

Engineering Agile Big-Data Systems

RIVER PUBLISHERS SERIES IN SOFTWARE
ENGINEERING

Indexing: All books published in this series are submitted to the Web of
Science Book Citation Index (BkCI), to CrossRef and to Google Scholar.

The “River Publishers Series in Software Engineering” is a series of
comprehensive academic and professional books which focus on the theory
and applications of Computer Science in general, and more specifically
Programming Languages, Software Development and Software Engineering.

Books published in the series include research monographs, edited
volumes, handbooks and textbooks. The books provide professionals,
researchers, educators, and advanced students in the field with an invaluable
insight into the latest research and developments.

Topics covered in the series include, but are by no means restricted to the
following:

• Software Engineering
• Software Development
• Programming Languages
• Computer Science
• Automation Engineering
• Research Informatics
• Information Modelling
• Software Maintenance

For a list of other books in this series, visit www.riverpublishers.com

The NEC and You Perfect Together:
A Comprehensive Study of the

National Electrical Code

Gregory P. Bierals
Electrical Design Institute, USA

River Publishers

Engineering Agile Big-Data Systems

Editors

Kevin Feeney
Trinity College Dublin, Ireland

Jim Davies
Oxford University, United Kingdom

James Welch
Oxford University, United Kingdom

Sebastian Hellmann
University of Leipzig, Germany

Christian Dirschl
Wolters Kluwer, Germany

Andreas Koller
Semantic Web Company, Austria

Pieter Francois
Oxford University, United Kingdom

Arkadiusz Marciniak
Adam Mickiewicz University, Poland

Published 2018 by River Publishers
River Publishers

Alsbjergvej 10, 9260 Gistrup, Denmark
www.riverpublishers.com

Distributed exclusively by Routledge
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN

605 Third Avenue, New York, NY 10017, USA

Engineering Agile Big-Data Systems / by Kevin Feeney, Jim Davies, James Welch, Sebastian
Hellmann, Christian Dirschl, Andreas Koller, Pieter Francois, Arkadiusz Marciniak.

© The Editor(s) (if applicable) and The Author(s) 2018. This book is published open access.

Open Access
This book is distributed under the terms of the Creative Commons Attribution-Non-Commercial
4.0 International License, CC-BY-NC 4.0) (http://creativecommons.org/licenses/by/4.0/), which
permits use, duplication, adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the source, a link is provided to
the Creative Commons license and any changes made are indicated. The images or other third
party material in this book are included in the work’s Creative Commons license, unless indicated
otherwise in the credit line; if such material is not included in the work’s Creative Commons
license and the respective action is not permitted by statutory regulation, users will need to obtain
permission from the license holder to duplicate, adapt, or reproduce the material.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made.
Printed on acid-free paper.

Routledge is an imprint of the Taylor & Francis Group, an informa business

ISBN 978-87-7022-016-3 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors
cannot be held responsible for any errors or omissions.

Contents

Preface xv

Acknowledgements xvii

List of Contributors xix

List of Figures xxi

List of Tables xxix

List of Abbreviations xxxi

1 Introduction 1
1.1 State of the Art in Engineering Data-Intensive Systems . . . 2

1.1.1 The Challenge . 4
1.2 State of the Art in Semantics-Driven Software Engineering . 5

1.2.1 The Challenge . 8
1.3 State of the Art in Data Quality Engineering 8

1.3.1 The Challenge . 11
1.4 About ALIGNED . 12
1.5 ALIGNED Partners . 15

1.5.1 Trinity College Dublin 15
1.5.2 Oxford University – Department of Computer

Science . 15
1.5.3 Oxford University – School of Anthropology and

Museum Ethnography 15
1.5.4 University of Leipzig – Agile Knowledge Engineering

and Semantic Web (AKSW) 15
1.5.5 Semantic Web Company 16
1.5.6 Wolters Kluwer Germany 16

v

vi Contents

1.5.7 Adam Mickiewicz University in Poznań 16
1.5.8 Wolters Kluwer Poland 17

1.6 Structure . 17

2 ALIGNED Use Cases – Data and Software Engineering
Challenges 21
Arkadiusz Marciniak and Patrycja Filipowicz
2.1 Introduction . 21
2.2 The ALIGNED Use Cases 24

2.2.1 Seshat: Global History Databank 24
2.2.2 PoolParty Enterprise Application Demonstrator

System . 26
2.2.3 DBpedia . 27
2.2.4 Jurion and Jurion IPG 29
2.2.5 Health Data Management 31

2.3 The ALIGNED Use Cases and Data Life Cycle.
Major Challenges and Offered Solutions 33

2.4 The ALIGNED Use Cases and Software Life Cycle.
Major Challenges and Offered Solutions 36

2.5 Conclusions . 39

3 Methodology 41
James Welch, Jim Davies, Kevin Feeney, Pieter Francois,
Jeremy Gibbons and Seyyed Shah
3.1 Introduction . 41
3.2 Software and Data Engineering Life Cycles 43

3.2.1 Software Engineering Life Cycle 43
3.2.2 Data Engineering Life Cycle 47

3.3 Software Development Processes 49
3.3.1 Model-Driven Approaches 49
3.3.2 Formal Techniques 51
3.3.3 Test-Driven Development 52

3.4 Integration Points and Harmonisation 53
3.4.1 Integration Points 54
3.4.2 Barriers to Harmonisation 55
3.4.3 Methodology Requirements 58

3.5 An ALIGNED Methodology 60
3.5.1 A General Framework for Process Management . . . 60

Contents vii

3.5.2 An Iterative Methodology and Illustration 63
3.6 Recommendations . 65

3.6.1 Sample Methodology 66
3.7 Sample Synchronisation Point Activities 69

3.7.1 Model Catalogue: Analysis and Search/Browse/
Explore . 70

3.7.2 Model Catalogue: Design and Classify/Enrich 71
3.7.3 Semantic Booster: Implementation and Store/Query 72
3.7.4 Semantic Booster: Maintenance and Search/Browse/

Explore . 72
3.8 Summary . 74

3.8.1 Related Work . 74
3.9 Conclusions . 76

4 ALIGNED MetaModel Overview 79
Rob Brennan, Bojan Bozic, Odhran Gavin and Monika Solanki
4.1 Generic Metamodel . 80

4.1.1 Basic Approach . 80
4.1.2 Namespaces and URIs 81
4.1.3 Expressivity of Vocabularies 82
4.1.4 Reference Style for External Terms 82
4.1.5 Links with W3C PROV 82

4.2 ALIGNED Generic Metamodel 83
4.2.1 Design Intent Ontology (DIO) 83

4.3 Software Engineering . 83
4.3.1 Software Life Cycle Ontology 83
4.3.2 Software Implementation Process Ontology (SIP) . . 85

4.4 Data Engineering . 86
4.4.1 Data Life Cycle Ontology 86

4.5 DBpedia DataID (DataID) 87
4.6 Unified Quality Reports . 89

4.6.1 Reasoning Violation Ontology (RVO) Overview . . 89
4.6.2 W3C SHACL Reporting Vocabulary 91
4.6.3 Data Quality Vocabulary 93
4.6.4 Test-Driven RDF Validation Ontology (RUT) 96
4.6.5 Enterprise Software Development (DIOPP) 109
4.6.6 Unified Governance Domain Ontologies 111

viii Contents

4.6.7 Semantic Booster and Model Catalogue Domain
Ontology . 112
4.6.7.1 Model catalogue 112
4.6.7.2 Booster 113

4.6.8 PROV . 113
4.6.9 SKOS . 115
4.6.10 OWL . 117
4.6.11 RDFS . 119
4.6.12 RDF . 121

5 Tools 125
Kevin Feeney, Christian Dirschl, Katja Eck, Dimitris Kontokostas,
Gavin Mendel-Gleason, Helmut Nagy, Christian Mader and
Andreas Koller
5.1 Model Catalogue . 125

5.1.1 Introduction . 125
5.1.2 Model Catalogue 127

5.1.2.1 Architecture 127
5.1.2.2 Searching and browsing the catalogue . . 130
5.1.2.3 Editing the catalogue contents 131
5.1.2.4 Administration 134
5.1.2.5 Eclipse integration and model-driven

development 134
5.1.2.6 Semantic reasoning 136
5.1.2.7 Automation and search 137

5.1.3 Semantic Booster 138
5.1.3.1 Introduction 138
5.1.3.2 Semantic Booster 139

5.2 RDFUnit . 155
5.2.1 RDFUnit Integration 157

5.2.1.1 JUnit XML report-based integration . . . 158
5.2.1.2 Custom apache maven-based integration . 158
5.2.1.3 The shapes constraint language

(SHACL) 160
5.2.1.4 Comparison of SHACL to schema definition

using RDFUnit test patterns 161
5.2.1.5 Comparison of SHACL to auto-generated

RDFUnit tests from RDFS/OWL axioms . 162

Contents ix

5.2.1.6 Progress on the SHACL specification and
standardisation process 163

5.2.1.7 SHACL support in RDFUnit 163
5.3 Expert Curation Tools and Workflows 164

5.3.1 Requirements . 165
5.3.1.1 Graduated application of semantics 165
5.3.1.2 Graph – object mapping 165
5.3.1.3 Object/document level state management

and versioning 166
5.3.1.4 Object-based workflow interfaces 166
5.3.1.5 Integrated, automated, constraint validation 166
5.3.1.6 Result interpretation 167
5.3.1.7 Deferred updates 167

5.3.2 Workflow/Process Models 167
5.3.2.1 Process model 1 – linked data object

creation 167
5.3.2.2 Process model 2 object – linked data object

updates 168
5.3.2.3 Process model 3 – updates to deferred

updates 168
5.3.2.4 Process model 4 – schema updates 169
5.3.2.5 Process model 5 – validating schema

updates 170
5.3.2.6 Process model 6 – named graph creation . 170
5.3.2.7 Process model 7 – instance data updates

and named graphs 171
5.4 Dacura Approval Queue Manager 172
5.5 Dacura Linked Data Object Viewer 172

5.5.1 CSP Design of Seshat Workflow Use Case 173
5.5.2 Specification . 174

5.6 Dacura Quality Service . 176
5.6.1 Technical Overview of Dacura Quality Service . . . 177
5.6.2 Dacura Quality Service API 178

5.6.2.1 Resource and interchange format 178
5.6.2.2 URI . 178
5.6.2.3 Literals 178
5.6.2.4 Literal types 178
5.6.2.5 Quads 179
5.6.2.6 POST variables 180

x Contents

5.6.2.7 Tests . 180
5.6.2.8 Required schema tests 180
5.6.2.9 Schema tests 181
5.6.2.10 Errors 182
5.6.2.11 Endpoints 182

5.7 Linked Data Model Mapping 184
5.7.1 Interlink Validation Tool 184

5.7.1.1 Interlink validation 185
5.7.1.2 Technical overview 187
5.7.1.3 Configuration via iv config.txt 188
5.7.1.4 Configuration via external datasets.txt . . 189
5.7.1.5 Execute the interlink validator tool 190

5.7.2 Dacura Linked Model Mapper 190
5.7.3 Model Mapper Service 193

5.7.3.1 Modelling tool – creating mappings 193
5.7.3.2 Importing semi-structured data with data

harvesting tool 193
5.8 Model-Driven Data Curation 195

5.8.1 Dacura Quality Service Frame Generation 196
5.8.2 Frames for UserInterface Design 197
5.8.3 SemiFormal Frame Specification 197
5.8.4 Frame API Endpoints 199

6 Use Cases 201
Kevin Feeney, Christian Dirschl, Andreas Koller, James Welch,
Dimitris Kontokostas, Pieter Francois, Sabina Łobocka
and Piotr Bledzki
6.1 Wolters Kluwer – Re-Engineering a Complex Relational

Database Application . 201
6.1.1 Introduction . 201
6.1.2 Problem Statement 202
6.1.3 Actors . 204
6.1.4 Implementation . 206

6.1.4.1 PoolParty notification extension 206
6.1.4.2 rsine notification extension 206

6.1.4.2.1 Results 206
6.1.4.3 RDFUnit for data transformation 207
6.1.4.4 PoolParty external link validity 211
6.1.4.5 Statistical overview 214

Contents xi

6.1.5 Evaluation . 215
6.1.5.1 Productivity 217
6.1.5.2 Quality 217
6.1.5.3 Agility 217
6.1.5.4 Measuring overall value 218
6.1.5.5 Data quality dimensions and thresholds . . 218
6.1.5.6 Model agility 219
6.1.5.7 Data agility 219

6.1.6 JURION IPG . 219
6.1.6.1 Introduction 219
6.1.6.2 Architecture 225
6.1.6.3 Tools and features 227
6.1.6.4 Implementation 228
6.1.6.5 Evaluation 232
6.1.6.6 Experimental evaluation 234

6.2 Seshat – Collecting and Curating High-Value Datasets with
the Dacura Platform . 235
6.2.1 Use Case . 237

6.2.1.1 Problem statement 237
6.2.2 Architecture . 238

6.2.2.1 Tools and features 240
6.2.3 Implementation . 240

6.2.3.1 Dacura data curation platform 240
6.2.3.2 General description 240
6.2.3.3 Detailed process 241

6.2.4 Overview of the Model Catalogue 246
6.2.4.1 Model catalogue in the demonstrator

system 250
6.2.5 Seshat Trial Platform Evaluation 253

6.2.5.1 Measuring overall value 253
6.2.5.2 Data quality dimensions and thresholds . . 253

6.3 Managing Data for the NHS 259
6.3.1 Introduction . 259
6.3.2 Use Case . 260

6.3.2.1 Quality 260
6.3.2.2 Agility 260

6.3.3 Architecture . 261
6.3.4 Implementation . 263

6.3.4.1 Model catalogue 263

xii Contents

6.3.4.2 NIHR health informatics collaborative . . 263
6.3.5 Evaluation . 268

6.3.5.1 Productivity 269
6.3.5.2 Quality 271
6.3.5.3 Agility 272

6.4 Integrating Semantic Datasets into Enterprise Information
Systems with Poolparty . 272
6.4.1 Introduction . 272
6.4.2 Problem Statement 274

6.4.2.1 Actors 274
6.4.3 Architecture . 274
6.4.4 Implementation . 276

6.4.4.1 Consistency violation detector 276
6.4.4.2 RDFUnit test generator 277
6.4.4.3 PoolParty integration 277
6.4.4.4 Notification adaptations 277
6.4.4.5 RDFUnit 278
6.4.4.6 Validation on import 278

6.4.5 Results . 284
6.4.5.1 RDF constraints check 285
6.4.5.2 RDF validation 286
6.4.5.3 Improved notifications 289
6.4.5.4 Unified governance 293

6.4.6 Evaluation . 295
6.4.6.1 Measuring overall value 295
6.4.6.2 Data quality dimensions and thresholds . . 299
6.4.6.3 Evaluation tasks 300

6.5 Data Validation at DBpedia 302
6.5.1 Introduction . 302
6.5.2 Problem Statement 302

6.5.2.1 Actors 303
6.5.3 Architecture . 303
6.5.4 Tools and Features 304
6.5.5 Implementation . 305
6.5.6 Evaluation . 309

6.5.6.1 Productivity 309
6.5.6.2 Quality 310
6.5.6.3 Agility 312

Contents xiii

7 Evaluation 305
Pieter Francois, Stephanie Grohmann, Katja Eck, Odhran Gavin,
Andreas Koller, Helmut Nagy, Christian Dirschl, Peter Turchin and
Harvey Whitehouse
7.1 Key Metrics for Evaluation 313

7.1.1 Productivity . 315
7.1.2 Quality . 316
7.1.3 Agility . 316
7.1.4 Usability . 317

7.2 ALIGNED Ethics Processes 318
7.3 Common Evaluation Framework 320

7.3.1 Productivity . 320
7.3.2 Quality . 320
7.3.3 Agility . 321

7.4 ALIGNED Evaluation Ontology 323

Appendix A – Requirements 325

Index 395

About the Editors 399

http://taylorandfrancis.com

Preface

As digital processes become more embedded in all facets of life, the ability
to deal with big data has become not just an advantage, but a necessity. The
massive increase in scale of computer systems has led to new challenges for
the builders of software and data systems. The data these systems consume
is heterogeneous and unstructured, requiring innovative approaches in how
to deal with its volume, variety, and velocity. Manual management of data
becomes impossible when dealing with billions or trillions of data points,
necessitating the development of software systems which can automatically
handle this magnitude of information. These systems must capable of
automatic reconfiguration to deal with the changes in data required by the
business needs of users and consumers.

This book outlines a suite of approaches which can be used to deal with
the continuing growth of scale in software and data engineering. By utilising a
lightweight alignment methodology and a variety of semantic web tools, users
can ensure that software and data remain synchronised throughout multiple
development cycles. This approach allows users to give structure to massive
and diverse data collections, giving legibility to data which would otherwise
be practicably unworkable.

The methodology and software developments covered in this book arose
out of the ALIGNED project. ALIGNED – Aligned, Quality-centric Software
and Data Engineering, was a European Union Horizon 2020 project that
ran from February 2015 to January 2018. Partners from five European
Union member states, all with deep interests in the semantic web and its
opportunities, came together to develop new ways of dealing with large scale
big data and semantic web approaches.

The research outlined in this book been incorporated into the Semantic
Web Company’s PoolParty Semantic Suite, the Seshat Global History
Databank, the release process for DBpedia, and two of Wolters Kluwer’s
systems – JURION, a legal portal for German and EU law, and JURION
IPG, a legal-commercial information system. It also led to the spin out
of a start-up from TCD, backed by Atlantic Bridge, called DataChemist.

xv

xvi Preface

Building on lessons learned and tools developed during the project,
DataChemist provides companies with a way to build clean consistent
datasets at large scale from messy, unstructured data. After devising a
schema incorporating semantic intelligence for all the organisation’s data,
artificial intelligence approaches map relationships usually undiscovered
by conventional approaches. DataChemist enables the identification and
visualisation of relationships between entities, at depths unmatched by any
other competing approach, and enforces compliance with previously specified
rules concerning those relationships.

We would like to thank all of the people who were involved in the
ALIGNED project during its inception and when it was running for their
hard work. This book would not have been possible without all of their
contributions. We thank the members of the following groups who have
participated in the project: the School of Computer Science and Statistics,
Trinity College Dublin; the Department of Computer Science and the School
of Anthropology and Museum Ethnography, University of Oxford; the Agile
Knowledge Engineering and Semantic Web Research Group, University
of Leipzig; the Institute of Archaeology, Adam Mickiewicz University in
Poznań; Wolters Kluwer Germany; Wolters Kluwer Poland; and Semantic
Web Company. We are grateful to the European Union for funding the
ALIGNED project under the Horizon 2020 Programme.

Editors:

Dr. Kevin Feeney, Trinity College Dublin, Ireland & DataChemist

Prof. Jim Davies, Oxford University, United Kingdom

James Welch, Oxford University, United Kingdom

Dr.-Ing. Sebastian Hellmann, University of Leipzig, Germany

Christian Dirschl, Wolters Kluwer, Germany

Andreas Koller, Semantic Web Company, Austria

Dr. Pieter Francois, Oxford University, United Kingdom

Prof. Arkadiusz Marciniak, Adam Mickiewicz University, Poland

July 2018

Acknowledgements

In addition to the contributors listed, the editors would like to thank the
ALIGNED team members for their work on the project: Markus Ackermann,
Sunduz Akkus-Keles, Marta Bartkowiak, Martin Brummer, Robert David,
Diego Esteves, Ruth Fiddy, Markus Freudenberg, Robbie Gallagher, Mahek
Hanfi, Katja Harms, Steve Harris, Sebastian Hellmann, Nadine Janicke,
Martin Kaltenbock, Jens Lehmann, Marie Lemon, Michael Leuthold,
Alan Meehan, Declan O’Sullivan, Sandra Prator, Thomas Thurner, Andre
Valdestilhas, Katharina Weissenberg, Simon Westhues, Ornella Zampieri,
and Anrapali Zaveri. The editors would also like to thank the ALIGNED
External Advisory Board: Eelco Visser, Heimo Hanninen, Gerard Kuys,
Christoph Goller, Peter Turchin, and Gabriel Hogan.

The ALIGNED project received funding from the European Union’s
Horizon 2020 re-search and innovation programme under grant agreement
No 644055, the ALIGNED project (www.aligned-project.eu) and from the
ADAPT Centre for Digital Content Technology, funded under the SFI
Research Centres Programme (Grant 13/RC/2106) and co-funded by the
European Regional Development Fund.

xvii

http://taylorandfrancis.com

List of Contributors

Piotr Bledzki, Wolters Kluwer Poland, Poland

Bojan Bozic, Trinity College Dublin, Ireland

Rob Brennan, Trinity College Dublin, Ireland

Jim Davies, University of Oxford, UK

Christian Dirschl, Wolters Kluwer Germany, Germany

Katja Eck, Wolters Kluwer Germany, Germany

Kevin Feeney, Trinity College Dublin, Ireland

Patrycja Filipowicz, Adam Mickiewicz University, Poland

Pieter Francois, University of Oxford, UK

Odhran Gavin, Trinity College Dublin, Ireland

Jeremy Gibbons, University of Oxford, UK

Stephanie Grohmann, University of Oxford, UK

Andreas Koller, Semantic Web Company, Austria

Dimitris Kontokostas, University of Leipzig, Germany

Sabina Łobocka, Wolters Kluwer Poland, Poland

Christian Mader, Semantic Web Company, Austria

Arkadiusz Marciniak, Adam Mickiewicz University, Poland

Gavin Mendel-Gleason, Trinity College Dublin, Ireland

Helmut Nagy, Semantic Web Company, Austria

Seyyed Shah, University of Oxford, UK

Monika Solanki, University of Oxford, UK

Peter Turchin, University of Connecticut, USA

James Welch, University of Oxford, UK

Harvey Whitehouse, University of Oxford, UK

xix

http://taylorandfrancis.com

List of Figures

Figure 2.1 Seshat World Sample 30. 25
Figure 2.2 PoolParty Application Suite. 26
Figure 2.3 DBpedia Extraction Pipeline. 28
Figure 2.4 Jurion IPG. 30
Figure 3.1 The waterfall process for software development. . . 43
Figure 3.2 A modified waterfall process. 44
Figure 3.3 An iterative software development process. 45
Figure 3.4 A data engineering life cycle. 48
Figure 3.5 Comparison of terminology in software and data

engineering. 56
Figure 3.6 An incomplete grid for analysing integration

points. 62
Figure 3.7 A parallel life cycle with synchronisation. 64
Figure 3.8 Model catalogue interface: browsing the SESHAT

code book. 70
Figure 3.9 Example semantic booster system with annotations. 73
Figure 4.1 The ALIGNED metamodel layers. 80
Figure 4.2 The Design Intent Ontology (DIO). 84
Figure 4.3 The Software Life cycle Ontology. 85
Figure 4.4 Core Concepts of the Software Implementation

Process (SIP) Ontology. 86
Figure 4.5 Generic data life cycle metamodel (DLO). 87
Figure 4.6 The DataID Ontology. 88
Figure 4.7 Reasoning Violation Ontology (RVO) Base Classes. 90
Figure 4.8 RVO Instance and Schema Violation Classes. . . . 91
Figure 4.9 Resulting RDF Graph after Validation. 91
Figure 4.10 Data model showing the main relevant classes and

their relations. 94
Figure 4.11 Using the property prov:wasDerivedFrom to interrelate

quality metrics and other quality statements. 95

xxi

xxii List of Figures

Figure 4.12 The ALIGNED domain-specific ontology for
E-research in the Social Sciences and Humanities. . 100

Figure 4.13 The Seshat ontology. 100
Figure 4.14 The Dacura ontology. 102
Figure 4.15 Dacura console usage example. 103
Figure 4.16 New candidate example part 1. 104
Figure 4.17 New candidate example part 2. 105
Figure 4.18 The Crowd-sourced Public Datasets ontology. . . . 106
Figure 4.19 The Organisation of PROV. 115
Figure 4.20 An RDF Graph Describing Eric Miller. 122
Figure 5.1 The layered architecture of the Model Catalogue. . 128
Figure 5.2 Core concepts – data model components – within

the Model Catalogue. 128
Figure 5.3 A model showing the datatypes represented in the

Model Catalogue. 129
Figure 5.4 Model Catalogue interface: browsing the Seshat

code book. 131
Figure 5.5 Model Catalogue interface: data element view. . . . 132
Figure 5.6 Model Catalogue interface: keyword search for a

data item. 132
Figure 5.7 Model Catalogue interface: editing a data item. . . 133
Figure 5.8 Model Catalogue Eclipse Integration. 135
Figure 5.9 Screenshot showing RDF representation of catalogue

contents. 137
Figure 5.10 A Booster specification edited with the

Eclipse IDE. 140
Figure 5.11 The Booster generation pipeline. 141
Figure 5.12 The architecture of a Booster information system. . 142
Figure 5.13 The Booster Web-based user interface. 142
Figure 5.14 Generating Booster systems from Model Catalogue

models. 143
Figure 5.15 Excerpt from the Booster system generated from

Prov-DM Core. 145
Figure 5.16 Model Catalogue information in the Booster

interface. 146
Figure 5.17 Semantic Booster – generation menu in the Eclipse

IDE. 147
Figure 5.18 Semantic Booster – generated R2RML file. 148
Figure 5.19 Booster specification with semantic annotations. . . 149

List of Figures xxiii

Figure 5.20 Booster user interface showing semantic annotations
from the Model Catalogue. 150

Figure 5.21 Semantic Booster Web-based editor. 152
Figure 5.22 Default Booster data explorer. 153
Figure 5.23 D2RQ and SNORQL for exploration of Semantic

Booster data. 154
Figure 5.24 d3sparql for visual exploration of Semantic Booster

data. 155
Figure 5.25 RDFUnit Web interface. 156
Figure 5.26 RDFUnit architecture. 157
Figure 5.27 RDFUnit report from the IntelliJ IDE. 159
Figure 5.28 Example Bamboo overview from an RDFUnit JUnit

XML report. 159
Figure 5.29 Custom JUnit integration with RDFUnit as a library

for JURION Use Case in ALIGNED. 160
Figure 5.30 Overview for Fundamental Concepts of SHACL. . 162
Figure 5.31 Excerpt of an EARL test report for the SHACL test

suite. 164
Figure 5.32 Key to workflow/process models. 168
Figure 5.33 Process Model 1 – Object Creation. 168
Figure 5.34 Process Model 2 – Object Update. 169
Figure 5.35 Process Model 3 – Updates to deferred update. . . . 169
Figure 5.36 Process model 4 – Schema Updates. 170
Figure 5.37 Process model 5 – Validating schema updates. . . . 171
Figure 5.38 Process Model 6 – Named Graph Creation. 171
Figure 5.39 Process model 7 – instance data updates in named

graphs. 172
Figure 5.40 Screenshot of Dacura Linked Data Approval Queue

Manager Tool. 172
Figure 5.41 Screenshot of Dacura Linked Data Object Viewer

Tool showing version browsing toolbar. 173
Figure 5.42 Automatically generated workflow diagram from

CSPm specification. 175
Figure 5.43 Dacura platform Quality Test Interface that calls the

DQS. 177
Figure 5.44 Interlink Validation Process. 186
Figure 5.45 Operation of the Interlink Validation Tool. The

arrows indicate the flow of information/data among
the different components. 187

xxiv List of Figures

Figure 5.46 Example of seshat code book page. 192
Figure 5.47 Importing a model from semi-structured HTML

source. 193
Figure 5.48 Process for associating property definitions in a

model with a pattern within a semi-structured
HTML page. 194

Figure 5.49 Process for using patterns to extract data from
semi-structured html pages. 194

Figure 5.50 Screenshot showing results of automated importing
of semi-structured HTML data into structured
model. 195

Figure 5.51 Graphical Representation of ontology fragment. . . 199
Figure 6.1 JURION Content Pipeline and Semantic Search. . . 203
Figure 6.2 Distribution of the Linked Data stack components

w.r.t. Linked Data Publishing cycle. 204
Figure 6.3 ALIGNED Use Cases. 205
Figure 6.4 Notification message. 207
Figure 6.5 Transformation process with RDFUnit. 209
Figure 6.6 RDFUnit results. 210
Figure 6.7 Jenkins-CI Test Report. 211
Figure 6.8 Validation Data stored for Analysis. 212
Figure 6.9 Example defect: the Image file of the external

source does not exist anymore. 213
Figure 6.10 Validation Results. 214
Figure 6.11 Statistical checks. 215
Figure 6.12 JURION: Overview. 216
Figure 6.13 JURION Content Pipeline, showing ALIGNED

tools integrated with existing functionality and
datasets. 220

Figure 6.14 IPG problem statement. 221
Figure 6.15 Screenshot of a subset of the IPG model in the

Model Catalogue. 223
Figure 6.16 The Eclipse-based Booster tool. 224
Figure 6.17 Screenshot of the Booster administrator interface

for the JURION IPG system. 224
Figure 6.18 Results of using the RDFUnit tool against data from

a Semantic Booster database. 225
Figure 6.19 Jurion IPG unsolvable issues. 226

List of Figures xxv

Figure 6.20 Jurion IPG use-case architecture showing integration
across all major project tools and partners. 227

Figure 6.21 Integration Paradigms and vocabularies supported
by ALIGNED tools and platforms. 228

Figure 6.22 Complexity of the Jurion IPG use case. 229
Figure 6.23 Integrating Semantic Booster and the Model

Catalogue. 229
Figure 6.24 IPG Data Error detection and correction using

Dacura. 230
Figure 6.25 Ontology generated from IPG SQL database by

Dacura’s Model Mapper Tool. 231
Figure 6.26 Using Dacura’s curation tools to analyse the IPG

data model. 231
Figure 6.27 Seshat Use Case Trial System Architecture,

showing the tools provided to different Seshat users,
the use of ALIGNED integration standards and
interoperation paradigms. 238

Figure 6.28 Features of the ALIGNED tools used to support the
Seshat trials. 240

Figure 6.29 The Dacura platform in the context of the
ALIGNED Seshat use case. 241

Figure 6.30 Screenshot of TCD’s Seshat Data Entry/Validation
tool in Demonstrator System. 242

Figure 6.31 Modifying Seshat Schema. 242
Figure 6.32 Screenshot of TCD’s Schema Management

component using the prototype integrity enforcement
framework in the Demonstrator System. 243

Figure 6.33 Screenshot of TCD’s Schema Validation Service in
Demonstrator System. 244

Figure 6.34 Screenshot of TCD’s Wiki Export Component. . . . 245
Figure 6.35 Seshat Errors per variable. 246
Figure 6.36 Managing Complex Workflows. 247
Figure 6.37 Importing data to Seshat from DBpedia with

Unified Views. 248
Figure 6.38 Publication. 248
Figure 6.39 Services to support software engineering. 249
Figure 6.40 The Model Catalogue user interface showing a

section of the code book. 249

xxvi List of Figures

Figure 6.41 Screenshot of the Model Catalogue Web interface,
showing the ‘tree view’ and a section of the Seshat
code book. 251

Figure 6.42 Screenshot of the Model Catalogue Web interface
showing the comparison between two versions of
the Seshat code book. 252

Figure 6.43 Seshat: Comparison. 258
Figure 6.44 Health Informatics Collaborative system

architecture. 262
Figure 6.45 The front page of the catalogue interface. 264
Figure 6.46 Data comparison in the Health Informatics

Collaborative. 265
Figure 6.47 Data elements in the UK 100,000 Genomes Project

catalogue. 266
Figure 6.48 An example shopping cart in the Health Data

Finder. 267
Figure 6.49 The model catalogue in the Health Data Finder. . . 267
Figure 6.50 Dataset metadata in the NIHR Health Data Finder. . 268
Figure 6.51 Screenshot from the NIHR HIC Model Catalogue. . 271
Figure 6.52 PoolParty Architecture. 275
Figure 6.53 Import dialogue. 284
Figure 6.54 Consistency constraint violations as reported by

RDFUnit. 284
Figure 6.55 High level technical overview. 285
Figure 6.56 RDF validation conformance checks. 286
Figure 6.57 Repair strategy for the constraint check. 287
Figure 6.58 RDF Validation Screenshot. 288
Figure 6.59 Improved notification system. 290
Figure 6.60 UnifiedViews pipeline for PoolParty use case. . . . 296
Figure 6.61 Unified Governance Search. 297
Figure 6.62 Issue Integration reporting dialogue. 297
Figure 6.63 Issue Integration created dialogue. 297
Figure 6.64 Semantic search over development artefact – Graph

Search. 298
Figure 6.65 Details view of specific issue with the option to

select similarity algorithm – PP Recommender. . . 298
Figure 6.66 DBpedia Use Case Trial System Architecture,

showing the ALIGNED tools used in different
stages of the DBpedia data workflow. 304

List of Figures xxvii

Figure 6.67 ALIGNED Tools and Features used in the DBpedia
trial platform. 305

Figure 6.68 Instance data validation report with RDFUnit. . . . 305
Figure 6.69 Mapping validation report with RDFUnit

and RML. 306
Figure 6.70 The new Mappings UI (using RDFUnit for

validating mappings). 307
Figure 6.71 DBpedia Link Viz tool. 307
Figure 6.72 SUMMR Mapping tool. 308
Figure 6.73 Active extraction monitoring (here: extraction

summaries forwarded to Slack). 308
Figure 6.74 DBpedia download page through DataID. 309
Figure 6.75 Dockerised DBpedia. 309
Figure 7.1 The ALIGNED Evaluation Framework. 314
Figure 7.2 ALIGNED metrics ontology – classes. 324
Figure A.1 Seshat Architecture for Month 19 Demo. 358

http://taylorandfrancis.com

List of Tables

Table 3.1 A usecase-oriented synchronisation table for the
ALIGNED project 66

Table 4.1 Generic metamodel namespace declarations 81
Table 4.2 Domain-specific metamodel namespace

declarations . 97
Table 4.3 JURION actors . 98
Table 4.4 JURION entities 98
Table 4.5 JURION activities 99
Table 4.6 DBpedia actors . 106
Table 4.7 DBpedia entities 107
Table 4.8 DBpedia activities 107
Table 4.9 PoolParty actors 110
Table 4.10 PoolParty entities 110
Table 4.11 PoolParty activities 111
Table 5.1 CSPm specification of workflow 174
Table 5.2 Dacura Quality Service Frame Grammar 198

xxix

http://taylorandfrancis.com

List of Abbreviations

ACID Atomic, Consistent, Isolated, Durable
AKSW Agile Knowledge Engineering and Semantic Web

group, University of Leipzig
CI Continuous integration
CJDE PoolParty Confluence/JIRA Data Extractor
CMS content management system
CSP Communicating Sequential Processes
CSPDO Crowd-sourced Public Datasets
CWA Closed World Assumption
D2RQ D2RQ Platform, a system for accessing relational

databases as virtual, read-only RDF graphs
DC Dublin Core
DCAT W3C Data Catalog Vocabulary
DIEF DBpedia Information Extraction Framework
DIO Design Intent Ontology
DIOPP Enterprise Software Development Ontology
DLO Data Life Cycle Ontology
DQS Data Quality Service
DQV Data Quality Vocabulary
DSL domain specific language
DTD Document Type Definition
EBNF extended Backus-Naur form
EIPDM Enterprise Information Processing Domain-specific

Meta-Model
ELV External Link Validation
EMF Eclipse Modeling Framework
ETL Extract Transform Load
FOAF Friend Of A Friend
FOL First Order Logic
GIS geographic information system
GUID globally unique identifier

xxxi

xxxii List of Abbreviations

HIC Health Informatics Collaborative
IBIS Interactive Intent-Based Illustration
ICV Integrity Constraint Validator
IRI International Resource Identifier
JSON JavaScript Object Notation
KPI key performance indicator
LD Linked Data
LOD Linked Open Data
MDA Model-driven architecture
MDE Model-driven engineering
MDSE Model-driven software engineering
MIREOT Minimum information to reference an external

ontology term
MUTO Modular and Unified Tagging Ontology
NESSI Networked European Software and Services

Initiative
NIHR National Institute for Health Research
OMG Object Management Grou
ORE Ontology Repair and Enrichment
ORM Object-relational mapping
OWL Web Ontology Language
PCI Portal Content Interface
PP PoolParty
PPT PoolParty Thesaurus Manager
PPX PoolParty Extractor
PROV W3C PROV Ontology
R2RML RDB to RDF Mapping Language
RDF Resource Description Framework
RDFS RDF Schema
REST Representational State Transfer
RF Repair Framework and Notification
RUT Test-Driven RDF Validation Ontology
RVO Reasoning Violations Ontology
SE Software engineering
SEON Software Evolution Ontologies
SHACL Shapes Constraint Language
SIP Software Implementation Process Ontology
SKOS Simple Knowledge Organisation System
SLO Software Lifecycle Ontology

List of Abbreviations xxxiii

SME Small and medium-sized enterprises
SNORQL front-end for exploring RDF SPARQL endpoints
SOAP Simple Object Access Protocol
SPARQL SPARQL Protocol and RDF Query Language
SPIN SPARQL Inferencing Notation
SUS System Usability Scale
SWC Semantic Web Company
SWO Software Ontology
UL University of Leipzig
UML Unified Modeling Language
UNA Unique Name Assumption
URI Uniform Resource Identifier
WKD Wolter Kluwer
XLST Extensible Stylesheet Language Transformations
XML eXtensible Markup Language
XSD XML Schema Definition

http://taylorandfrancis.com

1
Introduction

To be effective, data-intensive systems require extensive ongoing customi-
sation to reflect changing user requirements, organisational policies, and the
structure and interpretation of the data they hold. Manual customisation is
expensive, time-consuming, and error-prone. In large complex systems, the
value of the data can be such that exhaustive testing is necessary before
any new feature can be added to the existing design. In most cases, precise
details of requirements, policies and data will change during the lifetime of
the system, forcing a choice between expensive modification and continued
operation with an inefficient design.

In 2013, the Networked European Software and Services Initiative
(NESSI) identified “Collaborative Service Engineering based on convergence
of software and data” as an EU research priority. Information systems are
composed of software and data components that must co-evolve as require-
ments change. In existing development methodologies, software and data
engineering are considered as separate concerns.1 New techniques and tools
are required to support the development of effective solutions in the pres-
ence of changing requirements, policies, schemas, and data. NESSI also
identified “Integration of Big Data Analytics into Business processes” as a
research priority, emphasising the importance of data-centric or “Big Data”
approaches. This serves only to emphasise the relative value of the data and
the need for agility. Big Data approaches involve the imposition of multiple,
changing models upon unstructured heterogeneous Linked Data. A single
static data model will not suffice, and the manual development of customised
code against multiple changing models is unsustainably expensive. Auto-
matic support for customisation, driven by domain models of knowledge and
requirements, is an essential component of effective, sustainable Big Data
solutions, building on underlying technology from both domains.

1A. Cleve, T. Mens, J-L. Hainaut, Data-Intensive System Evolution, IEEE Computer,
August 2010.

1

2 Introduction

In software engineering, there are meta-modelling frameworks of the kind
that support the Unified Modeling Language (UML), allowing engineers to
describe and design features that work for whole classes or families of data
models, rather than for a specific instance. There is widespread language sup-
port for higher-order programming, in which programs are managed as data.
There are mature formal program specification approaches and languages
that enable programs to be described mathematically and to be provably
correct. We have model-driven, product-line, and generative programming
techniques, in which a single set of validated transformations is used to
produce or customise many different applications or many different versions
of the same application. However, evidence is lacking for the effectiveness of
these techniques except in narrow domains.2

In data engineering, we have meta-formats such as eXtensible Markup
Language (XML), allowing us to describe and design data formats and repre-
sentations. We have languages such as the Resource Description Framework
(RDF) for recording and communicating relationships between different data
items; Resource Description Framework Schema (RDFS) for detailing rela-
tionships between classes of entities; the Web Ontology Language (OWL)
for describing domain knowledge, axioms, and inference rules; and pow-
erful, scalable tools for applying knowledge and rules to large collections
of data and metadata. These tools overlap with the expressivity of UML,
but in practice, the tractability of code or transformation generation and the
ability to reuse data from these syntax-focussed expressions are much weaker
than those of native semantic models. More important is perhaps the skills
and engineering culture gaps that divide the software and data engineering
communities. Common tools that bridge this gap will lead to a deeper shared
understanding.

The challenge is to bring these aspects together in a practical, proven
methodology, which can be instantiated in software, and which enables
the effective, sustainable development of large, complex, and data-intensive
systems.

1.1 State of the Art in Engineering Data-Intensive Systems

While the topic of co-evolution between software artefacts and other artefacts
produced during software development is an active area of research, its

2J. Hutchinson et al. “Model-driven engineering practices in industry,” Software
Engineering (ICSE), pp. 633,642, 21–28, 2011.

1.1 State of the Art in Engineering Data-Intensive Systems 3

application to data-intensive software systems is not trivial.3 Although the
research focus had been fixed firmly on software interacting with traditional
data environments of relational databases4 and data warehousing,5 recently,
a more technology-independent approach has emerged. Mori and Cleve6

introduced the notion of data-intensive self-adaptive systems as data-intensive
systems able to perform context-dependent data access. They proposed adop-
tion of a framework that supports feature-based data tailoring by means of
a filtering design process and a run-time filtering process. Manousis et al.7

introduced a method for the adaptation of data-intensive ecosystems based
on three algorithms that (i) assess the impact of a change, (ii) compute the
need of different variants of an ecosystem’s components, depending on policy
conflicts, and (iii) rewrite the modules to adapt to the change.

Naturally, a prerequisite to assessing impact is the ability to repre-
sent the interdependency of the artefacts in a machine-processable manner.
Terwilliger et al.8 stated that “bi-directional mappings” are emerging as a
mechanism in the software engineering domain to represent such interde-
pendency. They also identify, characterise, and compare a representative
set of tools implementing the approach. Compatible with the concepts, but
emerging from the data community, are semantic mappings, where progress
has been made in representing and characterising complex mappings through
correspondence patterns.9

3A. Serebrenik & T. Mens. Emerging trends in software evolution. In Evolving software
systems, pp. 329–332, Berlin: Springer, 2014.

4A. Cleve, T. Mens, and J.-L. Hainaut, Data-intensive system evolution, IEEE Computer,
vol. 43, no. 8, pp. 110–112, 2010.

5A. Abelló, J. Darmont, L. Etcheverry, M. Golfarelli, J. Mazón, F. Naumann, T. Pedersen
et al. “Fusion cubes: Towards self-service business intelligence.” International Journal of Data
Warehousing and Mining (IJDWM) 9, no. 2, pp. 66–88, 2013.

6M. Mori, A. Cleve, Towards Highly Adaptive Data-Intensive Systems: A Research
Agenda, Advanced Information Systems Engineering Workshops, Lecture Notes in Business
Information Processing Volume 148, pp. 386–401, 2013.

7P. Manousis, P. Vassiliadis, G. Papastefanatos, Automating the Adaptation of Evolv-
ing Data-Intensive Ecosystems, Conceptual Modelling, Lecture Notes in Computer Science
Volume 8217, pp. 182–196, 2013.

8J. F. Terwilliger, A. Cleve, C. A. Curino, How Clean Is Your Sandbox?, Theory and
Practice of Model Transformations, Lecture Notes in Computer Science Volume 7307,
pp. 1–23, 2012.

9J. Keeney, A. Boran, I. Bedini, C. Matheus and P. Patel-Schneider, “Approaches to Relating
and Integrating Semantic Data from Heterogeneous Sources.” In Proc. 2011 IEEE/WIC/ACM
International Conferences on Web Intelligence and Intelligent Agent Technology-Vol 01,
pp. 170–177. IEEE Computer Society, 2011.

4 Introduction

Empirical studies and research that help to motivate the need for strongly
integrated system co-evolution are also emerging. Goeminne et al.10 reported
on early results obtained in the empirical analysis of the co-evolution between
code-related and database-related activities of contributors in a large open
source data-intensive system. Their study investigated questions such as:
what is the effect of introducing a new database technology? And how do
developers divide their effort between the activity types involved in evolving
a data-intensive system? Papastefanatos et al.11 proposed a set of graph-
theoretic metrics for the prediction of impact of schema evolution upon ETL
software and evaluated them over seven systems. Meurice and Cleve,12 in
a short study, described the type of schema evolution that emerged in four
systems over a period of months and the utility of having a tool to aid
the analysis. Sen and Gotlieb13 proposed a methodology for testing data-
intensive systems and present results achieved when applied to a case study
in the Norwegian Customs and Excise governmental department.

1.1.1 The Challenge

There is a body of research studying data-intensive systems, from a unified
point of view, but the focus to date has been largely on relational data models.
These are, of course, important for current enterprise systems. However, the
Web is currently undergoing a data revolution, where machine-to-machine
communication will eventually dominate over human-centric, document-
oriented Web traffic. A key driver of this data revolution is graph-based data,
whether in the form of the Facebook Graph API14 for searching their social
graph, Google, Bing, Yandex and Yahoo’s schema.org for annotating Web
pages with graph-based metadata or the W3C’s Linked Open Data (LOD)

10M. Goeminne, A. Decan, T. Mens, (2014, February). Co-evolving code-related and
database-related changes in a data-intensive software system. In Proceedings of the IEEE
CSMR-WCRE 2014 Software Evolution Week.

11G. Papastefanatos, P. Vassiliadis, A. Simitsis, Y. Vassiliou, Metrics for the Prediction of
Evolution Impact in ETL Ecosystems: A Case Study, Journal on Data Semantics, Volume 1,
Issue 2, pp. 75–97, August 2012.

12L. Meurice & A. Cleve, DAHLIA: A Visual Analyzer of Database Schema Evolution,
CSMR-WCRE 2014, Belgium, 2014.

13S. Sen and A. Gotlieb, Testing a Data-intensive System with Generated Data Interactions:
The Norwegian Customs and Excise Case Study, 25th International Conference on Advanced
Information Systems Engineering (CAISE’13) (2013).

14https://developers.facebook.com/docs/graph-api/

1.2 State of the Art in Semantics-Driven Software Engineering 5

community15 that builds on over a decade of semantic Web research. For
the next generation of Web-scale data-intensive systems, it is not enough to
transfer legacy data models to the cloud. Instead, the research on controlled
co-evolution of software and data must be extended to deal natively with
Linked Data-based systems.

Many of the techniques developed for traditional data-intensive systems,
such as data transformation generation, are still relevant, but Linked Data
versions must be developed. The richer models of semantic, RDF-based
methods offer new opportunities: for leveraging domain knowledge expressed
as ontologies; applying semantic mapping techniques for correspondence
classification to schema evolution evaluation (to drive controlled transforma-
tions for programs, queries, and data); and modelling the software and data
life cycles in a machine-computable way, enabling heterogeneous tools to
collaborate in combined software and data engineering tool chains.

1.2 State of the Art in Semantics-Driven Software
Engineering

Model-driven software engineering is the automatic production of software
artefacts from abstract models of structure and functionality. This approach
can reduce the costs of development and maintenance and increase the
quality and reliability of the software produced. It has been adopted for
the development of control and embedded systems,16 for aspects of data
warehousing,17 and for service implementations.18 It has yet to achieve any
widespread adoption outside these domains. Multiple reasons are suggested
by Den Haan,19 but the two most common explanations are a lack of adequate

15http://www.w3.org/standards/semanticweb/data
16D. Hästbacka, T. Vepsäläinen, S. Kuikka, Model-driven development of industrial process

control applications, Journal of Systems and Software, Volume 84, Issue 7, pp. 1100–1113,
July 2011.

17J. Mazón, J. Trujillo, M. Serrano, and M. Piattini. “Applying MDA to the develop-
ment of data warehouses.” In Proceedings of the 8th ACM international workshop on Data
warehousing and OLAP, pp. 57–66. ACM, 2005.

18J. Bezivin, S. Hammoudi, D. Lopes, and F. Jouault. “Applying MDA approach for web
service platform.” In Enterprise Distributed Object Computing Conference, 2004. EDOC
2004. pp. 58–70. IEEE, 2004.

19J. Den Haan, “8 Reasons Why Model-Driven Approaches (will) Fail”. http://www.infoq.
com/articles/8reasons-why-MDE-fails, July 2008.

6 Introduction

tool support20 and, as a consequence, a lack of any proven, empirically tested
methodology.

Existing tools are focussed on the production of structural, static compo-
nents of an implementation. Beyond a handful of tightly constrained domains,
these tools lack any means to model and generate anything beyond the most
basic aspects of functionality.

Technology platforms are available to support more general model trans-
formation and code production. Many of these have been implemented in
the widely used Eclipse environment and address the Object Management
Group’s (OMG) Model-Driven Architecture (MDA) proposal,21 with tools
for domain-specific modelling,22 developing model transformations,23 and
performing model edits and manipulations.24

The Atlas Transformation Language, in particular, is based on the Query
View Transformation proposal25 for transformation languages and acts on
models written in UML: the de facto industry standard for software sys-
tems modelling. Techniques have been developed that support genericity
and bi-directional transformation,26 with the aim of facilitating round-trip
engineering and iterative development. Specialised tools, such as Stratego,27

have been developed for program transformation or meta-programming.

20J. Whittle, J. Hutchinson, M. Rouncefield, B. Håkan, and R. Heldal. “Industrial Adop-
tion of Model-Driven Engineering: Are the Tools Really the Problem?” In Model-Driven
Engineering Languages and Systems, pp. 1–17. Springer, 2013.

21A. Kleppe, J. Warmer, W. Bast, “M.D.A. Explained. The model driven architecture:
practice and promise”, 2003.

22F. Jouault, J. Bézivin, and I. Kurtev, “TCS: a DSL for the Specification of Textual Concrete
Syntaxes in Model Engineering,” in Procs of the 5th Int. Conf. on Generative programming
and Component Engineering (GPCE ’06). New York, NY, USA: ACM, pp. 249–254, 2006.

23F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev, ATL: A model transformation tool, Science of
Computer Programming

24M. Del Fabro, J. Bézivin, and P. Valduriez. “Weaving Models with the Eclipse AMW
plugin.” In Eclipse Modelling Symposium, Eclipse Summit Europe (2006).

25MG, Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
OMG Document formal/2011-01-01, Object Management Group, http://www.omg.org/spec/
QVT/1.1/ (2011).

26J. Cuadrado, E. Guerra, and J. De Lara. “Generic model transformations: write once, reuse
everywhere.” In Theory and Practice of Model Transformations, pp. 62–77, Springer Berlin
Heidelberg, 2011.

27E. Visser, Program transformation with Stratego/XT, in: Domain-Specific Program Gen-
eration, Vol. 3016 of Lecture Notes in Computer Science, pp. 216–238, Springer Berlin
Heidelberg, 2004.

1.2 State of the Art in Semantics-Driven Software Engineering 7

There has been work on mappings between the ISO/IEC 11179 metadata
registry standard and description logics, such as OWL,28 but this has focussed
purely on the representation of modelling constructs, with no consideration
of the implications for software and data engineering. Similarly, within the
OMG, efforts have focussed on how to enable the use of UML notation and
tools for ontology modelling.29 There has been related work on representing
systems specifications as ontologies for project planning that draws on the
OMG MDA specification as inspiration.30

The most significant effort to date on the incorporation of semantic
models into software engineering has been the FP7 MOST project (2007–
2011), which investigated the utilisation of ontologies in an MDA approach.31

Their work developed new techniques for applying semantic reasoners to
MDA tasks,32 such as model checking, specification validation, or supporting
domain specific languages (DSLs) with strong semantics. Much effort was
focussed on model translation or bridging33 between non-mainstream UML
variants such as grUML and OWL ontologies. In a 2013 update,34 one of
the project’s principal investigators laid out a vision for Ontology-Driven
Software Engineering that targets 2030 as the year when this technology
will be mature. This timescale indicates the difficulty of building formal
ontologies into the heart of software engineering. It also distinguishes this
work from the approach of ALIGNED, which is based on a more lightweight
Linked Data methodology that aims to enable reuse of rich dataset and meta-
data descriptions by software engineering tools while supporting co-evolution

28C. Tao, G. Jiang, W. Wei, H. R. Solbrig, and C. G. Chute. “Towards semantic-web based
representation and harmonization of standard meta-data models for clinical studies.” AMIA
Summits on Translational Science Proceedings: 59 (2011).

29S. Brockmans, R. M. Colomb, P. Haase, E. F. Kendall, E. K. Wallace, C. Welty, G. Tong
Xie. A Model Driven Approach for Building OWL DL and OWL Full Ontologies, ISWC
2006.

30M. Lı́ška and P. Navrat, An Approach to Project Planning Employing Software and
Systems Engineering Meta Model Represented by an Ontology, ComSIS Vol.v7, No. 4,
December 2010.

31http://www.slideshare.net/malgorzatasiwiec/ontologies-and-software-technologies-
the-most-project.

32http://www.slideshare.net/fparreiras/filling-the-gap-between-semantic-web-owl-ont
tology-technology-andmodel-driven-engineering-mde-mdsd-mda.

33T. Walter, Bridging Technological Spaces: Towards the Combination of Model-Driven
Engineering and Ontology Technologies, PhD thesis, Universite Koblenz-Landau, 2011.

34U. Assmann, Current Trends and Perspectives in Ontology-Driven Software Develop-
ment, August 2013, available at http://www.computational-logic.org/content/events/iccl-ss-
2013/download/assmann-1-odsd.pdf.

8 Introduction

of software and data assets. In 2012, Katasonov35 pointed the way forward,
“beyond model checking and transformations”, with a call to apply semantics
in software engineering for its known capabilities in describing software
and data assets, as well as semantic search and multi-layered modelling of
systems.

1.2.1 The Challenge

There is a large body of research on model-driven engineering (MDE), and,
in principle, its benefits are clear, especially for evolvable systems. Despite
this and the high-profile OMG MDA initiative of the early 2000s, it has
not succeeded in proliferating to the mainstream of software engineering
practice other than in embedded systems and certain niches. Modern data-
intensive systems are characterised by the need to meet changing application
requirements and to integrate multiple data sources whose ownership may lie
outside the authority of the application developers. The goal of the ALIGNED
project was to change this by collecting quantitative evidence of the benefits
of deploying model-driven technology in enterprise information processing
systems. The basis of this was aggregating formal system specifications
for both data and software, based on a common set of metamodels or
vocabularies.

There is already evidence that ontologies or semantic models can provide
benefit as input domain models for model-driven development. Despite this,
semantic data engineering is a marginal activity at the periphery of software
engineering. There is an opportunity to create a more holistic view of the
data-intensive system engineering process. By modelling design intents, life
cycles, and inter-life cycle communication, it was possible to better integrate
the tools and methods used in the software and data engineering processes,
in order to enable loosely coupled co-evolution of systems and external Web
data resources.

1.3 State of the Art in Data Quality Engineering

Data quality engineering is an issue that exists independently of data rep-
resentation and technology and arises wherever data are stored for incor-
poration into business processes. However, in general, the older and more

35A. Katasonov, Ontology-driven software engineering: Beyond model checking and trans-
formations, International Journal of Semantic Computing, Vol. 6 (2012) No. 2, pp. 205–242,
2012.

1.3 State of the Art in Data Quality Engineering 9

established a language and technology, the more mature the tools, standards,
and processes are for dealing with data quality engineering issues. For exam-
ple, where XML is concerned, Schematron36 is an ISO standard for validation
and quality control of XML documents based on XPath and XSLT. Similarly,
in database research, there are related approaches to formulate common
integrity constraints37 using First Order Logic (FOL). The work of Fan,38

for example, uses FOL to describe data dependencies for quality assessment
and suggests repairing strategies. The development of similar mechanisms for
RDF is of crucial importance to provide solutions to allow the use of RDF in
settings that require either high-quality data or at least an accurate assessment
of its quality.

Several approaches for assessing the quality of Linked Data have been
proposed, which can be broadly classified into (i) automated;39 (ii) semi-
automated;40 and (iii) manual41 methodologies. These approaches introduce
systematic methodologies for assessing the quality of an RDF dataset at the
process level. Additionally, there have been efforts to assess the quality of
large-scale Web data,42 which included the analysis of 14.1 billion HTML
tables from Google’s general-purpose Web crawl in order to retrieve tables
with high-quality relations. Similarly, Hogan et al.43 assessed the quality
of published RDF data. This study described the errors characteristically
associated with publishing RDF data, catalogued the available techniques
to improve the quality of structured data on the Web, and analysed each
technique’s effectiveness. In a recent study, 4 million RDF/XML documents
were analysed, which provided insights into the level of conformance these

36http://www.schematron.com/
37A. Deutsch. Fol modelling of integrity constraints (dependencies). In L. LIU and

M. ÖZSU, editors, Encyclopedia of Database Systems, pp. 1155–1161, Springer US, 2009.
38W. Fan. Dependencies revisited for improving data quality. In Proceedings of the Twenty-

seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems,
ACM, pp. 159–170, New York, NY, USA, 2008.

39C. Guéret, P. T. Groth, C. Stadler, and J. Lehmann. Assessing linked data mappings using
network measures. In Proceedings of the 9th Extended Semantic Web Conference, volume
7295 of LNCS, pp. 87–102. Springer, 2012.

40A. Flemming. Quality characteristics of linked data publishing datasources. MSc thesis,
Humboldt-Universität Berlin, 2010.

41C. Bizer and R. Cyganiak. Quality-driven information filtering using the WIQA policy
framework. Web Semantics, 7(1), pp. 1–10, January 2009.

42M. J. Cafarella, A. Y. Halevy, D. Z. Wang, E. Wu, and Y. Zhang. Webtables: exploring the
power of tables on the web, PVLDB, 1(1), pp. 538–549, 2008.

43A. Hogan, A. Harth, A. Passant, S. Decker, and A. Polleres. Weaving the pedantic web. In
LDOW, 2010.

10 Introduction

documents had with the Linked Data guidelines. This effort assessed a
vast amount of Web and RDF/XML data; however, most of the analysis
was performed automatically, thereby overlooking the problems arising due
to contextual discrepancies. In earlier work, similar ideas were used for
describing knowledge base evolution.44

The approach described in Fürber and Hepp45 advocates the use of
SPARQL and SPARQL Inferencing Notation (SPIN) for RDF data qual-
ity assessment. However, their approach requires a domain expert for the
instantiation of test case patterns. SPIN46 is a W3C submission aimed at
representing rules and constraints on Semantic Web models. SPIN also allows
users to define SPARQL functions and reuse SPARQL queries. In a similar
way, Fürber et al. also defined a set of generic SPARQL queries to identify
missing or illegal literal values and datatypes and functional dependency
violations. Another related approach is the Pellet Integrity Constraint Valida-
tor (ICV).47 Pellet ICV translates OWL integrity constraints into SPARQL
queries. The execution of those SPARQL queries identifies violations. An
implication of the integrity constraint semantics of Pellet ICV is that a partial
unique names assumption (all resources are considered to be different unless
equality is explicitly stated) and a closed world assumption are adopted.
qSKOS defines rules to detect potential quality problems in datasets using
the Simple Knowledge Organisation System (SKOS) schema. The rules are
based on existing thesaurus construction guidelines and are evaluated using
SPARQL queries and graph algorithms (e.g., to find weakly connected com-
ponents). Finally, Lausen et al.48 suggested extensions to RDF by constraints
akin to RDBMS in order to validate data using SPARQL as a constraint
language. This is achieved by providing an RDF view on top of the data.

44C. Rieß, N. Heino, S. Tramp, and S. Auer. EvoPat – Pattern-Based Evolution and Refac-
toring of RDF Knowledge Bases. In Proceedings of the 9th International Semantic Web
Conference (ISWC2010), LNCS, Berlin/Heidelberg, Springer 2010.

45C. Fürber and M. Hepp. Using SPARQL and SPIN for data quality management on the
semantic web. In W. Abramowicz and R. Tolksdorf, editors, BIS, volume 47 of Lecture Notes
in Business Information Processing, pp. 35–46, Springer, 2010.

46H. Knublauch, J. A. Hendler, and K. Idehen. SPIN – overview and motivation. W3C
Member Submission, February 2011.

47E. Sirin and J. Tao. Towards integrity constraints in OWL. In Proceedings of the Workshop
on OWL: Experiences and Directions, OWLED, 2009.

48G. Lausen, M. Meier, and M. Schmidt. SPARQLing constraints for RDF. In Proceedings of
the 11th International Conference on Extending Database Technology: Advances in Database
Technology, EDBT ’08, ACM, pp. 499–509, New York, NY, USA, 2008.

1.3 State of the Art in Data Quality Engineering 11

While there has been considerable research into quality assessment of
Linked Data sets, work that attempts to incorporate such efforts into qual-
ity engineering frameworks, which operate to improve data quality over
time, is only starting to emerge. Feeney et al.49 described a semi-automated
methodology, framework, and process, which integrate RDF quality assess-
ment mechanisms with human workflows for achieving quality control of
published RDF datasets.

1.3.1 The Challenge

The challenge that ALIGNED faced in data quality engineering was twofold.
First, the data quality engineering processes that the partners developed for
Linked Data required further development, validation, and standardisation.
Secondly, mechanisms were required to allow quality control actions of
software and data teams, which have generally been developed in isolation, to
be aligned and synchronised. For example, if a customer bug report arrives,
then it can often be solved by modifications in either the applications or the
data. How is this responsibility allocated in diverse teams and what solution
will have the best outcome in terms of both the short- and long-term agility
and integrity of the combined system?

When data quality is vital, the ultimate resource to deploy is human
expertise. In some cases, it may be necessary to deploy human experts to
annotate and interpret datasets in order to elevate the raw data to useful
information or knowledge for the planned application tasks. However, this
is very expensive in terms of both time and the limited resource of domain
expertise. Fully automated solutions are popular in research applications, but
in enterprise, the deployment of human talent dominates. This is because of
the persistent gulf in quality between human-curated content and automated
approaches. Thus, the challenge for pragmatic systems is to define semi-
automated methods and tools that involve human expert curators in the loop
while minimising their workload. By partitioning curation tasks into different
levels of required expertise, it is possible to lower the expertise required
for participation in the data processing pipeline and thus broaden the base
of contributors, hence lowering costs and increasing the productivity of the
highest-value experts. Curation workflow tools that provide this functionality

49K. Feeney, D. O’Sullivan, W., Tai, R. Brennan, Improving curated web-data quality with
structured harvesting and assessment (2014), International Journal on Semantic Web and
Information Systems.

12 Introduction

based on an explicit data life cycle model will result in higher-quality systems
at lower cost.

One of the attractions of Linked Data, from an enterprise point of view,
is the widespread availability of compatible datasets with which to enrich or
annotate an application-specific dataset. However, in practice, this is often
seen as an advantage that is still to be realised, since the quality of datasets
published on the Web varies widely and it is only recently that mature Linked
Data quality frameworks have appeared. Importing low-quality datasets often
results in a large clean-up exercise for the application owners. Given that
system integrity depends directly on the quality of data input, there is an
opportunity to control dataset integrity by limiting updates to datasets based
on a strong, semantic specification of the system, the application and schema
needs, and design intents. A repository integrity gateway could utilise both
data quality frameworks and the system specification to limit the data input,
referring offending data to human administrator-based intervention or to other
automated checks.

Just as unit testing has entered the mainstream of software develop-
ment, it is possible to create automated data testing based on rich models
of domains, application data needs and design intents and to integrate
these into semi-automated processes, which maximise the utilisation of new
technologies without dispensing with the ability to use human expertise
to provide the highest-quality data. Developing and validating processes
that successfully integrate these processes was the challenge tackled by
ALIGNED.

1.4 About ALIGNED

ALIGNED is an EU research project, which ran from February 2015 to
January 2018. It brought together world-class researchers, representing stake-
holders from across the value-chain. It combined model-driven software
engineering (Oxford are leading the development of the next generation of
UK National Health Service systems), Linked Data quality (Leipzig and Trin-
ity College have published foundational papers) with innovative enterprises
(Wolters Kluwer has pioneered the use of Linked Data in complex mission
critical systems; the Semantic Web Company (SWC) leads the world in enter-
prise Linked Data), and expert-driven data curation (Oxford Anthropology
and Poznań) to work on high-impact use cases such as DBpedia (Leipzig

1.4 About ALIGNED 13

are co-creators). The project’s ambition was to develop the foundations for
the next generation of Big Data systems by enabling model-driven creation
of Linked Data applications that can effectively deal with the dynamism,
complexity, scale, and data quality challenges (e.g., inconsistency and incom-
pleteness) of Web data while retaining the reliability, security, and robustness
that come with model-driven software engineering.

The objective of the ALIGNED project was to align semantics-based
model-driven software engineering with full life cycle Linked Data engineer-
ing to produce powerful and flexible service engineering systems and enable
rapid development cycles based on reuse and extension of heterogeneous data
sources. This approach supports an aligned engineering process spanning the
full service life cycle, based on rich, semantic Linked Data representations,
which enable expressive models to be specified for open extensible systems
in such a way that flexibility and reusability are prioritised. This will facilitate
a step change in the development50 of Web-scale data-intensive systems.
Successfully attaining this objective requires innovations in three distinct
technical areas:

• Model-driven software engineering is a maturing research field with
well-developed tools and methods like UML, XML, and DSL creation,
code, and transformation generation tools like Stratego/Spoofax.51 The
ALIGNED project evolved this research with more expressive and
shareable data models based on the modern Web of data.

• Enterprise Linked Data-based systems are starting to appear,52 and while
Linked Data quality engineering processes have started to emerge,53

they suffer from inadequate tool support. Most Linked Data life cycle
management tools also suffer from being oriented towards knowledge
engineers, specialising in semantics, rather than the domain experts or
software engineers that build and administer enterprise data-intensive
systems. ALIGNED addressed this shortcoming by developing, test-
ing, and validating collaborative Linked Data engineering tools and
integrating them into user-friendly data curation services and platforms.

50http://www.uml.org/ & http://www.w3.org/XML/
51http://strategoxt.org/view/Spoofax/WebHome
52C. Dirschl, K. Eck, and J. Lehmann, “Supporting the Data Lifecycle at a Global Publisher

using the Linked Data Stack”, ERCIM News, 96, January 2014.
53A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, “Quality assessment

methodologies for linked open data”, under review, Semantic Web Journal, IOS Press.

14 Introduction

• Linked Data schemas, expressed in standardised languages such as
RDFS54 and OWL,55 enable self-describing data structures with rich
semantics included within the data itself. Aspects of program logic
previously encapsulated in software are now embedded in data mod-
els, meaning that the software engineering life cycle of data-intensive
systems needs to be aligned with the data engineering life cycle. For
example, changes to data schemas may require updates to the software
that consumes it, and vice versa. ALIGNED addressed this challenge
by identifying common phases and signalling between the parallel pro-
cesses and tools to support alignment at higher levels. This supports
both integrated, model-driven unified processes and loosely coupled, co-
evolving systems through the specification of common vocabularies and
domain-specific metamodels.

ALIGNED leveraged Linked Data as the common technical platform to
support integration at three levels: first, by applying semantics and Linked
Data to model-driven software engineering to develop rich domain and
application-specific specification models; second, as a means to integrate
tools for combined software and data engineering; and third, as the basis for
exemplar data-intensive systems that combine software and data to manage,
publish, process, and consume data.

NESSI has identified “Collaborative Service Engineering based on the
convergence of software and data” and “Integration of Big Data Analytics
into Business processes” as EU research priorities.56 This is a response to the
parallel trends which see increasingly complex and dynamic service-delivery
collaborations alongside the ongoing explosive growth of data available via
the Web. The increasing prevalence of rich and flexible standardised semantic
languages57 has created opportunities for service providers to add value
to their services with readily available machine-processable knowledge.58

To take advantage of these opportunities, service and software engineer-
ing organisations must integrate data engineering and service engineering
processes.

54http://www.w3.org/RDF/ & http://www.w3.org/TR/rdf-schema/
55http://www.w3.org/TR/owl2-overview/
56Strategic Research and Innovation Agenda Version 2.0, NESSI Position Paper, April 2013.
57C. Bizer, K. Eckert, R. Meusel, H. Mühleisen, M. Schuhmacher, and J. Völker: Deploy-

ment of RDFa, Microdata, and Microformats on the Web – A Quantitative Analysis In: 12th
International Semantic Web Conference, 21–25 October 2013.

58P. Hitzler, K. Janowicz, Linked Data, Big Data, and the 4th Paradigm, Semantic Web
Journal, IOS Press, 2013.

1.5 ALIGNED Partners 15

1.5 ALIGNED Partners

1.5.1 Trinity College Dublin

Trinity College Dublin is Ireland’s leading university. TCD, founded in 1592,
hosts over 15,500 students. It enjoys an esteemed reputation in research
and innovation with an outstanding record of publications in high-impact
journals and a track record in winning research funding. Its research impact is
currently ranked 44th in the world by the Times Higher Education Ranking of
World Universities and 9th in Europe by the 2013 Leiden University Ranking
of World Universities’ research performance.

1.5.2 Oxford University – Department of Computer Science

The Department of Computer Science, ranked first in Europe in the Shanghai
tables, has particular strengths in software engineering, programming lan-
guages, and information systems. The Software Engineering Group works
across all three areas and has a strong track record of interdisciplinary collab-
oration in medical and scientific research, humanities, and social sciences.
It has also a strong track record of effective engagement with industry,
delivering a substantial programme of advanced education aimed at full-time
professionals: designers, developers, managers, and users.

1.5.3 Oxford University – School of Anthropology and Museum
Ethnography

The School of Anthropology and Museum Ethnography is one of the oldest
and most distinguished anthropology departments in the world. It is also one
of the broadest, comprising five units that cover a wide range of subfields
of anthropology (social and cultural, cognitive and evolutionary, visual and
material, medical and biological) as well as a range of specialised foci (e.g.,
migration, science and technology) with long-established field projects all
around the globe. Of particular importance for ALIGNED, it is home to the
Institute of Cognitive and Evolutionary Anthropology, which employs staff
with expertise in database construction and analysis.

1.5.4 University of Leipzig – Agile Knowledge Engineering and
Semantic Web (AKSW)

The Institute for Applied Computer Science (InfAI, http://infai.org) at Uni-
versität Leipzig hosts world-class research groups in service and Web science.

16 Introduction

The approximately 40 researchers of the Agile Knowledge Engineering and
Semantic Web research group (http://aksw.org) at InfAI are establishing
theoretical results and scalable implementations for realising the Semantic
Data Web. Particular emphasis is given to areas such as ontology creation
and manipulation, knowledge extraction, ontology learning and information,
and data integration on the Linked Data Web. The scientific publications of
the group, founded in 2006, have already attracted more than 6,000 citations
(according to Google Scholar).

1.5.5 Semantic Web Company

SWC is an SME, based in Vienna, Austria, founded in 2001, which offers ICT
consulting services and solutions in semantic information management. This
includes data and metadata management, knowledge and information man-
agement systems, LOD, enterprise search, and social software. SWC is the
vendor of the PoolParty Semantic Suite (http://poolparty.biz) for enterprise-
ready solutions in taxonomy management and data integration. SWC’s work
is always based on open semantic Web standards to ensure interoperability
and sustainability for solutions.

1.5.6 Wolters Kluwer Germany

Wolters Kluwer Germany is an information services company specialising
in the legal, business, and tax sectors. Wolters Kluwer provides pertinent
information to professionals in the form of literature, software, and services.
Headquartered in Cologne, it has over 1,200 employees located at over 20
offices throughout Germany, conducting business on the German market for
over 25 years. Wolters Kluwer Germany is part of the leading international
information services company, Wolters Kluwer n.v., located in Alphen aan
den Rijn (the Netherlands). The core market segments, targeting an audience
of professional users, are legal, business, tax, accounting, corporate and
finance services, and healthcare.

1.5.7 Adam Mickiewicz University in Poznań

Adam Mickiewicz University in Poznań is the major academic institution
in Poznań and one of the top Polish universities. Its reputation is founded
on tradition, the outstanding achievements of the faculty, and the attractive
curriculum offered to students. It is a centre of academic excellence, where
research and teaching are mutually sustaining, and where the context within

1.6 Structure 17

which research is conducted and knowledge is sought and applied is interna-
tional as much as regional and national. The University was founded in 1919
and its current student population is nearly 49,000. The University currently
employs nearly 3,000 teaching staff, including 264 tenured professors, 439
associate professors, and 1,617 adjunct professors and senior lecturers.

1.5.8 Wolters Kluwer Poland

Wolters Kluwer Poland the largest publisher of legal and business information
in Poland. It provides a large database of legal and business information under
the IPG brand. Wolters Kluwer Poland is part of the leading international
information services company, Wolters Kluwer n.v., located in Alphen aan
den Rijn (the Netherlands).

1.6 Structure

The remainder of the book is organised as follows. Chapter 2, Use Cases,
briefly describes the five use cases undertaken in the book. It focusses on
the data engineering and software engineering challenges, where they are the
same and where they differ across the use cases. Chapter 3, Methodology,
describes a general methodology for understanding Big Data systems, their
requirements, the different families of modelling approaches that are suitable
for different systems, and the integration of software and data engineering
life cycles by way of signalling points and common vocabularies. Chapter 4,
Vocabularies and Ontologies, describes the use of layered common tax-
onomies, vocabularies, and ontologies as a basis for semantic integration.
These include foundational schemas such as RDF, RDFS, and OWL; com-
mon widely used standards such as PROV and SKOS; new general-purpose
ontologies to describe validation errors and dataset identities such as RVO
and DataID; and high-level custom ontologies to describe processes (DLO
and SLO). Chapter 5, Tools, describes the software tools used to solve the
problems of the use cases, which include RDFUnit, DataID, the Model
Catalogue, Semantic Booster, the PoolParty Semantic Suite, and the Dacura
semantic curation platform. It focusses on describing the vocabularies and
APIs supported by each tool with a little bit on implementation for each.

Chapter 6, Integrated Systems, describes the integrated systems that were
developed to solve the problems of the use cases introduced in Chapter 2.

18 Introduction

It is split into five parts:

• Wolters Kluwer – Re-engineering a complex relational database appli-
cation: In every enterprise environment, relational databases are used
for a long time to process critical data. It is a common situation that
the database schema has heavily evolved over time and no one in the
company understands the impact of any change in its entirety anymore.
Therefore, companies continue to use these databases without touching
them anymore, reducing its overall value over time. Sooner or later, a
complete re-engineering or even complete new development is required,
which means a significant investment and a high risk of failure. In this
presentation, we will show that it is possible to reduce this risk by using
semantic technologies when replacing the old application and which also
better prepares the company for any re-engineering effort in the future.

• Seshat – collecting and curating high-value datasets with the Dacura
platform: This section uses the Seshat project as a case study – a huge
distributed effort by social scientists to compile an authoritative data-
bank describing the evolution of all human societies that have existed
since 10,000 BCE. We show how the system uses semantic models
both to provide strong data consistency assurances and to generate user
interfaces for crowd-sourcing and human expert approval. Although this
use case is an academic endeavour, the technology is entirely agnostic to
the application and can be applied in any scenario where an organisation
wishes to collect and curate high-quality datasets.

• Managing data for the NHS: This section examines the ALIGNED
Data Catalogue system: a set of tools for automating aspects of data
management at scale. At the heart of the system is the metadata cat-
alogue, a tool for capturing and linking key information about data:
information that can be used to determine, automatically, how data
are to be processed, transformed, and accessed. Other tools support
the processes of metadata capture and curation, as well as system
configuration and generation. We explore the application of the Data
Catalogue system to the management of health data in the United
Kingdom. The Oxford ALIGNED partners have deployed the metadata
catalogue and other tools in support of several, large health data projects
in collaboration with the NHS. One of these, the 100,000 Genomes
Project, required the coordination of data specifications, form designs,
database schemas, and messages, for a wide range of diseases, across
70 hospitals.

1.6 Structure 19

• Integrating semantic datasets into Enterprise Information Systems with
PoolParty: The Linked Data movement has seen increasingly large
semantic datasets published on the Web, as part of the web of data.
This creates opportunities for integrating public sources of data with
enterprise information sources to create enriched high-quality seman-
tic knowledge bases. ALIGNED is developing tools and processes to
integrate with PoolParty, SWC’s semantic technology suite. PoolParty
Thesaurus Server is a Thesaurus and Taxonomy Management Tool to
build and maintain information architectures. In this section, we show-
case how we use SHACL and the RDFUnit test framework as a basis
for the import assistant to run automatically and manually generated test
cases for validating data consistency constraints.

• Data Validation at DBpedia: Data validation is a crucial part of data
integration – integrated data must meet a minimum validation criterion
before it can be considered integrated. Reducing the manual time and
effort required to validate data is a critical enabler of dealing with the
volume and velocity of Big Data. In this section, we show how DBpedia
has used ALIGNED tools including RDFunit to develop a high-quality
curated dataset offering.

Finally, Chapter 7, Evaluation, describes a suite of evaluation techniques and
measures focussed on agility, productivity, and quality in big-data systems
and presents an ontology in which the various types of measures are related
to one another and an abstract framework for evaluating such systems.

http://taylorandfrancis.com

2
ALIGNED Use Cases – Data and Software

Engineering Challenges

Arkadiusz Marciniak and Patrycja Filipowicz

Adam Mickiewicz University, Poland

2.1 Introduction

The ALIGNED project developed an aligned methodology for parallel soft-
ware and data engineering of Web-scale information systems with Linked
Data as a unifying technical foundation for system specification and process
and tool integration. This methodology (see Chapter 3) is based on a meta-
model describing the complete software and data life cycles, domain models,
and design intentions. This metamodel specifies tools to produce software
development models, including transformations that generate or configure
software applications as well as data development models, incorporating
data quality and integrity constraints, data curation workflows, and data
transformations.

Software and data engineering are different disciplines, with different
practices and processes. Significant differences between these fields mean
that a single prescriptive approach could not work. Instead, the project has
identified a matrix of synchronisation points between different stages of the
software and data life cycles. Each point represents a key area where software
and data engineers may need to interact and define formats and processes for
working together. This approach is flexible enough to accommodate many
different workflows, while still identifying key areas where alignment of the
two life cycles can lead to significant savings in effort. The approach adopted
endeavoured to make it possible to improve the overall quality, productivity,
and agility in a variety of different use cases. In order to achieve these
objectives, the project sought to develop Linked Data schemata for alignment
that enabled the software engineering life cycle of data-intensive systems to
be integrated with the data engineering life cycle, by identifying common

21

22 ALIGNED Use Cases – Data and Software Engineering Challenges

phases and signalling between the parallel processes and tools to support
alignment at higher levels.

The decision to adopt data-model-driven approaches in the project had
far-reaching consequences. In particular, it required that every step in the
process be directly driven by the model, rather than independently config-
ured. Harvested datatypes also could not be consumed directly, but through
a model, which dictated the shape and structure that the data must take.
Accordingly, a model-driven approach led to the creation of explicit models
at each stage of the development process.

MDE describes a development process in which the components of the
final software artefact are derived – either manually or automatically – from
models that typically form part or all the specifications or requirements of the
system. The software needs to be written in such a way that it understands
the modelling language and is capable of handling updates to the model. Such
software can be reused in different applications within a similar domain, min-
imising the time spent on the implementation phase, and capturing common
repeating patterns that would otherwise have to be repeated in each cycle
of an iterative development. In the MDE world, it is required that the data
model is provided in the form of the ontologies available at a well-known
URL, which is typically achieved by providing a metadata registry.

In order to achieve the postulated goals, a number of tools from both
domains were developed and used in order to make the advocated integration
of both life cycles efficient, particularly in relation to challenges posed
by the different use cases. These comprise Booster, the Model Catalogue,
RDFUnit, Repair Framework and Notification (RF), Ontology Repair and
Enrichment (ORE), Dacura, the PoolParty Confluence/JIRA Data Extrac-
tor (CJDE), External Link Validation (ELV), and the Unified Governance
Plugins.1 Similarly, a set of open, public ontologies and vocabularies were
adopted and used wherever possible by all tools to support integration (for
details, see Chapter 4). These include foundational schemas, such as RDF,
RDFS, and OWL, and common widely used standards such as PROV and
SKOS. Where ontologies did not exist to cover the advocated integration
needs, new models were created and made publicly available (RVO, RUT,
DataID). This collection of common, project-wide ontologies gave the ability

1Shah, Seyyed M., James Welsh, Jim Davies, and Jeremy Gibbons. 2017. In Mahmood,
Z (ed.), Software Project Management for Distributed Computing: Life-Cycle Methods for
Developing Scalable and Reliable Tools, 367–385. Springer: Cham.

2.1 Introduction 23

to exchange rich, structured information covering the most significant entities
within research focus.

The ultimate objective of the project, however, was to produce tools,
methods, and standards, which lead to real improvements in productivity,
quality, and agility of different types of data. The rapidly increasing size and
complexity of Web and Big Data often makes their management virtually
impossible, where even specialists struggle to harness them. Hence, five
use cases representing different domains from legal to health and complex
archaeological and historical datasets were chosen to adopt a broad bottom-
up approach to system development and integration. Accordingly, the project
tackled problems in a wide range of areas with the intention to show how the
latest semantic technologies can help create means of managing and using
these datasets. The selection of uses cases was also driven by a need of testing
interoperability between the tools, particularly those who support both data
and software engineering that were developed in the project. The chosen use
cases were: (i) Seshat: Global History Databank, (ii) PoolParty Enterprise
Application Demonstrator System, (iii) DBpedia, (iv) Jurion and Jurion IPG,
and (v) Health Data Management.

Each use case is a large-scale, real-world project with large user commu-
nities and complex sets of data. The project’s research has thus had a practical
focus, which has seen the application of innovative tools and solutions in
real life. The use cases represent diverse domains, both commercial and
non-commercial, which have their own requirements and data characteristics.
They also represent a significantly different level of advancements in both the
data and software engineering tools and procedures. Each use case has its own
problems with quality, agility, and productivity. The project has built tools
and processes that improve software and data engineering for each of these
use cases. Every tool appears in more than one use case, and every use case
involves tools developed by different partners. In each case, trial platforms
were constructed in multiple phases, which integrate research outputs from
multiple work packages and partners, served to offer the greatest potential for
real improvements to the existing processes employed within these use cases.

The objectives of this chapter are thus threefold: (1) to present the five
case studies used in the ALIGNED project, (2) to analyse the major chal-
lenges identified by these use cases in the data engineering life cycle as well
as present their proposed solutions, and (3) to analyse the major challenges
identified by the use cases in the software life cycle and propose solutions to
these challenges.

24 ALIGNED Use Cases – Data and Software Engineering Challenges

2.2 The ALIGNED Use Cases

2.2.1 Seshat: Global History Databank

The Seshat: Global History Databank2 is an international initiative of human-
ities and social science scholars to build an open repository of expert-
curated historical time-series data.3 The Seshat project began by selecting
a sample of 30 areas from around the world. For each area, all soci-
eties that had controlled it throughout history were recorded. This made
it possible to answer a wide range of questions about each of them –
describing its population, technology, religion, infrastructure, and so on.
The Seshat has been designed to test theories about the evolution of social
complexity, from the point of view of historians and anthropologists.4

The databank extracts data from a combination of databases, Linked Data
sources, websites, academic publications, and human experts. Figure 2.1
shows the initial sample of 30 geographical areas chosen for the databank.

A special code book defined the full list of questions, and researchers
added data to the system by creating a copy of the code book page for
each society and adding data points using a special syntax that encoded
uncertainty, disagreement, and temporal scope, along with comments and
citations in relation to domain-specific provenance information. In the initial
stages of the Seshat project, a wiki was used to collect the data. The system
amassed over 200,000 data points on hundreds of civilisations, but whilst the
unstructured wiki data store allowed great flexibility at the start of the project,

2http://seshatdatabank.info
3Turchin, Peter, Thomas E. Currie, Kevin C. Feeney, Pieter Franois, Daniel Hoyer,

J.G. Manning, Arkadiusz Marciniak, Daniel Mullins, Alessio Palmisano, Peter Peregrine,
Edward A.L. Turner and Harvey Whitehouse Harvey. Seshat, The Global History Databank,
Cliodynamics. The Journal of Quantitative History and Cultural Evolution 6(1), pp. 77–107.

4Turchin, Peter, Thomas E. Currie, Harvey Whitehouse, Pieter Franois, Kevin Feeney,
Daniel Mullins, Daniel Hoyer, Christina Collins, Stephanie Grohmann, Patrick Savage, Gavin
Mendel-Gleason, Edward Turner, Agathe Dupeyron, Enrico Cioni, Jenny Reddish, Jill Levine,
Greine Jordan, Eva Brandl, Alice Williams, Rudolf Cesaretti, Marta Krueger, Alessandro Cec-
carelli, Joe Figliulo-Rosswurm, Po-Ju Tuan, Peter Peregrine, Arkadiusz Marciniak, Johannes
Preiser-Kapeller, Nikolay Kradin, Andrey Korotayev, Alessio Palmisano, David Baker, Julye
Bidmead, Peter Bol, David Christian, Connie Cook, Alan Covey, Gary Feinman, Árni Danı́el
Júlı́usson, Axel Kristinsson, John Miksic, Ruth Mostern, Cameron Petrie, Peter Rudiak-Gould,
Barend ter Haar, Vesna Wallace, Victor Mair, Liye Xie, John Baines, Elizabeth Bridges,
Joseph Manning, Bruce Lockhart, Amy Bogaard and Charles Spencer. Single dimension of
complexity in human societies. Proceedings of the National Academy of Sciences, 115 (2)
E144-E151; DOI:10.1073/pnas.1708800115.

2.2 The ALIGNED Use Cases 25

Figure 2.1 Seshat World Sample 30.

it did not scale to the number of contributors, data users, data points, or the
complexity of the data.

Seshat also evolved to encompass new areas that were not originally
anticipated. In particular, this involved recording societies from the prehis-
toric past, which required a collection of archaeological data. It soon became
obvious that many Seshat variables were unsuitable for capturing this part
of human past. There was also a lack of relevant proxies that would allow
translation of archaeological evidence into coding templates. Accordingly,
the Archaeological Seshat code book was designed and developed in order to
fill in the gap, and the data were collected independently.

A wiki-based approach, used in Seshat for the data collection task, posed
numerous problems, in particular for the verification of data correctness, and
the extraction of data in usable forms. As the dataset grew and the focus
moved from collection to integration and analysis, several other significant
problems emerged. The fundamental problem is that a wiki is designed for
human presentation and editing of data. To a machine, it is semi-structured,
lacks any type information, and the meaning of the elements depends on their
context within a jumble of HTML. Without any support for validation, errors
proliferated.

The limitations of the wiki also impacted agility. As the Seshat code
book was rapidly evolving, any changes needed to be manually copied to
all existing data pages. This was a costly and error-prone task. There was
also no easy way to express spatial data through the wiki, so these data were
stored in a separate geographic information system (GIS). The wiki-based
system offered no support for publication. Furthermore, while the scraping

26 ALIGNED Use Cases – Data and Software Engineering Challenges

tool could extract raw datapoints, important citations and comments were
encoded in totally unstructured HTML.

Productivity suffered as increasing resources had to be devoted to curation
and cleaning. Some of the corrections were not copied back to the wiki and
spreadsheets became the authoritative source for some sections of the data.
Moreover, there was no way of incorporating third-party data into Seshat
dataset.

2.2.2 PoolParty Enterprise Application Demonstrator System

The PoolParty Semantic Suite5 is the SWC’s platform for enterprise infor-
mation integration based on Linked Data principles. The PoolParty semantic
technology suite comprises a number of tools based on the extraction, cura-
tion, and management of linked open datasets. These tools are split into three
categories: data portals and collaboration platforms, tools for knowledge
engineering and graph management, and functionality for content enrichment
and data integration. Any data is transformed into RDF graphs and can be
queried with SPARQL (SPARQL Protocol and RDF Query Language). Since
it was created, the product has evolved to include entity extraction from
unstructured information. PoolParty’s API provides a rich set of methods for
text mining and entity extraction. Figure 2.2 shows the tools of the PoolParty
Application Suite.

Figure 2.2 PoolParty Application Suite.

5http://www.poolparty.biz

2.2 The ALIGNED Use Cases 27

As a loosely coupled collection of tools, additional functionality has been
enabled through the integration of third-party tools. An example of this is the
use of Atlassian Confluence (a team collaboration tool), Atlassian Jira (a tool
for issue tracking and project management), and Media Sonar (a Web-mining
tool), for a general-purpose requirements engineering system. However, the
systems concerned are typically document-oriented and require extensive
human interaction in order to link their data to development tasks recorded in
PoolParty against standard ontologies. The system lacks the required integra-
tion and alignment of data management issues with the software development
life cycle, so that each supports the other.

2.2.3 DBpedia

DBpedia6 publishes authoritative RDF-based datasets that are used as a com-
mon point of reference for interlinking and enriching most of the structured
data on the Web today. It relies on an automated data extraction framework
to generate open RDF data from Wikipedia documents, published in the form
of file dumps, Linked Data, and SPARQL hosting on the Linked Data Stack.
This structured information resembles an open knowledge graph, which is
a kind of database, which stores knowledge in a machine-readable form and
provides a means for information to be collected, organised, shared, searched,
and utilised. DBpedia passes all published data through RDFUnit, validating
it against an up-to-date version of the DBpedia ontology. The validated
outputs generate consistent data termed DBpedia+, whereas the wider, more
exhaustive data are published as the standard DBpedia datasets.

To create high-quality data, a validation method for DBpedia instance
data has to provide sufficient metadata to distinguish between three different
possible sources of a violation: (i) the Wikipedia editor (entering erroneous
values), (ii) incorrect mappings between source and DBpedia ontology, and
(iii) a software issue in the DBpedia Extraction Framework. Accordingly,
RDFUnit provides the necessary metadata for any violation found and creates
links between a software issue and the violating instance. The resulting viola-
tions and associated metadata provide the exact coordinates of a violation, the
grounds for this violation, and the possible source. Thus, violations recorded
in such a manner are used as a feedback medium, relating possible mistakes to
Wikipedia editors, to the mapping community, or to software developers. In
addition to validating the resulting instance data, DBpedia started to validate

6http://wiki.dbpedia.org

28 ALIGNED Use Cases – Data and Software Engineering Challenges

the mappings between DBpedia ontology and the Wikimedia data sources on
a regular basis with RDFUnit. Thus, most of the mapping-related violations
can be caught before ever starting the data extraction, preventing possible
reruns of whole extraction steps and increasing productivity.

The DBpedia Links repository maintains linksets between DBpedia and
other LOD datasets. A system for maintenance, updates, and quality checks,
which validates various aspects of the link submission, is in place and is
integrated with common continuous integration services, such as Travis CI.
It offers a way to publish linksets between DBpedia and any given dataset,
which are published alongside the DBpedia dataset files.

The major productivity issues identified for DBpedia involve code
maintenance, release management, ontology editing, release documentation
creation, and dealing with user queries. Further complications involved
dealing with the increasing number of published datasets that tend to increase
over time when incorporating new extraction methods and algorithms.

To ensure quality regarding the extraction workflow, DBpedia extended
the Extraction Framework to produce metadata for any extraction process,
extensive logging of progress and exceptions, as well as high-level summaries
of extractions. These efforts support extensive monitoring, metadata propaga-
tion and logging (on both the triple and dataset level), and the deployment of
ETL frameworks and Workflow Management Systems to further decrease the
time needed for extraction and to automate this process completely. Figure 2.3
shows this pipeline.

Figure 2.3 DBpedia Extraction Pipeline.

2.2 The ALIGNED Use Cases 29

The greatest need for agility in DBpedia is the ability to rapidly respond
to changes in source datasets like Wikipedia. These may involve, among
others, the introduction of new pages that represent new concepts and the
introduction of new infobox templates that represent additional instance data
in DBpedia and changes in infobox structures. Adapting to those changes
in a (semi-) automated way will prevent the loss of data (due to changes to
Wikipedia templates) and incorporate new instance data automatically.

2.2.4 Jurion and Jurion IPG

The Wolters Kluwer7 use case within ALIGNED is twofold. On the one
hand, the project worked with a legal research database application called
Jurion (www.jurion.de) from Wolters Kluwer Germany. In this use case,
it mainly focussed on addressing data quality issues. Second, the project
re-engineered the IPG system from Wolters Kluwer Poland, which is a
commercial intelligence system, based on huge amounts of data in a relational
database system.

Jurion merges and interlinks over one million documents of content and
data from diverse sources such as national and European legislation and court
judgements, extensive internally authored content and local customer data, as
well as social media and Web data (e.g., from DBpedia). In collecting and
managing this data, all stages of the Data Life cycle are present – extraction,
storage, authoring, interlinking, enrichment, quality analysis, repair, and pub-
lication. Wolters Kluwer concentrated mainly on the enhancement of data
quality and repair processes. Based on the requirements, it started to work
on data transformation issues and the improvement of data quality processes
in PoolParty in parallel to some tasks within the PoolParty use case. Based
on large amounts of XML data, governed by a DTD, continuous transforma-
tion from XML to RDF, based on XSLT scripts, needs to take place. This
process is complicated and error-prone, especially when it comes to schema
changes. The second major data quality challenge is around domain thesauri
and controlled vocabularies. Very often, these data are initially created and
stored in XLS files and when it comes to a systematic usage of more
powerful tools like PoolParty, the import process of this data needs to be
optimised, so that errors and inconsistencies can be detected very early in the
process.

7www.wolterskluwer.com

30 ALIGNED Use Cases – Data and Software Engineering Challenges

The Jurion IPG system is a commercial intelligence system, providing
a means for business contractors to perform due-diligence queries, serving
historical data about companies and their relationships with other compa-
nies, responsible individuals, and business documents. It has been developed
by Wolters Kluwer Poland and it contains data on 450,000 companies,
1.1 million people, and 3.5 million documents. The existing data are currently
stored in a relational format. The complexity of the system stems from huge
amounts of daily processed data originating from pdf sources and their main-
tenance through a proprietary, obsolete CMS. In order to remain a reliable
provider of credibility and financial information for over five million entities,
the integrity and consistency of the data is of vital importance, and increas-
ingly hard to manage at scale. Business value of the system is dependent on
the maintenance and evolution of a large, semantically consistent dataset. The
overall goal is to ensure the quality of the system used to enter and maintain
the data and to improve the value by linking to external datasets. The major
requirements involve deploying new tools to find problems in the existing
data, improving the integrity of data submitted in the future as well as help
increasing the scope of the data by enabling the linking of data stored within
the system to external related datasets. Figure 2.4 shows the JURION IPG
workflow.

Figure 2.4 Jurion IPG.

2.2 The ALIGNED Use Cases 31

2.2.5 Health Data Management

The Health Research Data use case involved four separate projects related to
health research data in the United Kingdom:

• the Health Data Finder8 – an online tool for discovering national
healthcare datasets commissioned from the National Institute for Health
Research (NIHR). They primarily contain routine hospital data for
audit and economic reasons, but may be made available to researchers
in academia and industry with appropriate governance approval. The
datasets are maintained by a number of separate organisations, and so
data users wishing to discover data and request access may have to make
a number of requests, often with inconsistent results.

• the NIHR Health Informatics Collaborative9 – routine clinical data in
five therapeutic areas provided by the largest teaching and research hos-
pital trusts. These include critical care, ovarian cancer, acute coronary
syndromes, hepatitis, and renal transplantation. Each trust maintains
data to differing standards and semantics, and rather than unifying data
to a lowest common denominator, sites are asked to build their own data
warehouses for a federated data store. Users of the data can make a
request to the hospitals, and data can be linked and unified on a per-usage
basis, taking into account the research purpose.

• the UK 100,000 Genomes Project10 – a UK Government project aimed
at sequencing whole genomes from National Health Service patients.
It is focussed on rare diseases, major types of cancer, and infectious
diseases. The patients give consent for the genome data to be linked to
information about their medical condition and health data. The ultimate
goal of the project is to improve knowledge of the causes, treatment, and
care of these diseases.

• the construction of a data warehouse for Oxford University Hospitals
Foundation Trust11 – this is a detailed asset register for the hospi-
tal, detailing field-level metadata about databases and spreadsheets of
patient data around the hospital, as well as describing dataflows and
message-passing between systems, and specifications for audit and
research datasets.

8http://www.hdf.nihr.ac.uk
9https://www.nihr.ac.uk/about-us/how-we-are-managed/our-structure/infrastructure/health-

informatics-collaborative.htm
10https://www.genomicsengland.co.uk/the-100000-genomes-project
11http://www.ouh.nhs.uk

32 ALIGNED Use Cases – Data and Software Engineering Challenges

In all four applications, reuse of existing data without detailed documen-
tation causes major problems, particularly in relation to poorly developed
semantics. Furthermore, linkage between datasets may be inaccurate, trans-
formation of data into different formats may be incorrect, and interpretation
of statistical results is error-prone. In the Health Data Finder, such data reuse
is minimal. Researchers do not know what data may be available to them,
different providers may return inconsistent results on data governance, and
data must be re-interpreted each time, which may result in costly errors. In
similar projects preceding the Health Informatics Collaborative and 100,000
Genomes projects, collecting comparable data from multiple hospitals has
proven difficult. Precise specifications have been hard to produce, mecha-
nisms for data capture and transfer have been manually programmed, often
by non-technical domain experts, and inconsistencies have resulted in data
that is often incomplete, incomparable, or completely unusable.

The quality and accuracy of data documentation is difficult to maintain
during an iterative process. In all the health data research projects, datasets are
continually evolving and data specifications are continually being improved.
Without careful version management and automation, it is very easy for the
documentation to get left behind. Similarly, software artefacts must keep
pace with the changes in requirements: changes to the data or the software
specifications must invoke updates to the XML schema, database schema, or
Case Report Forms. Manual coding slows the iteration process, which in turn
can result in outdated or inaccurate specifications.

Furthermore, domain experts find it difficult to provide documentation
or simple modelling because of the technicalities involved. XML schema
and Case Report Forms require specialist technical knowledge. Implement-
ing efficient database structures requires a lot of repetitive work such as
implementation of a domain class will involve a familiar pattern of tables,
association tables, keys, and indexes. Such work is time-consuming and error-
prone, yet ripe for automation. Data scientists looking to reuse health data
currently spend a lot of time searching for usable datasets, often requiring
long periods of interaction where inventories and documentation are not
available online. Applying for governance, asking technical questions, and
retrieving data in a suitable format often require further time and energy.
Interpretation and curation of the data is a typically manual task, which may
be repeated and reproduced by every scientist receiving a data extract.

2.3 The ALIGNED Use Cases and Data Life Cycle 33

2.3 The ALIGNED Use Cases and Data Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of eight stages for data engineering.12 These
are: (i) extract – taking information in unstructured form or conforming to
other structured or semi-structured formalisms and mapping it to the RDF
data model, (ii) storage and querying – retrieving and persisting information
in triple form to be included as part of the dataset; (iii) manual revision/
authoring – processes for manual creation, modification, and extension of
the structured data; (iv) interlinking/fusion – creating and maintaining links
between datasets; (v) classification/enrichment – creating and maintaining
links between data, and models of data (which themselves may be linked and
part of the dataset); (vi) quality analysis – testing for data completeness and
correctness; (vii) evolution/repair – correcting invalid data resulting from a
quality analysis phase, via either manual or automated processes; and finally,
(viii) search/browse/exploration – making data artefacts available to domain
experts or to users beyond the original authors.

Different stages of data engineering in the ALIGNED project have been
identified primarily for building tool support and integrated frameworks as
well as encouraging compatibility of independent tools within a particu-
lar framework. Feedback from one phase is to be fed into another. For
example, the models linked during the classification or enrichment stage
will determine the scope of the quality analysis stage, or any errors found
during quality analysis may need to be resolved in the evolution/repair
phase.

As the dataset grew and the focus moved from collection to analysis,
several significant problems with agility, quality, and productivity emerged.
First, the fundamental problem was that a wiki is designed for human
presentation and not machine-readable. Second, the limitations of the wiki
impacted agility: manual data harvesting has been very time-consuming.
Finally, productivity suffered as increasing resources had to be devoted to
curation and cleaning.

In each use case, ALIGNED technologies are being used in slightly
different ways. In case of Seshat, these tools are automatically generated
from the Seshat ontology. These comprise the Model Mapping Tool, Real-
time Instance Data Validation, and curation workflows, all deployed as
Dacura services. Dacura is a data curation platform developed by Trinity

12Shah et al. 2017: 370.

34 ALIGNED Use Cases – Data and Software Engineering Challenges

College Dublin, which incorporates several techniques. The adopted solutions
improved the process of data collection.

The model catalogue tool is used in the analysis phase of model-driven
software engineering to explore and gather metadata related to the system
under construction. It is also used in its search browse and phase life cycle.
In the project, it is primarily the Model Catalogue that is used along with
components of Semantic Booster, both developed by Software Engineering
at Oxford University. In the data engineering context, tools generated by
Booster can be used to provide a well-defined API as well as to search and
gather data into the data store. Booster-generated systems provide, create,
read, update, and delete functionality for data in a data store, as well as
implement any user-specified action, which can then be accessed as triples
via an API (Shah et al. 2017: 381).

In the Jurion use case, an enhanced data quality and repair pipeline was
established with the help of RDFUnit and PoolParty, so that data life cycle
process was suffering from less data errors and schema inconsistencies and
the overall process was accelerated, especially when data or schema changed
over time.

In the Jurion IPG use case, the Model Catalogue is used to provide
accurate descriptions of data fields, including those from linked external data
sources. Such descriptions can aid correct data entry and permit additional
reuse of data within the organisation. The Model Catalogue also aims at
serving as a provider of models to the generated tools and as an environment
where new versions of the data model can be created and evolved. Dacura
was instantiated as an alternative approach, covering the overall process from
model storing, mapping, and a complete automatic generation of the final
future data schema, accompanied by automatic data testing with RDFUnit.

In the NIHR Health Data Finder, the Model Catalogue is the central
resource, holding the master copy of models and documentation. In the
NIHR Health Informatics Collaborative, each site hosts its own instance of
the Model Catalogue, documenting their own data landscape including a
data warehouse, source patient record systems, research systems, and local
data flows. A central installation of the catalogue contains the shared data
specifications, along with local variations, and relevant national specification.
Local catalogue installations can automatically import the latest version of the
central models, and the central catalogue is used to generate XML schema for
use by all partners. In the UK 100,000 Genomes Project, the architecture of
the pilot is of particular interest: information is provided by the hospitals in
the form of XML, matching a schema generated by the Model Catalogue, or

2.3 The ALIGNED Use Cases and Data Life Cycle 35

manually through online Case Report Forms, hosted in a system called Open-
Clinica. Information is extracted via an ETL (extract, transform, load) process
from OpenClinica, combined with a shredded form of XML, and stored in a
matching relational database, generated by a component of Semantic Booster.
Finally, the architecture of the OUH data warehouse follows a similar pattern.
Almost 100 local databases and data specifications are modelled within the
catalogue, along with the design for the main data warehouse. The catalogue
is used to document field-level metadata, summary metadata, and dataflows,
and this information is to be used in the construction of research data extracts
and for generating hospital auditing and service improvement metrics.

One of the major steps in data engineering life cycle was the development
of new approaches to data validation. In particular, it comprised a new tool
developed for the PoolParty semantic suite. The process involved importing
RDF data in PoolParty and using the integrated validation checks to identify
problems, which are reported to the user as constraint checks. The user is
then given options to repair the data consistency. After fixing the inconsis-
tencies, the user can then import the data without the risk of application
failure.

RDFUnit is integrated in PoolParty RDF Validation for performing con-
straint checks. The checks are defined as RDFUnit test cases using RDF.
These test cases can also be run by RDFUnit independently of PoolParty
on external data. For each of the constraint checks, there is an RDFUnit
test case, which is based on a SHACL constraint or a SPARQL query that
identifies resources that cause violations. They together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verification
Framework.

In most cases, constraint violations only become apparent after the import
has been done. In the worst case, this may even cause issues displaying
the data or errors displayed to the user. In other cases, issues could pass
through unnoticed or may only become apparent at a later stage. This means
that users interpret data issues as software issues and report those as bugs
in the SWC support space. Import validation has the potential to provide
major improvements of productivity and data quality in the data development
life cycle. The prototype import validation implemented in PoolParty using
RDFUnit enabled the users to get direct user feedback on violations of data
constraints. The feature provides direct feedback on data consistency con-
straint violation before data are imported. Being able to detect violations of
consistency constraints on data import increases data quality, since problems
are not imported into the system in the first place. The import validation

36 ALIGNED Use Cases – Data and Software Engineering Challenges

features provide increased agility, empowering users to import data without
quality issues. That means, users can react to issues themselves and fix the
data before it gets imported. This improves the connection between the data
development and the software development life cycle.

Notification can improve the usability of the PoolParty software, actively
providing notifications to users based on activity in projects. Currently,
staying informed about activities in projects can only be achieved by review-
ing the project history regularly. The ORE tool suggests new ontology
axioms (enrichment) and recommends semi-automatic fixes (for resolving
violations).

Another important contribution of the ALIGNED project was in the
domain of search, browsing, and exploration. Of particular importance is
Dacura, which is in a position to produce data quality tolerance requirements
to constrain the data to be harvested.13 The CJDE tool is also responsible for
extracting relevant requirement information and hence, tickets and creates
RDF data.

The Dacura approval queue allows also dataset administrators to mon-
itor added data for quality and completeness. Administrators can approve,
deny, publish, and unpublish the Linked Data objects submitted by Seshat
researchers. From a Dacura point of view, it is possible to import large
volumes of IPG data into a structured, rich semantic format according to
a predefined model that is amenable to statistical analysis and offers auto-
mated quality control. Dacura ensures consistency requirements and allows
users to monitor newly added data with respect to quality and completeness
conditions according to defined constraints.

The Unified Views tool allows data to be imported via SPARQL from
third-party datasets; in this case, DBpedia is used as a source of data. The
Unified Views tool also allows the establishment of processing workflows to
automate the importation of such data.

2.4 The ALIGNED Use Cases and Software Life Cycle.
Major Challenges and Offered Solutions

The LOD life cycle consists of five stages for software engineering, includ-
ing: (i) planning – assessment of the feasibility of software to fulfil the
requirements of the user; (ii) analysis – identifying potential problems;

13Shah et al. 2017: 381.

2.4 The ALIGNED Use Cases and Software Life Cycle 37

(iii) design – specification of software intended to achieve the specified goals,
including recognition of necessary components and existing constraints;
(iv) implementation – installation of the software on user machines; and
finally, (v) maintenance – controlling and checking the performance of the
software.

The simplest form of the software development is the waterfall model. It is
assumed that each element in the life cycle is completed in an unproblematic
fashion and there is no need to refer to the previous stage in implementing the
process. However, the major problem with this model is that the execution of
one phase of design may influence the previous stage. This is particularly
apparent in the verification stage when issues in implementation and verifi-
cation will require further effort in design, which means that design may be
said to be unfinished until verification is complete. This may also hold true
in the case of planning and specification while the process of producing a
clear, precise specification may uncover ambiguities or inconsistencies in the
requirements provided.

The integration of both life cycles is only possible when the data engineer-
ing systems, such as Dacura, provide several services to software engineers,
developing software that utilises the data curated by the system. These
include reliable access to data models, change notifications, and the automatic
production of simpler formats, which are more familiar to traditional Web
developers. For example, a GeoJSON stream is automatically made available
describing all the features in the dataset that have a geographical location
associated with them.

The data model developed by the Semantic Web community was made
available to software engineers by providing a metadata registry. The Model
Catalogue discussed above is such a registry. It can also be defined as a toolkit
for creating and managing data models. The Model Catalogue tool was used
to help develop and manage the ontologies used by the system – it supports
OWL models and provides a RESTful API to support easy integration with
third-party tools and incorporation into complex workflows. It was also
integrated into the Eclipse Modelling Framework, allowing existing tools
to more easily use the catalogue for development. Plugin capabilities were
added, facilitating the extension of the catalogue to allow it to interact with
more data sources. Semantic reasoning and search were also added, allowing
the more efficient reuse of ontologies and concepts. The Model Catalogue
was used for Seshat, Jurion IPG and Health Data use cases. In case of Seshat,
the Model Catalogue tool allowed the creation of complex ontology to capture
the complex historical data the project is collecting.

38 ALIGNED Use Cases – Data and Software Engineering Challenges

The Unified Views tool is an ETL tool for RDF data developed as part
of the PoolParty semantic suite. It was used to manage the integration of
datasets from third-party datasets. The development artefacts are imported
into the triple store using a UnifiedViews pipeline. This pipeline runs daily to
keep the data up to the date. The pipeline also calculates similarities between
the issues and requirements. This solution was adopted to Seshat, PoolParty,
DBpedia, Jurion, and Jurion IPG. In the latter use case, it was used to ensure
that the results of the validation processes carried out by Dacura and Semantic
Booster be evaluated, manage this mapping and transformation, and save the
transformed data to a triple store.

As regards the design phase in software engineering life cycle, the evi-
dence for this benefit can be seen particularly strongly in the automated
harvesting and curation interface generation tools developed in the project.
This is particularly evident in case of Dacura that informs the software
engineering analysis phase by defining what data is to be harvested (Shah
et al. 2017: 381). The Dacura Linked Data Model Mapping Service tool
creates rich ontological models from semi-structured HTML and automates
harvesting of data conforming to this model and was heavily tested within the
Jurion IPG use case.

For the implementation phase, the University of Leipzig developed a set
of tools around RDFUnit and DataID, which together formed the basis for
the Data Quality Framework and the Automated Data Testing and Verifica-
tion Framework. Dacura makes it possible to define statistical data quality
measures to be met to support software engineering and suggest UI refine-
ments to eliminate errors. Repair Framework and Notification tool is used in
both implementation and maintenance phase as the defined data constraints
influence the implementation of algorithms and as taxonomies are changes,
the constraints need to be satisfied.14

Semantic Booster tool allows the automatic generation of software sys-
tems from formally specified system specifications. Hence, it supports both
semantic domain models and models of the software and data engineering
life cycles. In particular, Semantic Booster has its strengths in the auto-
matic model and software code creation process. It has also strong quality
constraints, so that no invalid data gets into the transformation process.
This approach was augmented by using RDFUnit for further data quality
checks and which is the prerequisite to connect external open datasets to the
IPG application in an easy and sustainable way. A Booster specification is

14Shah et al. 2017: 380.

2.5 Conclusions 39

designed, which creates a model from the SQL database, along with formal
constraints, which ensure that the data remains correct by construction. The
Model Catalogue tool is then used to manage this data model. Semantic
Booster is used to make this data available as RDF via an API.

This system was deployed in Jurion IPG and Health Data. The use of
Semantic Booster in Jurion IPG allows the introduction of a wider range
of semantic integrity constraints and business rules, to be applied on the
data upon entry – ensuring availability of high-quality data. The automatic
data migration tools provided with Semantic Booster minimise the impact of
upgrading and evolving the underlying data model whilst still maintaining
data consistency. Whilst Semantic Booster can already help enforce a range
of integrity constraints, there are some consistency checks, which would be
more reliably performed using RDF and reasoning. Hence, it was decided to
use the existing D2RQ tool to convert data stored within a Booster database
into RDF format, making it available to the RDFUnit testing tool. The
additional testing and monitoring also provides insight into productivity and
quality gains through the use of the ALIGNED tool stack.

The effective maintenance can be achieved in two alternative ways. The
first approach is provided by a configuration of the Oxford MDE approach,
while the second is by Dacura. A Booster specification is created, which
(i) generates SQL statements to extract the data from the legacy SQL DB
and saves it in a format that can be managed by the Model Catalogue tool
and (ii) the Booster specification should ensure that this extracted data are
correct by construction according to the Booster specification. Then, this
extracted data are made available as RDF via Semantic Booster. In the
approach offered by Dacura services, the Model mapping tool transforms the
SQL schema of the legacy DB into an OWL ontology, which is then used by
the schema checking tool to ensure that all data conforms to the model. The
curation and workflow tools allow data managers to change the model and
migrate the data and manage the process. This ontology is deployed as the
schema for the graph into which the instance data are imported.

2.5 Conclusions

All five use cases in the ALIGNED project were thoroughly analysed to
achieve its major goal, namely to create effective methods and tools for inte-
grating software and data engineering processes and develop full life cycle
workflows for combined software and data engineering. The deployment
of the project designed and produced software and tools led to significant

40 ALIGNED Use Cases – Data and Software Engineering Challenges

enhancement of all case studies and significant improvements in data pro-
ductivity, quality, and agility and eventually user satisfaction and customer
support. In Jurion IPG, of particular significance turned out to be Seman-
tic Booster, showing significant improvements in agility, with the addition
of new attributes being up to 45 times faster. Also, Dacura significantly
improved the management of re-engineering from the old relational database
schema to the new one. In addition, Wolters Kluwer’s Jurion and Jurion
IPG business information database was enhanced with ALIGNED tools,
significantly improving their ability to correct errors and change data schemas
over their previous tools.

The introduction of import validation in the PoolParty use case improved
data quality and reduced customer support time as well as significantly con-
tributed to the ability to fix a number of violations. Overall improvements in
data curation, data agility, model agility, and software development processes
were also achieved. The major achievement in DBpedia was the error rate
improved.

The rebuilding of the Seshat data and tools used the full suite of Dacura
tools to import the data, ensure it met consistency requirements, automatically
produce user interfaces and curation tools, and finally publish the data. It
resulted in a quantifiable reduction in the number of errors in data entry,
while the amount of data entered dramatically increased. The new format
of the dataset enabled the ability to link to external datasets to enrich the
Seshat data. The data generators and users reported an increase in usability
and productivity, and the technical users reported an increase in agility: the
speed in which tools and data can adapt to changes in the model. The shared
model for data validation and software generation involves integration points
with the planning phase of the software engineering life cycle, and the quality
analysis, manual revision/authoring, and search/browse/explore phases of the
data engineering life cycle. In addition, the collaborative consensus required
for updating the model brings additional dependencies on the interlinking and
extraction phases of data engineering.

3
Methodology

James Welch1, Jim Davies1, Kevin Feeney2, Pieter Francois1,
Jeremy Gibbons1 and Seyyed Shah1

1University of Oxford, UK
2Trinity College Dublin, Ireland

3.1 Introduction

Software engineering is concerned with the development of reliable computer
applications using a systematic methodology. Data engineering involves the
collation, organisation, and maintenance of a dataset, or data product, and
may be seen as the dual of software engineering. The two processes are
typically treated as separate concerns – largely as a result of different skill
sets. However, there is often a great deal of overlap: dependable software
is reliant on consistent, semantically correct data; processing data at scale
requires high-quality tools and applications.

For most enterprises, the data they hold may well be their most valuable
asset. Day-to-day operations will be dependent on data concerning customers,
payments, and stock. It is vital that this data is of high quality: any loss of
integrity or inconsistencies with operating practices or business processes,
may be costly, and in many cases irreparable. Furthermore, the ongoing
success of the business is increasingly reliant on analysis of the data: his-
torical reporting, predictive analytics, and business intelligence. These latter
processes, along with decreasing costs for storing and managing data, drive
an increase in scale: minimising human effort is vital, and new Big Data tools
and techniques are required to manage ever-larger datasets.

For some organisations, the data may be the primary artefact or the
product in itself. From research enterprises to social networks, the value of
the data stems from its quality, coverage, and completeness. These curated
datasets may be the product of many smaller ones, perhaps different in
structure or domain, and linked to create new, richer datasets. For these

41

42 Methodology

combined datasets, the ability to version and update individual components is
critical: users of the data require up-to-date input, new features, and access to
corrections and clarifications. Tool support must be sympathetic to changes
in requirements and the acquisition of new data, and must scale accordingly.

It therefore follows that Software Engineering and Data Engineering are
closely related. Mission-critical software is reliant on high-quality data, and
the construction and maintenance of large datasets is dependent on secure,
reliable software. Many of the key challenges are common to both disciplines:
correctness, scale, and agility; tools and techniques for improving software
quality may also result in improved data quality and vice versa.

The increase in popularity of “Big Data” analytics means that solutions
to these challenges are required more than ever. The rise in data-intensive
applications – those systems that deal with data that is large in scale, complex,
or frequently changing1 – has brought about a requirement to abandon tradi-
tional methodologies and explore new processes and techniques. A broader
range of software applications for processing data, including visualisation,
natural language processing, and machine learning, have provided new areas
for innovation, and the integration of a range of software components around
an underpinning data corpus has become a typical system architecture.

Engineering processes for both data and software are also required to be
sympathetic to the so-called “Five V’s of Big Data”: velocity, volume, value,
variety, and veracity. The speed at which data can be acquired – manually
through the efforts of large groups, or automatically through complex
applications – can impact the processes of data curation, enriching, and
analysis. The ever-increasing amount of data collected – which can include
static “historical data” and changing contemporaneous data – can reach scales
challenging existing software scalability. The perceived value of data cap-
tured requires precision software, and rigorous data engineering processes,
to ensure continuing accuracy and integrity. The ever-greater heterogeneity
of data to be handled creates semantic issues, which must be resolved when
linking and analysing data. Finally, the quality or trustworthiness creates fur-
ther semantic issues – understanding the meaning, provenance, and accuracy
of data is vital to realising its worth, and all phases of both software and data
engineering processes need to take this into account.

Modern approaches to software engineering consider automation for
agility and correctness, formal techniques for reliability and iterative
approaches to improve delivery time and adapt to requirements. Data

1M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.

3.2 Software and Data Engineering Life Cycles 43

engineering as a discipline is less mature, although certain phases of an
iterative process have been identified, and dependencies between phases can
infer a natural development life cycle. However, both life cycles remain inde-
pendent, and finding an integrated process, which considers both software
and data in parallel, remains a considerable challenge.

The content in this chapter is adapted from a paper submitted (in January
2018) to Elsevier’s Journal of Information Sciences.

3.2 Software and Data Engineering Life Cycles

3.2.1 Software Engineering Life Cycle

Modern software development methodologies can be seen as refinements
to the original waterfall process for hardware systems development. First
conceived as a “stagewise” model,2 an instantiation targeting software
development is typically summarised by the diagram in Figure 3.1.

In this most basic process, progress flows one way, through each of
the stages, and one phase cannot begin until the previous phase has been
completed. Each of the stages can be “signed off” by either the customer or
the developer in such a way that completion of a phase can be recognised and
made final. For example, the requirements for the system determine the scope

Figure 3.1 The waterfall process for software development.

2H. D. Benington, Production of large computer programs, IEEE Annals of the History of
Computing 5 (1983), pp. 350–361.

44 Methodology

of the specification; the completed specification document may be seen as a
contract for the design work.

The first major problem with the waterfall model is that the execution
of one phase of design may influence the previous stage. This is particularly
apparent in the verification stage: issues in verification will require further
effort in design; design may be said to be unfinished until verification is
complete. This may also hold true in the case of specification: the pro-
cess of producing a clear, precise specification may uncover ambiguities or
inconsistencies in the requirements provided.

One solution to this problem is to allow feedback from one phase to
modify earlier decisions. This leads to a modified version as proposed by
Boehm,3 in which backward arrows lead from one phase to the preceding
one (see Figure 3.2). Although this allows for some notion of iteration in
development, allowing decisions made in each phase to be revisited, it suffers
from another flaw, that is, estimating delivery time (and therefore cost) can
be very difficult. Without specific bounds on revisiting decisions, overall
implementation can take unspecified amounts of time, leading to frustration
for both developer and customer.

Figure 3.2 A modified waterfall process.

3B. W. Boehm, Software Engineering, IEEE Transactions on Computers 25 (12),
pp. 1226–1241, 1976.

3.2 Software and Data Engineering Life Cycles 45

This uncertainty can be exacerbated by another common problem in
software development: customers often do not know, or understand, precisely
what they want until they have had a chance to see it, or interact with
it. Business rules that may seem fixed at the time of requirements and
specification may need revising in light of constraints in subsequent design
or implementation stages. A good software engineering process must be
sympathetic to revisiting even the earliest requirements decisions after design
and implementation are underway, but still be amenable to stable project
management in order to allow predictable costs and timescales.

More modern approaches to these problems can take two forms. The first
of these is more technical, and directed at the actual design and implementa-
tion process: by reducing the length of time taken to get from requirements
to implementation, decisions can be revisited quickly, and with less devel-
opment effort. Prototyping allows the customer or user to get a feel for the
solution earlier, permitting the requirements or specification to be revisited
sooner in the overall implementation process. Automation in the implemen-
tation phase can reduce the effort involved in updating implementations to
match updated requirements.

The second approach is another update to the software engineering life
cycle, allowing multiple iterations of the traditional model, typically reducing
the retrograde steps in the previous model in favour of completing an imple-
mentation and starting a new requirements and specification iteration sooner.
Figure 3.3 shows a typical iterative software development life cycle.

Figure 3.3 An iterative software development process.

46 Methodology

The iterative model allows a more flexible approach to contracts and
timelines: short cycles of the entire process allow prioritisation of features;
early implementations can be used as prototypes and complex details can
be saved for future iterations when there may be more clarity. Cycles are
typically kept to a predefined length; at the start of each cycle, the scope
of each phase is determined, managing time and cost expectations. Although
system-wide requirements will be gathered throughout the whole cycle, some
analysis will be performed at the start of each cycle in order to confirm the
scope for the next cycle. Overall, time and cost estimation can be managed
more effectively4 and revised at the end of each cycle.

Another advantage to the iterative approach is that it changes the nature
of the maintenance phase. Typically, during the life of the software, func-
tionality will need adjusting to match evolving business requirements. With
the standard waterfall model, the final phase of maintenance is often insuf-
ficient to deal with updated requirements, and the whole process needs to
begin again; an iterative approach takes this into account, and maintenance
can be merged in as part of the overall development and re-evaluation
cycle.

The “Manifesto for Agile Software Development”5 proposes 12 prin-
ciples for such a development process, including to “satisfy the customer
through early and continuous delivery of valuable software”, to “welcome
changing requirements, even late in development”, and to “deliver working
software frequently, from a couple of weeks to a couple of months, with
a preference to the shorter timescale”. The iterative approach is typically
referred to as an “agile” approach, although the principles as set out for
an agile process extend beyond the software life cycle itself and provide
guidance for the way in which developers work as a team and interact with
their customers.

Managing an iterative process effectively can still be difficult: although
individual cycles can be fixed in duration, and development effort within
the cycle may be reasonably estimated, it can still be difficult to manage
priorities and overall development direction. A number of variations on the
iterative, “agile” process have been proposed, and frameworks built around

4A. Begel, N. Nagappan, Usage and perceptions of agile software development in an
industrial context: An exploratory study, in: First International Symposium on Empirical
Software Engineering and Measurement, pp. 255–264, IEEE, 2007.

5K. Beck, Manifesto for agile software development, http://agilemanifesto.org, accessed:
November 2017 (2001).

3.2 Software and Data Engineering Life Cycles 47

them, for example, Scrum’,6 Kanban,7 and Extreme Programming,8 all of
which can help with cost estimation, reducing the time spent on verification
and enhancing code quality.

An agile approach can also be counter-productive for building certain
types of software where solutions are complex and irreducible. Such solutions
require a high degree of planning and design and architectural decision-
making in advance. An iterative development methodology can restrict the
solution space to one in which development time may be reasonably esti-
mated, where progress may be demonstrated at the end of each iteration and
where prioritisation stays consistent.

3.2.2 Data Engineering Life Cycle

As an emerging field of research, the processes of data engineering used in
industrial applications are still relatively immature. The LOD stack LOD29 is
a collection of integrated tools supporting a life cycle for creating and man-
aging Linked Data. Auer et al.10 proposed an iterative process for developing
linked open datasets. Eight core activities of Linked Data management are
identified and managed as phases in an iterative life cycle, consistent with the
principles of Linked Data:

• storage/querying: retrieving and persisting information to be included as
part of the dataset;

• manual revision/authoring: processes for manual curation of content;
• interlinking/fusing: creating and maintaining links between datasets;

6K. Schwaber, M. Beedle, Agile Software Development with Scrum, Vol. 1, Prentice Hall,
2002.

7M. O. Ahmad, J. Markkula, M. Oivo, Kanban in software development: A systematic
literature review, in: Software Engineering and Advanced Applications (SEAA), 2013 39th
EUROMICRO Conference on, IEEE, pp. 9–16, 2013.

8K. Beck, Embracing change with extreme programming, Computer 32 (10), pp. 70–77,
1999.

9S. Auer, V. Bryl, S. Tramp, Linked Open Data–Creating Knowledge out of Interlinked
Data: Results of the LOD2 Project, Vol. 8661, Springer, 2014.

10S. Auer, L. Bühmann, C. Dirschl, O. Erling, M. Hausenblas, R. Isele, J. Lehmann,
M. Martin, P. N. Mendes, B. van Nuffelen, C. Stadler, S. Tramp, H. Williams, Managing
the life-cycle of linked data with the LOD2 stack, in: P. Cudre-Mauroux, J. Heflin, E. Sirin,
T. Tudorache, J. Euzenat, M. Hauswirth, J. X. Parreira, J. Hendler, G. Schreiber, A. Bernstein,
E. Blomqvist (Eds.), International Semantic Web Conference, pp. 1–16, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

48 Methodology

• classification/enrichment: creating and maintaining links between data
and models of data (which themselves may be linked and part of the
dataset);

• quality analysis: testing for data completeness and correctness;
• evolution/repair: correcting invalid data resulting from a quality analysis

phase via either manual or automated processes;
• search/browsing/exploration: making data artefacts available to domain

experts or to users beyond the original authors;
• extraction: producing or publishing profiles or projections of data to be

used in other applications.

Figure 3.4 shows an iterative life cycle incorporating these stages.
These stages of data engineering have been identified primarily for

building tool support and integrated frameworks, encouraging compatibility
of independent tools within a particular framework. As with the software
engineering process, feedback from one phase may be fed into another. For
example, the models linked during the classification or enrichment stage will
determine the scope of the quality analysis stage; any errors found during
quality analysis may need to be resolved in the evolution/repair phase.

Figure 3.4 A data engineering life cycle.

3.3 Software Development Processes 49

3.3 Software Development Processes

In order to design a combined software and data engineering process, we will
first consider some modern approaches to software engineering at scale and
how phases of the data engineering life cycle might be integrated or merged.
As explained in Section 3.2, automation is often seen as key to improving
both the speed of software delivery and the correctness of the delivered
product. In this section, we will consider three cross-cutting techniques of
software engineering and discuss their advantages and disadvantages. We first
consider model-driven approaches to software development, and the trade-off
between automation and customisation. We then look at formal techniques,
in particular formal specification, validation, and verification. Finally, we
discuss test-driven development and its role in an iterative development
process.

3.3.1 Model-Driven Approaches

MDE describes a development process in which the components of the
final software artefact are derived – either manually or automatically – from
models that typically form part or all the specifications or requirements of the
system. Rather than writing software that understands the data itself, software
is written that understands the modelling language and is capable of handling
updates to the model. Such software can be reused in different applications
within a similar domain, minimising the time spent on the implementation
phase and capturing common repeating patterns that would otherwise have to
be repeated on each cycle of an iterative development.

MDE is a promising starting point for our combined methodology:
by choosing well-suited models that fit the application domain, updating
software to match evolving data can be achieved by simpler updates to a
model. With suitable tool support, this methodology may also allow ordinary
business users to manipulate these models and help bridge the gap between
requirements and specification.

As implied above, MDE approaches fall on a sliding scale between a fully
automated generation process, and something much more manual, allowing
greater flexibility and customisation. An overview of some of the possible
approaches and discussion of their practicality follows below.

The first MDE approach can be described as “full automation”: every-
thing is modelled – including future-proofing – and machine learning is used
to learn how to change the model from the flows of data as their format
changes over time. This approach has significant advantages in terms of

50 Methodology

maintenance cost: once the system is deployed and operational, minimal
further intervention is required. However, although learning how to self-
adapt a model is theoretically possible, it remains impractical for real-world
applications. Another problem is the generation of training datasets for the
machine-learning component: this is currently beyond the scope of most data
engineering projects.

A second approach that appears more practical is where a full model
of system behaviour is manually produced, but a fully functional software
implementation can be generated automatically from the model. The mod-
elling language should be designed in such a way that a broad range of
likely future developments and feature requests can be handled without any
custom code needing to be written. If such tools are written with evolution
and upgrade in mind, they may be used for rapid prototyping, as part of an
iterative agile process or as a technique to manage and enable software change
beyond initial deployment. If the tools for editing and managing models are
good enough, such changes may even be carried out by business users and
deployed instantly, rendering the whole process cost-free from a technical
resources point of view.

Although feasible within particular domains of application, this approach
does not work universally: there can be no theoretical basis for automatically
implementing arbitrary behaviours and functionalities. However, subsets of
the overall problem are tractable, and such modelling languages – also
referred to as DSLs – exist with usable tool support. The UML11 is the
most significant attempt to create a complete modelling language. It does
not have a formal semantics itself, but can be given one for a specific
purpose, and there are many tools based on subsets of the language. UML
has been successfully deployed for building large, complex model-driven
systems. However, in practice, the development and testing of the models
takes considerable amount of time and effort to get right. Such systems are
most appropriate for domains in which a lot of effort is spent moving data
through highly stereotyped workflows that do not change rapidly over time
and where significant resources can be allocated to testing and managing
model updates.

The remaining modelling approaches do not attempt to model behaviours,
limiting their scope to data. The third approach is where a complete data
model, containing a full specification of all the classes and properties that

11J. Rumbaugh, I. Jacobson, G. Booch, Unified Modelling Language Reference Manual,
Pearson Higher Education, 2004.

3.3 Software Development Processes 51

are present in the data, is used to constrain or guide the manipulation of data
corresponding to that model. This approach has the advantage that constraints
on data are easier to define and use than those upon behaviours. A complete
data model can be used to generate a large proportion of software components
in an information system – for example, the data storage mechanism and user
interfaces.

The disadvantages to this third approach are that although generation
processes have been formally solved and public standards such as OWL are
available, in practice, automated software generation from such models is
still very hard and requires tools to be built from scratch. Most importantly,
the conceptual framework and the assumptions underlying the logic of OWL
need to be changed. Existing tools for model management are typically
focussed on knowledge engineers with specific goals and as such are not
really suited to business users.

A fourth approach is that of partial data modelling: where a subset of the
information domain is specified – limited to ad-hoc or incomplete positive or
negative constraints on the data. Here the assumption is made that the model
is not exhaustive, that there are states of the data that are not addressed in the
model. This technique has a particular advantage in processing large datasets:
where data are messy and do not necessarily conform to any model, we can
identify and filter out the most important problems caused by the lack of
structure. A model may be incrementally built, adding rules to specifically
address any issues with the data as they are encountered.

A disadvantage with this approach is that the incompleteness of the model
prevents most automation techniques. Another is that the models are built
up by accumulation of ad-hoc rules and become difficult to manage over
time, invariably becoming a barrier to agility, and may become inconsis-
tent. Changes to the model may result in large changes to the data – or
worse, required changes to the data may go unnoticed or their calculation
or derivation may be infeasible from the model.

3.3.2 Formal Techniques

The use of formal methods in the development of programs has been the
traditional practice for those systems that may be seen as safety-critical: typ-
ically those systems whose failure could endanger human life. Such formal
techniques include the mathematical derivation of program code from precise
specifications, the logical proof that code exactly implements specifications in
the form of contracts, or the exhaustive verification of software to show that

52 Methodology

unwanted behaviours are precluded. Each suffers from the same problems:
that formal techniques are slow and expensive, and do not scale to large
complex software systems. A rigorous, mathematical approach will require
developers with very specialised skills and experience.

However, there have been some successful applications of formal tech-
niques in practical software development. Automation can solve problems of
scalability, but a completely automatic process is impossible in the general
case. One solution is to restrict the problem domain: pattern matching can
be applied to the specification and particular refinements applied; proof
libraries and verification results can be stored for reuse. Another solution is
to focus automation on part of a stepwise process; for example, automatically
generating method stubs or proof obligations for manual completion.

In many cases, formal techniques are associated with a more traditional
waterfall method development. This can be because there is a need for a
detailed, comprehensive specification before the mathematical process can
begin – requiring that much of the solution is explored before any program-
ming starts. Hall12 described the development life cycle of the specification
itself: from Learning through Production and Simplification. These stages are
necessary within any development method, but in a formal code derivation
process, these must typically happen before any code has been written. This
may result in an overall speed increase, but does not incorporate the funda-
mental component of an iterative process: feedback – the user’s response to
an initial implementation.

However, the construction of a complete, precise specification is not
without merit. The explication and analysis of the problem space is invaluable
when developing code, most importantly when a team of developers require
a shared understanding. Human-readable documentation is also important
for giving context and addressing subtleties not obvious from the plain
mathematical statement. By addressing both specification and requirements
in this way, developers have a clearer sense of direction, customers can make
better judgements on the suitability of a solution, and managers can better
manage expectations of time and cost.

3.3.3 Test-Driven Development

A test-driven (or “test-first”) software development proceeds in an itera-
tive fashion, but relies on a short development cycle, focussed on building

12A. Hall, Seven myths of formal methods, IEEE Software 7 (5), pp. 11–19, 1990.

3.4 Integration Points and Harmonisation 53

functionality to meet requirements, rather than specification. At the start of
each iteration, acceptance tests are written to validate the implementation of
the next round of features: the expectation is that these new tests will initially
fail. Minimal changes to the code are made in order to get the test suite
completely passing; once all tests pass, the feature development is complete.
An optional refactoring phase can be used to tidy the code, whilst maintaining
a full suite of passing tests.

As well as measuring the suitability of the latest iteration of develop-
ment, tests also provide a valuable restraint on regressions: that previously
correct functionality is not broken by the latest updates. This can give
users confidence in the stability of the software and reduce the burden for
developers.

An agile test-first approach can lead to high-quality, timely software.
However, some of the caveats about agile, iterative development also apply:
maintaining long-term objectives whilst focussing on short-term goals can
be difficult. Finding appropriate levels of code coverage requires experience:
total coverage is often impossible; tests covering trivial or non-realistic cases
can waste developer time, but too few tests may lead to a reduction in quality.

The test-driven approach to software has obvious parallels in the develop-
ment of large datasets: the quality analysis phase of development can be used
to measure the correctness of the other phases – in particular those of manual
revision, interlinking, and enrichment. Tools for finding inconsistencies in
data – and highlighting areas of concern – are readily available and well
understood by data engineers.

3.4 Integration Points and Harmonisation

Although the processes for software engineering and data engineering dis-
cussed so far are complementary, it is more than likely that in the development
of a data-intensive system, there will be dependencies between the two
processes. In general, an integration point corresponds to any pair of points
in the software and data engineering life cycles where specific artefacts and
processes should be shared. In this section we enumerate three different forms
of integration point: overlaps, synchronisation points and dependencies; we
discuss the importance of each, and consider the difficulties in spotting them.
We conclude the section by examining potential barriers to harmonising the
two processes, in terms of terminologies, development roles, models, and tool
support.

54 Methodology

3.4.1 Integration Points

The first type of integration point between the data and software engineering
processes is that of a natural overlap. This will be particularly prominent
at the start of the project: for example, where the initial implementation
of the software may run in parallel with a manual curation of the initial
dataset. Similarly, in some projects, a phase of testing the software for
correctness may coincide with a phase of quality analysis for the data: bugs
in the software may be a cause of inconsistencies in the data; errors in the
data may uncover issues in the software. In general, overlapping phases
such as these can indicate a requirement for software engineers and data
engineers to work together to ensure successful conclusions in both life
cycles.

More generally, we can consider synchronisation points: where phases in
both cycles are required to start, or finish, at the same time. This could be due
to a release of software coinciding with the linking of a new dataset. It may be
due to external pressures: the implementation of software and manual update
of data to match new business processes; the completion of a cross-cutting
software and data concern before a member of staff leaves the organisation.

More generally still, it is important to consider dependencies between
phases in cycles. Typically this can mean that a phase in one cycle must finish
before another starts, but may simply be that one phase must reach a certain
level of completion. One example where a software engineering phase might
depend on a data engineering phase would be when data quality analysis
must be completed before the requirements for the next iteration of software
development can be signed off. An example where a data engineering phase
may depend on a software engineering phase might be where a particular
software feature must be tested and deployed before some manual data
curation may start.

Such integration points may happen regularly with every iteration – for
example the requirement to migrate data to match the deployment of new
software, or may happen irregularly, for example in response to changes
in business processes, the implementation of new features, or updates to
external data sources. Thus it becomes important to regularly review known
integration points and assess the potential for new integration points in the
future. As this requires insight into both data and software engineering
development plans, along with an understanding of overall roadmaps and
business direction, the integration analysis will involve many stakeholders
across a range of disciplines or technical competencies.

3.4 Integration Points and Harmonisation 55

As with any project management activity, care should be taken to ensure
that dependencies can be appropriately managed. It is conceivable that in rare
cases, cyclic dependencies appear: this may indicate that data and software
engineering phases need more carefully defining – split up or merged – or
that requirements and design need revising. Generic tool support for such
project management is readily available, but specialist tooling – as discussed
in Section 7 – is really only available for software development processes.

The nature of each integration point needs investigation to explore the
best way of addressing it. For example, although some straightforward
dependencies may be seen to be sufficiently addressed by a simple sign-
off process, the criteria for completion must be agreed beforehand. More
complicated dependencies, especially where an overlap in phases is con-
cerned, may require more substantial collaboration between data engineers
and software engineers, perhaps with intermediate checkpoints and combined
requirements.

3.4.2 Barriers to Harmonisation

There are a number of barriers to the easy combination of software and data
engineering processes. Although both processes have foundations in com-
puter science and information engineering, the two disciplines have different
terminology, and different reference or metamodels. The participants in each
will also vary: roles may not have obvious counterparts in the other discipline,
and the people carrying out each role will have different backgrounds and
skills. Highlighting barriers and potential pitfalls is important so that they
can be anticipated and worked around.

An integration point will usually indicate some shared resource between
software and data engineering: typically a requirement, a model or a meta-
model. It can be important to recognise this shared resource and ensure
that both data engineers and software engineers share a collective under-
standing. A common barrier is that of terminology: although engineers
may typically share a common language in the domain of application, with
differing skills and backgrounds, software and data engineers may have
different technical terminology. An example of this is shown in Figure 3.5 –
showing a standard equivalence between terms of abstraction in different
domains: data engineering, model-driven software engineering and more
general programming.

Based on the scope of the project, however, the equivalence may not be
as direct as those shown. For example, in a particular project, one specific

56 Methodology

Meta-level Data engineering So�ware engineering Programming
M3 Schema,

Ontology Language
Meta-metamodel Grammar nota�on

M2 Upper Ontology Metamodel Language Grammar
M1 Domain Ontology,

Schema
Model Program defini�on

M0 Triple, Dataset Instance, Object Program run�me

Figure 3.5 Comparison of terminology in software and data engineering.

Upper Ontology may be used as a Model in software engineering, which
may be represented at Program Runtime in practice. The abstraction level at
which each artefact is expected to be used when shared between software and
data engineering processes should be documented as part of the process, and
any changes in notation – for example, a process used to turn UML software
models into an OWL ontology – should be automated if possible.

As well as the differing terminologies, the models themselves may differ.
In order to facilitate interlinking, data engineers typically make good reuse
of existing models – for example Dublin Core (DC)13 for generic metadata,
Friend Of A Friend (FOAF)14 for social relationships, or PROV15 for data
provenance information, are all commonly reused or extended. This extension
is an essential part of the data engineering process, allowing dataset linking.
In software engineering, however, reuse of such pure data models is less
common: reuse happens in terms of libraries of functionality. While there are
some libraries that do implement standard data models,16 most are typically
restricted to the most trivial – for example hash maps – or the domain-
specific – for example models of Microsoft Word documents.17 Without
common models for software and data, harmonising the two development
processes will prove difficult.

Enumerating the participants involved in each of the two processes can
also highlight potential hurdles. A wide variety of roles may be involved:
in software engineering, these might be systems or software analysts, devel-
opers and testers; in data engineering these might be data architects, data

13S. L. Weibel, T. Koch, The Dublin Core metadata initiative, D-lib Magazine 6 (12),
pp. 1082–9873, 2000.

14D. Brickley, L. Miller, FOAF vocabulary specification 0.91 (2007).
15P. Groth, L. Moreau, PROV-overview. an overview of the PROV family of documents,

project Report, April 2013.
16C. Mattmann, J. Zitting, Tika in Action, Manning Publications Co., 2011.
17The Apache Software Foundation, Apache POI, http://poi.apache.org, accessed:

November 2017 (2017).

3.4 Integration Points and Harmonisation 57

harvesters and data consumers. There may be roles which can, or should,
be shared across the two processes: requirements engineers, system admin-
istrators, technical or development managers. Users may be technical or
domain experts; they may be users of the software, the data, or both. It is
important that interaction between roles is between both sides of the process:
software developers should understand the concerns of data quality analysts,
for example, and the data architects should collaborate with the software
architects.

Another area where software and data engineers can be divided is on the
use of tools for managing the development process. In software development,
the usual practice is to use an issue-tracking or defect-tracking tool, such
as Atlassian Jira,18 or JetBrains YouTrack.19 Such tools can help orchestrate
an iterative process: plugins are available to manage agile variants such as
Kanban or Scrum. Technical problems can be managed through this process
too: issues can be raised directly by users, taken through a workflow from
prioritisation through development to testing by the developers, and “signed
off” as complete by management or the original users. Customisable work-
flows allow this process to be adapted according to particular development
processes or business culture.

Typically, such tool support for data engineering processes does not exist,
in part due to the relative immaturity of formalised processes, and in part due
to the wide variety of workflows for data curation, some of which will be
specific to particular domains. In some cases, customisable tools such as Jira
can be re-purposed, and plugins developed, but data engineers – especially
the domain experts, who may be non-technical – can often be reluctant to use
such tools aimed at software developers. Processes can often be managed in
a more ad-hoc fashion without tool support or building additional bespoke
support into data curation tools.

Having identified a number of potential barriers to integrating two
different engineering processes, we can consider approaches to success.
Collaboration and harmonisation between two typically distinct teams in an
organisation requires a detailed understanding of the other process and those

18J. Fisher, D. Koning, A. Ludwigsen, Utilizing Atlassian JIRA for large-scale software
development management, Tech. rep., Lawrence Livermore National Laboratory (LLNL),
Livermore, CA (2013).

19JetBrains, JetBrains YouTrack, https://www.jetbrains.com/youtrack/documentation/, acce-
ssed: November 2017 (2017).

58 Methodology

participating in it; of compromise in terms of terminology and modelling;
a sympathy for those solving orthogonal problems within the same space;
and shared sets of resources and tools for collaboration.

3.4.3 Methodology Requirements

Data-intensive systems require careful alignment between data engineering
and software engineering life cycles to ensure the quality and integrity of
the data. Data stored in such systems typically persist longer than, and may
be more valuable than, the software itself, and so it is key that software
development is sympathetic to the aims of “Big Data”: scalability to large
volumes of data; distributed, large-scale research across multiple disciplines;
and complex algorithms and analysis. These are normally described in the
literature as the Five V’s of Big Data: velocity, volume, value, variety, and
veracity.

In existing development methodologies, software and data engineering
are considered as separate concerns.20 Integrating these will introduce a
number of new challenges: software engineering aims of software quality,
agility and development productivity may conflict with data engineering
aims of data quality, data usability, and researcher productivity. Further
challenges include federation of separate data sources, dynamic and auto-
mated schema evolution, multi-source data harvesting, continuous data cura-
tion and revision, data reuse and the move towards unstructured/loosely
structured data.

Auer et al. identified challenges within the domain of life cycles for
Linked Data.21 These include extraction, authoring, natural-language queries,
automatic management of resources for linking, and Linked Data visual-
isation. Typically seen as concerns for data life cycles, they all have a
major impact upon software development: the authors mentioned compo-
nent integration, the management of provenance information, abstraction
to hide complexity, and artefact generation from vocabularies or semantic
representations.

20M. Kleppmann, Designing Data-Intensive Applications: The Big Ideas behind Reliable,
Scalable, and Maintainable Systems, O’Reilly Media, 2016.

21S. Auer, J. Lehmann, A.-C. N. Ngomo, A. Zaveri, Introduction to linked data and its
lifecycle on the web, in: Reasoning Web. Semantic Technologies for Intelligent Data Access,
pp. 1–90, Springer, 2013.

3.4 Integration Points and Harmonisation 59

Mattmann et al.22 used their experience of data-intensive software sys-
tems across a range of scientific disciplines to identify seven key challenges
which may be summarised as:

• data volume: scalability issues that apply not just to the hardware of the
system, but may affect the tractability and usability of the data;

• data dissemination: distributed systems bring challenges of interoper-
ability and can lead to complex system architectures;

• data curation: supporting workflows and tools for improving the quality
of data, in a way that allows subsequent inspection or analysis;

• use of open source: complex technologies will depend upon reliable,
reusable components supporting generic functionality;

• search: making the data collected available in a usable fashion to users,
including access to related metadata;

• data processing and analysis: boiling down to workflows, tasks, work-
flow management systems, and resource management components;

• information modelling: the authors state that “the metadata should be
considered as significant as the data”.

The authors split these challenges into further subcategories and pointed
out many interdependencies between these problems. Zaveri et al.23 took a
broader view, highlighting inadequate tool support for Linked Data quality
engineering processes. Where tool support does exist, these tools are aimed
at knowledge engineers rather than domain experts or software engineers.

Anderson agreed with this issue,24 describing a more wide-ranging lack
of support for developers of data-intensive systems. He also identified “the
necessity of a multidisciplinary team that provides expertise on a diverse set
of skills and topics” as a non-technical issue that can be addressed by projects
dealing with large, distributed datasets. A technical equivalent to this issue
is to understand notions of iteration with respect to the data modelling –
he argued that domain knowledge is required in order to understand data
collection and curation. Subsequently, he also argued for technical knowledge

22C. A. Mattmann, D. J. Crichton, A. F. Hart, C. Goodale, J. S. Hughes, S. Kelly, L. Cinquini,
T. H. Painter, J. Lazio, D. Waliser, et al., Architecting data-intensive software systems, in:
Handbook of Data Intensive Computing, pp. 25–57, Springer, 2011.

23A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment
for linked data: A survey, Semantic Web 7 (1), pp. 63–93, 2016.

24K. M. Anderson, Embrace the challenges: Software engineering in a big data world,
in: Proceedings of the First International Workshop on BIG Data Software Engineering,
pp. 19–25, IEEE Press, 2015.

60 Methodology

in order to match frameworks with requirements, emphasising the need for a
multi-disciplinary team.

Some solutions to these challenges have been identified – most notably
in the area of model-driven software engineering, DSLs, and generative
programming. These approaches, in combination with Linked Data languages
and schemas, enable self-describing data structures with rich semantics
included within the data itself. Aspects of program logic previously encap-
sulated in software are now embedded in data models, meaning that the
alignment between data and software engineering becomes even more impor-
tant. But these approaches can lead to further problems: Qiu et al.25 identified
two issues: firstly the interaction between domain experts and application
developers, and secondly that change to schema code may not always impact
application code in a straightforward manner.

3.5 An ALIGNED Methodology

This section outlines the proposed methodology for combined software and
data engineering. We describe it as “lightweight”, because the technique
requires some initial setup and maintenance, and its exact form can be heavily
determined by the exact software and data engineering processes, by the
tools available and the technical members of the team. However, in this
methodology, we propose a general framework for process management, an
iterative methodology, and a number of guidelines or recommendations for
successful integration. We conclude the section by considering tool support
for such a process.

3.5.1 A General Framework for Process Management

In Section 5, we outlined a number of potential barriers to harmonising the
data and software engineering processes. Our general framework is concerned
with reducing the effect of these issues, as well as providing an iterative
methodology that is suitably adaptive in response to changes in context. The
framework is split into two phases: the first, a “setup” phase, involves some
analysis of the preferred engineering processes, the shared resources and
integration points, and the impact of any tools, project roles or terminology
where managing integration points will prove problematic. The second phase

25D. Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema and code
in database applications, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 125–135, ACM, 2013.

3.5 An ALIGNED Methodology 61

is the iterative development, where the outputs of the setup phase are under
a process of continuous revision, such that problems can be foreseen at the
start of each cycle.

The setup phase is broken into four consecutive steps – the first of which is
to perform some basic analysis on the preferred software and data engineering
processes. This will be most greatly influenced by the skills of the technical
collaborators, the preferred management style, and the requirements laid
down by the users. As part of the guidelines later in the section, we strongly
recommend iterative development approaches to both software and data, and
for the remainder of the section assume processes similar to those outlined
in Figures 3.3 and 3.4 – generic iterative approaches corresponding with
an agile approach. However, specific projects may choose, for example, a
specific software testing phase apart from the more general software main-
tenance; or a detailed requirements phase within the data engineering life
cycle.

At this point, we can assume that there is some shared understanding of
the requirements – not necessarily a full detailed consensus, but a general
appreciation for the tools and techniques required to produce a satisfactory
solution. This is not an unreasonable assumption, as in most cases some
contractual negotiations will have preceded a team starting on a development,
or the new development will be part of a rolling series of features given to an
in-house team of engineers working on a particular project.

The second step of the setup phase is to consider the resources that should
be shared between software and data engineers. Typically, this will include
requirements or specification in the form of models, or perhaps metamodels,
that can be shared rather than creating two incompatible versions. Unifying
terminology and semantics is important here: if software and data engineers
have differing interpretations of the same model, any potential advantage
may be lost. Creativity in this part of the process may result in gains later
on: other potentially sharable resources may include test suites and other
quality analysis tools, technical and user-facing documentation, and project
management tools or support. As with all analysis carried out in this setup
phase, it can be revised in later iterations, and so any decision taken here
need not be final.

The third step is to consider the integration points for this particular
project, in the context of the decisions made in the previous two analyses.
Given iterative approaches to software and data processes, and a list of shared
resources, it is possible to build a grid, similar to that shown in Figure 3.6. The
software engineering life cycle steps are enumerated along the top, and the

62 Methodology

Data Engineering So�ware Engineering
Requirements Specifica�on Design Verifica�on Maintenance

Manual revision/
Author
Inter-link/fuse
Classify/Enrich
Quality Analysis
Evolve/Repair
Search/Browse/
Explore

Extract

Store/Query

Figure 3.6 An incomplete grid for analysing integration points.

data engineering life cycle steps are enumerated on the left-hand side. Each
box in the main part of the grid therefore corresponds to a potential integration
point – for example, the first column in the first row represents a potential
synchronisation between the requirements phase in software engineering with
the manual revision/authoring phase in data engineering.

The grid can now be populated with two pieces of information. The first
is to highlight any squares in which a potential integration point is possible –
this will be based on the shared resources analysed in the previous step. For
example, if a data schema is to be shared, then any changes made as part
of the specification phase could impact some or all the data engineering
phases. Similarly, any shared test cases which are updated as part of the
quality analysis phase in data engineering, will affect the verification phase
of the software development process. The second piece of information is the
tooling that can be used to facilitate the integration at each point in the grid. In
Section 7, we outline some of the tools built by the ALIGNED project that can
be used to support and manage these integration points, but appropriate tools
may be found off-the-shelf, repurposed from software or data engineering,
developed in-house, or built for this specific development. As the need for
data-intensive systems development increases, it is expected that such tools
will be more widely available.

It should be obvious at this point that any identified integration point
without specific tool support may need addressing. In many cases, simple
awareness could be sufficient: highlighting such unsupported integration
points and ensuring greater effort on collaboration at these points in the
process. Alternatively, new tools could be sourced, or processes adjusted to
minimise potential integration.The fourth and final step in this setup phase is

3.5 An ALIGNED Methodology 63

to consider the other barriers to harmonisation, in the context of each integra-
tion point. Software and data engineers involved in the project should come
together to consider how their terminology, standard models, developer roles
and tools can be made compatible in order to ensure maximum integration at
each feasible point.

3.5.2 An Iterative Methodology and Illustration

Once the setup phase is complete, a more traditional iterative development
can begin. In the setup phase, an iterative process for each of the software and
data engineering components was selected. In our methodology, these may
now continue independently in parallel, but constrained by the integration
points previously discussed: overlap, synchronisations, and dependencies. To
ensure that these integration points may be sufficiently addressed, it is our
recommendation that the cycles are aligned, or are coincident at a particular
phase in each cycle – this will be determined by the integration points, and
the shared resources.

To illustrate, we consider a typical scenario encountered by our
ALIGNED project use cases. In this scenario, the software engineering pro-
cess is approximately equivalent to the iterative methodology in Figure 3.3,
and the data engineering process can be seen as similar to that defined in
Figure 3.4. The key shared resource is a complex data model, used as a
reference by the data engineers, but also forming part of the software model:
data modification functionality, business rules, and additional internal data
points are added to the external-facing data model, and used as a specification
document for the software engineers.

In such a process, updates to the data model can occur as part of the
storage/querying phase of the data engineering activity, where new data are
added to the existing data corpus, or as part of the specification phase of the
software engineering activity, where new requirements give rise to updates
in the intended functionality of the system. This forms the key integration
point: there is an overlap in process here, as both software and data engineers
should agree on any updates to the data model, and neither may continue
until the updates made are complete and consistent. It is important that
such a key integration point is well managed: problems here could result
in wasted time and effort in curating a dataset against an incorrect model,
developing software against an invalid or inconsistent schema, or managing
a difficult merge operation between two parallel versions of the same data
model. However, managed properly, having a shared data model is worth the

64 Methodology

effort: a reduction in duplication can save time and money; automation based
on this model can be shared; a common understanding can lead to a more
coherent, better designed solution.

In this scenario, we insist that iterative processes in software and data
engineering may now continue independently, but must synchronise on this
overlapping event: storage/querying and specification. Figure 3.7 shows an
example of such a parallel, synchronising process. In theory, this means that
the iterations of each process should be the same length, and while in some
projects this may be feasible, in others, where a particular phase may be more
burdensome, this may prove to be overly restrictive. In such situations, it
may be possible to relax this guideline, by simply insisting that the iterations
synchronise whenever a change affecting both processes is made to the data
model. For example, after a major release of a combined software and data
product, minor, or patch releases may be made to the software if no changes
are made to the data model, or any changes made do not affect the current
iteration of data engineering. This will allow the software engineers to iterate
a few times within a single iteration of the data engineering process, ensuring
that data engineers have time to satisfactorily complete their iteration, and
that software engineers are not kept waiting before beginning a new iteration.

Such synchronous iterations must be managed with care – those managing
the projects must be made aware of any potential delays, since a delay to one
process will impact the other. In software engineering, developers may be
used to working within time-bounded “sprints” – in which the scope of a
release may be reduced in order to ensure that completion is not delayed.

Figure 3.7 A parallel life cycle with synchronisation.

3.6 Recommendations 65

In data engineering, such practices are less common, and so some training
may be required to ensure all technical staff understand the restrictions. In
developments where software and data iterations coincide, but are of differing
lengths, care must be taken to ensure that any additional iterations do not
impact the shared resources. For example, in the scenario outlined above, any
additional software iterations for a minor or patch release must not update
the shared part of the data model, for otherwise the current data engineering
iteration may be inconsistent with the software that will next be deployed.

3.6 Recommendations

The iterative approach outlined above can provide a framework for combining
software and data engineering processes, in such a way that a certain amount
of autonomy can be maintained in two quite separate disciplines, but also
in a way that can improve consistency and efficiency in the delivery of a
solution made up of two closely coupled components. We now give some
recommendations, based on our experience on a number of use-case projects,
for ensuring that integration points are managed efficiently, and to maximise
collaboration between software and data engineers.

Our first recommendation is that models are shared between software
and data specifications, wherever possible. As previously discussed, this
increases the opportunities for reuse and helps ensure that software and data
remain consistent. We further recommend that these models are formalised
in such a way that removes ambiguities, reducing the chance of inconsistent
assumptions being made by software and data engineers.

Second, we recommend that development is driven by these shared mod-
els, in an automated fashion wherever possible. This reduces the chance of
error in development and can ensure consistency such that developers can
rely on the solutions produced in a parallel iteration.

Third, any solutions for either software or data should be rigorously
tested, where tests are also developed – automatically if possible – directly
from the model. Sharing or reusing test components can prove efficient, as
well as ensuring consistency between data and software.

Fourth, tool support should be used to effectively manage the iterative
process on both software and data sides. As discussed in Section 5, software
engineers are used to using project management software to coordinate
and administer an agile process, but such tools are not commonly used in
data engineering applications. Such tools would need specialist support for

66 Methodology

managing the integration points, and a wider range of developer roles and
responsibilities.

Our final recommendation is that whenever meetings are held to discuss
the iterative process – in particular the planning and feedback stages – these
meetings should be attended by representatives of all solution stakeholders.
The purpose for this is twofold: so that integration points and shared resources
can be carefully managed; and so that the overall roadmap and architecture
can be maintained whilst engineers focus on small iterations addressing short-
term goals.

These five recommendations are derived from the combined experience of
the project use cases, but in every project, their priorities differed, according
to the experience of the development and project management teams, the tools
available, and the particular iterative steps used in each development.

3.6.1 Sample Methodology

As an illustration, in this section, we look at the synchronisation points
required for the ALIGNED use cases.

Table 3.1 outlines the usecase-oriented view of the synchronisation
between Data and Software Engineering life cycles. Each entry of the table
represents a synchronisation point within in the project. The use cases will be

Table 3.1 A usecase-oriented synchronisation table for the ALIGNED project
Data Software Engineering
Engineering Requirements Specification Design Verification Maintenance
Manual
revision/
Author

PS5.1, PS5.2,
JURION
[WKD1]

PS5.1, PS5.2
JURION
[WKD2]

JURION [WKD3]
PS1.4, [Seshat1]

Inter-link/
fuse

PS4.1, PS4.2,
DBpedia
[DBP1]

PS4.1, PS4.2,
PS4.4

DBpedia
[DBP2]

Classify/
Enrich

[Seshat2]

Quality
Analysis

JURION
[WKD4]
DBpedia
[DBP3]

PS1.1, PS1.2,
PS1.3, PS2.3,
PS3.1

PS1.1, PS1.2,
PS1.3, PS2.3,
DBpedia
[DBP4]

Evolve/Repair PS5.3 PS3.1, PS3.2
Search/Browse/
Explore

PS5.1, PS5.2 PS5.1, PS5.2 DBpedia [DBP5]

Extract PS4.1, PS4.2 PS4.1, PS4.2 DBpedia [DBP6]
Store/Query PS5, JURION

[WKD5]
JURION [WKD6]
DBpedia [DBP7]

3.6 Recommendations 67

used to enact the methodology with the tools in Section 7. The following
summary describes the high-level features of each intersection point, in terms
of use cases:

• Manual Revision/Author

◦ A2: [WKD1] In the schema change use case (JS7), it is reflect-
ing the situation that when a schema change is introduced and
forwarded to the software manager in the SE life cycle, which
initiates a process of validating the suitability of the model for use
in SE. [WKD2] In the bug reporting governance use case (JS8),
when a bug is reported and the software analyst finds that the
bug is caused by a data error, he informs the DE expert to fix the
data error via manual revision. [PS5.1] Develop plugins for Con-
fluence and JIRA [PS5.2] Make use of collected process-related
data.

◦ A3: [WKD2] In the bug reporting governance (JS 8) use case, the
SE designer can eliminate scenarios where a data-caused bug could
occur in the future by sending additional constraints to the DE
side, where these constraints are integrated to the schema. [PS5.1]
Develop plugins for Confluence and JIRA [PS5.2] Make use of
collected process-related data.

◦ A4: [Seshat1] We will implement of graphical user interface soft-
ware to author and edit data and the data will be communicated
and captured in the DE life cycle.

• (B) Interlinking/Fusing

◦ B2: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data. [DBP1] Refers to the fact over-
lap and conflict evaluation (DS1.3) and in the interlink evaluation
(DS3.2). DS1.3 refers to validation by fusing data from different
DBpedia language editions and Wikidata in order to identify over-
laps and conflicts. DS3.2 refers to tools that validate external links
to other datasets.

◦ B3: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data [PS4.4] Link Development
Process Data with Data Model Integrity Information.

• (C) Classify/Enrich: There are few synchronisation points where DE use
cases exploit SE tools, possibly because classification in DE is a well-
studied task.

68 Methodology

◦ A5: [Seshat2] The graphical user interface software widgets on the
SE side will be continuously updated and maintained as the DE
schemas evolve.

• (D) Quality Analysis

◦ D2: [DBP3] Quality analysis for mapping (DS2.1), ontology
(DS2.2) and instance data (DS3.1).

◦ [WKD4] When a quality-related schema change is introduced and
accepted in the DE Life Cycle, the changes are communicated
to the SE Life Cycle, where the software is accepted. There is a
protocol for accepting quality changes.

◦ D4: [PS1.1] Constraints for Internal Actions [PS1.2] Rules for
Reasoning and Inferencing [PS1.3] Constraints for Specific
Schemas [PS2.3] Validate Thesaurus Against Schema.

◦ D5: [DBP4] Schemas refers to reports, generated by the automated
mapping validation tool (DS5.1) and erroneous fact report to the
Wikimedia community (DS5.2). [PS1.1] Constraints for Internal
Actions [PS1.2] Rules for Reasoning and Inferencing [PS1.3] Con-
straints for Specific Schemas [PS2.3] Validate Thesaurus Against
Schema.

• (E) Evolve/Repair

◦ E4: [PS5.3] Integrate Data Constraints Information with PPT Data
Migration and Deployment Strategy.

◦ E5: [PS3.1] Formulation of Constraint Violation Repair Strategies
[PS3.2] Creation of Repair User Interfaces.

• (F) Search/Browse/Explore

◦ F2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

◦ F3: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data.

◦ F4: [DBP5] These integration points use the generation of DataID
as a core and auto generate tool for browsing and querying
based on the DataID file. Browsing is achieved by auto gener-
ating a download page for a DBpedia release and querying by
providing a Docker image that contains the release stored in a
triple store.

3.7 Sample Synchronisation Point Activities 69

• (G) Extract

◦ G2: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

◦ G3: [PS4.1] Extract data from Confluence and JIRA [PS4.2] Create
RDF data from the extracted data.

◦ G4: [DBP6] Extraction of two additional Wikimedia projects:
Wikimedia Common (DS1.1) and Wikidata (DS1.2), implement-
ing tools in the SE domain that extract the data.

• (H) Store/Query

◦ H2: [PS5.1] Develop plugins for Confluence and JIRA [PS5.2]
Make use of collected process-related data [PS5.3] Integrate Data
Constraints Information with PPT Data Migration and Deployment
Strategy.

◦ [WKD5] This integration point appears in the schema change
(JS 7) use case. Once the schema change is in place in the DE
Life Cycle, new instance by the DE expert to the SE expert. The
new data are used to execute test scenarios on how the new schema
is affects the existing software, to formulate new requirements for
the design and implementation phases.

◦ H4: [DBP7] These integration points use the generation of DataID
as a core and auto generate tool for browsing and querying based
on the DataID file. Browsing is achieved by auto generating a
download page for a DBpedia release and querying by provid-
ing a Docker image that contains the release stored in a triple
store.

A1–F1: The planning phase of the software engineering life cycle does not
contain any synchronisation points. Possibly because there are few tools
for this stage (in general) artefacts produced at this stage are informal and
documentary, and not useful to Data Engineering processes.

3.7 Sample Synchronisation Point Activities

As example, tools from the synchronisation table and details of the changes
made are included below, in the Model Catalogue tool and Semantic Booster.
The aim of the following sections is to demonstrate the methodology using
the example tools. The implication of iteration in the life cycles is also
discussed.

70 Methodology

3.7.1 Model Catalogue: Analysis and Search/Browse/Explore

The Model Catalogue Tool has been developed for use cases supporting
model driven software engineering. The main purpose is to capture, doc-
ument, and disseminate models including software systems, data standards
and data interchange formats, amongst others. The interface of the Model
Catalogue is shown in Figure 3.8. The tool helps end users to analyse
the available models and understand requirements for capturing new data
against existing models. In the standard version, models can be imported

Figure 3.8 Model catalogue interface: browsing the SESHAT code book.

3.7 Sample Synchronisation Point Activities 71

from formalisms such as UML and XSD. Models may be interlinked and
reuse elements from related models. Some of the output formats include
Booster for software generation and Microsoft Word for documentation of the
model.

The catalogue tool has been adapted to support similar data engineering
use cases, and thus bridge between data engineering and software engineering
domains. The main addition has been the import and export of models in
standard data engineering formats, such as RDFS and OWL. For the data
engineer, the tool can be used to explore how their data models are used in
practice in software. The models can be updated and changed without relying
on software engineers to create new versions of software. Models exported
using the catalogue will retain interlinks between models in the two domains.
This allows more streamlined integration of semantic metadata into working
software.

The synchronisation point is bi-directional. The models can capture a
software model from a data engineering model or use the model to capture
data in the data engineering domain. Multiple iterations of the software
engineering and data engineering life cycles will typically result in new
versions of the model; the changes will need to be synchronised after each
iteration. A feature to compare the changes in models in the model catalogue
is planned to support this activity.

3.7.2 Model Catalogue: Design and Classify/Enrich

In model-driven development, the model catalogue tool also supports the
creation of new models for capturing emerging designs for data standards,
software systems, and so on. The tool supports definition of new data classes
and data elements that form the basis of data models. The tool has features
such as model versioning, annotation, collaborative editing and communica-
tion between developers. The models can be built using existing models in
the catalogue or imported from partial models that exist in semi-structured
and human-readable formats such as spread sheets, CSV or text documents.

The model catalogue has been adapted for data engineering activity:
classify data and enrich data models by linking elements with existing model
elements. Model classes can be refined and developed in the catalogue,
capturing new and emerging structures in a data model, which leads to more
precise understanding of the domain. Data engineers can use the catalogue
to link between concepts in separate data engineering standards, and decide
where links are semantically appropriate.

72 Methodology

Similar to the “Analysis and Search/Browse/Explore” synchronisation
point, this sync point is bi-directional. Iterations of the software and data
engineering life cycles can result in new versions of the models. The
model catalogue compare feature will support synchronisation of independent
changes in models across both life cycles.

3.7.3 Semantic Booster: Implementation and Store/Query

Booster is a tool for the model-driven generation of information systems.
High-level specifications are developed in Booster notation, which models
the system implementation. Booster performs a series of translations and
refinements on the model to generate a working system and Application
Programming Interface (API) backed by a standard relational database. A
user interface to the system is provided as an example of how the API
may be used. The tool is used in the software engineering life cycle at the
implementation phase.

Semantic Booster is a set of modifications to the Booster framework
to support some data engineering life cycle activities. The changes add
support for semantic annotation to standard Booster specifications, as shown
in Figure 3.9: Example Semantic Booster System with Annotations. The
Booster translations have been adapted to present the data as triples, with
a SPARQL endpoint. The data in such a Booster system can be accessed
and queried using standard data engineering toolsets. In combination with
the design activity supported in the model catalogue, data engineering tools
can be generated automatically using semantic Booster.

This synchronisation point is unidirectional at the model level, as MDE
provides an implementation for the data engineering domain. The created
implementation will be used by subsequent stages in the data engineering
domain. As the mapping into triple form created by Booster uses a live
version of the data, subsequent data engineering life cycle phases will access
the version of latest data. Any modifications to the data must performed via
the Booster generated API.

3.7.4 Semantic Booster: Maintenance and Search/Browse/
Explore

In model-driven software development, maintenance and adaption of existing
systems is a challenging task. Any changes to a Booster specification must
be reflected in the implemented system, which can require re-generation of

3.7 Sample Synchronisation Point Activities 73

Figure 3.9 Example semantic booster system with annotations.

the implementation. The Booster approach ensures that any data entering a
system are always validated to conform to the constraints. A large or complex
change to the model involves the migration and validation of existing system
data. Previous experiments with Booster have shown that for some model
edits, existing data can be migrated automatically.

The data in Semantic Booster are presented as triples. Using the Booster
mechanism for migration, automated migration of triple data in the Booster
system becomes possible. Once data have been migrated, tools from the data
engineering world can be used to validate the migration for compliance with
the semantic rules of the model.

This synchronisation point is bi-directional. In subsequent iterations of
the software and data engineering life cycles, the model catalogue will cap-
ture changes to the model. Booster will use the changes to automate migration
of data stored in the Booster system; the data will be presented both in the API
of Booster and as triples.

74 Methodology

3.8 Summary

3.8.1 Related Work

That software and data engineering life cycles should be more closely inte-
grated are not a new observation: Cleve et al.26 took a more concrete approach
and also proposed a number of contemporary challenges in system evolution,
based on higher levels of tool support; better tooling for co-evolution of
databases and programs; more agile coding techniques; and aligning data
orientation through Object-Relational Mappings.

A more general-purpose approach to integrating life cycles elicits a num-
ber of broader challenges: software-engineering aims of software quality,
agility and development productivity may conflict with data engineering
aims of data quality, usability, and user productivity. Such is the importance
of this integration work, the NESSI has identified “Collaborative Service
Engineering based on the convergence of software and data” and “Integration
of Big Data Analytics into Business Processes” as EU research priorities.27

Further challenges relating more specifically to Big Data applications have
been identified by Chen and Zhang:28 in particular, those relating to data
capture and storage, curation and analysis are of relevance here: hardware
as well as software limitations can impact the effectiveness of Big Data
techniques and highlighted opportunities may be missed.

Auer et al.29 identified challenges within the domain of life cycles for
Linked Data. These include extraction, authoring, natural-language queries,
automatic management of resources for linking, and Linked Data visu-
alisation. Typically seen as concerns for data life cycles, they all have
a major impact on software development: the authors mentioned compo-
nent integration, the management of provenance information, abstraction
to hide complexity, and artefact generation from vocabularies or semantic
representations.

26A. Cleve, T. Mens, J.-L. Hainaut, Data-intensive system evolution, Computer 43(8),
pp. 110–112, 2010.

27NESSI, Strategic research and innovation agenda, Tech. rep., NESSI, version 2.0, April,
2013.

28C. P. Chen, C.-Y. Zhang, Data-intensive applications, challenges, techniques and technolo-
gies: A survey on big data, Information Sciences 275 pp. 314–347, 2014.

29S. Auer, J. Lehmann, A.-C. N. Ngomo, A. Zaveri, Introduction to linked data and its
lifecycle on the web, in: Reasoning Web. Semantic Technologies for Intelligent Data Access,
pp. 1–90, Springer, 2013.

3.8 Summary 75

Mattmann et al.30 used their experience of data-intensive software
systems across a range of scientific disciplines to identify seven key
challenges:

• data volume: scalability issues that apply not just to the hardware of the
system, but may affect the tractability and usability of the data;

• data dissemination: distributed systems bring challenges of interoper-
ability and can lead to complex system architectures;

• data curation: supporting workflows and tools for improving the quality
of data, in a way that allows subsequent inspection or analysis;

• use of open source: complex technologies will depend upon reliable,
reusable components supporting generic functionality;

• search: making the data collected available in a usable fashion to users,
including access to related metadata;

• data processing and analysis: boiling down to workflows, tasks, work-
flow management systems, and resource management components;

• information modelling: the authors state that “the metadata should be
considered as significant as the data”.

The authors split these challenges into further subcategories and pointed
out the many interdependencies between these problems. Zaveri et al.31

took a broader view, highlighting inadequate tool support for Linked Data
quality engineering processes. Where tool support does exist, these tools
are aimed at knowledge engineers rather than domain experts or software
engineers.

Anderson32 agreed with this issue, describing a more wide-ranging lack
of support for developers of data-intensive systems. He also identified “the
necessity of a multidisciplinary team that provides expertise on a diverse set
of skills and topics” as a non-technical issue that can be addressed by projects
dealing with large, distributed datasets. A technical equivalent to this issue
is to understand notions of iteration with respect to the data modelling –
Anderson argued that domain knowledge is required to understand data
collection and curation. Subsequently, he also argues for technical knowledge

30C. A. Mattmann, D. J. Crichton, A. F. Hart, C. Goodale, J. S. Hughes, S. Kelly, L. Cinquini,
T. H. Painter, J. Lazio, D. Waliser, et al., Architecting data-intensive software systems, in:
Handbook of Data Intensive Computing, pp. 25–57, Springer, 2011.

31A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann, S. Auer, Quality assessment
for linked data: A survey, Semantic Web 7 (1) pp. 63–93, 2016.

32K. M. Anderson, Embrace the challenges: Software engineering in a big data world,
in: Proceedings of the First International Workshop on BIG Data Software Engineering,
pp. 19–25, IEEE Press, 2015.

76 Methodology

in order to match frameworks with requirements; emphasising the need for a
multi-disciplinary team.

Some solutions to these challenges have been identified – most notably
in the area of model-driven software engineering, DSLs, and generative
programming. These approaches, in combination with Linked Data languages
and schemas, enable self-describing data structures with rich semantics
included within the data itself. Aspects of program logic previously encap-
sulated in software are now embedded in data models, meaning that the
alignment between data and software engineering becomes even more impor-
tant. But these approaches can lead to further problems: Qiu et al.33 identified
two issues: firstly the interaction between domain experts and application
developers, and secondly that changes to schema code may not always impact
application code in a straightforward manner. In this document, we attempt
to tackle these two issues explicitly.

3.9 Conclusions

We have described a flexible methodology for integrating software and data
engineering life cycles, identified a number of barriers to harmonisation,
and made recommendations in order to better implement the combined
methodology, and reduce the impediments. The methodology reflects the
observed practices and experiences of the ALIGNED consortium – across
a range of application domains, development practices, and experiences, both
for the development of new solutions and the evolution of existing ones.
We outlined the application of the methodology in each of the use cases,
describing the particular challenges and requirements faced by each, and
how the use of the methodology has improved development practice. We also
described a number of tools built by the ALIGNED project partners that have
been adapted to fit the integration points in the methodology, showing how
they may be repurposed, or similar tools may be adapted for application to
data-intensive systems.

The use cases presented here represent a small fraction of the potential
application domains: further work is to apply the methodology in a wider
range of projects, with a different selection of tools, and with different
development teams. Further validation may be obtained from more qualitative
or quantitative validation: although it is rare for two system developments to

33D. Qiu, B. Li, Z. Su, An empirical analysis of the co-evolution of schema and code
in database applications, in: Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering, pp. 125–135, ACM, 2013.

3.9 Conclusions 77

be directly comparable, experienced developers may be able to evaluate the
effectiveness of the methodology against previous practice.

As discussed above, the software engineering life cycle is relatively
mature and is broadly similar in all developments, but the data engineering
processes are less well-defined, and may be more varied in further real-
world applications – perhaps differing by domain or toolsets used. Further
investigation is necessary to ensure that the methodology presented here is
applicable to different data engineering practices.

http://taylorandfrancis.com

4
ALIGNED MetaModel Overview

Rob Brennan1, Bojan Bozic1, Odhran Gavin1 and Monika Solanki2

1Trinity College Dublin, Ireland
2University of Oxford, UK

The foundation of our ALIGNED methodology is an RDF-based semantic
metamodel or language to describe software and data life cycles, inter-life
cycle events, design intent, and domain models. This common framework for
software and data engineering enables the following techniques for managing
complexity: (1) Model-driven software engineering of data-intensive systems
based on Linked Data; (2) Integrating expert-based data curation workflows
into the software and data quality cycles; and (3) Providing unified views and
governance of both software and data engineering activities when developing
data-intensive systems;

This common metamodel for software and data engineering describes
data-intensive systems both at a system specification level and in terms of
the engineering activities, actors and artefacts.

Figure 4.1 illustrates the ALIGNED metamodels. At the top layer (the
generic metamodel), it documents the common concepts used in data-
intensive systems as a set of Linked Data vocabularies. The next ALIGNED
layer covers the domain-specific metamodels that constitute a vocabulary
and constraints for operating in a specific domain. This layer constrains
the types of data-intensive systems that can be built in terms of architec-
ture and tools, best practices for data collection and curation and common
data assets (e.g., Linked Data datasets to be consumed by applications
in this domain). ALIGNED has developed four domain-specific metamod-
els based on each of our use cases: enterprise information processing
(JURION), e-research in the Social Sciences and Humanities (Seshat), crowd-
sourced public datasets (DBpedia), and enterprise software development
(PoolParty).

79

80 ALIGNED MetaModel Overview

Figure 4.1 The ALIGNED metamodel layers.

Both the generic metamodel and domain-specific model layers are further
specified in the following sections of this document.

4.1 Generic Metamodel

As specified in the last section, the ALIGNED metamodel is split into two
major layers: the upper or generic layer is described in this section.

4.1.1 Basic Approach

The ALIGNED generic metamodel is structured as a set of complementary
vocabularies that can be used to document the development and design of
a data-intensive system throughout its life cycle. It extends the W3C PROV
Ontology (PROV-O) to define software and data engineering agents, activities
and entities. This facilitates the creation of provenance records describing
software and data engineering.

The constituent vocabularies defined are as follows:

Software Life cycle Vocabulary (SLO and SIP): This is split into two
components: the Software Life cycle Ontology (SLO) and the Software
Implementation Process Ontology (SIP). SLO defines a top-level ontology

4.1 Generic Metamodel 81

for describing life cycle processes. SIP uses SLO to define the major agents
(project roles, classes of software tools, etc.), activities (life cycle stages)
and entities (models, code, test cases, etc.) involved in a software engi-
neering project and their relations. SIP is implemented as a set of RDF
modules implementing specific processes in the software development and
implementation life cycle.

Data Life Cycle Ontology (DLO): Defines the major agents (project roles,
classes of software tools, etc.), activities (life cycle stages) and entities
(schema, datasets, code, test cases, etc.) involved in a data engineering project
and their relations with a special focus on capturing the engineering life cycle.

Design Intent Ontology (DIO): Used to document the design decisions
about data-intensive system artefacts such as software components or
datasets. The purpose of the DIO ontology is to model the design intent
or design rationale while undertaking the design of any artefact. A design
intent or design rationale is an explicit documentation of the reasons behind
decisions made when designing a system or artefact.

Domain Vocabulary: Describes the domain(s) of a data-intensive system. It
is the specific data model or knowledge model used within the data-intensive
system. The SLO, DLO, and DIO vocabularies are used to document addi-
tional context or constraints for the domain vocabulary to support semantics-
driven software engineering, data quality engineering, engineering project
governance, and tool integration.

In the subsections below, some basic details about our specification
approach are described. Then we provide an overview of the structure and
contents of each vocabulary.

4.1.2 Namespaces and URIs

Table 4.1 lists the standard prefixes used for each vocabulary. All have been
checked for clashes with prefix.cc.

Table 4.1 Generic metamodel namespace declarations
Generic Metamodel Vocabulary Name Prefix
Data Life Cycle Ontology dlo
Design Intent Ontology dio
Domain Vocabulary This is defined by the specific data-intensive

system rather than by the ALIGNED metamodel.
Software Life Cycle Vocabularies slo, sip

82 ALIGNED MetaModel Overview

Each prefix has been registered as a persistent URL (PURL) with purl.org
or the W3C community persistent name service. These namespaces will be
maintained by TCD servers.

4.1.3 Expressivity of Vocabularies

Since these generic vocabularies are designed to have the widest possible
reuse, they only require the use of RDFS semantics. However, full utilisation
of the model also requires the use of the W3C PROV ontology and in line
with that specification the OWL2 RL profile is used for advanced features of
the model.

4.1.4 Reference Style for External Terms

The ALIGNED metamodel vocabularies (DIO, SLO, DLO) must reference
terms from each other and from externally defined vocabularies or ontolo-
gies. This necessitates an ontology implementation style decision that ranges
from full OWL import statements to free-flowing Linked Data with no
defined style or structure. For ALIGNED, the consortium has decided to
adopt the MIREOT (Minimum information to reference an external ontology
term) implementation style guide.1 This avoids the practical problems with
OWL imports and yet provides some structure around the reuse of existing
resources.

4.1.5 Links with W3C PROV

The basic strategy for the ALIGNED metamodel is to specialise the W3C
PROV ontology to describe software and data engineering activities (pro-
cesses, tasks), entities (engineering artefacts or concepts) and agents (roles or
software tools). Examples include:

• prov:Activity – sub-types defined to describe data or software engineer-
ing life cycle stages

• prov:Plan – used to describe engineering workflows
• prov:Entity – to describe software or data engineering artefacts – test

case, design, test results, and so on
• prov:SoftwareAgent – to describe software engineering tools
• prov:Role – for software and data engineering roles

This approach means that PROV acts as a common upper ontology for all of
our metamodel vocabularies and binds them together into a coherent whole.

1http://obi-ontology.org/page/MIREOT

4.3 Software Engineering 83

It also facilities the creation of provenance records describing software
and data engineering. The software and data engineering tools created in
ALIGNED generate these PROV records as a way of logging their activities
using enterprise Linked Data. This common representation of the domain
facilitates tool integration and the creation of unified governance tools for
combined software and data engineering.

4.2 ALIGNED Generic Metamodel

4.2.1 Design Intent Ontology (DIO)

The purpose of the DIO ontology is to model the design intent or design
rationale while undertaking the design of any artefact. A design intent or
design rationale is an explicit documentation of the reasons behind decisions
made when designing a system or artefact.

The Design Intent Ontology (DIO)2 is a generic ontology that provides
the conceptualisation needed to capture the knowledge generated during
various phases of the overall design life cycle. It provides definitions for
design artefacts such as requirements, designs, design issues, solutions, jus-
tifications, and evidence and relationships between them to represent the
design process and how these things lead to design outcomes. It draws upon
the paradigms of IBIS (Interactive Intent-Based Illustration),3 argumentation,
and design rationale. It is linked to W3C PROV by defining the actors in
the design process as PROV agents and the design artefacts themselves are
PROV entities. It makes few assumptions about the design process used as
the definitions of these activities properly belongs in the software life cycle
and data life cycle models. Figure 4.2 illustrates the conceptual entities in
DIO and their relationships.

4.3 Software Engineering

4.3.1 Software Life Cycle Ontology

The purpose of the SLO is to provide a top-level ontology for describing a
process in the life cycle of a software. The ontology conforms to the ISO/IEC
12207 standard for Systems and software engineering – Software life cycle
processes. The terminology used in the ontology conforms to ISO/IEC TR
24774:2010(E). All subprocesses will require to import this module.

2http://purl.org/dio/
3http://www.cs.columbia.edu/˜doree/IBIS/thesis.html

84 ALIGNED MetaModel Overview

F
ig

ur
e

4.
2

T
he

D
es

ig
n

In
te

nt
O

nt
ol

og
y

(D
IO

).

4.3 Software Engineering 85

Figure 4.3 The Software Life cycle Ontology.

Figure 4.3 illustrates the conceptual entities in SLO. The core concept
is a SoftwareLifecyleProcess, which can be decomposed into sub-processes,
tasks and activities. The SIP ontology (see below) builds on this basic frame-
work to describe standard software engineering processes e.g., requirements
analysis and architectural design.

4.3.2 Software Implementation Process Ontology (SIP)

The purpose of the SIP is to provide a set of conceptual entities to represent
a specified system element implemented as a software product or service.

This ontology imports and builds upon the ALIGNED SLO as the basic
description of a process. It also utilises concepts defined in the SEON
(Software Evolution ONtologies)4 and the Software Ontology (SWO).5

The basic concepts of the SIP ontology are illustrated in Figure 4.4. It
shows the definition of basic software engineering processes and activities

4http://www.se-on.org/
5http://purl.obolibrary.org/obo/swo.owl

86 ALIGNED MetaModel Overview

Figure 4.4 Core Concepts of the Software Implementation Process (SIP) Ontology.

such as requirements analysis, design, implementation, integration in terms
of SLO activities and processes.

4.4 Data Engineering

4.4.1 Data Life Cycle Ontology

The purpose of the DLO is to provide a set of conceptual entities, agents,
activities, and roles to represent the general data engineering process. Fur-
thermore, it is the basis for deriving specific domain ontologies which
represent life cycles of concrete data engineering projects such as DBpedia
or Seshat.

Figure 4.5 shows the main classes of the data life cycle model. We
have used the W3C PROV ontology, in this example represented by the
classes Role, Person, Entity, and Activity. We use the Process class which
is derived from Activity to implement the Linked Data Stack life cycle stages
as subclasses. This allows us to represent LOD activities in our data life
cycle metamodel. In addition, we have modelled datasets, data sources, and

4.5 DBpedia DataID (DataID) 87

Figure 4.5 Generic data life cycle metamodel (DLO).

data repositories. For datasets, we import the W3C Data Catalog Vocabulary
(DCAT)6 definition of a dataset as it is a broad definition that goes beyond
representing only RDF-based datasets.

The full documentation and OWL ontology file of the ALIGNED data life
cycle model can be downloaded from http://www.essepuntato.it/lode/owlapi/
https://w3id.org/dlo.

4.5 DBpedia DataID (DataID)

DataID is a multi-layered metadata system, extending both the DCAT and
PROV Ontology to provide more specific dataset metadata. Depending on
context, type of data and use case, this core ontology can be augmented by
multiple existing extensions (e.g., Linked Data, repository descriptions, etc.).

DataID core, as the kernel element of this ecosystem, describes datasets
and their different manifestations, as well as relations to agents like persons
or organisations, in regard to their rights and responsibilities. Together with

6http://www.w3.org/TR/vocab-dcat/

88 ALIGNED MetaModel Overview

DLO, DataID core constitutes the data management side of the ALIGNED
Suite of Ontologies.7

The DBpedia DataID core vocabulary is a metadata system for detailed
descriptions of datasets and their different manifestations. Established vocab-
ularies like DCAT, VoID, PROV-O and FOAF are reused for maximum
compatibility, in order to establish a uniform and accepted way to describe
and deliver dataset metadata for arbitrary datasets and to put existing stan-
dards into practice. In addition, DataID can describe the relations of Agents
(like persons or organisations) to datasets with regard to their rights and
responsibilities.

Due to the growing complexity and different usage purposes, the DataID
ontology was modularised into a core ontology and multiple mid-layer
ontologies. While the core ontology is mandatory for any of the mid-level
ontologies presented, none of those are required for describing data. That
being said, in many use cases, some or all the mid-level ontologies will be a
useful extension.

The DataID core vocabulary (Figure 4.6) describes datasets (based heav-
ily on the DCAT ontology), as well as their relation to agents like persons or
organisations with regard to their rights and responsibilities.

DataID

dct:temporal

dct:spatial

dcat:theme

dcat:record dataid:inCatalog

dcat:dataset

dct:language dct:language

dataid:previousVersion
dataid:nextVersion
dataid:latestVersion

dataid:identifier

dataid:associateAgent dct:publisher dct:creator

dct:creator

dataid:identifier

dataid:identifierScheme

datacite:usesIdentifierScheme

dataid:authorizedAgent

dataid:hasAuthorization

dataid:authorizedAction

dataid:authorizationScope
dataid:authorizedFor

dataid:underAuthorization
dataid:needsSpecialAuthorization

Legend:

defined by the DataID ontology

external concept by other ontology

dataid:SS abbrev. for dataid:SimpleStatement dataid:authorityAgentRole

dataid:allowsFor

Core Ontology:
Markus Freudenberg

Martin Brümmer

dataid:innerMediaType

dcat:mediaType

dataid:checksum

dct:licensedct:license

void:subset
dct:isPartOf

dataid:datasetRelationRole

dcat:distribution
dataid:distributionOf

dataid:qualifiedDatasetRelation

dataid:qualifiedRelationOf

dataid:qualifiedRelationTo

foaf:primaryTopic

foaf:isPrimaryTopicOf
dataid:DataId

time:Interval

geonames:Feature

skos:Concept

dcat:Catalog

lvont:Language

dataid:Dataset

dataid:DatasetRelationship

dataid:DatasetRelationRole

dataid:Superset

odrl:Policy

spdx:Checksum

dataid:Distribution

dataid:MediaType

dataid:SingleFile

dataid:Directory

dataid:FileCollection

dataid:ServiceEndpoint

datacite:IdentifierScheme

dataid:AuthorizedAction

dataid:EntitledActiondataid:ResponsibleAction
dataid:AgentRole

dataid:Agent

dataid:Identifier

dataid:Authorization

prov:Entity

subClassOf: dcat:CatalogRecord,
void:DatasetDescription, prov:Entity

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:data
dct:modified : xsd:date

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
dct:rights : rdfs:Literal
foaf:homepage : foaf:Document

subclassOf: void:Dataset, dcat:Dataset,
prov:Entity

dct:title : rdfs:Literal
dct:rights : dataid:SimpleStatement
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
void:entities : xsd:integer
void:classes : xsd:integer
void:distinctObjects : xsd:integer
void:vocabulary
dcat:keyword : rdfs:Literal
dcat:landingPage : foaf:Document
foaf:page : foaf:Document
dataid:dataDescription : dataid:SS
dataid:openness : dataid:SS
dataid:growth : dataid:SS
dataid:reuseAndIntegration : dataid:SS
dataid:similarData : dataid:SS
dataid:usefulness : dataid:SS

subclassOf : datacite:Identifier

dataid:literal : rdfs:Literal
dct:references : foaf:Document
dct:issued : xsd:date

subclassOf: prov:agent, foaf:Agent

foaf:name : rdfs:Literal
foaf:mbox : rdfs:Literal
foaf:homepage : foaf:Document
foaf:account : foaf:OnlineAccount

subclassOf: skos:Concept

subclassOf: prov:Attribution

dataid:isInheritable : xsd:boolean
dataid:validFrom : xsd:date
dataid:validUntil : xsd:date

subclassOf: prov:role,
skos:Concept

dataid:Guest
dataid:Creator
dataid:Maintainer
dataid:Contributor
dataid:Contact
dataid:Publisher

subclassOf: dataid:AuthorizedAction

dataid:ResponseToContact
dataid:ResponseToLifeCycleEvent
dataid:PublishingDecision
dataid:UpdateDataId
dataid:AgentSupervision

subclassOf: dataid:AuthorizedAction

dataid:ReadContent
dataid:ModifyContent
dataid:DeleteContent
dataid:ModifyAuthorizedAgents
dataid:ModifyAuthorization
dataid:ModifyAgentRoles

subclassOf: dct:MediaType

dataid:typeName : rdfs:Literal
dataid:typeTemplate : rdfs:Literal
dataid:typeReference : rdfs:Resource
dataid:typeExtension : rdfs:Literal

subclassOf:
prov:EntityInfluence

subclassOf: prov:Role

subclassOf: dcat:Distribution, prov:Entity

dct:title : rdfs:Literal
dct:description : rdfs:Literal
dct:issued : xsd:date
dct:modified : xsd:date
dcat:downloadURL : rdfs:Resource
dcat:accessURL : rdfs:Resource
dcat:byteSize : xsd:integer
dataid:uncompressedByteSize : xsd:integer
dataid:preview : rdfs:Resource
dataid:accessProcedure : dataid:SS
dataid:softwareRequirement : dataid:SS

Figure 4.6 The DataID Ontology.

7http://aligned-project.eu/data-and-models

4.6 Unified Quality Reports 89

The full documentation and OWL ontology file of DataID can be down-
loaded from DBpedia,8 the DataID landing page at DBpedia,9 and through
the ALIGNED website.

4.6 Unified Quality Reports

4.6.1 Reasoning Violation Ontology (RVO) Overview

The purpose of RVO is to enable a reasoner to describe reasoning errors
detected in an input ontology, in order to facilitate the integration of reasoners
into semantic Web tool chains.

It is defined as a simple OWL 2 ontology that is amenable to RDFS-based
interpretations or use as a Linked Data vocabulary without any dependence
on reasoning. A permanent identifier for the ontology has been registered
with the W3C permanent identifier community group. The full source of the
ontology is published online. This ontology is used to describe RDF and
OWL reasoning violation messages in the Dacura Quality Service. These
are generated by running an RDF/RDFS/OWL-DL reasoner over an RDF-
based ontology model and allowing the Dacura quality service to report
any integrity violations detected at schema or instance level. These viola-
tions report areas where the input model is logically inconsistent or breaks
RDFS/OWL semantics or axioms. Violations may be reported as based on
open world or closed world assumptions. The open world is the default OWL
semantics and can typically only detect a limited number of problems due
to incomplete knowledge. The closed world interpretation assumes that you
have provided all relevant aspects of the model and is able to detect a much
wider range of violations, e.g., missing or misspelled term definitions. This is
often useful during ontology development or in a system that interprets OWL
as a constraint language.

RVO will allow machine-readability and interpretation of detailed rea-
soning error messages. Furthermore, this would enable building tools to
verify the OWL DL compliance of an ontology, find out which best practice
requirements the ontology meets or violates, track the impact of interpreting
the ontology in open and closed world contexts, identify the exact position of
violations, and support intelligent visualisation of errors. The structure of the
base RVO classes is shown in Figure 4.7.

8http://dataid.dbpedia.org/ns/core.html
9http://dbpedia.org/projects/dbpedia-dataid#Data%20model

90 ALIGNED MetaModel Overview

Figure 4.7 Reasoning Violation Ontology (RVO) Base Classes.

RVO class and instance violations are shown in Figure 4.8. Class viola-
tions are used for reporting issues regarding the TBox and instance violations
ABox in general. Therefore, class violations are reported when e.g., property
domains are missing, subsumption errors are detected, or class and property
cycles are found. Instance violations show instances which are not elements
of valid classes, cardinalities which are incorrect, property constraints that are
violated, literals and objects which are confused, and so on.

The full documentation and OWL ontology file for RVO can be down-
loaded using the LODE documentation service and the persistent URI for the
ontology.10

Example

This example shows a ClassViolation which is a SchemaViolation and more
specifically a ClassCycleViolation. Such specific violation detection results
make it possible to provide exact suggestions to ontology developers or
repair agents and trigger ontology improvements. Figure 4.9 shows the errors
produced by this violation.

Ontology Snippet Producing the Violation:

seshat:Territory seshat:hasValue xsd:DateTime.

10http://www.essepuntato.it/lode/owlapi/https://w3id.org/rvo

4.6 Unified Quality Reports 91

Figure 4.8 RVO Instance and Schema Violation Classes.

Figure 4.9 Resulting RDF Graph after Validation.

4.6.2 W3C SHACL Reporting Vocabulary

The Shapes Constraint Language is a language to validate RDF graphs against
a set of constraints. These constraints are formalised as shapes and other
constructs expressed in the form of an RDF graph. The language features
and approaches occurring in the current specification of SHACL were in

92 ALIGNED MetaModel Overview

part inspired by the SPIN11 and Shape Expressions (ShEx). The current
revision of the specification for SHACL is published by the W3C12 with
complementary material available in a GitHub repository.13

SHACL Core defines frequently needed features to formulate common
constraints for RDF graphs. SHACL Core Constraints are defined by param-
eterising Constraint Components that are templates for checks for a specific
required property of an RDF nodes (e.g., unique occurrence of a property
value associated with a specific property, for instance only one foaf:age value
for a given foaf:Person). One or several of such constraints are associated
with target RDF nodes to validate against in a SHACL Shape. SHACL shapes
are expressed as RDF resources and aggregated in a Shapes Graph. An RDF
graph to be checked for conformance against a Shapes Graph (the Data
Graph) is provided to a Validation Engine that produces a Validation Report.
The Validation Report states whether the Data Graph conforms to the Shapes
Graph, listing violations of individual RDF nodes against shapes detected
during the validation process in case of non-conformance.

SHACL Example

The following example data graph contains three SHACL instances of the
class ex:Person. It is taken from the SHACL documentation.
ex:Alice

a ex:Person ;
ex:ssn "987-65-432A" .

ex:Bob
a ex:Person ;
ex:ssn "123-45-6789" ;
ex:ssn "124-35-6789" .

ex:Calvin
a ex:Person ;
ex:birthDate "1971-07-07"ˆˆxsd:date ;
ex:worksFor ex:UntypedCompany .

The following conditions are shown in the example:
A SHACL instance of ex:Person can have at most one value for the

property ex:ssn, and this value is a literal with the datatype xsd:string that
matches a specified regular expression.

A SHACL instance of ex:Person can have unlimited values for the
property ex:worksFor, and these values are IRIs and SHACL instances of
ex:Company.

11http://spinrdf.org/
12https://www.w3.org/TR/shacl/
13https://github.com/w3c/data-shapes

4.6 Unified Quality Reports 93

A SHACL instance of ex:Person cannot have values for any other property
apart from ex:ssn, ex:worksFor and rdf:type.

These conditions can be represented as shapes and constraints in the
following shapes graph:

ex:PersonShape
a sh:NodeShape ;
sh:targetClass ex:Person ; # Applies to all persons
sh:property [# _:b1

sh:path ex:ssn ; # constrains the values of ex:ssn
sh:maxCount 1 ;
sh:datatype xsd:string ;
sh:pattern "ˆ\\d{3}-\\d{2}-\\d{4}$" ;

] ;
sh:property [# _:b2

sh:path ex:worksFor ;
sh:class ex:Company ;
sh:nodeKind sh:IRI ;

] ;
sh:closed true ;
sh:ignoredProperties (rdf:type) .

The shape declaration above illustrates some of the key terminology used
by SHACL. The target for the shape ex:PersonShape is the set of all
SHACL instances of the class ex:Person. This is specified using the prop-
erty sh:targetClass. During the validation, these target nodes become focus
nodes for the shape. The shape ex:PersonShape is a node shape, which
means that it applies to the focus nodes. It declares constraints on the focus
nodes, for example using the parameters sh:closed and sh:ignoredProperties.
The node shape also declares two other constraints with the property
sh:property, and each of these is backed by a property shape. These property
shapes declare additional constraints using parameters such as sh:datatype
and sh:maxCount.

Some of the property shapes specify parameters from multiple constraint
components in order to restrict multiple aspects of the property values. For
example, in the property shape for ex:ssn, parameters from three constraint
components are used. The parameters of these constraint components are
sh:datatype, sh:pattern and sh:maxCount. For each focus node the property
values of ex:ssn will be validated against all three components.

4.6.3 Data Quality Vocabulary

The Data Quality Vocabulary (DQV) is an extension to the DCAT vocabulary
which covers data quality, frequency of updates, user correction, persistence,
and other properties of the dataset in question. It is designed to improve trust
in data. It does not provide a determination of what quality is, but instead

94 ALIGNED MetaModel Overview

seeks to allow data consumers to judge whether the data in a dataset is
suitable for their uses, and to publish their opinions and annotations about
the dataset and its quality. The vocabulary seeks to do this by making it easier
to publish, exchange, and consume metadata at every step of the dataset life
cycle. Figure 4.10 shows the DQV ontology.

The quality of a dataset is assessed via certain observed properties. To
express these properties, an instance of a dcat:Dataset or dcat:Distribution
can be related to five different types of quality information represented by the
following classes:

• dqv:QualityAnnotation represents feedback and quality certificates
given about the dataset or its distribution.

• dcterms:Standard represents a standard the dataset or its distribution
conforms to.

• dqv:QualityPolicy represents a policy or agreement that is chiefly
governed by data quality concerns.

• dqv:QualityMeasurement represents a metric value providing quantita-
tive or qualitative information about the dataset or distribution.

Figure 4.10 Data model showing the main relevant classes and their relations.

4.6 Unified Quality Reports 95

• prov:Entity represents an entity involved in the provenance of the dataset
or distribution.

DQV defines quality measures as specific instances of Quality Measurements,
adapting the daQ quality framework. It relies on quality dimensions and
quality metrics. Figure 4.11 shows the interrelation of statements about data
quality.

A Quality Dimension (dqv:Dimension) is a quality-related character-
istic of a dataset relevant to the consumer (e.g., the availability of a
dataset).

A Quality Metric (dqv:Metric) gives a procedure for measuring a data
quality dimension, which is abstract, by observing a concrete quality indica-
tor. There are usually multiple metrics per dimension; e.g., availability can be
indicated by the accessibility of a SPARQL endpoint, or that of an RDF dump.
The value of a metric can be numeric (e.g., for the metric “human-readable
labeling of classes, properties and entities”, the percentage of entities having
an rdfs:label or rdfs:comment) or Boolean (e.g., whether or not a SPARQL
endpoint is accessible).

Besides quality measurements, DQV considers certificates, standards,
and quality policies, which can also be organised according to dimen-
sions. Quality metadata containers (dqv:QualityMetadata) can group together
different quality statements, so that their provenance can be tracked jointly.

Figure 4.11 Using the property prov:wasDerivedFrom to interrelate quality metrics and
other quality statements.

96 ALIGNED MetaModel Overview

4.6.4 Test-Driven RDF Validation Ontology (RUT)

The RDFUnit ontology describes concepts used in RDFUnit, a test-driven
RDF Validation framework that can run automatically generated (based on a
schema) and manually generated test cases against an endpoint.14

14“NLP data cleansing based on Linguistic Ontology constraints” pp. 5–7, http://jens-
lehmann.org/files/2014/eswc rdfunit nlp.pdf, ESWC, 2014.

4.6 Unified Quality Reports 97

Table 4.2 Domain-specific metamodel namespace declarations
Domain-specific Metamodel Vocabulary Name Prefix
Enterprise information processing eip
E-research in the Social Sciences and Humanities sdo
Crowd-sourced public datasets pds
Enterprise software development sdev

Domain-Specific Extensions

Namespaces

Table 4.2 lists the standard prefixes used for each vocabulary. All have been
checked for clashes with prefix.cc. Each prefix has been registered as a
persistent URL (PURL) with purl.org or the W3C community persistent name
service. These namespaces will be maintained by TCD servers.

Enterprise Information Processing

The purpose of the Enterprise Information Processing Domain-specific Meta-
Model (EIPDM) is to provide a set of concrete entities, agents, activities,
and roles to represent the data engineering process. It is based on the general
DLO. The initial information gathered to build the domain-specific enterprise
information processing metamodel is based on the JURION use case. The
JURION use case includes both processes for data and software development
and therefore uses the DLO and the SLO.

As the JURION use case includes the both processes of data (D) and
software development (S), the model information are marked with their
respective process type.

The actors identified in JURION are listed in Table 4.3. The entities iden-
tified in JURION are listed in Table 4.4. The activities are listed in Table 4.5.

For functionalities, we have a number of existing models for different
kinds of documents. Depending on the document type, there is different
mandatory metadata and additional information.

e-research in the Social Sciences and Humanities

The purpose of the ALIGNED E-research in the Social Sciences and Humani-
ties domain-specific metamodel is to provide a set of concrete entities, agents,
activities, and roles to represent the specific data engineering process for
e-research in the social sciences and humanities. It is based on the Seshat
use case within ALIGNED. It specialises the ALIGNED generic DLO and
imports the W3C PROV ontology.

98 ALIGNED MetaModel Overview

Table 4.3 JURION actors
Actor Description
CMS Expert Responsible for the technical correctness of process and data
Content Architect Responsible for the overall process and schemas
Legal Domain Expert Responsible for ensuring that legal data are correct
Legal Editor Responsible for editing legal information
Product Owner Wants the best possible product
Schema Expert Responsible for executing and documenting schema changes
Software Developer Review requirements, suggest possible solutions, estimate cost of

certain features and bugfixing actions and implement them.
Software Manager Coordinates all software development teams and projects
Software Testers Perform manual testing, issue and observe automated test runs
Software Analyst Studies the application domain and defines requirements based on

his experience the software on the one hand, and the domain and
customers on the other hand

Customers Partners and testers

Table 4.4 JURION entities
Entity Description
Schema Changes Schema changes are done at regular intervals
Test Cases Data tests
Text files In XML, data in Ontowiki, databases –

specific with constraints
Controlled Vocabularies Several controlled vocabularies are maintained

in PoolParty
Data Sources External data sources
Testing Suites Java unit tests, Jenkins, Performance Tests,

Integration Test, Sonarqube
Source Code Git and SVN repositories
Server Infrastructure Servers that support the development process
Data/Software Requirements Documents Mostly unstructured and free-text description

of new features

This model adds support for specific external data sources for datasets
like wikis, Web pages, and academic paper repositories. It adds new entities
to represent candidate data for inclusion in a dataset, reports of historical
events and historical interpretations created by domain experts. It extends
the set of data life cycle processes to include data curation activities such as
data collection and data publishing. Finally, new roles are defined for data
consumer, processor and producer tools that help maintain semi-automated
data curation pipelines or workflows.

4.6 Unified Quality Reports 99

Table 4.5 JURION activities
Activity Description
Specify and model data e.g., definition of base URI and schema mapping
Transform data Transformation process from XML to RDF format
Integrate/Upload data Integrate new datasets, entities, and so on
Maintain data Enrich, delete, change, curate
Link data Mapping with internal or external sources, link sources
Extract data Generate test data, configure, test, review, e.g., for classification

purposes
Use data e.g., for visualisations, search, and so on
Quality analysis of data Checking for consistency, integrity, and so on
Plan Software Requirements planning, application evolution, data requirements

for the data development team
Analyse Software Requirement validation – requirements changes, version

tracking, schema/data-based software evolution analysis
Design Software Design verification, query design, design evolution via mapping

evaluation
Implement Software Code generation and transformation, application verification
Software maintenance Schema and instance change impact evaluation, bug

classification
Publish data Converting a dataset to a release

Figure 4.12 illustrates the concepts found in the ontology. A full specifica-
tion of the model is available online at http://www.essepuntato.it/lode/owlapi/
https://w3id.org/sdo.

Seshat Domain Ontologies

The Seshat Domain Ontology Set consists of the following specific ontolo-
gies: seshat, xdd, and dacura.

seshat

This ontology describes human societies throughout time. It is used by the
Evolution Institute and its partners to describe time-series data collected
about all human societies. Figure 4.13 shows the seshat ontology in graphic
form.

The most important classes are:

• Polity: A polity is defined as an independent political unit. Kinds of
polities range from villages (local communities) through simple and

100 ALIGNED MetaModel Overview

Figure 4.12 The ALIGNED domain-specific ontology for E-research in the Social Sciences
and Humanities.

seshat:Event

seshat:MetaConflict

seshat:Siege

seshat:SubPolity

seshat:QuasiPolity

seshat:Polity

seshat:NGA

seshat:FreeFormArea

seshat:Territory
seshat:War

seshat:Duration

seshat:EphemeralEntity

dacura:Entity

seshat:Building

seshat:Organisation

seshat:DegreeOfCentralisation

seshat:SupraculturalEntity

seshat:ReligiousSystem

seshat:InterestGroup

seshat:PoliticalAuthority

seshat:Battle

seshat:NavalEngagement

seshat:LandBattle

seshat:EpistemicState

seshat:City

dacura:CoordinatePolygon

seshat:professionalMilitaryOfficers
seshat:professionalSoldiers

seshat:professionalPriesthood
seshat:fulltimeBureaucrats
seshat:examinationSystem

seshat:meritPromotion
seshat:formalLegalCode

seshat:specialisedGovernmentBuildings
seshat:judges
seshat:courts

seshat:utilitarianPublicBuildings
seshat:irrigationSystems

seshat:drinkingWaterSupplySystems

seshat:precedingQuasipolity

seshat:territory
seshat:capital

seshat:succeedingQuasipolity

seshat:hasDiplomaticRelationsWith

seshat:warDate
seshat:duration

seshat:degreeOfCentralisation

seshat:originalName

seshat:warName

seshat:scaleofSupraculturalInteraction
seshat:supraculturalEntity

seshat:peakDate

seshat:utmZone
seshat:alternativeNames

seshat:populationOfTheLargestSettlement
seshat:population

seshat:largestCommunicationDistance
seshat:administrativeLevels
seshat:settlementHierarchy

seshat:religiousLevels
seshat:militaryLevels

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf
rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

owl:oneOf

Absent Unknown Present

xsd:string

xsd:string

xsd:string

xsd:string

xsd:string

xsd:gYear

xsd:integer

xsd:integer

rdfs:subClassOf

Figure 4.13 The Seshat ontology.

4.6 Unified Quality Reports 101

complex chiefdoms to states and empires. A polity can be either cen-
tralised or not (e.g., organised as a confederation). What distinguishes a
polity from other human groupings and organisations is that it is politi-
cally independent of any overarching authority; it possesses sovereignty.
Polities are defined spatially by the area enclosed within a boundary on
the world map. There may be more than one such areas. Polities are
dynamical entities, and thus their geographical extent may change with
time. Thus, typically each polity will be defined by a set of multiple
boundaries, each for a specified period of time. For prehistoric periods
and for geographical areas populated by a multitude of small-scale
polities, we use a variant called quasi-polity.

• TemporalEntity: An abstract concept describing anything that must have
temporal bounds.

• PointInSpace: This is an abstract class for all points in space.
• Box: Class for boxing datatypes in order to add annotations.

Which have the following properties:

• alternativeName: The name of a seshat Entity. Generally same as the
name of the wiki page.

• population: Estimated population of the polity; can change as a result
of both adding/losing new territories or by population growth/decline
within a region.

• name: The name of a seshat Entity. Generally same as the name of the
wiki page.

• peakDate: A property used to define the temporal bounds of a seshat-
box:TemporalEntity. For example, corresponds to the Duration for a
Polity from the Seshat code book.

• longitude and latitude: In numeric form.
• capitalCityLocation: The latitude and longitude of the capital city.
• type: The xsd datatype of a Box.

xdd

The xdd ontology describes complex datatypes such as polygon, polyline and
range types.

@prefix xdd: <http://dacura.scss.tcd.ie/ontology/xdd#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

xdd:coordinatePolygon a rdfs:Datatype ;
rdfs:label "Coordinate Polygon"@en ;
rdfs:comment "A closed JSON list of coordinates."@en .

xdd:coordinatePolyline a rdfs:Datatype ;

102 ALIGNED MetaModel Overview

rdfs:label "Coordinate Polyline"@en ;
rdfs:comment "A JSON list of coordinates."@en .

xdd:gYearRange a rdfs:Datatype ;
rdfs:label "Year"@en ;
rdfs:comment "Either a year or a range of years."@en .

xdd:integerRange a rdfs:Datatype ;
rdfs:label "Integer"@en ;
rdfs:comment "Either an integer or a range of integers."@en .

xdd:decimalRange a rdfs:Datatype ;
rdfs:label "Decimal"@en ;
rdfs:comment "A number with an arbitrary number of decimal places, or

a numberrange"@en .

dacura

The dacura ontology covers all xsd datatypes, rdf and rdfs literal types used
in other ontologies on the platform. The dacura ontology can be seen in
Figure 4.14.

Figure 4.14 The Dacura ontology.

4.6 Unified Quality Reports 103

Figure 4.15 Dacura console usage example.

Usage

The set of seshat domain ontologies is designed to be generic in order to keep
the usage as broad as possible. An example of the usage of the seshat domain
ontology is the dacura console which is available as a browser plugin and
enables the user to harvest social sciences and digital humanities data from
websites and store them as RDF triples in a knowledge base.

Figure 4.15 shows the dacura console listing types for a candidate from
the seshat domain ontology and available candidates for entities and polities.
The user selects an existing collection on the left side of the browser bar and
depending on her user role, which can be Data Harvester, Expert Annotator or
Architect, she can browse and create new candidates of a certain type and edit
existing candidates in addition to automatically harvested candidates from a
website.

The usage of the dacura and xdd ontologies is best shown on the backend
of the dacura platform as represented in Figures 4.16 and 4.17. The screen-
shots show the creation of a new candidate of the type Polity. Dacura and xdd
ontologies are used to describe the used datatypes for properties of a polity
(in this example e.g., original name, polity territory, religious levels, polity
population, military levels, etc.). Used datatypes can be strings in open text
fields as in “Original name”, classes in dropdown boxes as in “Has diplomatic
relations with”, polygons in google maps as in “Polity territory” and many
more datatypes.

Crowd-sourced Public Datasets (CSPDO)

This ontology is used to describe the domain-specific extensions to the
ALIGNED data life cycle model ontology (DLO) and SLO for crowd-
sourced public datasets based on the DBpedia use case within the ALIGNED

104 ALIGNED MetaModel Overview

Figure 4.16 New candidate example part 1.

project. Over time, generic features may be migrated to the upper ontology.
Figure 4.18 shows the CSPDO ontology.

This ontology is used to describe the domain-specific extensions to the
ALIGNED data life cycle model ontology (DLO) and SLO for crowd-sourced
public datasets based on the DBpedia use case within the ALIGNED project.
Over time, generic features may be migrated to the upper ontology.

This ontology supports extensions needed for DBpedia. Thus, there is a
focus on the validation activities. DBpedia is a large-scale extraction project
of unstructured and semi-structured data from different Wikipedia language
editions to RDF. This extraction is achieved from a modular extraction frame-
work that is customised to handle multilingualism and structural differences

4.6 Unified Quality Reports 105

Figure 4.17 New candidate example part 2.

between different Wikipedia language editions. The latest DBpedia release
(v. 2016) generated a total of three billion facts from 125 localised versions.
As Wikipedia evolves over time, the code should be able to adapt to these
changes. However, identifying errors at this data scale becomes very hard
and validation workflows must be established that will ensure the quality of
the extracted data.

ALIGNED tackled these challenges with data validation and inter-
link validation tools that communicate their results though the ALIGNED
vocabularies.

The actors identified in DBpedia are listed in Table 4.6. The entities
identified in DBpedia are listed in Table 4.7. The activities are listed in
Table 4.8.

106 ALIGNED MetaModel Overview

Figure 4.18 The Crowd-sourced Public Datasets ontology.

The DBpedia software and data engineering development process
involves the following actors:

Table 4.6 DBpedia actors
Actor Description
Extraction manager DBpedia team members who run the extraction process for a

given DBpedia release
Extraction Agent Software agents that perform the extraction such as DBpedia

live
Mapping editor Community members who edit the DBpedia mapping wiki
Ontology Editor DBpedia foundation members that edit the DBpedia ontology
Release manager DBpedia team members that are responsible for the actions

leading to a given release of DBpedia
Developer DBpedia team members or community who write code for the

extraction framework or tools
User Users of DBpedia

We can identify the following entities (i.e., tools and technologies) that
support the DBpedia development workflow:

4.6 Unified Quality Reports 107

Table 4.7 DBpedia entities
Entity Description
Wikipedia Input source for DBpedia
Extraction Framework The source code used to extract knowledge from

Wikipedia
Server The physical/virtual server where an extraction

agent is running
DBpedia Ontology Crowdsourced OWL ontology describing DBpedia

concepts and properties
Infobox to Ontology mappings Crowdsourced mappings between the DBpedia

ontology and Wikipedia infoboxes
Dataset static dataset (dump)
External dataset Live feed

The output that comes after an extraction manager or
release manager runs an extraction agent based on
the extraction framework on a Wikipedia input.
The output can be a static dataset, an external dataset
(such as links to other datasets) or the DBpedia
Live feed

Tools Scripts or applications that work on DBpedia data
Issue or support question New feature or support requests and bug reports are

filed as tickets in the extraction framework Github
issue tracker or reported in the DBpedia-related
mailing lists

Actors and Entities are connected by the following activities:

Table 4.8 DBpedia activities
Activity Description
Coding Involves resolution of issues/error reports (i.e., bug fixing,

feature development), but also refactoring. Done by
developers, working on the extraction framework.

Release
Pre-processing step
Extraction
Post-processing step
Publishing

Releasing a DBpedia dataset is a complex procedure that
involves a lot of pre-processing steps, the actual extraction,
additional postprocessing steps and finally the dataset
publishing step. This activity is performed by the release
manager using the extraction framework and DBpedia tools

Maintain dbpedia.org The act of maintaining the information website of DBpedia
Support (mailing lists or
bugs)

Acting on a user support or new feature request or tackling a
bug report

DBpedia Ontology (DBO)

The structure of the DBpedia knowledge base is maintained by the DBpe-
dia user community. Most importantly, the community creates mappings

108 ALIGNED MetaModel Overview

from Wikipedia information representation structures to the DBpedia
ontology. This ontology unifies different template structures, both within
single Wikipedia language editions and across currently 27 different
languages. The complete DBpedia ontology can be browsed online at
http://mappings.dbpedia.org/server/ontology/classes/.

DBO is used to describe the data that are extracted with the DBpedia
information extraction framework.

Usage

Model Mapper tool

The prototype Model Mapper tool (D3.4) uses CSPDO to record interlink
validation processing on the DBpedia release candidate. This enables its
activities to be shown in the Unified Governance tool (D5.2), and for other
data engineering tools to co-ordinate with it in a toolchain. For example, as
shown here, for the exchange of which mappings failed the validation test.
This allows another tool to take corrective action on these mappings or to
present them to a user.

The RDF shows the description of an interlink validation run which
identifies the specific tool used for validation, the three datasets consumed
(the linkset, DBpedia and Geonames) and the validation report produced
(ex:interlink validation report 1). The datasets are identified as DataID data-
sources and thus could have a large amount of metadata recorded about
them. The actor who initiated the interlink validation is recorded and
classified as a SysAdmin. The interlink validation report itself identifies
two invalid mappings in the mapping set analysed, in the first case both
ends of the mapping are incorrect (probably missing from the mapped
datasets) and the second mapping error identifies only one mal-formed
resource.

ex:interlink_val_1 a cspdo:InterlinkValidation ;
dlo:isSupportedBy ex:interlink_validator ;
dlo:consumes ex:dbpedia_geonames_interlinks_2015 ;
dlo:consumes ex:dbpedia_dataset_2015 ;
dlo:consumes ex:geonames_dataset_20151010 ;
dlo:produces ex:interlink_validation_report_1 .

ex:dbpedia_dataset_2015 a dlo:DataSource .
ex:geonames_dataset_20151010 a dlo:DataSource .
ex:person_1 a dlo:SystemAdmin ;

dlo:initiates ex:interlink_val_1 .

4.6 Unified Quality Reports 109

ex:model_mapper a dlo:DataSoftwareAgent ;
dlo:supports ex:interlink_val_1 .

ex:interlink_validation_report_1 a cspdo:InterlinkValidationReport ;
prov:wasGeneratedBy ex:interlink_val_1 ;
ex:invalidMapping1 [ex:mapId ex:mapping_1 ;
ex:invalidResource <resource_1> ;
ex:invalidResource <resource_2>] ;
ex:invalidMapping2 [ex:mapId ex:mapping_2 ;
ex:invalidResource <resource_3>] ;
prov:generatedAtTime ‘‘20151010’’ˆˆxsd:date .

DBpedia release description

Since 2015, DBpedia releases are described with the DataID ontology. This
created the opportunity for application on top of the machine readable
dataset metadata. These DataID descriptions are used to automatically gen-
erate the DBpedia release download page as well as automate the creation
of a triple store loaded with the release data using the Docker container
technology.15

DBpedia workflow description (planned)

As a future work, we plan to integrate DataID, DLO and PROV to describe
DBpedia extraction workflows and keep track of origin and pre-processing
steps of each dataset.

4.6.5 Enterprise Software Development (DIOPP)

The aim of the ontology is to integrate the datasets generated through
requirements specification and the issues raised during their implementation.
This ontology covers the mappings defined between the PoolParty concep-
tualisation and the DIO ontology. The mappings are further supported by
the figures illustrated here. An example illustrating the mapping can be
found here.

In the following, we describe PoolParty’s requirements for the ALIGNED
domain-specific metamodel for enterprise software development.

The actors identified in PoolParty are listed in Table 4.9. The entities
identified in PoolParty are listed in Table 4.10. The activities are listed in
Table 4.11.

15https://github.com/dbpedia/Dockerized-DBpedia

110 ALIGNED MetaModel Overview

For the software life cycle and design intent, the development process
involves the following actors:

Table 4.9 PoolParty actors
Actor Description
Project Manager Responsible for resource planning
Requirements Editor Specifies requirements for a specific feature in a way that it fits to

the application’s design (functional and UI)
Product Owner Knows the market and customers, identifies new features,

(informally) specifies requirements, continuous and final
inspection of new features

Consultant Knows the customers and their needs, provide support for existing
and training for new customers. May act as Project Managers,
Requirements Editors, and Testers

Developer Review requirements, suggest possible solutions, estimate cost of
certain features and bugfixing actions and implement them.

Tester Perform manual testing, issue and observe automated test runs
Customer Partners, Integrators

We can identify the following entities (i.e., tools and technologies) that
support the PoolParty development workflow:

Table 4.10 PoolParty entities
Entity Description
Issue Ticket New feature requests and bug reports are filed as tickets in

Atlassian Jira. They have assigned, e.g., a creator (a
consultant in most cases), an actor responsible for
resolution (a developer in most cases), a cost estimation (in
days), and version information (e.g., which version it
occurred) and other metadata like description, dates,
comments. Can be organised in Epics, Stories and Issues.
Each of these may cover a Requirements Document (see
below).

Requirements Documents Are written using Atlassian Confluence Wiki. Mostly
unstructured and freetext description of new features. Are
proofread by product owner and developers.

Source Code Git and SVN repositories
Server Infrastructure Servers that support the development process, e.g., testing

PoolParty or performing demos, scheduled builds for
continuous integration, hosting developer chat/continuous
integration notifications

Testing Suite Java unit tests, Selenium Web Browser automation tests,
API tests, operated by testers

Communication Resource Skype, GotoMeeting, Chat clients, email

4.6 Unified Quality Reports 111

Actors and Entities are connected by the following activities:

Table 4.11 PoolParty activities
Activity Description
Resource planning Meetings where project managers and product owners

decide (based on the issue ticket cost estimations)
what features and bug requests will be scheduled for a
sprint with what priority

Sprint Certain period of time during which a specified set of
issue tickets should be resolved

Coding Involves resolution of issue tickets (i.e., bug fixing,
feature development) but also refactoring. Done by
developers, creating source code.

Staging Preparing a release version of the software, i.e.,
creating installation packages and installing them at
customer server infrastructure

Requirements writing The activity of creating requirement documents and
issue tickets

Communication to customers Informal communication between Consultant and
Customer for initiating requirements writing

4.6.6 Unified Governance Domain Ontologies

The motivation for our work was the current setup at SWC, where Atlas-
sian Confluence wiki-like team collaboration software is used to support
requirements engineering, feature specification and discussion, providing
documentation of research projects and publishing of technical informa-
tion. Atlassian JIRA is a ticket system used for issue and change tracking,
organising ideas from team members as well as collecting from customers.
These loosely coupled tools form the basis for a requirements engineering
system.

Following the agile methodology of software development, the data
are recorded in Confluence under headings such as “Requirements”,
“Goal”,“User Story”, “Epic” and “Stakeholders”. Additional fields such as
“Precondition”, “Detailed description”, “Acceptance criteria & Test scenario”
are included to provide further context to the requirements. A single field,
“Comment” captures the opinions/discussion carried out by human agents.
The JIRA interface is used without any major modification.

SWC collects the requirements for each version of PPT in the PoolParty
development space. Requirements are then linked to pages containing epics
and user stories. Most of these pages are structured based on standard

112 ALIGNED MetaModel Overview

templates defined by SWC. The outputs from these template-based pages
are largely document-centric and require extensive human intervention to
synthesise and synchronise them with PoolParty development tasks.

By using DIO, DIOPP and bespoke mappings to annotate and provide
metadata to the content extracted from Confluence and JIRA, SWC is able to
create merged repositories of requirements, customer feedback, bug reports
and project documentation thereby consolidating PoolParty experiences, cus-
tomer ideas and market needs in order to integrate them into products. This
is a key factor for successful development of SWC products and for raising
customer satisfaction and enterprise agility. Questions asked by customers
will flow faster into the requirement engineering system. The process will
help to generate concise reports on distributed business objects and entities
relevant for the development processes, and to coordinate the data manage-
ment and development workflows required to deliver new versions of the
evolving PoolParty product. The serendipitous mining of design intents from
requirements and issues will therefore have a significant impact on the full
life cycle of PoolParty products from requirements through to development
and maintenance.

4.6.7 Semantic Booster and Model Catalogue Domain Ontology

4.6.7.1 Model catalogue
The Model Catalogue can be used to document models and metamodels –
adding descriptions and descriptive metadata to concepts and relation-
ships. Search and comparison tools allow modellers and data engineers to
understand concepts in the model and better understand the underlying
data. In the ALIGNED project, we have been building a repository of the
metamodels and domain-specific models for external users.

The catalogue can also be used to provide, and reason about, links
between concepts in different domains. For example, showing how a software
model reuses and extends concepts from the data life cycle (DLO) will help
the users of data understand how data can be linked and compared.

The Model Catalogue may be used as a development platform for meta-
models or domain-specific models – a collaborative editing platform enables
the easy development of new versions of models, permitting discourse and
iteration, controlling versioning and user access. The catalogue is tightly
integrated with pipelines for MDE: enabling export of software components –
alternate representations, sources or configurations for data entry such as
XForms, data transfer such as XSD and XML, or data storage, such as
relational database schemas or Booster specifications.

4.6 Unified Quality Reports 113

The catalogue can also use the ALIGNED ontologies to capture metadata
about the models themselves – for example using PROV to capture prove-
nance information about a dataset, or DIO to capture design intent behind
software modelling decisions. The metamodel for the catalogue itself – that
constrains the way that models are represented –is being extended in the next
phase of the ALIGNED project to incorporate more concepts from the generic
ALIGNED models.

4.6.7.2 Booster
As a MDE tool, Booster uses domain-specific models to build systems.
Booster can aid the development of tools that build interoperable datasets
by extending the ALIGNED metamodels. For example, an abstract model of
DLV in Booster may be extended and specialised in a domain-specific model.
This will ensure that any data captured and stored in the Booster-generated
system will be semantically interoperable with data collected in other systems
based on the DLV ontology. By understanding how these domain-specific
models extend or instantiate parts of the ALIGNED metamodels, the tool
can be configured to specialise the software. For example, data captured and
stored in Booster might be automatically linked to public external datasets
corresponding to compatible ontologies.

Booster has its own metamodel: instances of which are Booster specifi-
cations. The Booster metamodel may be linked to concepts in the ALIGNED
ontologies – in particular “design decisions”, and parts of a “software life
cycle”. Currently the textual notation for Booster does not easily support
the linking of these concepts, but the design and development of a more
advanced metamodel for Booster is underway, allowing explicit links to
external ontologies, with support for maintaining and using these links within
the generated software components.

4.6.8 PROV16

The provenance of digital objects represents their origins. PROV is a spec-
ification to express provenance records, which contain descriptions of the
entities and activities involved in producing and delivering or otherwise
influencing a given object. Provenance can be used for many purposes,
such as understanding how data were collected so it can be meaningfully
used, determining ownership and rights over an object, making judgements

16This section contains material derived from “PROV-Overview An Overview of the PROV
Family of Documents”, https://www.w3.org/TR/prov-overview/ c© 2013 W3C.

114 ALIGNED MetaModel Overview

about information to determine whether to trust it, verifying that the process
and steps used to obtain a result complies with given requirements, and
reproducing how something was generated.

As a specification for provenance, PROV accommodates all those differ-
ent uses of provenance. Different people may have different perspectives on
provenance, and as a result, different types of information might be captured
in provenance records.

• One perspective might focus on agent-centred provenance, that is, what
people or organisations were involved in generating or manipulating the
information in question. For example, in the provenance of a picture in a
news article we might capture the photographer who took it, the person
that edited it, and the newspaper that published it.

• A second perspective might focus on object-centred provenance, by
tracing the origins of portions of a document to other documents. An
example is having a Web page that was assembled from content from
a news article, quotes of interviews with experts, and a chart that plots
data from a government agency.

• A third perspective one might take is on process-centred provenance,
capturing the actions and steps taken to generate the information in
question. For example, a chart may have been generated by invoking a
service to retrieve data from a database, then extracting certain statistics
from the data using some statistics package, and finally processing these
results with a graphing tool.

The goal of PROV is to enable the wide publication and interchange of
provenance on the Web and other information systems. PROV enables one
to represent and interchange provenance information using widely available
formats such as RDF and XML. In addition, it provides definitions for
accessing provenance information, validating it, and mapping to Dublin Core.

The design of PROV stems from the recommendations of the Provenance
Incubator Group which performed an extensive information gathering process
including use case cataloging, requirements elicitation and a literature survey.
From this process, the following eight recommendations were made:

1. the core concepts of identifying an object, attributing the object to person
or entity, and representing processing steps;

2. accessing provenance-related information expressed in other standards;
3. accessing provenance;
4. the provenance of provenance;
5. reproducibility;

4.6 Unified Quality Reports 115

Serializations

PROV-PRIMER

PROV-
DC

PROV-
O

PROV-
XML

PROV-
N

PROV-
DICT

IONARY

PROV-
LINKS

PROV-
SEM

PROV-
AQ

PROV-DM PROV-CONSTRAINTS

Figure 4.19 The Organisation of PROV.

6. versioning;
7. representing procedures;
8. representing derivation.

Figure 4.19 shows the organisation of PROV and how the documents
(roughly) depend on each other. At its core is a conceptual data model (PROV-
DM), which defines a common vocabulary used to describe provenance.
This is instantiated by various serialisations. These serialisations are used
by implementations to interchange provenance. To help developers and users
express valid provenance, a set of constraints (PROV-Constraints) are defined,
which can be used to implement provenance validators. This is complimented
by a formal semantics (PROV-SEM). Finally, to further support the inter-
change of provenance, additional specifications are provided for protocols to
locate and access provenance (PROV-AQ), connect bundles of provenance
descriptions (PROV-Links), represent dictionary style collections (PROV-
Dictionary) and define how to interoperate with the widely used Dublin Core
vocabulary (PROV-DC).

4.6.9 SKOS17

The SKOS is a data-sharing standard, bridging several different fields of
knowledge, technology and practice. In the library and information sciences,

17This section contains material derived from “SKOS Simple Knowledge Organization
System Reference”, https://www.w3.org/TR/skos-reference/ c© 2009 W3C.

116 ALIGNED MetaModel Overview

a long and distinguished heritage is devoted to developing tools for organ-
ising large collections of objects such as books or museum artefacts. These
tools are known generally as “knowledge organization systems” (KOS) or
sometimes as “controlled structured vocabularies”. Several similar yet dis-
tinct traditions have emerged over time, each supported by a community
of practice and set of agreed standards. Different families of knowledge
organisation systems, including thesauri, classification schemes, subject
heading systems, and taxonomies are widely recognised and applied in
both modern and traditional information systems. In practice, it can be
hard to draw an absolute distinction between thesauri and classification
schemes or taxonomies, although some properties can be used to broadly
characterise these different families. The important point for SKOS is
that, in addition to their unique features, each of these families shares
much in common and can often be used in similar ways. However, there
is currently no widely deployed standard for representing these knowl-
edge organisation systems as data and exchanging them between computer
systems.

The W3C’s Semantic Web Activity has stimulated a new field of inte-
grative research and technology development, at the boundaries between
database systems, formal logic and the World Wide Web. This work has
led to the development of foundational standards for the Semantic Web.
The RDF provides a common data abstraction and syntax for the Web.
The RDF Vocabulary Description language (RDFS) and the OWL together
provide a common data modelling (schema) language for data in the Web.
The SPARQL Query Language and Protocol provide a standard means for
interacting with data in the Web.

These technologies are being applied across diverse applications because
many applications require a common framework for publishing, sharing,
exchanging and integrating (“joining up”) data from different sources. The
ability to link data from different sources is motivating many projects, as
different communities seek to exploit the hidden value in data previously
spread across isolated sources.

The SKOS therefore aims to provide a bridge between different commu-
nities of practice within the library and information sciences involved in the
design and application of knowledge organisation systems. In addition, SKOS
aims to provide a bridge between these communities and the Semantic Web,
by transferring existing models of knowledge organisation to the Semantic
Web technology context, and by providing a low-cost migration path for
porting existing knowledge organisation systems to RDF.

4.6 Unified Quality Reports 117

The SKOS is a common data model for knowledge organisation systems
such as thesauri, classification schemes, subject heading systems and tax-
onomies. Using SKOS, a knowledge organisation system can be expressed
as machine-readable data. It can then be exchanged between computer appli-
cations and published in a machine-readable format in the Web. The SKOS
data model is formally defined as an OWL Full ontology. SKOS data are
expressed as RDF triples and may be encoded using any concrete RDF syntax
(such as RDF/XML or Turtle). The SKOS data model views a knowledge
organisation system as a concept scheme comprising a set of concepts. These
SKOS concept schemes and SKOS concepts are identified by URIs, enabling
anyone to refer to them unambiguously from any context, and making them a
part of the World Wide Web. SKOS concepts can be labelled with any number
of strings, in any given natural language. One of these labels in any given
language can be indicated as the preferred label for that language, and the
others as alternative labels.

4.6.10 OWL18

The OWL is a language for defining and instantiating Web ontologies.
Ontology is a term borrowed from philosophy that refers to the science of
describing the kinds of entities in the world and how they are related. An
OWL ontology may include descriptions of classes, properties, and their
instances. Given such an ontology, the OWL formal semantics specifies
how to derive its logical consequences, i.e., facts not literally present in the
ontology, but entailed by the semantics. These entailments may be based on a
single document or multiple distributed documents that have been combined
using defined OWL mechanisms.

One question that comes up when describing yet another XML/Web
standard is “What does this buy me that XML and XML Schema don’t?”
There are two answers to this question.

• An ontology differs from an XML schema in that it is a knowledge rep-
resentation, not a message format. Most industry-based Web standards
consist of a combination of message formats and protocol specifications.
These formats have been given an operational semantics, such as, “Upon
receipt of this PurchaseOrder message, transfer Amount dollars from
AccountFrom to AccountTo and ship Product”. But the specification is

18This section contains material derived from “OWL Web Ontology Language Overview”,
https://www.w3.org/TR/owl-features/ c© 2004 W3C.

118 ALIGNED MetaModel Overview

not designed to support reasoning outside the transaction context. For
example, we will not in general have a mechanism to conclude that
because the Product is a type of Chardonnay it must also be a white
wine.

• One advantage of OWL ontologies will be the availability of tools that
can reason about them. Tools will provide generic support that is not
specific to the particular subject domain, which would be the case if
one were to build a system to reason about a specific industry-standard
XML schema. Building a sound and useful reasoning system is not a
simple effort. Constructing an ontology is much more tractable. It is
our expectation that many groups will embark on ontology construction.
They will benefit from third-party tools based on the formal properties of
the OWL language, tools that will deliver an assortment of capabilities
that most organisations would be hard pressed to duplicate.

The OWL language provides three increasingly expressive sublanguages
designed for use by specific communities of implementers and users.

OWL Lite supports those users primarily needing a classification hierar-
chy and simple constraint features. For example, while OWL Lite supports
cardinality constraints, it only permits cardinality values of 0 or 1. It should
be simpler to provide tool support for OWL Lite than its more expressive rel-
atives, and provide a quick migration path for thesauri and other taxonomies.

OWL DL supports those users who want the maximum expressiveness
without losing computational completeness (all entailments are guaranteed
to be computed) and decidability (all computations will finish in finite time)
of reasoning systems. OWL DL includes all OWL language constructs with
restrictions such as type separation (a class cannot also be an individual or
property, a property cannot also be an individual or class). OWL DL is so
named due to its correspondence with description logics, a field of research
that has studied a particular decidable fragment of FOL. OWL DL was
designed to support the existing Description Logic business segment and has
desirable computational properties for reasoning systems.

OWL Full is meant for users who want maximum expressiveness and
the syntactic freedom of RDF with no computational guarantees. For exam-
ple, in OWL Full, a class can be treated simultaneously as a collection
of individuals and as an individual in its own right. Another significant
difference from OWL DL is that a owl:DatatypeProperty can be marked as
an owl:InverseFunctionalProperty. OWL Full allows an ontology to augment
the meaning of the pre-defined (RDF or OWL) vocabulary. It is unlikely that
any reasoning software will be able to support every feature of OWL Full.

4.6 Unified Quality Reports 119

4.6.11 RDFS19

The RDF is a framework for expressing information about resources.
Resources can be anything, including documents, people, physical objects,
and abstract concepts.

RDF is intended for situations in which information on the Web needs
to be processed by applications, rather than being only displayed to people.
RDF provides a common framework for expressing this information so it
can be exchanged between applications without loss of meaning. Since it is
a common framework, application designers can leverage the availability of
common RDF parsers and processing tools. The ability to exchange informa-
tion between different applications means that the information may be made
available to applications other than those for which it was originally created.

In particular, RDF can be used to publish and interlink data on the Web.
For example, retrieving http://www.example.org/bob#me could provide data
about Bob, including the fact that he knows Alice, as identified by her IRI
(International Resource Identifier). Retrieving Alice’s IRI could then provide
more data about her, including links to other datasets for her friends, interests,
and so on. A person or an automated process can then follow such links
and aggregate data about these various things. Such uses of RDF are often
qualified as Linked Data.

Triples
RDF allows us to make statements about resources. The format of these
statements is simple. A statement always has the following structure:

<subject> <predicate> <object>

An RDF statement expresses a relationship between two resources. The
subject and the object represent the two resources being related; the predicate
represents the nature of their relationship. The relationship is phrased in a
directional way (from subject to object) and is called in RDF a property.
Because RDF statements consist of three elements, they are called triples.

Here are examples of RDF triples (informally expressed in pseudocode):

Example 1: Sample triples (informal)

<Bob> <is a> <person>.
<Bob> <is a friend of> <Alice>.

19This section contains material derived from “RDF Schema 1.1”, https://www.w3.org/TR/
rdf-schema/ c© 2004–2014 W3C.

120 ALIGNED MetaModel Overview

<Bob> <is born on> <the 4th of July 1990>.
<Bob> <is interested in> <the Mona Lisa>.
<the Mona Lisa> <was created by> <Leonardo da Vinci>.
<the video “La Joconde Washington”> <is about> <the Mona Lisa>

The same resource is often referenced in multiple triples. In the example
above, Bob is the subject of four triples, and the Mona Lisa is the subject
of one and the object of two triples. This ability to have the same resource be
in the subject position of one triple and the object position of another makes
it possible to find connections between triples, which is an important part of
RDF’s power.

We can visualise triples as a connected graph. Graphs consist of nodes
and arcs. The subjects and objects of the triples make up the nodes in the
graph; the predicates form the arcs. Figure 4.20 shows the graph resulting
from the sample triples.

Once you have a graph like this you can use SPARQL to query for e.g.,
people interested in paintings by Leonardo da Vinci.

The RDF Data Model is described in this section in the form of an
“abstract syntax”, i.e., a data model that is independent of a particular con-
crete syntax (the syntax used to represent triples stored in text files). Different
concrete syntaxes may produce exactly the same graph from the perspective
of the abstract syntax. The semantics of RDF graphs are defined in terms of
this abstract syntax.

4.6 Unified Quality Reports 121

4.6.12 RDF20

The RDF is a language for representing information about resources in the
World Wide Web. It is particularly intended for representing metadata about
Web resources, such as the title, author, and modification date of a web
page, copyright and licensing information about a Web document, or the
availability schedule for some shared resource. However, by generalising the
concept of a “Web resource”, RDF can also be used to represent information
about things that can be identified on the Web, even when they cannot be
directly retrieved on the Web. Examples include information about items
available from online shopping facilities (e.g., information about specifica-
tions, prices, and availability), or the description of a Web user’s preferences
for information delivery.

RDF is intended for situations in which this information needs to be
processed by applications, rather than being only displayed to people. RDF
provides a common framework for expressing this information so it can
be exchanged between applications without loss of meaning. Since it is
a common framework, application designers can leverage the availability
of common RDF parsers and processing tools. The ability to exchange
information between different applications means that the information may
be made available to applications other than those for which it was originally
created.

RDF is based on the idea of identifying things using Web identifiers
(called Uniform Resource Identifiers, or URIs), and describing resources in
terms of simple properties and property values. This enables RDF to represent
simple statements about resources as a graph of nodes and arcs represent-
ing the resources, and their properties and values. To make this discussion
somewhat more concrete as soon as possible, the group of statements “there
is a Person identified by http://www.w3.org/People/EM/contact#me, whose
name is Eric Miller, whose email address is em@w3.org, and whose title is
Dr.” could be represented as the RDF graph below:

This illustrates that RDF uses URIs to identify:

• individuals, e.g., Eric Miller, identified by http://www.w3.org/People/
EM/contact#me

20This section contains material derived from “RDF Primer”, https://www.w3.org/TR/rdf-
primer/ c© 2004 W3C.

122 ALIGNED MetaModel Overview

Figure 4.20 An RDF Graph Describing Eric Miller.

• kinds of things, e.g., Person, identified by http://www.w3.org/2000/10/
swap/pim/contact#Person

• properties of those things, e.g., mailbox, identified by http://www.w3.
org/2000/10/swap/pim/contact#mailbox

• values of those properties, e.g., mailto:em@w3.org as the value of the
mailbox property (RDF also uses character strings such as “Eric Miller”,
and values from other datatypes such as integers and dates, as the values
of properties)

RDF also provides an XML-based syntax (called RDF/XML) for record-
ing and exchanging these graphs. Example 2 is a small chunk of RDF in
RDF/XML corresponding to the graph in Figure 4.20:

Example 2: RDF/XML Describing Eric Miller

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact\#me">
<contact:fullName>Eric Miller</contact:fullName>

4.6 Unified Quality Reports 123

<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>
</contact:Person>

</rdf:RDF>

Note that this RDF/XML also contains URIs, as well as properties like
mailbox and fullName (in an abbreviated form), and their respective values
em@w3.org, and Eric Miller.

Like HTML, this RDF/XML is machine processable and, using URIs,
can link pieces of information across the Web. However, unlike conventional
hypertext, RDF URIs can refer to any identifiable thing, including things that
may not be directly retrievable on the Web (such as the person Eric Miller).
The result is that in addition to describing such things as Web pages, RDF can
also describe cars, businesses, people, news events, and so on. In addition,
RDF properties themselves have URIs, to precisely identify the relationships
that exist between the linked items.

http://taylorandfrancis.com

5
Tools

Kevin Feeney1, Christian Dirschl2, Katja Eck2, Dimitris Kontokostas3,
Gavin Mendel-Gleason1, Helmut Nagy4, Christian Mader4

and Andreas Koller4

1Trinity College Dublin, Ireland
2Wolters Kluwer Germany, Germany
3University of Leipzig, Germany
4Semantic Web Company, Austria

5.1 Model Catalogue

5.1.1 Introduction

Careful management of metadata is essential for the effective reuse of data
and the correctness of any software designed for processing the data. Meta-
data may capture best practice in a domain and as such the reuse of metadata
can proliferate best practice. Traditionally, most metadata is usually captured
implicitly, and embedded in the software or system that use the data. Motiva-
tion for developing a tool for managing and curating metadata includes data
and software interoperability, documenting metadata as models and building
a platform for automatically generating software systems from models.

Without easily available metadata, determining the compatibility of
datasets and software systems becomes challenging. The problem is com-
pounded where there are multiple datasets and software systems, as the
metadata for each needs to be documented manually, ex post facto, in order to
determine compatibility. There are several challenges to collecting, managing
and documenting metadata. Metadata may have only been documented con-
ceptually, and there may be ambiguities in the metadata that require further
clarification.

The Model Catalogue is an online tool that supports the capture and
documentation of metadata as generic and reusable models. The tool facili-
tates collaboration between metadata creators and potential users. The system

125

126 Tools

defines a core language for describing metadata, which enables sharing,
documentation and reuse of metadata. The tool uses standards-based concepts
for registration, versioning and a standard four level architecture with an API
for interoperability with external tools.

Metadata is data that describes data by capturing essential relationships,
classifications and atomic data elements. Metadata is important for data reuse
and underpins the software that stores, processes and analyses any dataset.
This information captures the meaning and guides interpretation of the data.
However, in typical usage, metadata is captured implicitly and embedded
within the software system that uses the data. This is problematic because
metadata is essential to reuse the data outside the original context.

Metadata is also essential to interoperability. The compatibility of two
datasets may only be determined by examination of the datasets’ metadata.
This can be an arduous task where the metadata is embedded with the soft-
ware and the difficulty can be compounded where there are several datasets
involved. Software interoperability, where independent systems can share
messages and data, relies on compatible metadata for the involved systems.

When metadata is separated from the use of the data, two important
efficiencies are made possible. Firstly, the metadata can be explored inde-
pendently from the data, so the compatibility of datasets and interoperability
of software can be determined without analysis or re-collection of the data.
Metadata can also be captured in a generic form, as metadata models and soft-
ware systems for managing data can be generated from sufficiently detailed
metadata models. Other benefits to a metadata-oriented approach include
reasoning and discussion about the underlying model with experts, reuse of
metadata and creating a map of data across the systems in an organisation.

Metadata can also be used to encode the established best practice in a
domain. The definitions of how data should be structured, what data should
be captured and the intended use for the data can be captured in metadata.
For example, metadata can specify the resolution and level of granularity for
data capture. When metadata is embedded directly with the use of the data,
reuse of the best practice can be a challenge. Where metadata is encoded as
generic models and the models are documented independently of any system,
the essential information about a domain becomes more readily available for
reuse. Software developers can use these metadata models to encode the best
practice of a domain. Reusing metadata models helps proliferate established
best practice.

Generic models of metadata can encode the best practice of a domain.
This can be taken further by allowing potential data users to reuse subsets
of a generic data model. This means that only the relevant data elements

5.1 Model Catalogue 127

and classifications from a model can be reused and repurposed in a new
context. However, reusing, changing or merging models for a new context is
challenging unless elements have exactly the same meaning in both contexts.
Subtle differences between models’ elements can make the reuse of models
and data problematic, especially when changes in versions are not docu-
mented or tracked. Each element of metadata must be documented in order to
determine the compatibility of that data element for reuse in a new context.

5.1.2 Model Catalogue

The Model Catalogue is a toolkit for creating, sharing, and updating
data models. The system uses a layered architecture, described below,
which allows for a number of possible Graphical User Interfaces. The
data models are descriptions or specifications of data artefacts, objects, or
implementations.

A data model may describe or specify:

• a dataset or database holding data of interest
• a request for data from a collection of databases or datasets
• a standard for developers to work to
• a form used for data entry
• a message carrying data from one system to another
• a report offered or required
• a workflow or pathway in which data are collected and used.

A data model will be simpler than the artefact it describes. It need not consider
every aspect of the artefact or implementation, only the data items of interest
and the relationships between them.

A data model will be more comparable. It is easier to compare data
models, written in a single modelling language, than to compare artefacts
implemented using a range of different technologies.

A data model will be more re-usable. It is safer to produce a new
artefact by copying parts of a model than by copying parts of the existing
implementation. There are additional advantages – cost, consistency – if the
new artefact can be generated automatically.

5.1.2.1 Architecture
The Model Catalogue has been built in a traditional layered architecture,
facilitating access through both manual and programmatic means. This struc-
ture is shown in Figure 5.1. At the base layer is a relational database: in
the current implementation, we use PostgreSQL as a stable, tried-and-tested
open source solution. To ensure consistency of the underlying data, we insist

128 Tools

Figure 5.1 The layered architecture of the Model Catalogue.

that all data access and manipulation is through a programmatic API: this is
currently implemented in Java and is used by the higher levels of the stack,
but can also be used by external tools built with Java.

At the next level up is a Web-based REST API. This can be used
to programmatically access remote deployments of the catalogue, and is
language-independent: it can be used by any sophisticated toolset to interact
with a publicly available catalogue. The final layer is the human-readable
Web interface. This provides an attractive view of the data to facilitate a
range of use cases, accessible on modern Web browsers using standard
interface patterns for security and interaction. The Model Catalogue provides
a generic API so that any Java-based tool, including Eclipse, can be integrated
programmatically.

Figure 5.2 Core concepts – data model components – within the Model Catalogue.

5.1 Model Catalogue 129

At the core level, the catalogue contents are structured in a simple hierar-
chy, a subset of which is shown in Figure 5.2. At the top level is a Data Model,
which may be versioned and published. A model contains a number of Data
Classes, which provide categorisation or structuring. At the lowest level are
Data Elements, which describe individual data points. Each Data Element has
a Data Type, which may be either: a Primitive, such as String or Integer; an
Enumerated Type, where allowed values may be defined in the context of this
model or taken from a larger terminology; or a Reference Type, denoting a
pointer to data from another Data Class. Figure 5.3 shows this hierarchy.

Components of data models may be linked: a link between two elements
can represent that two data items are equivalent, that one is derived from
another, or that one is different to another. For example, one element in
a dataset might be linked to a definition within a data-standard to assert
that the guidelines have been followed in the collection of that data item.
Another item might be linked to that same data standard definition with a
“different to” annotation to assert that although these data points might look
the same, there is a subtle difference that may be explained in the item’s
description.

The Model Catalogue Web interface currently supports the fundamental
use case requirements: browsing, searching and editing/updating models.
These are described in the next sections.

Figure 5.3 A model showing the datatypes represented in the Model Catalogue.

130 Tools

5.1.2.2 Searching and browsing the catalogue
There may be many models in the catalogue with the same name. For this
reason, the contents of the catalogue can be searched or browsed using system
metadata:

• model name
• editors – the catalogue users with write access
• status – draft or finalised
• catalogue version
• creation date
• last edit date
• imports from – the list of models which use the datatypes defined within

this model

or by user-supplied metadata:

• owner(s) – responsibility
• author(s) – credit
• organisation(s) – authority
• external version name/label
• external release name/label

Other searching and browsing requirements will be addressed using anno-
tations and classifications. Users with write access to a model can
add annotations against templates provided for that model type. Users
with read access can classify models and model components to which they
have read access.

The two-panel view of the catalogue, as shown in Figure 5.4, provides a
familiar interface, with the structured model contents in the left-hand pane,
and the currently viewed data model component in the larger right-hand pane.
A view of a data model displays metadata about that model and a list of all
child data classes; similarly, the view of a data class shows metadata about
that class, along with all contained data elements. The view of a data element,
as illustrated in Figure 5.5, shows detailed information about the datatype,
including any enumerated values, along with the description, and metadata
about its place within the model, its current publication status, and when it
was last updated.

The Web interface currently offers a basic keyword search across different
component types within the catalogue. This helps potential users of collected
datasets find data items that may be useful to their work. Figure 5.6 shows
this keyword search in action for the Seshat Code Book model.

5.1 Model Catalogue 131

Figure 5.4 Model Catalogue interface: browsing the Seshat code book.

5.1.2.3 Editing the catalogue contents
Editing a draft data model is a simple process whereby most fields may be
edited in place. Figure 5.7 shows the editing of basic data element details:
name and description. All modifications are recorded. A change log is created
and preserved for each model, showing the time, date, and user responsible
for each change.

Although people may currently use the catalogue to collaboratively edit a
model, simultaneous updates can cause confusion. In the next version of the
system, at the point of opening a component for editing, a user will be alerted

132 Tools

Figure 5.5 Model Catalogue interface: data element view.

Figure 5.6 Model Catalogue interface: keyword search for a data item.

if that same component is currently open for editing by other user(s). The
identity of the other user(s) will be displayed, together with the time at which
they started their edit. At the point of saving an edit upon a component, a user
will be alerted if the component has been updated, by other user(s), since the

5.1 Model Catalogue 133

Figure 5.7 Model Catalogue interface: editing a data item.

edit began. In either case, the current can choose to proceed with the edit or
the save.

Once finalised, those with “write access” may further annotate a model:
while annotations are potentially useful and valuable, they are not taken to
contribute to the finalised interpretation of the model or model component.

The contents of a model, and any associated links, cannot be changed
after finalisation. However, the lists of users with write or read access can be
updated by any of those with write access.

Finalisation cannot be undone: instead, a new version must be created.
This can be done by any of those with write access to the finalised model:
the result is a copy of the model with a link to the existing, finalised model
indicating that it is indeed a “new version”.

There is no need to create a new version of a model that has not been
finalised: a user with write access can simply update the contents of the model
in its current “draft” state; an edit log is maintained automatically.

If two users with write access to a finalised model both create new
versions, then the development will branch. A branched development may
be merged by a user with write access to finalised models in both branches,
creating a model that is a new version of both.

A user who does not have write access to a finalised model may create a
copy of the model (or a component) that is not a new version but is instead
“based upon” that item. There is no requirement that the new item should
have the same intended interpretation.

134 Tools

When a new version of a finalised model is created, the result is a draft
model with a complete copy of the finalised model contents and metadata,
including all links and annotations.

Where a model or a component is the target of a classifier or label,
whether the classification concerned is updated to include the new version
depends upon the properties of the classification (and not the model). The
options are:

• add new version to classification alongside existing version
• add new version, remove existing version
• ignore new version

In the last case, the new version can then be added manually, if required.

5.1.2.4 Administration
The Model Catalogue administrator(s) can register new users as editors or
readers. They can manage models for which there are no longer any other
users with write access.

An editor can create new models and add or delete annotations for existing
models to which they have write access. They can create classifications
referring to any items to which they have read access. They can explore
models to which they have read access.

A reader can add or delete annotations for existing models to which they
have write access. They can explore models to which they have read access.

Where there are several users with write access to the same model,
the possibility of conflict arises. Any conflict may be addressed through
interaction with the administrator(s), who are able to modify any aspect of
the catalogue contents.

Any editor can create a user group. Any member of a user group can add
or remove members. User groups can be included in model access control
lists.

5.1.2.5 Eclipse integration and model-driven development
Core parts of the catalogue functionality are integrated with the Eclipse
Modeling Framework (EMF). EMF is fundamental to the majority of model-
driven development tools within Eclipse and is also used as the basis for
DSLs and transformations. This allows existing model-driven tools within
Eclipse to take advantage of the catalogue in order to reuse components of
models, increasing the speed of development, and allowing data linking and
interoperability between tools built within the framework.

5.1 Model Catalogue 135

Figure 5.8 Model Catalogue Eclipse Integration.

Furthermore, the EMF integration allows new Model Catalogue com-
ponents to be built in a MDE fashion – the screenshot in Figure 5.8
shows an automatically generated interface for interacting with the catalogue
data, including automatic change management to track multi-user updates.
Another auto-generated component stores all versions of every model
to disk.

The Model Catalogue also has a plugin architecture, providing exten-
sion points through which new functionality can be built and dynamically

136 Tools

integrated. For example, two key extension points are those of Importer
and Exporter: developers can write their own importers and exporters using
the Model Catalogue Java API to automatically document models in their
own language, or to use the catalogue as an interface for compiling new
models from existing ones. A developer may choose to write a data model
importer that documents the usage of a no-SQL database, and an exporter
that generates queries to retrieve that data and insert it into an SQL
database.

Further plugins are being developed for bespoke types of data model,
and custom interfaces that can be used to display and edit particular types of
model in a more familiar fashion. For example, a graphical editor for UML
diagrams, or a builder tool for designing data entry forms. This plugin archi-
tecture also allows custom configurations of the catalogue to be deployed –
using just those plugins necessary for the context: providing a better user
experience and requiring minimal system resources.

5.1.2.6 Semantic reasoning
Semantic links are created in the catalogue to associate parts of different
models – typically Data Elements – to assert that they are similar in meaning
or use. This allows descriptions of meaning to be reused: by asserting: “this
element is the same as that one” a modeller may take advantage of definitions
in other models, reducing the effort in documentation. These links also give us
the formal notion of “semantic interoperability”: that data from two sources
may be combined for a particular purpose.

To reason about this semantic interoperability property, using off-the-
shelf reasoning tools, it is useful to view the data in terms of triples. In order to
do this, the D2RQ tool1 allows users to expose internal relational data as RDF
triples (see screenshot in Figure 5.9). Although the mapping requires some
further customisation for easier use, the mapping is sufficient to reason about
key properties of the semantic links: circularities in the transitive “same-as”
link, and contradictions in definitions using the “same-as” and “not-same-as”
links.

A side effect of making this representation available is that the catalogue
contents can be linked to other open datasets. For example, catalogue meta-
data may be linked to other published artefacts with Dublin Core, provenance
information may be attached with PROV, linking to existing tagging and

1http://d2rq.org

5.1 Model Catalogue 137

Figure 5.9 Screenshot showing RDF representation of catalogue contents.

folksonomies through the Modular and Unified Tagging Ontology (MUTO),
and design intent may be linked to model components using DIO.

To assist with this linking, namespaces can be added to metadata elements
within the catalogue. These can be used to indicate fields for linking in
the RDF representation, or can be used by plugins to configure generated
artefacts, such as adding constraints to systems generated with Semantic
Booster, or shaping XSD outputs to match existing specifications.

5.1.2.7 Automation and search
Previous implementations of metadata registries have shown that it can be
difficult to encourage users to carefully document the whole data model to
a level that is sufficient for potential users of the data. In particular, when
dealing with models at scale, even simple tasks like finding a data element in
another model to link to, or comparing multiple versions, can be complicated
and time-consuming. In order to improve usability, a number of features assist
modellers in using the tool effectively and efficiently.

At the heart of this effort is greater power in searching across many
hundreds or thousands of data elements, in order to find related items, create
semantic links between items, and import or reuse whole model components.
Lucene and Solr2 help with indexing, and allow faster and more flexible
searching using keywords, related terms and intelligent suggestions. The

2http://lucene.apache.org

138 Tools

speed improvements offered by these tools make the Model Catalogue as a
whole scalable for domains with large numbers of complex data models.

Finding similar elements to link to can reduce the time it takes to doc-
ument a data element. To allow users to find similar items, an autosuggest
feature will find potential matches across all models, or a particular model,
based on datatypes, element names, and text matching in the description.

Using the semantic reasoning described above can also assist users in
creating semantic links, using the transitive properties to help them find
related data elements not already explicitly linked. Such reasoning can also
help find relations between larger model components: for example, linking
two data classes where the component data elements of each class are already
linked.

Comparing different models is also something that users need extra
assistance with – especially comparing multiple incremental versions of the
same model. To aid users in this activity, there is a Web interface, supported
by back-end API methods. Viewing two models side by side, with differences
highlighted, provides a user-friendly experience that will be familiar to those
with experience using traditional “diff” style tools.

5.1.3 Semantic Booster

5.1.3.1 Introduction
The data belonging to an organisation is often its most valuable asset:
traditionally payroll information and customer details, but more frequently
entire business models are based on the gathering and dissemination of
information. The software responsible for maintaining the integrity of this
data, and its consistent interpretation, will be critical to the ongoing function
of the business. Moreover, organisations need to evolve and adapt, and it will
be essential for the software and data to follow changes to business rules, and
for the semantics of the data to remain clear and unambiguous.

Building software that is both robust and adaptable brings with it many
challenges. The typical development process for robust systems for use in
safety-critical applications will be slow and labour-intensive. Agile develop-
ment processes are key to maintaining and evolving software, but are not
effective when dealing with large complex datasets, or where the guarantee
of software correctness is reliant on more than simple testing.

Automation and abstraction provide some solutions to these difficult
problems. By automating part – or indeed all – of the code generation process,
the influence of human error can be reduced, and the subsequent speed-up

5.1 Model Catalogue 139

can decrease the time necessary to adapt or evolve generated, working code.
By using suitable abstractions to model the software’s intended function,
correctness may be more carefully clarified, and the scope of updates or
evolutions may be more immediately realised.

The MDE approach attempts to combine both automation and abstraction.
Models may be domain-specific: comprehensible to non-technical domain-
experts, with automated processes generating software components to match.
In practice, however, such MDSE tools are either too specific, where models
are used for not much more than customising or configuring a particular
software artefact, such as in the generation of embedded systems; or too
general purpose, where a wide variety of specifications may be expressed,
but without the formality required for robust implementation, and in most
cases where code generation must be supplemented by custom hand-written
code.

The Booster tool has been written in an attempt to find the sweet spot
between these two extremes. Models describe information systems: software
components focussed on the correct management of business-critical data.
The modelling language takes an object-oriented approach to modelling busi-
ness concepts, but is supplemented with a formal, mathematical notation for
describing relationships between entities, integrity constraints, business rules,
and constraints upon interaction with data. The compilation process is com-
plete: working implementations are generated with no manual intervention or
addition required.

In order to make Booster more widely applicable – in particular to the
domain of data-intensive systems – some key enhancements are necessary.
Booster models are mostly without semantics: the meaning of entities or
attributes is not recorded. This means that data collected and maintained
within a Booster system may not be immediately re-usable within a differ-
ent context. Although Booster is able to maintain and migrate data in the
face of changing specifications, the meaning or context of these data may
be lost. Booster has been integrated with the Model Catalogue, allowing
metadata to be linked to each data item stored. As well as increasing the
value and utility of the data, it allows domain experts to more carefully
specify the functionality of the system, as well as permitting new notions of
correctness.

5.1.3.2 Semantic Booster
The Booster tool takes as input a formal specification, written in the Booster
language, and generates a complete working implementation. The Booster

140 Tools

language takes inspiration from the UML, incorporating familiar object-
oriented notions of classes, attributes and associations. This language is
supplemented with a formal constraint language, inspired by the mathematics
notations of Z and B, used in formal methodologies. These constraints can be
used to define integrity constraints and business rules, in the form of class
invariants, and pre- and post-conditions for methods.

The Booster language is supported by a custom editor written for the
Eclipse IDE. This provides a number of features that aid developers, such as
syntax highlighting, auto-suggestion, document outline, and code validation
“as-you-type”. Figure 5.10 shows a Booster specification being edited within
the IDE.

Once a specification is completed, an automatic generator can be executed
to generate an implementation. The generator consists of a number of stages,
implemented as a pipeline (see Figure 5.11). In the first stage, the model is
elaborated – this flattens the class hierarchy and in-lines any references to
other parts of the model, essentially making explicit any default assumptions.
The second stage of the pipeline is to apply a number of heuristics, to generate
simple code from each constraint in the model. These heuristics have been

Figure 5.10 A Booster specification edited with the Eclipse IDE.

5.1 Model Catalogue 141

Figure 5.11 The Booster generation pipeline.

defined based on experience of developing information systems, and the code
itself is written in an abstract, mathematical notation suitable for subsequent
analysis.

The third stage of the pipeline is to generate additional code based on
all constraints across the entire model. This process is similar to a ‘weakest-
precondition’ calculation in formal methods and ensures the correctness of
the final system: all business rules and integrity constraints are guaranteed to
be considered and upheld in the final system.

The fourth stage of the pipeline is simplification: the previous steps
generate large amounts of code, and much of it may be simplified to produce
more efficient programs. The final stage is to generate a database implemen-
tation – the original implementation generates MySQL. This implementation
includes database tables to store the core information, stored procedures
to implement all data update methods, and additional system metadata to
provide an object-relational mapping suitable for external users to interact
with the system.

The completed database implementation can be used in conjunction with
a bespoke API and user interface to provide a complete working system. This
structure is shown in Figure 5.12; the Web-based Booster interface is shown
in a screenshot in Figure 5.13.

The Booster approach embodies an approach in which the integrity of
the data is all important. The rigorous calculations and code generation in
the development pipeline ensure that for any form of update to the data,
all business rules and constraints are considered, guaranteeing that no data
integrity constraints will be invalidated as a result of any subsequent change.

142 Tools

Figure 5.12 The architecture of a Booster information system.

Figure 5.13 The Booster Web-based user interface.

Access to the data is through a carefully managed API, which ensures that
data are only manipulated in the manner specified in the original model.

In order to apply the Booster toolset to data-intensive systems, a number
of enhancements have been made. By integrating Booster with the Model
Catalogue, the stored semantic metadata can be used to enrich and inform
the development of Booster specifications, and to ensure the consistency and
reusability of the data held within Booster systems.

5.1 Model Catalogue 143

Figure 5.14 Generating Booster systems from Model Catalogue models.

Booster specification generation from Model Catalogue models
The first enhancement has been to build functionality to generate Booster
specifications automatically from models described in the Model Catalogue.
By using model components from the catalogue in our specification, we can
ensure that the generated software can conform with existing data standards,
or UML specifications, or can match data formats described using XML
schema or OWL ontologies. This automation also allows domain-experts to
begin generating software components without the need for development
effort. Figure 5.14 shows the Semantic Booster pipeline, where platform-
specific representations can be loaded into the Model Catalogue, and Booster
systems generated via the Booster compiler, with no manual intermediate
steps.

The structure of a model in the Model Catalogue is in many ways similar
to the structure of a Booster specification. However, a number of transforma-
tions are required to take the tree-structured model and turn it into the flatter
specification required for Booster. As well as this structural transformation,
some more practical changes to Booster were required – in particular allowing
all specification constructs to take a human-readable name, in addition to the
standard identifiers required by the constraint language. By hiding system
identifiers below the API level, the resulting information system is easier to
use for subject-matter experts, and ambiguity may be reduced.

At the outermost level, a DataModel in the Model Catalogue is translated
into a System in Booster. Every EnumerationType within the DataModel
is converted into a Booster Set, using the human-readable names, and gen-
erating system identifiers if necessary. All DataClass components from the
model, at any level in the hierarchy are converted into Booster Class decla-
rations. Where one DataClass is contained within another in the catalogue
DataModel, a bi-directional optional-to-one association between the two

144 Tools

classes is created in Booster, corresponding to the notion of ownership, or
composition in UML.

Every DataElement in the catalogue is translated into an Attribute in the
Booster model, with multiplicities maintained. Those elements with a Prim-
itiveType datatype in the catalogue are mapped to the appropriate Booster
primitive type. Similarly, EnumerationType elements in the catalogue get
mapped to equivalent Set valued attributes in Booster. Finally, ReferenceType
valued attributes are converted to bi-directional associations to the relevant
class in Booster.

As part of this transformation, a basic collection of update methods is
generated. For each Booster class, methods are created for creating, updating
and destroying objects of that class. In addition, for every bi-directional
association created by the transformation, methods are created for adding
and removing links. Where these associations correspond to composition
or aggregation, appropriate constraints are added to maintain the ownership
properties. Figure 5.15 shows the generated specification for part of the
PROV-DM Core Structures model.

The resulting Booster specification is suitable for generating a functional
system capable of entering and storing data corresponding to the original
model. In many cases, this may be sufficient, in particular with the addition of
a bespoke user interface to enact particular workflows on top of the generated
methods. However, the specification may also be used as the basis for a more
elaborate Booster system, by using the Booster functionality for importing
and overriding through inheritance. In this way, constraints and business
rules may be added, along with additional methods and attributes, to provide
a richer implementation, but by the nature of inheritance in Booster, still
compliant with the original data model.

Model Catalogue information through the Booster interfaces
Once a Booster system has been used to capture and store data, it is important
that this information can be reused. In many cases, this may require an
understanding of the context of collection. This is especially helpful where
data are to be combined from multiple systems, and it is important that
only data items with similar definitions are combined. In order to allow
such contexts to be available alongside the data, Semantic Booster needs
to include functionality to allow integration with the data stored within the
Model Catalogue.

It is vital that the Model Catalogue remains as the single source for meta-
data, rather than copies of the data being moved into the Booster-generated

5.1 Model Catalogue 145

Figure 5.15 Excerpt from the Booster system generated from Prov-DM Core.

system. Although most parts of the metadata are frozen on publication
(and subsequent implementation), other metadata components such as com-
ments and links may be added after the system has been deployed. The
approach taken has been to create links between components in the Booster
specification such that the metadata can be seamlessly retrieved.

Metadata concerning the Model Catalogue itself is placed in a table
alongside the Booster data: the Web URL to locate the catalogue, the version
number and name of the catalogue, along with any lists of any user credentials
required to access private models. Each Booster specification component
corresponding to an element from the Model Catalogue is stored with a
GUID, a link to the relevant catalogue metadata, and the credentials required
for access. This includes the system itself, every class and attribute, datatypes,
and enumeration values.

This model catalogue data is stored in the database alongside the data,
but accessed through a bespoke set of SQL stored procedures. These are
exposed through the API layer so that external applications can access them.

146 Tools

Figure 5.16 Model Catalogue information in the Booster interface.

The data are also propagated through the Booster Web interface, so that users
of the data can access the appropriate metadata. A new REST API call has
been added to the Model Catalogue, displaying a snippet of HTML with a
link for more information. This is shown in Figure 5.16.

Semantic Booster: Booster data as triples
A key requirement of Semantic Booster is that system data must be accessible
as RDF Triples. Data systems generated by the original Booster tool have
employed a standard relational schema for data persistence, and standard
stored procedures for operations on data. In Semantic Booster, a new target
had been developed: “Generate Triple Map” is to be used alongside the
standard relational generation (Figure 5.17).

This additional transformation generates a mapping specified in the
W3 standard R2RML language.3 This mapping reflects the Booster spec-
ification, and includes standard simplifications for Booster constructs of
associations and inheritance, creating a lightweight wrapper for the Booster
database schema. The R2RML standard has made this extension tractable:

3https://www.w3.org/TR/r2rml

5.1 Model Catalogue 147

Figure 5.17 Semantic Booster – generation menu in the Eclipse IDE.

the functionality has been enabled using an additional transformation, rather
than a ground-up rewrite of the pre-existing transformations.

The R2RML schema can be used to present a ‘live’ view of the data or to
extract the whole dataset as a data ‘dump’. Furthermore, the data are opened
to a range of existing ‘semantic Web’ tools which can deal with the data in
this triple format.

In the live view, any changes made by Booster operations are auto-
matically available in the triples. No complex update or synchronisation is
required as the triple-view of the data is derived directly from the relational
data, and existing Booster functionality is not affected.

User-Specified semantic mappings
Typically, RDF triples have associated-type information in a semantic
schema, typically via an RDF schema or an OWL ontology. The schema gives
users a grounding by which to explore, classify, and query the objects, data
and relationships in a dataset. Typical queries over a semantic dataset might
find all elements with a particular semantic type, relationship type or a pattern
of types, using the SPARQL query language. The schema and types of a data
system are defined on a per-system basis by data engineers.

For a system such as Semantic Booster to be useful to data engineers, the
types and schemas of the system must be customisable. In an R2RML map-
ping, each element must have a type, and a default set of types is created by

148 Tools

Figure 5.18 Semantic Booster – generated R2RML file.

the “Generate Triple Map” target. A sample generated R2RML file is shown
in Figure 5.18. In Semantic Booster, the types of each element can also be
specified via annotations in the Booster specification. An annotation syntax
has been added to the standard Booster notation, as shown in Figure 5.19,
lines 6, 10–11 and 14–15. Annotations on each class, attribute and relation-
ship of a Booster specification can be specified by the engineer. The generated
R2RML mappings, and in turn the data, will hold the type information from
the annotation for those data elements. As with semantic data, URIs are used
for types and a prefix mechanism is provided so that URIs may be shortened
in a specification, shown in Figure 5.19 lines 3–4. This annotation mechanism
is itself extensible, so that enhancements to the R2RML specification may be
further customised to enhance the relational-triple mapping

Integration with the Model Catalogue
In order that the Booster tool can be applied in the context of large-scale data
engineering, it is important that data managed by a Booster system can be
adequately understood, re-purposed, and combined with other data sources.

5.1 Model Catalogue 149

Figure 5.19 Booster specification with semantic annotations.

To facilitate this, Booster is integrated with the Model Catalogue. A typical
software development process using the combined toolset might start with
the import of a data standard, or the metadata for an existing dataset, into
the Model Catalogue. These descriptions can be reused and extended in the
definition of a new data model, and exported as a new Booster specification.
Figure 5.20 shows Booster with Model Catalogue semantic annotations. The
Booster specification contains hooks back to the original definitions, such
that the generated system can store links back to the definitions, and provide
them to users at the data-entry interface. This can improve the quality of
data entry, and ensure consistency across multiple systems using equivalent
definitions. Finally, an existing Booster specification may be re-imported into
the catalogue and annotated for further reuse.

The round-tripping provided by this new functionality allows the Model
Catalogue to be used as an enhanced IDE for model-driven development. The

150 Tools

Figure 5.20 Booster user interface showing semantic annotations from the Model
Catalogue.

extended reuse of data components promotes greater reuse of data, and can
lead to improvements to the quality of data, and the adherence to standard
definitions.

Eclipse Booster IDE
During the second phase of the ALIGNED project, the Booster tool has been
upgraded to use the latest versions of the Spoofax language engineering work-
bench – from version 1.x to the newly released v2.0. Spoofax provides rich
editing support for Booster specifications inside Eclipse and includes syntax
highlighting, specification outline views and type checking. The upgrade
brings amongst other changes: improved compilation and transformation
times, simpler project layouts and support for running transformations with-
out Eclipse, via the Sunshine tool. Running Booster transformations outside
of Eclipse is a key component of the Semantic Booster Development and
Deployment Kit (sBDK) discussed in Section 4. The enhanced underlying
environment has allowed the development of more powerful editors and
syntax checking, and allows the Booster tool itself to be more easily updated
to meet new requirements or support further functionality.

Semantic Booster development and deployment kit: sBDK
In order to support developers and end users of Semantic Booster systems,
a number of features have been created and combined to form a Semantic
Booster Development and Deployment Kit (sBDK).

5.1 Model Catalogue 151

Semantic Booster Docker Container
Creating a useable system using Semantic Booster and Eclipse can be oper-
ationally challenging, requiring many non-trivial steps to setup a workable
system. The complexity has only increased since the additional developments
for the ALIGNED project partners. Several interdependent software packages
must be installed and configured correctly for a Semantic Booster system to
work as intended.

To simplify and streamline the creation and maintenance of data-intensive
systems with Semantic Booster, a Docker container has been developed.
Docker4 is a framework for building applications as containers, making them
portable and easily deployed without complicated configuration or system
set-up. Docker is used to automate deployment of all software needed for a
Semantic Booster system whilst isolating the software from the host operating
system. The container takes a single parameter: a Booster specification that
the user has previously created: either using the tool support provided in the
Semantic Booster Eclipse editor, or exported as an artefact from the Model
Catalogue. The Docker container will execute a number of scripts to configure
and create tools to access and manage the system. A Web-based Booster
editor is provided, along with the Booster Native Data exploration tool and a
number of semantic data exploration tools.

Additional parameters can be provided to the Docker initialisation to
perform additional system configuration, including the pre-population of
the generated Semantic Booster system and the ability to persist, backup
and restore the database between different runtimes of the system: features
vital to the smooth operation of the system within the ALIGNED use case.
Parameters have been added to the container to regenerate only the methods
of a Semantic Booster system. The Semantic Booster Docker container is
available on GitHub and is in use by the Wolters Kluwer IPG use case.

Semantic Booster web editor
A new feature for Semantic Booster is the Web-based editor for Semantic
Booster specifications. The editor is less sophisticated than the existing
Eclipse-based tooling and therefore is expected to only be used for iteration
to an existing specification or system. The Semantic Booster Web editor is
shown in Figure 5.21. The editor also provides automatic generation and rede-
ployment functionality, such that a system previously created by the Docker

4http://docker.com

152 Tools

Figure 5.21 Semantic Booster Web-based editor.

container can be recreated. This uses the Sunshine mechanism of the Spoofax
language, to execute Booster transformations outside the Eclipse IDE.

Default Booster web explorer
As well as the Web editor, the Docker container also deploys the default
Booster Web Data Explorer (Figure 5.22) from where the data in a Booster
system can be explorer and operations invoked. The data explorer can be con-
figured to link to a model catalogue for providing metadata annotations, and
is configured to expose information available through the semantic mappings.

Semantic data exploration: D2RQ, Snorql
The D2RQ semantic Web data exploration tool and the Snorql SPARQL
query tool (illustrated in Figure 5.23) are pre-configured in the Docker
container. These tools use the R2RML mapping created by Semantic Booster
to present the data in a Booster system as triples. This allows for interoper-
ability between the software engineering and data engineering worlds. D2RQ
provides a data browser – an RDF equivalent to the default Booster data
explorer. Snorql provides a standard SPARQL endpoint to the RDF triples:
as a W3C standard for querying semantic Web data, this allows a variety of

5.1 Model Catalogue 153

Figure 5.22 Default Booster data explorer.

standard semantic Web tools to interact with the data stored within a Booster
system.

The mapping generated is specific to the Booster specification and con-
siders the semantic mapping annotations defined for classes and attributes.
In addition, some simplifications are made to better represent Booster
inheritance and association.

Semantic data visualisation tool: D3Sparql
A second semantic Web-based data exploration tool has been included in
the Semantic Booster Docker container: D3Sparql. Semantic Web data, as
triples forms a conceptual graph of data. D3Sparql visualises the results of a
SPARQL query as an interactive graph, as shown in Figure 5.8. End users can
make use of the tool to interact with the RDF data: domain experts may make
use of pre-defined SPARQL queries to provide dashboard-style views or high-
level summary metadata; technical users may make use of the built-in Snorql
tool to develop complex queries for searching or investigation. Figure 5.24
shows D3Sparql in action.

154 Tools

Figure 5.23 D2RQ and SNORQL for exploration of Semantic Booster data.

5.2 RDFUnit 155

Figure 5.24 d3sparql for visual exploration of Semantic Booster data.

Semantic data validation tool: RDFUnit
The RDFUnit tool has been integrated into the Semantic Booster Docker
Container, as shown in Figure 5.25. RDFUnit is used for the validation of
data and allows end users to validate RDF triple data against a suite of
specifications of data quality constraints, written in SPARQL. The tool checks
that the constraints hold post-hoc, in contrast to the correct by construction
approach of Semantic Booster. RDFUnit is configured to use the D2RQ
endpoint, allowing constraints to be written against up-to-date Booster data.

5.2 RDFUnit

RDFUnit is an RDF validation framework inspired by test-driven software
development. The test case definition language of RDFUnit is SPARQL,

156 Tools

Figure 5.25 RDFUnit Web interface.

which is convenient to directly query for identifying violations. For rapid test
case instantiation, a pattern-based SPARQL-Template engine is supported
where the user can easily bind variables into patterns. RDFUnit has a Test
Auto Generator (TAG) component. TAG searches for schema information
and automatically instantiates new test cases. Schema information can be in
the form of RDFS or OWL axioms that RDFUnit translates into SPARQL
under Closed World Assumption (CWA) and Unique Name Assumption
(UNA). Other schema languages such as SHACL5, IBM Resource Shapes6

or Description Set Profiles7 are also supported. For a full overview of

5https://www.w3.org/TR/shacl/
6https://www.w3.org/Submission/shapes/
7http://dublincore.org/documents/dc-dsp/

5.2 RDFUnit 157

Figure 5.26 RDFUnit architecture.

RDFUnit’s data testing and verification capabilities see Kontokostas et al.
Figure 5.26 shows the RDFUnit architecture.8

5.2.1 RDFUnit Integration

The following subsections describe three ways RDFUnit-based data test-
ing and verification can be integrated into software engineering workflows.
The JUnit runner with annotations provides a very easy and well integrated
option but does not give room for flexibility beyond testing an input dataset
to a fixed schema. The JUnit XML Report gives room for greater flexi-
bility by utilising the complete RDFUnit command line options. Finally,
the custom Maven-based integration gives software engineers a way to
fine-tune the way they want to automate their data testing and verification
options.

JUnit Runner integration with Java annotations
JUnit allows other testing frameworks to extend JUnit with custom

Runners9 tailored for specific testing. A custom JUnit Runner was imple-
mented, RdfUnitJunitRunner10, which can be used to define JUnit tests for
validating RDF datasets against a schema, by adding Java annotations to
a JUnit test.

8D. Kontokostas, P. Westphal, S. Auer, S. Hellmann, J. Lehmann, R. Cornelissen, and A.
Zaveri. Test-driven Evaluation of Linked Data Quality, Proc. 23rd International Conference
on World Wide Web, pp. 747–758, DOI 10.1145/2566486.2568002, 2014.

9https://github.com/junit-team/junit4/wiki/test-runners
10https://github.com/AKSW/RDFUnit/tree/master/rdfunit-junit

158 Tools

An example RDFUnit/JUnit test is the following:
@RunWith(RdfUnitJunitRunner.class)
@Schema(uri = "schema.ttl")
public static class TestRunner {

@TestInput
public RDFReader getInputData() {

return new RdfModelReader(
RdfReaderFactory.createResourceReader(

"/inputmodels/data.ttl").read()); }
}

Where data.ttl is an RDF data file (using the @TestInput annotation) tested
by a JUnit test against schema.ttl (using the @Schema annotation).

For every automatically generated RDFUnit test, a separate JUnit test
is generated that validates the input dataset for a specific violation. The
reporting of validation errors is integrated with JUnit reports, thus providing
the means to display them through IDEs like IntelliJ or with build tools like
Maven.

5.2.1.1 JUnit XML report-based integration
JUnit uses a specific XML schema11 to communicate the test results to IDEs
or build tools. For cases when defining an RDFUnit/JUnit test is not an option
(i.e., the files are not accessible from the build system with Java code), the
RDFUnit results can be converted to the JUnit XML Schema. In these cases,
developers can run RDFUnit as a command line tool or through custom code,
expecting validation results in the JUnit XML Schema. Build systems, such
as Bamboo, can then be configured to look at specific locations for such XML
files and report the RDFUnit validation results with the existing unit test error
reporting tools.12 Figure 5.27 shows the RDFUnit report in the IntelliJ IDE.
Figure 5.28 shows the report in the Bamboo build system.

5.2.1.2 Custom apache maven-based integration
When the input data or schema graph are not simple input files, but generated
through custom procedures, the aforementioned methods are not easy to
apply. For those cases, RDFUnit can be used as a Java library, fine-tuned for
custom input or more sophisticated Jenkin reports. This was the case with the
JURION demo, where RDFUnit was used to validate if the output of specific
XSLT scripts adhered to the JURION Schema. All results were archived to

11https://svn.jenkins-ci.org/trunk/hudson/dtkit/dtkit-format/dtkit-junit-
model/src/main/resources/com/thalesgroup/dtkit/junit/model/xsd/junit-4.xsd

12https://github.com/AKSW/RDFUnit/wiki/Using-RDFunit-with-Bamboo

5.2 RDFUnit 159

Figure 5.27 RDFUnit report from the IntelliJ IDE.

Figure 5.28 Example Bamboo overview from an RDFUnit JUnit XML report.

160 Tools

Figure 5.29 Custom JUnit integration with RDFUnit as a library for JURION Use Case in
ALIGNED.

a triple store for post-processing analysis (see Image 3). A research paper
was published that describes this use case in detail.13 Figure 5.29 shows the
integration of RDFUnit in JURION.

5.2.1.3 The shapes constraint language (SHACL)
The Shapes Constraint Language is a language to validate RDF graphs against
a set of constraints. These constraints are formalised as shapes and other
constructs expressed in the form of an RDF graph. The language features
and approaches occurring in the current specification of SHACL were in
part inspired by the SPIN14 and Shape Expressions (ShEx).15 The current

13Dimitris Kontokostas, Christian Mader, Michael Leuthold, Christian Dirschl,
Katja Eck, Jens Lehmann and Sebastian Hellmann. Semantically Enhanced Quality
Assurance in the JURION Business Use Case. ESWC 2016, Crete. Available at:
http://link.springer.com/chapter/10.1007/978-3-319-34129-3 40

14http://spinrdf.org/
15E. Prud’hommeaux, J. E. Labra Gayo and H. Solbrig. Shape expressions: an RDF val-

idation and transformation language, 10th International Conference on Semantic Systems,
pp. 32–40, 2014.

5.2 RDFUnit 161

revision of the specification for SHACL is published by the W3C16 with
complementary material available in a GitHub repository.17

SHACL Core defines frequently needed features to formulate common
constraints for RDF graphs. SHACL Core Constraints are defined by param-
eterising Constraint Components that are templates for checks for a specific
required property of an RDF nodes (e.g., unique occurrence of a property
value associated with a specific property, for instance only one foaf:age value
for a given foaf:Person). One or several of such constraints are associated
with target RDF nodes to validate against in a SHACL Shape. SHACL Shapes
are expressed as RDF resources and aggregated in a Shapes Graph. An RDF
graph to be checked for conformance against a Shapes Graph (the Data
Graph) is provided to a Validation Engine that produces a Validation Report.
The Validation Report states whether the Data Graph conforms to the Shapes
Graph, listing violations of individual RDF nodes against shapes detected
during the validation process in case of non-conformance.

5.2.1.4 Comparison of SHACL to schema definition using
RDFUnit test patterns

The original declarative approach to create data tests with RDFUnit (i.e., for-
mulating data constraints without composing SPARQL queries or SPARQL
query fragments directly) involves selecting and parameterising an RDFUnit
Test Pattern. These test patterns bear several conceptual and functional
similarities to both SHACL Shapes and SHACL Constraint Components.
Test patterns also define parameters to be set to transform a test pattern into
a concrete test case. In contrast to SHACL, the parameters of an RDFUnit
test pattern do not only specify the expected constraints for applicable RDF
nodes but also often influence the sets of RDF nodes the test is applied to.
The clearer separation of these concerns in SHACL increases modularity
and thus allows more flexible reuse of parts of shape definitions. As an
additional advantage, SHACL Shapes can be defined recursively, i.e., more
complex shapes can be composed by combining simpler shapes. For example,
a shape S1 can define that all its values nodes for a property P must conform
to a shape S2. Also, multiple individual restrictions can be combined to a con-
junction (target nodes must conform to S1 and S2), different acceptable shape
alternatives can be expressed by disjunction (target nodes must conform to S1
or S2) and shape constraints can be inverted/negated (target nodes must not

16https://www.w3.org/TR/shacl/
17https://github.com/w3c/data-shapes

162 Tools

Figure 5.30 Overview for Fundamental Concepts of SHACL.

conform to S1). SHACL provides for a range of ways to define the focus
nodes for a shape, i.e., class membership, explicit nodes, subjects and objects
of a predicate. In the current set of RDFUnit’s test patterns, targeted notes are
predominantly only scoped by class membership or property appearance. In
general, however, scoping in RDFUnit is more flexible as it is defined directly
in SPARQL and there are no limitations. For example, there is no way to
define in SHACL the constraint that all entities must have a label. Figure 5.30
shows an overview of the fundamental concepts of SHACL.

5.2.1.5 Comparison of SHACL to auto-generated RDFUnit tests
from RDFS/OWL axioms

In addition to a direct instantiation of test patterns in manual test suites,
RDFUnit already offers capabilities to create data test suites automatically
from RDFS and OWL axioms pertaining to the vocabulary used in the RDF
data to be tested (Test Auto Generators). This approach enables utilisation
of modelling efforts of RDF vocabulary providers that specified aspects of
intended semantics of their vocabularies in RDFS or OWL. As both of these
modelling languages, when interpreted in line with the corresponding W3C
specifications, are more tailored towards inference as opposed to constraint
formulation, basic principles of the semantics and assumptions of the lan-
guage have to be modified for data quality testing scenarios (especially the
application of the Closed World Assumption and a weakened Unique Name

5.2 RDFUnit 163

Assumption). However, no unanimous and detailed specification for such
alternative semantics has been formulated and standardised to date.

In contrast, the semantics of each language element for SHACL Core is
clearly defined in the corresponding W3C Proposed Recommendation and
was designed specifically for the purpose of prescriptive constraint formu-
lation. Furthermore, SHACL semantics are solely based on the notion of
RDF Graphs, a conceptually much simpler and more approachable model
for new adopters of Semantic Web technologies compared to OWL based on
Description Logics.

5.2.1.6 Progress on the SHACL specification and
standardisation process

ALIGNED was actively involved in co-authorship and revision of the W3C
Working Group for SHACL. Since then, several stages of the W3C Recom-
mendation Track Process18 were passed, by opening the draft for reviewers’
comments, discussing or addressing these, and putting forward an implemen-
tation report19 about several prototypical implementations of SHACL. Hence,
SHACL is now documented as a W3C Proposed Recommendation.

5.2.1.7 SHACL support in RDFUnit
RDFUnit currently contains implementations for all non-complex core
constraint components (i.e., excluding logical constraint components and
qualified cardinality restrictions). All variants of target declarations are
implemented as well. This provides a substantial, albeit incomplete, subset
of SHACL Core that already allows formulating graph constraints for many
use cases. RDFUnit also supports SHACL SPARQL, i.e., defining custom
constraints and constraint components by SPARQL fragments. This approach
provides the whole flexibility and expressive power of that query language.

To evaluate both correctness of the validation logic of the implemented
SHACL subset, a runner for the SHACL test suite20 has been implemented.
The tests can be run via a custom JUnit Runner within an IDE for quick
feedback cycles about improvements or regressions on conformance during
the continued work for a complete coverage of SHACL feature in RDFUnit.
Additionally, an RDF document reporting on the test outcomes for the
SHACL test suite using the EARL21 vocabulary can be generated, in a format

18https://www.w3.org/2004/02/Process-20040205/tr.html
19http://w3c.github.io/data-shapes/data-shapes-test-suite/
20https://github.com/w3c/data-shapes/tree/gh-pages/data-shapes-test-suite/tests
21https://www.w3.org/TR/EARL10-Schema/

164 Tools

a doap:Project ;
a earl:So�ware ;
a earl:TestSubject ;
doap:developer <aksw.org/DimitrisKontokostas> ;
doap:name "RDFUnit" ;

.
[

a earl:Asser�on ;
earl:assertedBy <aksw.org/MarkusAckermann> ;
earl:result [

a earl:TestResult ;
earl:mode earl:automa�c ;
earl:outcome earl:passed ;

] ;
earl:subject <h�p://aksw.org/Projects/RDFUnit> ;
earl:test <urn:x-shacl-test:/core/complex/personexample> ;

].

@prefix doap: <h�p://usefulinc.com/ns/doap#> .
@prefix earl: <h�p://www.w3.org/ns/earl#> .

<h�p://aksw.org/Projects/RDFUnit>

Figure 5.31 Excerpt of an EARL test report for the SHACL test suite.

suitable to automatically generate a compliance overview for the implemen-
tation report for SHACL. Figure 5.31 shows a sample from an EARL test
report.

5.3 Expert Curation Tools and Workflows

Linked Data and semantic technologies enable the creation of rich, integrated
knowledge models which describe particular domains using standardised
languages such as RDF, RDFS and OWL. These technologies have obvi-
ous attractions for dataset curators as not only do they provide a range of
ways in which complex relationships between entities can be specified and
embedded in the data, but they also render the data amenable to sophisti-
cated analytic techniques such as inference and other automated reasoning
approaches and allow the construction of sophisticated queries which auto-
matically combine data from different sources into a unified knowledge
model. However, datasets are commonly curated by domain experts who have
an intimate knowledge of the real-world domain being modelled but rarely
have expertise or training in knowledge engineering or semantic technologies.
Furthermore, all indications suggest that semantic modelling is a skill that is
more difficult to acquire than computer programming, requiring considerable
investment of time and effort. If we want to make this technology accessible
to domain experts we need to develop paradigms, processes, workflows,

5.3 Expert Curation Tools and Workflows 165

APIs, and software tools which bridge the gap between their knowledge of
the domain and the complexities of the underlying semantic models that they
are manipulating.

This section describes the process and workflow models, developed
within the ALIGNED project that are designed to bridge the gap between
dataset curators, Linked Data and semantic Web technologies. The goal
of this work is to define semi-automated methods and tools that involve
human expert curators in the loop, while minimising their workload and the
requirement that they understand the underlying semantic technologies. It
builds upon and extends ALIGNED’s system integrity enforcement frame-
work by generating data curation workflows and dedicated user interfaces
where domain experts can efficiently verify and approve data as part of a
publication pipeline which incorporates both automated and human-based
quality controls. It uses and extends ALIGNED’s meta-modelling work,
utilising the metamodel’s schema validation ontology while providing fine-
grained workflow models for core curation activities (e.g., adding instance
data, updating schema, etc).

5.3.1 Requirements

This section defines the workflow requirements that a linked-data curation
system must support in order to support domain experts in curating high-
quality datasets. Common features identified in ALIGNED’s use cases have
been translated into the low-level system requirements necessary to provide
a data curation system which can support user-level requirements.

5.3.1.1 Graduated application of semantics
Much of the Linked Data available for harvesting is loosely structured,
often schema-free and based on reuse of terms from common vocabularies.
However, in order to provide dataset quality enforcement, it is necessary to
produce a rich, highly structured, and precisely defined schema and ensure
that all instance data comply with the schema. Therefore, a Linked Data
curation platform should provide support for the management of loosely
structured linked-data documents and their gradual transformation into highly
structured, schema-conformant high-quality knowledge graphs.

5.3.1.2 Graph – object mapping
Graphs are the knowledge representation form that underlies all Linked Data
and semantic technologies. However, when it comes to human management

166 Tools

of data, object models are ubiquitous – for example: entity relationship
models, UML data models, database records, structured JSON documents.
This amounts to a fundamental paradigm difference: in the object model a
dataset is conceived as a collection of objects/entities, each of which has a
collection of properties, which may be complex and may include links to
other objects in the dataset; in the graph model, the dataset is conceived of as
a collection of nodes with labelled, directed edges connecting them. In order
to support dataset management by non-knowledge engineers, it is necessary
to provide a curation interface which allows them to treat the dataset as if
it was a collection of objects and takes care of mapping these objects to the
underlying graph representation. This object interface should support, at a
minimum the following functions:

5.3.1.3 Object/document level state management and versioning
In order to provide a functional object-based data curation interface, the
system should provide basic state management and versioning support on
a per-object level. That is to say that the system should provide the dataset
curator with the ability to change the state of a data-object (e.g., by deleting it,
or publishing it) and have the system accurately map this to a modification of
the triples making up the object’s representation in the underlying knowledge
graph. It should also be possible to view and link to previous versions of
particular data-objects.

5.3.1.4 Object-based workflow interfaces
In order to allow curators to manage updates to the graphs that they man-
age, object-based user interfaces must be provided which should display
graph-updates as updates to specific data objects. Similarly control interfaces
must be provided which allow curators to change the state of specific data
objects and automatically translate that into graph updates.

5.3.1.5 Integrated, automated, constraint validation
A core focus of ALIGNED’s research has been the development of con-
straint validation and error detection services and tools to support automated
data quality analysis and enforcement. To make these services accessible
to domain expert curators, they must be integrated into workflows which
correctly trigger the appropriate validation processes in response to curator-
driven actions which cause updates to the underlying graph. These processes
should be, to as great an extent as possible, invisible to the curator.

5.3 Expert Curation Tools and Workflows 167

5.3.1.6 Result interpretation
The major exception to the above is that, in certain cases, the results of
constraint validation will indicate a situation which requires user-intervention
(e.g., an error in the dataset schema) and must be reported back to the user.
In such cases the system should, to as great an extent as is possible, map
the error from the underlying graph model into the object model used by the
curation platform.

5.3.1.7 Deferred updates
From a workflow point of view, automated and human tasks have very dif-
ferent characteristics: fast, synchronous, reliable (from an execution point of
view) and typically semantically simple, versus slow, asynchronous, unreli-
able and often semantically complex. The most basic feature that is necessary
to support these characteristics of human processes is deferred updates. That
is to say that the curation system should allow updates to curated dataset
to be deferred – stored and executed at a temporal distance which may be
considerable. This is necessary to support the most basic content approval
pipeline – where updates to the dataset must be approved by the curator before
they are actually carried out. Deferred updates complicate curation processes
considerably, because they can be invalidated by updates that happen between
their definition and their acceptance. However, they are necessary in order
to provide simple, efficient interfaces for curators, allowing them to, for
example, simply click approve, to enact a complex, multi-faceted graph
update that has been requested by another process in the system (whether
human or automated).

5.3.2 Workflow/Process Models

This section describes the system dynamic models that have been developed
in the ALIGNED project in order to produce a data curation system which
meets the above requirements and is capable of providing a practically useful
curation service for domain expert dataset curators. These models define how
human curation actions and activities are integrated with automated processes
to provide quality control of the dataset. Figure 5.32 shows the symbols used
in the following diagrams.

5.3.2.1 Process model 1 – linked data object creation
JSON objects submitted to the API are stored as objects in a Linked Data
document store and require approval by human curators and validation by the

168 Tools

Figure 5.32 Key to workflow/process models.

Figure 5.33 Process Model 1 – Object Creation.

automated Dacura Quality Service before being published to the triple-store.
This process model is shown in Figure 5.33.

5.3.2.2 Process model 2 object – linked data object updates
Process model 2 shows how updates to Linked Data objects which are
accepted by the curator but fail validation are either saved to the deferred
update queue (if the object is published) or executed on the Linked Data
object store (if not published). If the update passes validation, it is saved to
both the Linked Data object store and the triple-store. This allows objects to
be iteratively updated without having to pass DQS validation (DQS results
are returned in an informational capacity).

Updates to JSON documents are subject to curator approval. Those
updates which receive a ‘pending’ status from the approval process are saved
to the deferred update queue. Those updates which receive an ‘accept’ status
are processed by the automated DQS validation service. If the update receives
a ‘reject’ status from this process, and the document being updated is in a
‘published’ state, then the update is saved to the deferred update status. If
the update receives an ‘accept’ status, or the document being updated is not
in a published state, the update is executed on the document in the Linked
Data store. If the update receives an ‘accept’ status and the document is in
a published state, the update is executed on the triple-store version of the
document. This process model is shown in Figure 5.34.

5.3.2.3 Process model 3 – updates to deferred updates
Deferred updates which are approved by the human curator (state changed
from ‘pending’ to ‘accept’) are first analysed by an automated consistency

5.3 Expert Curation Tools and Workflows 169

Figure 5.34 Process Model 2 – Object Update.

Figure 5.35 Process Model 3 – Updates to deferred update.

checking process, which ensures that no intervening updates have rendered
the deferred update invalid. If the update is validated by this process, it is val-
idated by the DQS process. If it correctly validates or if the updated object is
not in ‘published’ state, the update is removed from the queue and the object
is updated in the document store. If the update is validated and the updated
object is in the “published” state, the graph representation of the object is
updated in the triple store. This process model is shown in Figure 5.35.

5.3.2.4 Process model 4 – schema updates
Schema updates received by the API are analysed by the automated ontology
dependency analysis process, which identifies the list of ontologies needed
to validate schema updates and the list of ontologies needed to validate

170 Tools

Figure 5.36 Process model 4 – Schema Updates.

instance updates. The validity of the resulting graphs is checked using the
automated Dacura Quality Service process and if successful, and the ontolo-
gies are published to the respective graphs. This process model is shown in
Figure 5.36.

5.3.2.5 Process model 5 – validating schema updates
Schema updates are validated by the DQS process in two stages. First, the
updates to the schema are validated by the DQS, with the schema graph
serving as the instance graph and the schema schema graph serving as the
schema. If this update is validated, the update to the schema is validated
against the instance graph, with the schema graph serving as the schema.
If either validation process fails (status: reject), the updates to the schema
schema graph are rolled back. If both successfully validate, the schema graph
is updated. This process model is shown in Figure 5.37.

5.3.2.6 Process model 6 – named graph creation
Instance data objects can be configured to map to a graph representation that
spans multiple named graphs. Each named graph needs a schema against
which the instance data will be validated. Temporary graphs are first con-
structed to validate the submitted ontology with the DQS, if it validates
successfully, three named graphs are created – and the relevant ontologies
are published to the schema schema graph and the schema graph. Updates to
the graph’s schema follow Process Model 4 – schema updates. This process
model is shown in Figure 5.38.

5.3 Expert Curation Tools and Workflows 171

Figure 5.37 Process model 5 – Validating schema updates.

Figure 5.38 Process Model 6 – Named Graph Creation.

5.3.2.7 Process model 7 – instance data updates and named
graphs

This process extends and specialises Process Model 1 and Process Model 2,
by providing fine-grained detail of the “update” triple-store operation.
Updates to instance data objects may map to a graph representation that
is distributed across multiple named graphs. Instance data updates to each
named graph are validated sequentially by the automated DQS service (using
the schema graph that has been configured for that named graph – see Process
Model 6 – Named Graph Creation). If the update is validated across all
graphs, and the updated object is in published state, the update is published

172 Tools

Figure 5.39 Process model 7 – instance data updates in named graphs.

to all relevant named graph instance graphs. This process model is shown in
Figure 5.39.

5.4 Dacura Approval Queue Manager

The Dacura Approval Queue Manager is a Web-based GUI tool which allows
dataset curators to interact with the object creation, object updating and
deferred updating processes. It allows curators to view the approval queue of
new objects and updates to objects and to approve or reject object creation
requests and object update requests in bulk. The Dacura Approval Queue
Manager can be seen in Figure 5.40.

5.5 Dacura Linked Data Object Viewer

The Dacura Linked Data Object Viewer is a Web-based GUI tool which
allows dataset curators to view the Linked Data objects that they are

Figure 5.40 Screenshot of Dacura Linked Data Approval Queue Manager Tool.

5.5 Dacura Linked Data Object Viewer 173

Figure 5.41 Screenshot of Dacura Linked Data Object Viewer Tool showing version
browsing toolbar.

managing, browse their history, and manage their metadata and contents on
an individual object basis, while maintaining a correct mapping to the object’s
underlying graph representation. The Dacura Linked Data Object Viewer can
be seen in Figure 5.41.

5.5.1 CSP Design of Seshat Workflow Use Case

We formally specified our workflow in CSPM, a dialect of CSP (Com-
municating Sequential Processes) with the assistance of FDR4 The CSP
Refinement Checker22. CSPM gives a very rich language for the specification
of processes and communication, but we limit ourselves in the model to a very
restricted subset with a view to later creating simple user-interfaces for the
specification of alternative workflow approaches. In addition, we hope to use
the specification to explore properties of the workflow model and potentially
create refinements with versioning in a later iteration.

In natural language, the document curation use case can be described thus:
A user may load a candidate object into the system. It is then in a

‘pending’ state. From the pending state, a candidate may be checked by the
DQS (Dacura Quality Service) server. The DQS server will either pass or fail
the candidate. If the candidate passes DQS’s inspection, it is sent to an ‘ok’
state. From the ‘ok’ state, it is possible to review or edit. If the user chooses to

22https://www.cs.ox.ac.uk/projects/fdr/

174 Tools

review, they may either accept as is and it is placed into an ‘accepted’ state.
From an ‘accepted’ state, the candidate may be published. If the candidate
reviewer likes, they may edit the document, sending it back to a ‘pending’
state. If the DQS system fails to pass a candidate, it is sent to a ‘fail’ state from
which the user must edit the candidate before it can go back to ‘pending’.
Additionally, from an ‘ok’ state which is edited, the candidate is passed back
to a ‘pending’ state.

5.5.2 Specification

We show in Table 5.1 the specification in CSPm of the above natural language
description. We show the model with only one document for presentation
purposes as little changes by increasing the number of available DOCIDS.

Table 5.1 CSPm specification of workflow
DOCIDS = {0 .. 2}
channel load, check, fail, edit,

pass, store, accept, decline, review, publish, unpublish
: DOCIDS
WFS(i) = load.i -> PENDING(i)

PENDING(i) = check.i -> DQS(i)

DQS(i) = fail.i -> FAILED(i)
|˜|pass.i -> OK(i)

FAILED(i) = edit.i -> PENDING(i)

OK(i) = edit.i -> PENDING(i)
[] review.i -> REVIEW(i)

REVIEW(i) = accept.i -> ACCEPTED(i)
[] edit.i -> PENDING(i)

ACCEPTED(i) = publish.i -> PUBLISH(i)
[] edit.i -> PENDING(i)

PUBLISH(i) = unpublish.i -> ACCEPTED(i)

CHOOSEDOC = |˜|i : DOCIDS @ WFS(i)
assert CHOOSEDOC :[deadlock free [F]]

5.5 Dacura Linked Data Object Viewer 175

Figure 5.42 Automatically generated workflow diagram from CSPm specification.

176 Tools

The specification can be read as having a number of states which are
parameterised by the document id which they refer to and having one or a
number of actions which can be taken from those states. In the case of DQS(i),
there are two possible actions which are chosen by an internal choice. In all
other instances, the choice is an external (user) choice.

The example of Figure 5.42 shows the automatically generated workflow
diagram from the CSPm specification. It is clear from inspection that the
document is always available for transitions to some new state and we can
see clearly how the workflow takes place.

5.6 Dacura Quality Service

The Dacura Quality Service (DQS) is a service for managing a triple-store
and ensuring its ongoing consistency. The triple-store is an RDF graph which
is stored using the ClioPatria server. ClioPatria provides a durable represen-
tation of the graph which can be accessed and updated transactionally. These
features constitute the ‘A’,‘I’ and ‘D’, of ACID (Atomic, Consistent, Isolated,
Durable) which are generally considered fundamental design principles for
enterprise databases.

DQS extends this feature set with the ‘C’, Consistency. Consistency of
the graph is described using OWL. This ontology is interpreted as constraints
over the graph. Failure to meet the constraints specified in OWL leads to
a counter-example of satisfaction of the constraints, or a witness of failure.
These witnesses are then reported over the API to the client which provides
the client with manual or automatic remedial actions.

The DQS software is provided as a plugin to ClioPatria and interac-
tion with DQS takes place over an HTTP (HyperText Transfer Protocol)
API (Application Programming Interface). The API exchanges information
about triples and witnesses of failure in the widely used JSON object
format.

The DQS service is used by Dacura to ensure that data quality of
curated data is consistent on an ongoing basis. Since the data must be
amenable to constant update by data practitioners, and the data must be
available for analytics in a consistent and coherent format, it is impera-
tive that basic data consistency constraints be maintained. DQS provides
a straightforward framework for assisting Dacura in maintaining these
constraints.

5.6 Dacura Quality Service 177

Dacura is the main consumer of the Dacura Quality Service. However, it
is completely modular and therefore could be used in other projects which
would like to manage consistency constraints using OWL ontologies.

5.6.1 Technical Overview of Dacura Quality Service

The DQS Service is implemented as a plugin for ClioPatria, which is written
in the prolog programming language. Prolog provides a seamless interface
to the RDF triple-store as a predicate which can then be combined for the
purposes of reasoning. A number of reasoning tasks are carried out by a
list of predicates, which can be accessed by calling a number of pre-defined
HTTP endpoints, carrying appropriate JSON POST variables which describe
the relevant graphs, updates to those graphs, and various reasoning activities
which should be undertaken.

Currently, the primary consumer of the DQS service is the Dacura plat-
form which provides a user interface to the service, allowing the user to select
the relevant ontologies, and instance data to be checked, and the various
constraints which should be checked. The interface for schema checking is
shown in Figure 5.43.

Figure 5.43 Dacura platform Quality Test Interface that calls the DQS.

178 Tools

5.6.2 Dacura Quality Service API

The API is structured as a series of HTTP endpoints which are accessed
through POST requests. The POST requests have a number of variables
communicated in JSON and with some standard translations for RDF URIs
and literals. We first describe this general format of RDF encoding in quads,
and then the specific format of some shared POST variables.

5.6.2.1 Resource and interchange format
Inserts and deletes in the DQS system are managed through supplying quads
which specify the RDF triples, and their associated graph. These are encoded
in JSON which is a widely accepted format.

5.6.2.2 URI
An RDF URI resource is described as a JSON string. For instance, the
following string represents the “label” property:
“http://www.w3.org/1999/02/22-rdf-syntax-ns#label”

5.6.2.3 Literals
Literals are composite objects which cannot be represented directly as a
string. The format for a literal is formatted as one of the two:
{“data”:“2015-06-08T12:30:00”,“type”: “http://www.w3.org/2001/XMLSc
hema#dateTime”}
or
{“data”: “This is a string”, “lang”:“en”}

5.6.2.4 Literal types
xdd:coordinatePolygon
The coordinate polygon type is represented in as a list of doubles. An informal
grammar is as follows:
xdd:coordinatePolygon := [float1, float2, . . . floatn]

xdd:coordinatePolyline
The coordinate polygon type is represented in as a list of doubles identically
to a coordinate polygon but with a semantics of a non-closed region. An
informal grammar is as follows:
xdd:coordinatePolyline := [float1, float2, . . . floatn]

5.6 Dacura Quality Service 179

xdd:gYearRange
The xdd:gYearRange is a (possibly degenerate) range of years, with the first
year smaller than or equal to the second.
xdd:gYearRange := [gYear] | [gYear1, gYear2]

xdd:integerRange
The xdd:integerRange is a (possibly degenerate) range of integers, with the
first integer smaller than or equal to the second.
xdd:integerRange := [integer] | [integer1, integer2]

xdd:decimalRange
The xdd:decimalRange is a (possibly degenerate) range of decimal numbers
of arbitrary precision, with the first number smaller than or equal to the
second.
xdd:integerRange := [decimal] | [decimal1, decimal2]

5.6.2.5 Quads
Quads are described as lists of strings or JSON representations of resources.

[
"resource1",
"resource2",
"resource3",
"graph"
]

[
"resource4",
"resource5",

{
"data": "Hello world",
"lang": "en-utf8"
},
"graph"
]

[
"resource6",
"resource7",
{
"data": "2015-06-08T12:30:00",
"type": http://www.w3.org/2001/XMLSchema\#dateTime
},
"graph"
]

180 Tools

5.6.2.6 POST variables
There are a number of post variables whose format is shared amongst the
various endpoints. Many endpoints require a “pragma” JSON object to be
posted in the post variables, which specifies the instance graph, “instance”,
the schema graph, “schema” and associated tests. It also takes a “commit”
flag, which will store the changes if the tests are successful.

pragma: {“tests”:“all”,“schema”:“schemaGraphName”,“instance”:“instance
GraphName”, “commit”: “true”}

In order to perform updates, we specify all quads (as described above) which
are to be deleted, and then inserted. Deletes happen prior to inserts. Modifi-
cation of either schema, instance or both, is possible merely by specifying the
appropriate schema and instance graphs.

update: {“insert”: QUADS, “delete”: QUADS}

Example:

update: {“insert”:[[“resource1”, “resource2”,“resource3”, “instance”],[“reso-
urce6”, “resource7”, {“data”:“2015-06-08T12:30:00”, “type”: “http://www.
w3.org/2001/XMLSchema#dateTime”}, “instance”]]}

5.6.2.7 Tests
A number of the API endpoints require that tests be passed to define which
constraints are considered when consistency is required of the triple store.
The tests are divided into two categories. One for schema constraints, all of
which are suffixed with “SC”, and one for instance constraints which are
suffixed with “IC”.

Users can specify a JSON list of constraints for the “test” field of a
pragma, or send the string “all” which will run every available test. Specifying
tests which are not available has no effect. We give the exhaustive list of tests
below.

5.6.2.8 Required schema tests
These tests for class cycles in the subsumption hierarchy for classes and
properties respectively. They are required for any further tests to take place
as non-cyclicity is assumed in the other predicates.

“classCycleSC”, “propertyCycleSC”

5.6 Dacura Quality Service 181

5.6.2.9 Schema tests
These three tests check to see if there is a class for a given URI, which does
not need to be inferred, or that a given property has a defined range and
domain which is not inferred.

“noImmediateClassSC”, “noImmediateDomainSC”, “noImmediateRangeSC”

These three tests check uniqueness of definitions. In particular, the first is
useful to avoid overlapping labels which can lead to confusion in interfaces
which utilise the labels for display.

“notUniqueClassLabelSC”, “notUniqueClassSC”, “notUniquePropertySC”

Does the schema contain blank nodes?

“schemaBlankNodeSC”

Annotations can be used to black out various properties such that they are not
reasoned over, but this test will issue an error if this is being done.

“annotationOverloadSC”

A class (property respectively) is used without definition (inferred or other-
wise)

“orphanClassSC”, “orphanPropertySC”

Check for invalid ranges or domains.

“invalidRangeSC”., “invalidDomainSC”

Check to see if domain and range subsumption leads to inconsistency.

“domainNotSubsumedSC”, “rangeNotSubsumedSC”

Check to see if properties are used as both datatype and object properties
simultaneously in violation of OWL.

“propertyTypeOverloadSC”

Instance Tests

Check to see if property has no defined domain (range respectively).

“noPropertyDomainIC”, “noPropertyRangeIC”

Check to see if blanknodes are being used?

“instanceBlankNodeIC”

182 Tools

Check to see if edges are valid under the given schema rules. Related classes,
properties and restrictions as well as a number of assertions are all checked
against the edges of the instance graph for conformance.

“invalidEdgeIC”

Check to see if instances have no defined class.

“edgeOrphanInstanceIC”

Check functional (inverse functional) property assertions for correctness rel-
ative the instance graph.

“notFunctionalPropertyIC”, “notInverseFunctionalPropertyIC”

Check that properties are defined.

“localOrphanPropertyIC”

5.6.2.10 Errors
The DQS API returns errors which are specified in a JSON format and which
are described in the Reasoning Violations Ontology (RVO). RVO has been
developed in the ALIGNED project and is fully described in Chapter 3 and is
available online23. Further details have been published at the third Workshop
on Linked Data Quality. 24

5.6.2.11 Endpoints
/dacura/schema
POST variables: pragma, update
Requires: pragma.schema, pragma.tests, pragma.commit

Endpoint for schema updates.

/dacura/instance
POST variables: pragma, update
Requires: pragma.instance, pragma.schema, pragma.tests, pragma.commit

Endpoint for simultaneous schema and instance updates.

23http://aligned-project.eu/data/rvo documentation.html
24“Describing Reasoning Results with RVO, the Reasoning Violations Ontology”, Bojan

Bozic, Rob Brennan, Kevin Feeney and Gavin Mendel-Gleason, 3rd Workshop on Linked
Data Quality, co-located with ESWC 2016, Crete, 30 May 2016.

5.6 Dacura Quality Service 183

/dacura/schema validate
POST variables: pragma
Requires: pragma.schema, pragma.tests

Endpoint for testing validity of an already existing schema

/dacura/validate
POST variables: pragma
Requires: pragma.instance, pragma.schema, pragma.tests

Endpoint for testing validity of already existing instance/schema pair.

/dacura/test
POST variables: N/A
Requires: N/A

Runs the internal testing suite.

/dacura/entity
POST variables: entity, schema, instance
Requires: entity, schema, instance

Returns all entities in the given instance graph for the given schema.

/dacura/entity frame
POST variables: class, schema, instance
Requires: class, schema, instance

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘class’ post variable is the URI of a valid class in the
schema provided by the post variable ‘schema’.

/dacura/class frame
POST variables: class, schema
Requires: class, schema

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘lass’ is the URI of a valid class in the given schema.

/dacura/class
POST variables: schema
Requires: schema

Endpoint for obtaining information on all defined classes in a given schema.

/dacura/dacura entity property frame
POST variables: schema, instance, property, entity
Requires: schema, instance, property, entity

184 Tools

Endpoint returns a filled frame for a given entity and property when supplied

with the entity URI, the schema and instance graphs and the necessary
property URI.

/dacura/subsumes
POST variables: schema,class
Requires: schema, class

Endpoint returns a list of all classes which are subsumed by the supplied class.

DQS is now relatively stable and most changes will involve bug-fixes.
The most recent source code is released open-source as a plugin, available
at https://github.com/GavinMendelGleason/dacura. The Dacura system will
continue to maintain and update the plugin as it is required for important data
curation functionality in Dacura.

5.7 Linked Data Model Mapping

5.7.1 Interlink Validation Tool

The Interlink Validation Tool is designed to be used in a scenario where
a specific source dataset is being maintained. This source dataset contains
interlinks to external target datasets. As the source dataset and the target
datasets evolve over time, the maintainers of the source dataset need to ensure
that none of the existing interlinks have become invalid due to the evolution
of the datasets.

The Interlink Validation Tool was initially validated in the ALIGNED
DBpedia use case. It was identified that DBpedia does not include interlink
validation during its release process (activities involved when a new version
of DBpedia is to be released). This can result in invalid interlinks being pub-
lished in the DBpedia release, reducing overall dataset quality. The Interlink
Validation Tool provides a lightweight approach to reduce the number of
invalid interlinks that could get published in a dataset. While the tool does
not repair interlinks, it does highlight, which interlinks have become invalid
and which resource (the source dataset resource or target dataset resource)
has caused it to become invalid. This information can then be used by other
tools in a software and data engineering toolchain, to help in the interlink
repair process. The tool was deployed in the DBpedia environment for the
v.2015-10 release and discovered 53,418 invalid interlinks25.

25https://sourceforge.net/p/dbpedia/mailman/message/34980754/

5.7 Linked Data Model Mapping 185

As an input, the tool takes a set of interlinks between the source dataset
and a target dataset. The resources in the interlinks are compared to their
respective datasets to discover which interlinks are still valid and which are
invalid. The tool outputs a set of valid and invalid interlinks along with
two log files. One log file is a human readable log indicating, which set of
interlinks have been checked and which interlinks were discovered as invalid.
The other log file records similar information but is encoded in RDF and uses
the ALIGNED Metamodel, especially the DLO and the DBpedia use case
specific ontology (crowd-sourced public datasets) to describe the activities,
entities and agents in the log. This means that the RDF logs (produced by
the Interlink Validation Tool) can be consumed by the ALIGNED Unified
Governance Tools in an ALIGNED tool chain.

The tool has already been deployed live in the DBpedia environment for
the v.2015-10 release and discovered 53,418 invalid interlinks26.

5.7.1.1 Interlink validation
The tool validates interlinks between two or more datasets through the use of
standard SPARQL27 query templates. RDF interlinks are typically expressed
as a single triple linking resources in one (source) dataset with resources in
another (target) dataset. Interlinks can be validated in two ways:

Source resources of the interlinks are only checked against their respec-
tive dataset. While this is useful when it is not possible to access the
target dataset, it does only validate the source resources meaning that target
resources could still be invalid.

Both source and target resources are checked against their respective
datasets.

Figure 5.44 shows the process of interlink validation. Since SPARQL
queries are used to validate interlinks, a SPARQL query endpoint and a local
triple-store are required. It is assumed that the interlinks to be validated are
stored in a named graph in the local triple-store and the source dataset is
stored in a separate named graph. The query templates work by accessing
the source resources (subject of the triple) and target resources (object of the
triple). Validation is done in the following way:

When only the source resources of the interlinks are to be validated, they
are compared to the source dataset to see, if those resources exist. If the source

26https://sourceforge.net/p/dbpedia/mailman/message/34980754/
27The query language for RDF, https://www.w3.org/TR/rdf-sparql-query/

186 Tools

Figure 5.44 Interlink Validation Process.

resource of an interlink does not exist in the source dataset, then that interlink
is classified as invalid.

When both the source and target resources of the interlinks are to be
validated, then these resources are compared to their respective source and
target datasets to see, if they exist. If either the source or target resource of
an interlink does not exist in their respective dataset, then that interlink is
classified as invalid. External target datasets can be accessed through loading
them temporarily into the local triple-store or through remote access via a
federated SPARQL query.

While this approach for validating interlinks is lightweight (relying on
standard SPARQL queries), it does have a drawback. This approach cannot
detect interlinks that have become invalid due to a resource merge or resource
split event,28 that can occur to resources in evolving datasets. A resource
merge is done, when two or more resources from a dataset merge into a
single resource and a resource split is done, when a single resource splits into
two or more resources. A situation can arise where a resource merge or split
takes place and the original resource identifier does not change. Therefore, a
resource may have changed semantically, but is syntactically still the same.
It is this particular situation, where a resource changes semantically but not
syntactically, where this approach for detecting invalid interlinks will fail. In
practice, given the dynamic nature of data on the Web, supporting distributed
maintenance of data, without detecting resource merge or split events is still
very valuable.

28Dos Reis, J. C., Pruski, C., Da Silveira, M. and Reynaud-Delaı̂tre, C. “Analyzing and sup-
porting the mapping maintenance problem in biomedical knowledge organization systems.”
In Proc. of the Workshop on Semantic Interoperability in Medical Informatics collocated with
the 9th Extended Semantic Web Conference, pp. 25–36, 2012.

5.7 Linked Data Model Mapping 187

Figure 5.45 Operation of the Interlink Validation Tool. The arrows indicate the flow of
information/data among the different components.

5.7.1.2 Technical overview
In this subsection, the operation of the tool is described. Figure 5.45 displays
the operation of the tool and its different components.

The interlink validation tool reads in two configuration files. The first
configuration file contains parameters about accessing the source dataset in
the local-triple-store and some details about the source dataset itself (that
will be used in the log files). The second configuration file is where a user
specifies the details about each set of interlinks (between the source dataset
and multiple external target datasets) that are to be validated. The parameters
in this file are described in detail in the next section but they allow a user to
set: the name of the external target dataset, the location of the interlink set to
be validated, flags specifying validation behaviour and scope, and federated
SPARQL query details.

When all the parameters are set, the tool can be run. The tool first gets
the location of the interlink set from the second configuration file and loads it
into a named graph in the local triple-store.

Next, based on the third parameter in the second configuration file, a
SPARQL query template is generated – for example, if the external dataset
is to be accessed via a federated query, then a federated query call will be
included in the query template, with the external SPARQL endpoint URI
provided by parameter 4.

If the third parameter specifies that an external dataset is to be accessed
from a dataset dump file, then this dump file is retrieved and loaded into a
named graph in the local triple-store.

Next, the template processor sends the query template to the SPARQL
endpoint of the local triple-store for execution. The source resources are
always checked against the source dataset. The execution results are then

188 Tools

returned to the template processor, which sends the results to the log
generator.

Then based on the parameters specified in both configuration files, and the
execution results sent from the template processor, two log files are produced.
One log file is a human readable log, describing which set of interlinks have
been checked and which interlinks were discovered as invalid. The other log
file records similar information, encoded in RDF and uses the ALIGNED
Design life cycle Ontology to describe the logs.

Finally, the tool removes all temporary created data loaded into the local
triple-store. The tool will repeat this process for all interlink sets specified in
the second configuration file.

User guide
This subsection provides a guide on how to use the Interlink Validation Tool.

The tool is a Java program designed to be run in a UNIX environment via
the command line. The current prototype of the tool is designed to be used
with a Virtuoso29 triple-store only. The tool consists of three files and three
directories:
The ‘interlink_validator.java’ file
The ‘iv_config.txt’ file
The ‘external_datasets.txt’ file
The ‘valid’ directory
The ‘invalid’ directory
The ‘temp’ directory

5.7.1.3 Configuration via iv config.txt
The iv config.txt file contains seven parameters that need to be set. These
parameters are:
Parameter1 (p1=): The file path to Virtuoso’s isql utility. This is necessary to
be able to load data into the local triple-store and execute SPARQL queries.

Parameter2 (p2=): Virtuoso’s dba password. Similar to the above point, this
is needed in order to access Virtuoso’s triple-store.

Parameter3 (p3=): The graph name where the local dataset is stored in the
triple-store. This specifies the location of the local dataset where the source
dataset resources in the interlinks to be validated will be compared against.

Parameter4 (p4=): The file path where the (human readable) log file will be
generated. If this parameter is not the log file, then it will be generated in the
same directory as well.

29http://virtuoso.openlinksw.com/

5.7 Linked Data Model Mapping 189

Parameter5 (p5=): The file path where the RDF log file will be generated. If
this parameter is not the log file, then it will be generated in the same directory
as well.

Parameter6 (p6=): A URI to provide reference to the source dataset. This is
used to refer the source dataset and is used in the RDF log generated by the
tool.

Parameter7 (p7=): A URI to provide reference to the source dataset can
be accessed. The reference can be a Web page containing dump files or a
SPARQL endpoint. This is also used in the RDF log generated by the tool.

Each parameter is to be provided on a separate line in this file.

5.7.1.4 Configuration via external datasets.txt
The external datasets.txt file contains parameters to be set. Up to six param-
eters can be set for each set of interlinks that are to be validated:

Parameter1 (p1=): Provide a name for the external dataset that will appear in
the log files.

Parameter2 (p2=): Provide a URI or file path to the file containing the
interlinks that are to be validated.

Parameter3 (p3=): State whether the external dataset will be accessed
through:

A federated query {F}.

A federated query with a named graph {FG}

A named graph {G] in the local triple-store.

A dump file {D}

None {N}, which means that only the source dataset resources in the inter-
links will be validated.

Parameter4 (p4=): Depending on the setting done in p3, the following options
are available:

If “F” was stated for parameter 3, provide the external dataset SPARQL
endpoint URI.

If “FG” was stated for parameter 3, provide the external dataset SPARQL
endpoint URI along with the named graph URI (see Parameter5).

190 Tools

If “G” was stated for parameter 3, provide the graph name where the external
dataset is stored, in the local triple-store.

If “D” was stated for parameter 3, provide a URI or a file path to the dump
file of the external dataset.

If “N” was stated for parameter 3, parameter 4 can be left blank.

Parameter5 (p5=): Depending on the setting done in p3, the following options
are available:

If “FG” was stated for parameter 3, then provide the named graph URI, where
the external dataset is stored.

Parameter6 (p6=): [Optional Parameter] Provide a URI to reference the
external target dataset. This will be used in the RDF log generated by the
tool.

One set of parameters must be provided per line in the file and each parameter
must be separated by a “ ” (blank space).

5.7.1.5 Execute the interlink validator tool
When the two configuration files (iv config.txt and external datasets.txt) have
been configured, the tool can be executed. To execute the tool, use the
following command:

java InterlinkValidator

After a successful execution, two log files will be generated in the specified
location. In addition, files containing the valid interlinks and the invalid
interlinks will be generated in the respective directories.

5.7.2 Dacura Linked Model Mapper

The Dacura Linked Data Model Mapping service has been developed to help
users to create rich ontological models from semi-structured HTML input and
then to automate the harvesting of instance data that conform to the model,
again sourced from semi-structured HTML input. This process involves a
series of structural and semantic mappings to be applied on both sides – in
generating the model and generating the instance data input mapping.

The service is designed to be used in a scenario where a data model is
implicitly defined in a HTML page with markup used to identify labels of

5.7 Linked Data Model Mapping 191

properties (e.g., <h3> or tags). This is a common scenario where a
wiki or other CMS is used to collate a structured dataset. Unfortunately, from
a machine’s point of view, the data are semi-structured at best – the structure
is designed primarily to be human-interpretable and we cannot even assume
that the HTML is well-formed, never mind that there will be consistency in
tags used or their attributes. Nevertheless, in almost all real cases, it will be
possible to identify some pattern used in the HTML that can be mapped to a
feature of the model.

The service was developed to support the ALIGNED Seshat use. Seshat
researchers have collected a large quantity of data using a wiki. The data as a
list of variables, organised into sections delineated by a variety of HTML tags
(Figure 5.46) with variables identified by a label between special characters
and variable values having a special syntax, which captures uncertainty
and disagreement and temporal scoping, followed by free html containing
citations and commentary on the value.

The wiki worked well as a tool for collecting a large volume of data by
a distributed team of researchers – over 150,000 facts were collected on the
wiki. However, the process of extracting and cleaning data from the wiki for
analysis became overwhelming over time. Thus, the goal of the Linked Data
model mapper service is to automate the process of importing both the model
and the instance data from the wiki to generate a structured, semantic format
that is ready for analysis.

The tool allows users to map from a semi-structured wiki data-model to
a rich structured semantic model. However, it cannot create structure from
nothing – thus if the user wishes to use a highly structured data model with
complex containment relationships, this should be defined by the user before
importing the model by creating the necessary classes and properties to bind
the object’s basic containment structure together.

When the service is used to add a new property to the data model, the
system generates a location pattern which is associated with the property.
This pattern is then used to locate and import instance data elsewhere on the
wiki. The service uses ALIGNED metamodel ontologies RVO, PROV, and
the Seshat domain ontology. The tool has been deployed live in the Seshat
use-case and was used to create Seshat’s first public release of data in April
2017.30

30http://dacura.scss.tcd.ie/seshat/

192 Tools

F
ig

ur
e

5.
46

E
xa

m
pl

e
of

se
sh

at
co

de
bo

ok
pa

ge
.

5.7 Linked Data Model Mapping 193

5.7.3 Model Mapper Service

This section provides an overview of the service: first, we outline how the
modelling tool creates mappings between a model and HTML patterns.
Then we outline how the harvesting tool uses these patterns to automate the
harvesting of semi-structured data.

5.7.3.1 Modelling tool – creating mappings
Dacura’s Modelling tool, shown in Figure 5.47, enables users to create the
structure of the dataset from existing sources. In this case, we used the Seshat
code book page as the basis of our model. Dacura associates the imported
properties with the pattern of the HTML that they were imported from. It
uses this pattern later to automatically find and import data from the rest of
the wiki into the structured model, as shown in Figure 5.48.

5.7.3.2 Importing semi-structured data with data harvesting tool
The Dacura data harvesting tool can be run on any Web page. When it loads, it
attempts to fit the data on the page to the shape of the model using the patterns
associated with the model that were created upon import. It uses Dacura’s
quality control API to test different possibilities in order to identify the best
fit, as shown in Figure 5.49. It can even automatically correct mistakes.

Figure 5.47 Importing a model from semi-structured HTML source.

194 Tools

Figure 5.48 Process for associating property definitions in a model with a pattern within a
semi-structured HTML page.

Figure 5.49 Process for using patterns to extract data from semi-structured html pages.

5.8 Model-Driven Data Curation 195

Figure 5.50 Screenshot showing results of automated importing of semi-structured HTML
data into structured model.

It rewrites the Web page to show the user what the data would look like
if it were imported into Dacura, as shown in Figure 5.50. This allows users
to visualise and refine the mappings to ensure that as much data as possible
can be imported. Once the user is happy with the mapping, they can import
all the data from the entire wiki with a single click.

5.8 Model-Driven Data Curation

The model-driven data curation interfaces provide tools for the automatic
generation of data-curation interfaces. These interfaces enable the creation
of ontological models and the update of data, which respects these models
with a high level of agility and flexibility of model.

The interface specifications, known herein as frames, are generated
automatically from ontologies.

These ontologies are specified in RDF/OWL. The frames are generated
by the Dacura Quality Service.

These frames are consumed by the Dacura platform, which utilises it
both for its back-end management and for the more user-focussed Dacura
console. Utilising the Dacura console, users can introduce new data or
edit existing data from DQS via entry forms generated by javascript from

196 Tools

the frame specification. Additionally, the model itself can be incrementally
updated from the Dacura console in architect mode (for users with suitable
permissions).

The software facilitates the Seshat use-case, which requires that we are
able to import, track, update and delete from a large existing dataset (on a
wiki) which is highly unstructured, into a highly structured format suitable for
mathematical analysis of various historical trends. The software has already
been utilised in modification of the ontologies developed in ALIGNED and
has improved the agility of our model development, and consequently the
automatically generated user interfaces.

Highly structured Linked Data often suffers from poor quality. Hence, the
software helps to guarantee strong data quality standards by the structure of
the user interface itself. Furthermore, it can be enhanced by quality checks
after data have been constructed.

While this code is used in the Seshat use-case, its flexibility makes it
broadly applicable to a wide range of data-curation uses. This would include
any use case in which there needs to be model flexibility and data entry via the
Web and especially collection of human or automatically facilitated collection
of information from highly unstructured data sources.

The current implementation is a basis for further development, which will
include enriching the user interface with additional data entry types, which
enhance the user experience of data entry. This will include the ability to
describe territories on maps, the inclusion of data ranges and autocomplete
comboboxes for entering pre-existing objects. Additionally, richer constraints
will be checked on the client side using code auto-generated from restrictions
given in frame specifications.

We begin with the specification of frames which are generated by DQS.
We then describe the production of the user-interface elements from these
frames.

5.8.1 Dacura Quality Service Frame Generation

The Dacura Quality Service has been extended to produce frames, which con-
stitute specifications for user interfaces derived automatically from ontolo-
gies, which are described using RDF/OWL. The service is structured as a
plugin to the ClioPatria semantic Web server and providing a number of new
API endpoints which allow clients to interact with the ontology.

We briefly describe the structure of frames, which are detailed as abstract
datatypes using JSON. We will then describe the API which is used to obtain
frames and the data associated with them for a given ontology.

5.8 Model-Driven Data Curation 197

All code and API endpoints documentation for DQS is available on
Github.31

5.8.2 Frames for UserInterface Design

Frames are specified using JSON32. This provides a useful interchange format
for Web APIs, for which there is tool support available in virtually every
modern programming language.

Frames give information about an object, the classes they are associated
with and which properties are accessible to them given the ontological
specification. Since, in general, it is possible for the entire RDF graph to
be transitively accessible to a given class, we further restrict the generation
of frames to truncate the graph at any object which has been described as
a dacura:Entity (that is, the given class is an owl:subclassOf dacura:Entity).
This gives us a fragment of the graph which is amenable to the creation of a
usable dataentry interface.

In every case, we give the domain and range of the properties associated
with a given class. If the range is a class which is not a dacura:Entity type
then we include the frame associated with that class. If it is a datatype, we
give back sufficient information to aid in the construction of the userinterface
element. This includes the datatype, which is entered along with a potential
restriction on that type, which further constrains its behaviour.

5.8.3 SemiFormal Frame Specification

In Table 5.2, we demonstrate the grammar of frames in a variant of EBNF,
which describes the JSON objects that are produced by the DQS framework
in accordance with a given ontology.

First, we describe some of the idioms used in our EBNF, which has been
modified to reflect the use of JSON as the objects of interest. This should be
considered indicative of the actual format useable by software engineers who
are working with the object, rather than as a strictly formal specification.

There are two primary formats that are returned for frames. One is the
purely abstract empty object associated with a class for use as a template for
user interfaces, and the second is a filled frame, which is a frame that fills

31Dacura Quality Service Cliopatria plugin https://github.com/GavinMendelGleason/dacura
32The JavaScript Object Notation (JSON) Data Interchange Format RFC 7159

http://rfc7159.net/

198 Tools

such an abstract object with concrete triples from the instance graph for the
given class.

In Table 5.2, the Frame syntactic element provides the toplevel object
which is returned in JSON format by the endpoints. The dominValue and

Table 5.2 Dacura Quality Service Frame Grammar

Language := "en" | ...
XSDType := "xsd:integer" | "xsd:gYear" | ...
Literal :=

{ "lang" : Language,
"data" : "..."}

| { "type" : XSDType,
"data" : "..."}

OwlProperty := URI
OwlClass := URI
Op := "and" | "or" | "not" | "xor"
PropertyRestriction :=

true
| { "type" : Op, "operands" : [PropertyRestriction] }
| { "mincard" : N, "valuesFrom" : OwlClass }
| { "maxcard" : N, "valuesFrom" : OwlClass }
| { "card" : N, "valuesFrom" : OwlClass }
| { "hasValue" : OwlClass }
| { "allValuesFrom" : OwlClass }
| { "someValuesFrom" : OwlClass }

Property :=
{ "type" : "objectProperty",

"domain" : OWLClass,
"property" : OWLProperty,
"range" : OWLClass,
<"label" : Literal >, <"comment" : Literal >,
<"domainvalue" : Value(PropertyType) >,
<"frame" : FRAME >,
<"restriction" : PropertyRestriction > }

| { "type" : "datatypeProperty",
"domain" : OWLClass,
"property" : OWLProperty,
"range" : OWLClass,
<"label" : Literal >, <"comment" : Literal >,
<"domainValue" : URI >,
<"rangeValue" : Literal >,
<"restriction" : PropertyRestriction > }

| { "type" : "restriction",
"property" : OWLProperty,
"restriction" : PropertyRestriction }

PropertyFrame := [Property]
LogicalFrame := {"type" : Op, "operands" : [Frame]}
OneOfFrame := {"type" : "oneOf", "elements" : [URI]}
EntityFrame := {"type" : "entity", "class" : URI, <"domainValue" : URI>}
Frame := LogicalFrame | PropertyFrame | OneOfFrame | EntityFrame

5.8 Model-Driven Data Curation 199

Figure 5.51 Graphical Representation of ontology fragment.

rangeValue elements are optional, and are only returned when querying for
filled frames.

Schematically, Frames are used to produce empty forms with the appro-
priate userinterface elements for the data, while filled frames are used to
create prepopulated entry forms, in the event that the data for an object is
already known.

The optional “label” and “comment” fields are not essential in all cases,
but are used in the automatic production of userinterface element labels and
tool tips when present. Figure 5.51 shows an ontology fragment.

5.8.4 Frame API Endpoints

We briefly note here API endpoints used in the DQS for the generation and
manipulation of frames.

/dacura/entity frame
POST variables: class, schema, instance
Requires: class, schema, instance
Returns: Frame |Error

Returns the frame associated with a given entity instance, filled with its
respective values. The ‘class’ post variable is the URI of a valid class in the
schema provided by the post variable ‘schema’.

/dacura/class frame
POST variables: class, schema
Requires: class, schema
Returns: Frame |Error

200 Tools

Returns the frame associated with a given class. The ‘class’ is the URI of a
valid class in the given schema.

/dacura/element annotation
POST variables: schema, instance, property, element
Requires: schema, property, element
Returns: Frame |Error
The endpoint returns a Frame associated with a given annotation in the
annotation graph given by ‘instance’ and associated with the data element
‘element’.

6
Use Cases

Kevin Feeney1, Christian Dirschl2, Andreas Koller3, James Welch4,
Dimitris Kontokostas5, Pieter Francois4, Sabina Łobocka6

and Piotr Bledzki6

1Trinity College Dublin, Ireland
2Wolters Kluwer Germany, Germany
3Semantic Web Company, Austria
4University of Oxford, UK
5University of Leipzig, Germany
6Wolters Kluwer Poland, Poland

6.1 Wolters Kluwer – Re-Engineering a Complex Relational
Database Application

6.1.1 Introduction

The publishing industry is – like many other industries – undergoing major
changes. These changes are mainly based on technical developments and
related habits of information consumption.1 The world of the customers has
dramatically changed and as an information service provider, Wolters Kluwer
wanted to meet these changes with the best solutions for the customers and
their work environment.

Wolters Kluwer has already engaged for a couple of years in new solu-
tions to meet these challenges and to improve all processes of generating good
quality content in the backend on the one hand and to deliver information and
software in the frontend that facilitates the customer’s life on the other hand.

One of these frontend applications is a platform called JURION2 – an
innovative legal information platform developed by Wolters Kluwer Germany
(WKD) that merges and interlinks over one million documents of content and

1See e.g., this article about the information consumption in the US http://hmi.ucsd.edu/
pdf/HMI 2009 ConsumerReport Dec9 2009.pdf

2https://www.jurion.de/de/home/guest

201

202 Use Cases

data from diverse sources such as national and European legislation and court
judgements, extensive internally authored content and local customer data, as
well as social media and Web data (e.g., from DBpedia). In collecting and
managing this data, all stages of the Data Life Cycle are present – extrac-
tion, storage, authoring, interlinking, enrichment, quality analysis, repair and
publication. On top of this information processing pipeline, the JURION
development teams add value through applications for personalisation, alerts,
analysis, and semantic search.

The JURION use case is addressing both software life cycle and data life
cycle. Therefore, their combination and integration is a key challenge within
this use case. Still, currently both life cycles are highly independent from each
other, which lead to a lot of errors and inefficient use of resources.

In order to address this challenge in a practical and pragmatic way, we
have developed based on our daily operational experience two dedicated use
case scenarios that shed a first light on the challenge and also on our view
how to address it.

We have deliberately chosen one use case scenario that is triggered by
the data life cycle and a second scenario triggered by the software life cycle.
We also tried to describe common, yet not too complex situations, so that we
could cover them in a sufficient granularity.

6.1.2 Problem Statement

JURION is an innovative legal information platform developed by Wolters
Kluwer Germany that merges and interlinks over one million documents
of content and data from diverse sources such as national and European
legislation and court judgements, extensive internally authored content and
local customer data, as well as social media and Web data (e.g., from
DBpedia). In collecting and managing this data, all stages of the Data Life
cycle are present – extraction, storage, authoring, interlinking, enrichment,
quality analysis, repair and publication. On top of this information processing
pipeline, the JURION development teams add value through applications for
personalisation, alerts, analysis and semantic search. Based on the FP7 LOD2
project, parts of the Linked Data stack have been deployed in JURION to
handle data complexity issues (see Figure 6.1). Currently, the software devel-
opment process and data life cycle are highly independent from each other
and require extensive manual management to coordinate their parallel devel-
opment, leading to higher costs, quality issues and a slower time-to-market.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 203

Figure 6.1 JURION Content Pipeline and Semantic Search.

By adopting the ALIGNED methodology and tools, software development
and data processing pipeline maintenance will gain integrated governance
mechanisms. These mechanisms will provide unified views of software and
data engineering tasks enabled by linked enterprise Linked Data represen-
tations of both engineering teams. This will build on a common system
specification language that produces and maintains links between data entities
and code, executable code and program transformations that take account of
how both systems co-evolve. The engineering process for both systems will
be improved by the presence of new tools to integrate bug tracking and test
results in both systems. ALIGNED methods and tools will streamline the
processes for data acquisition, data processing, and data integration. These
are all data curation activities that will be supported by workflows, model-
driven generation of dataset-specific curation interfaces, automated data unit
test generation, execution and reporting, data quality frameworks, and rule-
based data integrity gateways. ALIGNED will enable JURION to address
more complex business requirements that rely on tighter coupling of software
and data.

204 Use Cases

6.1.3 Actors

Role Description
CMS Expert responsible for the technical correctness of process and data
Content Architect responsible for the overall process and schemas
Legal Domain
Expert

responsible for ensuring that legal data are correct

Legal Editor responsible for editing legal information
Product Owner wants the best possible product
Quality Manager responsible for data quality assurance
Schema Expert responsible for executing and documenting schema changes

The requirements on which the JURION use case was based are detailed in
Appendix A.

Architecture

Based on the FP7 LOD23 project, parts of the Linked Data stack have been
deployed in JURION to handle data complexity issues (see Figure 6.2). The

Figure 6.2 Distribution of the Linked Data stack components w.r.t. Linked Data Publishing
cycle.

3http://lod2.eu/Welcome.html

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 205

FP7 LOD2 project aimed at developing novel, innovative Semantic Web
technologies and also at the expansion and integration of openly accessible
and interlinked data on the Web. WKD acted as a use case partner for these
technologies, supported the development process of semantic technologies
and integrated them to support the expansion of Linked Data. WKD also
published some domain specific datasets.

The software development process and data life cycle at WKD are highly
independent from each other and require extensive manual management
to coordinate their parallel development, leading to higher costs, quality
issues and a slower time-to-market. This is why the JURION use case in
ALIGNED is located both within the software engineering as well as in the
data processing area (see Figure 6.3).

In the initial prototype implementation, we aimed at the creation of a
stable prototypical environment, in which we can start testing and evaluating
implementations to encounter the current issues. In this first phase, we con-
centrated mainly on the enhancement of data quality and repair processes.
Based on requirements, we started to work on data transformation issues and
the improvement of data quality processes in PoolParty.

Figure 6.3 ALIGNED Use Cases.

206 Use Cases

6.1.4 Implementation

6.1.4.1 PoolParty notification extension
Development and maintenance of controlled vocabularies such as thesauri
is mostly a manual and thus error-prone process. Especially in environ-
ments where multiple contributors are allowed to perform changes to the
vocabulary, structural complexity increases, which makes it harder for indi-
viduals to maintain an overview. Furthermore, conflicting opinions arise and
lead to inconsistent description, meaning and structure of the thesaurus’
concepts. This problem is even more important when using software that
allows for collaborative vocabulary development or publishing vocabularies
as Linked Data.

Furthermore, maintaining an overview is not only necessary for thesaurus
development, but also for curators responsible for datasets published as
Linked Data on the Web serving various use cases. Users are allowed to
change or add information (metadata) to existing data anytime. Therefore,
errors can be introduced and hence manual review is required.

6.1.4.2 rsine notification extension
In order to address certain scenarios, the rsine4 notification service as well as
its integration into PoolParty had to be extended. The changes incorporated
into rsine’s code dealt with support for persistence transaction and attach-
ing rsine to receive notifications from other PoolParty repositories than the
default vocabulary repository. Regarding the former change, multiple triple
changes that are written into rsine managed triple store as one transaction are
now combined and treated by rsine as one changeset. This allows for easier
formulation of notification subscription documents and more robust notifica-
tions. On the PoolParty side, we added integration code that forwards changes
to, e.g., the custom schema repository or the user account repository to rsine,
so that it is also possible to get notified on schema and user account changes.
However, this is just a temporary solution as we aim to get PoolParty working
with a single repository and organise all other information in separate named
graphs. Once this has been accomplished, also the rsine integration code can
be simplified.

6.1.4.2.1 Results
To cover the most important scenarios, we implemented five new rsine
notification subscription documents that enable notifications for

4See https://github.com/rsine/rsine

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 207

Figure 6.4 Notification message.

• Creation of a new custom class
• Creation of a new custom schema (see Figure 6.7)
• Deletion of a custom schema
• Creation of a new user account
• Creation of a new project

The other scenarios can be covered with similar subscriptions. Up to now, the
details covered in the notification messages sent out to the users cannot cover
information like

• who (username) created a custom schema or user account, and
• the name of the newly created schema

The reason for this is that (i) this information is not available in the
persisted data or (ii) the repository holding the data is not available for
querying through a SPARQL endpoint. Figure 6.4 shows a sample notification
message.

6.1.4.3 RDFUnit for data transformation
As part of the core, CMS tasks within JURION each WKD XML document
that is checked-in through internal workflow functionality and is converted to
RDF based on the Portal Content Interface (PCI) ontology. The PCI ontology
is a proprietary schema that describes legal documents and metadata in OWL.
Due to change requests and new use cases for the RDF metadata in the
ontology, the conversion logic or both the conversion logic and ontology
need amendments. In these cases, we need to ensure that the RDF data that
are generated from the WKD XML documents still comply with the PCI
ontology for quality assurance.

Current Situation

As a gatekeeper to avoid loading flawed data into the triple store, each result
of the conversion from WKD XML into PCI RDF is sent to a proprietary
dedicated Validation service that inspects the input and verifies compli-
ance with the ontology. This approach assures that the conversion results

208 Use Cases

are verified but comes with some major issues. The three most important
ones are:

• The current service can only process larger data packages. This makes
error detection on single data units quite difficult and one error blocks
the whole processing pipeline

• the service is a SOAP-based Web service that works asynchronously
with many independent process steps, which imposes high complexity
on its usage

• it depends on other services and requires permanent network access and
therefore is potentially unstable

To improve these issues, we want to implement unit test scenarios that can
be run directly coupled to the conversion project development environment
(this project hosts XSLT logic to convert WKD XML into PCI RDF). The
tests should be run both automatically on every change in the project, but
also be able to be manually triggered. Tests should be easily extendable
and expressive enough to easily spot issues in the conversion process. The
feedback loop should be coupled as tight as possible to the submitted
change.

Implementation

To allow comparable and reproducible test results with suitable execution
time, a number of WKD XML reference documents have been selected,
against which the actual conversion into PCI RDF is executed and each
resulting RDF dataset is verified individually.

The prototyped solution (see Figure 6.5) integrates RDFUnit as the core
driver of the tests. The integration is currently based on auto generated tests,
which are generated from a current version of the PCI ontology every time
the test suite is run.

It also integrates seamlessly into the general development toolchain. Any
change in the conversion project automatically leads to an entire build of the
project including validation. As the test suite is integrated in the underlying
standard test mechanisms, a developer can trigger this test chain manually on
his local workstation to retrieve direct feedback at any time.

As a proof of concept RDFUnit’s test results (the validation model based
on the Test-Driven Data Validation Ontology5) linked to this test is stored into
Virtuoso triplestore to enable future analysis/reviews of historical data.

5See http://rdfunit.aksw.org/ns/core

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 209

Results

Each of the test results manifests in the validation model, which is based
on RDFUnit’s Test-Driven Data Validation Ontology. As we currently rely
on RDFUnit’s auto generators, all statements are spotted that outcast rules
that have been derived/interpreted from the ontology. These are especially
cardinality and domain/range violations.

In any case, a summary of the test results is presented to the user. As this
is always in the context of a concrete RDF-dataset (in the form of a file) one
can immediately spot issues on the exact resource, which avoids unnecessary
lookups and helps to identify the defective part of the conversion.

The integration of RDFUnit into the development cycle and build pipeline
(see Figure 6.5) enabled the following possibilities that were entirely missing
before:

• run automated tests based on the ontology
• steadily monitor project health
• capture metrics

Figure 6.5 Transformation process with RDFUnit.

210 Use Cases

In the past, most issues aroused after the changes to the conversions have
been released without proper and reliable testing – as this was only possible in
manual developer tests. Moving forward, we can make sure that reproducible
tests are run with each change especially before releases. Tests and tested
documents can be easily extended to increase coverage of corner cases.

Figures 6.6 and 6.7 shows some of the test results, which can easily be
stored and used on a regular basis in current and future QA reports.

Early and quick feedback on changes to the project are very valuable to
assure that the project is in good health and existing functionality meets the
defined expectations. Good coverage with automated tests prevents bugs from
slipping in released functionality which may have bad side effects on other
parts of the system.

RDFUnit enables possibilities but still needs a tighter integration as a
library with our existing toolchain to improve reporting capabilities and make
its feedback even more useful.

RDFUnit proves as being very useful and will be a fixed component of
the operational tech stack within WKD JURION from now on.

We will provide further requirements to improve RDFUnit’s integration
into our development pipeline. At a later point in time, we will utilise
RDFUnit to enable monitoring the existing data store to implement quality
assurance on operational side.

target/test-classes/junit7523938743608749278/output/baulast_13211.meta.rdf

[ERROR] http://wolterskluwer.de/ceres/wk-
de/lexdb/181634/baulast_13211#Hinweis01bea53a31ad369b9dabd6a4704230ef
. Cardinality of http://wolterskluwer.com/ceres/concept-v1.0/anchorId
different from 1 (is 0) for type http://wolterskluwer.com/ceres/content-
warehouse-v1.0/BlockAnchor
. Cardinality of http://wolterskluwer.com/ceres/concept-v1.0/anchorId
different from 1 (is 0) for type http://wolterskluwer.com/ceres/concept-
v1.0/Anchor

[ERROR] http://wolterskluwer.de/ceres/wk-de/lexdb/181634/baulast_13211
. http://wolterskluwer.com/ceres/wk-
de/referenceInformation.ChapterReference does not contain a literal value
(http://www.w3.org/1999/02/22-rdf-syntax-ns#XMLLiteral)
. http://wolterskluwer.com/ceres/wk-

de/referenceInformation.ChapterReference has rdfs:domain different from:
http://wolterskluwer.com/ceres/ltr-v1.0/ReferenceInformation
. http://wolterskluwer.com/ceres/wk-de/searchTuningKeyword has rdfs:domain
different from: http://wolterskluwer.com/ceres/concept-
v1.0/InformationClass
. http://wolterskluwer.com/ceres/content-warehouse-
v1.0/isDocumentInstanceOf has rdfs:domain different from:
http://wolterskluwer.com/ceres/concept-v1.0/FileResource

Figure 6.6 RDFUnit results.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 211

Figure 6.7 Jenkins-CI Test Report.

6.1.4.4 PoolParty external link validity
WKD document metadata and controlled vocabularies are linked to sev-
eral external sources. These sources are mainly DBpedia6 and thesauri like
Eurovoc7, Thesoz8 or STW9. On a larger scale, we plan to include more of
these kinds of sources to connect with additional internal and external data
for the enhancement of several services. To control the process of change and
to evaluate what kind of effects this can have on the quality of data, we want
to control changes of Linked Data that can cause problems.

In addition to the validity of external links, we also aim to monitor
the validity of internal links between different projects and datasets as also
internal WK sources will need validity control.

Current Situation

Currently, we have no effective overview over the validity of linked sources.
This causes, for example, frontend problems in the published vocabularies
(see Figure 6.8). Currently, the only way to evaluate the quality is to analyse

6See http://de.dbpedia.org/
7See http://eurovoc.europa.eu/drupal/
8See http://www.gesis.org/en/services/research/thesauri-und-klassifikationen/social-science-

thesaurus/
9See http://zbw.eu/stw/version/latest/about.en.html

212 Use Cases

Figure 6.8 Validation Data stored for Analysis.

the frontend representations of the linked sources or to follow a link to detect
a missing source. There is in general no process in place to control the validity
of external sources. Figure 6.9 shows a sample defect.

Implementation

To check the validity of external links, we use the same technique as
qSKOS.10 All URIs used in the vocabulary that do not point to the local host
are dereferenced and the remote server’s response is checked. If the HTTP
status code is 200, the link is considered valid. In case redirects occur, they
are followed properly. All other responses are to be classified as invalid.

Results

URI checking can be invoked from the PoolParty user interface in the current
experimental version. The result overview (see Figure 6.10) shows the URIs
of the violated links and the total number of checked links as well as the
number of violated links. The quality manager can use these links to change
or delete the respective relations.

However, since each URI gets resolved and duplicate URIs are not omit-
ted, this process can take a lot of time. In future versions of PoolParty, we

10See https://github.com/cmader/qSKOS

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 213

Figure 6.9 Example defect: the Image file of the external source does not exist anymore11.

11See frontend http://vocabulary.wolterskluwer.de/court/10592.html

214 Use Cases

Figure 6.10 Validation Results.

will investigate ways of running these kinds of checks in the background and
notify users on the results.

6.1.4.5 Statistical overview
As we are integrating more and more controlled vocabularies and custom
schemas in the metadata management tool PoolParty, we are in need of
solutions that give an overview of existing relations between projects and
external data and schemas. Besides, the number of user roles is growing so
that we need a solution that enables a best overview for a number of different
users with different purposes. By different queries and enhancements, we
want to get an impression about the relations between projects and the usage
of specific custom schemas.

Current Situation

Connections of projects and schemas are not easily traceable. Owners of
vocabularies need to document everything so that others can also understand
the projects and its relations and possibilities. Without this documentation,
it is hard to analyse the different projects. Within the tool, the user can only
analyse the individual concepts for relations to investigate any relations with
schemas. For linking to other projects it is possible to get a list of links. This
list does not provide the number of links and specific numbers for different
kinds of linking. These figures need to be searched manually.

Implementation

We currently implemented two different kinds of statistical metrics and
integrated them into the PoolParty UI (i) checking for external links validity

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 215

and (ii) links to other PoolParty projects on the server. These metrics differ in
the methodology they are evaluated. Checking the validity of external links
cannot be done using SPARQL and requires external tool support (e.g., Java
code, see section 6 on external link validity). Reporting links to PoolParty
projects can be achieved in a similar way than checking for data consistency
violations. Each statistical property can be formulated as a SPARQL query,
which is executed on the relevant project data, i.e., the current project data
and metadata as well as all linked project data and metadata.

Results

The checking of project relations can be invoked from the PoolParty user
interface in the current experimental version. The results (see Figure 6.11)
show the kind of used relations, the frequency of these relations, the detailed
list of linked resources and the total number of linked resources.

This way users can check how and to which extent projects are related to
each other and they get an overview of used relations.

6.1.5 Evaluation

The Jurion Use case is split into two sections within the ALIGNED project:
(1) the Jurion platform, and (2) the Jurion IPG tool. The developments
concerning the Jurion platform took place in the first half of the project, based
on the respective categories of measurement and will be repeatedly described
here for completeness.

For the prototype of the JURION platform use case, we focussed on the
data development processes.

The ALIGNED tools that were used for this prototype are RDFUnit and
PoolParty. We had four major features for the initial prototype.

Figure 6.11 Statistical checks.

216 Use Cases

• RDFUnit for Data Transformation
• Notification Service in PoolParty
• Project Linking Statistics in PoolParty
• ELV in PoolParty

The methods of collection are divided into three categories, namely produc-
tivity, quality, and agility, as follows in Figure 6.12.

Tasks Comment Productivity
(Prototype
testing)

Quality (Prototype
Testing, expert
evaluation/
interviews)

Agility
(expert
evaluation)

RDF
Transformation

quality
test of data
transformed
from XML
to RDF

Time
Measurement
for Quality
Checks Time
Measurement
for Error
Detection
Need for Manual
Interaction

number of
detected error
categories
test coverage
expert
evaluation

Time to include new
constraints/adapt
the testing to new
requirements

Notification notification
about
predefined
changes

Number of
Scenarios
Time
Measurements
Usefulness

Notification
completeness
expert
evaluation

Time to include
new
constraints/adapt
the testing to
new requirements
User roles that
can modify
Notifications Time
to configure a new
Notification
Integration of a
customized
Notification
Configuration
Time to configure
new requirements

Statistics Statistics
about
relations of
projects

time
detected
links

usability
aspects
result
consistency

Detection Issues
Integration of
Statistics Time to
configure new
Requirements
Extension

External
links

quality of
external
links

checked links

violations time

usability aspects
expert
evaluation/inter
correctness of
results

Scope of
External Link
Checks
Integration of
Internal Link
Checks
Time to
configure new
Requirements
Extension

Figure 6.12 JURION: Overview.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 217

The evaluation of the prototype showed clearly that during the Jurion
prototype development, we have achieved our aim to improve the productivity
and quality of data processes within the data life cycle. With the presented
features, these improvements could be made visible. Performance and qual-
ity/error rates of the test results were satisfactory. Nonetheless, evaluation
outcomes suggest further improvements are possible, especially with regard
to usability, performance, integration of functionalities and required details
that are not yet fully optimised.

6.1.5.1 Productivity
In summary, the productivity of data processes is clearly improved by the
Jurion prototype. The data transformation service enables a testing that points
directly to the detected error source and improves the bug fixing process this
way. The notification service provides notifications as soon as an action is
executed. This is a helpful tool to ensure quality analysis and data monitoring.
Nonetheless, there needs to be a solution that helps to send the notification
precisely where it is needed to avoid spamming. The statistics and ELV
functionalities can help to save much time by replacing time-consuming
manual work with efficient data overviews.

6.1.5.2 Quality
Concerning the quality of the prototype functionalities, the results are very
satisfying. For notifications and ELV, there are only few issues. For the data
transformation with RDFUnit and the statistics part, there needs to be further
investigation to enable comprehensive and extensive data testing results.
Usability issues need to be tackled in all the features for a better operational
implementation. As this is only an initial prototype, usability was less of a
priority.

6.1.5.3 Agility
The testers’ feedback for agility of features is quite positive. The agility
of RDFUnit is seen as satisfying as the automated service allows the
implementation of new requirements easily. With regard to notification,
adaptations are dependent on the specific notification use case and the
respectively available data. In the same way, the agility of statistics fea-
ture is highly dependent on the availability of required underlying data.

218 Use Cases

ELV has a reasonable agility and is planned to be done by an external
application to address performance issues.

The evaluation of the Jurion tasks was done in an early phase of the
project, based on an earlier evaluation approach. We will analyse one on of
the tasks based on the latest suggested method to show the adaptability of the
test results for this approach. Task 4 ELV service serves as a good example
for this analysis.

6.1.5.4 Measuring overall value
JURION is a legal information platform that merges and interlinks over one
million documents of content and data from diverse sources such as national
and European legislation and court judgements, extensive internally authored
content and local customer data, as well as social media and Web data
(e.g., from DBpedia). The JURION development teams add value through
applications for personalisation, alerts, analysis and semantic search. Rev-
enue is generated by customers paying for the platform content and related
services.

PoolParty serves as the metadata management tool of controlled vocab-
ularies that are used for specific search functionalities and the develop-
ment of further functionalities in applications. The ELV is a PoolParty
functionality.

ELV is a new feature that evaluates the links to external sources and
informs the user in case the sources are not available anymore. Previously, it
was only possible to check the links manually in random samples. Therefore,
it provides a fast and efficient curation service to guarantee an error-free
linking to external sources. A measure of value could be curation cost of
maintaining a given quality of service as measured by revenue. The saving of
time needed for the error detection is the most important parameter for this
calculation.

6.1.5.5 Data quality dimensions and thresholds
Data accuracy, completeness and consistency are essential for this task. Jurion
Customers pay for the curated information and related services so that high-
data quality is a major requirement. Data accuracy was analysed in the
evaluation by analysing the errors – 100% of the found errors have been data
inconsistencies. In average, 81% have been outdated links, we were looking
for. Nineteen per cent have been unexpected inconsistencies that exceeded

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 219

our expectations. Completeness was checked via mapping the errors that were
found manually, against the system results. All manually detected issues have
been detected by the links.

6.1.5.6 Model agility
As the functionality is embedded in Poolparty, the assessment of the Pool-
party use case is also valid in this case. With regard to the functionality,
the configuration of new requirements for the ELV is possible. Determining
which URIs should be resolved can be done either with the methods SPARQL
provides or within the Java resolution algorithm. In each case, the effort for
change is low, allowing for agile reaction on changed requirements. However,
changes to the current configuration require recompilation and redeployment
of PoolParty.

6.1.5.7 Data agility
As the functionality is embedded in Poolparty, the assessment of the Pool-
party use case is also valid in this case. Based on the pattern to detect
URI patterns for links to be checked, the solution can also be used for
(or constrained to) “internal” links. Therefore, appropriate methods must be
evaluated.

6.1.6 JURION IPG

6.1.6.1 Introduction
The Jurion IPG system is a commercial intelligence system, providing a
means for business contractors to perform due-diligence queries, serving
historical data about companies and their relationships with other companies,
responsible individuals, and business documents. As a reliable provider of
credibility and financial information for over five million entities, the integrity
and consistency of the data is of vital importance, and increasingly hard to
manage at scale. In this use case, we are deploying the ALIGNED tools to find
problems in the existing data and to improve the integrity of data submitted
in the future. ALIGNED tools are also helping increase the scope of the data,
by enabling the linking of data stored within the system to external related
datasets.

Figure 6.13 shows the flow of content through components of the system.
Source data are manually imported or acquired through crawling non-
formatted data sources, and pushed into a relational data store. Metadata is
extracted and enriched, before being entered into a separate RDF data store.

220 Use Cases

Figure 6.13 JURION Content Pipeline, showing ALIGNED tools integrated with existing
functionality and datasets.

The schema for the relational data store is versioned and updated through an
instance of the Model Catalogue; and data integrity is maintained through
Semantic Booster-generated stored procedures. This relational data may also
be viewed in an RDF format, where the RDFUnit tool may be used for further
data validation. External metadata is managed through use of the SWC’s
PoolParty thesaurus manager and linked with the RDF representation of the
core dataset. Existing end user interfaces to the data will be supplemented
with an administrative interface automatically generated by the Semantic
Booster tool.

New software integration points can be found where ALIGNED tools
interact or communicate. In particular, such interactions occur between the
Model Catalogue and Semantic Booster, where Booster models are gener-
ated from the Model Catalogue, and where metadata in the catalogue is
used to supplement the end user interfaces. Further integration is between
Booster and RDFUnit, where the D2RQ tool is used to help convert relational

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 221

data into RDF: the configuration for this may again be parameterised by a
transformation of the model in the Catalogue. The ALIGNED vocabularies
are used to standardise these interactions.

Use Case
Figure 6.14 shows the problem space and more specifically the complexity of
the JURION IPG system. The utility of the JURION IPG system is dependent
on the maintenance and evolution of a large, semantically consistent dataset.
Huge amounts of daily processed data originally from pdf sources; and main-
tenance through a proprietary, obsolete CMS makes the IPG case extremely
suited as an ALIGNED use case. Business value of the system is dependent
on the maintenance and evolution of a large, semantically consistent dataset.
The overall goal is to ensure the quality of the system used to enter and
maintain the data and to improve the value by linking to external datasets. To
provide this solution by implementing ALIGNED tools, we used in parallel
two approaches including Semantic Booster first and Dacura afterwards. For
the purpose of the Jurion IPG use case, we have chosen to concentrate on a
number of key critical concerns:

Figure 6.14 IPG problem statement.

222 Use Cases

• The use of Semantic Booster will allow a wider range of semantic
integrity constraints and business rules to be applied to the data upon
entry, ensuring high-quality data. The automatic data-migration tools
provided with Booster will minimise the impact of upgrading and
evolving the underlying data model whilst maintaining data consistency.

• The administrator interface in the IPG system currently requires manual
development each time the database changes; increasing the cost of
evolving the data store. The model-driven Booster default interface can
be used: either in its entirety, or components reused to save development
effort. (Figure 6.14)

• The existing data store is currently stored in a relational format. Whilst
Booster can help enforce a range of integrity constraints, there are some
consistency checks which would be more reliably performed using RDF
reasoning; some additional constraints may be enforced in a less severe
manner: not enforced globally but treated on a case-by-case basis. We
will use the existing D2RQ12 tool to convert data stored within a Booster
database into RDF format, making it available to the RDFUnit testing
tool. D2RQ is a platform and language for accessing standard relational
data, as that found in Booster, as triples. It is the basis from which the
R2RML13 W3C standard was developed. In D2RQ, each element of a
Linked Data schema can be mapped to data from a relational database,
using standard SQL queries, embodied in a mapping file in the D2RQ
formalism. The additional testing and monitoring this enables will also
provide insight into productivity and quality gains through use of the
ALIGNED tools.

• Semantic integrity of the data can be compromised by a lack of under-
standing of the model. Here the Model Catalogue can be used to provide
accurate descriptions of data fields, including those from linked external
data sources. Such descriptions can aid correct data entry, and permit
additional reuse of the data within the organisation. The Catalogue will
also serve as a provider of models to the generated tools, and an environ-
ment where new versions of the data model can be created and evolved.

In the ALIGNED use case, the IPG domain model is edited and versioned
within the Model Catalogue: Figure 6.15 shows a screenshot including
a subset of the model. The model can be used as the foundation for a
model in Semantic Booster, but the Catalogue is also able to generate

12http://d2rq.org/
13https://www.w3.org/TR/r2rml/

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 223

Figure 6.15 Screenshot of a subset of the IPG model in the Model Catalogue.

documentation files, data interchange specifications (such as in XML), and
other useful system components.

The Booster model may be further edited within the Eclipse-based IDE
(Figure 6.16) to extend concepts with further business rules and update
methods. The Booster generation system is then used to generate a database
with stored procedures for updates, a programmatic API, and a Web-based
administrative interface (Figure 6.17).

The data within the Booster system can be extracted in RDF format
using the D2RQ tool. These RDF data are now suitable for linking to
external datasets, or further reasoning. The RDFUnit tool can be used for

224 Use Cases

Figure 6.16 The Eclipse-based Booster tool.

Figure 6.17 Screenshot of the Booster administrator interface for the JURION IPG system.

performing extra validity checks on these data (Figure 6.18) – checks that
might be hard to describe or perform within a relational framework, or
properties concerning relationships with external data.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 225

Figure 6.18 Results of using the RDFUnit tool against data from a Semantic Booster
database.

Dacura provides several services to software engineers developing soft-
ware that utilises the data curated by the system. These include reliable access
to data models, change notifications and the automatic production of simpler
formats, which are more familiar to developers.

In order to verify the effectiveness of both approaches – Semantic Booster
and Dacura – we created a list of unsolvable issues existing in the current
Jurion IPG system. Based on the results of an evaluation, we will be able to
determine from a business point of view, which approach suits best for a real
business use case.

6.1.6.2 Architecture
Figure 6.20 shows the architecture of the platform that was constructed to
support the Jurion IPG use case. The IPG system is shown on the left. It
consists of a CMS and an SQL database, upon which a suite of Business Intel-
ligence services have been developed – some of which access the database
directly and some of which use the API provided by the CMS. In this sce-
nario, we compare two alternative approaches to solving the IPG problems.

226 Use Cases

Category ID Problem
Information is not there
or is wrong

1 The lack of the trustee in bankruptcy proceedings

Information is not there
or is wrong

2 Member of management board in companies where
management board doesn't exist

Information is not there
or is wrong

3 Member of management board without function in
board e.g. board chairman, vice chairman

Information is not there
or is wrong

4 Commercial proxy without type of proxy e.g. joint
commercial representation

Information is not there
or is wrong

5 Proxy without type of proxy

Information is not there
or is wrong

6 Lack of additional information about way of
appointment of a trustee

Information is not there
or is wrong

7 Limited partner without limited liability amount

Information is not there
or is wrong

8 Are there multiple shareholders if company is labeled
as „Sole Shareholder”

Information is not there
or is wrong

9 Information about the suspension of a member of the
management board - only YES or NO

Information is wrong 10 The same person in management board and as
commercial proxy

Information is wrong 11 Member of management board is a member of
supervision or a commercial proxy, a official receiver,
a trustee

Information is wrong 12 Receiver is a member of supervision or a trustee
Information is wrong 13 Official receiver is a member of management board or a

member of supervision ,a trustee, an appointed person
Information is wrong 14 Trustee is a receiver or an official receiver, a member of

management board
Information is wrong 15 There should be at least one person (natural or legal) in

representa�on (management board, partners, trustee)or
receiver / official receiver at any moment in �me.

Information is not there
or is wrong

16 Partners without information like amount of shares

Information is not there
or is wrong

17 Do value of partners shares at every moment in time
is equal or lower than capital value.

Information is not there
or is wrong

18 Lack of amount of capital value in joint stock
company and limited liability company

Information is not there
or is wrong

19 Lack of information about way of formation of a
company only information about circumstances of
formation

Information is not there
or is wrong

20 Lack of information about circumstances of formation
of a company only information about way of formation

Information is not there
or is wrong

21 Did a company publish multiple annual reports.

Information is not there
or is wrong

22 Lack of the post office in company address when is
not the same like the place where headquarter is

Information is not there
or is wrong

23 Lack of a date of validation of expunging company
from the court registry

Information is not there
or is wrong

24 Lack of title of organ - supervisory board

Information is not there
or is wrong

25 PESEL No. with less digits than 11 when first digit is
0

Information is not there
or is wrong

26 Email and web page address with space

Information is not there
or is wrong

27 Lack of @ in email address

Information is not there
or is wrong

28 @ in webpage address

Informa�on exists, but is
hardly understandable

29 Complexity of the data model in the table describing
attributes for company and relationship – the table
szczegol_instyt_watrosc

Informa�on exists, but I can’t
do anything with that – no
process for consuming info

30 Information from the legal notice about a ban on
economic activity and ban to be a member in
representation (management board), supervision
(supervisory board or audit committee)

Process exists, but isn’t
working or is too slow so
solu�on is unknown

31 Find out relationship at specific moment in time
between company and company, company and
person, person and person

Information exists, but is
difficult to get

32 Cycle loop - find out if company A is owner of
company B, than company B is owner of company C
where C is owner of company A

Figure 6.19 Jurion IPG unsolvable issues.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 227

Figure 6.20 Jurion IPG use-case architecture showing integration across all major project
tools and partners.

The first approach is provided by a configuration of the Oxford MDE
approach. A booster specification is created (1) which generates SQL state-
ments to extract the data from the legacy SQL DB and saves it in a format that
can be managed by the Model Catalogue tool (2), the booster specification
should ensure that these extracted data are correct by construction according
to the booster specification. Then, these data are made available as RDF via
Semantic Booster.

The second approach is provided by a configuration of Dacura services
developed at Trinity College Dublin. The Model mapping tool (4) transforms
the SQL schema of the legacy DB into an OWL ontology which is then used
by the schema checking tool (5) to ensure that all data conform to the model.
The curation and workflow tools (6) allow data managers to change the model
and migrate the data and manage the process.

In order to properly compare the results of the two approaches, the RDF
that they produce must be mapped to a common model – the UnifiedViews
tool (7) provides this service and saves the resulting data to a triplestore.
Finally, RDF Unit is used to test the output against the 32 unsolvable scenar-
ios shown in Figure 6.19 to evaluate the success of the competing results.
As RDFUnit supports arbitrary SPARQL queries, it is possible (although
sometimes inconvenient) to encode all the evaluations as RDFUnit tests.

6.1.6.3 Tools and features
The tools and features used in the JURION IPG system are detailed in
Figure 6.21.

228 Use Cases

PoolParty Pla�orm X X X X RDF(S), PROV,
SKOS

Model
Catalogue

Pla�orm X RDF(S), OWL, PROV

RDFUnit Command
line tool

X X X RDF(S), PROV,
DQV,
DataID, SHACL,
RUT,

Seman�c
Booster

Command
line Tool

X X RDF(S), OWL, PROV

So�ware Type RESTful
API

Triple
Store

SPARQL Linked
Data

Shared Ontologies
supported

Figure 6.21 Integration Paradigms and vocabularies supported by ALIGNED tools and
platforms.

6.1.6.4 Implementation
Modifying Seshat Schema: Dacura provides tools to allow users to edit and
modify ontologies on the fly (Figure 6.9). Using the Dacura browser plugin,
users can browse the current Seshat code book and create properties and
objects, adding them to the Seshat ontology and allowing researchers to
collect information on these newly added properties.

Data complexity: Wolters Kluwer has managed and is still managing
a tremendous business transformation process from a publishing house
to a global information service provider (Figure 6.22). This development
requires that high value-added services like IPG are also transformed from
a traditional monolithic technical environment to a modular, flexible and
sustainable infrastructure. Due to its data complexity and data quality
issues (e.g., the main added value lies in the complex relationship model),
ALIGNED tools can heavily support this transformation process.

Semantic Booster and the Model Catalogue. Semantic Booster has its
strengths in the automatic model and software code creation process. It has also
strong quality constraints so that no invalid data get into the transformation
process. This approach was augmented by using RDFUnit for further data
quality checks and which is the prerequisite to connect external open datasets
to the IPG application in an easy and sustainable way (see Figure 6.23).

A booster specification is created which creates a model from the SQL
database, along with formal constraints, which ensure that the data remain
correct by construction. The Model Catalogue tool is then used to manage
this data model. Semantic booster is used to make these data available as
RDF via an API.

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 229

Figure 6.22 Complexity of the Jurion IPG use case.

Figure 6.23 Integrating Semantic Booster and the Model Catalogue.

230 Use Cases

Figure 6.24 IPG Data Error detection and correction using Dacura.

Dacura provides an alternative method of achieving the same results
(Figure 6.24). Firstly, the model mapper tool is used to generate an OWL
ontology from the IPG SQL table structure (Figure 6.25). This ontology
is deployed as the schema for the graph into which the instance data are
imported.

Dacura’s curation tools provide user interfaces which enable the data
manager to view and modify the data and to analyse it for validation errors
(Figure 6.26). The manager can use these tools to change the schema to
include complex constraints on data quality. The results are provided as a
cleaned, schema conformant RDF dataset and a list of errors expressed using
ALIGNED’s RVO ontology.

Unified Views: in order to ensure that the results of the validation pro-
cesses carried out by Dacura and Semantic Booster can be evaluated, they
must be mapped to comparable schema for testing. The Unified Views tool is
used to manage this mapping and transformation and to save the transformed
data to a triple store.

RDFUnit: Each of the unsolvable issues is encoded as RDFUnit scripts,
which run SPARQL queries against the final data to check whether the issues
are still present in the data. These queries are run against both the data

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 231

Figure 6.25 Ontology generated from IPG SQL database by Dacura’s Model Mapper Tool.

Figure 6.26 Using Dacura’s curation tools to analyse the IPG data model.

232 Use Cases

produced by Dacura and by Semantic Booster. In situations where issues still
remain, RDFUnit can be used to fix some of these outstanding issues.

Conclusion: The platform produces a result set which describes the errors
that have been found in the data which can be passed back to the DB
administrators for correction.

6.1.6.5 Evaluation
Measuring Overall Value

The IPG database supports a variety of business services for customers which
provide revenue to Wolters Kluwer – a very clear measure of the value
provided by the system. The most important metrics in this case are: firstly,
the curation cost of maintaining a given quality of service as measured by
revenue; and secondly, the cost of improving the overall quality of service
to provide more value and increase revenue, for example, by adding new
features and new business services to the system. As the scale of the system –
both in terms of the size of the database and the complexity of the services
consuming the data – has increased, the curation costs have increased to such
a stage that the cost of improving Quality of Service may be greater than the
increase in business value that will accrue.

Data Quality Dimensions and Thresholds

Accuracy of certain information is very important in a commercial intelli-
gence system. For example, accurate identification, accurate contact infor-
mation and accurate shareholder and other relationship information are all
significant in terms of the overall value provided to customers by the system.
Users will tolerate some errors, but there is a threshold at which they will lose
confidence in the value provided by the system.

Model Agility

The existing data model in the IPG SQL database have evolved to a stage
where it is difficult to understand. Database access is heavily optimised
and any changes to the structure require modification of caching and other
optimisations. In addition, if we change any part of the structure of the
database, we will likely break existing programs which use that part and
it is very expensive to change the code of existing programs. Rather than
attempting to modify the existing data model, a path to migrating to a new
and easier to understand data model is required. In this case, the task is to

6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database 233

create a new data model that is easier to understand than the existing model
without increasing the overall complexity of the system.

Data Agility

Once again, scale is the obstacle to overcome in enabling data agility in IPG.
The overall system is highly optimised, and it requires significant effort to
integrate any changes into existing infrastructure, testing, and so on, before
we can safely ensure that the new service will not negatively affect the overall
QoS of the system. Particularly problematic are queries that contain many
complex joins and programs that make repeated round trips to the database,
for example by executing a query in a loop, as they can put high load on the
server and decrease the QoS across the entire system. To evaluate the overall
system’s data agility, the task is to create a new application, based on existing
data, which identifies illegal relationships between people and companies.

Task 1: Curation

Identify and correct 10 different types of significant errors in the database.

Before ALIGNED

• Write queries to extract all the fields to be analysed from the database
• Write and maintain functions to analyse the extracted fields for the

various types of errors identified and apply auto-correction where
possible.

• Develop and maintain a system which allows users to view and correct
identified errors

• Operate this system until the error rate has fallen below the desired
threshold.

• Write queries to insert the corrected values back into the database.
• Either of:

◦ Trace the source of errors back to the programs that produced them,
fix and redeploy the programs

◦ Periodically test the Database and rerun the process if quality levels
have fallen below minimum thresholds.

Task 2: Model Agility

Create a new, easier to understand model and deploy it so that all new services
can use the new model while existing services still use the old model, with

234 Use Cases

state being shared between them, without increasing the overall complexity
of the system, increasing the data curation costs or reducing agility.

Before ALIGNED

What makes this problem hard is that, with current technologies (SQL), this
requires a complete refactoring of the database and all the services that use it
and the solution, at best, slightly improves the problem by slightly increasing
the scale limit at which agility drops to zero. If we allow the existing data
model to remain untouched, so that we do not have to change the code of
existing services, and use middleware or an ORM architecture to create a new
model for new data and link it to the existing model through code, we do not
solve the problem at all – it actually makes it worse by introducing another
layer of code that must be understood and maintained in order to understand
or change the data or model. Thus, the only real alternative, using current
technologies, is a complete refactoring of the database and re-engineering of
the entire system and all of its services to use the new database schema.

Carry out complete system refactoring, with new, simplified schema,
existing data mapped to that schema and all software services updated to use
new model.

Task 3: Data Agility

Implement a new application which uses the IPG data to identify several
different types of ‘illegal’ relationships between people and companies.

Before ALIGNED

• Write, test and maintain complex recursive SQL queries using CTE or
CONNECT BY syntax to identify relevant instances.

• Write and maintain program to execute queries against database and
return results

• Write and maintain program to browse and display result

6.1.6.6 Experimental evaluation
We used ALIGNED tools to address 31 unsolvable problems identified by
IPG. This required us to complete the following tasks:

• Create a semantic model to represent the entities and relationships
referenced in the IPG unsolvable problems.

• Create a mapping from the IPG SQL schema to the ontology

6.2 Seshat – Collecting and Curating High-Value Datasets 235

• Import the data to the ontological version and analyse it using the 22
quality constraints represented statically in the ontology

• Run a set of queries against the knowledge base to identify 8 of the 31
problems that could be expressed as graph queries.

We measured the time and effort required to complete these steps and identify
all constraint violations in the SQL data, covering 30 of the 31 problems.
The vast bulk of the effort was expended on scaling our reasoner and storage
engine and toolchains to handle the scale of the data, as, when transformed
into semantic representations, the IPG database amounted to tens of billions
of triples.

We established a pipeline which lifts IPG’s SQL schema to an OWL
ontology and then converts SQL row data into triples. We then transform
the data triples using our Dacura mapping tool into an ideal schema. At this
point, the instance data are checked for consistency with the ontology.

The results of the consistency check are reported as a file of JSON objects
which elaborate the problem and its source. After running the consistency
check, we found an initial set of 2,103,583 errors. A high proportion of a
sample of these errors are genuine and have been verified (>95%), but since
work on the project is ongoing, the number of false positives has not been
completely determined.

The ontology design phase took around two days of expert ontology
designer time. Since most of the importation is automatic, the process took
around one day of developer time. Mapping of triples into the ideal schema
took an additional one day. The total development time is then around one
working week of effort.

Since IPG’s original use case described “unsolvable” problems, i.e., prob-
lems deemed too difficult to solve given the state of the current software and
database setup, setting a baseline is somewhat difficult.

However, these problems are not genuinely unsolvable in abstract but
simply too time intensive and expensive to solve. We can estimate the time
that it would take in excess of one month of developer time, and very likely
6 months in order to find the ∼2 million errors. This gives a range of speedups
from using our methodology of between 400% and 2400%.

6.2 Seshat – Collecting and Curating High-Value Datasets
with the Dacura Platform

The Seshat: Global History Databank is an international initiative of human-
ities and social science scholars to build an open repository of expert-curated

236 Use Cases

historical time-series data. The Seshat project began by selecting a sample of
30 areas from around the world. For each area, they recorded all societies that
had controlled it throughout history, and answered over a thousand questions
about each – describing its population, technology, religion, infrastructure,
and so on. This made it possible to answer a wide range of questions about
each of them – describing its population, technology, religion, infrastructure,
and so on. The Seshat has been designed to test theories about the evolution of
social complexity, from the point of view of historians and anthropologists.
The databank extracts data from a combination of databases, Linked Data,
websites, academic publications, and human experts.

A special code book defined the full list of questions, and researchers
added data to the system by creating a copy of the code book page for
each society, and adding data points using a special syntax that encoded
uncertainty, disagreement, and temporal scope, along with comments and
citations in relation to domain-specific provenance information. In the initial
stages of the Seshat project, a wiki was used to collect the data. The system
amassed over 200,000 data points on hundreds of civilisations, but whilst the
unstructured wiki data store allowed great flexibility at the start of the project,
it did not scale to the number of contributors, data users, data points, or the
complexity of the data.

The Seshat evolved to encompass new areas that were not originally
anticipated. In particular, this involved recording societies from the prehis-
toric past, which required a collection of archaeological data. It soon became
obvious that many Seshat variables were unsuitable for capturing this part
of human past. There was also a lack of relevant proxies that would allow
translation of archaeological evidence into coding templates. Accordingly,
the Archaeological Seshat code book was designed and developed in order to
fill in the gap, and the data were collected independently.

A wiki-based approach, used in Seshat for the data collection task, posed
numerous problems, in particular for the verification of data correctness, and
the extraction of data in usable forms. As the dataset grew and the focus
moved from collection to integration and analysis, several other significant
problems emerged. The fundamental problem is that a wiki is designed for
human presentation and editing of data. To a machine, it is semi-structured,
which lacks any type information and the meaning of the elements depends on
their context within a jumble of HTML. Without any support for validation,
errors proliferated.

The limitations of the wiki also impacted agility. As the Seshat code
book was rapidly evolving, any changes needed to be manually copied to

6.2 Seshat – Collecting and Curating High-Value Datasets 237

all existing data pages was a costly and error-prone task. There was also no
easy way to express spatial data through the wiki, so these data were stored
in separate GISs. This solution also offered no support for publication, while
the scraping tool could extract the raw datapoints, citations, and comments
were also important but were encoded in totally unstructured HTML.

Productivity suffered as increasing resources had to be devoted to curation
and cleaning. Some of the corrections were not copied back to the wiki, and
spreadsheets became the authoritative source for some sections of the data.
Moreover, there was no way of incorporating third-party data into Seshat
dataset.

6.2.1 Use Case

6.2.1.1 Problem statement
A group of researchers, distributed geographically and across multiple teams
and disciplines are collaborating on the compilation of the Seshat dataset
describing human social evolution since Neolithic times. The goal is to
record geo-temporal time-series datasets describing how hundreds of vari-
ables describing social complexity changed with time and place. The Seshat
researchers are currently using a wiki and a polity-based template, which
includes a simple syntax for encoding machine-readable variable values, to
collect the data. The Seshat researchers can currently be roughly broken down
into three roles:harvesters – typically RAs who are paid to input data to fill
the datasets on a per-polity basis;experts – scholars with specific expertise in
particular geo-temporal slices of human history, their role is to correct, inter-
pret and validate the data for their particular areas of expertise;architects – the
core Seshat editorial team, who are responsible for designing and modifying
the dataset Schema. The high-level goal of ALIGNED in this use case is to
produce tools for the Seshat researchers which will increase productivity and
data quality and improve the availability of data for analysis.

Actors

Role Description
Harvester non-technical users who add and update data
Editor moderate, correct and manage the data in the system over time
Expert use domain-specific knowledge to analyse and interlink data in the

system
Architect make changes to the schema and manage transitions between schema

versions

238 Use Cases

The requirements on which the Seshat use case was based are detailed in
Appendix A.

6.2.2 Architecture

Figure 6.27 shows the architecture of the system that was developed to
support the Seshat use case trials, highlighting the places where common
ALIGNED integration paradigms and ontologies were exploited. The system
demonstrates integration between three of the project’s major suites of tools,
and three of the project’s use cases.

The full suite of Dacura tools form the core of the system, importing
the data, ensuring it meets consistency requirements, automatically producing
user-interfaces and curation tools to allow the expert contributors to use the
system without any knowledge of the underlying semantic technologies being
used, and finally publishing the data and making it available to software
engineers.

The Model Catalogue tool was used to help develop and manage the
ontologies used by the system – it supports OWL models and provides
a RESTful API to support easy integration with third-party tools and
incorporating into complex workflows.

The Unified Views tool, developed as part of the SWC’s PoolParty
semantic suite was used to manage the integration of datasets from third-
party datasets into the Seshat dataset. In this case, the DBpedia knowledge
base was the data source being exploited.

Figure 6.27 Seshat Use Case Trial System Architecture, showing the tools provided
to different Seshat users, the use of ALIGNED integration standards and interoperation
paradigms.

6.2 Seshat – Collecting and Curating High-Value Datasets 239

The final platform thus directly incorporated the research outputs of six
of the seven research groups involved in ALIGNED and demonstrated inte-
gration across three of the use cases – DBpedia provided data and the Pool-
Party use case provided tools and expertise in establishing the data import
pipelines.

In April 2017, this platform was used to prepare and publish the first
public release of data from Seshat, which in an attractive and well-structured
format for appraisal by other researchers – particularly focussed on scientific
reviewers who needed to evaluate the data on which several of the major
Seshat publications were based. Since then, the project’s major focus has
been made to deploy the system in a software engineering context, which
has involved making the RDF/OWL data stored within the system available
in simpler forms, such as GeoJSON and JSON-LD available to software
engineers.

The platform has been constructed to support the following Seshat data
curation tasks:

• Importing the large volume of wiki data that they have accumulated in a
semi-structured form, into a structured, rich semantic format according
to a pre-defined model, that is amenable to statistical analysis and
automated quality control.

• Analysing the data to identify a large number of new constraint vio-
lations – e.g., datatype constraints, referential integrity constraints,
cardinality constraints. In the current Seshat data collection workflow,
such problems only show up at data-analysis stage and it requires a very
significant manual effort to amend them at that late stage.

• Providing approval pipelines and workflow tools to allow moderators to
inspect and correct problems identified in the data and to give them the
agility to be able to use lower-skilled data collectors with higher error
rates without sacrificing overall quality.

• Providing model rapid prototyping tools to allow our archaeologist
partners to experiment with the definition of large new segments of
the Seshat schema to allow them to define semantic mappings between
entities at different levels of abstraction and time-depth. This supported
the accumulation of archaeological evidence and extended the time-
depth of the Seshat ontology which was initially conceived primarily
to investigate societies that were historically known.

• Importing data from third-party datasets such as DBpedia and Pleiades
historical gazette and integrating it with the existing Seshat data.

240 Use Cases

So�ware Feature Used for
Model Catalogue Model Defini�on User Interfaces Model Prototyping
Model Catalogue Model Export to OWL Model Integrity Enforcement
Dacura Model Mapping Tool Impor�ng wiki data
Dacura Real-�me Instance Data Valida�on Tes�ng imported data
Dacura Model Generated User Interfaces Correc�ng imported data
Dacura Cura�on Workflow Tools Update approval queues
PoolParty Unified Views ETL Import third party data

Figure 6.28 Features of the ALIGNED tools used to support the Seshat trials.

6.2.2.1 Tools and features
Figure 6.28 shows which features of the ALIGNED software tools have been
deployed in order to support these scenarios.

6.2.3 Implementation

6.2.3.1 Dacura data curation platform
The Dacura Linked Data curation platform1 is developed at Trinity College
Dublin. Dacura provides support for dataset capture, curation, and publica-
tion. The major components of Dacura in the context of the Seshat use case
are shown in Figure 6.29.

In the initial prototype developed for Seshat four of the components
from Figure 6.29 are used: (1) the wiki data entry/validation tools (top left
in the figure) which are user-facing data curation widgets; (2) the schema
management tools which include the Model Catalogue tool in the demo;
(3) the data quality controls (lower middle of the figure) which perform
schema and data integrity checks and act as a data quality gatekeeper for
the RDF triple store; and (4) the data export tool or wiki scraper which can
transform Seshat data into the TSV file dumps required by statistical analysts
within Seshat.

6.2.3.2 General description
Dacura provides tool support to improve the efficiency and accuracy of
Seshat’s data collection processes.

• The wiki data entry/validation tools make data entry easier for Seshat
researchers. This also assists in collecting more complex data and data
validation at the point of entry.

• The schema management tools check that OWL-based schemas are
consistent and correct as they grow.

6.2 Seshat – Collecting and Curating High-Value Datasets 241

Figure 6.29 The Dacura platform in the context of the ALIGNED Seshat use case.

• The data quality controls ensure that both data entered through widgets
and data already entered in the Seshat wiki is checked for conformity
with the Seshat schema before it is added to the triplestore.

• The data export tool allows multi-format data publication. It also allows
Seshat administrators to get a first look at how their dataset is growing
and evolving.

• The Seshat OWL ontology developed for this demonstrator and used by
our tools enables more structured information to be captured than the
original Seshat.

6.2.3.3 Detailed process
This section describes the use of each of the components developed for the
demonstrator system, along with a screenshot of the components in use where
applicable.

Dacura data entry validation tools (Figure 6.30) are embedded in the
Seshat wiki, allowing researchers to validate previously entered data and add
new variables to the dataset. Researchers can validate or enter data directly

242 Use Cases

Figure 6.30 Screenshot of TCD’s Seshat Data Entry/Validation tool in Demonstrator
System.

from the wiki page. These tools reduce the complexity of entering data in
the wiki, as the need for complicated syntax is reduced and any errors in data
will be immediately revealed. A version of this tool that supports validation of
data entered into the wiki has already been deployed in the live Seshat system.

Modifying Seshat Schema: Dacura provides tools to allow users to edit
and modify ontologies on the fly (Figure 6.31). Using the Dacura browser
plugin, users can browse the current Seshat code book and create properties

Figure 6.31 Modifying Seshat Schema.

6.2 Seshat – Collecting and Curating High-Value Datasets 243

Figure 6.32 Screenshot of TCD’s Schema Management component using the prototype
integrity enforcement framework in the Demonstrator System.

and objects, adding them to the Seshat ontology and allowing researchers to
collect information on these newly added properties.

Triplestore integrity enforcement (Figure 6.32) is a key feature of Dacura.
Preventing data that are not in accordance with the schema or preventing
a malformed schema from entering the triplestore ensures that all data are
of high quality. This reduces the need for Seshat researchers to spend time
correcting errors in the dataset. Dacura checks that imported vocabularies
are consistent before allowing them to enter the triple store and constrain
instance data.

The schema management components (Figure 6.33) in Dacura allow
changes to the schema to be analysed to ensure that the schema remains
consistent. Checks are performed on schemas before they are used in the
data store, highlighting errors and potential issues for attention. A range of

244 Use Cases

Figure 6.33 Screenshot of TCD’s Schema Validation Service in Demonstrator System.

checks are performed using a constraint-based interpretation of the Seshat
OWL ontology.

Finally, the wiki export component (Figure 6.34) extracts the historical
data entered in the Seshat wiki, parses them, and produces a TSV of these
values ordered by date. This allows Seshat administrators to perform analyses
without needing to manually extract the values from the large and constantly
growing dataset. It also produces error reporting, allowing researchers to
identify errors in the dataset and see how the data are evolving.

The introduction of the Dacura data validation component into the
live Seshat data collection process has reduced the rate of errors in the
Seshat wiki. Despite a large increase in the size of the wiki of 29% (from
56,160 to 72,252 data points) between March and June 2015, the absolute
number of errors has decreased by 19%. The rate of errors per variable has
decreased by 42%, from 0.035 errors per variable to 0.02 errors per variable.
This shows the positive impact of deploying data quality/data curation tools
on the Seshat workflows. This trend is shown in Figure 6.35.

Managing complex workflows: The Dacura approval queue allows
dataset administrators to monitor added data for quality and completeness
(Figure 6.36). Administrators can approve, deny, publish and unpublish the
Linked Data objects submitted by Seshat researchers.

6.2 Seshat – Collecting and Curating High-Value Datasets 245

Figure 6.34 Screenshot of TCD’s Wiki Export Component.

Importing third-party datasets: The Unified Views tool (Figure 6.37)
allows data to be imported via SPARQL from third-party datasets, in this case,
DBpedia is used as a source of data. Unified Views allows the establishment
of processing workflows to automate the importation of such data.

Publication: The Dacura system allows the generation and publication of
processed and curated data in easy-to-use forms. Casual users can browse
Web pages (Figure 6.38 which lay out the information in a simple and
structured manner). Seshat team members looking to perform analysis on

246 Use Cases

Figure 6.35 Seshat Errors per variable.

the data can access it in structured forms, which can be easily imported into
analysis software.

Software Engineering support: The Dacura system provides several ser-
vices to software engineers developing software that utilises the data curated
by the system (Figure 6.39). These include reliable access to version con-
trolled data models at a well-known URL, change notifications and the
automatic production of simpler formats which are more familiar to tradi-
tional Web-developers. In this case, a GeoJSON stream is automatically made
available describing all the features in the dataset that have a geographical
location associated with them.

6.2.4 Overview of the Model Catalogue

When dealing with large, complex datasets, it is important to have tools to
help collaborators understand what each data point means, how it has been
collected, and how groups of data points may be interrelated. Typically,
a large number of tools are used for this kind of metadata management:

6.2 Seshat – Collecting and Curating High-Value Datasets 247

Figure 6.36 Managing Complex Workflows.

data dictionaries for storing information about variables and allowed values;
data manuals or procedures for describing the intended meaning of data
points; specifications of forms describing how data are to be collected; or
diagrams describing relationships between groups of data points. The Model
Catalogue toolkit is being developed at Oxford University for the purposes
of collaborative editing and sharing of such documents within a common
framework. Based on previous work on international standards for metadata
registration and previously explored in the context of clinical research, the
tool is now being developed and extended to support the Seshat use case.

The tools have been built with a model-driven software development
process in mind: programmatic interfaces allow communication between the

248 Use Cases

Figure 6.37 Importing data to Seshat from DBpedia with Unified Views.

Figure 6.38 Publication.

catalogue and other systems; a number of export tools have been written to
automatically produce or configure software artefacts such as databases or
data messaging schemas from data model descriptions stored in the catalogue.

The extended tool is initially designed to support two key use cases –
for the Seshat editors and data managers to cooperate in the incremental
evolution and description of the Seshat data model or code book; and for
researchers interested in using the Seshat data to understand which data
points have been collected and their meaning and provenance. To support

6.2 Seshat – Collecting and Curating High-Value Datasets 249

Figure 6.39 Services to support software engineering.

Figure 6.40 The Model Catalogue user interface showing a section of the code book.

the first use case, the toolkit provides facilities for automatic import of
existing documents and software artefacts to initialise data models, and
uses careful structuring to minimise the amount of user input required.
The Web-based editing environment (see Figure 6.40) promotes collabo-
rative editing of modes, with processes for publication and versioning. To
support the second use case, the Web interface allows exploration of data
models, and the creation of user-friendly reports or exports. Data points can

250 Use Cases

be linked to provide additional meaning or context and can be compared
to understand differences between different datasets, or a single dataset
over time.

6.2.4.1 Model catalogue in the demonstrator system
This section describes the Model Catalogue components deployed in the
demonstrator system. The section starts with a discussion of the Seshat
use cases addressed by the components and then provides a description of
the model curation processes supported by the Model Catalogue compo-
nent. Finally, there is a subsection presenting some initial results from the
deployment of the components.

General description

The Seshat databank is a complex dataset comprising more than 1,000
variables categorised into approximately 100 groups or classes. A code book
describes each group and variable: a description about the intended meaning,
or semantics, of the data points collected against it; a selection of possible
values that the data point may take; links to related or similar variables in
another category.

Furthermore, this set of variables has been evolving and expanding; in
3 years, more than 300 revisions to the code book have been made: variables
have been added, removed, or extended; descriptions have been enhanced;
the permitted range of values may have items added or removed.

This code book holds the key to understanding how data points should
be collected and stored and how potential users of the data can make sense
of what is made available. Until this point, the Seshat code book has been
encoded into a wiki page. This has served the purpose required, but in order
to scale, a new approach may be required. The Model Catalogue built by
OxSE is intended to support:

• Collaborative editing of the code book as a curated data model
• Annotating variables and linking to related datasets or standards
• Versioning and publication life cycles for change management
• Informed reuse of data collected, through discovery and exploration and

comparison of data models and variables
• Automated import and export of models into other data formats
• Generation or configuration of software artefacts within an iterative

development approach

6.2 Seshat – Collecting and Curating High-Value Datasets 251

The Model Catalogue prototype makes progress towards schema evolution.
The “Expert” and “Architect” user roles can modify the schema, allowing
view-only access to the schema for “Harvester” and “Editor” user roles. There
is also some progress towards addressing expert interpretation, where experts
can us the Model Catalogue to understand and modify the code book to
improve support for capturing complexity in the Seshat databank.

Detailed Process

The Model Catalogue stores concrete models such as dataset descriptions,
form designs, database schemas, and so on. alongside an abstract repre-
sentation common to all models. Each Data Model contains a number of
Data Classes, which in turn may contain sub-classes and Data Elements, in
our case representing the variables of the Seshat code book. This structure
provides easy interoperability between models, and allows a simple tree-
view for viewing and exploring models, such as in the screenshot shown in
Figure 6.41. This view is useful for those exploring the structure of a data
model: users interested in requesting or working with items of data, or editors
wishing to make changes to the structure.

Figure 6.41 Screenshot of the Model Catalogue Web interface, showing the ‘tree view’ and
a section of the Seshat code book.

252 Use Cases

Data models and their components may be linked with a number of
different relationships describing the type of similarity between them. A
plugin for discourse has been integrated: this allows users to comment on
parts of a data model in a familiar fashion. Comments may include links
to other data elements, or mention of other users, who can be prompted to
respond. Attachments can be added too: links to websites, or file attachments
giving more information about the meaning of a variable.

For prospective users of the data, it is important to understand how
data collected against different versions of the code book may be related.
Figure 6.42 shows a screen written for this purpose: highlighting differences
in descriptions, sub-components (for models and classes), and datatypes (for
data elements). Sophisticated search functionality allows data elements to
be found within all models; all finalised models, or within the currently
displayed model.

Model importers allow existing structures to be imported into the cata-
logue without manual transcription. One such importer has been written to
ingest the OWL description of the Seshat code book, extracted by the TCD
team for use in Dacura. Although written with Seshat in mind, this component
may be re-configured for use in the other ALIGNED use cases during the next
phase of the project.

Figure 6.42 Screenshot of the Model Catalogue Web interface showing the comparison
between two versions of the Seshat code book.

6.2 Seshat – Collecting and Curating High-Value Datasets 253

6.2.5 Seshat Trial Platform Evaluation

6.2.5.1 Measuring overall value
Ultimately, the most important metric for the Seshat project is the cost
of going from a hypothesis to a published scientific paper presenting an
empirical evaluation of that hypothesis. Everything else is a means to that
end. The nature of the variables chosen and the data collected are explicitly
designed in order to enable computational analysis of particular hypotheses
against historical evidence. The validity and significance of the analysis is
then validated by the peer-review process of the world’s top scientific journals
[1, 2]. The best proxy for the value delivered by the overall system is the
number of papers that are published in top-tier scientific journals.

6.2.5.2 Data quality dimensions and thresholds
seshat has unusually high Data Quality requirements across a large number
of separate dimensions. The Seshat researchers need to be able to analyse the
data statistically, which imposes high thresholds for syntactical accuracy and
structural integrity. Furthermore, the historical accuracy of the data is also
extremely important – as the Seshat researchers want to be able to identify
patterns in long term historical processes in order to make predictions – these
predictions can only be as good as the accuracy of their data. Because it
is often the case that historical facts can only be known probabilistically,
uncertainty must be incorporated into the data in such a way that statistical
analysis can still be applied. Furthermore, it is the norm in top-tier scientific
journals that datasets are scrutinised closely by reviewers. Because Seshat is
pioneering new data-driven methods in the social sciences, it is thus particu-
larly important that published datasets are robust in the face of expert scrutiny,
as any significant errors risk undermining the credibility of the approach and
not just the individual publication.

In terms of data agility, the most important requirements for Seshat are
the ability to make data, of the required quality, available for analysis with
the programs used by Seshat’s data-analysts (R, Mathematica) and to make
the data available for inspection for academic reviewers in whatever format
will make the best impression upon them.

In terms of model agility, the most important requirements for Seshat is
the ability to make changes to the ‘code book’ to reflect the input of new
experts and experience. The Seshat code book has changed many times over
the last few years as the community has grown and more expert opinion has
been incorporated into the selection of variables and proxies to collect.

254 Use Cases

The Seshat data collection effort started some 2 years before the start
of ALIGNED and has continued for almost 5 years at this stage. There are
currently two major papers which are under review for publication in major
top-tier scientific journals (both resubmitted with changes, as advised by the
editorial committees). All the data that went into these publications were
collected, curated, cleaned, and analysed using methods that pre-date the
introduction of ALIGNED technology, with one exception – the publication
of data for the reviewers. This provides us with a very good baseline measure
with which we can evaluate the impact of ALIGNED technology: the total
cost of producing these two papers – including all the cost that went into
producing the final publication and associated datasets.

We can break it down into the following tasks:

1. Running expert workshops to identify interesting hypotheses and suit-
able proxy variables to form the dataset’s schema.

2. Employing and training research assistants to fill in data on a wiki for
each historical society of interest

3. Soliciting reviews from volunteer experts to validate the data entered
in 2.

4. Developing and maintaining programs to extract data from the wiki,
identify syntactical errors, make it available as a CSV for analysis and
then transform it into the format required for each analysis and then,
finally, perform the analysis and produce the results.

5. Employing and training research assistants to correct data entered in 2
in response to errors identified in 4, and reviews received in 3, to ensure
that it remained accurate and true to the schema over time, as the schema
changed to reflect the outputs of 1.

6. Developing and maintaining a program for publishing the data for
appraisal by the general public and reviewers.

All these tasks were necessary for the production and publication of
the journal papers and their associated datasets and must be included in
the consideration of the system’s productivity before the introduction of
ALIGNED tools and methods. Furthermore, by looking at the cost of achiev-
ing required data quality levels as the schema was changed over this period
and the cost of making data available in new ways, we can gain a reasonable
estimate of the likely future productivity of the system. In order to demon-
strate the impact of our tools and methods, therefore, we would ideally repeat
the process from start to finish with our tools, starting from a new set of
hypotheses and compare the overall cost of the two.

6.2 Seshat – Collecting and Curating High-Value Datasets 255

In December 2018, at a Seshat workshop in Oxford, in association with
the ALIGNED general meeting, we began such an evaluation. In this study,
we apply our tools and methods to the entirety of this process – from
modelling tools to support 1, curation interfaces to support 2 and 3, data
manipulation tools to support 4 and 6, error detection and correction tools
to support 5. We have identified a set of new hypotheses that we wish to
test and we will measure the total cost of transforming these hypotheses into
published scientific papers. However, this is an irreducibly time-consuming
task due to the nature of the domain. In particular, experts are a scarce
resource and it inevitably takes considerable time to elicit all the domain
knowledge necessary from the relevant experts for any particular historical
question. Therefore, the full results of this comparison will not be known
until the entire process is complete, which will be beyond the timeframe of
ALIGNED.

However, what we can do in a short space of time is to measure the impact
of our innovations on steps 4, 5, and 6 of the process and compare it with the
existing system. The Seshat wiki contains several sections of data that have
been collected by RAs and approved by experts but have not yet been cleaned,
analysed or published. We choose one of these sections, comparable in terms
of size and complexity to the datasets that were used to publish the first two
papers. Starting from this point, we extract, clean, analyse and publish the
data to the same level of quality as was achieved with the already published
datasets and we measure the total cost in doing so, in terms of both time
and money. This comparison will provide us with a minimum valuation of
the benefits of our technology to the system’s curation costs. As these are
all necessary steps, any productivity gains in this section will be realised
generally.

In order to measure the likely future value and productivity that the
system will exhibit, we need to estimate the likely cost of changing the
schema and repurposing the data for new uses. For schema changes, we can
simply use those changes that were introduced during the compilation of the
published papers, measure how much it cost to achieve the required data
quality levels after those changes and repeat the experiment with the new
system. For data agility, we can measure the cost of making the data available
for review with our tools and estimate the amount of effort that this would
have required had our tools not been available – as this was the one part of
the process of publishing the initial two Seshat papers that our tools were
responsible for.

256 Use Cases

Together these three measures provide a very comprehensive way of
evaluating and comparing the performance of the two alternative systems of
interest – Seshat before and after ALIGNED tools were introduced. By look-
ing at the likely evolution of scale of the system, we can provide reasonable
estimates not only about the current value provided by our tools and methods,
but the future value that they will provide.

Thus, in this document, we evaluate the system that was introduced by
ALIGNED against the existing wiki-based system in terms of the cost of
three particular tasks:

Curation

Extract, clean, and analyse a new section of wiki data to test a hypothesis so
that the quality of the data and analysis is considered ready for publication.

Data Agility

Publish the data in a form that allows reviewers to evaluate all the data
that went into the analysis, complete with sources, citations, uncertainty, and
disagreement.

The major task that required data agility in Seshat was the publication
of data for reviewers. The requirements were that the reviewers should be
able to browse the dataset, view every individual datapoint with citations and
indicators of uncertainty and disagreement, and that they, or any member of
the public, could provide feedback on each individual datapoint. This was
deemed important as a way of signalling to the research community that
expert feedback and corrections were invited and taken seriously. This task
was never competed with pre-ALIGNED methods, ALIGNED tools were
entirely responsible for the dataset that was published to support the first
major Seshat publication in April 2017. However, it is possible to provide
a reasonably accurate estimate of how much it would cost using a standard
software engineering approach:

• Develop and maintain custom program to transform Seshat extracted
CSV into interactive website.

Model Agility

Change the schema by adding, removing, and changing the definition of
variables, adding complex relationships between entities and returning the
system to the quality level it had before the schema was changed.

6.2 Seshat – Collecting and Curating High-Value Datasets 257

For all schema changes, we need to carry out the following tasks:

1. Update Seshat code book wiki page
2. Copy updates to every wiki page that uses that section of the code book.
3. Update, test and deploy publication program to reflect changes in

schema
4. Update and test script to transform CSV into analysis-ready format

Experimental Deployment

On 21 December, 2017, the first major paper was published utilising the full
power of the Seshat data in the Proceedings of the National Academy of
Sciences.14 ALIGNED tools were used to model, harvest, correct, improve,
enrich, and publish the full data describing social complexity for 416 different
historical polities that were used for the analysis. The analysis which formed
the basis of the paper was carried out using the old – before ALIGNED –
process. Upon publication, the published data were fully migrated to the
Dacura platform and the processes where compared to evaluate the relative
productivity, agility and quality – and the overall cost – of the process with
and without the ALIGNED tools.

On 17 January, 2018, all of Seshat’s social complexity data were imported
into a semantic model from the Seshat wiki. Figure 6.43 presents a summary
of the results. The results are grouped into two groups – the WS30 group
which represented the data that had been used to make the analysis and the
Macrostates group which had not yet been analysed and therefore represented
a more ‘raw’ version of the data with less effort expended in data quality
control and analysis. The two groups were used to evaluate the impact of our
tools when starting from different stages of an existing workflow.

14Turchin, P., T.E. Currie, H. Whitehouse, P. François, K. Feeney, D. Mullins,
D. Hoyer, C. Collins, S. Grohmann, P.E. Savage, G. Mendel-Gleason, E. Turner,
A. Dupeyron, E. Cioni, J. Reddish, J. Levine, G. Jordan, E. Brandl, A. Williams,
R. Cesaretti, M. Krueger, A. Cecceralli, J. Figliulo-Rosswurm, P. Peregrine, A. Marciniak,
J. Preiser-Kapeller, N. Kradin, A. Korotayev, A. Palmisano, D. Baker, J. Bidmead, P.
Bol, D. Christian, C. Cook, A. Covey, G. Feinman, Á. D. Júlı́usson, A. Kristinsson, J.
Miksic, R. Mostern, C. Petrie, P. Rudiak-Gould, B. ter Haar, V. Wallace, V. Mair, L.
Xie, J. Baines, E. Bridges, J.G. Manning, B. Lockhart, P.-J. Tuan, A. Bogaard, and C.
Spencer. 2017. “Quantitative historical analyses uncover a single dimension of complexity
that structures global variation in human social organization.” Proceedings of the National
Academy of Sciences of the United States of America. doi: 10.1073/pnas.1708800115.
http://www.pnas.org/content/early/2017/12/20/1708800115.full.

258 Use Cases

Process Before Service Provision Costs
1 Use valida�on tool to iden�fy

and fix syntax errors on each
wiki page

Develop and maintain custom valida�on tool code
Opera�ng valida�on tool and fixing errors
iden�fied

2 Use scraper tool to extract data
from wiki pages into CSV

Develop and maintain custom scraper tool service

3 Use script to transform CSV into
required format for analysis

Develop and maintain transforma�on scripts

4 Analyse data and iden�fy any
remaining errors in the data.

Operate sta�s�cal analysis tool and inspect the
results to iden�fy anomalies, outliers, missing
values and errors which might impinge upon the
accuracy of the result.

5 If possible, correct all errors in
CSV, complete the analysis, and
copy correc�ons back to wiki
from CSV

Iden�fy and record all errors in the data and carry
out known correc�ons. Manually copy all the
correc�ons back to the wiki.

6 If impossible, deploy RAs to
correct the data in the wiki
manually and return to step 1.

Iden�fy and record all errors in the data.
Collect the correc�ons in the wiki.
Carry out another itera�on of the process.

Figure 6.43 Seshat: Comparison.

WS30 Macrostates Total
Polities 416 54 470
Variables 301,288 33,100 334,388
Non-empty variables 162,200 (54%) 10,779 (33%) 172,979
Imported variables 27,693 (17% of nonempty) 2,487 (23%) 30,180
Triples 995,580 75,716 1,001,296
Syntax Errors Detected 4 2 6
Semantic Errors Detected 218 117 335
Semantic Errors Corrected 86 (39%) 18 (15%) 104
Semantic Errors Remaining 132 99 231
Entity References 658 28 686
Correctly Imported 214 (33%) 5 219
Incorrectly Imported 444 23 467

These results then fed into our curation workflow, where provenance
information was used to identify errors that had been detected but not cor-
rected for manual correction. By far the biggest problem detection was in
correctly identifying entity interlinks due to the lack of a consistent naming
convention. Significantly, it was possible to identify 218 new errors that had
evaded the human analysts and it was possible to automatically correct 39%.
Nine days of RA labour was expended on fixing the problems identified,
completed on January 29th 2018. The publication of the full dataset is

6.3 Managing Data for the NHS 259

scheduled for the first week of February 2018, and the full evaluation results
will be published in a paper that is under preparation.

6.3 Managing Data for the NHS

6.3.1 Introduction

Oxford University Software Engineering researchers have been involved
in four separate projects involving health research data, which have made
extensive use of the Model Catalogue and components of Semantic Booster.

In the first application, the National Institute for Health Research (NIHR)
commissioned the Health Data Finder – an online tool for discovering
national healthcare datasets (Figure 6.33). These datasets primarily contain
routine hospital data for audit and economic reasons, but may be made avail-
able to researchers in academia and industry with appropriate governance
approval. The datasets are maintained by a number of separate organisations,
and so data users wishing to discover data and request access may have to
make a number of requests, often with inconsistent results (Figure 6.32).

In the second application, the NIHR Health Informatics Collaborative,
five of the largest teaching and research hospital trusts in the country have
been asked to share routine clinical data in five therapeutic areas. Each trust
maintains data to differing standards and semantics, and rather than unifying
data to a lowest common denominator, sites are asked to build their own data
warehouses for a federated data store. Users of the data can make a request
to the hospitals, and data can be linked and unified on a per-usage basis,
taking the research purpose into account. This allows hospitals to maintain
ownership of their data and ensures data quality is as high as possible for
any given research study. The model catalogue is used to document national
data standards in each of the therapeutic areas, alongside local differences
for each hospital trust. Models in the catalogue are used as the source for the
generation of MS-Word documentation, and for data transfer specifications
in the form of XML Schema.

A third application of the catalogue, and related technologies, has been
made in the UK 100,000 Genomes Project. As in the Health Informatics
Collaborative project, the catalogue has been used for the collaborative, itera-
tive development of models for sample tracking, cancer and rare disease data
models, and the generation of non-technical documentation, XML Schema,
and also Case Report Forms, compatible with a commonly used clinical
trials management system. In the pilot phase of the project, the models in

260 Use Cases

the catalogue were also used to generate relational databases, sufficient for
storing data collected according to the specification.

The fourth application of the ALIGNED tools is in the construction of
a data warehouse for Oxford University Hospitals Foundation Trust. This
instance of the catalogue acts as a detailed asset register for the hospital,
detailing field-level metadata about databases and spreadsheets of patient data
around the hospital, as well as describing dataflows and message-passing
between systems, and specifications for audit and research datasets. It is
planned that these models can be used as part of a data-science platform for
the trust: allowing clinical researchers to request data, and be automatically
guided through governance processes, as well as provided with the data
presented in a secure environment.

6.3.2 Use Case

6.3.2.1 Quality
In all four applications, reuse of existing data without detailed documenta-
tion can be problematic: researchers are unable to make good use of the
data without understanding its semantics: linkage between datasets may be
inaccurate; transformation of data into different formats may be incorrect;
interpretation of statistical results is error prone. In the Health Data Finder
example, such data reuse is minimal: researchers do not know what data may
be available to them; different providers may return inconsistent results on
data governance, and data must be re-interpreted each time, which may result
in costly errors.

In similar projects preceding the Health Informatics Collaborative
and 100,000 Genomes projects, collecting comparable data from multi-
ple hospitals has proven difficult. Precise specifications have been hard to
produce, mechanisms for data capture and transfer have been manually
programmed, often by non-technical domain experts, and inconsistencies
have resulted in data that are often incomplete, incomparable, or completely
unusable.

6.3.2.2 Agility
The quality and accuracy of data documentation is difficult to maintain
during an iterative process. In all the health data research projects, datasets
are continually evolving, data specifications are continually being improved.
Without careful version management and automation, it is very easy for the
documentation to get left behind.

6.3 Managing Data for the NHS 261

Similarly, software artefacts must keep pace with the changes in require-
ments: changes to the data or the software specifications must invoke updates
to the XML schema, database schema, or Case Report Forms. Manual coding
slows the iteration process, which in turn can result in outdated or inaccurate
specifications.

Productivity

Domain experts find it difficult to provide documentation or simple modelling
because of the technicalities involved: XML schema and Case Report Forms
require specialist technical knowledge: domain expertise is often left out, or
modelling is undertaken poorly.

Implementing efficient database structures requires a lot of repetitive
works: implementation of a domain class will involve a familiar pattern of
tables, association tables, keys, and indexes. Such work is time-consuming
and error prone, yet ripe for automation.

Data scientists looking to reuse health data currently spend a lot of time
searching for usable datasets, often requiring long periods of interaction
where inventories and documentation are not available online. Applying for
governance, asking technical questions, and retrieving data in a suitable
format often require further time and energy. Interpretation and curation of
the data is a typically manual task, which may be repeated and reproduced by
every scientist receiving a data extract.

6.3.3 Architecture

In each project, ALIGNED technologies are being used in slightly different
ways.

In the NIHR Health Data Finder, the model catalogue is the central
resource, holding the master copy of models and documentation. A REST-
based API provides services used by the front-end website that provides
shopping-cart and dataset overview functionality. Metadata is imported into
the catalogue by means of a bespoke spreadsheet-based format, which is
suitable for domain experts and data curators to populate.

In the NIHR Health Informatics Collaborative, each site hosts its own
instance of the model catalogue, documenting their own data landscape: a
data warehouse, source patient record systems, research systems and local
data flows. A central installation of the catalogue contains the shared data
specifications, along with local variations, and relevant national specification.

262 Use Cases

Local catalogue installations can automatically import the latest version of the
central models, and the central catalogue is used to generate XML schemas
for use by all partners.

In the UK, 100,000 Genomes Project, the architecture of the pilot is of
particular interest: information is provided by the hospitals in the form of
XML, matching a schema generated by the Model Catalogue, or manually
through online Case Report Forms, hosted in a system called OpenClinica.
Information is extracted via an ETL process from OpenClinica, and combined
with a shredded form of XML, and stored in a matching relational database,
generated by a component of Semantic Booster.

Finally, the architecture of the OUH data warehouse follows a similar
pattern to the right-hand-side of Figure 6.44. Almost 100 local databases and
data specifications are modelled within the catalogue, along with the design
for the main data warehouse. The catalogue is used to document field-level
metadata, summary metadata, and dataflows, and this information will be
used in the construction of research data extracts and for generating hospital
auditing and service improvement metrics.

Figure 6.44 Health Informatics Collaborative system architecture.

6.3 Managing Data for the NHS 263

6.3.4 Implementation

6.3.4.1 Model catalogue
Whether you have a small spreadsheet, or a large federated data warehouse,
the key to making the most of your data is understanding its semantics. In
order to share your data with others, to reuse it for a different purpose, or
to link it to other data stored elsewhere, you have to know what it means.
At its simplest, this is just knowing a datatype, and having a description
of how those data have been collected. But you may also know how the
data have been curated, where it was created in the context of business
processes, or how it relates to recognised standards. To do this at scale
requires automation: tools that can do the hard work for you and allow the rest
to be done collaboratively. Our metadata catalogue tool provides a common
framework in which to store descriptions of data alongside data standards,
terminologies and dictionaries, providing common reference points by which
to describe data.

The catalogue is able to automatically import models – structured descrip-
tions – from relational databases, XML schema, spreadsheets, and UML
diagrams. A collaborative editing environment allows the iterative develop-
ment of models in a clean, simple fashion: just suitable for domain experts to
really focus on the things that are important. The catalogue facilitates reuse of
data models: parts of one model can be dropped into another. This will make
it easy to reuse data in the future and can help to proliferate data standards.
Describing data is made easy: links to existing descriptions are automatically
suggested; classes of data can be described in a single place, and creating
new versions of models maintains any semantics already expressed. Finally,
the models can then be exported in a variety of different formats: as relational
databases for storing data, or as XML schema for data transport, or as forms
for collecting data from scratch. Models for software engineering tools can
also be generated – for example by generating specifications for our Semantic
Booster tool, we enable the complete, automatic generation of working infor-
mation systems. In this way, the catalogue can be used as an IDE for an agile,
model-driven approach to software- and data engineering. Figure 6.45 shows
the catalogue interface.

6.3.4.2 NIHR health informatics collaborative
We now illustrate the advantage of the catalogue with three case studies. In
the first, the Oxford team have led the coordination of the Health Informatics
Collaborative – a project funded by the National Institute for Health Research

264 Use Cases

Figure 6.45 The front page of the catalogue interface.

to promote the sharing of healthcare data in the UK. Five of the largest
research hospitals in the country – across London, Oxford, and Cambridge,
were asked to share routine clinical data on five therapeutic areas: in critical
care, ovarian cancer, acute coronary syndromes, hepatitis and renal transplan-
tation. Clinicians at the hospitals were asked to collaborate on the definition of
a new dataset, suitable for addressing a wide range of research issues within
each clinical specialty, and the hospitals were asked to share anonymised data
matching these data specifications. The metadata catalogue provided tools for
collaborative editing of dataset specifications, maintaining older versions for
reference. XML schema were generated for data transfer between the sites,
and the catalogue was able to generate Excel spreadsheets for documentation.

One of the main problems with data sharing amongst healthcare providers
in the UK is that each site may record their data points differently. Here the
catalogue provided another useful feature – allowing each site to document
their own variations, and details of any transformations required to translate
data from one format into another. Each of the five data models had, on
average 250 data points of interest, and we were able to map relationships
between the NHS’s own data dictionary, as well as existing standards and
audits in each area. The project has created combined datasets for the first
time in these areas of clinical interest, enabling new research and, in some
cases, better treatment. Figure 6.46 shows the project in action.

6.3 Managing Data for the NHS 265

Figure 6.46 Data comparison in the Health Informatics Collaborative.

UK 100,000 Genomes Project
In the last couple of years, Oxford has also been involved in a large genetics
programme – the UK 100,000 Genome Project. The project was set up to rev-
olutionise personalised medicine in the UK, starting with the whole genome
sequencing of NHS patients with key forms of cancer, as well as patients and
family groups with rare inherited diseases. Again, the catalogue was used
by the scientists to develop new datasets for routine clinical data, and brand
new, bespoke models for each of nearly 200 rare diseases. The metadata
catalogue was again used to generate XML schemas for data transfer, but
also for electronic case report forms, compatible with a widely used clinical
trials management software. These forms were built to include terms from
existing medical ontologies, including the Human Phenotype Ontology, and
SNOMED CT. For the pilot studies, the catalogue was also used to build
databases, used to store the clinical and sample-tracking data on submission.
These databases were entirely generated by the data model: a change to the
model in the catalogue resulted in a new schema for the database, along with
an appropriate data upgrade. Figure 6.47 shows the catalogue.

The project is now halfway to completion and would not have succeeded
without the catalogue’s provision of a central data model. The national
Genomics Medicine Centres rely on the catalogue as the specification for
prospective data collection, and those interpreting the data rely on its descrip-
tions to make sense of the data collected. Initial results include confirmed
diagnoses for patients with unspecified rare-diseases, and the refinement of
lab processes for processing DNA samples at scale.

266 Use Cases

Figure 6.47 Data elements in the UK 100,000 Genomes Project catalogue.

NIHR Health Data Finder

A final example of where the catalogue has been providing benefit is the UK’s
Health Data Finder. This instance of the metadata catalogue, commissioned
by the National Institute for Health Research, provides a portal for healthcare
researchers in industry and academia, allowing them to discover national
datasets. These datasets, collected at scale across the whole health service,
are primarily collected by a number of different bodies for commissioning
or audit purposes, but are of great value because of their size. There was no
easy way to inform potential users exactly what those datasets contained, and
the process for requesting data was time-consuming and prone to error. The
catalogue now provides element-by-element descriptions for over 3,000 data
points, across more than 20 datasets. It stores summary metadata and usage
information, sufficient for researchers to understand whether the data will
help them answer a particular question before starting to request any of the
valuable data. We are currently streamlining the process for requesting data,
by using the catalogue as a ‘shopping cart’, allowing researchers to select
a set of data points to request, and generating queries to return those data
points once sufficient governance checks have been made. The shopping cart
is shown in Figure 6.48.

The catalogue has provided a number of benefits to healthcare projects
across the UK, but is continuing to be developed and extended. Figure 6.49
shows the catalogue in the Health Data Finder. We are increasing the range
of models that can be imported into the catalogue, and we are continuously

6.3 Managing Data for the NHS 267

Figure 6.48 An example shopping cart in the Health Data Finder.

Figure 6.49 The model catalogue in the Health Data Finder.

improving the usability for non-technical domain experts – including graph-
ical editing tools, automated search and suggestion, and new visualisations.
We are especially interested in using these models as the basis for MDE, and
so plugins are being written to generate or configure software components so
that reuse of models can really instigate reuse of data. Figure 6.50 shows an
example of catalogue metadata. The catalogue has been extensively used in
the domain of healthcare, but is fundamentally nonspecific to any particular
domain – our work with the ALIGNED partners is helping us prove the

268 Use Cases

Figure 6.50 Dataset metadata in the NIHR Health Data Finder.

technology in other domains. Our experiences with the tool show that it can
be invaluable for software engineers and data engineers alike.

6.3.5 Evaluation

In the Health Data use case, the Model Catalogue has been deployed in four
main projects: The UK 100,000 Genomes project, the NIHR Health Data
Finder, the NIHR Health Informatics Collaborative (HIC), and the Oxford
Biomedical Research Centre’s data warehousing activity. In all four projects,
the catalogue has provided functionality that was not previously available,
or automated tasks that were previously undertaken by hand. The utility of
the ALIGNED tools can be measured by their usage: if the tools are used
frequently, then they provide a valuable service.

Across the four projects, the model catalogue was primarily used for two
separate use cases: firstly the management and documentation of existing
data assets – allowing potential data users to search and discover datasets
of interest; secondly the collaborative development and publication of new
data standards – reusing existing definitions where available. The Health Data
Finder and Oxford BRC Data Warehouse projects are primarily focussed on
the cataloguing of existing datasets or databases, and the Health Informatics
Collaborative and UK 100,000 Genomes Project are primarily concerned
with the development and publication of new data standards in a number of
medical therapeutic areas.

6.3 Managing Data for the NHS 269

For each of the measures: “Productivity”, “Quality” and “Agility”, we
will consider each of the four projects and assess the impact made in these
areas. In most cases, quantitative measures of improvement are not easily
obtained: the Health Data use case was a late addition to the project and the
relevant baseline measures were not taken; however, the use of the catalogue
in all four cases does not replace any existing functionality or tool provision –
originally any software or data engineering tasks were carried out by hand or
not at all.

6.3.5.1 Productivity
The NIHR Health Data Finder was set-up to be a single portal for
researchers – both academic and in industry – to find out about existing
national audit datasets that can be requested for research purposes. Before
the introduction of the Model Catalogue, this could be a painful process:
the datasets are held by one of a number of public health bodies: NHS
Digital, Public Health England, the Clinical Practice Research Datalink, the
National Institute for Health Research, and the Medical Research Council.
Each maintained their own documentation for the datasets, usually stored
in non-computable formats, and, in general, not made publicly available.
If a research data user required data, they would have to first find out
whether such data existed, and telephone a help desk to ask any questions
about the data; detailed questions could take weeks to be answered. Request-
ing the data would require a different governance process for each provider,
and data would be provided in different formats by each provider. All data
are anonymised before being conferred: if data from multiple providers
were required to be linked before anonymisation, this would increase the
complexity of this largely manual process.

The Model Catalogue provides a solution to some of these problems, and
forms part of a greater plan to streamline all data requests. The catalogue
provides a single portal where all datasets are described, datapoint-by-
datapoint, with information about the scope, coverage and completeness for
each dataset. Information pertaining to ‘frequently asked questions’ is stored
alongside each data element, and adherence to national standards is recorded.
As well as advanced functions for browsing and searching, the catalogue
provides a ‘shopping cart’ function which allows users to compile requests
made up from multiple datasets.

The time saved by the use of the catalogue tool is hard to quantify, as each
request is different. However, the site has been used more than 4,200 times
in 2 years since its launch, with an average of six visitors per day. Of these,

270 Use Cases

approximately 40% are returning visitors, indicating some degree of success
on their first visit. The average ‘session’ duration for all visitors is well over
3 min, suggesting that a lot of users are taking the time to browse and explore.
Although the number of visitors has dropped since the first launch of the site,
the numbers remain stable.

In the Oxford BRC Data Warehousing project, a team of developers are
building a large warehouse of patient data, extracts of which will be made
available to local researchers for specific purposes. In order to maintain
an asset register and to provide documentation to potential users, every
data source and data flow is being documented. Before the introduction of
the catalogue, this documentation would have been maintained in a series
of spreadsheets and shared (perhaps in a source control system) to allow
collaboration. The catalogue provides plugins that automate the transcription
of database metadata, and descriptions can be collaboratively edited via the
online interface – a vast improvement to productivity. There are currently
12 developers and data engineers using the catalogue – some on a daily basis –
and allowing access to Oxford University researchers is planned in 2018.

In the Health Informatics Collaborative, and in the UK 100,000 Genomes
project, a key output is the development of new data standards – to facilitate
the transfer of clinical data from a number of different hospitals to a cen-
tralised location. In such projects, collaboration is required from a range of
different people: those with clinical expertise to assess the availability of data;
those involved in research to assess the requirements for each data point, and
technical people at each hospital who can assess the feasibility of providing
data. Previously such collaboration may not have happened or taken place
via email and teleconferences; with the use of the Model Catalogue such
collaboration is much easier, and can reduce the number of iterations required
to reach a viable data specification.

In the UK 100,000 Genomes project, complex models for Cancer and
over 200 Rare Diseases have been developed and published, iterating through
a number of intermediate versions. In the NIHR HIC project, models for
five therapeutic areas have been developed: originally using spreadsheets and
email; latterly using the catalogue. The catalogue has reduced the amount
of communication required and simplified the task of development and
documentation of the model; a further five new therapeutic areas are to be
addressed with new models in the NIHR HIC project, during the first quarter
of 2018.

6.3 Managing Data for the NHS 271

Figure 6.51 Screenshot from the NIHR HIC Model Catalogue.

6.3.5.2 Quality
In the UK 100,000 Genomes and NIHR HIC projects, as well-documented
data standards, key outputs are software components to allow the storage
and transfer of data according to the standard. Without automation, it would
be very easy for mistakes to be made in the development of tools such as
XML schema or database schema: differences between the standard and
the tools could result in data not being transmitted or stored correctly. The
plugins developed for the Model Catalogue allow these components to be
generated automatically. In the early stages of the HIC project, when such a
manual process was in place, discrepancies arose frequently, and this caused
delays and frustration as errors had to be corrected, new standards or tools
re-tested, published and distributed. The introduction of the catalogue has
seen a complete reduction in these errors, and also reduces development
effort (Figure 6.51). In the UK 100,000 Genomes project, further components
were required to configure off-the-shelf software, and suitable plugins were
developed to ensure that these also remained consistent with the standards.

In the Oxford BRC Data Warehousing project, data quality can be
improved by allowing those entering the data to see the descriptions of the
intended values – so they know how to complete fields correctly – or to see
the data already submitted – in order to fix any problems with existing data. In
its current state, running metrics on the existing data has identified a number
of potential issues with the data and other local reporting, and so the Model

272 Use Cases

Catalogue has become a useful tool for the reporting and discussion of these
issues.

In the Health Data Finder project, an improvement has been made, not
in the quality of the actual data, but in the linking and usage of the data.
With detailed descriptions of every data point, researchers are better able to
make decisions on how to use the data – in many cases preventing mistakes
in analysis, or, where previously the semantics of data points were unknown,
preventing researchers having to collect new data from scratch to ensure its
validity for the particular purpose.

6.3.5.3 Agility
One of the key advantages of the catalogue product is the ability to create new
versions of a model with ease, ensuring that all participants can be kept up-to-
date, and by using plugins to generate software components, updates to a data
model can be reflected in changes to the related software much more quickly.
In the NIHR HIC project, this is an essential requirement: the XML schema
required for transferring data between sites can be made available as soon as
the new data model is finalised – giving technical staff the maximum amount
of time to adapt to the new model. Previously, delays in the generation of
XSDs (and subsequent fixing of any errors), could delay the timely collection
of data. A similar improvement has been made in the UK 100,000 Genomes
project, where without the use of the Model Catalogue, manual approaches to
collaborative model evolution, publication and software development would
result in a much slower turn-around time.

In the Health Data Finder and Oxford BRC Data Warehousing projects,
the key notion of agility is in the time taken to update the documentation
in response to a new version of the database schema. Again, the plugins
have proven invaluable in this respect: the importer plugins can automatically
import the new structures, and existing descriptions can be copied, meaning
that minimal effort is required from domain experts.

6.4 Integrating Semantic Datasets into Enterprise
Information Systems with PoolParty

6.4.1 Introduction

PoolParty Semantic Suite is the SWC’s platform for enterprise information
integration based on Linked Data principles. Since it was created, the product
has evolved to include entity extraction from unstructured information. To

6.4 Integrating Semantic Datasets into Enterprise Information Systems 273

align product development with ongoing technology trends, market monitor-
ing and trend scouting features have been incorporated. Atlassian Confluence
is used to support the requirement engineering process while Atlassian JIRA
is used for issue tracking, including an external system for customers.

The developers of the SWC’s software have numerous sources of infor-
mation that is relevant to their product development role – bugs, feature
requests, usage information, and so on. They would like to ensure that the
information relevant to any particular development task is made available
to the relevant developers in as timely, well-structured and meaningful way
as possible, regardless of the source. Customers of PoolParty would like to
integrate a variety of models, schemata, ontologies and vocabularies into
their PoolParty knowledge bases. In many cases, they do not have a deep
understanding of semantic technologies and would benefit from as much
assistance as possible in understanding what they need to do to integrate their
models into PoolParty.

To support and document the development process, SWC operates instal-
lations of Atlassian Confluence and JIRA. Confluence is used for drafting,
specifying and discussing new features and requirements in a text-based
format which is only structured visually with headings and paragraphs. Most
requirements captured in Confluence follow a defined structure: they declare
the high-level goal (or summary), which is a description of the functionality
the application should provide so that the requirement is met. The require-
ments document breaks down this description into multiple “user stories”
which are detailed descriptions of how the application should behave from
a user perspective. They also add preconditions, acceptance criteria and test
scenarios so that the responsible developer can identify what changes need to
be performed and infer JIRA tickets for each of them. A requirements docu-
ment also defines various stakeholders, i.e., people and their responsibilities
and roles they fulfil in the course of processing the requirement.

JIRA defines a data schema to hold the details of each ticket, like type,
description, priority, or assignee. On the most general level, tickets (also
sometimes called issues in this section) are assigned to various “spaces”.
A space is used to classify issues by project (e.g., LOD2 or ALIGNED),
product (PoolParty Thesaurus Manager PPT or PoolParty Extractor PPX)
or general kind (ideas, which are “nice-to-have” features or improvements
for which it is not yet decided if and how they will be implemented). Each
ticket can only be assigned to one space and the space, to some degree, also
influences the properties that can be assigned to a ticket. For instance, valid
types that can be assigned to a ticket are, e.g., “bug”, “task”, “epic” or “story”

274 Use Cases

in the PPT space while “epic” or “story” cannot be assigned to tickets in the
PoolParty Support space. Besides the affected software components, status,
resolutions methods and much more, also metadata is attached to the ticket
like creation and last-updated date. The properties mentioned above which
are relevant for querying in the ALIGNED use case(s) are modelled in the
Design Intent Ontology (DIO) by OxSE, which is used for publishing the
data held by Confluence and JIRA as RDF.

6.4.2 Problem Statement

The developers of the SWC’s software have numerous sources of information
that is relevant to their product development role – bugs, feature requests,
usage information, and so on. They would like to ensure that the information
relevant to any particular development task is made available to the relevant
developers in as timely, well-structured and meaningful way as possible,
regardless of the source. Customers of PoolParty would like to integrate a
variety of models, schemata, ontologies and vocabularies into their PoolParty
knowledge bases. In many cases, they do not have a deep understanding of
semantic technologies and would benefit from as much assistance as possible
in understanding what they need to do to integrate their models into PoolParty.

6.4.2.1 Actors

Role Description
PPT Developer performs software development work on the PoolParty platform
PPT User uses PoolParty
PPT Taxonomy
Developer

responsible for developing taxonomies for PoolParty

PPT Admin responsible for administering PoolParty services
Requirements
Engineer

responsible for defining and maintaining software requirements

SWC System
Administrator

responsible for administering SWC assets

The requirements on which the PoolParty use case was based are detailed in
Appendix A.

6.4.3 Architecture

Figure 6.52 shows the different roles (orange figures), tools (green rect-
angles), repositories (cylinders), and files (parallelograms) involved in the
PoolParty architecture and workflows. On the left side, the diagram describes

6.4 Integrating Semantic Datasets into Enterprise Information Systems 275

F
ig

ur
e

6.
52

Po
ol

Pa
rt

y
A

rc
hi

te
ct

ur
e.

276 Use Cases

the direct interaction of the customers (taxonomists) with the PoolParty
application. The taxonomist creates controlled vocabularies using both the
thesaurus editor and the custom schema editor. Currently, there are two
components where data consistency needs to be satisfied: (i) when per-
sisting vocabulary and schema data to the underlying triple store using a
custom SWC-developed RDF Mapping Framework and (ii) when changes
to the controlled vocabulary are performed which violate certain qual-
ity criteria (validated by the SKOS Quality Checks component). The
RDF mapping framework converts instances of annotated Java domain
classes into an RDF representation and vice versa. However, data con-
sistency violations between the triple store(s) and the application via the
RDF mapping framework can occur because in the application code, the
framework is sometimes bypassed and data changes are written directly
to the store. Furthermore, changes to the domain classes may require
migration scripts which can easily be forgotten to develop and run.
Also note that the data importer component which retrieves data either
from the LOD cloud or from imported files currently persists these data
directly to the triple store, which in many cases violates data consistency
requirements.

6.4.4 Implementation

The demonstrator system consists of four components, which we shortly
outline in the following paragraphs:

• Consistency violation detector
• RDFUnit test generator
• PoolParty integration
• Notification adaptations

6.4.4.1 Consistency violation detector
We implemented the consistency violation detector as a separate component
that can be either invoked on the command line or integrated into PoolParty
as a library. It takes as input the id(s) of the consistency violation check(s) it
should detect as well as an arbitrary number of RDF files that contain all
necessary data for performing the check(s). All these RDF data are then
added to a local in-memory OpenRDF repository, together with the RDF
definition of the SKOS data schema. All but one of the identified consistency
violations can be detected by using SPARQL queries over the provided

6.4 Integrating Semantic Datasets into Enterprise Information Systems 277

RDF input files. The one constraint where SPARQL queries do not suffice
is the validation of external links. This is done by a Java algorithm that
dereferences all URIs (that do not reference localhost) and checks if the
HTTP response code indicates an error (i.e., other than 200).

6.4.4.2 RDFUnit test generator
Test cases for RDFUnit are expressed in RDF as resources of, e.g., type
http://rdfunit.aksw.org/ns/core#ManualTestCase. Our demonstrator system
can generate the test cases for RDFUnit automatically, based on the SPARQL
queries we defined for each data consistency check. Currently, four of the 16
data consistency violation checks can be automatically converted to RDFUnit
tests. The RDFUnit test cases can then be executed on the in-memory repos-
itory mentioned above and a HTML report page is generated by RDFUnit
which shows the results (success or failure) of each test case.

6.4.4.3 PoolParty integration
For the demonstrator, we integrated the consistency violation detector into
PoolParty’s data import functionality. The current implementation checks for
violations of any of the 16 identified data consistency constraints. Therefore,
it first collects the data of all linked projects, the project metadata, and custom
schema data and passes it to the consistency violation detector. The generated
textual report is then displayed to the user, along with the option to view the
HTML page that has been generated by the RDFUnit test run.

6.4.4.4 Notification adaptations
We improved the rsine notification system1 which has been originally
developed in the course of the LOD2 project (see Section 5, Improved
Notifications, or the project’s GitHub page for additional information) to:

• Be transaction-aware: Due to improvements on how PoolParty invokes
data changes, rsine can persist them as a transaction. This enables us to
write easier and more powerful notification subscriptions.

• Support of project management, custom schema, and user repositories.

Until now, only changes to the taxonomy project repository were communi-
cated to the notification service. We changed that so that it is also possible to
subscribe for changes to the project management, custom schema and user
management repositories to, e.g., receive notifications on creation of new
projects, new custom classes, or new PoolParty user accounts.

278 Use Cases

6.4.4.5 RDFUnit
RDFUnit is integrated in PoolParty RDF Validation for performing constraint
checks. The checks are defined as RDFUnit test cases using RDF. These test
cases can also be run by RDFUnit independently of PoolParty on external
data. For each of the constraint checks, there is an RDFUnit test case which
is based on a SHACL constraint or a SPARQL query that identifies resources
that cause violations.

UnifedViews is an ETL tool for RDF data developed as part of the
PoolParty semantic suite. Using this tool, we extracted data from Atlassian
Confluence and JIRA and transformed it into RDF using a DPU devel-
oped for ALIGNED. The transformed data are annotated with the PoolParty
Knowledge.

Graph using the extractor DPU and finally similarity scores are calculated
based on the annotated data.

The Issue Integration feature is integrated in PoolParty product, which
allows user to automatically create JIRA support tickets whenever an internal
server error occurred in the application.

Similarity scores are calculated on development artefacts using the anno-
tations of the PoolParty Knowledge Graph Thesaurus as a basis. Two algo-
rithms are implemented that represent a lexical and a graph-based approach
to similarity.

Graph Search, a faceted search application and part of the PoolParty
product, is used to analyse the development artefacts. We integrated simi-
larity retrieval into GraphSearch to find duplicate bugs and relations between
issues.

6.4.4.6 Validation on import
General Description

Currently, users can import any RDF data into a PoolParty thesaurus project.
In the best case, invalid data just lingers in the triple store where PoolParty
stores all the data it operates on and consumes memory or hard disk space.
However, these data also can cause problematic behaviour such as incon-
sistency in the user interface and a corrupt data model, manifesting in fatal
exceptions in the PoolParty Thesaurus Editor. We can identify three different
PoolParty functionalities where data consistency is required:

• Basic internal operations: The thesaurus editor expects certain properties
for the various controlled vocabulary resources, such as concepts or
concept schemes

6.4 Integrating Semantic Datasets into Enterprise Information Systems 279

• Schema-specific: SKOS or other data schemas impose custom restric-
tions on the data or encourage conformance with best practices that are
not formally stated

• Reasoning: PoolParty asserts and expects class membership information
to controlled vocabulary resources and interprets them with constraint
semantics.

Addressed Challenge

The main challenge is to match the imported data, which follow the open
world assumption with the local data model required by PoolParty. This is
basically a challenge each application that consumes open data from the Web
faces. Because these data are very volatile, efficient methods have to be in
place that allow transition of data scraped from the Web into a meaning-
ful local representation that can be further processed by the application’s
business logic.

Identify Sample Set of Data Consistency Violations

We can break down this challenge to a set of sub-goals we want to solve in
the course of the ALIGNED project:

• Provide full coverage of data consistency constraints
• Identify repair strategies
• Invoke repair strategies and fix constraint violations either automatically

or based on user input

Proposed Approach

We plan to support the import use case with a two-step semi-automatic sce-
nario: in the first step, the imported data must be checked against PoolParty’s
internal data model and requirements on the data and any non-conformance
must be reported. In a second step, users should have the option to adjust the
imported data in order to fulfil PoolParty Thesaurus Editor’s requirements.
Based on the kind of data consistency violation, various repair strategies may
be invoked. Some violations can be fixed automatically and some require
additional input from the user. It should also be possible to fix similar kinds
of consistency violations in one go so that it is possible to deal with a large
number of violations.

280 Use Cases

Identified Data Consistency Constraints

For demonstrating the problem domain and working towards the implemen-
tation of an approach that tackles the addressed challenge, we first focussed
on the sub-goals 1 and 3. We extracted 16 data consistency constraints, i.e.,
requirements for RDF datasets so that they match the internal PoolParty
Thesaurus Editor (PPT) data model. Violations of these constraints can vary
in severity: some constraints must never be violated (ERROR), some can be
tolerated (WARNING) and some are just of informative value (INFO). For
each of the identified consistency constraint, we propose one or more repair
strategies that describe possible ways to fix the dataset.

We implemented a tool (usable both at the command line as well as a
library for integration into existing applications) that checks provided RDF
data against violation of these constraints. A current development branch of
PoolParty makes use of this tool and displays a report if constraint violations
on imported data were detected. Four of the consistency constraints listed
above have also been formulated as RDFUnit test case and can thus be
integrated into existing test suites.

Resolution
ID Constraint Description Severity Strategies
br Bi-directional

Relations
If a resource A is related to a resource
B by a property p and if p has an
inverse property p’, then the
statement that B is related to A by p’
must also be manifested in the data.

ERROR Add
complementary
statement
Remove relation

cd Concept
Deletion

In order for PPT to recognise deleted
concepts, these concepts must be
marked with owl:deprecated, must not
have asserted any type information,
and must contain information in the
history graph for being properly
displayed in the application.

ERROR Remove other facts
that are not asserted
by owl:deprecated
Remove
“owl:deprecated
true” fact

cta Concept
Type
Assertion

Concepts must have the type
skos:Concept asserted because no
RDFS inferencing is performed in
PPT.

ERROR Add (infer) missing
type declarations

dcl dcterms
Creator
Literal

Using URIs for dcterms:creator to
describe skos:Concepts and
skos:ConceptSchemes in PPT leads to
error message

ERROR Convert provided
creator agent to
literal
Replace with some
default literal

6.4 Integrating Semantic Datasets into Enterprise Information Systems 281

Continued
Resolution

ID Constraint Description Severity Strategies
dta Direct Type

Assertion
Concepts having asserted a class
using swcs:appliedType must also
be instances of this class.

ERROR Add missing type
statement
Remove resource

elv External Link
Validity

Outgoing links from a thesaurus
to another dataset on the Web
may not be resolvable anymore.

INFO Prompt user for
replacing URI with
“valid” link
Apply resolution
strategy suggested
when dereferencing
the URI
Remove affected
statement

hc Hierarchical
Consistency

Each resource of type
skos:Concept must have a
resource linked by skos:broader
or skos:topConceptOf in the
vocabulary namespace. Each
resource of type skos:Concept
must have at least one path (via
skos:broader/skos:topConceptOf)
to a resource of type
skos:ConceptScheme in the
vocabulary namespace.

ERROR Prompt for parent
resource
Add to some
existing default
parent resource
Remove (do not
create or ignore)
concept

lam Label
Ambiguities

Identical concept labels may
indicate duplicate concepts.

WARNING Remove Label from
one concept
(prompt user for
which one)
Merge Concepts
Add descriptive
note (prompt user
for text input)

lav Label
Availability

Resources of type skos:Concept
must have assigned exactly one
Literal in the default language,
using the predicate
skos:prefLabel. Resources of type
skos:ConceptScheme must have
assigned exactly one Literal in the
default language, using the
predicate rdfs:label.

ERROR Auto-generate label
(based on URI,
timestamp,
increment, from
parent/related...)

(Continued)

282 Use Cases

Continued
Resolution

ID Constraint Description Severity Strategies
lpc Linked

Project
Consistency

If two PPT projects are linked
to each other, each of the
referenced resources must exist.

WARNING Remove Link
Restore Data
(i.e., create new
local concept
with deleted
concept’s label)

sc Schema
Compatibility

Detect statements using
resources from namespaces that
are not included in the default
PoolParty schemas or in
schemes that are available as
custom schemas. Such
statements would not be visible
within PoolParty and may lead
to unwanted side effects.

WARNING Enable relevant
schemas in PPT
Ignore statements

sdr Schema
Domain
Range
Match

Domain and range axioms on a
property are interpreted as
constraints – that is, a property
with specified domains (using
swcs:domain) A and B can only
be used in triples with resources
that are instances of A or B.
Likewise for swcs:range.

ERROR Apply missing
type(s): either
one (prompt user
which one) or all
Remove relation

tpc Type
Propagation
Collections

All concepts that are members
of a collection which is instance
of a class (using the property
swcs:appliedType) also are
instances of this class.

ERROR Assert missing
Types
Remove from
collection

tph Type
Propagation
Hierarchical

Concepts that are part of a
hierarchy (using skos:broader
properties) and one of the
parents (e.g., a resource being
an instance of
skos:ConceptScheme and
skos:Concept) have either a
type asserted (using
swcs:appliedType for
skos:ConceptSchemes) or
propagated (using
swcs:propagateType) must also
be instances of this class.

ERROR Assert missing
types
Remove from
hierarchy

6.4 Integrating Semantic Datasets into Enterprise Information Systems 283

Continued
Resolution

ID Constraint Description Severity Strategies
upl Unique

Preferred
Labels

A concept must have at
most one preferred label
per language tag (SKOS
integrity constraint)

ERROR Remove one
preferred label
(prompt user
which one)
Add
disambiguation
information as
notes (prompt
user to supply
them)
Add
disambiguation
information as
parenthesis to
label (bad
practice)
Extract new
concept (prompt
for broader or
insert as sibling)
Remove concept

ut Unsatisfied
Type

Concepts must either be
instances of
skos:Concepts or
instances of classes that
are assigned directly or
by type propagation.

ERROR Remove type
assertions
Remove affected
resources
Import type as
custom class

Detailed Process Description

In the following, we show how import data validation is implemented in a
proof-of-concept branch of PoolParty:

(1) Accessing the RDF Data import functionality of PoolParty: the newly
adapted import dialog provides an option for checking the imported data for
conformance against the consistency constraints (Figure 6.53).

284 Use Cases

Figure 6.53 Import dialogue.

(2) Report on the resources that violate certain consistency constraints
(Figure 6.54).

Figure 6.54 Consistency constraint violations as reported by RDFUnit.

6.4.5 Results

By providing a demo implementation of an import validator, we found
that RDF datasets can be checked against the identified data consistency
constraints, either by using SPARQL or by a hybrid approach, processing
a subgraph generated by SPARQL with custom Java algorithms. Based
on the query results, reports containing the resources that violate consis-
tency constraints are created. We also found that the consistency constraints

6.4 Integrating Semantic Datasets into Enterprise Information Systems 285

Figure 6.55 High level technical overview.

which can be solely expressed using SPARQL (i.e., no custom Java algo-
rithms for validation are needed), can also be expressed as test cases for
RDFUnit.

For identification of the above described consistency constraints, we
analysed the algorithms PoolParty uses internally for creating, processing and
persisting a controlled vocabulary. While this is efficient for getting an initial
set of constraints, we cannot retrieve a complete set of consistency constraints
which covers all error cases this way. The reason is that a formal model of the
data that PoolParty operates on does not yet exist. Therefore, the consistency
constraint checks must be manually crafted in SPARQL, independent from
the algorithms creating or accessing the data. As a consequence, the checks
constitute an additional entity that must be maintained in sync with changes
to the application logic.

Figure 6.55 illustrates the workflow for checking RDF data for confor-
mance to the PoolParty data model. The PoolParty integration collects data
from various sources necessary to evaluate potential consistency violations.
Alternatively, command line users of the Import Validator can prepare RDF
files and pass them to the Import Validator Component (green frame), which
applies the constraint definitions to this data and outputs a textual or HTML
report that contains violation information.

6.4.5.1 RDF constraints check
Figure 6.56 shows the constraints checks integrated using RDFUnit. When
importing data into a PoolParty project, the constraint checks are performed,

286 Use Cases

Figure 6.56 RDF validation conformance checks.

and a result list is presented to the user who outlines all the violations that
have been detected. For the first release of PoolParty containing the RDF
Validation, we defined a minimal set of 13 constraints so that imported
data are required to conform with PoolParty to operate normally. In later
releases, this set will be extended by quality checks to assist with data mod-
elling. The declarative approach taken for defining the constraints ensures
easy maintainability and extendability of the RDF Validation for future
releases.

The user can browse through the detected constraint violations, select a
repair strategy for each of them and apply the repair to the data (Figure 6.57).
When all violations are repaired and conformance is achieved, the user can
transfer the imported data into the project without the risk of application
failures caused by inconsistent data.

6.4.5.2 RDF validation
The first part is the RDF Validation, which is integrated into the PoolParty
product to support consistency within the application’s data storage.

Data within PoolParty projects have to follow conformance rules for the
application to work correctly. Usually, data are modified by the application
itself, and the conformance is therefore given naturally. However, it is pos-
sible for users to import arbitrary RDF into the project. These data have to

6.4 Integrating Semantic Datasets into Enterprise Information Systems 287

Figure 6.57 Repair strategy for the constraint check.

be checked and eventually corrected to conform to the PoolParty applica-
tion. To ensure this conformance, the import component of PoolParty was
extended with an RDF Validation component. It is responsible for checking
the imported data based on a set of defined constraints and reporting the
results. The user is then given the opportunity to correct the import by using
one or more presented repair strategies that will manipulate the data so they
satisfy the constraints. Bulk repair options are also given for constraints
where it is appropriate to do so. Furthermore, general quality checks can
be done on the data that do not interfere with PoolParty’s operations, but
represent data modelling problems and would therefore be of interest to the
Taxonomist.

For performing the constraint checks, the RDF Validation has integrated
RDFUnit. The checks are defined as RDFUnit test cases using RDF. These
test cases can also be run by using RDFUnit only and therefore can be used
independently of PoolParty on arbitrary data. Also, the maintainability of the
constraint checks is high because of the declarative approach of the test case
definition using RDF. Changing the checks does not require changes to the
application’s code. The repair strategies and other metadata are also defined
as RDF and extend the RDFUnit test cases for an integrated representation of
validation and repair. For each of the constraint checks, there is an RDFUnit
test case, which is based on a SPARQL query that identifies the resource
that causes the violation. Each check also defines repair strategies that can be
applied to fix the violation. The information needed for the repair strategies
to determine changes that have to be done can be retrieved using a constraint
specific query that returns the context of the violation as RDF statements.
The combination of constraint, context and repair strategies is represented as
an extension of the RDFUnit test case. The component implementing the test
cases is designed to be independent of PoolParty and can be used separately.
PoolParty integrates it to present the RDF Validation as an application feature.

288 Use Cases

When importing data into a PoolParty project, the constraint checks are per-
formed, and a result list is presented to the user that outlines all the violations
that have been detected. The user can browse through these violations, select
a repair strategy for each of them, and apply the repair on the data. When all
violations are repaired and conformance is achieved, the user can transfer the
imported data into the project without the risk of application failures caused
by inconsistent data.

For the first release of PoolParty containing the RDF Validation, we
defined a minimal set of 13 constraints that are mandatory to conform with
PoolParty to operate normally. In later releases, this set will be extended by
quality checks to assist with data modelling. The declarative approach taken
for defining the constraints ensures easy maintainability and extensibility of
the RDF Validation for future releases.

RDF Validation: The user imports an RDF file into a project. A list of
constraint violations is shown and explained. Constraint violation details are
opened and the constraint details are shown. The repair strategy is executed.
Another constraint violation is shown and repaired. Afterwards, all the vio-
lations have been resolved. It is explained that a save import is now possible
(Figure 6.58).

Figure 6.58 RDF Validation Screenshot.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 289

6.4.5.3 Improved notifications
General Description

During the LOD2 project, SWC developed rsine,15 a publish/subscribe sys-
tem that allows users to register for data changes in an RDF triple store. In
the demonstration system, we reuse and adapt rsine to work with a current
version of PoolParty and extend it to support additional notification types as
required by Wolters Kluwer.

Addressed Challenge

The LOD2 technology stack16 consists of multiple tools that cover the
whole Linked Data life cycle. It encompasses, among others, storage, qual-
ity analysis and exploration utilities that target problem domains that also
affect PoolParty. LOD2 project partners needed a way to better integrate
their solutions, and being notified on data changes between stack compo-
nents was one of the project goals. Therefore, the notification systems were
required to be:

• easily integratable into existing stack components, and
• flexible enough to support notifications which can be adjusted to meet

the component’s purpose and data model.

Approach

Rsine runs as a stand-alone server and can be controlled by a REST-like
interface. It can be configured against a Managed RDF Store (accessible by
a SPARQL endpoint), which holds all data a LOD2 stack component works
on. Addition and deletion of triples to this managed store are detected by the
Change Handler. It forwards these changes to the Changeset Service, which
enriches them with additional metadata such as timestamps using a standard
ontology17 and persists them into an in-memory Changeset Store.

We currently support two different types of change handlers:

• Integration with the managed store: an external component, e.g., a Vir-
tuoso VAD extension18 or transaction log parser19 detects triple changes
in the underlying Virtuoso triple store.

15https://github.com/rsine/rsine
16http://stack.lod2.eu/blog/
17http://vocab.org/changeset/schema.html
18https://github.com/rsine/rsineVad
19https://github.com/GeoKnow/trx parser

290 Use Cases

• Integration with the stack component: The stack component (e.g., Pool-
Party) is responsible for announcing all data changes to rsine using API
calls.

To subscribe for notifications, users can submit Subscription Documents
to the rsine server using the API. These are RDF documents, containing
information about

• The change patterns (as SPARQL query) the user should be notified
about,

• A notification message,
• Additional information the notification message should contain (fetched

from the managed store using SPARQL), and
• Contact information (e.g., email address, log file) where the notification

should go to.

A complete description of the information a change document should con-
tain can be viewed at the project’s GitHub page. Figure 6.59 shows the
architecture of the notification system.

Figure 6.59 Improved notification system.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 291

Improvements

For the demonstration system, we revised and improved rsine to meet the
new notification requirements of WKD. We adjusted a current version of
PoolParty, with the following change handler improvements:

• Dataset changes are now transaction aware: if a PoolParty action (e.g.,
creation of a document) creates or removes multiple triples at once, these
are combined and stored as a single RDF changeset representation. This
feature required us to adjust the rsine API and break compatibility with
older rsine versions

• Support for other repositories than the current vocabulary repository.
The change handler can now communicate data changes introduced to
the project metadata repository, the custom schema repository and the
user accounts repository

Notifications

These changes allow us to express and implement new types of notifications
that were not possible with other rsine PoolParty integrations before. On
project creation, for example, a notification containing the user who created
the project and the project’s name can be disseminated. Notification can also
be done when creating, changing or deleting classes, attributes or properties
of custom schemas in PoolParty or creating and deleting PoolParty user
accounts. In the following, we provide an abbreviated example (we omitted
the prefix declarations) subscription document that logs a message if a new
user has been created.

<http://example.org/aligned/new_account> a rsine:Subscription;
rsine:query [

dcterms:description "Notification user account creation";

spin:text "SELECT ?userName (GROUP_CONCAT(?auth; separator=’, ’)
AS ?auths) WHERE \{

?cs a cs:ChangeSet;
cs:createdDate ?csdate;
cs:addition ?userAdd;
cs:addition ?userAuth;
cs:addition ?userInfo.

?userAdd rdf:subject ?user;
rdf:predicate rdf:type;
rdf:object swcu:User.

?userAuth rdf:subject ?user;
rdf:predicate swcu:grantedAuthority;
rdf:object ?auth.

292 Use Cases

?userInfo rdf:subject ?user;
rdf:predicate swcu:username;
rdf:object ?userName.

FILTER (?csdate
>’QUERY_LAST_ISSUED’ˆˆ<http://www.w3.org/2001/XMLSchema#dateTime>)

}
GROUP BY ?userName HAVING (STRLEN(?auths) > 0)
";

rsine:formatter [
a rsine:vtlFormatter;
rsine:message "A new user named

’$\bindingSet.getValue(’userName’).getLabel()’ with the roles
’$\bindingSet.getValue(’auths’).getLabel()’ has been created.";

]
];

rsine:notifier [
a rsine:loggingNotifier;

].

Detailed Process Description

The command java -jar ./rsine-cmd.jar starts the rsine notification server,
accepting notification subscription documents on port 2221

The notification subscription document can be registered at the server
using the command: curl -X POST -d @“create user account subscription.ttl”
–header “Content-Type: text/turtle” http://localhost:2221/register

Rsine detects the event and adds a notification to the log: 13:17:26.258
[qtp524197922-12] INFO e.l.r.d.n.logging.LoggingNotifier – A new user
named ‘aligneduser’ with the roles ‘PoolPartyUser, PoolPartyAdmin, Public’
has been created.

Note that notifications can also be configured to be sent to an email
address by adding this snippet to the notification subscription document:

rsine:notifier [
a rsine:emailNotifier;
foaf:mbox <mailto:c.mader@myhost.at>

];

Results

We found that the new notification subscription documents, covering project
metadata, custom schema changes or user account management, were easy

6.4 Integrating Semantic Datasets into Enterprise Information Systems 293

to implement on the rsine side. However, we had to put more effort into
adapting the Change Handler components, which are part of the newly
created PoolParty-ALIGNED branch, to support the new notification types.
The reason for this is that PoolParty internally organises vocabulary data (i.e.,
the SKOS representation and some metadata of a taxonomy project), project
metadata, custom schemas and user account information in different RDF
repositories, and only the vocabulary data can be accessed by a SPARQL
endpoint. This has two major consequences:

• We had to integrate the Change Handler code into PoolParty’s data
persistence logic for each repository,

• We currently cannot cover all information that should be contained
in the notification messages. For example, if adding a new class to a
custom schema, the notification message can only contain the name of
the new class, not the schema name it has been added to or the user who
created it.

However, future releases of PoolParty will only use a single repository for the
data described above and organise it into different named graphs. This will
allow us to efficiently query the data and also to formulate more powerful
queries, aggregating knowledge of each named graph. Therefore, PoolParty’s
rsine integrate will also profit from disseminating more detailed and useful
notification messages to the subscribers.

6.4.5.4 Unified governance
The Unified Governance tool is used to harvest data from the tools used in
the PoolParty development life cycle. The data are transformed into RDF
and integrated using ALIGNED vocabularies to create unified views for
supporting the development process.

The Unified Governance tool will support three use cases for the trials:

• Search over the integrated RDF software development data
• Computing similarity for software development artefacts based on a

combined graph-based and text-based approach
• Statistical analysis of the software development process

The sources of development data used for the tool are Atlassian Confluence
and Atlassian JIRA.

Atlassian Confluence is used for requirements engineering, organising
ideas from team members, providing documentation of research projects,
and publishing of technical information. Atlassian JIRA is used for issue

294 Use Cases

management as part of the SCRUM-based software development process.
It is also used as a ticketing system for customers to report issues. Both of
these tools are used for integrated software development process, but they
are not integrated with each other. This has to be done by humans as part
of the process to synchronise the information. It includes manual linking of
requirements in Confluence to JIRA issues and linking duplicate JIRA issues
together. Generally, an integrated and interlinked view of requirements and
development artefacts is needed. With the Unified Governance tool, this can
be achieved automatically.

The tool retrieves the information from both Confluence and JIRA and
transforms it into RDF based on the ALIGNED metamodel vocabularies
DIO and DIO-PP. This has to be done on a regular basis to have up-to-
date information to work on. Therefore, we use Unified Views, an Extract
Transform Load (ETL) tool supporting RDF data processing, for periodic
retrieval and transformation of the development data. Having integrated the
data as RDF, we can query it using SPARQL. The queries can make use of the
underlying metamodels to improve the results. Furthermore, SPARQL-based
applications can be put on top of the triple store to support querying, filtering
and facetted search.

During the integration process, the generated RDF data are annotated with
concepts using a PoolParty Thesaurus. These concepts can support search
applications. They can also be used as a basis for computing similarities
between artefacts based on the hierarchical graph structure of the Thesaurus.
A graph-based approach can leverage the underlying knowledge model and
provide semantic similarity for the development artefacts. We decided to use
a combined method of text-based and graph-based similarity to benefit from
both approaches and improve the results. The results of the similarity com-
putation can be applied to several tasks. First, we can automatically identify
developments issues that correspond to requirements and semi-automatically
link them. Second, we can identify similar requirements and ideas that should
be organised together, but appear distributed in the system. Third, we can
identify duplicate issues in JIRA, which is important to prevent the duplicate
reporting of bugs. We can identify duplicates before an issue is submitted,
inform the user about it and eventually prevent the creation of the issue.

The RDF data of development artefacts can be used for a statistical
analysis of the development process. The results can then be used to apply
improvements. They can be used as a reference basis for future time esti-
mations of efforts. Flaws in the development process can be identified by
analysing performance decreases. Development efforts and reported bugs can

6.4 Integrating Semantic Datasets into Enterprise Information Systems 295

be analysed for deviations from the expected values. Statistical data will be
visually presented in form of diagrams as part of the search application.

Unified Governance: A UnifiedViews pipeline is used to extract data from
Atlassian Confluence and JIRA (Figure 6.60). The data are transformed into
RDF and integrated using ALIGNED vocabularies to create a unified view
on the development data for supporting the development process. The trans-
formed data are then annotated with concepts from the PoolParty Knowledge
Graph. Similarity between development artefacts is calculated using a lexical
and a graph-based approach in combination.

Unified Governance Search: The facetted and autocomplete search
application on top of the Unified Governance data is explained in detail
(Figure 6.61).

Unified Governance Similarity: The similarity computation as part of the
search application and the use cases are explained.

Unified Governance Statistics: The statistical analysis and the visualisa-
tion are explained.

Issue Integration: Data inconsistencies in PoolParty can be caused by
application error or can be caused by user by importing the data in PoolParty
without doing constraint checks. These types of inconsistencies which cannot
be handled by PoolParty can be reported by using the Issue integration feature
(Figure 6.62). It allows users to configure a JIRA instance and report the
issue automatically to PoolParty support (Figure 6.63). The log file is also
automatically attached to the issue.

Graph Search: The faceted search which is used for managing develop-
ment artefacts. It also provides a recommender UI where users can see the
similarity between different issues and requirements. By using this recom-
mender, users can find duplicate bugs, similar stories, and the requirements,
which are associated with specific bugs.

Users can search for issues and see the details about it (Figure 6.64).
GraphSearch provides a selection of similarity algorithms that were inte-
grated for this use case to calculate similarities between development artefacts
(Figure 6.65).

6.4.6 Evaluation

6.4.6.1 Measuring overall value
PoolParty is a software product provided to customers on premise or as a
cloud service. Although the value can be measured by commercial success,
the improvements done to both the application’s features and the develop-
ment process cannot be easily quantified. Data curation for PoolParty during

296 Use Cases

F
ig

ur
e

6.
60

U
ni

fie
dV

ie
w

s
pi

pe
lin

e
fo

r
Po

ol
Pa

rt
y

us
e

ca
se

.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 297

Figure 6.61 Unified Governance Search.

Figure 6.62 Issue Integration reporting dialogue.

Figure 6.63 Issue Integration created dialogue.

298 Use Cases

Figure 6.64 Semantic search over development artefact – Graph Search.

Figure 6.65 Details view of specific issue with the option to select similarity algorithm – PP
Recommender.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 299

ALIGNED provides identification and repair of data problems to customers.
Curation reduces the need for consultant assistance, but also makes PoolParty
more flexible regarding stability by allowing more freedom on data imports.
This should raise the acceptance of the product, but it is hard to quantify.
Value for the development process can be measured by the reduction of time
efforts.

6.4.6.2 Data quality dimensions and thresholds
Data quality requirements for PoolParty are covered by two classes of vali-
dation. First, the Import Assistant feature ensures that imported data do not
conflict or violate the functionality of the application and therefore provides
a stability guarantee for users regardless of the data they import. Second,
quality checks can be applied to the data to discover design flaws in the
data modelling. These do not cause problems for the application, but might
be unwanted by the data engineers. In ALIGNED, we focus on the Import
Assistant and analyse the time saved by automatic identification and repair
done by the user in contrast to a manual repair by a SWC consultant done
directly on the data. Value is represented first by providing a feature for the
user to do the repairs without assistance and second by the reduced time
efforts needed to resolve data issues.

Data Agility

The Import Assistant provides users with the possibility to safely import any
RDF data they want to use. The validation checks are based on stability
requirements on the application. They detect all problems that would cause
PoolParty to fail, and as a result, any data can be imported safely. Regarding
the Unified Governance data, which is also represented as RDF, we can
change or extend the set with additional information and adapt the software
components using configuration rather than having a need to change the
actual implementation. The pipeline processing can be configured within the
pipeline steps and the Graph Search faceted search and similarity application
uses ontologies to provide both the search interface and the data represen-
tation. Also, the Integrated Issue Reporting automatically provides metadata
and logging information in the case of application failure.

Model Agility

If new features for PoolParty are implemented or existing features are
changed, there might be the need for additional or modified validation checks.

300 Use Cases

Using a standard-based declarative approach for these allows development
to add, change, test and reuse them more easily. The starting point was
SPARQL-based checks, and we moved on to using SHACL shapes for
validating the import data. The Unified Governance data model can be
easily configured using ontologies and therefore provides adaption for the
application to a changed dataset. In addition, Graph Search provides a plugin
architecture to add new functionality regarding similarity and recommenda-
tions. Plugins are automatically loaded and provided via user interface for
users to work with.

For PoolParty, the evaluation will compare productivity, usability and
data quality, as well the connection between data development life cycle and
the software development life cycle to the results in the previous validation
deliveries. SWC is evaluating the PoolParty trial for import validation by using
the Import Assistant to ensure data consistency. Improvements to the software
developing process by using the Unified Governance methodology and tool
chain, including the Integrated Issue Reporting, are evaluated regarding time
efforts.

6.4.6.3 Evaluation tasks
Curation

Import data into a PoolParty project, detect the problems and repair them.

Process

• Import an RDF dataset into a PoolParty project
• Test the PoolParty Thesaurus Manager to detect problems
• Problems may show up immediately or when a specific resource is

addressed
• Repair the problems manually using SPARQL

Challenges

Detection of problems is difficult. It may be that they are discovered during
later work. There is no systematic checking other than manual testing, which
is a lot of effort and not possible for big Thesauri.

Detection, but especially repair, requires detailed knowledge of the data
model and also the PoolParty application. It is unlikely that the average user
has this knowledge and can fix the issues.

6.4 Integrating Semantic Datasets into Enterprise Information Systems 301

Data Agility

Use the development data for managing the development process by organ-
ising issues to detect duplicates and find similar issues so that requirements
and stories can be viewed in relation.

Process

• Duplicates are often created when two different users use a new or mod-
ified feature and report a bug. We can only detect duplicates manually at
a later time.

• Requirements are manually linked to Jira issues on creation.
• Search has to be done separately in Confluence and Jira.
• In the case of an application failure, a Jira issue is created manually. Log

files have to be requested from the customer.

Challenges

• Duplicates are created and detected at a later time. We cannot prevent
the duplicate reporting.

• Finding stories and bugs for a specific requirement is a lot of effort.
Using linking between Confluence and Jira is done manually.

• We cannot do an integrated search over the whole development data.
• Requesting log files from the customer in the case of application failure

increases the time until issues are solved.

Model Agility

Create a unified view on the complete development data.

Process

Development data are managed in separate applications without integration
using a common basis.

Challenges

• The development data are distributed in several systems.
• There is no integrated semantic description for the different parts.
• The representation is not standards based. Publishing is difficult.
• Integration and processing is proprietary.

302 Use Cases

• There is no option to change the processing using a declarative approach
like ontologies.

6.5 Data Validation at DBpedia

6.5.1 Introduction

DBpedia is the centre of the current web of data. It publishes authorita-
tive RDF-based datasets that are used as a common point of reference for
interlinking and enriching most of the structured data on the Web today. It
relies on an automated data extraction framework to generate open RDF data
from Wikipedia documents, published in the form of file dumps, Linked Data
and SPARQL (SPARQL Protocol and RDF Query Language) hosting on the
Linked Data Stack.

DBpedia is a large-scale extraction project of unstructured and semi-
structured data from different Wikipedia language editions to RDF. This
extraction is achieved from a modular extraction framework that is cus-
tomised to handle multilingualism and structural differences between dif-
ferent Wikipedia language editions. The latest DBpedia release (v. 2014)
generated three billion facts from 125 localised versions. As Wikipedia
evolves over time, the code should be able to adapt to these changes. How-
ever, identifying errors at this data scale becomes very hard, and validation
workflows must be established that will ensure the quality of the extracted
data. The high-level goal of ALIGNED in this use case is to produce tools for
the DBpedia community, which will increase the coverage and precision of
the provided DBpedia data stack.

The latest DBpedia release contains around 23,000 files from more than
100 Wikipedia language editions. At the moment, we provide a download
folder for each language and detailed description only for the English dataset.
We want to extend the current approach and provide a machine readable
representation for the whole release and, besides dataset links to additionally
provide descriptions for all datasets and languages, license and contact infor-
mation using DataID (dataid.dbpedia.org).The DataID will be autogenerated
by a script that will iterate over all release folders and using a pattern-based
approach will assign metadata for each dataset.

6.5.2 Problem Statement

DBpedia is a large-scale extraction project of unstructured and semi-
structured data from different Wikipedia language editions to RDF. This

6.5 Data Validation at DBpedia 303

extraction is achieved from a modular extraction framework that is cus-
tomised to handle multilinguality and structural differences between different
Wikipedia language editions. The latest DBpedia release (v. 2014) generated
three billion facts from 125 localised versions. As Wikipedia evolves over
time, the code should be able to adapt to these changes. However, identifying
errors at this data scale becomes very hard, and validation workflows must
be established that will ensure the quality of the extracted data. The high-
level goal of ALIGNED in this use case is to produce tools for the DBpedia
community, which will increase the coverage and precision of the provided
DBpedia data stack.

6.5.2.1 Actors

Role Description
Extractors DBpedia team members who run the extraction process for a

given DBpedia release
Extraction
Agents

Software agents that perform the extraction such as DBpedia
live

Mapping
editors

Community members who edit the DBpedia mapping wiki

Ontology
Editors

DBpedia foundation members that edit the DBpedia
ontology

Release
managers

DBpedia team members that are responsible for the actions
leading to a given release of DBpedia

Developers DBpedia team members who write code for the extraction
tools

Users Users of DBpedia

The requirements on which the DBpedia use case wasbased are detailed in
Appendix A.

6.5.3 Architecture

Figure 6.66 depicts the DBpedia use case trial architecture, showing the
ALIGNED tools used in different stages of the DBpedia data workflow. With
the DBpedia trial, we want to showcase both the reuse of ALIGNED tools
as well as different integration points. For the data validation trial, we focus
on validating instance data, mappings to RDF and links to other datasets.
Link validation is performed with the SUMMR Mapping tool that reports
results in the ALIGNED Metamodel version 2, especially the DLO and the
DBpedia use case specific ontology. This means that the RDF logs produced

304 Use Cases

Figure 6.66 DBpedia Use Case Trial System Architecture, showing the ALIGNED tools
used in different stages of the DBpedia data workflow.

by SUMMR can be consumed by the ALIGNED Unified Governance Tools
in an ALIGNED tool chain. The other two validation scenarios are based
on RDFUnit and use the SHACL violation reporting vocabulary as an inte-
gration point. DBpedia instance data are validated with a simple RDFUnit
setup, while the DBpedia infobox-to-ontology mappings by using RML as
an intermediate format. Regarding data dissemination, we use the DataID
ontology as an integration point and automate the generation of the download
page or a DBpedia release as well as the provision of a DBpedia release in a
triple store through Docker.

6.5.4 Tools and Features

Figure 6.67 shows which features of the ALIGNED software tools are
deployed in order to support these scenarios.

6.5 Data Validation at DBpedia 305

So�ware Feature Used For
RDFUnit Data valida�on Instance data valida�on
RDFUnit Data valida�on Mapping Valida�on
RDFUnit Data valida�on Ontology Valida�on
RDFUnit Data valida�on Link Valida�on (for metadata)
SUMMR Mapping
Tool

Link Valida�on DBpedia Interlink valida�on

DataID Dataset
descrip�on

Automa�c genera�on of a release download page

DataID Dataset
descrip�on

Automa�c genera�on of a triple store with data
from a release using docker

Figure 6.67 ALIGNED Tools and Features used in the DBpedia trial platform.

6.5.5 Implementation

Figure 6.68 depicts an RDFUnit validation report of a DBpedia release.
The report is provided as an RDF file that adheres to the RUT ontology,
as well as an HTML export that is human readable. The report provides a
high-level overview at the top with basic provenance metadata and statistics
and continues with detailed error counts per constraint.

The mapping validation report (Figure 6.69) uses RDFUnit in the back-
ground but performs more sophisticated validation processing and reporting.
The complete workflow is described in “Assessing and Refining Mappings
to RDF to Improve Dataset Quality”. The end user report is tailored for the
mapping editors where they can select mappings errors based on language,
infobox, DBpedia property, or DBpedia class.

Figure 6.68 Instance data validation report with RDFUnit.

306 Use Cases

Figure 6.69 Mapping validation report with RDFUnit and RML.

Starting in October 2017, DBpedia replaced the old Mappings Wiki with
a new Mappings UI, based on GitHub and RML mappings. The validation
report shown in Figure 6.70 has been superseded by this interface, since
wrong mappings are detected automatically on commit.

The graphical interface based on the DBpedia-Links repository provides
an overview of all outgoing links to other datasets and points out any
inconsistency in a given linkset (Figure 6.71). DBpedia employs multiple
validation methods for link validation, including the SUMMR Mapping tool
(see below).

The SUMMR Mapping tool (Figure 6.72) performs an interlinking val-
idation for all the external links in a DBpedia release. After processing the
link, the tool outputs a log file and splits the links into valid and invalid.
The invalid links are discarded, and only the valid ones become part of the
DBpedia release.

Gathering extensive metadata throughout all extraction steps is not only
helping to produce exhaustive dataset metadata (in form of DataID docu-
ments), but also allows for highly expressive logs and convenient summary
reports (as shown in Figure 6.73).

The generation of a DBpedia release download page was a tedious task.
We use DataID as a core release metadata component and created a flexible
user interface that people can use to identify and filter specific DBpedia
datasets. Figure 6.74 depicts the download page of the 2015-2010 release.

6.5 Data Validation at DBpedia 307

Figure 6.70 The new Mappings UI (using RDFUnit for validating mappings).

Figure 6.71 DBpedia Link Viz tool.

308 Use Cases

Figure 6.72 SUMMR Mapping tool.

Figure 6.73 Active extraction monitoring (here: extraction summaries forwarded to Slack).

The dockerised DBpedia (Figure 6.75) automates the digestion of a
DBpedia release by downloading the datasets of the user’s preferred language
and loading these datasets on a Virtuoso triple store server. We use docker as
the underlying technology that has recently became a very common means

6.5 Data Validation at DBpedia 309

Figure 6.74 DBpedia download page through DataID.

Figure 6.75 Dockerised DBpedia.

of application distribution. DataID is used as the core metadata component to
identify and filter DBpedia datasets.

6.5.6 Evaluation

6.5.6.1 Productivity
The basic unit of analysis for productivity is a comparison of time elapsing
between two DBpedia releases. Typical tasks are code maintenance, release

310 Use Cases

management, ontology editing, release documentation creation and dealing
with user queries.

For a sufficient evaluation of productivity changes between two DBpe-
dia releases, one has to consider the changes to data sources, ontology,
mappings,and the code base. In addition, the number of published datasets
tends to increase over time when incorporating new extraction methods
and algorithms. Nonetheless, over the time of this project, DBpedia has
managed to cut the time between releases in half (13 months to 6 months),
while producing at least three times as many pieces of information (triples).
Currently, DBpedia is pushing for regular updates for the 10 most widely used
language editions on a bi-monthly basis (synchronising with the bi-monthly
data releases by Wikimedia). Multiple efforts to increase productivity are
closely related to Quality and Agility (see below).

A significant improvement of time spent on dissemination activities
was achieved by introducing DataID as dataset metadata format. Extensive
metadata descriptions of datasets allow for many automation tasks, such as
automated downloading of relevant dataset files, generic implementations
of dataset overviews, and download tables. In addition, extensive and high-
quality metadata of datasets helped DBpedia to check 31 of the 35 Data on
the Web Best Practices of the eponymous W3C working group.

6.5.6.2 Quality
Instance Validation

To create high-quality data, a validation method for DBpedia instance data
has to provide sufficient metadata to distinguish between three different
possible sources of a violation:

• The Wikipedia editor (entering erroneous values)
• Incorrect mappings, between source and DBpedia ontology
• A software issue in the DBpedia Extraction Framework

RDFUnit was created with these demands in mind, providing necessary meta-
data to any violation found and creating links between a software issue and
the violating instance (see D5.8). The resulting violations and their pertaining
metadata provide the exact coordinates of a violation, the grounds for this
violation and the possible source. Thus, violations recorded in such a manner
are used as feedback medium, relating possible mistakes to Wikipedia editors,
the mapping community or software developers. DBpedia is running all
published data through RDFUnit, validating it against an up-to-date version
of the DBpedia ontology. The validated outputs generate consistent data that

6.5 Data Validation at DBpedia 311

are termed DBpedia+, whereas the wider, more exhaustive data are published
as the standard DBpedia datasets.

Mapping Validation

In addition to validating the resulting instance data, DBpedia started to
validate the mappings between DBpedia ontology and the Wikimedia data
sources on a nightly basis with RDFUnit. Thus, most of the mapping-related
violations can be caught before ever starting the data extraction, preventing
possible reruns of whole extraction steps and increasing productivity in turn.

Ontology Validation

The DBpedia ontology has been maintained by the DBpedia community in
a crowdsourced manner at the mappings wiki. There is an ongoing effort to
move ontology development onto GitHub for easier collaboration and for the
sake of more control over the ontology structure.

At the time of writing, a set of constraints ensure that each DBpedia class
and each DBpedia property conform to DBpedia community requirements.
RDFUnit is used to perform the validation (using SHACL constraints) and to
integrate with Travis CI and automate the checks on each commit and pull
request.

Link Validation

The DBpedia-Links repository maintains linksets between DBpedia and other
LOD datasets. A system for maintenance, update and quality checks, which
validates various aspects of the link submission, is in place and is integrated
with common continuous integration services, such as Travis CI. It offers a
way to publish linksets between DBpedia and any given dataset, which are
published alongside the DBpedia dataset files.

Quality checks include:

• The SUMMR Mapping validation tool
• RDFUnit for validating (using SHACL constraints) the link manifest

(basic metadata providing a minimum of provenance)

Workflow Validation

To ensure quality regarding the extraction workflow, DBpedia extended the
extraction framework to produce metadata for any extraction process, exten-
sive logging of progress and exceptions, as well as high-level summaries

312 Use Cases

of extractions. These efforts support extensive monitoring, metadata prop-
agation and logging (on triple and dataset level) and the deployment of
ETL frameworks and Workflow Management Systems to further decrease
the time needed for extraction and to automate this process completely.
Currently, a concerted effort to adapt the Unified Views Framework of SWC
for this purpose is underway, which will continue until after this project has
finished.

6.5.6.3 Agility
The greatest need for agility in DBpedia is the ability to rapidly respond
to changes in source datasets like Wikipedia. This is the focus of the use
case scenario Wikipedia/Wikidata change. Example Wikipedia changes that
impact DBpedia are: the introduction of new pages that represent new con-
cepts, the introduction of new infobox templates that represent additional
instance data in DBpedia, and changes in infobox structures. Adapting to
those changes in a (semi-) automated way will prevent the loss of data
(due to changes to Wikipedia templates) and incorporate new instance data
automatically.

As a prerequisite to automate mappings, DBpedia will switch its complete
mapping infrastructure to an RML-based mapping approach in October 2017.
This is a direct result of one of our Google Summer of Code projects of
2016. As a superset of the W3C recommended mapping language R2RML
for relational databases to RDF, RML offers a way to completely represent
all DBpedia mappings in RDF. It enables:

• Full support of RDFUnit mapping validation (no transformation neces-
sary)

• The complete range of mapping possibilities of RML (incl. functions,
conditions, etc.)

• Rule-based automation of mappings using all RML features
• Replacing the rigid wiki text mappings used by DBpedia until now

Concurrently, DBpedia helped to implement a taxonomy learning system
based on Wikipedia categories. Set up as one of our annual participation with
the Google Summer of Code program, this project realised the concept laid
out in the “Unsupervised Learning of an Extensive and Usable Taxonomy for
DBpedia”. These automatically derived types are a reliable backbone for the
automated mapping generation ahead.

7
Evaluation

Pieter Francois1, Stephanie Grohmann1, Katja Eck2, Odhran Gavin3,
Andreas Koller4, Helmut Nagy4, Christian Dirschl2, Peter Turchin5

and Harvey Whitehouse1

1University of Oxford, UK
2Wolters Kluwer Germany, Germany
3Trinity College Dublin, Ireland
4Semantic Web Company, Austria
5University of Connecticut, USA

7.1 Key Metrics for Evaluation

The evaluation of productivity, quality and agility requires concrete metrics
to be evaluated prior to the introduction of ALIGNED tools. This gives
us a baseline measurement for gains in the three evaluation areas. Once
ALIGNED tools and processes are then deployed, concrete comparisons can
be made to assess the progress, which results from ALIGNED tools and
processes. The units over which evaluation takes place, and the measures over
these units must be designed such that they can be assessed both prior to, and
after, the integration of ALIGNED tools and processes.

In order to evaluate the tools that we produced during the ALIGNED
project, we took the following steps:

• Baseline studies: an initial estimate of how the use cases perform before
the introduction of ALIGNED tools.
• Studies on initial prototypes: focussed initial prototypes will be devel-

oped for three ALIGNED use cases in phase 1 of the project (up to
month 9) that only depend on the work of a single technical workpack-
age (WP3, WP4, WP5) and the tools can be evaluated in this initial phase
to gain rapid user insight and feedback.
• Longer-term evaluations based on the empirical evidence collected from

the four use cases for ALIGNED methods and tools developed during
phase 2 and phase 3 of the project.

313

314 Evaluation

Figure 7.1 The ALIGNED Evaluation Framework.

There were three key target areas for the impact of ALIGNED methods and
tools on the development and evolution of data-intensive systems: produc-
tivity, quality, and agility. Each of these is defined below to allow cross-tool
and cross-use case comparisons to be made. In addition, each target area can
be split into data and software aspects as well as system-wide measures, for
example data management productivity, software development productivity
and overall system productivity. For data management, it is often useful to
split tasks into schema-oriented and dataset or instance-based measures since
these often have different actors, timeframes and scopes. Figure 7.1 illustrates
the ALIGNED evaluation framework, which is made up of the data-intensive
system under study and the four evaluation aspects plus ethics processes
covered by this handbook.

An important aspect of system evaluation that has cross-cutting impacts
on quality, productivity, and agility is the well-developed concept of usabil-
ity1 and ALIGNED performed usability evaluations on all tools developed
within the project.

1Ergonomics of Human System Interaction ISO 9241, in particular part 11 –
Human-Computer Interaction, 1998.

7.1 Key Metrics for Evaluation 315

In general, ALIGNED stressed quantitative evaluation over qualitative
measures (information or data based on quantities obtained using a quantifi-
able measurement process) as befits automated systems such as model-driven
software tools. However, the nature of systems development and mainte-
nance (evolution) are that of a socio-technical system and as such qualitative
evaluation (qualities that are descriptive, subjective or difficult to measure)
based on user feedback were used to supplement quantitative evaluations.
This is especially true in cases where informal or semi-automated human-
based systems are either currently deployed (for baseline studies) or are
necessary to produce the best outcomes (e.g., domain expert-based data
curation).

7.1.1 Productivity

For evaluation purposes, we understand productivity as being a measure
of the amount of human effort required to produce some unit of software,
schema or dataset change for a given use case scenario. This effort may
be measured in person-hours, but other measures are possible such as task
completion time, task completion rate, or task error rate. For largely user-
interface-driven processes, there are a number of popular keystrokes2 or
click-based models3 for estimating productivity. For software engineering,
there is prior work on evaluating the productivity of new engineering pro-
cesses that should be considered.4 In the first instance, it is possible to find
a number of proxies which, when taken together, may act as a crude guide
to measuring software size. Lines of Code,5 Control-flow or Cyclomatic
complexity,6 and various feature counts7 have traditionally acted as primitive
metrics for software scale and complexity.

2The Keystroke Level Model for User Performance Time with Interactive Systems S. Crad,
T. Moran, A. Newell, CACM, v23 n7, July 1978.

3Project Ernestine: Validating a GOMS Analysis for Predicting and Explaining Real-World
Task Performance W. Gray, B. John, M. Atwood, Human-Computer Interaction, Vol. 8,
Issue 3.

4Measuring and predicting software productivity: A systematic map and review
K. Petersen, Information and Software Technology, Vol. 53, Issue 4, pp. 317–343.

5A Survey on Impact of Lines of Code On Software Complexity S. Bhatia, J. Malhotra,
ACM SIGSOFT Software Engineering Notes, Vol. 39, pp. 1–6.

6Cyclomatic Complexity Metric for Component Based Software S. Chidamber, C. Kemerer,
International Conference on Advances in Engineering and Technology Research (ICAETR),
pp. 1–4, 2014.

7A metrics suite for object oriented design U. Tiwari, S. Kumar, IEEE Transactions on
Software Engineering, Vol.20, No. 6, pp. 476–493.

316 Evaluation

There are also several cases in which cross-cutting productivity concerns
are of importance, the one most particularly relevant to ALIGNED being the
productivity costs of parallel development of software, schema, and datasets
changes. In this case, productivity measures should look at the cost of changes
from one area to the others in terms of productivity.

7.1.2 Quality

Quality is generally taken as the assessment of “fitness for purpose”8 of the
output of a given tool, process, or method. The measurement of quality is
generally more context-dependent, and different measures are used in the
areas of software, schema, and data.

For software quality, evaluation of software generation tools is difficult,
especially as ideal tools produce no defects, and validating the absence of
something is hard. It is possible to measure “churn” of software development
or counts of bugs found and that can act as metrics for software quality and
reliability.9

For data, we assess the ability of the data to satisfy properties, which are
either desirable or required by consumers of the data. In particular, we will
reuse the methods of assessment of Linked Data Quality defined by Zaveri
et al.10 This gives us 27 separate dimensions on which to evaluate data quality
and specifies multiple metrics for all of them.

7.1.3 Agility

We define agility as the speed at which the ALIGNED tools can be adapted
and reconfigured in the face of ongoing changes in requirements. It is often
measured in terms of the human effort required to enact the change and
so is closely related to productivity measures. When software or data man-
agement task sizes are combined with measurements of man-hours spent on
development, some approximations can be made for notions of agility.11

8The Quality Control Handbook J. Juran, McGraw-Hill, New York, 1974.
9Evaluating Complexity, Code Churn, and Developer Activity Metrics as Indicators of

Software Vulnerabilities S. Yonghee, A. Meneely, L. Williams, J. Osborne, IEEE Transactions
on Software Engineering, Vol. 37, No. 6, pp. 772–787.

10Quality Assessment Methodologies for Linked Open Data A. Zaveri, A. Rula, A. Maurino,
R. Pietrobon, J. Lehmann, S. Auer, Semantic Web Journal

11Survey on agile metrics and their inter-relationship with other traditional development
metrics S. Misra, M. Omorodion, ACM SIGSOFT Software Engineering Notes. Vol. 36,
Issue 6, pp. 1–3.

7.1 Key Metrics for Evaluation 317

Agility for our use cases will often be measured with respect to parallel
co-development of software, schema and datasets as agility is a cross-cutting
concern. For instance, a change to a schema or ontology will generally require
both migration of datasets, as well as changes to the programme interface to
consumption of the data.

7.1.4 Usability

ISO 924112 on human computer interaction defines usability as “The extent
to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency, and satisfaction in a specified context of
use”. Effectiveness and efficiency can be measured through productivity-style
measurements of task outputs and work rates. However, it is also considered
valuable to analyse the user error rates generated and the quality of work
produced (linking to our quality measures). Satisfaction is probably the
hardest aspect to accurately measure but we will deploy System Usability
Scale (SUS)13 user questionnaires as a baseline. It is simple, ten-item attitude
Likert scale giving a global view of subjective assessments of usability.
Despite its simplicity, SUS is well-understood and widely deployed, and this
gives us access to decades of comparative usability studies and analysis to
interpret SUS results.14 In addition, it is easy to augment SUS with additional
questions that are specialised to the system under study or which follow
recent best practice in user surveys such as Perlmans Practical Usability
Evaluation questionnaire.15

In addition to questionnaire-based approaches to usability, we deployed,
where appropriate, the “thinking-aloud” protocol where participants are
asked to verbalise their thinking while performing a task.16 Other techniques
deployed are “co-discovery”, where participants are asked to verbalise their
thinking while performing a task and “retrospective testing” or “coaching”.17

12Ergonomics of Human System Interaction ISO 9241, in particular part 11 –
Human-Computer Interaction, 1998.

13SUS: a “quick and dirty” usability scale J. Brooke, Usability Evaluation in Industry.
London: Taylor and Francis, 1986.

14An empirical evaluation of the system usability scale A. Bangor, P.p T Kortum, and
J. T. Miller, Intl. Journal of Human-Computer Interaction, Vol. 24, Issue 6, pp. 574–594, 2008.

15Practical usability evaluation G. Perlman, CHI’97 Extended Abstracts on Human Factors
in Computing Systems. pp. 168–169, ACM, 1997.

16Protocol analysis: verbal reports as data, revised edition K. A. Ericsson, H.A. Simon MIT
Press, Cambridge, MA, 1993.

17Usability Engineering 2nd edition J. Neilsen, Morgan Kaufmann, San Francisco, 1994.

318 Evaluation

7.2 ALIGNED Ethics Processes

This section provides a set of guidelines followed by the coordinators of
ALIGNED pilot studies and trials. Specific instructions are provided for each
step in the life cycle of these pilot studies that involves ethical considerations.
Taken together, these guidelines provide ALIGNED collaborators with detail
on when and how to engage with the Ethics and Society sub-committee of the
ALIGNED project and on how to ensure the pilot studies and trial confirm to
both relevant national and EU regulation.

Over the life cycle of a pilot study, coordinators need to engage with ten
sets of action points.

• BEFORE THE START OF THE PILOT STUDY: Coordinators need to
familiarise themselves thoroughly with the Ethics section of the contract
signed between the ALIGNED project and the EC. This is an important
first step to understand the full range of potential ethical issues at stake
when setting up a pilot study.
• BEFORE THE START OF THE PILOT STUDY: Coordinators need

to obtain the appropriate internal institutional ethical approval. The
bodies responsible for internal institutional approval are your first port
of call to ensure that the pilot study respects institutional, national and
European regulation. This is especially important for any pilot study that
involves the storage of personal data as some categories of these data are
classed as ‘sensitive’ (e.g., health, sexual lifestyle, ethnicity, political
opinion, religious or philosophical conviction), and this data may only
be processed according to specific rules. The ALIGNED Ethics and
Society sub-committee has the details of the relevant institutional bodies
for each partner.
• BEFORE THE START OF THE PILOT STUDY: Coordinators need

to forward the institutional ethical approval obtained to the ALIGNED
Ethics and Society sub-committee. This step is crucial as it is vital
that the ALIGNED project forwards all ethical approvals to the EC.
Furthermore, this will allow the Ethics committee to double check that
all necessary steps have been taken and that the pilot study fulfils all
necessary requirements.
• BEFORE THE START OF THE PILOT STUDY: As most pilot stud-

ies will involve voluntary participants, the coordinator must submit
the consent form to be used to the ALIGNED Ethics and Society
sub-committee. This consent form must be modelled on the template
attached in appendix A and any change to the template must be approved
by the ALIGNED Ethics and Society sub-committee.

7.2 ALIGNED Ethics Processes 319

• BEFORE THE START OF THE PILOT STUDY: As most pilot studies
will involve voluntary participants, the coordinator needs to ensure that
all staff associated with the pilot study fully understand the ethical con-
siderations when handling voluntary participants. For this, all staff need
to familiarise themselves with the relevant Ethics sections of the contract
signed between ALIGNED and the EC. Special attention must be paid to
those sections dealing with the recruitment of voluntary participants, the
control of their personal data, the nature of their participation, the right
of participants to cancel their involvement at any time in the process,
the rights of voluntary participants to privacy and appropriate treatment,
and the definition of informed consent. It is absolutely vital that no
participation can take in any form without informed consent.
• AT THE START OF THE PILOT STUDY: the coordinator will ensure

that sufficient measures are in place to store all personnel data password
protected and all ‘sensitive’ personnel data encrypted.
• AT THE START OF THE PILOT STUDY: the coordinator, in collabora-

tion with the ALIGNED Ethics and Society sub-committee, will prepare
and share with the voluntary participants detailed information on the
procedures that will be implemented for data collection, storage, pro-
tection, retention, and destruction. The ALIGNED Ethics and Society
sub-committee will provide the coordinator with input to ensure that this
information conforms to national and European legislation.
• THROUGHOUT THE ENTIRE LIFESPAN OF THE PILOT STUDY:

the coordinator needs to assess on a continuous basis whether any of the
ALIGNED methodologies result in discriminatory practices or unfair
treatment. The pilot study coordinator needs to inform the ALIGNED
Ethics and Society sub-committee even in case of the slightest doubt that
the pilot study results in discriminatory practices or unfair treatment.
• DURING AND AFTER THE PILOT STUDY: In the case of incidental

findings of value arising from research activities (e.g., psychological
trauma arising from productivity-related questions), the coordinator
needs to inform participants when such results will be disseminated.
Participants will be given the right to withdraw their information.
• AFTER THE PILOT STUDY: as personnel data can only be archived

during the lifespan of the ALIGNED project and thus needs to be deleted
at the end of the project, the coordinator will work together with the
ALIGNED Ethics and Society sub-committee to ensure the deletion of
all personal data.

320 Evaluation

7.3 Common Evaluation Framework

Productivity, quality, and agility are the three dimensions that are most
usefully measured in order to practically evaluate data-intensive systems.
However, they are not separate dimensions but in fact have close semantic
connections between them.

7.3.1 Productivity

Productivity is the overarching dimension used to measure the performance
of all work systems – the ratio of the value provided by a service to the cost
of delivering the service. If we were to implement two alternative systems in
parallel and maintain them over time so that they provided exactly the same
service, the relative cost would provide us with an unambiguous guide as to
which system had performed better. Similarly, if we were to spend exactly the
same time and money on delivering the same service over a period of time,
through two alternative systems, the relative value provided by each would
again tell us which system had performed better.

However, while costs are normally reasonably easy to measure, the value
provided by a system can be more difficult as systems can be embedded
within larger systems and provide value that cannot easily be distilled into
economic units.

7.3.2 Quality

In the context of information systems, quality is a proxy measure for value.
The better the Quality of Service (QoS), the greater the value provided by
the system. If this is not the case, then the QoS has not been well defined.
In general, therefore, if two systems provide the same QoS, we can compare
them directly in terms of costs. In data-intensive systems, we are primarily
focussed on the data quality because much of the behaviour of the system is
driven by data. However, data quality only has meaning in the context of the
services that are based on the data. We care about the overall service quality,
and data quality is only interesting to the extent that it affects the business
value provided by the system.

In any given system, it should be the case that improving quality
increases the value provided by the system and vice versa. Quality is a
multi-dimensional concept,18 often with complex non-linear interactions

18A metrics suite for object oriented design U. Tiwari, S. Kumar, IEEE Transactions on
Software Engineering, Vol. 20, No. 6, Pages 476–493.

7.3 Common Evaluation Framework 321

between variables in different dimensions. For any given system, we can
imagine a function Qual(sys) → $n which generates the value provided by
a given system. In practice, we normally really want to know Qual(sys’) ≥
Qual(sys), the effects of a given change in a system. We need a function
which, for any given change to a system, will tell us what the change to
business value will be. Our quality model defines the variables that will
be passed to this function, and the function’s implementation defines how
changes to the values of variables impact service value.

7.3.3 Agility

We would like to be able to forecast the performance of systems and not
just compare them in retrospect. Agility is essentially a measure of future
productivity which attempts to capture such a forecast. How much future
value will this system provide and at what cost? The trouble with this
measure, of course, is that we do not know what opportunities for value the
future holds. For any given system, agility to make changes that we never end
up wanting to make have essentially no value. This means that agility, like
quality, is very domain and context-dependent. We therefore need to know
which types of changes are likely to be important in a given system before we
can assess its agility. Because this is a prediction about the future, it can never
be more than probabilistic, but previous behaviour is normally a good guide
to future behaviour, so we can normally extract at least some characteristics
of the types of changes that are important in a particular domain by observing
existing systems.

In data-intensive systems, scale – considered as the volume, velocity and
complexity of the data – tends to have significant influence upon the system’s
agility and tends to increase over time. As a general rule of thumb, service
value and cost both increase with scale. Therefore, one of the most important
aspects of understanding a data-intensive system’s agility is understanding
the interaction between these two variables and the different components of
scale – in the context of the likely evolution of the system over the course of
its operation.

Ultimately, the value of any work-system can be characterised by its
productivity curve over time. The more agile the system, the more this curve
will tend to rise in the future; the less agile the system, the quicker it will fall.
This is because the more agile the system, the quicker and more effectively
changes can be tested to meet emerging requirements. The most important
way to compare systems is the net value that they deliver over their lifetime.
We cannot know this in advance, but we can normally make reasonable

322 Evaluation

predictions based on proxies for agility in any given context and use them
to predict the likely future productivity trajectory.

Because the dimensions and metrics used in any given data-intensive
system are heavily dependent on the specific context of the service, they
cannot be directly compared. In one context, better accuracy and precision
of data might be considered to have a uniformly positive effect on Quality of
Service. In another context, it might cause the system to crash (e.g., because
it causes the program to trigger a bug in a floating point operation that was
not used when the data had lower precision).

Rather than comparing data quality directly, we can compare it indirectly
through the cost of providing a given quality of service. There are several
aspects that must be considered in this comparison:

Data Curation Cost: The cost of maintaining the data at a given quality
level (to provide constant Quality of Service) over a period of time, given
changes in scale. There are two particularly important data quality levels that
are worth focussing on here. DQmin is the minimum level of data quality
required in order for the service to work. The threshold is multi-dimensional
and complex and includes, among other things, all the database conditions
which cause the software service to crash. The second quality threshold worth
considering is DQmax – the maximum level of data quality that the service
can exploit. Examples of data quality that exceeds DQmax: data stored as
floating points with high precision that are then cast to integers by a program,
metadata about data semantics that is not used by programs. As a general rule,
there is no return on investment for exceeding DQmax. Between these two
thresholds, quality can vary in any number of dimensions. If the dimensions
used are well chosen for the service, then increases in quality will translate
into an increase in the overall quality of service provided, and if the service
is well aligned with the business needs, this translates directly into increased
business value.

Data Agility Cost: the cost of increasing the overall value provided by the
system by using existing data in a new way – for example, how much time
and money is required to make a slice of the data in a database available for
use by a new program (with whatever data-formatting requirements it has).
The cost includes any changes to the code of programs that consume the data,
everything that is required to produce and deliver the new service.

Model Agility Cost: the cost to change the overall behaviour of the system
in situations which require changes to the structure of the data. This includes
the costs of changing the structure of the data, changing the software to
encode the new behaviour, and returning the QoS to the level that it had

7.4 ALIGNED Evaluation Ontology 323

before the change. The last part is important, because, for example, when
changing the structure of a SQL database, all the existing programs that use
the changed part of the database normally stop functioning. The measure
of agility therefore includes all of the effort required to return the existing
system to the QoS level that it had before the structure was changed, as well
as achieving the required QoS for the new behaviour.

Based on this interpretation of productivity, agility and quality, a general
methodology for evaluating and comparing data-intensive systems can be
derived.

• Start by defining the overall value provided by the system and identify-
ing proxies where possible.
• Define the data quality dimensions that are most important for the

domain and how they translate into changes in quality of service and
value.
• Define the data quality metrics and thresholds that are most important

for the context.
• Take a given quality threshold and estimate the data maintenance, data

agility, and model agility costs of maintaining that threshold over time.
• Forecast the evolution of the system and how the value it provides will

depend on data and model agility and the characteristic requirements of
the domain.
• The total cost of providing a service can be compared as the cost of

maintaining a given quality of service over the lifetime of the system,
plus the cost of model and data agility to support the required changes
to the service, multiplied by their frequency.

It is important to emphasise that these comparisons are only valid at a partic-
ular quality of service level and should be made at the broadest possible level,
where for example, manual processes are included where they are required in
a given approach to achieve a given quality level.

7.4 ALIGNED Evaluation Ontology

In parallel with the development of the common methodological frame-
work described above, ALIGNED has developed an ontology for the
description of evaluation results (Figure 7.2). It contains classes and
properties designed to capture the most important types of evalua-
tion metrics and related concepts. The ontology is available at: https:
//github.com/nimonika/ALIGNED Ontologies/blob/master/evaluate.owl

324 Evaluation

Figure 7.2 ALIGNED metrics ontology – classes.

At the core of the ontology is the concept of a metric. This is any
property of the system that can be measured or analysed, such as the error
rate of historical data variables in the Seshat: Global History Databank, or the
number of data constraint violations on import in PoolParty. Metrics can be
related to quality, agility, productivity, or agility and can be further subdivided
into data and software metrics. A metric also includes information about the
baseline of the metric (its initial value before any changes are made, used as
a comparison to show change) and how it is measured.

These metrics are used to analyse an artefact. An artefact is any system
or subsystem that is being evaluated for data and software quality analysis
purposes. This also contains information about how the artefact is being
analysed. The collection of metrics and the evaluation methodology provide
a description of how the system in question is being analysed.

Appendix A – Requirements

JURION

Scenario 1

XSLT uplift of XML sources to RDF metadata. In area 1 (Figure 7.1) of
the content pipeline, metadata is extracted from the proprietary WKD XML
schema and transformed in RDF. Due to regular changes in the XML format,
the correct transformation process based on existing XSLT scripts must be
secured, so that no inconsistent data are fuelled into the metadata database in
area 3.

Scenario 2

PoolParty quality checks in thesaurus management system. In area 2
(Figure 7.1) of the content pipeline, controlled vocabularies and domain
models are created, maintained, and delivered for further usage, based on
SKOS standard. The integrity of the knowledge management system as a
whole needs to be ensured. Therefore, regular local and global quality checks
need to be executed, so that, e.g., inconsistencies across different controlled
vocabularies can be detected and resumed.

Scenario 3

Verifying available instance data for linked external metadata (area 2 in
Figure 7.1). The Linked Data paradigm aims at linking information across
sources, in contrast to simply link local copies of datasets. The technologies
for linking are available, but there is not yet a proper support to maintain these
links, especially when it comes to changes of the source – both on schema as
well as on instance data level, e.g., when geo data of a linked organisation is
updated or deleted on the source side.

325

326 Appendix A – Requirements

Scenario 4

Verification of availability of appropriate metadata for Solr Indexer
(areas 3 and 4 in Figure 7.1). Data-intensive systems like JURION are
highly dependent on the metadata that steers many of their core function-
alities. The indexing process of a search engine includes more additional
information on top of the pure text. Extensive and smart quality checks on
content based on the requirements derived from this process could strengthen
the stability of the overall system.

Scenario 5

Cross-check of CMS instances and references in metadata database
(area 3 in Figure 7.1). The metadata database is storing relationships
between concepts maintained in PoolParty and documents maintained in the
CMS as well as semantic relationships between documents in the CMS;
e.g., document A overrules document B.

JS1 – XSLT Uplift of XML Sources to RDF Metadata

Description

A new XML document is available. A CMS expert checks for its conformity
and then feeds it into the transformation process by executing XLST scripts
on it. The resulting RDF data are stored in the metadata database, and a log
file is created. We need to better control the transformation process of our
XML metadata to RDF from a semantic and schema point of view.

Approach

Based on the schema, test cases are automatically created, which are run on a
regular basis against the data that need to be transformed. The errors detected
lead to refinements and changes of the XLST scripts and sometimes also to
schema changes, which impose again new automatically created test cases.

Goals

• Better control over RDF metadata
• Streamlined transformation process from XML to RDF

Appendix A – Requirements 327

• Early detection of errors in RDF metadata, since the resulting RDF
metadata are a core ingredient for many subsequent process steps in
production and application usage

• More flexibility in RDF metadata creation

JS1.1 – XSLT Uplift of XML Sources to RDF Metadata

User Story

We need to have better control over RDF metadata. As a legal editor being
responsible for a legal domain within JURION, I must be sure that the
metadata used in the application is correct.

Detailed Description

The resulting RDF data coming from the transformation process are stored
in the metadata database, and a log file is created. An SME is checking
the metadata database on a random basis, and if data errors are detected, it
resolves the errors on a manual basis. Any systematic error is reported back
to the CMS team.

JS1.2 – Streamlined Transformation Process from
XML to RDF

User Story

We need a streamlined transformation process from XML to RDF, so that
changes in any step of the process can easily be made, without adding
complexity or increasing error rate.

Anybody working in the process or with the respective data want a
transparent and lean process, which is avoiding any unnecessary errors.

Detailed Description

Changes to the schema can be initiated from anybody involved in the process
or the data. A CMS expert can initiate it in order to reduce complexity; a
product owner can initiate it in order to support new functionality in the
customer application; a legal domain expert can initiate it in order to be able
to support new legal concepts, and so on.

328 Appendix A – Requirements

These schema changes are collected by the content architect and then it is
evaluated, what the exact impact is on the existing processes.

Then the changes are confirmed and executed by a schema expert. After-
wards, all other depending processes are adapted accordingly if necessary by
the responsible teams.

Then the whole pipeline is tested and evaluated by the responsible teams
as well as by the product owner for the desired results.

Errors are reported and collected by the content architect, in case they
cannot be solved locally within the responsible team.

Then the new schema and process are approved and ready for daily
production.

JS1.3 – Early Detection of Errors in RDF Metadata

User Story

Errors in RDF metadata based on the transformation process from XML data
need to be discovered as early as possible because many subsequent processes
rely on the correctness of this data.

As a product owner, I rely on the correctness of the metadata in my
applications.

Detailed Description

The CMS expert runs tests on a regular basis, especially if new versions of
a schema are involved. A log file is created, and reported errors or unusual
results are detected and further analysed by the CMS expert. The errors are
grouped according to impact factors, and then the necessary experts like legal
domain experts are approached for giving advice on error correction.

Afterwards, the required bug-fixing takes place and the tests are re-run
until the results are satisfactory.

Important parts of error detection and recovery are documented, mainly
in lessons-learned documents.

JS1.4 – More Flexibility in RDF Metadata Creation

User Story

It is gaining importance to be as flexible as possible in creating new metadata
that are materialised as RDF. This metadata originates from very different
sources and is collected through many channels.

Appendix A – Requirements 329

As a product owner, I want to use as many types and instances of metadata
as necessary for being able to offer smart and innovative applications to
customers.

Detailed Description

The need of a product owner for more and more metadata being used in
smart applications also requires that the metadata transformation process is as
automised as possible, so that frequent changes and extensions are still safe
and do not require a lot of intellectual resources. So new metadata should be
added to the process, where it can be gained from most efficiently and with a
high quality and not where it is easiest to be integrated from a process point of
view. Since a lot of metadata will remain being descriptive for domain specific
texts written by authors, one major source for generating smart metadata will
also be the author, even if he is supported by semi-automatic tools like tag
recommenders. This metadata could then be stored within the XML file in
order to preserve, e.g., granularity issues like what part of a document this
piece of metadata is actually referring to. Therefore, frequent schema changes
could also be derived from data assignment and governance reasons.

JS2 – PoolParty Quality Checks in Thesaurus Management

Description

We want to check the data quality in the thesaurus management system.

Approach

Wolters Kluwer is already using the thesaurus management system PoolParty
for several vocabularies. With the growing operational use and number of
contents and the extended functionality to define customised schemas, we
encounter various pre-existing and new challenges:

• Transparency of vocabulary dependencies
• Resulting from this also the consistency of vocabulary dependencies
• Versioning issues due to model changes, deletions, and so on.
• As different users with different expertise are using the tool, there are

subsequent changes executed that need to be tracked
• Process definition for the maintenance of vocabularies.
• Usability related to the understanding of the data models

330 Appendix A – Requirements

• Ambiguities
• Doublets

The approach is to build partly on existing approaches for quality manage-
ment that were developed in LOD2. These works concern the challenges of
the prototypical thesaurus management tool.

By using the tool in an operational environment, we gained new insights.
With additional features and complexity of functionalities on the one hand
and growing contents and operational use on the other hand, we will have
to extend the requirements and related to that the approach for gaining
appropriate data quality.

Goals

The goal of this epic is to deploy existing prototypical approaches in the
operational system of WKD and to investigate additional approaches to
ensure data quality.

• Enhance the transparency and consistency of dependencies
• Resolve versioning issues
• Deploy tracking functionalities
• Deploy a maintenance process
• Identify and encounter ambiguities and deploy a solution for dealing

with doublets

JS2.1 – Enhance the Transparency and Consistency of
Dependencies

User Story

As more people are working with the thesaurus management tool, we
encounter problems of transparency and consistency.

Detailed Description

In order to address consistency issues that arise with a broader usage of Pool-
Party and with a more tightened integration in an overall content development
process, the following challenges need to be addressed:

• A query/functionality that shows which vocabularies use specific
classes, attributes and relations

• Statistical information (e.g., number of links between a dataset and a
certain PoolParty project)

Appendix A – Requirements 331

• Enhanced usability (e.g., The overall content is hidden for a non-expert
user who is not able to understand RDF data)

• User data (show responsibilities of users, vocabularies they worked with,
schemas they created, etc.)

• Possibility to adapt datasets with regard to changing kinds of relations,
directions of relations, URIs and so on.

• Extended descriptions of properties, functionalities, and so on.

JS2.2 – Deploy Tracking Functionalities

User Story

Tracking and propagating changes of information into the correct channels
in a personalised way is an efficient way of keeping the whole knowledge
development and maintenance process accurate.

Detailed Description

Within the LOD2 project, we developed a prototypical subscription and
notification service for specific scenarios of data changes. We would like to
deploy these notifications in a realistic environment and to extend the areas
of notification. Therefore, we need to execute the following tasks:

• Evaluate existing prototypical notifications with regard to current data
processing

• Deploy notifications in an operational environment
• Extend notifications with regard to custom scheme creation, edition, and

so on.

JS2.3 – Resolve Versioning Issues

User Story

Versioning issues have to be resolved so that subsequent processes are aware
of model changes; especially deletions, extensions, and so on.

Detailed Description

The idea is to define a process for data versioning that is aligned with the
software development life cycle. We will collect strategies based on existing
processes, as for example the DTD versioning or software versioning that will

332 Appendix A – Requirements

also work for data and schema versioning. Currently, we have no established
process in place to manage versioning of vocabularies and schemas.

JS2.4 – Improve Maintenance Processes

User Story

As the complexity of metadata and metadata structures is evolving, we want
to ensure that all vocabularies and respective schemata are developed in an
efficient and effective way.

Detailed Description

As the number of vocabularies and changes in the thesaurus management
system is growing, the issue about who of the existing users (legal domain
expert, CMS expert, etc.) should execute changes that are demanded by
external departments gains importance. Sometimes, the person who gets
demands for changes is not the person who created the content or not
the only person who uses it for specific functionalities. Especially, core
vocabularies serve several users as a base for further development. The main-
tenance of the vocabulary must therefore be managed with clear roles and
responsibilities.

JS2.5 – Disambiguation and Doublets

User Story

Ambiguities and doublets are known issues that come with large vocabularies.
With regard to classification and entity extraction, their handling is also on the
agenda of unsolved issues.

Detailed Description

Basic prototypes for doublet handling exist from the LOD2 project. In this
prototype, concepts with the same label (persons) were compared based on
related data. In case it was obvious that the same person was meant, there
was a functionality for concept merging in place. This approach could be
deployed. For disambiguation, there has been a small initiative that could be
revived.

Appendix A – Requirements 333

JS3 – Verifying Available Instance Data for Linked External
Metadata

Description

WKDinternal information both in PoolParty as well as in the metadata
database is linked to external data sources like DBpedia. Changes within the
external sources need to be recognised.

Approach

There is a strong governance of external sources that are used for informa-
tion ingestion in place. A database has all information about the source,
which data are used for what purpose in store. On a regular basis (based
on the importance of the external source), the gathered information is col-
lected and checked for changes. Therefore, a local copy of the data needs
to be stored. In case the external source offers alerting mechanisms or
at least logging mechanisms for changes, this is used for quality control
as well.

Goals

• Changes of data in external sources are recognised
• Changes of data initiate different internal processes within WKD
• Some types of changes are processed automatically within the WKD

ecosystem
• Statistics about the reliability of external sources are available

JS3.1 – Changes of Data in External Sources are
Recognised

User Story

WK datasets are in several cases linked to external data, e.g., definitions,
synonyms, images, and so on. This can cause problems when the external
data are changed (quality issues) or deleted (functional or graphical issues).
In existing prototypical installations, e.g., error messages were shown instead
of linked images.

334 Appendix A – Requirements

Detailed Description

Information from external sources is included via linking. When changes in
the external sources appear, the responsible internal stakeholder is informed,
so that he can change the link if necessary. The more Information about these
changes is available, the more sophisticated the reaction can be – from a
purely manual look-up to a completely automatic processing.

JS3.2 – Changes of Data Initiate Different Internal
Processes within WKD

User Story

Once changes in the external data are recognised, there should be a mecha-
nism that initiates different processes depending on the changes and the kind
of instance data.

Detailed Description

Based on the type of change (deletion, change, new suggestion), the type of
process (approval, quality check, editing) as well as the type of responsible
user role and the severity of the change/changed content, different processes
need to be initiated. These processes can be purely manual, semi-automatic
and automatic. Based on previous experiences, deletions and structural
changes need to be specifically addressed.

JS3.3 – Some Types of Changes are Processed
Automatically within the WKD Ecosystem

User Story

Specific changes can be processed automatically depending on their severity
and automatic quality control.

Detailed Description

Based on the analysis of changes, a certain subset like minor deletions can be
processed completely automatic, which leads to a performance improvement.
These automatic processes require a QA step afterwards, which will normally
be purely technical, e.g., if the process has terminated successfully. Some
automatic changes could however also include intellectual checks at least on

Appendix A – Requirements 335

a random basis. It is desirable to extend the number of use cases for automatic
processing over time.

JS3.4 – Statistics about the Reliability of External Sources are
Available

User Story

Statistics about the reliability of external sources should be available based
on the executed change processes.

Detailed Description

We want a detailed monitoring of the change processes including the
approved changes, the rejected changes, the kind of change, the external
source, and so on. Based on this, automatic processes could be initiated when
the quality of external changes is satisfying.

JS4 – Verification of Availability of Appropriate Metadata
for Solr Indexer

Description

The Solr indexing engine is using more metadata for enhancing search
functionalities. The appropriateness of the available metadata needs to be
ensured.

Approach

Information about the required metadata is currently hidden in the code of the
indexing procedure. This information needs to be extracted and test proce-
dures need to be executed, which verify the existence as well as the sufficient
quality of the required metadata. This is especially important when it comes
to personalised data and applications, where scenarios get so specific, that a
comprehensive testing is hard to achieve.

Goals

• Support of successful indexing process
• More transparency to metadata usage

336 Appendix A – Requirements

JS4.1 – Support of Successful Indexing Process

User Story

We want to support the indexing by better understanding and documenting the
processes. We want to support these processes with the extraction of required
metadata.

Detailed Description

To support a successful indexing process, we need to identify the required
metadata. Once they are identified, they need to be extracted. Test procedures
need to be executed to verify the existence and quality of the required
metadata.

JS4.2 – More Transparency to Metadata Usage

User Story

By investigating the required metadata for the indexing process, we want
to gain more transparency for the usage of metadata – this does not only
apply for indexing processes but also for other processes. This way we can
also easier track dependencies in case of errors or any other complications,
and so on.

Detailed Description

Metadata is relevant for the production process, but also for supporting
features in digital applications like JURION. A direct feedback loop from the
application to the data life cycle enables a better performance and sustainabil-
ity of metadata management. So any request from the software side, which
touches metadata (such as false metadata, missing metadata, inconsistent
metadata) can and must improve the data life cycle directly. By prioritising
these requests, reasonable KPIs for current and future improvements can be
determined.

JS5 – Cross-Check of CMS Instances and References in
Metadata Database

Description

Metadata Database, PoolParty, and CMS form an information ecosystem. We
need to ensure that coherence is guaranteed.

Appendix A – Requirements 337

Approach

References in the metadata database that cover document instances in the
CMS are checked for existence and for change (e.g., new versions) on
a regular basis. These checks lead to either automatically updates of the
relationships or manual tasks for human intervention.

Goals

• There are no dead links to documents in the metadata database
• Certain types of document changes automatically lead to reference

updates
• Certain types of document changes automatically lead to initiation of

editorial QA checks

JS5.1 – There are no Dead Links to Documents in the
Metadata Database

User Story

Dead links should be recognised automatically. In some cases, the physical
deletion of documents should even be delayed until potential metadata risks
coming with it are sorted out.

Detailed Description

We want a mechanism that recognises dead links. Depending on the kind
of link, kind of deletion, data severity, and so on, there will be initiated
an automatic deletion. This could also traverse towards a whole sub-
network of metadata that is directly or even indirectly connected to this
document link.

JS5.2 – Certain Types of Document Changes Automatically
Lead to Reference Updates

User Story

Based on the type of document and data that are changed, this will lead to
automatic updates.

338 Appendix A – Requirements

Detailed Description

There are different kinds of metadata, which form references between docu-
ments in the CMS and the information stored in the metadata database. Some
pieces of information changes on the document lead automatically to updates
in the metadata database. This is true, e.g., for a new legal reference added to
the document or when the impact factor is changed.

JS5.3 – Certain Types of Document Changes Automatically
Lead to the Initiation of Editorial QA Checks

User Story

Based on the type of document and data that are changed, this leads to manual
quality checks and editorial work.

Detailed Description

First, we will analyse which kind of data is appropriate for this purpose
and then we will implement a prototypical application that recognises these
changes. This will then trigger alerting mechanisms within the editorial
Interface of the metadata database, where the required editorial tasks are
finally executed.

JS 6 – Synchronisation of Relational Data and RDF

Description

Although there is transformation towards semantic technologies, most data
are still stored in relational databases. There exist well-rehearsed processes
concerning maintenance and even more importantly usage of this data from
this source, which are often hard to change on a short-term basis. Therefore,
a transformation support of relational database data to RDF format and
even vice versa would enhance many internal processes and improve the
acceptance of the semantic data format, since a slow shift can be initiated
instead of a big bang.

Approach

As a pre-processing step, we initiate a mapping between the relational
database schema and the desired RDF output data using SHACL as the basic

Appendix A – Requirements 339

model. If available, we use tools that support this process semi-automatically
as much as possible. We make Semantic Booster sit on top of the existing
relational database that is currently used, so that it understands the existing
relational database schema. We use R2RML to generate the desired RDF
data. Then we go into a quality assurance round for the resulting data –
also with the help of semantic Web tools until the quality is fine. Then we
use this final SHACL model, so that Semantic Booster can create its internal
model and we compare the result with the relational database model in the
database. When these models are the same, we have a complete roundtrip
scenario. Once changes in the RDF requirements or in the relational database
occur – which happens in any operational system – we can run hopefully
minor modifications in this roundtrip and make sure that no information
gets lost.

Goals

• Supported transformation process from relational database data
to RDF

• Supported transformation process from RDF to relational database
data

• Implementation of a synchronisation process
• Simple yet efficient and complete maintenance processes in place

JS 6.1 – Supported Transformation Process from
Relational Database Data to RDF

User Story

An easy and reliable transformation process of relational database data to
RDF data would improve productivity, use, and acceptance of RDF data.

Detailed Description

Initially, the relational database schema is mapped to the RDF
database schema. Additional business rules for adding required infor-
mation for the RDF are defined and integrated in the overall pro-
cess. Any change of the relational database schema requires only an
adjusted mapping. The transformation process itself is performant and
transparent.

340 Appendix A – Requirements

JS 6.2 – Supported Transformation Process from RDF to
Relational Database Data

User Story

In order to ensure data consistency throughout the processes, we also need to
implement a transformation process from RDF to relational data. This does
not mean that all data are stored twice, but that all data are accessible via the
source it is best suited for a distinct purpose.

Detailed Description

Although it is very clear that all relevant data should be available in RDF,
it can still be the case that data originating from sources in RDF also need
to be available in systems and processes that access relational databases
for that purpose. Therefore, we need to put a process in place, where we
can also transform RDF data to relational data. This should be an excep-
tion, but it is definitely an existing requirement in existing operational
systems.

JS 6.3 – Implementation of a Synchronisation Process

User Story

It is not enough to have a transformation process in place. In addition,
a controlled and transparent overall process helps to make consistent data
sources part of the operational environment in a trusted and reliable way.

Detailed Description

This requirement is more dedicated towards operational excellence than
towards pure availability. Since we assume that both technologies and data
sources will remain within the overall ecosystem for good reasons for a
long time, the costs for having information in two different places need
to be minimised. Therefore, a lean and efficient synchronisation process is
important. This does not only cover the transformation as such, but also
the documentation on errors and changes, an easy-to-use interface and a
clear definition of roles and responsibilities, e.g., in case something goes
wrong.

Appendix A – Requirements 341

JS 6.4 – Simple Yet Efficient and Complete Maintenance
Processes in Place

User Story

Once the transformation is in place and a reliable process is built around it, it
is finally important to introduce a maintenance process, which is efficient and
complete.

Detailed Description

There is always a trade-off between an optimised process and a process which
is open for frequent changes. This challenge needs to be addressed when
looking at an efficient synchronisation process on the one hand and a proper
maintenance process on the other hand. In order to meet this challenge, it
is important that the maintenance process transparent, so that every actor
knows what to do and why. It should also be as lean as possible, so that
few components are affected as needed. Finally, regular review cycles on
potential improvement areas both for the synchronisation as well as for the
maintenance process need to be initiated by the process owners.

JS 7 – Schema Change

Description

When a schema is changing in the content life cycle, this has measurable
impact on both content and software development life cycle and the commu-
nication between them. Therefore, we use this UCS for showing what a better
integration of content and software development life cycle would require. In
order to build upon the story of JS 3, explained in D2.1, we assume that
adding external data to the respective metadata model triggers this schema
change.

Approach

Currently, the information about schema changes mainly remains within the
content team until test data are forwarded to the software development team,
so that they can evaluate the impact on their tasks. There is some general
information to all stakeholders about schema changes as such available,
but since there is no detailed knowledge about what parts of the schema
influence which processes, this general information is most of the times more

342 Appendix A – Requirements

or less ignored. Therefore, more fine grained information about processes
and information flows needs to be available across teams and cultures in
order to make things more effective and in order to reduce errors and
misunderstandings.

Goals

• Support of early and consistent knowledge flow between life cycles
• Clarity about impact of schema change
• Enabling iterative changes based on interests of different stakeholders
• Streamlining change process over time

JS 7.1 – Support of Early and Consistent Knowledge Flow
Between Life Cycles

User Story

A better and more consistent and controlled knowledge flow about schema
changes will help us to get teams work more closely together and foster a
mutual understanding about the different needs and approaches.

Detailed Description

To support a streamlined process, we need to establish a proper information
flow. This covers not only information about the schema change as such,
but also about how this schema and its respective instance data are used
in both life cycles. Feedback and a proper documentation of decisions add
to the required transparency. The more direct and to the point of use this
communication takes place, the more efficient the process gets.

JS 7.2 – Clarity about Impact of Schema Change

User Story

In order to make the schema changes as lean as possible, knowledge about
the impact of the changes is key. This does not only cover how these changes
enable new functionality, but also at what cost, e.g., from a complexity point
of view.

Appendix A – Requirements 343

Detailed Description

The lack of knowledge on overall impact is the main blocker for efficient
progress. As long as the respective teams work in isolated silos, a common
understanding will not happen, and therefore a lot of friction on delays will be
a daily business – without being able to discover the real causes. In order to
address this, communication needs to take place, but also tools and processes
need to be available, so that everybody knows what a schema change really
means for everyone else. This touches aspects like different “jargons” as well
as having tools in place, where all usages of a certain schema or instance data
can easily be documented and followed.

JS 7.3 – Enabling Iterative Changes Based on Interests of
Different Stakeholders

User Story

The target process aims at more timely and more direct communication within
and between teams. This will ensure to easily introduce short iterations as a
means to accelerate things between people within the overall process.

Detailed Description

One of the advantages of SCRUM methodology in software development
is the high flexibility in adapting to new and changing requirements. This
includes also that the necessary information for doing things is available
on a timely basis. Therefore, direct communication introducing iterations of
the schema change are required. This means not only that people talk more
directly and more frequently, but also that their work environment is prepared
to leverage the outcome of this communication. A proper tool support, e.g.,
about decisions and why these were made is helpful to make the exercise
sustainable in the end.

JS 7.4 – Streamlining Change Process Over Time

User Story

By introducing integration points between content and software develop-
ment life cycles, a learning curve is initiated, which will finally lead to a
streamlined and lean process, whenever new schema changes occur.

344 Appendix A – Requirements

Detailed Description

A higher degree of integration comes with an additional cost of com-
plexity in the early stages of process implementation. This additional
cost should more or less disappear over time, when an optimum of effi-
ciency is achieved. Therefore, a control and governance procedure needs
to take care of this and needs to ensure that this optimum is achieved in
the end.

JS 8 – Bug Reporting Governance

Description

Bug reporting is often quite isolated within specific processes. Problems can
arise when the cause of a bug comes from another process. In many cases,
communication needs also to take place between processes like software
and data development. Therefore, we want to enable a bug reporting that
connects both life cycles to improve processes and productivity of error
resolutions.

Approach

In case data errors cause bugs in the software, there is not yet an adequate ser-
vice that supports the bug reporting over/between both life cycles of data and
software development. Since there is a tendency at Wolters Kluwer to move
towards more and more data-intensive systems, the probability of application
errors based on wrong or incomplete or simply misinterpreted data is growing
exponentially. Therefore, a better integration and communication is key, and
within the JURION team, we regard this use case as being of very high
relevance for our business.

Goals

• Enable processes for the interaction between software and data
development

• Define error resolution strategies/processes based on the process status
• Improve transparency over bug fixing processes
• Improve productivity of bug fixing processes

Appendix A – Requirements 345

JS 8.1 – Enable Processes for the Interaction Between
Software and Data Development

User Story

An integration of bug fixing processes for the software and data development
is essential to support an alignment of both engineering cycles. Especially
with a growing number of involved parties, there is a need for clear and simple
interfaces with low information loss.

Detailed Description

With help of the meta model, we want to express specific processes, user
roles, and actions with regard to specific bugs. These specifications need to
be integrated into the running bug fixing systems, so that users have a plan
at hand how to proceed in the bug fixing process in a comprehensible and
reproducible way.

JS 8.2 – Define Error Resolution Strategies/Processes
Based on the Process Status

User Story

For a productive bug reporting strategy, we need to have a comprehensible
and reproducible way in place how to proceed with bugs. Therefore, we want
to develop (as far as possible) a generic strategy to handle specific bugs based
on data issues.

Detailed Description

Based on the bug fixing status and other pieces of information like the
error code, error description and other more technical metadata we will
analyse required actions and see how these can be integrated into the meta
model and used for an enhanced communication between both develop-
ment live cycles. We are envisioning a standard clarification and resolution
process as being part of the tools that both life cycles are using for their
respective tasks.

346 Appendix A – Requirements

JS 8.3 – Improve Transparency Over Bug Fixing Processes

User Story

One of the major gaps in the bug fixing processes between data and software
development is transparency over processes, responsibilities, status of works,
and so on. The described scenarios JS 8.1 and 8.2 will already support this
transparency.

Detailed Description

To enable an overview over integrated bug fixing processes, there needs
to be some overview to track the status of processes including additional
information. We will investigate how this could be integrated into the running
bug fixing processes, but we envision some sort of dashboard, where all
stakeholders can easily detect the information they need for fulfilling their
tasks. Also, a messaging system that acts as a push service could be helpful,
but only if the information flow is restricted to relevant information – so some
sort of automatic filtering needs to be in place.

JS 8.4 – Improve Productivity of Bug Fixing Processes

User Story

The scenario of improving productivity builds on the previous scenarios. An
increased productivity is in the end the overall goal of the improvement of the
bug fixing process.

Detailed Process

The productivity will be increased by better interfaces for communication
and bug resolution and supported bug-fixing processes. This improvement in
productivity can be measured by objective means like a reduced number of
bugs in total as well as a faster time-to-market for new or modified software
features.

JS 9 – Dynamic Relevance Ranking

Description

To improve relevance ranking of documents on Wolters Kluwer JURION
platform, we want to implement a dynamic relevance ranking that adapts to
contextual information. Documents will get a relevance score by additional

Appendix A – Requirements 347

related data like time, area of law, and so on; but also by data from user
profile and user search history. So this information is directly gathered both
from the information repositories and software functionalities and driven by
application requirements.

Approach

Currently, the relevance or general importance of a document is either defined
as editorial metadata in the document once and does not change afterwards,
but influences relevance ranking as long as the document exists. Or relevance
is calculated during indexing using classical statistical methods. With the
help of entity extraction, links and even inclusion of external data on the one
hand and local events like previous searches, we want to enable a dynamic
relevance ranking. A good application field within the legal domain could be
a better ranking of court decisions.

Since this use case covers all three areas of ALIGNED core interests –
content life cycle, software development life cycle and finally JURION
application itself – a more detailed description is currently not yet possible
due to complexity issues. Once e.g., integration points are defined and a more
sophisticated domain model is available, it will be worth to revisit this use
case in phase 3 of ALIGNED.

Goals

• Automatic dynamic and contextual relevance calculation
• Integration of generated relevance score in search result list

Requirements

XSLT uplift of XML sources to RDF metadata
In area 1 of the content pipeline shown in Figure 6.1, metadata is extracted
from the proprietary WKD XML schema and transformed in RDF. Due to
regular changes in the XML format, the correct transformation process based
on existing XSLT scripts must be secured, so that no inconsistent data are
fuelled into the metadata database in area 3.

PoolParty quality checks in thesaurus management
In area 2 of the content pipeline shown in Figure 6.1, controlled vocabularies
and domain models are created, maintained, and delivered for further usage,
based on SKOS standard. The integrity of the knowledge management system

348 Appendix A – Requirements

as a whole needs to be ensured. Therefore, regular local and global quality
checks need to be executed, so that e.g., inconsistencies across different
controlled vocabularies can be detected and resumed.

Verifying available instance data for linked external metadata
In area 2 (Figure 6.1), the Linked Data paradigm aims at linking informa-
tion across sources, in contrast to simply link local copies of datasets. The
technologies for linking are available, but there is not yet a proper support to
maintain these links, especially when it comes to changes of the source – both
on schema as well as on instance data level, e.g., when geo data of a linked
organisation is updated or deleted on the source side.

Seshat

Goals

Data Validation – a harvester enters a value or set of values into the dataset
which is syntactically, semantically, or factually invalid. Currently, there is
very limited support for validation of these values, and it is thus easy for
incorrect or invalid entries to be added to the dataset.

Capture of Data Complexity – the Seshat architects desire that the har-
vesters express the full complexity of the data – and capture where values
are uncertain or disputed. However, the harvesters tend to prioritise speed
over complexity for a variety of reasons and will often neglect to express the
full complexity of the evidence. Another problem is that, when dealing with
pre-historical societies, the data required by the schema require significant
interpretation which is often beyond the competence or confidence of data
harvesters.

Schema Evolution – the Seshat schema has been developed iteratively and
continues to evolve. Data that have been collected with earlier versions of
the schema currently need to be manually updated to make it consistent with
schema updates.

Dataset Evolution – the Seshat dataset has been in rapid evolution since
its inception and is expanding at an increasing rate. The Seshat researchers
would like to continue to increase the rate at which high-quality data are
added to the system. They would also like to gain greater understanding of
how the dataset has evolved: in what context was a given variable added?
Why was a value changed? How do the overall characteristics of the dataset
change over time?

Appendix A – Requirements 349

Expert Interpretation – the Seshat dataset entries capture information about
uncertain and disputed values and, in some cases, includes a range of different
opinions drawn from a variety of sources. Expert interpretation is required
in order to turn this raw information into time-series datasets that can be
statistically analysed. This is currently a manual process.

RA-based Data Collection – Seshat data are currently collected and stored
using a wiki-based manual system. This currently requires extraction and
conversion in order to be converted into computer-readable form. Validation
of input is not an automatic process.

Multi-format Data Publication – Seshat is used by four different user roles
such as editors, contributors, knowledge engineers, and data analysts. These
four roles have different requirements and require different views on Seshat
data.

DBpedia-based Candidate Generation – Manual generation of candidates
requires significant effort from RAs and experts. If users were able to
quickly view and assess potentially relevant information, this would provide
a significant saving in time and effort.

User management and dataset productivity – Seshat administrators need
a means by which they can control the scope of the work which RAs are
doing, as well as assess their productivity. Dataset managers need to monitor
progress of data collection.

SS1 – Enter Invalid Data

Description

We want to be able to identify and rectify whenever invalid data are entered
into the system.

S1.1 – Syntactic Error

User Story

Goal: Prevent syntactic errors from entering the dataset

As a harvester, I want to ensure that the system identifies any syntactic
mistakes on my part and, where possible, suggests how to correct it. As
an editor, I want to be able to analyse the dataset to identify any syntactic
mistakes, which have entered the dataset and efficiently correct them.

350 Appendix A – Requirements

Detailed Description

A harvester enters a set of variable values in the Seshat data input form,
some of which have syntactic mistakes. Each variable is analysed in real
time (when the data are changed and the variable loses focus) and a warning,
with a suggested remedy if possible, is indicated whenever the value does
not parse correctly. When the harvester attempts to save the form, an error
message is produced if there are any outstanding syntactic errors, highlighting
the outstanding errors and suggesting corrections – the harvester is presented
from saving the page until the error is corrected.

An editor selects a subset of the Seshat dataset and launches an anal-
ysis of it. The results return a list of all syntactic errors in the selected
dataset and provides a form which allows the editor to correct the errors.
The form presents a detailed description of the error and suggestions to
the editor for ways in which it can be corrected. The editor updates
a subset of the errors and saves them. The system prevents the editor
from saving any updated variables that contain errors – non-updated errors
are saved.

S1.2 – Typo Detection

User Story

Goal: ensure that only variables specified in the schema enter the dataset.

As a harvester, I want to ensure that any mistakes I make in variable names
are identified by the system and I am given a chance to correct them. As an
editor, I want to be able to view all variables in the dataset that are not in the
schema and correct them.

Detailed Description

A harvester enters a set of variables in the Seshat data input form, some
of which have typos or are variables that are not defined in the schema.
Each variable is analysed in real time (when the data are changed and the
variable loses focus) and a warning is indicated whenever the variable is not
recognised. When the harvester attempts to save the form, an error message is
produced if there are any outstanding variable name errors, highlighting the
outstanding errors – the harvester is presented from saving the page until the
error is corrected.

Appendix A – Requirements 351

An editor selects a subset of the Seshat dataset and launches an analysis
of it. The results return a list of all variable name errors in the selected
dataset and provides a form which allows the editor to correct the errors.
The form presents a detailed description of the error and suggestions to the
editor for ways in which it can be corrected. The editor updates a subset
of the errors and saves them. The system prevents the editor from saving
any updated variables that are not in the code book – non-updated errors are
saved.

We would also like to detect general cases where misspellings are made.

S1.3 – Semantic Error

User Story

Goal: Ensure that the dataset is semantically consistent

As a harvester, I want to ensure that the system identifies any semantic
mistakes on my part and, where possible, suggests how to correct them. As
an editor, I want to be able to analyse the dataset to identify any semantic
inconsistencies that have entered the dataset and efficiently correct them.

Detailed Description

A harvester enters a set of variable values in the Seshat data input form,
representing the opinions of a single source (e.g., a book, an expert, a
primary source). When the harvester has completed the inputting and clicks
‘save’ the system runs a series of semantic checks on the data entered,
which will identify inconsistencies such as multiple overlapping values for
a single variable that is specified as having a single value (e.g., two differ-
ent population figures for the same date). The system will highlight these
errors and, where possible suggest ways in which the inconsistency can be
resolved. The system will give the harvester the option of correcting these
inconsistencies before proceeding. The harvester can choose to do so or can
choose to keep the inconsistencies (indicating that they were present in the
source).

An editor selects a subset of the Seshat dataset and launches an analysis
of it. The results return a list of all semantic inconsistencies across the dataset
and launch the expert interpretation interface to allow the editor to create a
consistent dataset.

352 Appendix A – Requirements

SS2 – Capture of Data Complexity

Description

The Seshat architects desire that the harvesters express the full complexity of
the data – and capture where values are uncertain or disputed.

S2.1 – Facilitating Harvesters’ Input Complexity
User Story

The Seshat harvesters can under-report the complexity of data, particularly
by not reporting the time boundaries of variable values. One possible cause
of this is the difficulty of specifying complexity in the Seshat variable syntax.
By providing a simple user interface, the harvesters will find it easy to specify
the full complexity of the underlying data.

Detailed Description

When a harvester decides to enter a variable value, a user interface is dis-
played which allows them to easily specify time boundaries and uncertainty.

S2.2 – Comparing Harvester Complexity Capturing
User Story

Harvesters code Seshat variables over time and have different characteristics
in terms of their propensity to enter the full complexity of the data. Editors
would be like to be able to track this propensity between harvesters and over
time.

Detailed Description

A Seshat editor can view the harvesting history of each user and com-
pare them to one another with their relative propensity towards encoding
complexity highlighted.

SS3 – Schema Evolution

Description

Managing changes to schema in such a way that instance data and schema
evolve in synch.

Appendix A – Requirements 353

S3.1 – Architect Breaks Schema

User Story

Architects should be prevented from making changes to the schema that
damage the integrity of the schema.

Detailed Description

When the architect changes the dataset schema, the system will

• Prevent structural changes that damage the dataset’s integrity
• Version/publication naming scheme.
• Indication of instance data that need updating
• Queuing that workload and continuing with existing data alongside

partially updated dataset.
• A harvester can go through the queue of pending updates with a user

interface which helps him or her in making sure it is valid.

S3.2 – Indicating Required Instance Data Updates
User Story

The architect makes a change to the schema that requires instance data to be
updated. The system indicates to the architect what changes need to be made.

Detailed Description

When an architect updates the schema:

• The system indicates to the user what instance data need to be updated
to reflect the schema change.

• The system indicates which data can be automatically updated and
which needs manual updating

• If the architect chooses to carry out the update, the relevant instance
data are either manually updated or sent into the queue for processing
by editors/harvesters

SS4 – Dataset Evolution

Description

The Seshat dataset has been in rapid evolution since its inception and is
expanding at an increasing rate. We want to improve their ability to manage

354 Appendix A – Requirements

the evolution of instance data and understand what changes have happened
over time.

S4.1 – Track Dataset History

User Story

Seshat editors have the ability to select slices of the dataset (sliced according
to harvester, entities, time (both entry time and entity lifespan).

Detailed Description

Seshat editors have a page available to them which allows them to select slices
of data using a number of criteria and analysing those slices for:

• Completeness
• Complexity and other measures of data quality

SS5 – Expert Interpretation

Description

The Seshat dataset entries capture information about uncertain and disputed
values and, in some cases, includes a range of different opinions drawn from
a variety of sources. Expert interpretation is required in order to turn this raw
information into time-series datasets that can be statistically analysed.

S5.1 – Interpreting Data

User Story

The Seshat data have many uncertainties, disagreements, missing portions of
data, and so on. The system will identify these situations and help experts to
create an ambiguity free dataset.

Detailed Description

• The system will identify variables and time-slices where expert interpre-
tation is required to resolve ambiguity.

• The system will provide some support for mapping variables into
different theoretical frameworks.

• The system will provide supports for mapping input variables from
external databases

Appendix A – Requirements 355

SS6 – RA-based Data Collection

Description

Seshat data are currently collected and stored using a wiki-based manual
system. This currently requires extraction and conversion in order to be con-
verted into computer-readable form. Validation of input is not an automatic
process.

S6.1 – Data Collection

User Story

The RA can enter data into the system via a Wiki page. These data are not
machine-readable. The goal here is to make data collection of RA data as
easy as possible while preparing it for conversion into a structured, machine-
readable form.

Detailed Description

When an RA decides to enter new data, they should be provided a user
interface to allow them to easily input and structure their knowledge.

SS7 – Multi-format Data Publication

Description

Seshat is used by four different user roles such as editors, contributors,
knowledge engineers, and data analysts. These four roles have different
requirements and require different views on Seshat data.

S7.1 – Data Publication

User Story

Publication in different data formats for editors, contributors, knowledge
engineers, and data analysts. Implementation of different views to represent
data.

Detailed Description

Presentation of data in different formats such as RDF (N3, Turtle, RDF/XML,
etc.), JSON, XML, and so on.

356 Appendix A – Requirements

SS8 – DBpedia-Based Candidate Generation

Description

Manual generation of candidates requires significant effort from RAs and
experts. If users were able to quickly view and assess potentially relevant
information, this would provide a significant saving in time and effort.

S8.1 – Candidate Generation

User Story

Manual generation of candidates requires significant effort from RAs and
experts. The goal is to make the process more efficient by making viewing
and assessing potentially relevant information faster.

Detailed Description

Automatically provide relevant candidates for assessment by Seshat RAs.
This removes an entirely manual step in the current process and allows Linked
Data sources to be harnessed as a basis for dataset bootstrapping.

SS9 – User Management and Dataset Productivity

Description

Seshat administrators need a means by which they can control the scope of
the work which RAs are doing, as well as assess their productivity. Dataset
managers need to monitor progress of data collection.

S9.1 – User Management

User Story

Seshat administrators need a means by which they can control the scope of
the work which RAs are doing, as well as assess their productivity.

Detailed Description

The productivity of individual workers or roles can be evaluated through a
convenient user interface.

Appendix A – Requirements 357

S9.2 – Productivity Assessment
User Story

Dataset managers need to monitor progress of data collection.

Detailed Description

Dataset work rates will be made available to enable prediction of resources
required to complete/curate the dataset.

SS10 – Wiki Import
Description

Applications using the data need a means to import wiki data and convert it
to RDF. Application users need an overview of the dataset, and a simple and
easy to use method of manipulating the dataset.

S10.1 – Import Data
User Story

Applications using the data need a means to import wiki data and convert it
to RDF. Application users need an overview of the dataset and a simple and
easy to use method of manipulating the dataset.

Detailed Description

Provide integrators with tools to import wiki data from Seshat and use it
in their applications. Efficiency and usefulness to users for visualisation
and manipulation of RDF graphs. Evaluation of existing data through graph
analysis methods and import checks.

S10.2 – Validate Wiki Page
Goal

A user wants to validate a semi-structured wiki page to check if it is ready for
import and fixes any detected errors in the wiki. No actual import takes place.

Detailed Description

• User navigates to wiki page
• User invokes the import validation tool
• A list of import errors are displayed
• User edits wiki to resolve errors and validates again.

358 Appendix A – Requirements

Requirements

The high-level goal of ALIGNED in this use case is to produce tools for
the Seshat researchers which will increase productivity and data quality and
improve the availability of data for analysis. These tools will be largely gener-
ated from OWL models. In terms of combined software and data engineering,
therefore, the major requirements are concerned with developing models,
which are sufficiently rich to generate software tools to support:

• Data Validation: Automatic generation of software tools which will
ensure that all data produced will be valid.

• Capture of Data Complexity: Automatic generation of Web-based User
Interfaces which allow data harvesters to efficiently enter complex data.

• Schema Evolution: Automatically generate software tools which will
automate the evolution of instance data given complex changes to
schemas.

Figure A.1 Seshat Architecture for Month 19 Demo.

Figure A.1 shows the interaction points in the technologies used to support
the Seshat use case.

Appendix A – Requirements 359

The Dacura platform will support the system with the following tools:

• Wiki-data validation tool: for extracting data from the mediawiki site
where they have been collected and validating them interactively –
supporting Seshat contributors

• User-interface elements: generated from the schema to help users in
more easily specifying complexity – supporting Seshat contributors

• Schema-management tool: for updating, validating, migrating and
deploying changes to the Seshat code book – supporting Seshat editors

• A workflow-management tool: for managing the flow of information
through the system – supporting Seshat administrators

• A data-publishing tool for exporting of data to a range of formats

The system will leverage ALIGNED partners technology as follows

• RDFUnit will be used for implementing extra quality controls on
imported data (e.g., SKOS validation)

• Semantic Booster will be used for workflow automation and data
validation

• Model Catalogue tool will be used for import/export to various non-
Linked Data formats.

• Dacura will be used to generate user interface elements, manage
schemas, and publish data

PoolParty

Scenario 1

Data Consistency Constraints. PoolParty components impose constraints
on data they process (see figure below). Users of the software often
wish to import arbitrary datasets, vocabularies, or ontologies which do not
always meet these constraints. Currently, when users attempt to import
data that violate the constraints, the data will simply fail to display, or
in the worst case, cause unexpected behaviour and lead to/reflect errors
in the application. SWC would like to be able to tell the user why the
import has failed, suggest ways in which the user can fix the problem and
also identify potential new constraints that could be applied to the struc-
ture. Apart from this import functionality, different software components
(e.g., taxonomy editor, reasoning engine) drive RDF data constraints and
vice versa.

360 Appendix A – Requirements

Scenario 2

Schema Generation and Validation. Linked Data resources are often pub-
lished without schemata or with a minimally specified schema. Users of
PoolParty would like to be able to import Linked Datasets but in order
for the system to be able to manage the data, a schema describing its
structure is required. However, end users typically find schema specification
to be extremely difficult to do correctly. SWC would like to be able to
offer users as much support as possible in specifying schemas to describe
both schema-free datasets that they are importing and to correctly specify
the constraints that they wish to include in the schemata that they develop
through the system. Specifically, they would like to be able to do the
following:

• Generate or partially generate schemata, or suggestions for schema
structures from instance data

• Check a taxonomy as a whole for being conform with a specific data
schema

The system currently supports both creation of custom data schemas as well
as automated quality control of the predefined SKOS data schema. The
latter comprises eight quality controls, some of which can be selectively
turned off, are run with a rule engine which has a ruleset describing schema-
consistency constraints. However, these are relatively computationally expen-
sive to run and are thus deployed only at ‘save’ time – when the user has
decided that they have completed their modifications and wishes them to be
deployed.

Scenario 3

Constraint Resolution. In the semantic space, constraint violations can be
extremely difficult to understand as they may come from a number of differ-
ent sources: inherited classes or properties. This is particularly difficult when
dealing with multiple ontologies – for example when merging two ontologies
or datasets. Users of PoolParty would greatly benefit from tools which could
help them to understand more easily what the cause of constraint conflicts
is and what pathways are available to resolve them. For this situation, we
need a formal method for formulating actions for responding to constraint
violations and a generic way to generate user interfaces for applying these
actions.

Appendix A – Requirements 361

Scenario 4

Development Process Integration. SWC uses a range of tools to manage the
information flows that are relevant to their development processes: Atlassian
Confluence Enterprise Wiki for project management and documentation;
Atlassian JIRA Issue Management solution for continuous issue management;
Q&A System for customer FAQ management; Sonr WebMining for market
monitoring. Particular information events that occur in any of these systems
have implications across the development process and across these systems.
For example, a bug notification that arrives in the JIRA issue queue might
require an update to a FAQ entry and an update to project management plans
and project documentation. Currently, the information produced by these
systems is largely document orientated and focussed on human consumption,
and integration of this multi-source information is a manual process.

Scenario 5

Code and Data Co-evolution. Upgrades to the PoolParty software can
inadvertently break data models that had been constructed with older versions.
This is currently very difficult to predict, particularly as the models become
more complex. Fixes require manual modification of the data model to make
it consistent with the new software requirements. SWC would like to be able
to automate the identification of such model-software mismatches, suggest
remedies, and even automate the fix.

PS1 – Data Consistency Constraints

Description

We want to be able to manage and express constraints for data consistency in
a standard way throughout the PoolParty Thesaurus Server (PPT) application.
Data constraints are required in various components of the application:

• PPT-Internal data processing requirements: mandatory, built-in rules
• Reasoning: built-in as well as custom rules (in future) that can be

deactivated
• General Schema-related constraints: bound to specific usage scenarios

SKOS quality: based on qSKOS quality issues, can be deactivated
Custom constraints (user-defined), constraints inferred from OWL
(from ontology evaluation approaches like, e.g., RDFUnit)

• Data Import

362 Appendix A – Requirements

In order to improve maintenance and handling of the constraints for these
components, we seek to establish a unified method to consistently support
the use cases that are covered by these components.

Mandatory and quality constraints

Within PoolParty, we define two categories (severities) for the consistency
constraints. The mandatory constraints include constraints that have to be
satisfied for PoolParty to function normally. Usually, constraint violations in
this category prevent the project data to be used by the application because of
occurring errors caused by the inconsistencies. The quality constraints include
constraints that show modelling problems in the imported data (checked in
conjunction with the already existing data) and provide useful information on
how to improve the data quality. Quality constraint violations do not cause
application errors but may cause other inconveniences because of inconsis-
tent, redundant, or otherwise disadvantageous information. Violations of the
SKOS standard, which is a fundamental part of PoolParty Thesauri, can be
found in both categories. For example, the disjointness of SKOS classes has
to be guaranteed for the instance data. In contrast, the pairwise disjointness
of prefLabel, altLabel and hiddenLabel is also stated as part of the SKOS
semantics, but does not need to be enforced in PoolParty. This is provided as
a quality check that can be deactivated by the user on demand.

Approach

PPT uses a triple-store (Sesame by default) to persist taxonomy information.
Changes to these datasets are currently performed by executing atomic
“actions”, which encapsulate triple changes and removals. Currently, the
checks, if an action can be executed, are scattered in the code and sometimes
performed multiple times, making them hard to maintain. The challenge
is to specify constraints (preconditions) for each action in a concise and
easily understandable way and which are checked upon action invocation.
We furthermore experienced that consistency checking and reasoning can
be expensive in terms of runtime and CPU/memory utilisation. Therefore,
another challenge is to, whenever possible, (re-)formulate constraints to
establish good performance. These may involve different technologies for
constraint/rule evaluation (e.g., Jena rules vs. SPARQL/SPIN-based infer-
encing, SHACL) and it must be possible to utilise the technology whichever
works best for the application scenario.

Appendix A – Requirements 363

Summarising, the underlying assumption of our approach is that if it is
only possible to interact with the triple store using exactly specified atomic
actions in combination with constraints (pre- and postconditions), we will be
able to avoid inconsistent or erroneous data and, as a consequence, avoid bugs
in the application. Constraint metadata, such as version information, will also
help in integrating the approach with process management tools such as JIRA
or Confluence, which we cover in PS4 and PS5.

The approach in PoolParty is to only check data for consistency if it is
necessary because of the performance implications described above. That
means that we define different entry points and scenarios where data need to
be checked when entering a PoolParty project.

Import

PoolParty features an RDF import and an Excel import to introduce arbi-
trary data into a PoolParty project. While the Excel import needs some
conformance because of the tabular format which is checked separately, a
user can introduce any RDF data with the RDF import. Depending on the
proficiency of the user with the PoolParty data model, such an import is likely
to introduce inconsistencies into the project data. This is the most important
part of PoolParty where mandatory constraint checks have to be applied to
ensure normal operations of the application. For convenience, also quality
constraints can be checked on import to provide a unified data maintenance
feature.

Quality

PoolParty also features a quality-checking component that can be used
to run a complete constraint validation on the project data and present a
detailed report with information that can be used to resolve the constraint
violations found. In contrast to the mandatory constraint checks, where
violations will break the application, the quality constraint checks can be
run after an import and also just on an existing project to find flaws in data
modelling and to improve data quality. These quality constraint checks can
be configured in the project settings. They can be activated and deactivated
on demand and will report only the activated checks while ignoring the
other checks. With this feature, a project-specific quality control can be
established.

364 Appendix A – Requirements

Actions

Atomic actions for data modification are used by PoolParty to add and
remove statements in the triple store. These actions may include reasoning
consequences that can further alter the data. These actions are part of the
PoolParty code base and are not provided by actors outside of the application.
They are guaranteed to not produce inconsistent data and are not validated
on execution. However, there can still be programming errors that may cause
inconsistent data being produced by even these actions. Therefore, we propose
constraint violation checks being performed as part of the testing process in
PoolParty development to detect errors that cause violations.

Methodology

The goals of Phase 2 were:

• Deciding on a methodology for defining constraints for RDF datasets
• Deciding on a framework that checks these constraints and can be

integrated with PoolParty

Constraint definition language

For defining the constraints, we decided to use the SHACL Shapes Constraint
Language, a language for validating RDF graphs against a set of conditions.
These conditions are provided as shapes and other constructs expressed in the
form of an RDF graph. This approach synergises well with the requirement
of many data constraints for PoolParty to have existing data of a specific
form. These shapes can then be used for data validation instead of multiple
independent constraint checks to provide a more integrated view on data
consistency. Still, the option of having multiple constraint checks using
SPARQL to define them is a valid option.

Framework

We decided to use RDFUnit for checking the constraints. RDFUnit is a test-
driven framework for running test cases on RDF data. The test cases are
executed as SPARQL queries using a pattern-based transformation approach.
RDFUnit also supports defining test cases using SHACL. The provided
implementation uses Java and can be easily integrated into PoolParty. How-
ever, the current supported SHACL features are not sufficient to express all
mandatory constraints needed by PoolParty. Therefore, we decided to use a
SPARQL-based approach for the current implementation.

Appendix A – Requirements 365

Integration

Integration in PoolParty is based on independent RDFUnit test cases that
can be used by PoolParty as part of the RDF Validation. These represent
the constraints and can be used to find violations in the data. The approach
is intended for high maintainability and reusability of constraints. RDFUnit
test cases are formulated using RDF and are based on SPARQL. They can
be executed independent of PoolParty and can be used wherever RDFUnit
can be integrated. Also, the test case definitions can be modified without
modifying the PoolParty code base and therefore provide high maintainability.
Finally, the RDF definitions can be published as Linked Data for further use.
PoolParty extends the RDFUnit test cases with its own test case descriptions,
which are also defined using RDF with all the advantages described above.
These descriptions add additional information about how the RDFUnit test
case is used as part of the import validation. For example, the applicable
repair strategies for the constraint are defined.

The constraint checks are currently used for validating the import of data
into PoolParty projects. Each constraint check includes one or more repair
strategies that can be used to correct the problem by modifying the data to
satisfy the constraint. Some of the repair strategies feature bulk repair options
to automatically correct all violations of a specific constraint.

Goals

As goals of this epic, we focus on:

• Evaluating the RDF Validation implementation in PoolParty to ensure
normal operations by importing various datasets into projects and
repairing them

• Further evaluation for options to replace the SPARQL-based approach
with a SHACL implementation

• Adding quality constraint checks

S1.1 – Constraints for Internal Actions

User Story

We want to secure all changes to the triple store by easily understandable
constraints so that we can ensure that the data are consistent before and after
performing the change. The constraints are assigned to actions and must be
checked before and after each action invocation and, in case of failure, a
meaningful error message should be provided.

366 Appendix A – Requirements

Detailed Description

We currently use atomic “actions”, i.e., triple changesets, to modify data in
the underlying triple store. Compilation of these changesets can be a complex
task, which, in some cases, also involves changesets from other actions.
Furthermore, the decision, if an action can be performed, is currently involved
from various places in the source code, which sometimes is redundant. We
want a unified way to express conditions when an action can be performed (all
preconditions are met) and what the result of the action should be. This way,
we can be sure that the action is correctly implemented and the application
functionality that relies on the changed data is not affected. Constraints should
also carry version information to find out when they have been introduced
which is necessary to detect cases in which the triple store content does not
match the installed version of the application (see PS5). We see the process of
defining these constraints at an early development stage, similar to creating
constraints in an object-relational mapping for applications that rely on data
from relational databases. Therefore, constraint checking in our approach
should also be done by utilising a closed-world view. The constraints should
be formulated using RDF and standard ontologies, allowing them to be reused
and linked by utilities that support the development process, e.g., JIRA or
Confluence (see PS4).

S1.2 – Rules for Reasoning and Inferencing

User Story

We want a way to express all current as well as custom user-defined rules in a
standardised, easily maintainable form. Performance should be at least equal
to the existing solution.

Detailed Description

We currently use Jena rules (https://jena.apache.org/documentation/inference/)
for inferring additional facts in a taxonomy that is bound to a user-specified
schema. For some actions (e.g., type removal), we experience performance
issues. We will therefore investigate if it is possible to replace the Jena rules
with an SPARQL/SPIN-based approach, which we also proposed in S1.1
for internal actions. Depending on what implementation delivers the best
performance (Jena, SPARQL or others), it must be possible to use either
of these implementation for rule evaluation and inferencing. Therefore, the

Appendix A – Requirements 367

challenge is to provide a way of formalising rules using the various evaluation
and inferencing technologies.

S1.3 – Constraints for Specific Schemas

User Story

For each used data schema, we want the possibility to define constraints that
the instance data must comply to.

Detailed Description

Taxonomy developers use PPT to create taxonomies that use classes and
properties defined in schemas such as SKOS, FOAF, GeoNames, and others.
For each of these schemas, taxonomy creators often have a specific policy
how to use them. For example, for SKOS, a large number of constraints
exist that are defined in both the schema itself (as described in the SKOS
reference) as well as by publicly available tools such as qSKOS (which
derives a catalogue of quality issues from existing literature and practical
experience). Based on qSKOS, PPT currently supports eight quality checks
that alert users if the current taxonomy contains potential quality problems.
We plan to extend this approach for multiple schemas (which can partly
be automatically derived as shown in UL’s RDFUnit contributions) and by
custom constraints. These custom constraints are either PoolParty-specific
(e.g., domain/range assertions are interpreted as data constraints) or user-
definable (e.g., a thesaurus manager does not allow polyhierarchies). The
rules must be easily understandable and editable, and we therefore seek to
provide tools to easily formalise constraints and schemas. As with S1.1 and
S1.2, these constraints must be easy to understand and maintain by both PPT
users and developers.

S1.4 – Import of Third-Party Datasets

User Story

We want an import functionality that ensures the imported data are consistent
with the constraints defined in S1.1–S1.3. Data that are not used by PPT
should not be imported and in case of conflicts, unfulfilled constraints or
missing information, it should be possible to provide easy ways to repair the
issues (see PS3).

368 Appendix A – Requirements

Detailed Description

PPT currently supports importing RDF datasets that are added to the taxon-
omy knowledge graph. As this method bypasses the action framework, we
mentioned in S1.1, it has several drawbacks. For example, it is possible to
import data that PPT currently cannot use, e.g., labels in languages that are
not configured in the project settings. A more severe problem is the import of
incomplete data that can cause data integrity violations, leading to unexpected
behaviour of the application.

Therefore, the approach we follow to tackle this story involves multiple
steps:

• Extraction of actions from the imported dataset
• Execution of these actions
• Collect of potential constraint violations
• Providing (batch) resolution strategies for the occurred constraint

violations

PS2 – Schema Generation and Validation

Description

We want a way to describe how to infer facts from other sources (e.g.,
DBpedia) and to convert them to facts in the local taxonomy. It should also
be possible to find contradictions and constraint violations when applying a
schema to a taxonomy.

Approach

Similar to the approach of PS1, S1.2, we want a solution to specify rules
which allow the deduction of a data schema from a given Linked Data source
and make it available for application to a PPT taxonomy project. There will
be a default ruleset that cannot be changed by the user and as well as a user
utility to edit and provide new custom rules. On the other hand, we want
to exploit existing schemas that are already created for a PPT taxonomy to
support and improve the taxonomy creation process. Therefore, we identify
the following key challenges:

• Derive schema information from thesaurus structure using available data
(such as mappings to DBpedia). Using a rule-based approach, schema
classes and relations should be imported automatically from a given set
of Linked Data sources.

Appendix A – Requirements 369

• Leverage existing schemas which are developed by taxonomists in PPT
for a certain project, to improve term suggestions, automatic population
and thesaurus mapping with external Linked Data sources.

• Check the whole thesaurus for contradictions and inconsistencies (e.g.,
owl:disjoint, interpretation of domain and range properties as con-
straints, custom rules).

Goals

The goals are to develop automated support for assisting users to more easily
describe the structure of the datasets that they wish to manage and lighter-
weight support for tools which help them to develop consistent rules and
constraints. We can break them down into the following steps:

• Derive schema from thesaurus
• Exploit schema for Linked Data lookup
• Validate taxonomy as a whole against a schema

S2.1 – Derive Schema from Thesaurus

User Story

We want a method to automatically suggest a data schema for an existing
PPT project based on a provided set of Linked Data sources.

Detailed Description

In PPT, taxonomy developers can impose a data schema to their projects.
For example, it is possible to assert class membership to concepts or specify
property domain and ranges which are used in the application to constrain
the resources they can be applied upon. In order to create such schemas,
taxonomy developers currently have to either start from scratch and define
custom classes and properties, or they can import resources from existing
ontologies, such as FOAF or GeoNames which they can reuse in their projects.
However, currently, we have no way of automatically suggesting classes and
relations from these external sources. Such a functionality would greatly
increase the value of the developed taxonomies, as it improves the coherence
of the various Linked Data resources on the Web. We see the key challenges
of this story in:

• Establishing or adopting an existing a rule-based framework for schema
deduction

370 Appendix A – Requirements

• Provide an easy way for reviewing and editing the involved rules
• Integrate the deduced schema in the PPT workflow

S2.2 – Exploit Schema for Linked Data Lookup

User Story

We want to improve term suggestions and taxonomy mappings, based on the
existing schemas of a taxonomy.

Detailed Description

Currently, the schema of a taxonomy is not taken into account when additional
terms are retrieved from external Linked Data sources such as DBpedia.
The schema is also ignored when suggesting mappings to other projects or
Linked Datasets, as it currently utilises label string comparison algorithms.
Leveraging schema information, we expect to improve the accuracy and
relevance of mappings and term suggestions and can build on an extensive
amount of literature in the field of ontology mapping.

S2.3 – Validate Thesaurus Against Schema

User Story

We want a way to validate a thesaurus against a provided data schema and
create a report on detected conflicts and inconsistencies.

Detailed Description

As users should have the possibility to automatically deduce schemata, it will
also become necessary to evaluate if data in the taxonomy are contradicting
against certain rules. This kind of evaluation has already been implemented
using the qSKOS library of quality issues; however, in order to support
custom schemas, a more generic approach is needed that is also compatible
to the real-time action-based checks as described in PS1. The key challenges
are to

• provide an implementation that performs the taxonomy check against
the set of PPT-specific schema constraints (e.g., domain/range or
disjointness contradictions),

Appendix A – Requirements 371

• display a concise report of constraint violations, and
• integrate with work done in PS3

PS3 – Constraint Resolution
Description

We want a software component that helps users to resolve violated constraints
or contradictions in the thesaurus.

Approach

As outlined in S1.1–S1.3 and S2.3, constraint violations can occur in various
areas of taxonomy development (e.g., basic editing actions, schema definition,
and reasoning). A single change of the taxonomy can involve multiple
constraint violations that can potentially be resolved in various ways. We
want to find a unified way to deal with this problem which covers:

• supporting both action-based as well as complete taxonomy checking
and the results of the reasoning step,

• automatic generation of meaningful reports,
• generic definition of resolution strategies,
• (batch) execution of these strategies

Goals

Our goal is to develop tools and methods which enable users to more easily
identify and correct the sources of constraint violations in complex ontologies.
We want to evaluate

• ways of expressing resolution strategies for constraint violations,
• the possibility of creating curation interfaces from constraint violation

reports,
• how to integrate resolution strategies and documentation with constraint

formulation,
• how to embed the approach into the PPT workflow.

S3.1 – Definition of Constraint Violations

User Story

AsaPoolPartyadmin, Iwant tobeable tospecifyconstraintviolations for issues
that I want to have checked when introducing data into a PoolParty project.

372 Appendix A – Requirements

These constraint violations should be defined declaratively using standards.
They should be human-readably and machine-readable and support taxonomy
developers to conveniently manage (a large number of) constraint violations.

Detailed Description

In this story, we want to provide a method to define constraint violations in a
generic, machine-readable way for allowing the taxonomy developer to easily
introduce additional constraint checks into the application.

S3.2 – Application of Constraint Violation Repair Strategies

User Story

AsaPPTtaxonomydeveloper, Iwant tobeable toapply resolutionstrategies for
each type of constraint violation. These strategies should be machine-readable
and support taxonomy developers to conveniently resolve (a large number of)
constraint violations.

Detailed Description

We encountering a constraint violation, multiple ways for resolution exist. In
some cases, a violation must be treated individually, while in others, a set of
similar violations can be treated identically. In this story, we want to provide a
method to formulate resolution strategies in a generic, machine-readable way
for allowing the taxonomy developer to easily select an appropriate strategy
from a list. When needed, taxonomy developers must be prompted for input
of missing data, required to execute the resolution strategy. Even if a violation
has to be treated individually, we still want to have an option for automatic
resolution of all violations of a specific type.

S3.3 – Formulation of Constraint Violation Repair Strategies

User Story

As a PPT admin, I want to be able to specify resolution strategies for each
type of constraint violation. These strategies should be machine-readable and
support taxonomy developers to easily resolve (a large number of) constraint
violations.

Appendix A – Requirements 373

Detailed Description

We encountering a constraint violation, in most cases, multiple ways for
resolution exist. In some cases, a violation must be treated individually, while
in others, a set of similar violations can be treated identically. In this story,
we want to provide a method to formulate resolution strategies in a generic,
machine-readable way for allowing the taxonomy developer to easily select
an appropriate strategy from a list. When needed, taxonomy developers must
be prompted for input of missing data, required to execute the resolution
strategy.

S3.4 – Creation of Repair User Interfaces

User Story

Based on detected constraint violations, we want a way to automatically create
interfaces that help users in repairing the violations.

Detailed Description

Users need to effectively deal with fixing constraint violations in the tax-
onomies they create. We will therefore research ways for automated creation
of user interfaces and how they can be used together with defined resolution
strategies (see S3.2).

PS4 – Development Process Integration
Description

We want a way to express development process data that are currently main-
tained by using, e.g., JIRA, Confluence, or a Q&A application, as Linked Data,
utilising the ALIGNED ontology. This enables us to improve coherence of
the tools and build the foundation to link process-relevant information with
data-model constraints. By (internally) publishing this data, we will be able to
query it in a standardised way (SPARQL) and therefore detect interrelations
and dependencies of, e.g., feature requests and software defects.

Approach

In the requirements engineering phase, we collect information on the affected
parts of the software and the data constraints that must hold. Currently, this is

374 Appendix A – Requirements

mainly done in an unstructured form, and the data reside in relational databases
of the respective tools. In our approach, we will

• Improve the structure of process-related documents such as, e.g., require-
ments and defect descriptions,

• Generate Linked Data from the existing process-related data,
• Provide a way to link process-related data to integrity constraints (which

can be seen as the data model consistency specification).

Goals

We want to integrate the information flows from across the most relevant
process-management application in use by SWC in order to produce a unified,
machine-readable view on the development process data and how process-
specific documents (e.g., defect tickets, new requirements) relate to one
another. Our goals are to

• Structure process-relevant data in more detail,
• Publish data from development process tools as Linked Data for internal

use and reporting purposes,
• Detect related or conflicting development process situations

S4.1 – Extract Data From Confluence and JIRA
User Story

We want a way to (periodically) extract process-related data in a structured
form from the JIRA and Confluence instances.

Detailed Description

We will establish a way to extract process-relevant data from the used tools,
JIRA, Confluence. We plan to use and extend UnifiedViews for these tasks,
setting up a UnifiedViews data extraction pipeline. Data extraction can either
occur on a timely basis (e.g., each day at 1 am), event-triggered (e.g., during
system idle times, by updates in the system), or user-triggered (e.g., an admin-
istrator is responsible to start the extraction process). It is currently unknown
how to deal with data updates. Options are to

• Always fetch and convert all data from the process tools, overwriting the
existing data. Despite easy to implement, this option may be slow but
serves as a proof-of-concept.

Appendix A – Requirements 375

• Fetch only changed data and persist them as, e.g., changesets. This should
be faster and provides the possibility to build up a history of changes.
However, it is unknown if APIs support it and it should be more complex
to implement.

Depending on the interfaces provided by JIRA and Confluence, we furthermore
have to decide if we can and want to use dedicated API calls to extract the data
of interest or if we can directly access the underlying persistence layer, i.e.,
the SQL databases. So far, the requirements are entered as unstructured text,
it will be necessary to create Confluence Templates or Blueprints so that the
data are collected in a structured way to support exploitation of the data as a
next step.

S4.2 – Create RDF Data From the Extracted Data

User Story

We want to express process-related data as Linked Data.

Detailed Description

SWC will provide input for the ALIGNED metamodel in the form of informally
describing the software development process and the workflow within the
development team. The Design Intent Ontology (DIO) should be able to capture
this information so that it can be used to express the structured data extracted in
S4.1 in RDF. We will identify a mapping between the data available from JIRA
and Confluence and the DIO. This is a basic requirement to produce a valid and
reusable RDF dataset that can be processed by several (also third-party) tools.
We may also additionally use the SLO for formalising development process-
related data (such as, e.g., planned features and bugfixes) as well as the SIP,
which are both developed within the ALIGNED project.

S4.3 – Internally Published RDF Data

Detailed Description

In the final stage, we want to have all development process-relevant data in
their most current version in a triple store, providing the possibilities to

• Run SPARQL queries against the data: find, e.g., what tickets are based
on what requirements and when have they been solved in what time

376 Appendix A – Requirements

• Utilise PowerTagging on the data extracted from JIRA and Confluence
to build up a combined PoolParty application and development ontology
that helps to find duplicate or conflicting requirements and tickets

• Feedback data into JIRA or Confluence

S4.4 – Link Development Process Data with Data Model
Integrity Information

User Story

We want a way for linking process-related information with data-related
information (consistency constraints) in order to better align the software
development process with the data model development.

Detailed Description

To get a comprehensive dataset of process-related information linked to
data (and consistency constraints) objects, there are several possibilities. For
example,

• Requirements engineers and consultants should have a way of link-
ing process-related information (e.g., defect tickets, requirements) with
data consistency constraint definitions. This can be done by, e.g.,
providing a plugin for the development management application that
offers a pick-list of the available constraint and their associated version
and description.

• A JIRA plugin exists that automatically links git commits to the processed
tickets that are in turn linked to the requirements they originate from (see
S4.1)

We will use the DLO to track and formalise changes of the PoolParty data
model and consistency constraints.

PS5 – Code and Data Co-evolution

Description

We want to be able to identify mismatches between the deployed version of the
application and the status of the data in the triple store.

Appendix A – Requirements 377

Approach

As the code evolves and the data model is changed, existing installations must
also be updated. If this is not or only partially done, the new version of the
software would operate on an outdated data model which causes failures.
SWC currently tackles this problem by using migration scripts which must be
run manually after each deployment of a new software (PoolParty Thesaurus
Server) version. However, it is currently not easily possible to get an overview
which feature requires which migration script to be executed or to automatically
find and run all needed scripts to prepare the triple store data in order to
match the current software version. We also do not cover conflicts between the
migration scripts, i.e., one script converting data to a format that is incompatible
with the format expected by another script. We will address this issue by
linking integrating specification of data constraints into the requirements
documentation for component changes. This way it would be possible to find
out the set of data constraints (based on the unified ALIGNED data model) and
alert developers on potential conflicts. Our underlying assumption is that we
canexpressdataevolution inaconstraint (rule) language that canbe represented
in a standardised, machine-readable way (as described in detail in PS1).

Goals

Increase the system’s ability to automatically identify model-code mismatches
suggest remedies to such mismatches and automate the execution of fixes.

Related Work

Results of PS1 and PS4

Examples

A practical example for usage of a migration script is as follows: earlier versions
of PoolParty Thesaurus Server used the property dcterms:identifier to control
URI creation of new concepts. As this was found to cause problems with
some customer datasets, we needed to express the identifier of a concept by
a property from the SWC ontology an, as a consequence, had to change the
existing data in all customer projects. In future our goal is to specify data
constraints as preconditions for all actions that rely on (in this case) identifier
information and, on deployment, check for violation of these conditions,
which can be combined with information from development process-planning
applications.

378 Appendix A – Requirements

S5.1 – Develop Plugins for Confluence and JIRA

Actors

• JIRA
• Confluence
• Developers
• Requirements engineers

Detailed Description

Having the extraction of relevant process-related data as RDF in place, this data
should be leveraged to support collecting and editing of requirements. SWC
will provide plugins for JIRA and Confluence that give users (requirements
engineers, developers) UI support for answering some of the competency
questions that the developed system should be able to cover (see S5.2).

Affected Components

• JIRA
• Confluence

Acceptance Criteria and Test Scenarios

Creating/Editing/Finding requirements and issues take less effort than without
plugin support

S5.2 – Make Use of Collected Process-Related Data

Actors

• Requirements engineer
• Developer

Detailed Description

Based on the extracted RDF data, we define a set of exemplary competency
questions, i.e., queries the system should be able to answer:

• Identify duplicate requirements and issues.
• Which issue has not been updated in the last defined time range and who

did it?
• Which issues have similar characteristics?

Appendix A – Requirements 379

• What part of the software has the most “major” issue
• Which issue has the most watchers (e.g., to get an additional measure of

issue importance)

Affected Components

• JIRA, Confluence Plugins
• RDF store

Acceptance Criteria and Test Scenarios

• Coverage of a subset of the identified competency questions
• Responses to competency question lie within an acceptable threshold of

accuracy

S5.3 – Integrate Data Constraints Information with PPT Data
Migration and Deployment Strategy

User Story

We want a way to combine information from the “data model” (i.e., integrity
constraints) with the data migration tools used by SWC for new or updated
PPT installations.

Actors

SWC system administrator

Detailed Description

By integrating data constraints with tools that are currently in use for migrating
existing datasets to be compliant with new versions of PPT, we expect an easier
and more effective deployment process. We expect a couple of advantages that
will optimise SWCs deployment process:

• Automatically detect incompatibilities between data and software ver-
sions in advance and not only by user testing,

• Havebetteroverviewon thestatusof thecustomerdata (which isbeneficial
if the development process shifts from version-based deployment to single
feature deployment)

• Detection of missing migration scripts

380 Appendix A – Requirements

Affected Components

PPT migration framework

Acceptance Criteria and Test Scenarios

Construct exemplary cases of incompatibility between data constraints and
available customer data and show how combining data from constraint mis-
matches with the existing development process data can retrieve additional
information on this incompatibility.

Requirements
The developed platform has been used for the following use cases:

• RDF Validation: Importing RDF data in PoolParty and using the inte-
grated validation checks to identify problems, which are reported to the
user as constraint checks. The user is then given options to repair the data
consistency. After fixing the inconsistencies, the user can then import the
data without the risk of application failure.

• Issue Integration: In the Semantic Middleware Configurator of Pool-
Party, the user can add a JIRA instance. When the user tries to import
RDF into PoolParty that creates an inconsistency that is not covered by
the RDF validation or that is caused by a software defect, it can cause an
application failure. The user can then automatically report this issue to
PoolParty Support.

• Graph Search: The faceted search application can be used to analyse
the data. It is used to detect duplicate bugs and identify requirements or
stories which are related to a specific bug.

• RDF Validation: repairing reported problems using the integrated repair
strategies that are presented to the user for each constraint violation. Using
the combined identification and repair of the violations, the user is able to
fix import problems without help from consultants. The user does not have
to know about PoolParty data conformance because the list of violations
is presented. The problem does not have to be fixed in the original RDF
data and can be repaired in the application itself. Therefore, the solution is
more stable because the repair is controlled by the RDF Validation. Even if
a repair introduces a new constraint violation, it will not be undetected, in
contrast to repairs done on the RDF level. It will appear as a new constraint
violation in the list and can then be repaired as usual. We will show for
RDF data that were reported by customers to break the project on import

Appendix A – Requirements 381

that it can be repaired using the RDF Validation by a user not knowing the
conformance requirements of PoolParty.

• Unified Governance: The development artefacts are imported into the
triple store using a UnifiedViews pipeline. This pipeline runs daily to keep
the data up to the date. The pipeline also calculates similarities between
the issues and requirements.

• Unified Governance Search: search for the RDF data representation
of the development artefacts will be provided by a SPARQL endpoint
for querying and by a Web application providing search features like
facetted search. We will show advantages in terms of precision, recall and
time consumption for retrieving specific requirements. Evaluation is done
using an experiment where users search for issues based on predefined
requirements texts. The results will be analysed regarding precision and
recall. Also, the time needed to retrieve the correct resultswill be measured
and it will be shown that the retrieval of issues can be done faster.

• Unified Governance Similarity: the similarity computation can be
applied to find related development artefacts. It can be used to find
corresponding requirements for JIRA issues for an automatic proposal of
links. It can also be used to detect duplicate JIRA issues, which would also
be linked as part of the software development process if already existent,
but can be prevented in practice if the duplicate detection is applied before
creation of an issue. Both use cases will be evaluated by comparing
the results of the similarity computation to a gold standard created by
consultants and developers of the PoolParty team. It will be shown that
the similarity computation provides an advantage in issue management
by reducing the management overhead and therefore saving time.

• Unified Governance Statistics: Visualisation of statistical values based
on the RDF data. The information will be presented in form of diagrams as
part of the search application. Evaluation will be based on a gold standard
created by developers and will show tendencies in the development
timeline that can be used for development process improvements.

DBpedia

Scenario 1: Wikipedia/Wikidata Evolution

DBpedia uses a very big code-base to handle an – as correct and as complete as
possible – parsing of a Wikipedia language edition. This code base comprises a
framework written in Java/Scala, a crowd-sourced ontology and crowd-sourced

382 Appendix A – Requirements

mappings between the ontology and the Wikipedia templates. As a Wikipedia
evolves, the ontology, the mappings and the code must be adapted to match the
current state of each distinct language edition.

Challenge

Decrease theeffort to identifynewerrorsordata lossdue to thesourceevolution.

Scenario 2: Schema Evolution

The DBpedia ontology is most times adapted to match the Wikipedia contents;
however, this may lead to fragmentation and require a refactoring of the
DBpedia ontology. Any changes in the ontology, however, must be reflected in
the crowd-sourced mappings.

Challenge

Decrease the effort to identify schema alignment errors.

Scenario 3: Validation

DBpedia is based on a crowd-sourced and semi-structured content. Data
extracted from DBpedia must be checked for validity.

Challenge

Decrease the probability that the extracted dataset introduces invalid or
erroneous values while minimising productivity overheads.

Scenario 4: Data Dissemination Life cycle

DBpedia will provide two static releases per year, following the release of new
data, one has to adapt to the new datasets.

Challenge

Decrease the data adaptation effort.

Scenario 5: Feedback

Along with the data validation, the identified errors must be analysed and
provide appropriate feedback to the error sources. Possible sources of an error

Appendix A – Requirements 383

can be (1) the data in Wikipedia, (2) the extraction framework, or (3) the data
and schema mappings.

Challenge

Decrease the effort of associating errors to a specific source and providing
feedback to each community (data editors, mappers, and developers).

DS1 – Wikipedia/Wikidata Evolution

The main goal of this epic to minimise the effort to align the DBpedia tool and
data stack with regard to the Wikipedia/Wikidata Evolution.

Description of Epic

DBpedia uses a very big code base to handle the parsing of a Wikipedia
language edition (as correct and as complete as possible). This code base
contains for a framework (DBpedia Information Extraction Framework –
DIEF) written in Java/Scala, a crowd-sourced ontology and a crowd-sourced
mappings between the ontology and Wikipedia templates. As Wikipedia
evolves the ontology, mappings and code base have to be adapted to match
the current state of each distinct language edition.

Approach

For every release, the release manager and the extractors analyse the latest
Wikipedia community trends and try to adapt the DBpedia mappings and the
Information Extraction framework to the latest version. Different tools have
been developed that facilitate change detection but require manual steps to
complete. One approach that can make this process more efficient is the com-
parison of different Wikipedia language editions. Having complete coverage
of all the Wikimedia projects will allow us to do a cross-project comparison
and easier identify data and schema trends. There are mainly two Wikimedia
projects left for DBpedia to incorporate in the DBpedia data stack: Wikimedia
Commons and Wikidata.

Goals

Decrease the effort to identify new errors or data loss due to source evolution.

384 Appendix A – Requirements

DS1.1 – Wikimedia Commons Integration as a DBpedia
Dataset

User Story

As a DBpedia user, I want to be able to query multimedia content from
Wikimedia Commons and get metadata as well as license information.

Detailed Description

Wikimedia Commons is a wiki describing multimedia content with different
licenses that is linked through different Wikipedia language editions. We want
to integrate Wikimedia Commons in the DBpedia dataset ecosystem to provide
queryable metadata.

DS1.2 – Wikidata Integration as a DBpedia Dataset

User Story

As a user, I want to be able to query Wikidata using the stable DBpedia ontology.

Detailed Description

This case is similar to DS1.1 but the difference with Wikidata is that the data
they store are not in WikiText like all other Wikimedia wikis but in JSON
which requires changes in the DBpedia Information Extraction Framework
architecture. However, this case is essential for DS1.3 to be able to have
complete coverage of all Wikimedia information. The goal is to integrate
Wikidata in the DBpedia dataset ecosystem.

DS1.3 – Evaluate Fact Overlap and Conflicts

User Story

We want to find ways to evaluate the overlapping and conflicting facts between
different Wikipedia language editions, Wikimedia Commons and Wikidata.

Detailed Description

As a Release Manager, I want to know the overlapping and conflicting facts
between different DBpedia datasets originating from Wikipedia language
editions, Wikimedia Commons, and Wikidata. This report can provide an

Appendix A – Requirements 385

overview of quality for each dataset and can be used to build a new fused
knowledge base.

DS2 – Schema Evolution

The DBpedia ontology is most times adapted to match the Wikipedia contents;
however, this may lead to fragmentation and require a refactoring of the
DBpedia ontology. Any changes in the ontology however must be reflected
in the crowd-sourced mappings.

Description of Epic

The DBpedia ontology is a crowd-sourced collaborative project that evolves
together with the DBpedia Infobox to ontology mappings. As Wikipedia
infoboxes change over time, ontology adjustments are required to facilitate
these changes. However, this sometimes leads to ontology fragmentation,
especially when there is not adequate coordination between the mapping and
ontology editors. In turn, when ontology changes are attempted, they must be
made in care to not break any existing mappings

Approach

The approach to tackle this problem is to develop or deploy tools that can
validate both the ontology and the mappings. The tools will feed reports to the
ontology and the mapping editors and allow them to faster identify alignment
errors.

DS2.1 – Mapping Validation for Conformance to DBpedia
Ontology

Goals

The main goal of this epic is to decrease the effort for the mapping and ontology
community to identify alignment errors.

User Story

As a mapping editor, I want to be able to determine if a mapping I create is in
conformance to the DBpedia ontology.

386 Appendix A – Requirements

Detailed Description

Writing Infobox to ontology mappings is a manual process. The mapping
editor cannot easily get feedback for the mappings he/she created in respect
to conformance to the DBpedia ontology. For example, mapping an infobox
to class ‘Place’ and an infobox property to ‘isbn’ is a mapping that produces
data but ‘isbn’ should be used with the class ‘Book’ (the rdfs:domain of isbn
is class Book). If such an error passes unnoticed, we can only identify it after
a release. The idea is to validate directly the mapping without requiring an
actual extraction and provide direct feedback to the mapping editors. For this
case, we export the mappings from WikiText that they are currently defined
in the mappings wiki to RML, a Relational Mapping Language and treat
the mappings as an RDF dataset. Goal: Validate the Infobox to ontology
mappings.

DS2.2 – DBpedia Ontology Validation

User Story

Goal: Validate the DBpedia ontology

As an Ontology Editor, I want an integrated tool that can analyse the DBpedia
ontology and identify various errors such as inconsistencies and unsatisfiable
classes.

As a Release Manager, I would like to ensure that the ontology is consistent
before it is published in a release.

Detailed Description

• Examine what is the best way to integrate ORE in the ontology editing
workflow

• Make it easy for ontology editors to run ORE on the current version of the
DBpedia ontology

• Check ORE report for errors
• If errors exists, try to resolve them

DS3 – Validation

DBpedia is based on a crowd-sourced and semi-structured content. Data
extracted from DBpedia must be checked for validity.

Appendix A – Requirements 387

Description of Epic

We want to ensure that all DBpedia ontologies are well-formed that instance
data conform to the appropriate ontology and that interlinks to other datasets
contain no bad links to missing or inappropriate targets.

Approach

Currently, there is very limited validation of new releases of DBpedia, and most
checks are manual, depending on crowd-sourced feedback on the datasets.
The DBpedia release cycle consists of a large number of steps performed by
independent tools. This release process needs to be formalised and structured
to include iteration and a validation step that provides feedback in the form of
error/validation reports to the other stages.

Goals

Decrease the probability that a DBpedia release candidate dataset includes
invalid or erroneous values while minimising productivity overheads. Add
feedback to other stages of release cycle so that confidence in the outputs of
those stages can be increased and detected errors can be fixed.

DS3.1 – Instance Validation

User Story

As a Release Manager, I want to be able to have an overview of the quality of
the release before it is made available.

Detailed Description

Before a DBpedia release is announced, the Release Manager needs to have a
unified quality overview of the datasets which are going to be released. If the
quality is adequate, the release is marked for announcement; otherwise, the
datasets are further inspected and the release is postponed until all major errors
are resolved. The validation will be performed with RDFUnit for instance
validation and the report will include both the instance validation and high-
quality metadata.

388 Appendix A – Requirements

DS3.2 – Interlink Validation

User Story

Goal: Identify bad outlinks (e.g., owl:sameAs) between a DBpedia release
candidate and an external dataset, e.g., Freebase

As a Release Manager, I want to check a release candidate for bad links to other
datasets and validate that the links included in the release are correct. I need a
report describing the checks performed, any outlink triples that have problems
and a characterisation of the problem to help me or another member of the team
to fix it.

Detailed Description

• Identify release candidate to be validated.
• Identify target external dataset to be validated.
• Identify type of outlink predicates/properties to check.
• Run command line script to validate links, generates report.
• Check report for errors.
• If errors, fix errors in release candidate and goto 4, else finished.

DS4 – Data Dissemination Life cycle

DBpedia provides two static releases per year. Disseminating the data of the
new releases to the community or to testers requires adaptation effort that we
need to decrease.

Description of Epic

This Epic targets the consumption of a new release, which involves a lot of
manual steps.

• Visit the release download page
• Select part or all the datasets and download them
• Setup and build a local Virtuoso Server (or another Triple-Store)
• Load the downloaded datasets in the Triple-Store
• Query the data

Approach

We will try to use the expressive power of DataID (dataid.dbpedia.org).
Representing the release data in DataID provides a machine-readable format

Appendix A – Requirements 389

of the release that different tools can harvest. Another technology we will try to
exploit is Docker (www.docker.com) that provides prepackaged software that
can run on different operating systems.

Goals

Automate as many steps as possible and minimise human interaction

DS4.1 – Generate a DataID Based on the New DBpedia
Release

User Story

As a complex, semantically rich metadata format for describing datasets,
DataID is a central part of the disseminated metadata about a new DBpedia
release. Thus, generating a DataID containing all information about datasets,
licenses, contact information, and so on is a necessary step in the publishing
process of DBpedia.

Detailed Description

Manual creation: use the Web interface on dataid.dbpedia.org, follow all steps

Automated creation: use the DataID-Hub API

DS4.2 – Create DBpedia Docker Image

User Story

Running a SPARQL endpoint of DBpedia is currently a complex task that
requires a lot of effort and technical support for domain experts. To simplify
the task, we want to provide dockerised version of a triple store loaded with all
necessary data for a DBpedia endpoint. Part of this task, as well as a common
use case for DBpedia users, is the upload of multiple DBpedia files into a
triple store. We want to automate this operation to avoid general mistakes and
expedite the process.

Detailed Description

• Create a list of all files needed for the SPARQL endpoint (e.g., use
distribution list of DataID) (plain text, dcat, DataID).

390 Appendix A – Requirements

• Provide a dld.yml bootstrap script, which is the basis for the consequent
Docker Compose file. The script also downloads or copies DBpedia files
into a given or default working directory and let the docker compose file
know where your data are.

• Execute the dld script in conjunction with the file list. Part of this process
is to automatically import the necessary files into the triple store (e.g.,
Virtuoso).

• Commit the triple store to the new docker image. Add additional
components if needed to the image.

• Export and upload the docker image.
• Test the image by installing the new docker image on a target machine.

DS4.3 – Deploy a Dockerised DBpedia Release

User Story

DBpedia users should be able to deploy a dockerised version of a DBpedia
endpoint as easy as possible.

Detailed Description

• Download a prepared Docker image archive containing the Triple Store
database files for the endpoint dataset collection

• Import the image into the Docker Engine of the desired host machine
• Use DLD command line script with appropriate provided configuration

file to start a container with the triple store

DS4.4 – DBpedia Release Download Page Autogeneration

User Story

Based on the newly extracted DBpedia files, a download Web page is created
before the final announcement. Besides a detailed list of the downloadable
content, statistics about the release as well as additional information (e.g.,
license, contact, etc.) pertaining to the described datasets are displayed. An
automatic generation of this Web page based on the DataID (S4.4) is paramount
to a decrease in time needed to publish a new DBpedia release.

Appendix A – Requirements 391

Detailed Description

• Create a script which generates the download Web page in the expected
format based solely on a DataID of the new DBpedia release

• Run the script and deploy the resulting html

DS5 – Feedback

Explore ways of providing validation feedback to the error source.

Description of Epic

Along with the data validation, the identified errors must be analysed and
provide appropriate feedback to the error sources. Possible sources of an error
can be (1) the data in Wikipedia, (2) the extraction framework, or (3) the data
and schema mappings.

Approach

Identifying value errors in a single Wikipedia edition is not easily feasible
unless we can compare the values to an authoritative source. However, author-
itative sources are specialised in certain domains and need a lot of manual
configuration to set up properly. The main idea to automate this step is to use
data from all different Wikipedia language editions, Wikimedia Commons,
and Wikidata. If we align the articles using the interlanguage links, we are
able to compare values. When the values have minor disagreements, we send
them to the respected Wikipedia communities and let them fix the errors in the
source.

Another approach for error feedback to the mapping community is to move
the validation step closer to the actual data (the mappings in this case). If
we are able to emulate the mapping application without having to perform
a full extraction, we provide a tighter and quicker feedback to the mapping
editors.

Goals

Decrease the effort of associating errors to a specific source and providing
feedback to each community (data editors, mappers, and developers).

392 Appendix A – Requirements

DS5.1 – Automated Validation Reports for Infobox Mapping
Definitions

User Story

Goal: Mapping Editors should get feedback on invalid mapping definitions.
As a Mapping Editor, I want to get better feedback on the infobox mapping
definitions. This feedback will allow me to revise wrong mappings and in turn
improve the quality of DBpedia.

DS5.2 – Report Erroneous Facts to Wikipedia and Wikidata

User Story

Goal: Identify erroneous facts in a Wikipedia language edition or Wikidata and
report them to the respecting communities. As a Release Manager, I want to
fix errors in the data sources I use. Identifying these errors and reporting them
back to the source maintainers for fixing, allows future extractions to contain
less errors and provide a better experience to the DBpedia users and an easier
task for the Extractors.

Requirements
The DBpedia release process requires a number of processing stages in
order to validate and prepare each dataset for publication. The platform has
been constructed to provide automation support for the following DBpedia
processing stages:

• Validation of a DBpedia release to identify instance violations.
• Validation of the DBpedia infobox-to-ontology mappings to prevent

mapping errors from propagating on the instance data.
• Validate interlinks from DBpedia to other datasets and remove links to

targets that no longer exist.
• Automatically generate a download page for a DBpedia release
• Automatically deploy a triple store with a DBpedia release in a docker

container.

The requirements for this are:

• Wikipedia/Wikidata Evolution: Decrease the effort to identify new errors
or data loss due to the source evolution.

• Schema Evolution: Decrease the effort to identify schema alignment
errors.

Appendix A – Requirements 393

• Validation: Decrease the probability that the extracted dataset introduces
invalid or erroneous values while minimising productivity overheads.

• Data Dissemination Life cycle: Decrease the data adaptation effort.
• Feedback: Decrease the effort of associating errors to a specific source

and providing feedback to each community (data editors, mappers and
developers).

http://taylorandfrancis.com

Index

A
ALIGNED metamodels 79, 113
ALIGNED tools 19, 40, 215, 254
API (Application Programming

Interface) 176
artefacts 3, 79, 127
automation 32, 138, 261

B
Booster 34, 73, 142, 220

C
catalogue 9, 34, 71, 127
catalogue contents 129, 134,

136, 137
classes 86, 95, 103, 129
classification schemes 116, 117
code book 24, 130, 193, 236
conceptual 51, 83, 115, 161
consistency constraints 19, 35,

176, 277
crowd-sourced public datasets

97, 103, 106, 185
custom schemas 214, 282,

393, 370

D
Dacura 17, 33, 99, 172
Dacura Quality Service 89, 170,

177, 198

data agility 40, 219, 233, 255
data and software engineering 23,

54, 60, 76
data consistency violations 215,

276, 279
data elements 71, 138, 216, 252
data engineers 21, 53, 147, 299
data modelling 51, 59, 75, 116
database schemas 18, 112, 251
data-intensive software

systems 3, 59, 75
Data-Intensive System

Evolution 1
data-intensive systems 8, 13,

53, 75
DataID 17, 22, 38, 68
dataset curators 164, 165,

167, 172
dataset metadata 87, 109,

268, 306
datasets 18, 30, 42, 88
DBpedia 36, 69, 86, 103
DBpedia ontology 27, 107,

310, 382
DBpedia release 105, 109,

302, 388
demonstrator system 23, 26,

241, 226
design 188, 197, 235, 262
Design Intent Ontology 81, 83,

274, 375

395

396 Index

design intents 8, 12, 112
design rationale 81, 83
development artefacts 38, 278,

293, 381
development data 293, 295, 301
development process 22, 57,

110, 138
documentation 28, 52, 89, 112

E
editors 27, 130, 134, 150
ELV (External Link

Validation) 22, 216, 219
engineering activities 79, 82
engineering domain 3, 71
engineering life cycles 17, 43,

58, 76
engineering phases 55, 62
engineering processes 8, 39,

54, 315
engineering projects 50, 86
engineering systems 13, 37
engineering tools 7, 72, 108, 263
entities 2, 81, 203, 354
evaluation 5, 67, 218, 381
experts 11, 165, 260, 389
external dataset 30, 107, 223, 388
geographic information system

(GISs) 25, 237
graphs 26, 122, 206, 364

I
imported data 240, 279, 299, 368
information systems 1, 15,

139, 320
instance graph 170, 180, 183, 198
integration points 40, 53,

220, 347
interlink validation 108, 184, 388

Interlink Validation Tool 105,
184, 188, 388

interlinks 29, 71, 189, 392
iterative approach 42, 46, 61, 65
iterative process 32, 46, 66, 260

J
JIRA 22, 111, 278, 381
JSON (JavaScript Object

Notation) 101, 197, 235, 384
JURION 29, 66, 158, 217, 347
JURION IPG 23, 39, 215, 229

L
life cycles 5, 43, 79, 345
link validation 22, 303, 311
Linked Data 1, 79, 168, 375
linked data quality 12, 59,

182, 316
links 27, 48, 212, 392
Linksets 28, 311
log files 185, 190, 301

M
mappings 3, 152, 239, 392
MDE (model-driven

engineering) 8, 49, 121, 267
metadata catalogue 18, 263, 266
metamodels 8, 55, 112, 294
metrics 4, 95, 262, 323
model agility 40, 232, 301, 323
Model Catalogue 17, 34,

112, 272
model catalogue tool 34, 70,

227, 359
model components 128, 137, 143
modelling 2, 58, 139

Index 397

modelling languages 22, 49,
139, 162

modelling tools 193, 255
models 1, 60, 136, 361

N
named graphs 170, 206, 293
notification messages 207, 293
ontologies 5, 82, 113, 387

P
PoolParty 16, 98, 211, 361
Process Model 167, 171

Q
Quality of Service 218, 322

R
RDF Validation 35, 96, 155, 286
RDFunit 17, 35, 155, 387
Reasoning Violation

Ontology 89, 90
Resource Description

Framework 2

S
schema graph 158, 170, 180
Semantic Booster 17, 72,

143, 359
semantic models 2, 18, 165
semantic web 89, 116, 153, 339
Semantic Web Company 16, 125,

201, 313
Seshat 18, 101, 228, 350
SHACL (Shapes Constraint

Language) 19, 156, 278, 365

SIP (Software Implementation
Process) 80, 86, 375

SLO (Software Life cycle
Ontology) 17, 104, 375

software and data
engineering 79, 184, 358

software and data engineering
life cycles 28, 73, 76

software artefacts 5, 248, 261
software development 27, 109,

203, 381
software development processes

40, 51, 55
Software Engineering 43, 82,

249, 316
software engineers 37, 197,

246, 268
software life cycle 36, 85,

113, 202
software systems 3, 75, 125
software tools 17, 81, 165, 358
source dataset 29, 184, 312
SWC (Semantic Web

Company) 16, 112, 274, 379

T
test cases 19, 156, 277, 365
triple-store 168, 190, 368, 388

U
UML (Unified Modeling

Language) 2, 71, 166, 263
URIs 81, 178, 280, 331

X
XML schema 32, 158, 259, 347

http://taylorandfrancis.com

About the Editors

Dr. Kevin Feeney was a senior research fellow in the School of Computer
Science and Statistics, Trinity College Dublin, the Information Technology
Editor of Seshat Global History Databank, and leader of the ALIGNED
research project. He has more than 20 years of experience in developing
innovative socio-technical systems in both research and industry, including
pioneering distribution of prepaid mobile phone credit through credit card
networks and terminals, and developing one of the first citizen journalism
plaforms. He is now CEO of DataChemist.

Prof. Jim Davies is Professor of Software Engineering and the director of the
Software Engineering Programme in the Department of Computer Science,
University of Oxford. He is a Fellow of Kellogg College. His research
interests include the development of automatic generation of systems from
re-usable models of structure and functionality, and he is the Principal Inves-
tigator on CancerGrid, a consortium to develop open standards for clinical
cancer informatics.

James Welch is a researcher in the Department of Computer Science, Uni-
versity of Oxford. His research interests are the development of enterprise
software, “model-driven” technologies, the Unified Modelling Language,
model transformations and metamodelling. He is also interested in formal
methods, refinement and in particular the languages of Z and B. These
interests are combined in a current project on the Booster language and
Toolkit, and put into practice on a number of development projects.

Dr.-Ing. Sebastian Hellmann is the head of the Knowledge Integration and
Linked Data Technologies group in University of Leipzig’s Agile Knowledge
Engineering and Semantic Web Group. He is also the executive director
and a board member of the non-profit DBpedia Association. He focusses on
semantic technology research – often in combination with other areas such as
machine learning, databases, and natural language processing.

399

400 About the Editors

Christian Dirschl is Chief Content Architect and Head of Content Strategy
and Architecture for Wolters Kluwer Germany. Here, he is responsible for
Wolters Kluwers’ taxonomies, ontologies, content structures and metadata,
and managing automatic classification and text mining projects. He has
represented Wolters Kluwer Germany in international research projects such
as LOD2, WDAqua, and ALIGNED.

Andreas Koller is the Chief Information Officer and co-founder of the
Semantic Web Company. He is responsible for the IT infrastructure of the
company and PoolParty cloud services. One focus of his activity is on
the evaluation of tools for the Semantic Web. In this role, he has contributed to
the technical implementation of semantic technologies in numerous projects,
with the design of system architectures and concepts being a key aspect
where customer added-value can be generated through the use of semantic
technologies.

Dr. Pieter Francois is an Associate Professor in Cultural Evolution at the
University of Oxford. Since 2017 he is the Dean of St. Benet’s Hall. In
2011 he founded the Seshat: Global History Databank which attracted several
large grants from the ESRC, ERC, Horizon2020 and the John Templeton
Foundation. He published extensively on evolutionary anthropology, digital
humanities and the history of nineteenth century travel and migration. He
is the author of ‘A little Britain on the Continent’. British perceptions of
Belgium, 1830–1870 (Pisa University Press, 2011).

Prof. Dr Hab. Arkadiuz Marciniak is a professor at the Institute of Archae-
ology at Adam Mickiewicz University in Poznań. His research interests
include the Neolithic period. He is the regional editor for Mesopotamia in
the Seshat Global History Databank.

	Cover
	Half Title
	Series Page
	Title Page
	Copyright Page
	Table of Contents
	Preface
	Acknowledgements
	List of Contributors
	List of Figures
	List of Tables
	List of Abbreviations
	1: Introduction
	1.1 State of the Art in Engineering Data-Intensive Systems
	1.1.1 The Challenge

	1.2 State of the Art in Semantics-Driven Software Engineering
	1.2.1 The Challenge

	1.3 State of the Art in Data Quality Engineering
	1.3.1 The Challenge

	1.4 About ALIGNED
	1.5 ALIGNED Partners
	1.5.1 Trinity College Dublin
	1.5.2 Oxford University – Department of Computer Science
	1.5.3 Oxford University – School of Anthropology and Museum Ethnography
	1.5.4 University of Leipzig – Agile Knowledge Engineering and Semantic Web (AKSW)
	1.5.5 Semantic Web Company
	1.5.6 Wolters Kluwer Germany
	1.5.7 Adam Mickiewicz University in Pozna´n
	1.5.8 Wolters Kluwer Poland

	1.6 Structure

	2: ALIGNED Use Cases – Data and Software Engineering Challenges
	2.1 Introduction
	2.2 The ALIGNED Use Cases
	2.2.1 Seshat: Global History Databank
	2.2.2 PoolParty Enterprise Application Demonstrator System
	2.2.3 DBpedia
	2.2.4 Jurion and Jurion IPG
	2.2.5 Health Data Management

	2.3 The ALIGNED Use Cases and Data Life Cycle. Major Challenges and Offered Solutions
	2.4 The ALIGNED Use Cases and Software Life Cycle. Major Challenges and Offered Solutions
	2.5 Conclusions

	3: Methodology
	3.1 Introduction
	3.2 Software and Data Engineering Life Cycles
	3.2.1 Software Engineering Life Cycle
	3.2.2 Data Engineering Life Cycle

	3.3 Software Development Processes
	3.3.1 Model-Driven Approaches
	3.3.2 Formal Techniques
	3.3.3 Test-Driven Development

	3.4 Integration Points and Harmonisation
	3.4.1 Integration Points
	3.4.2 Barriers to Harmonisation
	3.4.3 Methodology Requirements

	3.5 An ALIGNED Methodology
	3.5.1 A General Framework for Process Management
	3.5.2 An Iterative Methodology and Illustration

	3.6 Recommendations
	3.6.1 Sample Methodology

	3.7 Sample Synchronisation Point Activities
	3.7.1 Model Catalogue: Analysis and Search/Browse/Explore
	3.7.2 Model Catalogue: Design and Classify/Enrich
	3.7.3 Semantic Booster: Implementation and Store/Query
	3.7.4 Semantic Booster: Maintenance and Search/Browse/Explore

	3.8 Summary
	3.8.1 Related Work

	3.9 Conclusions

	4: ALIGNED MetaModel Overview
	4.1 Generic Metamodel
	4.1.1 Basic Approach
	4.1.2 Namespaces and URIs
	4.1.3 Expressivity of Vocabularies
	4.1.4 Reference Style for External Terms
	4.1.5 Links with W3C PROV

	4.2 ALIGNED Generic Metamodel
	4.2.1 Design Intent Ontology (DIO)

	4.3 Software Engineering
	4.3.1 Software Life Cycle Ontology
	4.3.2 Software Implementation Process Ontology (SIP)

	4.4 Data Engineering
	4.4.1 Data Life Cycle Ontology

	4.5 DBpedia DataID (DataID)
	4.6 Unified Quality Reports
	4.6.1 Reasoning Violation Ontology (RVO) Overview
	4.6.2 W3C SHACL Reporting Vocabulary
	4.6.3 Data Quality Vocabulary
	4.6.4 Test-Driven RDF Validation Ontology (RUT)
	4.6.5 Enterprise Software Development (DIOPP)
	4.6.6 Unified Governance Domain Ontologies
	4.6.7 Semantic Booster and Model Catalogue Domain Ontology
	4.6.7.1 Model Catalogue
	4.6.7.2 Booster

	4.6.8 PROV16
	4.6.9 SKOS17
	4.6.10 OWL18
	4.6.11 RDFS19
	4.6.12 RDF20

	5: Tools
	5.1 Model Catalogue
	5.1.1 Introduction
	5.1.2 Model Catalogue
	5.1.2.1 Architecture
	5.1.2.2 Searching and Browsing the Catalogue
	5.1.2.3 Editing the Catalogue Contents
	5.1.2.4 Administration
	5.1.2.5 Eclipse Integration and Model-Driven Development
	5.1.2.6 Semantic Reasoning
	5.1.2.7 Automation and Search

	5.1.3 Semantic Booster
	5.1.3.1 Introduction
	5.1.3.2 Semantic Booster

	5.2 RDFUnit
	5.2.1 RDFUnit Integration
	5.2.1.1 JUnit XML Report-Based Integration
	5.2.1.2 Custom Apache Maven-Based Integration
	5.2.1.3 The Shapes Constraint Language (SHACL)
	5.2.1.4 Comparison of SHACL to Schema Definition Using RDFUnit Test Patterns
	5.2.1.5 Comparison of SHACL to Auto-Generated RDFUnit Tests from RDFS/OWL Axioms
	5.2.1.6 Progress on the SHACL Specification and Standardisation Process
	5.2.1.7 SHACL Support in RDFUnit

	5.3 Expert Curation Tools and Workflows
	5.3.1 Requirements
	5.3.1.1 Graduated Application of Semantics
	5.3.1.2 Graph – Object Mapping
	5.3.1.3 Object/Document Level State Management and Versioning
	5.3.1.4 Object-Based Workflow Interfaces
	5.3.1.5 Integrated, Automated, Constraint Validation
	5.3.1.6 Result Interpretation
	5.3.1.7 Deferred Updates

	5.3.2 Workflow/Process Models
	5.3.2.1 Process Model 1 – Linked Data Object Creation
	5.3.2.2 Process Model 2 Object – Linked Data Object Updates
	5.3.2.3 Process Model 3 – Updates to Deferred Updates
	5.3.2.4 Process Model 4 – Schema Updates
	5.3.2.5 Process Model 5 – Validating Schema Updates
	5.3.2.6 Process Model 6 – Named Graph Creation
	5.3.2.7 Process Model 7 – Instance Data Updates and Named Graphs

	5.4 Dacura Approval Queue Manager
	5.5 Dacura Linked Data Object Viewer
	5.5.1 CSP Design of Seshat Workflow Use Case
	5.5.2 Specification

	5.6 Dacura Quality Service
	5.6.1 Technical Overview of Dacura Quality Service
	5.6.2 Dacura Quality Service API
	5.6.2.1 Resource and Interchange Format
	5.6.2.2 URI
	5.6.2.3 Literals
	5.6.2.4 Literal Types
	5.6.2.5 Quads
	5.6.2.6 POST Variables
	5.6.2.7 Tests
	5.6.2.8 Required Schema Tests
	5.6.2.9 Schema Tests
	5.6.2.10 Errors
	5.6.2.11 Endpoints

	5.7 Linked Data Model Mapping
	5.7.1 Interlink Validation Tool
	5.7.1.1 Interlink Validation
	5.7.1.2 Technical Overview
	5.7.1.3 Configuration Via iv Config.txt
	5.7.1.4 Configuration Via External Datasets.txt
	5.7.1.5 Execute the Interlink Validator Tool

	5.7.2 Dacura Linked Model Mapper
	5.7.3 Model Mapper Service
	5.7.3.1 Modelling Tool – Creating Mappings
	5.7.3.2 Importing Semi-Structured Data with Data Harvesting Tool

	5.8 Model-Driven Data Curation
	5.8.1 Dacura Quality Service Frame Generation
	5.8.2 Frames for UserInterface Design
	5.8.3 SemiFormal Frame Specification
	5.8.4 Frame API Endpoints

	6: Use Cases
	6.1 Wolters Kluwer – Re-Engineering a Complex Relational Database Application
	6.1.1 Introduction
	6.1.2 Problem Statement
	6.1.3 Actors
	6.1.4 Implementation
	6.1.4.1 PoolParty Notification Extension
	6.1.4.2 Rsine Notification Extension
	6.1.4.2.1 Results

	6.1.4.3 RDFUnit for Data Transformation
	6.1.4.4 PoolParty External Link Validity
	6.1.4.5 Statistical Overview

	6.1.5 Evaluation
	6.1.5.1 Productivity
	6.1.5.2 Quality
	6.1.5.3 Agility
	6.1.5.4 Measuring Overall Value
	6.1.5.5 Data Quality Dimensions and Thresholds
	6.1.5.6 Model Agility
	6.1.5.7 Data Agility

	6.1.6 JURION IPG
	6.1.6.1 Introduction
	6.1.6.2 Architecture
	6.1.6.3 Tools and Features
	6.1.6.4 Implementation
	6.1.6.5 Evaluation
	6.1.6.6 Experimental Evaluation

	6.2 Seshat – Collecting and Curating High-Value Datasets with the Dacura Platform
	6.2.1 Use Case
	6.2.1.1 Problem Statement

	6.2.2 Architecture
	6.2.2.1 Tools and Features

	6.2.3 Implementation
	6.2.3.1 Dacura Data Curation Platform
	6.2.3.2 General Description
	6.2.3.3 Detailed Process

	6.2.4 Overview of the Model Catalogue
	6.2.4.1 Model Catalogue in the Demonstrator System

	6.2.5 Seshat Trial Platform Evaluation
	6.2.5.1 Measuring Overall Value
	6.2.5.2 Data Quality Dimensions and Thresholds

	6.3 Managing Data for the NHS
	6.3.1 Introduction
	6.3.2 Use Case
	6.3.2.1 Quality
	6.3.2.2 Agility

	6.3.3 Architecture
	6.3.4 Implementation
	6.3.4.1 Model Catalogue
	6.3.4.2 NIHR Health Informatics Collaborative

	6.3.5 Evaluation
	6.3.5.1 Productivity
	6.3.5.2 Quality
	6.3.5.3 Agility

	6.4 Integrating Semantic Datasets into Enterprise Information Systems with PoolParty
	6.4.1 Introduction
	6.4.2 Problem Statement
	6.4.2.1 Actors

	6.4.3 Architecture
	6.4.4 Implementation
	6.4.4.1 Consistency Violation Detector
	6.4.4.2 RDFUnit Test Generator
	6.4.4.3 PoolParty Integration
	6.4.4.4 Notification Adaptations
	6.4.4.5 RDFUnit
	6.4.4.6 Validation on Import

	6.4.5 Results
	6.4.5.1 RDF Constraints Check
	6.4.5.2 RDF Validation
	6.4.5.3 Improved Notifications
	6.4.5.4 Unified Governance

	6.4.6 Evaluation
	6.4.6.1 Measuring Overall Value
	6.4.6.2 Data Quality Dimensions and Thresholds
	6.4.6.3 Evaluation Tasks

	6.5 Data Validation at DBpedia
	6.5.1 Introduction
	6.5.2 Problem Statement
	6.5.2.1 Actors

	6.5.3 Architecture
	6.5.4 Tools and Features
	6.5.5 Implementation
	6.5.6 Evaluation
	6.5.6.1 Productivity
	6.5.6.2 Quality
	6.5.6.3 Agility

	7: Evaluation
	7.1 Key Metrics for Evaluation
	7.1.1 Productivity
	7.1.2 Quality
	7.1.3 Agility
	7.1.4 Usability

	7.2 ALIGNED Ethics Processes
	7.3 Common Evaluation Framework
	7.3.1 Productivity
	7.3.2 Quality
	7.3.3 Agility

	7.4 ALIGNED Evaluation Ontology

	Appendix A – Requirements
	Index
	About the Editors

