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Preface to “Use of Meta-Heuristic Techniques in 
Rainfall-Runoff Modelling” 

Each year, extreme floods, which appear to be occurring more frequently in recent years (owing 
to climate change), lead to enormous economic damage and human suffering around the world. It is 
therefore imperative to be able to accurately predict both the occurrence time and magnitude of peak 
discharge in advance of an impending flood event. The use of meta-heuristic techniques in rainfall-
runoff modeling is a growing field of endeavor in water resources management. These techniques can 
be used to calibrate data-driven rainfall-runoff models to improve forecasting accuracies. This book, 
being also a Special Issue of the journal Water, is designed to fill the analytical void by including 
papers concerning advances in the contemporary use of meta-heuristic techniques in rainfall-runoff 
modeling. The information and analyses are intended to contribute to the development and 
implementation of effective hydrological predictions, and thus, of appropriate precautionary 
measures. Being the editor of this book, I would like to thank all authors contributing to the fourteen 
chapters as well as the reviewers involved and who have provided constructive comments on these 
articles during the reviewing process. 

Kwok-wing Chau 
Guest Editor 
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Abstract: Each year, extreme floods, which appear to be occurring more frequently in recent years
(owing to climate change), lead to enormous economic damage and human suffering around the
world. It is therefore imperative to be able to accurately predict both the occurrence time and
magnitude of peak discharge in advance of an impending flood event. The use of meta-heuristic
techniques in rainfall-runoff modeling is a growing field of endeavor in water resources management.
These techniques can be used to calibrate data-driven rainfall-runoff models to improve forecasting
accuracies. This Special Issue of the journal Water is designed to fill the analytical void by including
papers concerning advances in the contemporary use of meta-heuristic techniques in rainfall-runoff
modeling. The information and analyses can contribute to the development and implementation of
effective hydrological predictions, and thus, of appropriate precautionary measures.

Keywords: rainfall-runoff; meta-heuristic; data-driven; modeling; flood; prediction

1. Introduction

Around the world each year, extreme floods, which appear to be occurring more frequently in
recent years (owing to climate change), lead to enormous economic damage and human suffering.
As such, it is imperative to be able to accurately predict both the occurrence time and magnitude of peak
discharge in advance of an impending flood event. The use of meta-heuristic techniques in rainfall-runoff
modeling is a growing field of endeavor in water resources management [1–12]. These techniques can
be used to calibrate data-driven rainfall-runoff models to improve forecasting accuracies.

The papers contained within this Special Issue entitled Use of Meta-Heuristic Techniques in
Rainfall-Runoff Modelling are designed to fill the analytical void by including papers concerning advances
in the contemporary use of meta-heuristic techniques in rainfall-runoff modeling. The information and
analyses can contribute to the development and implementation of effective hydrological predictions,
and thus, of appropriate precautionary measures. The papers cover a number of applications of
different novel meta-heuristic techniques in addressing a variety of hydrological modelling problems,
tailored for different areas of geography and climatic conditions.

2. Contributors

The correlation between landscape and climate with the data availability is a difficult problem in
sub-watershed hydrology. Salas-Aguilar et al.’s work [13] employs a top-down approach to develop
a generalized baseflow model in order to assess the annual recession curves and to correlate the
recession parameter with hydrological and geographical attributes of twenty-one sub-watersheds
in Mexico, covering a variety of climatic conditions. Results indicate that the recession parameter
increases with longitude but decreases with latitude and it exhibits a consistent non-linear behavior
dependent upon the precipitation rate and evapotranspiration in the sub-watersheds. The non-linear
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baseflow model is able to separate baseflow from direct flow more accurately in sub-watersheds. It can
adequately address the relationship amongst recharge, storage and discharge and can thus be used in
basins with insufficient data availability.

The key drawbacks of the conventional curve number model are the vulnerability to instability
in the direct runoff results owing to its reliance on the original abstraction level and the absence of
the procedure on pre-storm soil moisture accounting for ungauged watersheds. Ajmai et al. [14]
integrate the conventional curve number model with a French four-parameter model with a varying
original abstraction level, in order to address this issue. Inherent parameters are assigned in the
novel parameterization procedure. Its performance is assessed by comparing results with several
benchmarking conventional models for observed data in thirty-nine watersheds employing different
statistical metrics. Results indicate that the novel model is able to generate better and more consistent
outcomes than its counterparts.

It is difficult to optimize the number of calibration sites in hydrologic modeling and, currently,
the most often employed method is the trial and error method. Kim et al. [15] put forward an
entropy method to attain automatic optimization of the number of calibration sites with application in
a Korean river basin. The entropy method is first applied to group different combinations of runoff
discharge stations and to determine the best one amongst them. The optimal set of parameters of
the developed hydrologic model is then calibrated by employing a genetic algorithm. Calibration
results corroborate that the model with the combination and site number recommended by the entropy
method outperforms the others. Besides, it is proven to be able to substantially shorten the time
required on model calibration.

In real-time discharge forecasting, particularly during typhoon attacks, the difficulties mostly
encountered include high uncertainty and long lead time. Huang et al. [16] couple a real-time
recurrent learning neural network, an adaptive network-based fuzzy inference system, and some
heuristic techniques to address this problem. Heuristic inputs are utilized to enhance the spatial and
temporal precision. Results indicate that this proposed model performs much better than the adaptive
network-based fuzzy inference system, in terms of both forecasting error at long lead-time and solution
stability. The prediction lead-time of the former can be up to forty-nine hours with an average error
percentage smaller than 10% while for the latter, the corresponding values are six hours and 20% to
40% respectively.

In their paper Estimation of Rainfall Associated with Typhoons over the Ocean Using Tropical
Rainfall Measuring Mission (TRMM)/TRMM Microwave Imager (TMI) and Numerical Models,
Yeh et al. [17] couple much numerical weather research and forecasting as well as radiative transfer
models with the Tropical Rainfall Measuring Mission/ Precipitation Radar data from 2002 to 2010 to
predict rainfall resulting from a typhoon in the northwestern Pacific Ocean. A microwave radiative
transfer model is developed to mimic fifteen typhoons and to generate a posterior probability
distribution function. The precipitation rate resulting from a typhoon can then be determined
by entering the TMI with attenuation indices at specific frequency into the posterior probability
distribution function. Results show that the locations of the simulated rainband with the heaviest
precipitation agree well with field observations. This paper contributes towards a feasible solution in
providing a quick and accurate prediction of rainfall resulting from a typhoon.

The paper by Wu and Lin [18] entitled An Hourly Streamflow Forecasting Model Coupled
with an Enforced Learning Strategy documents how to enhance the accuracy of hourly streamflow
prediction by integrating an enforced learning strategy with four different neural network-based
models, namely, the support vector machine, radial basis function network, back propagation
network, and self-organizing map. The performances of these neural network-based models, with and
without the enforced learning strategy, are compared under real-life application. Results indicate that,
among different neural network-based models, the support vector machine and self-organizing map
outperform the radial basis function network and back propagation network. Besides, the incorporation
of the enforced learning strategy is able to enhance the performance of all types of neural network-based
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models in hourly streamflow prediction. As such, it is concluded that the proposed methodology is
promising in enhancing neural network-based streamflow prediction models.

It is important to be able to predict the long-term power production of small hydropower plants
for successive integration with power production of large to medium hydropower plants. However,
a recognized prediction model for this purpose does not exist. Li et al. [19], in their paper Applying
a Correlation Analysis Method to Long-Term Forecasting of Power Production at Small Hydropower
Plants, employ a correlation analysis method to predict the power production of small hydropower
plants. Analysis is performed on the correlation between small hydropower plants and large to medium
hydropower plants which reveals that they have similar interval inflows. As such, a regression model
is built to predict the power production of small hydropower plants on the basis of the inflows of large
to medium hydropower plants. The proposed method is successfully applied to small hydropower
plants in the Yunnan Power Grid.

The prediction of reservoir monthly inflow is significant owing to the purposes of water resource
management as well as the stability of long-term reservoir operation. In their paper Heuristic Methods
for Reservoir Monthly Inflow Forecasting: A Case Study of Xinfengjiang Reservoir in Pearl River,
China, Cheng et al. [20] employ two heuristic prediction methods, namely, artificial neural networks
and the support vector machine, to predict reservoir monthly inflow. In these models, a genetic
algorithm is used to select and calibrate the optimized set of model parameters. A hybrid prediction
two-stage model coupling the above two methods is also developed in this study. In the first stage,
each method is employed to predict the reservoir monthly inflow values, both of which are used as
the input variables of a second artificial neural network model for refined prediction in the second
stage. These three models are applied to predict monthly reservoir inflow in Xinfengjiang reservoir
from 1944 to 2014. Results indicate that the hybrid method outperforms both artificial neural networks
and the support vector machine in terms of five performance evaluation metrics.

Whilst the artificial neural network has been proven to be one of the most effective methods in
daily discharge prediction, its drawbacks of slow training speed and vulnerability to being trapped in
the local optimum cannot be neglected in real-life application. Cheng et al. [2], in their paper Daily
Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved
Particle Swarm Optimization, address this problem by investigating the use of the artificial neural
network model based on quantum-behaved particle swarm optimization in daily discharge prediction.
In this model, quantum-behaved particle swarm optimization is utilized to determine the optimal set
of synaptic weights and thresholds of the artificial neural network. The hybrid model is able to couple
the advantages of both methods and thus to improve the performance of the prediction model. It is
applied to Hongjiadu reservoir in China for the period from 2006 to 2014. Results illustrate that the
proposed hybrid model outperforms the original artificial neural network model and hence proves its
feasibility in daily discharge prediction.

Wang et al. [21], in their paper Daily Runoff Forecasting Model Based on ANN and Data
Preprocessing Techniques, examine the effect of applying a data preprocessing technique, namely,
singular spectrum analysis, to the input data on the performance of the artificial neural network model
for daily discharge prediction. Benchmark comparison is then made with the original artificial neural
network model as well as a nonlinear perturbation model based on the artificial neural network. Field
data of eight real watersheds are used for model calibration and comparison. Results show that the
artificial network model with singular spectrum analysis outperforms both benchmarking models
whilst the integration of a nonlinear perturbation model to the artificial neural network can also induce
some performance enhancement, though to a lesser extent. Besides, models with the input combination
comprising both rainfall and previous runoff perform better than their counterparts with the input
combination considering rainfall solely.

In their paper Parameter Automatic Calibration Approach for Neural-Network-Based Cyclonic
Precipitation Forecast Models, Lo et al. [22] propose a neural network-based precipitation prediction
model coupled with a parameter automatic calibration approach in determining the training
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parameters of the neural network. It is applied to Dawu station in Taiwan, with data on a typhoon
and ground weather as model inputs. A multiple linear regression model and a multilayer perception
neural network model are employed as the benchmark for comparison of the performance of the
proposed model. For the multilayer perception neural network model, the trial-and-error method
is used for tuning and calibrating the training parameters manually. Results demonstrate that the
neural network-based model with a parameter automatic calibration approach outperforms all the
benchmarking models. Results also show that, if the increment number in the parameter ranges
increases, the computing efficiency of the proposed model will decrease but its accuracy will increase.

The paper by Kim and Singh [23] entitled Spatial Disaggregation of Areal Rainfall Using Two
Different Artificial Neural Networks Models presents the development of two artificial neural network
models, namely, the multilayer perceptron and Kohonen self-organizing feature map, for spatial
disaggregation of areal precipitation in the Wi-stream catchment in South Korea. For the three-layer
multilayer perceptron model, three training algorithms, namely, Levenberg–Marquardt, conjugate
gradient and quickprop, are employed to compute areal precipitation. Results show that the
Levenberg–Marquardt training algorithm is more sensitive to the number of hidden nodes than
the other two training algorithms. The network architectures of 11-3-1 for the Levenberg–Marquardt
algorithm and 11-5-1 for both the conjugate gradient and quickprop algorithms perform the best
amongst all tried structures. As such, their corresponding inverse networks represent the best
multilayer perceptron model for spatial disaggregation of areal precipitation. Results also indicate
that both the multilayer perceptron and Kohonen self-organizing feature map are feasible for spatial
disaggregation of areal precipitation.

In nonlinear hydrologic processes, spatial variability has a very significant role. In most grid-based
rainfall-runoff models, the often assumed uniform subgrid variability results in scale-dependence.
In their paper Subgrid Parameterization of the Soil Moisture Storage Capacity for a Distributed
Rainfall-Runoff Model, Guo et al. [24] study the effect of scale on the Grid-Xinanjiang model at
Yanduhe Basin and propose a subgrid parameterization method in order to integrate the subgrid
variability of the soil moisture storage capacity, which has significant effects on discharge partitioning
and generation in the model. Correlation is performed between the soil moisture storage capacity
and the topographic index because their spatial patterns are quite similar. Results illustrate that
the proposed method outperforms the original Grid-Xinanjiang model in terms of consistency and
precision. It is able to eliminate the recalibration process when there is any change to the resolution of
the digital elevation model and enhance the use of the model even in an ungauged basin.

Previous research indicates that adaptive algorithms are key in deterministic flood prediction
models owing to the intrinsic non-stationary nature of the rainfall-runoff process. Ho and
Lee [25], in their paper Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood
Forecasting, develop a real-time flood prediction system by coupling a precipitation prediction model,
a geomorphology-based discharge model and an updating algorithm. Observed hourly precipitation
data are employed in the grey precipitation prediction model. The watershed discharge model is able
to mimic the effects of changing geo-hydrological conditions. Validation of the system is performed
at two watersheds in Taiwan and one in the United States. Results demonstrate that the proposed
system is promising in simulating the observed hydrographs in several sets of rainfall-runoff cases
covering different conditions and will be useful in reducing human and economic losses in advance of
flooding incidents.

3. Conclusions

The fourteen papers contained in the Special Issue entitled Use of Meta-Heuristic Techniques
in Rainfall-Runoff Modelling cover a wide range of applications of different novel meta-heuristic
methodologies and techniques in addressing a variety of hydrological modelling problems, tailored
for different areas of geography and climatic conditions in order to resolve both local and regional
pertinent issues as well as in different time scales. They are demonstrated to be able to fill the
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analytical void by enriching the advances in the contemporary use of meta-heuristic techniques in
rainfall-runoff modeling. It is apparent, from the abovementioned collection of papers, that novel
applications of meta-heuristic techniques in rainfall-runoff modeling will be required for proper water
resources management. The information and analyses can certainly contribute to the development and
implementation of effective hydrological predictions, and thus, of appropriate precautionary measures.

Acknowledgments: The author of this editorial, who served as Guest Editor of this Special Issue of Water, thanks
the journal editors for their time and resources, the many authors of the papers for their contributions, and the
numerous referees for their hard work that improved the various versions of the manuscripts leading to high
quality published papers.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Saeidifarzad, B.; Nourani, V.; Aalami, M.T.; Chau, K.W. Multi-site calibration of linear reservoir based
geomorphologic rainfall-runoff models. Water 2014, 6, 2690–2716. [CrossRef]

2. Cheng, C.T.; Niu, W.J.; Feng, Z.K.; Shen, J.J.; Chau, K.W. Daily Reservoir Runoff Forecasting Method
Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization. Water 2015, 7,
4232–4246. [CrossRef]

3. Wu, C.L.; Chau, K.W.; Fan, C. Prediction of rainfall time series using modular artificial neural networks
coupled with data-preprocessing techniques. J. Hydrol. 2010, 389, 146–167. [CrossRef]

4. Wang, W.C.; Xu, D.M.; Chau, K.W.; Lei, G.J. Assessment of river water quality based on theory of variable
fuzzy sets and fuzzy binary comparison method. Water Resour. Manag. 2014, 28, 4183–4200. [CrossRef]

5. Olyaie, E.; Banejad, H.; Chau, K.W.; Melesse, A.M. A comparison of various artificial intelligence approaches
performance for estimating suspended sediment load of river systems: A case study in United States.
Environ. Monit. Assess. 2015, 187, 189. [CrossRef] [PubMed]

6. Xu, D.M.; Wang, W.C.; Chau, K.W.; Cheng, C.T.; Chen, S.Y. Comparison of three global optimization
algorithms for calibration of the Xinanjiang model parameters. J. Hydroinform. 2013, 15, 174–193. [CrossRef]

7. Gholami, V.; Chau, K.W.; Fadaee, F.; Torkaman, J.; Ghaffari, A. Modeling of groundwater level fluctuations
using dendrochronology in alluvial aquifers. J. Hydrol. 2015, 529, 1060–1069. [CrossRef]

8. Taormina, R.; Chau, K.W. Data-driven input variable selection for rainfall-runoff modeling using
binary-coded particle swarm optimization and Extreme Learning Machines. J. Hydrol. 2015, 529, 1617–1632.
[CrossRef]

9. Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction.
J. Hydrol. 2009, 372, 80–93. [CrossRef]

10. Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series
using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [CrossRef]

11. Chen, X.Y.; Chau, K.W.; Busari, A.O. A comparative study of population-based optimization algorithms
for downstream river flow forecasting by a hybrid neural network model. Eng. Appl. Artif. Intell. 2015, 46,
258–268. [CrossRef]

12. Chau, K.W.; Wu, C.L. A Hybrid Model Coupled with Singular Spectrum Analysis for Daily Rainfall
Prediction. J. Hydroinform. 2010, 12, 458–473. [CrossRef]

13. Salas-Aguilar, V.; Macedo-Cruz, A.; Paz, F.; Palacios, E.; Ortiz, C.; Quevedo, A. Regional Patterns of Baseflow
Variability in Mexican Subwatersheds. Water 2016, 8, 98. [CrossRef]

14. Ajmal, M.; Khan, T.; Kim, T. A CN-Based Ensembled Hydrological Model for Enhanced Watershed Runoff
Prediction. Water 2016, 8, 20. [CrossRef]

15. Kim, S.; Kim, Y.; Kang, N.; Kim, H. Application of the Entropy Method to Select Calibration Sites for
Hydrological Modeling. Water 2015, 7, 6719–6735. [CrossRef]

16. Huang, C.; Hsu, N.; Wei, C. Coupled Heuristic Prediction of Long Lead-Time Accumulated Total Inflow of
a Reservoir during Typhoons Using Deterministic Recurrent and Fuzzy Inference-Based Neural Network.
Water 2015, 7, 6516–6550. [CrossRef]

17. Yeh, N.; Liu, C.; Chen, W. Estimation of Rainfall Associated with Typhoons over the Ocean Using
TRMM/TMI and Numerical Models. Water 2015, 7, 6017–6038. [CrossRef]

5



Water 2017, 9, 186

18. Wu, M.; Lin, G. An Hourly Streamflow Forecasting Model Coupled with an Enforced Learning Strategy.
Water 2015, 7, 5876–5895. [CrossRef]

19. Li, G.; Liu, C.; Liao, S.; Cheng, C. Applying a Correlation Analysis Method to Long-Term Forecasting of
Power Production at Small Hydropower Plants. Water 2015, 7, 4806–4820. [CrossRef]

20. Cheng, C.; Feng, Z.; Niu, W.; Liao, S. Heuristic Methods for Reservoir Monthly Inflow Forecasting: A Case
Study of Xinfengjiang Reservoir in Pearl River, China. Water 2015, 7, 4477–4495. [CrossRef]

21. Wang, Y.; Guo, S.; Xiong, L.; Liu, P.; Liu, D. Daily Runoff Forecasting Model Based on ANN and Data
Preprocessing Techniques. Water 2015, 7, 4144–4160. [CrossRef]

22. Lo, D.; Wei, C.; Tsai, E. Parameter Automatic Calibration Approach for Neural-Network-Based Cyclonic
Precipitation Forecast Models. Water 2015, 7, 3963–3977. [CrossRef]

23. Kim, S.; Singh, V. Spatial Disaggregation of Areal Rainfall Using Two Different Artificial Neural Networks
Models. Water 2015, 7, 2707–2727. [CrossRef]

24. Guo, W.; Wang, C.; Zeng, X.; Ma, T.; Yang, H. Subgrid Parameterization of the Soil Moisture Storage Capacity
for a Distributed Rainfall-Runoff Model. Water 2015, 7, 2691–2706. [CrossRef]

25. Ho, J.; Lee, K. Grey Forecast Rainfall with Flow Updating Algorithm for Real-Time Flood Forecasting. Water
2015, 7, 1840–1865. [CrossRef]

© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

6



water

Article

Regional Patterns of Baseflow Variability in
Mexican Subwatersheds

Víctor Salas-Aguilar, Antonia Macedo-Cruz *, Fernando Paz, Enrique Palacios, Carlos Ortiz
and Abel Quevedo

Colegio de Postgraduados, Carretera México-Texcoco, Km 36.5 Montecillo, 56230 México, Mexico;
vsalasaguilar@gmail.com (V.S.-A.); ferpazpel@gmail.com (F.P.); epalacio@colpos.mx (E.P.);
ortiz@colpos.mx (C.O.); anolasco@colpos.mx (A.Q.)
* Correspondence: macedoan@colpos.mx; Tel.: +52-595-952-0200 (ext. 1164)

Academic Editor: Kwok-wing Chau
Received: 1 December 2015; Accepted: 3 March 2016; Published: 11 March 2016

Abstract: One of the challenges faced by subwatershed hydrology is the discovery of patterns
associated with climate and landscape variability with the available data. This study has three
objectives: (1) to evaluate the annual recession curves; (2) to relate the recession parameter (RP)
with physiographic characteristics of 21 Mexican subwatersheds in different climate regions; and
(3) to formulate a Baseflow (BF) model based on a top-down approach. The RP was calibrated
utilizing the largest magnitude curves. The RP was related to topographical, climate and soil
variables. A non-linear model was employed to separate the baseflow which considers RP as a
recharge rate. Our results show that RP increases with longitude and decreases with latitude. RP
displayed a sustained non-linear behavior determined by precipitation rate and evapotranspiration

(
P
E

) over years and subwatersheds. The model was fit to a parameter concurrent with invariance
and space-time symmetry conditions. The dispersion of our model was associated with the product

of (
P
E

) by the aquifer’s transmissivity. We put forward a generalized baseflow model, which made
the discrimination of baseflow from direct flow in subwatersheds possible. The proposed model
involves the recharge-storage-discharge relation and could be implemented in basins where there are
no suitable ground-based data.

Keywords: runoff; invariance; non-linear model; recession parameter; symmetry

1. Introduction

Baseflow (BF) is an essential component for the hydrological balance of a basin. Its study
is necessary for different purposes, such as aquatic systems’ preservation, hydroelectric energy
generation and pollutant transportation, and it also includes the effects of plant coverage changes
on surface runoff [1–3]. Long-term hydrological balance within the basin depends on water and
energy availability [4]. Budyko’s model considers this relation and associates actual and potential
evapotranspiration (energy) with precipitation (water). This model and its derivations have been
proven reliable through validation in different climate and physiographic conditions around the
world [5–8].

This approach has been utilized to predict BF; for instance, Wang and Luo [9] found an association
between the aridity index and perennial stream. The baseflow recession parameter (RP) has also been
related by means of this model; van Dick [2] noted how the parameter decreased exponentially as the
aridity index value increased. Furthermore, Beck et al. [3] observed the same trend when they correlated
climate, topography, plant coverage, geology and soil type with the baseflow recession parameter.
Their results indicated non-linear and heteroscedastic relations with satisfactory fits (R2 > 0.72). Similar
studies associated the baseflow index with geographical, climate and edaphic patterns [10,11].
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This model has the disadvantage of disregarding underwater storage, making it impractical to
model the water balance at temporal scales [12]. According to Istambulluoglu et al. [13], the model
correlates negatively as the aridity index increases, which points out the need to include the baseflow
component into Budyko-like hydrological balances on an interannual basis.

Other studies have described how hydrological balance variability and interaction within and
among subwatersheds follow similar patterns [14]. For instance, the precipitation-runoff relations
on a monthly and an annual basis tend to display non-linear behaviors, varying only in magnitude,
as shown by Ponce and Shetty [15]. These studies describe a space-time dependence that can be
labeled as symmetry, where observations from different regions can be utilized for the construction
of a generalized model with invariance principles [16,17]. The recession master curve is a symmetric
model for studying BF; however, according to Tallaksen [18], it is inconvenient due to its grouping of
n different recession curves along the year, a procedure that turns out to be time consuming if many
years are to be analyzed.

Although there are simplifications based on linear reservoirs utilized to separate baseflow [19,20],
the linear algorithm can only be successful when short periods of recession are adjusted. According
to He et al. [21], in most cases of unconfined aquifers, the storage-discharge relationship in an
aquifer represented by the curve of recession is set to a concave shape, indicating the non-linearity of
the process.

Moreover, the problem of calibrating and validating mechanistic models in Mexico is that there
is not enough data to feed these models [22]. Therefore, this research aimed at discovering new
hydrological patterns that incorporate within them the effects of the natural heterogeneity found in
different subwatersheds [14], responding to the hypothesis of a robust hydrological model, sustained
on physical limits and based on easily accessible data that can be replicated in any zone.

Therefore, the proposal of this study can be divided into three different objectives. The first one
was to evaluate the annual recession curve with a non-linear model; the second one was to relate the
recession parameter with subwatershed physiographics; and the last one was to formulate a baseflow
model supported by the symmetry and invariance principles. Our base hypothesis was that working
with annual data enables a separation of baseflow into shorter time scales.

2. Materials and Methods

2.1. Input Data

Daily runoff registers (converted into mm¨ d´1) from 21 Mexican subwatersheds were gathered;
the source of this information was El Banco Nacional de Datos de Aguas Superficiales [23]. The
subwatersheds were selected so as to represent different climate characteristics (aridity index,
seasonality, humidity), as shown by Garcia et al. [24], and landscape characteristics (topography,
soil and plant coverage).

An additional criterion was that the subwatersheds were located in National Parks and Biosphere
Reserves, in order to avoid as much as possible extraneous influences on the hydrological regime
(water extraction, urban development, storage works, etc.) (Figure 1). The subwatersheds areas ranged
from 42 to 23,475 km2. The analyzed period went from 1950 to 2011, which is the period of available
hydrometric data in Mexico.

Hydrological vector data for Mexico were available at the hydrologic region, basin, subwatershed
and micro-basin levels according to the Instituto Nacional de Estadística y Geografía (Natonal Institute
of Statistics and Geography, INEGI) and the Comisión Nacional para el Conocimiento y Uso de la
Biodiversidad (National Commission for Knowledge and Use of Biodiversity, CONABIO) [25,26].
To convert flow in m3¨ s´1 to depth in mm¨ day´1, it is necessary to know the area of the subwatershed
that uses the gauging station present as its reference.

The INEGI and CONABIO vectors failed to consider the previous data, which led to conversion
overestimations or underestimations. Therefore, subwatersheds were digitized based on their
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hydrometric station [27]; the former Hydraulic Resources Secretary [28] hydrological bulletins were
used as the reference.

Figure 1. Locations for the 20 Mexican subwatersheds included in this study.

Daily precipitation and temperature data were obtained from the National Climate Grid [29]. The
grid consisted of 3147 nodes distributed across the country and separated by 27 km from one another,
which have registered daily information on precipitation and minimum and maximum temperature
from 1950 to 2013. The information in the climate grid was processed in order to estimate potential
evapotranspiration using the Hargreaves [30] method.

The data were transformed into an annual scale to enable interpolation through a cubic method.
The Python 2.7RM (Python Software Foundation, Amsterdam, The Netherlands) programming
language was utilized to obtain the annual average values for each subwatershed and each variable.
The soil texture records were obtained from the Food and Agriculture Organization of the United
Nations [31] Soil Database v 1.2.

2.2. Recession Curves’ Selection

The traditional analytic method for obtaining the master curve required discrimination of n curves
per year, which led to a slow and operator-biased extraction process (e.g., Figure 2a). This research
proposed to select one annual recession curve per subwatershed, the one with the largest magnitude,
which makes the consideration of climate variability among the selected subwatersheds possible
(Figure 2b). Recession curves were selected, considering at least three years of hydrometric records.
The selected annual curves fit the non-linear model put forward by [32]:

Qt “ Qo

«
1 ` p1 ´ bq Qo1´b

ab
t

ff 1
b ´ 1

(1)

where Qt is the recession curve for a non-linear reservoir (mm¨ day´1), Qo is the initial discharge, t is
time measured in days and a (RP) and b are the model’s parameters.
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Figure 2. Recession curves’ selection through the master curve method (dotted line through the year) (a);
proposed annual recession curves selection (annual dotted line) (b).

The b exponent value ranges from 0 to 1, corresponding to studies by [32–34]. For regionalization
purposes, this exponent can be fixed to average conditions b = 0.5, which is a standard value in
unconfined aquifers [35,36].

A contribution of this work, as compared to the aforementioned non-linear models, is that the a
(RP) value was fitted and associated with a physiographic characteristic inherent to its subwatershed,
adding physical significance to the model.

The Hastie [37] criterion (Z) was applied to minimize errors in the objective function and to
optimize a:

Z “ ||y ´ ry|| ` a
ÿ

wi (2)

where ry is the fitted recession curve, a is the RP and wi is the prediction error.

2.3. Spatial Predictors of the Response of Baseflow and Symmetry in the Process

The area and average slope were analyzed for each subwatershed using topographical variables.
The variables obtained from the soil database were percentages for sand, slit and clay. Finally,

precipitation due to potential evapotranspiration (NP =
P
E

) was normalized. The processed spatial
characteristics were related to RP.

RP “ f rClimate, Soil, Topographys

The analysis involved the correlation of variables with RP. A threshold of ˘0.40 (equivalent to
R2 = 0.20) was considered a potentially meaningful correlation [2]. Potential, exponential and linear
functions were calculated for all predictors. The fitting criteria were based on the R2 determination
coefficient and the root-mean-square error (RMSE). To avoid multiple methods to evaluate data
fit, these two criteria were chosen because they are the most widely used in various hydrological
calibrations [2,3,15,21].
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2.4. Baseflow Separation

The use of a recession curve approach as done by Wittenberg [33] required inverting Equation (1),
and the baseflow was calculated by combining the recursive filters back and forward. This method
assumes that the first and last values of the hydrometric time series represent the baseflow.

This kind of model only displays a statistical array harmonically representing the low frequencies
of the surface flow, since it considers neither the intrinsic balances within a subwatershed (water and
energy balance) nor the displacement or retention that flow may be affected by (e.g., soil, vegetation
and basin shape).

The aim of this study was to find a logical relation between the recession parameter and variables
inherent to subwatersheds in order to separate the baseflow. Salas et al. [38] found non-linear trends of
the recession parameter over the baseflow. Therefore, we proposed to implement a non-linear function
in order to estimate the baseflow (BF) in reference to previously-estimated parameters and associate
the (α) model dispersion with hydrological characteristics available from the subwatersheds.

BF “ f
„

P
E

, α

j
(3)

The aquifers selected for this analysis were the only ones for which average transmissivity was
reported. Table 1 shows hydrogeological values for each subwatershed and its corresponding aquifer.

Table 1. Subwatershed hydrogeological characteristics [39–45].

Hydrometric
Station

Aquifer
Identifier

Aquifer Type
Transmissivity

(m2¨ s´1)
Rock Type

9080 0859 [39] unconfined 0.0241 Riolite-tuff-acid, basalt, alluvial
11,012 1802 [40] unconfined 0.0131 Riolite-tuff-acid, basalt, alluvial
12,601 1502 [41] unconfined 0.0370 Alluvial, riolite
18,271 1701 [42] unconfined 0.0180 Basalt, sandstone
23,022 0711 [43] unconfined 0.0018 Basalt
24,038 0512 [44] unconfined 0.1761 Limestone, sandstone
24,150 0507 [45] unconfined 0.0902 Alluvial, limestone

3. Results

3.1. Recession Curves

The average recession curves for 21 Mexican subwatersheds were obtained. Table 2 presents
calibration results for the curve model. In general, the observed data fit well to the proposed model
(R2 > 0.88). The largest magnitude curve was found to be located in the southwest part of the country
(San Pedro, Chiapas, hydrometric station Number 30,067), whereas the lowest value was located in a
subwatershed in the Mexican northwest (Río Salado-Anahuac, hydrometric station Number 24,038).

Table 2. Average recession constant fitting summary.

Hydrometric
Station

Subwatershed Name
Longitude

(˝)
Latitude

(˝)
Number of
Recessions

Surface
(km2)

Fitted
Value

R2

9010 R. Bavispe-Angostura ´109.36 30.61 3 14,188 6.4 0.92

9080 R. Papigochic ´108.30 29.13 4 1856 14.3 0.96

10,098 R. Alamos ´108.76 26.59 4 1813 12.7 0.91

11,012 R. San Pedro ´105.14 21.96 4 11,924 36.0 0.92

15,010 R. Purificación ´104.50 19.56 4 168 54.8 0.93

18,157 R, Atoyac ´98.23 19.23 6 258 125.3 0.95
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Table 2. Cont.

Hydrometric
Station

Subwatershed Name
Longitude

(˝)
Latitude

(˝)
Number of
Recessions

Surface
(km2)

Fitted
Value

R2

18,169 R. Tilostoc ´100.11 19.17 4 154 212.6 0.93

18,271 R. Apatlaco ´99.22 18.84 6 364 15.3 0.88

18,466 R. Tilostoc-Anahuac ´100.25 19.27 3 124 100.0 0.91

18,489 R. Tilostoc-set ´100.12 19.22 3 317 113.4 0.95

23,011 R. Zanatenco ´93.74 16.08 6 166 43.0 0.96

23,022 R. Sesecapa ´92.87 15.46 3 125 90.9 0.90

24,038 R. Salado ´100.13 27.22 3 23,475 4.0 0.97

24,150 R. Salado de Nadadores ´100.94 27.42 6 21,520 25.0 0.94

24,198 R. Monterrey ´100.36 25.66 6 5412 91.0 0.94

26,268 R. Tampán ´99.21 21.65 4 8722 22.0 0.92

27,083 R. Necaxa ´97.87 20.25 5 562 140.3 0.98

28,135 R. Papaloapan ´95.84 18.30 3 20,263 87.5 0.92

30,067 R. San Pedro Mar ´93.09 16.06 5 42 235.0 0.92

12,574 R. Gavia ´99.87 19.42 5 37 3.5 0.93

12,601 R. Sila ´99.71 19.77 3 36 12.5 0.96

Note: R. = River.

Figure 3 shows the recession pattern spatial trend based on geographical location. It was
demonstrated that the RP increases both ways, by decreasing longitude and increasing latitude.
The RP values were rescaled to one.

Figure 3. Relation between the recession parameter (RP) and corresponding longitude and latitude.
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3.2. Baseflow Response Spatial Predictors

The dependence of the RP on climate and topographical variables is presented in Figure 4. The
relation between the percentages of sand, slit and clay and RP was weak (R2 < 0.14), indicating that the
soil variables considered do not affect the fitted parameter. Area and slope were slightly predictive of
the parameter (R2 > 0.30); however, these variables were not statistically significant (p > 0.05). With
regard to normalized precipitation (NP), a marked non-linear trend with RP was observed (R2 > 0.43),
and so, this climate variable was chosen as the principal parameter predictor. The remaining 57% of
variance was not explained by this variable. Equation (5) represents this dispersion in the model.

Figure 4. Relation between recession parameter and landscape and climate variables among subwatersheds.

Figure 5 presents the fitting of the proposed model (Equation (4)), and it shows the variability
among subwatersheds (represented by their hydrometric station) and the annual variability of the RP
and NP relation for 21 selected subwatersheds. Figure 5a shows the long-term average for RP and NP.
Figure 5b presents the corresponding interannual relation. Both relations fit better to the following
exponential model:

1
a

“ 1 ´

¨̊
˚̋1 ´ exp

˜
P
E

¸´α ‹̨‹‚ (4)

A closer fitting was found for the long-term relation (R2 = 0.51, RMSE = 0.12) as compared to the
interannual relation (R2 = 0.35, RMSE = 0.71). The interannual variability showed a higher dispersion
than the average long-term variation; even so, this trend and the α fitted parameter were similar
in both cases (3.88 vs. 4.22). In this study, the model dispersion (Equation (4)) was associated with
the predominant type of rock in each subwatershed and its transmissivity. Transmissivity data were
available for only seven subwatersheds.

Figure 6a presents this relation; the storage-discharge relation for subwatersheds with limestone
and sandstone surface structures was the most direct (higher RP and transmissivity values), such as
the Río Salado and Río Salado de Nadadores subwatersheds (hydrometric station Numbers 24,038
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and 24,150). On the other hand, subwatersheds where basalt and crystal rocks are predominant
revealed low RP values (e.g., Río Sesecapa, station Number 23,022). At subwatersheds presenting
a mixture of permeable and impermeable rock types, the recession curve values were intermediate
(e.g., Río Apatlaco, station Number 18,271).

Figure 5. Subwatershed variability (identified through hydrometric stations) at (a) an interannual scale
and (b) subwatershed average long-term variability.

 

Figure 6. Subwatershed variability (identified through hydrometric station) and rock type. Relation

between the dispersion parameter estimated in the model (a); Equation (4) and the product of
P
E

and
transmissivity (b).
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Figure 6b shows the relation between the model’s (Equation (4)) α parameter and the product of
P
E

by the average transmissivity for each aquifer (τ). A potential model (Equation (5)) was proposed

in order to fit this trend (R2 = 0.96, RSME = 0.57). The model depends on two parameters: μ is the
maximum reported transmissivity for Mexican aquifers (which could be fixed), and θ is the model’s

variation rate in relation to
P
E

.

α “ μ

»——–
¨̊
˚̋ θ

ˆ
P
E

˚ τ

˙
1 `

ˆ
θ ˚

ˆ
P
E

˚ τ

˙˙‹̨‹‚
fiffiffifl (5)

3.3. Baseflow Separation

The daily rainfall and streamflow time series were compared to each other. Generally, a more or
less one-day lag-time was observed between maximum precipitation events and runoff. We proposed

an exponential model, Equation (9), contemplating the recession curve based on
P
E

in order to separate
the baseflow with the following frontier conditions:

P ą Qd ą BF (6)

QF Ñ Qd, i f :
P
E

Ñ 0 (7)

Max
ˆ

P
E

˙
t´2

Ñ Max pQdqt´1 Ñ Max pBFq (8)

Precipitation (P) will always be larger than surface runoff (Qd), which in turn will be larger than
baseflow (BF; Equation (6)). The exponential function (Equation (9)) of the model allows BF to come

closer to direct flow when
P
E

is zero (Equation (7)).
The maximum BF events continued after a day with the highest surface runoff and after two

days of maximum precipitation (Equation (8)). The proposed generalized model depends on only one
parameter estimated in Equation (5):

BF “ Qdtt´1

»———————————–
Exp

¨̊
˚̊̊̊
˝´1´

¨̊
˚̊̊̊
˝exp

¨̊
˝ P

E
‹̨‚

´α

t´2

‹̨‹‹‹‹‚
‹̨‹‹‹‹‚

fiffiffiffiffiffiffiffiffiffiffiffifl

´1{α

(9)

The BF separation for two subwatersheds with different climate conditions can be observed in
Figure 7. The baseflow index (IFB), a proportion of total flow and BF, ranged from 0.39 to 0.36 at the
Zanatenco and El Tecolote subwatersheds (hydrometric Stations 23,011 and 15,010).

Our results were justified and based on accurate observations of each area. The Zanatenco
subwatershed has a precipitation rate higher than 3000 mm per year, whereas the El Tecolote
subwatershed presented an annual mean precipitation of 1000 mm. This is the reason why we
observed a difference in runoff magnitude in Figure 7.
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Figure 7. Separation of baseflow by the generalized baseflow model in the sub-basins: (a) El Tecolote,
located in the state of Jalisco, Mexico; and (b) Zanatenco, located in the state of Chiapas, México.

4. Discussion

Estimating baseflow is a key challenge for hydrological research in Mexico, since there is a lack
of large-scale information on subterranean waters dynamics. This study proposed a model based on
precise analytical observations of different subwatersheds in the country to estimate baseflow with
easily available information and a pragmatic approach.

The model proposed in this research is based on the observation of patterns of invariance
and symmetry between sub-basins, rather than empirical adjustments. The response variable
(rainfall-evapotranspiration) is hypothesized to be dependent on the availability of water and energy
by exponential models, providing a physical explanation to the modeling, besides being feasible to
implement, since these variables are readily available at the most basic climatological station.

4.1. Recession Curve

Generally, recession curve analysis is one of the most accurate methods for estimating
BF [30]. Considering the top-down approach by Sivapalan [46] and Sivapalan´s proposal of a
unified hydrological theory [14], this study proposes analyzing different hydrographs per year and
subwatershed, which allowed us to obtain recession curves for different climate, topographic and
edaphic conditions more efficiently than the master curve method.

Parametrization of recession curves usually implies the use of linear models, where the aquifer’s
storage is to be directly proportional to its retention parameter [47]. As occurred in Wittemberg and
Gan and Luo [33,35], it was observed that recession curves in actual conditions have a concave shape
and the estimated parameter steadily increases with decreasing runoff, a strong indication of the
non-linearity of the process.

While Thomas et al. [48] compared the characteristics of the recession curve between linear and
nonlinear models, the results were inconsistent in the linear model, and the authors recommended
applying the nonlinear algorithm in sub-basins of New Jersey, USA. Stewart [49] showed that the
direct flow and base flow in New Zealand watersheds have (non-linear) quadratic characteristics in
their relations.
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Equation (1) estimates recession curves based on a power law function and invariance properties
for scale changes. On various watersheds around the world, authors, such as Wittenberg [32] and
Wittenberg [50], as well as Wittenberg and Sivalapan [51], have tested that the b parameter is 0.5 on
average. This condition allowed us to only estimate RP and keep b invariant, even with heterogeneous
magnitudes of flow in different subwatersheds.

In simple terms, the RP parameter was related to the maximum flow of hydrometric records
as observed by Salas et al. [38]. This revealed information about the humidity and drought of the
subwatershed [52]. The maximum values of RP were found in high latitudes where arid climate
prevails, as observed in Figure 3. Although, low RP values were found in humid climates south
of Mexico.

Therefore, our result revealed that RP exhibits a trend associated with spatial location. RP
increases when angular coordinates decrease. This trend was also found by Sivalapan et al. and
Beck et al. [3,16], who found patterns in the spatial distribution of their fitted parameters allowing
them to separate subwatersheds with similar conditions.

4.2. Baseflow Spatial Patterns and Model Parameterization

Different BF response spatial predictors were tested; the NP variable (
P
E

) showed the closest
fitting. The importance of using NP lies in potential evapotranspiration (E) varying much less than
precipitation (P). Given that the E depends on solar radiation, temperature and latitude, it is a function
of energy, and therefore, no major variations are expected through the years. Thus, the E is converted
as a scale natural factor for precipitation [53].

The climate index commonly used to predict the recession constant is the index of aridity.
According to Wang and Wu [9], Peña et al. [54] and Longombardi and Villani [11], it was concluded
that the baseflow patterns can be completely modeled with this index, because it considers water
and energy limits on its implementation; this type of modeling is feasible by virtue of its physical
representation of the phenomenon; and the allure of using a single parameter is that it can be applied
in countries where there is not enough data to reproduce a spatially-explicit model [7].

Meanwhile, van Dick [2] and Lacey and Grayson [55] found that the humidity index (HI) was the
most closely related variable to the baseflow constant; their studies reported a negative relationship
between baseflow and HI. Beck et al. [3] found that E, mean temperature, forest coverage and mean
subwatershed altitude had the strongest impact on BF. On the other hand, Fan et al. [56] stated that
precipitation is the main recharge source for aquifers and that baseflow’s response to precipitation
depends on the season.

In contrast to Santhi et al. [10], this study did not find a significant impact of soil texture on RP
on an annual basis (Figure 4). Other studies, such as He et al. [21] and Sanchez et al. [57], found no
relationship between recession constant and soil characteristics, but found a relation with climatic
variables. The results matched those of Haberland et al. [58], who found that the IFB was related to
rainfall and topography, but they did not observe an influence of the properties of soil type or cover in
the subwatershed.

Unlike the long-term analysis, higher variability and lower model fitting were found in the
interannual analysis. Variability was dependent on the interacting dynamics of energy and water
balances [8,53]. Furthermore, the low model fitting is due to temporary effects, such as temporary
storage, as well as macroclimate conditions, which are reflected by means of the estimated model’s
parameter in Equation (5). The marked symmetry between RP and NP exhibits climate variability
among basins and over years [6,16], suggesting that the observed trend will carry on in different
regions and that applying the same model with the previously-calibrated parameters is feasible [15].

The hydrological balance trend depends on climate conditions, and its variability was attributed
to landscape conditions [59]. This study associated the predominant rock type in each subwatershed
with its transmissivity, which in turn was associated with the model’s parameter (Equations (9)). Tague
and Gran [60] assert that subwatershed geology is a primary control in the baseflow-generation process.
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A more direct storage-discharge relation was found at subwatersheds whose soils were formed by
permeable rocks.

According to Price [61], permeable or fractured rocks can store large amounts of water, as opposed
to crystalline or very compact rocks. At subwatersheds where low-permeability rocks are predominant,
RP values were lower. The results agree with Walton [62]; this author noted that the basins with greater
groundwater discharge speed are those with low-permeability rocks. Meanwhile, Sanchez et al. [57]
found that subwatersheds with basaltic rock presence tended to be drier and to have shorter recession
times. These basins are also characterized by a low value of the index of aridity, which can accelerate
the recession rate.

4.3. Baseflow Separation

The analyzed subwatersheds were selected by virtue of their minimum anthropogenic
disturbances. Therefore, it is feasible to assume that the flow that feeds the outflow during a period of
recession corresponds to the BF.

Our research showed that the recession parameter clearly exhibited spatial patterns across

subwatersheds [63]. Subwatersheds within the same climatic conditions (similar values of
P
E

) exhibited
different RP values, which according to Brooks et al. [64] depend on local landscape features, although
in our work, it depended on the dominant lithology of each subwatershed. On account of its trend, the
recession parameter is assumed to be an aquifer’s recharge rate, which includes the intrinsic properties
of each aquifer (hydraulic conductivity, porosity, transmissivity and surface) [35].

Analyzing the RP over time, Salas et al. [38] observed that the recession curve is the scale
parameter modeling the separation of baseflow from direct flow by means of a non-linear function. This
observation is similar to that presented by Paz et al. [22,65]. When analyzing potential functions, they
concluded that if parameters match at one common point, it means that the parameters are correlated
(fit a linear function). In this case, analytical modeling can be simplified to a single parameter, and
setting one a priori value is avoided. This approach will be addressed in future research aimed at
making comparable methods of setting b subjectively or estimating it analytically.

The daily time series of rainfall and streamflow were compared. Generally, a more or less one-day
lag-time was observed between maximum precipitation events and runoff. According to Caro and
Eagleson [66], the lag-time is due to an increased hydraulic charge within the aquifer accelerating the
stored water exfiltration towards the main currents. The exponential model proposal complies with
the principle of BF never being equal to direct flow, due to the ground storage-evapotranspiration
interaction, even with no precipitation [67].

This research is based on a top-down approach, that is to say, with the information available and
hydrological support, it is possible to infer a complex phenomenon, which is commonly analyzed
under a reductionist approach [14]. One example of this is given by Gholami et al. [68], who analyzed
subterranean water fluctuations using dendrochronology with satisfactory results. These examples
challenged the paradigm of always using the same variables in hydrological studies and offered an
alternative to apply these conditions in future research.

The proposed BF generalized model requires only precipitation and evapotranspiration variables
to estimate baseflow; these variables are readily available across the country, making its operational
implementation feasible. The model has one additional distinct advantage: the maximum Qb events
correspond to the recession curve initial value. According to Aksoy and Wittemberg [34], the
aforementioned feature involves an aquifer’s recharge-storage-discharge interactions. The advantages
of applying this type of model are the possibility of interpreting parameters by their association with
observable physical features and operative parsimony [69].

The analysis presented in this paper separated the BF for 21 Mexican subwatersheds. Furthermore,
a coherent digitalization for each acquisition area was obtained, i.e., the measuring station was deemed
the starting and ending point for determining each subwatershed surface, which contrasts with current
basin cartographic products in the country.
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The climate grid contains information under quality control standards, which allows for certainty
regarding input data. Furthermore, the basin-to-basin analysis of annual recession curves showed the
intrannual interaction within those basins due to climate variability.

Although information on vegetation and groundwater levels is not available operationally in
the country, this study was directed towards the discovery of patterns in the obtainable data and the
formulation of hypotheses concerning subwatershed interactions, aiming to avoid the redundancy of
using observations to calibrate a priori constructed models [14].

5. Conclusions

The results of this study demonstrate that baseflow (BF) can be separated from direct flow by using
a single-parameter non-linear model. The higher variability and low model fitting of our proposed
model was related to subwatershed geology and climate variables. This allowed us to use variables
that are easily available in the country. It was feasible to calibrate the non-linear model using only the
longer duration recession curve, unlike the traditional approach using the master curve.

The recession curve maintains a symmetric trend over years and within measured subwatersheds
located in protected natural areas with diverse landscapes and climate conditions in Mexico. The BF
generalized model is a result of accurate observations from different geographic regions in the country,
and so, it can be utilized for separating BF in non-measured basins. Our ensuing research considers
analyzing the interaction of BF with available ground humidity for short time scales.

Despite the limited information, the generalized BF model may represent a baseline for the
generation of alternative modeling approaches. Such an accomplishment should include functional
elements that explore the baseflow behavior based on multiple spatial and temporal scales. In order to
improve the calibration model, we recommend incorporating local variables (e.g., canopy, soil moisture,
groundwater levels), and we also suggest including subwatersheds affected by anthropogenic activity,
so as to analyze flow changes ascribable to climate oscillation or human influence.
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Abstract: A major structural inconsistency of the traditional curve number (CN) model is its
dependence on an unstable fixed initial abstraction, which normally results in sudden jumps in
runoff estimation. Likewise, the lack of pre-storm soil moisture accounting (PSMA) procedure is
another inherent limitation of the model. To circumvent those problems, we used a variable initial
abstraction after ensembling the traditional CN model and a French four-parameter (GR4J) model
to better quantify direct runoff from ungauged watersheds. To mimic the natural rainfall-runoff
transformation at the watershed scale, our new parameterization designates intrinsic parameters
and uses a simple structure. It exhibited more accurate and consistent results than earlier methods
in evaluating data from 39 forest-dominated watersheds, both for small and large watersheds. In
addition, based on different performance evaluation indicators, the runoff reproduction results show
that the proposed model produced more consistent results for dry, normal, and wet watershed
conditions than the other models used in this study.

Keywords: hydrological model; pre-storm soil moisture; runoff prediction; variable initial abstraction

1. Introduction

The one-parameter traditional curve number (CN) model (CN model) developed by the U.S.
Soil Conservation Service (SCS) now known as Natural Resources Conservation Service (NRCS),
has enjoyed a long history of application as a lumped hydrological model. Its simplicity, versatility,
and the availability of the necessary data have made it popular worldwide, as reported in [1], and
an essential component in various hydrologic models, including water balance and storm routing
models. Obviously, the CN model is reputable in the realm of applied hydrology, and CN is
a mature concept that will remain in the forefront of engineering design. Its different versions,
despite the complicated forms that result from introducing new parameters, cannot apply directly in
approximating real situations because of the problem of model closure. Therefore, the CN model has
been one of the most appealing and popular models for watershed runoff estimation for more than
six decades [2]. The unavailability of any other simple contender has allowed this model to enjoy a
long application history [3]. The widespread application of the CN model has led to its inclusion in
hydrological software for surface runoff computations, such as CREAMS, CELTHYM, EPIC, HELP,
L-THIA, PRZM, SWAT, SWIM [4], AGNPS, EPA-SWMM, GLEAMS, HEC-HMS, NLEAP, WinTR20, and
WinTR55 [5]. Furthermore, the absence of hydrologic gauging stations and the high cost of gauging
station installations lead hydrologists to estimate the surface direct runoff for ungauged watersheds
using various techniques, and the CN model plays the leading role in such a situation [6].

Nonetheless, the CN model is not without its shortcomings. Despite its wide applications, the CN
model has some limitations and misapprehensions caused mainly by its basic empirical assumptions [5].
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For example, it considers a three-step CN variation based on three antecedent moisture conditions
(AMCs), dry, normal, and wet, which permit unreasonable sudden jumps in runoff estimation [7].
Using tabulated CNs also underestimates most of the storm surface direct runoff in steep slope
watersheds [8]. Furthermore, application of the CN model for forested watersheds can result in an
inaccurate estimate of runoff from a given storm rainfall [9–11]. Thus, despite the long history, the
CN model requires further study to develop and introduce a more robust model to better estimate
runoff. Among other researchers, [1] and [11] modified the CN model to improve its runoff prediction
capability. The modification proposed by [1] introduced storm-to-storm variation by incorporating a
new parameter (Mc) to account for soil moisture before rainfall occurrence. However, this parameter
sometimes results in negative values, which limits its applications [1]. The simplified one-parameter
modified model suggested by [11] claimed improved runoff prediction. Nevertheless, that model has
been criticized for not preventing the sudden jumps in runoff estimation [4,5,12]. To avoid sudden
jumps in runoff estimation, simulated soil moisture (SM) has been employed using the soil water
balance equation [13]. Further the parameter S (maximum potential retention) of the CN model has
been determined by means of an experimentally derived relationship between S and SM as S = a(1–θe),
where θe is the simulated relative SM at the beginning of the rainfall storm event and a is a parameter to
be optimized. However, due to limited data in ungauged watersheds, neither θe nor a can be estimated
and hence this reduces the application of the CN model only for gauged watersheds. Recognizing
the limitations of the traditional CN model and its modified versions, we set out to develop a new
ensembled lumped model that accounts for a continuous initial abstraction and prevents sudden
jumps in runoff estimation. In addition, by using a small number of required parameters, we intended
for our new conceptualization to be less sensitive to CN variation and structurally more consistent
than the traditional CN model and its modified versions.

2. Materials and Methods

2.1. Study Area and Data

To analyze the runoff reproduction, we selected 39 South Korean forest-dominated mountainous
watersheds. The selected watersheds represent the overall hydro-meteorological setting of South Korea
and their corresponding characteristics are described in [14]. The selected watersheds vary in size
from 42.32 to 888.01 km2 and are characterized by low to high elevations (26 to 911 m above mean sea
level) with average slopes from 7.50% to 53.53%. In Table 1, we differentiated the watersheds as small
(Area ď 250 km2) and large (Area > 250 km2) following [9]. The land cover is mainly forests, followed
by agricultural and urbanized land as illustrated in Table 1. Loam and sandy loam are the two major
soil textures with some fractions of silt loam.

We collected 30 min time-step rainfall data from the Korea Meteorological Administration
(KMA) whereas observed discharge data at the same time step came from the Hydrological Survey
Center (HSC) of Korea. We used land cover information from the Ministry of Land, Infrastructure,
and Transport (MOLIT). The collected measurements constitute 1804 rainfall-runoff events from
39 watersheds between 2005 and 2012. Figure 1 gives the locations of the large watersheds in the study
area; the small watersheds can be seen in [14].

To separate baseflow and direct runoff from discharge, we used the straight-line hydrograph
method [15]. We first screened the measured data to exclude small storm rainfall events
(P < 25.4 mm) to prevent bias in estimating runoff using the traditional CN model [16]. We applied the
P5 (the accumulated prior five days rainfall) criterion to determine the watershed antecedent condition
to adjust the CN and its corresponding S values from normal to dry and wet conditions [12]. We took
the composite CN by applying the procedure documented in the NRCS [17] based on the watersheds’
land cover characteristics, which we considered to be the same for all models. According to [18],
hydrological models are more reliable when they reproduce satisfactory measurements, especially
from watersheds with limited data. To make the models applicability more realistic in ungauged
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watersheds, we did not calibrate any of the parameters used in this study. Some statistics regarding
the measured and predicted data are shown in Table 2.

Table 1. Watersheds and data description.

WS ID
Watershed

Name
Major Land Cover Distribution (km2) Area

NOE
ME α

CN
Forests Agriculture Urbanized Grass (km2) (m) (%)

Small watersheds, Area ď 250 km2

WS01 Cheonwang 97.05 57.51 30.82 3.86 42.32 29 26 13.40 66
WS02 Daeri 47.31 1.67 0.39 0.25 60.45 39 424 48.13 75
WS03 Janggi 36.76 23.80 2.44 1.11 62.80 42 146 21.50 70
WS04 Dopyeong 106.03 27.75 15.42 3.70 138.36 34 173 28.71 64
WS05 Chunyang 105.06 23.66 2.69 5.20 143.10 40 197 34.30 60
WS06 Cheongju 14.95 14.48 17.23 0.50 161.44 70 202 20.10 69
WS07 Boksu 119.09 30.83 5.02 1.30 161.90 26 343 35.50 60
WS08 Donghyang 111.34 44.76 4.51 2.67 164.66 68 911 35.09 64
WS09 Maeil 152.06 20.79 0.48 0.13 174.86 60 517 39.65 53
WS10 Yulgeuk 42.41 110.95 15.47 3.72 179.95 38 113 7.50 71
WS11 Toigyewon 137.55 37.86 14.06 6.05 200.45 44 285 26.70 64
WS12 Jungrang 94.17 15.54 83.26 2.01 208.41 42 219 17.30 67
WS13 Soochon 79.46 108.11 18.42 2.09 223.19 31 76 15.40 73
WS14 Guryong 163.71 65.18 7.08 3.95 245.50 33 244 26.60 65
WS15 Yoosung 167.64 48.15 17.64 7.29 249.63 65 349 27.30 71

Large watersheds, Area > 250 km2

WS01 Kyeongan 153.70 44.73 37.15 11.50 256.91 89 165 22.86 63
WS02 Jeonju 169.78 59.36 39.36 5.03 278.00 72 168 28.33 70
WS03 Cheoncheon 183.91 72.31 8.18 16.85 284.03 89 554 32.23 58
WS04 Gwanchon 217.56 62.11 7.90 7.65 301.26 49 420 33.70 70
WS05 Gapyeong 274.05 18.52 5.28 2.21 305.12 39 490 45.40 69
WS06 Heukcheon 232.82 57.19 13.04 3.75 307.82 19 253 32.70 59
WS07 Heungcheon 124.45 135.52 31.07 7.32 309.08 28 112 13.80 67
WS08 Bookcheon 377.04 123.35 36.04 15.97 330.20 38 733 53.53 52
WS09 Changchon 280.95 35.50 5.64 2.45 335.07 83 523 41.82 68
WS10 Ohsoo 210.60 118.95 11.00 3.92 350.09 61 243 24.60 62
WS11 Wangsungdong 374.02 20.97 1.33 2.12 378.67 24 866 47.80 61
WS12 Sanganmi 350.57 40.55 4.31 2.62 402.45 26 778 39.40 61
WS13 Shinan 301.16 87.52 9.36 3.32 411.96 56 244 31.25 71
WS14 Janghowon 181.36 182.02 23.52 10.92 431.23 26 678 16.80 65
WS15 Youngjung 288.93 101.36 30.87 12.28 445.36 29 268 27.00 61
WS16 Sangyegyo 331.21 134.62 13.42 3.29 496.30 35 268 29.40 71
WS17 Cheongmi 215.69 219.85 29.82 14.12 514.66 30 147 16.70 78
WS18 Hwachon 443.38 50.85 6.45 0.91 523.20 59 499 41.40 57
WS19 Banglim 448.67 56.84 5.81 3.30 527.12 30 763 40.20 63
WS20 Joocheon 449.10 68.49 5.74 1.90 533.23 65 608 38.12 58
WS21 Hoideok 362.89 105.74 94.04 23.68 609.15 41 170 25.70 70
WS22 Songcheon 455.78 131.15 11.86 4.54 612.17 54 386 33.25 64
WS23 Pyeongchang 609.60 79.87 8.92 4.47 697.67 64 734 40.30 64
WS24 Panwoon 757.06 99.67 11.18 6.29 888.01 37 678 40.88 60

WS ID, NOE, ME, and α are the watershed identification, number of events, mean elevation, and mean
slope, respectively.

Table 2. Statistics of model outputs from the combined data set from 39 watersheds.

Data
Type

Parameter/
Model

Statistics

Min Mean Median Max SD Skewness
25th

Percentile
75th

Percentile

Observed
data

P (mm) 25.12 78.94 58.32 519.68 60.89 2.32 40.03 94.02
P5 (mm) 0.00 58.18 34.80 629.80 75.12 2.63 6.95 79.00

T (h) 1.50 19.62 16.00 154.00 13.96 2.71 11.00 24.00
Qo (mm) 0.17 37.26 19.36 364.38 46.81 2.46 8.10 46.96

Modeled
data

(Qc(mm))

CNM 0.00 24.36 6.22 415.63 44.50 3.50 1.49 24.48
MCM 0.56 44.56 26.08 487.31 55.02 2.63 7.71 56.38
MRM 0.00 30.84 11.42 432.04 48.60 3.01 1.17 37.64
AJM 1.62 34.69 20.05 375.63 41.52 2.97 9.95 40.47

Other parameters are defined in the text, T is the storm duration.
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Figure 1. Location of large watersheds (Area > 250 km2) in the study area. Small watersheds
(Area ď 250 km2) can be seen in [14].

2.2. Development of a New Hydrological Model

2.2.1. The Traditional CN Model (CNM)

For a given P and its corresponding initial abstraction, Ia, the traditional CN model in general is
expressed as:

Q “ pP ´ Iaq2

P ´ Ia ` S
“ pP ´ λSq2

P ´ λS ` S
(1)

where Q, P, Ia, λ and S are surface direct runoff (mm), total rainfall (mm), initial abstraction (mm),
initial abstraction coefficient (dimensionless), and potential maximum retention (mm), respectively.
The standard Ia = 0.20S [19] and its one modified version for comparable improved runoff prediction is
Ia = 0.05S [20]. Different researchers have found structural inconsistencies in the traditional CN model,
such as sudden jumps in S with corresponding runoff values for dry, normal, and wet conditions [11,12].
Similarly the standard Ia = 0.20S has been found to be unreasonably high; and researcher across the
globe suggested Ia < 0.2S (e.g., [1,14,20–23]). For the CNM, we estimated the weighted composite CN
for watershed characteristics and calculated the transformed S using the following Equation:

S “ 25.4
ˆ

1000
CN

´ 10
˙

(2)

2.2.2. Mishra et al. Model (MRM)

To prevent unreasonable sudden jumps in runoff estimation, the relationship for Ia was modified
by incorporating a new parameter (Mc) to account for soil moisture content before the rainfall
occurrence [1]. The modified Ia is expressed as:

Ia “ λS2

S ` Mc
(3)
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The new parameter (Mc) can be found from the prior five days accumulated rainfall (P5), λ and

S as MC “ ´0.5
„

p1 ` λq S ´
b

p1 ´ λq2 S2 ` 4P5S
j

or with a more simplified version MC “ β
?

P5S

where β = 0.72 is the optimized coefficient. Despite some improvements in runoff prediction, the
application of Mc in [1] sometimes causes negative Q values, which is the major drawback of that
formulation. Therefore, the model should be revisited to eliminate this complication when estimating
runoff. For runoff estimation, the MRM can be expressed as:

Q “ pP ´ IaqpP ´ Ia ` Mcq
P ´ Ia ` Mc ` S

(4)

In Equation (4), MC “ 0.72
?

P5S which is one of the best versions presented in [1] and Ia is
calculated using Equation (3) (λ = 0.2).

2.2.3. Michel et al. Model (MCM)

For λ = 0.2, the simplified forms of the MCM for dry (AMC-I), normal (AMC-II), and wet
conditions (AMC-III), respectively, are as follows:

Q “ P2

P ` S
(5)

Q “ P
ˆ

0.48S ` 0.72P
S ` 0.72P

˙
(6)

Q “ P
ˆ

0.79S ` 0.46P
S ` 0.46P

˙
(7)

Similarly, a simplification of the model parameters reported in [11] also considers a three-step
S parameter and cannot eradicate the problem of sudden jumps in runoff prediction.

2.2.4. The Proposed Model (AJM)

To circumvent the sudden jumps and other inconsistencies, we here derived a new model
ensembling the traditional CN and GR4J models [23] with the pre-storm moisture content concept [11]
and further introduced a continuous S formulation. The GR4J (which stands for modèle du génie rural
à 4 paramé tres journalier) is a French daily lumped four-parameter rainfall-runoff model that belongs
to the family of soil moisture accounting models. It determines four parameters for daily runoff
prediction: maximum storage capacity, groundwater exchange coefficient, one day prior maximum
routing storage capacity, and time base of unit hydrograph. More details on the GR4J model are
available in [23].

We replaced the Mc in Equation (3) with Vo adopted from [11], to make the following relationship:

Ia “ λS2

S ` Vo
(8)

where Vo is the soil moisture content before a storm event. Different values of Vo are found for
different AMCs [11] which are differentiated based on P5 [14]. Using the available CN adjustment
formulae from normal (AMC-II) to dry (AMC-I) and wet (AMC-III) conditions, the expression for Vo

becomes [4]:

Vo “ γS for AMC-II (9)

Vo “ γ

„
S

2.3

j
“ 0.435γS for AMC-I (10)
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Vo “ γ

„
S ` 289.56

0.43

j
for AMC-III (11)

where γ is the fraction to link Vo and S that can be optimized from measured data. After testing
the measured rainfall-runoff data from 140 French watersheds with different surface and variable
moisture conditions, Vo as some fraction of S was simplified for dry, normal and wet conditions as;
Vo = 0.33S, Vo = 0.61S, Vo = 0.87S, respectively. Taking λ = 0.20, as generally assumed for practical
applications in the traditional CN model, and substituting Vo from Equations (12)–(14), respectively
into Equation (8) gives:

Ia “ 0.2S2

S ` 0.33S
“ 0.150S for AMC-I (12)

Ia “ 0.2S2

S ` 0.61S
“ 0.124S for AMC-II (13)

Ia “ 0.2S2

S ` 0.87S
“ 0.107S for AMC-III (14)

To incorporate the new initial abstraction formulation, we conceptualized a new model by
combining the CN model, the PSMA procedure [11], and the event-based empirical GR4J model. To do
this, we initialized Vo as the soil moisture store level at the onset of an event and V as the moisture
level corresponding to the total rainfall P [11].

V “ Vo ` P ´ Q (15)

Substituting Q from Equation (1) into Equation (15) yields

V “ Vo ` P ´ pP ´ Iaq2

P ´ Ia ` S
“ Vo ` pS ` Iaq P ´ Ia

2

pP ´ Ia ` Sq (16)

Now the simplified form of the GR4J runoff model described in [11] can be expressed in its
cumulative form as:

Q “ pP ´ PEq ˆ
ˆ

V
S ` Sa

˙2
P ą PE (17)

Here PE is the daily potential evapotranspiration and is assumed negligible because the runoff
from rainfall usually lasts for an event of sufficiently limited duration [24]. Hence, the above
equation becomes:

Q “ P ˆ
ˆ

V
S ` Sa

˙2
(18)

Equation (18) yields Q = P for V = S + Sa as a maximum capacity of V, where Sa is an intrinsic
parameter equal to; Sa = Vo + Ia [11]. Substituting the expression for V from Equation (16) into
Equation (18) and simplifying yields

Q “ P ˆ
«

Vo pP ´ Ia ` Sq ` pS ` Iaq P ´ Ia
2

pP ´ Ia ` Sq pS ` Vo ` Iaq

ff2

(19)

Now, substituting Ia = 0.15S from Equation (12) and Vo = 0.33S (assuming the watershed dry
condition), after simplification Equation (19) becomes:

Q “ P ˆ
„

1.48PS ` 0.258S2

1.48PS ` 1.258S2

j2

or Q “ P ˆ
„

P ` 0.174324S
P ` 0.85S

j2
(20)

It is interesting that Equation (20) is a simple, one-parameter model like the traditional CN model.
Using the traditional CN model, as in Equation (1), after substituting Ia from Equation (13) could
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improve runoff prediction if S is taken as the transformed value from the dimensionless CN assessed as
a function of land use/cover, soil types, and AMCs (differentiated from P5). However, many researchers
of various Mediterranean watersheds reported limitations and drawbacks to that approach, and it
inconsistently displays pre-storm soil moisture temporal variations (e.g., [19,25–27]). Some researchers
(e.g., [26,28]) have specifically mentioned that the cumulative rainfall in the previous five days is not a
good proxy of the wetness conditions of the catchment before a flood event. Similarly, the use of a
fixed Ia in the traditional CN model causes unusual sudden jumps in runoff estimation [1,4,11,12]. To
circumvent this issue, we present a continuous spatio-temporal expression for the initial abstraction

by replacing the S value in the proposed model with a new expression; S ˆ
ˆ

P
P ` P5

˙
. Assuming a

watershed in dry condition, Equation (12) for the new Ia becomes

Ia “ 0.15S
ˆ

P
P ` P5

˙
(21)

Substituting Equation (21) into Equation (19), and retaining Vo = 0.33S for dry watershed condition
and simplifying gives:

Q “ P ˆ
ˆ

P5 ` P ` 0.174324S
P5 ` P ` 0.85S

˙2
for P ą 0.15S

ˆ
P

P ` P5

˙
(22)

For P5 Ñ 8 then Q Ñ P which means the watershed is fully saturated by pre-storm soil moisture
content and it has no more capacity to retain water. Hence all rainfall will be converted to runoff.
In the case of S Ñ 0, then Q = P, whereas, if S Ñ P and P5 = 0 (dry condition), then Q = 0.40P. Using
this new model (Equation (22)) does not require any adjustment for S values from normal to dry or wet
conditions, because the P5 variation accounts for the Ia adjustment associated to different pre-storm
soil moisture responses in a watershed.

From this point, we investigated four models in this study: the traditional CN model (CNM), the
model proposed in [11] as Michel model (MCM) and in [1] Mishra model (MRM), and our proposed
model (AJM). Details of the different models are given in Table 3.

Table 3. Models and their corresponding parameters identification.

Model ID λ CN Model Expression Remarks

CNM 0.20 NEH-4 Tables Equations (1) and (2) Original CN model in [17]
MCM -do- -do- Equations (2), (5), (6) and (7) Modification in [11]
MRM -do- -do- Equations (2)–(4) Modification in [1]
AJM -do- -do- Equations (2) and (22) Proposed Model

-do- means as above.

3. Models’ Goodness-of-Fit Evaluation

A vital step in evaluating and inferring model results is creating graphs to display them and
determining goodness-of-fit indicator values to quantify model performance in terms of prediction
accuracy [29]. No formal standards evaluate goodness-of-fit to data visually or numerically through
quantitative assessment. This leads to considerable variability in the techniques used, which are
frequently decided based on applications in previous similar studies. According to [30], model
evaluation (validation) and sometimes performance are judged by comparing calculated values with
measured benchmark data. Commonly, evaluations of model performance are based on several
statistics and techniques. To assess models’ prediction accuracy quantitatively, the most commonly
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used methods are the root mean squares error (RMSE) [15,31–33], Nash-Sutcliffe efficiency (NSE) [32–34],
and Percent Relative Error (PRE) [35] expressed as:

RMSE “
«

1
N

Nÿ
i“1

pQo ´ Qcq2
i

ff0.5

(23)

NSE “
«

1 ´
ˆ

RMSE
SD

˙2
ff

(24)

PRE “
«řN

i“1 pQo ´ QcqiřN
i“1 pQoqi

ff
ˆ 100 (25)

where Qoi and Qci are the observed and estimated runoff values for storm events i to N and SD is the
standard deviation of observed data. Smaller RMSE values (optimum = 0.0) depict better model runoff
estimation. Here, Qo represents the mean of observed runoff values for storm events i to N. A model
is deemed satisfactory if its NSE > 0.50 [35]. Another recent study considered a hydrologic model
satisfactory if NSE > 0.65 [36].

We further tested the appropriateness of each model based on the best-fit distribution and its
corresponding statistic for the cumulative observed and modeled runoff from the 39 watersheds. To do
so, we analyzed the observed and modeled data using three different tests: Kolmogorov-Smirnov test,
Anderson Darling test, and chi-squared test [37]. We used those tests to identify that the data belong
to a specific distribution. We identified the best-to-worst fit distribution for those three tests from
rank 1 to rank 18 after analyzing for 18 different distribution fittings. The model depicting the same
distribution fit as exhibited by the measured runoff would be the best alternative for runoff prediction
in the study area. Significant agreement between the measured and modeled runoff can be further
validated in comparing models based on closeness of statistical values from any of the aforementioned
three tests.

Beside the above evaluation indicators, to examine the model performance, the time series data
for measured and modeled runoff were compared for two example watersheds selected from the study
area. In addition, percent errors on peak discharge (EQP ) [13] were also calculated to identify the
physical behaviors of the models in estimating runoff.

EQP “
„

maxpQoq ´ maxpQcq
maxpQoq

j
ˆ 100 (26)

where max (Qo) and max (Qc) are the maximum peak discharge values for the observed and
modeled runoff.

4. Results and Discussion

To select an appropriate physical relationship between P5 and Ia we assessed the watersheds’
runoff-producing response for the common discrete (fixed) Ia = 0.2S and the proposed variable
(continuous) formulation. This assessment was accomplished once the pre-storm soil moisture was
adjusted in Ia based on the recommendation from [11] and was subsequently adopted by other
researchers in their studies (e.g., [4,5,12]). In our analysis, we kept the CN as a major parameter
obtained from watershed characteristics under normal conditions fixed for all models. The measured
rainfall-runoff events we used in the model assessments were characterized by a complex pattern to
represent a diverse response. Considering P and CN as the fundamental and common parameters and
other physiographic characteristics as shown in Table 1, all the models compared in this study both
structurally differ from each other and lie within the parameter space of the traditional CN model.

Figure 2 illustrates the variation of fixed and variable Ia used in the CNM and AJM respectively.
For the CNM, the evident high Ia and sudden jumps in S were the two major reasons for
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underestimating runoff from steep slope watersheds like in South Korea. As illustrated [9], the
traditional CN model should be employed cautiously in watersheds larger than 250 km2. Keeping
in mind this criteria, the model’s analysis was carried out for small (Area ď 250 km2) and large
(Area > 250 km2) watersheds as well as based on pre-storm watershed hydrological conditions
(dry, normal and wet). As shown in Figure 3a, for small watersheds, the MCM showed no evident
improvement in terms of mean (median) RMSE (mm) values of 22.66 (23.25) compared to the CNM
values of 22.07 (20.15). However, the spread of RMSE values in those watersheds between the 25th
and 75th percentiles depicted improvement followed by the MRM with mean (median) RMSE of
20.79 (18.78). Contrarily, the AJM indicated more accurate mean (median) RMSE of 13.13 (12.34). The
improved results by the AJM indicate the reliability of the proposed variable Ia in estimating runoff
from mountainous watersheds compared to the CNM and the models presented in [1] and [11].

I a 
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Figure 2. Variation of fixed and variable initial abstraction (Ia) for rainfall events in (a) dry condition;
(b) normal condition; and (c) wet condition.

To assess the model’s efficacy in large watersheds, as shown in Figure 3b, it is similar to that for
small watersheds, as depicted in Figure 3a. The mean (median) RMSE for the CNM, MCM, MRM, and
AJM were 27.94 (24.85), 27.00 (25.86), 25.50 (23.48) and 17.40 (16.16), respectively. The MCM showed
almost no improvement over the CNM and the MRM exhibited modest improvement, whereas the
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AJM indicated significantly lower RMSE values in all watersheds. The cumulative RMSE values
for all types of events, shown in Figure 3c, support that the AJM has more reliable results than the
other contenders. The consistently lower RMSE values evidenced by the AJM for all kinds of events
(combined dry, normal, and wet conditions from 39 watersheds) indicate its superiority.

Analyzing the runoff prediction efficacy illustrated by different models using NSE as the
performance indicator demonstrated modest improvement by the MCM followed by the MRM, as
shown in Figure 4a. The mean NSE (0.57) for the MCM showed almost no improvement compared
to the CNM mean NSE (0.57), but the spread of the NSE from this figure indicates good model
performance by the MCM. Moreover, the MRM mean NSE (0.63) indicated some increases in the
model’s overall efficacy compared to the CNM and MCM. Nevertheless, the AJM had the highest
NSE values (mean 0.85) indicating its reliability for accurate runoff estimation in small watersheds.
Figure 4b evidences a similar pattern of performance for large watersheds. Here, the mean NSE for the
CNM, MCM, MRM, and AJM were 0.64, 0.65, 0.71, and 0.86, respectively. The higher NSE values in
both small and large watersheds confirmed the AJM enhanced runoff prediction. According to the
NSE criteria in [35], the CNM, MCM, MRM, and AJM had respectively, good to very good results
46.67%, 33.33%, 60.00%, and 100% of small watersheds. Similarly, the models respectively fulfilled
the same performance rating in 41.67%, 54.17%, 58.33%, and 100% of large watersheds. Considering
the performance rating criteria in [36], the good to very good performance by the CNM, MCM, MRM,
and AJM respectively, was in 26.67%, 6.67%, 26.67%, and 66.67% of small watersheds. Likewise, those
ratings respectively were met in 25.00%, 16.67%, 37.50%, and 87.50% of large watersheds.

 

Figure 3. Model performance based on root mean squares error (RMSE) (a) in small watersheds
(Area < 250 km2); (b) in larger watersheds (Area > 250 km2) and (c) for different types of events (dry,
normal, and wet).
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For cumulative events, all AMC-I, AMC-II and AMC-III events from 39 watersheds, the
CNM showed improvement from AMC-I to AMC-II and AMC-III. However, the MCM exhibited
improvement in AMC-II events compared to AMC-I but worse results in AMC-III. The MRM increased
in efficiency from AMC-I to AMC-II and AMC-III events. Nonetheless, the higher and consistent NSE
values exhibited by the AJM indicated superior performance in all watersheds for all types of events.
This performance can be attributed to the incorporation of the variable Ia in the CN model in the AJM.

The RMSE and NSE cannot indicate over- or underestimation of the model runoff. Therefore,
we assessed the models’ performances using the PRE statistic. Figure 5a,b show that the CNM most
underestimated all events, followed by the MRM. Contrarily, the MCM overestimated runoff for the
majority of the events. Both the CNM and MCM were inferior because their PRE values are in the
unsatisfactory range (PRE ě +25 or PRE ď ´25) [14,35]. The mean PRE (%) in small (large) watersheds
for CNM, MCM, MRM and AJM respectively were 36.55 (34.64), ´23.01 (´20.83), 13.04 (16.59), and
5.66 (8.26). Evidently, both in small and large watersheds, the mean PRE values for the AJM were in
the very good performance range [14,35]. Using the PRE statistics, all models show better performance
in large watersheds than in small watersheds in the mountainous parts of the study area.

 

Figure 4. Model performance based on Nash-Sutcliffe efficiency (NSE) (a) in small watersheds
(Area ď 250 km2); (b) in larger watersheds (Area > 250 km2) and (c) for different types of events
(dry, normal and wet). The circled NSE value for the CNM shows the second overall value (the
minimum was ´0.05, which is not shown here).

For not only the cumulative events from all 39 watersheds, but also the cumulative AMC-I, II, and
III events, the AJM more accurately and consistently predicted the runoff. On the contrary, the other
models were inconsistent in their runoff predictions. The performance ratings of different models
for runoff prediction are given in Table 4. Using different statistical indicators, the proposed model

33



Water 2016, 8, 20

performed significantly better than the other models investigated. One reason for the CNM’s inferior
results might be the watersheds slope difference. The CNM was derived from rainfall-runoff data from
watersheds with up to 5% slope [15], whereas the watersheds in our study area range between 7.50%
and 53.53% slope (refer to Table 1). In addition, no statistical indicator showed any significant overall
performance difference in predicting runoff from small or large watersheds, which indicates that the
size of watershed is not a major concern for any models in this study.

Table 5 shows the best-fit distribution, ranking 1 out of 18 different continuous distributions
associated with each test for observed runoff and that predicted by models. It is evident that the
observed and AJM-based estimated runoff not only followed the Log-Pearson 3 (LP3) distribution
with rank 1 from all three tests but also signified their association from very close test statistic values.
Contrarily, the runoff modelled with the CNM and MRM were fitted to other types of distributions.
The MCM output runoff values match only the LP3 test based on the Anderson Darling test with
comparatively high test statistics. These distributions and their associated test statistics also showed
that the proposed model (AJM) exhibited more reliable runoff prediction for steep slope watersheds in
the study area than did the other models.

Figure 5. Model performance based on Percent Relative Error (PRE) (a) in small watersheds
(Area ď 250 km2); (b) in larger watersheds (Area > 250 km2); and (c) for different types of events
(dry, normal and wet).

We also evaluated the models’ performances using scatter plots (Figure 6) between the observed
and modeled runoff values for all events from 39 watersheds. It is evident that the CNM and MRM
underestimated the runoff and made inferior predictions for most events. The runoff estimated with
the MRM exhibited modest improvement compared to the CNM. The MCM depicted better results than
the CNM and MRM. However, the proposed (AJM) model produced more consistent and statistically
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significant results for runoff estimation. The close agreement between the measured runoff values
and those modeled by the AJM can be seen from the best-fit line approaching the 1:1 line with a high
coefficient of determination (R2 = 0.88) compared to that for the CNM (R2 = 0.75), MRM (0.76), and
MCM (R2 = 0.82).

A time series plot (Figure 7a,b) compares the measured and modeled runoff values for the selected
events from Cheoncheon and Donghyang watersheds highlighting the performance of different models
used in this study. It was found that the AJM is comparatively more consistent than the other models.

Figure 8 shows the model performance in individual watersheds and represents their cumulative
frequency distribution for the total 39 watersheds in this study. The maximum peak discharge values
were calculated after estimating the peak discharge for the individual storm events in the respective
watersheds. The evaluation based on the percentage error in peak discharge, EQP (Figure 8a) as well as
the percentage absolute error in peak discharge,

ˇ̌
EQP

ˇ̌
(Figure 8b), indicated that the runoff estimated

using the proposed model is in better agreement with the measured data when compared to other
models. Similarly, the CNM, MCM, MRM, and AJM depicted the overall mean (median) percentage
absolute peak discharge

ˇ̌
EQP

ˇ̌
for the 39 watersheds as 16.82 (19.19), 26.15 (25.66), 18.30 (15.99), and

14.33 (12.81), respectively. From these statistical scores the proposed model can be encouraged for
application in the study area as well as other hydrological similar areas.

Table 4. Model performance ratings in 39 watersheds based on different statistical indicators.

According to [35]

Model

Performance Index
Range 0.75 < NSE ď 1.00 0.65 < NSE ď 0.75 0.50 < NSE ď 0.65 NSE ď 0.50

Performance Rating Very good Good Satisfactory Unsatisfactory

CNM 14 2 12 11
MCM 10 8 13 8
MRM 15 8 12 4
AJM 36 3 0 0

According to [36]

Model

Performance index range NSE ě 0.90 0.80 ď NSE < 0.90 0.65 ď NSE < 0.80 NSE < 0.65

Performance rating Very good Good Satisfactory Unsatisfactory

CNM 2 6 8 23
MCM 1 3 14 21
MRM 1 10 12 16
AJM 13 17 9 0

According to [4,35]

Model

Performance index range PRE < 10 10 ď PRE < 15 15 ď PRE < 25 PRE ě 25

Performance rating Very good Good Satisfactory Unsatisfactory

CNM 1 0 10 28
MCM 14 25 21 17
MRM 14 2 13 10
AJM 19 8 11 5
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Table 5. Comparison of observed and modeled runoff based on best-fit distributions (statistic).

Test Type

Data Type/Model Kolmogorov-SmirnovAnderson Darling Chi-Squared

Runoff Best-fit distribution (Statistic)
Observed (Qo) LP3 (0.023) LP3 (1.273) LP3 (21.821)

Modeled (Qc)

CNM PBW (0.033) W (39.865) PBW (30.628)
MCM W (0.021) LP3 (8.696) GP (48.923)
MRM GEV (0.145) W (37.654) W (89.477)
AJM LP3 (0.024) LP3 (1.523) LP3 (15.949)

LP3 = Log Pearson 3; W = Wakeby; GP = General Pareto; PBW = Phased Bi Weibull; GEV = General
Extreme Value.

 

 

Figure 6. Comparison of events from all watersheds for (a) observed runoff (Qo) vs. predicted with
CNM; (b) Qo vs. predicted with MCM; (c) Qo vs. predicted with MRM; and (d) Qo vs. predicted
with AJM.
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Figure 7. Comparison between the measured runoff time series values and those obtained from
application of four models for (a) Cheoncheon watershed; and (b) Donghyang watershed.

 

 

Figure 8. Model evaluation for 39 watersheds based on: (a) cumulative distribution of percentage
error in peak discharge (EQP ), and (b) cumulative distribution of absolute percentage error in peak
discharge

ˇ̌
EQP

ˇ̌
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5. Conclusions

We tested the rainfall and runoff data collected for 1804 selected events from 39 mountainous
watersheds for runoff reproduction using our proposed model and three earlier contenders. Because it
underestimated the runoff for the majority of events, the CNM was found inferior to the other models.
This might be attributable to the fixed initial abstraction and the absence of a credible parameter for
pre-storm soil moisture, which results in sudden jumps in runoff estimation. After testing data from
140 French watersheds [11], researchers conceptualized an intrinsic parameter and incorporated it into
the CN model to enhance its runoff prediction capability. However, their simplified model was unable
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to circumvent sudden jumps in runoff prediction and hence overestimated the majority of events. The
model’s amendment presented in [1] was also unable to handle this inconsistency and provided only
modest improvement on the CNM.

In the proposed model, we conceptualized a CN-based ensembled approach by amending the
previously suggested formulation [1] for initial abstraction after incorporating the pre-storm soil
moisture adjustment [11]. To circumvent sudden jumps in runoff estimation, we used a continuous and
variable initial abstraction that depends not only on S, but also takes into account the storm magnitude
and the prior rainfall effects irrespective of the three AMCs. Our modification resulted in a structurally
more consistent model. Our proposed model has shown a high degree of reliability in predicting
runoff from a majority of watersheds in the study area irrespective of the watershed size. Because of
its simplicity and statistically reliable performance, the proposed model can be incorporated fruitfully
in continuous hydrologic modeling. Nevertheless, a thorough investigation is required for watersheds
of other biomes. In addition, the current study is limited to the prediction of runoff from large storm
rainfall events (P ě 25.4 mm). The application of the proposed model can be tested in future studies
by estimating runoff from small storm rainfall events (P < 25.4 mm). It could be more interesting to
compare runoff estimation based on watershed scale and the partial source areas.
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Abstract: Selecting an optimum number of calibration sites for hydrological modeling is challenging.
Modelers often spend a lot of time and effort on trial and error because there is no guide. We
propose a novel entropy method to automate the selection of the optimum combination of calibration
sites. To illustrate, the proposed entropy method is applied using discharge data from one river
basin in Korea. First, different combinations of discharge-gauging sites were grouped based on the
maximum information estimated by the entropy method. Then, a hydrological model was set up for
the study basin and was calibrated by estimating optimal parameters using a genetic algorithm at
the discharge-gauging sites. The calibration result confirmed that the model’s performance was best
when it was calibrated using the site number and combination suggested by the entropy method.
In addition, the entropy method was useful in reducing the time and effort of model calibration.
Therefore, we suggest and confirm the applicability of the entropy method in selecting calibration
sites for hydrological modeling.

Keywords: calibration sites; entropy; genetic algorithm; hydrological modeling

1. Introduction

Hydrological models are increasingly used to evaluate the impacts of climate, land use, and
crop management practices on the quantity of water resources [1]. The two main objectives of
hydrological modeling are to explore the implications of making certain assumptions about the nature
of the real-world system and to predict the system’s behavior under a set of naturally occurring
circumstances [2]. The successful application of any hydrological model is dependent on the quality
of its calibration [3]. As a result, developing calibration strategies is a requirement for their proper
application in hydrological modeling. During the calibration process, model parameters are estimated
by minimizing the deviation between the measured and simulated discharges. Researchers have
suggested a number of methodologies to improve calibration-related issues [4–11].

Over the past decades, information technologies, such as the Geographical Information System
(GIS), have developed significantly and several GIS-based hydrological models have been created.
The GIS provides spatial data as inputs for the variables needed in hydrological models. The GIS
has contributed to the change in hydrology from simplified conceptual models to high-resolution
distributed models. Runoff analysis, using a physically-based distributed model, gains an advantage
from its ability to reflect the spatial characteristics of a watershed’s physical parameters [12].
The parameters in a physically-based distributed model are classified as those set up through
observation and those set up through estimation. Ideally, parameters established through observation
should not require calibration; however, because of scale problems and observation errors, it is
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still required [4,13–17]. As the parameters are dependent on the topography, land cover and soil
characteristics are allocated by a grid or a sub-basin. There have also been many studies about real-life
case studies of soft computing techniques in hydrologic engineering [18–24].

Until now, the calibration of the hydrological model has focused on estimating the optimum
parameters. The traditional approach to calibrating hydrological models has relied on a single
objective function, such as Root-Mean-Square Error (RMSE) or Percent Bias, among others [25].
Local search methods, such as the simplex method [26], have a very low probability of success in
finding the global optimum parameter set [3]. Currently available global search methods are the
population-evolution-based Shuffled Complex Evolution-University of Arizona (SCE-UA) [3] and
Genetic Algorithms (GA) [27]. Other studies have also been conducted on the selection of calibration
sites. When runoff is calculated at multiple sites in a watershed, the most intuitive method to guarantee
the physical and hydrological similarities between the watershed where the model is calibrated and
the sub-basin where the model will be simulated is to calibrate the model using the stream gauges
near the sub-basin outlet [15,28–31]. Choi, et al. [31] and Zhang, et al. [32] suggested the importance of
calibration at multiple sites in the basin.

Recently, many discharge-gauging stations have been installed in basins to manage water
resources, such as forecasting and issuing warnings for possible flooding events. When establishing
and calibrating the hydrological model, the issue of selecting sites naturally arises. Of course, to
select discharge-gauging sites, the spatial resolution can be considered, depending on the purpose of
establishing the hydrological model and the quality or the importance of the discharge-gauging sites.
However, there is no generalized guide for this even though there have been a significant number of
studies as the above references, and it depends on the modeler’s experience. Sometimes we do not
have confidence in the calibrated results even though we spend a large amount of time and effort.
The aim of this study under the problems is to confirm the applicability of the entropy method when
selecting observation sites to calibrate the hydrological model in multiple sites. The basic theory of the
application methodology, including the entropy method, is introduced in Section 2. Section 3 is an
analysis and discussion of the application and the results of the methodology for the study basin, and
Section 4 consists of the study’s conclusion.

2. Methodology and Basic Theory

In this study, the procedure and methodology, as seen in Figure 1, were constructed to
review and confirm the entropy method’s applicability when selecting the calibration sites of the
hydrological model. Data were collected at the discharge-gauging sites within the study basin, and
discharge-gauging sites were combined based on the number of sites with maximum information.
Then, the Soil and Water Assessment Tool (SWAT) was established for the study basin, and the entropy
method was used to calibrate the model at the selected sites. GA was used to optimize the parameters
for each site. Finally, the model was calibrated using the site combination with maximum information,
depending on the selected number of sites, and the result was evaluated.

Figure 1. A schematic drawing of the analysis procedure.
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2.1. Entropy Method for Information Measurement

Shannon and Weaver [33] defined the marginal entropy for the discrete random variable, shown
in Equation (1):

H(X) = −
N

∑
n=1

p(xn)ln p(xn), n = 1, 2, 3, · · · , N (1)

where p(xn) is the occurrence probability of xn. The marginal entropy H(X) is the amount of
information (or uncertainty) of X.

If there exists ym(m = 1, 2, · · · , N) related to a random variable xn, it may be possible to reduce
the uncertainty of xn by using ym to estimate xn. Using this principle, the remaining uncertainty in X
with the given Y can be estimated, as shown in Equation (2):

H(X|Y) = −
N

∑
n=1

N

∑
m=1

p(xn, ym)ln p(xn|ym) (2)

where p(xn, ym) is the joint probability of X = {xn} and Y = {ym}, and p(xn|ym) is the conditional
probability of X with the given Y. H(X|Y) is then the conditional entropy of X with the given Y, which
can also be interpreted as the information loss in the transinformation between X and Y [34]. The
reduction of uncertainty in X with the given Y, or the transinformation between X and Y, is defined in
Equation (3):

T(X, Y) = H(X)− H(X|Y) (3)

This concept of entropy can be applied to the analysis of a hydrological time series. In this study,
the variable X is defined as the daily stream flow. It is assumed that X is a continuous random variable
with a probability density function f (x).

If the range of X is divided by the class interval Δx, then the marginal entropy X can be computed
with Equation (4):

H(X; Δx) � −
∞∫

0

f (x) ln f (x)dx − ln Δx (4)

Moreover, if the same class interval Δx is applied for Y, then the conditional entropy of X with
the given Y can be computed with Equation (5):

H(X|Y; Δx) � −
∫ ∞

0

∫ ∞

0
f (x, y) ln f (x|y)dxdy − ln Δx (5)

when X and Y follow the log-normal distribution function, the marginal entropy, the conditional
entropy, and the transinformation are derived, respectively, in Equations (6)–(8) [35]:

H(X; Δx) = μz + 0.5 ln(2πeσ2
z)− ln Δx (6)

H(X|Y; Δx) = μz + 0.5
[
ln(2πeσ2

z

)(
1 − ρ2

zω

)
]− ln Δx (7)

T(X, Y) = −0.5 ln
(

1 − ρ2
zω

)
(8)

where μz and σz are the mean and the standard deviation of z = (ln x), respectively, and ρzw
represents the cross-correlation coefficient between z and ω(= ln y). Chapman [36] also derived
the marginal entropy and the conditional entropy, like in Equations (9) and (10), while considering the
varying interval Δx/x to be proportional to the range instead of being a fixed class interva Δx. The
transinformation T(X, Y) between X and Y is independent of the class interval from Equation (8).

H(X; Δx/x) = 0.5 ln(2πeσ2
z)− ln(Δx/x) (9)
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H(X|Y; Δx/x) = 0.5
[
ln(2πeσ2

z

)(
1 − ρ2

zω

)
]− ln(Δx/x) (10)

The decision problem in calibration for hydrological modeling minimizes the redundant
information and maximizes the total information from the selected discharge-gauging sites. Thus, the
objective function of this optimization problem can be formulated as shown in Equation (11) [37,38]:

MAXITotal(X1, X2, · · · , Xm; Xi, Xii, · · · , Xk) (11)

where m is the total number of discharge-gauging sites operating in the basin and k is the number
of discharge-gauging sites selected of the m discharge-gauging sites. A set of k sites i, ii, · · · , k) is
selected to maximize the total information, ITotal(X1, X2, · · · , Xm; Xi, Xii, · · · , Xk). Equation (11) can
also be expressed as follows in Equation (12):

MAXITotal = MAX

[
H(Xi) + H(Xii) + · · ·+ H(Xk) +

m−k

∑
x=1

k

∑
y=i

T
(
Xx, Xy

)]
, x �= y (12)

where H(Xi) + H(Xii) + · · · + H(Xk) is the sum of the marginal entropy from the selected

discharge-gauging sites, and
m−k
∑

x=1

k
∑

y=i
T
(
Xx, Xy

)
is the sum of transinformation between the selected

and the unselected discharge-gauging sites. As the number of selected discharge-gauging sites
increases, the total information obtained increases, but then decreases after hitting a threshold number
of discharge-gauging sites. That is, the marginal entropy increases as the number of discharge-gauging
sites increases, while the sum of transinformation decreases.

2.2. Genetic Algorithm

GA is an algorithm based on Charles Darwin’s “Survival of the Fittest” theory, the most widely
known evolutionary theory. GA was first proposed by Holland [39] as a search algorithm that
applied the natural selection of organisms to the mechanical learning area. GA has been applied
to various application fields, such as pattern recognition, including optimization, machine learning,
robot engineering, and TSP, the traveling salesman problem. GA is an organic evolution model in the
natural world. It is a stochastic optimization method with excellent applicability in the real world
that simulates the process where, among a group of individuals forming a generation, individuals
with high environmental adaptability are more likely to survive (survival of the fittest), go through
crossover and mutation, and form the next generation. In hydrology, GA was used as a methodology
to overcome the local optimization of parameters in the main [40–42].

2.3. SWAT for Runoff Simulation

Numerous hydrological models have been developed to assist in understanding watershed system,
such as MIKE-SHE (MIKE Système Hydrologique Européen) [43], Petroleum Resources Management
System (PRMS) [44], SLURP (Semi-distributed Land Use-based Runoff Processes) [45], SWAT [46]
and so on. Among the models, SWAT has been successfully applied in a wide variety of data-limited
studies, particularly in South Korea [47]. SWAT as open-source software has an advantage to estimate
parameters with an optimization tool like GA.

SWAT is a physically based and distributed agro-hydrological model that operates on a daily
time step (as a minimum) at the watershed scale. It is designed to predict the impact of management
on water, sediments, and agricultural chemical yields in ungauged catchments [46]. The model is
capable of continuous simulation of dissolved and particulate elements in large complex catchments
with varying weather, soils, and management conditions over long periods. SWAT can analyze small
or large catchments by discretizing them into sub-basins, which are then further subdivided into
hydrological response units with homogeneous land use, soil type, and slope. When embedded within
a GIS, SWAT can integrate various spatial environmental data including soil, land cover, climate, and
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topographical features. The theory and details of the hydrological and sediment transport processes
integrated in SWAT are available online in the SWAT documentation (http://swatmodel.tamu.edu/).

3. Application and Results

3.1. Study Area

The study area was the Chungju Dam Basin in the Han River of the Korean peninsula. The area
of the basin is approximately 6648 km2, and the length of the related river is approximately 280 km.
The average altitude of the basin, calculated using a 50 × 50 m2 grid, is 610 m; its maximum altitude
is 1560 m; its minimum altitude is 71 m; and its standard deviation is 261 m. We selected five
weather-gauging sites (the red circles in Figure 2), which have collected data for five years (2008–2012),
from the Korean Meteorological Agency. Table 1 shows the geographic information for the weather
stations and the daily data (minimum temperature, maximum temperature, precipitation, relative
humidity, wind speed, and solar radiation) from the collection period. There are 21 water-level gauging
sites in the basin (the black and pink triangles in Figure 2). However, only eight discharge-gauging
sites (the pink triangles in Figure 2) had discharge data for the period from 2008 to 2012, as most
gauging stations were either recently installed or have not developed a relationship between water
level and discharge.

 

Figure 2. Study area (Chungju Dam Basin).

Table 1. Weather and discharge-gauging stations.

Stations Code
Station
Name

Latitude
(◦)

Longitude
(◦)

Elevation
(m)

Period of Record
(Year)

Weather gauging stations

100 Daegoanrung 37.68 128.82 772.4 2008–2012
114 Wonju 37.34 127.95 150.7 2008–2012
216 Taebaek 37.17 128.99 714.2 2008–2012
221 Jecheon 37.16 128.19 263.1 2008–2012
272 Youngju 36.87 128.52 210.5 2008–2012

Discharge-gauging stations

1 Chungju
Dam 37.00 128.00 80.0 2008–2012

2 Youngchun 37.10 128.51 190.0 2008–2012
3 Youngwol 1 37.18 128.48 200.0 2008–2012
4 Geowun 37.23 128.51 221.0 2008–2012
5 Youngwol 2 37.19 128.41 383.0 2008–2012
6 Panwoon 37.30 128.38 722.0 2008–2012
7 Pyeongchang 37.37 128.41 762.0 2008–2012
8 Jucheon 37.27 128.27 720.0 2008–2012
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3.2. Entropy Estimation

The concept of entropy has been applied to several fields of study, for example, Jaynes [48]
in statistical mechanics, Molgedey and Ebeling [49] in finance, Ulanowicz [50] in ecology,
Mormarco, et al. [51] in hydraulics, Mogheir, et al. [52] in groundwater, and others. In hydrology,
entropy has mostly been applied as a tool for modeling and decision-making (Singh [53,54]) including
the evaluation of a sampling network. Yoo, et al. [55] evaluated the rain gauge network by comparing
mixed and continuous distribution function applications. This study tried to apply the entropy method
to find calibration sites for hydrological modeling. In this study, the number of class intervals was set
to 500 for all sites. Mutual information was calculated using the same class interval number, though
the class intervals’ Δx are different from each site. First, the goodness-of-fit of the observed data for
the log-normal distribution was tested. The Quantile-Quantile (QQ) plot, which is a very useful plot
as one of several heuristics for assessing how closely a data set fits a particular distribution used to
visually inspect the similarity between theoretical quantiles of log-normal distribution and quantiles
of observation fit comparatively well in each site, as shown in Figure 3.
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Figure 3. Quantile-Quantile (QQ) plot of observation versus log-normal distribution.

Table 2 shows the information matrices of the discharge-gauging sites from the entropy method.
These matrices summarize the marginal entropy, transinformations between the sites, and the total
information for a selected site, represented as the “sum”. For example, if we select Discharge-Gauging
Site 1 in Table 2, the total information from Gauging Site 1 is the marginal entropy (7.667) plus the sum
of the transinformations.

Table 3 summarizes the optimal sites depending on the total number of sites. At the beginning
of the selection of the discharge-gauging sites, the sum of the marginal entropy of the selected sites
and the transinformations with the other sites is increasing. The increasing trend is valid until the
threshold number of sites for a given basin. However, after the threshold number of discharge-gauging
sites, the sum of transinformation between the selected site and the other unselected sites decreases
more rapidly than the additional marginal entropy from a newly selected site. The total entropy thus
decreases as the number of selected sites increases. In the study area, the highest number of maximum
information is 66 when the five sites (Sites 1, 2, 3, 5, and 6) are selected.
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Table 2. Information matrix.

Discharge-Gauging Sites
Discharge-Gauging Sites

1 2 3 4 5 6 7 8 Sum

1 7.667 2.708 2.643 2.543 2.353 1.745 2.128 1.609 23.396
2 2.708 7.079 2.599 2.530 2.337 1.452 2.070 1.641 22.415
3 2.643 2.599 6.783 2.505 2.771 1.867 2.354 1.857 23.378
4 2.543 2.530 2.505 6.007 2.755 2.049 2.462 1.948 22.798
5 2.353 2.337 2.771 2.755 6.457 1.938 2.353 1.808 22.772
6 1.745 1.452 1.867 2.049 1.938 4.288 3.075 2.474 18.888
7 2.128 2.070 2.354 2.462 2.353 3.075 5.124 2.187 21.755
8 1.609 1.641 1.857 1.948 1.808 2.474 2.187 4.140 17.665

Table 3. Changes in the total information depending on the selected sites.

Number of Sites Selected Sites Total Information Change of Total Information

#1 1 23.4
#2 1, 3 41.5
#3 1, 3, 7 54.3
#4 1, 2, 5, 7 62.4
#5 1, 2, 3, 5, 6 66.03
#6 1, 2, 3, 5, 6, 8 64.9
#7 1, 2, 3, 4, 5, 6, 8 59.1
#8 1, 2, 3, 4, 5, 6, 7, 8 47.5

Sensitivity in each site was analyzed by calculating the losing information, which is the difference
between the maximum information in each case and the maximum information from the eight sites.
Here, each case means the combination of sites, with a specific site removed. For example, Case 1
estimates the maximum information using the other sites, without Site 1. Figure 4a shows the result
of losing information, depending on the number of selecting sites in each case. Figure 4b shows the
calculated sensitivity ranking in each site for each case. The ranking of the sites is: 1, 3, 2, 5, 7, 6 and 8.

(a) (b) 

Figure 4. Sensitivity analysis. (a) Losing information in each case; (b) Sensitivity ranking.

3.3. Model Setup and Calibration

A rainfall-runoff model was built for the study basin using SWAT. Maps of 1:25,000 scale were
collected to generate a 50 × 50 m2 Digital Elevation Model (DEM) and a stream network. In addition,
a land cover map (Figure 5b) and a soil map (Figure 5c) from the National Water Resources Management
Information System (WAMIS; http://www.wamis.go.kr/) were used. The basin was classified into
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eight different land-use conditions, among which forests (82.2%) and rice paddies (10.3%) accounted
for 92.5% of the land use. The soil map, which included classifications of 141 total types of soil, showed
that apb (17.8%) and ana (15.5%) were the most prevalent soil types in the area. To build the model
used for the study, GIS data were prepared to generate hydrological response units, based on the
above data. Terrain analyses were conducted to delineate the channel network using the DEM of the
Chungju Dam basin. The basin was divided into ten sub-basins, as shown in Figure 5a. The extract
geomorphological characteristics in each sub-basin are shown in Table 4.

 
(a) 

(b) (c) 

Figure 5. GIS data as SWAT input. (a) Stream network and sub-basins map; (b) Land use map; (c) Soil
type map.

48



Water 2015, 7, 6719–6735

Table 4. Geomorphological characteristics in each sub-basin.

Sub-Basin

Basin Stream

Remark
Area (km2) Slope (%)

Altitude
(El. m)

Upstream
Area (km2)

Length
(km)

Slope
(%)

Min. Alt.
(El. m)

Max. Alt.
(El. m)

B-1 1905.1 27.2 391.0 6631.4 101.5 10.2 71.0 174.0 Site 1
B-2 553.6 35.0 487.0 4726.2 16.4 29.3 157.0 205.0 Site 2
B-3 164.6 33.7 243.0 2398.5 12.0 70.9 136.0 221.0 Site 3
B-4 2233.9 32.2 667.0 2233.9 128.9 30.2 216.0 605.0 Site 4
B-5 276.9 22.6 328.0 1774.2 26.8 17.9 193.0 241.0 Site 5
B-6 88.5 28.6 421.0 896.1 19.3 56.9 215.0 325.0 –
B-7 110.1 31.1 476.0 807.5 23.7 33.0 257.0 335.0 Site 6
B-8 697.4 28.5 636.0 697.4 52.4 47.0 291.0 537.0 Site 7
B-9 67.3 21.1 351.0 601.2 14.0 28.5 211.0 251.0 –
B-10 533.9 26.0 548.0 533.9 43.2 44.0 251.0 441.0 Site 8

In this study, surface runoff was estimated using the Soil Conservation Service Curve Number,
which has an advantage to predict direct runoff or infiltration from excess rainfall using daily
precipitation and GIS data like soil type and land-use maps in an ungagged area. Any water that does
not become surface runoff enters the soil column, where it is removed through evapotranspiration
or through deep percolation into the deep aquifer, or the runoff may move laterally in the soil
column as a streamflow contribution. Groundwater contribution to streamflow is generated from
both shallow and deep aquifers, and is based on groundwater balance. There are three methods for
estimating evapotranspiration like Priestley-Taylor, Penman-Monteith, and Hargreaves in SWAT. The
Penman-Monteith method [56] was used to estimate evapotranspiration using weather variables, such
as mean temperature, wind speed, relative humidity, and solar radiation.

SWAT contains several parameters that are used to describe the spatially distributed movement
of water through the watershed system. Some of these parameters, such as the Curve Number (CN),
cannot be directly measured and must be estimated through calibration. SWAT is a distributed
hydrological model and consequently there are potentially many (thousands) parameters. As it
is impossible to calibrate all of them, a reduction of the number of parameters to estimate is
inevitable. In this study, seven parameters that govern the surface water response and the subsurface
water response of SWAT were used in the calibration. Table 5 shows a general description of the
seven parameters [57]. The default parameters were determined by the methods introduced by
Neitsch, et al. [58]. A more detailed presentation for primary parameters and sensitivity tests is referred
in many studies [57–61].

There are several automatic calibration algorithms. Zhang, et al. [32] compared the efficacy
of five global optimization algorithms, such as shuffled complex evolution method developed at
The University of Arizona (SCE-UA), Genetic Algorithms (GA), Particle Swarm Optimization (PSO),
Artificial Immune Systems (AIS), and Differential Evaluation (DE), for calibrating SWAT and found
that GA is a promising single-objective optimization method. This study used GA to estimate the
optimized parameters of SWAT. In GA, a roulette wheel algorithm is used to select chromosomes for
the crossover and the mutation operations [62]. A two-point crossover method with a probability of 0.8
was selected for making the search shorter and more robust, and a mutation with a probability of 0.01
was selected. The RMSE fitness function (Fs) [25] was used in this study. This performance index was
defined to minimize the RMSE, as shown in Equation (13):

Fs = min(RMSE) = min

(√
1
n ∑(yi − ŷl)

)
(13)

where yi is simulated daily discharge, ŷl is observed daily discharge at the calibration site, and n is the
number of days with observations.
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Table 5. Parameters for the calibration of SWAT.

Num. Parameter Description Range

Parameters governing surface water response

1 CN2 Curve number 2 35–98
2 ESCO Soil evaporation compensation factor 0–1
3 SOL_AWC Available soil water capacity 0–1

Parameters governing subsurface water response

4 GWQMN Threshold depth of water in the shallow aquifer for return flow to occur (mm) 0–5000
5 REVAPMN Threshold depth of water in the shallow aquifer for reevaporation to occur (mm) 0–500
6 GW_REVAP Groundwater reevaporation coefficient 0.02–0.2
7 ALPHA_BF Base flow recession constant 0–1

The size of the initial population was set to 50, and the number of generations was set to 1000. The
sites were selected according to the entropy method. The algorithm was configured so that optimization
was implemented sequentially, starting with the discharge-gauging site that was the furthest upstream.
For example, if calibration is conducted for the case where there are three observation station sites
(Sites 1, 3, and 7), then Site 7, which is the furthest upstream, would be the first to be calibrated,
followed by Site 3 and Site 1.

The GA for the parameter optimization of the SWAT in this study was tested by comparing it to a
simple Brute-force Search Algorithm (BSA) for checking the applicability of GA. The calibration was
only performed at the outlet site of the whole basin. The optimized parameters in each algorithm are
shown in Table 6. The parameters were remarkably similar and the RMSE between the results (from
Figure 6) using these methods was about 0.07 m3/s. This shows both the applicability of the GA and
its usefulness in solving the problem of complex combinations in this study.

Table 6. Optimized parameters by GA and BSA.

Parameter GA BSA

CN2 48 48
ESCO 0.73 0.8

SOL_AWC 0.32 0.3
GWQMN 1694 1600

REVAPMN 132 150
GW_REVAP 0.08 0.1
ALPHA_BF 0.6 0.5

 

Figure 6. Discharge comparison of GA vs. BSA.

Using the above method, calibration was conducted at the respective sites. Table 3 was referenced
for all of the cases where the number of sites selected was one to eight. After the respective cases were
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calibrated, the relation between observed daily discharge and simulated daily discharge at the eight
discharge-gauging sites in the study basin was illustrated, as shown in Figure 7. Figure 7a shows the
case where calibration was conducted at only one site (Case 1), whereas Figure 7b shows the case
where calibration was performed at five different sites (Case 5). These cases were compared to the case
where no calibration was conducted (no calibration; blue circle). Case 5 is included in the comparison
because the maximum amount of information was indicated when five sites (Sites 1, 2, 3, 5, and 6) were
selected in the study basin (see Table 3). It was determined that the simulated discharge in the case
where no calibration was conducted had an underestimation issue (blue circles), and Case 5 (five sites
selected) produced a better result than Case 1 (one site selected).

(a) (b) 

Figure 7. Scatter plot for the relation between observation and simulation. (a) Calibration at one site
(Case 1); (b) Calibration at five sites (Case 5).

3.4. Calibration Results and Discussion

The calibration results, based on the respective results of Table 3 (from #1 to #8), were mutually
compared. Three evaluation functions were applied for the observed and simulated discharges,
coefficient of correlation (CC), RMSE, and Nash-Sutcliffe efficiency (NSE) [63]. The results of the case
evaluations (with the selection of one to eight sites) using the evaluation functions are shown in Table 7
and Figure 8. The evaluation was conducted for all of the sites and for the outlet. First, the calibration
results were applied to all of the sites for comparison. Even if only one site had been selected for
calibration, it would have been compared with the respective observation discharge of eight sites after
the simulated discharge of eight sites was extracted. Next, the outlet from the most important site
(as determined in Table 3) was applied. The applicability of the SWAT model was outstanding in the
study basin as the CC, RMSE, and NSE were 0.782, 147.4, and 0.482, respectively, even in the case
where no calibration was conducted (#0); however, it was confirmed that the results were improved
slightly when the model was calibrated. In particular, the result of the case with more sites selected
was even better than the result of the case with only one site selected. Nevertheless, the calibration
result did not improve any further when the number of sites selected exceeded a certain number. This
characteristic is easily confirmed through Figure 8 and Case 5, where all of the sites were evaluated
(five sites selected: CC, 0.813; RMSE, 138.8; NSE, 0.540), and Case 4, where the basin outlet point was
evaluated (four sites selected: CC, 0.799; RMSE, 324.0; NSE, 0.575) and the best calibration result was
produced. If the case evaluating all of the discharge-gauging sites in the basin is deemed to be more
representative than the case evaluating only the outlet point of the basin, then Case 5, where five sites
(Sites 1, 2, 3, 5, and 6) were selected for calibration, produces the best result.
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Table 7. Calibration results at all sites and the outlet site.

Site Number
All Sites Outlet Site

CC RMSE (m3/s) NSE CC RMSE (m3/s) NSE

#0 (Non-C.) 0.782 147.4 0.482 0.763 351.3 0.501
#1 0.800 142.8 0.516 0.784 330.4 0.554
#2 0.805 141.1 0.530 0.798 325.2 0.568
#3 0.810 140.0 0.538 0.798 325.1 0.573
#4 0.812 139.7 0.539 0.799 324.0 0.575
#5 0.813 138.8 0.540 0.798 325.1 0.573
#6 0.809 140.3 0.536 0.797 325.5 0.572
#7 0.809 142.1 0.524 0.794 329.0 0.562
#8 0.809 142.1 0.524 0.794 329.2 0.562

The total information will increase if more sites are used. For example, the maximum information
was about 66 when eight sites were used in this study (see Table 3). However, the maximum information
was about 56.6 when seven sites were used in Case 8 (shown in Figure 9). Here, Case 8 means that
Site 8 was removed from the eight sites and the maximum information is calculated using the other
seven sites. There is a small difference between using seven sites among seven sites and using seven
sites among eight sites. The maximum information was 59.1 when seven sites were selected among
eight sites. However, the maximum information was shown when five sites (1, 2, 3, 5, and 6 sites) were
selected among the eight sites. As a result, if in the future more observation sites are available, it will
still be possible to get more information. However, the maximum information is not shown when all
observation sites are used.

(a) (b) 

(c) (d) 

Figure 8. Calibration results using evaluation functions. (a) Coefficient of correlation; (b) RMSE;
(c) NSE; (d) RMSE range in case of all sites.
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Figure 9. Maximum information using seven total sites.

The entropy method may identify the number of calibration sites after which the marginal increase
in model efficiency to represent the observed runoff no longer significantly increases. Choi, et al. [31]
stated that additional calibration sites can benefit model performance. However, the results of this
study showed that model performance instead decreased if more four of five sites were selected
(Table 7). There may be two reasons for this. First, the exclusion of one of the sites worsened the
simulation result of the other sites. The sites that caused this response could be Site 4 and Site 8
because model performance with those sites is decreased. However, there is a limit to understanding
the result of the model performance using only one problem in each site. This does not clearly explain
the results in terms of Site 7. In fact, the model performance for Site 7 is positive in Case 3 and Case 4,
and negative in Case 8 (as seen Tables 3 and 7). Here, error compensation is a very important point for
multi-site calibration. In a case where many sites are considered for calibration, error compensation
has an effect on model performance. In this study, error compensation can be prevented if all of the
sites are used for calibration, and therefore decrease model performance. Model performance will
increase due solely to the error compensation if fewer than the maximum number of sites is used
for calibration. Therefore, the entropy method should not be preferred over an approach where all
available sites are used for calibration, if time allows for it. The entropy method is useful in cases
where computational requirements do not allow the use of all sites for calibration. In other words,
the entropy method is only useful in reducing the time and effort of model calibration, but not in
increasing model performance.

The growing importance of water resource management, along with the development of
observation techniques, has recently resulted in the installation of significantly more water level
observation stations in basins. Currently, there are 21 water level observation stations in the study
basin, and it is expected that the observed discharge information will be continuously accumulated.
Obviously, observation data obtained from more sites will be a great advantage to hydrological
modeling. However, assuming that all 21 sites in the study basin can be utilized, the number of cases
of the selection of sites for calibration is 2,097,151 (∑21

n=1 21Cn= 2,097,151). While this assumption does
not consider the importance of the sites, the number of cases for the hydrological model calibration
must still be high. If the brute-force search method is considered to select calibration sites in this area,
we would waste too much time and effort. Sometimes, a modeling result does not improve any further,
although we try to get a good result in model calibration. This study confirmed that the selection
of more calibration sites did not lead to improved calibration results from the model. Therefore, the
entropy method attempted in this study is expected to provide an excellent guideline to conduct the
calibration of the hydrological model. In addition, the application of the theory will further increase
when selecting a certain number of sites, depending on the purpose of the application of the model,
because the theory also provides information as to which sites need to be selected.
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4. Conclusions

The purpose of this study was to review the applicability of the entropy method in selecting the
calibration sites for hydrological modeling. The entropy method was applied to the discharge data
of eight different sites in the Chungju Dam Basin in Korea. Then, the selected sites were combined,
case-by-case, so that the combination of sites can yield the maximum amount of information. In
addition, the SWAT model was established for the study basin, and the model was calibrated by
estimating the optimal parameters using a genetic algorithm at the discharge-gauging sites selected
through the entropy method. As a result, we learned that the model calibration using the selected
sites and the combined sites having maximum information based on the entropy method gave us
excellent outcomes. Therefore, we confirmed the applicability of the entropy theory in the selection of
calibration sites for hydrological modeling. In addition, the entropy method is only useful in reducing
the time and effort spent on model calibration, but not in increasing model performance. The method
needs to apply and evaluate its applicability through various hydrological models in the future.

In particular, selecting more sites does not always lead to a better model performance. The
decrease in model performance when selecting more than the optimal number of sites indicated by the
entropy method can be associated to error compensation. However, applying the entropy method can
significantly reduce time and effort required for model calibration, and can therefore be a valuable
tool if the computational requirements for parameter optimization against all available data exceed
available resources. As more discharge-gauging stations are expected to be installed all over the world,
the entropy method, which provides information on the preferential types of observation stations to
consider for the calibration of the hydrological model, will have significantly more use in the future.
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Abstract: This study applies Real-Time Recurrent Learning Neural Network (RTRLNN) and Adaptive
Network-based Fuzzy Inference System (ANFIS) with novel heuristic techniques to develop an
advanced prediction model of accumulated total inflow of a reservoir in order to solve the difficulties
of future long lead-time highly varied uncertainty during typhoon attacks while using a real-time
forecast. For promoting the temporal-spatial forecasted precision, the following original specialized
heuristic inputs were coupled: observed-predicted inflow increase/decrease (OPIID) rate, total
precipitation, and duration from current time to the time of maximum precipitation and direct runoff
ending (DRE). This study also investigated the temporal-spatial forecasted error feature to assess the
feasibility of the developed models, and analyzed the output sensitivity of both single and combined
heuristic inputs to determine whether the heuristic model is susceptible to the impact of future
forecasted uncertainty/errors. Validation results showed that the long lead-time–predicted accuracy
and stability of the RTRLNN-based accumulated total inflow model are better than that of the
ANFIS-based model because of the real-time recurrent deterministic routing mechanism of RTRLNN.
Simulations show that the RTRLNN-based model with coupled heuristic inputs (RTRLNN-CHI,
average error percentage (AEP)/average forecast lead-time (AFLT): 6.3%/49 h) can achieve better
prediction than the model with non-heuristic inputs (AEP of RTRLNN-NHI and ANFIS-NHI:
15.2%/31.8%) because of the full consideration of real-time hydrological initial/boundary conditions.
Besides, the RTRLNN-CHI model can promote the forecasted lead-time above 49 h with less than 10%
of AEP which can overcome the previous forecasted limits of 6-h AFLT with above 20%–40% of AEP.

Keywords: accumulated total reservoir inflow; long lead-time hydrograph prediction; coupled
heuristic inputs; real-time recurrent learning neural network; adaptive network-based fuzzy
inference system

1. Introduction

Taiwan is located in the path of typhoons as they move in from the Western Pacific, and as a
result, three to five typhoons hit Taiwan annually [1,2]. As the basins of the reservoir in Taiwan are
mostly steep-sided, the concentration time is especially short and the reservoir inflow is extremely high
under typhoon-induced precipitation [3]. The frequency of typhoons that bring heavy rain has been
growing due to climate change [4–6], and inflows are more frequently surpassing original design and
construction standards. Therefore, effective methods of ameliorating typhoon-related disasters need
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to include non-engineered disaster prevention programs, such as effective disaster forewarning and
associated response mechanisms, which include the ability to identify the disaster before it occurs. The
optimal releasing strategies for flood control are to minimize the maximum release and maximize the
final storage under the principles of avoiding dam failure and overflow from the upstream riverbank,
and keeping the water level lower than the dead storage level. Hence, we can expect that an accurate
accumulated total reservoir inflow forecast model plays a most important role in determining whether
the releasing decision can achieve optimization for flood control.

However, previous research into real-time long lead-time accumulated total reservoir inflow
forecast during typhoons has been scarce, and it has proved difficult to achieve effective and accurate
results because of future meteorological-hydrological uncertainty. The traditional method to derive
real-time forecasted reservoir inflow hydrographs and the corresponding accumulated total inflow is
firstly to forecast the typhoon precipitation hyetograph, and then the reservoir inflow hydrograph of
the entire typhoon event is derived from the rainfall-runoff model. This type of rainfall-runoff modeling
has been examined in the fields of the hydrological approach [7–12] and statistical approach [13,14].
However, studies like those above, regarding the real-time precipitation hyetograph forecast of an
entire typhoon event, are scarce, so efficient and accurate long lead-time accumulated total inflow
forecast is still in urgent need of development.

The other method regarding inflow forecast is to directly predict short lead-time reservoir
inflow, because the model inputs only consider the real-time observed meteorological-hydrological
information. These related works have been categorized under both the hydrological approach [15–17]
and the statistical approach which mostly applied artificial neural networks (ANNs) such as the
back-propagation neural network (BPNN) [18–22], the state space neural network [23], the adaptive
network-based fuzzy inference system (ANFIS) [24], the recurrent neural network (RNN) [21], support
vector machine [1], and the radial basis function [2] as construction tools. The advantage of the short
lead-time forecast is that it is fairly accurate in medium-low reservoir inflow, whereas the disadvantages
are that (1) the effective forecasted lead-time is only 6 h; (2) the forecasted error in the high flow periods
is high, within the range of 10% to 40% [1,2]; and (3) the time-lag circumstances of the forecasted flow
rate of a longer forecasted lead-time are significant. The main reason is that the previous models do
not consider future reliable meteorological-hydrological factors as inputs. The feasible inputs include
the delays from the current moment to the various key moments on the rainfall-runoff hydrograph,
the accumulated total precipitation, and the observed-predicted inflow increase/decrease rate (OPIID
rate), etc. Besides, the above studies concluded that the forecasted ability of RNN and ANFIS is better
than the traditional ANNs like BPNN, and they have the potential to simulate longer lead-time inflow
with larger tolerance ability for input errors. Moreover, among various ANN models, Chang et al.
(2002) [25] indicated that real-time recurrent learning neural networks (RTRLNN) possesses dynamic
real-time recurrent routing mechanisms that can simulate time-varying systems effectively.

In summary, the previous models seldom can achieve a reservoir inflow forecast with a long
lead-time of up to 48–72 h considering the future highly varied meteorology-hydrology uncertainty of
a typhoon. Because of the powerful capability of ANNs to model any kind of nonlinear relationship
between inputs and output through a series of transfer functions without the need to make assumptions
in advance, in recent years, ANNs have been used increasingly in applications for modeling
hydrological processes. The advantages of using ANNs include the ability to derive accurate and fast
real-time short-term forecasts with low building costs. However, the development and application of
accurate and effective ANN-based models that have the most potential for long lead-time real-time
inflow forecast (e.g., RTRLNN and ANFIS) with the other advanced novel heuristic techniques in
accumulated total inflow forecasts during typhoons is a subject that urgently requires development
and scientific breakthrough.

The purpose of this study is to apply RTRLNN and ANFIS with specially devised novel heuristic
inputs such as observed-predicted inflow increase/decrease rate (OPIID rate), total precipitation (TP),
duration from current time to the time of maximum precipitation, and direct runoff ending (DRE) to
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develop heuristic-type long lead-time accumulated total reservoir inflow forecast models. This study
also utilized temporal-spatial forecasted error feature analysis to assess the feasibility of the developed
long lead-time RTRLNN- and ANFIS-based models, and conducted output sensitivity analysis of
single/combined heuristic inputs to determine whether the developed heuristic model is superior to
the non-heuristic model and whether it is vulnerable to the impact of future forecasted uncertainty
and error on inputs.

2. Development of Methodology

2.1. Procedures

The procedures used in this study are divided into three steps as shown in Figure 1. The detailed
procedures are thoroughly described as follows:

 

Figure 1. Flowchart of the methodology.
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Step 1: First, observed short lead-time meteorological-, precipitation-, and pattern-based reservoir
inflow factors during previous typhoons were specified as non-heuristic candidate inputs, and future
long lead-time total precipitation- and pattern-based duration factors were specified as heuristic inputs.
The optimal inputs for the non-heuristic and heuristic typhoon total inflow forecast model were
selected by using non-parametric statistical correlation analysis.

Step 2: The steepest gradient descent (SGD) and conjugate gradient algorithm (CG) were used
to train the parameter of RTRLNN, and subtractive clustering (SC) with the least square estimator
(LSE) were applied to train the parameter of ANFIS. On obtaining the best model by comparing
the assessment index value of the individually developed model type, the forecasted outcome for
the RTRLNN-CHI (Coupled Heuristic Inputs) model, RTRLNN-NHI (No Heuristic Inputs) model,
ANFIS-CHI model, and ANFIS-NHI model were compared across long lead-times.

Step 3-1: The temporal and spatial forecasted error feature of the four best types of long lead-time
models developed were respectively analyzed, and a superior model determined.

Step 3-2: The output sensitivity of single or combined heuristic inputs due to future forecast
uncertainty of the selected candidate optimal model among the four model types was analyzed under
the impact of input forecasted error. Following the assessment, the optimal total reservoir inflow
forecast model during typhoons was determined.

2.2. Developed Model Type of Accumulated Total Reservoir Inflow Forecast

This study designates the systematic operating mechanism of a reservoir of different stages as
shown in Figure 2. To avoid dam failure and overflow from the upstream riverbank, the constraint
can be expressed in Equation (1), and that to avoid a water level that is lower than dead storage is
expressed in Equation (2).

A2 − A1 < Smax
dam−sa f ety − xS

0 (1)

A1 < xS
0 − Sdead (2)

where A1, A2, and A3 are the increasing/reducing storage of Stage I, increasing storage of Stage II, and
increasing/reducing storage of Stage III, respectively; Smax

dam−sa f ety is maximum safety storage for the

dam; xS
0 is the initial storage; and Sdead is the dead storage.

The releasing operating objectives of Stage I have to consider flood detention (expressed in
Equation (3)) and final storage that at the same time (Equation (4)) are dominated by the future
accumulated total inflow. Moreover, the constraint of Stage I involves avoiding the water level being
lower than dead storage (Equation (2)). Hence, we can expect that the future accumulated total inflow
is the key decision information of Stage I.

Max{A2} (3)

Min
{
|A1 + A3 − A2| −

∣∣∣S f ull − xS
0

∣∣∣} (4)

where Smax
dam−sa f ety is the maximum safety storage for the dam. In order to achieve optimal operation,

the storage objective for the water supply is dominated primarily by Stage III and secondarily by
Stage I, and the releasing operation of Stage II is used completely for flood detention (expressed in
Equation (3)) that must subject to the safety constraint (Equation (1)). Hence, we can expect that the
future total inflow is the key decision information of Stage II and Stage III.
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Figure 2. Schematic diagram of the flood operating mechanism of different stages in conjunction with
the reservoir inflow.

The total reservoir inflow can be used as a criterion to determine the ideal amount of pre-discharge
water and the benefit of flood detention under just filling the reservoir without overflowing the dam.
Conventionally, the inflow can be calculated from the calculations of the rainfall-runoff simulation. The
flow at the catchment outlet can be calculated using the unit hydrograph method, which is expressed
as follows:

Q(t) =
∫

A

∫ t

0
P(τ) · U(t − τ)dτdA (5)

where Q(t) is the inflow at time t; P(τ) is the effective rainfall; and U(t − τ) is the flow path unit
response function. Liu et al. (2003) [26] estimated the travel time at an arbitrary point in the catchment
area by combining the diffusive wave model with the flow path unit response function. Molnar and
Ramirez (1998) [27] used Manning’s equation and energy dissipation theory to solve the approximate
solutions to the diffusion waves, which can be expressed as follows:

U(t) =
1

σ
√

2π · t3/t3
0

exp

[
− (t − t0)

2

2π · t/t0

]
(6)

where t0 is the average time of concentration for the water moving along the flow path from one point
of the catchment area to the outlet; and σ is the standard deviation of the migration time. During
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the period of the typhoon, the effective rainfall in the future; P(t + n), is related to the following
atmospheric factors for the typhoon: distance between typhoon center and reservoir basin (hc−w),
grade 7/10 typhoon radius (R), typhoon movement speed (vm), central wind speed (Vmax), and central
pressure (pc). It can be expressed as the following:

P(t + Δt) = f (hc−w, R, vm, Vmax, pc) (7)

where Δt is the forecasted lead-time. However, the uncertainty of the meteorology-hydrology
relationship over a long lead-time is too high to make a determination as to the future typhoon
atmospheric factors ahead of time. It is difficult to accurately forecast the rainfall hyetograph of the
entire typhoon event in the future.

Hence, the rainfall-runoff model based on traditional hydrology was not used for real-time
simulation and forecast of the reservoir inflow. A novel forecast method was developed and was
found to be more reliable in forecasts. The new method adopted the total rainfall (Ptotal) method,
and forecasted the various delays from the current moment to the key times along the rainfall-runoff
hydrograph; for example, the delay from the current time to the maximum rainfall (T0-MP), the delay
to the end of the direct runoff (T0-DRE), and the delay to the end of the water retreat (T0-EE). The
new method also used the observed-predicted inflow increase/decrease rate (OPIID rate) as the
heuristic-type input. It is expected to be able to simulate the total reservoir inflow of the runoff
hydrograph from the rainfall trend from a certain typhoon moving path in the future. A schematic
diagram of hydrological key points within the rainfall-runoff hydrograph is shown in Figure 3.
In this study, an original and innovative forecast model for the total reservoir inflow was developed
with heuristic forecast inputs using ANFIS and RTRLNN. The model developed was analyzed and
compared with the non-heuristic forecast model in which the input only included the real-time
observed meteorology and hydrology information. The feasibility of the heuristic model for real-time
forecast was also evaluated.

Figure 3. Schematic diagram of hydrological key points within the rainfall-runoff hydrograph.
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2.2.1. Candidate Predictor

The choice of input candidates for the model is based on the theory of computation for the
rainfall-runoff characteristics of the meteorology-hydrology relationship, such as the variables of
reference Equations (5)–(7). In this study, four types of predictors which can be observed and predicted
in real-time were used:

(1) Typhoon meteorological factor: longitude, latitude, central wind speed, central pressure,
grade 7 typhoon radius, grade 10 typhoon radius, and typhoon movement speed, etc. The other
feasible alternatives include relative humidity and temperature of the typhoon and basin, etc., but
the other feasible alternatives are relatively not highly related to inflow and were not selected as
candidate inputs.

(2) Rainfall station factor: observed hourly rainfall and total precipitation at the ground station.
The other feasible alternatives include radar reflective information and satellite image from the typhoon,
but the accuracy and correlation toward surface rainfall is not as high as that of the ground station.
Hence, the alternatives are not adopted as candidate inputs.

(3) The distance between the typhoon center and the forecasting basin center (d(t)): this distance
can be obtained using a conversion formula from longitude/latitude to distance:

y(t) = 111.1 × (latc(t)− lat f os(t)) (8)

x(t) = 111.1 × (lonc(t)− lon f os(t))× cos(
latc(t) + lat f os(t)

2
) (9)

d(t) =
√
(x(t))2 + (y(t))2 (10)

where latc(t) and lat f os(t) are the latitudes of the typhoon center and the forecasting basin center at
time t, and lonc(t) and lon f os(t) are longitudes of the typhoon center and the forecasting basin center
at time t.

(4) Runoff factor:
I. The delays from the current moment to the various key moments on the rainfall-runoff

hydrograph in hydrology. For example, these include the delay from the current moment to the
moment the maximum rainfall occurs (T0-MP), the delay to the end of the direct runoff (T0-DRE), and
the delay to the end of the water retreat (T0-EE). The feasible alternative includes the delay to the
inflection point after peak flow, which is equal to the delay to rainfall excess ending plus the time of
concentration. However, it is difficult to predict the delay to rainfall excess ending in real-time across a
long lead-time, leading to this alternative not being adopted.

II. The real-time observed hourly reservoir inflow and the observed-predicted inflow
increase/decrease rate (OPIID rate).

The total precipitation could be obtained by constructing a forecast database from the historical
samples of the relationship between the center position of the typhoon and the rainfall in the catchment
area using data mining techniques. Similarly, the delay of the future typhoon invasion could be
obtained by constructing a forecast database from the historical samples of the distribution of the
center position of the typhoon when the maximum rainfall occurred, the time when the direct runoff
ended, and the time when the water retreated using data mining techniques. The above-mentioned
heuristic inputs (total precipitation and delays) are estimated by the path and direction of the typhoon
and the characteristic database. Besides, the output of the model was the total reservoir inflow during
the period from the current moment to the end of the event. In this research, a heuristic forecast model
was studied. The inputs to this heuristic model simultaneously comprised the real-time observed
meteorology and hydrology information (typhoon characteristic factors, basin hourly precipitation,
basin reservoir hourly inflow) and future forecasted heuristic meteorology and hydrology information
(the total rainfall from the current moment to the end of the event, T0-MP,T0-DRE,T0-EE, and OPIID rate).
The input for the non-heuristic forecast model only included the real-time observed meteorology and
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hydrology information. The structure of the developed heuristic-type and non-heuristic accumulated
total inflow forecast model is shown in Figure 4.

 

Figure 4. Structure of the developed coupled heuristic and non-heuristic accumulated total inflow
forecast model.

2.2.2. Selection of Model Inputs

The feasible measures to select optimal model inputs include correlation analysis, principle
component analysis, and the trial-and-error method. Among previous studies, the trial-and-error
method is the most applied approach which is time-consuming. To effectively quantify the aptness for
the large amount of candidate model inputs, this study uses correlation analysis for decision-making,
and Spearman’s rank correlation coefficient [28] is adopted as an analysis index. The analysis
mechanism used for the correlation depends on the rank relationship of the time-series of two variables,
and hence, this analysis can determine the correlation and suitability of input, regardless of the kind of
relationship that exists between the candidate input and output, that is,

rrank = 1 −
6

n
∑

i=1
D2

i

n(n2 − 1)
(11)

D2
i = (Rankxi − Rankyi )

2 (12)

where rrank is Spearman’s rank correlation coefficient, n is the number of data, x is the candidate input
of the forecast model (predictor), y is the model output also known as the predictant (accumulated
total reservoir inflow during time t + 1 to t + T0-EE), and Rankxi and Rankyi are the sort values of xi and
yi in their individual time-series of the variable, respectively. The most correlated candidate predictors
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for forecasting accumulated total inflow will be selected as optimal inputs, and the selected inputs
must subject to hydrological relationships and the rrank must larger than the assigned threshold values.

2.2.3. Assessment Index of Forecast Models

The performance of the forecast models was evaluated using the mean absolute error (MAE) and
correlation coefficient (CC) criterion in the present study. The other feasible alternatives are root mean
square error (RMSE), R2, and coefficient of efficiency (CE). However, RMSE and R2 are respectively
similar to MAE and CC, and CE cannot assess the time delay effect of the forecast. Hence, the other
alternatives are not adopted. The computational equations of MAE and CC are expressed as follows:

MAE =

n
∑

t=1

∣∣Ŷ(t)− Y(t)
∣∣

n
(13)

CC =
N∑ Ŷ(t)Y(t)− ∑ Ŷ(t)∑ Y(t)√

∑ Ŷ2(t)− (∑ Ŷ(t))2

n

√
∑ Y2(t)− (∑ Y(t))2

n

(14)

where Ŷ(t) is the forecasted value at time t; Y(t) is the actual value at time t; and n is the number of
data. Smaller values of MAE imply a higher accuracy of the forecast model, and larger CC values
indicate a closer coupling between the forecasted and measured series.

2.3. Heuristic Construction of RTRLNN

RTRLNN is a dynamic neural network with a stable routing mechanism and algorithm. The
dynamic characteristics of a RTRLNN could be illustrated by the outputs of time-series based on an
instantaneous impulse to the RTRLNN. The network structure is different from the traditional static
and feed-forward neural networks in that it allows recurrence between neurons and offers the function
of local and temporal memory in the network, so the RTRLNN can simulate complex and time-varying
systems that previous static neural networks could not handle effectively [25,29]. RTRLNN generally
contains one or several recurrent loops. The RTRLNN network structure that we adopt in this study is
shown in Figure 5. It is a multilayer perceptron and is composed of a concatenated input-output layer,
a processing layer, and an output layer. The recurrent loops are recurrent from the output vector of the
processing layer to the concatenated input-output layer. Hence, the concatenated input-output layer
not only includes the input factor of the outer environment, but also stores the processed information
from the processing layer before the current time. This allows the network to establish a temporal
mutual connection and a dependent relationship between input variables because of the inner recurrent
connection relationship, so the structure and mechanism can effectively learn the connection of the
time-series (Elman, 1990 [30]).
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Figure 5. Structure of a RTRLNN.

The input vector of the concatenated input-output layer contains actual input variables xiA and
recurrent input variables yiB (iA and iB are the number of actual and recurrent inputs, respectively):

ui = [xiA , yiB ] f or iA = 1, . . . , M iB = 1, . . . , N (15)

where M and N are the total numbers of actual and recurrent inputs, respectively. The feed-forward
propagation of the network first multiplies the input vector (ui) with the corresponding weights (wji)
to obtain netj, then transfers netj by a transfer function ( f (·)) to obtain the output of the processing
layer (yj):

netj = ∑
i∈iA∪iB

wjiui (16)

yj = f (netj) (17)

where i, j, and k are the neuron numbers of the concatenated input-output layer, the processing layer,
and the output layer, respectively. Multiplying yj with the corresponding weights (vkj) and summing
them gives netk, and transfer netk by a transfer function ( f (·)) gives the output of the output layer (zk):

netk = ∑ vkjyj (18)

zk = f (netk) (19)

In this study, the feasible transfer functions of the processing layer include tan-sigmoid (expressed
in Equation (20)), linear, log-sigmoid, radial basis function, and symmetric saturating linear function,
while the output layer is linear. The best suitable transfer function for the forecast model is extracted
fully by trail results.

yj =
enetj − e−netj

enetj + e−netj
(20)

During RTRLNN training, the network not only continuously executes the message handling,
but also revises each connected weighted vector in real-time according to the simulated error that
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belongs to the learning algorithm. Set dk(t) as the target value of neuron k at time t. Then we define a
time-varying K × 1 error vector ek(t), whose kth element is:

ek(t) = dk(t)− zk(t) (21)

Then we define the instantaneous overall network error (E(t)) at time t as

E(t) =
1
2

K

∑
k=1

e2
k(t) (22)

The total cost function (Etotal) is obtained by summing E(t) over all time T

Etotal =
T

∑
t=1

E(t) (23)

To minimize the cost function, this study applies the recursive steepest gradient descent method
and the conjugate gradient algorithm to adjust the weights (V and W) along the negative of ∇Etotal.
The other feasible alternative is the Quasi-Newton method which is more time-consuming than the
others, so the method is not adopted. Because the total error is the sum of the errors at the individual
time-steps, we compute this gradient by accumulating the value of ∇E for each time-step along the
trajectory. The weight change for any particular weight (Δvkj(t)) can thus be written as

Δvkj(t) = −η1
∂E(t)

∂vkj(t)
(24)

where η1 is the learning-rate parameter. In Equation (24), ∂E(t)
∂vkj(t)

can be written as

∂E(t)
∂vkj(t)

= −ek(t) f ′(netk(t))yj(t) (25)

The same method can also be implemented for the specific weight wmn, that is

Δwmn(t − 1) = −η2
∂E(t)

∂wmn(t − 1)
(26)

where η2 is the learning-rate parameter. The partial derivative ∂E(t)
∂wmn(t−1) can be obtained by the chain

rule for differentiation as follows:

∂E(t)
∂wmn(t−1) =

[
K
∑

k=1
−ek(t) f ′(netk(t))vkj(t)

]
∂yj(t)

∂wmn(t−1) (27)

⇒ ∂yj(t)
∂wmn(t−1) = f ′(netj(t))

∂netj(t)
∂wmn(t−1) (28)

⇒ ∂netj(t)
∂wmn(t−1) = ∑

i∈(iA∪iB)

∂(wji(t−1)ui(t−1))
∂wmn(t−1) (29)

⇒ ∂netj(t)
∂wmn(t−1) = ∑

i∈(iA∪iB)

[
wji(t − 1) ∂ui(t−1)

∂wmn(t−1) +
∂wji(t−1)

∂wmn(t−1)ui(t − 1)
]

(30)

subject to
∂wji(t−1)

∂wmn(t−1) =

{
1 , when (j = m) ∩ (i = n )

0 , else
(31)
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Equation (30) can be rewritten as

∂netj(t)
∂wmn(t−1) = ∑

i∈(iA∪iB)
wji(t − 1) ∂ui(t−1)

∂wmn(t−1) + δmjun(t − 1) (32)

subject to

δmj =

{
1 , i f j = m

0 , else
(33)

where δmj is the Kronecker delta. From the definition of ui(t), we also note that

∂ui(t − 1)
∂wmn(t − 1)

=

{
0 , when i ∈ iA

∂yi(t−1)
∂wmn(t−1) , when i ∈ iB

(34)

According to the propagation mechanism of RTRLNN, the initial state of the network at time t = 0
has no functional dependence on the synaptic weights, that is

∂yj(0)
∂wmn(0)

= 0 (35)

∂yj(t)
∂wmn(t − 1)

= f ′(netj(t))

[
∑
i∈iB

wji(t − 1)
∂yi(t − 1)

∂wmn(t − 1)
+ δmjun(t − 1)

]
(36)

Let

∂yj(t)
∂wmn(t)

=
{

π
j
mn(t)|(∀j ∈ iB) ∩ (∀m ∈ iB) ∩ [∀n ∈ (iA ∪ iB)]

}
≈ ∂yj(t)

∂wmn(t − 1)
(37)

where π
j
mn(t) are the triple indexed sets of variables which describe a dynamic system. For each time

step t and all appropriate m, n, and j, the dynamics of the system are governed by

π
j
mn(t) = f ′(netj)

[
∑

i∈iB

wji(t − 1)πi
mn(t − 1) + δmjun(t − 1)

]
I.C. : π

j
mn(0) = 0

(38)

Then the weight changes can be computed as

Δwmn(t − 1) = η2

[
∑ ek(t) f ′(netk(t))vkj(t)

]
π

j
mn(t) (39)

Δvkj(t) = η1ek(t) f ′(netk(t))yj(t) (40)

2.4. Heuristic Construction of ANFIS

ANFIS was proposed by Jang (1993) [31], and is based on a fuzzy inference system constructed
by combining the self-organization characteristics of a neural network. Hence, ANFIS integrates two
algorithms to improve its accuracy, and solves for the best parameters by employing capabilities of
learning and self-adaption. ANFIS is composed of an input layer, a rule layer, a normalization layer,
a consequent layer, and an output layer, as shown in Figure 6. The modeling tool can transform the
fuzzy-complex process and phenomenon into an artificial logic language that is therefore a potential
approach for typhoon precipitation forecasting. The computation and transmission of each layer is
described as follows.
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Figure 6. Structure of an ANFIS.

(1) Input layer
This layer projects input to a group of fuzzy sets and estimates the values of a group of membership

functions. The most common types of membership functions are triangular, trapezoidal, Gaussian,
generalized bell-shaped, and sigmoid functions. To retrieve the parameters of the input layer efficiently,
this study adopts a group of Gaussian functions as the membership functions with subtractive
clustering (SC), which can be expressed as follows:

O1,ji = uji(xi) = exp ( −
∥∥xi − cji

∥∥2

2σ2
ji

) i=1,2, . . . ,N j=1,2, . . . ,Mi (41)

where uji(xi) is the membership function; cji and σji are the antecedent parameters; N is the number of
inputs; and Mi is the number of the fuzzy membership functions of input i.
(2) Rule layer

This layer precedes the antecedent match of the fuzzy logic rule between variables, and then
applies a T-norm product operation to obtain the weighted value of each rule, that is,

O2,p = wp =
N

∏
i=1

upi(xi) p=1, . . . ,P (42)

where wp is the weighted value; and P is the number of rules.
(3) Normalization layer

The node of this layer computes the output ratio between the node and all other nodes, that is,

O3,p = wp =
wp

P
∑

p=1
wp

(43)
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(4) Consequent layer
The output of the consequent layer node is the product of the outputs of the normalization layer

and the Sugeno fuzzy model (Takagi and Sugeno, 1983 [32]), that is,

O4,p = wp fp = wp(
N

∑
i=0

rpixi) (44)

where rpi represents the consequent parameters; and x0 is equal to 1.
(5) Output layer

This layer sums the outputs of the previous layer to compute the model output, that is,

O5,p =
P

∑
p=1

wp fp =

P
∑

p=1
wp fp

P
∑

p=1
wp

(45)

ANFIS is a feed-forward neural network and is constructed by supervised learning. The network
parameters can be divided into antecedent parameters (nonlinear parameters: cji, σji) and consequent
parameters (linear parameters: rpi), and the model structure is determined by setting the number of
membership functions in the input layer and the number of nodes in the rule layer. The parameters
can be solved by the steepest gradient descent method and Newton’s method, for example. However,
the methods would be slow and would produce a worse convergence and drop-in local optimum if the
searching problem was more complex. To decrease the time for model construction in obtaining the best
network structures and parameters, this study constructs ANFIS using hybrid algorithms including
subtractive clustering (SC) and a least square estimator (LSE). The input and output vectors were first
classified by subtractive clustering before training the model. The number of clusters obtained from
the classification was set as the number of membership functions for node fuzzification at the various
input layers and the number of nodes at the rule layers. After determining the network structures, the
center point and standard deviation of each cluster were taken as the initial parameters of the input
layer membership functions (Gaussian function). The training data were then fed into the network
with the consequent linear parameter set and the antecedent nonlinear parameter set solved by the
least squares estimator and the gradient steepest descent method, respectively. The corresponding
algorithm flowchart of the model construction is shown in Figure 7. The network structure significantly
reduces the time required to retrieve the optimal number of fuzzy membership functions, number of
rules, and network parameters; the optimal network structure and parameters can be obtained after
simply setting the adjacent radius in subtractive clustering between 0 and 1 (Jang, 1993 [31]).

Subtractive clustering was employed in the present study to construct fuzzy if-then rules in order
to reduce the number of parameters of the fuzzy membership function in the ANFIS model. This was
performed to establish a suitable rule base in the fuzzy inference system. Subtractive clustering was
proposed by Chiu (1994) [33], in which every data point is treated as the candidate of the cluster center.
Subtractive clustering is a fast and independent clustering method: the computational complexity
is proportional to the number of data and is independent of the system dimension. For example,
xi(i = 1, 2, . . . , n) are n sets of data in an M-dimensional space and the corresponding density measures
D are defined as

Di =
n

∑
j=1

exp

(
−

∥∥xi − xj
∥∥2

(ra/2)2

)
(46)

where the adjacent radius ra is a positive number representing the distance near the center, and the
data points outside the radius have minimum impact on the density measure. The density measure is
calculated for each data point (xi), and the one with the highest density (Dc1) is selected as the first
cluster center (xc1). The definition of the density measure is then modified to select the next cluster
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center. Setting that xck is the cluster center selected at the kth round, and the corresponding density
measure is Dck, the modified formula is as follows:

Di = Di − Dck exp

(
−‖xi − xck‖2

(rb/2)2

)
(47)

where radius rb has the same definition as ra and is usually set as 1.5ra so that the selected center will
not be too close to that of the previous one. The above procedure of cluster center selection is repeated
until a termination condition is reached, or there is a sufficient number of cluster centers.

 

Figure 7. Flowchart of training the parameter and structure of ANFIS.

2.5. Analysis of Temporal and Spatial Forecasted Error Feature of the Developed Long Lead-Time Models

In this research, RTRLNN and ANFIS were used to study four types of coupled heuristic and
non-heuristic forecast models (RTRLNN-CHI, RTRLNN-NHI, ANFIS-CHI and ANFIS-NHI) for long
lead-time forecast of the total reservoir inflow. To evaluate the forecast accuracy and applicability of
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the four models on typhoon invasion, analyses were conducted on the characteristics of the temporal
and spatial forecast errors for the most optimal forecast case of the four models. Assessments were
made as to which model had the best forecast performance. For the analysis of the temporal forecast
error, calculations were made for each forecast model for the absolute error between the forecasted
time and the forecasted total reservoir inflow during the verification phase of the typhoon event at
each field. The errors were then used to assess the capability and limits of the model for the long
lead-time forecasting of the total reservoir inflow, which could be calculated as follows:

AEP(Δt) =

P
∑

p=1

|Ŷp(Δt)−Yp(Δt)|
Yp(Δt)

P
× 100% (48)

where AEP(Δt) is average error percentage for forecasted lead-time Δt, Ŷp(Δt) and Yp(Δt) are the
forecasted and actual accumulated total reservoir inflow on typhoon event number p for forecasted
lead-time Δt, respectively; and P is the total number of typhoon events.

For each forecast model, the analysis of the spatial forecast error included calculation of the
absolute error on the forecasted total reservoir inflow at the spatial position of the typhoon center
during the verification phase of the typhoon event at each field. These errors were used to discuss
the capability and limits of the long lead-time forecasting of the total reservoir inflow for each model
when the typhoon center moved to each of the spatial grids, which could be expressed as

AEP(x, y) =

P
∑

p=1

|Ŷp(x,y)−Yp(x,y)|
Yp(x,y)

P
× 100% (49)

where AEP(x, y) is the average error percentage while the typhoon center is located at longitude x and
latitude y, Ŷp(x, y) and Yp(x, y) are the forecasted and actual accumulated total reservoir inflow on
typhoon event number p while the typhoon center is located at longitude x and latitude y, respectively,
and P is the total number of typhoon events.

2.6. Output Sensitivity Analysis of Single or Combined Heuristic Inputs Due to Future Forecasted Uncertainty

The coupled heuristic model in this research can forecast the rainfall-runoff hydrology under a
specific movement path for the future typhoon, which increases the long lead-time forecast accuracy
of the accumulated total reservoir inflow. However, if this model was applied to real-time forecasting,
the uncertainty of the meteorology and hydrology for the long lead-time typhoon in the future would
be unacceptably high. There would be cases with unavoidable forecast errors on quantities such as
the long lead-time total rainfall in the future, the delay from the current time to the maximum rainfall
(T0-MP), the delay to the end of the direct runoff (T0-DRE), and the delay to the end of the water retreat in
the typhoon event (T0-EE). When such heuristic information is coupled with the input of the heuristic
model, it is possible that unexpected errors will be generated on the forecast output of the model.
Thus, in order to evaluate the feasibility, applicability, and accuracy of the heuristic model for real-time
forecasting, sensitivity analysis was conducted on the effects on the output when forecast errors exist
in the heuristic input of the most optimal heuristic model. The above analysis was used to judge
whether the forecast accuracy of the heuristic model was better than that of the non-heuristic model for
real-time forecasting when errors exist in the input. The expression for the analysis is as shown below:

ˆ ( ) ( ( ) ( ), ( ))RTRLNN CHI
ANFIS CHI

H H H NH
i i iY t f x t EP x t X t−

−

= ± ⋅ (50)

AEP(i,±EP) =

n
∑

t=1

|ŶH
i (t)−Y(t)|

Y(t)

n
× 100% (51)

73



Water 2015, 7, 6516–6550

where ŶH
i (t) is the forecasted value at time t under entering error into heuristic input number i;

RTRLNN CHI
ANFIS CHI

f −
− is the developed coupled heuristic forecast model; xH

i (t) is the input value of heuristic input
number i at time t; ±EP is the average error percentage based on previous studies; XNH(t) is the value
of non-heuristic input at time t; Y(t) is the actual value at time t; and n is the number of data.

3. Application

3.1. Study Area

The methodology proposed in the present study was applied to the Shihmen Reservoir catchment
area, which measures approximately 763.4 km2. The main stream within this area is the Dahan Creek,
which is the upper stream of the Tamsui River. The effective capacity is approximately 2.098 × 108

cubic meters. The annual average rainfall in the catchment area is approximately 2350 mm, with 80%
of the annual rainfall concentrated in the period between May and October. Most of the rainfall is from
typhoon precipitation. The annual inflow of the Shihmen Reservoir is approximately 1.510 billion tons.
The study area is shown in Figure 8.

3.2. Data Used in Model Construction

This study used instantaneous observed non-heuristic and coupled heuristic information to
forecast accumulated total inflow during current time to the event recessional ending. The output
variable was taken as the future accumulated total inflow forecast in the Shihmen Reservoir catchment
area. In this study, the end of the typhoon flood event was defined as the moment that simultaneously
satisfied the following conditions: (1) the Meteorology Bureau lifted the alarm for typhoon on land and
over the sea; (2) rainfall completely stopped in the catchment areas; (3) the reservoir inflow decreased
below 300 cms. The model construction included two stages, namely the training and validation stages.
The adopted typhoon events for training are Aere, Matsa, Talim, Long-Wang, Wipha, Fung-Wong,
Sinlaku, Morakot, Megi, and Meari, and for validation they are Haitang, Sepat, Krosa, Jangmi, and
Parma. The total data number for training is 459, and for validation it is 211. The adopted typhoon
events for model construction among the training and validation stages are shown in Table 1, and the
moving paths of the typhoons used in model construction are shown in Figure 9.

Figure 8. Study area.
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Table 1. The adopted typhoon events for model construction among the training and validation stages.

Construction
Stage

Typhoon
Name

Time Period
Total Reservoir

Inflow (m3)
Data

Number
Total Data
Number

Training

Aere 23–26 August 2004 748, 936, 728 58

459

Matsa 4–6 August 2005 541, 872, 324 61
Talim 31 August 2005–2 September 2005 201, 308, 580 33

Long-Wang 2–3 October 2005 68, 596, 704 24
Wipha 18–20 September 2007 186, 601, 752 48

Fung-Wong 28–29 July 2008 103, 422, 564 33
Sinlaku 13–16 September 2008 554, 322, 600 75
Morakot 7–10 August 2009 205, 435, 980 71

Megi 21–22 October 2010 54, 991, 728 37
Meari 25 June 2011 44, 826, 012 19

Validation

Haitang 17–20 July 2005 237, 416, 256 53

211

Sepat 18 August 2007 128, 935, 224 20
Krosa 6–8 October 2007 409, 855, 824 53

Jangmi 28–30 September 2008 220, 301, 136 53
Parma 6 October 2009 40, 997, 340 18
Fanapi 19 September 2010 33, 694, 956 14

 

Figure 9. Moving paths of typhoons used in model construction: (a) training; (b) validation.

3.3. Results and Discussion

3.3.1. Model Inputs Selection

Correlation analysis was applied in the present study to assess the correlation coefficient between
each input factor and the future accumulated total inflow for the Shihmen Reservoir. The selected
heuristic model inputs and corresponding correlation coefficients are the future accumulated total
basin precipitation (rrank: 0.926), duration from current time to the end of the flood event (rrank: 0.960),
duration from current time to the time of DRE (rrank: 0.751), duration from current time to the time
of maximum precipitation (rrank: 0.548), and observed-predicted inflow increase/decrease rate (rrank:
0.401). These selected variables are the most correlated inputs among all heuristic candidate predictors
and the rrank value of all the selected inputs must be larger than 0.4. Furthermore, the selected
non-heuristic model inputs and corresponding correlation coefficients are the observed hourly basin
precipitation at the current time (rrank: 0.672), hourly reservoir inflow (rrank: 0.509), typhoon central
longitude (rrank: 0.610), central wind speed (rrank: 0.650), and central pressure (rrank: 0.639); these
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selected variables are the most correlated inputs among all non-heuristic candidate predictors and the
rrank values must all be larger than 0.5. Research conducted by Lin and Chen (2005) [34] revealed that
excessive model inputs could introduce additional noise into the model, therefore 10 input factors were
selected as a maximum based on the correlation coefficients. Based on the above analytical results,
the developed heuristic forecast model includes 10 inputs including both heuristic and non-heuristic
inputs, and the non-heuristic model only includes five non-heuristic inputs. The heuristic parameters
are considered to be essential for use in eliminating the forecasting uncertainty, and for characterizing
future long lead-time accumulated total inflow.

3.3.2. Results of Model Construction

In this study, RTRLNN and ANFIS were used to construct coupled heuristic and non-heuristic
forecast models for long lead-time forecasting of the future accumulated total inflow for the Shihmen
Reservoir. The choice of the particular set of parameters of the optimal model is retrieved by applying
an intelligent heuristic searching strategy on the setting structure parameters (i.e., neuron numbers of
the processing layer for RTRLNN and the adjacent radius for ANFIS), and the values of the connected
parameters corresponding to the setting structure are calibrated by using the heuristic algorithm
described in Sections 2.3 and 2.4. The searching strategy first constructs models by setting a series of
neuron numbers (1–15) and adjacent radius (0–1) equally from the feasible domain with the reliable
representative amount (10 per neuron number and 100 for adjacent radius), and then the structure
parameter of the best model among the equally distributed sampling process was strengthened
by construction with more experimental frequency to retrieve the optimal model efficiently. The
forecasted outcomes of the most optimal model of the four types of forecast architecture (RTRLNN-CHI,
RTRLNN-NHI, ANFIS-CHI, and ANFIS-NHI) are shown in Table 2. The best training and verification
results for the RTRLNN-CHI model, ANFIS-CHI model, and RTRLNN-NHI model are shown in
Figures 10–12, respectively. The MAE values for the verification stage of the RTRLNN-CHI model,
RTRLNN-NHI model, ANFIS-CHI model, and ANFIS-NHI model were respectively 11,721,556 m3,
30,475,270 m3, 14,429,374 m3, and 53,236,429 m3, while the CC values for the verification were 0.979,
0.876, 0.975, and 0.658, respectively. The results indicate that the respective forecast accuracy and
stability of the RTRLNN-CHI and ANFIS-CHI models are significantly higher than those of the
RTRLNN-NHI and ANFIS-NHI models. This shows that the proposed heuristic forecast model may
be highly accurate in its forecast of the total reservoir inflow under the following conditions: (1) when
the input includes key inputs such as the future accumulated total precipitation and the delays from
the current moment to the key hydrology points of the hydrograph (maximum precipitation, direct
runoff ending, and event recessional ending); (2) with assistance of the comprehensive simulation of
the real-time observed atmospheric factors and rainfall-runoff factors of the typhoon.

Table 2. Best assessment indexes values of the four kinds of constructed models.

Structure
Parameters/Assessment

Indexes

RTRLNN-CHI
Model

RTRLNN-NHI
Model

Structure
Parameters/Assessment

Indexes

ANFIS-CHI
Model

ANFIS-NHI
Model

Best node number of
hidden layer 3 9 Best adjacent

radius/rule number 0.922/2 0.836/3

MAE of training (m3) 4587459 22430139 MAE of training (m3) 7249160 59066261

MAE of validation (m3) 11721556 30475271 MAE of validation (m3) 14429375 53236429

CC of training 0.999 0.980 CC of training 0.998 0.867

CC of validation 0.980 0.876 CC of validation 0.976 0.659

The input information for the RTRLNN-NHI and ANFIS-NHI models only included the current
real-time observed conditions of the typhoon atmosphere and rainfall-runoff status. The average
forecasted accuracy of the RTRLNN-NHI and ANFIS-NHI models is respectively worse than that of
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the RTRLNN-CHI/ANFIS-CHI models by 1.6/1.11 times and 3.54/2.68 times, and average forecasted
stability is worse by 10.5%/10.2% and 32.8%/32.5%. Hence, these two non-heuristic models could
not be used to accurately and physically simulate the accumulated total reservoir inflow after long
lead-time changes in the meteorology and hydrology. The reason is that the model inputs only have
initial conditions (observed rainfall-runoff variables) but do not have boundary conditions for future
periods to simulate the shape and duration of future inflow hydrographs. This obviously caused the
forecasting accuracy and stability of the accumulated total inflow at the moment of maximum rainfall
in the early stage of the event to be inferior to that at the later stages after the flood peaked. Moreover,
the activation function in the hidden layer of the most optimal RTRLNN-based forecast model for the
total reservoir inflow was a tan-sigmoid transfer function, while the activation function in the output
layer was a linear activation function. The reason is that the shape of the tan-sigmoid function is similar
to the cumulative distribution function (CDF) of the inflow hydrograph, and the shape of the CDF is
exactly the inverse of the accumulated total inflow hydrograph. Hence, the tan-sigmoid function can
simulate future accumulated total inflow better than the other shapes of functions. Furthermore, the
numbers of neurons for the processing layer of the most optimal models in the RTRLNN-CHI and
RTRLNN-NHI models were three and nine, respectively, and the rule numbers for the most optimal
ANFIS-CHI and ANFIS-NHI models were two and three, respectively. This indicates that there was
insufficient input information to represent future boundary conditions of the typhoon rainfall-runoff
relationship over a long lead-time in the non-heuristic model. Therefore, a more complicated and
time-consuming model is required to simulate the accumulated total reservoir inflow in the future.

In addition, from the evaluation-index point of view, for the two heuristic models, the overall
forecast accuracy and stability of the RTRLNN-CHI model for forecasting the total reservoir inflow
was slightly better than that of the ANFIS-CHI model by 0.23 times of MAE and 0.41% of CC. The
reason is that there is a fixed-ratio real-time feedback calculation mechanism in the structure of the
RTRLNN model. When the simulation mechanism and characteristics of the model were applied to
forecasting time-varying output targets with a long lead-time and high uncertainty, better forecasting
results were obtained than with the ANFIS model, which lacks flexibility in the input and rule layers
that were used.

Figure 10. Training and validation results of RTRLNN-CHI-based accumulated total reservoir inflow
forecast model: (a) training stage; (b) validation stage.
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Figure 11. Training and validation results of ANFIS-CHI-based accumulated total reservoir inflow
forecast model: (a) training stage; (b) validation stage.

 
Figure 12. Training and validation results of RTRLNN-NHI-based accumulated total reservoir inflow
forecast model: (a) training stage; (b) validation stage.

3.3.3. Analytical Results of Temporal and Spatial Forecasted Error Feature of the Developed Models

In this research, characteristic analyses were made on the temporal and spatial forecast errors
of the four forecast models (RTRLNN-CHI, RTRLNN-NHI, ANFIS-CHI, and ANFIS-NHI) for long
lead-time and total reservoir inflow. The analysis targets were six typhoon events for verification, which
were used to evaluate the limits and applicability of the four models for long lead-time forecasting.
Judgments were also made on the range of the typhoon center where the future total reservoir inflow
may be accurately and appropriately forecasted. The average error percentages of the four developed
accumulated total inflow forecast models across long lead-times are shown in Table 3, and a comparison
of the temporal forecasted error features of the developed models across long lead-times is given in
Figure 13. The percentages of the average forecast errors in the forecast time range of 24 to 48 h for

the four models (RTRLNN-CHI, RTRLNN-NHI, ANFIS-CHI, and ANFIS-NHI), (

48
∑

Δt=24
AEP(Δt)

24 ), were
4.6%, 16.7%, 7.7%, and 27.1%, respectively. The average error percentages (AEP) for the period of 48 to

72 h, (

72
∑

Δt=48
AEP(Δt)

24 ), were 9.3%, 16.1%, 12.1%, and 39.3%, respectively. The AEP in the period of 20 to

79 h, (

79
∑

Δt=20
AEP(Δt)

60 ), were 6.3%, 15.2%, 9.2%, and 31.8%, respectively. The results indicate that the long
lead-time forecast accuracy of the heuristic model is obviously better than that of the non-heuristic
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model by 9%–23% for a lead-time of 24–48 h and 4%–30% for a lead-time of 48–72 h. The forecast
error of the heuristic model did not significantly increase along with the increasing of the forecasted
lead-time. The hydrograph patterns of the reservoir inflow for the meteorology and hydrology of the
future typhoon can be appropriately simulated ahead of time with heuristic inputs. Therefore, the
accumulated total inflow can be accurately forecasted for the long lead-time future. Furthermore, there
was a highly complicated nonlinear relationship between the rainfall from the typhoon meteorology
and the runoff in the catchment area from hydrology. There was better flexibility in the calculation
mechanism of the RTRLNN model than in the ANFIS model. RTRLNN had detailed linkage between
various types of inputs and outputs. It also calculated feedback information in real-time. Moreover,
the accuracies of the various forecasted time intervals using the RTRLNN-CHI model were better than
those obtained using the ANFIS-CHI model. The forecast error was less than 10% when the forecasted

lead-time reached three days. The AEP for a forecasted lead-time of an average 49 h, (

79
∑

Δt=20
AEP(Δt)

60 ), was
only 6.3% for the RTRLNN-CHI model. Hence, a long lead-time forecast model for the accumulated
total reservoir inflow was successfully developed using the heuristic technique in this study.

Table 3. Average error percentage of the four developed models across long lead-times.

Forecasted
Lead-Time

RTRLNN-CHI
Model

RTRLNN-NHI
Model

ANFIS-CHI
Model

ANFIS-NHI
Model

During 24 to 48 h 4.6% 16.7% 7.7% 27.1%

During 48 to 72 h 9.3% 16.1% 12.1% 39.3%

During 20 to 79 h 6.3% 15.2% 9.2% 31.8%

 

Figure 13. Comparison of temporal forecasted error features of the four developed accumulated total
inflow forecast models across long lead-times.

The comparison of the spatial forecasted error feature of the four developed accumulated total
inflow forecast models for the Shihmen Reservoir with relation to the central location of the typhoon is
shown in Figure 14. This figure represents the absolute error percentage (AEP(x, y)) on the forecasted
total reservoir inflow in the catchment area of the Shihmen Reservoir when the typhoon center was
moving in the vicinity of any region in Taiwan (in the range of longitude 118–124 degrees, latitude
22–28 degrees). It can be seen from the spatial distributions of the forecast errors of the four models that
the overall error space and range of the heuristic models (e.g., Figure 14a for the RTRLNN-CHI model,
and Figure 14c for the ANFIS-CHI model) are much smaller than those of the non-heuristic models
(e.g., Figure 14b for the RTRLNN-NHI model, and Figure 14d for the ANFIS-NHI model). In the error
spatial distribution map of the RTRLNN-CHI model, the range where the AEP(x, y) was less than 10%
(which was about 61% of the researched range) was much bigger than that of the ANFIS-CHI model
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(which was about 47% of the researched range). The range where the AEP(x, y) was greater than 20%
(which was about 13% of the researched range) was much smaller than that of the ANFIS-CHI model
(which was about 32% of the researched range). Figure 14 confirms that the forecast accuracy and
stability of the RTRLNN-CHI model were better than those of other models when typhoon invasion
was at the basin of the Shihmen Reservoir. When the typhoon center was in the southeast of Taiwan,
the structure and meteorology field after the typhoon passed Taiwan was destroyed by the terrain.
There was also the co-existing effects of the monsoon. Therefore, there was a significant difference
between the future typhoon meteorology and rainfall-runoff conditions and the observed data when
the typhoon center was in the southeast of Taiwan. As a result, the forecast error on the total reservoir
inflow of the typhoon when it is located in the southeast of Taiwan is greater than that when the
typhoon center is located elsewhere. However, after the typhoon center passed Taiwan, the circulation
structure was not affected by the terrain. Hence, the forecast error on the total reservoir inflow was
relatively small.

3.3.4. Sensitivity Analysis Results of Output with Relation to Heuristic Inputs Due to Future
Forecasted Uncertainty

In order to evaluate the feasibility, applicability, and accuracy of the heuristic model when
applied to real-time forecasting, a sensitivity analysis was conducted on the forecasted error effects
of the outputs with relation to single or combined heuristic inputs for the most optimal heuristic
model (RTRLNN-CHI). According to the previously developed short lead-time hydrological forecast
models [35,36], an average forecast error (±EP) of 10% was assumed on each heuristic input, which
was inputted into the model to simulate the absolute error percentage (AEP(i,±EP)) of the forecast.
The results from the analysis are shown in Figure 15, where Heuristic input 1 (HI1) is the future
accumulated total precipitation, HI2 is the duration from the current time to the flood recessional
ending time, HI3 is the duration from the current time to the DRE time, and HI4 is the duration from
the current time to the maximum precipitation time. The results displayed show that when ±10%
error was inputted with HI2, the maximum output error would appear regardless of whether the case
was that of a single input or combinations of multiple inputs. This indicates that the flood duration is
the most important factor in forecasting the future accumulated total reservoir inflow, which is also the
most sensitive input for the output of the model. Among all the combinations of heuristic input errors,
the average forecast error was 9.98% for a 10% overestimation on the input, with a maximum of 13.6%
(when there are 10% errors on all of HI1, HI2, HI3, and HI4). For the case of underestimation with a
10% error on the input, the average forecast error was 11.01%, with a maximum of 13.6%. There was an
additional 1.03% error on the output for the 10% underestimation error on the heuristic inputs when
compared to the case of 10% overestimation on the input. These results indicate that the absolute error
percentage (13.6%) of the heuristic model with a 10% error on all the heuristic inputs was still lower
than that of the most optimal non-heuristic model (RTRLNN-NHI), AEP = 15.2%. This shows that
the real-time forecast accuracy of the RTRLNN-CHI model is still better than that of the non-heuristic
models (RTRLNN-NHI and ANFIS-NHI) even when there are errors on the heuristic inputs.
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Figure 14. Comparison of spatial forecasted error feature of the four developed accumulated total
inflow forecast models for the Shihmen Reservoir with relation to the typhoon central location:
(a) RTRLNN-CHI model; (b) RTRLNN-NHI model; (c) ANFIS-CHI model; and (d) ANFIS-NHI model.

 

Figure 15. Sensitivity analysis results of model output with relation to single or combined heuristic
inputs due to future forecasted uncertainty.
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3.3.5. Construction Results of Heuristic Forecast Database for Heuristic Inputs

In this study, heuristic data mining techniques were used to construct a forecast database for
the relationship between the position of the typhoon center, the rainfall hyetograph, and the inflow
hydrograph in the catchment area from historical samples. The database was constructed to facilitate
forecasting of the future accumulated total precipitation. Similarly, heuristic data mining techniques
can also be applied on the delay of the future typhoon invasion by constructing a forecast database
from relationships on the spatial position distribution of the typhoon center when the water has
completely retreated, the moment of maximum rainfall, and the end time of direct runoff in historical
samples. The characteristic map of the typhoon center position vs. the rainfall in the Shihmen Reservoir
basin is as shown in Figure 16, which is the contour map after Kriging interpolation of the spatial
sample information (X axis (typhoon central longitude), Y axis (typhoon central latitude), Z axis (basin
precipitation of Shihmen Reservoir)). In this figure, strong rainfalls occurred when the typhoon center
was at the southeast of Taiwan because the typhoon was under the influence of the Coriolis Effect.
The air exhibits counterclockwise rotation in the Northern Hemisphere. When the typhoon was in
the southeast of Taiwan, the typhoon rain belt entrained by the wind field under counterclockwise
rotation was not blocked by the terrain of the mostly flat lands before entering the catchment area of
the Shihmen Reservoir. After the rain belt entered the catchment area of the Shihmen Reservoir from
the northwest to the southeast, it was blocked by the Snow-Capped mountain range. The catchment
area of the Shihmen Reservoir belonged to the upwind side and heavy rain would happen then. In
contrast, when the typhoon was not in the southeast of Taiwan, the rain belt entrained by the wind
field was blocked by the Snow-Capped mountain range, the Central mountain range, and the Yusan
mountain range before entering the catchment area of the Shihmen Reservoir. The catchment area
of the Shihmen Reservoir was at leeward and there were no heavy rains in the Shihmen Reservoir
at this time. With the assistance of this figure, the rainfall hyetograph in the catchment area of the
Shihmen Reservoir during the future whole typhoon flood event can be obtained from the combined
information of the hourly forecasted positions of the future typhoon center, the real-time estimated
amount of rainfall, and the correction from the observed amount. The desired forecast of the total
rainfall for the total reservoir inflow was obtained by summing over the rainfall hyetograph.

In this study, derivations on the spatial characteristics of the position distribution of the typhoon
center were made for the moment when the maximum rainfall occurred, the direct runoff ended, and
the water retreat ended in the typhoon flood events. First, the basin of the Shihmen Reservoir was
located as the ellipse Eb in Figure 16, and then the terrain factors that might affect the rainfall in the
reservoir basin were identified. Then, an axis (Line M1–M2) was marked along the direction of the
Snow-Capped mountain range. The second axis (Line P1–P2), was defined as being perpendicular
to Line M1–M2. Using these two axes as the reference, a contour map was created of the spatial
distribution of the positions of the typhoon center when the water retreated below 300 cm of the
reservoir inflow for the periods when a typhoon alarm is historically issued on land until the alarm is
lifted. This resulted in the elliptical distribution line (EE), from which the starting time of the forecast
and the ending time of the water retreat could be determined. Regarding the model construction
event, a contour map could be made for the spatial distribution of the positions of the typhoon center
between the start of the rainfall and the end of the direct runoff for historical typhoon flood events.
This resulted in the elliptical distribution line EDRE. Further, the elliptical distribution line EMP could
be obtained from the contour map of the spatial distribution of the typhoon center when the maximum
rainfall occurred in the historical typhoon flood events. The time of the maximum rainfall may be
determined from this distribution line (EMP) and the contour lines of rainfall.
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Figure 16. Construction results of heuristic forecast database for the Shihmen basin precipitation and
duration characteristics curves with relation to the typhoon central location.

In Figure 16, the distribution lines were mainly elliptical, which was due to the Coriolis effect
and the Terrain effect during the movements of the typhoon. When the path and direction of typhoon
movement and the spatial distribution of terrain height are non-uniform, the distribution lines are
elliptical instead of circular. The main axis of the ellipse was related to the direction of the terrains
and mountains, so the elliptical distribution was a rotation of the main axis. Besides, the delay of the
hydrograph pattern of rainfall was mainly dominated by the moving path of the typhoon. Because
the Coriolis effect acted on the typhoon, it moved toward the direction of 270◦ to 360◦, while the
synthetic moving direction coincided with Line P1–P2, i.e., the perpendicular line of the Snow-Capped
mountain range. Therefore, the long axes of EE and EDRE are along Line P1–P2, while the long axis of
EMP was in the direction of the Snow-Capped mountain range (Line M1–M2) because whether or not
strong rainfall occurred was mainly related to the angle and position between the direction from which
the rain belt of typhoon entered the reservoir basin and the direction of the Snow-Capped mountain
range. In addition, from a monsoon climatology point of view, Taiwan is mainly affected by southwest
monsoons from mid-March to mid-September, and is predominantly under the effects of the northeast
monsoon at other times. When the typhoon center was located in quadrants I and II in Figure 16, the
wind field with counterclockwise rotation easily accompanied the northeast monsoon in the basin
direction of the Shihmen Reservoir; when it was located in quadrants III and IV, the wind field was
easily accompanied by the southwest monsoon. For typhoon invasion in quadrants I and II after
mid-September and in quadrants III and IV during mid-March and mid-September, the typhoon was
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easily accompanied by co-existing effects of the monsoon to increase rainfall duration and precipitation.
The contour lines of EE, EDRE, and EMP can be expressed with the following equations:
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where Δdlon. and Δdlat. are the representative distance of each longitude and latitude, respectively.

4. Conclusions

Typhoon long lead-time rainfall-runoff is characterized as a chaotic, fuzzy, highly uncertain, and
nonlinear system. The routing mechanism and characteristics of the real-time recurrent learning neural
network (RTRLNN) and the adaptive network-based fuzzy inference system (ANFIS) have the potential
ability to reason and learn using deterministic real-time recurrent routing and fuzzy logic. Therefore,
the present study applied RTRLNN and ANFIS combined with multiple artificial intelligence-based
heuristic techniques to develop coupled heuristic long lead-time accumulated total reservoir inflow
forecast models (RTRLNN-CHI and ANFIS-CHI), in order to improve the accuracy and stability of
long-term accumulated total inflow forecasting. The proposed system was evaluated by a comparison
with the RTRLNN- and ANFIS-based non-heuristic models (RTRLNN-NHI and ANFIS-NHI). The
inputs of the heuristic models are composed of coupled observed non-heuristic inputs (typhoon
characteristics factors, hourly basin precipitation, hourly reservoir inflow) and forecasted heuristic
inputs (future accumulated total precipitation, duration from the current time to the time of maximum
precipitation, direct runoff ending and event recessional ending, and observed-predicted inflow
increase/decrease rate). The present study first employed non-parametric correlation analysis to assess
the most appropriate input variables for long lead-time non-heuristic and heuristic models. This study
also analyzed temporal and spatial forecasted error features to assess the goodness and applicability
of the developed four long lead-time models, and we also analyzed the output sensitivity of single or
combined heuristic inputs to determine whether the developed heuristic model can suffer the impact
of future forecasted uncertainty and error on inputs.

The proposed method was applied to Taiwan’s Shihmen Reservoir catchment area with a study
period from 2004 to 2012. The results showed lead us to the following conclusions. (1) The accuracy and
stability of the RTRLNN-based long lead-time accumulated total reservoir inflow prediction model are
better than that of the ANFIS-based model. This is because RTRLNN incorporates a real-time recurrent
deterministic routing mechanism with a more elastic and fine connection than ANFIS. (2) Under the
synthesized simulation using key heuristic inputs of future total precipitation, flooding duration,
and OPIID rate with other real-time observed hydrometeorological factors, the coupled heuristic
RTRLNN-based model (RTRLNN-CHI, average error percentage (AEP): 6.3%, average forecasted
lead-time: 49 h) and ANFIS-based model (ANFIS-CHI, AEP: 9.2%) could achieve a better prediction
than the non-heuristic model (RTRLNN-NHI, AEP: 15.2%; ANFIS-NHI, AEP: 31.8%) because of the
full consideration of different runoff/infiltration scenarios and initial/boundary conditions in each
time step. (3) The hydrograph pattern of the reservoir inflow for the future typhoon meteorology and
hydrology could be appropriately simulated ahead of time by using heuristic inputs. The accuracy
of the long lead-time (24–72 h) total inflow forecast at the typhoon center during the invasion period
in Taiwan (longitude 118–124 degrees, latitude 22–28 degrees) of the heuristic model was obviously
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better than that of the non-heuristic model. (4) When there were 10% errors on all the heuristic inputs,
the AEP (13.6%) of the heuristic model was still lower than that of the most optimal non-heuristic
model (RTRLNN-NHI, 15.2%). This indicates that the real-time forecast accuracy of the RTRLNN-CHI
model even with errors on the heuristic inputs is still higher than that of the non-heuristic models
(RTRLNN-NHI and ANFIS-NHI).

The key factors to effectively forecast long lead-time accumulated total reservoir inflow under a
complex typhoon effect in real-time rely on the predicted accuracy of the meteorological-hydrological
heuristic inputs and the associated data-preprocessing process. Future study can focus on improving
the predicted accuracy of the heuristic inputs by coupling with novel numerical weather forecast
models as a basis to provide future rainfall-runoff boundary conditions for a soft-computing model.
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Abstract: This study quantitatively estimated the precipitation associated with a typhoon in the
northwestern Pacific Ocean by using a physical algorithm which included the Weather Research
and Forecasting model, Radiative Transfer for TIROS Operational Vertical Sounder model, and
data from the Tropical Rainfall Measuring Mission (TRMM)/TRMM Microwave Imager (TMI)
and TRMM/Precipitation Radar (PR). First, a prior probability distribution function (PDF) was
constructed using over three million rain rate retrievals from the TRMM/PR data for the period
2002–2010 over the northwestern Pacific Ocean. Subsequently, brightness temperatures for
15 typhoons that occurred over the northwestern Pacific Ocean were simulated using a microwave
radiative transfer model and a conditional PDF was obtained for these typhoons. The aforementioned
physical algorithm involved using a posterior PDF. A posterior PDF was obtained by combining
the prior and conditional PDFs. Finally, the rain rate associated with a typhoon was estimated
by inputting the observations of the TMI (attenuation indices at 10, 19, 37 GHz) into the posterior
PDF (lookup table). Results based on rain rate retrievals indicated that rainband locations with the
heaviest rainfall showed qualitatively similar horizontal distributions. The correlation coefficient
and root-mean-square error of the rain rate estimation were 0.63 and 4.45 mm·h−1, respectively.
Furthermore, the correlation coefficient and root-mean-square error for convective rainfall were
0.78 and 7.25 mm·h−1, respectively, and those for stratiform rainfall were 0.58 and 9.60 mm·h−1,
respectively. The main contribution of this study is introducing an approach to quickly and accurately
estimate the typhoon precipitation, and remove the need for complex calculations.

Keywords: quantitative precipitation estimate; WRF model; RTTOV model; prior probability distribution
function; conditional PDF; posterior PDF

1. Introduction

The precipitation of typhoons at the early stages can be estimated by satellites by using visible
(VIS) and infrared (IR) channels. VIS channels are used only during daytime. Furthermore, IR
channels are affected by cloud layers and, therefore, data for the region below the cloud top cannot be
collected. Unlike IR channels, passive microwave channels enable observing precipitation conditions
below clouds.

Scientists have established the regression relation between the passive microwave brightness
temperature (TB) and the actual rain rate (rain rate, RR); thus, an observed TB can be input into the
regression relation to estimate the RR [1,2]. However, the disadvantage of regression relations is
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that they are restricted to specific periods, areas, and weather systems. Past studies have mentioned
various methods in which passive microwave channels are used to estimate the precipitation intensity
after 1990 [3–8].

Many studies have indicated that a major method for estimating the RR over the ocean involves
using multi-satellite passive microwave channels. Satellite passive microwave data can provide
estimates of precipitation over the vast ocean, where there is a lack of observed data, and the estimates
are unot influenced by cloud layers [9]. In the presence of the emission and scattering effects of
raindrops, the relationship between the TB and the RR is non-monotonic [10].

Since 2000, many scholars have used satellite passive microwave channels to estimate the RR.
Chen and Li [11] utilized the passive microwave channel of the Tropical Rainfall Measuring Mission
(TRMM) along with synchronous satellite data to research precipitation estimation. Kidd et al., [8]
developed a precipitation estimation method by combining passive microwave and IR channels, and
the time resolution of the method is 30 min. Different microwave channels have different physical
features and limitations related to precipitation retrieval. Therefore, some researchers have used
multiple channels to estimate the RR and to increase the dynamic range of precipitation retrieval [12,13].
Kummerow et al., [14] presented the Goddard profiling algorithm for passive-microwave-data-based
RR estimation.

Although the passive microwave sensor has become the preferred choice for estimating
precipitation associated with typhoons over the ocean, an IR sensor is superior for estimating
long-period precipitation since the passive microwave sensor has extremely low time resolution [15–17].
Clearly, the use of RR estimation algorithms is restricted to the ocean [18–20]. Since the ocean has low
emissivity (approximately 0.5) and a low (cold) radiation background, regions where precipitation
occurs show a high (warm) radiation rate (emissivity close to 1.0). Therefore, precipitation locations
over the vast ocean can be easily identified.

Information on the type of land feature, such as whether an area is snow covered, a desert, or
semi-arid [18,21–23], is necessary when estimating precipitation on land. Thus, it is difficult to conduct
a study of land precipitation by using emission data. Studies on land precipitation retrieval typically
focus on scattering data [24,25]. High-frequency microwave channels can be used to estimate land
precipitation [4,5,18,21,23].

Overall, although satellite precipitation data are quantitative and provide spatiotemporal coverage
over the ocean [26], they contain uncertainties and have limitations [27]. Therefore, many studies have
evaluated, improved, and used satellite-based rainfall data for different areas [28–30]. Moreover, the
accuracy of satellite-based rainfall data for different locations, seasons, and weather systems has been
evaluated [31,32].

Moreover, a strong relationship exists between the rainfall intensity and water resources
management. Water resources management involves the activity of planning, developing, distributing,
and managing the optimum use of water resources, such as reservoir operation, rainfall runoff, water
supply planning, irrigation system, and so on.

For example, Chau et al., [33] illustrated that the provision of an accurate and timely rainfall
forecast is a key factor in reservoir operation. Meanwhile, Wang et al., [34] tried to improve the
forecasting accuracy of annual runoff time series using numerical models and empirical models.
Although a physical method has shortcomings such as requiring complex computations and being
time consuming, regression relations used in a physical method do not change with time and place,
similar to statistical methods. The time required to establish a relationship between the RR and
attenuation index is longer than the time needed to establish a relationship between the RR and multi
channels’ TB. Furthermore, a Bayesian method is a complex and time-consuming physical method
in advance. This study simulated the TB of typhoons before their occurrence by using the Weather
Research and Forecasting (WRF) and Radiative Transfer for TIROS Operational Vertical Sounder
(RTTOV) models. The TB was then transferred to the attenuation index. Finally, a lookup table for
the attenuation index and RR was constructed using a Bayesian approach. The following step merely
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involves transferring the observed TB to the attenuation index and then estimating the RR of typhoons
by using the lookup table. Consequently, the use of time-consuming physical methods can be avoided.
The main contribution of this study is providing a method that can quickly and accurately estimate the
typhoon rain rate.

This paper is organized as follows. In Section 2, we briefly review a theory used in this study;
the theory presents the relationship between microwave observations (transferred to the attenuation
index) and RR. In Section 3, we detail the basis of our methodology, including the physical algorithm,
established rainfall threshold, and Bayesian approach. In Section 4, case validation and the results of
this study are discussed. Finally, conclusions are presented in Section 5.

2. Theory

During rainfall, rain droplets over the ocean absorb and emit radiation. Therefore, the TB
increases with the RR, implying that the TB can be used for precipitation estimation. The relationship
between the TB and RR is shown in Figure 1 [35]. The text in the right side of Figure 1 describes the
frequency and polarization of TMI which correspond to each line. For example, TB10V is the 10 GHz
vertical polarization. Figure 1 was simulated as the standard atmosphere. For example, the standard
atmospheric pressure was 1013.250 hPa.

Figure 1. Ideal plot of brightness temperature (TB) versus rain rate (RR) over the ocean for the Tropical
Rainfall Measuring Mission Microwave Imager (TMI) channels [35]. The text in the right side of Figure 1
describes the frequency and polarization of TMI which correspond to each line.

The microwave TB and RR do not have a one-to-one relationship [36]. If an equation relating
them is developed directly, it would not be applicable to precipitation estimation. The attenuation
index developed by Petty [12] is determined according to the difference between vertical polarization
and horizontal polarization, and it is referred to as the P value. It is used to obtain the relationship
between the TB and RR. The definition of the P value is as follows:

P ≡ TBV − TBH
TBV,O − TBH,O

(1)
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where TBV and TBH denote the vertical polarization TB and horizontal polarization TB, respectively,
and TBV,O and TBH,O represent the values of TBV and TBH under identical atmospheric conditions
after the removal of the effect of rain clouds. The p value ranges from 0 to 1. The value 1 indicates
that clouds and rain are absent from the field of view (FOV) of the satellite, whereas 0 indicates that
the optical thickness in the FOV becomes extremely opaque because of clouds and rain [37]. Figure 2
shows the inverse relation between precipitation intensity and the attenuation index [35]. The results
of Figure 2 were calculated by Equation (1) using the data of Figure 1. The P10, P19, P37, and P85 in
the Figure 2 indicate the attenuation index at 10, 19, 37, and 85 GHz of TMI. Figure 1 was simulated
using typhoon cases. Therefore, they are more suitable for estimating the rain rate of the typhoon. In
Figure 2, it was found that the attenuation index at 85 GHz approaches zero for RR just above 1 mm/h
and, thus, the error of RR estimation from P would be significant at a higher rainfall rate, especially for
typhoon cases. Therefore, the 85 GHz data are not used in this study.

 

Figure 2. Relationship between attenuation index and RR for TMI channels [35]. The P10, P19, P37,
and P85 in Figure 2 indicate the attenuation index at 10, 19, 37, and 85 GHz of TMI.

3. Methodology

3.1. Physical Algorithm

In the precipitation estimation method proposed in this study, the WRF model is used to simulate
the vertical hydrometeor distribution of a typhoon over the western Pacific. The vertical hydrometeor
distribution is the standard output products of WRF. The hydrometeor distribution is then inputted into
the RTTOV model to simulate the TBs of the TMI channels, and a conditional probability distribution
function (PDF) is constructed using the output of the WRF and RTTOV models. Moreover, a prior
PDF is constructed using 3,115,544 PR precipitation data over the ocean. Finally, the posterior PDF is
obtained on the basis of Bayesian theory. Therefore, a lookup table of the probability of occurrence of
various RR corresponding to the attenuation index of TMI channels can be constructed. In other words,
a rain rate can be estimated when the satellite observations are converted to the attenuation index.
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The complete flowchart for precipitation estimation is shown in Figure 3. The dotted square
represents the processing procedure of the model, which includes the WRF and RTTOV models, and
the dashed square represents the processing method of the satellite.

3.2. Establishing a Threshold for Rain

To obtain the precipitation threshold of each TMI channel over the northwestern Pacific during
summer, TRMM swaths that were within the range of the northwestern Pacific from June to October
of 2009 and 2010 were obtained. There were a total of 2242 TRMM swaths, which included
observed values of the TMI and PR. Within the 2242 TRMM swaths contains 127,382 PR data points
corresponding to the absence of rain. Histograms of the TB for each TMI channel in the absence of rain
were drawn (Figures 4–8). Samples that were within ±1 of the standard deviation were reanalyzed
excluding outlier and possibly noisy data. The average TB values of each channel represented the
precipitation threshold (Table 1).

Figure 3. Flowchart for precipitation estimation proposed in this study.

Figure 4. Histograms of the TB for the TMI in the absence of rain: (a) TB10V and (b) TB10H.
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Figure 5. Histograms of the TB for the TMI in the absence of rain at 19 GHz: (a) TB10V and (b) TB10H.

Figure 6. Histogram of the TB for the TMI in the absence of rain at 21 GHz.

Figure 7. Histograms of the TB for the TMI in the absence of rain at 37 GHz: (a) TB10V and (b) TB10H.
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Figure 8. Histograms of the TB for the TMI in the absence of rain at 85 GHz: (a) TB10V and (b) TB10H.

Table 1. Precipitation thresholds and standard deviations for TMI channels.

Frequencies Threshold (Mean) Standard Deviation

10-V GHz 175.78 K 1.27 K
10-H GHz 93.78 K 2.39 K
19-V GHz 218.77 K 2.73 K
19-H GHz 163.46 K 5.05 K
21-V GHz 248.21 K 3.41 K
37-V GHz 228.09 K 2.39 K
37-H GHz 175.74 K 5.05 K
85-V GHz 276.17 K 1.63 K
85-H GHz 260.77 K 3.76 K

3.3. Prior PDF

The main difficulties are constructing the prior and conditional PDFs [38] and obtaining numerous
and distinct samples to extend the distribution range of the P value and RR. The objective of this study
was to estimate the RR associated with typhoons that may impact Taiwan. Therefore, near-surface RR
data were collected by using the PR for a nine-year period (2002–2010), from June to November, over
the northwestern Pacific and South China Sea regions (longitude 110◦–155◦ E, latitude 5◦–35◦ N), and
the data were used to construct the prior PDF.

The minimum measurable echo intensity was 17 dBZ, which is equal to an RR of 0.7 mm·h−1 [39].
A total of 15,480 swaths and over 60 million observation data were obtained over the South China
Sea and northwestern Pacific in the nine-year period. The number of RR data used in this study to
construct the prior PDF was 3,115,544.

The symbol “+” in Figure 9 is used to represent the RRs near the nadir of the curve. The x
coordinate represents the RR, and the y coordinate represents the prior PDF. The solid line represents
the probability distribution obtained by fitting a logarithmic normal distribution to the portion of the
curve marked by “+” symbols.
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Figure 9. Rain rate distribution-PR (near nadir). Points marked by “+” represent the RRs near the nadir
of the curve, and the solid line denotes the probability distribution.

3.4. Conditional PDF

Calculating the conditional PDF mainly involved calculating the probability distribution of the p
value at different RRs. Numerous samples are required to obtain the relevant statistics and increase the
dynamic range of the P value and RR. For this purpose, most of the chosen typhoons were moderate
or strong when conducting the simulation.

The conditional PDF was calculated by WRF model to simulate various vertical hydrometeor
distributions such as rain, snow, hail, and graupel, that is the standard output products of WRF. The
results of hydrometeor sensitivity can be found in Yeh et al., [40]. According to Chien et al., [41],
an analysis was made on the respective advantages and disadvantages for various combinations of
different model parameters. The study used WSM6 (WRF Single-Moment) scheme in the microphysics
option, YSU (Yonsei University) scheme in the boundary layer option, and KF (Kain-Fritsch) scheme
in the cumulus option. These vertical hydrometeor distributions were inputted into the RTTOV model
to obtain the TB of the TMI channels. RTTOV stands for Radiative Transfer for TOVS and is a very
fast radiative transfer model for nadir-viewing passive visible, infrared, and microwave satellite
radiometers, spectrometers, and interferometers. Fifteen typhoons occurring over the northwestern
Pacific (Table 2) were simulated.
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Table 2. Fifteen typhoons considered for constructing the conditional probability density function.

Number Typhoon Nane Typhoon Strength Simulation Time (UTC)

1 BOLAVEN Strong 2012/8/25 1800–2012/8/26 1800
2 GUCHOL Strong 2012/6/17 0600–2012/6/17 0600
3 NANMADOL Strong 2011/8/25 1800–2011/8/26 1800
4 SONGDA Strong 2011/5/26 1200–2011/5/27 1200
5 SINLAKU Strong 2008/9/12 0600–2008/9/13 0600
6 PRAPIROON Medium 2012/10/11 1800–2012/10/12 1800
7 JELAWAT Medium 2012/9/28 0000–2012/9/29 0000
8 SANBA Medium 2012/9/14 1200–2012/9/15 1200
9 HAIKUI Medium 2012/8/6 0000–2012/8/7 0000
10 MUIFA Medium 2011/8/3 0600–2011/8/4 0600
11 CHABA Medium 2010/10/27 1800–2010/10/28 1800
12 MEGI Medium 2010/10/21 0000–2010/10/22 0000
13 FANAPI Medium 2010/9/17 1200–2010/9/18 1200
14 LUPIT Medium 2009/10/18 0000–2009/10/19 0000
15 PARMA Weak 2009/10/4 0600–2009/10/5 0600

3.5. Posterior PDF

Nine years of near-surface RR data were used to construct the prior PDF, and the WRF model
was used to simulate the vertical hydrometeor distribution and surface RR for 15 typhoons and to
calculate the P value, which was then simulated using the RTTOV model; subsequently, the conditional
PDF was constructed. Finally, According to Bayesian theory, the posterior PDF derived from the
prior and conditional PDF, and the posterior PDF could be used along with satellite observations to
estimate the RR associated with a typhoon. In other words, the rain rate of typhoon was estimated by

inputting the vector
⇀
P = (P10, P19, P37) into the lookup table (posterior PDF). The physical meaning

is that the probability distribution of the RR is estimated using a certain known observation vector
⇀
P = (P10, P19, P37).

There are two advantages of using the model when the Bayesian approach is used to estimate
precipitation. First, the model can simulate a massive amount of data and a wide range of RRs. In the
statistical point of view, a large amount of data can improve its reliability. Additionally, a large amount
of data can also expand the range of RR estimation and its accuracy. Second, the RR can be estimated
instantly without any calculations. The advantage of the Bayesian approach can be found in Chiu and
Petty [38]. In addition to the Bayesian approach, the relationship of P and RR, as shown in Figure 2, can
also be used to estimate the RR. The result of the RR estimation can be seen in Section 4.2. Meanwhile,
additional descriptions have been added to Section 4.2.

4. Validation and Discussion

4.1. Analysis of TB

To clearly understand the differences between the simulated TB and the observed TB, a
quantitative analysis of the TB was performed by considering typhoons in only a selected region. The
region considered for quantitative analysis and the corresponding number of data for each typhoon
are listed in Table 3.
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Table 3. Information on the simulated typhoons.

No.
Typhoon

Name
Scan Time (UTC)

The Range of Quantitative Analysis Data
Number

Correlation
CoefficientNorth Latitude East Longitude

1 BOLAVEN 2012/8/26 759 23 29 125 133 3437 0.74
2 GUCHOL 2012/6/17 1848 19.5 24 125 130 1846 0.87
3 NANMADOL 2011/8/26 842 15.5 19 122 126 1020 0.64
4 SONGDA 2011/5/27 609 17 22.5 121.5 126 1921 0.73
5 SINLAKU 2008/9/12 1912 22 26.5 121.5 125.5 1297 0.79
6 PRAPIROON 2012/10/12 709 17 23 126 132 3117 0.78
7 JELAWAT 2012/9/28 1508 23 28 123 128 1960 0.83
8 SANBA 2012/9/15 347 21.5 26 126 131 1840 0.8
9 HAIKUI 2012/8/6 1820 24 30 121.5 128 2589 0.7

10 MUIFA 2011/8/3 1841 21.5 27 128 134 2682 0.77
11 CHABA 2010/10/28 1016 23 28 127 131 1553 0.88
12 MEGI 2010/10/21 1330 21.5 27 128 134 2156 0.84
13 FANAPI 2010/9/18 620 21.5 25.5 123 128 1575 0.84
14 LUPIT 2009/10/18 1434 15 21 131 137 2307 0.82
15 PARMA 2009/10/4 2232 17 22 117 122 1691 0.72

The precipitation lookup table was constructed by using frequencies of 10, 19, and 37 GHz to
estimate the precipitation. Therefore, the quantitative analysis involved these three frequencies for
the vertical and horizontal polarization. The correlation coefficient of the TB of each channel was
calculated, and the average correlation coefficient of six channels was obtained. The average correlation
coefficients of the observed TB and simulated TB were obtained. The correlation coefficients of the
15 typhoons are listed in Table 3. The conditional PDF was constructed using the TB and RR of the
15 typhoons, and the average correlation coefficient between the simulation and observation is 0.78.

Validation of TB Simulation

The conditional PDF was constructed by considering the 15 typhoons. The 10 GHz vertical
polarization for the typhoons is discussed in this section.

Typhoon Nanmadol occurred on 26 August 2011 at 0842 UTC, and its track number is 78483.
Figure 10 shows the satellite IR image at 0830 UTC. Clearly, the center of typhoon Nanmadol was
approximately located to the east of the Philippines (latitude 17.5◦ N, Longitude 123.5◦ E). The
cloud rainband shows a symmetrical and complete structure, indicating that Nanmadol was a
strong typhoon.

Figure 11a shows the TB observations of the TMI, Figure 11b shows the TB simulated by the
RTTOV model, and Figure 11c shows the histogram of the TB for the region within the dashed square.
The blue bar represents TB observations, and the yellow bar denotes the simulated TB.

A qualitative analysis of Figures 11 and 12 shows that the center of the simulation of the typhoon
is approximately identical in both figures and the entire simulation pattern is similar to the observed
pattern of the typhoon. The TB of the clear sky simulated by the model shows a value that is consistent
with the observation. The TB of the simulated typhoon rainband is overestimated.
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Figure 10. Infrared (IR) image recorded at 0830 UTC on 26 August 2011.

Figure 11. TB10V of Typhoon Nanmadol: (a) TMI observation; (b) Radiative Transfer for TIROS
Operational Vertical Sounder (RTTOV) simulation; and (c) histogram for the region within the dashed
square in the preceding panels.
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Figure 12. TB10H of Typhoon Nanmadol: (a) TMI observation; (b) RTTOV simulation; and (c)
histogram for the region within the dashed square in the preceding panels.

The TB of the clear sky is identical in the simulation and observation (Figure 11c). The sizes of
simulated and observed typhoons are similar. Therefore, the TB values of the clear sky within the
dashed squares of the simulated and observed patterns are roughly identical. The highest TB of the
rainband in Figure 11a is 230–240 K, and in Figure 11b, it is greater than 270 K. Therefore, the histogram
of Figure 11c pertains to simulated TB values above 270 K. Figure 12 shows a similar situation. In other
words, the simulation overestimated the TB in the rainband, because the WRF-model simulation of the
precipitation associated with the typhoon was overestimated. The simulated RR was overestimated by
the WRF model, and emissions dominated the 10 GHz frequency. Therefore, the simulated TB was
overestimated because of emissions from raindrops, regardless of whether polarization was vertical
or horizontal.

The difference between the simulation time and observation time is 18 min. Overall, the intensity
and the structure of the typhoon are similar in the TMI observation and simulation, and only the scale
of the typhoon differs slightly between the simulation and the observation. Therefore, the correlation
coefficient between the simulation and observation is only 0.64.

4.2. Validation of RR Estimation

In this study, five complete typhoons, including 10 swaths scanned by the TMI in 2011 and 2012,
were examined to verify the estimated precipitation. Information on the name, scanning time, and track
number of the typhoons is presented in Table 4. Because there were few in situ observations (on islands
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and buoys), the verification was performed by considering the near-surface RR data recorded by the
PR as the true value. RR verification was divided into quantitative analysis and qualitative analysis.

Numbers 1 to 10 in Table 4 represent 10 cases. However, for some typhoons, nadir scanning by
the PR did not encompass the full rainband of the typhoons. Therefore, quantitative analysis was not
performed for case numbers 1 and 3. The average correlation coefficient for the other eight cases is
0.62, and the average root-mean-square for the other eight cases error is 4.45. The results of the average
root-mean-square and RMSE showed that the proposed method can accurately estimate the typhoon
rain rate. Overall, the position of the typhoon heavy rainfall could be displayed, but the heaviest
rainfall intensity was underestimated. One of the key sources of the error is that this method does not
use the high-frequency channel. One case in Table 4 is discussed in this section, and the quantitative
analysis results of the other cases are presented in the Table 4.

Table 4. RR validation cases.

Number
Typhoon

Name
Scan Time (UTC)

Orbital
Number

Correlation
Coefficient

RMSE

1 MUIFA 2011/08/03 1307 78127 – –
2 MUIFA 2011/08/03 1940 78131 0.52 3.48
3 MUIFA 2011/08/04 1732 78146 – –
4 NANMADOL 2011/08/29 0025 78524 0.78 2.67
5 TEMBIN 2012/08/23 0943 84141 0.7 4.63
6 TEMBIN 2012/08/26 0832 84187 0.58 4.27
7 TEMBIN 2012/08/27 0736 84202 0.54 2.36
8 SANBA 2012/09/12 0733 84451 0.44 6.05
9 SANBA 2012/09/14 0540 84481 0.66 5.97
10 JELAWAT 2012/09/28 1544 84706 0.72 6.14

Case Study

Figure 13 shows the estimated precipitation for typhoon Nanmadol. Figure 13a shows the RR
estimated by the PR (hereinafter referred to as PR-RR), Figure 13b shows the RR estimated using the
Bayesian method developed in this study (hereinafter referred to as TMI-RR), and Figure 13c shows
a scatter plot of both types of estimates. In Figure 13a, typhoon Nanmadol consists of two regions
with heavy precipitation. Region A is the southwestern sea area of Taiwan, and region B extends
from the Bashi Channel to the southern part of the Taiwan Strait. In Figure 13b, the regions with
heavier precipitation are located in regions A′ and B′, which match the locations of regions A and B in
Figure 13a. Further analysis of Figure 13a,b regarding the intensity and range of heavy precipitation
shows that the maximum PR-RR is higher than the maximum TMI-RR and that the range of the second
greatest precipitation (yellow parts, 10–25 mm·h−1) of the TMI-RR is greater than that of the PR-RR.
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Figure 13. RR estimation for Typhoon Nanmadol: (a) near-surface RR estimated by the PR (PR-RR);
(b) RR estimated using the Bayesian method and the TMI data (TMI-RR); and (c) scatter plot of the
PR-RR and TMI-RR.

There is a possible reason for the discrepancy between Figure 13a,b regarding the intensity and
range: the space resolution and accuracy of the PR-RR. The horizontal resolution (10 km) of the TMI
is twice that of the PR (5 km), and the TMI-RR is the result of averaging smaller RR values and the
maximum RR in the FOV. Another possible reason was the physics in models do not reproduce the
typhoon environment well. The correlation coefficient between the PR-RR and TMI-RR is 0.78, and the
root-mean-square error is 2.67 mm·h−1.

The TMI-RR for this typhoon did not exceed 30 mm·h−1, possibly because the heavy precipitation
consists of individual short-range convective cells that average light precipitation in their vicinity.
Finally, the maximum RR of the TMI-RR is smaller than that of the PR-RR, and the range of the second
largest RR of the TMI-RR is greater than that of the PR-RR.

For the case being discussed, the space resolution of the PR-RR is 5 km, which is suitable for
observing a shorter range of convective precipitation. Therefore, a single grid point of RR can show a
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high precipitation value. By contrast, the space resolution of the TMI-RR is 10 km, and partial heavier
precipitation and partial smaller precipitation in the FOV is easier to appear. These factors may cause
the maximum RR of the TMI-RR to be smaller than that of the PR-RR, the RR range to be smooth,
and the range of the TMI-RR to be greater than that of the PR-RR after averaging the precipitation
distribution, as shown in Figure 13a,b. These are the differences in the precipitation features between
the PR-RR and the TMI-RR.

Although the space resolution of the PR-RR is superior to that of the TMI-RR, the precipitation
estimation of the PR is based on using the radar reflectivity to retrieve the RR. Furthermore, comparing
Figure 13a,b reveals that the swath of the TMI-RR is three times that of the PR-RR, and its utilization is
superior to that of the PR-RR.

Figure 14 shows the RR estimated by combining RR estimations from the 10, 19, and 37 GHz
attenuation indices for Typhoon Nanmadol (hereinafter referred to as P-RR). In Figure 14, Typhoon
Nanmadol consists of two regions where the areas that have the heaviest rain. Moreover, the locations
of the two regions match the locations of regions A and B in Figure 13a.

Figure 14. RR estimated using the 10, 19, and 37 GHz attenuation indice.

Further analysis of Figure 14 regarding the intensity of the heavy precipitation shows that the
maximum P-RR is lower than 15 mm·h−1. By comparing the TMI-RR and P-RR, the heavy rainfall
locations are similar and match the locations of the PR-RR, and the intensity of P-RR is significantly
lower than the PR-RR. The possible season for the low P-RR values less than 15 mm·h−1 at high PR-RR
above 25 mm·h−1 is that the Figure 2 is not a production for typhoons near Taiwan. Therefore, the
proposed method provides better results than the approach in directly estimating the rain rate from
the attenuation index.

4.3. Precipitation Type Analysis

Figure 15 shows all convective and stratiform precipitation of the eight swaths considered in
this study and verified using the PR-RR. The type of rain was taken from PR data. The horizontal
coordinate represents the PR-RR, and the vertical coordinate denotes the TMI-RR. Figure 15a represents
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convective precipitation and Figure 15b represents stratiform precipitation. The black dashed line is
the straight line x = y. The purpose of classification verification is to determine the performance of
different types of precipitation.

Figure 15. Scatterplot of TMI-RR and PR-RR for (a) convective rainfall and (b) stratiform rainfall.

An analysis of Figure 15a shows that some rainfall intensity values of the PR are greater than
30 mm·h−1, and the corresponding rainfall of the TMI is less than 10 mm·h−1. The probability of heavy
precipitation on a small scale is higher for convective precipitation. Regions A and B in Figure 13a,b
are examples. The area which has the maximum RR is smaller than the FOV, and the RR of this area
will be averaged. The PR-RR is averaged to the same horizontal resolution as the TMI. The maximum
PR-RR can also be obtained by averaging it to the TMI resolution. The correlation coefficient between
the TMI-RR and PR-RR is 0.78, and the root-mean-square error is 7.25 mm·h−1.

Compared with Figure 15a,b shows that the points of the TMI-RR are below 5 mm·h−1, but
the number of points of the PR-RR that reach 10–50 mm·h−1 is considerably smaller. The TMI-RR
data are mostly located on the left side of x = y, whereas the PR-RR values are less than 20 mm·h−1.
The right side of x = y contains PR-RR values greater than 30 mm·h−1, implying that the TMI-RR
values are overestimating when the PR-RR values are less than 20 mm·h−1. The TMI-RR values
are underestimating when the PR-RR values are greater than 30 mm·h−1. Iguchi et al., (2000) [42]
showed that there are differences in the coefficients in the reflectivity-rainfall rate relationship between
different precipitation types as a result of larger raindrops in convective rain. Thus, an error in
classification of convective actual type as stratiform type would lead to lower (by about 40%) estimated
rainfall rate PR-RR than the actual value (and 2.5 times higher values for the opposite classification
error). A possible reason for the high TMI-RR values above 20 mm·h−1 at low PR-RR less than
10 mm·h−1 values under stratiform rainfall is that they are errors in TRMM precipitation classification
as the stratiform type while it is actually the convective type of rain, which leads to lower PR-RR
values than actual RR. The correlation coefficient between the TMI-RR and the PR-RR is 0.58, and the
root-mean-square error is 9.6 mm·h−1.

Further analysis shows that the distribution of convective precipitation is different from stratiform
precipitation. There are two possible reasons for this. First, the reliability of stratiform precipitation
reaching 30 mm·h−1 is questionable because such high RR values do not occur in stratiform
precipitation. However, if there is a TRMM classification error for these points, the results of the
proposed method will underestimate even more significantly if they correspond to classification errors;
second, the conditional PDF of Bayesian theory was constructed by considering 15 typhoons (heavy
precipitation), and therefore, it is more suitable for heavy precipitation. In theory, high RR values are
typical of convective precipitation. The most likely reason of the RR estimation error is that the physics
in the models do not reproduce the typhoon environment well.
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There are two discussions from Figure 15a,b. First, the convection points are less than the
stratiform points and for stratiform retrievals TMI-RR and PR-RR seem to compare better than
for convective retrievals. Second, PR-RR greater than 30 mm·h−1 are underestimated by TMI-RR,
which could be explained partially by possible rainfall classification errors (actual stratiform rainfall
classified as the convective type). The conclusion from Figure 15 is that stratiform rainfall (excluding
possible bad classification points) is overestimated by the proposed method and convective rainfall
is underestimated (including high convective PR-RR rainfall classified as stratiform from TRMM
algorithms in Figure 15b).

5. Conclusions

This study simulated the TB for various atmospheric conditions by using the WRF and RTM
models and then compared the simulated TB with the TB observed by the TRMM/TMI. The result
showed that the simulated TB was virtually identical to the observed TB at 10 GHz under clear sky
conditions, but the rainband was overestimated in the simulation. This discrepancy might originate
from the difference between the simulation time and observation time. Another concern was the
difference between actual weather conditions and the weather conditions corresponding to the initial
data used in the simulation. In other words, the physics in the models do not reproduce the typhoon
environment well. For future research, further improvement in the model physics is absolutely needed
to better simulate the typhoon environment.

A qualitative comparison of the TB simulated by the RTM, the TB observed by the TMI, and
the simulated TB of clear sky showed that the rainband of the typhoons considered and the typhoon
patterns were similar to the observed rainband and patterns. A quantitative analysis of 15 typhoons
yielded an average correlation coefficient of 0.78. However, a key point is that the conditional PDF was
as extensive as possible and could simulate all rainfall intensities and confirm the simulation accuracy.
Therefore, the posterior PDF can be used for a variety of rainfall intensities.

The attenuation index can reduce the impact caused by the environment background, and it has
the advantage of decreasing with an increase in the RR; both these parameters have a one-to-one
relationship. Therefore, the attenuation index is extremely suitable for use in precipitation estimation
research. A Bayesian method was used to estimate the RR of 10 satellite swaths, and the estimated
values were verified by comparing them with PR-RR. A qualitative analysis of the RR pattern, intensity,
and location showed that the TMI-RR was underestimated in short-range heavy precipitation, and
the location and range of the TMI-RR were similar to those of the PR-RR. Eight typhoon events
were quantitatively analyzed, and the average correlation coefficient between the TMI-RR and the
PR-RR is 0.63; the root-mean-square error is 4.45 mm·h−1. Furthermore, the correlation coefficient
of the convective RR is 0.78, and the root-mean-square error is 7.25 mm·h−1 with a systematic
underestimation of RR compared to PR. The correlation coefficient of the stratiform RR is 0.58, and the
root-mean-square error is 9.6 mm·h−1 with a systematic overestimation of RR compared to PR. The
results show that the Bayesian method can be effective in estimating the RR associated with typhoons
over the ocean.
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Abstract: Floods, one of the most significant natural hazards, often result in loss of life and property.
Accurate hourly streamflow forecasting is always a key issue in hydrology for flood hazard mitigation.
To improve the performance of hourly streamflow forecasting, a methodology concerning the
development of neural network (NN) based models with an enforced learning strategy is proposed
in this paper. Firstly, four different NNs, namely back propagation network (BPN), radial basis
function network (RBFN), self-organizing map (SOM), and support vector machine (SVM), are used
to construct streamflow forecasting models. Through the cross-validation test, NN-based models with
superior performance in streamflow forecasting are detected. Then, an enforced learning strategy
is developed to further improve the performance of the superior NN-based models, i.e., SOM and
SVM in this study. Finally, the proposed flow forecasting model is obtained. Actual applications are
conducted to demonstrate the potential of the proposed model. Moreover, comparison between the
NN-based models with and without the enforced learning strategy is performed to evaluate the effect
of the enforced learning strategy on model performance. The results indicate that the NN-based
models with the enforced learning strategy indeed improve the accuracy of hourly streamflow
forecasting. Hence, the presented methodology is expected to be helpful for developing improved
NN-based streamflow forecasting models.

Keywords: streamflow forecasting; neural networks; support vector machine; enforced learning strategy

1. Introduction

Floods caused by heavy rainfall often lead to loss of life and property damage. For flood damage
mitigation, the development of flood warning systems has been recognized as an important task.
In most flood warning systems, accurate and reliable forecasts of flow are essential information.
Therefore, providing accurate and reliable forecasts of flow is always a major issue in flood
management. However, it is difficult to develop a fully physically based forecasting model because of
the high variability in space and time, and the complex mechanisms involved in the rainfall-runoff
process during storm events. It is also difficult to construct a statistically based model using traditional
regression techniques owing to the highly nonlinear influence of heavy rainfall on floods.

In recent years, neural networks (NNs) have been suggested as a promising alternative to the
physically based models. Due to the powerful capability to deal with highly complicated problems
and to model nonlinear systems without explicit physical consideration, NNs have found increasing
applications for modeling hydrological processes. General introductions of NNs and comprehensive
reviews of their applications in various aspects of hydrology have been presented by American
Society of Civil Engineers (ASCE) Task Committee on Application of Artificial Neural Networks in
Hydrology [1,2], Govindaraju and Rao [3], and Maier and Dandy [4]. Moreover, Maier et al. [5] present
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a review of using NNs for the prediction of water resource variables in river systems. In various
kinds of NNs, the most commonly used in hydrology are back propagation neural networks (BPNs),
radial basis function neural networks (RBFNs), self-organizing maps (SOMs), and support vector
machines (SVMs). Hence, in this paper, these four familiar NNs are adopted to develop NN-based
flow forecasting models. A brief review of using these four NNs to forecast flows is presented below.

Huang et al. [6] used a BPN to forecast the river flow in the Apalachicola River. Their results
indicated that the BPN provides better accuracy in forecasting river flow than the ARIMA model.
Chau et al. [7] proposed a genetic algorithm-based NN for water level forecasting. Lin and Chen [8]
constructed a BPN-based rainfall-runoff model with a systematic input determination approach for
providing improved flow forecasts. Cheng et al. [9] proposed an NN daily runoff forecasting model
with a heuristic training technique, and indicated that much better forecast accuracy and efficiency can
be achieved. More relevant studies are available in the literature (e.g., [10–17]). Dawson et al. [18] used
RBFN to forecast flows in the Yangtze River, China. Their results showed that the RBFN performs
the best when compared to several existing time-series forecasting models. Lin and Chen [19] used
RBFN to construct the rainfall-runoff relation for providing the 1- to 3-h ahead forecasts of streamflow.
Lin and Wu [20] proposed an RBFN-based mode with a two-step learning algorithm to successfully
yield 6-h ahead forecasts of inflow. Related works can also be found in the literature (e.g., [21–25]).
Liong and Sivapragasam [26] used SVM to forecast the 1- to 7-day ahead flood stages. Their results
concluded that SVM appears to be a very promising forecasting tool. Wu et al. [27] compared the
potential of different NN-based techniques in river stage prediction and indicated the distributed SVM
with optimal parameters can provide the most satisfying results. Wu et al. [28] used SVM equipped
with a data analysis technique to successfully provide the improved 1- to 3-h ahead forecasts of
streamflow. Recent relevant studies can also be found in the literature (e.g., [29–36]). As to the use of
SOM for rainfall-runoff estimation and forecasting, Hsu et al. [37] provided a self-organizing linear
output map (SOLO) and applied this in streamflow forecasting. Their results indicated the SOLO can
provide features that facilitate insight into the underlying processes as well as satisfying results. More
relevant works can be found in the literature (e.g., [38–42]).

As mentioned by ASCE Task Committee on Application of Artificial Neural Networks in
Hydrology [1], the quality and the quantity of data available will influence the success of NN
applications. NNs are data-driven techniques and therefore their performance intimately hinges
on the data used for learning. Usually, NNs require larger data sets for better learning. However,
no clearly theoretical guideline exists for deciding the length of hydrologic record for NN learning.
Generally, a longer time series of training data containing more events of different types will improve
the generalization ability of NN-based models. This condition cannot be easily satisfied because many
hydrologic records do not go back far enough. Quite often, the quantity of data is very limited even
when long historic records are available. For example, the peak flows, which are the most valuable part
in constructing flow forecasting models, are always rare. Due to the insufficient data of peak streamflow
in size, NN-based models are usually unable to yield satisfactory solutions of extreme values in the
streamflow [43]. To overcome this problem, studies that are attempted to improve the quality and the
quantity of training data of NN-based models are available in the literature (e.g., [28,40,44–46]). Hence,
in a similar manner, an enforced learning strategy is proposed in this paper. By quickly improving
the quality and the quantity of data used in the training of NN-based models, the performance of
NN-based models is expected to be improved.

The purpose of this paper is to propose improved NN-based models for providing more accurate
forecasts of streamflow. To reach this aim, a modeling methodology is presented herein. Firstly, four
familiar NNs, namely BPN, RBFN, SOM and SVM, are used to construct flow forecasting models. Then,
these NN-based models are evaluated through the cross-validation test for detecting the models with
superior performance. Moreover, to further improve the forecasting performance of these superior
NN-based models, an enforced learning strategy is proposed. Finally, the proposed flow forecasting
model is developed. This paper is organized as follows. An introduction is given firstly. Then, brief
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descriptions of the proposed methodology including the NNs used to construct flow forecasting
models and the enforced learning strategy are presented in the second section. In the third section, the
statement of the study area and data is described. Results of actual application are also provided in
this section. Additionally, the forecasting performances of these NN-based models are compared and
the effect of the enforced learning strategy on NN-based models is investigated. Finally, conclusions
are summarized in the fourth section.

2. The Proposed Methodology

In this paper, to improve the hourly streamflow forecasting, a modeling methodology concerning
the development of NN-based models with the enforced learning strategy is proposed. A flowchart of
the development of the proposed NN-based flow forecasting model is presented in Figure 1.

 

Figure 1. Flowchart of the development of the proposed flow forecasting model.

2.1. Neural Networks

As shown in Figure 1, four NNs, which are commonly used for hydrological forecasting, are
adopted to construct NN-based flow forecasting models in this study. Brief introductions of these NNs,
namely BPN, RBFN, SOM and SVM, are provided below.

2.1.1. Back Propagation Neural Network

Back propagation neural network proposed by Rumelhart et al. [47] is the most commonly used
for hydrological forecasting. The network typically consists of an input layer, one or more hidden
layers of computation neurons, and an output layer. During the learning step, the input signals proceed
through the network in a forward direction, and the error signal back propagates from the output layer
toward the input layer. The objective of learning is to minimize the error function F:

F =
1
2

L

∑
l=1

(dl − yl)
2 (1)

where dl and yl are respectively the desired and the actual outputs for the lth sample. L is the total
number of samples in the training data set. Mathematically, the yl resulting from a three-layer network
with I input neurons, J hidden nodes, and one output neurons can be expressed as:

yl = f

(
J

∑
j=1

who
j f

(
I

∑
i=1

wih
ij xil

))
(2)

where xil is the lth sample input to the ith neuron of the input layer, wih
ij is the connection weight

between the ith neuron of the input layer and the jth neuron of the hidden layer, who
j is the connection

weight between the jth neuron of the hidden layer and the neuron of the output layer, and f is the
activation function. The most common form of f , i.e., the sigmoid function, is adopted herein. By
using the back-propagation learning method, the connection weights are iteratively adjusted until the
error function F converges to an acceptable value. In this study, the network with one hidden layer
is adopted. The number of hidden neurons is varied from one to 10 to select the most appropriate
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network architecture. For each number of hidden neurons, 30 different sets of initial connection
weights are tried during the training process. The learning rate and the maximum training epoch are
set to 0.8 and 10,000, respectively.

2.1.2. Radial Basis Function Neural Network

The radial basis function neural network developed by Broomhead and Lowe [48] has been
widely employed in non-linear system identification and time series prediction because of its powerful
ability of universal function approximation. An RBF network consists of an input layer, a hidden layer
with a number of neurons, and an output layer. The hidden layer transforms data from the input space
to the hidden space using a nonlinear function. The nonlinear function of hidden units is symmetric in
the input space, and the output of each hidden neuron depends only on the radial distance between
the input and the hidden neuron. The response of each hidden neuron is scaled by its connecting
weight to the output neuron and then summed to produce the overall network output. Therefore, the
output of RBFN is written as:

ŷ = w0 +
M

∑
j=1

wjhj(x) (3)

where wj is the connecting weight between the jth hidden neuron and the output neuron, and w0 is the
bias. The values of wj and w0 are estimated using the least mean square algorithm. M is the number of
hidden neurons. The hj(x) is the output of the jth hidden neuron given by:

hj(x) = exp
(−1

2ρ2 ‖x − cj‖2
)

, j = 1, 2, · · · , M (4)

where ||·|| denotes the Euclidean norm, x is the input vector, cj is the center vector of the jth hidden
neuron, and ρ is the width of the hidden neurons. The value of ρ can be calculated as dmax/

√
2M, in

which dmax is the maximum distance between two hidden neurons. As to the determination of the
center vector of hidden neuron cj, relevant works can be found in the literature (e.g., [19,20,24,49–51]).
In this study, a simple method is applied. That is, the number of hidden neurons is set to 30 and the
center vectors of these hidden neurons are selected randomly from the training data set. Moreover, to
avoid the local optimal problem, a total of 30 sets of different selections of the center vectors are tried.

2.1.3. Support Vector Machine

Support vector machine, which is a novel kind of NN, is developed by Vapnik [52]. SVM
is constructed based on both the structural risk minimization principle and the empirical risk
minimization principle. This enables SVM to generalize well. Hence, SVM has emerged as an
alternative tool in many conventional NNs dominated fields, especially for hydrological forecasting.
Herein, a brief introduction of SVM is presented. More mathematical details can be found in several
textbooks [52–54]. Based on Nd training data, the objective of the SVM learning is to find a non-linear
regression function to yield the output ŷ, which is the best approximation of the desired output y with
an error tolerance of ε. The regression function that relates the input vector x to the output ŷ can be
written as:

f (x) = wTϕ(x) + b = ŷ (5)

where ϕ(x) is a non-linear function mapping input vector x to a high-dimensional feature space. w and
b are weights and bias, respectively, and can be estimated by minimizing the following structural
risk function:

R =
1
2

wTw + C
Nd

∑
i=1

Lε(ŷi) (6)
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where C is a user-defined parameter representing the trade-off between the model complexity and the
empirical error, and Lε is the Vapnik’s ε-insensitive loss function. Vapnik [52] transformed the SVM
problem as an optimization problem:

Maximize
Nd
∑

i=1
yi(αi − α′

i)− ε
Nd
∑

i=1
(αi + α′

i)− 1
2

Nd
∑

i=1

Nd
∑

j=1
(αi − α′

i)(αj − α′
j)ϕ(xi)

T
ϕ(xj)

subject to
Nd
∑

i=1
(αi − α′

i) = 0

0 ≤ αi,α′
i ≤ C, i = 1, 2, ..., Nd

(7)

where α and α′ are the dual Lagrange multipliers. The solution to Equation (7) is guaranteed to be
unique and globally optimal because the objective function is a convex function. The optimal Lagrange
multipliers α∗ are solved by the standard quadratic programming algorithm. Then, the regression
function can be rewritten as:

f (x) =
Nd

∑
i=1

α∗
i ϕ(xi)

T
ϕ(x) + b =

Nd

∑
i=1

α∗
i K(xi, x) + b (8)

where K(xi, x) is the kernel function. The most used kernel function, i.e., the radial basis function,
is adopted herein. Some of solved Lagrange multipliers (α− α′) are zero and should be eliminated
from the regression function. The regression function involves the nonzero Lagrange multipliers and
the corresponding input vectors of the training data, which are called the support vectors. The final
regression function can be rewritten as:

f (x) =
Nsv

∑
k=1

αkK(xk, x) + b (9)

where xk denotes the kth support vector and Nsv is the number of support vectors. Herein, the
parameter C, which means the trade-off between the model complexity and the empirical error, is
set to 1. That means the model complexity is as important as the empirical error. In addition, it is
acceptable to set the error tolerance ε to 1% for flow forecasting.

2.1.4. Self-Organizing Map

The self-organizing map proposed by Kohonen is a special class of NN. In an unsupervised
manner, the learning of SOM is to define the weights so that the mapping is ordered and descriptive
of the distribution of input data [55]. Therefore, the SOM is capable of clustering, classification,
estimation, and data mining. Additionally, the SOM can provide features that facilitate insight into the
hydrological processes and has been used for hydrological forecasting. An SOM network consists of
one input layer and one output layer, i.e., the Kohonen layer, with numerous neurons. Each neuron of
the Kohonen layer has a synaptic weight vector having the same dimension as the input vector.

In this paper, the self-organizing linear output map (SOLO) proposed by Hsu et al. [37] is adopted
to develop a flow forecasting model. The development of SOLO includes two steps: to classify the
inputs using SOM and then to map the inputs into the outputs using multivariate linear regressions. In
other words, SOLO uses piecewise linear regression functions to descript the nonlinear relationships
between inputs and outputs. For example, if a N × N SOM is used to analyze the input data, then the
input-output function mapping is therefore accomplished by a set of N × N piecewise linear regression
functions that cover the entire input domain. For a certain input data x belonging to the ith neuron,
the output of SOLO is:

ŷ = fi(x) = ∑ aix + bi
0, i = 1, ..., N × N (10)

where a is the vector of regression parameters and b0 is the bias. As reported by Hsu et al. [34], the
structure of SOLO has been designed for rapid, precise, and inexpensive estimation of network
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parameters and system outputs. In this study, to reach a just conclusion, different dimensions
(N × N, N = 2, 3, 4, 5) are tried. The parameters of Equation (10) are decided by the least mean
square algorithm.

2.2. Enforced Learning Strategy

In order to improve the performance of NN-based forecasting models, an enforced learning
strategy is proposed herein. Because NNs are nonlinear data-driven techniques, both the quantity
and the quality of data available have great influence on the modeling performance [1]. During the
training of NNs, the weights are adjusted iteratively to minimize the overall error between the desired
and the actual outputs. Owing to the fact that the data of peak flow are insufficient in size, NN-based
models are usually unable to yield satisfactory solutions of extreme values in the river flow [43]. The
idea to increase the rate of the data with specific characteristics in the entirety of the learning data is
applied. This idea is close to the human learning process. When we try to grasp specific and important
information, we tend to practice repeatedly for better results [45,56]. Hence, in this study, a simple and
quick data processing procedure is used. Firstly, the data with special characteristics, i.e., high-flow
data herein, are extracted. At the present stage, based on authors’ experience, the highest 10% or 20%
of data in each event are regarded as the data with specific characteristics. For a certain training event,
if the peak flow is relatively high among all events, the highest 20% of all flow data in this event are
extracted. Otherwise, the highest 10% of flow data are extracted. Second, these extracted high-flow
data are directly reproduced. The corresponding rainfall data are also reproduced. Then, a fictitious
event is generated by recombining these reproductions in a manner similar to the ranking method
commonly used in the construction of design hyetographs [57]. This event is regarded as a new event
and finally involved in the original training data for constructing NN-based models. An illustration of
the aforementioned description is presented in Figure 2. It should be noted that the enforced learning
strategy is used to process the original training data. By means of the enforced learning strategy, the
training events are enhanced. The inputs, the original structure, and the parameters of NNs are not
changed. The effectiveness of the enforced learning strategy can finally be drawn by comparing the
NN-based models with and without the enforced learning strategy.

 

Figure 2. Graphical illustration of the enforced learning strategy.

3. Application and Result Discussion

3.1. The Study Area and Data

The study area of this paper is the Wu River basin located in central Western Taiwan. The lengths
of the Wu River basin are 52 km in the north-south direction and 84 km in the east-west direction. The
basin, with an area of 2026 km2, ranks 4th in Taiwan. The length of the main river is 119 km, and the
average slope is 1/92. In this basin, floods caused by heavy rainfalls are quite common. The metropolis
of Taichung, which is a major city with a population of about three million in central Taiwan, is located
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downstream in the study area. Therefore, an accurate, efficient and robust flow forecasting model is
needed for the study area.

As shown in Figure 3, there are seven rain gauges (Liu-Fen-Liao, Pei-Shan, Tsao-Tun, Chin-Liu,
Hui-Suen, Tsui-Luan and Tou-Pien-Keng) and one water-level gauge (Wu-Chi Bridge) in the study area.

Figure 3. The study area and locations of rainfall and water level gauging stations.

The observed rainfall and flow data are collected from the computer archives of the Water
Resources Agency, Taiwan. These data are hourly values. Heavy rainfall events with rainfall and
flow data available simultaneously are collected. Moreover, events under the condition that the
basin is without any extensive development or land cover change are suggested. Hence, a total of
10 typhoon events with a length of approximately 700 hourly data are used in this study. In Figure 4,
the areal rainfall and the corresponding flows, as well as the information of these 10 typhoon events
are presented.

 

Figure 4. The areal rainfall and flow data used in this study.
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3.2. Input Design and Parameter Setting of NN-Base Models

In the construction of NN-based models, the input determination is critical. Generally, the inputs
of NN-based flow forecasting models are antecedent flow and rainfall. Therefore, in this study these
two hydrological variables are used and the work of input design is to select the best lag length in
this study area. Herein, the canonical correlation analysis is adopted. The correlation between input
and output time-series data is calculated using the Pearson product-moment correlation coefficient
written as:

ρ =
cov(x, y)

σxσy
(11)

where x and y are the input and output time-series data, respectively. The larger value of ρ means
the higher correlation between x and y. It is expected that the input, which has a higher correlation
with the output, is helpful for forecasting the output. The ρ between the antecedent rainfall with
different time lags and the flow with a lead time of 1 h are calculated. The result summarized in Table 1
shows the Qt+1 (where t is the current time) has the highest correlation with Rt−2. This indicates the
concentration time of the study area is about 3 h. Hence, the forecasting lead-time should not exceed 3
h in this study. Additionally, it is observed that the Qt+1 has the highest correlation with Qt and Qt−1.
Therefore, according to Table 1, the best inputs of the NN-based model are decided and can then be
written in a general form as:

Qt+i = f (Rt+i−3, Qt, Qt−1), i = 1, 2, 3 (12)

where Rt+i−3 is the areal rainfall at time t + i − 3, Qt, Qt−1 and Qt+i are flow at time t, t − 1 and t + i,
respectively. It should be noted that herein the best inputs mean the best lag length of input variables,
which is influenced by the hydrological environment of the study area. Therefore, in this study, inputs
of four NN-based flow forecasting models are all the same.

Table 1. Values of Pearson product-moment correlation coefficient.

Lag Length j Pearson Product-Moment Correlation Coefficient ρ

Between Qt+1 and Rt−j Between Qt+1 and Qt−j

0 0.48 0.95
1 0.55 0.88
2 0.58 0.80
3 0.56 0.72
4 0.52 0.65
5 0.46 0.58

After the determination of model inputs, the parameter setting is then proceeded by trial and
error. Finally, the BPN with one hidden layer included two neurons, the RBFN with 30 hidden neurons,
and the SOM of the dimension of 3 × 3 are adopted in this study. To avoid the overtraining problem,
the cross-validation test is adopted to evaluate the overall performance of NNs in this manuscript.
Besides, a total of 30 repeats of NN learning are performed. Each NN is evaluated based on the
mean performance of these 30 repeats, instead of the performance of only one learning. Hence, in this
manner, the effect of overtraining on the training performance should be reduced and a just conclusion
can be reached.

3.3. Cross Validation and Performance Measures

During the construction of NN-based models, the collected data are usually partitioned into two
parts: training and testing. Training data are used to determine the architectures of NNs and adjust the
weights of NN-based models. The performance of the trained NN-based models is then tested by the
remaining data (i.e., testing data) that are not used in the training step. However, different selections of
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training and testing events may yield different results and sometimes lead to different conclusions.
To reach just conclusions, cross validations are conducted herein. That is, each single event is used in
turn as the testing event and the remaining events are used as training events. Thus, a total of 10 tests
corresponding to 10 heavy rainfall events will be performed.

To evaluate the forecasting performance of each test, four performance measures are employed.
Firstly, the relative root mean square error (RRMSE) is used. For a single event, the RRMSE is
defined as:

RRMSE =

√√√√ 1
n

n

∑
t=1

(
Q̂t − Qt

Qt

)2

(13)

where Q̂t and Qt are the forecasted and observed flows at time t, respectively, and n is the number of
data points. For a total of N testing events, the mean RRMSE (MRRMSE) is then calculated. Second,
the coefficient of efficiency (CE) is used [58,59]. For a single event, the CE is written as:

CE = 1 − ∑n
t=1 (Qt − Q̂t)

2

∑n
t=1 (Qt − Q)

2 (14)

where Q is the average of observed flow. The CE is often used to assess the forecasting ability of
hydrological models. If the forecasts are perfect, the CE value is equal to one. For N testing events, the
mean CE (MCE) is calculated. Third, the error of time to peak flow (ETp) is used. For a single typhoon
event, the ETp is written as:

ETP = abs(T̂p − Tp) (15)

where T̂p and TP are the time to peak for forecasted and observed flows, respectively, and abs( )
denotes the absolute value. For N typhoon events, the mean ETp (METp) is calculated. Moreover, the
percentage error of peak flow (EQp) is used. For a single typhoon event, the EQp is written as:

EQP = abs(Q̂p − Qp)/Qp × 100 (16)

where Q̂p and QP are the forecasted and observed peak flows, respectively. For N typhoon events, the
mean EQp (MEQp) is calculated.

These four criteria adopted herein are the most commonly used in hydrology for assessing the
forecasting performance. The RRMSE represents the relative error between the observed and forecasted
flows. The CE, namely the Nash-Sutcliffe efficiency, represents the forecasting efficiency. The above
two criteria are used to assess the overall forecasting performance. As to the specific fragment, the
ETp, and EQp are used to measure the forecasting error related to the peak values. Moreover, since the
cross-validation test is used in this paper, the mean values of these four criteria (i.e., MRRMSE, MCE,
METp, and MEQp) are further used to compare the forecasting performance of different NNs. Hence,
based on the use of these criteria, a just conclusion is expected to be reached.

3.4. Performance Comparisons among Four NN-Based Models

Firstly, we focus on the accuracy of four NN-based models. Four performance measures are
calculated and presented in Table 2. As shown in Table 2, the MRRMSE, METp, and MEQp values
increase with increasing forecast lead time, and the MCE values decrease with increasing forecast lead
time. It is observed that the SOLO and the SVM models yield lower MRRMSE values and higher CE
values than the BPN and the RBFN models for 1- to 3-h ahead forecasting. The results indicate the
SOLO and the SVM models perform better than the BPN and the RBFN models. As to the comparison
between the SOLO and the SVM models, the SOLO model performs better than the SVM model for
1-h ahead forecasting. For 2-h ahead forecasting, these two models perform equally well, and for
3-h ahead forecasting the SVM model performs better than the SOLO model. It may be speculated
that for 1-h ahead forecasting the relation between rainfall and flow is slightly nonlinear, and hence
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the piecewise linear model (i.e., SOLO) quickly captures the relationship hidden in the training data
and yields better forecasts as compared to the nonlinear model (i.e., SVM). For 3-h ahead forecasting
the relation between rainfall and flow is very complicated and highly nonlinear, and therefore the
SVM model performs better than the SOLO model. As to the METp and MEQp values, the SOLO
model yields the lowest METp, while the SVM gives the lowest MEQp. Overall, it is concluded that
the forecasts resulting from the SOLO and the SVM models are more accurate than those from the
other two models in this study. Among these four models, the forecasting performance of the RBFN
model is the worst. For 3-h ahead forecasting, the CE value from the RBFN model is even negative.
That indicates the observed mean is a better forecast than the output of the RBFN model. Maybe the
random selection procedure used herein cannot effectively obtain the best center vectors of RBFN
hidden neurons.

Table 2. Results of four NN-based flow forecasting models.

Model
MRRMSE (%) MCE METp (h) MEQP (%)

1-h
ahead

2-h
ahead

3-h
ahead

1-h
ahead

2-h
ahead

3-h
ahead

1-h
ahead

2-h
ahead

3-h
ahead

1-h
ahead

2-h
ahead

3-h
ahead

BPN 26.5 32.2 44.5 0.83 0.57 0.15 2.1 2.8 3.9 10.6 18.2 28.1
RBFN 15.4 32.0 42.2 0.87 0.48 −0.11 2.2 2.8 4.5 9.9 24.6 37.7
SOLO 9.1 19.0 28.8 0.94 0.72 0.34 0.7 1.3 2.2 8.8 16.5 23.1
SVM 12.1 18.8 27.5 0.90 0.72 0.47 2.1 2.8 2.7 7.2 12.9 18.6

Notes: MRRMSE is the mean relative root mean square error; MCE is the mean coefficient of efficiency; METp is
the mean error of time to peak flow; MEQp is the mean error of peak flow.

Second, we focus on the robustness of these four NN-based models. To construct a robust
NN-based model that can yield reliable forecasts, a robust weight optimization algorithm is important.
For a robust optimization algorithm, the obtained optimal weights should slightly be influenced by
the selections of initial weights. On the contrary, the optimization algorithm is less robust if obtained
optimal weights are highly dependent on the initial weights. To demonstrate the robustness of these
four models, an experiment that 30 repeats of each model under the same model inputs and architecture
is executed herein. Hence, 30 MCE values are obtained for each model. Then, the lack of robustness can
be evaluated by the variation in MCE values. The coefficient of variation (CV), which is calculated by
dividing the standard deviation with the mean, is used herein. A higher CV value of MCE represents
the higher variation in MCE and also indicates that the performance of the corresponding model is
less reliable. The CV values listed in Table 3 are calculated from a data set of 30 MCE values. As
shown in Table 3, the CV values resulting from the SOLO and SVM models are zero. That is, SOLO
and SVM models yield a constant MCE value in 30 runs. As to the RBFN and BPN models, different
initial weights lead to different MCE values even when the same training and testing data are used.
Table 3 clearly shows that the robustness of the SOLO and SVM models are better than that of RBFN
and BPN models. The obtained optimal weights of the SOLO and SVM models are not influenced by
the selections of initial weights. The forecasts resulting from the SOLO and SVM models are more
reliable than those from the RBFN and BPN models. Hence, according to the model accuracy and the
model robustness (i.e., the results in Tables 2 and 3), it is concluded that the SOLO and SVM models
are the best two among the four NN-based models in this study. Consequently, the SOLO and SVM
models are then used in the following section to evaluate the effect of the enforced learning strategy
on NN-based models for developing the proposed flow forecasting models.
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Table 3. CV values resulting from various NN-based models.

Lead Time (h)
CV (%)

BPN RBFN SOLO SVM

1 0.1 2.4 0 0
2 0.3 23.1 0 0
3 16.1 −151.7 0 0

Note: Coefficient of variation (CV) is calculated from a data set of 30 CE values resulting from each model
trained with 30 different sets of initial weights.

3.5. Effects of the Enforced Learning Strategy on NN-Based Models

For further improving the performance of SOLO and SVM, which are the superior NN-based
forecasting models in this study, the enforced learning strategy is involved in the development
of the SOLO and the SVM models. The comparisons of NN-based models with and without the
enforced learning strategy are then executed to assess the effect of the enforced learning strategy on
the NN-based models. It should be noted that the inputs, the architecture, and the parameter of these
NN-based model are unchanged. Only the data used in the training step are different. By means of
the enforced learning strategy, a fictitious event is added in the original training data for constructing
the NN-based models. Additionally, in this section the enforced learning strategy is applied during
the construction of two different NN-based models. Hence, a just conclusion regarding the effect of
enforced learning strategy on NN-based models is expected to be reached.

3.5.1. Comparison of the SOLO Models with and without the Enforced Learning Strategy

In this subsection, the influence of the enforced learning strategy on the SOLO model is discussed.
In contrast to the SOLO model constructed earlier, the SOLO model constructed with the enforced
learning strategy is named the enforced SOLO model hereafter. The enforced SOLO model is also
applied to forecast the streamflow with a lead time of 1- to 3-h. The bar charts corresponding to
four performance measures from the SOLO and the enforced SOLO models are presented in Figure 5.
As shown in Figure 5, the enforced SOLO model yielded lower MRRMSE and higher MCE values than
the SOLO model. That is, the enforced SOLO model provides more accurate forecasts as compared to
the SOLO model. As to the peak flow forecasting, the MEQp values from the enforced SOLO model are
lower than those from the SOLO model. As to METp, the performance of the SOLO and the enforced
SOLO models are the same. That is, the enforced SOLO model also provides more accurate forecasts
for the peak flow.

Moreover, the observed flows versus corresponding forecasts resulting from the SOLO and from
the enforced SOLO models are presented. The scatter plots and the forecasted hydrographs for 1- to 3-h
ahead forecasting are shown in Figure 6. It is observed that the forecasts from the enforced SOLO are in
better agreement with the observations as compared to those from the SOLO. Therefore, Figure 6 again
confirms that the enforced SOLO model indeed provides improved forecasts as compared to the SOLO
model. Furthermore, to show the superiority of the enforced SOLO model more clearly the events
(Events 2 and 6), which yielded the maximum peak flows in our used data are highlighted. On average,
the EQP values of the SOLO model are 12%, 27% and 55% for 1- to 3-h ahead forecasting. By using
the enforced SOLO model, these corresponding EQP values are 6%, 11% and 37%. A significant
improvement in reducing the error of peak flow forecasting is clearly observed. Hence, according to
the comparison results above, it is clearly concluded that the improved streamflow forecasts are indeed
obtained by the enforced SOLO model (i.e., the SOLO model with the enforced learning strategy).
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Figure 5. Performance comparison of the SOLO and the enforced SOLO models: (a) MRRMSE; (b) MCE;
(c) METp and (d) MEQp.

3.5.2. Comparison of the SVM Models with and without the Enforced Learning Strategy

In this subsection, the influence of the enforced learning strategy on another NN-based model,
i.e., the SVM model, is discussed. The SVM model with the enforced learning strategy is named the
enforced SVM model hereafter. Four performance measures resulting from the SVM and the enforced
SVM models are graphically displayed in Figure 7. The results in Figure 7 show that as compared to
the SVM model, the enforced SVM model provides the forecasts with lower MRRMSE values and the
higher MCE values. Moreover, the METp and MEQp values from the enforced SVM model are lower
than those from the SVM model. It is concluded that the enforced SVM model indeed improves the
forecasts of overall flows as well as the peaks, and the enforced learning strategy successfully improves
the forecasting performance of the SVM model.

Figure 8 shows the observed flow versus corresponding forecasts from the SVM and the enforced
SVM models. Again, Figure 8 confirms the enforced SVM model indeed provides improved forecasts
of flows due to the better agreement between the observations and forecasts. Furthermore, the events
that yielded the maximum peak flows in our data are focused to show the superiority of the enforced
SVM model. On average, the EQP values of the SVM model are 30%, 49% and 58% for 1- to 3-h ahead
forecasting. Those are reduced to 6%, 16% and 42% by means of the enforced SVM. Again, a significant
improvement in reducing the error of peak flow forecasting is clearly observed. Hence, based on the
results above, it is concluded that the improved forecasts are indeed obtained by using the enforced
SVM model (i.e., the SVM model with the enforced learning strategy).

Due to the results concerning the comparison between the SOLO and the enforced SOLO and
the comparison between the SVM and the enforced SVM, the use of the enforced learning strategy
indeed let both the SOM and SVM provide improved forecasts. More accurate forecasts of overall
streamflow as well as the peaks are obtained. That is, the enforced learning strategy is indeed helpful
for improving the forecasting performance of NNs, even when different NNs are used.
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(a) 

(b) 

(c) 

Figure 6. Observed flows versus corresponding forecasts resulting from the SOLO and the enforced
SOLO models: (a) 1-h ahead; (b) 2-h ahead and (c) 3-h ahead.

 

Figure 7. Performance comparison of the SVM and the enforced SVM models: (a) MRRMSE; (b) MCE;
(c) METp; and (d) MEQP.
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(a) 

(b) 

(c) 

Figure 8. Observed flows versus corresponding forecasts resulting from the SVM and the enforced
SVM models: (a) 1-h ahead; (b) 2-h ahead and (c) 3-h ahead.

4. Conclusions

To improve the performance of hourly flow forecasting, a methodology concerning the
development of NN-based models with the enforced learning strategy is presented. Firstly, four
common NNs (namely, BPN, BFN, SOLO and SVM) are used to construct NN-based flow forecasting
models. Through the cross-validation test, it is observed that SOLO and SVM provide better and more
robust forecasts than BPN and RBFN in our study. To further improve the performance of NN-based
models, the enforced learning strategy is proposed. Therefore, the data with special characteristics
(i.e., the peak flows herein) are reproduced and recombined to be a fictitious event. This event is
regarded as new training data and used for constructing the SOLO and the SVM models. Comparisons
between NN-based models with and without the enforced learning strategy are performed. The
results show that the improved forecasts are obtained through the enforced NN-based models (i.e.,
the NN-based models constructed with the enforced learning strategy). Hence, it is confirmed that
the enforced learning algorithm successfully improves the forecasting performance of the NN-based
flow forecasting models. In conclusion, the proposed enforced NN-based model is recommended
as an alternative to the existing NN-based models for flow forecasting. The presented methodology
is also expected to be helpful for developing an NN-based forecasting model. Nevertheless, more
applications of the methodology in different hydrologic environments should be conducted to further
assess the methodology’s potential. Additionally, further study on improving the enforced learning
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strategy such as the objective determination of the data with special characteristics is still required in
future research.
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Abstract: Forecasting long-term power production of small hydropower (SHP) plants is of great
significance for coordinating with large-medium hydropower (LHP) plants. Accurate forecasting can
solve the problems of waste-water and abandoned electricity and ensure the safe operation of the
power system. However, it faces a series of challenges, such as lack of sufficient data, uncertainty
of power generation, no regularity of a single station and poor forecasting models. It is difficult
to establish a forecasting model based on classical and mature prediction models. Therefore, this
paper introduces a correlation analysis method for forecasting power production of SHP plants. By
analyzing the correlation between SHP and LHP plants, a safe conclusion can be drawn that the
power production of SHP plants show similar interval inflow to LHP plants in the same region. So a
regression model is developed to forecast power production of SHP plants by using the forecasting
inflow values of LHP plants. Taking the SHP plants in Yunnan province as an example, the correlation
between SHP and LHP plants in a district or county are analyzed respectively. The results show that
this correlation method is feasible. The proposed forecasting method has been successfully applied
to forecast long-term power production of SHP plants in the 13 districts of the Yunnan Power Grid.
From the results, the rationality, accuracy and generality of this method have been verified.

Keywords: SHP; power production; prediction; correlation analysis

1. Introduction

As a generally accepted renewable energy, small hydropower (SHP) has been greatly developed in
the past few decades because of its small scale, lower investment, quick returns, lack of pollution and
the promotion of local economic development [1–6]. With large-scale SHP plants accessing the power
grid, problems of wasting water resources and abandoning electricity have been increasing, and the
safe operation of the power grid is also threatened [7,8]. Therefore, it is necessary to forecast the power
production of SHP plants to solve the above problems by means of coordination and dispatching of
SHP and large-medium hydropower (LHP) plants.

Currently, the LHP forecasting method, which focuses on the forecasting of inflow in reservoirs
and stream flow [9–21], is very mature, but the study of SHP has not formed a complete theoretical
model. Greatly different from the forecasting problems of LHP, the long-term forecasting of SHP faces
a series of challenges: (1) Problems arise from the weakness in management, difficulty of information
collection, and lack of available data accumulation; (2) SHP is typically derived from run-off river
plants with little regulating capacity, so their power production is determined to a great extent by
the reservoir inflow. Because the installed capacity of a single plant is very small, it is difficult to
forecast its power production because of strong uncertainty and fluctuation; (3) The power production
of SHP plants shows great spatiotemporal diversity, and thus, it is difficult to establish a commonly
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used model; (4) Because SHP is widely distributed and large in quantity, building forecasting models
for all SHP plants is unnecessary and cannot satisfy the demand of precision. Due to the challenges,
forecasting power production of SHP plants is a complex task; therefore, a few researchers have
explored this issue and have obtained some useful results [22,23].

The power production of SHP indicates the maximum generation capacity of an SHP plant under
certain meteorological and hydrological conditions, which are easily influenced by factors, such as
hydrology, climate, and installation capacity. Therefore forecasting the power production of an SHP
plant is a nonlinear, multi-factor complicated problem. However, it is difficult to establish a prediction
model based on classical and mature models for forecasting long-term power production because of
the lack of observed data of SHP plants. As we know, SHP and LHP plants in the same region or
neighborhood have similarities in some aspects of hydrology, meteorology and geography. As a result,
some correlation exists between SHP and LHP in some aspects. LHP plants can provide long-term
historical data and accurate forecast values. Thus, historical data are used as a reference for the study
of forecasting long-term SHP power production.

To solve the problems mentioned above, this paper presents a correlation analysis method of
LHP and SHP for forecasting long-term power production of SHP plants. First, the SHP plants are
considered to belong to the same area as a whole. Then, the interval flow of the LHP plant is screened as
the correlation factor. Then, the correlation analysis of LHP and SHP is performed, and the significance
of the correlation is tested. Finally, a regression model is developed to forecast the power production
of SHP through the predictive value of LHP. This forecast model has been successfully applied to the
Yunnan Power Grid. The LHP plants have a higher level of automation than SHP plants, which can
collect long series of observed data. Thus, we could obtain relatively accurate interval flow values of
the LHP plant because considerable research activity of forecasting models for LHP plants has been
conducted. In addition, there is much stronger correlation between power production of SHP plants
and the interval flow of the LHP plant through the numerical simulation analysis. Therefore, the
proposed forecast model is capable of achieving accurate forecasting results.

2. Spatiotemporal Characteristics of SHP

2.1. Randomness of a Single Plant

Because of the small installation capacity and the lack of regulation ability, SHP plants are
predominantly influenced by rainfall and it is difficult to achieve stable regularity of power production.
Therefore, the power production of a single plant shows strong randomness and fluctuation. Figure 1
shows the power production of a single SHP plant and the total generation from 75 SHP plants in
the region each month in 2013. In this figure, the box shaped diagrams are used to represent the
data dispersion degree. It is obvious that the box-shaped diagrams of a single plant have apparently
longer “tentacles” than that of the overall region integrity. This suggests that power production in the
sequence of a single plant has more outliers, stronger randomness and greater fluctuation.

2.2. Spatial Differences

SHP plants are mostly concentrated in remote mountain areas and small watersheds. Because
each plant has different topography and landforms, the power production presents spatial differences.
Taking Yunnan Province as an example, the climate condition has significant spatial differences that
make meteorological phenomena unique, as in the old saying, “A mountain is divided into four
seasons; 10 miles have different types of weather.” For example, Jingdong and Jinggu are two adjacent
counties located north of Puer district, the daily rainfall of which is shown in Figure 2. However,
significant differences in rainfall and runoff formation occur because of Wuliang Mountain, Ailao
Mountain and other mountains in this area, which results in spatial differences of power production of
SHP plants.
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Figure 1. Power production curve and its box plot of a single small hydropower (SHP) plant and SHP
plants in a county. (a) Power production and box plot of a single SHP plant; (b) Power production and
box plot of SHP plants in county.

Figure 2. Rainfall curves of Jingdong and Jinggu during the flood season.
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2.3. Similarity of Regions

SHP plants in the same region have some similarities in terms of hydrological and meteorological
conditions. As shown in Figure 3, the generation data are different in terms of the degree of smoothing
between a single SHP plant and all of the SHP plants in the same region. However, the change trend
of generation data during the year is essentially the same as the two-trend line shown in Figure 3.
In other words, there is a similarity between the single SHP plant and the regional integrity.

Figure 3. Power production curve and its tread line of SHP plant (a) Monthly power production and
trend line of single SHP plant; (b) Monthly power production and trend line of SHP plants in county.

Overall, the power production of SHP plants has spatiotemporal characteristics such as
randomness, spatial differences and regional similarity, which can provide strategy support for this
paper in developing the forecasting method based on the correlation between the LHP plant and
SHP plants.

3. Forecasting Method for Long-Term Power Production of SHP Plants

3.1. Selection of the Correlation Factor

LHP plants predictions are usually dependent on water level and flow (inflow or interval flow).
These hydrological factors can form a set of candidate factors for the correlation analysis method. The
significantly related factors of power production of SHP should be screened out before establishing
the correlation analysis model.

The power production of an SHP plant is directly contributed by the reservoir inflow because
most SHP plants are run-off river plants. The geographical and hydrological conditions of SHP plants
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are similar to that of LHP plant in the same region or neighborhood. SHP plants are usually located
at different levels along tributaries. According to the Strahler classification of River Law, the power
discharge generated by the SHP plants will flow into the mainstream where LHP plants are usually
located. Thus, the interval flow of a set of candidate factors of LHP plants can reflect the runoff in the
region where SHP plants are located, and there must be some correlationship between the interval
flow of LHP plants and the power production of SHP plants in the same region. Then the correlativity
of LHP and SHP in the region can be established. In addition, we had tried to analyze the correlation
between the power production of SHP plants and other factors of LHP plants, such as water level,
inflow and power generation. The inflow or release from LHP in the cascade hydropower plants is
significantly influenced by human impact, which cannot reflect the natural runoff of SHP. Therefore,
there is no correlation with the factors except for the interval flow.

From the above-mentioned facts, the interval flow of LHP plant is selected as the related factor to
perform the correlation analysis in this paper.

3.2. Correlation Analysis of LHP and SHP

The statistician Karl Pearson designed a statistical index, the correlation coefficient, to reflect the
intimate level between variables [24]. This paper utilizes the correlation coefficient to indicate the
correlation between interval inflow of LHP plants and power production of SHP plants.

As mentioned in Section 2, the power production of the SHP plants in a region is expressed as:

Em =
s

∑
i=1

Em,i (1)

where Em is the power production of all SHP plants in month m (MWh). Em,i is the power production
of the ith SHP plant in month m (MWh), and s is the number of SHP plants in month m.

Considering dynamic operations and the constant changes of the installed capacity, the monthly
utilization hour of the SHP plant is used to replace the power production in analyzing the correlation.
The monthly utilization hour is as follows:

tm =
Em

Nm,capa
(2)

where Nm,cap is the installed capacity of SHP plants in month m (MW).
The correlation coefficient (R) can be calculated using Equation (3). R is between –1 and 1. The

larger the absolute value is, the more significant the correlation is:

R =

n
∑

j=1
(tm,j − tm)(qj − q)√

n
∑

j=1
(tm,j − tm)

2 · n
∑

j=1
(qj − q)2

(3)

In the above equation, tm,j is the monthly utilization hour of the SHP plants in month j (h). tm

is the average value of monthly utilization hour (h). qj is the interval flow of LHP plants in month j
(m3/s). q is the average value of monthly interval flow (m3/s). n is the size of sample data.

3.3. Correlation Validation

The probability density function of R between two uncorrelated variables X and Y is:

f (R) =
n − 2

π
(1 − R2)

n−4
2 1

0

∫
zn−2(1 − z)−

1
2 dz (4)
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The equation is transformed as:

t =
R√

1 − R2

√
n − 2 (5)

Based on Equation (5), the critical value of R can be obtained as follows:

Ra,n =

√
ta,n

2

(n − 2) + ta,n
2 (6)

Thus,
P(|r| ≥ Ra,n) = a (7)

where Ra,n is the correlation coefficient of LHP and SHP plants at the level of a. By using this method,
the LHP plant, which is significantly correlated, can be screened out.

3.4. Regression Model of the Power Production Forecast

To forecast the power production of SHP plants in a region, the LHP plant, which is significantly
correlated to it, can be selected. Then a regression model is built to analyze the correlation between
LHP and SHP. If the correlation is significant, it will be presented by a linear relationship between the
LHP and SHP plants, in which the interval flow of LHP is the independent variable and the monthly
utilization hours of SHP is the dependent variable. The linear regression model is built as follows:

tm, f ore = b × q f ore + a
a = tm − bq

b = ∑n
i=1 tm,iqi−ntmq

∑n
i=1 tm,i

2−ntm
2

(8)

where tm, f ore is the forecast value of monthly utilization hours of SHP plants (h). q f ore is the forecast
value of monthly interval flow of LHP (m3/s). a and b are the regression coefficients.

The forecast value of power production Em, f ore can be calculated.

Em, f ore = tm, f ore × Nm,cap (9)

4. Case Study

The SHP plants in Yunnan Province, China, were taken as a case study. The river system of
Yunnan province has been well developed, including six river systems: Yangtze River, Pearl River,
Red River, Lancangjiang River, Nujiang River, and Irrawaddy River. A considerable number of LHP
plants with long historical operation data exist; therefore, Yunnan province has suitable conditions
for the correlation analysis of LHP and SHP plants. The hydropower dispatching automation system
has been established for many years in the Yunnan Power Grid, which involves many of the classical
and intelligent prediction models. By continually modifying the model parameters using real-time
observed data, accurate forecasting results of the interval inflow of the LHP plant can be obtained.
Therefore, the forecasted interval inflow values of the LHP plant, which are used in the forecasting
process, will be obtained from the system.

In this section, the correlation between LHP and SHP plants at different scales (i.e., the district
scale and the county scale) was analyzed, and then the power production of SHP plants was forecasted.

4.1. Correlation Analysis of SHP Plants in a District

To demonstrate the correlation between SHP plants of district dispatch and the LHP plant,
three districts that belonged to different basins were selected as typical examples: Dehong, Puer and
Kunming (Figure 4). Yunnan is a low latitude region with a monsoonal climate and a plateau mountain,
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which leads to a significant difference between different districts and significant vertical variation.
The Dehong district is located in western Yunnan and belongs to the Irrawaddy Basin; it contains
several LHP plants, such as the cascade hydropower station of Dayingjiang River, Nongling Station,
and Longjiang Station. The Puer district is located in southwestern Yunnan and contains Dachaoshan
Station and Nuozhadu Station in Lancangjiang River Basin, and Jufudu Station and Gelantan Station
in the Red River Basin. The Kunming district is located in central Yunnan and belongs to the Yangtze
River Basin, which contains Ketian Station. Dayingjiang III station, Dachaoshan station and Ketian
station are selected as reference stations in this section.

Figure 4. Map of typical basins, prefectures and large-medium hydropower (LHP) plants in
Yunnan Province.

The data sequence of the interval flow of the LHP plant and the power production of the SHP
plants was selected from November 2012 to July 2015. The correlation between the SHP plants of the
three districts and the LHP plant in the same district was analyzed based on Equations (1) to (3), and
the significance was tested based on Equations (4) to (6).

Table 1 shows the correlation coefficient between the LHP plant and the SHP plants. The SHP
plants in Dehong have the most significant correlation with the Dayingjiang III plant, with a correlation
coefficient of 0.94. These plants also have correlation coefficients of 0.77 with the Dachaoshan plant
located in the Lancangjiang Basin and 0.46 with the Ketian plant located in the Yangtze Basin. Both of
these plants are located far away from Dehong. Figure 5 shows the normalized trend graphs of the
power production of SHP plants in Dehong district and the interval flow of the three LHP plants. It can
easily be seen that the more significant the correlation is, the more similar the trend of SHP and LHP is.
The correlation of SHP plants in Puer and Kunming districts also have similar regularity. From the
result of Table 1, the LHP plants that are correlated to the SHP plants in Puer and Kunming districts
respectively are Dachaoshan plant, with a correlation coefficient of 0.92 and Ketian plant with 0.89.
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Table 1. The correlation coefficient between SHP and LHP plants in a district.

LHP Plant\District Dehong Puer Kunming

Dayingjiang III 0.94 ** 0.81 ** 0.82 **
Dachaoshan 0.77 ** 0.92 ** 0.75 **

Ketian 0.46 * 0.39 0.89 **

Notes: ** denotes significantly correlated at the 0.01 level, * denotes significantly correlated at the 0.05 level.

Figure 5. Normalized trend of power production of SHP plants in Dehong and interval flow of the
LHP plant. (a) Trend Chart of SHP plants in Dehong and Dayingjiang III hydropower plant; (b) Trend
Chart of SHP plants in Dehong and Dachaoshan hydropower plant; (c) Trend Chart of SHP plants in
Dehong and Ketian hydropower plant.

Several regularities of the correlation between SHP plants in a district and the LHP plant can be
concluded as follows:

(1) A correlation exists between the power production of SHP plants in a district and the interval
flow of the LHP plant.
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(2) The power production of SHP plants shows significant correlation with the LHP plant of the
same basin, whereas the correlation with the LHP plant in other basins is not significant.

(3) As the power production of SHP plants shows spatial differences, the further the distance in
space is, the less significant the correlation relationship is.

4.2. Correlation Analysis of SHP Plants in a County

To demonstrate the correlation between SHP and LHP plants in a county, Puer was selected as an
example, as two river basins flow into this region (Figure 6). Puer is located in southwestern Yunnan
and is affected by subtropical monsoon climate, with mountainous area accounting for 98.3% of the
total areas, and the Tropic of Cancer pass through its center. Affected by terrain and altitude, the
vertical differences in Puer are obvious. Separated by Mount Wuliang, the eastern region of Puer is the
Red-River Basin and the western region is the Lancangjiang Basin. In this section four counties were
chosen as examples: Jingdong, Jinggu, Ninger and Mojiang.

Figure 6. Map of typical basins, counties and LHP plants in Puer county.

Figure 6 shows that Jingdong and Ninger are located at the borderline of the two basins, Jinggu
is located in Lancangjiang Basin, and Mojiang is located along a branch of the Red River. The data
sequence of the interval flow of the LHP plant and the power production of SHP plants was selected
from November 2012 to July 2015. The correlation between SHP plants in the three counties and the
LHP plant are analyzed, and the significance of the correlation is tested.

Table 2 shows the correlation coefficient between the LHP and SHP plants. All of the SHP plants
in a given county are significantly correlated with the LHP plant at the 0.01 confidence level, but the
degree of significance varies obviously. From the results, it can be seen that the LHP plant that are
correalted to the SHP plants in Jingdong and Jinggu county is Dachaoshan plant with a correlation
coefficient of 0.92 and 0.84. The Ninger county is Nuozhadu plant with 0.93 and the Mojiang county is
Jufudu plant with 0.85.

The regularity of the correlation between the SHP plants in a county and the LHP plant can be
concluded as follows:

(1) As well as in district, there exists correlation between SHP plants and LHP plant in county.
The degree of the correlation is associated with spatial distance.
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(2) The correlation between SHP plants in a county and the LHP plant has similar regularity with
the district correlation. Influenced by the river basin, SHP plants in different counties have differences
in terms of correlation to the LHP plant.

(3) As the power production of SHP plants shows similarity of regions, the difference of the
correlation in different counties (maybe in the same district) is less than that in different districts.

Table 2. The correlation coefficients between SHP plants in a county and the LHP plant.

LHP Plant\County Jingdong Jinggu Ninger Mojiang

Dachaoshan 0.92 ** 0.84 ** 0.90 ** 0.75 **
Nuozhadu 0.91 ** 0.81 ** 0.93 ** 0.81 **

Jufudu 0.70 ** 0.76 ** 0.90 ** 0.85 **

Note: ** denotes significantly correlated at the 0.01 level.

4.3. Forecast Results of the Correlation Analysis Method

The SHP plants in Puer are selected as an example in this section. Several LHP plants that are
correlated to the SHP plants are the Dachaoshan plant (correlation coefficient: 0.92), the Dayingjiang
III plant (correlation coefficient: 0.81), and the Ketian plant (correlation coefficient: 0.39). So the
Dachaoshan plant was chosen as the correlated plant to establish the regression model of LHP and
SHP (Figure 7) based on Equation (8).

Figure 7. Linear curve fitting of LHP and SHP in Puer County.

After establishing the regression model, the power production of SHP plants in Puer was
forecasted using the interval flow of Dachashan plant based on Equations (8) and (9). The prediction
accuracy is 87.9%. The average relative error is 18.5%, and the maximum and minimum relative error
is 43.8% and 5.6%, respectively. Figure 8 shows that the prediction value of this method shows the
same trend with the real value regardless of the season. This indicates that this method could achieve
an accurate result, even during the flood season, which can provide the reliable forecasted data for
arranging the coordinate power generation schedule between SHP plants and LHP plants in order to
reduce wasting water resources and abandoning electricity.
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Figure 8. Prediction results of power production of SHP plants in Puer district.

4.4. Generality Analysis of Forecasting Method

The power production of SHP plants shows significant spatial differences. The regular
mathematical method does not show good generality, as it was built based on the mathematical
statistics rule of power production sample sequence. The generality of the correlation analysis method
is determined by the correlation of LHP and SHP and the forecast accuracy of LHP. Therefore the
correlation analysis method can solve the problem effectively.

This model is applied to forecast the long-term power production of SHP plants in 13 districts of
Yunnan province, and the results are shown in Figure 9. The results indicate that the forecast accuracy is
positively correlated to the correlation coefficient. Twelve districts have correlation coefficients greater
than or equal to 0.7, and forecasting qualified rates of greater than 70%. These results have verified
the generality of the correlation analysis method for the forecasting of long-term power production of
SHP plants.

Figure 9. Prediction results of the thirteen districts in Yunnan province.

5. Conclusions

Forecasting the long-term power production of SHP plants is of great significance for realizing
the coordination with LHP plants, solving the problem of the waste water and abandoned electricity
and ensuring the safe operation of the power grid. In this paper, the similarity between LHP and SHP
plants and the spatiotemporal characteristics of SHP plants have been analyzed, based on which, the
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correlation analysis method of LHP and SHP has been proposed. Taking the SHP plants in Yunnan
province as examples, the correlation between the power production of SHP plants and the interval
inflow of LHP plants has been verified, and the correlation characteristics in space and at the basin-scale
have been obtained. Based on the interval flow of the Dachaoshan plant, the power production of
the SHP plants in the Puer district was forecasted. The prediction accuracy of this method has been
verified. Lastly, by analyzing the forecast results of the 13 districts in Yunnan province, the generality
of the correlation analysis method is demonstrated. From the discussion above, we may safely draw
the conclusion that the correlation analysis method is a feasible solution for forecasting the long-term
power production of SHP plants.

From the discussion above, it can be seen that the proposed forecasting method has some
limitation. Because SHP plants are lack of sufficient information for establishing a forecasting model,
there must be a LHP plant with long-term observed data in district or county, which has significant
correlation with the SHP plants. The prediction accuracy of SHP plants depends on the LHP plant.
Therefore, how to use the classical and mature prediction models based on existing data for forecasting
long-term power production of SHP plants may be future study directions.
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10. Golob, R.; Štokelj, T.; Grgič, D. Neural-network-based water inflow forecasting. Control Eng. Pract. 1998, 6,
593–600. [CrossRef]

11. Coulibaly, P.; Anctil, F.; Bob´ee, B. Daily reservoir inflow forecasting using artificial neural networks with
stopped training approach. J. Hydrol. 2000, 230, 244–257. [CrossRef]

12. Paravan, D.; Stokelj, T.; Golob, R. Improvements to the water management of a run-of-river HPP reservoir:
Methodology and case study. Control Eng. Pract. 2004, 12, 377–385. [CrossRef]

134



Water 2015, 7, 4806–4820

13. Dutta, D.; Welsh, W.D.; Vaze, J.S.; Kim, S.H.; Nicholls, D. A comparative evaluation of short-term streamflow
forecasting using time series analysis and Rainfall-Runoff models in eWater source. Water Resour. Manag.
2012, 26, 4397–4415. [CrossRef]

14. Vafakhah, M. Application of artificial neural networks and adaptive neuro-fuzzy inference system models to
short-term streamflow forecasting. Can. J. Civil Eng. 2012, 39, 402–414. [CrossRef]

15. Zealand, C.M.; Burn, D.H.; Simonovic, S.P. Short term streamflow forecasting using artificial neural networks.
J. Hydrol. 1999, 214, 32–48. [CrossRef]

16. Saeidifarzad, B.; Nourani, V.; Aalami, M.T.; Chau, K.W. Multi-site calibration of linear reservoir based
geomorphologic rainfall-runoff models. Water 2014, 6, 2690–2716. [CrossRef]

17. Taormina, R. Neural network river forecasting with multi-objective fully informed particle swarm
optimization. J. Hydroinformatics 2015, 17, 99–113.

18. Wu, C.L. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372,
80–93. [CrossRef]

19. Wang, W.C. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD
decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [CrossRef]

20. Chen, X.Y. A Novel hybrid neural network based on continuity equation and fuzzy pattern-recognition for
downstream daily river discharge forecasting. J. Hydroinformatics 2015, 17, 733–744. [CrossRef]

21. Chau, K.W. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinformatics 2010, 12, 458–473. [CrossRef]

22. Monteiro, C.; Ramirez-Rosado, I.J.; Fernandez-Jimenez, L.A. Short-term forecasting model for electric power
production of small-hydro power plants. Renew. Energy 2013, 50, 387–394. [CrossRef]

23. Li, G. Short-term power generation energy forecasting model for small hydropower stations using GA-SVM.
Math. Probl. Eng. 2014, 2014, 1–9.

24. Joseph, L.R.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. Am. Stat. 1988, 42, 59–66.

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

135



water

Article

Heuristic Methods for Reservoir Monthly Inflow
Forecasting: A Case Study of Xinfengjiang Reservoir
in Pearl River, China

Chun-Tian Cheng *, Zhong-Kai Feng, Wen-Jing Niu and Sheng-Li Liao

Institute of Hydropower and Hydroinformatics, Dalian University of Technology, Dalian 116024, China;
myfellow@mail.dlut.edu.cn (Z.-K.F.); dgniuwenjing@mail.dlut.edu.cn (W.-J.N.); shengliliao@dlut.edu.cn (S.-L.L.)
* Correspondence: ctcheng@dlut.edu.cn; Tel./Fax: +86-411-84708768

Academic Editor: Miklas Scholz
Received: 24 June 2015; Accepted: 27 July 2015; Published: 17 August 2015

Abstract: Reservoir monthly inflow is rather important for the security of long-term reservoir
operation and water resource management. The main goal of the present research is to develop
forecasting models for the reservoir monthly inflow. In this paper, artificial neural networks (ANN)
and support vector machine (SVM) are two basic heuristic forecasting methods, and genetic algorithm
(GA) is employed to choose the parameters of the SVM. When forecasting the monthly inflow data
series, both approaches are inclined to acquire relatively poor performances. Thus, based on the
thought of refined prediction by model combination, a hybrid forecasting method involving a
two-stage process is proposed to improve the forecast accuracy. In the hybrid method, the ANN
and SVM are, first, respectively implemented to forecast the reservoir monthly inflow data. Then,
the processed predictive values of both ANN and SVM are selected as the input variables of a
newly-built ANN model for refined forecasting. Three models, ANN, SVM, and the hybrid method,
are developed for the monthly inflow forecasting in Xinfengjiang reservoir with 71-year discharges
from 1944 to 2014. The comparison of results reveal that three models have satisfactory performances
in the Xinfengjiang reservoir monthly inflow prediction, and the hybrid method performs better than
ANN and SVM in terms of five statistical indicators. Thus, the hybrid method is an efficient tool for
the long-term operation and dispatching of Xinfengjiang reservoir.

Keywords: monthly inflow; reservoir; forecast; artificial neural networks; support vector machine;
genetic algorithm; hybrid method

1. Introduction

Long-term hydrological prediction is of significance for water resource activities, such as reservoir
operation [1–5], water resource planning [6–9], risk management [10–13], and urbanization [14,15].
Hence, hydrologic time-series forecasting, especially monthly inflow, has triggered great interest in
hydrology and water resources fields [16,17]. In the past several decades, the study of the hydrologic
time-series forecasting has produced tremendous excitement and attention, and a large number of
models and approaches have been proposed to improve the quality of forecasting accuracy. These
developed models can be divided approximately into statistical methods, physical methods, and
intelligent approaches. However, there was no one method that was appropriate, universally, for any
reservoirs because the hydrological characteristics of river basins and regions change with variation
of time and space, and each kind of method has various merits and defects. Statistical methods
represented by autoregressive moving-average models are rather simple and mature but with lower
accuracy [18,19]. Physical models like soil and water assessment tool (SWAT) [20] have the clear
physical mechanism of the rainfall-runoff relation and reflect the nature and features of the hydrologic
data series from different angles. However, the parameters of these models are not easy to determine
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and the predictive ability is limited in many situations [21–23]. Intelligent methods usually have
strong robustness and are widely used in many areas, while have a low identifying speed and easy to
encounter local optimum [24–28].

Reservoir monthly inflow data is influenced by various unstable factors and always present such
characteristics as time-varying, non-stationary, and significant outliers. The characteristics of inflow
data change the correlation between the past and the future. Moreover, there are many noise levels in
different time-series regions, which further increase the difficulty of forecasting models. Hence, it is
hard for a single time-series forecasting model to capture the dynamic changing processes and features,
which may encounter local under-fitting or over-fitting problems [29–33]. The accuracy of a single
forecast method always has limited effects. In order to obtain better performance, researchers have
been constantly developing new technologies and methods for the hydrological prediction. In recent
years, many hybrid approaches take advantage of more than one forecasting method to carry out the
research work and engineering practice related to the reservoir inflow [34–39]. Application results
indicate that the hybrid methods have higher forecasting precision than a single forecasting method.

Many successful applications demonstrate that, with the advantages of good generalizability
and forecast accuracy, both artificial neural network (ANN) and support vector machine (SVM) are
two types of efficient and promising approaches in hydrological prediction. Moreover, the research
can be promoted rapidly on the basis of our early works on ANN and SVM [8,40,41]. Hence, we
choose ANN and SVM for reservoir monthly inflow forecasting. However, when handling with the
monthly inflow prediction of Xinfengjiang reservoir, both methods are inclined to acquire relatively
poor performances. Thus, there are certain promotion spaces for the hydrological series forecasting in
Xinfengjiang reservoir. Therefore, in this paper, based on the thought of refined prediction by model
combination, we propose a hybrid forecasting approach for the reservoir monthly inflow based on three
classical heuristic algorithms: ANN, SVM, and GA (genetic algorithm). The proposed method involves
a two-stage forecasting process. In the first phase, with multiple hydrological input parameters, ANN
and SVM are, respectively, implemented to forecast the reservoir monthly inflow data to identify the
characteristic correlation, and GA is used for the parameter selection of SVM to reduce its performance
volatility. In the second stage, in order to enhance the forecasting accuracy further, the results of the
aforementioned ANN and SVM are selected as the input values of a newly-built ANN model, while
the observed monthly inflow data are the output variables. When the training process is finished, the
newly-built ANN model will be used for forecasting, and its forecasting results are the final values
for operational prediction. In this research, the hybrid method was developed and compared with
conventional ANN model and SVM model for one month-ahead forecasting of inflow data from
Xinfengjiang reservoir in Guangdong province, China. It can be revealed from the result analysis that
the proposed method is characterized by reasonable operation and high accuracy.

The rest of this paper is organized as follows. The description of the Xinfengjiang reservoir and
data sets are given in Section 2. Section 3 introduces the information of the forecasting methodologies.
Five different types of error measurements are introduced in Section 4. In Section 5, the implementation,
including the input variables determination and model developments, and results of the forecast
models are discussed, and the proposed hybrid method has the best forecasting performance. Section 6
briefly presents the major conclusions, limitations and future directions of the study.

2. Study Area and Data Sets

2.1. Study Area

The Pearl River (named Zhujiang in Chinese) is one of the world’s 25 largest rivers in terms of
annual water discharge and sediment load [42]. The Pearl River originates from the Yunnan Plateau,
crosses hill country and mountainous areas, and drains into the South China Sea. The Pearl River
controls a drainage area of 450,000 km2 and reaches a total length of 2400 km. The rainy season extends
from April to September, followed by a dry season from October to March.
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The Xinfengjiang reservoir, also known as Evergreen Lake, is within the boundaries of Guangdong
Province, about six kilometers away from Heyuan City. Figure 1 shows the location of the study area
and the Xinfengjiang reservoir. The reservoir is located on the outlet of Xinfengjiang River, which is a
tributary of the East River. The East River is one of the three main tributaries of the Pearl River. The
drainage area of the reservoir is 5740 km2, which accounts for about one quarter of the East River
Basin area. The average annual rainfall is about 1974.7 mm. The annual inflow at the dam site is about
192 m3/s. Since being put into production in October 1960, the reservoir began to play comprehensive
benefit in power generation, flood control, navigation, water supply, etc. The reservoir is equipped with
four units and its installed capacity arrives 302 million watts. The average annual energy generation
is 0.99 billion kW·h. As the largest artificial reservoir with multi-year regulating storage in south
China, the reservoir has the total capacity of 13.90 billion m3, where the dead storage capacity is
4.31 billion m3. Its normal water level is 116 m at non-flood season while the corresponding storage
is 10.8 billion m3. Its flood control level is 114 m during the first half of flood season from 1 April to
30 June, whilst that is 115 m during the second half of flood season from 1 July to 30 September.

 

Figure 1. Location of the study area and Xinfengjiang reservoir.

2.2. Division of Data

For meta-heuristic algorithms, such as ANN and SVM, the overtraining problem is likely to
happen, which means that the models have excellent performance on the training data, but do not fit
well to new data. In order to prevent the overtraining problem, Chau et al. (2005) suggested dividing
the data into three subsets [5]: Training set for model training, testing set for monitoring the training
process and validation set for model validation. Hence, in this study, the available data are divided
into these above three data sets. The feasible monthly inflow data consists of 71 years (852 months)
from 1944 to 2014 in Xinfengjiang reservoir. The first 55 years’ monthly inflow data were used as the
training set while the last 16 years’ data were for validation. Moreover, of the training data, the first
40 years’ data was for model training, and the other 15 years’ data was for the purpose of confirming
and validating the initial analysis.

It is hard to extrapolate for forecasting methods when the validation data contains variables
beyond the range of training data. Table 1 shows the statistical parameters of various data sets,
where Xmean, Sd, Xmin, Xmax, and Range respectively stand for the mean, standard deviation, minimum,
maximum, and range of various data sets. We can find that the monthly inflow data for Xinfengjiang
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reservoir varies over a relative wide range from 9.3 to 1506 m3/s. The scope of the training data set
includes that of testing and validation sets fully. The statistical parameters of the training set are close
to the testing and validation sets. Hence, the data used for various data sets are representative of the
same population, so there is no need to extrapolate beyond the range of the data for training.

Table 1. The information of various datasets in Xinfengjiang reservoir.

Datasets
Statistic

Xmean Sd Xmin Xmax Range

Training set 204.1 14.3 9.3 1506.0 1496.7
Testing set 192.1 13.9 24.5 1300.2 1275.7

Validation set 176.3 13.3 22.3 1496.4 1474.1
Original data 195.3 14.0 9.3 1506.0 1496.7

2.3. Data Preprocessing

Moreover, according to Lin et al. in 2006 [41] and Wang et al. in 2009 [17], in consideration
of the numerical difficulties caused by the large attribute values dominating the smaller ones, the
normalization is an essential process for the raw data before applying the forecasting models to
prediction in various data sets. Using the following Equation, the values have to be scaled to the range
between 0 and 1 in the modeling process.

q′i =
qi − qmin

qmax − qmin
(1)

where qi and q′i is the original inflow value and scaled inflow value, respectively. qmax and qmin are the
maximum and minimum of flow series, respectively.

3. Forecasting Methodology

3.1. Artificial Neural Network (ANN)

As one of the most widely-used artificial intelligence methods, ANN has achieved great success
in various fields by many researchers and scientists, like time-series prediction and simulation in
water resources [5]. Through many investigations and practices, ANN has been proven that it is
an efficient and reliable method in modeling nonlinear relationships between inputs and desired
outputs in hydrologic time-series forecasting [16,17]. The ANN existence has much different kind of
ways. ANN is commonly arranged in a series of layers composed of some close-connected processing
neurons. Three-layer ANN, including one input layer, one hidden layer, and one output layer, is
usually preferred in practical engineering applications because it can approximate almost any form
of complex functional relationships between the inputs and desired outputs to arbitrary accuracy.
Figure 2 shows the sketch map of a typical three-layer ANN. Every node usually gets an accumulated
value by summing the values of its inputs multiplied by the corresponding weights associated with
each interconnection, and then send the accumulated value to a nonlinear activation function to
generate an output value which will be delivered to the following layer. Moreover, any one node of the
previous layer is fully interconnected to all the nodes of the next layer, and there is no interconnection
between any two nodes in the same layer.
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Figure 2. Sketch map of a typical three-layer ANN.

The back propagation algorithm is one of the most popular learning methods for the ANN
training. In addition, with our early research works, back propagation can be easily implemented
and integrated in practical forecasting system [40]. Back propagation can be roughly divided into two
stages: a feed-forward stage and a backward stage. In the feed-forward stage, the input information
is delivered to the input layer, the hidden layer and the output layer in sequence, to obtain the
output information. In the backward stage, the connection weights and thresholds are modified by
the differences between the computed and desired output values. Without knowing the detailed
information about the nature of the complex system, ANN can approach the optimal or near-optimal
relationship between the input data set and the output data set by optimizing the structure of the
network constantly. Mathematically, the network can be expressed as follow:

Y = f
(
∑WX + B

)
(2)

where Y is the output vector. f is the transfer function. W is the weight vector. X is the weight vector.
B is the bias vector.

3.2. Support Vector Machine (SVM)

Support Vector Machine (SVM), proposed by Vapnik in 1995 [41], is a novel and useful tool for
data classification and regression analysis. SVM is built on the basis of statistical learning methods
and the structural risk minimization principle instead of the empirical risk minimization [19,31]. SVM
can achieve a global optimum, in theory, and has been applied in many fields over the past decades,
such as hydrology and computer science [43–45]. There are abundant papers about the detailed theory
of SVM. Here, we introduce the information of SVM in brief, and the interested readers can find the
detailed theory of SVM by referring to more papers. The fundamental idea of the SVM technique is to
take advantage of a linear or nonlinear model to map the target input data into a higher dimensional
characteristic space, so that the primary problem can be solved in the new space. For example, as
shown in Figure 3, the problem of data classification which cannot be linearly separated on the plane
may be linearly separable in the space with three or higher dimensions.
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Figure 3. 2D input space mapping into 3D feature space to separate data linearly.

In SVM, the map model is usually defined as the kernel function to yield the inner products in
the feature space and keep the calculated load reasonable. There are four kinds of commonly used
kernel functions, including linear kernel, polynomial kernel, radial basis function (RBF) kernel, and
sigmoid kernel [30,41]. Unlike the linear kernel, the RBF kernel can easily handle the non-linear relation
between class labels and attributes. Compared with polynomial and sigmoid kernels, the RBF kernel
has fewer tuning parameters, which reduces the complexity of model parameters selection. Moreover,
the RBF kernel has good performance under general smoothness assumptions. In summary, the RBF
kernel can improve the computational efficiency and enhance the generalization performance of SVM.
Hence, the RBF kernel, as shown in Equation (3), is adopted as the kernel function in this study:

k(xi, x) = exp

{
−‖x − xi‖2

2σ2

}
(3)

where k represents the kernel function.
In the RBF kernel function, there are three parameters needed to be confirmed: the parameter

C denotes the positive constant, the parameter ε represents the insensitive loss function, and the
parameter σ denotes the Gaussian noise level of the standard deviation. Different parameter
combinations can lead to large differences in the forecasting result. Thus, the combination of the three
parameters has to be optimized, first, in order to improve the forecasting accuracy. Many methods
are used to select these parameters, such as grid search technique, particle swarm optimization, and
genetic algorithm. However, at present, no general guidelines are available for the parameter selection
of SVM because each method has certain advantages and disadvantages. For example, the grid search
technique has the advantages of simplicity and intuition but is more computationally expensive
than other optimization techniques. As one of the most classic and popular evolutionary methods,
genetic algorithm was widely employed to calibrate the combination of the three parameters due to its
good robustness, adaptability, and simplicity, and satisfied results were also achieved in considerable
research work. Therefore, for the better forecasting accuracy, we apply the GA to automatically choose
the effective parameters combination of SVM kernel function.

3.3. Genetic Algorithm (GA)

In nature, for the limited resources, the grim competition exists in different individuals of the
same or different species, resulting in the fittest individuals outmatching the weaker ones [2,23]. GA
is a classical heuristic search algorithm which mimics the thought of natural selection and genetic
evolution in Darwin’s theory. By the power of evolution, GA can provide an efficient and robust search
capability for the optimization problems associated with numerous complex constraints [34,35]. In GA,
each potentially feasible or infeasible solution to the problem is encoded as a string of chromosomes.
GA usually starts from a population of the given size which is generated randomly in the search space.
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Then GA evolves through three essential operators: A selection operator representing the survival of
the fittest, a crossover operator equating to the mating between individuals, and a mutation operator
increasing the diversity. On the basis of the initial population, GA calculates the fitness values of all
the individuals, and the fitness value F(θ) of the individual θ uses the following formula:

F(θ) =
1
n

n

∑
i=1

[Yi − SVM(Xi, θ)]
2 (4)

where i represents the i-th data; n is the number of training data pairs; Yi is the i-th observed data; Xi is
the i-th input data vector; SVM(Xi, θ) represents the corresponding simulated value of SVM.

Then, the members with better fitness values are selected to form the population of the next
generation. GA uses the crossover and mutation operators to enhance the population diversity. GA
repeats the above-mentioned process until a certain terminal condition is met and the best individual
represents the approximate optimal solution of the problem. Here, GA is employed to optimize the
parameter combinations of the SVM model, and the objective is to minimize the fitness value of the
optimal individual in the population, i.e., minF(θ). The flowchart is shown in Figure 4.

 

Figure 4. The flow chart of optimizing SVM using GA.

3.4. Hybrid Forecasting Method

The reservoir monthly inflow data series is controlled by a number of factors in the real world,
including weather conditions, underlying surface, human activities, and others. These time-varying
factors can introduce considerable uncertainty and noise, and affect the process of the inflow data
series collection, pre-process, and prediction accuracy in the forecasting model. Hence, the reservoir
monthly inflow data series usually presents the strong properties of randomness and volatility. On the
one hand, a single forecasting model may reflect only one aspect of the character of the reservoir inflow
in most cases so it is rather difficult to forecast the monthly inflow data accurately with one forecasting
model because the bias or a large deviation always exists in the forecasting model. On the other
hand, the results of two or more forecasting models can show the inflow characteristics from various
perspectives. It is possible to further improve the prediction accuracy using different forecasting
results. Therefore, to enhance the performance of the model, special treatment is required for the
forecasting results to reduce the prediction errors of different models.
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To deal with the problem of noise data caused by these aforementioned uncertain factors, this
paper develops a hybrid forecast model based on ANN and SVM, which has many advantages
discussed in the previous sections. The hybrid method is a two-stage process which can find an
appropriate forecasting model to capture the complex relationship of the nonlinear system. First of
all, the ANN A1 and SVM S1 forecasting model are driven to forecast the targeted reservoir inflow
data, respectively, gaining two different forecasting results. Secondly, a new ANN model A2 is built for
the operational prediction, where the two different forecasting results of ANN and SVM are selected
as the input variables and the real reservoir inflow data is used as the desired value. The two-stage
forecasting process can be helpful to eliminate random errors of different models and improve the
prediction ability to a certain degree. The framework of the proposed hybrid method is shown in
Figure 5, and the process is described as below.

Step 1. Data processing. Divide the original valid monthly inflow data into various data sets, and
these raw data are normalized to the preset range from 0 to 1.

Step 2. Model training in the first stage. Determine the structure of the ANN model A1 and SVM
model S1, and use the abovementioned data to train both models, respectively, where GA is employed
for the parameter selection of the SVM model S1.

Step 3. Model training in the second stage. Determine the ANN model A2 structure and use the
processed data of the ANN model A1 and SVM model S1 as the input variables to train the model A2.

Step 4. Model forecasting. The three optimized forecasting models are used to get the
future values.

 

Figure 5. Sketch map of the hybrid method.

4. Statistical Measures

In this paper, the following five different types of error measurements are employed to evaluate
the quality of the forecasting model. They are root mean square error (RMSE) and mean absolute
error (MAE), mean absolute percentage error (MAPE), coefficient of correlation (R) and Nash-Sutcliffe
(NS) efficiency coefficient. RMSE can be an arbitrary positive value and perform better when it is
close to zero. MAE shows the degree of the absolute error between the forecasted and measured data.
MAPE can express the relative absolute model error as a percentage. R, which ranges from −1 to 1, is a
statistical measure of linear relationship between the observed and forecasted data. NS is less than or
equal to 1, and has better forecasting capability when it is close to 1. The smaller the values of RMSE,
MAE and MAPE are, the better the performance of the model shows. On the contrary, the larger the
values of NS and R are, the better the forecasting model performs. The five criteria are calculated using
the following Equations:

RMSE =

√
1
m

m

∑
i=1

(
yi −�

y i

)2
(5)

MAE =
1
m

m

∑
i=1

∣∣∣yi −�
y i

∣∣∣ (6)
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MAPE =
1
m

m

∑
i=1

∣∣∣∣∣yi −�
y i

yi

∣∣∣∣∣× 100% (7)

R =

m
∑

i=1

[
(yi − y)

(
�
y i − ỹ

)]
√

m
∑

i=1
(yi − y)2

(
�
y i − ỹ

)2
(8)

NS = 1 −

m
∑

i=1

(
yi −�

y i

)2

m
∑

i=1
(yi − y)2

(9)

where yi and
�
y i represent the i-th actual value and the i-th forecasted value of the forecasting model,

respectively; m is the total number of data set for comparison; y represents the average value of the

observed data, y= 1
m

m
∑

i=1
yi; ỹ is the average value of the forecasted data, ỹ= 1

m

m
∑

i=1

�
y i.

5. Results and Discussion

5.1. Input Variables Determination

Reasonable input variables can help capture the nonlinear features underlying the process and
contribute to good model performance. For time-series forecasting, the autocorrelation function (ACF)
and partial autocorrelation function (PACF) are two common parameters used to diagnose the order of
the autoregressive process and determine the input vector of the model, too [17,41]. Figure 6 shows
the ACF and PACF of the Xinfengjiang monthly inflow series with 95% confidence bands. Obviously,
both ACF and PACF exhibit the peak value at lag 12, which indicates that twelve antecedent inflow
values have the most useful information for the inflow forecasting. Hence, 12 antecedent inflow values
are selected as the input vector based on autocorrelation coefficient analysis in this paper. The purpose
of this study is to predict the inflow Qt+1 at the time t+1. Hence, the relationship between the output
and input variables can be expressed as the following Equation:

Qt+1 = R(Qt, Qt−1, Qt−2, Qt−3, Qt−4, Qt−5, Qt−6, Qt−7, Qt−8, Qt−9, Qt−10, Qt−11) (10)

where R denotes the nonlinear relationship, which are the corresponding model when ANN, SVM,
and the hybrid method are used for inflow forecasting, respectively.

Lag ACF
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Lag PACF
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11
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(a) (b) 

Figure 6. The (a) ACF and (b) PACF of Xinfengjiang monthly inflow series.
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5.2. Development of Various Models

5.2.1. ANN Model A1 Development

In the paper, we use a typical three-layer ANN model to forecast the monthly inflow in
Xinfengjiang reservoir. All the neurons of hidden and output layers use the sigmoid transfer function.
The twelve inputs and one output are applied to the ANN model, and all variables in the input and
output data sets are normalized to the range between 0 and 1. The optimal network can be obtained
using a trial and error procedure to train ANN models with various numbers of nodes in the hidden
layer. As previously shown, the training data are further divided into the training set and the testing
set. Based on the performances at different epochs, the cross-validation technique is used to select
the optimum number of hidden neurons. Training is stopped when the error of the testing set starts
to increase. Figure 7 shows the performances for the testing set with different hidden neurons from
2 to 25. When there are 15 neurons in the hidden layer, the testing error reached the minimum. Hence,
the optimal ANN A1 architecture is (12, 15, 1).
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Figure 7. Performance of ANN model with different hidden nodes.

5.2.2. SVM Model S1 Development

The setting of parameters plays an important role in the learning and generalization abilities of
SVM. Larger search space is helpful for better parameters. Hence, the search scopes of three parameters
are C ∈ [

2−5, 210], σ ∈ [
2−5, 210] and ε ∈ [

2−13, 25]. GA is used for the parameter selection of the SVM
model. The SVM parameters are directly encoded using real value data in the chromosomes of the GA.
The maximum iteration of GA is 500 and the population size is set to 300. Similar to the ANN model,
the same data sets are used to optimize the parameters of SVM. To obtain more appropriate parameters,
the overall process is repeated five times and the best model is selected as the final forecasting model.
Table 2 displays the performance statistics of SVM models. The results indicate that, in the fourth run,
SVM model with the optimal parameters (C, ε, σ) = (9.425, 0.823, 0.081) behaved the best and should
be selected as the forecast model for Xinfengjiang reservoir.

Table 2. The performance statistics of SVM models using GA over five runs.

Trial No. Optimal Parameters
(C, ε, σ)

Training Validation

RMSE MAPE MAE NS R RMSE MAPE MAE NS R

1 (10.653, 1.032, 0.078) 151.00 59.19 87.85 0.49 0.70 153.90 70.23 93.03 0.42 0.64
2 (9.827, 0.435, 0.064) 144.82 54.29 85.60 0.53 0.73 133.07 61.87 82.54 0.56 0.75
3 (2.783, 0.678, 0.125) 152.46 61.54 88.08 0.48 0.69 152.51 66.38 89.44 0.43 0.65
4 (9.425, 0.823, 0.081) 118.66 70.48 82.44 0.68 0.83 96.60 75.73 74.36 0.77 0.89
5 (11.803, 1.254, 0.708) 147.80 64.17 88.98 0.51 0.71 154.22 74.28 94.58 0.41 0.65
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5.2.3. ANN Model A2 Development

The two above models, ANN and SVM, are executed to respectively obtain the predicted data.
The ANN model A2 uses the results of both ANN model A1 and SVM model S1 as its input variables.
There are two inputs and one output in the model. A typical three-layer network is used. The sigmoid
transfer function is used in all neurons of the hidden layer and the output layer. To ensure the
generalization, all variables are normalized, and a trial-and-error process is repeated to determine
the optimal hidden layer nodes. The number of neuron in the hidden layer vary from two to nine,
and all the statistical indexes of different network structures are recorded and compared during the
calculation procedure. Finally, the optimal neural network adopted was (2, 5, 1), as shown in Figure 8,
which was selected as the final forecasting model.

 
Figure 8. The optimal structure for ANN model A2.

5.3. Comparison and Discussion

For the sake of comparison, three forecasting methods, namely ANN, SVM, and the hybrid
method are tested under the same experimental conditions. The same data sets are used to verify
the performance of various forecasting models in the same way. Every one-month step is predicted
and compared with the actual inflow data to calculate the errors. The process is repeated over the
whole time series, and then the average errors of all the months data are calculated. The obtained
appropriate architectures of the ANN model A1 and A2 for Xinfengjiang reservoir are (12, 15, 1) and
(2, 5, 1), respectively. Moreover, using GA for parameter selection, the SVM model with parameters
(C, ε, σ) = (9.425, 0.823, 0.081) is the forecasting model for Xinfengjiang reservoir.

Table 3 summarizes the statistical values of the three models in both training and validation
periods. We can efficiently execute the analysis of the predictive ability of different models for
Xinfengjiang reservoir. When compared to the original ANN and SVM, the hybrid method can
produce better and closer prediction accuracy in term of all five measures during various periods.
In the training period, the hybrid method achieves 19.21%, 24.26%, and 31.50% reduction in the
RMSE, MAE, and MAPE values of SVM, respectively. Compared with ANN model, improvements of
the hybrid model’s forecast results regarding the R and NS were approximately 7.23% and 16.18%,
respectively. In the validation period, the hybrid method can make 16.03%, 20.63%, and 21.83%
improvements of the ANN forecast results related to the RMSE, MAE, and MAPE, respectively. The
R and NS values of the hybrid method increase by 2.25% and 6.49% when compared with the SVM
model, respectively. Thus, the above analysis indicates that the proposed method is able to obtain
the best results in terms of all five different evaluation measures during both training and validation
periods. The hybrid method starts the operational prediction using the processed data with more
abundant information rather than original input vector, which help the forecasting model raise the
cognitive level for the characteristics of time-variable monthly inflow data. By combining advantages
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of ANN and SVM, the hybrid method can effectively eliminate the noise of the original hydrological
series. Therefore, the hybrid method can improve the forecasting accuracy of the monthly inflow data
from Xinfengjiang reservoir.

Table 3. Model statistics of three models for Xinfengjiang reservoir.

Models
Training Validation

RMSE MAPE MAE NS R RMSE MAPE MAE NS R

SVM 118.66 70.48 82.44 0.68 0.83 96.60 75.73 74.36 0.77 0.89
ANN 118.60 55.20 79.73 0.68 0.83 102.09 63.68 73.49 0.74 0.87

Hybrid
Method 95.86 48.28 62.44 0.79 0.89 85.72 49.78 58.33 0.82 0.91

Figures 9 and 10 respectively shows a comparison of forecasted versus observed values, and errors
by predicted minus observed of the three models for the Xinfengjiang reservoir in the validation period.
Figure 11 shows the scatterplots of observed inflow data versus forecast inflow of the three prediction
models. Figure 9 demonstrates that the simulation results accord well with the observed results and
the three models can capture the whole trend of the data series in the validation stage. The plots of
errors in Figure 10 illustrate that a certain underestimation or overestimation exists in the monthly
inflow predication value of each model. Due to the small magnitude and frequent occurrences of the
low inflow pattern, all three models have slightly smaller errors and better generalization in these
regions than high inflow pattern. The results are consistent with that in Tables 3 and 4. The linear
trend line of the hybrid method in Figure 11 has the biggest R-squared value, which means that the
trend line is closest to the perfect 45-degree line. From Figures 9–11, it can be observed that, when
employed for monthly inflow data prediction, three models can achieve satisfactory performances
for simulating the monthly inflow of Xinfengjiang reservoir, the hybrid method has high consistency
and good stability, and performs better than SVM and ANN models in different inflow levels. To sum
up, in the hybrid method, the ANN and SVM models are first used for the structure identification of
different resolution in the hydrological time series, and then a newly-built ANN model is constructed
for the refined prediction so as to enhance the prediction capability of the forecasting model. Therefore,
the proposed method has satisfied performance when predicting the monthly inflow data series.

0

400

800

1200

1600

1999/1 2000/1 2001/1 2002/1 2003/1 2004/1 2005/1 2006/1 2007/1 2008/1 2009/1 2010/1 2011/1 2012/1 2013/1 2014/1

In
flo

w
(m

3 /s
)

Date

Observed SVM ANN Hybrid method

 

Figure 9. Comparison of forecasted versus observed data by various methods during the validation period.
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Figure 10. Comparison of errors by various methods during the validation period.
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Figure 11. Scatter plots of forecasted versus observed data by various methods during the validation
period. (a) SVM; (b) ANN and (c) Hybrid method.

Table 4 lists the peak flow estimation of SVM, ANN, and the hybrid method for Xinfengjiang
reservoir during the validation period. The maximum observed peak inflow is 1496.4 m3/s in June
2015, while the forecast value of the SVM, ANN, and hybrid method are 1355.5, 1381.3, and 1405.7 m3/s,
about 9.4%, 7.7% and 6.1% underestimation, respectively. For the second maximum peak inflow in
June 2008, the SVM, ANN, and the hybrid method can obtain 776.5, 792.3, and 840.5 m3/s instead of
the observed 1066 m3/s, about 27.2%, 25.7% and 21.2% underestimation, respectively. Moreover, for
the 16 peak flows, the absolute average relative error of the SVM, ANN, and the hybrid method are
15.2%, 15.5% and 10.6%, respectively. Thus, it can be concluded that for peak inflow prediction, the
hybrid method can obtain better forecast precision than SVM and ANN, while there is no significant
difference between ANN and SVM.
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Table 4. Peak flow estimates of three models for Xinfengjiang reservoir during the validation period.

Peak No. Date

Observed Forecast Peak Relative Error (%)

Peak SVM ANN
Hybrid
Method

SVM ANN
Hybrid
Method

1 1999/9 362.0 327.9 346.9 369.5 −9.4 −4.2 2.1
2 2000/4 497.9 516.0 507.5 434.9 3.6 1.9 −12.7
3 2001/6 618.1 530.3 488.4 492.9 −14.2 −21.0 −20.3
4 2002/8 352.6 349.1 376.7 386.2 −1.0 6.8 9.5
5 2003/6 336.2 272.0 285.6 334.4 −19.1 −15.1 −0.5
6 2004/5 202.8 237.3 236.8 225.8 17.0 16.8 11.3
7 2005/6 1496.4 1355.5 1381.3 1405.7 −9.4 −7.7 −6.1
8 2006/6 783.8 583.2 598.1 679.5 −25.6 −23.7 −13.3
9 2007/6 687.5 555.7 581.4 592.1 −19.2 −15.4 −13.9
10 2008/6 1066.0 776.5 792.3 840.5 −27.2 −25.7 −21.2
11 2009/6 228.2 211.5 252.4 236.1 −7.3 10.6 3.5
12 2010/6 867.5 701.4 626.7 677.5 −19.2 −27.8 −21.9
13 2011/5 369.6 293.5 244.1 319.3 −20.6 −34.0 −13.6
14 2012/6 442.3 315.6 348.7 419.6 −28.6 −21.2 −5.1
15 2013/5 860.9 766.5 794.2 778.3 −11.0 −7.7 −9.6
16 2014/5 616.2 544.8 567.0 584.9 −11.6 −8.0 −5.1

Average (absolute) 15.2 15.5 10.6

6. Conclusions

In order to improve the forecasting accuracy of monthly inflow in Xinfengjiang reservoir, this
paper develops a hybrid forecasting method based on artificial neural network (ANN), support vector
machine (SVM) and genetic algorithm (GA) to forecast the monthly inflow data series. The forecasting
process of the hybrid method can be divided into two stages. In the first stage, SVM and ANN are used
to identify the complex nonlinear characteristic correlation between the input and the output data,
and GA is implemented to seek for the parameter combination of the SVM model. In the second stage,
for better forecasting accuracy, the results of the SVM and ANN are taken as input variables of a new
ANN model, and the corresponding predicative results of the new ANN model is the final forecasting
inflow value. Three different models, ANN, SVM, and the hybrid prediction model are applied to
forecast the monthly inflow data from Xinfengjiang dam reservoir of Pearl River Basin in China, and
five statistical measures are employed to evaluate the performances of these various models. From the
detailed analysis in this work, it can be concluded that these three models can obtain the satisfactory
forecasting accuracy for the monthly inflow data in Xinfengjiang reservoir, and the proposed hybrid
method significantly outperforms the traditional ANN and SVM. Therefore, the hybrid forecasting
method proposed in this paper can capture the potential information and relationship of the monthly
inflow data series and will be helpful for Xinfengjiang reservoir managers to obtain more accurate
and stable forecasting results. However, due to the limitation of the authors’ time and energy, there
are, undoubtedly, some defects needed to deepen in further research work. For example, only ANN
and SVM are compared and considered in the present study for simplicity, more approaches can be
considered and involved in the hybrid method, to enhance the generalizability of the forecasting model.
In addition, the accuracy and applicability of the hybrid method in different reservoirs’ monthly or
other-scale inflow under different climate conditions can also be further examined.

Acknowledgments: This study is supported by the Major International Joint Research Project from the National
Nature Science Foundation of China (51210014) and the National Basic Research Program of China (973 Program,
No. 2013CB035906).

Author Contributions: All authors contributed extensively to the work presented in this paper. Chun-Tian Cheng
contributed to the subject of the research and literature review. Zhong-Kai Feng contributed to modeling and
finalized the manuscripts. Wen-Jing Niu contributed to the data analysis and manuscript review. Sheng-Li Liao
contributed to the manuscript review.

149



Water 2015, 7, 4477–4495

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zhao, T.; Zhao, J. Joint and respective effects of long and short-term forecast uncertainties on reservoir
operations. J. Hydrol. 2014, 517, 83–94. [CrossRef]

2. Chiu, Y.C.; Chang, L.C.; Chang, F.J. Using a hybrid genetic algorithm-simulated annealing algorithm for
fuzzy programming of reservoir operation. Hydrol. Process. 2007, 21, 3162–3172. [CrossRef]

3. Karamouz, M.; Ahmadi, A.; Moridi, A. Probabilistic reservoir operation using bayesian stochastic model
and support vector machine. Adv. Water Resour. 2009, 32, 1588–1600. [CrossRef]

4. Lian, J.; Yao, Y.; Ma, C.; Guo, Q. Reservoir operation rules for controlling algal blooms in a tributary to the
impoundment of three gorges dam. Water 2014, 6, 3200–3223. [CrossRef]

5. Chau, K.W.; Wu, C.L.; Li, Y.S. Comparison of several flood forecasting models in Yangtz River. J. Hydrol. Eng.
2005, 10, 485–491. [CrossRef]

6. Liu, P.; Lin, K.; Wei, X. A two-stage method of quantitative flood risk analysis for reservoir real-time operation
using ensemble-based hydrologic forecasts. Stoch. Env. Res. Risk A 2014, 29, 803–813. [CrossRef]

7. Chau, K.W.; Wu, C.A. Hybrid model coupled with singular spectrum analysis for daily rainfall prediction.
J. Hydroinform. 2010, 12, 458–473. [CrossRef]

8. Cheng, C.T.; Lin, J.Y.; Sun, Y.G.; Chau, K.W. Long-term prediction of discharges in Manwan hydropower
using adaptive-network-based fuzzy inference systems models. Lect. Notes Comput. Sci. 2005, 3612,
1152–1161.

9. Fleming, S.W.; Weber, F.A. Detection of long-term change in hydroelectric reservoir inflows: Bridging theory
and practice. J. Hydrol. 2012, 470, 36–54. [CrossRef]

10. Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction.
J. Hydrol. 2009, 372, 80–93. [CrossRef]

11. Lund, J.R. Flood Management in California. Water 2012, 4, 157–169. [CrossRef]
12. Muttil, N.; Chau, K.W. Machine learning paradigms for selecting ecologically significant input variables.

Eng. Appl. Artif. Intell. 2007, 20, 735–744. [CrossRef]
13. Coulibaly, P.; Haché, M.; Fortin, V.; Bobée, B. Improving daily reservoir inflow forecasts with model

combination. J. Hydrol. Eng. 2005, 10, 91–99. [CrossRef]
14. Zhu, T.; Lund, J.R.; Jenkins, M.W.; Marques, G.F.; Ritzema, R.S. Climate change, urbanization, and optimal

long-term floodplain protection. Water Resour. Res. 2007, 43, 122–127. [CrossRef]
15. Wu, C.L.; Chau, K.W. Data-driven models for monthly streamflow time series prediction. Eng. Appl.

Artif. Intell. 2010, 23, 1350–1367. [CrossRef]
16. Valipour, M.; Banihabib, M.E.; Behbahani, S.M.R. Comparison of the ARMA, ARIMA and the autoregressive

artificial neural network models in forecasting the monthly inflow of Dez dam reservoir. J. Hydrol. 2013, 476,
433–441. [CrossRef]

17. Wang, W.C.; Chau, K.W.; Cheng, C.T.; Qiu, L. A comparison of performance of several artificial intelligence
methods for forecasting monthly discharge time series. J. Hydrol. 2009, 374, 294–306. [CrossRef]

18. Taormina, R.; Chau, K.W. Neural network river forecasting with multi-objective fully informed particle
swarm optimization. J. Hydroinform. 2015, 17, 99–113. [CrossRef]

19. Lin, G.F.; Chen, G.R.; Huang, P.Y. Effective typhoon characteristics and their effects on hourly reservoir
inflow forecasting. Adv. Water Resour. 2010, 33, 887–898. [CrossRef]

20. Demirel, M.C.; Venancio, A.; Kahya, E. Flow forecast by SWAT model and ANN in Pracana basin, Portugal.
Adv. Eng. Softw. 2009, 40, 467–473. [CrossRef]

21. Saeidifarzad, B.; Nourani, V.; Aalami, M.; Chau, K.W. Multi-site calibration of linear reservoir based
geomorphologic rainfall-runoff models. Water 2014, 6, 2690–2716. [CrossRef]

22. Chen, W.; Chau, K.W. Intelligent manipulation and calibration of parameters for hydrological models. Int. J.
Environ. Pollut. 2006, 28, 432–447. [CrossRef]

23. Cheng, C.T.; Ou, C.P.; Chau, K.W. Combining a fuzzy optimal model with a genetic algorithm to solve
multi-objective rainfall-runoff model calibration. J. Hydrol. 2002, 268, 72–86. [CrossRef]

150



Water 2015, 7, 4477–4495

24. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE
performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91.
[CrossRef]

25. Sattari, M.T.; Yurekli, K.; Pal, M. Performance evaluation of artificial neural network approaches in forecasting
reservoir inflow. Appl. Math. Model. 2012, 36, 2649–2657. [CrossRef]

26. Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables:
A review of modeling issues and applications. Environ. Modell. Softw. 2000, 15, 101–124. [CrossRef]

27. Taormina, R.; Chau, K.W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in
a coastal aquifer system of the venice lagoon. Eng. Appl. Artif. Intell. 2012, 25, 1670–1676. [CrossRef]

28. Kisi, O.; Cimen, M. A wavelet-support vector machine conjunction model for monthly streamflow forecasting.
J. Hydrol. 2011, 399, 132–140. [CrossRef]

29. Yang, J.S.; Yu, S.P.; Liu, G.M. Multi-step-ahead predictor design for effective long-term forecast of
hydrological signals using a novel wavelet neural network hybrid model. Hydrol. Earth Syst. Sci. 2013, 17,
4981–4993. [CrossRef]

30. Noori, R.; Karbassi, A.R.; Moghaddamnia, A.; Han, D.; Zokaei-Ashtiani, M.H.; Farokhnia, A.; Gousheh, M.G.
Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and
forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 40, 177–189. [CrossRef]

31. Lin, G.F.; Chen, G.R.; Wu, M.C.; Chou, Y.C. Effective forecasting of hourly typhoon rainfall using support
vector machines. Water Resour. Res. 2009, 45, 560–562. [CrossRef]

32. Bazartseren, B.; Hildebrandt, G.; Holz, K.P. Short-term water level prediction using neural networks and
neuro-fuzzy approach. Neurocomputing 2003, 55, 439–450. [CrossRef]

33. Coulibaly, P.; Anctil, F.; Bobee, B. Daily reservoir inflow forecasting using artificial neural networks with
stopped training approach. J. Hydrol. 2000, 230, 244–257. [CrossRef]

34. Su, J.; Wang, X.; Zhao, S.; Chen, B.; Li, C.; Yang, Z. A structurally simplified hybrid model of genetic
algorithm and support vector machine for prediction of chlorophyll a in reservoirs. Water 2015, 7, 1610–1627.
[CrossRef]

35. Kuo, J.T.; Wang, Y.Y.; Lung, W.S. A hybrid neural-genetic algorithm for reservoir water quality management.
Water Res. 2006, 40, 1367–1376. [CrossRef] [PubMed]

36. Guo, Z.H.; Wu, J.; Lu, H.Y.; Wang, J.Z. A case study on a hybrid wind speed forecasting method using bp
neural network. Knowl. Based Syst. 2011, 24, 1048–1056. [CrossRef]

37. Thirumalaiah, K.; Deo, M.C. River stage forecasting using artificial neural networks. J. Hydrol. Eng. 1998, 3,
26–32. [CrossRef]

38. Alvisi, S.; Mascellani, G.; Franchini, M.; Bardossy, A. Water level forecasting through fuzzy logic and artificial
neural network approaches. Hydrol. Earth Syst. Sci. 2006, 10, 1–17. [CrossRef]

39. Seo, Y.; Kim, S.; Kisi, O.; Singh, V.P. Daily water level forecasting using wavelet decomposition and artificial
intelligence techniques. J. Hydrol. 2015, 520, 224–243. [CrossRef]

40. Zhang, J.; Cheng, C.T.; Liao, S.L.; Wu, X.Y.; Shen, J.J. Daily reservoir inflow forecasting combining QPF into
ANNs model. Hydrol. Earth Syst. Sci. 2009, 6, 121–150. [CrossRef]

41. Lin, J.Y.; Cheng, C.T.; Chau, K.W. Using support vector machines for long-term discharge prediction.
Hydrol. Sci. J. 2006, 51, 599–612. [CrossRef]

42. Wu, C.S.; Yang, S.L.; Lei, Y.P. Quantifying the anthropogenic and climatic impacts on water discharge and
sediment load in the Pearl River (Zhujiang), China (1954–2009). J. Hydrol. 2012, 452, 190–204. [CrossRef]

43. Yu, P.S.; Chen, S.T.; Chang, I.F. Support vector regression for real-time flood stage forecasting. J. Hydrol. 2006,
328, 704–716. [CrossRef]

44. Lin, G.F.; Chen, G.R.; Huang, P.Y.; Chou, Y.C. Support vector machine-based models for hourly reservoir
inflow forecasting during typhoon-warning periods. J. Hydrol. 2009, 372, 17–29. [CrossRef]

45. Wu, C.L.; Chau, K.W.; Li, Y.S. River stage prediction based on a distributed support vector regression.
J. Hydrol. 2008, 358, 96–111. [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

151



water

Article

Daily Reservoir Runoff Forecasting Method
Using Artificial Neural Network Based on
Quantum-behaved Particle Swarm Optimization

Chun-tian Cheng 1,*, Wen-jing Niu 1, Zhong-kai Feng 1, Jian-jian Shen 1 and Kwok-wing Chau 2

1 Institute of Hydropower and Hydroinformatics, Dalian University of Technology, Dalian 116024, China;
dgniuwenjing@mail.dlut.edu.cn (W.N.); myfellow@mail.dlut.edu.cn (Z.F.); shenjj@dlut.edu.cn (J.S.)

2 Department of Civil and Environmental Engineering, Hong Kong Polytechnic University,
Hong Kong 999077, China; cekwchau@polyu.edu.hk

* Correspondence: ctcheng@dlut.edu.cn; Tel./Fax: +86-411-84708768

Academic Editor: Miklas Scholz
Received: 30 June 2015; Accepted: 27 July 2015; Published: 31 July 2015

Abstract: Accurate daily runoff forecasting is of great significance for the operation control of
hydropower station and power grid. Conventional methods including rainfall-runoff models and
statistical techniques usually rely on a number of assumptions, leading to some deviation from the
exact results. Artificial neural network (ANN) has the advantages of high fault-tolerance, strong
nonlinear mapping and learning ability, which provides an effective method for the daily runoff
forecasting. However, its training has certain drawbacks such as time-consuming, slow learning
speed and easily falling into local optimum, which cannot be ignored in the real world application.
In order to overcome the disadvantages of ANN model, the artificial neural network model based on
quantum-behaved particle swarm optimization (QPSO), ANN-QPSO for short, is presented for the
daily runoff forecasting in this paper, where QPSO was employed to select the synaptic weights and
thresholds of ANN, while ANN was used for the prediction. The proposed model can combine the
advantages of both QPSO and ANN to enhance the generalization performance of the forecasting
model. The methodology is assessed by using the daily runoff data of Hongjiadu reservoir in
southeast Guizhou province of China from 2006 to 2014. The results demonstrate that the proposed
approach achieves much better forecast accuracy than the basic ANN model, and the QPSO algorithm
is an alternative training technique for the ANN parameters selection.

Keywords: quantum-behaved particle swarm optimization (QPSO); daily runoff; reservoir forecasting;
artificial neural network; hybrid forecast

1. Introduction

Accurate daily runoff forecasting is extremely important for hydropower operation control
and power grid operation scheduling [1–5]. Over the past decades, there have been abundant
traditional classical research works for the daily runoff forecasting, which can be broadly separated
into two categories: process-based model like Xin’anjiang model [6,7], and data-based model such
as autoregressive model and moving average model [8,9]. These approaches entail exogenous input
and rely on a number of assumptions for natural environment, leading to some deviation from the
exact results in most cases. In recent years, with the booming development of heuristic methods, many
researchers pay attention to applying them in daily runoff forecasting or the parameter selection of
the hydrologic model, including artificial neural network [10,11], SCE-UA algorithm [12,13], support
vector machine [14,15] and other hybrid methods [16,17].

As a typical artificial neural network, back propagation neural network (BP) can nearly simulate
any complex linear or non-linear functional relationship without knowing the correlation between
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the input data and the output data [18,19]. After learning from the training data set, BP can be used
to predict a new output data effectively with the corresponding input data. Compared with other
methods, BP has high fault tolerance, strong robustness and easy adaptability to online learning.
BP has been widely used in many practical areas, including load prediction, wind speed prediction
and daily runoff forecasting. However, BP has some drawbacks, such as long computing time, slow
convergence and easy to encounter local minimum. Hence, a variety of hybrid optimization methods
using such global optimization algorithm like particle swarm optimization (PSO) are developed to
improve the generalization ability of the artificial neural network [20,21]. These hybrid optimization
methods can improve the BP forecasting performance in varying degrees. However, when PSO is
applied for the ANN parameters selection, it may be trapped into the local optima of the objective
function because PSO is restricted by search capability. Therefore, the promotion space is still large for
ANN parameter selection using an evolutionary algorithm [22–24].

In recent years, a novel particle swarm optimization variant called quantum-behaved particle
swarm optimization algorithm (QPSO) was proposed by Sun et al. [25] in 2004. In QPSO, the global
optimal solution in the whole searching space can be guaranteed theoretically. Moreover, simulation
results of numerous complex benchmark functions showed that QPSO has better global searching
ability than the basic PSO [26,27]. Hence, QPSO are widely used to solve the complex optimization
problems which includes hydrothermal scheduling and economic dispatch problem [28,29]. However,
up to now, there are a few reports about using QPSO for parameter calibration of artificial neural
network. Therefore, to improve the generalization ability and calculation efficiency of artificial neural
network, a hybrid method, coupling artificial neural network and QPSO, is developed for daily
reservoir runoff forecasting in this research, where QPSO algorithm is selected as training algorithm
for artificial neural network to enhance hydrologic forecast accuracy.

The remaining is organized as follows. Artificial neural network is introduced briefly in Section 2.
Section 3 explains the PSO and QPSO methods in details, then the proposed QPSO-ANN model is
presented in Section 4. Section 5 provides the results of the proposed method and other methods and
gives discussions on their performances. Finally, conclusions are summarized in Section 6.

2. Artificial Neural Network

In general, the relation between input vector and output vector of a nonlinear system can be
expressed as Y = H(X), where X = [X1, . . . ,Xi, . . . ,Xn]T is input vector; Xi is the ith input data; n is
the number of input data; Y = [Y1, . . . ,Yj, . . . ,Yu]T is output vector; Yj is the jth input data; u is the
number of output data; H(·) denotes the complex nonlinear relation which can be estimated by some
meta-heuristic methods like artificial neural network.

In our study, BP neural network is chosen as the basic approach to estimate input-output relations
H(·) of the nonlinear hydrological system. The main advantage of BP is that it can reflect the complex
nature of underlying process with less information than other traditional methods. A typical BP neural
network consists of three layers, input layer, hidden layer and output layer, whose structure is shown
in Figure 1. Each layer is composed of a series of interconnected processing nodes. As a specific neuron,
each node in any layer uses a nonlinear transfer function to calculate the inner product of input vector
and weight vector to get a scalar result. Two neighboring layers are connected via the weights of the
nodes between these layers. The input layer receives and transmits input data to hidden layer. The
hidden layer may contain a single layer or multi-layer that receives values from the previous layer.
Each hidden layer is responsible for the input information conversion and then delivers them to the
next hidden layer or output layer. The output layer presents the simulated results and has only one
single layer with one or several nodes. In a single calculation, the BP neural network can obtain overall
error between the estimated output values and the target output values, then loss function gradient is
calculated. The gradient-descent algorithm is fed to update weights and thresholds to minimize loss
function. The connection weights and thresholds between any two feed forward-connected neurons
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will be unceasingly adjusted until the error meets the termination conditions. Then, the optimized BP
neural network can be used to forecast the target value with the corresponding input vector.

 
Figure 1. Schematic diagram of three-layer back propagation (BP) neural network.

Due to the defects of gradient descent method, the result may find a locally optimal solution
instead of global optimum in most cases due to the existence of many local optima on the error surface.
The convergence in back propagation learning cannot be guaranteed. Moreover, the computation speed
is rather slow because the gradient descent algorithm requires small learning rates for stable learning.

3. Quantum-Behaved Particle Swarm Optimization

3.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO), proposed by Kennedy and Eberhart in 1995 [30], is a
well-known evolutionary population-based algorithm for global optimization problems [31,32]. The
main concept of PSO is from analogy of biological and sociological feeding behavior of bird swarm,
and its basic variant is a population (called a swarm) of candidate solutions (called particles). PSO
is initialized with random solutions which search for optima by flying through problem space from
generation to generation. The flight of each particle is guided continuously by its own best known
position, pbest, and the best known position of the whole population, gbest. Each particle has position
vector and velocity vector, and explores in the searching space by a few simple formulas.

There is extensive and profound homology or resemblance between PSO and other evolutionary
computation techniques like genetic algorithm. Compared with genetic algorithm, PSO has faster
convergence speed since it has no evolution operators like crossover and selection. Moreover, PSO has
few parameters to adjust and depends directly upon function values rather than derivative information.
In the past few years, PSO has been successfully applied to many research and application areas.
However, the main defect of PSO is that global convergence cannot be guaranteed, especially when the
number of decision variables or dimensions to be optimized are large. In other words, PSO is easily
trapped into local optimum although it may have fast convergent rate [32,33].

3.2. Quantum-Behaved Particle Swarm Optimization

In order to deal with disadvantages of PSO, quantum-behaved particle swarm optimization
(QPSO) was developed by Sun et al. [25] in 2004. From the quantum mechanics perspective, QPSO
considers the particle possess quantum behavior and cannot determine the exact values of position
vector and velocity vector simultaneously according to uncertainty principle [25,26]. Hence, there
is no velocity vector in the particle of QPSO, and particle state is associated with an appropriate
time-dependent Schrödinger equation and can be characterized by wave function ψ instead of position
and velocity [27,28], where |ψ|2 is the probability density function of its position. Let M particles in d
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dimensional space with k maximum generations, the position vector of ith particle at kth generation
can be expressed as xi(k) = [xi,1(k),xi,2(k), . . . ,xi,d(k)]T. There will be gbest(k) = [gbest1(k),gbest2(k), . . .
,gbestd(k)]T and pbesti(k) = [pbesti,1(k),pbesti,2(k), . . . ,pbesti,d(k)]T. Employing Monte-Carlo method,
particle moves according to the following iterative equation:

xi,j(k + 1) =

{
pi,j(k+1) + a(k)× ∣∣mbestj(k + 1)− xi,j(k)

∣∣× ln(1/r1), i f r2 ≥ 0.5
pi,j(k+1)− a(k)× ∣∣mbestj(k + 1)− xi,j(k)

∣∣× ln(1/r1), i f r2 < 0.5
(1)

pi,j(k+1) = r3 × pbesti,j(k) + (1 − r3)× gbestj(k) (2)

mbestj(k+1)=
1
M

M

∑
i=1

pbesti,j(k) (3)

a(k) =
(a1 − a2)×

(
k − k

)
k

+ a2 (4)

for i = 1,2,...,M; j = 1,2,...,d; k = 1,2,..., k. Where xi,j(k) is position for jth dimension of ith particle in kth
generation; r1, r2, r3 are random variables distributed uniformly in [0,1]; a(k) is contraction-expansion
coefficient in kth generation which controls the convergence speed of the particle; a1, a2 are maximum
and minimum value of a(k), respectively; and there are usually a1 = 1.0, a2 = 0.5 [28]; pi,j(k) is the jth
dimension of local attractor i in kth generation; mbest represents the mean best position defined as
mean of all pbest position of the whole population.

4. Parameters Selection for Artificial Neural Network Based on QPSO Algorithm

In order to obtain better forecast accuracy, the novel QPSO algorithm is employed for parameters
selection of BP neural network. In this paper, there is only one node in output layer, which is the daily
runoff forecast value. If the node number of input layer and hidden layer are n and m, respectively, the
architecture of the ANN neural network is n-m-1. The flow chart of the proposed method is shown in
Figure 2, and the fundamental idea of the proposed method can be described as follows:

Step 0: Set basic parameters for the proposed method.
Step 0.1: Set maximize iterations k and population size M in QPSO.
Step 0.2: Divide data into training and testing sets.
Step 0.3: Define transfer function of neurons, which is a sigmoid function in this paper, i.e.:

f [x] =
1

1 + e−x (5)

Step 1: The input and output data in both training and testing sets are normalized to ensure the
quality of forecast results.

X=
{

X′
i
}
= a × Xi − Xmin

i
Xmax

i − Xmin
i

+ b (6)

where X′
i and Xi is the normalized value and real value of each vector, respectively; Xmin

i and Xmax
i

are the minimum and maximum value of input or output arrays; a and b are the positive normalized
parameters, respectively. Based on large numbers of numerical experiments, we found that when the
variable a = 0.2 and b = 0.6 are adopted to normalize the raw data, the forecasting models performs
better. Hence, we use the variable a = 0.2 and b = 0.6 for data normalization in this paper.

Step 2: The QPSO algorithm is employed to select the parameters of BP neural network. The ith
particle in the kth generation is denoted by xi(k) = {wi, bi}. Here, wi and bi represent the connection
weights and bias matrix between any two layers of the BP neural network, respectively.
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Step 3: Set k = 1, and initialize the parameters w and b of every particle randomly in the searching
space, which are the connection weight and bias on each node, respectively.

Step 4: Use the parameters to calculate the fitness of each particle. Here, the fitness is the
forecasting error between the output values and the target ones.

Step 4.1: Calculate the outputs of all hidden layer nodes for each training sample.

yj = f

[
n

∑
i=1

xiwji + bj

]
, j = 1, 2, · · · , m (7)

where wji represents the connection weight from the input node i to the hidden node j, bj stands for
bias of neuron j, yj is the output value of the hidden layer node j.

Step 4.2: Calculate the output data of the BP neural network for each training sample.

o1 = f

[
m

∑
j=1

yiw1j + b1

]
(8)

where w1j represent the connection weight from hidden node j to the output node 1, b1 stands for the
bias of the neuron; o1 stands for the output data of network.

Step 4.3: Step 4.1 and 4.2 are repeated until all the training set samples are calculated. Then the
forecasting error F is regarded as the fitness of the particle xi(k).

F[xi(k)] =
1
s

S

∑
s=1

(os − ts)
2 (9)

where os and ts is the sth normalized output value and target value in the training data, respectively.
S is the number of training set samples.

Step 5: Update the best known position of each particle and the best known position of the whole
population according to the following two formulas:

pi(k) =

{
xi(k) i f (k = 1)
arg min{F[pi(k − 1)], F[xi(k)]} otherwise

(10)

gbest(k) =

⎧⎪⎪⎨⎪⎪⎩
arg min

{
min

1≤i≤M
{F[pi(k)]}, F[gbest(k − 1)]

}
i f (k > 1)

arg min
{

min
1≤i≤M

{F[pi(k)]}
}

otherwise
(11)

Step 6: Calculate the mean best position and the contraction-expansion coefficient with
Equations (3) and (4), respectively.

Step 7: Update current position of each particle by the Equation (1).
Step 8: Set k = k+1, if the maximum iterations k reached, the flow will go to Step 9, else go back

to Step 4.
Step 9: Output the optimal parameter of the BP neural network, which will be used for new data

forecasting process.
Step 10: Before starting the forecasting process, the input vector are needed to be normalized by

Equation (6), then transmit the processed data into the calibrated artificial neural network model to
obtain predictive value. The predictive data need to be renormalized to the original range of output
data by Equation (12).

Ŷ=
{

Ŷi
}
=

(
Y′

i − b
)× (

Ymax
i − Ymin

i
)

a
+ Ymin

i (12)

where Y′
i and Ŷi are normalized forecasting value and real forecasting value of the output vector,

respectively; Ymin
i and Ymax

i are minimum and maximum value of the output arrays, respectively.
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Figure 2. Flow chart of the proposed method.

5. Simulations

5.1. Study Area and Data Used

The study site is Hongjiadu reservoir in Wu River of Guizhou Province in southwest China. The
Wu River is the biggest branch at southern bank of Yangtze River. Hongjiadu reservoir is the leading
one with multi-year regulation ability of eleven cascade hydropower stations on Wu River. Rainfall
produces most of the runoff. Its drainage area is 9900 km2 and the mean annual runoff is 155 m3·s−1

at the dam site. The total reservoir storage is 4.95 billion cubic meters and the regulated storage is
3.36 billion cubic meters. Locations of Wu River and Hongjiadu reservoir are shown in Figure 3.
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Figure 3. Location of study area.

All the daily runoff data collected from Hongjiadu reservoir operators is from 1 January 2006 to
31 December 2013. The data set between 1 January 2006 and 31 December 2012 is used for parameters
calibration, while that from 1 January 2013 to 31 December 2013 is for testing. Moreover, before
applying the proposed method for daily runoff predication, the data should be normalized to avoid
numerical difficulties during calculation and guarantee consistency of greater numeric ranges as well
as smaller ones. In the modeling process, input and output data sets are linearly scaled to [0.2, 0.8] as
shown in Equation (6).

5.2. Performance Assessment Measures

Many performance measure methods have been developed to assess the forecast accuracy.
However, so far, there is no unified standard since each measure can reflect one or more characteristics
of the forecasting method. Hence, four commonly used metrics are selected to evaluate the forecast
results: coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (NSE), root mean squared
error (RMSE) and mean absolute percentage error (MAPE). R evaluates the linear relation between two
data sequences, while NSE shows the capability of the model in predicting values away from the mean.
The larger the value of R and NSE, the better the performances of the forecasting model. RMSE and
MAPE measure the residual error and the mean absolute percentage error between the observed and
forecasted data, respectively. The smaller the value of RMSE and MAPE, the better the performances
of the forecasting model.

R =
n

∑
i=1

[(
Yi − Y

)(
Ŷi − Ỹ

)]/√
n

∑
i=1

(
Yi − Y

)2
(

Ŷi − Ỹ
)2

(13)

NSE = 1 −
n

∑
i=1

(
Yi − Ŷi

)2
/

n

∑
i=1

(
Yi − Y

)2 (14)

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (15)

MAPE =
1
n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣× 100 (16)
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where Yi and Ŷi are the observed value and predictive value of ith data, respectively. Y and Ỹ represent
the mean value of the observed value and predictive value, respectively. n is the total number of data
set used for performance evaluation and comparison.

5.3. ANN Model Development

For ANN, proper selection of input variables will be helpful to find the best-fitted model. Based
on the analysis of cross correlation coefficient and autocorrelation coefficient, four input combinations
with different antecedent rainfalls and runoffs were developed for a comparative purpose. Table 1
summarizes these ANN models used for this study, where Runoff (t), Rainfall(t) are the runoff and
rainfall value at the t-th period, respectively. To ensure the generalization capability of ANN, we use
the trial and error method to determine the optimal network architecture. According to Chau et al. in
2005, the training process needs to be stopped when the error of the testing set starts to increase and
that of the training set is still decreasing. Figure 4 shows the performance for the testing set against
various numbers of neurons for model 1. The optimal ANN architecture adopted for model 1 is 2-4-1.
The other three models have the same procedures as that for model 1. Table 2 shows the architecture
and indices of various ANN forecasting models for Hongjiadu reservoir. We can find that antecedent
two-day rainfalls and antecedent two-day runoff should be chosen as predictors, and ANN with the
architecture of 4-7-1 performs best at this situation.

Table 1. Inputs and relation for various artificial neural network (ANN) forecasting models.

Model Inputs Relation between Output Variable and Input Variables

1 Runoff (t-1),Rainfall(t-1) Runoff (t)=H[Runoff (t-1),Rainfall(t-1)]
2 Runoff (t-1),Rainfall(t-1),Rainfall(t-2) Runoff (t)=H[Runoff (t-1),Rainfall(t-1),Rainfall(t-2)]
3 Runoff (t-1),Runoff (t-2),Rainfall(t-1) Runoff (t)=H[Runoff (t-1),Runoff (t-2),Rainfall(t-1)]
4 Runoff (t-1),Runoff (t-2),Rainfall(t-1),Rainfall(t-2) Runoff (t)=H[Runoff (t-1),Runoff (t-2),Rainfall(t-1),Rainfall(t-2)]
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Figure 4. Performance of model 1 against different numbers of nodes in hidden layer.

Table 2. Architectures and indices of various ANN forecasting models for Hongjiadu reservoir.

Model
Model

Architecture

Training Testing

R NSE RMSE
(m3·s−1)

MAPE
(%)

R NSE RMSE
(m3·s−1)

MAPE
(%)

1 2-4-1 0.892 0.740 82.490 38.150 0.883 0.747 63.562 35.912
2 3-6-1 0.891 0.737 82.989 37.903 0.903 0.757 62.321 38.417
3 3-5-1 0.893 0.742 82.090 36.493 0.903 0.761 61.792 37.190
4 4-7-1 0.907 0.783 75.286 34.866 0.904 0.773 60.252 35.680

5.4. Comparison of Different Methods

In order to verify the effectiveness of the proposed method, the same training and verification
samples are used for these two models, ANN and ANN-QPSO, and the above four quantitative indexes
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are employed to evaluate their performances. According to the above-mentioned analysis, the neural
network architectures of both ANN and ANN-QPSO are 4-7-1 for Hongjiadu reservoir. Moreover, for
ANN-QPSO, the number of population is set to be 300 whilst the maximize iterations is 500. The two
algorithms are implemented by adopting JAVA language.

Table 3 presents the statistics results using various models developed for Hongjiadu study area.
It can be seen that these two methods have different performances during both training and testing
periods. Compared to the basic ANN, the proposed method is able to produce better forecast results
for the daily runoff forecasting in Hongjiadu reservoir. In the training phase, the ANN-QPSO model
improved the ANN forecasting ability with about 28.18% and 48.08% reduction in RMSE and MAPE
values, respectively. The improvements of the forecasting results regarding the R and NSE were
approximately 3.97% and 13.41%, respectively. In the testing phase, when compared with that of ANN,
the statistical values of R and NSE of the proposed method increases by 5.42% and 17.46% respectively,
while the value of RMSE and MAPE decreases by 36.34% and 28.81%. Figure 5 shows the convergence
characteristic for objective functions of two methods in Hongjiadu reservoir. The objective function of
the proposed method uses about 4 s to converge to a small neighborhood of the final result, whilst the
ANN nearly stops the searching process since 1 second. In addition, in term of total computing time
from Table 3, the ANN-QPSO decreases by 66.56% when compared to that of ANN. Thus, it can be
concluded that the proposed method needs less computation time and has higher forecasting accuracy
degree and global search capability than conventional ANN.

Table 3. Performance indices of two methods for Hongjiadu reservoir.

Method Time(s)

Training Testing

R NSE RMSE
(m3·s−1)

MAPE
(%)

R NSE RMSE
(m3·s−1)

MAPE
(%)

ANN-QPSO 10.1 0.943 0.888 54.074 18.102 0.953 0.908 38.354 25.401
ANN 30.2 0.907 0.783 75.286 34.866 0.904 0.773 60.252 35.680

The observed peak flow and forecasted peak flow of two models for Hongjiadu reservoir are
shown in Table 4. Both ANN-QPSO and ANN models forecast the maximum peak discharge as
1641.8 m3·s−1 and 1258.3 m3·s−1 instead of the observed 1696.4 m3·s−1, corresponding to about 3.2%
and 25.8% underestimation, respectively. Furthermore, the absolute averages of the relative error of
the ANN-QPSO and ANN models for forecasting the 8 peak flow are 11.6% and 30.9%, respectively.
In summary, the ANN-QPSO method performs better than ANN in term of peak flow estimation.
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Figure 5. Convergence characteristic of the objective function of two methods for Hongjiadu reservoir
(a) ANN-QPSO; (b) ANN.

The above analysis indicates that, for daily runoff forecasting, the proposed model can obtain
better results than basic ANN model with significant improvements in terms of four different statistical
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indicators. Figures 6 and 7 demonstrate the scatter plots of observed data versus forecasted data using
ANN and ANN-QPSO models during the training and testing period. The performances of both
prediction models in the training period and testing period are respectively shown in Figures 8 and 9.
From Figures 6–9, it can be clearly seen that the forecasting results of ANN model are inferior to that
by the proposed ANN-QPSO model. For example, the model proposed in this paper can obtain the
approximate maximum flows which is about 1700 m3·s−1 during the training period while an obvious
deviation exists between the original observed data and the forecasted data in ANN model. Hence,
the ANN-QPSO model can mimic daily runoff better than that by ANN model.

Table 4. Observed peak flow and forecasted peak flow of two models for Hongjiadu reservoir.

Period Date
Observed

Peak (m3·s−1)

Forecasted Peak (m3·s−1) Relative Error (%)

ANNP-QPSO QPSO ANNP-QPSO QPSO

Training 2006-06-30 854.3 792.7 747.6 −7.2 −12.5
Training 2007-07-30 1435.8 1234.2 1108.2 −14.0 −22.8
Training 2008-06-22 1663.8 1514.5 861.5 −9.0 −48.2
Training 2009-08-04 628.5 456.4 407.4 −27.4 −35.2
Training 2010-07-11 1076.0 1053.8 806.7 −2.1 −25.0
Training 2011-06-23 561.9 471.6 426.6 −16.1 −24.1
Training 2012-07-26 1696.4 1641.8 1258.3 −3.2 −25.8
Testing 2013-06-09 1343.0 1151.9 622.5 −14.2 −53.6

Average (absolute) 11.6 30.9
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Figure 6. Scatter plots of observed data vs. forecasted data during the training period. (a) ANN-QPSO;
(b) ANN.
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Figure 7. Scatter plots of observed data vs. forecasted data during the testing period. (a) ANN-QPSO;
(b) ANN.
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Figure 8. ANN, ANN-QPSO forecasted data and observed runoff data during the training period.
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Figure 9. ANN, ANN-quantum-behaved particle swarm optimization (QPSO) forecasted data and
observed runoff data during testing period.

6. Conclusions

Globally, hydropower energy has become one of the promising growing clean and renewable
energy sources. It is of great significance to accurately predict daily reservoir runoff for integration of
hydropower energy in power system. In this research, a novel method called ANN-QSPO, which is
based on artificial neural network (ANN) and quantum-behaved particle swarm optimization (QPSO),
was developed for daily reservoir runoff forecasting to help reservoirs plan and manage in a more
sustainable manner. In the proposed ANN-QSPO method, QPSO was employed to select the ANN
optimal parameters and the ANN was used for the prediction after the training process. The proposed
approach was compared with ANN model for daily runoff forecasting of Hongjiadu reservoir in
southeast China. From the experiment, the results show that the proposed method achieves much
better forecast accuracy than basic ANN model. Compared with the statistical values of R and NSE
of ANN, the improvements of the proposed method were approximately 3.97% and 13.41% in the
training phase, while respectively increases by 5.42% and 17.46% in the testing phase. In term of total
computing time, the ANN-QPSO decreases by 66.56% when compared to that of ANN. Thus, QPSO
algorithm can act as an alternative training algorithm for the ANN parameters selection.
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Abstract: There are many models that have been used to simulate the rainfall-runoff relationship.
The artificial neural network (ANN) model was selected to investigate an approach of improving
daily runoff forecasting accuracy in terms of data preprocessing. Singular spectrum analysis (SSA)
as one data preprocessing technique was adopted to deal with the model inputs and the SSA-ANN
model was developed. The proposed model was compared with the original ANN model without
data preprocessing and a nonlinear perturbation model (NLPM) based on ANN, i.e., the NLPM-ANN
model. Eight watersheds were selected for calibrating and testing these models. Comparative
study shows that the learning and training ability of ANN models can be improved by SSA and
NLPM techniques significantly, and the performance of the SSA-ANN model is much better than
the NLPM-ANN model, with high foresting accuracy. The SSA-ANN1 model, which only considers
rainfall as model input, was compared with the SSA-ANN2 model, which considers both rainfall
and previous runoff as model inputs. It is shown that the Nash-Sutcliffe criterion of the SSA-ANN2
model is much higher than that of the SSA-ANN1 model, which means that the proper selection of
previous runoff data as rainfall-runoff model inputs can significantly improve model performance
since they usually are highly auto-correlated.

Keywords: daily runoff forecasting; data preprocessing; linear perturbation model; singular spectrum
analysis; artificial neural network

1. Introduction

Real-time hydrological forecasting plays an important role in flood control and reservoir operation,
and higher forecasting precision can increase the utilization efficiency of water resources. Traditionally,
hydrological simulation modeling systems are classified into three main groups, namely empirical
black box, lumped conceptual, and distributed physically-based models [1]. The last two groups focus
on understanding hydrological processes and involve various physical phenomena. Owing to the
complexity of the rainfall-runoff process, these physical process simulations and model calibrations
require large amounts of hydrological data. On the contrary, black-box modeling does not require
a deep knowledge of the underlying physics and also can solve the problem of the scarcity of the
data. Several black-box models have been developed and used in hydrological forecasting, such as
fuzzy theory [2,3], artificial neural network [4,5], chaos [6], genetic programming [7], support vector
machine [8], and so on.

Artificial neural network, inspired by research into the biological neural networks, has a flexible
structure, and self-learning and self-adaptive features. In 2000, the American Society of Civil
Engineering (ASCE) Task Committee explicitly reviewed the application of artificial neural networks
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in hydrology [9,10]. Hsu et al. [5] mentioned that the artificial neural network (ANN) model can
identify the complex nonlinear relationship between runoff and rainfall time series, even though the
model structure and parameters cannot represent the physical process of the catchments. Maier and
Dandy [11] reviewed using ANN models to deal with water resource variables prediction, outlined
the steps that should be followed in the development of ANN models, and concluded that the ANN
model has advantages in hydrological forecasting. Currently, ANN is still a research hot point and has
been successfully applied in hydrological forecasting [12–22].

Due to the highly seasonal variation, and nonlinear and noisy characteristics of hydrological
time series, preprocessing input data becomes an effective way to improve model precision [23–28].
Considering the highly seasonal variation of rainfall and runoff time series, Nash and Brasi [23]
developed the linear perturbation model (LPM) based on the assumption that subtraction of the
seasonal means from the original series would remove much of the non-linearity of the rainfall-runoff
process. The relationship between the departures is simulated by the linear response function, but only
part of the nonlinearity of the rainfall-runoff process can be removed by subtracting the seasonal means.
Pang et al. [16] used the ANN model to replace the linear response function and proposed a nonlinear
perturbation model (NLPM) based on ANN (NLPM-ANN). The advantage of the NLPM-ANN model
is that it is capable of obtaining satisfactory results even if the explicit form of the relationship between
the involved variables is unknown.

Considering that the hydrological time series can be viewed as a combination of quasi-periodic
signals contaminated by noises to some extent [29], the singular spectrum analysis (SSA) proposed
by Vautard et al. [30] can decompose the time series into a sum of a small number of interpretable
components, such as a slowly varying trend, oscillatory components, and a “structureless” noise [31].
By performing a spectrum analysis on the input data, eliminating the noises, and inverting the
remaining components to yield a “filtered” time series, the model performance could be improved.
Sivapragasam et al. [25] proposed a prediction technique based on SSA coupled with support vector
machines to predict runoff and rainfall, and showed that the proposed technique yields a significantly
higher prediction accuracy than that of the nonlinear prediction method. Wu and Chau [29] also found
that SSA can considerably improve the performance of the rainfall-runoff model and it is promising in
hydrological forecasting.

In this paper, an approach of improving daily runoff forecasting accuracy in terms of data
preprocessing and the selection of predictive factors is discussed. The artificial neural network (ANN)
is used for rainfall-runoff simulation. The SSA and LPM techniques are adopted to deal with data
preprocessing. Then SSA-ANN models are developed and compared with the NLPM-ANN model
based on the daily data from the eight watersheds used by Pang et al. [16]. A comparative study is also
conducted involving two different types of model inputs, namely considering rainfall as an input and
considering both rainfall and runoff as inputs.

2. Data-Driven Models

2.1. NLPM-ANN Model

The structure of the NLPM-ANN model as shown in Figure 1 was proposed by Pang et al. [16]
to consider the influence of seasonal changes and the nonlinearity of the rainfall-runoff process. The
model input is divided into two parts. The first is the series of the seasonal expectations of the input (pd)
that is transformed to the series of the seasonal expectations of the output (qd) through an undefined
relation. The second part, which is the input perturbations (Pi-pd), is transformed into the output
perturbations (Qi-qd) through ANN. The total output is the sum of the seasonal expectations of the
output and the output perturbations.
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Figure 1. Schematic diagram of the NLPM-ANN model.

2.2. Singular Spectrum Analysis

Singular spectrum analysis (SSA) is a suitable analysis method for researching the period
oscillatory behavior. It is also a statistical technique starting from a dynamic reconstruction of the time
series and is associated with empirical orthogonal function (EOF). Generally, SSA can be considered as
a special application of EOF decomposition. The main purpose of SSA is converting a one-dimensional
time series into a multi-dimensional matrix with a given window length, and then the orthogonal
decomposition of this matrix is obtained. If the obvious pairs of eigenvalues are produced and the
corresponding EOF is almost periodic or orthogonal, this corresponding EOF can be considered the
oscillatory behavior of the time series.

Brief operating procedures of SSA are summarized as follows. Assume that the series is a nonzero
series F = {f 0, f 1, . . . , fN−1} (fi �= 0), the length of series is N (>2). Given a window length L, the
one-dimensional time series can be transferred into a sequence of L-dimensional vectors Xi = {fi−1, . . . ,
fi+L−2}T, (I = 1, . . . , K = N−L+1). The K vectors Xi will form the columns of the (L × K) trajectory matrix:

X =

⎡⎢⎢⎢⎢⎢⎢⎣
f0 f1 f2 · · · fK−1

f1 f2 f3 · · · fK
f2 f3 f4 · · · fK+1
...

...
...

. . .
...

fL−1 fL fL+1 · · · fN−1

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

Then the singular value decomposition (SVD) of the trajectory matrix X is conducted. Let S = XXT.
The eigenvalues and eigenvectors of S can be calculated, and these eigenvalues range in the decreasing
order of magnitude. According to the conventional computation of EOF, an expansion of the matrix X

is represented as:

xi+j =
L

∑
k=1

ak
i Ek

j (2)

where i = 1, 2, . . . , N − L + 1, j = 1,2, . . . , L, k = 1, 2, . . . , L, ak
i is the time principal components (T-PC),

Ek
j is the corresponding eigenvector denoted by T-EOF. The key step of SSA is to reconstruct a new

one-dimensional series of length N using each component of the T-PC and T-EOF. The formula is
expressed as follows:

xk
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
i

L
∑

j=1
ak

ijE
k
j 1 ≤ i ≤ L-1

1
L

L
∑

j=1
ak

ijE
k
j L ≤ i ≤ N − L + 1

1
N−i+1

L
∑

j=i−N+L
ak

ijE
k
ij N − L + 2 ≤ i ≤ N

(3)

Equation (3) produces an N-length time series Fk, thus the initial series F is decomposed into the
sum of L series:

F =
L

∑
k=1

Fk (4)
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If the number of contributing components is p, then the filtered series is the sum of p series:

F =
p

∑
k=1

Fk (5)

The sum of the remaining series is noise. As mentioned above, these reconstructed components
can be associated with the trend, oscillations, or noise of the original time series with proper choices
of L and p.

2.3. Artificial Neural Network

ANN can be categorized as single-layer, bilayer, and multilayer according to the number of layers,
and as feed-forward, recurrent, and self-organizing according to the direction of information flow
and processing [9]. Among these different architectures, the multilayer feed-forward networks, which
consist of an input layer, several hidden layers, and an output layer, have been widely used. Each
layer has different nodes, and the number of hidden layers and the hidden nodes of each hidden layer
are usually determined by trial-and-error method.

Assuming the three-layer ANN denoted by m × h × 1, where m stands for the number of input
nodes, namely the number of predictive factors, and h is the number of nodes in the hidden layer, the
ANN prediction model can be formulated as:

̂Qt+T = f (Xt, w, θ, m, h) = θ0 +
h

∑
j=1

wout
j ϕ(

m

∑
i=1

wjiXt + θj) (6)

where Xt is the input data; T is the length of lead time; ϕ denotes transfer functions; wji are the weights
defining the link between the ith node of the input layer and the jth of the hidden layer; θj are biases
associated with the jth node of the hidden layer; wout

j are the weights associated with the connection
between the jth node of the hidden layer and the node of the output layer; and θ0 is the bias at the
output node. The Levenberg–Marquardt algorithm is chosen to adjust the values of w and θ in this
study [32].

2.4. Proposed SSA-ANN Models

The SSA-ANN models are proposed with the aim of analyzing the effect of data processing. The
flowchart of SSA-ANN models is illustrated in Figure 2, where the original series is decomposed into
oscillations and noise by SSA, firstly. Then the reconstructed series is selected as the ANN model
input. If the input is the rainfall data series only, the SSA-ANN1 model is built to simulate the
relationship between rainfall and runoff. If the input contains both the rainfall and runoff data series,
the SSA-ANN2 model is built to simulate the relationship between rainfall and previous runoff with
forecasting runoff.

 

Figure 2. Schematic diagram of SSA-ANN models.

168



Water 2015, 7, 4144–4160

2.5. Evaluation of Model Performances

Two criteria are selected to evaluate the prediction performance based on Chinese Hydrological
Forecasting (or prediction) guidelines (2008), they are:

(1) Determination coefficient (or Nash-Sutcliffe criterion) (R2)

R2 = (1 − ∑n
t=1 (Qt − Q′

t)
2

∑n
t=1 (Qt − Qt)

2 ) (7)

(2) Water balance coefficient (WB)

WB =
∑n

t=1 Q′
t

∑n
t=1 Qt

(8)

where n is the number of year, Qt and Q′
t are the observed and forecasted inflows, respectively, Qt

is the average value of observed flow; if the values of R2 and WB are closer to one, the better the
prediction results that are obtained.

3. Comparative Study

3.1. Data

To compare the proposed SSA-ANN models with the NLPM-ANN model, eight watersheds in
China used by Pang et al. [16] were selected as case studies in this paper. The data include the daily
rainfall and runoff data. Each of data series is divided into three parts, i.e., training set, cross-validation
set, and testing set. The training set is used to train the network and the cross-validation set is used
to check the progress of the network and implement an early stopping approach in order to avoid
the over-fitting of the training set. The testing set serves as model evaluation. Table 1 lists statistical
information about all watersheds, including mean (μ), standard deviation (Sx), maximum (Xmax), and
minimum (Xmin). As shown in Table 1, the training data does not cover the cross-validation or testing
data totally. In order to ensure the extrapolation ability of ANN and avoid numerical difficulties
during calculation, all data are scaled to the interval [−0.9, 0.9] by normalization.

Table 1. List of the watershed statistical information.

Watershed and Datasets
Statistical Parameters

Data Period
μ Sx Xmax Xmin

Jiahe area:
5578 km2

rainfall
(mm)

whole data 2.3 5.9 71.4 0

January
1980–December

1990

training data 2.3 6.0 68.9 0
cross-validation data 2.3 6.2 71.4 0

testing data 2.1 5.3 44.2 0

runoff (m3)

whole data 58.7 125.1 2620 6.5
training data 61.9 141.6 2620 6.5

cross-validation data 55.3 99.6 1220 7.9
testing data 50.7 76.4 1080 10.1

Laoguanhe
area: 4217 km2

rainfall
(mm)

whole data 2.2 6.4 69.4 0

January
1980–December

1990

training data 2.3 6.8 69.2 0
cross-validation data 2.0 5.8 56.0 0

testing data 2.0 5.7 69.4 0

runoff (m3)

whole data 27.1 73.6 1460 0.1
training data 33.5 84.1 1460 0.4

cross-validation data 16.8 50.6 586 0.1
testing data 14.8 46.1 793 0.2
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Table 1. Cont.

Watershed and Datasets
Statistical Parameters

Data Period
μ Sx Xmax Xmin

Baohe area:
3415 km2

rainfall
(mm)

whole data 2.5 6.9 80.6 0

January
1980–December

1990

training data 2.5 7.1 80.6 0
cross-validation data 2.2 6.0 51.3 0

testing data 2.6 6.8 80.5 0

runoff (m3)

whole data 46.5 129.4 4020 0
training data 49.7 150.7 4020 1.2

cross-validation data 31.4 54.8 523 3.8
testing data 50.3 96.8 2010 0.0

Mumahe area:
1224 km2

rainfall
(mm)

whole data 3.2 8.8 132.8 0

January
1980–December

1990

training data 3.2 8.6 132.8 0
cross-validation data 3.3 9.3 98.6 0

testing data 2.9 9.1 94.4 0

runoff (m3)

whole data 39.3 80.3 1270 1.2
training data 41.0 80.8 1270 1.2

cross-validation data 40.6 82.1 796 4.6
testing data 32.1 76.4 990 2

Nianyushan
area: 924 km2

rainfall
(mm)

whole data 3.8 11.6 269.5 0

January
1975–December

1999

training data 3.9 12.2 269.5 0
cross-validation data 3.3 9.3 102.5 0

testing data 3.7 10.8 144.7 0

runoff (m3)

whole data 18.5 62.1 2095 0
training data 19.8 68.3 2095 0

cross-validation data 13.5 33.2 508 0
testing data 17.6 55.9 822 0

Gaoguan area:
303 km2

rainfall
(mm)

whole data 4.2 12.5 179.1 0

January
1984–December

1999

training data 4.4 12.8 179.1 0
cross-validation data 3.5 11.3 143.8 0

testing data 4.2 12.7 116.0 0

runoff (m3)

whole data 5.8 15.1 246 0
training data 5.7 14.2 237 0

cross-validation data 5.1 13.5 246 0
testing data 7.7 20.5 214 0

Shimen area:
271.25 km2

rainfall
(mm)

whole data 3.8 11.4 141.3 0

January
1989–December

1999

training data 3.5 10.1 114.9 0
cross-validation data 5.1 15.1 141.3 0

testing data 3.8 11.8 116.8 0

runoff (m3)

whole data 4.9 15.2 296 0
training data 3.7 9.9 150 0

cross-validation data 8.7 25.1 296 0
testing data 5.5 17.9 172 0

Tiantang area:
220 km2

rainfall
(mm)

whole data 3.7 12.1 193.4 0

January
1973–December

1984

training data 3.6 11.6 175.0 0
cross-validation data 3.7 11.4 151.7 0

testing data 4.2 14.7 193.4 0

runoff (m3)

whole data 6.1 18.4 535 0
training data 5.6 16.5 400 0

cross-validation data 5.6 16.5 378 0.3
testing data 8.2 25.6 535 0.3

3.2. Determination of Model Inputs

The suitable predictive factors have an important impact on model performance. If the model
input is only rainfall, it can be expressed as:

yi = f (xi, xi−1, · · · , xi−n+1) (9)

where x is the rainfall series, y is the runoff series, and n is the number of antecedent rainfall components.
In Pang et al.’s paper [16], only rainfall was selected as model input, so the SSA-ANN1 model, which
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only uses rainfall as model input, was developed. In order to ensure the comparability of model
performance, the same n values for the SSA-ANN1 model and the NLPM-ANN model were selected.
From Pang et al.’s results of the NLPM-ANN model [16], the values of n are 8, 6, 6, 8, 10, 8, 6, and 10
for Jiahe, Laoguanhe, Baohe, Mumahe, Nianyushan, Gaoguan, Shimen, and Tiantang, respectively.

As we know, the autocorrelation of the runoff series is strong and the impact of previous runoff
on current runoff cannot be ignored, so the SSA-ANN2 model which uses rainfall and runoff as model
inputs was developed in this paper. It can be expressed as:

yi = f (yi−1, · · · , yi−m+1, xi, xi−1, · · · , xi−n+1) (10)

where m is the number of previous runoff data. The values of n for the SSA-ANN2 model are the
same as the SSA-ANN1 model. In view of the convenience of operation and simplicity of computation,
the autocorrelation function (ACF) is used to determine m. The smaller the values of correlation, the
poorer the relationship is. Figure 3 plots the ACF values of the runoff series at the one-step prediction
horizon. Then the number of model inputs can be taken with the values of 5, 5, 5, 3, 2, 3, 2, and 1 for
Jiahe, Laoguanhe, Baohe, Mumahe, Nianyushan, Gaoguan, Shimen, and Tiantang, respectively. It can
be seen that the number of previous daily runoff is obviously related with the watershed area.
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Figure 3. Autocorrelation function (ACF) values of runoff series for all watersheds.
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3.3. Data Preprocessing

According to the theory of the SSA, the decomposition procedure requires identifying the
parameter L. The value of an appropriate L should be able to clearly resolve different oscillations
hidden in the original signal. In the current study, a small interval of [2,12] is examined to choose
L [28]. L is considered as the target only if the singular spectrum can be markedly distinguished [33].
Figures 4 and 5 present the relation between singular values and singular numbers for the rainfall and
runoff series, respectively, where the singular values associated with the appropriate L are highlighted
by the dotted solid line. It can be seen that L is selected as 8, 8, 8, 8, 9, 10, 9, and 7 for the rainfall series,
and L is set as 9, 8, 9, 10, 9, 10, 9, and 7 for the runoff series in the Jiahe, Laoguanhe, Baohe, Mumahe,
Nianyushan, Gaoguan, Shimen, and Tiantang watersheds, respectively.
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Figure 4. Singular values as a function of different window length L for rainfall series.

Once the original series is decomposed into L components, the subsequent task is to identify noise,
choose the contributing components and reconstruct a new series as model inputs. This paper applied
the cross-correlation function (CCF) to find the number of contributing components p (≤L). From
the perspective of linear correlation, the positive or negative CCF value indicates that the component
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makes a positive or negative contribution to the output of model. Table 2 listed all CCF values between
each decomposed component and original series for all watersheds. Take Jiahe rainfall series as an
example; the last four components have positive CCF values, which mean that they have positive
correlation with the original series. So the number of contributing components p is equal to 4 and the
sum of the last four components is reconstructed series. Meanwhile, the reconstructed series of other
time series can be obtained by the same way.
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Figure 5. Singular values as a function of different window length L for runoff series.
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Table 2. Cross-correlation function (CCF) values between each decomposed component and original series.

Watershed
Decomposed Components

L p
1 2 3 4 5 6 7 8 9 10

Jiahe rainfall −0.26 −0.27 −0.19 −0.05 0.13 0.36 0.50 0.55 – – 8 4
runoff −0.14 −0.15 −0.11 −0.05 0.05 0.18 0.39 0.55 0.77 – 9 5

Laoguanhe rainfall −0.36 −0.33 −0.24 −0.06 0.12 0.33 0.47 0.53 – – 8 4
runoff −0.15 −0.15 −0.10 0.00 0.14 0.35 0.55 0.77 – – 8 4

Baohe
rainfall −0.26 −0.26 −0.18 −0.04 0.14 0.35 0.50 0.60 – – 8 4
runoff −0.18 −0.20 −0.16 −0.08 0.04 0.16 0.33 0.54 0.76 – 9 5

Mumahe
rainfall −0.34 −0.32 −0.22 −0.06 0.13 0.34 0.47 0.52 – – 8 4
runoff −0.15 −0.18 −0.14 −0.09 −0.01 0.11 0.25 0.41 0.56 0.71 10 5

Nianyushan rainfall −0.33 −0.33 −0.26 −0.13 0.02 0.19 0.35 0.47 0.51 – 9 5
runoff −0.22 −0.22 −0.16 −0.03 0.15 0.34 0.54 0.68 – – 8 4

Gaoguan rainfall −0.32 −0.37 −0.30 −0.18 −0.07 0.09 0.23 0.37 0.46 0.43 10 5
runoff −0.14 −0.19 −0.17 −0.12 −0.03 0.09 0.23 0.42 0.58 0.67 10 5

Shimen
rainfall −0.34 −0.34 −0.32 −0.28 0.01 0.19 0.35 0.47 0.48 – 9 5
runoff −0.21 −0.23 −0.18 −0.09 0.04 0.19 0.39 0.58 0.66 – 9 5

Tiantang rainfall −0.32 −0.34 −0.19 0.03 0.28 0.46 0.53 – – – 7 4
runoff −0.31 −0.31 −0.16 0.03 0.25 0.46 0.62 – – – 7 4

4. Results Analysis

Table 3 summarized the model performances for each watershed during calibration and testing
periods. The ANN model is the benchmark in which the input is the original rainfall series without data
preprocessing. It is shown that the model performance is improved significantly by data preprocessing
techniques. During the testing period, the mean values of R2 and WB of eight watersheds are 70.16%
and 0.879 by ANN, and are increased to 75.86% and 1.155 by NLPM-ANN, and 80.62% and 1.04
by SSA-ANN1, respectively. In the Tiantang watershed, the performance of the NLPM-ANN and
SSA-ANN1 models is improved significantly, so the R2 value increased from 59.79% to 81.96% and
79.54%, respectively, during the testing period.

Table 3. Summary of model performances during calibration and testing periods.

Watershed
ANN NLPM-ANN SSA-ANN1 SSA-ANN2

R2 (%) WB R2 (%) WB R2 (%) WB R2 (%) WB

Jiahe calibration 68.19 1.023 85.46 1.015‘ 80.97 0.982 96.09 1.013
testing 61.48 0.866 61.31 1.119 74.91 0.975 92.40 1.013

Laoguanhe calibration 69.72 1.048 85.66 1.042 82.29 0.972 96.31 1.186
testing 60.42 1.058 68.25 1.412 78.44 1.464 93.20 1.407

Baohe
calibration 64.75 0.975 70.93 1.039 88.50 1.029 94.01 1.006

testing 68.62 0.667 69.38 0.893 74.03 0.927 94.31 0.956

Mumahe
calibration 80.64 0.950 90.18 1.050 87.86 0.976 95.08 1.019

testing 80.17 0.913 85.6 1.410 92.41 1.108 94.71 1.053

Nianyushan calibration 75.8 0.941 83.44 1.084 84.89 0.910 85.86 1.020
testing 82.38 0.803 85.39 1.329 88.30 0.939 88.39 1.077

Gaoguan calibration 66.16 1.035 77.6 1.045 80.17 1.002 93.24 1.005
testing 76.38 0.957 77.97 0.894 80.43 0.840 89.85 0.962

Shimen
calibration 65.03 0.848 64.85 1.068 73.85 1.141 94.53 1.084

testing 72 0.772 75.72 1.281 76.90 1.089 87.99 1.055

Tiantang calibration 65.47 0.985 73.06 1.049 78.08 0.960 88.66 1.131
testing 59.79 0.895 81.96 0.956 79.54 1.015 91.32 1.043

Mean
calibration 69.47 0.976 78.41 1.046 82.08 1.00 92.97 1.06

testing 70.16 0.879 75.86 1.155 80.62 1.04 91.52 1.07
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The mean values of R2 and WB for the SSA-ANN1 model are 82.08% and 80.62%, and 1.0 and
1.04, during calibration and testing periods, respectively, which are much better than that of the
NLPM-ANN model. It means that the reconstructed series obtained by SSA has a strong regularity
and is easy to simulate. It also demonstrated that the impact of noise in hydrological time series on
model performance is bigger than the seasonal hydrological behavior. Therefore, SSA is an effective
way to improve runoff forecasting accuracy. The mean values of R2 for the SSA-ANN2 model are
92.97% and 91.52%, which are much better than those of the SSA-ANN1 model. It is concluded that
considering previous runoff as a model input can improve model efficiency greatly.
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Figure 6. Observed and simulated runoff hydrographs by three models for Jiahe.
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Figure 7. Observed and simulated runoff hydrographs by three models for Laoguanhe.

In order to compare the NLPM-ANN model, SSA-ANN1 model, and SSA-ANN2 model clearly
and deeply, we selected one year during the testing period of four watersheds as an example, and the
observed and simulated runoff hydrographs created by these three models for the Jiahe, Laoguanhe,
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Baohe, and Shimen watersheds are plotted in Figures 6–9, respectively. These figures show that
the runoff hydrograph simulated by the SSA-ANN2 model is much closer to the observational one.
The peak and minimum flows simulated by the SSA-ANN2 model are the best among these models.
Therefore, the SSA-ANN2 model can predict daily runoff very well in practice.
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Figure 8. Observed and simulated runoff hydrographs by three models for Baohe.
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Figure 9. Observed and simulated runoff hydrographs by three models for Shimen.

5. Summary and Conclusions

The objective of this study is to investigate the approach of improving daily runoff forecasting in
terms of data preprocessing and model input selection. The black-box model ANN is selected as the
benchmark. Considering the subtraction of the seasonal means from the original series can remove the
nonlinearity of the rainfall-runoff process, the NLPM method was used to preprocess model inputs.
Considering the hydrological time series can be viewed as a combination of quasi-periodic signals
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contaminated by noises, the SSA method was used to filter the noise and choose reconstructed series as
model inputs. These two data preprocessing techniques were compared and analyzed. Main findings
and discussions were summarized as follows:

(1) The performance of the ANN model can be improved by data preprocessing techniques. SSA
is more effective and it can improve the learning and training ability of the ANN type model
significantly. Results also show that the impact of noise in hydrological time series on model
performance is bigger than the seasonal hydrological behavior.

(2) Comparing the SSA-ANN1 model with the NLPM-ANN model, the mean values of R2 and WB
for the SSA-ANN1 model are 82.08% and 80.62%, and 1.0 and 1.04, during calibration and testing
periods, respectively, which are much better than that of the NLPM-ANN model.

(3) The SSA-ANN2 model performs best for daily runoff forecasting for all selected watersheds. The
effective way for increasing daily runoff forecasting accuracy is to preprocess data series by SSA
and select both previous related rainfall and runoff as predictive factors.

(4) There are some limitations in this study. The method to select the contributing components relies
on liner correlation analysis, which disregards the existence of nonlinearity in the hydrologic
process. The sensitivities and uncertainties of model parameters are not analyzed. All of these
will be the focus in our future research.
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Abstract: This paper presents artificial neural network (ANN)-based models for forecasting
precipitation, in which the training parameters are adjusted using a parameter automatic calibration
(PAC) approach. A classical ANN-based model, the multilayer perceptron (MLP) neural network,
was used to verify the utility of the proposed ANN–PAC approach. The MLP-based ANN used the
learning rate, momentum, and number of neurons in the hidden layer as its major parameters. The
Dawu gauge station in Taitung, Taiwan, was the study site, and observed typhoon characteristics
and ground weather data were the study data. The traditional multiple linear regression model was
selected as the benchmark for comparing the accuracy of the ANN–PAC model. In addition, two
MLP ANN models based on a trial-and-error calibration method, ANN–TRI1 and ANN–TRI2, were
realized by manually tuning the parameters. We found the results yielded by the ANN–PAC model
were more reliable than those yielded by the ANN–TRI1, ANN–TRI2, and traditional regression
models. In addition, the computing efficiency of the ANN–PAC model decreased with an increase
in the number of increments within the parameter ranges because of the considerably increased
computational time, whereas the prediction errors decreased because of the model’s increased
capability of identifying optimal solutions.

Keywords: artificial neural network; parameter calibration; hydrology; optimization

1. Introduction

Taiwan is a long and narrow island located between Japan and the Philippines in the Western
Pacific and has an area of 35,981 km2; the Central Mountain Range runs from north to south, and
the Tropic of Cancer passes through the south. On average, approximately 80 tropical cyclones, also
known as typhoons, form annually worldwide, of which approximately 30 form in the western North
Pacific. Most typhoons in Taiwan form between May and November, and, on average, 3.9 typhoons
affect Taiwan each year. As soon as a typhoon strikes, it often causes continuous torrential rainfall,
leading to severe flooding, landslides, and debris flow [1]. Therefore, an effective and quantitative
precipitation forecast model for typhoon periods is necessary.

The concept of artificial neurons was first introduced in 1943 [2]. In the late 1980s, research on
artificial neural network (ANN) applications advanced after the introduction of backpropagation
training algorithms for feedforward ANNs [3]. ANNs, which simulate the biological nervous system
and brain activity, have become the preferred forecasting approach in hydrology and hydrometeorology
(e.g., [4–19]). ANNs are advantageous because feedforward networks are universal approximators
capable of learning continuous functions with any desired degree of accuracy. Most ANN models
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have several parameters that users can adjust for realizing different scenarios and objectives, and the
results produced by such models are typically distinct, which renders identifying the unique optimal
solution difficult [20].

To realize a model that accurately represents the system being modeled, the model parameters
must be determined using known system inputs and responses; the process of determining the optimal
value of these parameters is termed “calibration.” Traditionally, ANN-based models are calibrated
using trial-and-error approaches [21]. Maier and Dandy [22] reviewed numerous ANNs and reported
that several heuristic calibration approaches have been proposed in which the models dynamically
adapt the learning rate and momentum value as training progresses. The majority of these approaches
are based on the principle of increasing the step size taken in weight space when successive weight
updates reduce the error (or when the steps are in the same direction) and reducing the step size when
the error increases in consecutive iterations (or when the steps are in opposite directions) (e.g., [23–33]).
For calibrating hidden neurons, Sheela and Deepa [34] reviewed various methods for fixing the number
of hidden neurons in ANNs and reported that randomly selecting the number of hidden neurons can
result in overfitting or underfitting. Empirical studies have shown that optimizing these parameters is
highly problem-dependent [35,36].

Trial-and-error calibration approaches are easy to comprehend but the results are not always
satisfactory unless the modeler is experienced. As indicated by Cai et al. [20], the parameters are
typically separately adjusted during trial-and-error calibration. The adjustment of a parameter is
stopped when no further improvement is made in the goodness-of-fit, and the same process is applied
to optimize each parameter without considering the effects of the other parameters. Although this
method is simple and widely accepted, it can produce unsatisfactory and suboptimal results.

This paper presents the development of ANN-based models for forecasting precipitation in
which the training parameters are adjusted using a parameter automatic calibration (PAC) approach.
A classical ANN-based multilayer perceptron (MLP) neural network was used to demonstrate the
utility of the proposed PAC approach. MLP neural networks are extensively used to model an unknown
system with observable inputs and outputs, which is similar to synthesizing an approximation of a set
of multidimensional functions, and are widely employed because of their simplicity, flexibility, and
ease of use. The developed methodology was used to construct precipitation forecasting models for
the Dawu gauge station in Taitung, Taiwan. The performance of the ANN–PAC model in the analysis
of historical typhoon events was compared with those of various ANN-based models that employ
trial-and-error calibration and traditional linear multiple regressions.

2. Methodology

The MLP ANN is briefly introduced before the methodology of the ANN–PAC algorithm
is presented.

2.1. Sketch of MLP ANN

MLPs are feedforward neural networks trained using a standard backpropagation algorithm.
They are supervised networks and the desired response must be trained [37]. MLP networks often
consist of an input layer, one or more nonlinear hidden layers, and a linear output layer. Each layer
may contain one or more nonlinear processing units called neurons or nodes [38]. Figure 1 is a scheme
of a typical MLP network featuring three layers: input, hidden, and output layers. Mathematically,
a three-layer MLP comprising n1 input nodes, n2 hidden nodes, and n3 output nodes, is expressed as:

yr = f2

(
n2

∑
q=0

w2
qr · f1

(
n1

∑
p=0

w1
pq · xp

))
r ∈ [1, n3] (1)

where p, q, and r are the indices of the input, hidden, and output nodes, respectively; xp is the input
node of the input layer, w1

pq is the weight set connecting the input and hidden layers, w2
qr is the weight
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set connecting the hidden and output layers, yr denotes the network outputs, f 1(g) is the activity
function of the hidden layer, and f2(g) is the activity function of the output layer.

In a MLP network, the output is generated by passing signals from the input layer to the output
layer through the hidden layer. When constructing an MLP structure, the number of neurons in
the hidden layer is not constant and must be optimized depending on the characteristics of the
application [39]. The inputs to a perceptron are weighted, summed over the inputs, translated, and
passed through an activation function. The frequently used activity functions include linear, sigmoidal,
and hyperbolic tangents [40]. As the training progresses, the weights are updated systematically using
the backpropagation algorithm and the network output is compared with the target output. The
learning acquired by the network is stored in its weights in a distributed manner. An MLP comprises
major parameters, namely the learning rate, momentum, and number of nodes in the hidden layer.
These parameters are typically set on the basis of experience or are adjusted one parameter at a time
and their effect on the model observed [20].

 

Figure 1. Architecture of the three-layer multilayer perceptron (MLP) neural network.

2.2. Proposed ANN–PAC Model

In this section, a methodology is presented for an ANN–PAC approach in forecasting precipitation
during typhoons. Figure 2 illustrates the flowchart of the proposed method, and each step is described
as follows.

Phase 1, Data Preprocessing: The collected data contain typhoon characteristics and ground
weather data (Section 3.1). Because a traditional training–validation–test procedure is adopted for the
optimization of an ANN model, the collected data are classified into training, validation, and testing
subsets. The training set is used to build model structures and adjust the connected weights of the
constructed models. The validation set is used to validate an optimal parameter set, and the testing set
is used to evaluate the performance of the constructed models and confirm their generalizability.

Phase 2, Model Structure and Parameters Setting: The model architecture of the MLP model
is fixed, including the number of inputs (attributes) in the input layer, the number of neurons in
the hidden layer (considered a decision variable in this study and optimized through automatic
calibration), and the output in the output layer. Subsequently, the ranges of three critical parameters in
the MLP network—the learning rate, momentum, and number of neurons in the hidden layer—are set.
Finally, the number of increments between maximal and minimal parameter values is fixed.
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Figure 2. Determining artificial neural network (ANN)-based MLP parameters using an automatic
calibration approach.

Phase 3, Model Training: First, a decision condition selects whether the model parameters are
calibrated automatically. If “yes”, the modeling process proceeds in the three-loop training structure
by using the parameter values designed in Phase 2; if “no”, the parameter values are set manually
(i.e., trial-and-error calibration). The training process is initiated using a training set; the MLP kernel
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function is repeatedly called and the outputs returned for training the model. The trained models are
validated using a validation set. Then, the optimal trained model and their parameter set are identified.

Phase 4, Model Verification: The tested typhoons (i.e., a testing set) are simulated using the
optimal trained model, and the forecast results are evaluated according to the performance measures.

In Phase 3, when training the ANN model we performed an early stopping procedure to avoid
overfitting caused by an overly close reconstruction of the data in the training set. The stopping
procedure is briefly described as follows: first, the backpropagation algorithm is applied on a training
set. The performance of the obtained input–output map is then iteratively validated in a validation
set. The iteration process is stopped when the performance in the validation set begins to decrease,
even if the performance in the training set continues to increase under the desired threshold. Detailed
descriptions were provided by Pasini [41] and Prechelt and Orr [42].

3. Experiment

3.1. Study Area and Data

Figure 3 depicts the experimental site at the Dawu gauge station (22◦21′27” N, 120◦53′44” E;
elevation 8.1 m) in Taiwan, located along the main path of the Northwestern Pacific tropical typhoons.
This study considered 28 typhoon events that affected Dawu station between 2001 and 2012 (Table 1).
The climatology of typhoons and the ground weather data of the Dawu station were collected from
the Central Weather Bureau of Taiwan. Typhoon characteristics, namely the pressure, latitude, and
longitude of the typhoon center; radius of the typhoon; and maximal wind speed near the typhoon
center, were collected for analysis. The ground weather data comprised the air pressure, temperature,
dew point temperature, relative humidity, and vapor pressure of the ground; surface wind speed and
direction; and surface rain rate.

 

Figure 3. Dawu gauge station and the track of Typhoon Morakot (2009).
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Table 1. The 28 typhoon events considered in this study.

Year Typhoon Name Year Typhoon Name

2001 Lekima 2007 Pabuk, Wutip, Sepat, Wipha, Krosa
2002 Nakri 2008 Kalmaegi, Fung-Wong, Sinlaku
2003 Morakot, Dujuan, Melor 2009 Morakot
2004 Mindulle, Aere, Nanmadol 2010 Fanapi
2005 Haitang, Matsa, Talim, Longwang 2011 Nanmadol
2006 Chanchu, Billis, Kaemi, Bopha 2012 Tembin

3.2. Data Division

The typhoon characteristics data comprised 1462 records measured at hourly intervals. Table 2
lists the mean, minimal, and maximal values of the data attributes. To build the ANN–PAC model,
the data sets were classified into training and testing sets. The typhoon events that occurred between
2001 and 2008 were used for training. In addition, Typhoons Morakot (2009) and Fanapi (2010) were
used as a validation set, and Typhoons Nanmadol (2011) and Tembin (2012) were used as a testing set.
Figures 3 and 4 display the historical tracks of these typhoons.

Table 2. Range and average values of data attributes.

Data Attribute Range Mean

Pressure at typhoon center (hPa) 912.0−1000.0 964.3
Latitude (◦N) of typhoon center (degree) 12.0−27.8 23.2

Longitude (◦E) of typhoon center (degree) 115.3−128.1 121.5
Radius of typhoon (km) 0−300.0 207.7

Maximum wind speed near typhoon center (m℘s−1) 7.0−16.0 11.9
Air pressure on the ground (hPa) 967.2−1011.3 995.0
Temperature on the ground (◦C) 23.1−35.8 27.0

Dew point temperature on the ground (◦C) 18.1−28.0 24.1
Relative humidity on the ground (%) 40.0−100.0 85.5
Vapor pressure on the ground (hPa) 20.8−37.8 30.2

Surface wind speed (m·s−1) 0.0−20.2 3.6
Surface wind direction 0.0−360.0 165.7

Surface rain rate (mm·h−1) 0.0−103.0 4.5

 

Figure 4. Typhoon tracks of (a) Fanapi (2010); (b) Nanmadol (2011); and (c) Tembin (2012).

3.3. Modeling Using ANN–PAC

This study employed a widely used MLP neural network for forecasting precipitation at the
study site. Figure 1 depicts the input–output patterns of the MLP model. The model inputs contained
13 meteorological attributes, and the target output is the amount of rain in the next 1 h. As stated,
the MLP ANN comprises the learning rate, momentum, and number of neurons in the hidden layer.
To construct the MLP, sigmoid and linear activity functions were used in the hidden and output
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layers, respectively. The proposed ANN–PAC approach was applied for investigating the optimal
parameter combination.

The ranges of the three aforementioned parameters in the MLP network were set. Because the
momentum and learning rate are theoretically in the range of [0,1], 0.1 and 1.0 were set as their lower
and upper limits. For the number of hidden neurons, we defined the ratio of hidden neurons as the
ratio of the number of neurons in the hidden layer to the number of records in a training set. This ratio
ranged between 0.01 and 0.1.

In addition, the number of increments between the maximal and minimal values, assumed as
10 equal-sized intervals, is the same for all three calibrated parameters. The effect of the number of
increments on the prediction accuracy is evaluated in Section 4.4.

During training, the MLP network was trained using a training set. The model prediction errors,
computed using the relative root mean squared error (RRMSE), were then calculated for each iterative
process using a validation set:

RRMSE =

√√√√ 1
N

N

∑
i=1

(
Opre

i − Oobs
i

)2
/Oobs (2)

where Opre
i and Oobs

i are the predicted and observed values at record i, respectively; Oobs is the average
of the observations and N is the number of records.

The optimal parameter values were obtained after calibrating the parameters using the ANN–PAC
approach: the ratio of hidden neurons = 0.02, momentum = 0.2, and learning rate = 0.6. Figure 5
displays the RRMSE results of the ANN–PAC model using a validation set. To three-dimensionally
depict the RRMSE variations, one of three parameters was fixed; for example, in Figure 5a, the RRMSE
variations were plotted at various learning rate and momentum values and a fixed hidden neurons
ratio of 0.02.

Figure 5. Three-dimensional plots of relative root mean squared error (RRMSE) variations at (a) a fixed
hidden neurons ratio of 0.02, (b) a fixed momentum of 0.2; and (c) a fixed learning rate of 0.6.

4. Evaluations and Comparisons

4.1. Results

The traditional multiple linear regression model was selected as the benchmark for comparing the
accuracy of the ANN–PAC model. Unlike ANNs, which typically require a trial-and-error or heuristic
parameter calibration approach, the coefficients in regression analysis can be efficiently calculated
using the matrix algebra regardless of the number of data points and variables. Figure 6a presents
the 1-h-ahead rain variations of the observations and predictions obtained using a validation set
(i.e., Typhoons Morakot and Fanapi) for the ANN–PAC and regression-based models, and Figure 6b
presents the 1-h-ahead rain variations of the observations and predictions obtained using a testing set
(i.e., Typhoons Nanmadol and Tembin). The predictions obtained using the ANN–PAC model were
highly consistent with the observed data, compared with the regression-based models for both the
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validation and testing sets. To evaluate the constructed ANN–PAC models, we designed two model
scenarios, as described in the next section.

Figure 6. Simulation results of 1-h-ahead predictions for hyetograph using: (a) the validation set and
(b) the testing set.

4.2. Model Scenarios

ANN model parameters are typically fixed on the basis of experience. As shown in Figure 2, the
parameters of the proposed methodology can be manually tuned using trial-and-error calibration.
Herein, the process of calibrating ANN-based MLP parameters by using a validation set is described.
As illustrated in Figure 7, the initial momentum and learning rate values were set first. After sensitivity
analysis, the “local” optimal ratio of the hidden neurons was calibrated. Subsequently, the local
optimal ratio of the hidden neurons and the initial learning rate, which had been calibrated, were fixed,
and the local optimal momentum value was calculated through sensitivity analysis. Subsequently, the
local optimal ratio of hidden neurons and momentum value were fixed, and the suitable learning rate
was calculated through sensitivity analysis.

In this study, two scenarios with differing initial parameters were designed using the
aforementioned trial-and-error method. The first scenario, ANN–TRI1, used initial values of 0.02, 0.2,
and 0.2 for the ratio of hidden neurons, momentum, and learning rate, respectively. The second
scenario, ANN–TRI2, used initial values of 0.05, 0.5 and 0.5, respectively. The ranges of these
parameters are the same as those in Section 3.3. Figure 8 plots the sensitivity results of the MLP
parameters for the ANN–TRI1 and ANN–TRI2 models. The calibrated values of the three parameters
are (0.01, 0.3, 0.5) and (0.03, 0.2, 0.2) for ANN–TRI1 and ANN–TRI2, respectively.
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Figure 7. Trial-and-error calibration of ANN parameters.

Figure 8. Sensitivity results of MLP parameters by using a validation set for two MLP ANN models
based on a trial-and-error calibration method: (a) ANN–TRI1; and (b) ANN–TRI2.

4.3. Performance Levels and Comparisons

To assess the performance levels from the obtained results, the relative mean absolute error
(RMAE), RRMSE, and coefficient of correlation (r) were calculated:

RMAE =

(
1
N

N

∑
i=1

∣∣∣Opre
i − Oobs

i

∣∣∣)/
Oobs (3)

r =

N
∑

i=1

(
Oobs

i − Oobs
)(

Opre
i − Opre

)
√

N
∑

i=1

(
Oobs

i − Oobs
)2 N

∑
i=1

(
Opre

i − Opre
)2

(4)
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where Opre is the average of the predictions. Low RMAE and RRMSE values and high r values typically
indicate favorable performance levels. Precise predictions are those whose RMAE, and RRMSE are
nearly 0 and r values are nearly 1.

The predictions of the ANN–PAC, ANN–TRI1, ANN–TRI2, and regression models were compared
using these performance criteria. Table 3 lists the results for the four models obtained using RMAE,
RRMSE, and r performance criteria calculated by the validation and testing sets. The RMAE was
computed using a term-by-term comparison of the error in the prediction and the actual value of the
variable. Thus, the RMAE is an unbiased statistic for measuring the predictive capability of a model [43].
For the validation and testing sets, the RMAE and RRMSE results for the ANN–PAC model were
lower than those for the ANN–TRI1, ANN–TRI2, and regression models, implying that ANN–PAC
exhibited relatively few prediction errors and lower bias measures with respect to the actual values,
possibly because trial-and-error calibrations cannot be performed for all variables simultaneously
but rather separately, which is a time-intensive process. Moreover, because the interaction between
parameters cannot be determined, this method cannot obtain global optimal solutions [20]. The r
performance levels suggested that the ANN–PAC and regression models successfully exploited the
relationship between the observed and predicted rainfalls. In addition, by comparing the ANN–PAC
results obtained for the validation and testing sets, we observed that the performance levels obtained
using the validation set were slightly higher than those obtained using the testing set. Therefore, we
concluded that the generalizability of the constructed ANN–PAC model can be calibrated using the
training–validation–testing procedure for applications in precipitation forecasting.

Table 3. Performance levels of the various models assessed by using the validation set Testing sets.

Subset Model
Performance

RMAE RRMSE r

Validation set ANN-PAC 0.397 0.575 0.886
ANN-TRI1 0.528 0.750 0.817
ANN-TRI2 0.482 0.695 0.832
Regressions 0.441 0.708 0.859

Testing set ANN-PAC 0.429 0.685 0.824
ANN-TRI1 0.557 0.901 0.742
ANN-TRI2 0.555 0.895 0.733
Regressions 0.581 0.880 0.755

4.4. Effects of the Number of Increments

As stated in Section 3.3, the number of increments between the minimal and maximal values
for each parameter was 10. To investigate the effect of the number of increments on the prediction
ability and computation efficiency, the number of increments were varied as 5, 8, 10, and 13. Figure 9
illustrates the relationships among RRMSE prediction errors by using a validation set, computational
time, and the number of increments. As the number of increments increases, the computing efficiency
decreases because of a considerable increase in computational time, whereas the prediction errors
decrease because of the increased capability of finding the optimal solution.
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Figure 9. Effect of increment numbers on computational time and prediction errors.

5. Conclusions

ANNs are widely applied in engineering solutions. When constructing ANN-based models,
a considerable number of model parameters must be calibrated, and the trial-and-error method is
frequently employed for calibration during ANN training. This paper presents ANN models for
1-h-ahead rainfall forecasting, in which the training model parameters are adjusted using the proposed
PAC approach. The classical MLP ANN model was used to verify the utility of the proposed approach.
The MLP-based ANN comprises three parameters: the learning rate, momentum, and number of
nodes in the hidden layer.

Observed typhoon characteristics and ground weather data at the Dawu gauge station in Taitung,
Taiwan, were the study data. To compare the accuracy of ANN–PAC, traditional multiple linear
regression was selected as the benchmark. In addition, two ANN models based on a trial-and-error
calibration method, ANN–TRI1 and ANN–TRI2, were realized by manually tuning the parameters. The
results clarify that the ANN–PAC model yielded more reliable results than ANN–TRI1, ANN–TRI2, and
the regression models. Moreover, as the number of increments within the parameter ranges increased,
the computing efficiency of the ANN–PAC model decreased because of considerable increase in the
computational time, whereas the prediction errors of the model decreased because of the model’s
increased capability of finding the optimal solution. Therefore, a high number of increments within
parameter ranges must be used in applications where accuracy is critical, whereas a low number must
be used in applications where computing efficiency is essential.

Acknowledgments: The support under grant Nos. MOST103-2221-E-022-014 and MOST103-2622-M-464-001-CC3
by the Ministry of Science and Technology, Taiwan, is sincerely appreciated. The authors acknowledge the Central
Weather Bureau (CWB) of Taiwan for the climatologic data.

Author Contributions: Der-Chang Lo and Chih-Chiang Wei devised the experimental strategy and carried out
this experiment. Chih-Chiang Wei wrote the manuscript and contributed to the revisions. En-Ping Tsai partially
contributed to the experiment and analysis of the data.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, C.S.; Huang, L.R.; Shen, H.S.; Wang, S.T. A climatology model for forecasting typhoon rainfall in Taiwan.
Nat. Hazards 2006, 37, 87–105. [CrossRef]

2. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas imminent in nervous activity. Bull. Math. Biophys.
1943, 5, 115–133. [CrossRef]

189



Water 2015, 7, 3963–3977

3. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation.
In Parallel Distributed Processing; Rumelhart, D.E., McClelland, J.L., Eds.; MIT Press: Cambridge, UK, 1986.

4. Asklany, S.A.; Elhelow, K.; Youssef, I.K.; El-wahab, M.A. Rainfall events prediction using rule-based fuzzy
inference system. Atmos. Res. 2011, 101, 228–236. [CrossRef]

5. Babovic, V. Data mining in hydrology. Hydrol. Process. 2005, 19, 1511–1515. [CrossRef]
6. Chang, F.J.; Chiang, Y.M.; Tsai, M.J.; Shieh, M.C.; Hsu, K.L.; Sorooshian, S. Watershed rainfall forecasting

using neuro-fuzzy networks with the assimilation of multi-sensor information. J. Hydrol. 2014, 508, 374–384.
[CrossRef]

7. Cheng, C.; Wang, S.; Chau, K.W.; Wu, X. Parallel discrete differential dynamic programming for
multireservoir operation. Environ. Model. Softw. 2014, 57, 152–164. [CrossRef]

8. Chau, K.W.; Wu, C.L.; Li, Y.S. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng.
2005, 10, 485–491. [CrossRef]

9. Kecman, V. Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models;
MIT Press: Cambridge, UK, 2001.

10. Liu, W.C.; Chung, C.E. Enhancing the predicting accuracy of the water stage using a physical-based model
and an artificial neural network-genetic algorithm in a river system. Water 2014, 6, 1642–1661. [CrossRef]

11. Minns, W.; Hall, M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J. 1996, 41, 399–417.
[CrossRef]

12. Surridge, B.W.J.; Bizzi, S.; Castelletti, A. A framework for coupling explanation and prediction in
hydroecological modelling. Environ. Model. Softw. 2014, 61, 274–286. [CrossRef]

13. Taormina, R.; Chau, K.W.; Sethi, R. Artificial neural network simulation of hourly groundwater levels in
a coastal aquifer system of the Venice lagoon. Eng. Appl. Artif. Intell. 2012, 25, 1670–1676. [CrossRef]

14. Vojinovic, Z.; Kecman, V.; Babovic, V. Hybrid approach for modeling wet weather response in wastewater
systems. J. Water Resour. Plan. Manag. 2003, 129, 511–521. [CrossRef]

15. Wang, W.C.; Xu, D.M.; Chau, K.W.; Chen, S. Improved annual rainfall-runoff forecasting using PSO–SVM
model based on EEMD. J. Hydroinform. 2013, 15, 1377–1390.

16. Wei, C.C. RBF neural networks combined with principal component analysis applied to quantitative
precipitation forecast for a reservoir watershed during typhoon periods. J. Hydrometeorol. 2012, 13, 722–734.
[CrossRef]

17. Wei, C.C. Soft computing techniques in ensemble precipitation nowcast. Appl. Soft Comput. 2013, 13, 793–805.
[CrossRef]

18. Wei, C.C.; Hsu, N.S.; Huang, C.L. Two-Stage pumping control model for flood mitigation in inundated urban
drainage basins. Water Resour. Manag. 2014, 28, 425–444. [CrossRef]

19. Wu, C.L.; Chau, K.W. Prediction of rainfall time series using modular soft computing methods. Eng. Appl.
Artif. Intell. 2013, 26, 997–1007. [CrossRef]

20. Cai, H.; Lye, L.M.; Khan, A. Flood Forecasting on the Humber River using an Artificial Neural Network
Approach. In Proceedings of the 2009 Canadian Society for Civil Engineering Annual Conference; Canadian Society
for Civil Engineering: Montreal, Canada, 2009; Volume 2, pp. 611–620.

21. Dai, H.C.; Macbeth, C. Effects of learning parameters on learning procedure and performance of a BPNN.
Neural Netw. 1997, 10, 1505–1521. [CrossRef]

22. Maier, H.R.; Dandy, G.C. Neural networks for the prediction and forecasting of water resources variables:
A review of modelling issues and applications. Environ. Modell. Softw. 2000, 15, 101–124. [CrossRef]

23. Chen, W.; Chau, K.W. Intelligent manipulation and calibration of parameters for hydrological models. Int. J.
Environ. Pollut. 2006, 28, 432–447. [CrossRef]

24. Dawson, C.W.; Abrahart, R.J.; Shamseldin, A.Y.; Wilby, R.L. Flood estimation at ungauged sites using
artificial neural networks. J. Hydrol. 2006, 319, 391–409. [CrossRef]

25. Jacobs, R.A. Increased rates of convergence through learning rate adaptation. Neural Netw. 1988, 1, 295–307.
[CrossRef]

26. Kamruzzaman, M.; Shahriar, M.S.; Beecham, S. Assessment of short term rainfall and stream flows in
South Australia. Water 2014, 6, 3528–3544. [CrossRef]

27. Lin, G.F.; Jhong, B.C. A real-time forecasting model for the spatial distribution of typhoon rainfall. J. Hydrol.
2015, 521, 302–313. [CrossRef]

190



Water 2015, 7, 3963–3977

28. Pasini, A.; Pelino, V.; Potestà, S. A neural network model for visibility nowcasting from surface observations:
Results and sensitivity to physical input variables. J. Geophys. Res. 2001, 106, 14951–14959. [CrossRef]

29. Pasini, A.; Langone, R. Attribution of precipitation changes on a regional scale by neural network modeling:
A case study. Water 2010, 2, 321–332. [CrossRef]

30. Pasini, A.; Langone, R. Influence of circulation patterns on temperature behavior at the regional scale: A case
study investigated via neural network modeling. J. Clim. 2012, 25, 2123–2128. [CrossRef]

31. Pasini, A.; Modugno, G. Climatic attribution at the regional scale: A case study on the role of circulation
patterns and external forcings. Atmos. Sci. Lett. 2013, 14, 301–305. [CrossRef]

32. Wei, C.C. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones:
Comparisons of data-driven algorithms and parametric wind representations. J. Geophys. Res. Atmos. 2015,
120, 1826–1847. [CrossRef]

33. Zhang, Y.; Li, G. Long-term evolution of cones of depression in shallow aquifers in the North China Plain.
Water 2013, 5, 677–697. [CrossRef]

34. Sheela, K.G.; Deepa, S.N. Review on methods to fix number of hidden neurons in neural networks.
Math. Probl. Eng. 2013, 2013. [CrossRef]

35. Maier, H.R.; Dandy, G.C. The effect of internal parameters and geometry on the performance of
back-propagation neural networks: An empirical study. Environ. Model. Softw. 1998, 13, 193–209. [CrossRef]

36. Maier, H.R.; Jain, A.; Dandy, G.C.; Sudheer, K. Methods used for the development of neural networks
for the prediction of water resource variables in river systems: Current status and future directions.
Environ. Model. Softw. 2010, 25, 891–909. [CrossRef]

37. Panchal, G.; Ganatra, A.; Kosta, Y.P.; Panchal, D. Behaviour analysis of multilayer perceptrons with multiple
hidden neurons and hidden layers. Int. J. Comput. Theor. Eng. 2011, 3, 332–337. [CrossRef]

38. Patra, J.C.; van den Bos, A. Auto-calibration and -compensation of a capacitive pressure sensor using
multilayer perceptrons. ISA Trans. 2000, 39, 175–190. [CrossRef]

39. Kurt, I.; Ture, M.; Kurum, A.T. Comparing performances of logistic regression, classification and regression
tree, and neural networks for predicting coronary artery disease. Expert Syst. Appl. 2008, 34, 366–374.
[CrossRef]

40. Imrie, C.E.; Durucan, S.; Korre, A. River flow prediction using artificial neural networks: Generalization
beyond the calibration range. J. Hydrol. 2000, 233, 138–153. [CrossRef]

41. Pasini, A. Artificial neural networks for small dataset analysis. J. Thorac. Dis. 2015, 7, 953–960. [PubMed]
42. Prechelt, L.; Orr, G.B. Early Stopping−But When? In Neural Networks: Tricks of the Trade. Lecture Notes in

Computer Science; Montavon, G., Müller, K.R., Eds.; Springer: Berlin, Germany; Heidelberg, Germany, 2012;
pp. 53–67.

43. Hu, T.S.; Lam, K.C.; Ng, S.T. River flow time series prediction with a range dependent neural network.
Hydrol. Sci. J. 2001, 46, 729–745. [CrossRef]

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

191



water

Article

Spatial Disaggregation of Areal Rainfall Using
Two Different Artificial Neural Networks Models

Sungwon Kim 1,* and Vijay P. Singh 2

1 Department of Railroad and Civil Engineering, Dongyang University, Yeongju 750-711, Korea
2 Department of Biological and Agricultural Engineering & Zachry Department of Civil Engineering,

Texas A & M University, College Station, TX 77843-2117, USA; vsingh@tamu.edu
* Correspondence: swkim1968@dyu.ac.kr; Tel.: +82-54-630-1241; Fax: +82-54-637-8027

Academic Editor: Kwok-wing Chau
Received: 14 April 2015; Accepted: 26 May 2015; Published: 5 June 2015

Abstract: The objective of this study is to develop artificial neural network (ANN) models, including
multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial
disaggregation of areal rainfall in the Wi-stream catchment, an International Hydrological Program
(IHP) representative catchment, in South Korea. A three-layer MLP model, using three training
algorithms, was used to estimate areal rainfall. The Levenberg–Marquardt training algorithm was
found to be more sensitive to the number of hidden nodes than were the conjugate gradient and
quickprop training algorithms using the MLP model. Results showed that the networks structures
of 11-5-1 (conjugate gradient and quickprop) and 11-3-1 (Levenberg-Marquardt) were the best
for estimating areal rainfall using the MLP model. The networks structures of 1-5-11 (conjugate
gradient and quickprop) and 1-3-11 (Levenberg–Marquardt), which are the inverse networks for
estimating areal rainfall using the best MLP model, were identified for spatial disaggregation of areal
rainfall using the MLP model. The KSOFM model was compared with the MLP model for spatial
disaggregation of areal rainfall. The MLP and KSOFM models could disaggregate areal rainfall into
individual point rainfall with spatial concepts.

Keywords: areal rainfall; conjugate gradient; Kohonen self-organizing feature map; Levenberg-Marquardt;
multilayer perceptron; quickprop; rainfall disaggregation

1. Introduction

Rainfall is a necessary input for the design of hydrologic and hydraulic systems. Rainfall can
be either measured or generated using stochastic simulation [1]. The variability of rainfall has been
acknowledged as a reason for the uncertainties in hydrologic applications. To minimize uncertainties
calls for methods that improve the reliability of rainfall estimation by combining rainfall information
from different sources [2].

Areal rainfall is the average rainfall over the region under consideration and is estimated by one of
the popular methods, such as arithmetic mean, Thiessen polygon, isohyetal, spline, kriging, and copula
amongst others [3–5]. The arithmetic mean method is the simplest one for determining areal rainfall.
The Thiessen polygon method assumes a linear variation in rainfall between two neighboring stations
and polygons are constructed which are essentially areal weights. This method is considered more
accurate than the arithmetic mean method. The isohyetal method involves construction of isohyets
using observed depths at rainfall stations and assumes a linear variation between two adjacent
isohyets [4,6] The spline method is an interpolation method that divides interpolation intervals
into small subintervals and each of these subintervals is interpolated by using the third-degree
polynomial [7,8]. The kriging method is an optimal interpolator, based on regression against observed
rainfall values of surrounding rainfall points, weighted according to spatial covariance values [5,9].
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The copula method can be employed to describe the dependencies on an n dimensional unit cube
(uniform) among n random variables. Description of the spatial dependence structure independent of
the marginal distribution is one of the most attractive features of copulas [10,11].

Rainfall disaggregation can be both temporal and spatial. Temporal rainfall disaggregation
entails disaggregating hourly, daily, or longer duration rainfall into short time rainfall, and many
techniques have been proposed [12–25]. Techniques for spatial rainfall disaggregation using various
interpolations and global climate models (GCMs) scenarios have been proposed. However, relatively
limited research has been reported on spatial rainfall disaggregation as compared with temporal
rainfall disaggregation [26–29].

Artificial neural networks (ANNs) are a robust computational method that has been primarily
used for pattern recognition, classification, and prediction [30]. The main advantage of the ANNs as
an alternative of the physical and conventional methods is that we do not need an explicit description
in mathematical terms for the complex processes of the system under consideration [31–33]. Therefore,
ANNs can generalize the strong nonlinear patterns of natural phenomena, including aggregation and
disaggregation of rainfall with stabilization.

During the past decades, a variety of ANNs have been developed and applied for temporal rainfall
disaggregation [1,34,35]. In this study, two ANN models, including multilayer perceptron (MLP) and
Kohonen self-organizing feature map (KSOFM), have been applied to estimate spatial disaggregation
of areal rainfall in the Wi-stream catchment. MLP and KSOFM have been used effectively to model
and forecast hydrologic time series. Recently, outstanding results using the MLP and KSOFM models
in the fields of modeling and forecasting, including evapotranspiration, pan evaporation, river flood,
precipitation downscaling, dew point temperature, soil temperature, and water level and so on,
have been obtained [31,36–47]. In this study, areal rainfall is the average rainfall over the region
under consideration and is estimated using the kriging method. Spatial disaggregation of areal
rainfall, therefore, refers to the process of estimating point rainfall corresponding to individual rainfall
stations. Although there have been many investigations using ANNs, their application for spatial
disaggregation of areal rainfall has been limited. The mathematical formulas based on the spatial
disaggregation of areal rainfall on the catchment cannot be derived or developed using conventional
methods, including simple regression analysis. Therefore, the strong nonlinear behavior in nature, such
as spatial disaggregation of areal rainfall, can be overcome using the ANNs successfully in this study.

The objective of this study therefore is to develop and apply two ANN models, including
multilayer perceptron (MLP) and Kohonen self-organizing feature map (KSOFM), for spatial
disaggregation of areal rainfall in the Wi-stream catchment, an IHP representative catchment, in
South Korea. The paper is organized as follows: The second part describes ANNs, including MLP and
KSOFM. The third part describes a case study, including data used and study area. The forth part
presents application and results. Conclusions are presented in the last part of the paper.

2. Artificial Neural Networks

2.1. Multilayer Perceptron (MLP) Model

The MLP model has an input layer, an output layer, and one or more hidden layers between input
and output layers. The nodes in one layer are connected only to the nodes of the immediate next
layer. The strength of signal passing from one node to the other depends on the connection weights of
interconnections. The hidden layers enhance the network’s ability to model complex functions.

The MLP model is trained using many kinds of backpropagation algorithms. Training is a process
of adjusting the connection weights and biases, which calculate the error committed by the networks
simply by taking the difference between the desired and actual responses, so that its output can match
the desired output best [30,48]. Detailed information for the MLP model can be found in Tsoukalas
and Uhrig [49] and Kim et al. [38–40].
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2.2. Kohonen Self-Organizing Feature Map (KSOFM) Model

The KSOFM consists of four layers, that is, the input layer, Kohonen layer, hidden layer, and
output layer. The input layer is composed of n input nodes, each connected to all nodes of the Kohonen
layer [50–54]. The Kohonen layer consists of [n1-by-n1] matrices. The KSOFM model is a simple yet
powerful learning process and an effective clustering method, and uses a neighborhood function to
preserve the topological properties of the input space. It can transform high dimensional input patterns
into the responses of two-dimensional arrays of neurons and perform this transformation adaptively
in a topologically ordered fashion based on similarity. Detailed information on the KSOFM model can
be found in Kohonen [55,56], Principe et al. [57], and Hsu et al. [58].

3. Case Study

The data derived from the Wi-stream catchment were employed to train, cross-validate, and test
ANNs models. The Wi-stream catchment, shown in Figure 1, is located in 36◦10′ N to 36◦14′ N in
latitude and in 128◦33′ E to 128◦54′ E in longitude. The catchment is in Kunwi-gun County, which is
located in the center of Gyeongsangbuk-do province. The catchment, 472.53 km2 in area, represents
77.1% of the total area, 612.86 km2, of Kunwi-gun county. The Wi-stream catchment is narrow from
south to north and long from east to west. The central part of the Wi-stream catchment is quite
flat and suffers from storm and flood damages every year. There are six river stage stations, six
groundwater stations, 11 rainfall stations, and 11 evaporation stations in the Wi-stream catchment.
The stream network consists of one main stream and one tributary [59]. The hydrological data of
the Wi-stream catchment, such as rainfall, river stage, discharge, and groundwater table, have been
recorded since 1982.

SOUTH
KOREA

KUNWI (S) WOOBO
EUIHEUNG

SEUKSAN

SANSEUNG HWASU

HWASAN

SHINREUNG (W)

DAEYUL

KOME

HYOREUNG

Figure 1. Schematic diagram of the Wi-stream catchment.

To estimate areal rainfall using the kriging method in the Wi-stream catchment, hourly rainfall
data from 11 rainfall stations, including Kunwi (S) (No.1), Hyoreung (No.2), Daeyul (No.3), Kome
(No.4), Woobo (No.5), Sanseung (No.6), Shinreung (No.7), Euiheung (No.8), Hwasu (No.9), Hwasan
(No.10), and Seuksan (No.11), were used. In order for ANNs to make accurate generalizations about
rainfall, sufficient rainfall data should be available [31]. Rainfall must be recorded for more than 24 h,
including non-rainfall hour, and non-rainfall period must be within 3 h in order to prevent overfitting
when ANN models are trained for this study. Fourteen rainfall events (Cases 1–14) were chosen from
the mid-1980s to the mid-1990s to meet this condition. For estimating areal rainfall using the MLP
model, input nodes consist of point rainfall values from individual rainfall stations including Kunwi
(S) (No.1), Hyoreung (No.2), Daeyul (No.3), Kome (No.4), Woobo (No.5), Sanseung (No.6), Shinreung
(No.7), Euiheung (No.8), Hwasu (No.9), Hwasan (No.10), and Seuksan (No.11) stations. Output node
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consists of areal rainfall values using the kriging method from individual rainfall stations and vice versa
for spatial disaggregation of areal rainfall using the MLP and KSOFM models.

For ANNs model, data were split into training, cross-validation, and testing sets. The training
data were used for optimizing the connection weights and bias of ANNs model. In general, one
of the problems that weaken the training performances is overfitting. If the overfitting problem
occurs, the convergence process over the mean square error of the testing data will not decrease but
will increase as the training data are still trained [31]. It usually occurs when an ANN model has
memorized the training data and has not learned to generalize to new situations. To minimize the
effect of overfitting, cross-validation data was used through an early stopping technique where an
ANN model performance for the cross-validation data was monitored, and training performance was
stopped when error on the cross-validation data began to rise. Once the ANN model was trained, the
generalization and modeling ability of the ANN model was evaluated using a completely new testing
data [60,61]. In all of these applications, 67% of data (Cases 1, 2, 3, 4, 5, 6, 7, 9 and 10, N = 338 h) was
applied for training, 15% of data (Cases 8 and 11, N = 77 h) for cross-validation, and 18% of data (Cases
12, 13, and 14, N = 91 days) for testing.

Table 1 shows a summary of statistical indices of data used. In Table 1, Xmean, Xmax, Xmin, Sx, Cv,
Csx, and SE denote, respectively, the mean, maximum, minimum, standard deviation, coefficient of
variation, skewness coefficient and standard error values of training, cross-validation, and testing data.
The estimated values were compared with observed values using four different performance evaluation
criteria: the Nash-Sutcliffe efficiency [62] (NS), root mean square error (RMSE), mean absolute error
(MAE), and average performance error (APE). As a measure of the accuracy of any hydrologic model,
NS is one of the most widely used criteria for calibration and evaluation of hydrological models [63].
It has been shown that NS alone cannot define which model is better than others. The various
evaluation criteria (e.g., RMSE, MAE, and APE) must be used to define the model performance.
The NS, RMSE, MAE, and APE evaluation criteria quantify the efficiency of a model in capturing
extremely complex, dynamic, nonlinear, and fragmented relationships. A model, which is efficient
in capturing the complex relationship among the various input and output variables involved in a
particular problem, must be considered [64]. Table 2 shows mathematical expressions of performance
evaluation criteria.

Table 1. Statistical indices of areal rainfall data using the kriging method.

Division
Number
of Data

Statistical Indices of Areal Rainfall

Xmean Xmax Xmin Sx Cv Csx SE

Training 338 3.26 27.76 0.00 4.21 1.12 2.32 0.21
Cross-validation 77 2.10 16.68 0.00 3.12 1.32 2.62 0.34

Testing 91 3.62 19.56 0.00 4.13 1.13 1.46 0.42

Table 2. Mathematical expressions of performance evaluation criteria.

Evaluation Criteria Equation

NS 1 −
n
∑

i=1
[yi(x)−ŷi(x)]2

n
∑

i=1
[yi(x)−uy]2

RMSE

√
1
n

n
∑

i=1
[yi(x) − ŷi(x)]2

MAE 1
n

n
∑

i=1
|yi(x)− ŷi(x)|

APE

n
∑

i=1
|yi(x)−ŷi(x)|

n
∑

i=1
yi(x)

× 100

Notes: yi (x) = the observed hourly rainfall (mm); yi (x) = the estimated hourly rainfall (mm); uv= the mean of
observed hourly rainfall (mm); and n = the total number of hourly rainfall values considered.
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4. Applications and Results

4.1. Selection of Optimal MLP Models for Estimating Areal Rainfall

Selection of an appropriate structure is important, because the network structure of ANNs
directly affects the computational complexity and generalization capability [65]. Currently, there is
no reliable and established method for selecting an appropriate network structure before completion
of training [66]. A three-layer ANN, with a single hidden layer, has been usually sufficient for
approximating conventional hydrological processes [67]. The training performance of ANNs is iterated
until the training error is reached to the training tolerance [38–40]. In this study, the training tolerance
where the mean square error converged to a certain value was fixed at 0.001. The training performances
of MLP and KSOFM models were stopped after 10,000 iterations. Results of training were slightly
different from each completion of training performance, because the values of initial weights for each
layer were set as random values. Therefore, optimal parameters were determined when the results
of training showed the best categories [31]. A three-layer MLP, with a single hidden layer, was used
to estimate areal rainfall. Since the kriging method includes considerable variables to estimate the
areal rainfall compared with the Thiessen polygon and spline methods, areal rainfall estimated using
the kriging method was assumed as the observed areal rainfall. Based on the training data, the MLP
model adopted three training algorithms, conjugate gradient [68,69], Levenberg–Marquardt [70,71],
and quickprop [72], using different numbers of hidden nodes ranging from 1 to 10. Three training
algorithms, including conjugate gradient, Levenberg–Marquardt, and quickprop, were used for the
MLP model from the previous literatures. Outstanding results using the three training algorithms
have been reported previously [37–44,61]. To overcome problems associated with extreme values, the
data were normalized and scaled between 0 and 1. Another important reason for data normalization is
that different data sets represent observed values in different units. The similarity effect of data was
also eliminated [73,74].

Figure 2 shows the influence of the number of hidden nodes on the performance evaluation
criteria (NS, RMSE, MAE, and APE) for three training algorithms during the test period. The
Levenberg-Marquardt training algorithm was more sensitive to the number of hidden nodes than
were conjugate gradient and quickprop training algorithms, as seen from large fluctuations with
respect to the number of hidden nodes. This result is consistent with that reported by [61]. The best
values of NS, RMSE, MAE, and APE for 11-5-1 networks were, respectively, 0.996, 0.242, 0.072, and
2.014 for the conjugate gradient training algorithm. The best values of NS, RMSE, MAE, and APE for
11-3-1 networks were, respectively, 0.992, 0.398, 0.258, and 7.401 for the Levenberg-Marquardt training
algorithm. The best values of NS, RMSE, MAE, and APE for 11-5-1 networks were, respectively,
0.984, 0.514, 0.317, and 9.029 for quickprop training algorithm. It is clear from Figure 2a–d that
11-5-1 networks was the best for conjugate gradient and quickprop training algorithms, and 11-3-1
networks was the best for Levenberg-Marquardt training algorithm. The inverse networks of 11-5-1
and 11-3-1 structures, 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg-Marquardt),
were identified for spatial disaggregation of areal rainfall using the MLP model. In this study, results
of the MLP output layer with a 11-5-1 structure can be written as:

Ra=Φ2(
1

∑
k=1

Wkj · Φ1(
5

∑
j=1

Wji · X(t) + B1) + B2) (1)

where i, j, k = the input, hidden, and output layers, respectively; Ra = the areal rainfall (mm); Φ1( · ) =
the linear sigmoid transfer function of hidden layer; Φ2( · ) = the linear sigmoid transfer function of
output layer; Wkj = the connection weights between the hidden and output layers; Wji = the connection
weights between the input and hidden layers; X(t) = the time series data of input variables; B1 = the
bias in hidden layer; and B2 = the bias in output layer. Figure 3 shows the structure of MLP (11-5-1)
developed for estimating areal rainfall in this study.
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(a) (b) 

 
(c) (d) 

Figure 2. Influence of the number of hidden nodes for three training algorithms (test period). (a) NS;
(b) MAF; (c) RMSE; (d) APE.

Before the chosen structures, such as 11-5-1 and 11-3-1, for three training algorithms were used
for the spatial disaggregation of areal rainfall, homogeneity between observed (kriging method) and
estimated (MLP model) areal rainfall values was analyzed. The Mann-Whitney U test, one of the tests
for homogeneity, was used to compare observed and estimated areal rainfall values to evaluate the
confidence level of MLP model. It is a nonparametric alternative to the two-sample t-test for two
independent samples and can be used to test whether two independent samples have been taken from
the same population [75–78]. The critical value of z statistic (zα) was computed for the specific level of
significance. If the computed value of z statistic is greater than the critical value of z statistic (zα), the
null hypothesis, that the two independent samples are from the same population, should be rejected
and the alternative hypothesis should be accepted.
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Figure 3. Structure of MLP (11-5-1) developed for estimating areal rainfall.

Table 3 shows results of the Mann-Whitney U test between observed and estimated areal rainfall
values for the testing data. The critical value of z statistic (zα), z0.05 = 1.960, was computed for the
five percent level of significance. Since the computed values of z statistic for both stations were not
significant, the null hypothesis was accepted for areal rainfall using the MLP model.

Table 3. Results of the Mann-Whitney U test.

Model Networks
Training

Algorithms
Level of

Significance

Mann-Whitney U test

Critical z
Statistic

Computed z
Statistic

Null
Hypothesis

MLP
11-5-1 Conjugate gradient 0.05 1.960 −0.287 Accept
11-3-1 Levenberg–Marquardt 0.05 1.960 −0.617 Accept
11-5-1 Quickprop 0.05 1.960 −0.515 Accept

4.2. Evaluation for Spatial Disaggregation of Areal Rainfall Using MLP Model

Three different MLP models, including 1-5-11 (conjugate gradient), 1-3-11 (Levenberg–Marquardt),
and 1-5-11 (quickprop), were used for spatial disaggregation of areal rainfall. Figure 4 shows the
developed structure of MLP (1-5-11) for spatial disaggregation of areal rainfall.
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Figure 4. Structure of MLP (1-5-11) developed for spatial disaggregation of areal rainfall.

Figure 5 shows the influence of individual rainfall station on the performance evaluation criteria
(NS, RMSE, MAE, and APE) for three training algorithms during the test period. The three training
algorithms were generally sensitive to individual rainfall station, as seen from large fluctuations
with respect to the individual rainfall station. The spatial disaggregated rainfall using three training
algorithms yielded similar values on the performance evaluation criteria (NS, RMSE, MAE, and
APE) for individual rainfall station. For Euiheung (No.8) station, the values of NS, RMSE, MAE, and
APE were 0.870, 1.480, 0.849, and 25.335, respectively, for 1-5-11 structure (conjugate gradient); were
0.886, 1.385, 0.732, and 21.863, respectively, for 1-3-11 structure (Levenberg–Marquardt); and were
0.869, 1.481, 0.723, and 21.553, respectively, for 1-5-11 structure (quickprop). Figure 5a–d shows that
spatial disaggregated rainfall at Euiheung (No.8) station yielded the best results among the 11 rainfall
stations for the MLP model. For Hwasu (No.9) station, the values of NS, RMSE, MAE, and APE
were 0.378, 3.515, 1.817, and 52.021, respectively, for 1-5-11 structure (conjugate gradient); were 0.388,
3.492, 1.795, and 51.431, respectively, for 1-3-11 structure (Levenberg–Marquardt); and were 0.373,
3.531, 1.805, and 51.680, respectively, for 1-5-11 structure (quickprop). Figure 5a–d shows that spatial
disaggregated rainfall at Hwasu (No.9) station yielded the worst results among the 11 rainfall stations
for the MLP model. In this study, the MLP model is capable of disaggregating areal rainfall into
individual point rainfall.
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Figure 5. Influence of individual rainfall stations for three training algorithms of MLP (test period).
(a) NS; (b) MAF; (c) RMSE; (d) APE.

4.3. Evaluation for Spatial Disaggregation of Areal Rainfall Using KSOFM Model

The KSOFM model was used and compared with the MLP model for spatial disaggregation
of areal rainfall. The KSOFM model classifies each input node and determines as to which node in
the hidden layer it must be routed for spatial disaggregation of areal rainfall for the output layer.
Six different KSOFM models, including (1) [5-by-5] and [7-by-7] matrices in the Kohonen layer; and
(2) 11-5-1 (conjugate gradient), 11-3-1 (Levenberg–Marquardt), and 11-5-1 (quickprop) in the hidden
layer, were used for spatial disaggregation of areal rainfall. Figure 6 shows the developed structure of
the KSOFM (1-[5-by-5]-5-11) for spatial disaggregation of areal rainfall. Results of the KSOFM output
layer with 1-[5-by-5]-5-11 structure can be written as:

Rd=Φ2(
11

∑
l=1

Wlk·Φ1(
5

∑
k=1

Wkj · Sj + B1) + B2) (2)

where i, j, k, l = the input, Kohonen, hidden, and output layers, respectively; Rd = the disaggregated
rainfall (mm) for individual rainfall station; Wkj = the connection weights between the Kohonen and
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hidden layers; Sj = the results calculated from the Euclidean distance (dj) and the Kohonen layer;
Φ1(·) = the linear sigmoid transfer function of hidden layer; Φ2(·) = the linear sigmoid transfer
function of output layer; B1 = the bias in hidden layer; B2 = the bias in output layer; and Wlk = the
connection weights between the hidden and output layers. The Euclidean distance between the input
and Kohonen nodes can be written as:

dj =

√
n

∑
i=1

(xi − Wji)
2 (3)

Figure 6. Structure of KSOFM (1-[5 X 5]-5-11) developed for spatial disaggregation of areal rainfall.

Figure 7 shows the influence of individual rainfall station on the performance evaluation criteria
(NS, RMSE, MAE, and APE) for the three training algorithms of the KSOFM model based on [5-by-5]
matrice (KSOFM1) during the test period. The three training algorithms were generally sensitive
to individual rainfall station, as seen from large fluctuations with respect to the individual rainfall
station. The spatial disaggregated rainfall using the three training algorithms yielded similar values
on the performance evaluation criteria (NS, RMSE, MAE, and APE) for individual rainfall station. For
Euiheung (No.8) station, the values of NS, RMSE, MAE, and APE were 0.847, 1.615, 1.174, and 35.129,
respectively, for 1-5-11 structure (conjugate gradient); were 0.885, 1.402, 0.884, and 26.462, respectively,
for 1-3-11 structure (Levenberg–Marquardt); and were 0.877, 1.436, 0.738, and 22.035, respectively, for
1-5-11 structure (quickprop). Figure 7 shows that spatial disaggregated rainfall at Euiheung (No.8)
station yielded the best results among the 11 rainfall stations for KSOFM1 model. For Hwasu (No.9)
station, the values of NS, RMSE, MAE, and APE were 0.358, 3.573, 1.885, and 53.953, respectively,
for 1-5-11 structure (conjugate gradient); were 0.408, 3.432, 1.778, and 50.907, respectively, for 1-3-11
structure (Levenberg–Marquardt); and were 0.388, 3.492, 1.736, and 49.732, respectively, for 1-5-11
structure (quickprop). Figure 7 shows that spatial disaggregated rainfall at Hwasu (No.9) station
yielded the worst results among the 11 rainfall stations for KSOFM1 model.
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(a) (b) 

  
(c) (d) 

Figure 7. Influence of individual rainfall stations for three training algorithms of KSOFM1 (test period).
(a) NS; (b) MAF; (c) RMSE; (d) APE.

Figure 8 shows the influence of individual rainfall station on the performance evaluation criteria
(NS, RMSE, MAE, and APE) for the three training algorithms of the KSOFM model based on [7-by-7]
matrice (KSOFM2) during the test period. The three training algorithms were generally sensitive
to individual rainfall station, as seen from large fluctuations with respect to the individual rainfall
station. The spatial disaggregated rainfall using three training algorithms yielded similar values
on performance evaluation criteria (NS, RMSE, MAE, and APE) for individual rainfall station.
For Euiheung (No.8) station, the values of NS, RMSE, MAE, and APE were 0.845, 1.622, 1.130, and
33.806, respectively, for 1-5-11 structure (conjugate gradient); were 0.895, 1.334, 0.791, and 23.680,
respectively, for 1-3-11 structure (Levenberg–Marquardt); and were 0.888, 1.371, 0.715, and 21.354,
respectively, for 1-5-11 structure (quickprop). Figure 8 shows that spatial disaggregated rainfall at
Euiheung (No.8) station yielded the best results among the 11 rainfall stations for the KSOFM2 model.
For Hwasu (No.9) station, the values of NS, RMSE, MAE, and APE were 0.317, 3.687, 2.176, and 62.290,
respectively, for 1-5-11 structure (conjugate gradient); were 0.427, 3.378, 1.702, and 48.680, respectively,
for 1-3-11 structure (Levenberg–Marquardt); and were 0.385, 3.496, 1.726, and 49.398, respectively,
for 1-5-11 structure (quickprop). Figure 8 shows that spatial disaggregated rainfall at Hwasu (No.9)

202



Water 2015, 7, 2707–2727

station yielded the worst results among the 11 rainfall stations for the KSOFM2 model. In this study,
the KSOFM1 and KSOFM2 models were capable of disaggregating areal rainfall into individual point
rainfall. However, because of strong nonlinearity of rainfall, it is difficult to conclude with confidence
which model is superior to other models. The specific rainfall stations did not generally show the
satisfactory results in the evaluation criteria for the three training algorithms of the MLP, KSOFM1,
and KSOFM2 performances. It can be found that the spatial distribution of rainfall stations can affect
the performance of ANNs models from this observation.

  
(a) (b) 

  
(c) (d) 

Figure 8. Influence of individual rainfall stations for three training algorithms of KSOFM2 (test period).
(a) NS; (b) MAF; (c) RMSE; (d) APE.
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Figures 9 and 10 show the box plots for spatial disaggregated rainfall during the test period at
Euiheung (No.8) and Hwasu (No.9) stations. The box plots show the distributions of basic statistics for
performances of MLP, KSOFM1, and KSOFM2 with three training algorithms. Figures 9 and 10 show
the centerline (median) dividing the rectangular box defined by 25th and 75th percentiles, and lines
extend from maximum to minimum data point at Euiheung (No.8) and Hwasu (No.9) stations. The
basic statistics of spatial disaggregated rainfall for performances of the MLP, KSOFM1, and KSOFM2
models yielded similar behaviors compared with observed rainfall at Euiheung (No.8) and Hwasu
(No.9) stations except for the maximum rainfall values.

(a) 

.

(b) 

.

(c) 

.

Figure 9. Rainfall box plots for Euiheung (No.8) station (test period). (a) Conjugate gradient;
(b) Levenberg–Marquardt; (c) Quickprop.
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.

(b) 

.

( )
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.

Figure 10. Rainfall box plots for Hwasu (No.9) station (test period). (a) Conjugate gradient;
(b) Levenberg–Marquardt; (c) Quickprop.

5. Conclusions

This study develops and evaluates artificial neural network (ANN) models for spatial
disaggregation of areal rainfall in the Wi-stream catchment, an IHP representative catchment, in
South Korea. A three-layer MLP is used to estimate areal rainfall. Areal rainfall estimated using the
kriging method is assumed as observed areal rainfall. Based on training data, the MLP models employ
three training algorithms, conjugate gradient, Levenberg–Marquardt, and quickprop.

The influence of number of hidden nodes for the three training algorithms is evaluated to estimate
areal rainfall using the MLP model. The Levenberg-Marquardt training algorithm is more sensitive to
the number of hidden nodes than are the conjugate gradient and quickprop training algorithms. It is
seen from large fluctuations with respect to the number of hidden nodes. The Mann-Whitney U test is
performed to compare observed and estimated areal rainfall values to evaluate the confidence level of
the MLP model. The null hypothesis is accepted for areal rainfall using the MLP model. The structures
of 1-5-11 (conjugate gradient and quickprop) and 1-3-11 (Levenberg–Marquardt) are identified for
spatial disaggregation of areal rainfall using the MLP model.
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Three different MLP models are employed for spatial disaggregation of areal rainfall. The
influence of individual rainfall station to disaggregate areal rainfall using the MLP model is evaluated.
Three training algorithms are generally sensitive to individual rainfall station, as seen from large
fluctuations with respect to the individual rainfall station. The spatial disaggregated rainfall using the
three training algorithms yields similar values for individual rainfall station. The spatial disaggregated
rainfall at Euiheung (No.8) station yields the best results, whereas spatial disaggregated rainfall at
Hwasu (No.9) station yields the worst results among the 11 rainfall stations using the MLP model.

The KSOFM model is compared with the MLP model for spatial disaggregation of areal rainfall.
Six different KSOFM models are employed for spatial disaggregation of areal rainfall. The spatial
disaggregated rainfall at Euiheung (No.8) station yields the best results, whereas spatial disaggregated
rainfall at Hwasu (No.9) station yields the worst results among the 11 rainfall stations using the
KSOFM1 and KSOFM2 models, respectively.

It can be found that the MLP, KSOFM1, and KSOFM2 models can disaggregate areal rainfall into
individual point rainfall. However, because of strong nonlinearity of rainfall, it is difficult to conclude
with confidence as to which model is superior. Continuing studies, including data extension and new
model application, are needed for aggregation and disaggregation of rainfall.
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Abstract: Spatial variability plays an important role in nonlinear hydrologic processes. Due to the
limitation of computational efficiency and data resolution, subgrid variability is usually assumed
to be uniform for most grid-based rainfall-runoff models, which leads to the scale-dependence of
model performances. In this paper, the scale effect on the Grid-Xinanjiang model was examined. The
bias of the estimation of precipitation, runoff, evapotranspiration and soil moisture at the different
grid scales, along with the scale-dependence of the effective parameters, highlights the importance of
well representing the subgrid variability. This paper presents a subgrid parameterization method to
incorporate the subgrid variability of the soil storage capacity, which is a key variable that controls
runoff generation and partitioning in the Grid-Xinanjiang model. In light of the similar spatial pattern
and physical basis, the soil storage capacity is correlated with the topographic index, whose spatial
distribution can more readily be measured. A beta distribution is introduced to represent the spatial
distribution of the soil storage capacity within the grid. The results derived from the Yanduhe Basin
show that the proposed subgrid parameterization method can effectively correct the watershed soil
storage capacity curve. Compared to the original Grid-Xinanjiang model, the model performances
are quite consistent at the different grid scales when the subgrid variability is incorporated. This
subgrid parameterization method reduces the recalibration necessity when the Digital Elevation
Model (DEM) resolution is changed. Moreover, it improves the potential for the application of the
distributed model in the ungauged basin.

Keywords: Grid-Xinanjiang model; scale effect; scale-invariant hydrologic response; subgrid
parameterization

1. Introduction

For the last few decades, the development of numerous distributed rainfall-runoff models enables
the spatial variations to be represented by a network of grid elements. Advances in geographic
information systems (GIS), remote sensing (RS) and computational technology have also offered the
potential to build complex distributed hydrologic models and improve the accuracy of hydrologic
prediction in time and space [1–3].

However, many recent studies have suggested that distributed modelling approaches may not
always provide improved simulations at the outlet compared to lumped conceptual models [4]. One of
the underlying reasons is that most models do not represent the spatial variability well [5,6]. Limited by
the resolution of available data and the computational efficiency, most grid-based distributed models
do not take into account the subgrid variability of model input, parameters and model state [7–9].
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With the assumption of the uniform subgrid, the high frequency information of hydrologic variables
and parameters will be lost as the large sampling dimensions act as a filter [10,11].

Because of the nonlinearity of hydrologic processes, model simulations of hydrologic responses are
inherently sensitive to the spatial variability of input forcing and watershed characteristics [12]. There
is a growing awareness of the sensitivity of small scale variability in hydrologic systems modelling.
For example, Wood et al. [13] introduced the concept of the Representative Elementary Area (REA).
The REA is defined as a critical threshold at which the implicit continuum assumption can be used
without knowledge of the patterns when building the catchment modelling. Arora et al. [14] compared
the performances of land surface simulations with and without incorporating the subgrid variability of
precipitation intensity and soil moisture. The results indicated that the inclusion of subgrid variability
results in significant changes of magnitude, time and frequency of surface runoff generation and
partitioning. Ghan et al. [15] assessed the relative influence of the subgrid variability of meteorology,
vegetation characteristics, soil properties on surface runoff with a land surface model. They found that
neglecting subgrid variability leads to the underestimation of runoff and overestimation of evaporation.
Vázquez et al. [16] illustrated the scale-dependence of model effective parameters. They noted that the
effective parameters need a recalibration when the grid resolution is changed. The scale-dependence
of the model performances and effective parameters makes it a challenge to determine the scale at
which the spatial variability can be replaced by grid-averaged characteristics. In order to reduce the
necessity of recalibration, it is required to provide a well representation of subgrid variability.

The Grid-Xinanjiang model is an improved version of the Xinanjiang model, which is widely
used for flood forecasting in humid and semi-humid area of China [17,18]. The soil storage capacity is
a key variable in the Grid-Xinanjiang model, which controls runoff generation and partitioning. Due
to the relative short spatial structure, the soil storage capacity is more sensitive to the uniform grid
assumption. The bias of estimation of soil storage capacity will introduce the uncertainty of hydrologic
simulation, especially for application in the ungauged basin. Therefore, a good representation of
subgrid variability of soil storage capacity is necessary for a scale-invariant hydrologic response in the
Grid-Xinanjiang model. In this paper, based on the analysis of the model performances of the original
Grid-Xinanjiang model at different grid scales, a subgrid parameterization method is presented to
account for the subgrid variability of the soil storage capacity.

The rest of paper is organized as follows: in the next section, we provide a description of the
study area; a brief description of the Grid-Xinanjiang model and the subgrid parameterization method
are presented in the model description section; the following section includes a set of numerical
experiments conducted in the Yanduhe Basin to compare the model performance with and without
incorporating the subgrid variability; and the final section provides conclusions and perspectives.

2. Study Area

The Yanduhe Basin is located in central China with a catchment area of about 601 km2. The
Yanduhe River, the main river of the Yanduhe Basin, originating from south of Shennongjia Mountain,
flowing into the Yangtze River at 31◦14′ N, 110◦18′ E, is 60.6 km in length, with a mean slope of 9.5‰.
More than 70% of the area is covered by vegetation. The watershed climate is humid, and the average
annual precipitation is approximately 1300–1700 mm. Dominated by a monsoon climate, most rainfall
occurs during the wet season between April and September.

As shown in Figure 1, the hourly rainfall is monitored at five rainfall gauging stations located
in Duizi, Xiagu, Banqiao, Songziyuan and Yanduhe. Hourly streamflow and evaporation data are
recorded at the outlet of the watershed. The morphology of the basin is described by the Digital
Elevation Model (DEM) with 30 m resolution from the National Aeronautics and Space Administration
(NASA). The elevation of the Yanduhe Basin ranges from 130 to 3031 m.
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Figure 1. Location and gauging stations of the study area.

3. Method

3.1. The Grid-Xinanjiang Model

DEMs are the primary computational elements for rainfall-runoff modeling in the Grid-Xinanjiang
model. In each grid cell, canopy interception, direct channel precipitation, evapotranspiration, runoff
generation and partitioning are simulated. A simple storage based equation is adopted to calculate
the cumulative interception during rainfall events. The precipitation that falls on the channel can be
treated as the direct runoff without loss. The evapotranspiration is simulated as a function of moisture
content of the vertical soil profile. The soil profile is divided into three layers (upper, lower and deeper
layers) in each grid cell to account for the uneven vertical distribution of the soil moisture content.
The Grid-Xinanjiang model employs the saturation excess mechanism, and adopts the concept of soil
storage capacity to partition the rainfall into runoff and infiltration. Depending on the free water
capacity, the runoff is further subdivided into surface runoff, interflow and groundwater runoff.

For the daily simulation, the surface runoff directly routes to the channel as the fast component.
The interflow and groundwater runoff represent the slow component that routes to the outlet of the
corresponding subcatchment by two linear reservoirs with different lag times. The subcatchments
are connected by the channel network. The outflow of each subcatchment is routed to the watershed
outlet by the multiple-reach Muskingum method. More details are available in Yao et al. [17] and
Liu et al. [19].

3.2. Subgrid Scale Parameterization of the Soil Storage Capacity

In the original Xinanjiang model, the spatially uneven distribution of the soil storage capacity is
depicted by a power function [20]:

f
F
= 1 −

(
1 − WM

WMM

)B
(1)

where WM is the soil storage capacity, WMM is maximum watershed soil storage capacity, f /F is
fraction of basin with the soil storage capacity less than WM, B is exponent of the curve.

A similar method is also adopted in the ARNO [21] and the Variable Infiltration Capacity (VIC)
models [22]. The power function provides an analytical solution of runoff generation but lacks definite
physical interpretation. Following the work of Williams et al. [23] and Anderson et al. [24], Yao et al. [25]
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utilized the soil texture and the land cover attributes to estimate the spatial distribution of the soil
storage capacity. However, limited by resolution of soil property, the small-scale variability information
is not readily available. Therefore, the uniform grid assumption is usually adopted. However, the
high frequency information will be smoothed as the uniform grid acts as a filter. Especially for the soil
storage capacity, due to the relative short spatial correlation structure, the spatial distribution of the
soil storage capacity is more easily affected by the smoothing effect [26–28], which may further lead
to the scale-dependence of the model performance. Therefore, it is necessary to take into account the
subgrid variability of the soil storage capacity in the Grid-Xinanjiang model.

By analyzing the spatial organization of soil moisture and different terrain attributes (slope, mean
curvature, topographic index, specific area, etc.), Western et al. [29] demonstrated that the topographic
index (TI) can better explain the spatial variability at all scales from 10 m up to the catchment scales.
Shi et al. [30] also found a similar spatial pattern between the soil storage capacity and the topographic
index. On one hand, topography is an important control of the soil moisture distribution [31,32]. The
areas that have large topographic indices usually correspond to the riparian areas, where it is easier to
reach saturation because of the relatively small water deficit, and vice versa. On the other hand, the
high resolutions of topographic indices are more readily obtained than the soil properties. Shi et al. [30]
suggested the topographic index as an auxiliary variable to correlate with the soil storage capacity
as following:

WM
WMM

= exp

{
−

[
ln(TI − TImin + 1)

a

]b
}

(2)

where TImin is the minimum topographic index, a and b are two shape parameters. The topographic
index TI is defined as ln(a/tan β), in which a is the cumulative area per unit length of contour line and
β is the slope.

As discussed by Pradhan et al. [33], a distinct shift of the value of the topographic index occurs as
the DEM resolution becomes coarser. As a function of the topographic index, the soil storage capacity
curve also changes correspondingly. Therefore, it is necessary to correct the grid-averaged soil storage
capacity. By integrating the soil storage capacity in each grid, we can estimate the total watershed soil
storage capacity at each grid scale. The deviation of the total watershed soil storage capacity between
the finest grid and other grids can be used to correct the mean value of the soil storage capacity within
the grid cell:

WMc = WM
WMMt

WMMc
(3)

where WMc is the soil storage capacity in each grid after correction, WMMt is the total watershed soil
storage capacity at the finest resolution and WMMc is the total watershed soil storage capacity at the
modelling scale.

As suggested by Li and Avissar [34], here we use a beta distribution to describe the subgrid
variability of the soil storage capacity. Compared to the other commonly used probability distribution
(gamma, lognormal, etc.), the bounded character of beta distribution is more suitable for the description
of soil property. It is defined as following:

f (WM) =
Γ(α+ β)

Γ(α)Γ(β)
WMα−1(1 − WM)β−1 (4)

where Γ() is the gamma function, and α and β are two shape parameters.
The parameters of the beta distribution can be estimated by the mean and variance values of the

soil storage capacity within the grid. We can obtain the mean value of the soil storage capacity of
the grid cell by Equations (2) and (3). The variance indicates the fluctuation range of the soil storage
capacity within grid which can be derived by spatial aggregation from the finest resolution. Due to
the uneven distribution of WM within the grid, part of the effective rainfall (Pe) is partitioned into the
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runoff (R), and the other part is stored in the soil (ΔW). As shown in Figure 2, the runoff R in a grid
can be expressed as:

R =
∫ A+Pe

A
Pe IWMdWM (5)

where A is the soil storage capacity corresponding to the soil content and W0; IWM is the cumulative
density function of WM.

 

Figure 2. Schematic representation of runoff generation within a grid.

4. Results and Discussion

4.1. Model Validation

The proposed subgrid parameterization method is validated against the observed data from 1981
to 1986 using a daily time step. The model parameters are calibrated at 30 m resolution with the
observations from 1981 to 1984. The rainfall data at five gauging stations is interpolated to each grid
using the inverse distance weighting method. Adopting the seeding technology [35], the Yanduhe
Basin is subdivided into 58 subcatchments with a threshold of 5 km2. We ran a drainage experiment
presented by Vivoni [36] to obtain a reasonable spatial distribution of the initial soil moisture. The
watershed is assumed to drain from a full saturation status without rainfall and evapotranspiration,
until the watershed soil moisture content reaches the condition that we choose. The annual runoff
deviation (ARD) and the Nash-Sutcliffe coefficient (NSC) are used as two criteria for the model
evaluation. The ARD provides a general sense of the water balance, and the NSC is used to assess the
goodness of fit between the simulated and the observed discharge. The ARD and NSC are calculated
as follows:

ARD =
Rsim − Robs

Robs
× 100% (6)

NSC = 1 −
∑
n
(Qt

sim − Qt
obs)

2

∑
n
(Qt

obs − Qobs)
2 (7)
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where Rsim is the annual simulated runoff; Robs is the annual observed runoff; Qt
sim is the simulated

discharge at time step t; Qt
obs is the observed discharge at time step t; and Qobs is the mean value of the

observed discharge, n is the total number of values in the time period.
The simulated results at the Yanduhe Station are summarized in Table 1. The averaged ARD and

NSC are 9% and 0.81 respectively in the calibration periods. In the validation period, the ARD and
NSC also reach 10% and 0.76. Figure 3 shows an illustration of the simulated hydrograph against
the observed data at the Yanduhe Station from April to October in 1986. The results demonstrate
consistency between the simulation and observation. Further analysis is also based on the observed
data in 1986.

Table 1. Performance of the Grid-Xinanjiang model for the calibration and validation periods.

Period Year ARD (%) NSC

Calibration

1981 13 0.74
1982 4 0.90
1983 7 0.81
1984 11 0.79

Validation
1985 14 0.65
1986 6 0.87

 

Figure 3. An illustration of the model performance of the Grid-Xinanjiang model with the subgrid
parameterization in the Yanduhe Basin in 1986. Red dot, observed discharge; black line, simulated
discharge; blue bar, precipitation.

4.2. The Scale-Dependence of the Grid-Xinanjiang Model with a Uniform Grid

The scale-dependence of model performance is the reason that we propose the subgrid
parameterization method. Before evaluating the reasonability of the subgrid parameterization, we
are also interested in, to what extent, the hydrologic responses of the original Grid-Xinanjiang model
depend on the grid scale. Figure 4 depicts the probability density functions of the soil storage capacity
from four different grid scales (50 m, 100 m, 500 m and 1000 m) in the Yanduhe Basin. A distinct shift
is observed as the grid scale increases. The mean value of the watershed soil storage capacity increases
from 30 to 57 mm when the grid scale aggregates from 50 to 1000 m. In addition, the peak of the
density function also moves towards a high value. As a key variable in the Grid-Xinanjiang model, the
bias indicates that for the coarse grid, more rainfall can be stored in the soil, and the runoff process
will be more sensitive to the higher rainfall intensity.
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Figure 4. Effect of the grid resolution on the density function of the soil storage capacity.

The hydrologic responses of the original Grid-Xinanjiang model were evaluated with the observed
data from April to October in 1986 in the Yanduhe Basin. Figure 5 shows the processes of the
average monthly precipitation, evapotranspiration, runoff and soil moisture at the different resolutions.
For comparison, the soil moisture content θ is normalized to the relative soil moisture: θ* = (θ − θr)/
(θs − θr). θs and θr are the saturation and the residual soil moisture, respectively, the values of which
relate to the soil texture [37]. The calibrated parameters at the 30 m resolution are directly adopted
without recalibration at each grid scale. As can be seen in Figure 5, all these processes show an obvious
scale-dependence. The spatially averaged precipitation reduces with the increasing grid scale. The
bias of the precipitation mainly concentrates before March and after August, when the amount of
rainfall is relatively low. The maximum margin of the monthly rainfall volume between 50 and 1000 m
grids reaches the peak of 8% in September. For the relatively large rainfall volume, such as during
June and July, the bias is only approximately 2%. This can be interpreted by the different spatial
characteristics of rainfall types. As discussed by Ciach and Krajewski [38], rainfall fields are less
variable for higher rainfall intensity. It is obvious that the smoothing effect will be more significant for
the storm with higher variability. Compared to the precipitation, the runoff is more sensitive to the
change of the grid scale. The bias of the estimation of precipitation, combined with the bias of totally
watershed soil storage capacity, results in the inconsistencies of runoff at the different grid scales.
For the coarse grid, the precipitation is underestimated. In addition, large soil storage capacity also
allows more rainfall stored in the soil, rather than converting into runoff. The averaged bias of runoff
between 50 and 1000 m resolution is approximately 28%. The bias of runoff reaches the peak around
August. The runoff derived from 50 m is almost three times that from 1000 m. Since more rainfall
infiltrates into the soil, the relative soil moisture increases with the grid scale. Therefore, as a function
of moisture content of soil profile, the evapotranspiration is correspondingly higher for the coarse grid.
The evapotranspiration and the relative soil moisture processes exhibit marked differences between
March and August. This is because the evapotranspiration is more intensive during this period. The
averaged bias of evapotranspiration and relative soil moisture caused by the spatial aggregation from
50 to 1000 m are 13% and 14%, respectively. Due to the decline of the measured evaporation, only
slight differences occur in September and October.
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Figure 5. The monthly precipitation, evapotranspiration, runoff and relative soil moisture processes.

To evaluate the scale effect on the effective parameters, the model parameters require a
recalibration at the different grid scales. To avoid the subjectivity of parameter estimation, automated
calibration methods are needed. There has been a great deal of work on the research of automated
calibration methods [39–41]. In this study, the eleven model parameters are auto-calibrated based on
the SCE-UA (Shuffled Complex Evolution method developed at the University of Arizona) algorithm,
which has been found to be consistent, effective, and efficient in searching the globally optimum
parameters [42,43]. The initial parameters are referred to in Yao et al. [17]. The Nash-Sutcliffe coefficient
is used as an objective function. The iteration of SCE-UA algorithm will stop when the objective
function cannot improve 0.1% over five iterations or the number of iteration exceeds 10,000. Table 2
lists the value of the effective parameters at four different grid resolutions. It is clear that the model
parameters vary with grid scale in varying degrees. The ratio of the potential evapotranspiration to
pen evaporation (K), the maximum watershed soil storage capacity (WMM) and the recession constant
of the interflow storage (Ci) are relatively sensitive. The ratio of the potential evapotranspiration
to pen evaporation decreases from 1.0 to 0.93 when the grid resolution increases from 50 to 1000 m.
The maximum watershed soil storage capacity also decrease from 124 to 112. No significant changes
were observed for the recession constant of groundwater storage (Cg) and two parameters in the
Muskingum routing method (X,V).
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Table 2. Model parameters and calibrated values at 4 different grid resolutions.

Parameter Description Range
Calibrated value

50 m 100 m 500 m 1000 m

K Ratio of potential evapotranspiration
to pan evaporation 0–2 1.0 0.98 0.94 0.93

WMM Maximum watershed soil
storage capacity (mm) 60–300 124 118 114 112

α Shape parameter 0–20 1.1 1.0 0.9 0.9
β Shape parameter 0–20 1.5 1.5 1.5 1.4

SM Free water storage capacity (mm) 0–100 12 11 10 10

Ki
Outflow coefficient of free water

storage to interflow 0–0.7 0.42 0.40 0.41 0.40

Kg
Outflow coefficient of free water

storage to Groundwater 0–0.7 0.28 0.26 0.26 0.25

Ci Recession constant of interflow storage 0.3–0.8 0.58 0.57 0.54 0.53

Cg
Recession constant of
groundwater storage 0.8–0.995 0.85 0.86 0.85 0.84

X A weight factor of Muskingum method 0.1–0.5 0.33 0.33 0.32 0.32
V Flow velocity in channel (m/s) 0.5–2 1.3 1.3 1.3 1.3

4.3. Evaluation of the Subgrid Parameterization

As discussed above, the bias of the soil storage capacity at the different grid scales is an important
reason for the scale-dependence of the model performances and the effective parameters. Therefore,
a good representation of soil moisture capacity at the subgrid scale is necessary for a scale-invariant
hydrologic response in the Grid-Xinanjiang model. Following the subgrid parameterization described
in Section 3, Table 3 compares the annual water budget with and without the subgrid variability. The
total annual evapotranspiration (Ep), runoff (R), surface runoff (RS), interflow (RI) and groundwater
runoff (RG) at four different resolutions are calculated with the same parameters. As seen in Table 3,
with the uniform grid, the annual evapotranspiration increases with the grid scale. The bias of the
annual evapotranspiration between 50 and 1000 m resolution can reach 48 mm. The total runoff is
significantly underestimated for the coarse grid. The annual total runoff at the 50 m resolution is
852 mm, and 763 mm at the 1000 m resolution. Note that the differences of interflow and groundwater
runoff are quite small, and the bias of runoff mainly originates from surface runoff. This is because the
runoff is partitioned into different components by the free water capacity, which is relatively small.
The impact of the change of the free water capacity on the partitioning of interflow and groundwater
runoff is limited. The runoff in excess of the free water capacity converts into surface runoff. Thus,
the decrease in the total runoff from fine to coarse grid firstly leads to a change of the surface runoff.
However, when the subgrid variability of the soil storage capacity is incorporated, the bias of the annual
evapotranspiration between 50 and 1000 m significantly reduces to 3 mm. For the 1000 m resolution,
the bias of evapotranspiration with and without the subgrid parameterization are considerably large,
accounting for almost 22% of the annual evapotranspiration. For the non-uniform subgrid, the runoff
increases by 23 mm and 101 mm for the 50 m and 1000 m resolutions, respectively. Compared to the
uniform subgrid, both interflow and groundwater runoff increase marginally after incorporating the
subgrid variability, and the differences at different resolutions are almost negligible.

In Figure 6, the Nash-Sutcliffe coefficient is used as the criteria to evaluate the model performances
of two subgrid schemes at the different grid scale. Because there is no measured data available for the
actual evapotranspiration and soil moisture, the simulated results at the 30 m resolution are taken as
the true values. In Figure 6, the dash-dot line is obtained from the original Grid-Xinanjiang model,
and the solid line represents the model performance after incorporating the subgrid variability. With
the uniform grid, the NSC of runoff process ranges between 0.93 and 0.98. The difference is more
apparent for evapotranspiration and soil moisture processes. With the same parameters, the NSC of
the evapotranspiration and the relative soil moisture decline to 0.88 and 0.82 at 1000 m from 0.98 and

218



Water 2015, 7, 2691–2706

0.97 at 50 m. However, when the subgrid variability is taken into account, the model performances at
the different resolutions are quite consistent. The improvement of the model performance is significant,
especially at the larger grid scales. The increases of the NSC for the three processes at 1000 m resolution
reach 4%, 5% and 12%, respectively. It can be concluded that the subgrid parameterization can partly
eliminate the scale-dependence of the model. Not only the total water budget, but also the performance
at each time step is quite consistent at each resolution when the subgrid variability is taken into account,
but it needs to be pointed out that the proposed subgrid parameterization only depicts the subgrid
variability of soil storage capacity, and the variability of precipitation, evapotranspiration or flow
routing velocity at the subgrid scale may still cause the inconsistency of model performances at the
different grid scales.

Table 3. Performance of the Grid-Xinanjiang model with and without the subgrid parameterization.

Process
Uniform Subgrid Non-uniform Subgrid

50 m 100 m 500 m 1000 m 50 m 100 m 500 m 1000 m

Ep(mm) 472 487 516 520 430 430 427 427
R (mm) 852 819 768 763 876 875 862 864
RS (mm) 244 208 154 147 253 253 242 243
RI (mm) 374 376 378 379 383 383 382 383
RG (mm) 234 235 236 237 239 239 239 239
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Figure 6. Model performances with and without subgrid parameterization. The solid line represents
the NSC from the Grid-Xinanjiang model with uniform grid, and the dash-dot line represents the NSC
after incorporating the subgrid variability.

To further investigate the effect of subgrid parameterization, Figure 7 plots the simulated discharge
at the outlet from the original Grid-Xinanjiang model versus the discharge after incorporating the
subgrid variability at 50 m, 100 m, 500 m and 1000 m grid resolutions. It seems that the model tends to
underestimate the discharge if the subgrid variability of soil storage capacity is neglected. The gap
between the two schemes increases with grid scale. For the 50 m grid resolution, the discharge is
closely fit to the 1:1 line. While for the 1000 m resolution, the discharge increases by an average of
6% after incorporating the subgrid variability. The bias of the discharge with and without subgrid
variability can be as high as 40 m3/s. The large bias between the two schemes mainly occurs when
the discharge is less than 100 m3/s. Even for small discharge, the gap is also evident. However, no
significant change is observed for large discharge. It is because, for the saturation excess mechanism
employed by the Grid-Xinanjiang model, large discharge is usually associated with relatively high
soil content and intense rainfall. Once the watershed is fully saturated, all of the effective rainfall will
directly convert into the runoff without loss. In this case, the effect of the spatial variability on runoff
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will no longer exist. It demonstrates that the subgrid variability is more necessary for the relatively dry
period. This conclusion not only works for the Grid-Xinanjiang model, but also for the other saturation
excess dominated hydrologic model.
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Figure 7. Discharge from the original Grid-Xinanjiang model (Quni) versus runoff after incorporating
the subgrid variability (Qnon-uni).

5. Conclusions

Spatial variability is known to increase with scale. With the assumption of a uniform grid, the
spatial averaging operation leads to the scale-dependence of model performance. In this study, we
take the Grid-Xinanjiang model as an example to investigate the effect of subgrid variability on the
hydrologic response. The processes of precipitation, runoff, evapotranspiration and soil moisture at
four different grid scales (50 m, 100 m, 500 m and 1000 m) are compared. The calibrated parameters
based on 30 m resolution are used for each simulation without recalibration. The results derived from
the Yanduhe Basin show that the model performances vary with grid scales. As a key variable in the
Grid-Xinanjiang model, the total watershed soil storage capacity increases from 30 to 57 mm when the
grid resolution spatially aggregates from 50 to 1000 m. Depending on the different rainfall structure,
the precipitation is underestimated for coarse grid. The bias of precipitation process and watershed
soil storage capacity leads to the inconsistency of the hydrologic responses across scales. Calibrated by
the SCE-UA method against the observed data, the model effective parameters also vary with grid
scale in varying degrees.
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Therefore, for a scale-invariant hydrologic response, the subgrid variability is required to be
taken into account. In light of the sensitivity of the Grid-Xinanjiang model to the soil storage capacity,
this study presents a subgrid parameterization method to incorporate the subgrid variability of the
soil storage capacity. The topographic index is adopted as an auxiliary variable to correlate the soil
storage capacity. On one hand, the topographic index and the soil storage capacity have similar
spatial distributions and physical basis. On the other hand, the high resolution topographic index
is more readily obtained than the soil property information. A beta distribution is introduced to
represent the spatial distribution of the soil storage capacity within grid cell. Compared to the original
Grid-Xinanjiang model, the simulated runoff, evapotranspiration and soil moisture processes are quite
consistent at different grid scales when the subgrid variability is incorporated. The inclusion of the
subgrid variability results in a significant increase of runoff and a decrease of evapotranspiration.
For the annual water budget, the differences of runoff and evapotranspiration with and without
incorporating the subgrid variability can reach 101 mm and 93 mm respectively at the 1000 m resolution.
Due to the saturation excess mechanism employed by the Grid-Xinanjiang model, the correction of
hydrologic responses resulting from subgrid parameterization is more obvious for relatively small
rainfall event or dry conditions. The subgrid parameterization method benefits to reduce the necessity
of recalibration when DEM resolution is changed, but it also needs to be noted that the proposed
parameterization method only partly eliminates the scale-dependence of the runoff generation. Further
research deserves more attention on the scale effect on flow routing.
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Abstract: The dynamic relationship between watershed characteristics and rainfall-runoff has
been widely studied in recent decades. Since watershed rainfall-runoff is a non-stationary
process, most deterministic flood forecasting approaches are ineffective without the assistance
of adaptive algorithms. The purpose of this paper is to propose an effective flow forecasting
system that integrates a rainfall forecasting model, watershed runoff model, and real-time updating
algorithm. This study adopted a grey rainfall forecasting technique, based on existing hourly rainfall
data. A geomorphology-based runoff model can be used for simulating impacts of the changing
geo-climatic conditions on the hydrologic response of unsteady and non-linear watershed system,
and flow updating algorithm were combined to estimate watershed runoff according to measured
flow data. The proposed flood forecasting system was applied to three watersheds; one in the United
States and two in Northern Taiwan. Four sets of rainfall-runoff simulations were performed to test
the accuracy of the proposed flow forecasting technique. The results indicated that the forecast and
observed hydrographs are in good agreement for all three watersheds. The proposed flow forecasting
system could assist authorities in minimizing loss of life and property during flood events.

Keywords: rainfall forecasting; flow forecasting; grey theory; geomorphology-based runoff model;
flow updating algorithm

1. Introduction

Flood forecasting systems are nonstructural methods for reducing flood damage. An efficient
forecasting system can assist with mitigating imminent disasters by providing information that can be
disseminated rapidly to the flood-threatened areas. Standard practices in flood forecasting systems
include hydrometeorological data transmission, database management, rainfall prediction, runoff
estimation, and forecast information dissemination.

Brath et al. [1] indicated that quantitative rainfall forecasting plays a primary role in extending
the lead time of river flow forecasting, which can improve the timeliness of flood control mechanisms.
Because of improvements in the accuracy of weather radar systems, radar-based rainfall forecasting
systems have superseded traditional rain gauges that provide measurements at only several locations
for flood forecasting [2–4]. Toth et al. [5] indicated that radar detection is particularly difficult
in mountainous regions because of the effect of ground occultation and altitude. Consequently,
radar-based measurement techniques are limited under topographic conditions where radar reflectivity
is poor [6,7]. Thus, hydrologists typically use probabilistic and stochastic methods for rainfall
forecasting based on current and past rainfall measurements (e.g., [8–13]). Because these methods
typically require large volumes of rainfall data for calibrating and training the model parameters,
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Deng [14] proposed a grey system theory-based model for future data prediction. Moreover, grey
theory-based models require relatively few observations to predict outcomes [15–17]; thus, they are
suitable for rainfall forecasting.

Rainfall forecasts are inputted into rainfall-runoff models to provide flood warning information
for authorities. In recent decades, artificial neural networks (ANNs) have become a well-known
tool for hydrologic forecasting [18–29]. However, ANNs require a large amount of hydrologic
data to determine the adaptive weights, which are inadequate to be applied to data-sparse areas.
Although fully distributed grid-based routing models can provide detailed information on flood wave
transports, they may be unsuitable for real-time flood forecasting systems because the simulation
process is typically time-consuming [30]. Hence, lumped and semi-distributed hydrological models
are acceptable practical alternatives. For example, the Sacramento model was adopted by the National
Weather Service River Forecast System in the United States [31,32], the tank model has been widely
applied for runoff forecasting in Japan [33], the Hydrologiska Byråns Vattenbalansavdelning (HBV)
model was adopted in Europe [34], and the Xinanjiang model was introduced in China [35]. To further
minimize the requirement of observed flow data to develop semi-distributed models, hydrologists
have adopted geomorphology-based runoff models [36–40].

Rodriguez-Iturbe and Valdes [35] proposed the geomorphologic instantaneous unit hydrograph
(GIUH) model, which can be employed to derive the instantaneous unit hydrograph (IUH) of a
watershed based on information from a topographic map or digital elevation data set. Subsequent
studies have modified the GIUH model by incorporating kinematic-wave approximation, thereby
providing reasonable estimations of flow velocity, which augments rainfall-runoff simulation used in
both gauged and ungauged sites [41–43].

It is necessary to implement the effective data assimilation in the forecast process to bridge the
immense gap between the theory and operational practice [44]. Comprehensive reviews of data
assimilation approaches in operational hydrologic forecasting were presented by Liu et al. [45]. Since
uncertainty is an inherent characteristic of watershed hydrodynamics, an ideal flood forecasting
system should incorporate a real-time updating algorithm that revises the model state to improve
the forecasting accuracy. Refsgaard [46] reported that techniques for updating real-time forecasting
can be classified into the following four categories: (1) updating input variables; (2) updating state
variables; (3) updating model parameters; and (4) updating output variables (i.e., error prediction).
Previous studies have developed updating techniques based on time-series analysis [47,48], statistical
methods [17,49], multiple regression analysis [50], dimensional variational algorithms [51,52], and the
filter approaches [53–58]. Selection of an appropriate updating algorithm depends on the availability
of real-time feedback data and the structure of the rainfall-runoff model employed for flow forecasting.

The purpose of this study is to develop an effective flood forecasting system for midsize rural
watersheds. We adopted the grey rainfall forecasting technique based on existing hourly rainfall data
to avoid poor radar reflectivity in mountainous watersheds. In performing the watershed runoff
simulation, a geomorphology-based runoff model which can account different geomorphologic and
hydrological characteristics of the watershed was used in this study. Furthermore, a flow updating
algorithm was linked to the runoff model to estimate watershed runoff in the next three hours. The
proposed flow forecasting system can operate with high efficiency to meet the requirements of real-time
flow forecasting. The system was applied to three watersheds; one in the United States (Goodwin
Creek) and two in Northern Taiwan (Heng-Chi and San-Hsia). The results of the flood forecasting
were compared with official records to confirm the validity of the proposed system. In the following
sections, Section 2 describes the analytical methods including the short-term rainfall forecasting and
the geomorphology-based runoff model with an updating algorithm. The application of the proposed
methods and the forecast results are presented in Section 3. Section 4 summarizes the conclusions of
this study.
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2. Analytical Methods

The framework of the proposed flood forecasting system incorporates a grey rainfall forecasting
model [14], kinematic-wave-based GIUH (KW-GIUH) model [36], and flow updating algorithm that is
linked to the KW-GIUH model to improve the flow forecasting accuracy.

2.1. Short-Term Rainfall Forecasting

The grey rainfall forecasting is adopted herein for two reasons: (1) a short-term rainstorm system is
too complex to be simulated by using deterministic approaches; (2) the grey system provides an efficient
way for rainfall prediction using only small amount of past observed rainfall data. Consequently, the
grey model proposed by Deng [14] is appropriate for the present system for rainfall forecasting.

Although hydrological time-series data typically exhibit random forms, a systematic trend can be
observed after a repeatedly accumulated generating operations (AGO). According to the AGO concept,
Deng [14] developed an effective method for predicting future data based on a limited number of
observations. A series of raw rainfall data can be expressed as follows:

R(0)(t) =
[
r(0)(1), r(0)(2), ..., r(0)(k), ..., r(0)(n)

]
(1)

where R(0)(t) denotes the raw time-series rainfall data set, and r(0)(k) is the kth observed rainfall. The
first-order AGO series can be defined as [14]:

R(1)(t) =
t

∑
k=1

r(0)(k) ; t = 1, 2, 3, ..., n (2)

where R(1)(t) is the first-order AGO rainfall time series, and r(1)(t) is the first-order AGO observed
rainfall data at time t. A first-order differential equation is employed to fit the cumulative rainfall data,
which can be expressed as:

dR(1)(t)
dt

+ aR(1)(t) = b (3)

where a and b are the grey system model parameters. Deng [14] indicated that the whitening of the
grey derivatives of discrete data with unit time intervals can be expressed as:

dR(1)(t)
dt

∣∣∣∣∣
t=k

= r(1)(k)− r(1)(k − 1) = R(0)(k) (4)

The whitening value of R(1)(t)
∣∣∣
t=k

is defined as:

Z(1)(k) = R(1)(t)
∣∣∣
t=k

∼= 1
2

(
r(1)(k) + r(1)(k − 1)

)
, ∀k = 2, 3, ... , t (5)

where Z(1)(k) denotes the whitening value of R(1)(t)
∣∣∣
t=k

. Next, Equations (4) and (5) are substituted
into Equation (3) to obtain a grey discrete differential form as:

R(0)(k) + a · Z(1)(k) = b (6)

The grey parameters a and b can be estimated using the least square method. Thus, the solution
of Equation (6) is expressed as:

r̂(1)(k + Δt) =
(

r(0)(k)− b
a

)
e−ak +

b
a

(7)
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where r̂(1)(k + 1) is the forecast value of the first-order AGO series. Consequently, the rainfall depth at
the subsequent time step can be obtained from the equation:

r̂(0)(k + Δt) = r̂(1)(k + Δt)− r̂(1)(k), ∀k = 1, 2, 3, ... , n ∈ N (8)

where r̂(0)(k + Δt) is the forecast rainfall depth at time k + Δt. The grey parameters in Equation (7) are
updated when the new observed rainfall data are obtained. Yu et al. [17] indicated that the accuracy of
rainfall forecasting decreases when the lead time is increased because the forecast error is cumulated
from previous lead-time forecasting. Consequently, an algorithm called single-time-step forecasting
proposed by Yu et al. [17] was used to overcome the shortcoming.

Several studies have successfully applied the first-order grey model for hydrological
forecasting [14–17]. Because forecast errors are cumulative, grey forecasting models become less
reliable as the forecast lead time increases. However, when a grey rainfall forecasting model is
combined with a watershed rainfall-runoff model, the forecast lead time can be extended because of
the time lag in the transporting of a flood wave from upstream to downstream.

This study adopted four criteria to evaluate the performance of the grey rainfall forecasting model.
First, the error of total cumulative rainfall (ETCR) is defined as:

ETCR =

∣∣∣∣ n
∑

t=1
rt −

n
∑

t=1
r̂t

∣∣∣∣
n
∑

t=1
rt

(9)

where r̂t is the forecast rainfall at time t; rt denotes the observed rainfall at time t; and n represents
the number of time steps to be estimated. A more accurate forecast can be obtained when ETCR is
approximately zero. Second, the relative root mean square error (RMSE) is defined as:

RMSE =

√√√√√ n
∑

t=1

[(
Rt − R̂t

)
/Rt

]2

n
(10)

where Rt denotes the observed cumulative rainfall at time t; R̂t is the forecast cumulative rainfall
at time t. A more accurate forecast can be obtained when RMSE is approximately zero. Third, the
coefficient of efficiency (CE) is defined as [56]:

CE = 1 −

n
∑

t=1

(
Rt − R̂t

)2

n
∑

t=1

(
Rt − R

)2
(11)

R represents the mean of the observed cumulative rainfall. A more accurate fit between the forecast
rainfall and the observed rainfall can be obtained when CE is approximately one. Moreover, the
coefficient of correlation (CC) is defined as:

CC =

n
∑

t=1

(
Rt − R̂t

)(
R̂t − R̃

)
√

n
∑

t=1

(
Rt − R

)2 · n
∑

t=1

(
R̂t − R̃

)2
(12)

where R̃ is the mean of the forecast cumulative rainfall at time t. A more accurate forecast can be
obtained when the value of CC is approximately one. The ETCR and RMSE represent a quantitative
judgment of model performance. The CE is used to measure the similarity between the predicted and
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observed accumulated rainfall. The CC is used to measure the correlative relationship between the
predicted and observed accumulative rainfall.

2.2. Geomorphology-Based Runoff Model with an Updating Algorithm

This study adopted an IUH model to provide an efficient method for estimating watershed
runoff. The KW-GIUH model [36] was used because the IUH can be derived only by using watershed
geomorphologic information obtained from a topographic map or digital elevation dataset. The
hydrological response function of the watershed can be expressed analytically as follows [35]:

u(t) = ∑
w∈W

[
fxoi

(t) ∗ fxi (t) ∗ fxj(t) ∗ ... ∗ fxΩ(t)
]

w
· P(w) (13)

where u(t) is the IUH of the watershed; W is the flow path space, which is expressed as W =〈
xoi , xi, xj, ..., xΩ

〉
; fxoi (t) denotes the travel time probability density function in state xj with a mean

value of Txj ; ∗ denotes a convolution integral; and P(w) represents the probability of a raindrop
adopting a flow path w.

Kinematic-wave approximation can be employed to express the runoff travel time for the ith-order
surface flow region as follows [59]:

Txoi
=

⎛⎝ noLoi

S1/2
oi

im−1
e

⎞⎠ 1
m

(14)

where no is the overland-flow roughness coefficient; Loi denotes the mean ith-order overland length; Soi

is the mean ith-order overland slope; ie represents the effective rainfall intensity; and m is an exponent
recognized as 5/3 in Manning’s formula. The runoff travel time for the ith-other channel is expressed
as follows [36]:

Txi =
Bi

2ieLoi

⎡⎢⎣
⎛⎝hm

coi
+

2iencLoi Lci

S1/2
ci

Bi

⎞⎠ 1
m

− hcoi

⎤⎥⎦ (15)

where Bi is the ith-order channel width; nc represents the channel roughness coefficient; Lci is the mean
ith-order channel length; Sci denotes the mean ith-order channel slope; and hcoi is the inflow depth of
the ith-order channel caused by water transporting from upstream reaches. Hence, the runoff travel
times for different orders of overland-flow paths and channels can be estimated, and the watershed
IUH can then be derived by using Equation (13). Consequently, the watershed runoff simulated by
using KW-GIUH model can be expressed as:

Qsim,t =
∫ τ

0
i(τ)u(t − τ)dτ (16)

where Qsim,t is the simulated direct runoff at time t; i(τ) is the rainfall intensity; and u(t − τ) is the
unit impulse response function derived from the KW-GIUH model.

Uncertainty is an inherent hydrodynamic characteristic of watershed; therefore, this study adopted
a real-time updating algorithm to improve the accuracy of flow forecasting. The change in measured
discharge between time t and t + Δt can be expressed as:

ΔQrec = Qrec,t+Δt − Qrec,t (17)

where Qrec,t and Qrec,t+Δt denote the measured discharges at time t and t + Δt, respectively; and ΔQrec

represents the change in measured discharge between time t and t + Δt. Assuming that a reliable
runoff model is used and short-term rainfall forecasting data (i.e., with a lead time of several hours) are
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available, the value of ΔQrec in Equation (17) is assumed equal to the change in simulated discharge
between time t and t + Δt; this is illustrated as follows:

ΔQrec = ΔQsim = Qsim,t+Δt − Qsim,t (18)

where Qsim,t and Qsim,t+Δt denote the simulated discharges at time t and t + Δt, respectively; and
ΔQsim represents the change in simulated discharge between time t and t + Δt. Consequently, the
forecast discharge at time t can be approximated by:

Q f ore,t+Δt = Qrec,t + ΔQrec
∼= Qrec,t + ΔQsim

(19)

where Q f ore,t+Δt is the forecast discharge at time t + Δt and ΔQsim is obtained from Equation (18). The
schematic of the updating algorithm is shown in Figure 1. In the case that the real-time measured
discharge Qrec,t cannot be transmitted successfully through the telemetric system during the rainstorm,
the forecast discharge at time t + Δt (Q f ore,t+Δt) is replaced by the model generated runoff discharge
(Qsim,t+Δt) without using the updating techniques. Although the proposed updating algorithm is
simple, it is an efficient method for watershed runoff forecasting.

 

Figure 1. Schematic of the updating algorithm.

To evaluate the suitability of the KW-GIUH model, two criteria were chosen to determine the
goodness-of-fit between the observed and simulated flow hydrographs. The coefficient of efficiency
CEQ is defined as follows [60]:

CEQ = 1 −

n
∑

t=1

(
Qrec(t)− Q f ore(t)

)2

n
∑

t=1

(
Qrec(t)− Qrec

)2
(20)

where Qrec(t) and Q f ore(t) denote the recorded and forecast discharges at time t, respectively; Qrec is
the mean recorded discharge during a storm event, and n is the number of discharge records during the
storm event. The CEQ is used to measure the similarity between the predicted and observed discharge
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hydrographs. A more accurate fit is obtained when the value of CEQ is approximately one. The peak
discharge error is defined as follows:

EQP(%) =

∣∣∣(QP) f ore − (QP)rec

∣∣∣
(QP)rec

× 100 (21)

where (QP) f ore is the forecast peak discharge, and (QP)rec denotes the recorded peak discharge. The
EQp is used to measure the error of peak discharge directly. The error of time to peak discharge, ETP,
is defined as:

ETP = (TP) f ore − (TP)rec (22)

where (TP) f ore and (TP)rec are the forecast and recorded time to peak discharge, respectively.

3. Model Applications

3.1. Description of Study Watersheds

Three watersheds were selected to investigate the applicability of the proposed model; one in
the United States (Goodwin Creek) and two in Northern Taiwan (Heng-Chi and San-Hsia). Goodwin
Creek is a tributary of Long Creek that flows into the Yocona River, which is one of the main rivers of
the Yazoo River Basin. Figure 2a shows the watershed stream network and locations of hydrological
gauging stations. The terrain elevation of the Goodwin Creek watershed ranges from 71 to 128 m
above sea level (mean). The land area is composed of cultivated land (13.79%), forests (26.00%),
pastures (59.80%), and water (0.41%). The climate of the Goodwin Creek watershed is humid with hot
temperatures during summer and mild temperatures during winter. The mean annual temperature
and rainfall are approximately 17 ◦C and 1399 mm, respectively. Most of the rainfall occurs during
winter and spring. Hydrological data were obtained from the Agricultural Research Service of the
United States Department of Agriculture. Among the 32 rain-gauging stations in the area, this study
obtained rainfall records from nine stations. The Thiessen polygons method [61] was employed to
calculate the hourly spatial-average rainfall intensities. Fourteen flow gauging stations were set up in
the Goodwin Creek watershed area. The control areas of the flow gauging stations ranged from 0.06 to
21.39 km2. In this study, Flow-gauging Station No.1 (STA01), which has a drainage area of 21.39 km2,
was selected as the test site to verify the model.

The Heng-Chi and San-Hsia watersheds are subwatersheds in Ta-Han Creek, which is one of the
main rivers of the Tam-Sui River Basin in Northern Taiwan. Figure 2b shows the watershed stream
networks and locations of the hydrological gauging stations. The elevation of the Heng-Chi (San-Hsia)
watershed ranges from 20 to 970 m (30 to 1770 m), and the land is composed of 70% (75%) forest, 25%
(20%) cultivated land, and 5% (5%) buildings/road. The mean annual precipitation in these areas is
approximately 3000 mm. Most of the severe storm events are from typhoon activity between May and
October, and intense rainfall (>50 mm/h) occurs every year.

The geomorphologic factors were obtained from a digital elevation model [62] based on datasets
of the Goodwin Creek watershed (30-m resolution) and the Heng-Chi and San-Hsia watersheds (40-m
resolution). Table 1 shows the geomorphologic factors of the watersheds used in the KW-GIUH model.
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(a) (b) 

Figure 2. Watershed boundary and channel network of the study watersheds: (a) Goodwin Creek
watershed; (b) Heng-Chi and San-Hsia watershed.

Table 1. Geomorphologic factors of the study watersheds.

Watershed i Ni Ai (km2) Lci (km2) Sci (m/m) Soi (m/m)

Goodwin
(STA01)

1 76 0.18 0.40 0.0128 0.0228
2 16 0.75 0.76 0.0090 0.0257
3 4 3.08 1.56 0.0060 0.0260
4 1 21.38 7.53 0.0019 0.0213

Heng-Chi

1 29 1.07 0.80 0.1304 0.3028
2 6 6.91 3.13 0.0580 0.2957
3 2 19.81 1.79 0.0105 0.2468
4 1 53.15 4.98 0.0078 0.1977

San-Hsia

1 69 1.15 0.92 0.1613 0.3138
2 16 4.99 2.08 0.0924 0.3016
3 3 18.15 3.88 0.0372 0.3644
4 1 125.88 17.83 0.0131 0.2918

Notes: Ni is the number of ith-order streams; Ai is the mean ith-order subwatershed area; Lci is the mean
ith-order channel length; Sci is the mean ith-order channel slope; Soi is the mean ith-order hillslope slope.

3.2. Rainfall Forecasting

Table 2 shows the details of storm events that occurred in the study watersheds; these details
were used for parameter calibration and model verification. In performing the grey rainfall model,
parameters a and b (Equation (7)) can be estimated by using a least square method only based on
small amount of past observed rainfall data. The watershed geomorphological factors in performing
the KW-GIUH model are shown in Table 1, which can be obtained by applying a digital elevation
model. The calibrated model parameters of the KW-GIUH model for the Heng-Chi and San-Hsia
watersheds are no = 0.6 and nc = 0.05, and no = 0.2 and nc = 0.02 for the Goodwin watershed. The
values of model parameters were stable for the test storms in the watersheds. Sensitivity analysis for
the model parameters of KW-GIUH can be found in Lee and Yen [42].

231



Water 2015, 7, 1840–1865

Table 2. Storm records analyzed in this study.

Watershed
(Rain Station)

Event Date
Rainfall Peak

(mm/h)
Total Rainfall

(mm)
Rainfall

Duration (h)
Flow Peak

(m3/s)

Goodwin
(STA01)

10/07/1989 11.13 92 48 29.7
02/03/1991 16.80 62 18 21.1
14/02/1992 4.66 30 11 9.1
04/08/1995 13.29 113 28 16.7
29/11/1996 6.95 44 29 10.2
23/12/1997 7.17 45 13 19.6
15/02/1998 10.20 62 48 27.3
13/03/1999 11.92 95 52 31.0
01/04/2000 24.09 152 63 32.9
17/01/2001 7.26 78 60 10.3

Heng-Chi
(Ta-Pao)

17/08/1984 36.00 372 51 169.0
16/09/1985 69.00 348 25 620.0
17/09/1986 46.00 420 61 457.0
27/07/1987 32.00 114 18 164.0
08/09/1987 59.00 261 45 329.0
18/08/1990 48.00 342 48 492.0
05/06/1993 54.00 146 18 179.0
10/07/1994 22.00 150 31 58.2
30/07/1996 31.00 450 42 243.0
31/10/2000 33.00 508 38 317.0

12125San-Hsia
(Ta-Pao)

17/08/1984 36.00 372 51 214.0
16/09/1985 69.00 348 25 620.0
17/09/1986 46.00 420 61 404.0
27/07/1987 32.00 114 18 349.0
08/09/1987 59.00 261 45 379.0
18/08/1990 48.00 342 48 1060.0
05/06/1993 54.00 146 18 339.0
10/07/1994 22.00 150 31 257.0
30/07/1996 31.00 450 42 720.0
31/10/2000 33.00 508 38 435.0

Table 3 and Figure 3 show the performance of the grey rainfall forecasting model for the three
watersheds. The ETCR and RMSE from Equations (9) and (10) represent the quantitative evaluation of
the model performance, and CE from Equation (11) indicates the performance of the model based on
cumulative rainfall. The performance of the model was assessed qualitatively based on the value of
CC (Equation (12)) relative to the correlation between the forecast and observed cumulative rainfall.
The results showed that ETCR is less than 0.24, RMSE is less than 0.38, CE is greater than 0.85, and
CC is greater than 0.90, indicating that the forecast and recorded hyetographs are in good agreement.
The forecast and recorded hyetographs in Figures 4 and 5 show the performance of the grey rainfall
forecasting model based on lead times ranging from 1 to 3 h. Although the accuracy of the forecast
rainfall decreases as the lead time increased, the results indicate that the proposed grey model is
suitable for rainfall forecasting.
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Table 3. Results of grey forecast rainfall.

Watershed
Event
Date

ETCR RMSE CE CC

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

Goodwin
Creek

10/07/1989 0.03 0.18 0.22 0.03 0.08 0.17 0.99 0.98 0.92 0.99 0.95 0.88
02/03/1991 0.05 0.16 0.20 0.08 0.17 0.29 0.96 0.93 0.88 0.99 0.95 0.88
14/02/1992 0.01 0.03 0.08 0.02 0.14 0.27 1.00 0.98 0.95 0.99 0.96 0.90
04/08/1995 0.06 0.11 0.16 0.04 0.17 0.24 0.97 0.90 0.87 0.99 0.98 0.92
29/11/1996 0.03 0.09 0.10 0.08 0.24 0.31 0.97 0.90 0.85 0.99 0.98 0.96
23/12/1997 0.06 0.15 0.21 0.03 0.19 0.25 0.98 0.91 0.88 0.99 0.99 0.97
15/02/1998 0.04 0.07 0.16 0.06 0.11 0.19 1.00 0.94 0.88 1.00 0.96 0.97
13/03/1999 0.09 0.14 0.20 0.06 0.18 0.21 0.99 0.95 0.89 1.00 0.98 0.90
01/04/2000 0.03 0.08 0.15 0.03 0.12 0.16 0.99 0.96 0.91 1.00 1.00 0.98
17/01/2001 0.07 0.11 0.19 0.07 0.11 0.16 0.98 0.91 0.88 0.98 0.94 0.91

Heng-Chi and
San-Hsia

17/08/1984 0.05 0.08 0.16 0.11 0.18 0.27 0.99 0.98 0.94 1.00 0.98 0.96
16/09/1985 0.06 0.12 0.24 0.09 0.22 0.31 0.96 0.93 0.86 0.99 0.95 0.88
17/09/1986 0.01 0.03 0.05 0.05 0.18 0.21 1.00 0.98 0.95 1.00 1.00 0.99
27/07/1987 0.09 0.18 0.22 0.03 0.11 0.18 0.97 0.91 0.88 0.98 0.93 0.91
08/09/1987 0.01 0.09 0.10 0.14 0.26 0.38 0.89 0.83 0.80 1.00 0.98 0.96
18/08/1990 0.03 0.09 0.12 0.08 0.17 0.24 0.95 0.85 0.81 1.00 0.99 0.97
05/06/1993 0.05 0.08 0.11 0.01 0.04 0.19 1.00 0.94 0.87 0.99 0.96 0.97
10/07/1994 0.09 0.11 0.18 0.02 0.13 0.20 0.98 0.99 0.96 0.99 0.98 0.90
30/07/1996 0.04 0.07 0.11 0.05 0.15 0.22 0.99 0.95 0.83 1.00 1.00 0.98
31/10/2000 0.04 0.05 0.17 0.08 0.09 0.13 0.99 0.97 0.93 1.00 1.00 0.99

Average 0.05 0.10 0.16 0.06 0.16 0.23 0.98 0.93 0.89 1.00 0.98 0.94
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Figure 3. Results of evaluated criteria for grey forecast rainfall.
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Figure 4. Grey model for rainfall forecasting in Goodwin Creek watershed: (a) 1-h ahead; (b) 2-h ahead;
(c) 3-h ahead.
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Figure 5. Grey model for rainfall forecasting in San-Hsia watershed: (a) 1-h ahead; (b) 2-h ahead;
(c) 3-h ahead.
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3.3. Flow Forecasting

Four sets of tests were performed to evaluate the applicability of the proposed system for real-time
flood prediction. The simulation results are detailed shown as follows.

(1) Flow forecasting by using measured rainfall and without flow updating

This set of tests was conducted to evaluate the performance of the KW-GIUH model for simulating
rainfall-runoff. Observed rainfall data were inputted into the KW-GIUH model and the flow updating
algorithm was not used in the simulation. Figure 6 shows the results of runoff simulations for
the Goodwin Creek and San-Hsia watersheds. As shown in Table 4, the simulated and observed
hydrographs are in relatively good agreement in the study watersheds. The CEQ values of the
simulated hydrographs for all storm events are greater than 0.82, and most of the EQP and ETP are
lesser than 10% and 2 h, respectively. The results indicate that the KW-GIUH model is reliable for
rainfall-runoff simulation in these two watersheds. Figure 6a shows that the temporal distributions
of the observed rainfall hyetograph and flow hydrograph were inconsistent; specifically, the rainfall
peak occurred at 45 h, whereas the flow peak occurred at 57 h. The reason for this inconsistency is
unknown. However, this unusual hydrological record could be used to test the effectiveness of the
proposed flow updating algorithm.
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Figure 6. Flow forecasting using measured rainfall data and without flow updating in Goodwin Creek
and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01); (b) San-Hsia watershed.
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Table 4. Results of flow forecasting using measured rainfall and without flow updating technique.

Watershed Event Date CEQ EQp (%) ETp (h)

Goodwin (SAT01)

10/07/1989 0.83 6.29 1
02/03/1991 0.92 2.56 0
14/02/1992 0.88 4.33 1
04/08/1995 0.86 7.81 −1
29/11/1996 0.93 2.08 0
23/12/1997 0.89 3.54 0
15/02/1998 0.88 4.28 0
13/03/1999 0.84 3.07 0
01/04/2000 0.90 0.09 1
17/01/2001 0.82 25.00 12

Heng-Chi

17/08/1984 0.92 2.00 −1
16/09/1985 0.88 0.24 −1
17/09/1986 0.85 1.82 0
27/07/1987 0.86 4.16 0
08/09/1987 0.92 3.46 0
18/08/1990 0.85 4.52 −1
05/06/1993 0.97 2.01 −1
10/07/1994 0.86 1.25 −1
30/07/1996 0.94 3.54 −1
31/10/2000 0.95 3.01 −2

San-Hsia

17/08/1984 0.90 6.54 0
16/09/1985 0.89 3.33 0
17/09/1986 0.86 6.29 1
27/07/1987 0.84 5.54 1
08/09/1987 0.88 5.19 0
18/08/1990 0.83 2.24 0
05/06/1993 0.87 5.64 −1
10/07/1994 0.95 2.13 0
30/07/1996 0.96 1.32 −1
31/10/2000 0.95 7.65 −3

Average 0.89 4.36 0.10

(2) Flow forecasting by using forecast rainfall and without flow updating

For the second set of tests, flow forecasting was performed by inputting the forecast rainfall
(obtained from the grey model) into the KW-GIUH model. Table 5 and Figure 7 show that the flow
forecasting accuracy decreased as the lead time increased from 1 to 3 h. For the t + 1 forecast, the
forecast flow is in good agreement with the observed flow. For the t + 2 and t + 3 forecasts, the temporal
variation of the flow hydrograph is adequately represented in the simulation although the simulated
flow peak is higher than the observed flow peak because the forecast peak rainfall was overestimated
in the hyetograph. Regarding the storm event at the Goodwin Creek watershed on 17 January 2001,
the results shown in Figure 7a indicate that the KW-GIUH model forecast the first flow peak accurately.
However, the second flow peak is underestimated because of the inconsistency between the rainfall
hyetograph and flow hydrograph as mentioned.
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Table 5. Results of flow forecasting using forecast rainfall and without flow updating technique.

Watershed
Event
Date

CEQ EQp (%) ETp (h)

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

Goodwin
(SAT01)

10/07/1989 0.82 0.49 0.31 14.41 37.91 51.18 1 2 3
02/03/1991 0.92 0.84 0.81 9.88 27.41 39.42 1 2 3
14/02/1992 0.87 0.86 0.77 12.48 19.88 32.77 0 1 2
04/08/1995 0.86 0.83 0.77 11.82 20.43 28.91 1 2 3
29/11/1996 0.92 0.85 0.83 8.97 14.81 17.94 0 1 2
23/12/1997 0.89 0.86 0.83 18.13 29.87 41.09 1 1 2
15/02/1998 0.87 0.81 0.69 14.30 28.99 45.17 1 2 3
13/03/1999 0.82 0.74 0.70 7.69 12.90 18.09 0 1 2
01/04/2000 0.90 0.55 0.03 8.95 45.27 62.98 1 2 3
17/01/2001 0.82 0.81 0.80 24.75 1.27 30.97 12 12 12

Heng-Chi

17/08/1984 0.90 0.86 0.81 4.81 11.85 19.28 1 2 2
16/09/1985 0.87 0.81 0.74 3.29 8.74 20.32 1 1 2
17/09/1986 0.83 0.79 0.71 10.93 24.31 31.88 1 2 3
27/07/1987 0.85 0.83 0.78 8.49 18.41 24.31 1 2 2
08/09/1987 0.92 0.90 0.86 7.96 16.19 19.22 1 2 2
18/08/1990 0.75 0.43 0.09 14.41 19.84 31.03 1 2 3
05/06/1993 0.95 0.94 0.88 2.09 7.31 9.08 0 1 2
10/07/1994 0.85 0.81 0.70 1.09 8.54 11.72 0 1 1
30/07/1996 0.93 0.91 0.82 9.75 14.32 18.97 −1 0 0
31/10/2000 0.95 0.94 0.86 4.71 5.47 7.93 −3 −2 −1

San-Hsia

17/08/1984 0.90 0.81 0.79 8.49 14.55 21.09 1 2 2
16/09/1985 0.88 0.80 0.74 6.39 11.52 17.92 1 1 2
17/09/1986 0.86 0.83 0.52 9.31 18.45 37.01 1 2 3
27/07/1987 0.84 0.83 0.67 4.09 11.12 14.17 1 2 2
08/09/1987 0.87 0.81 0.63 4.41 9.18 22.97 1 2 2
18/08/1990 0.81 0.62 0.31 6.31 11.48 18.02 1 2 3
05/06/1993 0.85 0.81 0.76 7.31 9.52 16.55 0 1 2
10/07/1994 0.95 0.91 0.85 4.86 7.59 16.31 0 1 1
30/07/1996 0.95 0.94 0.89 1.96 4.48 12.05 −1 0 0
31/10/2000 0.94 0.92 0.80 8.67 13.71 16.58 −3 −2 −1

Average 0.88 0.80 0.69 8.69 16.18 25.16 0.73 1.60 2.23
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Figure 7. Cont.

238



Water 2015, 7, 1840–1865

(b) 

0 10 20 30 40 50 60 70 80 90

Time (h)

0

300

600

900

Q
 (m

3 /s
)

1-h ahead 
2-h ahead 
3-h ahead 

60
40
20

0

i e (
m

m
/h

)

      July 1996

           Recorded

           

 

0 10 20 30 40

Time (h)

0

200

400

600

Q
 (m

3 /s
)

1-h ahead
2-h ahead
3-h ahead

40

20

0

i e (
m

m
/h

)

      Oct. 2000

           Recorded

           

Figure 7. Flow forecasting using forecast rainfall and without flow updating in Goodwin Creek and
San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01); (b) San-Hsia watershed.

(3) Flow forecasting by using measured rainfall and flow updating technique

The third set of tests was conducted to evaluate the performance of the KW-GIUH model when
the flow updating algorithm was used in the rainfall-runoff simulation, as shown in Equation (18). The
measured rainfall at t + 1, t + 2, and t + 3 was inputted into the KW-GIUH model. Table 6 and Figure 8
show the simulation results, which were evaluated based on the coefficient of efficiency CEQ, error of
peak discharge EQP, and error of time to peak discharge ETP. When the value CEQ is approximately
one and EQP and ETP are approximately zero, good agreement between the recorded and simulated
hydrographs is anticipated. The results in Figure 8 show that the CEQ values are higher than 0.96, the
mean EQP is 2.73%, and the mean ETP is 0.17 h for the t + 1 simulation. For the t + 2 simulation, the
CEQ values are higher than 0.87, the mean EQP is 4.40%, and the mean ETP is 0.67 h. Finally, for the
t + 3 simulation, the CEQ values are higher than 0.81, the mean EQP is 7.92%, and the mean ETP is
1.23 h. Figure 9 shows that the forecast and recorded hydrographs are in good agreement for all storm
events in this test, indicating that the proposed flow updating algorithm combined with the KW-GIUH
model simulated the watershed runoff more accurately than do the KW-GIUH model alone. Moreover,
regarding the storm event at the Goodwin Creek watershed on 17 January 2001, the flow hydrographs
in Figures 7a and 9a show that the second peak was accurately forecasted when the flow updating
algorithm is used, despite the recorded flow peak appearing to be unreasonable. The results show that
using a purely deterministic approach to simulate watershed rainfall runoff is difficult without the
assistance of a real-time adaptive algorithm.
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Table 6. Results of flow forecasting using measured rainfall and flow updating technique.

Watershed Event Date
CEQ EQp (%) ETp (h)

1-h
Update

2-h
Update

3-h
Update

1-h
Update

2-h
Update

3-h
Update

1-h
Update

2-h
Update

3-h
Update

Goodwin
(SAT01)

10/07/1989 0.97 0.93 0.89 2.54 5.77 8.43 1 1 1
02/03/1991 0.98 0.94 0.90 0.14 3.43 4.95 1 1 2
14/02/1992 0.96 0.91 0.84 3.83 5.46 5.57 0 0 1
04/08/1995 0.96 0.92 0.83 2.53 4.59 7.33 0 0 1
29/11/1996 0.96 0.91 0.85 3.64 4.22 8.36 1 2 2
23/12/1997 0.97 0.92 0.85 4.81 5.65 8.78 −1 0 1
15/02/1998 0.96 0.92 0.86 0.19 3.19 3.97 −1 −1 0
13/03/1999 0.96 0.91 0.83 3.71 0.13 9.80 0 1 1
01/04/2000 0.97 0.93 0.85 1.94 0.97 8.11 −1 −1 0
17/01/2001 0.97 0.87 0.81 0.84 0.53 2.05 1 1 1

Heng-Chi

17/08/1984 0.96 0.92 0.88 4.75 5.69 10.54 0 0 1
16/09/1985 0.97 0.93 0.89 4.55 6.29 14.12 0 0 1
17/09/1986 0.97 0.92 0.90 2.30 1.89 4.92 0 1 2
27/07/1987 0.96 0.91 0.88 0.76 2.69 5.50 0 1 1
08/09/1987 0.96 0.92 0.89 1.62 5.86 8.80 1 2 2
18/08/1990 0.97 0.93 0.91 0.50 3.40 4.14 −1 0 0
05/06/1993 0.98 0.93 0.91 2.75 0.68 8.15 1 2 2
10/07/1994 0.97 0.93 0.90 3.03 4.42 9.09 1 1 2
30/07/1996 0.96 0.91 0.89 3.16 2.19 2.09 0 0 1
31/10/2000 0.98 0.93 0.91 3.17 10.78 14.44 0 1 1

San-Hsia

17/08/1984 0.96 0.92 0.87 2.95 5.69 12.86 1 1 2
16/09/1985 0.96 0.91 0.88 1.21 8.33 13.23 0 1 1
17/09/1986 0.97 0.92 0.89 1.53 1.64 3.23 0 1 1
27/07/1987 0.97 0.92 0.88 3.76 3.24 4.18 0 0 1
08/09/1987 0.97 0.91 0.86 1.64 6.24 10.8 0 1 2
18/08/1990 0.96 0.91 0.88 1.69 3.23 3.15 0 0 1
05/06/1993 0.97 0.94 0.91 2.42 4.89 9.33 1 2 2
10/07/1994 0.96 0.91 0.88 1.72 3.09 11.56 0 0 1
30/07/1996 0.98 0.98 0.93 3.84 3.28 4.34 −1 0 1
31/10/2000 0.99 0.96 0.95 6.22 7.35 9.42 1 2 2

Average 0.97 0.92 0.88 2.73 4.40 7.92 0.17 0.67 1.23
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Figure 8. Results of evaluated criteria for flow forecasting using measured rainfall and flow
updating technique.
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Figure 9. Flow forecasting using measured rainfall and flow updating algorithm in Goodwin Creek
and San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01); (b) San-Hsia watershed.

(4) Flow forecasting by using forecast rainfall and flow updating algorithm

The final set tests was conducted to confirm the performance of the proposed flood forecasting
system. The forecast rainfall is generated by using the grey model, and the flow updating algorithm is
included in the runoff simulation by using the KW-GIUH model to improve the forecasting accuracy.
Table 7 and Figure 10 show that the mean CEQ (EQP) values of the t + 1, t + 2, and t + 3 forecasts are
0.92 (4.50%), 0.80 (9.12%), and 0.72 (13.57%). The mean ETP values of the t + 1, t + 2, and t + 3 forecasts
are 0.70 h, 1.47 h, and 2.13 h, respectively. The results of the storm event simulations in Figure 11 shows
that the recorded and simulated hydrographs are in good agreement for all the three watersheds under
various geoclimate conditions, even as the lead time increases from 1 to 3 h.
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Table 7. Results of flow forecasting using forecast rainfall and flow updating technique.

Watershed
Event
Date

CEQ EQp (%) ETp (h)

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

1-h
Ahead

2-h
Ahead

3-h
Ahead

Goodwin
(SAT01)

10/07/1989 0.94 0.82 0.80 3.81 11.21 13.91 1 1 2
02/03/1991 0.95 0.87 0.77 1.00 3.60 7.33 1 1 2
14/02/1992 0.89 0.69 0.66 4.22 1.89 4.04 1 2 2
04/08/1995 0.88 0.70 0.69 1.01 8.67 12.59 1 2 3
29/11/1996 0.89 0.86 0.81 3.64 9.45 16.24 1 1 2
23/12/1997 0.91 0.69 0.65 7.28 8.15 14.89 0 1 2
15/02/1998 0.93 0.85 0.79 9.56 10.69 11.28 0 1 2
13/03/1999 0.91 0.79 0.78 3.70 8.91 7.28 0 1 1
01/04/2000 0.95 0.72 0.61 4.13 12.34 18.75 1 2 3
17/01/2001 0.97 0.94 0.91 1.07 0.39 4.20 0 1 1

Heng-Chi

17/08/1984 0.95 0.76 0.62 8.42 11.21 3.71 1 1 2
16/09/1985 0.89 0.71 0.61 4.88 13.77 5.66 1 1 2
17/09/1986 0.90 0.84 0.79 1.52 8.15 19.10 1 2 3
27/07/1987 0.96 0.76 0.61 6.79 9.97 11.52 1 2 2
08/09/1987 0.89 0.75 0.62 0.04 7.44 16.60 1 2 3
18/08/1990 0.91 0.78 0.66 3.21 0.22 9.67 0 1 1
05/06/1993 0.88 0.77 0.61 7.93 12.73 19.02 1 2 3
10/07/1994 0.92 0.74 0.64 3.28 11.82 23.11 1 1 2
30/07/1996 0.96 0.90 0.83 1.70 3.62 6.61 1 2 2
31/10/2000 0.95 0.89 0.82 3.68 5.03 10.02 1 2 2

San-Hsia

17/08/1984 0.93 0.76 0.63 9.31 11.59 17.42 1 2 3
16/09/1985 0.89 0.74 0.61 5.81 14.60 19.88 1 2 2
17/09/1986 0.91 0.91 0.78 8.44 18.00 22.30 0 1 2
27/07/1987 0.89 0.72 0.59 7.32 11.52 15.39 1 2 3
08/09/1987 0.96 0.83 0.74 1.75 5.47 14.50 0 1 1
18/08/1990 0.91 0.75 0.65 1.68 3.13 9.50 1 2 2
05/06/1993 0.88 0.71 0.63 6.03 22.14 27.56 1 2 3
10/07/1994 0.92 0.78 0.69 1.32 13.36 28.36 0 1 2
30/07/1996 0.98 0.97 0.92 4.60 4.83 5.03 1 1 2
31/10/2000 0.98 0.95 0.94 7.75 9.65 11.62 0 1 2

Average 0.92 0.80 0.72 4.50 9.12 13.57 0.70 1.47 2.13
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Figure 10. Results of evaluated criteria for flow forecasting using forecast rainfall and flow
updating technique.
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Figure 11. Flow forecasting using forecast rainfall and flow updating algorithm in Goodwin Creek and
San-Hsia watersheds: (a) Goodwin Creek watershed (STA 01); (b) San-Hsia watershed.

4. Conclusions

This study developed an integrated framework for flood forecasting by using a rainfall forecasting
model, watershed rainfall-runoff model, and real-time flow updating algorithm. Considering that
current numerical meteorological models used in Taiwan cannot provide a 3-h prediction of the
temporal distribution of rainfall, this study adopted a grey rainfall forecasting model. Using the
KW-GIUH model for runoff simulation is advantageous because it can be developed based on
only geomorphologic factors of the watershed. Moreover, a real-time flow updating algorithm
was incorporated into the KW-GIUH structure to account for the uncertainty of watershed runoff
processes. The proposed flood forecasting system was tested based on hydrological records from
three watersheds under different geomorphological and hydrological conditions. For the 1-h, 2-h,
and 3-h ahead forecast cases, the simulated mean coefficient of efficiency (error of peak discharge)
is 0.92 (4.5%), 0.80 (9.12%), and 0.72 (13.57%). The mean ETP values of the t + 1, t + 2, and t + 3
forecast cases are 0.70 h, 1.47 h, and 2.13 h, respectively. These results indicate that the proposed
flood forecasting system can provide credible warning information for authorities. Furthermore,
the proposed flow forecasting system can operate with high efficiency to meet the requirements of
real-time flow forecasting. Nevertheless, in considering that the forecast rainfall is assumed to have
the same tendency as previous rainfall; hence, only short-term prediction is applicable for this rainfall
forecasting system. Since spatially-uniform rainfall is used in the KW-GIUH model, the proposed flow
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forecasting may be not used in a large watershed. Further validations to account for watersheds with
various hydrological and geomorphologic characteristics are still required in future research.
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