi-
cal events. Suprachiasmatic nucleus receives input signals through many pathways, 
but the principal is the light-mediating retino-hypothalamic tract, which regulates 
melatonin secretion and rhythmic proteins and synchronizes the body’s endogenous 
rhythms with external rhythms [30].

Night workers, trans-meridian travelers, and night active people are at a risk of 
desynchronization, a mismatch between external rhythms, especially light/dark cycle 
and endogenous rhythms. This mismatch also implies alteration in gene expressions 
and protein synthesis and variations in physiological processes, thereby aggravating 
the likelihood of sleep problems, endocrine disorders, reproductive derangements, 
and cancers [3, 6, 15, 34, 42, 43]. Specifically, breast cancer development likelihood 
has been reported in observers of night duty [4, 6]. In view of the necessity of night 
work in a teeming and ever-demanding world, the need for diverse palliatives is 
inevitable.

Selenium is a possible nutritional palliative for chronobiological problems in 
view of its ability to increase circadian genes and melatonin. Circadian proteins and 
melatonin determine the characteristics of rhythms and control gene expressions 
in nearly all body tissues. Insights into the possibility of selenium retarding tumor 
development stemmed from an observation that experimental rats administered 
selenium-enriched garlic exhibited declined cancer development [59, 60]. Although 
more primary studies are needed to authenticate the doses of different forms of 
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selenium required to achieve this chronobiological effects not only in experimental 
animals but also in humans, the increase in PER2 expression by mammary tissue by 
selenium as reported by Zhang and Zarbi [13] and an increase in the expression of the 
clock gene in selenium-treated carcinogenic rats when compared with untreated N 
nitroso N methylurea-induced mammary carcinogenesis indicate that PER2 is a target 
of selenium. In a similar development, selenium administrations at 100 micrograms/
kg and 150 micrograms/kg increased the PER1 expression in the ovaries of female rats 
exposed to photic stress via prolonged lighting period [15, 42, 43].

Melatonin has been used to treat sleep disorders for years as a chronobiotic. That 
selenium, a naturally occurring element, present in plant and animal foods can 
increase melatonin is quite remarkable and may reduce abusive use of melatonin for 
sleep induction. Evidence of its tendency to alleviate and mitigate circadian disrup-
tions and reproductive derangements in animal studies [28, 44] is also thrilling. 
However, more studies are required to prove the level of safety associated with the use 
and prolonged use of selenium in human beings.

8. Conclusion

The review has highlighted biorhythmic effects of photic stress and the chronobio-
logical roles of selenium.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

The current literature covers the role of selenium in metabolic processes and 
the importance of correcting its level in various diseases and critical conditions, 
including acute cerebral damage due to severe traumatic brain injury (TBI) and 
sepsis-associated encephalopathy (SAE). Numerous experimental animal studies have 
demonstrated that selenium has protective properties and blocks the mechanisms 
of apoptosis, and is involved in maintaining the functional activity of neurons and 
inhibits astrogliosis. The study of the selenium content in the blood of patients with 
acute cerebral damage due to severe TBI and sepsis with verified SAE, and the devel-
opment of schemes of replacement selenium therapy will improve outcomes, both 
in increasing survival and in reducing the resuscitation bed-day and the number of 
neurological deficits in the future.

Keywords: replacement selenium therapy, acute cerebral damage, severe traumatic 
brain injury, sepsis-associated encephalopathy, selenium

1. Introduction

Selenium is an essential trace element in the human body. Normally, the concentra-
tion of selenium in blood plasma is 100–200 mcg/l. The most studied function of sele-
nium is the regulation of antioxidant processes in all organs and tissues, primarily in 
the central nervous system [1]. Selenium deficiency leads to an imbalance of the lipid 
peroxidation/antioxidant system, which is a constant component of any pathological 
process [2, 3]. Selenium deficiency provokes structural changes in the membranes of 
microsomes, and damage to the organoid membranes of cells of almost all tissues and 
it is accompanied by a change in the activity of 5-nucleotidase, creatine phosphoki-
nase, LDH, b- hydroxybutyrate, AST, ALT, aldolase, Na, and K-ATPase [4, 5].

Experimental animal studies have demonstrated that selenium has protective 
properties and blocks the mechanisms of apoptosis-cell death, and participates in 
maintaining the functional activity of neurons and in inhibiting astrogliosis in the 
acute cerebral injury of various etiologies [6–10].
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It is known that selenium-dependent proteins—the family of glutathione per-
oxidases (GPX1-6), as well as selenoproteins P, W, T, M, etc. play a key role in the 
processes of inhibition of free radical oxidation chain reactions [4, 5].

The function of glutathione peroxidases is to maintain stable intracellular con-
centrations of reduced glutathione. Cytosolic glutathione peroxidase (GPX1) plays 
a major protective role in the development of oxidative stress. GPX1 activity is more 
dependent on selenium content compared to other enzymes, and therefore GPX1 
activity in erythrocytes is a simple and sensitive indicator of the selenium status of 
the organism [11]. Intracellular and tissue levels of GPX1 also affect the activity of 
apoptotic pathways and phosphorylation of protein kinases [12].

Selenoprotein P, being the main extracellular source of selenium, performs the func-
tion of selenium transport to various tissues, mainly to the brain [13, 14], as well as antiox-
idant functions [15, 16], normally amounts to 6–7 micrograms of selenium/dl plasma.

Thus, selenium is a very important micronutrient for adequate function of the 
brain. The role of selenium is to protect against oxidative stress and other damaging 
factors in the central nervous system [17], maintaining the balance of neurotransmis-
sion and inflammation control [18].

2. Selenium metabolism in critical conditions

The study of the dynamics of antioxidant systems and lipoperoxidation processes 
made it possible to clarify the basic pathophysiological mechanisms underlying 
the development of critical conditions [19–21]. Activation of the processes of lipid 
peroxidation and oxidative modification of plasma proteins, which leads to a viola-
tion of the structural and functional integrity of membranes, inactivation of protein 
enzymes, and impaired synthesis of nucleic acids and protein, is a universal damag-
ing mechanism in severe trauma and critical conditions of any genesis [22, 23]. 
Ischemic-reperfusion injury often accompanies severe forms of systemic inflamma-
tory reactions, exacerbating the harmful effects of free radicals, and leading to an 
imbalance between oxidation processes and antioxidants. This situation has already 
been described in patients with sepsis and non-septic forms of systemic inflammatory 
syndromes in which there is a significant increase in the production of free radicals, 
especially superoxide anions [24].

In critical conditions, there is an increasing consumption of selenium and insuf-
ficient intake of it into the body from the outside, which leads to a deficiency of 
selenium in the body and makes it defenseless when exposed to oxygen free radicals 
and the cascade of reactions caused by their activation [25–27].

Selenium exhibits significant antioxidant activity, preventing changes in cell 
membranes, participates in respiratory chain reactions, in the pentose phosphate 
cycle, in the citric acid cycle, and lipid peroxidation [28]. Selenium activates protein 
synthesis, participates in antihistamine and antiallergic mechanisms, and normalizes 
the metabolism of proteins and nucleic acids [29].

Pathogenetic substantiation for the use of selenium in the intensive care complex 
in critical conditions, according to a number of authors [30–34], consists in the fol-
lowing mechanisms of action:

• Suppression of endothelial adhesion and protection of the endothelium from 
damage by oxygen radicals;
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• Reduced production of pro-inflammatory cytokines;

• Suppression of hyperactivity of the nuclear factor NF-kB;

• Decrease in the activity of the complement system;

• Maintaining the utilization of peroxides;

• Stabilization of glucocorticoid receptors;

• Stimulation of the insulin signaling cascade due to an insulin-like effect that 
improves glucose control.

The above mechanisms of action contribute to the prevention of microcirculatory-
mitochondrial dysfunction as a universal link of multiple organ failure [35–37].

Selenium plays an important role in the functioning of the immune system. Thus, 
in conditions of selenium deficiency, the processes of antigen-dependent lymphocyte 
proliferation, neutrophil chemotaxis are disrupted, and the level of IgA, IgG, and IgM 
decreases [24, 29].

A relationship was established between the low concentration of selenium in the 
blood serum and the severity of the condition of patients, and the level of mortality, 
which served as the basis for the early inclusion of selenium in the intensive care regi-
men for critical conditions [38–40]. The introduction of sodium pentahydrate selenite 
ensures normalization of plasma selenium concentration in the next 24 hours, leads to 
improved functioning immunocompetent cells (increased phagocyte activity, T-killer 
activity, immunoglobulin synthesis, etc.), contributes to improving clinical outcomes 
and significantly reducing patient mortality [41, 42]. Appointment of sodium selenite 
in patients in critical condition with infectious systemic inflammatory response 
ensures normalization of plasma selenium concentration in the next 24 hours. 
Numerous studies have shown that among patients in critical condition and suffering 
from sepsis, among those who underwent correction of selenium deficiency, mortal-
ity was significantly lower than in patients who did not receive selenium preparations 
[43–51]. The combination of selenoprotein P for endothelial protection and the 
cytotoxic effects of Na2SeO3 against hyperactivated leukocytes may be a promising 
intervention for early sepsis [52]. Copper-selenium nanoclusters may be an efficient 
strategy to cure sepsis by in situ sulfurization of endogenous H2S, triggering ROS 
eruptions and photothermal therapy [53].

According to the experts of the Cochrane Collaboration [22], concerning studies 
on selenium exchange in critically ill patients based on an analysis of seven random-
ized clinical trials, the quality of the studies was not good enough, the availability 
of outcome data was often limited, and studies examining the effects of selenium 
replacement therapy were insufficient in size of the study population. In addition, the 
main problem of these studies was related to the heterogeneity of the studied patient 
population, as a result of which the results are presented in the form of random 
effects. Most of the analyzed papers were statistically insignificant. Based on all of 
the above, the Cochrane Collaboration experts concluded that there is insufficient 
evidence of the effectiveness of selenium therapy at the present time in relation to 
the duration of ventilation, bed-day in intensive care, general hospital bed-day or 
quality of life after a critical condition, to recommend it for use in patients in critical 
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condition. Meanwhile, some authors believe that the inclusion of selenium-containing 
drugs in the intensive care complex opens up new horizons in the treatment of critical 
conditions [54]. Note also that in a systematic review by Berger et al. [28], Shenkin 
[55] provides data on the feasibility of short courses of intravenous use of selenium in 
patients in critical condition (burns, serious injuries, sepsis, and stroke).

Since 2009, selenium has been included in the ESPEN recommendations as a 
pharmacological module (Grade C) [56], since 2010—in the national guidelines for 
the treatment of sepsis in Germany (Grade C) [57, 58].

Among the patients in critical condition, patients with sepsis and polytrauma, 
including TBI, require the most attention. The role of selenium in the regulation of 
inflammatory response and gene transcription mechanisms in patients with polytrauma 
is discussed by a number of authors [59]. Most patients who are in a prolonged uncon-
scious state suffer sepsis at different periods of their disease against the background of 
low plasma selenium levels [60]. At the same time, the constant administration of vari-
ous groups of antibacterial drugs often does not affect the frequency of septic complica-
tions development and leads only to the formation of polyresistant flora.

In one study carried out by Chelkeba et al. [61], the antioxidant effect of selenium 
was researched in 54 patients under critical condition due to severe sepsis and septic 
shock, or mechanically ventilated for more than 48 hours [61]. Twenty-nine patients 
(1st group) received 2000 μg of sodium selenite in 100 ml of saline solution within 
the first 6 hours of sepsis diagnosis, followed by 1500 μg of sodium selenite in 250 ml 
of saline solution for 12 hours continuously for 14 days, had mortality rates lower 
(31%) then 25 patients (2nd group) with intensive standard treatment without sele-
nium (40%). Also, it was found a significant increase in GPx-3 levels, which causes a 
blocking action of the inflammatory cytokines [61].

Another clinical study by G. Landesberg with colleagues [62] showed a nega-
tive correlation between pro-inflammatory cytokines and the severity of sepsis and 
myocardial dysfunction assuming that selenium has no effect in septic patients since 
this nutrient did not present any long-term effect on the pro-inflammatory cytokines 
plasma concentration [62].

Kieliszek and Lipinski [63] demonstrated that sodium selenite can oxidize thiol 
groups in disulfide isomerase proteins of the SARS CoV-2 virus, thus preventing the 
COVID-19 virus from penetrating the membrane of healthy cells of its possible hosts. 
Such hypotheses can be considered about selenium since this nutrient is of great 
importance for inflammatory diseases [63].

The study by Mahmoodpoor et al. [64] did not indicate the presence of adverse 
events related to the high dose of intravenous sodium selenite and aspects of toxicity 
from its administration [64].

In one meta-analysis selenium supplementation for severe trauma patients was 
examined. The current evidence supports that selenium administration decreases 
the mortality rate and ICU and hospital stays for patients who have sustained major 
trauma. Selenium supplementation was not associated with infectious complications 
after major trauma [65]. Selenium administration shows no substantial influence on 
the 28-day mortality, length of ICU stay, duration of vasopressor therapy, incidence 
of acute renal failure, and serious adverse events for septic patients [66].

Some multiple-center trials confirm the efficacy of high-dose sodium selenite 
supplementation in patients with severe sepsis and septic shock to reduce 28-day 
mortality [67].

However, in Valenta et al. [68] study, it was shown that the 28-day mortality is not 
decreased after selenium administration in septic patients and in critically ill patients [68].
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3. Selenium homeostasis in the brain

Insufficient selenium supply and lack of selenoprotein function have been linked 
to multiple brain disorders, including neurodegenerative diseases, which have been 
thoroughly discussed in previous reviews [8, 10]. Conversely, selenium has been sug-
gested as a potential therapeutic agent in the treatment of Alzheimer’s disease [11], 
multiple sclerosis [12], and stroke [13, 69–72].

Great importance is attached to the provision of the body with selenium in the 
occurrence of neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease) 
[69, 73]. The largest and most well-organized study [74], conducted in 2003–2005 in 
two provinces of China and included 2000 people, showed that low selenium content 
in nails directly correlates with a decrease in intelligence in people over 65 years of 
age (p < 0.0087). In this regard, selenium preparations are considered promising in 
the prevention and treatment of Alzheimer’s type dementia. In addition, Thiel and 
Fowkes [75] showed that the use of an antioxidant complex prevents the development 
of dementia in children with Down’s disease (this population represents the largest 
cohort with an increased risk of dementia due to overexpression of the superoxide 
dismutase gene) [75].

Another important potential use of selenium is for Parkinson’s disease [76]. It 
is proved that there is a significant increase in the disease prooxidant processes, 
and the activity of glutathione reductase and other antioxidant enzymes increases 
compensatorily [77]. At the same time, a study by Kim et al. [78, 79] showed that the 
use of selenium significantly weakened the phenomena of oxidative stress caused 
by methamphetamine in nigrostriatal neurons, thus preventing the development of 
experimental parkinsonism [78, 79]. Note, however, that the concentration of sele-
nium in the cerebrospinal fluid is increased in all patients with Parkinson’s disease.

Perhaps this reflects the increased utilization of selenium under conditions of 
severe oxidative stress in these patients [80]. Recent studies suggest a significant role 
of selenium and the enzyme glutathione peroxidase in the pathogenesis of epilepsy 
[81, 82]. Decreased activity of Se-BP1 (selenium-binding protein 1) pathognomonic 
for schizophrenia, with exacerbation it decreases to critical figures, and with replen-
ishment, there is an improvement in the condition [83].

An important role is played by the change in the antioxidant status in ischemic 
stroke. In the study of Zimmermann et al. [84], it was shown that on the first day 
after a stroke, a significant decrease in selenium levels (p < 0.01) was observed 
against the background of increased glutathione peroxidase activity (p < 0.01) [84]. 
Numerous experimental studies [85, 86] demonstrated distinct neuroprotective prop-
erties of selenium in conditions of cerebral ischemia. Ansari et al. [85] demonstrated 
the neuroprotective effect of different doses of selenium (from 0.05 to 0.2 mg/kg) on 
models of occlusion of the middle cerebral artery [85]. A study by Yousuf et al. [87] 
showed that the use of selenium in the form of sodium selenite (0.1 mg/kg) led to a 
significant recovery of ATP levels in the neurons of rats subjected to cerebral ischemia 
(p < 0.05–0.001) [87]. In addition, there was a decrease in the area of edema and 
microglia infiltration.

Wray J. R. et al. [88] and Perez A. with colleagues [89] demonstrated the gluco-
corticoids influence on the selenoproteins regulation [88] and the metabolic effects of 
glucocorticoids, which include over-eating and excess weight gain [89].

The neuroprotective effect of selenium as a result of selenium replacement therapy 
in patients with neurological deficiency after subarachnoid hemorrhage of aneuris-
mal etiology was noted by Japanese colleagues [90]. Japanese authors also described 
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the positive effect of the inclusion of ebselen in the complex therapy of ischemic 
stroke [91]. It should be noted that the selenium-containing drug ebselen is currently 
undergoing the registration procedure for applications for stroke and subarachnoid 
hemorrhage in Japan.

The proposed scheme of the main physiological processes involved in the specific 
mechanisms of selenium uptake by the brain is shown in Figure 1 [92].

In the experimental study by Xu L. with colleagues [93] was shown that plasma 
selenium levels were lower in the Chronic Unpredictable Mild Stress (CUMS)-
sensitive group of rats [93]. It is important that an epidemiological study correlated 
low selenium intake with an increased susceptibility for developing the major depres-
sive disorder in humans [94].

4.  The role of selenium in preventing apoptosis and cerebral damage 
(according to the results of experimental studies)

In the experimental works of R.F. Burk et al. [95, 96], it was shown that the 
introduction of sodium selenite leads to a significant increase in the content of sele-
noprotein P in the brain (compared with other tissues), and in conditions of selenium 
deficiency, the brain’s uptake of selenoprotein P increases by five times; at the same 
time, low-molecular selenium compounds are not utilized by the brain [95, 96]. 
Moreover, the research of P. R. Hoffmann et al. [97] showed that genetic deficiency 
of selenoprotein P in transgenic mice leads to a decrease in the expression of other 

Figure 1. 
Scheme of the main physiological processes involved in the mechanism of specific selenium uptake by the 
brain [92].
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selenoproteins in the brain; presumably, this is due to the mechanism of selenoprotein 
biosynthesis: in conditions of cellular selenium deficiency, the UGA codon encoding 
selenocysteine begins to play the role of a stop codon, and the synthesis of selenium 
protein is interrupted [97].

In experiments on rats in the early period of TBI (after 6 hours and 24 hours), 
there was a sharp decrease in the level of selenium and vitamin E in the blood of 
animals [7]. The reason for the decrease was oxidative stress and a high level of sele-
nium consumption. Therefore, according to the authors of the study, it is necessary to 
restore selenium levels to normal values preceding TBI.

In an experimental model of cerebral ischemia/reperfusion in rats created by 
occlusion of the right carotid artery for 45 minutes, animals were treated with ginkgo 
biloba (50 mg/kg/day intraperitoneally) and selenium (0.625 mg/kg intraperitone-
ally) for 14 days after occlusion [98]. The activity of superoxide dismutase and 
glutathione peroxidase enzymes was measured in hippocampal tissue in 25 animals. 
An immunohistochemical study was performed with electron and light microscopy. 
According to the results of the study, the authors concluded that through the suppres-
sion of oxidative stress processes, a significant effect of neuroprotection in ischemia/
reperfusion is realized with the combined use of ginkgo, selenium, and their com-
bination [98]. Thus, data presented in the study by G. Erbil et al. [98], demonstrate 
that selenium treatment after ischemic/reperfusion injury improves the activity of 
antioxidant enzymes, prevents neuronal damage and moderate reactive gliosis caused 
by this kind of damage in the hippocampus in rats [98].

The inclusion of selenium as monotherapy or in combination with ginkgo signifi-
cantly reduces brain tissue damage in this experimental model. Casaril A. M. with col-
leagues [99] showed that 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole (CMI) can 
prevent acute stress-induced depressive-like behavior in mice [99]. Also, CMI induces 
antinociceptive effects in mice by modulating serotonergic activity [100] and can 
reverse the depressive-like phenotype caused by lipopolysaccharide injection [101].

It is obvious that the results obtained in vitro and in vivo experiments on rats 
demonstrate that selenium has a protective effect in ischemic/reperfusion injury in 
many tissues, including neuronal [102–104].

Oxidative stress, which is a universal pathophysiological mechanism in poly-
trauma, combined trauma and TBI, leads to the development of reactive gliosis in 
TBI. Damage to the astroglia may be a significant contribution to the formation 
of neuronal damage. It is well known that ischemia/reperfusion induces neuronal 
damage through several pathophysiological mechanisms, including intracellular Ca++ 
movement and free radical production, which ultimately triggers apoptosis. In the 
body, selenium protects cells from free radicals and peroxidase activity caused by 
oxidative damage, at the molecular level, selenium has neuroprotective properties in 
the brain [105–108].

Several selenoproteins are expressed in the brain. Among them, according to 
the literature, the antioxidant effect of selenoprotein P on neuronal survival has 
been proven [109], and the role of neuronal selenoprotein is in the development of 
interneuronal connections and the prevention of seizures and the process of neuro-
degeneration [110]. However, its role in postischemic neuronal death cannot yet be 
explained.

With TBI, a reactive glial response is possible in the form of the development of 
astrogliosis-reactive gliosis in the hippocampus, and in the form of cellular hypertrophy, 
hyperplasia, increased release of glial fibrillar acid proteins.
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The last study by O. Leiter et al. [111] has demonstrated that selenium mediates 
the exercise-induced increase in adult hippocampal neurogenesis, increases hippo-
campal precursor proliferation and adult neurogenesis, and reverses cognitive decline 
in aging and hippocampal injury [111].

Naziroglu et al. [9] did experimental work on rats, having created a hypoxic model 
of brain damage (convulsive seizures provoked by the administration of pentylene-
tetrazole). Selenium was preemptively injected at a dose of 0.3 mg intraperitoneally, 
then the activity of Ca++ -ATP-aza, the level of oxidative stress were measured for 
7 days, and EEG was recorded in animals with affected brains [9]. The authors’ 
conclusion: selenium caused protective effects on pentylenetetrazole-induced brain 
damage due to reduced production of free radicals, regulation of Ca++ − dependent 
processes, and maintenance of the antioxidant system.

The literature also mentions information that selenium deficiency in chickens 
caused a decrease in the activity of glutathione peroxidase, the level of expression of 
the mRNA glutathione peroxidase gene, the development of oxidative stress of brain 
tissue, hypothyroidism, alterations in ion profiles in chicken muscles, imbalance in 
Ca ++ homeostasis, and then morphological damage to nervous tissue [112].

In an experimental model of TBI in mice, analysis of key regulators of apoptosis 
during H2O2-induced apoptosis in cells showed that selenium blocks the activation of 
certain protein kinases (JNK)/38, triggering apoptosis in neuronal cells [6].

In vivo experiments have shown that selenite powerfully inhibits H2O2-induced 
apoptosis in neurons during TBI. Thus, selenium has protective properties and 
blocks apoptotic cell death, and participates in maintaining the functional activity of 
neurons and in the inhibition of astrogliosis [6].

Ozbal and colleagues [8] evaluated the levels of synthesis of tumor necrosis 
factor TNF-α and IL-1β, nerve tissue growth factor (NGF) in a cerebral ischemia/
reperfusion model in rats [8]. In this study, they studied the effect of selenium on the 
prefrontal cortex and the degree of damage to the hippocampus in rats subjected to 
cerebral ischemia-reperfusion injury. Selenium was administered intraperitoneally to 
animals at a dose of 0.625 mg/kg/day after the onset of ischemic injury. Conclusion of 
the authors of the study: selenium treatment after ischemia significantly reduces the 
induced ischemia and subsequent reperfusion neuronal death in the prefrontal cortex 
and hippocampal CA 1 region in rats.

Selenium treatment reduces the levels of markers of systemic inflammatory 
response and tissue damage (TNF-α and IL-1β) and leads to an increase in the values 
of nerve tissue growth factor (NGF). B. Yang et al. [113] study was to explore the 
molecular mechanisms underlying the protective effects of selenium on the blood-
brain barrier (BBB) following ischemia/reperfusion injury in hyperglycemic rats 
[113]. Treatment with selenium and the autophagy inhibitor 3-methyladenine signifi-
cantly reduced cerebral infarct volume, brain water content, and Evans blue leakage, 
while increasing the expression of tight junction (TJ) proteins and decreasing that of 
autophagy-related proteins. It was revealed that selenium increased TJ protein levels, 
reduced BBB permeability, decreased autophagy levels, and enhanced the expression 
of phosphorylated (p)-AKT/AKT and p-mTOR/mTOR proteins [113].

In a study on mice, it was demonstrated that melatonin and selenium may serve as 
potential therapeutic targets against docetaxel-induced toxicity in the hippocampus 
and the brain (docetaxel is widely used to treat several types of glioblastoma) [114].

Summarizing the above, it can be argued that the results of experimental studies 
allow us to make the assumption that the introduction of selenium prevents the devel-
opment of secondary pathological processes in the brain during its traumatic injury. 
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Clinicians, based on the data of experimental works performed on animals, can propose 
new goals of drug therapy for the treatment of TBI from the bench to the bedside.

5. Replacement selenium therapy in severe traumatic brain injury

Positive clinical responses obtained during therapy with N-acetylcysteine and 
selenium in neurodegenerative diseases have provided substantial evidence for the 
important role of reactive oxygen species in pathological processes of TBI [6]. It is 
proved that the level of oxidative stress in severe TBI determines the severity of the 
processes of necrobiosis and neuronal death [5].

Works concerning selenium metabolism in patients with severe trauma, including 
traumatic brain injury, are isolated [11, 23, 115–120].

In one study, a double-blinded controlled trial was carried out on 113 patients 
who were hospitalized following traumatic brain injury (TBI) with Glasgow Coma 
Scale score of 4–12 that were randomly assigned to receive selenium within 8 h after 
injury plus standard treatment group or routine standard treatment alone as the 
control. There was no difference in the length of ICU and hospital stay, the trend of 
the change in FOUR and SOFA scores within 15 days of first interventions, and the 
mean APACHE III score on the 1st and 15th days between the two groups. Mortality 
was 15.8% in the selenium group and 19.6% in the control group with no between-
group difference. This human trial study could not demonstrate the beneficial effects 
of intravenous infusion of selenium in the improvement of outcomes in patients with 
acute TBI [120].

Several studies examine the effect of intravenous selenium (Selenase ®) treat-
ment in patients with severe TBI on functional outcome and survival. Intravenous 
Selenase ® treatment demonstrates a significant improvement in functional neuro-
logic outcomes [115]. H. S. Nutsalova in her study showed that selenium replacement 
therapy with Selenase ® at a dose of 1000 mcg/day for 12 days of the acute period 
of TBI significantly reduces the plasma level MDA (malonic aldehyde) in patients 
with severe TBI starting from day 7, reaching maximum intragroup and intergroup 
differences by day 12 (p < 0,01) [119]. Substitution selenium therapy does not affect 
the recovery time of consciousness in patients with severe TBI in the acute period of 
trauma. Replacement selenium therapy in patients with isolated and combined severe 
TBI provides the restoration of plasma levels of selenium and the sanogenetic orienta-
tion of free radical oxidation processes in the acute period of trauma. The known 
method of intravenous selenium use leads to a reduction in the duration of ventilation 
and a decrease in 28-day mortality in patients with severe TBI [116–119].

6. Nontraumatic acute cerebral damage

Hirato J et al. [121] demonstrated in their observation that the brain lesions of 
the megacystis microcolon intestinal hypoperistalsis syndrome (MMIHS) patients 
mainly resulted from oxidative damage of the brain related to the low levels of 
glutathione peroxidase and other selenoproteins due to selenium deficiency [121]. The 
authors showed that long-term total parenteral nutrition is possibly due to selenium 
deficiency. Both patients described in the article died of sepsis. In both cases, severe 
neuronal loss and gliosis were present in the medial convolutions of the occipital lobe, 
including the visual cortex [121].
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Perinatal hypoxic-ischemic encephalopathy (HIE) is an important cause of brain 
injury in the newborn and can result in devastating consequences. The principle 
mechanism underlying neurological damage in HIE, resulting from hypoxemia and/
or ischemia is deprivation of glucose and oxygen supply which energy failure. A 
consequent reperfusion injury often deteriorates the brain metabolism by increasing 
oxidative stress damage. Selenium is a constituent of the antioxidant enzyme glutathi-
one peroxidase and is vital to antioxidant defense.

Neonates with HIE had lower serum selenium level than normal healthy neonates, 
which is not dependent on the maternal serum selenium levels and was negatively 
correlated with the severity of HIE [122].

Neonatal mortality continues to be a significant problem in the Indian setting, 
especially in very low birthweight (VLBW) neonates. India is a selenium-deficient 
country. Blood selenium concentrations in newborns are lower than those of their 
mothers and lower still in preterm infants.

Preterm VLBW neonates are selenium deficient at birth. Selenium supplementa-
tion at 10 μg/day resulted in getting the selenium levels into the acceptable normal 
level and reduced the incidence of the first episode of late-onset sepsis in these 
neonates [123].

7.  Sepsis-associated encephalopathy and selenium status: perspectives of 
replacement therapy

Septis-associated encephalopathy is an early manifestation of systemic infection 
when the focus of infection is outside the central nervous system (CNS), but the sys-
temic inflammatory response causes organ dysfunction, including the brain. Researchers 
identify a number of factors and mechanisms that play a key role in the development of 
septis-associated encephalopathy: the effect of inflammatory mediators on the brain, 
inadequate cerebral perfusion pressure, impaired permeability of the blood-brain barrier 
(BBB), disorders of the cerebral microcirculation, cerebral ischemia, metabolic disor-
ders, changes in amino acid levels, imbalance of mediators, liver failure, and multiple 
organ failure [124, 125]. BBB dysfunction largely explains the pathophysiology of SAE, 
since the central nervous system becomes highly sensitive to neurotoxic factors, such as 
free radicals, inflammatory mediators, intravascular proteins, plasma, and circulating 
leukocytes. Due to the barrier deficiency, brain edema is formed and microvascular 
perfusion decreases, which leads to the loss of neurons during SAE [125].

Microglial cells are the primary inducers of immune responses in the brain. Recent 
experimental studies have shown that microglial cells migrate to brain vessels during 
systemic inflammation and that their activation represents one of the earliest changes 
observed in SAE [126, 127].

Designed to protect against sepsis, microglia activation generates cytotoxic sub-
stances that release reactive oxygen species (ROS), nitric oxide (NO), and glutamate 
SAE [127]. Persistent microglial activation and excessive release of inflammatory 
mediators and free radicals trigger a vicious cycle of a circle leading to the aberrant 
function of neurons and cell death, contributing to the progression of SAE [128]. 
Data from some experimental studies indicate that glial activation plays a key role 
in the development of SAE and BBB dysfunction along with a deficiency of brain 
neurotrophic factors [128, 129].

The pathophysiology of SAE is a multifactorial process that involves a violation 
of the mechanism of cell death. Ferroptosis is a new form of programmed cell death 
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characterized by the accumulation of iron and lipid peroxidation, which leads to an 
inflammatory cascade and the release of glutamate. Scientists have suggested that 
ferroptosis is involved in glutamate-mediated excitotoxic damage to neurons during 
an uncontrolled inflammatory process in SAE [130].

Assessment of neurological status and neurocognitive deficit and their dynam-
ics are the criteria for the effectiveness of treatment of neurocognitive disorders in 
patients with sepsis-associated encephalopathy, along with clinical and laboratory 
indicators and scales for assessing multiple organ failure (SAPS II, SOFA) [131]. 
Inflammatory cytokines and oxidative stress released during sepsis are high in septic 
patients, and their concentrations have some association with the severity and 
evolution of organ dysfunctions [132]. Decreased plasma selenium levels are found 
to be associated with excess mortality [133]. Plasma selenium concentrations in all 
patients with sepsis and septic shock are determined to be low (from 0.20 to 0.72 
mcmol/l) [134].

Based on the understanding of the main mechanisms of selenium action—sup-
pression of hyperactivation of NF-kB; reduction of activation of the complement sys-
tem; immunomodulation and anti-inflammatory effect; maintenance of utilization 
of peroxides; suppression endothelial adhesion (decreased expression of E-selectin, 
P-selectin); protection of the endothelium from oxygen radicals (using selenoprotein 
P, which prevents the formation of peroxynitrite from O2 and NO) [129, 135], one can 
safely assume the expediency of using selenium-containing drugs in complex therapy 
of SAE to prevent the development of neurocognitive deficiency due to the mecha-
nisms of neuroinflammation in the future [124].

8. Conclusion

The role of selenium in metabolic processes and the importance of correcting 
its level in various diseases and critical conditions are widely covered in modern 
literature [40, 43–48, 50, 70, 135]. Selenium deficiency, which occurs during the 
development of oxidative stress due to severe TBI, sepsis, and other critical condi-
tions, significantly affects the work of antioxidant systems, reduces the protective 
mechanisms of the patient’s body and requires correction.

The results of studies of selenium homeostasis in in vivo experiments and in the 
human body in normal and various pathological conditions obtained over the past 
20 years indicate the direct participation of this most important nutrient in the body’s 
defense mechanisms in severe trauma, burns, sepsis, TBI, acute cerebral injury of 
nontraumatic etiology, etc. Correction of the selenium status of patients in critical 
condition is especially relevant, since selenium deficiency blocks adequate antioxi-
dant protection, a full-fledged immune response to infection, and relief of excessive 
systemic inflammatory response and the integrative complex response of the brain to 
any damaging effect that poses a threat to the survival of a mammal.

We are confident that the importance of selenium deficiency correction in the 
form of selenium replacement therapy is reflected in the treatment protocols of 
patients in critical conditions, including acute cerebral injury.
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DiO2 Iodothyronine deiodinase 2
FOUR Full Outline of UnResponsiveness Score
HIE hypoxic-ischemic encephalopathy
H2S hydrogen sulfide
ICU intensive care unite
IL-1β interleukin 1β
GCR glucocorticoid receptors
GPX1-6 glutathione peroxidases 1-6
LDH lactate dehydrogenase
mRNA mitochondrial ribonucleic acid
Na2SeO3 sodium selenite
ROS reactive oxygen species
SAE sepsis-associated encephalopathy
SOFA Sequential Organ Failure Assessment Score
TBI traumatic brain injury
TNF-α tumor necrosis factor-alpha
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Chapter 7

Increased Morbidity and Its 
Possible Link to Impaired Selenium 
Status
Shukurlu Yusif Hajibala and Huseynov Tokay Maharram

Abstract

This chapter summarizes the latest information on the main differences in the 
chemical properties of selenium proteins and their sulfur analogues, Se proteins and 
their functions, Se-accumulating proteins, the relationship between Se and hemoglobin, 
Selenium in gerontology, Selenium and iodine deficiency conditions, Se and immu-
nity, Selenium as an antioxidant in nitrite poisoning. Also discussed are some of the 
results of the first studies on protein enrichment with selenium carried out in the 
seventies of the last century. This native protein was natural silk fibroin. Fibroin has 
since become an important tool for human health and healing. It was discovered that 
when selenium-containing inorganic compounds were added to mulberry silkworm 
feed, selenium atoms formed additional sulfur-like bonds in fibroin macromolecules. 
This resulted in additional branching of protein macromolecule. Selenium atoms in 
the fibroin structure have a sufficiently high electron affinity, act as small traps and 
capture migrating electrons. This leads to a reduction of free radicals, which are gen-
erated by external influences such as mechanical, thermal, electrical and radiation.

Keywords: selenium, hemoglobin, erythrocyte, HbBcys 93, nitric oxide, nitrite,  
COVID 19, viral diseases, fibroin, selenium enrichment

1. Introduction

One of the trace elements, the lack of which has a significant impact on human 
health, is selenium (Se). It is a part of many proteins and key antioxidant enzymes 
involved in many metabolic processes and has antioxidant and immunoregulatory 
properties. Its deficiency leads, first, to the weakening of the antioxidant defense 
system and immunity, which causes the development of several diseases. The content 
of selenium in the human body depends on the level of its dietary intake, which is 
closely related to the distribution of the element in the biosphere of the region of 
residence. At status of selenium in Azerbaijan, as well as in many other countries, is 
close to deficiency, and its decrease is connected with the worsening of the ecologi-
cal situation. The problem of selenium supply to the population of Azerbaijan at the 
present time is urgent and requires the adoption of appropriate measures to solve it.

Selenium is an essential, absolutely essential element for the life activity of many 
organisms (from viruses to mammals) and, mainly, humans. Despite the fact that its 
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gross content in a 70 kg human body is only 14–15 mg, it is directly involved in many 
vital regulatory processes [1–3]. Its distribution in the Earth’s crust is insignificant, 
the so-called clark makes only 10 5%, and, thus, it is distributed very unevenly. It is 
accepted to consider soils that a content of less than 10 5% of selenium as poor and 
more than 10 5% as rich soils [4]. Proceeding from this the content of selenium in 
products depends on its regional provisioning and, consequently, provisioning of 
selenium (selenium status) in human organisms can vary greatly even within one 
country. At the same time, it was found that different organisms absorb selenium 
unevenly. Some plants belonging to cereals and astragals can serve as indicators of soil 
selenium supply.

Despite the fact that the selenium content in the ocean is very low, some species 
of aquatic organisms, including various algae (e.g., spirulina) have the ability to 
accumulate it in their tissues [4]. In addition to species specificity, there is also organ 
specificity. In the liver, kidneys, retina, thyroid gland, adrenal glands, testes, blood 
cells (lymphocytes, platelets, red blood cells), and nerve cells the selenium content is 
high, which indicates its importance in their functioning [3, 5].

However, despite the tremendous progress in the understanding of the biological 
role of selenium achieved over the last 50 years, its true potential as a biologically 
active substance is far from being disclosed. The history of research on the biological 
properties of selenium covers characteristic stages since 1817, from the moment of its 
discovery by I. Berzelius as a chemical element [6, 7]. In 1957 the American scientist 
K. Schwarz proved its anti-necrotic value in a number of animals, the so-called 
anti-necrotic factor - 3 [8]. Since then, the attitude towards selenium as a purely toxic 
element shifted to the desire to study its useful biological functions [9, 10]. Thus, in 
1973 it was found that the previously well-known anti-peroxide, hemoglobin-protec-
tive enzyme glutathione peroxidase (GPX) [11] is a selenium-dependent protein, and 
its functions as an antioxidant are much broader than had been commonly thought 
[12, 13]. In 1970–1980 the existence of other selenoproteins was established, and that 
selenium is localized actually in all cells of the organism [14–17].

In the 1990s, three selenium-containing enzymes at different levels involved in 
regulating iodine metabolism were identified [18]. These discoveries stimulated even 
greater interest in its intracellular regulatory functions. Over 30 selenium-containing 
proteins have been identified in cells of various organs and tissues encoded by about 
25 genes. Specific physiological functions were established in some of these proteins, 
while many of them had antioxidant properties [19].

At the same time, a unique mechanism of selenoprotein synthesis was discovered 
with the use of the so-called SESIS mechanism. It contains the 21 obligatory amino 
acid Se-cysteine (Sec), encoded by the UGA stop codon in the mRNA structure. 
Selenium is incorporated into selenoproteins via Se cysteinyl tRNA, which in turn 
is synthesized by transferring the selenium group into selenium-tRNA from sele-
nophosphate. This mechanism is unique in that it is co-translational in that protein 
synthesis on ribosomes occurs simultaneously with the synthesis of the 21st amino 
acid (i.e., conversion of serine to Se cysteine) [19–24].

Farhan Saeed et al. show that there is great potential for selenium to affect the 
immune system, for example, the antioxidant peroxidase GSH probably protects 
neutrophils from oxygen radicals that are produced to destroy ingested foreign organ-
isms [25]. Selenium affects both the innate, “maladaptive” and the acquired, “adap-
tive” immune system. Selenium-deficient lymphocytes are less able to proliferate 
in response to mitogen, and in macrophages, its deficiency impairs the synthesis of 
leukotriene B4, which is essential for neutrophil chemotaxis. The humoral system is 
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also affected by selenium deficiency; for example, IgM, IgG, and IgA titers are reduced 
in rats, and IgG and IgM titers are reduced in humans [2].

Linda Johansson et al. showed that selenocysteine (Sec), the 21st amino acid, exists 
in nature in all kingdoms of life as the defining element of selenoproteins. Sec is an 
analog of cysteine (Cys) with a selenium-containing selenium group instead of the 
sulfur-containing thiol group in Cys. The selenium atom gives Sec completely different 
properties than Cys. The most obvious difference is the lower pKa of Sec and the fact 
that Sec is a stronger nucleophile than Cys. Proteins containing Sec are often enzymes 
that utilize the reactivity of the Sec residue in the catalytic cycle. Therefore, Sec is 
usually necessary for their catalytic efficiency [26].

Moghadaszadeh B. and Beggs A.H. in their article show an overview of human 
selenoprotein expression and function and schematically depict the process of Sec 
codon recognition and Sec insertion requiring several trans-acting factors includ-
ing tRNASec, Sec-specific elongation factor and SECIS-binding proteins. It has been 
observed that targeted deletion of the tRNASec Trsp gene leads to an embryonic lethal 
phenotype in mice [27]. To illustrate the scheme, let us show the above-described 
processes in Figure 1.

Thus, according to the author [27], all animal specific (acting) Se proteins are Se 
cysteine-containing natural compounds in the active center. In the organic world, 
selenium is usually in the form of the amino acids selenocysteine (Sec) and seleno-
methionine (SeMet), which differ in the presence of selenium instead of sulfur. This 
substitution is predictably related to the fact that selenium is closer to serine than to 
other chalcogenes in its physical and chemical properties: atomic radius value, elec-
tronegativity value and polarizability of the oxidation degree. All these parameters 
determine the increased nucleophilicity, which provides higher catalytic activity of 
Se-proteins in relation to their sulfur-containing counterparts. However, despite the 
obvious advances in this field, there is still no clear understanding of all sides of this 
mechanism.

The main differences in the chemical properties of selenoproteins and their sulfur 
analogues are due to a significant difference in the values of the dissociation constants 
(pKa), which for Sec is 5.1, and for Cys 8.3 [28, 29]. This circumstance makes thiolates 
(ionized form) less reactive than selenolates.

Kohrle J. reports that in experimental animal models prolonged and severe 
selenium deficiency leads to necrosis and fibrosis after high iodide loads. Combined 
iodide and selenium deficiency, such as in central Zaire, is thought to cause a 

Figure 1. 
Selenoproteins and their impact on human health through diverse physiological pathways [27].
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myxedematous form of endemic cretinism. Insufficient selenium intake and diag-
nostically low serum selenium levels correlate significantly with the development of 
thyroid carcinoma and other tumors. Although selenium intake controls the expres-
sion and translation of selenocysteine-containing proteins, no direct correlation has 
been found between tissue selenium content and the expression of various thyroid 
selenoproteins, suggesting that other regulatory factors contribute to or override 
selenium-dependent expression control, such as in adenoma, carcinoma or autoim-
mune thyroid disease. Because both micronutrients, iodine and selenium, were 
leached from the topsoil during and after the ice age in many regions of the world, an 
adequate supply of these essential compounds must be provided by either a balanced 
diet or supplements [30].

Gustin C. et al. state that jodine (J) and selenium (Se) are necessary for the 
synthesis of thyroid hormones. Iodine and selenium interact. Pregnancy increases 
the mother’s need for iodine [31]. And Mayunga K.C. et al. reported inadequate 
iodine levels in pregnant Dutch women [32]. Because as there is no enough informa-
tion about their selenium intake, we examined iodine status and selenium intake 
in relation to iodine and selenium supplementation during pregnancy. The authors 
concluded that research on the 21st amino acid, selenocysteine, has progressed over 
the past 30 years from the intriguing discovery of Sec in a few select proteins to the 
recognition of Sec as an important component of many living organisms, associated 
with human disease and translated into an extension of the genetic code. The field 
of study of proteins naturally containing selenocysteine is growing rapidly, with 
new selenoproteins being discovered that have yet to be characterized. The ability to 
produce synthetic selenoproteins should facilitate such research, as well as open up 
new possibilities for biotechnological techniques based on the unique properties of 
selenocysteine. They are confident that the biochemistry of selenium-based proteins 
will form the basis for several future technologies of both fundamental and medical 
importance.

In experimental animal models, long-term and strong selenium deficiency leads 
to necrosis and fibrosis after high iodide loads. Combined iodide and selenium 
deficiency, such as in central Zaire, is thought to cause the myxedematous form of 
endemic cretinism [33]. The trace element selenium is of essential importance for 
the synthesis of a set of redox active proteins. Kamil Demircan et al. [34], studied 
three additional biomarkers of serum selenium status in relation to overall survival 
and recurrence after diagnosis of primary invasive breast cancer in a large prospec-
tive cohort study. They concluded that the prediction of mortality based on all three 
biomarkers was superior to established tumor characteristics such as histologic grade, 
number of lymph nodes involved, or tumor size. Se-status assessment at breast cancer 
diagnosis identifies patients at exceptionally high risk for poor prognosis.

2. The experimental part of the study

2.1  The main differences in the chemical properties of selenium proteins and their 
sulfur analogues

The main differences in the chemical properties of selenoproteins and their sulfur 
analogues are caused by a significant difference in the dissociation constants (pKa) 
values, which is 5.1 for selenocysteine (Sec), and 8.3 for cysteine (Cys) [28, 29]. This 
circumstance makes thiolates (in ionized form) less reactive than selenolates.
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2.1.1 Se-proteins and their functions

Animal (mammalian) Se proteins are commonly divided into 3 categories: [3, 18].

1. True selenium-specific selenoproteins that include Se cysteine in the active center;

2. Proteins that do not include specific selenium; Selenium-binding proteins, such 
as (SBP 1)

Among the identified 30 specific Se proteins encoded by 25 genes, only a small 
fraction of them has specific physiological functions [19]. A hierarchy of “sensitiv-
ity” of Se protein synthesis to dietary intake of selenium has now been discovered 
and it is postulated that the hierarchy of mRNA expression is closely related (deter-
ministic) to the importance of this or that selenoprotein in cellular hemostasis [35]. 
The organ-tissue specificity of selenoprotein distribution, i.e., their localization 
by tissue principle, exemplified by the glutathione peroxidase family, has also been 
established. While GPX is present in many cell types, GPX is expressed only in the 
gastrointestinal tract, GPX in intercellular medium and blood plasma, GPX in the 
nasopharyngeal epithelium, TRXR3 is localized in testes, iodothyronine deiodinases 
in thyroid tissues, etc. [36].

The high antioxidant properties of selenium were first established back in the 
60-the 70s of the last century. And since the previously well known antioxidant 
enzyme (GPX) turned out to be a selenium protein, the AO properties of many newly 
discovered Se proteins were discovered. However, Se proteins were found to have 
many other important biological properties in addition to their antioxidant proper-
ties, such as regulation of thyroid hormone activity, participation in the regulation 
of non-specific immune response, inhibition of inflammatory, chemotactic, and 
phagocytic reactions, influence on reproductive functions (male infertility), partici-
pation in redox reactions. The authors [36] briefly describe both the function of these 
selenoproteins and the regulation of their expression depending on Se status and 
tabulate data for 40 proteins important for understanding the function and signifi-
cance, effects of dietary selenium, and subcellular localization.

2.1.2 Se accumulating proteins

It turned out that UGA serves as a stop-signal and selenocysteine codon in the 
genetic code, but there are no computational methods to determine its coding func-
tion, which means that most selenoprotein genes are wrong. Gregory V. Krukov et al. 
identified selenoprotein genes in sequenced mammalian genomes using methods 
based on determining structures of selenocysteine RNA insertions by coding for UGA 
codon potential and presence of cysteine-containing homologs. They found that the 
human selenoproteome consists of 25 selenoproteins [37].

Based on the SECIS method applied to mammalian genomes, the authors identi-
fied SECIS candidate elements in the human genome using the SE CIS2.0 program 
[37]. Structural and thermodynamic features of SECIS elements were analyzed 
using this program. The candidate elements were about 10 times more selective (for 
the same specificity) than the original SECISearch version [38]. They then identi-
fied human/mouse and human/rat SECIS pairs using the SECISblastn program, 
which analyzes the evolutionary conservation of mammalian SECIS elements. In 
addition, they analyzed genomic sequences upstream of SECIS candidate elements 
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using geneid [39], a gene prediction program that identifies open reading frames 
(ORFs) with high coding potential and containing infra-labeled TGA codons.

By analyzing predicted human selenoprotein genes using MSGS (mammalian sele-
noprotein gene signature) criteria [37, 40], which test selenoprotein homologs for the 
presence and conservation of ORFs intraframe TGA codons and SECIS elements, the 
authors concluded that SelH, SelI, SelO, SelS and SelK mRNA are present in various 
tissues and cell types. However, GPx6mRNA was found only in embryos and olfactory 
epithelium, and SelV mRNA expression was limited to the testes, where it was present 
in the seminal tubules. The authors’ predictions regarding the secondary structure 
and organization of the protein showed that, like all previously described mammalian 
selenoproteins, GPx6, SelH, SelO, and SelV are globular proteins. However, SelK 
and SelS were predicted membrane proteins. They expressed SelK and SelS fusions 
containing the C terminal tag of green fluorescent protein (GFP) in CV 1 cells and 
found that the fusion products were indeed on the plasma membrane. Thus, SelK and 
SelS appeared to be the first known selenoproteins of the plasma membrane.

SBP selenium-binding proteins can be said to be included proteins in which the 
form of selenium is unknown. Although Se is stably bound, probably through the 
selenosulfide bond. One of them, SeBP 1 (Se Binding protein), has been intensively 
studied recently due to its prominent role in tumor growth [41, 42].

2.1.3 Relationship of Se and hemoglobin

The comparative distribution of Se over the two major erythrocyte proteins, 
HA and Hb, in humans and animals with different selenium metabolism (different 
sensitivity to Se deficiency) was studied in detail in 80 90 years by such researchers as 
M.A. Belstein, J.A. Butler, K.D. Thomson, P.D. Wanger and others [43]. They showed 
the predominance of Se inclusion in human and some primate hemoglobin (90% of 
all Se in erythrocytes) versus low Se HPC coverage (10%). At the same time, in the 
erythrocytes of animals sensitive to Se deficiency, such as sheep, rats, hamsters, etc., 
the proportion of Se included in the HPC is significantly higher than in humans, some 
primates, etc. These objects in conditions of selenium deficiency signs of sensitivity 
of selenium deficiency pathologies (liver and kidney necrosis, white muscle disease, 
exudative diathesis) and have rather high levels of GPX activity in organs and in 
erythrocytes, and their hemoglobin has a low capacity (0.1 0.2) to absorb selenium. 
Organisms (guinea pig, human, some primates) sensitivity dependence on selenium 
deficiency usually also have reduced GPX in the organ activity, and most of the 
intraerythrocyte selenium is included in the hemoglobin fraction.

Using the example of the inhabitants of Azerbaijan (Baku), we have shown 
that 3/4 of erythrocyte Se enters the hemoglobin fraction at a ratio of 1 Se atom per 
300–1000 Hb molecules. Selenium is incorporated into hemoglobin by sulfur substi-
tution predominantly in cysteine residues at the βCys93 position. Considering that it 
will affect the electronic environment of proximal histidine, which is in close proxim-
ity to heme, one can assume that it will enhance its antioxidant protection [43–45].

We examined the effects of sodium nitrite and sodium selenite in their joint and 
single action on the processes of oxidation of hemoglobin (Hb), lipid peroxidation 
(LPO), the activity of antioxidant (AO) enzymes glutathione peroxidase (GP) and 
catalase in human red blood cells in-vitro. Nitrite was found to have a significant effect 
on the oxidative processes in erythrocytes and Hb, while sodium selenite attenuated 
the development of the nitrite-induced oxidative process in erythrocytes and reduced 
the formation of methemoglobin (MetHb) by 25–40%. Having a significant effect 
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on the oxidative process in erythrocytes, nitrite does not lead to a marked increase in 
lipid peroxidation rates in erythrocytes. Under the influence of nitrite, there is a slight 
change in the activity of AO enzyme GP (up to 20–30%), and the activity of cata-
lase in all cases drops significantly (1.5–2 times). Nitrite in the incubation medium 
increases the concentrations of membrane oxyhemoglobin and MetHb, while sodium 
selenite has an inhibitory effect on this process [46–48].

Based on the fact that in the human body de novo synthesis occurs for a long time 
(up to 48–72 hours) in the liver and in the ready form comes with the blood stream 
to the erythrocytes, experiments were conducted to study the oxidative resistance of 
erythrocytes and hemoglobin to the damaging effects of such environmental fac-
tors as high pressure electric field, ozone, UV-radiation [43]. Here it was found that 
selenium incorporated into hemoglobin during the first 2 hours increases resistance 
to them without additional contribution of AO selenium-induced synthesis of 
GPC enzyme. On the other hand, it was shown that under conditions of selenium 
deficiency (blood of pregnant women, as a natural model of selenium deficiency) 
hemoglobin is impoverished in selenium, as are red blood cells, which is accompanied 
by a decrease in the antioxidant properties of Hb and red blood cells.

At the same time, the Hb activity in erythrocytes is weakly altered even in the 
third trimester of pregnancy. This is further evidence that Hb enzyme activity 
does not always adequately reflect selenium status [43, 44]. Regarding the effect of 
selenium on the health of pregnant women, it can be noted that pregnancy patholo-
gies such as threatened termination, intrauterine fetal delay are accompanied by a 
decrease in selenium levels and Hb activity in serum, erythrocytes with an increase 
in lipid peroxidation (LPO) of erythrocytes [43, 44]. Selenium deficiency has been 
found to impair the regulation of nutrient transport through the placenta [49, 50]. 
In addition, serum selenium levels may serve as a risk marker for hypertension in 
pregnancy [51]. In addition, we can add that selenium deficiency can affect many 
health parameters, including the cognitive functions of children in the first few years 
of life, and also significantly increases the risk of adverse pregnancy development in 
various infections [52, 53]. The effect of sodium selenite on the development of lipid 
peroxidation (LPO) was studied. We also studied the accumulation of methemoglo-
bin (MetHb) by selenium, the state of reduced glutathione (GSH) and glutathione 
peroxidase (GP) activity in isolated erythrocytes in incubation medium containing 
different final concentrations of sodium selenite (Na2SeO3). Low (1 M, 5 M) concen-
trations of sodium selenite were found to have little effect on glutathione, while at 
high (50 M and 100 M) concentrations there was a marked depletion of glutathione, 
and the activity of glutathione, which has glutathione as the main oxidation substrate, 
was also significantly reduced. Characteristically, high-end concentrations of lead to 
increased oxidative processes in both hemoglobin and erythrocytes. Conversely, low 
sodium selenite concentrations lead to a decrease in the accumulation of active thio-
barbituric acid (TBA) and MetHb products. It has been suggested that the stimulation 
of oxidative processes by high concentrations of sodium selenite is associated with the 
inhibition of the key antioxidant enzyme GP, which is due to the formation of Se [48].

2.1.4 Selenium in gerontology

Aging can be represented as a process of continuous destruction inherent in all 
objects of animate and inanimate nature, a consequence of the second principle of 
thermodynamics, and an organism as an open thermodynamic system that dissipates 
its heat and simultaneously consumes free energy of high-potential light or chemical 
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from outside. The existence and maintenance of complex dissipative structures of 
living organisms is possible due to the constant flow of energy, as well as the continu-
ous reproduction of genetic information and structures in the process of cell divi-
sion. Agerelated changes in somatic cells of multicellular organisms are caused by a 
decrease in proliferative potential and free radical reactions, the main source of which 
is oxygen reduction performed by mitochondria, microsomes, and NADPH oxidant 
systems of phagocytes and other specialized cells.

According to V.A. Gusev, the magnitude of the flux of reactive oxygen species 
is related to the intensity of the basic metabolism. The accumulation of damage in 
cells and the rate of aging depend on the ratio of reactive oxygen species formation 
and their deactivation by the enzymatic antioxidant defense system. The reason for 
the inevitable occurrence, leakage and dissipation of reactive oxygen species during 
energy conversion in mitochondria is the second law of thermodynamics, which 
excludes 100% efficiency of such processes. Comparison of specific superoxide 
dismutase activity in human granulocytes, platelets, erythrocytes and lymphocytes 
with the ability of these cells to exogenously generate superoxide radicals allowed to 
trace the relationship of these factors to the lifetime of cells in blood, which varies 
from 12 hours to several years [54].

A physiological process, similar to pregnancy, associated with the weakening of 
AR status and activation of free-radical processes is old age. Currently, there are two 
main hypotheses of the development of old age, one of which is genetic, i.e. pro-
grammed, and the second one is based on the acceleration of free-radical processes 
leading to AR depletion in the organism [35]. This hypothesis was first proposed by 
Harman D. and is still a priority [55]. Although there is no clear link between these 
hypotheses, there is strong evidence that free-radical reactions accelerate with age, 
having a negative impact on physiological processes related to age [56]. AO minerals 
such as selenium and zinc have been found to be involved in maintaining metabolic 
homeostasis in older adults.

Their deficiency increases with age, which is probably a significant cause of 
premature aging [35]. H. Steinbrenner and S. Helmut [57], believe that antioxidant 
selenium enzymes as well as pro-oxidant effects of selenium compounds on tumor 
cells are involved in the anticancer effects of selenium. Brigelius-R. Floh́e and M. 
Matilde [58] argue that collectively, selenium-containing GPx (GPx1, x4&x6) as well 
as their non-selenium congeners (GPx5, x7&x8) have become key players in impor-
tant biological contexts far beyond hydroperoxide detoxification. In the pathogenetic 
mechanisms of aging, LPO activation plays an important role against the background 
of decreased AR status of the organism, which can be corrected by the use of Se 
drugs.

Using the example of the inhabitants of Azerbaijan (Baku), we have shown 
that 3/4 of erythrocyte Se enters the hemoglobin fraction at a ratio of 1 Se atom per 
300–1000 Hb molecules. Selenium is incorporated into hemoglobin by sulfur substi-
tution predominantly in cysteine residues at the βCys93 position. Considering that it 
will affect the electronic environment of proximal histidine, which is in close proxim-
ity to heme, one can assume that it will enhance its antioxidant protection.

2.1.5 Selenium and iodine deficiency conditions

In the development of iodine deficiency states, in addition to iodine itself, as it 
has been discovered relatively recently, in the last 20–25 years, the provision of the 
trace element selenium to the body is of great importance. This is the main molecular 
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synergist that has key regulatory significance in thyroid gland (TG) functioning. 
Characteristically, iodine and selenium act at the cellular level in all organs of the 
body, with amounts and requirements of the same order (14 mg (Se) and 20–35 mg 
(J)), and daily intake is (60–120 mg Se and 150–250 mg J [59, 60]). It turned out that 
many patients have a clear selenium deficiency along with iodine deficiency, indicat-
ing that iodine deficiency conditions (including goiter) cannot be cured by iodine 
supplementation alone. It has been experimentally proven that even under conditions 
of normal iodine intake, selenium deficiency leads to necrosis and thyroid fibrosis 
[61]. The importance of not only iodine, but also selenium in the treatment and 
prevention of thyroid diseases is recognized by all leading specialists, and the study of 
this problem is urgent [62].

It is now established that selenium is involved in the metabolism of thyroid hor-
mones because it is a component of deiodinases, a family of selenoenzymes including 
selenocysteine and 5′-iodothyronine involved in the transformation (conversion) of T 
4 to TK, performing deiodination of the outer ring of T 4. Deiodinases belong to the 
family of selenoenzymes that include selenocysteine. One of the important enzymes 
responsible for the conversion of thyroxine to 3, 5, 3′triiodothyronine, 5′ iodothyronine 
deiodinase type 1 (D1) [18, 63], was first shown to be a selenoenzyme in 1990–1991. 
The findings explained why the conversion of T 4 to TK was reduced in the selenium-
deficient experiment, leading to the development of hypothyroidism symptoms. 
Many studies have focused on deiodinase type 2 (D2). In humans, plasma T 3 is 
formed in the thyroid gland (20%) and by peripheral deiodination (80%).

Accordingly, the role of D1 and D2 in the formation of circulating T 3 remains 
unknown, but there is speculation that D2 may play a greater role in this process. 
Deiodinase type 3 (D3) catalyzes the conversion of T 4 and T 3 to inactive metabolites 
[64]. It is expressed in high concentration in the placenta and regulates the concen-
tration of circulating fetal thyroid hormones throughout gestation. The action of 
selenium-dependent deiodinases in tissues is under the control of the selenium diet 
and is realized with the participation of thyrotropic hormone [65, 66]. The effect of 
both isolated selenium deficiency and selenium deficiency combined with iodine 
deficiency on the human body is of interest to researchers, since pronounced com-
bined deficiency of these elements is a problem in many regions of Central Africa 
(Congo, Zaire, Sudan), Tibet and some European countries [62].

Of particular interest is the fact that during pregnancy iodine deficiency often 
leads to the development of thyroid diseases, mainly due to the doubled need for 
iodine and other important elements, primarily selenium, the lack of which in 
addition to its direct effect on iodine metabolism and thyroid hormones contributes 
to other dangerous pathologies, including infant mortality syndrome [67]. It should 
be added that all over the world due to deteriorating environmental conditions 
(heavy metals, acid rain, intensive chemicalization of agriculture, etc.) the content 
of mobile forms of selenium in soils is constantly decreasing, which is reflected in 
the selenium status in the human body. The role of selenium in the development 
of iodine deficiency states is not fully understood, and data on the relationship 
between selenium deficiency in food and preservation of thyroid function require 
further study [62].

Taking into consideration that deficiency of iodine and selenium in living organ-
isms increases the risk of thyroid gland diseases, malignant neoplasms, cardiovascular 
pathology, and other serious diseases, the issue of provision of an organism with these 
microelements is actually all over the world, including CIS countries. This problem is 
also extremely important for Azerbaijan. It is noted that the microelement selenium 
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is closely connected with iodine metabolism in organisms that is of key importance 
for thyroid gland functioning. The importance of not only iodine but also selenium 
in the treatment and prevention of thyroid diseases is recognized by all leading world 
experts studying this problem. In this connection it is necessary to further study in 
detail the joint functioning of these elements in organisms, consider the development 
of a new state strategy for the liquidation of iodine deficiency in Azerbaijan, and pos-
sible revision of current salt iodization program in favor of the medicinal prophylaxis 
with iodine-containing oil capsules with additional use of selenium preparations and 
continuous monitoring of iodine supply, use the existing positive experience of the 
international organization “World Doctors” (1998–2004) [62].

2.1.6 Se and immunity

A number of micronutrients, including Se, are known to be important in maintain-
ing a “proper” immune response. Selenium is essential for the efficient formation and 
functioning of virtually all components of the immune system, including the major 
immune cells: neutrophils and macrophages, NK (natural cell) killers, T lymphocytes 
and B lymphocytes [68, 69]. In particular, it is well known that high Se levels in the 
body stimulate the proliferation and differentiation of CD4 + T helper cells (Th) [70]. 
Selenium is also important for the cytotoxicity function of CD8 + T cells and NK cells Se 
levels have a significant impact on innate immunity function, in particular macrophage 
activity depends on selenium levels for their signaling and antigenic abilities [69]. 
Added to this is the fact that selenium is actively involved in regulating the activity of 
such interleukins as IL 1, IL 6, IL 10, TNF through the coordination of the nuclear tran-
scription factor NF kB, which is inhibited by selenium. At the same time, the expression 
of such inflammatory cytokines as IL 2, IL 8, and IL 18 is stimulated [71].

T cells have an increased sensitivity to oxidative stress, and when deficient in sele-
nium proteins, T cells cannot proliferate in response to stimulation of T cell receptors 
due to loss of generation of reactive oxygen species and nitrogen [69, 70].

To date, the Se proteins involved in the formation of the immune response have 
been most fully characterized: the GPX, TXNRD, and DIO families and proteins such 
as MSRBI, SPS2 [69].

Analysis of the available data suggests the effect of selenium deficiency on 
innate and adaptive immunity. However, selenium supplementation does not always 
produce positive results. This is particularly evident in the case of tumor growth, 
where there are no clear positive results on the use of selenium supplementation for 
cancer control [72].

We will not address this topic in detail in our review, but we will note the main 
points. Back in the 60’s and 70’s a Canadian researcher R. Schamberger noted that in 
biogeochemical provinces rich in selenium the incidence of cancer was much lower 
than in selenium-poor regions [73]. This work initiated a broad study of the role of 
selenium in tumor growth. In the 70s on the initiative of Prof. G.B.Abdullaev our 
laboratory staff began to study migration of endogenous and exogenous selenium in 
the rat organism - Giren carcinoma, Wakor carcisarcoma, M1 sarcoma. A sitadic char-
acter of selenium accumulation in these tumors was shown (exchange of selenium 
between the tumor and rat organs and tissues), i.e. affinity of selenium accumulation 
in malignant tumors was established, which suggests that tumors need selenium as an 
antioxidant for their development [74]. Established on experimental animals inhibi-
tion of tumor growth by a number of selenium compounds stimulated their use as 
adjuvants in oncology. However, conflicting results were obtained here [72].
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We studied the sitadic nature of selenium accumulation in these tumors (exchange 
of selenium between tumor and rat tissue organs). We found that selenium atoms 
accumulate affinely in malignant tumors. This suggests that tumors need selenium - 
as an antioxidant - for their development. And a high dose destroys them. This was 
reported at the 1st Scientific Conference “Selenium in Biology” in Baku, 1974 [74].

In this regard, some researchers have tried to use already toxic doses of selenium 
compounds to apply them as proxidants, which can penetrate into tumors as toxicants 
and thus inhibit tumor development. In some cases, positive results are achieved on 
esperiments, but this is not universal. Therefore, manipulations of individual seleno-
proteins at sub-toxic doses may be useful to study the immune system and to identify 
the molecular mechanisms of selenoprotein regulation of immunity. These mecha-
nisms should include pro-oxidative and proteomic activities that provide suppression 
of cancer development (apoptosis, necrosis, paranthosis) [72].

2.1.7 Selenium as an antitoxicant in nitrite poisoning

One of the main targets of the toxic effects of nitrites is hemoglobin, which has an 
increased oxidative affinity (formation of methemoglobin and other oxidative deriva-
tives) for nitrites [75]. There is extensive data on the use of antioxidants of different 
nature to attenuate nitrite toxicity, including through the break-down of nitrite metab-
olites (peroxynitrite, etc.). In particular, there is data on the AO action of selenium-
containing substances: Se-proteins and Se-amino acids or other selenium compounds 
(usually acting similarly to SH-containing compounds, but with a greater efficiency) 
[76, 77]. There is evidence that some selenoproteins can catalyze the breakdown of 
ONOO (an aggressive radical capable of oxidizing cellular structures) with a high 2nd 
order final reaction rate. It has been suggested that hP x acts as a peroxynitrireductase, 
reducing ONOO and protecting hemoglobin from oxidation and nitrification [78].

There are several indications in the literature that sodium selenite is readily 
incorporated into erythrocytes (selenium pump), where it undergoes complex 
metabolism, interacting with hemoglobin, affecting its properties, with subsequent 
release from erythrocytes into plasma as part of various albumin [79, 80]. Thus, 
selenium incorporated into erythrocytes as an active intermediate can affect oxida-
tive processes induced by nitrites or their metabolites. The transfer of selenium from 
erythrocytes into plasma is carried out through the membrane anion exchanger AE1 
through a complex interaction of membrane SH-proteins including transported 
selenium, interaction with plasma albumin. NO in vitro/in vivo is formed through 
the inherent nitrite reductase activity of hemoglobin according to the scheme: 
Hb + NO2−MetHb + NO + H2O [81].

On the other hand, NO, as the main metabolite of the NO2− ion in vitro and in 
vivo, interacts with hemoglobin in the same complex way, binding directly to heme 
(nitrosyl hemoglobin HbNO) or including in the SH group of α or β peptide chains 
(nitrosohemoglobin SNHb) as NO+ nitrosonium cations [48, 75]. Of particular inter-
est is the incorporation of NO into the β chain of hemoglobin at the βCys93 position, 
which has important physiological significance for its vasodilator function. This 
circumstance is also interesting because selenium from sodium selenite, i.e., selenium 
replacing sulfur in the β − chain of cysteine, is also included in this position. In other 
words, selenium, along with NO, is included in the same site of the hemoglobin β 
chain (βCys93) [79, 80].

At the same time, the frequency of selenium presence in Hb for humans in norm 
according to one data is 1: 225 [80], according to other data Se: Hb1: 300 [43, 44]. 
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Normally, the frequency of NO inclusion in Hb is NO: Hb 1: 1000 (but in extreme 
cases may reach 1: 100), i.e., the number of inclusions in β chain is normally higher 
for selenium than for NO, and the inclusion of NO directly in β chain is even lower 
(40%) [82].

When dietary conditions change (nitrite poisoning or nitrogen deficiency) of both 
nitrite and selenium (excess or deficiency in the diet), the NO: Hb1: 1000 and Se: Hb 
1: 300 ratio may change significantly, especially for nitric oxide due to the extensive 
use of nitrate/nitrite in agricultural production and food industries. In this case, 
excess NO can stimulate oxidative stress as one manifestation of nitrite toxicity. Thus, 
inclusion of selenium at the same site (βCys93) may create competition for NO and 
thereby reduce the oxidative burden on hemoglobin, in addition to the action of GPx 
as a natural defender against oxidation.

Moreover, relatively recently, it was shown using transgenic mice that the amino 
acid residue β 93sus itself confers certain AR properties on erythrocytes during hydro-
gen peroxide stimulation of the ferric forms of hemoglobin [83]. Earlier, a similar idea 
was put forward by Mansouri [84] when studying the sodium-dependent oxidation 
of hemoglobin, that βCys93 has a protective AR function for hemoglobin. As for 
selenium, we previously showed that a 2-hour incubation of human erythrocytes with 
sodium selenite (Na2SO3) leads to a doubling of the selenium content in the hemoglo-
bin fraction, increasing the AR properties of both hemoglobin and erythrocytes (LPO 
reduction). The authors explain this by the lower electronegativity of selenium atoms 
in relation to the sulfur atoms they replace [48].

The question of how such low NO inclusions in hemoglobin can exert significant 
physiological effects remains to be fully elucidated, despite impressive achievements 
in this field (recognition of NO as a gas molecule, etc.). To a certain extent, this also 
applies to selenium, whose content in hemoglobin is comparable to NO, but its physi-
ological role, in addition to that of AR, has not been elucidated. And the fact that an 
essential part of NO in hemoglobin is at the same site together with selenium suggests 
a close interaction of these two ligands in comparable proportions. Which makes it 
interesting to study this issue.

2.1.8 Selenium regulation of oxidative processes in blood of rats induced by sodium nitrite

The role of selenium in moderate doses of sodium nitrite on rat erythrocytes 
was studied in vivo. Rats were exposed to single and combined Na2SeO3 [0.5 mg/
kg] and NaNO2 [30 mg/kg] by intraperitoneal injections and subsequent exposures 
with periods of 1, 2, 3, and 12, 48 h. Administration of sodium nitrite with exposures 
at 1 and 3 h in rats resulted in a marked accumulation of MetHb and already by 1 h 
reached 30%, which during the following 2–3 h monotonically decreased to 30% of 
the maximum level reached. By 12 and 48 h of exposure, the level of MetHb was little 
or no different from the control, respectively. Under the action of nitrite in the eryth-
rocyte suspension was found to decrease (by 30% of control) the content of products 
reacting with thiobarbituric acid (TBA). A single injection of sodium selenite did 
not lead to changes in MetHb and lipid peroxidation (LPO). At short-term exposure 
(1–3 h), combined administration of selenite and sodium nitrite resulted in a decrease 
in nitrite-induced accumulation of MetHb by 35% and an increase in accumulation of 
LPO products compared with the single nitrite action. At the same time, the order of 
administration had no effect on the final result.

At prolonged exposure, preinjected selenite at 48 h followed by nitrite [with 1 h 
incubation] led to a decrease in nitrite-induced MetHb accumulation by 16 and 41% 
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of LPO values, whereas selenite injected 1 h after nitrite [48 h exposure] had no effect 
on MetHb accumulation and slightly (10%) reduced LPO values. Changes in the activ-
ity of antioxidant enzymes, glutathione peroxidase, and catalase, were examined. The 
activity of catalase decreased in all variants of exposure to sodium nitrite. Selenite did 
not lead to a significant increase in the activity of GPX under short-term exposure, 
while nitrite led to its inhibition. Exposure to selenite combined with nitrite had little 
effect on the NaNO2-induced decrease in GP activity. The decrease in nitrite-induced 
accumulation of MetHb, when sodium selenite is administered during the first 1–3 h, 
is probably more related to the very fact of selenium inclusion in the Hb molecule 
than to the effect of additional contribution of GP, whose activity is not significantly 
increased during this period of exposure. Based on the position of the spectral 
maxima for HbO2 and doxHb, we note that NaNO2 increases MetHb by reducing 
HbO2, and selenite inhibits this effect [47].

2.1.9 Se and Covi̇d-19

The discovery of a significant role of selenium deficiency in COVID-19 develop-
ment has led to increased interest in the question of selenium-virus interactions. To 
date, there are many studies on this topic, a huge amount of clinical material has been 
accumulated, but a number of unresolved questions remain.

Here we will touch upon only some of the issues in the interaction of selenium 
with viruses in humans [85–87]. The mechanism of selenium antiviral action is 
multifaceted and covers a number of stages of viral infection, from virus invasion 
into healthy cells to fighting its consequences. Below is a brief list of the beneficial 
properties of selenium sodium selenite (the main inorganic selenium compound used 
in biology and medicine) in the treatment of viral infections, using HIV and Ebola as 
examples [85–87]. Sodium selenite (Na2SO3) can act as a contact interrupter between 
virions (SARS CoV 1, SARS CoV 2) and the membrane apparatus of healthy cells 
(host). Specifically, the SARS CoV 2 virion itself consists of a hydrophobic envelope 
with protein spikes on the outside and a carrier of its genome, mRNA, on the inside.

The proteins of these spikes interact with the membrane apparatus of the 
“host” cells, i.e. the organism attacked by the virus, mainly through the membrane 
integral cell protein, the angiotensin-converting enzyme ACE2 (angiotensin) and 
with the subsequent disruption of membrane integrity, facilitating the penetra-
tion of the virus genetic material into healthy cells. Subsequently, this mRNA 
is incorporated into the host cell genome, modifying it, after which the virus 
replicates at the expense of the host cell resources [88, 89]. Thus, interrupting the 
contact of virus spikes with the membranes of healthy cells by changing the struc-
ture of any spike proteins is a preventive measure to suppress the development of 
infection [90]. This hypothesis is presented in detail in the work of M. Kieliszek 
and B. Lipinski [91].

Sodium selenite (Na2SO3), being a small and non-polar molecule, easily passes 
through cell membranes by passive transport, has an active intracellular metabolism 
of selenium, which is accompanied by oxidation of intracellular sulfur-containing 
proteins with simultaneous reduction of selenite (+4) to selenide (2). Taking into 
consideration that selenium and sulfur are quite similar in their chemical properties, 
it can be supposed that when entering the body as a chemically more active element, 
selenium will replace sulfur in sulfur-containing cysteine (2 amino 3 mercaptopropa-
noicacid) or when interacting with SH-groups of proteins it takes away the hydrogen 
atom from thiols, thereby oxidizing them, forming R S S R and R S Se S R type bonds 
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[92, 93]. In the case of viral infection, sodium selenite will also interact with viral 
sulfur-containing proteins, including disulfidisomerase (PDI) located in Covid − 19 
spikes, deactivating it as an enzyme according to the scheme:

 ( ) + +− + → − − − +4 2
2PDI SH Se PDI S S PDI Se   (1)

This means that sodium selenite can contribute to the disruption of contact viral 
entry into healthy cells [90, 91]. As mentioned above, genomic antisense interac-
tions lead to selenium deficiency, which leads to a decrease in selenium enzyme 
resources, primarily thyroredoxin reductase, a supplier of protons for the needs of 
DNA synthesis in healthy cells. This leads to increased consumption of selenium by 
the body, which is necessary for the synthesis of selenoproteins, both own and “viral”. 
As a consequence, a selenium deficiency condition occurs, leading to the formation 
of reactive oxygen species [94], weakened immunity against the background of 
oxidative stress and decreased antioxidant protection of the body. Sodium selenite 
is a successful form of selenium in this respect, promoting its rapid penetration into 
cellular structures and overcoming the blood–brain barrier [95]. This property allows 
the body to use selenium from sodium selenite to maintain vital selenoprotein levels, 
protecting it from oxidative stress.

The main arguments for using sodium selenite in adjuvant treatment are as 
follows: 1. In model experiments, selenium inhibited RNA and DNA polymerase 
reactions; 2. Inhibited nuclear factor NF kB activity; 3. Regulates immune response, 
including inflammatory process; 4. it has an anti-aggregation effect by inhibiting the 
formation of thromboxane [86].

2.2 Preliminary research towards selenium-enriched protein - natural silk fibroin

Bioactive peptides are known for their high tissue affinity, specificity and effec-
tiveness in health promotion. In this sense, fibroin and sericin of natural silk have 
a special place. Natural silk is a valuable textile raw material of animal origin. It is a 
product of excretion of silk-producing glands of animals, mainly silkworms (type 
of arthropods, class of insects). Among them, the most industrially important is 
the domesticated mulberry silkworm (Bombyx mori L., a mulberry type silkworm), 
which feeds on mulberry leaves. By the end of V age, the caterpillars reach maturity 
and curl up into a cocoon that protects the pupa from adverse environmental condi-
tions and silkworm enemies. Maturity occurs when a dense mass of silk, namely the 
protein fibroin (pure silk thread) and the protein sericin (sticky mass), is formed in 
the caterpillar silk gland.

If we consider the consumption of silk proteins, fibroin and sericin, from cocoons 
as bioactive peptides and hydrolysates of food proteins, which are known to be 
beneficial for human health, then modern silk production should contribute to food 
production and therefore equally to clothing, food and housing.

Enzymatic hydrolysis is a powerful tool for producing bioactive peptides and 
hydrolysates from fibroin and sericin. Motoyuki Sumida and Vallaya Sutthikhum 
[96], based on their experience of studying silk digestion enzyme for over 20 years, 
summarize current knowledge on bioactive peptides and hydrolysates produced from 
B. mori L. and wild silkworm fibroin and sericin using proteases, and their potential 
for human health promotion. They encourage researchers associated with silk pro-
teins - fibroin and sericin - to conduct further comprehensive research on bioactive 
peptides and hydrolysates of fibroin and sericin derived from domesticated and wild 
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silkworms. As such, these ingredients are expected to become fruitful resources for 
the well-being of mankind. In keeping with this principle, our results on fibroin 
enrichment with selenium are also becoming important in this field.

Furthermore, the aqueous solution of silk fibroin is suitable for preparing various 
silk fibroin films, hydrogels, porous materials, microspheres and the like used in cos-
metics, skin care products, tanning lotions, tissue-engineered materials, drug carri-
ers, artificial skin and the like. Since stable aqueous silk fibroin solution can be stored 
for a long time [97], it is obvious that enriching fibroin with selenium simultaneously 
increases the intelligence and innovativeness of aqueous fibroin solution.

Ch. Wen et al. [98] note that conventional inorganic Se supplements have 
drawbacks such as toxicity and low bioavailability. Enriched Se proteins and their 
hydrolysates show good bioactive properties, mainly including antioxidant activity, 
immune regulation, neuroprotective activity and inhibition of hyperglycaemia, 
among others. The authors advise that future studies should focus on the relation-
ship between the metabolism of Se-enriched proteins and the metabolic pathways of 
selenoregulatory proteins using multiomics technology. In addition, in their opinion, 
the structure–activity relationship of Se-enriched proteins/hydrolysates from differ-
ent sources should be comprehensively studied to further elucidate their bioactivity 
mechanism and test their beneficial properties in vivo. Considering this, as well as 
the findings of M. Puccinelli et al. [99] that increasing the amount of selenium in 
plant foods is a good way to increase Se intake in animals and humans, and the advice 
of the authors [96] above, our results on fibroin selenium enrichment may become 
important in this field.

2.2.1 Introduction of selenium into the fibroin structure

Selenium was introduced into the fibroin structure using our developed method 
[100]. Two batches of “Sheki-2” silkworm caterpillars were selected for this purpose. 
Starting from the fourth instar, the experimental batch was fed a preparation of 
sodium selenite (Na2SeO3); fresh mulberry leaves before feeding were sprayed with 
0.1% solution of sodium selenite in distilled water, carefully dried, then caterpillars 
were fed every 48 hours. The dose of sodium selenite was taken at the rate of 4 mg 
per kg of live weight of the caterpillars. A control batch of caterpillars was fed with 
normal mulberry leaves. The temperature, humidity, light and feeding frequency of 
both batches were the same.

2.2.2 Preparation of pure fibroin

To purify fibroin obtained from silkworm (B. mori) cocoon filaments, we used the 
well-known sericin dissolution method [101]. Equal volumes of 0.05 M solutions of 
sodium carbonate Na2CO3 and sodium hydrogen carbonate NaHCO3 were taken and 
the cocoons freed from their shells were boiled in them for 30 min. This allows fibroin 
to be separated from sericin. After washing fibroin five times in warm distilled water, 
the residual sericin in the sample was tested using a biurette reaction as follows: 2 ml 
of water remaining after the third wash of silk fibroin was added to a double volume 
of 30% CuSO4 solution and the mixture was stirred again thoroughly. If sericin is 
present in the sample, it turns red-purple. Washing was continued until the sericin 
was completely absent.

The obtained fibroin was dried in a desiccator at 340 K, in glass cups, until constant 
weight. Fibroin was then extracted for 12 h with ethyl alcohol (20 g fibroin/500 ml 
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95% ethyl alcohol) to remove the waxes and for 12 h with petroleum ether (20 g 
fibroin/500 ml petroleum ether) in a Soscelet apparatus (extractor) to remove the fats.

2.2.3 Determination of selenium content in fibroin

The photometric method of selenium determination is one of the most convenient 
and up to now widely used in analyses of this element. This is primarily due to the 
availability of analytical equipment and the convenience and simplicity of the method 
[102]. To determine selenium content in fibroin, we used fluorimetric method adapted 
for biological samples [103]. Based on the ability of selenium to form in dilute solutions 
with 2, 3 − diaminonaphthalene a fluorescent complex - diazoselenols with a wide area 
(λmax = 520 nm), when excited by UV light with λmax = 366 nm (Figure 2).

The sensitivity of the method is 0.002 μg selenium per 1 ml of extract. Selenium con-
tent was determined in fibroin, its crystalline part and raw silk. Therefore, mineraliza-
tion of the samples was carried out first. For this purpose a mass of dry sample (100 mg) 
was poured with concentrated nitric acid (5–7 ml), incubated for 24 hours in the dark, 
then 3–4 ml of 30% chloric acid was added. Using a reflux condenser the resulting 
mixture was heated first on a weak flame for 30 min and then on a strong flame.

A solution of HClO4 was added from time to time and waited for the appear-
ance of white vapors of perchloric acid until the solution was completely discol-
ored. After cooling down, 10 mL distilled water was added to the mixture and 
heated again until the perchloric acid vapor appeared. Then the mixture was 
cooled down again and 2 mL of a 2% Determination of selenium content in fibroin 
Ethylenediaminetetraaceticacid (EDTA) solution was added. The pH of the solution 
was then adjusted to 1.0 using 10.0% concentrated hydrochloric acid and 25% ammo-
nia solution. The mixture was stirred and 5 ml of 0.05% solution of 2, 3 diaminon-
aphthalene (in 0.1 N HCl) was added. The solutions were put on a boiling water bath 
for 5 min, cooled in the dark for 30–40 min. Then they were poured into a separating 
funnel with 5 ml of freshly distilled cyclohexane (or hexane) and extracted for 1 min. 
After separation of the phases the aqueous solution was discarded and the organic 
phase was poured into a cuvette for measurement. Fluorescence was measured on 
a sensitive FAS-1 fluorimeter. In each batch of determination a blank test was run 
through the whole assay cycle and an appropriate correction was introduced into the 
calculation of the selenium content of the samples. The selenium content of the test 
samples was calculated by plotting calibration curves.

In each batch of determinations a blank test was carried out throughout the analy-
sis and an appropriate correction was entered into the calculation of the selenium 
content of the samples. By constructing calibration graphs, the selenium content of 
the test samples was calculated.

Daily measurements of caterpillar weight have shown that from the age IV, with 
the exception of the molting period, the weight of each caterpillar increases from 0.2 
to 6.0 g. Already from the end of age IV, a difference in the weight of experimental 
(b) and control (a) caterpillars can be detected (Figure 3), with the former starting 

Figure 2. 
In dilute solutions with 2,3-diaminonaphthalene, selenium forms fluorescent complexes, diazoselenols, with a wide 
spectral range, when excited by ultraviolet light.
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to curl one day earlier. This indicates that feeding the caterpillars with sodium selenite 
increases cellular metabolism and accelerates growth and development [104].

The effect of selenium on the growth, development, and productivity of mulberry 
silkworm has been studied. It is established that the yield of raw silk in experimental 
cocoons is 2.0–2.5% higher than in control cocoons, the metric number of yarn is 
better. Thus, to increase cocoon yield and improve the quality of raw silk one may 
recommend feeding silkworm caterpillars with sodium selenite every 48 hours at the 
rate of 4 micrograms of sodium selenite per gram of live weight of caterpillars from 
the 4th instar.

Figure 4 shows the change in selenium content in fibroin depending on the dose 
of sodium selenite sprayed on mulberry leaves during caterpillar feeding. The figure 
shows that when the dose of sodium selenite in the feed is increased to 50 μg per 
caterpillar, the selenium content increases from 0.04 to 0.27 mg per 1 kg of fibroin. 
Further increases in feed dose do not change the amount of selenium in fibroin. 
Consequently, Se has a negligible enrichment in fibroin. This indicates that not all the 
selenium from the feed is transferred to fibroin.

When the single dose of sodium selenite is increased above 4 mg per 1 kg live 
weight, caterpillar poisoning has been observed.

2.2.4 Effect of selenium on some fibroin properties

We found that when selenium is introduced into the structure of fibroin, it either 
replaces sulfur in the bridges between the subunits of macromolecules or forms addi-
tional lateral branching, which leads to a decrease in the rate constant of free radical for-
mation in the matrix under the influence of UV-irradiation. In this case selenium atoms, 
replacing sulfur in macromolecules or forming additional branching like sulfur, lead to 
the capture of a great number of migrating electrons, thus reducing the rate of registered 
free radicals. This seems to explain the resistance of silk to radiation damage [105].

Figure 3. 
Changes in mulberry silkworm caterpillar weight as a function of feeding time: A - for control batches; b - for test 
batches.
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We investigated the effect of selenium on the time and temperature dependence 
of the strength of a cocoon yarn. It was found that at a constant tensile stress applied 
to the yarn, the value of the breaking time for the control samples was significantly 
lower, i.e. the strength of the control samples at a constant mechanical stress was 
lower than for the experimental samples. Similarly, with the same tensile time for the 
control specimens, the mechanical stress value is significantly higher, i.e. the control 
specimens withstand a higher load at a given temperature.

On the basis of the literature (S.B. Ratner, 1990) and the above experimental data 
on the study of the time and temperature dependence of the cocoon thread strength, 
as well as the nature of the material studied, it can be concluded that Se entering the 
fibroin structure changes its molecular and supramolecular structure. This, in turn, 
leads to a more uniform distribution of mechanical stress along the macromolecular 
chains, which is reflected in a reduction of the structure-sensitive parameter γ. 
Ultimately, the strength properties of the cocoon yarn are improved [106].

It is known that branching creates an obstacle for the proper stacking of macro-
molecules during their crystallization. Therefore, a change in the macro-molecular 
structure of fibroin when selenium is introduced should also be reflected in its supra-
molecular structure. Our data show that selenium introduction into fibroin structure 
decreases the degree of its crystallinity. This can be explained by the fact that Se get-
ting into the fibroin structure forms additional branching of fibroin macromolecules. 
As a result, the mobility of branched macromolecules and their segments decreases 
during formation of the crystalline phase. Due to this slowing down, there is not 
enough time for the folding of the branched macromolecules and the amorphous part 
of the fibroin microfibrils increases [107].

To determine the nature of the change in fibroin structure following the intro-
duction of selenium, we investigated the thermomechanical [108], deformation 
characteristics of fibroin [109]. In order to adequately determine the dependence of 
the number of amorphous sites on the concentration of selenium introduced into 
the fibroin, we used spin probe method, infrared spectroscopy, X-ray structure 

Figure 4. 
Dependence of selenium content in fibroin on the dose of sodium selenite received by the silkworm caterpillar in 
the feed.
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and derivatogravimetric analysis. The results are well explained by assuming that 
the mechanical stresses are unevenly distributed along the macromolecule chains. 
Selenium atoms, playing the role of a prophylactic antioxidant in fibroin, increase the 
resistance of the material to the effects of spark discharge. The study of these charac-
teristics of fibroin provides qualitative information about the action of selenium, i.e. 
it is only indirectly possible to trace changes in the state of the amorphous sites.

It was found for the first time that during twisting of mulberry silkworm cocoon 
under the influence of jet stretching, caterpillar pressure, peculiarities of silk-screen 
structure and speed gradient crystallization of fibroin (orientation process) accom-
panied by formation of two modifications - CEC (crystals with elongated chains) and 
CFC (crystals with folded chains) occurs. Upon increasing the temperature in the 
derivatogravimetric chamber, crystallites with elongated fibroin chains begin to break 
up first, followed by crystallites with folded chains. The depth and width of DTGA 
minimum in low temperature region corresponding to the destruction (disordering) 
of EWC is much larger than EWC minimum in high temperature region. In the case of 
selenium-enriched fibroin, the minimum corresponding to EWC almost disappears. 
Thus, the introduction of selenium into the fibroin structure decreases the number of 
SSCs and leads to a preferential increase in the amorphous part of the polymer [110]. 
Fibroin is known to consist of hydrophobic and hydrophilic amino acid residues and is 
highly hygroscopic. It therefore quickly absorbs moisture available in the atmosphere 
and an equilibrium between air humidity and fibroin is established. Moisture ingress 
into fibroin quickly changes its electrical resistivity ϱ, polarization ε and dielectric 
constant tgδ, which makes it possible to determine air humidity by measuring R, C 
and tgδ. Based on these properties of fibroin, we created and patented a humidity 
sensor based on the selenium-enriched crystalline part of fibroin, which has a fast 
response and high sensitivity (M.Y. Bakirov et al. [111]). Due to the selenium content, 
this sensor is more resistant to aggressive environments than other materials and has a 
low temperature coefficient.

© 2023 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 
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Abstract

Selenium (Se) is essential for humans. This element is present in more than 25 proteins 
related to redox processes, and its deficiency is related to the onset of chronic diseases. 
One way to incorporate Se into the human diet is by consuming plant foods rich in Se. 
Crop fortification with Se can be achieved through the agronomic practice of bioforti-
fication. This chapter discusses dietary sources of inorganic Se (selenate and selenite), 
organic Se (selenocysteine, selenomethionine, and methylselenocysteine), and bioactive 
compounds provided by consuming the edible parts of plants as a result of agronomic bio-
fortification. The benefits to human health from consuming selenium-enriched crops due 
to their biological functions such as antioxidant, anti-inflammatory, and anticarcinogenic 
are also presented. The intake of Se-enriched plant foods is a growing trend. In addition to 
providing the daily dose of Se, these Se-enriched vegetables are a functional food option 
that improves human health due to their content of phytochemical compounds.

Keywords: biofortification, inorganic Se, organic Se, bioactive compounds, 
antioxidant, anti-inflammatory, anticarcinogenic

1. Introduction

Selenium (Se) is an element that is required in trace amounts and has an essential role 
in human metabolism, growth, and hormonal balance [1]. In humans, 25 selenoproteins 
have been reported and classified into six functional groups (proteins involved in Se 
transport, selenocysteine synthesis, protein folding, hormone metabolism, redox signal-
ing, and reductase/peroxidase activity) [2]. Although most selenoproteins are related to 
protection against oxidative stress, others are involved in phospholipid biosynthesis and 
calcium signaling [2]. Selenium has also been reported to intervene in health through 
epigenetic processes, modulating DNA methylation and histone acetylation [3].

Meanwhile, Se deficiency can lead to human health problems ranging from 
endemic cardiomyopathy (Keshan disease), endemic deforming osteoarthropathy 
(Kashin-Beck disease), male infertility, prostate cancer, cystic fibrosis, muscular 
dystrophy and impairment of the immune system, and reducing defenses against 
infectious viral diseases (influenza, hepatitis, HIV or SARS-CoV-2) [4].
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Selenium is characterized by its ability to transition to different oxidation states. 
In nature, Se has five oxidation states (+6, +4, 0, −1, and − 2) and different selenate 
(Se+6, SeO4

2−, Se (VI)), selenite (Se+4, SeO3
2−, Se(IV)), elemental Se (Se0), and 

selenide (Se2−) forms, in addition to its organic forms such as selenocysteine (SeCys), 
selenomethionine (SeMet), and methylselenocysteine (MeSeCys) [3, 4]. These forms 
of Se are commonly found in traditional dietary supplements, along with selenized 
yeast rich in SeMet. Meanwhile, Se in proteins is found in the form of the amino acids 
SeCys and SeMet [3].

Although Se is an essential element for humans, its biological activity and bio-
availability depend on a number of factors such as chemical form, accessibility, solu-
bility, digestibility, the amount ingested, and physiological state of the organism, as 
well as the presence of other components in the diet [3]. Studies have revealed that the 
organic forms of Se are less toxic and are absorbed more efficiently than the inorganic 
forms of Se. Of the latter, Se+4 is more toxic than Se+6 [3]. In turn, Niedzielski et al. [5] 
indicate that organic Se compounds have a higher bioavailability and are assimilated 
in ranges of 85–95% when it comes to food/supplements, whereas inorganic selenium 
has an absorption range of 40–50% during human intake.

The recommended dietary allowance of Se for humans depends on gender, age, 
pregnancy, lactation, dietary intake, and geographical location. The United States 
(US) Department of Agriculture indicates a dose of 55 μg/day as the recommended 
daily allowance (RDA), while the European Food Safety Authority (EFSA) indicates 
an RDA of 70 μg/day for men, 60 μg/day for women, and 75 μg/day for lactating 
women, being a more specific dose. Meanwhile, the US Institute of Medicine expert 
panel determined the tolerable upper limit (UL) at 400 μg/day and the no-observed-
adverse-effect level (NOAEL) at 800 μg/day [3]. Finally, the International Food and 
Nutrition Board suggests an average daily intake of 40–70 μg/day for men, 45–55 μg/
day for women, and 25 μg/day for children [3]. Therefore, it is important to maintain 
a balance in the daily dose of Se, since doses higher than 1.2 mg/day can cause toxic 
effects and lead to neurophysiological alterations (confusion, memory loss, dizziness, 
irritability, fatigue, anxiety, anger, insomnia, depression, or headache), eye problems, 
skin lesions, or hair and nail loss [3, 4].

The production of Se-enriched plant foods can be an alternative to the consump-
tion of biofortified vegetables to reduce Se deficiency, thus preventing and treating 
several diseases that threaten human health [6]. In recent years, Se biofortification 
has emerged as an effective strategy to increase the Se content in crops and thus 
improve its availability in the edible parts of cultivated plants, allowing this trace 
element to enter the food chain and strengthen human health.

2. Agronomic biofortification

For the agronomic biofortification of Se in plants, research has been generated in 
terms of concentration, type of plants, dynamics and different forms of Se in the soil, 
type of crops, application methods, and lately its nanotechnological use in agriculture. 
Se biofortification consists of a process to increase the bioavailability of Se, in plants 
consumed during human intake, without compromising crop yields [7]. This strategy 
can be achieved by agronomic techniques or through gene targeting [8]. The main 
agronomic methods for Se biofortification are foliar applications and soil applica-
tions, with foliar spraying of Se being the most efficient because this prevents selenate 
leaching and selenite fixation in the soil [9]. Selenite and selenate are the two inorganic 
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forms of Se that are mainly used as fertilizers for the exogenous application of Se to 
plants. Currently, there are other agronomic techniques for Se biofortification such as 
Se-enriched nutrient solution in hydroponics and seed soaking, among others [8, 10].

2.1 Selenium biofortification in hydroponic systems

The technological approach of soilless cultivation seems to be a key factor for strict 
control of crop conditions and observation of the effect of Se in a biofortification 
strategy. Through this system, with the joint addition of Selenium (Se) + Iodine (I), 
there was an activation of the biosynthesis of organic forms of Se. In leaf vegetables 
such as lettuce, it was shown that the application of Se + I, with a low dose of salicylic 
acid, increased the sugar content in leaves and improved the concentration of macro- 
and micronutrients in roots (P and Mn) [11, 12]. The addition of 5 μM Se to the 
nutrient solution could be considered a high concentration but at the same time safe 
for human and plant health as it stimulated lettuce growth and yield and increased 
the content of phenolic compounds [13]. Under hydroponic conditions, supplying 
Se to the nutrient solution delayed and reduced the toxic effects of cadmium (Cd) 
on bell pepper plants [14]. In another study, humic/fulvic acid mixture plus root 
application of Se in the nutrient solution reduced the harmful effects caused by Cd 
toxicity in broccoli plants; furthermore, improvements in growth rate and reduction 
in Cd transport from leaves to inflorescence were observed [15]. Selenium appears 
to positively affect cell membrane stability in cucumber plants exposed to Cd, as Cd 
accumulation in roots was reduced [15]. In addition, selenoproteins act as antioxidant 
agents in plant metabolism, increasing the activity of enzymatic and non-enzymatic 
compounds that together act against reactive oxygen species (ROS) and cellular 
detoxification [16].

2.2 Selenium biofortification in soil and foliar spray crops

The joint foliar application of Se + I is an interesting biofortification method, 
although this strategy presents some difficulties due to the toxicity of Se [17]. 
Although it is a very efficient method for product application, it was observed that 
foliar application of Se did not reduce the toxic effects of Cd on bell pepper plants; 
whereas, root application with nutrient solution proved to be a more effective method 
[14]. It is not recommended to apply Se to broccoli plants to mitigate the toxic effects 
of Cd, as this could further increase its toxicity [15]. Foliar application of a micronu-
trient mixture (zinc (Zn), iron (Fe) I, and Se) represented an effective strategy for 
wheat biofortification, without yield effects [18]. This micronutrient mixture also had 
beneficial effects on rice grain, as the Zn, I, and Se content was increased [19]. A high 
dose of Se (10 mg/kg) decreased grain yield and biomass in wheat. Whereas, Se (in 
the form of selenite) accumulated mainly in wheat grain and root, a higher accumula-
tion in the form of selenate was found in leaf and straw [20]. Selenium is chemically 
similar to sulfur (S) and is taken up by plants through S transporters present in the 
root plasma membrane, metabolized by the S assimilation pathway, and volatilized to 
the atmosphere [21]. Plants can take up inorganic Se (selenate, selenite, or elemental 
Se) and organic Se (SeCys and SeMet); the forms and availability of Se will depend 
on soil type and pH [22]. For biofortification, it is necessary to consider many factors, 
the method of application, the timing of application, the pH of the mixture, and the 
concentrations, and to know the possible synergistic and antagonistic effects between 
the products to be applied [23].
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It is also worth mentioning that there are new nanotechnological tools for agro-
nomic biofortification. A study revealed that Se nanoparticles (SeNPs) could be used 
for Se supplementation, an essential microelement for humans. With the application 
of 4.65 μg/mL SeNPs, the highest germination percentage was obtained in barley 
seeds [24]. A field experiment revealed that SeNPs improved growth parameters, 
carotenoid content, and insect control in sunflowers when 20 mg/L was applied [25]. 
SeNPs increased the activity of enzymes related to free radical scavenging; in addi-
tion, SeNPs showed excellent bioavailability, low toxicity, and high biological activity 
[26]. In tomato, Se application significantly favored the tomato fruit quality, includ-
ing total soluble solids, soluble sugar, and titratable acid [27]. The use of Se-pelleted 
seeds has emerged as an interesting and viable alternative to increase Se supplementa-
tion in agricultural ecosystems [28].

3. Source of inorganic and organic selenium from the crop plant

Because organisms cannot synthesize Se, humans enter Se into their diet mainly 
through the intake of cultivated foods, so one strategy to increase Se content in 
crops and the human food chain is through agronomic biofortification with Se. It 
is also important to understand the bioaccessibility of Se in the edible tissues of 
Se-enriched crops.

Selenoproteins are the form in which Se is present in the human body; for this 
purpose, Se can be ingested in organic and inorganic forms. Selenite and selenate 
(organic Se) and methionine (organic Se) are considered highly bioavailable. 
Elemental Se is classified as difficult to be absorbed by the gastrointestinal tract. 
In addition, organic Se from food intake is considered relatively safe for the human 
body, whereas inorganic Se ingested by chemical supplements has a narrow range 
between its therapeutic effect and its toxic potential [1].

One of the crops that stands out for its consumption throughout the world is 
wheat, which is also characterized by its ability to accumulate Se. In a study by Wang 
et al. [10], it was found that regardless of the method of biofortification (foliar or 
soil application) and the form of exogenous Se applied (selenite or selenate), the 
speciation of Se in wheat grains was the organic form (93–100%). Organic Se in wheat 
grains comprised 87–96% SeMet and 4–13% SeCys2; whereas, the inorganic Se species 
was selenate (1–6%). The bioaccessibility of Se in white flour and whole wheat flour 
was also determined in this study. In the intestinal phase, 10–38% bioaccessibility was 
reported in white wheat flour and 9–34% in whole wheat flour, while in the gastric 
phase, Se bioaccessibility was similar between white flour (6–34%) and whole wheat 
flour (6–27%) [10].

Rice is considered the staple food for more than half of the world’s population, 
making it a strategic crop for biofortification and Se intake. In an analysis of Se spe-
ciation in rice grains, where the application of selenite to the soil and by foliar spray-
ing was evaluated, it was found that selenite was the dominant Se species (≈42–73%), 
the inorganic Se species being the prevailing one in rice grains and the organic species 
being a smaller proportion. A strong influence of the biofortification method was 
also reported; root application of selenite favored the presence of seleno-amino 
acids (≈38%), and foliar spraying induced the accumulation of selenite (≈73%) and 
selenate (≈15%) in rice grains [29]. Se speciation changed when dealing with brown 
rice grains biofortified with foliar application of selenite, where SeMet was the main 
metabolite identified in Se-enriched rice [30].
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The third-most consumed crop in the world is potato. During the production 
of potato tubers, selenite or selenate was applied by foliar spraying during differ-
ent stages of plant growth. The main organic Se species in potato tubers was SeMet 
(78.6% with selenite application and 52.3% with selenate), although the presence 
of SeCys2 and SeMeCys was also detected. Selenate was the predominant inorganic 
Se species, and its proportion varied according to Se source (1.5% with selenite and 
31.9% with selenate) [9].

Se biofortification has also been studied in other cereals such as maize, in 
legumes such as cowpea, as well as in other crops such as groundnut. These crops 
had a high proportion of organic Se (>90%), indicating that the plants were 
highly efficient in converting inorganic Se to organic Se. SeMet was the dominant 
organic Se species in all three crops with proportions of 92.0% in maize, 63.7% in 
cowpea, and 85.2% in groundnut. SeCys2 was also identified (7.1% in maize, 2.1% 
in cowpea, and 10.4% in groundnut). Cowpea grains stood out from the other two 
crops for their MeSeCys content (31.7%). As for inorganic Se species, the propor-
tion was 2.7% selenate in cowpea and 2.1% selenite in groundnut. Gastrointestinal 
bioaccessibility was also determined in this work, and a range of 66.6–78.2% was 
found for the three crops, with no differences among the three types of grains 
enriched with Se [31].

In peanut, foliar and soil application (root irrigation) of selenite was evaluated, 
and the main Se species in peanut protein were determined. The major organic Se spe-
cies was SeCys2 (65.3%), followed by MeSeCys (13.9%); the inorganic form of Se was 
selenite and accounted for 11.7% of the total Se compounds. The organic Se content in 
peanut was about 86.3%. This crop efficiently absorbed and transformed selenite into 
organic Se sources [32].

The ability of strawberry plants to absorb and biosynthesize inorganic Se into 
seleno-amino acids has also been studied, with foliar application of selenite being the 
best biofortification treatment compared to other Se sources such as selenate or SeMet 
applied in root irrigation. In strawberry fruits, 86% of the total Se content is identi-
fied, and 16% corresponds to two unknown Se species. Of the identified Se species, 
45% corresponds to SeMet, 20.7% to MetSeCys, 5.8% to SeCyts, 5.6% to selenite, and 
6.6% to selenate [33].

In the case of vegetables such as lettuce, four Se species were detected, SeMet, 
SeCys, selenite, and selenite. The proportion of these species was a function of the Se 
source used in biofortification. With selenate application, the proportion of SeMet, 
SeCys, and selenite was 51%, 4%, and 45%, respectively. Meanwhile, with selenite 
treatment, 90% of SeMet, 10% of SeCys, and no record of inorganic Se was obtained, 
indicating that all the supplemented selenite was converted into organic Se. In edible 
lettuce shoots, regardless of the source of Se applied, the proportion of organic Se was 
higher than the proportion of inorganic Se [8].

Sprouts are seedlings from seeds, which, after germination, are consumed with 
fresh vegetables. These types of plant foods are gaining interest because they may 
contain more bioactive compounds than seeds and can be enriched with Se. In the 
case of soybean sprouts, two Se sources (Se nanoparticles (SeNPs) and selenite) and 
two concentrations were evaluated. With the application of SeNPs, five Se species 
were identified in soybean sprouts, the organic Se species SeMet (55–71%), SeCys2 
(6–17%) and MeSeCys (6–14%) as well as the inorganic Se species selenite (2%) and 
selenate (11.5–15%). Whereas, in selenite-enriched soybean sprouts, SeMet species 
predominated (71.5–89-1%), followed by SeCys2 (4.5–14.4%), MeSeCys (4.2–10.4%), 
and selenite (2.3–3.7%) [34].
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Plants have the ability to uptake and metabolize Se, which makes them ideal Se 
sources for daily dietary Se supplementation. Many crop plants have been shown 
to have a high capacity to convert inorganic Se into organic Se. In plants, Se species 
are related to the type of crop; thus, different crops may have different inorganic or 
organic Se species (Table 1). The organic Se species are seleno-amino acids such as 
selenocysteine (SeCys) and selenomethionine (SeMet), which in turn can give rise 
to methylated SeCys (MeSeCys) and methylated SeMet (MeSeMet). These organic 
forms of Se have bioactive properties that benefit human health as anticarcinogens 
and in the regulation of inflammatory processes.

Recently, the amount of research on Se biofortification has focused on crop pro-
duction; of these, cereals are the ideal crops for Se biofortification due to their high 

Crop Edible 
plant

Selenium (Se) speciation in crops Reference

Inorganic Se Organic Se

Wheat Grain Selenate: 1–6% Selenomethionine
(SeMet): 87–96%

[10]

Selenocysteine
(SeCys): 4–13%

Rice Grain Selenate: ≈15–18% ≈8–37% [29]

Selenite: ≈42–73%

Maize Grain SeMet: 92% [31]

SeCys: 7.1%

Methylselenocysteine
(MeSeCys): 0.9%

Cowpea Grain Selenate: 2.7% SeMet: 63.7%

SeCys: 2.1%

MeSeCys: 31.7%

Groundnut Grain Selenite: 2.1% SeMet: 85.2%

SeCys: 10.4%

MeSeCys: 2.2%

Papa Tuber Selenate: 1.5–31.9% SeMet 50–80% [9]

Peanut Grain Selenite: 11.7% SeCys: 65.3% [32]

MeSeCys: 13.9%

Strawberry Fruit Selenite: 5.6% SeMet: 45% [33]

Selenate: 6.6% SeCys: 5.8%

MeSeCys: 20.7%

Lettuce Shoot Selenite: 0–45% SeMet: 51–90% [8]

SeCys: 4–10%

Soybean Sprouts Selenite: 2.1–3.7% SeMet: 55.1–89.1% [34]

Selenate: 11.5–15% SeCys: 4.5–17.3%

MeSeCys: 4.2–13.9%

Table 1. 
The proportion of Se species in edible organs of different crops biofortified with Se.
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consumption worldwide. However, the cultivation of hydroponic vegetables, such as 
lettuce, and the production of sprouts are also excellent options because they have a 
short production cycle, are easy to handle, have fresh taste characteristics, and can be 
eaten fresh or cooked [8]. These vegetables along with fresh fruits, such as strawber-
ries, can frequently be found in the diet of people around the world. To date, there has 
been a great diversity of Se-enriched plant foods that can be ingested to supplement 
the Se required by the human body to maintain or improve health.

4. Secondary metabolites derived from Se biofortified crops

Phytochemicals or secondary metabolites have no recognized role in the vital pro-
cesses of plants but are important in their interaction with the environment. From the 
point of view of human health, there is extensive evidence of the diverse biological 
activities presented by the different classes of phytochemicals, which include antioxi-
dant, anti-inflammatory, antimicrobial, antitumor, and immunomodulatory, among 
others. Therefore, in recent years, there has been growing interest in the consumption 
of vegetables rich in these bioactive compounds for the prevention of chronic diseases 
and the regulation of oxidative stress [35]. The production of these phytochemicals 
can be elicited in response to biotic (bacteria, fungi, viruses) and abiotic (drought, 
salinity, heavy metals, UV radiation) stress factors.

In several studies, it has been observed that biofortification with Se is useful 
to increase the content of this trace element in the edible parts of plants as well as 
improves their nutraceutical value through the accumulation of biocompounds. In 
addition to the beneficial health properties, these phytochemicals also provide fruits 
and inflorescences with their organoleptic properties, such as lycopene in tomato, 
capsaicin in chili, and glucosinolates in broccoli.

The application of Se in foliar form, as a soil amendment, in the irrigation solu-
tion, or in hydroponics has a positive effect on the accumulation of phenolic com-
pounds, terpenes, capsaicinoids, and glucosinolates. The accumulation of phenolic 
compounds in response to Se has been extensively evaluated, in some plant species, 
by determining their total content and in others, by identifying some compounds 
individually, in different plant organs (Table 1). In bean grains, root irrigation appli-
cation of 5 and 10 μM Na2SeO3 increased the content of total phenolic compounds and 
total flavonoids differentially among common bean varieties [36]. In lettuce leaves, 
the tentative identification and quantification of caffeoylquinic and dicaffeoyltartaric 
acids, as well as glycosylated derivatives of quercetin and cyanidin, was carried out. 
From a concentration of 0.04 mg/L Na2SeO4, an increase in the response of these 
phytochemicals was observed by electrospray ionization mass spectrometry (ESI-MS) 
[6]. In basil leaves, increases in the content of different phenolic acids (gallic, chlo-
rogenic, coumaric, rosmarinic acids) were achieved with the application of 50 mg/L 
SeNPs, but in the case of caffeic acid, a positive response was only observed at twice 
the concentration [37]. The use of Se nanomaterials as a base fertilizer in soil for 
lettuce cultivation induced increases in the abundance of quercetin (2.9-fold), rutin 
(2.7-fold), and coumarin (2.4-fold) [38]. In jalapeño pepper fruits, the content of 
phenolic compounds and total flavonoids increases as higher Na2SeO3 concentration 
is applied and correlates with the observed antioxidant capacity [39]. Selenium, in the 
form of Na2SeO4, also stimulated the production of phenolic compounds, flavonoids, 
and anthocyanins, as well as the expression of biosynthetic enzymes (phenylala-
nine ammonium lyase and chalcone synthase) in Indian mustard leaves [40]. In 
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microgreens biofortified with Na2SeO4, the most abundant phenolics are chlorogenic 
acid and rutin (coriander), caffeic acid hexoside and kaemferol-3-O (caffeoyl)-
sophoroside 7-O-glucoside (tatsoi), and chicoric and rosmarinic acids (basil) [41].

In broccoli florets, the Se source is important in the induction of these phyto-
chemicals, obtaining positive effects on the production of phenolic acids with the 
lowest doses of Se yeast, while Na2SeO3 had similar effects only with the highest doses 
(Table 2). In contrast, flavonoid content increased with the highest Na2SeO3 concen-
tration but did not undergo any modification when the organic Se source was applied. 
In the case of glucosinolates, both Se sources induce their accumulation [42].

Induction of secondary metabolism by Se can be carried out by increasing the 
content of this element in the same vegetative organ (direct) or even in an indirect 
way. Se accumulation in broccoli florets as the dose of Na2SeO4 (applied to roots) 
increases causes contrasting effects on two classes of phytochemicals; at the inter-
mediate concentration evaluated (0.4 mmol/L), Se induced glucosinolate production 
and reduced flavonoid content [44]. Similarly, in cauliflower, foliar application of 
Na2SeO4 results in the accumulation of this element in florets, inducing a higher 
content of carotenoids and phenolic compounds in two cultivars. The Graffiti cultivar 
accumulated twice as many glucosinolates as the Clapton cultivar at the 5 mg/L doses, 
identifying glucobrassicin, 4-hydroxy glucobrassicin, 4-methoxy glucobrassicin, 
and neo-glucobrassicin [45]. In tomato fruits, this direct induction of Se on flavonoid 
content is also observed, with no change in lycopene content [46]. However, with the 
foliar application of 1.5 mg/L Na2SeO3, no changes in the accumulation of this trace 
element in jalapeño pepper fruits were recorded, but an increase in the content of 
flavonoid, phenolic compounds, and capsaicin was noted [39]. Therefore, it is rel-
evant to carry out studies on the mechanism by which this trace element induces the 
synthesis of these bioactive compounds.

Plants are naturally exposed to several stress factors simultaneously. In this sense, 
some studies have evaluated the effect of Se in combination with other elements or 
stressors on the accumulation of phytochemicals (Table 2). In tea leaves, the enzy-
matic (SOD) and non-enzymatic (epigallocatechin and epigallocatechin gallate) 
antioxidant systems are activated in response to Se, which may be part of the strategy 

Species Plant part Biofortification 
method

Bioactive compounds Reference

Phaseolus vulgaris L. Grains Root irrigation every  
15 d: 0, 2.5, 5, and 
10 μM Na2SeO3.

Total phenolic 
compounds and total 
flavonoids

[36]

Lactuca sativa L. Leaves Weekly foliar 
application for  
3 weeks: 0, 0.04, and 
0.5 mg Na2SeO4 /L

Phenolic acids, 
flavonoids, and 
sesquiterpene lactones

[6]

Lactuca sativa L. Leaves Soil amended 
with selenium 
nanomaterials: 0, 0.1, 
0.5, and 1.0 mg /kg; 
and 0.5 mg SeO3

−2/kg

Quercetin, rutin, caffeic 
acid, and coumarins

[38]

Lactuca sativa L. Leaves Nutrient solution: 0.5 
mg Na2SeO3/L + 5 mg 
KIO3./L

Phenolic compounds, 
phenylpropanoids, 
flavonols, and 
anthocyanins

[11]
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to prevent oxidative stress generated by low-temperature stress [43]. In contrast, 
Se + I and Se + I + AS (0.1, 1.0, and 10.0 mg/L) combinations did not induce changes 
in the total contents of phenolic compounds, flavonols, phenylpropanoids, and 
anthocyanins in lettuce leaves [11].

These results place biofortification with Se as a promising agronomic strategy for 
obtaining functional foods.

5. Health benefits from the intake of biofortified crops with Se

One of the most recognized biological activities of Se is its contribution to antioxi-
dant processes, as well as its role as a chemopreventive agent since an adequate intake 
of Se can reduce the risk of cancer. In addition, many plant foods contain compounds 

Species Plant part Biofortification 
method

Bioactive compounds Reference

Ocimum basilicum L. Leaves Foliar application: 
0, 50, and 100 mg 
SeNPs/L

Monoterpenes, 
carotenoids, and 
phenolic acids

[37]

Capsicum annuum L. Fruit Foliar application 
every 15 d (6 times): 0, 
1.5, 3.0, 4.5, and 6 mg 
Na2SeO3/L

Capsaicin, phenolic 
compounds, and total 
flavonoids

[39]

Brassica oleracea L. Florets Foliar application every 
15 d: 0.1, 0.2, 0.4, 0.8, 
and 1.6 mg/L, Na2SeO3 
and organic Se.

Glucosinolates, phenols, 
and total flavonoids

[42]

Brassica juncea L. Leaves Amended soil: 0, 2, 4, 
and 6 μM Na2SeO4/kg

Total phenols, flavonoids, 
and anthocyanins

[40]

Camellia sinensis L. 
Kuntze

Leaves Daily foliar application 
for 5 d: 0 y 2 mg 
Na2SeO3/L d + low T 
(4 °C).

Caffeine, gallic acid, and 
flavonoids

[43]

Coriandrum sativum L., 
Ocimum basilicum L., 
Brassica rapa L. subsp. 
narinosa

Microgreens Daily nutrient solution: 
0, 1.5, and 3.0 mg 
Na2SeO4/L, 12 d 
coriander and 19 d 
basil.

Carotenoids and phenolic 
compounds

[41]

Brassica oleracea L. Florets Root irrigation every 
15 d: 0, 17.3, 34.6, 69.2, 
138.3, and 276.6 mg 
Na2SeO4/L

Glucosinolates and 
flavonoids

[44]

Brassica oleracea L. Florets Foliar application: 1, 
5, 10, 15, and 20 mg 
Na2SeO4/L, three times 
(in weeks 2, 5, and 8).

Glucosinolates and 
phenolic compounds

[45]

Solanum lycopersicum L. Fruit Foliar application at 
the onset of flowering: 
1 mg Na2SeO4/L

Lycopene and total 
flavonoids

[46]

Table 2. 
Bioactive compounds induced in edible parts with selenium biofortification.
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with important biological activities for disease control. Thus, research has shown 
that the biofortification of crops improves the antioxidant, anti-inflammatory, and 
anticarcinogenic properties of edible parts of plants (Table 3).

5.1 Antioxidant activity

In addition to providing organic Se species and bioactive compounds, bio-
fortification with Se provides plant foods that benefit health through ingestion 
of edible parts with antioxidant capacity. Root application of selenite increased 
85.9% glutathione (GSH) content, 39.2% ascorbic acid (AsA), and 186.0% gluta-
thione peroxidase (GSH-Px) enzyme activity, indicating that Se biofortification 
increases the antioxidant capacity of rice grains [29]. Similarly, in soybean sprouts 
enriched with Se (selenite and SeNPs), an average 3-fold increase in vitamin C 
and 38% increase in GSH content were reported, as well as an increase in the 
activity of the antioxidant enzymes catalase (CAT), peroxidase (POD), superox-
ide dismutase (SOD), and ascorbate peroxidase (APX). Higher activity of POD 
(72–176% higher activity) and APX (2.5 times higher than the control) enzymes 
was highlighted in soybean sprouts enriched with 100 μM selenite and SeNPs [34]. 
Selenium treatments improved the antioxidant properties of soybean sprouts, so 

Food plant Effect on human 
health

Suggested mechanism Reference

Rice Antioxidant Increased glutathione (GSH), ascorbic acid 
(AsA), and glutathione peroxidase (GSH-Px) 
activity

[29]

Soybean sprouts Antioxidant Increased vitamin C and GSH content. 
Increases in peroxidase (POD) and ascorbate 
peroxidase (APX) activity

[34]

Chickpea sprouts Antioxidant Entry into cells (Caco-2) to combat oxidative 
stress

[47]

Green tea Antioxidant Increased superoxide dismutase (SOD) 
activity and epigallocatechin gallate content

[43]

Tomato Antioxidant Increased vitamin C, E, and GSH content [46]

Lettuce Anti-inflammatory Inhibition of inducible nitric oxide synthase 
(iNOS) activity. Increased quercetin content

[6]

Coriander and 
tatsoi microgreens

Anti-inflammatory Increased rutin and kaemferol-3-O-(feruloyl) 
sophoroside-7-O-glucoside content

[41]

Peanut Anticarcinogenic Inhibition in the proliferation of Caco-2 and 
HepG2 cell lines.

[32]

Soybean sprouts Anticarcinogenic Increased isoflavones content [34]

Broccoli sprouts Anticarcinogenic Increased glucorapinin and glucoerucin 
content, precursors of anticancer compounds

[48]

Chickpea sprouts Anticarcinogenic Increased GSH-Px and thioredoxin reductase 
(TrxR) activities. Overexpression of Fas 
protein

[49]

Table 3. 
Effect of Se-enriched plant-source foods on human health.
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their consumption could improve human health. It is important to highlight the 
benefits of vitamin C, which is recognized as an excellent antioxidant that protects 
plants from ROS and plays a vital role in the human body. In another study, it was 
found that the protein fraction from chickpea sprouts, enriched with Se (2 mg 
selenite/100 g of seeds), had a significant increase in cellular antioxidant activity 
(CAA). The highest percentage of CAA was detected in peptides <10 kDa with 
Se supplementation (59.11 ± 2.06%), a CAA value equivalent to that of SeMet, 
SeCys, or selenite. The antioxidant activity assay indicated that Se species entered 
cells (Caco-2) at supranutritional doses, exerting different mechanisms to com-
bat oxidative stress, those mainly related to redox cycles such as cell signaling, 
DNA stability, cell cycle genes and proliferation, reduction of the inflammatory 
response, caspases-mediated apoptosis, angiogenesis, and osteoclast inactivation 
[47]. The antioxidant activity of selenoproteins was a function of their Se content.

In green tea plants, induction of SOD activity and an increase in the content 
of epigallocatechin gallate (EGCG, 15.1%) and other catechins in response to Se 
application resulted in a reduction in the content of hydrogen peroxide (H2O2, 
31.6%) and malondialdehyde (23.9%) [43]. The latter is a good indicator of lipid 
peroxidation. In addition to its antioxidant and chelating properties, EGCG has 
shown therapeutic potential as an anti-inflammatory, antibacterial, and antiviral, 
as well as for cancer prevention [50], which associates with numerous health 
benefits. In broccoli, the antioxidant capacity induced with Se biofortification 
depends on the cultivar, highlighting the 40% increase in Graffiti, while in the 
cultivar Clapton, only a 29% increase was recorded at the same concentration 
(5 mg Na2SeO4/L) [45]. Foliar application of Se also has an effect on antioxidant 
properties in tomato fruits, inducing vitamin C (1.3-fold higher than the con-
trol) and vitamin E (1.4-fold) production, as well as a 2-fold increase in reduced 
glutathione levels [46].

5.2 Anti-inflammatory activity

Se has been shown to have beneficial effects in the treatment of inflammatory 
diseases. Inflammation is characterized by the presence of pain, redness, swelling, and 
impaired function [6]. There are different markers that mediate immune cell recruit-
ment and response to infection or injury. Among these, the enzyme inducible nitric 
oxide synthase (iNOS), responsible for the formation of nitric oxide (NO), plays an 
important role during the inflammation process. In this regard, Se was reported to 
modify the anti-inflammatory properties of lettuce plants that were grown under Se 
application, determined by inhibition of iNOS activity [6]. In addition, an increase in 
quercetin 3-O-(600-acetyl-glucoside) content was found. Quercetin and kaempferol 
are among the most common metabolites found in vegetables and fruits, which are 
considered to have high anti-inflammatory and antioxidant activity in in vitro studies 
[6]. It is important to note that biofortification with Se favors the synthesis of these 
compounds in different species, since in coriander and tatsoi microgreens, increases of 
33 and 157% in rutin and kaemferol-3-O-(feruloyl) sophoroside-7-O-glucoside content 
are achieved at a concentration of 1.5 mg/L [41]. This induction of Se is carried out at 
the transcriptional level in broccoli, favoring the expression of genes of the phenylpro-
panoid pathway [44]. Caffeic acid is another secondary metabolite that is increased in 
lettuce plants biofortified with Se nanomaterials and is considered one of the bioactive 
compounds of propolis with antitumor and anti-inflammatory effects [38].
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5.3 Anticarcinogenic activity

It has already been mentioned that one way to include Se in the human diet is 
through the consumption of cultivated plants enriched with Se. Therefore, Se intake is 
of vital importance both to cover nutritional demand and for the prevention of health 
problems such as cancer. A study evaluated the anticancer activity of Se-enriched 
peanut protein and found an inhibitory effect on Caco-2 and HepG2 cell lines. 
Furthermore, it was reported that peanut protein, obtained from Se biofortification, 
significantly inhibited cell proliferation in a dose-dependent manner, with a dose range 
of 15.6 to 250 μg/mL, with the 250 μg/mL dose being more effective [32]. These studies 
provide solid information on the anticancer effect of Se-enriched peanut protein.

Secondary metabolites such as isoflavones have also been reported to have bio-
activity for cancer prevention and treatment. In this regard, Rao et al. [34] found 
that selenite and SeNPs promoted the accumulation of total isoflavones in soybean 
sprouts. In addition to tasting good for direct and fresh consumption, soybean sprouts 
contain health-promoting substances such as vitamin C and isoflavones.

Another group of phytochemical compounds with important anticarcinogenic activ-
ity is glucosinolates. Brassicas are crops recognized as chemopreventive foods. Therefore, 
biofortification with Se during Brassica cultivation would be expected to increase the 
chemopreventive activity of the sprouts. In sprouts of three broccoli cultivars, enriched 
with selenate, glucoraphanin was found to be the dominant glucosinolate, accounting for 
70% of the total glucosinolate content. Glucoraphanin is an aliphatic glucosinolate and 
is a direct precursor of sulforaphane isothiocyanate, which acts as a potent monoinducer 
of phase II-related enzymes during the inactivation of carcinogenic metabolites. Another 
aliphatic glucosinolate present in broccoli sprouts is glucoerucin, accounting for 14% of 
the total glucosinolate content, which is metabolized to the isothiocyanate erucin, con-
sidered an anticarcinogenic agent [48]. Therefore, broccoli sprouts could be considered 
an excellent source for the intake of isothiocyanate compounds for cancer prevention.

Se-enriched chickpea sprouts were found to be an important source of dietary 
Se and isoflavonoids with chemopreventive potential for the treatment of colorectal 
cancer. A diet enriched with a supranutritional dose of Se (2.29 μg/g diet) in com-
bination with isoflavonoids (2.34 mg/g) was tested on tumor growth of xenoplastic 
human colorectal adenocarcinoma cells in immunosuppressed mice [49]. The diet 
promoted cell apoptosis through overexpression of cell surface death receptor (Fas). 
In addition, an increase in GSH-Px and thioredoxin reductase (TrxR) enzyme activ-
ity was observed; as well as an increase in cholesterol, triglycerides, and low-density 
lipoprotein cholesterol, resulting in a significant decrease in tumor cell growth [49]. 
These types of studies indicate that ingestion of chickpea sprouts enriched with Se 
can contribute to reducing cancer cell proliferation.

6. Conclusions

Agronomic biofortification is becoming the most widely used strategy for Se 
supplementation of plant foods because it is a relatively simple agronomic practice to 
operate and because of its high availability. The distribution of organic and inorganic 
Se species is a key factor to consider in the biofortification process. There are a large 
number of cultivated plants that have the ability to convert inorganic Se (mainly 
selenate or selenite) into organic Se (SeCys, SeMet, or MetSeCyt), representing an 
excellent metabolic mechanism for obtaining Se-rich foods.
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Abstract

Selenium (Se) is essential as well as a toxic element for humans and animals if it
exceeds a certain limit. Soil selenium plays an important role through the food chain.
Total selenium in world soils ranges from 0.125 to 0.3 mg kg�1 and varies with the
soils’ nature. High and low selenium in soils also poses serious environmental and
health risks. However, in addition to selenium's overall quantity in soil, selenium
reactivity, and bioavailability also depend on its chemical structure. The amount of
available selenium in the soil varies depending on its oxidation state since selenium
species include selenide (Se2�), elemental selenium (Se0), selenite (Seo2�3 Þ, selenate
(Seo2�4 Þ. The pH, soil texture, amount of organic matter, and the presence of compet-
ing ions are the four most significant soil characteristics that affect Se availability.
Similarly, selenium uptake and accumulation are influenced by the crop type whether
it is an accumulator or not. The selenium environmental and health risk assessment is
necessary to evaluate in soils with high selenium contents and crops with higher
selenium uptake. Whereas in areas where selenium deficiency is observed or vulner-
able to selenium, deficiency needs to be supplemented through Se inputs. The sele-
nium deficiency and toxicity areas should be monitored carefully from a health
perspective.

Keywords: total soil selenium, selenium species, selenium transformation, selenium
bioavailability, selenium risk assessment

1. Introduction

A vital element for both humans and animals, selenium (Se) is a metalloid that lies
in the middle of the metal and non-metal. Selenium plays a crucial role in the biolog-
ical processes of human and animals body. Its high concentrations make it poisonous,
and a lack of it can have catastrophic consequences on human and animal health [1].
Despite the fact that selenium has a wide range of important advantages, selenium
insufficiency is becoming a widespread issue around the world. A health danger exists
when selenium intake is excessive. Moreover, type II diabetes risk may be increased
by a diet high in selenium [2]. A high selenium intake may enhance the expression of
the transcription coactivator peroxisome proliferator-activated receptor-coactivator
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(PGC-1), which is important in cellular energy metabolism and may result in hyper-
glycemia [3]. Excessive selenium consumption results in loss of hair and nails, damage
to the neurological system, paralysis, and even death [4]. The daily selenium con-
sumption dosage so has significance. Selenium 40 μg d�1 the recommended daily
allowance (RDA) suggested by the WHO [5]. An overdose occurs when the con-
sumption for men is greater than 60 μg d�1 and for women is greater than 53 μg d�1

[6]. Responses varied when referring to various forms of selenium, and this is for the
total amount of selenium.

Selenium availability from soil affects the food chain selenium level. Three major
selenium mineral i.e. tiemannite (HgSe), clausthalite (PbSe), and naumannite ((Ag,
Pb) Se) contains selenium and is present in soils [7]. The soil’s total selenium depends
on the type of parent materials and the soil-forming processes which redistribute
selenium [8]. Overall, total selenium in world soils ranges from 0.125 to 0.3 mg kg�1

and varies with the soils’ nature [9]. The essential level of selenium for animals ranges
from 0.04 to 0.1 mg kg�1, while a concentration exceeding 3.5 to 5 mg kg�1 in their
food may cause harmful impacts [4, 10]. Human activities including fossil fuel and
coal burning, metal smelting, inorganic, and organic fertilizer application, lime,
manure, and solid sewage waste disposal cause Se accumulation in soils [11]. The
selenium accumulation in soils poses serious threats to the agroecosystem via
bioaccumulation [11, 12]. Selenium toxicity in soil and food chains depends on its
forms and distribution rather than its total contents [13]. Total selenium concentra-
tion in soils derived from various sources ranges from 0.27 to 7.05 mg kg�1 [8].

Yet in addition to the amount of selenium in the soil as a whole, selenium reactivity
and bioavailability also depend on the chemical form of the element. Several forms of
selenium, including selenide, elemental selenium, selenite, selenate, and organic sele-
nium, are found in soil, depending on its oxidation state [14]. The replenishment of
selenium in soil solution is also aided by selenium that is contained in or bonded to
various fractions in soils. Typically, there are five different selenium fractions: ion-
exchangeable or calcium-bound selenium, oxides-bound selenium (iron and alumi-
num oxides), organic and humic-bound selenium, sulfide-bound selenium, and resid-
ual selenium. Thus, it’s critical to keep an eye on the type and amount of selenium
exposure through different foods grown under different soils.

2. Selenium species in soils

There are a variety of selenium species that can be found in soil solution.

Selenate Se VIð Þ ¼ Seo2�4
� �

, HSeo�4
� �

, H2Seo�4
� �

Selenite SeIVð Þ ¼ Seo2�3
� �

, HSeo�3
� �

, H2Seo03
� �

Selenate IIð Þ ¼ Se2�
� �

, HSe�ð Þ, H2Se0
� �

Depending on the characteristics of the environment or the soil, several species of
selenium can be found in the form of selenide (Se2�), elemental selenium (Se0),
selenite (Seo2�

3 Þ, selenate (Seo2�
4 Þ. Selenate (Seo2�

4 Þ: Under conditions in which it is
thoroughly oxidized, selenate maintains its stability. Selenate is not absorbed by soil
elements with the same level of strength as selenite [15, 16], and the transformation of
selenate into less mobile forms of selenite or elemental Se) is a long process [17].
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Selenate is the form of selenium that may be taken up by plants in the greatest
quantity [18, 19]. Selenite (Seo2�

3 Þ: Selenite is a can be found in settings that are only
slightly oxidized. Selenous acid is a weak acid that can only be protonated in condi-
tions where the pH values range from acidic to neutral. Microorganisms in acidic
settings [20] or moderately reducing agents in neutral or alkaline environments [21]
can convert selenite to elemental selenium. Selenite possesses a significant propensity
for sorption, in particular by oxides of iron and aluminum [17, 18]. Whereas the
adsorption of selenite (Seo2�

3 Þ depends on pH, and the concentration of competing
anions such as phosphate (PO3�

4 Þ [22]. Selenide: Selenide (Se2�) typically exists in
reducing environments as metal selenides and hydrogen selenide (H2Se) a poisonous
gas with a bad smell. In water, it readily oxidizes to elemental Se [23]. Se-sulfides and
metal selenides often have very low solubility [24]. Besides that, microbial activities
also result in the production of dissolved organic selenide molecules or volatile meth-
ylated derivatives of selenium such as dimethyl diselenide [25, 26]. Elemental Sele-
nium (Se0): Elemental selenium (Se0) exists in reduced conditions in the form of
crystalline or amorphous. Red crystalline Se is alpha- and beta-monoclinic Se.
Whereas the amorphous form is Red and glassy or black [27]. Elemental Se oxidize or
reduce slowly and extremely insoluble in water. Specific microorganisms can oxidize
elemental Se to selenite (Seo2�

3 Þ, and selenate (Seo2�
4 Þ [23].

3. Selenium solubility and transformation

Selenate and selenite are the major forms of Se in cultivated soils. The mole
fractions of Se species were used to calculate the total soluble Se supported by eight
selenate and selenite minerals, which might be present in soils. The effect of redox on
total soluble Se at which these minerals can form in neutral soils. None of these
minerals are expected to form in normally cultivated soils. Only manganese selenite
(MnSeO3) is sufficiently stable that it might precipitate in strongly acidic environ-
ments. Ferric selenite was included because several investigators reported that it
might be formed in acid soils. Decreasing pH has a negative effect on the solubility of
both minerals which also suggests that Fe2(SeO3)3 is unstable with respect to MnSeO3.
At pH 4, Fe2(SeO3)3 and MnSeo3 can maintain 10�1.5 and 10�6.7 M of Se in the
solution. The previous studies’ reported for soluble Se in acid soils appeared to be close
to the solubility of MnSeO3. Drastic changes in pH have strong effects on precipita-
tion/dissolution and adsorption/desorption processes in soils, and disturbed soil sys-
tems may need much longer time than pure systems to re-attain equilibrium. The
concept that Se in soils is governed by an adsorption type of mechanism rather than by
precipitation/dissolution reactions is accepted by most soil scientists. The sorption of
Se in acid soils was related to sesquioxides.

The majority of the Se in agricultural soils exists as selenate or selenite. The sum of
soluble Se can be calculated through the Se supplied through selenate and selenite
minerals that could be calculated in soils by using the mole fractions of Se species.
Changes in the amount of total soluble Se that are necessary for mineralization in
neutral soils as a result of redox conditions. In typical agricultural soils, none of these
minerals would be expected to occur. However, only manganese selenite (MnSeO3) is
stable enough to possibly precipitate in highly acidic conditions. Many researchers
suggested that ferric selenite could be generated in acid soils, so it was included. Both
minerals become less soluble as pH decreases, which is more evidence that Fe2(SeO3)3
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is more unstable than MnSeO3 in acidic conditions. The compounds Fe2(SeO3)3 and
MnSeO3 supply 101.5 and 106.7 M of Se, respectively, in soil solution at 4 pH. It
appeared that the solubility of MnSeO3 in acid soils was close to that reported in prior
investigations. It may take significantly longer for disturbed soil systems to re-attain
than pure systems, as large shifts in pH have profound effects on precipitation/disso-
lution and adsorption/desorption processes in soils. Most soil scientists agree that Se in
soils is controlled by an adsorption mechanism rather than precipitation/dissolution
events and sesquioxides are considered to play a significant role in the sorption of Se
in acid soils.

Soil selenium can be found in a variety of oxidation states, including 2, 4, and 6.
The chemical speciation and environmental stability of selenium compounds are
largely controlled by redox potential and pH. The selenate species predominates
throughout a wide pH range at high redox. At the middle of the redox scale, biselenite
or selenite dominates depending on the pH. We anticipate the presence of elemental
Se and selenide species only at low redox. The amount of Se in the liquid phase of acid
soils may be regulated by adsorption and desorption processes. The chemical forms of
an element in soil are regulated by the redox potential (Eh) and pH. It has been shown
Figure 1 [28] that when elemental Se is given to soils, some of it is rapidly oxidized to
selenite, and that the rate of transfer from selenite to selenate and selenate to elemen-
tal Se is considerably slower. There was no correlation between soil pH and the rate of
oxidation of elemental Se, but this oxidation rate did vary. In alkaline soils, selenite
can be easily oxidized to selenate, while in acid soils, this process can be somewhat
challenging [16]. Of all the Se oxides, selenium dioxide has the highest degree of

Figure 1.
Selenium forms at different pE-pH levels (adopted from Seby et al. 2001).

152

Selenium and Human Health



stability. Selenium dioxide is readily reduced to elemental Se by mild reducing agents
[29]. Easily dissolving in water, selenium dioxide reacts with hydrogen peroxide to
produce a weak acid called selenious acid. With the help of mild reducing agents like
sulfur dioxide, selenite can be quickly converted to elemental Se in acidic circum-
stances [25]. In dry, alkaline conditions, elemental Se persists in the form of sand-
stones. it has been claimed that some soils contain elemental Se because they contain
bacteria and fungi that can break down selenite and selenate into elemental Se. In
addition, bacteria are capable of converting elemental Se into selenite or selenate
under the right conditions.

4. Selenium bioavailability

The subject of selenium (Se) uptake by plants always remained an important
aspect to study, because of its direct relation to human and animal health through the
food chain. The high Se concentrations in food cause adverse health effects for
humans [10]. While Se plays a crucial part in a variety of biological processes, which
makes it a necessary trace element for both humans and other animals. Se insuffi-
ciency has been associated with multiple ailments, both in humans and in livestock.
Due to the fact that Se is both an important nutrient and an element that can be
poisonous, a substantial amount of study has been done to both enhance and decrease
the amount of se that is present in plants.

The selenium uptake and accumulation by plants is a major concern because of its
deficiency or toxicity through crops. To meet human and animal nutritional require-
ments it is very important to carefully consider the soil and crop factors to understand
how uptake and accumulation in crop plants are influenced. In Se deficient regions
how to increase Se concentrations in plant tissue and ultimately in the food chain.
Whereas the Se-rich areas or seleniferous soils how can reduce the selenium uptake or
accumulation in plants. Plant species also vary in Se accumulation. Unlike normal
agricultural crops, which accumulate very little selenium, selenium accumulator
plants can accumulate exceptionally high quantities of Se when cultivated in selenif-
erous soils [18, 23]. Yet the essential role of se for plants is not known. Plants uptake
selenate (Se6+) many folds greater than selenite (Se4+). whereas the elemental Se (Se0)
is difficult or impossible for plants to obtain. Plants’ ability to absorb selenium is also
impacted by the chemical and physical properties of the soil, including pH level, soil
texture, amount of organic matter, and the presence of ions like PO4- and SO4-. The
concentration of selenium (Se) in soils and plants that are poor in Se can be increased
by applying selenium (Se) to the soil, the seed, and the plant leaves.

4.1 Influencing factors on selenium bioavailability

The presence of competitive ions, electrical conductivity (Eh), pH, soil texture,
and organic matter content are the five most critical soil variables that influence the
availability of selenium. The Eh and pH: Both soil Eh and pH play a significant role
in determining the chemical form that selenium takes up in soils. Selenate (Se6+) is
the predominant form of selenium (Se) found in well-aerated, alkaline soils. Selenite
(Se4+) is the predominant form of selenium in neutral and acid soils. Due to its
adsorption by clays and iron oxides, selenite is slightly less readily available than other
forms of selenium. The oxidation state of selenium is affected by the pH of the soil
(Figure 1), but the ability of clays and ferric oxide to adsorb selenium is also impacted

153

Distribution of Selenium in Soils and Human Health
DOI: http://dx.doi.org/10.5772/intechopen.110636



by this property [30]. Between pH 3 and 8, there was hardly any change in the amount
of selenite (Se4+) that was adsorbed by Fe2O3. They came to the conclusion that the
pH, and not the layer silicate structure, was the factor that governed selenite (Se4+)
adsorption on clay minerals. The effects of pH on the effect on the sequestration of
selenium by plants was also observed. The greatest quantity of selenite (Se4+) is
available to plants when those plants are cultivated on soils with a pH range of acidic
to neutral. As the pH of the soil rises, hydroxyl ions take the place of selenite (Se4+) on
the adsorption sites. This causes selenite (Se4+) to be released into the solution, which
results in an increase in the availability of the element to plants [10]. Soil texture:
Because selenite (Se4+) is absorbed by clays, the proportion of clay in the soil has a
significant bearing on how well plants are able to take it up. Hence, plants are able to
absorb twice as much Se from sandy-textured soil. Organic matter: Selenium is
released and fixed in part by organic materials. Organometallic complexes may offer
significant Se-adsorbing sites, and organic matter fixes the selenium by removing it
from the soil solution. Because organic matter in soil serves as a source of selenium,
plants absorb more of it than they would in inorganic soils.

5. Accumulation and ecological risk assessment

Selenium accumulation was quantified by calculating the index of Se accumulation
(Igeo). The geo-accumulation index was first purposed by Müller [31], to investigate
heavy metals pollution compared with their background concentration in respective
soils [32], it can be defined as follows:

Geo� accumulationIndex Igeo
� � ¼ log 2

CSe
Soil

k� CSe
b

 !
(1)

In the above equation, CSe
Soil denotes the selenium contents in soils and CSe

b denotes
the background concentration of selenium in respective soils. Whereas, in background
concentration, the k is constant and its value is 1.5. The quantification of selenium
contamination in soils was classified by geo-accumulation index criteria (Table 1).

The selenium pollution load index (PLI) was calculated as

Geo-accumulation index Pollution load index Ecological risk index

Igeo Level PLI Level ER Level

Igeo < 0 Uncontaminated PLI ≤ 1 Low level of
pollution

ER < 40 Low potential
ecological risk

0 < Igeo ≤ 1 Uncontaminated to
moderately
contaminated

1 < PLI ≤ 2 Moderate level
of pollution

40 ≤ ER < 80 Moderate
potential
ecological risk

1 < Igeo ≤ 2 Moderately
contaminated

2 < PLI ≤ 5 High level of
pollution

80 ≤ ER < 160 Considerable
potential
ecological risk

2 < Igeo ≤ 3 Moderately to
heavily
contaminated

PLI > 5 Extremely
high level of
pollution

160 ≤ ER < 320 High potential
ecological risk
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Pollution Load Index ¼ CSoil

Cb

� �
(2)

where CSe
Soil is the concentration of selenium in any sample x, and Ci

b is the
background concentration of selenium in soils before accumulation which was calcu-
lated for each soil by determining the Se concentration in the deepest horizon. The
criteria for classifying the pollution load index is presented in Table 1.

The potential ecological risk of selenium accumulation to the ecosystem was cal-
culated by the ecological risk index, which was first suggested by Hakanson [33]. The
potential ecological risk index was by the following equation:

Ei
r ¼ Ti

r �
CSe
Soil

CSe
b

 !
(3)

where Ti
r is the toxic effect of selenium (Se = 10), CSe

Soil the concentration of
selenium in soil samples, CSe

b is the background concentration of selenium in soils.
Classifying criteria is presented in Table 1.

6. Health risk assessment

The USEPA approach, which has been extensively used around the world, can be
used to assess the health risks associated with heavy metal exposure through food
consumption [34]. By calculating the target hazard quotient (HQ) and the hazard
index (HI) for selenium, the health risks of ingesting Se will be measured. Below are
the equations as follow:

THQ ¼ EF ∗ED ∗Cveg ∗ IRveg

BW ∗AT ∗RfD
(4)

The recommended daily intake (RfD) is the amount of selenium consumed each
day through plant-based foods that are deemed to be safe over the course of a lifetime.
Depending on the age, sex, and standard tolerable daily intake of Se, the range is 0.02
to 0.075 mg kg1 day1 [35]. EF stands for exposure frequency (365 days per year), ED
for exposure duration (74.68 years), C for food’s selenium content, IR for food’s

Geo-accumulation index Pollution load index Ecological risk index

Igeo Level PLI Level ER Level

3 < Igeo ≤ 4 Heavily
contaminated

ER ≥ 320 Very high
potential
ecological risk

4 < Igeo ≤ 5 Heavily to extremely
contaminated

Igeo > 5 Extremely
contaminated

Table 1.
Classification criteria for different indices.
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ingestion rate, BW for average body weight, and AT for an average duration of non-
carcinogen exposure (365 days divided by 74.68 years).

The following equation was used to calculate the hazard index (HI) of consuming
food while simultaneously absorbing multiple heavy metals:

HI ¼
Xn
i

THQi (5)

A negative effect is anticipated to be seen by the exposed population when the HQ/
HI values are equal to or higher than 1 [36].

7. Conclusion

Selenium essentiality and toxicity and the narrow range between them made it
very critical to keep an eye on selenium deficiency and toxicity through the food chain
in humans and animals. While most of the selenium in our food is supplied through
soils in our food. Whereas in soils selenium contents depend on soil parent material
inheriting different selenium contents through different minerals in the soils. Besides
the total selenium contents in soils, other factors also play important role in its
availability to plants including, pH, Eh, clay, organic matter, selenium fractions,
species, and competing ions which ultimately play a role in its deficiency and toxicity.
It is necessary to monitor the food grown in different soils for selenium deficiency or
toxicity. While evaluating the degree of toxicity it is necessary to calculate the sele-
nium environmental or ecological risks and health risks associated with high selenium.
In the end, it is necessary to consider the soil properties and other factors which
influence selenium availability.
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