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ETAPS Foreword

Welcome to the 22nd ETAPS! This is the first time that ETAPS took place in the Czech
Republic in its beautiful capital Prague.

ETAPS 2019 was the 22nd instance of the European Joint Conferences on Theory
and Practice of Software. ETAPS is an annual federated conference established in
1998, and consists of five conferences: ESOP, FASE, FoSSaCS, TACAS, and POST.
Each conference has its own Program Committee (PC) and its own Steering Committee
(SC). The conferences cover various aspects of software systems, ranging from theo-
retical computer science to foundations to programming language developments,
analysis tools, formal approaches to software engineering, and security.

Organizing these conferences in a coherent, highly synchronized conference pro-
gram enables participation in an exciting event, offering the possibility to meet many
researchers working in different directions in the field and to easily attend talks of
different conferences. ETAPS 2019 featured a new program item: the Mentoring
Workshop. This workshop is intended to help students early in the program with advice
on research, career, and life in the fields of computing that are covered by the ETAPS
conference. On the weekend before the main conference, numerous satellite workshops
took place and attracted many researchers from all over the globe.

ETAPS 2019 received 436 submissions in total, 137 of which were accepted,
yielding an overall acceptance rate of 31.4%. I thank all the authors for their interest in
ETAPS, all the reviewers for their reviewing efforts, the PC members for their con-
tributions, and in particular the PC (co-)chairs for their hard work in running this entire
intensive process. Last but not least, my congratulations to all authors of the accepted
papers!

ETAPS 2019 featured the unifying invited speakers Marsha Chechik (University of
Toronto) and Kathleen Fisher (Tufts University) and the conference-specific invited
speakers (FoSSaCS) Thomas Colcombet (IRIF, France) and (TACAS) Cormac
Flanagan (University of California at Santa Cruz). Invited tutorials were provided by
Dirk Beyer (Ludwig Maximilian University) on software verification and Cesare
Tinelli (University of Iowa) on SMT and its applications. On behalf of the ETAPS
2019 attendants, I thank all the speakers for their inspiring and interesting talks!

ETAPS 2019 took place in Prague, Czech Republic, and was organized by Charles
University. Charles University was founded in 1348 and was the first university in
Central Europe. It currently hosts more than 50,000 students. ETAPS 2019 was further
supported by the following associations and societies: ETAPS e.V., EATCS (European
Association for Theoretical Computer Science), EAPLS (European Association for
Programming Languages and Systems), and EASST (European Association of Soft-
ware Science and Technology). The local organization team consisted of Jan Vitek and
Jan Kofron (general chairs), Barbora Buhnova, Milan Ceska, Ryan Culpepper, Vojtech
Horky, Paley Li, Petr Maj, Artem Pelenitsyn, and David Safranek.



The ETAPS SC consists of an Executive Board, and representatives of the
individual ETAPS conferences, as well as representatives of EATCS, EAPLS, and
EASST. The Executive Board consists of Gilles Barthe (Madrid), Holger Hermanns
(Saarbrücken), Joost-Pieter Katoen (chair, Aachen and Twente), Gerald Lüttgen
(Bamberg), Vladimiro Sassone (Southampton), Tarmo Uustalu (Reykjavik and
Tallinn), and Lenore Zuck (Chicago). Other members of the SC are: Wil van der Aalst
(Aachen), Dirk Beyer (Munich), Mikolaj Bojanczyk (Warsaw), Armin Biere (Linz),
Luis Caires (Lisbon), Jordi Cabot (Barcelona), Jean Goubault-Larrecq (Cachan),
Jurriaan Hage (Utrecht), Rainer Hähnle (Darmstadt), Reiko Heckel (Leicester),
Panagiotis Katsaros (Thessaloniki), Barbara König (Duisburg), Kim G. Larsen
(Aalborg), Matteo Maffei (Vienna), Tiziana Margaria (Limerick), Peter Müller
(Zurich), Flemming Nielson (Copenhagen), Catuscia Palamidessi (Palaiseau),
Dave Parker (Birmingham), Andrew M. Pitts (Cambridge), Dave Sands (Gothenburg),
Don Sannella (Edinburgh), Alex Simpson (Ljubljana), Gabriele Taentzer (Marburg),
Peter Thiemann (Freiburg), Jan Vitek (Prague), Tomas Vojnar (Brno), Heike Wehrheim
(Paderborn), Anton Wijs (Eindhoven), and Lijun Zhang (Beijing).

I would like to take this opportunity to thank all speakers, attendants, organizers
of the satellite workshops, and Springer for their support. I hope you all enjoy the
proceedings of ETAPS 2019. Finally, a big thanks to Jan and Jan and their local
organization team for all their enormous efforts enabling a fantastic ETAPS in Prague!

February 2019 Joost-Pieter Katoen
ETAPS SC Chair

ETAPS e.V. President
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Preface

This volume contains the papers presented at the 22nd International Conference on
Fundamental Approaches to Software Engineering (FASE 2019) held during April
9–11, 2019, in Prague. FASE 2019 was organized as part of the annual European Joint
Conferences on Theory and Practice of Software (ETAPS 2019). ETAPS is the most
important and visible annual European event related to software sciences.

As usual, the papers submitted to FASE focus on the foundations on which software
engineering is built. The papers submitted covered topics such as software engineering,
requirements engineering, software architectures, specification, software quality,
validation, verification of functional and non-functional properties, model-driven
development and model transformation, model transformations, software processes,
and software evolution.

We received 94 abstract submissions of which 74 were turned into full submissions
(63 research papers, five tool papers, and six demo papers). We had submissions from
the following countries (sorted based on the number of submissions): Germany, France,
Canada, Estonia, USA, Argentina, UK, Norway, Spain, Brazil, China, South Korea,
Australia, Czechia, Austria, Denmark, Italy, Japan, the Netherlands, Pakistan,
South Africa, Tunisia, India, Poland, Portugal, Romania, Turkey, Belgium, Colombia,
Macedonia, Malta, Sweden, and Ukraine.

Of the 74 submitted papers, 24 papers were accepted after reviewing and discus-
sions among the Program Committee (PC) members (20 research papers, two tool
papers, and two demo papers). This corresponds to a 32% acceptance rate. Beside the
30 PC members, there were 100 external reviewers. For the fourth time, FASE used a
double-blind reviewing process. Overall the reviewing process was smooth and it was
possible to have consensus on all decisions. We thank the PC members and reviewers
for doing a great job!

Apart from thanking the authors, we also thank Marsha Chechik (University of
Toronto) for contributing a paper based on her plenary ETAPS 2019 invited talk, which
is also included in these proceedings. The title of Marsha’s talk was “Software
Assurance in an Uncertain World.” She discussed the problem that software systems
are deeply rooted in uncertainty since most complex open-world functionality is either
not completely specifiable or it is not cost-effective to do so. Moreover, these systems
are placed in an uncertain ever-evolving environment.

This volume shows that, despite the rapid progress in software engineering, there are
still many open problems. These problems are important for the way we do business,
the way we govern, and the way we socialize. We depend on complex software
artifacts, yet we still need to fully understand how to best develop and maintain them.
The papers in this volume help to progress the state of the art and hopefully inspire and
influence future work.

We thank the ETAPS 2019 organizers, in particular, Jan Kofron and Jan Vitek
(general chairs), Barbora Buhnova (publicity chair), Vojtech Horkey and Arten



Pelnisyn (web chairs), and David Safranek (publications chair). We also thank
Joost-Pieter Katoen, the ETAPS SC chair, for managing the whole process, and
Gabriele Taentzer, the FASE SC chair, for swift feedback on several questions.

We hope that you will enjoy reading the volume.

February 2019 Wil van der Aalst
Reiner Hähnle
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Software Assurance in an Uncertain
World

Marsha Chechik(B) , Rick Salay, Torin Viger,
Sahar Kokaly, and Mona Rahimi

University of Toronto, Toronto, Canada
chechik@cs.toronto.edu

Abstract. From financial services platforms to social networks to vehi-
cle control, software has come to mediate many activities of daily life.
Governing bodies and standards organizations have responded to this
trend by creating regulations and standards to address issues such as
safety, security and privacy. In this environment, the compliance of soft-
ware development to standards and regulations has emerged as a key
requirement. Compliance claims and arguments are often captured in
assurance cases, with linked evidence of compliance. Evidence can come
from testcases, verification proofs, human judgment, or a combination
of these. That is, experts try to build (safety-critical) systems carefully
according to well justified methods and articulate these justifications in
an assurance case that is ultimately judged by a human. Yet software
is deeply rooted in uncertainty; most complex open-world functional-
ity (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiable or it is not cost-effective to do so;
software systems are often to be placed into uncertain environments,
and there can be uncertainties that need to be We argue that the role of
assurance cases is to be the grand unifier for software development, focus-
ing on capturing and managing uncertainty. We discuss three approaches
for arguing about safety and security of software under uncertainty, in
the absence of fully sound and complete methods: assurance argument
rigor, semantic evidence composition and applicability to new kinds of
systems, specifically those relying on ML.

1 Introduction

From financial services platforms to social networks to vehicle control, software
has come to mediate many activities of daily life. Governing bodies and standards
organizations have responded to this trend by creating regulations and standards
to address issues such as safety, security and privacy. In this environment, the
compliance of software development to standards and regulations has emerged
as a key requirement.

Development of safety-critical systems begins with hazard analysis, aimed to
identify possible causes of harm. It uses severity, probability and controllability
of a hazard’s occurrence to assign the Safety Integrity Levels (in the automo-
tive industry, these are referred to as ASILs [35]) – the higher the ASIL level,
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 3–21, 2019.
https://doi.org/10.1007/978-3-030-16722-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_1&domain=pdf
http://orcid.org/0000-0002-6301-3517
https://doi.org/10.1007/978-3-030-16722-6_1
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the more rigor is expected to be put into identifying and mitigating the hazard.
Mitigating hazards therefore becomes the main requirement of the system, with
system safety requirements being directly linked to the hazards. These require-
ments are then refined along the LHS of the V until individual modules and their
implementation can be built. The RHS includes appropriate testing and valida-
tion, used as supporting evidence in developing an argument that the system
adequately handles its hazards, with the expectation that the higher the ASIL
level, the stronger the required justification of safety is.

Assurance claims and arguments are often captured by assurance cases, with
linked evidence supporting it. Evidence can come from testcases, verification
proofs, human judgment, or a combination of these. Assurance cases organize
information allowing argument unfolding in a comprehensive way and ultimately
allowing safety engineers to determine whether they trust that the system was
adequately designed to avoid systematic faults (before delivery) and adequately
detect and react to failures at runtime [35].

Yet software is deeply rooted in uncertainty; most complex open-world func-
tionality (e.g., perception of the state of the world by a self-driving vehicle),
is either not completely specifiableor it is not cost-effective to do so [12]. Soft-
ware systems are often to be placed into uncertain environments [48], and there
can be uncertainties that need to be considered at the design phase [20]. Thus,
we believe that the role of assurance cases is to explicitly capture and manage
uncertainty coming from different sources, assess it and ultimately reduce it to an
acceptable level, either with respect to a standard, company processes, or asses-
sor judgment. The various software development steps are currently not well
integrated, and uncertainty is not expressed or managed explicitly in a uniform
manner. Our claim in this paper is that an assurance case is the unifier among
the different software development steps, and can be used to make uncertainties
explicit, which also makes them manageable. This provides a well-founded basis
for modeling confidence about satisfaction of a critical system quality (security,
safety, etc.) in an assurance case, making assurance cases play a crucial role
in software development. Specifically, we enumerate sources of uncertainty in
software development. We also argue that organizing software development and
analysis activities around the assurance case as a living document allows all parts
of the software development to explicitly articulate uncertainty, steps taken to
manage it, and the degree of confidence that artifacts acting as evidence have
been performed correctly. This information can then help potential assessors in
checking that the development outcome adequately satisfies the software desired
quality (e.g., safety).

The area of system dependability has produced a significant body of work
describing how to model assurance cases (e.g., [4,5,14,38]), and how to assess
reviewer’s confidence in the argument being made (e.g., [16,31,45,59,60]). There
is also early work on assessing the impact of change on the assurance argument
when the system undergoes change [39]. A recent survey [43] provides a com-
prehensive list of assurance case tools developed over the past 20 years and
an analysis of their functionalities including support for assurance case creation,
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assessment and maintenance. We believe that the road to truly making assurance
cases the grand unifier for software development for complex high-assurance sys-
tems has many challenges. One is to be able to successfully argue about safety
and security of software under uncertainty, without fully sound and complete
methods. For that, we believe that assurance arguments must be rigorous and
that we need to properly understand how to perform evidence composition for
traditional systems, but also for new kinds of systems, specifically those relying
on ML. We discuss these issues below.

Rigor. To be validated or reused, assurance case structures must be as rigorous
as possible [51]. Of course, assurance arguments ultimately depend on human
judgment (with some facts treated as “obvious” and “generally acceptable”),
but the structure of the argument should be fully formal so as to allow to assess
its completeness. Bandur and McDermid called this approach “formal modulo
engineering expertise” [1].

Evidence Composition. We need to effectively combine the top-down process
of uncertainty reduction with the bottom-up process of composing evidence,
specifically, evidence obtained from applying testing and verification techniques.

Applicability to “new” kinds of systems. We believe that our view – rig-
orous, uncertainty-reduction focused and evidence composing – is directly appli-
cable to systems developed using machine learning, e.g., self-driving cars.

This paper is organized as follows: In Sect. 2, we briefly describe syntax of
assurance cases. In Sect. 3, we outline possible sources of uncertainty encountered
as part of system development. In Sect. 4, we describe the benefits of a rigorous
language for assurance cases by way of example. In Sect. 5, we describe, again by
way of example, a possible method of composing evidence. In Sect. 6, we develop
a high-level assurance case for a pedestrian detection subsystem. We conclude
in Sect. 7 with a discussion of possible challenges and opportunities.

2 Background on Assurance Case Modeling Notation

The most commonly used representation for safety cases is the graphical Goal
Structuring Notation (GSN) [30], which is intended to support the assurance of
critical properties of systems (including safety). GSN is comprised of six core
elements – see Fig. 1. Arguments in GSN are typically organized into a tree
of the core elements shown in Fig. 11. The root is the overall goal to be sat-
isfied by the system, and it is gradually decomposed (possibly via strategies)
into sub-goals and finally into solutions, which are the leaves of the safety case.
Connections between goals, strategies and solutions represent supported-by rela-
tions, which indicate inferential or evidential relationships between elements.
Goals and strategies may be optionally associated with some contexts, assump-
tions and/or justifications by means of in-context-of relations, which declare a
contextual relationship between the connected elements.
1 In this paper, we use both diamond and triangle shapes interchangeably to depict

an “undeveloped” element.
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Fig. 1. Core GSN elements from [30].

Fig. 2. Example safety case in GSN (from [30]).

For example, consider the safety case in Fig. 2. The overall goal G1 is that
the “Control System is acceptably safe to operate” given its role, context and
definition, and it is decomposed into two sub-goals: G2, for eliminating and mit-
igating all identified hazards, and G3, for ensuring that the system software is
developed to an appropriate ASIL. Assuming that all hazards have been iden-
tified, G2 can in turn be decomposed into three sub-goals by considering each
hazard separately (S1), and each separate hazard is shown to be satisfied using
evidence from formal verification (Sn1) or fault tree analysis (Sn2). Similarly,
under some specific context and justification, G3 can be decomposed into two
sub-goals, each of which is shown to be satisfied by the associated evidence.

3 Sources of Uncertainty in Software Development

In this section, we briefly survey uncertainty in software development, broadly
split into the categories of uncertainties about the specifications, about the envi-
ronment, about the system itself, and about the argument of its safety. For each
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part, we aim to address how building an assurance case is related to understand-
ing and mitigating such uncertainties.

Uncertainty in Specifications. Software specifications tend to suffer from
incompleteness, inconsistency and ambiguity [42,46]. Specification uncertainty
stems from a misunderstanding or an incomplete understanding of how the sys-
tem is supposed to function in early phases of development; e.g., miscommuni-
cation and inability of stakeholders to transfer knowledge due to differing con-
cepts and vocabularies [2,13]; unknown values for sets of known events (a.k.a.
the known unknowns); and the unknown and unidentifiable events (a.k.a. the
unknown unknowns) [57].

Recently, machine-learning approaches for interactively learning the software
specifications have become popular; we discuss one such example, of pedestrian
detection, in Sect. 6. Other mitigations of specification uncertainties, suggested
by various standards and research, are identification of edge cases [36], hazard
and obstacle analysis [55] to help identify unknown unknowns [35], step-wise
refinement to handle partiality in specifications, ontology- [9] and information
retrieval-driven requirements engineering approaches [21], as well as generally
building arguments about addressing specification uncertainties.

Environmental Uncertainty. The system’s environment can refer to adjacent
agents interacting with the system, a human operator using the system, or phys-
ical conditions of the environment. Sources of environmental uncertainties have
been thoroughly investigated [19,48]. One source originates from unpredictable
and changing properties of the environment, e.g., assumptions about actions of
other vehicles in the autonomous vehicle domain or assuming that a plane is
on the runway if its wheels are turning. Another uncertainty source is input
errors from broken sensors, missing, noisy and inaccurate input data, imprecise
measurements, or disruptive control signals from adjacent systems. Yet another
source might be when changes in the environment affect the specification. For
example, consider a robotic arm that moves with the expected precision but the
target has moved from its estimated position.

A number of techniques have been developed to mitigate environmental
uncertainties, e.g., runtime monitoring systems such as RESIST [10], or machine-
learning approaches such as FUSION [18] which self-tune the adaptive behavior
of systems to unanticipated changes in the environment. More broadly, environ-
mental uncertainties are mitigated by a careful requirements engineering process,
by principled system design and, in assurance cases, by an argument that they
had been adequately identified and adequately handled.

System Uncertainties. One important source of uncertainty is faced by devel-
opers who do not have sufficient information to make decisions about their sys-
tem during development. For example, a developer may have insufficient infor-
mation to choose a particular implementation platform. In [19,48], this source
of uncertainty is referred to as design-time uncertainty, and some approaches to
handling it are offered in [20]. Decisions made while resolving such uncertain-
ties are crucial to put into an assurance argument, to capture the context, i.e.,
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a particular platform is selected because of its performance, at the expense of
memory requirements.

Another uncertainty refers to correctness of the implementation [7]. This
uncertainty lays in the V&V procedure and is caused by whether the imple-
mentation of the tool can be trusted, whether the tool is used appropriately
(that is, its assumptions are satisfied), and in general, whether a particular ver-
ification technique is the right one for verifying the fulfillment of the system
requirements [15]. We address some of these uncertainties in Sect. 5.

Argument Uncertainty. The use of safety arguments to demonstrate safety
of software-intensive systems raises questions such as the extent to which these
arguments can be trusted. That is, how confident are we that a verified, validated
software is actually safe? How much evidence and how thorough of an argument
do we require for that?

To assess uncertainties which may affect the system’s safety, researchers have
proposed techniques to estimate confidence in structured assurance cases, either
through qualitative or quantitative approaches [27,44]. The majority of these are
based on the Dempster-Shafer Theory [31,60], Josang’s Opinion Triangle [17],
Bayesian Belief Networks (BNNs) [16,61], Evidential Reasoning (ER) [45] and
weighted averages [59]. The approaches which use BBNs treat safety goals as
nodes in the network and try to compute their conditional probability based on
given probabilities for the leaf nodes of the network. Dempster-Shafer Theory is
similar to BBNs but is based on the belief function and its plausibility which is
used to combine separate pieces of information to calculate the probability. The
ER approach [45] allows the assessors to provide individual judgments concerning
the trustworthiness and appropriateness of the evidence, building a separate
argument from the assurance case.

These approaches focus on assigning and propagating confidence measures
but do not specifically address uncertainty in the argument. They also focus on
aggregating evidence coming from multiple sources but treat it as a “black box”,
instead of how a piece of evidence from one source might compose with another.
We look at these questions in Sects. 4 and 5, respectively.

4 Formality in Assurance Cases

As discussed in Sect. 1, we believe that the ultimate goal of an assurance case
is to explicitly capture and manage uncertainty, and ultimately reduce it to an
acceptable level. Even informal arguments improve safety, e.g., by making peo-
ple decompose the top level goal case-wise, and examine the decomposed parts
critically. But the decomposed cases tend to have an ad hoc structure dictated
by experience and preference, with under-explored completeness claims, giving
both developers and regulators a false sense of confidence, no matter how con-
fidence is measured, since they feel that their reasoning is rigorous even though
it is not [58]. Moreover, as assurance cases are produced and judged by humans,
they are typically based on inductive arguments. Such arguments are susceptible
to fallacies (e.g., arguing through circular reasoning, using justification based
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Fig. 3. A fragment of the Lane Management (LMS) Safety case.

on false dichotomies), and evaluations by different reviewers may lead to the
discovery of different fallacies [28].

There have been several attempts to improve credibility of an argument
by making the argument structure more formal. [25] introduces the notion of
confidence maps as an explicit way of reasoning about sources of doubt in an
argument, and proposes justifying confidence in assurance arguments through
eliminative induction (i.e., an argument by eliminating sources of doubt). [29]
highlights the need to model both evidential and argumentation uncertainties
when evaluating assurance arguments, and considers applications of the formally
evaluatable extension of Toulmin’s argument style proposed by [56]. [11] details
VAA – a method for assessing assurance arguments based on Dempster-Shafer
theory. [51] is a proponent of completely deductive reasoning, narrowing the
scope of the argument so that it can be formalized and potentially formally
checked, using automated theorem provers, arguing that this would give a mod-
ular framework for assessing (and, we presume, reusing) assurance cases. [1]
relaxes Rushby’s position a bit, aiming instead at formal assurance argumen-
tation “modulo engineering expertise”, and proof obligations about consistency
of arguments remain valid even for not fully formal assurance arguments. To
this end, they provided a specific formalization of goal validity given valid-
ity of subgoals and contexts/context assumptions, resulting in such rules as
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Fig. 4. An alternative representation of the same LMS fragment.

“assumptions on any given element must not be contradictory nor contradict
the context assumed for that goal” [1].

Our Position. We believe that a degree of formality in assurance cases can go
a long way not only towards establishing its validity, identifying and framing
implicit uncertainties and avoiding fallacies, but also supporting assurance case
modularity, refactoring and reuse. We illustrate this position on an example.

Example. Consider two partially developed assurance cases that argue that the
lane management system (LMS) of a vehicle is safe (Figs. 3 and 4). The top-level
safety goal G1 in Fig. 3 is first decomposed by the strategy Str1 into a set of
subgoals which assert the safety of the LMS subsystems. An assessor can only
trust that goals G2 and G3 imply G1 by making an implicit assumption that
the system safety is completely determined by the safety of its individual subsys-
tems. Neither the need for this assumption nor the credibility of the assumption
itself are made explicit in the assurance case, which weakens the argument and
complicates the assessment process. The argument is further weakened by the
absence of a completeness claim that all subsystems have been covered by this
decomposition.

Strategies Str2 and Str3 in Fig. 3 decompose the safety claims about each
subsystem into arguments over the relevant hazards. Yet the hazards themselves
are never explicitly stated in the assurance case, making the direct relevance of
each decomposed goal to its corresponding parent goal, and thus to the argument
as a whole, unclear. While goals G6 and G9 attempt to provide completeness
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claims for their respective decompositions, they do so by citing lack of negative
evidence without describing efforts to uncover such evidence. This justification
is fallacious and can be categorized as “an argument from ignorance” [28].

Now consider the assurance case in Fig. 4 which presents a variant of the argu-
ment in Fig. 3, refined with context nodes, justification nodes and completeness
claims. The top-level goal G1 is decomposed into a set of subgoals asserting
that particular hazards have been mitigated, as well as a completeness claim
G3C stating that hazards H1 and H2 are the only ones that may be prevalent
enough to defeat claim G1. Context nodes C1 and C2 define the hazards them-
selves, which clarifies the relevance of each hazard-mitigating goal. The node J1
provides a justification for the validity of Str1 by framing the decomposition
as a proof by (exhaustive) cases. That is, Str1 is justified by the statement
that if H1 and H2 are the only hazards that could potentially make the system
unsafe, then the system is safe if H1 and H2 have been adequately mitigated.
This rigorous argument can be represented by the logical expression G3C =⇒
((G2 ∧ G4) =⇒ G1), and if completeness holds then G2 and G4 are suf-
ficient to show G1. We now have a rigorous argument step that our confidence
in G1 is a direct consequence of confidence in its decomposed goals G2, G3C
and G4, even though there may still be uncertainty in the evidential evaluation
of G2, G3C and G4. That is, uncertainty has been made explicit and can be
reasoned about at the evidential level. By removing argumentation uncertainty
and explicating implicit assumptions, we get a more comprehensive framework
for assurance case evaluation, where the relation between all reasoning steps is
formally clear. Note that if the justification provides an inference rule, then the
argument becomes deductive. Otherwise, it is weaker (the justification node can
be used to quantify just how weaker) but still rigorous.

While the completeness claim G3C in Fig. 4 may be directly supported by
evidence, the goals G2 and G4 are further decomposed by the strategies Str2
and Str3, respectively, which represent decompositions over subsystems. These
strategies are structured similarly to Str1, and can be expressed by the logical
expressions G7C =⇒ ((G5 ∧ G6) =⇒ G2) and G10C =⇒ ((G8 ∧ G9)
=⇒ G4), respectively. In Fig. 3, a decomposition by subsystems was applied
directly to the top-level safety goal which necessitated a completeness claim
that the safety of all individual subsystems implied safety of the entire system.
Instead, the argument in Fig. 4 only needs to show that the set of subsystems in
each decomposition is complete w.r.t. a particular hazard, which may be a more
feasible claim to argue. This ability to transform an argument into a more easily
justifiable form is another benefit of arguing via rigorous reasoning steps.

5 Combining Evidence

Evidence for assurance cases can come from a variety of sources: results from
different testing and verification techniques, human judgment, or their combina-
tion. Multiple testing and verification techniques may be used to make the evi-
dence more complete. A verification technique complements another if it is able
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Fig. 5. Confidence argument for code review workflow (from [6]).

to verify types of requirements which cannot be verified by the other technique.
For example, results of verification of properties via a bounded model checker
(BMC) are complemented by additional test cases [8]. A verification technique
supports another if it is used to detect faults in the other’s verification results,
thus providing backing evidence [33]. For example, a model checking technique
may support a static analysis technique by verifying the faults detected [6]. Note
that these approaches are principally different from just aggregating evidence
treating it as a blackbox!

Habli and Kelly [32] and Denney and Pai [15] present safety case patterns
for the use of formal method results for certification. Bennion et al. [3] present a
safety case for arguing the compliance of a particular model checker, namely, the
Simulink Design Verifier for DO-178C. Gallina and Andrews [23] argue about
adequacy of a model-based testing process, and Carlan et al. [7] provide a safety
pattern for choosing and composing verification techniques based on how they
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contribute to the identification or mitigation of systematic faults known to affect
system safety.

Our Position. We, as a community, need to figure out the precise conditions
under which particular testing and verification techniques “work” (e.g., model-
ing floating-point numbers as reals, making a small model hypothesis to justify
sufficiency of a particular loop unrolling, etc.), and how they are intended to
be composed in order to reduce uncertainty about whether software satisfies its
specification. We illustrate a particular composition here.

Example. In this example, taken from [6], a model checker supports static
analysis tools (that produce false negatives) by verifying the detected faults [6].
The assurance case is based on a workflow (not shown here) where an initial
review report is constructed, by running static analysis tools and possibly peer
code reviews. Then the program is annotated with the negation of each potential
erroneous behavior as a desirable property for the program, and given to a
model-checker. If the model-checker is able to verify the property, it is removed
from the initial review report and not considered as an error. If the model-
checker finds a violation, the alleged error is confirmed. In this case, a weakest-
precondition generation mechanism is applied to find out the environmental
conditions (external parameters that are not under the control of the program)
under which the program shows the erroneous behavior. These conditions and
the error trace are then added to the error description.

The paper [6] presents both the assurance case and the confidence argument
for the code review workflow. We reproduce only the latter here (see Fig. 5),
focusing on reducing uncertainty about the accuracy and consistency of the code
property (goal G2). False positives generated by static analysis are mitigated
using BMC – a method with a completely different verification rationale, thus
implementing the safety engineering principle of independence (J2). Strategy
(Str2) explains how errors can be confirmed or dismissed using BMC (goal
G6). The additional information given by BMC can be used for the mitigation
of the error (C2).

This approach takes good steps towards mitigating particular assurance
deficits using a composition of verification techniques but leaves open several
problems: how to ensure that BMC runs under the same environmental condi-
tions as the static analysis tools? how deeply should the loops be unrolled? what
to do with cases when the model-checker runs out of resources without giving
a conclusive answer? and in general, what are the conditions under which it is
safe to trust the “yes” answers of the model-checker.

6 Assurance Cases for ML Systems

Academia and industry are actively building systems using AI and machine
learning, including a rapid push for ML in safety-critical domains such as medical
devices and self-driving cars. For their successful adoption in society, we need to
ensure that they are trustworthy, including obtaining confidence in their behavior
and robustness.
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Fig. 6. A partially developed GSN safety case of pedestrian detector example.

Significant strides have already been made in this space, from extend-
ing mature testing and verification techniques to reasoning about neural net-
works [24,37,47,54] for properties such as safety, robustness and adequate han-
dling of adversarial examples [26,34]. There is active work in designing systems
that balance learning under uncertainty and acting safely, e.g., [52] as well as
the broad notion of fairness and explainability in AI, e.g., [49].

Our Position. We believe that assurance cases remain a unifying view for ML-
based systems just as much as for more conventional systems, allowing us to
understand how the individual approaches fit into the overall goal of assuring
safety and reliability and where there are gaps.

Example. We illustrate this idea with an example of a simple pedestrian detec-
tor (PD) component used as part of an autonomous driving system. The func-
tions that PD supports consist of detection of objects in the environment ahead
of the vehicle, classification of an object as a pedestrian or other, and localiza-
tion of the position and extent of the pedestrian (indicated by bounding box).
We assume that PD is implemented as a convolutional deep neural network
with various stages to perform feature extraction, proposing regions containing
objects and classification of the proposed objects. This is a typical approach for
two-stage object detectors (e.g., see [50]).
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Fig. 7. A framework for factors affecting perceptual uncertainty (source: [12]).

As part of a safety critical system, PD contributes to the satisfaction of a
top-level safety goal requiring that the vehicle always maintain a safe distance
from all pedestrians. Specific safety requirements for PD can be derived from
this goal, such as (RQ1) PD misclassification rate (i.e., classifying a pedestrian
as “other”) must be less than ρmc, (RQ2) PD false positive rate (i.e., classifying
any non-pedestrian object or non-object as “pedestrian”) must be less than ρfp,
and (RQ3) PD missed detection rate (i.e., missing the presence of pedestrian)
must be less than ρmd. Here, the parameters ρmc, ρfp and ρmd must be derived
in conjunction with the control system that uses the output from PD to plan
the vehicle trajectory.

The partially developed safety case for PD is shown in Fig. 6. The three safety
requirements are addressed via the strategy Str1 and, as expected, testing results
are given as evidence of their satisfaction. However, since testing can only provide
limited assurance about the behaviour of PD in operation, we use an additional
strategy, Str2, to argue that a rigorous method was followed to develop PD.
Specifically, we follow the framework of [12] for identifying the factors that lead
to uncertainty in ML-based perceptual software such as PD.

The framework is defined at a high level in Fig. 7. The left “perception trian-
gle” shows how the perceptual concept (in the case of PD, the concept “pedes-
trian”) can occur in various scenarios in the world, how it is detected using
sensors such as cameras, and how this can be used to collect and label exam-
ples in order to train an ML component to learn the concept. The perception
triangle on the right is similar but shows how the trained ML component can be
used during the system operation to make inferences (e.g., perform the pedes-
trian detection). The framework identifies seven factors that could contribute to
uncertainty in the behaviour of the perceptual component. A safety case demon-
strating a rigorous development process should provide evidence that each factor
has been addressed.

In Fig. 6, strategy Str2 uses the framework to argue that the seven factors are
adequately addressed for PD. We illustrate development of two of these factors
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here. Scenario coverage (Goal G-F2) deals with the fact that the training data
must represent the concept in a sufficient variety of scenarios in which it could
occur in order for the training to be effective. The argument here first decom-
poses this goal into different types of variation (Str3) and provides appropriate
evidence for each. The adequacy of age and ethnicity variation in the data set is
supported by census data (S2) about the range of these dimensions of variation
in the population. The variation in the pedestrian pose (i.e., standing, leaning,
crouching, etc.) is supplied by a standard ontology of human postures (S3).
Finally, evidence that the types are adequate to provide sufficient coverage of
variation (completeness) is provided by an expert review (S4).

Another contributing factor developed in Fig. 6 is model uncertainty (Goal
G-F6). Since there is only finite training data, there can be many possible models
that are equally consistent with the training data, and the training process could
produce any one of them, i.e., there is residual uncertainty whether the produced
model is in fact correct. The presence of model uncertainty means that while the
trained model may perform well on inputs similar to the training data, there is no
guarantee that it will produce the right output for other inputs. Some evidence of
good behaviour here can be gathered if there are known properties that partially
characterize the concept and can be checked. For example, a reasonable necessary
condition for PD is that the object being classified as a pedestrian should be
less than 9 ft tall. Another useful property type is an invariant, e.g., a rotated
pedestrian image is still a pedestrian. Tools for property checking of neural
networks (e.g., [37]) can provide this kind of evidence (S5). Another way to
deal with model uncertainty is to estimate it directly. Bayesian deep learning
approaches [22] can do this by measuring the degree of disagreement between
multiple trained models that are equally consistent with the training data. The
more the models are in agreement are about how to classify a new input, the
less model uncertainty is present and the more confident one can be in the
prediction. Using this approach on a test data set can provide evidence (S6)
about the degree of model uncertainty in the model. This approach can also
be used during the operation to generate a confidence score in each prediction
and use a fault tolerance strategy that takes a conservative action when the
confidence falls below a threshold.

7 Summary and Future Outlook

In this paper, we tried to argue that an assurance case view on establishing
system correctness provides a way to unify different components of the soft-
ware development process and to explicitly manage uncertainty. Furthermore,
although our examples came from the world of safety-critical automotive sys-
tems, the assurance case view is broadly applicable to a variety of systems, not
just those in the safety-critical domain and includes those constructed by non-
traditional means such as ML. This view is especially relevant to much of the
research activity being conducted by the ETAPS community since it allows, in
principle, to understand how each method contributes to the overall problem of
system assurance.
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Most traditional assurance methods aim to build an informal argument, ulti-
mately judged by a human. However, while these are useful for showing compli-
ance to standards and are relatively easy to construct and read, such arguments
may not be rigorous, missing essential properties such as completeness, indepen-
dence, relevance, or a clear statement of assumptions [51]. As a result, fallacies in
existing assurance cases are present in abundance [28]. To address this weakness,
we argued that building assurance cases should adhere to systematic principles
that ensure rigor. Of course, not all arguments can be fully deductive since rel-
evance and admissibility of evidence is often based on human judgment. Yet,
an explicit modeling and management of uncertainty in evidence, specifications
and, assumptions as well as the clear justification of each step can go a long way
toward making such arguments valid, reusable, and generally useful in helping
produce high quality software systems.

Challenges and Opportunities. Achieving this vision has a number of chal-
lenges and opportunities. In our work on impact assessment of model change on
assurance cases [39,40], we note that even small changes to the system may have
significant impact on the assurance case. Because creation of an assurance case
is costly, this brittleness must be addressed. One opportunity here is to recog-
nize that assurance cases can be refactored to improve their qualities without
affecting their semantics. For example, in Sect. 4, we showed that the LMS safety
claim could either be decomposed first by hazards and then by subsystems or
vice versa. Thus, we may want to choose the order of decomposition based on
other goals, e.g., to minimize the impact of change on the assurance case by
pushing the affected subgoals lower in the tree. Another issue is that complex
systems yield correspondingly complex assurance cases. Since these must ulti-
mately be judged by humans, we must manage the cognitive load the assurance
case puts on the assessor. This creates opportunities for mechanized support,
both in terms of querying, navigating and analyzing assurance cases as well as
in terms of modularization and reuse of assurance cases.

Evidence composition discussed in Sect. 5 also presents significant challenges.
While standards such as DO-178C and ISO26262 give recommendations on the
use of testing and verification, it is not clear how to compose partial evidence or
how to use results of one analysis to support another. Focusing on how each tech-
nique reduces potential faults in the program, clearly documenting their context
of applicability (e.g., the small model hypothesis justifying partial unrolling of
loops, properties not affected by approximations of complex program operations
and datatypes often done by model-checkers, connections between the modeled
and the actual environment, etc.) and ultimately connecting them to reducing
uncertainties about whether the system satisfies the essential property are keys
to making tangible progress in this area.

Finally, in Sect. 6, we showed how the assurance case view could apply to new
development approaches such as ML. Although such new approaches provide
benefits over traditional software development, they also create challenges for
assurance. One challenge is that analysis techniques used for verification may
be immature. For example, while neural networks have been studied since the
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1950’s, pragmatic approaches to their verification have been investigated only
recently [53]. Another issue is that prerequisites for assurance may not be met
by the development approach. For example, although they are expressive, neural
networks suffer from uninterpretability [41] – that is, it is not feasible for a human
to examine a trained network and understand what it is doing. This is a serious
obstacle to assurance because formal and automated methods account for only
part of the verification process, augmented by reviews. As a result, increasing
the interpretability of ML models is an active area of current research.

While all these challenges are significant, the benefit of addressing them is
worth the effort. As our world moves towards increasing automation, we must
develop approaches for assuring the dependability of the complex systems we
build. Without this, we either stall progress or run the risk of endangering our-
selves – neither alternative seems desirable.
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Abstract. Correctness-by-Construction (CbC) is an approach to incre-
mentally create formally correct programs guided by pre- and postcon-
dition specifications. A program is created using refinement rules that
guarantee the resulting implementation is correct with respect to the
specification. Although CbC is supposed to lead to code with a low defect
rate, it is not prevalent, especially because appropriate tool support is
missing. To promote CbC, we provide tool support for CbC-based pro-
gram development. We present CorC, a graphical and textual IDE to
create programs in a simple while-language following the CbC approach.
Starting with a specification, our open source tool supports CbC devel-
opers in refining a program by a sequence of refinement steps and in
verifying the correctness of these refinement steps using the theorem
prover KeY. We evaluated the tool with a set of standard examples on
CbC where we reveal errors in the provided specification. The evalua-
tion shows that our tool reduces the verification time in comparison to
post-hoc verification.

1 Introduction

Correctness-by-Construction (CbC) [12,13,19,23] is a methodology to construct
formally correct programs guided by a specification. CbC can improve program
development because every part of the program is designed to meet the corre-
sponding specification. With the CbC approach, source code is incrementally
constructed with a low defect rate [19] mainly based on three reasons. First,
introducing defects is hard because of the structured reasoning discipline that is
enforced by the refinement rules. Second, if defects occur, they can be tracked
through the refinement structure of specifications. Third, the trust in the pro-
gram is increased because the program is developed following a formal pro-
cess [14].

Despite these benefits, CbC is still not prevalent and not applied for large-
scale program development. We argue that one reason for this is missing tool
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 25–42, 2019.
https://doi.org/10.1007/978-3-030-16722-6_2
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support for a CbC-style development process. Another issue is that the pro-
grammer mindset is often tailored to the prevalent post-hoc verification app-
roach. CbC has been shown to be beneficial even in domains where post-hoc
verification is required [29]. In post-hoc verification, a method is verified against
pre- and postconditions. In the CbC approach, we refine the method stepwise,
and we can check the method partially after each step since every statement
is surrounded by a pair of pre- and postconditions. The verification of refine-
ment steps and Hoare triples reduces the proof complexity since the proof task
is split into smaller problems. The specifications and code developed using the
CbC approach can be used to bootstrap the post-hoc verification process and
allow for an easier post-hoc verification as the method constructed using CbC
generally is of a structure that is more amenable to verification [29].

In this paper, we present CorC,1 a tool designed to develop programs follow-
ing the CbC approach. We deliberately built our tool on the well-known post-hoc
verifier KeY [4] to profit from the KeY ecosystem and future extensions of the
verifier. We also add CbC as another application area to KeY, which opens the
possibility for KeY users to adopt the CbC approach. This could spread the
constructive CbC approach to areas where post-hoc verification is prevalent.

Our tool CorC offers a hybrid textual-graphical editor to develop programs
using CbC. The textual editor resembles a normal programming editor, but
is enriched with support for pre- and postcondition specifications. The graphi-
cal editor visualizes the code, its specification, and the program refinements in
a tree-like structure. The developers can switch back and forth between both
views. In order to support the correct application of the refinement rules, the
tool is integrated with KeY [4] such that proof obligations can be immediately
discharged during program development. In a preliminary evaluation, we found
benefits of CorC compared to paper-and-pencil-based application of CbC and
compared to post-hoc verification.

2 Foundations of Correctness-by-Construction

Classically, CbC [19] starts with the specification of a program as a Hoare triple
comprising a precondition, an abstract statement, and a postcondition. Such a
triple, say T , should be read as a total correctness assertion: if T is in a state
where the precondition holds and its abstract statement is executed, then the
execution will terminate and the postcondition will hold. T will be true for a
certain set of concrete program instantiations of the abstract program and false
for other instantiations. A refinement of T is a triple, say T ′, which is true for a
subset of concrete programs that render T to be true.

In our work, pre-/post-condition specifications for programs are written in
first-order logic (FOL). A formula in FOL consists of atomic formulas which are
logically connected. An atomic formula is a predicate which evaluates to true or

1 https://github.com/TUBS-ISF/CorC, CorC is an acronym for Correctness-by-
Construction.

https://github.com/TUBS-ISF/CorC
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Fig. 1. Refinement rules in CbC [19]

false. Programs in this work are written in the CorC language, which is inspired
by the Guarded Command Language (GCL) [11] and presented below.

For the concrete instantiation of conditions and assignments, our tool uses a
host language. We decided for Java, but other languages are also possible.

To create programs using CbC, we use refinement rules. A Hoare triple is
refined by applying rules, which introduce CorC language statements, so that
a concrete program is created. The concrete program obtained by refinement
is guaranteed to be correct by construction, provided that the correctness-
preserving refinement steps have been accurately applied. In Fig. 1, we present
the statements and refinement rules used in CbC and our tool.

Skip. A skip or empty statement is a statement that does not alter the state of
the program (i.e., it does nothing) [11,19]. This means a Hoare triple with a skip
statement evaluates to true if the precondition implies the postcondition.

Assignment. An assignment statement assigns an expression of type T to a vari-
able, also of type T. In the tool, we use a Java-like assignment (x = y). To refine
a Hoare triple {P} S {Q} with an assignment statement, the assignment rule is
used. This rule replaces the abstract statement S by an assignment {P} x = E {Q}
iff P implies Q[x := E].

Composition. A composition statement is a statement which splits one abstract
statement into two. A Hoare triple {P} S {Q} is split to {P} S1 {M} and {M} S2 {Q}
in which S is refined to S1 and S2. M is an intermediate condition which evaluates
to true after S1 and before S2 is executed [11].

Selection. Selection in our CorC language works as a switch statement. It refines
a Hoare triple {P} S {Q} to {P} if G1 → S1 elseif . . . Gn → Sn fi {Q}. The guards
Gi are evaluated, and the sub-statement Si of the first satisfied guard is executed.
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We use a switch-like statement so that every sub-statement has an associated
guard for further reasoning. The selection refinement rule can only be used if
the precondition P implies the disjunction of all guards so that at least one
sub-statement could be executed.

Repetition. The repetition statement {P} do [I, V] G → S od {Q} works like a
while loop in other languages. If the loop guard G evaluates to true, the associ-
ated loop statement S is executed. The repetition statement is specified with an
invariant I and a variant V. To refine a Hoare triple {P} S {Q} with a repetition
statement, (1) the precondition P has to imply the invariant I of the repetition
statement, (2) the conjunction of invariant and the negation of the loop guard
G have to imply the postcondition Q, and (3) the loop body has to preserve the
invariant by showing that {I ∧ G} S {I} holds. To verify termination, we have to
show that the variant V monotonically decreases in each loop iteration and has
0 as a lower bound.

Weaken precondition. The precondition of a Hoare triple can be weakened if
necessary. The weaken precondition rule replaces the precondition P with a new
one P′ only if P implies P′ [12].

Strengthen postcondition. To strengthen a postcondition, the strengthen post-
condition rule can be used. A postcondition Q is replaced by a new one Q′ only
if Q′ implies Q [12].

Subroutine. A subroutine can be used to split a program into smaller parts. We
use a simple subroutine call where we prohibit side effects and parameters. A
triple {P} S {Q} can be refined to a subroutine {P′} Sub {Q′}, if the precondition
P′ of the subroutine is equal to the precondition P of the refined statement and the
postcondition Q′ of the subroutine is equal to the postcondition Q of the refined
statement. The subroutine can be constructed as a separate CbC program to
verify that it satisfies the specification. The Hoare triple {P′} Sub {Q′} is the
starting point to construct a program using CbC.

3 Correctness-by-Construction by Example

To introduce the programming style of CbC, we demonstrate the construction
of a linear search algorithm using CbC [19]. The linear search problem is defined
as follows: We have an integer array a of some length, and an integer variable
x. We try to find an element in the array a which has the same value as the
variable x, and we return the index i where the (last) element x was found, or
−1 if the element is not in the array.

To construct the algorithm, we start with concretizing the pre- and postcon-
dition of the algorithm. Before the algorithm is executed, we know that we have
an integer array. Therefore, we specify a�=null ∧ a.length≥0 as precondition P.
The postcondition forces that if the index i is greater than or equal to zero, the
element is found on the returned index i (Q := (i≥0 =⇒ a[i]=x)).
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Fig. 2. Refinement steps for the linear search algorithm

Our algorithm traverses the array in reverse order and checks for each index
whether the value is equal to x. In this case, the index is returned. To create
this algorithm, we construct an invariant I for the loop:

I := ¬appears(a, x, i + 1, a.length) ∧ i≥−1 ∧ i<a.length

The invariant is used to split the array into two parts. A part from i + 1 to
a.length where x is not contained, and a part from zero to i which is not
checked yet. In every iteration, the next index of the array is checked. The
predicate appears(a, x, l, h) asserts that x occurs in array a inside the range
from l (included) to h (excluded). The predicate can be translated to FOL as
∃i : (i≥l ∧ i<h ∧ a[i]=x).

We can use the CbC refinement rules to implement linear search. The refine-
ment steps for the example are shown in Fig. 2 and numbered from 1© to 4©.
To create a loop in the program, we need to initialize a loop counter variable to
establish the invariant. Therefore, we split the program by introducing a compo-
sition statement ( 1© in Fig. 2). The invariant I is used as intermediate condition
(i.e., M := I), because it has to be true after the initialization, and before the
first loop step. The statement st1 is refined to an assignment statement 2©. We
initialize i with a.length − 1 to start at the end of the array. This assignment
satisfies the intermediate condition I where i is replaced by a.length − 1. The
range of appears is empty, and therefore the predicate evaluates to true. To
refine the second statement (st2), we use the repetition refinement rule 3©. As
long as x is not found, we iterate through the array. As guard of the repeti-
tion, we use (i≥0 ∧ a[i]�=x). The invariant of the repetition is the invariant I
introduced above. The variant V is i + 1. To verify that this refinement is valid,
we have to verify that the precondition of the repetition statement implies the
invariant, and that the invariant and the negated guard imply the postcondition
of the repetition (cf. Rule 5). Both are valid because the precondition is equal
to the invariant and the postcondition of the repetition statement (in this case
it is Q) is equal to the negated guard. The last step is to refine the abstract loop
statement (loopSt) 4©. We use an assignment to decrease i and get the final
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program. We can verify that the invariant holds after each loop iteration. The
program terminates because the variant decreases in every step and it is always
greater than or equal to zero.

4 Tool Support in CorC

CorC extends KeY’s application area by enabling CbC to spread the constructive
engineering to areas where post-hoc verification is prevalent. KeY programmers
can use both approaches to construct formally correct programs. By using CorC,
they develop specification and code that can bootstrap the post-hoc verification.
The CorC tool2 is realized as an Eclipse plug-in in Java. We use the Eclipse
Modeling Framework (EMF)3 to specify a CbC meta model. This meta model
is used by two editor views, a textual and a graphical editor. The Hoare triple
verification is implemented by the deductive program verification tool KeY [4].
In the following list, we summarize the features of CorC.

– Programs are written as Hoare triple specifications, including pre-/postcondi-
tion specifications and abstract statements or assignment/skip statements in
concrete triples.

– CorC has eight rules to construct programs: skip, assignment, composition,
selection, repetition, weakening precondition, strengthening postcondition,
and subroutine (cf. Sect. 2).

– Pre-/postconditions and invariant specification are automatically propagated
through the program.

– CorC comprises a graphical and a textual editor that can be used
interchangeably.

– Up to now, CorC supports integers, chars, strings, arrays, and subroutine
calls without side effects, I/O, and library calls.

– Hoare triples are typically verified by KeY automatically. If the proof cannot
be closed automatically, the user can interact with KeY.

– Helper methods written in Java 1.5 can be used in a specification.
– CorC comprises content assist and an automatic generation of intermediate

conditions.

4.1 Graphical Editor

The graphical editor represents CbC-based program refinement by a tree struc-
ture. A node represents the Hoare triple of a specific CorC language statement.
Figure 3 presents the linear search algorithm of Sect. 3 in the graphical editor.
The structure of the tree is the same as in Fig. 2. The additional nodes on the
right specify used program variables including their type and global invariant

2 https://github.com/TUBS-ISF/CorC.
3 https://eclipse.org/emf/.

https://github.com/TUBS-ISF/CorC
https://eclipse.org/emf/
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Fig. 3. Linear search example in the graphical editor

conditions. The global invariant conditions are added to every pre- and post-
condition of Hoare triples to simplify the construction of the program. In the
example, we specify the array a and the range of variable i to support the
verification, as KeY requires this range to be explicit for verification.

The root node of the tree shows the abstract Hoare triple for the overall
program with a symbolic name for the abstract statement. In every node, the
pre- and postcondition are specified on the left and right of the node under the
corresponding header. A composition statement node, the second statement of
the tree, contains the pre- and postcondition and additionally defines an inter-
mediate condition. The intermediate condition is the middle term in the bottom
line. Both abstract sub-statements of the composition have a symbolic name and
can be further refined by adding a connection to another node (i.e., creating a
parent-child relation). The repetition node contains fields to specify the invari-
ant, the guard and the variant of the repetition. These fields are in the middle
row. The pre- and postcondition are associated to the inner loop statement. An
assignment node (cf. both leaf nodes of the figure) contains the precondition,
the assignment, and the postcondition. The representations of the nodes for the
refinements not illustrated in this example are similar.
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Refinement steps are represented by edges. The pre- and postconditions are
propagated from parents to their children on drawing the parent/child relation.
We explicitly show the propagated conditions in a node to improve readability.
The propagated conditions from the parent are unmodifiable because refinement
rules determine explicitly how conditions are propagated. An exception are the
rules to weaken the precondition or strengthen the postcondition. Here, the
conditions can be overridden. At the repetition statement, we only depict the
pre-/postconditions of the inner loop statement to reduce the size of this node.
The pre-/postconditions of the parent node (in our example the composition
statement) are not shown explicitly, but they are propagated internally to verify
that the repetition refinement rule is satisfied. To visualize the verification status,
the nodes have a green border if proven, a red one otherwise.

By showing the Hoare triples explicitly, problems in the program can be local-
ized. If some leaf node cannot be proven, the user has to check the assignment
and the corresponding pre-/postcondition. If an error occurred, the conditions
on the refinement path up to pre-/postcondition of the starting Hoare triple can
be altered. Other paths do not need to be checked. To prove the program correct,
we have to prove that the refinement is correct. Aside from the side conditions
of refinement rules (cf. iff conditions in refinement rules), only the leaf nodes of
the refinement tree which contain basic Hoare triples with skip or assignment
statements need to be verified by a prover, while all composite statements are
correct by construction of their conditions.

To support the user in developing intermediate conditions for composition
statements, our tool can compute the weakest precondition from a postcondition
and a concrete assignment by using the KeY theorem prover. So, the user can
create a specific assignment statement and generate the intermediate conditions
afterwards. We also support modularization, to cover cases where algorithms
become too large. Sub-algorithms can be created using CbC in other CorC pro-
grams. We introduce a simple subroutine rule which can be used as a leaf node
in the editor. The subroutine has a name and it is connected to a second diagram
with the same name as the subroutine. This subroutine call is similar to a classic
method call. It can be used to decompose larger CbC developments to multiple
smaller programs.

4.2 Textual Editor

The textual editor is an editor for the CorC programming language described
above. The user writes code by using keywords for the specific statements and
enriches the code with conditions, such as invariants or intermediate conditions,
and assignments in our CorC syntax. The syntax of the composed statements
in the textual editor is shown in Fig. 4. In the GlobalConditions declaration,
we enumerate the needed global conditions separated with a comma. The used
variables are enumerated after the JavaVariables keyword.

The linear search example program presented in Sect. 3 is shown in the syntax
of CorC in Listing 1. The program starts with keyword Formula. The pre- and
postcondition of the abstract Hoare triple are written after the pre: and post:
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Fig. 4. Syntax of statements in textual editor

1 Formula "linearSearch"

2 pre: {"true"}

3 {

4 {

5 i=a.length -1;

6 }

7 intm: ["! appears(a, x, i+1, a.length )"]

8 {

9 while ("i>=0 & a[i]!=x")

10 inv: ["! appears(a, x, i+1, a.length )"]

11 var: ["i+1"] do

12 {

13 i=i-1;

14 } od

15 }

16 }

17 post: {"i>=0 -> a[i]=x"}

18
19 GlobalConditions

20 conditions {"a!=null", "a.length >=0",

21 "i>=-1", "i<a.length "}

22
23 JavaVariables

24 variables {"int[] a", "int x", "int i"}

Listing 1. Linear search example in the textual editor

keywords. The abstract statement of the Hoare triple is refined to a composition
statement in lines 3–16. The statements are surrounded by curly brackets to
establish the refinement structure. We have the first statement in lines 4–6, the
intermediate condition in line 7 and the second statement in lines 8–15. The
first statement is refined to an assignment (Line 5). The refinement is done
by introducing an assignment in Java syntax (i = a.length − 1;). The second
statement is refined to a repetition statement (cf. the syntax of a repetition
statement in Fig. 4). We specify the guard, the invariant, and the variant. Finally,
the single statement of the loop body is refined to an assignment in Line 13.

As in the graphical editor, pre-/postconditions are propagated top-down from
a parent to a child statement. For example, the intermediate condition of a
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1 \javaSource "src";

2 \include "helper.key";

3 \programVariables {int x;}

4 \problem {

5 (x = 0) -> \<{x=x+1;}\> (x = 1)

6 }

Listing 2. KeY problem file

composition statement which is the postcondition of the first sub-statement and
the precondition of the second, appears only once in the editor (e.g., Line 7). To
support the user, we implemented syntax highlighting and a content assist. When
starting to write a statement, a user may employ auto-completion where the
statements are inserted following the syntax in Fig. 4. The user can specify the
conditions, then the next statement can be refined. The editor also automatically
checks the syntax and highlights syntax errors. Information markers are used to
indicate statements which are not proven yet. For example, the Hoare triple of
the assignment statement (i = a.length − 1) in Listing 1 has to be verified, and
CorC marks the statement according to the proof completion results.

4.3 Verification of CorC Programs

To prove the refined program is correct, we have to prove side conditions of refine-
ments correct (e.g., prove that an assignment satiesfies the pre-/postcondition
specification). This reduces the proof complexity because the challenge to prove
a complete program is decomposed into smaller verification tasks. The interme-
diate Hoare triples are verified indirectly through the soundness of the refine-
ment rules and the propagation of the specifications from parent nodes to child
nodes [19]. Side conditions occur in all refinements (cf. iff conditions in refinement
rules). These side conditions, such as the termination of repetition statements
or that at least one guard in a selection has to evaluate to true, are proven in
separate KeY files.

For the proof of concrete Hoare triples, we use the deductive program verifier
KeY [4]. Hoare triples are transformed to KeY’s dynamic logic syntax. The syn-
tax of KeY problem files is shown in Listing 2. Using the keyword javaSource,
we specify the path to Java helper methods which are called in the specifi-
cations. These methods have to be verified independently with KeY. A KeY
helper file, where the users can define their own FOL predicates for the specifi-
cation, is included with the keyword include. For example, in CorC a predicate
appears(a, x, l, h) (cf. the linear search example) can be used which is specified
in the helper file as a FOL formula. The variables used in the program are listed
after the keyword programVariables. After problem, we define the Hoare triple
to be proven, which is translated to dynamic logic as used by KeY. KeY problem
files are verified by KeY. As we are only verifying simple Hoare triples with skip
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or assignment statements, KeY is usually able to close the proofs automatically
if the Hoare triple is valid.

To verify total correctness of the program, we have to prove that all repe-
tition statements terminate. The termination of repetition statements is shown
by proving that the variants in the program monotonically decrease and are
bounded. Without loss of generality, we assume this bound to equal 0, as this
is what KeY requires. This is done by specifying the problem in the KeY
file in the following way: (invariant & guard) -> {var0:=var} \<{std}\>
(invariant & var<var0 & var>=0). The code of the loop body is specified at
std to verify that after one iteration of the loop body the variant var is smaller
than before but greater than or equal to zero.

To verify Hoare triples in the graphical editor, we implemented a menu entry.
The user can right-click on a statement and start the automatic proof. If the
proof is not closed, the user can interact with the opened KeY interface. To
prove Hoare triples in the textual editor, we automatically generate all needed
problem files for KeY whenever the user saves the editor file. The proof of the
files is started using a menu button. The user gets feedback which triples are
not proven by means of markers in the editor.

4.4 Implementation as Eclipse Plugin

We extended the Eclipse modeling framework with plugins to implement the two
editors. We have created a meta model of the CbC language to represent the
required constructs (i.e., statements with specification). The statements can be
nested to create the CbC refinement hierarchy. The graphical and the textual
editor are projections on the same meta model. The graphical editor is imple-
mented using the framework Graphiti.4 It provides functionality to create nodes
and to associate them to domain elements, such as statements and specifications.
The nodes can be added from a palette at the side of the editor, so no incor-
rect statement with its associated specification can be created. We implemented
editing functionality to change the text in the node; the background model is
changed simultaneously. Graphiti also provides the possibility to update nodes
(e.g., to propagate pre- and postconditions), if we connect those nodes by refine-
ment edges. The refinement is checked for compliance with the CbC rules.

The textual editor is implemented using XText.5 We created a grammar
covering every statement and the associated specification. If the user writes a
program, the text is parsed and translated to an instance of the meta model. If a
program is created in one editor, a model (an instance of our meta model) of the
program is created in the background. We can easily transform one view into the
other. The transformation is a generation step and not a live synchronization
between both views, but it is carried out invisibly for the user when changing
the views.

4 https://eclipse.org/graphiti/.
5 https://eclipse.org/Xtext/.

https://eclipse.org/graphiti/
https://eclipse.org/Xtext/
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Table 1. Evaluation of the example programs

Algo-
rithm

#Nodes
in GE

#Lines
in TE

#Lines
with
JML

#Verified
CorC
triples

CbC
Total
Proof-
Nodes

CbC
Total
Proof-
Time

PhV
Total
Proof-
Nodes

PhV
Total
Proof-
Time

Linear
Search

5 12 10 5/5 285 0.4 s 589 1.2 s

Max.
Element

9 21 15 9/9 1023 1.2 s 993 1.8 s

Pattern
Matching

14 23 20 13/13 21131 54.9 s 201619 1479.3 s

Exponen-
tiation

7 21 17 7/7 6588 15.2 s 7303 20.4 s

Log.
Approx.

5 16 12 5/5 13756 42.7 s 18835 68.5 s

Dutch
Flag

8 26 24 8/8 4107 5.7 s 4993 13.4 s

Factorial 5 15 13 4/4 1554 3.6 s 1598 4.4 s

(GE) Grahical Editor, (TE) Textual Editor, (PhV) Post-hoc Verification

In implementing CorC, we considered the exchangeability of the host lan-
guage. The specifications and assignments are saved as strings in the meta
model. They are checked by a parser to comply with Java. This parser could
be exchanged to support a different language. The verification is done by gener-
ating KeY files which are then evaluated by KeY. Here, we have to exchange the
generation of the files if another theorem prover should be integrated. The infor-
mation of the meta model may have to be adopted to fit the needs of the other
prover. We also have to implement a programmatic call to the other prover.

5 Evaluation

The tool support offers new chances to evaluate CbC versus post-hoc verification.
We quantitatively compare the development and verification of programs with
CorC and with post-hoc verification. This is to check the hypothesis that the
verification of algorithms is faster with CorC than with post-hoc verification. We
created the first eight algorithms from the book by Kourie and Watson [19] in our
graphical editor. For comparison purposes, we also wrote each example as a plain
Java program with JML specifications in order to directly verify it with KeY.
The specifications are the same as in CorC. We measured the verification time
and the proof nodes that KeY needed to close the proofs for both approaches.
The results of the evaluation are presented in Table 1 (verification time rounded).
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Fig. 5. Proof time of CbC and post-hoc verification in logarithmic scale

The algorithms have 5 to 14 nodes in the graphical editor and 12 to 26 lines
of code in the textual editor. The Java version with a JML specification always
has fewer lines (between 8% and 29% smaller). The additional specifications,
such as the intermediate conditions of composition statements, and the global
invariant conditions and variables cause more lines of code in the CbC program.

The verification of the eight algorithms worked nearly without problems.
We verified 7 out of 8 examples within CorC. In the cases without problems,
every Hoare triple and the termination of the loops could be proven. We had to
prove fewer Hoare triples than nodes in the editor, as not every node has to be
proven separately. Composition nodes are proven indirectly through the refine-
ment structure. For exponentiation, logarithm, and factorial, we had to imple-
ment recursive helper methods which are used in the specification. Therefore,
the programs impose upper bounds for integers to shorten the proof. The binary
search algorithm could not be verified automatically in KeY using post-hoc ver-
ification or CorC. In each step, when the element is not found, the algorithm
halves the array. KeY could not prove that the searched element is in the new
boundaries because verification problems with arithmetic division are hard to
prove for KeY automatically.

In the case of measured proof nodes, maximum element needs slightly fewer
nodes proved with post-hoc verification than with CbC. In the other cases, the
proofs for the algorithms constructed with CbC are 3% to 854% smaller. The
largest difference was measured for the pattern matching algorithm. The proof
is reduced to a ninth of the nodes.

The verification time is visualized in Fig. 5. The time is measured in millisec-
onds and scaled logarithmically. The proofs for the CbC approach are always
faster showing lower proof complexity. For maximum element, exponentiation,
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logarithm and factorial, the post-hoc verification time requires between 22%
and 60% more time. The difference increases for Dutch flag and linear search to
137% and 176%, respectively. Algorithm pattern matching has the biggest differ-
ence. Here, the CbC approach needs nearly a minute, but the post-hoc approach
needs over 24 min. To verify our hypothesis, we apply the non-parametric paired
Wilcoxon-Test [30] with a significance level of 5%. We can reject the null hypoth-
esis that CbC verification and post-hoc verification have no significant difference
in verification time (p-value = 0.007813). This rejection of the null hypothesis
in an empirical evidence for our hypothesis that verification is faster with CorC
than with post-hoc verification.

With our tool support, we were able to compare the CbC approach with post-
hoc verification. For our examples, we evaluated that the verification effort is
reduced significantly which indicates a reduced proof complexity. It is worthwhile
to further investigate the CbC approach, also to profit from synergistic effects
in combination with post-hoc verification. As we built CorC on top of KeY, the
post-hoc verification of programs constructed with CorC is feasible.

An advantage of CorC is the overview on all Hoare triples during develop-
ment. In this way, we found some specifications where descriptions in the book
by Kourie and Watson [19] were not precise enough to verify the problem in
KeY. For example, in the pattern matching algorithm, we had to verify two
nested loops. At one point, we had to verify that the invariant of the inner loop
implies the invariant of the outer loop. This was not possible, so we extended the
invariant of the inner loop to be the conjunction of both invariants. In the book
of Kourie and Watson [19], this conjunction of both invariants was not explicitly
used.

6 Related Work

We compare CorC to other programming languages and tools using specification
or refinements. The programming language Eiffel is an object-oriented program-
ming language with a focus on design-by-contract [21,22]. Classes and methods
are annotated with pre-/postconditions and invariants. Programs written in Eif-
fel can be verified using AutoProof [18,28]. The verification tool translates the
program with assertions to a logic formula. An SMT-solver proves the correct-
ness and returns the result. Spec# is a similar tool for specifying C# programs
with pre-/postcondition contracts. These programs can be verified using Boogie.
The code and specification is translated to an intermediate language (BoogiePL)
and verified [5,6]. VCC [8] is a tool to annotate and verify C code. For this pur-
pose, it reuses the Spec# tool chain. VeriFast [16] is another tool to verify C
and Java programs with the help of contracts. The contracts are written in sep-
aration logic (a variant of Hoare logic). As in Eiffel, the focus of Spec#, VCC,
and VeriFast is on post-hoc verification and debugging failed proof attempts.

The Event-B framework [2] is a related CbC approach. Automata-based
systems including a specification are refined to a concrete implementation.
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Atelier B [1] implements the B method by providing an automatic and inter-
active prover. Rodin [3] is another tool implementing the Event-B method. The
main difference to CorC is that CorC works on code and specifications rather
than on automata-based systems.

ArcAngel [25] is a tool supporting Morgan’s refinement calculus. Rules are
applied to an initial specification to produce a correct implementation. The tool
implements a tactic language for refinements to apply a sequence of rules. In
comparison to our tool, ArcAngel does not offer a graphical editor to visualize
the refinement steps. Another difference is that ArcAngel creates a list of proof
obligations which have to be proven separately. CRefine [26] is a related tool for
the Circus refinement calculus, a calculus for state-rich reactive systems. Like
our tool, CRefine provides a GUI for the refinement process. The difference is
that we specify and implement source code, but they use a state-based language.
ArcAngelC [10] is an extension to CRefine which adds refinement tactics.

The tools iContract [20] and OpenJML [9] apply design-by-contract. They
use a special comment tag to insert conditions into Java code. These conditions
are translated to assertions and checked at runtime which is a difference to our
tool because no formal verification is done. DBC-Python is a similar approach
for the Python language which also checks assertions at runtime [27].

To verify the CbC program, we need a theorem prover for Hoare triples,
such as KeY [4]. There are other theorem provers which could be used (e.g.,
Coq [7] or Isabelle/HOL [24]). The Tecton Proof System [17] is a related tool
to structure and interactively prove Hoare logic specification. The proofs are
represented graphically as a set of linked trees. These interactive provers do not
fit our needs because we want to automate the verification process. KeY provides
a symbolic execution debugger (SED) that represents all execution paths with
specifications of the code to the verification [15]. This visualization is similar to
our tree representation of the graphical editor. The SED can be used to debug
a program if an error occur during the post-hoc verification process.

7 Conclusion and Future Work

We implemented CorC to support the Correctness-by-Construction process of
program development. We created a textual and a graphical editor that can be
used interchangeably to enable different styles of CbC-based program develop-
ment. The program and its specification are written in one of the editors and
can be verified using KeY. This reduces the proof complexity with respect to
post-hoc verification. We extended the KeY ecosystem with CorC. CorC opens
the possibility to utilize CbC in areas where post-hoc verification is used as pro-
grammers could benefit from synergistic effects of both approaches. With tool
support, CbC can be studied in experiments to determine the value of using
CbC in industry.
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For future work, we want to extend the tool support, and we want to evaluate
empirically the benefits and drawbacks of CorC. To extend the expressiveness,
we implement a rule for methods to use method calls in CorC. These methods
have to be verified independently by CorC/KeY. We could investigate whether
the method call rules of KeY can be used for our CbC approach. Another future
work is the inference of conditions to reduce the manual effort. Postconditions
can be generated automatically for known statements by using the strongest
postcondition calculus. Invariants could be generated by incorporating external
tools. As mentioned earlier, other host languages and other theorem provers can
be integrated in our IDE.

The second work package for future work comprise the evaluation with a
user study. We could compare the effort of creating and verifying algorithms
with post-hoc verification and with our tool support. The feedback can be used
to improve the usability of the tool.
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Abstract. Static program analysis often encounters problems in analyz-
ing library code. Most real-world programs use library functions inten-
sively, and library functions are usually written in different languages.
For example, static analysis of JavaScript programs requires analysis of
the standard built-in library implemented in host environments. A com-
mon approach to analyze such opaque code is for analysis developers to
build models that provide the semantics of the code. Models can be built
either manually, which is time consuming and error prone, or automati-
cally, which may limit application to different languages or analyzers. In
this paper, we present a novel mechanism to support automatic modeling
of opaque code, which is applicable to various languages and analyzers.
For a given static analysis, our approach automatically computes anal-
ysis results of opaque code via dynamic testing during static analysis.
By using testing techniques, the mechanism does not guarantee sound
over-approximation of program behaviors in general. However, it is fully
automatic, is scalable in terms of the size of opaque code, and provides
more precise results than conventional over-approximation approaches.
Our evaluation shows that although not all functionalities in opaque code
can (or should) be modeled automatically using our technique, a large
number of JavaScript built-in functions are approximated soundly yet
more precisely than existing manual models.

Keywords: Automatic modeling · Static analysis · Opaque code ·
JavaScript

1 Introduction

Static analysis is widely used to optimize programs and to find bugs in them,
but it often faces difficulties in analyzing library code. Since most real-world pro-
grams use various libraries usually written in different programming languages,
analysis developers should provide analysis results for libraries as well. For exam-
ple, static analysis of JavaScript apps involves analysis of the builtin functions
implemented in host environments like the V8 runtime system written in C++.
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A conventional approach to analyze such opaque code is for analysis devel-
opers to create models that provide the analysis results of the opaque code.
Models approximate the behaviors of opaque code, they are often tightly inte-
grated with specific static analyzers to support precise abstract semantics that
are compatible with the analyzers’ internals.

Developers can create models either manually or automatically. Manual mod-
eling is complex, time consuming, and error prone because developers need
to consider all the possible behaviors of the code they model. In the case of
JavaScript, the number of APIs to be modeled is large and ever-growing as
the language evolves. Thus, various approaches have been proposed to model
opaque code automatically. They create models either from specifications of the
code’s behaviors [2,26] or using dynamic information during execution of the
code [8,9,22]. The former approach heavily depends on the quality and format
of available specifications, and the latter approach is limited to the capability of
instrumentation or specific analyzers.

In this paper, we propose a novel mechanism to model the behaviors of
opaque code to be used by static analysis. While existing approaches aim to cre-
ate general models for the opaque code’s behaviors, which can produce analysis
results for all possible inputs, our approach computes specific results of opaque
code during static analysis. This on-demand modeling is specific to the abstract
states of a program being analyzed, and it consists of three steps: sampling,
run, and abstraction. When static analysis encounters opaque code with some
abstract state, our approach generates samples that are a subset of all possible
inputs of the opaque code by concretizing the abstract state. After evaluating the
code using the concretized values, it abstracts the results and uses it during anal-
ysis. Since the sampling generally covers only a small subset of infinitely many
possible inputs to opaque code, our approach does not guarantee the soundness
of the modeling results just like other automatic modeling techniques.

The sampling strategy should select well-distributed samples to explore the
opaque code’s behaviors as much as possible and to avoid redundant ones. Gen-
erating too few samples may miss too much behaviors, while redundant samples
can cause the performance overhead. As a simple yet effective way to control the
number of samples, we propose to use combinatorial testing [11].

We implemented the proposed automatic modeling as an extension of SAFE,
a JavaScript static analyzer [13,17]. For opaque code encountered during anal-
ysis, the extension generates concrete inputs from abstract states, and executes
the code dynamically using the concrete inputs via a JavaScript engine (Node.js
in our implementation). Then, it abstracts the execution results using the oper-
ations provided by SAFE such as lattice-join and our over-approximation, and
resumes the analysis.

Our paper makes the following contributions:

– We present a novel way to handle opaque code during static analysis by
computing a precise on-demand model of the code using (1) input samples
that represent analysis states, (2) dynamic execution, and (3) abstraction.
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– We propose a combinatorial sampling strategy to efficiently generate well-
distributed input samples.

– We evaluate our tool against hand-written models for large parts of
JavaScript’s builtin functions in terms of precision, soundness, and
performance.

– Our tool revealed implementation errors in existing hand-written models,
demonstrating that it can be used for automatic testing of static analyzers.

In the remainder of this paper, we present our Sample-Run-Abstract app-
roach to model opaque code for static analysis (Sect. 2) and describe the sampling
strategy (Sect. 3) we use. We then discuss our implementation and experiences
of applying it to JavaScript analysis (Sect. 4), evaluate the implementation using
ECMAScript 5.1 builtin functions as benchmarks (Sect. 5), discuss related work
(Sect. 6), and conclude (Sect. 7).

2 Modeling via Sample-Run-Abstract

Our approach models opaque code by designing a universal model, which is able
to handle arbitrary opaque code. Rather than generating a specific model for
each opaque code statically, it produces a single general model, which produces
results for given states using concrete semantics via dynamic execution. We call
this universal model the SRA model.

In order to create the SRA model for a given static analyzer A and a dynamic
executor E , we assume the following:

– The static analyzer A is based on abstract interpretation [6]. It provides the
abstraction function α : ℘(S) → ̂S and the concretization function γ : ̂S →
℘(S) for a set of concrete states S and a set of abstract states ̂S.

– An abstract domain forms a complete lattice, which has a partial order among
its values from ⊥(bottom) to �(top).

– For a given program point c ∈ C, either A or E can identify the code corre-
sponding to the point.

Then, the SRA model consists of the following three steps:

– Sample : ̂S → ℘(S)
For a given abstract state ŝ ∈ ̂S, Sample chooses a finite set of elements from
γ(ŝ), a possible set of values for ŝ. Because it is, in the general case, impossible
to execute opaque code dynamically with all possible inputs, Sample should
select representative elements efficiently as we discuss in the next section.

– Run : C × S → S
For a given program point and a concrete state at this point, Run generates
executable code corresponding to the point and state, executes the code, and
returns the result state of the execution.

– Abstract : ℘(S) → ̂S
For a given set of concrete states, Abstract produces an abstract state that
encompasses the concrete states. One can apply α to each concrete state, join
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Fig. 1. An abstract domain for even and odd integers

all the resulting abstract states, and optionally apply an over-approximation
heuristic, comparable to widening Broaden : ̂S → ̂S to mitigate missing
behaviors of the opaque code due to the under-approximate sampling.

We write the SRA model as ⇓SRA: C × ̂S → ̂S and define it as follows:

⇓SRA (c, ŝ) = Abstract({Run(c, s) | s ∈ Sample(ŝ)})
= Broaden(

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ)})

We now describe how ⇓SRA works using an example abstract domain for
even and odd integers as shown in Fig. 1. Let us consider the code snippet
x := abs(x) at a program point c where the library function abs is opaque.
We use maps from variables to their concrete values for concrete states, maps
from variables to their abstract values for abstract states, and the identity func-
tion for Broaden in this example.

Case ŝ1 ≡ [x : n] where n is a constant integer:

⇓SRA (c, ŝ1) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ1)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : n]}}

=
⊔{α({Run(c, [x : n])})}

=
⊔{α({[x : |n|]})}

= [x : |n|]

Because the given abstract state ŝ1 contains a single abstract value corresponding
to a single concrete value, Sample produces the set of all possible states, which
makes ⇓SRA provide a sound and also the most precise result.

Case ŝ2 ≡ [x : Even]:

⇓SRA (c, ŝ2) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ2)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : −2], [x : 0], [x : 2]}}

=
⊔{α({[x : 0], [x : 2]})}

= [x : Even]

When Sample selects three elements from the set of all possible states repre-
sented by ŝ2, executing abs results in {[x : 0], [x : 2]}. Since joining these two
abstract states produces Even, ⇓SRA models the correct behavior of abs by tak-
ing advantage of the abstract domain.
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Case ŝ3 ≡ [x : Int] :

⇓SRA (c, ŝ3)
=

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ3)}
=

⊔{α({Run(c, s)}) | s ∈ Sample(ŝ2) ∪ Sample([x : Odd])}
=

⊔{α({Run(c, s)}) | s ∈ {[x : −2], [x : −1], [x : 0], [x : 1], [x : 2], [x : 3]}}
=

⊔{α({[x : 0], [x : 1], [x : 2], [x : 3]})}
= [x : Int]

When an abstract value has a finite number of elements that are immediately
below it in the abstract domain lattice, our sampling strategy selects samples
from them recursively. Thus, in this example, Sample([x : Int]) becomes the
union of Sample([x : Even]) and Sample([x : Odd]). We explain this recursive
sampling strategy in Sect. 3.

Case ŝ4 ≡ [x : Odd]:

⇓SRA (c, ŝ4) =
⊔{α({Run(c, s)}) | s ∈ Sample(ŝ4)}

=
⊔{α({Run(c, s)}) | s ∈ {[x : −1], [x : 1]}}

=
⊔{α({[x : 1]})}

= [x : 1]

While ⇓SRA produces sound and precise results for the above three cases, it
does not guarantee soundness; it may miss some behaviors of opaque code due
to the limitations of the sampling strategy. Let us assume that Sample([x : Odd])
selects {[x : −1], [x : 1]} this time. Then, the model produces an unsound result
[x : 1], which does not cover odd integers, because the selected values explore
only partial behaviors of abs. When the number of possible states at a call site of
opaque code is infinite, the sampling strategy can lead to unsound results. A well-
designed sampling strategy is crucial for our modeling approach; it affects the
analysis performance and soundness significantly. The approach is precise thanks
to under-approximated results from sampling, but entails a tradeoff between the
analysis performance and soundness depending on the number of samples. In
the next section, we propose a strategy to generate samples for various abstract
domains and to control sample sizes effectively.

3 Combinatorial Sampling Strategy

We propose to use a combinatorial sampling strategy (inspired by combinatorial
testing) by the types of values that an abstract domain represents. The domains
represent either primitive values like number and string, or object values like
tuple, set, and map. Based on combinatorial testing, our strategy is recursively
defined on the hierarchy of abstract domains used to represent program states.
Assume that â,̂b ∈ ̂A are abstract values that we want to concretize using
Sample.
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Fig. 2. The SAFE number domain for JavaScript

3.1 Abstract Domains for Primitive Values

To explain our sampling strategy for primitive abstract domains, we use the
DefaultNumber domain from SAFE as an example. DefaultNumber represents
JavaScript numbers with subcategories as shown in Fig. 2. The subcategories are
NaN (not a number), ±Inf (positive/negative infinity), UInt (unsigned integer),
and NUInt (not an unsigned integer, which is a negative integer or a floating
point number).

Case |γ(â)| = constant:

Sample(â) = γ(â)

When â represents a finite number of concrete values, Sample simply takes all the
values. For example, ±Inf has two possible values, +Inf and -Inf. Therefore,
Sample(±Inf) = {+Inf, -Inf}.

Case |γ(â)| = ∞ and |{̂b ∈ ̂A | ∀x̂ � â. ̂b �� x̂}| = constant:

Sample(â) =
⋃

̂b Sample(̂b)

When â represents an infinite number of concrete values, but it covers (that is,
is immediately preceded by) a finite number of abstract values in the lattice,
Sample applies to each predecessor recursively and merges the concrete results
by set union. Note that, “y covers x” holds whenever x � y and there is no
z such that x � z � y. The number of samples increases linearly in this step.
Number falls into this case. It represents infinitely many numbers, but it covers
four abstract values in the lattice: NaN, ±Inf, UInt, and NUInt.

Case |γ(â)| = ∞ and |{̂b ∈ A | ∀x̂ � â. ̂b �� x̂}| = ∞:

Sample(â) = H(γ(â))

When â represents infinitely many concrete values and also covers infinitely many
abstract values, we make the number of samples finite by applying a heuristic
injection H of seed samples. For seed samples, we propose the following guidelines
to manually select them:

– Use a small number of commonly used values. Our conjecture is that common
values will trigger the same behavior in opaque code repeatedly.

– Choose values that have special properties for known operators. For exam-
ple, for each operator, select the minimum, maximum, identity, and inverse
elements, if any.
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In the DefaultNumber domain example, UInt and NUInt fall into this case. For
the evaluation of our modeling approach in Sect. 5, we selected seed samples
based on the guidelines as follows:

Sample(UInt) = {0, 1, 3, 10, 9999}
Sample(NUInt) = {−10,−3,−1,−0.5,−0, 0.5, 3.14}

We experimentally show that this simple heuristic works well for automatic
modeling of JavaScript builtin functions.

3.2 Abstract Domains for Object Values

Our sampling strategy for object abstract domains consists of four steps. To
sample from a given abstract object â ∈ ̂A, we assume the following:

– A concrete object a ∈ γ(â) is a map from fields to their values: Map[F, V ].
– Abstract domains for fields and values are ̂F and ̂V , respectively.
– The abstract domain ̂A provides two helper functions: mustF : ̂A → ℘(F ) and

mayF : ̂A → ̂F . The mustF (â) function returns a set of fields that ∀a ∈ γ(â)
must have, and mayF (â) returns an abstract value ̂f ∈ ̂F representing a set
of fields that ∃a ∈ γ(â) may have.

Then, the sampling strategy follows the next four steps:

1. Sampling fields
In order to construct sampled objects, it first samples a finite number of fields.
JavaScript provides open objects, where fields can be added and removed
dynamically, and fields can be referenced not only by string literals but also
by arbitrary expressions of string values. Thus, this step collects fields from a
finite set of fields that all possible objects should contain (Fmust) and samples
from a possibly infinite set of fields that some possible objects may (but not
must) contain (Fmay):

Fmust = mustF (â)
Fmay = Sample(mayF (â)) \ Fmust

2. Abstracting values for the sampled fields
For the fields in Fmust and Fmay sampled from the given abstract object â, it
constructs two maps from fields to their abstract values, Mmust and Mmay ,
respectively, of type Map[F, ̂V ]:

Mmust = λf ∈ Fmust . α({a(f) | a ∈ γ(â)})
Mmay = λf ∈ Fmay . α({a(f) | a ∈ γ(â)})

3. Sampling values
From Mmust and Mmay , it constructs another map Ms : F → ℘(V�), where
V� = V ∪{�} denotes a set of values and the absence of a field �, by applying
Sample to the value of each field in Fmust and Fmay . The value of each field
in Fmay contains � to denote that the field may not exist in Ms:
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Ms = λf ∈ Fmust ∪ Fmay .

{

Sample(Mmust(f)) if f ∈ Fmust

Sample(Mmay(f)) ∪ {�} if f ∈ Fmay

4. Choosing samples by combinatorial testing
Finally, since a number of all combinations from Ms,

∏

f∈Domain(Ms) |Ms(f)|,
grows exponentially, the last step limits the number selections. We solve this
selection problem by reducing it to a traditional testing problem with combi-
natorial testing [3]. Combinatorial testing is a well-studied problem and effi-
cient algorithms for generating test cases exist. It addresses a similar problem
to ours, increasing dynamic coverage of code under test, but in the context
of finding bugs:

“The most common bugs in a program are generally triggered by
either a single input parameter or an interaction between pairs of
parameters.”

Thus, we apply each-used or pair-wise testing (1 or 2-wise) as the last step.

Now, we demonstrate each step using an abstract array object â, whose length
is greater than or equal to 2 and the elements of which are true or false. We
write �b to denote an abstract value such that γ(�b) = {true, false}.

– Assumptions
• A concrete array object a is a map from indices to boolean values:

Map[UInt, Boolean].
• For given abstract object â, mustF (â) = {0, 1} and mayF (â) = UInt.
• From Sect. 3.1, we sample {0, 1, 3, 10, 9999} for UInt.
• k-wise(M) generates a set of minimum number of test cases satisfying

all the requirements of k-wise testing for a map M . It constructs a test
case by choosing one element from a set on each field.

– Step 1: Sampling fields

Fmust = {0, 1}
Fmay = Sample(UInt) \ {0, 1} = {3, 10, 9999}

– Step 2: Abstracting values for the sampled fields

Mmust = [0 → �b, 1 → �b]
Mmay = [3 → �b, 10 → �b, 9999 → �b]

– Step 3: Sampling values

Ms = [ 0 → {true, false}, 1 → {true, false},
3 → {true, false, �}, 10 → {true, false, �},

9999 → {true, false, �} ]

– Step 4: Choosing samples by combinatorial testing
The number of all combinations

∏

f∈Domain(Ms) |Ms(f)| is 108 even after sam-
pling fields and values in an under-approximate manner. We can avoid such
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explosion of samples and manage well-distributed samples by using combi-
natorial testing. With each-used testing, three combinations can cover every
element in a set on each field at least once:

1-wise(Ms) =
{ [0 → true, 1 → false, 3 → true, 10 → �, 9999 → �],

[0 → false, 1 → true, 3 → false, 10 → false, 9999 → true],
[0 → false, 1 → true, 3 → �, 10 → true, 9999 → false] }

With pair-wise testing, 12 samples can cover every pair of elements from
different sets at least once.

4 Implementation

We implemented our automatic modeling approach for JavaScript because of its
large number of builtin APIs and complex libraries, which are all opaque code
for static analysis. They include the functions in the ECMAScript language stan-
dard [1] and web standards such as DOM and browser APIs. We implemented
the modeling as an extension of SAFE [13,17], a JavaScript static analyzer.
When the analyzer encounters calls of opaque code during analysis, it uses the
SRA model of the code.

Sample. We applied the combinatorial sampling strategy for the SAFE abstract
domains. Of the abstract domains for primitive JavaScript values, UInt, NUInt,
and OtherStr represent an infinite number of concrete values (c.f. third case in
Sect. 3.1) and thus require the use of heuristics. We describe the details of our
heuristics and sample sets in Sect. 5.1.

We implemented the Sample step to use “each-used sample generation” for
object abstract domains by default. In order to generate more samples, we added
three options to apply pair-wise generation:

– ThisPair generates pairs between the values of this and heap,
– HeapPair among objects in the heap, and
– ArgPair among property values in an arguments object.

As an exception, we use the all-combination strategy for the DefaultDataProp
domain representing a JavaScript property, consisting of a value and three
booleans: writable, enumerable, and configurable. Note that field is used
for language-independent objects and property is for JavaScript objects. The
number of their combinations is limited to 23. We consider a linear increase of
samples as acceptable. The Sample step returns a finite set of concrete states,
and each element in the set, which in turn contains concrete values only, is passed
to the Run step.
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Run. For each concrete input state, the Run step obtains a result state by
executing the corresponding opaque code in four steps:

1. Generation of executable code
First, Run populates object values from the concrete state. We currently omit
the JavaScript scope-chain information, because the library functions that we
analyze as opaque code are independent from the scope of user code. It derives
executable code to invoke the opaque code and adds argument values from
the static analysis context.

2. Execution of the code using a JavaScript engine
Run executes the generated code using the JavaScript eval function on
Node.js. Populating objects and their properties from sample values before
invoking the opaque function may throws an exception. In such cases, Run
executes the code once again with a different sample value. If the second sam-
ple value also throws an exception during population of the objects and their
properties, it dismisses the code.

3. Serialization of the result state
After execution, the result state contains the objects from the input state, the
return value of the opaque code, and all the values that it might refer to. Also,
any mutation of objects of the input state as well as newly created objects
are captured in this way. We use a snapshot module of SAFE to serialize the
result state into a JSON-like format.

4. Transfer of the state to the analyzer
The serialized snapshot is then passed to SAFE, where it is parsed, loaded,
and combined with other results as a set of concrete result states.

Abstract. To abstract result states, we mostly used existing operations in SAFE,
like lattice-join, and also implemented an over-approximation heuristic function,
Broaden, comparable to widening. We use Broaden for property name sets in
JavaScript objects, because mayF of a JavaScript abstract object can produce
an abstract value that denotes an infinite set of concrete strings, and because
⇓SRA cannot produce such an abstract value from simple sampling and join.
Thus, we regard all possibly absent properties as sampled properties. Then, we
implemented the Broaden function merging all possibly absent properties into
one abstract property representing any property, when the number of absent
properties is greater than a certain threshold proportional to a number of sam-
pled properties.

5 Evaluation

We evaluated the ⇓SRA model in two regards, (1) the feasibility of replacing
existing manual models (RQ1 and RQ2) and (2) the effects of our heuristic H
on the analysis soundness (RQ3). The research questions are as follow:

– RQ1: Analysis performance of ⇓SRA

Can ⇓SRA replace existing manual models for program analysis with decent
performance in terms of soundness, precision, and runtime overhead?
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– RQ2: Applicability of ⇓SRA

Is ⇓SRA broadly applicable to various builtin functions of JavaScript?
– RQ3: Dependence on heuristic H

How much is the performance of ⇓SRA affected by the heuristics?

After describing the experimental setup for evaluation, we present our answers
to the research questions with quantitative results, and discuss the limitations
of our evaluation.

5.1 Experimental Setup

In order to evaluate the ⇓SRA model, we compared the analysis performance and
applicability of ⇓SRA with those of the existing manual models in SAFE. We
used two kinds of subjects: browser benchmark programs and builtin functions.
From 34 browser benchmarks included in the test suite of SAFE, a subset of
V8 Octane1, we collected 13 of them that invoke opaque code. Since browser
benchmark programs use a small number of opaque functions, we also generated
test cases for 134 functions in the ECMAScript 5.1 specification.

Each test case contains abstract values that represent two or more possible
values. Because SAFE uses a finite number of abstract domains for primitive
values, we used all of them in the test cases. We also generated 10 abstract
objects. Five of them are manually created to represent arbitrary objects:

OBJ1 has an arbitrary property whose value is an arbitrary primitive.
OBJ2 is a property descriptor whose "value" is an arbitrary primitive, and
the others are arbitrary booleans.
OBJ3 has an arbitrary property whose value is OBJ2.
OBJ4 is an empty array whose "length" is arbitrary.
OBJ5 is an arbitrary-length array with an arbitrary property

The other five objects were collected from SunSpider benchmark programs
by using Jalangi2 [20] to represent frequently used abstract objects. We counted
the number of function calls with object arguments and joined the most used
object arguments in each program. Out of 10 programs that have function
calls with object arguments, we discarded four programs that use the same
objects for every function call, and one program that uses an argument with
2500 properties, which makes manual inspection impossible. We joined the first
10 concrete objects for each argument of the following benchmark to obtain
abstract objects: 3d-cube.js, 3d-raytrace.js, access-binary-trees.js, regexp-dna.js,
and string-fasta.js. For 134 test functions, when a test function consumes two
or more arguments, we restricted each argument to have only an expected type
to manage the number of test cases. Also, we used one or minimum number of
arguments for functions with variable number of arguments.

In summary, we used 13 programs for RQ1, and 134 functions with 1565 test
cases for RQ2 and RQ3. All experiments were on a 2.9 GHz quad-core Intel Core
i7 with 16 GB memory machine.
1 https://github.com/chromium/octane.

https://github.com/chromium/octane
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5.2 Answers to Research Questions

Answer to RQ1. We compared the precision, soundness, and analysis time of
the SAFE manual models and the ⇓SRA model. Table 1 shows the precision and
soundness for each opaque function call, and Table 2 presents the analysis time
and number of samples for each program.

As for the precision, Table 1 shows that ⇓SRA produced more precise results
than manual models for 9 (19.6%) cases. We manually checked whether each
result of a model is sound or not by using the partial order function (�) imple-
mented in SAFE. We found that all the results of the SAFE manual models for
the benchmarks were sound. The ⇓SRA model produced an unsound result for
only one function: Math.random. While it returns a floating-point value in the
range [0, 1), ⇓SRA modeled it as NUInt, instead of the expected Number, because
it missed 0.

As shown in Table 2, on average ⇓SRA took 1.35 times more analysis time
than the SAFE models. The table also shows the number of context-sensitive
opaque function calls during analysis (#Call), the maximum number of samples
(#Max), and the total number of samples (#Total). To understand the runtime
overhead better, we measured the proportion of elapsed time for each step. On
average, Sample took 59%, Run 7%, Abstract 17%, and the rest 17%. The exper-
imental results show that ⇓SRA provides high precision while slightly sacrificing
soundness with modest runtime overhead.

Answer to RQ2. Because the benchmark programs use only 15 opaque functions
as shown in Table 1, we generated abstracted arguments for 134 functions out
of 169 functions in the ECMAScript 5.1 builtin library, for which SAFE has
manual models. We semi-automatically checked the soundness and precision of
the ⇓SRA model by comparing the analysis results with their expected results.
Table 3 shows the results in terms of test cases (left half) and functions (right
half). The Equal column shows the number of test cases or functions, for which
both models provide equal results that are sound. The SRA Pre. column shows
the number of such cases where the ⇓SRA model provides sound and more precise
results than the manual model. The Man. Uns. column presents the number
of such cases where ⇓SRA provides sound results but the manual one provides
unsound results, and SRA Uns. shows the opposite case of Man. Uns. Finally,
Not Comp. shows the number of cases where the results of ⇓SRA and the
manual model are incomparable.

The ⇓SRA model produced sound results for 99.4% of test cases and 94.0%
of functions. Moreover, ⇓SRA produced more precise results than the manual
models for 33.7% of test cases and 50.0% of functions. Although ⇓SRA pro-
duced unsound results for 0.6% of test cases and 6.0% of functions, we found
soundness bugs in the manual models using 1.3% of test cases and 7.5% of func-
tions. Our experiments showed that the automatic ⇓SRA model produced less
unsound results than the manual models. We reported the manual models pro-
ducing unsound results to SAFE developers with the concrete examples that
were generated in the Run step, which revealed the bugs.
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Table 1. Precision and soundness by functions in the benchmarks

Function Precision and Soundness

Equal Precise More Precise Unsound

Array, Array.prototype.join, Array.prototype.push 15 5 0

Date, Date.prototype.getTime 0 4 0

Error 5 0 0

Math.cos, Math.max, Math.pow, Math.sin, Math.sqrt 11 0 0

Math.random 0 0 1

Number.prototype.toString 1 0 0

String, String.prototype.substring 4 0 0

Total 36 9 1

Proportion 78.3% 19.6% 2.2%

Table 2. Analysis time overhead by programs in the benchmarks

Program Manual ⇓SRA Increased

Time(ms) #Call Time(ms) #Call #Max #Total Time Ratio

3d-morph.js 1,423 50 2,641 50 16 408 1.86

access-binary-trees.js 1,926,132 10 1,784,866 10 16 95 0.93

access-fannkuch.js 1,615 31 2,627 31 15 413 1.63

access-nbody.js 10,125 132 25,564 324 16 4,274 2.52

access-nsieve.js 1,019 6 1,126 6 16 54 1.10

bitops-nsieve-bits.js 282 1 343 1 2 2 1.22

math-cordic.js 574 2 662 2 2 4 1.15

math-partial-sums.js 1,613 99 4,703 99 16 916 2.92

math-spectral-norm.js 10,702 6 10,986 6 16 96 1.03

string-fasta.js 22,170 78 6,147 30 226 2,555 0.28

navier-stokes.js 4,662 20 5,104 20 2 40 1.09

richards.js 86,013 85 88,902 85 54 4,018 1.03

splay.js 259,073 423 217,863 422 56 11,492 0.84

Total 2,325,404 943 2,151,533 1,086 453 24,367 1.35

Answer to RQ3. The sampling strategy plays an important role in the per-
formance of ⇓SRA especially for soundness. Our sampling strategy depends on
two factors: (1) manually sampled sets via the heuristic H and (2) each-used or
pair-wise selection for object samples. We used manually sampled sets for three
abstract values: UInt, NUInt, and OtherStr. To sample concrete values from
them, we used three methods: Base simply follows the guidelines described in
Sect. 3.1, Random generates samples randomly, and Final denotes the heuristics
determined by our trials and errors to reach the highest ratio of sound results.
For object samples, we used three pair-wise options: HeapPair, ThisPair, and Arg-
Pair. For various sampling configurations, Table 4 summarizes the ratio of sound
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Table 3. Precision and soundness for the builtin functions

Object

#Test Case #Function

Equal
SRA Man. Man. SRA Not

Total Equal
SRA Man. Man. SRA Not Total

Pre. Uns. Pre. Uns. Comp. Pre. Uns. Pre. Uns. Comp.

Array 59 144 1 0 0 0 174 8 7 1 0 0 0 16

Boolean 37 2 3 0 0 0 42 1 0 3 0 0 0 4

Date 74 241 0 2 1 1 319 8 35 0 2 1 1 47

Global 7 1 0 0 0 0 8 1 1 0 0 0 0 2

Math 106 5 0 0 6 0 117 11 2 0 0 5 1 18

Number 41 71 0 3 0 1 116 1 6 0 0 0 0 8

Object 370 24 7 1 3 5 410 12 2 5 0 2 0 21

String 300 70 9 0 0 0 379 3 14 1 0 0 0 18

Total 994 528 20 6 10 7 1565 45 67 10 2 8 2 134

Proportion 63.5% 33.7% 1.3% 0.4% 0.6% 0.4% 100% 33.6% 50.0% 7.5% 1.5% 6.0% 1.5% 100%

Table 4. Soundness and sampling cost for the builtin functions

Sampling Configuration Builtin Function

Set Heuristic Pair Option
Sound Result Ratio #Ave. #Max

UInt NUInt Other HeapPair ThisPair ArgPair

Base Base Base F F F 85.0% 17.4 41

Random Random Random F F F 84.9% 17.4 41

Final Final Final

F F F 92.1% 32.6 98

F F T 93.5% 38.1 226

F T F 95.0% 181.9 4312

F T T 95.5% 276.8 11752

T F F 96.2% 323.0 7220

T F T 97.4% 397.5 16498

T T F 99.2% 513.7 11988

T T T 99.4% 677.6 16498

results, the average and maximum numbers of samples for the test cases used in
RQ2.

The table shows that Base and Random produced sound results for 85.0%
and 84.9% (the worst case among 10 repetitions) of the test cases, respectively.
Even without any sophisticated heuristics or pair-wise options, ⇓SRA achieved
a decent amount of sound results. Using more samples collected by trials and
errors with Final and all three pair-wise options, ⇓SRA generated sound results
for 99.4% of the test cases by observing more behaviors of opaque code.

5.3 Limitations

A fundamental limitation of our approach is that the ⇓SRA model may produce
unsound results when the behavior of opaque code depends on values that ⇓SRA

does not support via sampling. For example, if a sampling strategy calls the Date
function without enough time intervals, it may not be able to sample different
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results. Similarly, if a sampling strategy does not use 4-wise combinations for
property descriptor objects that have four components, it cannot produce all the
possible combinations. However, at the same time, simply applying more complex
strategies like 4-wise combinations may lead to an explosion of samples, which
is not scalable.

Our experimental evaluation is inherently limited to a specific use case, which
poses a threat to validity. While our approach itself is not dependent on a particu-
lar programming language or static analysis, the implementation of our approach
depends on the abstract domains of SAFE. Although the experiments used well-
known benchmark programs as analysis subjects, they may not be representative
of all common uses of opaque functions in JavaScript applications.

6 Related Work

When a textual specification or documentation is available for opaque code,
one can generate semantic models by mining them. Zhai et al. [26] showed that
natural language processing can successfully generate models for Java library
functions and used them in the context of taint analysis for Android applications.
Researchers also created models automatically from types written in WebIDL or
TypeScript declarations to detect Web API misuses [2,16].

Given an executable (e.g. binary) version of opaque code, researchers also
synthesized code by sampling the inputs and outputs of the code [7,10,12,19].
Heule et al. [8] collected partial execution traces, which capture the effects of
opaque code on user objects, followed by code synthesis to generate models from
these traces. This approach works in the absence of any specification and has
been demonstrated on array-manipulating builtins.

While all of these techniques are a-priori attempts to generate general-
purpose models of opaque code, to be usable for other analyses, researchers
also proposed to construct models during analysis. Madsen et al.’s approach [14]
infers models of opaque functions by combining pointer analysis and use anal-
ysis, which collects expected properties and their types from given application
code. Hirzel et al. [9] proposed an online pointer analysis for Java, which handles
native code and reflection via dynamic execution that ours also utilizes. While
both approaches use only a finite set of pointers as their abstract values, ignoring
primitive values, our technique generalizes such online approaches to be usable
for all kinds of values in a given language.

Opaque code does matter in other program analyses as well such as model
checking and symbolic execution. Shafiei and Breugel [22] proposed jpf-nhandler,
an extension of Java PathFinder (JPF), which transfers execution between JPF
and the host JVM by on-the-fly code generation. It does not need concretization
and abstraction since a JPF object represents a concrete value. In the context
of symbolic execution, concolic testing [21] and other hybrid techniques that
combine path solving with random testing [18] have been used to overcome the
problems posed by opaque code, albeit sacrificing completeness [4].

Even when source code of external libraries is available, substituting exter-
nal code with models rather than analyzing themselves is useful to reduce time



58 J. Park et al.

and memory that an analysis takes. Palepu et al. [15] generated summaries by
abstracting concrete data dependencies of library functions observed on a train-
ing execution to avoid heavy execution of instrumented code. In model check-
ing, Tkachuk et al. [24,25] generated over-approximated summaries of environ-
ments by points-to and side-effect analyses and presented a static analysis tool
OCSEGen [23]. Another tool Modgen [5] applies a program slicing technique to
reduce complexities of library classes.

7 Conclusion

Creating semantic models for static analysis by hand is complex, time-consuming
and error-prone. We present a Sample-Run-Abstract approach (⇓SRA) as a
promising way to perform static analysis in the presence of opaque code using
automated on-demand modeling. We show how ⇓SRA can be applied to the
abstract domains of an existing JavaScript static analyzer, SAFE. For bench-
mark programs and 134 builtin functions with 1565 abstracted inputs, a tuned
⇓SRA produced more sound results than the manual models and concrete exam-
ples revealing bugs in the manual models. Although not all opaque code may be
suitable for modeling with ⇓SRA, it reduces the amount of hand-written models
a static analyzer should provide. Future work on ⇓SRA could focus on orthogonal
testing techniques that can be used for sampling complex objects, and practical
optimizations, such as caching of computed model results.
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Abstract. The Clock Constraint Specification Language (CCSL) is a
formalism for specifying logical-time constraints on events for the design
of real-time embedded systems. A central verification problem of CCSL
is to check whether events are schedulable under logical constraints.
Although many efforts have been made addressing this problem, the
problem is still open. In this paper, we show that the bounded schedul-
ing problem is NP-complete and then propose an efficient SMT-based
decision procedure which is sound and complete. Based on this deci-
sion procedure, we present a sound algorithm for the general scheduling
problem. We implement our algorithm in a prototype tool and illustrate
its utility in schedulability analysis in designing real-world systems and
automatic proving of algebraic properties of CCSL constraints. Experi-
mental results demonstrate its effectiveness and efficiency.

Keywords: SMT · CCSL · Schedulability · Logical time ·
Real-time system

1 Introduction

Model-based design has been widely used, particularly in the design of safety-
critical real-time embedded systems. It has achieved industrial successes through
languages such as SCADE [12], AADL [15] and UML MARTE [26]. For example,
UML MARTE provides syntactic annotations to implement, when the context
allows, classical real-time scheduling algorithms such as EDF (Earliest Deadline
First). It also provides a domain-specific language–Clock Constraint Specifica-
tion Language (CCSL) [3], to express the real-time behaviors of a system under
development as logical constraints on system events, but independently of any
physical time and classical real-time scheduling algorithms. CCSL has been used
on several industrial scenarios such as vehicle systems [16] and cyber-physical
systems [10,22].
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Model-based design usually starts with coarse-grained logical models that are
progressively refined into more concrete ones until the final code deployment. It
is well-known that the earlier one can detect and fix bugs in the refinement pro-
cess, the better [7]. Therefore, it is critical to provide efficient methods and tools
to check safety, liveness and schedulability on the logical models and not only
on the definite deployed system. This has motivated a large body of works on
verifying whether events are schedulable under a set of constraints expressed in
CCSL [11,21,28,33,35,36,38], though its decidability is still open. These works
first transform CCSL constraints into other formal representations such as tran-
sition systems [21], Promela [35], Büchi automata [36], timed automata [33],
rewriting logics [38], instant relations [28], or timed-interval logics [11], and then
apply existing tools. However, their approaches usually suffer from the state
explosion problem. Moreover, most of these works only deal with the so-called
safe subset of CCSL and the other ones only provide semi-algorithms. In our
earlier work [39], we proposed an SMT-based verification approach to CCSL and
demonstrated several applications of the approach to finding schedules, verifying
temporal properties, proving constraint entailment, and analyzing the validity
of system traces. Based on the approach, we implemented an efficient tool for
verifying LTL properties of CCSL [40].

In this work we are focused on the scheduling problem of CCSL, a funda-
mental problem to which the aforementioned verification problems of CCSL can
be reduced. We first prove that the bounded scheduling problem of CCSL with
fixed bounds is NP-complete. To our knowledge, this is the first result regard-
ing the complexity of the scheduling problem with CCSL. Then, we propose a
decision procedure for the bounded scheduling problem with a given bound. The
decision procedure is based on the transformation of CCSL into SMT formulas
[39]. Our decision procedure is sound, complete, and efficient in practice. Based
on this decision procedure, we turn to the general (i.e. unbounded) scheduling
problem and present a binary-search based algorithm. Our algorithm is sound,
i.e., if it proves either schedulable or unschedulable, then the result is conclusive.
We implemented our algorithms in a prototype tool. The tool was used to ana-
lyze a real-world interlocking system in a rail transit system. Using the proposed
approach, we also prove some algebraic properties of CCSL. The experimental
results demonstrate the effectiveness and efficiency of the SMT-based approach.

The rest of this paper is organised as follows: Section 2 introduces CCSL.
Section 3 defines the (bounded) scheduling problem of CCSL and shows that the
bounded case is NP-complete. Section 4 presents an SMT-based decision proce-
dure for the bounded scheduling problem and a sound algorithm for the gen-
eral scheduling problem. Section 5 shows a case study and experimental results.
Section 6 discusses related work, and Section 7 concludes the paper.

2 The Clock Constraint Specification Language

2.1 Logical Clock, History and Schedule

In CCSL, clocks are used to model occurrences of events, where a clock ticks
when the corresponding event occurs. For instance, a clock may represent an
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event that is dispatch of a task, communications between tasks or acquisition of
a shared resource by a task. Constraints over clocks are used to specify causal
and temporal relations between system events. No global physical time is pre-
sumed for the clocks and their constraints. This feature allows CCSL to define
a polychronous specification of a system at a logical level.

Definition 1 (Logical clock). A (logical) clock c is an infinite sequence of
ticks (ci)i∈N+ with each ci being tick or idle, where N

+ denotes the set of all the
non-zero natural numbers.

The value of ci denotes whether an event associated with c occurs or not at
step i. If ci is tick, then the event occurs, otherwise not. In particular, we denote
by 1 a global reference logical clock that always ticks at each step.

Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N

+ → 2C such that ∀i ∈ N
+, δ(i) = {c ∈ C | ci = tick} and δ(i) �= ∅.

Intuitively, a schedule δ defines a partial order between the ticks of the clocks.
δ(i) is a subset of C such that c ∈ δ(i) iff c ticks at step i. The condition
δ(i) �= ∅ expresses that step i cannot be empty. This forbids stuttering steps in
schedules. As one can add or remove finite number of empty steps without effect
on schedulability, we exclude them from schedules for succinctness.

A clock can memorize the number of ticks that it has made. We use history
to represent the memorization.

Definition 3 (History). Given a schedule δ for a set C of clocks, a history of
δ is a function χδ : C × N

+ → N such that for each c ∈ C and i ∈ N
+:

χδ(c, i) =

⎧
⎨

⎩

0, if i = 1;
χδ(c, i − 1), if i > 1 ∧ c �∈ δ(i − 1);
χδ(c, i − 1) + 1, if i > 1 ∧ c ∈ δ(i − 1).

χδ(c, i) represents the number of the ticks that the clock c has made immediately
before step i. (Note that the tick of c at step i is excluded in χδ(c, i).) For
simplicity, we may write χ for χδ if it is clear from the context.

2.2 Syntax and Semantics of CCSL

CCSL consists of 11 kinds of constraints, 4 of them are binary relations for
specifying the precedence, causality, subclocking, and exclusion relations between
clocks, and the others are used to define clocks from existing ones. Clocks defined
by constraints may correspond to system events or are just introduced as auxil-
iary clocks without corresponding to any events.
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Table 1. Semantics of CCSL with respect to schedules

φ δ |= φ

Precedence c1 [b]≺ c2 ∀n ∈ N
+.χ(c2, n) − χ(c1, n) = b ⇒ c2 /∈ δ(n)

Causality c1 � c2 ∀n ∈ N
+.χ(c1, n) ≥ χ(c2, n)

Subclock c1 ⊆ c2 ∀n ∈ N
+.c1 ∈ δ(n) ⇒ c2 ∈ δ(n)

Exclusion c1 # c2 ∀n ∈ N
+.c1 �∈ δ(n) ∨ c2 �∈ δ(n)

Union c1 � c2 + c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ c2 ∈ δ(n) ∨ c3 ∈ δ(n)

Intersection c1 � c2 ∗ c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ c2 ∈ δ(n) ∧ c3 ∈ δ(n)

Infimum c1 � c2 ∧ c3 ∀n ∈ N
+.χ(c1, n) = max(χ(c2, n), χ(c3, n))

Supremum c1 � c2 ∨ c3 ∀n ∈ N
+.χ(c1, n) = min(χ(c2, n), χ(c3, n))

Periodicity c1 � c2 ∝ p ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c2 ∈ δ(n) ∧ ∃m ∈ N

+.χ(c2, n) =
m × p − 1)

Filtering c1 � c2 � w ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c2 ∈ δ(n) ∧ w[n])

DelayFor c1 � c2 $ d on c3 ∀n ∈ N
+.c1 ∈ δ(n) ⇔ (c3 ∈ δ(n) ∧ ∃m ∈ N

+.(c2 ∈
δ(m) ∧ χ(c3, n) − χ(c3, m) = d))

Definition 4 (Syntax). A CCSL constraint φ is defined by the following form:

Precedence: c1 [b]≺ c2 | Causality: c1 � c2

Subclock: c1 ⊆ c2 | Exclusion: c1 # c2

Union: c1 � c2 + c3 | Intersection: c1 � c2 ∗ c3

Infimum: c1 � c2 ∧ c3 | Supremum: c1 � c2 ∨ c3

Periodicity: c1 � c2 ∝ p | Filtering: c1 � c2 � w

DelayFor: c1 � c2 $ d on c3

where b ≥ 0, d ≥ 0 and p > 0 are natural numbers, c1, c2, c3 are logical clocks and
w is a (possibly infinite) word over {0, 1} expressed as a (ω-)regular expression.

For simplifying presentation, we denote by c1 ≺ c2 the constraint c1 [0]≺ c2,
and c1 � c2 $ d the constraint c1 � c2 $ d on c3 such that c2 = c3.

The semantics of CCSL constraints is defined over schedules. Given a CCSL
constraint φ and a schedule δ, the satisfiability relation δ |= φ (i.e., δ satisfies
constraint φ) is defined in Table 1.

The precedence constraint c1 ≺ c2 (i.e., c1 [0]≺ c2) expresses that the clock
c1 precedes the clock c2. Suppose there is an unbounded buffer with two opera-
tions fetch and store, which respectively fetch data from and store data into the
buffer. Fetch is only allowed when the buffer is nonempty. If the buffer is initially
empty, store operation must strictly precede fetch operation. This behavior can
be expressed by the constraint: store ≺ fetch. Likewise, the precedence con-
straint can be used to represent reentrant tasks by replacing store with start
and fetch with finish.

The general precedence constraint c1 [b]≺ c2 that can specify the differences
b between the number of occurrences of two clocks before the precedence takes
effect. Hence, it is able to express more complicated relations. For instance, if
the buffer initially is nonempty, fetch operations can be performed prior to any
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store operation. Figure 1 shows such a scenario where 4 elements are initially
presented in the buffer. This behavior can be represented as: store [4]≺ fetch.

store
store fetch

buffer

Fig. 1. Example for store [4]≺ fetch

The causality, subclock and exclu-
sion constraints are straightforward.
The causality constraint c1 � c2

specifies that the occurrence of c2

must be caused by the occurrence of
c1, namely at any moment c1 must
have ticked at least as many times as
c2 has. The subclock constraint c1 ⊆ c2 expresses that c1 occurs at some step
only if c2 occur at this step as well. The exclusion constraint c1 # c2 specifies
that two clocks c1 and c2 are exclusive, i.e., they cannot occur simultaneously
at the same step.

The union and intersection constraints are used to define clocks. c1 � c2 + c3

defines a clock c1 such that c1 ticks iff c2 or c3 ticks. Similarly, c1 � c2 ∗ c3 defines
a clock c1 such that c1 ticks iff both c2 and c3 tick. The infimum (resp. supremum)
constraint c1 � c2 ∧ c3 (resp. c1 � c2 ∨ c3) is used to define a clock c1 that is
the slowest (resp. fastest) clock that is faster (resp. slower) than both c2 and c3.
These two constraints are useful for expressing delay requirements between two
events. Remark that clocks c1 defined by constraints may correspond to system
events, otherwise are auxiliary clocks. In the former case, these constraints can
be seen as constraints specifying relations between clocks c1, c2 and c3.

The periodicity constraint c1 � c2 ∝ p defines a clock c1 such that c1 has to
be performed once every p occurrences of clock c2. It is worth mentioning that
the periodicity constraint defined in such a way is relative because of the logical
nature of CCSL clocks. That is, clock c1 is relatively periodic with respect to
clock c2. CCSL does not assume the existence of a global reference clock, most
relations are defined relative to other clocks. These notions extend the equivalent
behaviors which are usually defined relative to physical time. If c2 represents a
sensor that measures physical time, then c1 becomes physically periodic.

The filtering constraint c1 � c2 � w is used to define a clock c1 which can
be seen as snapshots of the clock c2 at some steps according to the (ω-)regular
expression w. For instance, c1 � c2 � (01)ω expresses that c1 simulates c2 at
every even step. It defines a logically periodic behavior of c1 with respect to c2.

The delayFor constraint c1 � c2 $ d (i.e., c1 � c2 $ d on c2) defines a new
clock c1 that is delayed by the clock c2 with d steps. The general form c1 �
c2 $ d on c3 defines a new clock c1 that is delayed by c2 with d times of the ticks
of c3. c1 can be seen as a sampled clock of c2 on the basis of c3. For instance,
c1 � c2 $ 1 on c3, denotes that whenever c2 ticks at least once between two
successive ticks of c3 at steps m and n, c1 must tick at step n.

3 Scheduling Problem of CCSL

3.1 Schedulability

Given a set Φ of CCSL constraints, a schedule δ satisfies Φ, denoted by δ |= Φ,
iff δ |= φ for all constraints φ ∈ Φ.
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Fig. 2. The unique schedule that satisfies the three constraints in the example

Definition 5 (Logical time scheduling problem). Given a set Φ of CCSL
constraints, the (logical time) scheduling problem of CCSL is to determine
whether there exists a schedule δ such that δ |= Φ.

We illustrate the scheduling problem by a simple example. Consider alter-
native flickering between the green and red light using CCSL. We assume that
green light starts first. The timing requirements can be formalized by the fol-
lowing three constraints:

green ≺ red, tmp � green $ 1, red ≺ tmp,

where green and red are clocks respectively representing whether the green (resp.
red) light is turned on, the clock tmp is an auxiliary clock used to help specify
the constraints on clocks.

There exists exactly one schedule satisfying the three constraints, as shown
in Fig. 2. In this schedule, the clock tmp has the same behavior as green from
step 2, while the clock red has the opposite behavior to green. Namely, red and
green operates in an alternative manner. For simplicity, we also write green ∼ red
to denote the alternation relation of the two clocks.

Although one may be able to find one or more schedules for some simple
constraints, to our knowledge, there is no generally applicable decision procedure
solving the scheduling problem of full CCSL. There are two main challenges.
First, schedules are essentially infinite, i.e., defined on all the natural numbers.
Second, the precedence is stateful, i.e., it depends on the history, and there is no
upper bound on how far in the history one must go back. It may then require
an infinite memory to store the history. As a first step to tackle this challenging
problem, in this work, we first consider the bounded scheduling problem.

3.2 Bounded Scheduling Problem

Given a bound k ∈ N
+, let σ : N

+
≤k → 2C be a function. σ is an k-bounded

schedule of a set Φ of CCSL constraints, denoted by σ |=k Φ, iff there exists a
schedule δ such that δ(i) = σ(i) for every i ∈ N

+
≤k and δ |= Φ from step 1 up to

k, where N
+
≤k := {1, · · · , k}.
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Definition 6 (Bounded scheduling problem). The bounded scheduling
problem is to determine, for a given set Φ of CCSL constraints and a bound k,
whether there is an k-bounded schedule σ for Φ, i.e., σ |=k Φ.

Theorem 1 (Sufficient condition of unschedulability). If a set Φ of con-
straints has no k-bounded schedule for some k ∈ N

+, then Φ is unschedulable.

The proof is straightforward by contradiction.
It is easy to see that the bounded scheduling problem is decidable, as there are

finitely many potential k-bounded schedules, i.e., (2|C| − 1)k, where |C| denotes
the number of clocks. Furthermore, the satisfiability problem of Boolean formulas
can be reduced to the bounded scheduling problem in polynomial time.

Theorem 2. The k-bounded scheduling problem of CCSL is NP-complete, even
if k = 1.

Proof. The NP upper bound can be proved easily based on the facts that the
number of possible k-bounded schedules is finite and the universal quantification
∀n ∈ N

+
≤k can be eliminated by enumerating all the possible values in N

+
≤k.

We prove the NP-hardness by a reduction from the satisfiability problem of
Boolean formulas which is known NP-complete. Consider the Boolean formula
φ =

∧m
i=1(l

1
i ∨ l2i ∨ l3i ), where m ∈ N

+ and lji for j ∈ {1, 2, 3} is either a Boolean
variable x or its negation ¬x. Let Var(φ) denote the set of Boolean variables
appearing in φ. We construct a set of CCSL constraints Φ as follows.

For each x ∈ Var(φ), we have two clocks x+ and x−. Let enc(x) = x+ and
enc(¬x) = x−. Each clause l1i ∨l2i ∨l3i in φ is encoded as the CCSL constraint ci �
enc(l1i )+enc(l2i )+enc(l3i ), denoted by ψi. Note that ci � enc(l1i )+enc(l2i )+enc(l3i )
can be transformed into CCSL constraints by introducing one auxiliary clock c,
i.e., {ci � enc(l1i ) + enc(l2i ) + enc(l3i )} ≡ {ci � enc(l1i ) + c, c � enc(l2i ) + enc(l3i )}.

Let enc(φ) denote the following set of CCSL constraints

{1 � ∗m
i=1ci, ψ1, ..., ψm, x+ # x−,1 � x+ + x− | x ∈ Var(φ)}

where x+ # x− and 1 � x+ + x− enforce that either x+ or x− ticks at each
step, but not both. This encodes that either x is true or ¬x is true. Note that
τ � ∗m

i=1ci is a shorthand of τ � c1 ∗ · · · ∗ cm, and can also be expressed in
CCSL constraints by introducing polynomial number of auxiliary clocks. For
instance, {c � c1 ∗ c2 ∗ c3} ≡ {c � c1 ∗ c′, c′ � c2 ∗ c3}. We can show that
φ is satisfiable iff enc(φ) is 1-bounded schedulable. The satisfiability problem of
Boolean formulas is NP-complete, we get that the 1-bounded scheduling problem
of CCSL is NP-hard. The k-bounded scheduling problem for k > 1 immediately
follows by repeating the ticks of clocks at the first step. ��

Theorem 2 indicates the time complexity of the bounded scheduling problem.
Thus, we need to find practical solutions that are algorithmically efficient for
it. In the next section, we propose an SMT-based decision procedure for the
bounded scheduling problem and a sound algorithm for the scheduling problem.
Thanks to advances in state-of-the-art SMT solvers such as Z3 [25], our approach
is usually efficient in practice.
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4 Decision Procedure for the Scheduling Problem

4.1 Transformation from CCSL into SMT

Let us fix a set of CCSL constraints Φ defined over a set C of clocks. Each clock
c ∈ C is interpreted as a predicate tc : N

+ → Bool such that for all i ∈ N
+, tc(i)

is true iff the clock c ticks at i, where Bool denotes Boolean sort. A schedule δ
of Φ is encoded as a set of predicates TC = {tc|c ∈ C} such that the following
condition holds: for all tc ∈ TC ,

∀i ∈ N
+.tc(i) ⇔ c ∈ δ(i).

Recalling that schedules forbid stuttering steps, this condition is enforced by
restricting the predicates tc in TC to satisfy the following condition:

∀i ∈ N
+. ∨c∈C tc(i) (F1)

Formula F1 specifies that at each step i at least one clock c ticks, i.e., tc(i) holds.
For each clock c ∈ C, we introduce an auxiliary function hc : N

+ → N to
encode its history. For each i ∈ N

+,

hc(i) :=

⎧
⎨

⎩

0, if i = 1;
hc(i − 1), if i > 1 ∧ ¬tc(i − 1);
hc(i − 1) + 1, if i > 1 ∧ tc(i − 1).

(F2)

Intuitively, hc(i) is equivalent to χ(c, i) for each i ∈ N
+. The set of all the

auxiliary functions is denoted by HC .
By replacing each occurrence of clock c in δ(n) (resp. c �∈ δ(n)) with tc(n)

(resp. ¬tc(n)) and χ(c, n) with hc(n) in the definition of each CCSL constraint,
each CCSL constraint φ can be encoded as an SMT formula �φ�.

We use �Φ� to denote the conjunction of Formulas F1, F2 and the SMT
encodings of CCSL constraints in Φ. Formally,

�Φ� := F1 ∧ F2 ∧ (∧φ∈Φ�φ�).

Finding a schedule for Φ amounts to finding a solution, i.e., definitions of
predicates in TC , which satisfies �Φ�.

Proposition 1. Φ has a schedule iff �Φ� is satisfiable.

The scheduling problem of Φ is transformed into the satisfiability problem of
the formula �Φ�. However, according to the SMT-LIB standard [4], �Φ� belongs to
the logic of UFLIA (formulas with Uninterpreted Functions and Linear Integer
Arithmetic), whose satisfiability problem is undecidable in general. Nevertheless,
the SMT encoding is still useful to solve the bounded scheduling problem, which
we will present in the next subsection.
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4.2 Decision Procedure for the Bounded Scheduling Problem

For k-bounded scheduling problem, it suffices to consider schedules δ : N
+
≤k →

2C . Moreover, the quantifiers in �Φ� can be eliminated once the bound k is fixed.
Hence, we can resort to state-of-the-art SMT solvers. Formally, let �Φ�k be the
formula obtained from �Φ� = F1 ∧ F2 ∧ (

∧
φ∈Φ�φ�) by

– restricting the domain of predicates tc ∈ TC and functions hc ∈ HC to N
+
≤k;

– replacing quantifications ∀n ∈ N
+ and ∃m ∈ N

+ with ∀n ∈ N
+
≤k and ∃m ∈

N
+
≤k in (

∧
φ∈Φ�φ�).

Proposition 2. Φ is k-bounded schedulable iff �Φ�k is satisfiable.
Moreover, if �Φ�k is satisfiable, then �Φ�k′ is satisfiable for all k′ ≤ k.

4.3 A Sound Algorithm for the Scheduling Problem

According to Theorem1, Propositions 1 and 2, (1) if �Φ� is satisfiable, then Φ is
schedulable, and (2) if �Φ�k for some k ∈ N

+ is unsatisfiable, then Φ is unschedu-
lable. We can deduce a sound algorithm for checking the general scheduling
problem. However, randomly choosing a bound k and checking whether or not
�Φ�k is unsatisfiable may be inefficient, as the k-bounded scheduling problem is
NP-hard (cf. Theorem 2), and larger bound k may result in time out, but smaller
bound k may result in that �Φ�k is satisfiable. Indeed, if we consider the maxi-
mal bound B, then the random approach may have to call SMT solving O(B)
times. Alternatively, we propose a binary-search based approach as shown in
Algorithm 1 for a given maximal bound B, which invokes SMT solving at most
O(| log2 B|) times.

Algorithm 1: A sound algorithm for the scheduling problem
Input : a set of constraints Φ, a timeout threshold T , a maximal bound B
Output: {SAT, UNSAT, Timeout} × N

+

1 result1 ← SMTSolver(�Φ�, T );
2 if result1 = SAT then /* Schedulable */

3 return (SAT, 0)

4 l ← 0; u ← B;
5 while l ≤ u do /* Binary search */

6 k ← � l+u
2

�;
7 result2 ← SMTSolver(�Φ�k, T );
8 if result2 = SAT then l ← k + 1; /* Upper half */

9 else /* Lower half */

10 u ← k − 1;
11 if result1 = UNSAT ∨ result2 = UNSAT then
12 result1 ← UNSAT;

13 if result2 �= SAT then k ← k − 1;
14 return (result1, k);
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Given a set Φ of constraints in CCSL, a timeout threshold T and a maxi-
mal bound B, Algorithm 1 first invokes an SMTSolver to decide whether �Φ� is
satisfiable or not within T time. If �Φ� is satisfiable, then Algorithm 1 returns
(SAT,0), meaning that Φ is schedulable. Otherwise, it binary searches a bound
k ≤ B such that �Φ�k is satisfiable while �Φ�k+1 (if k + 1 ≤ B) is unsatisfiable
or cannot be verified in time T.

Theorem 3. Algorithm1 has the following three properties:

1. If it returns (SAT, 0), then Φ is schedulable.
2. If it returns (UNSAT, k), then Φ is unschedulable. If k �= 0, then Φ has k-

bounded schedulable, otherwise does not have any bounded schedulable.
3. If it returns (Timeout, k), then Φ is k-bounded schedulable if k �= 0, otherwise

no bounded schedule is found for Φ.

5 Case Study and Performance Evaluation

We implemented our approach in a prototype tool with Z3 [25] as its underlying
SMT solver. We conduct a case study on expressing requirements of an inter-
locking system in CCSL constraints and analyzing its schedulability. Then, we
prove 12 algebraic properties of CCSL constraints using the tool. Finally, we
evaluate the performance of the tool using 9 sets of CCSL constraints.

5.1 Schedulability of an Interlocking System

The interlocking system is a subsystem of a rail transit system. It is used to
prevent trains from collisions and derailments when they are moving under the
control of signal lights. As shown in Fig. 3, the interlocking system monitors

Fig. 3. Interlocking system

the occupancy status of the individ-
ual track section, and sends signals
to inform drivers whether they are
allowed to enter the route or not. The
railway tracks are divided into sec-
tions. Each section is associated with
a track circuit for detecting whether
it is occupied by a train or not. Sig-
nal lights are placed between track
sections. They can be red and green
to indicate proceeding and stopping,
respectively.

The mechanism and operation procedure of the interlocking system are sum-
marized as follows.

1. To enter a track, a train first sends a request to the control center.
2. On receiving the request, the control center sends an inquiry to the track

circuit to detect the status of the track.
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Table 2. CCSL constraints of the interlocking system

request ≺ inquiry responseOfTrack � checkSucc + checkFail

checkFail ≺ redPulse responseOfTrain � enter + wait

redPulse � showRed inquiry ≺ responseOfTrack

showRed ≺ wait getOccupied ∼ getUnoccupied

checkSucc ≺ greenPulse getOccupied # getUnoccupied

greenPulse � showGreen request ∼ responseOfTrain

showGreen ≺ enter inquiry − responseOfTrack ≤ 40

enter ≺ leave greenPulse − showGreen ≤ 30

enter ⊆ getOccupied redPulse − showRed ≤ 30

leave ⊆ getUnoccupied request − responseOfTrain ≤ 50

������������������
getOccupied ∼ tmp1 checkFail − showRed ≤ 40

��������������������
getUnoccupied ∼ tmp1 checkSucc − showGreen ≤ 40

���������������
checkFail ⊆ tmp1 ������������������

getUnoccupied ≺ tmp2

����������������
tmp2 ≺ getOccupied

���������������
checkSucc ⊆ tmp2

3. If the track is occupied, it sends checkFail to the control center, and otherwise
checkSucc.

4. On receiving the message checkFail (resp. checkSucc), the control center sends
a red (resp. green) signal pulse to the signal light.

5. The signal light turns red (resp. green) on receiving the red (resp. green)
signal pulse.

6. The train will enter after seeing the light is green, and the track becomes
occupied. In case of the red light, the train must stop and wait.

7. The track becomes unoccupied after the train leaves. If the train is waiting,
it must send a request again after some time.

There are time constraints on the above operations. For instance, the control
center needs to get a response from the track circuit within 30 ms after sending
an inquiry to it. The train must make decision within 50 ms after it sends a
request to the control center. The light should turn to the corresponding color
within 30 ms after it receives a pulse. After the track becomes occupied (resp.
unoccupied), the light must turn red (resp. green) within 40 ms.

Table 2 shows the main logical constraints on the operations in the system
and their timing constraints. We use some non-standard constraint expressions
for the sake of compactness. Constraint a − b ≤ n denotes that b must tick
within n steps after a ticks. It equals the set of the following three constraints:

a ≺ b, t � a $ n on 1, b � t.

Note that in this example the unit of time is millisecond (ms). Thus, there is an
implicit assumption in the constraints that every tick of a logic clock means the
elapse of one millisecond.
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Fig. 4. A bounded schedule for the CCSL constraints in the case study

Most constraints in Table 2 are straightforward, except the six con-
straints marked with waved underlines. The first three constraints specify that
checkFail only can occur between the occurrences of getUnoccupied and
getOccupied. The others specify the following two requirements:

1. checkSucc only can occur after getUnoccupied and before getOccupied;
2. getUnoccupied precedes getOccupied.

Given these constraints, our tool found a bounded schedule as depicted in
Fig. 4. From step 1 to step 7, one complete process is finished. Initially, the
track gets unoccupied. At step 2, a request is made, which causes subsequent
operations to occur from step 3 to step 7. At step 29, a fail case occurs because
another train enters (step 26) but has not left (step 31). The train that made
the request has to wait (step 33).

If we extend the bounded schedule by infinitely repeating the behaviors of all
the clocks between step 51 and 69 from step 70, we obtain an infinite schedule.
The extended schedule satisfies all the constraints, and thus it is a witness of
the schedulability of designed mechanism for the interlocking system.

In this paper, we are only concerned with the schedulability of the constraints
in the example. Some other kinds of temporal properties also need to verify. For
instance, we must guarantee that whenever a train requests to enter the station,
it must eventually enter. We also need to verify the system is deadlock-free. Such
temporal properties can be verified by LTL model checking of CCSL constraints
using SMT technique [40]. We omit it because it is beyond the scope of this paper.

5.2 Automatic Proof of CCSL Algebraic Properties

Using the proposed approach, we can also prove automatically algebraic prop-
erties of CCSL constraints such as the commutativity of exclusion and transi-
tivity of causality. Algebraic properties of CCSL constraints can be represented
as Φ ⇒ φ, where Φ is a set of CCSL constraints and φ is a constraint derived
from Φ. Proving Φ ⇒ φ is valid equals proving the unsatisfiability of �Φ�∧ ¬�φ�,
which can be solved by Algorithm 1.
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Table 3. Proved algebraic properties of CCSL constraints

Algebraic property Definition

Commutativity of exclusion c1 # c2 ⇒ c2 # c1

Transitivity of causality c1 � c2 , c2 � c3 ⇒ c1 � c3

Antisymmetry of causality c1 � c2 , c2 � c1 ⇒ c1 = c2

Fastness of infimum c1 � c2 ∧ c3 ⇒ c1 � c2, c1 � c3

Slowestness of infimum c1 � c2 ∧ c3, c4 � c2, c4 � c3 ⇒ c4 � c1

Slowness of supremum c1 � c2 ∨ c3 ⇒ c2 � c1, c3 � c1

Fastestness of supremum c1 � c2 ∨ c3, c2 � c4, c3 � c4 ⇒ c1 � c4

Causality of subclock c1 ⊆ c2 ⇒ c2 � c1

Causality of union c1 � c2 + c3 ⇒ c1 � c2, c1 � c3

Causality of intersection c1 � c2 ∗ c3 ⇒ c2 � c1, c3 � c1

Subclocking of sampling c1 � c2 � c3 ⇒ c1 ⊆ c3

Subclocking of union c1 � c2 + c3 ⇒ c2 ⊆ c1, c3 ⊆ c1

Subclocking of intersection c1 � c2 ∗ c3 ⇒ c1 ⊆ c2, c1 ⊆ c3

Let us consider the proof of the slowestness of infimum as an example. The
slowestness of infimum means that an infimum constraint c1 � c2 ∧ c3 defines
the slowest clock c1 among those that are faster than both c2 and c3.

Proposition 3 (Slowestness of infimum). Given two clocks c2, c3, let c1 �
c2 ∧ c3 and c4 be an arbitrary clock such that c4 � c2 and c4 � c3, then c4 � c1.

This is proved by transforming CCSL constraints into the following SMT for-
mula according the SMT encoding method:

�c1 � c2 ∧ c3� ∧ �c4 � c2� ∧ �c4 � c3� ∧ ¬�c4 � c1�.

Algorithm 1 returns (UNSAT, 0), which means that the formula is proved unsat-
isfiable. The proposition is proved.

Table 3 lists the algebraic properties that have been successfully proved in
our approach. Algebraic properties are useful to help understand the relation
among CCSL constraints. Using them we can also verify whether some CCSL
constraints are redundant or inconsistent for a given set of CCSL constraints.

5.3 Performance Evaluation

To evaluate the performance our tool, we collected 9 sets of CCSL constraints
from the literature and real-world applications, and analyzed their schedulability
using our tool. Under different time thresholds, we calculate the maximal bounds
under which the constraints are schedulable.

Table 4 shows all the experimental results including the corresponding exe-
cution time. All the experiments were conducted on a Win 10 running on an
i7 CPU with 2.70 GHz and 16 GB memory. The numbers followed by asterisks
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Table 4. Experimental results of bounded schedulability analysis

CS Clks. Cons. THD: 10 s THD: 20 s THD: 30 s THD: 40 s

BD TM BD TM BD TM BD TM

CS1 3 3 8 0.06 8 0.06 8 0.06 8 0.06

CS2 3 4 2∗ 0.06 2∗ 0.06 2∗ 0.06 2∗ 0.06

CS3 8 9 48 6.20 59 15.88 70 28.72 75 39.82

CS4 8 7 70 7.12 70 7.12 70 7.12 70 7.12

CS5 9 9 80 8.29 90 19.95 110 26.81 111 39.84

CS6 10 6 95 9.40 113 14.26 113 14.26 113 14.26

CS7 12 9 69 8.80 76 19.42 89 27.69 95 40.00

CS8 17 20 16 0.81 16 0.81 16∗ 27.36 16∗ 27.36

CS9 27 51 30 9.94 41 17.19 45 29.78 45 29.78

Remarks: CS: constraint set, Cons: the number of constraints,
Clks: the number of clocks, THD: timeout threshold, TM: Time
(second), BD: upper bound.

are the maximal bounds such that the corresponding constraints are bounded
schedulable, but unschedulable in the next step. It is interesting to observe from
Table 4 that time cost is loosely related to size (the number of clocks and con-
straints), thanks to efficient search strategies of SMT solvers. This is in striking
contrasts to automata-based [29,35] and the rewriting-based approaches [38],
whose scalability suffers from both the numbers of clocks and constraints.

6 Related Work

CCSL is directly derived from the family of synchronous languages, such as
Lustre [9], Esterel [6] and Signal [5], and its the scheduling problem of CCSL
is akin to what synchronous languages call clock calculus. The main differences
are: CCSL is a specification language, while others are programming languages;
and CCSL partially describes what is expected to happen in a declarative way
and does not give a direct operational deterministic description of what must
happen. Furthermore, CCSL only deals with pure clocks while the others deal
with signals and extract the clocks when needed.

The Esterel compiler [31] applies a constructive approach to decide when a
signal must occur (compute its clock) and what its value should be. This requires
a detection of causality cycles, or intra-cycle data dependencies, which are also
naturally addressed by our approach. However, the Esterel compiler compiles an
imperative program into a Boolean circuit, or equivalently a finite state machine.
Consequently, it cannot deal with CCSL unbounded schedules.

The clock calculus in Signal attempts to detect whether the specification is
endochronous [30], in which case it can generate some efficient code. This analysis
is mainly based on the subclock relationship that also exists in CCSL. In CCSL,
we consider the problem whether there is at least one possible schedule or not.
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In Lustre and its extensions, clocks are regarded as abstract types [13] and the
clock calculus computes the relative rates of clocks while rejecting the program
when computing the rates is not possible. In most cases, the compiler attempts
to build bounded buffers and to ensure that the functional determinism can be
preserved with a finite memory. In our case, we do not seek to reach a finite
representation, as in the first specification steps this is not a primary goal for
the designers. Indeed, this might lead to an over-specification of the problem.

Classical real-time scheduling problem [32] usually relies on task models,
arrival patterns and constraints (e.g., precedence, resources) to propose algo-
rithms for the scheduling problem with analytical results [19] or heuristics
depending on the specific model (e.g., priorities, preemptive). Other solutions,
based on timed automata [1,2,17] or timed Petri nets [8,18], propose a general
framework for describing all the relevant aspects without assuming a specific task
model. CCSL offers an alternative method based on logical time. It is believed
that logical time and multiform time bases offer some flexibility to unify func-
tional requirements and performance constraints. We rely on CCSL and we
claim that after encoding a task model in CCSL, finding a schedule for the
CCSL model also gives a schedule for the encoded task model [24].

There have been many efforts made towards the scheduling problem of
CCSL, though no conclusion is drawn on its decidability. TimeSquare [14]
is a simulation tool for CCSL which can produce a possible schedule for a given
set of CCSL, up to a given user-defined bound. It also supports different sim-
ulation strategies for producing desired execution traces. Some earlier work [20]
define the notion of safe CCSL specifications that can be encoded with a finite-
state machine. The scheduling problem is decidable for safe specifications, as one
can merely enumerate all the (finite) solutions. A semi-algorithm can build the
finite representation when the specification is safe [21]. In [37], Zhang et al. pro-
posed a state-based approach and a sufficient condition to decide whether safe
and unsafe specifications accept a so-called periodic schedule [39]. This allows to
build a finite solution for unsafe specifications, while there may also exist infi-
nite solutions. Xu et al. proposed a notion of divergence of CCSL to study the
schedulability of CCSL, and proved that a set of CCSL constraints is schedula-
ble if all the constraints are divergent [34]. They resorted to the theorem prover
PVS [27] to assist the divergence proof.

The scheduling problem of CCSL constraints in this work resorts to SMT
solving to deal with the bounded and unbounded schedules. Using SMT solving
has two advantages: (1) it is usually efficient in practice, and (2) it can deal with
unsafe CCSL constraints such as infimum and supremum [21].

Some basic algebraic properties on CCSL relations have been established
manually before [23] but we provide here an automatic framework to do so.

7 Conclusion and Future Work

In this work, we proved that the bounded scheduling problem of CCSL is
NP-complete, and proposed an SMT-based decision procedure for the bounded
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scheduling problem. The procedure is sound and complete. The experimental
results also show its efficiency in practice. Based on this decision procedure, we
devised a sound algorithm for the general scheduling problem. We evaluated the
effectiveness of the proposed approach on an interlocking system. We also showed
our approach can be used to prove algebraic properties of CCSL constraints.

Our approach to the bounded scheduling problem of CCSL makes us one
step closer to tackling the general (i.e. unbounded) scheduling problem. As
the case study demonstrates, one may find an infinite schedule by extending
a bounded one such that the extended infinite schedule still satisfies the con-
straints. This observation inspires future work to investigate mechanisms of
finding such bounded schedules, hopefully with SMT solvers by extending our
algorithm. In our earlier work [37], we proposed a similar approach to search
for periodical schedules in bounded steps. In that approach, CCSL constraints
are transformed into finite state machine and consequently suffers from the state
explosion problem. We believe our SMT-based approach can be extended to their
work while still avoiding state explosion. We leave it to future work.
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Abstract. We propose E↓-logic as a formal foundation for the specifica-
tion and development of event-based systems with local data states. The
logic is intended to cover a broad range of abstraction levels from abstract
requirements specifications up to constructive specifications. Our logic
uses diamond and box modalities over structured actions adopted from
dynamic logic. Atomic actions are pairs e� ψ where e is an event and ψ
a state transition predicate capturing the allowed reactions to the event.
To write concrete specifications of recursive process structures we inte-
grate (control) state variables and binders of hybrid logic. The seman-
tic interpretation relies on event/data transition systems; specification
refinement is defined by model class inclusion. For the presentation of
constructive specifications we propose operational event/data specifica-
tions allowing for familiar, diagrammatic representations by state transi-
tion graphs. We show that E↓-logic is powerful enough to characterise the
semantics of an operational specification by a single E↓-sentence. Thus
the whole development process can rely on E↓-logic and its semantics as
a common basis. This includes also a variety of implementation construc-
tors to support, among others, event refinement and parallel composition.

1 Introduction

Event-based systems are an important kind of software systems which are open
to the environment to react to certain events. A crucial characteristics of such
systems is that not any event can (or should) be expected at any time. Hence the
control flow of the system is significant and should be modelled by appropriate
means. On the other hand components administrate data which may change
upon the occurrence of an event. Thus also the specification of admissible data
changes caused by events plays a major role.

A. Madeira—Supported by ERDF through COMPETE 2020 and by National Funds
through FCT with POCI-01-0145-FEDER-016692 and UID/MAT/04106/2019, in a
contract foreseen in nos. 4–6 of art. 23 of the DL 57/2016, changed by DL 57/2017.

c© The Author(s) 2019
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There is quite a lot of literature on modelling and specification of event-based
systems. Many approaches, often underpinned by graphical notations, provide
formalisms aiming at being constructive enough to suggest particular designs
or implementations, like e.g., Event-B [1,7], symbolic transition systems [17],
and UML behavioural and protocol state machines [12,16]. On the other hand,
there are logical formalisms to express desired properties of event-based systems.
Among them are temporal logics integrating state and event-based styles [4], and
various kinds of modal logics involving data, like first-order dynamic logic [10]
or the modal μ-calculus with data and time [9]. The gap between logics and
constructive specification is usually filled by checking whether the model of a
constructive specification satisfies certain logical formulae.

In this paper we are interested in investigating a logic which is capable to
express properties of event/data-based systems on various abstraction levels in
a common formalism. For this purpose we follow ideas of [15], but there data
states, effects of events on them and constructive operational specifications (see
below) were not considered. The advantage of an expressive logic is that we can
split the transition from system requirements to system implementation into a
series of gradual refinement steps which are more easy to understand, to verify,
and to adjust when certain aspects of the system are to be changed or when a
product line of similar products has to be developed.

To that end we propose E↓-logic, a dynamic logic enriched with features of
hybrid logic. The dynamic part uses diamond and box modalities over structured
actions. Atomic actions are of the form e�ψ with e an event and ψ a state transi-
tion predicate specifying the admissible effects of e on the data. Using sequential
composition, union, and iteration we obtain complex actions that, in connection
with the modalities, can be used to specify required and forbidden behaviour. In
particular, if E is a finite set of events, though data is infinite we are able to
capture all reachable states of the system and to express safety and liveness prop-
erties. But E↓-logic is also powerful enough to specify concrete, recursive process
structures by integrating state variables and binders from hybrid logic [6] with
the subtle difference that our state variables are used to denote control states
only. We show that the dynamic part of the logic is bisimulation invariant while
the hybrid part, due to the ability to bind names to states, is not.

An axiomatic specification Sp = (Σ,Ax ) in E↓ is given by an event/data
signature Σ = (E,A), with a set E of events and a set A of attributes to
model local data states, and a set of E↓-sentences Ax , called axioms, express-
ing requirements. For the semantic interpretation we use event/data transition
systems (edts). Their states are reachable configurations γ = (c, ω) where c is
a control state, recording the current state of execution, and ω is a local data
state, i.e., a valuation of the attributes. Transitions between configurations are
labelled by events. The semantics of a specification Sp is “loose” in the sense that
it consists of all edts satisfying the axioms of the specification. Such structures
are called models of Sp. Loose semantics allows us to define a simple refinement
notion: Sp1 refines to Sp2 if the model class of Sp2 is included in the model class
of Sp1. We may also say that Sp2 is an implementation of Sp1.
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Our refinement process starts typically with axiomatic specifications whose
axioms involve only the dynamic part of the logic. Hybrid features will succes-
sively be added in refinements when specifying more concrete behaviours, like
loops. Aiming at a concrete design, the use of an axiomatic specification style
may, however, become cumbersome since we have to state explicitly also all
negative cases, what the system should not do. For a convenient presentation
of constructive specifications we propose operational event/data specifications,
which are a kind of symbolic transition systems equipped again with a model
class semantics in terms of edts. We will show that E↓-logic, by use of the hybrid
binder, is powerful enough to characterise the semantics of an operational spec-
ification. Therefore we have not really left E↓-logic when refining axiomatic by
operational specifications. Moreover, since several constructive notations in the
literature, including (essential parts of) Event-B, symbolic transition systems,
and UML protocol state machines, can be expressed as operational specifications,
E↓-logic provides a logical umbrella under which event/data-based systems can
be developed.

In order to consider more complex refinements we take up an idea of Sannella
and Tarlecki [18,19] who have proposed the notion of constructor implementa-
tion. This is a generic notion applicable to specification formalisms based on
signatures and semantic structures for signatures. As both are available in the
context of E↓-logic, we complement our approach by introducing a couple of
constructors, among them event refinement and parallel composition. For the
latter we provide a useful refinement criterion relying on a relationship between
syntactic and semantic parallel composition. The logic and the use of the imple-
mentation constructors will be illustrated by a running example.

Hereafter, in Sect. 2, we introduce syntax and semantics of E↓-logic. In Sect. 3,
we consider axiomatic as well as operational specifications and demonstrate the
expressiveness of E↓-logic. Refinement of both types of specifications using sev-
eral implementation constructors is considered in Sect. 4. Section 5 provides some
concluding remarks. Proofs of theorems and facts can be found in [11].

2 A Hybrid Dynamic Logic for Event/Data Systems

We propose the logic E↓ to specify and reason about event/data-based systems.
E↓-logic is an extension of the hybrid dynamic logic considered in [15] by taking
into account changing data. Therefore, we first summarise our underlying notions
used for the treatment of data. We then introduce the syntax and semantics of
E↓ with its hybrid and dynamic logic features applied to events and data.

2.1 Data States

We assume given a universe D of data values. A data signature is given by a set
A of attributes. An A-data state ω is a function ω : A → D. We denote by Ω(A)
the set of all A-data states. For any data signature A, we assume given a set
Φ(A) of state predicates to be interpreted over single A-data states, and a set
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Ψ(A) of transition predicates to be interpreted over pairs of pre- and post-A-data
states. The concrete syntax of state and transition predicates is of no particular
importance for the following. For an attribute a ∈ A, a state predicate may be
a > 0; and a transition predicate e.g. a′ = a + 1, where a refers to the value of
attribute a in the pre-data state and a′ to its value in the post-data state. Still,
both types of predicates are assumed to contain true and to be closed under
negation (written ¬) and disjunction (written ∨); as usual, we will then also use
false, ∧, etc. Furthermore, we assume for each A0 ⊆ A a transition predicate
idA0 ∈ Ψ(A) expressing that the values of attributes in A0 are the same in pre-
and post-A-data states.

We write ω |=D
A ϕ if ϕ ∈ Φ(A) is satisfied in data state ω; and (ω1, ω2) |=D

A ψ
if ψ ∈ Ψ(A) is satisfied in the pre-data state ω1 and post-data state ω2. In
particular, (ω1, ω2) |=D

A idA0 if, and only if, ω1(a0) = ω2(a0) for all a0 ∈ A0.

2.2 E↓-Logic

Definition 1. An event/data signature ( ed signature, for short) Σ = (E,A)
consists of a finite set of events E and a data signature A. We write E(Σ) for
E and A(Σ) for A. We also write Ω(Σ) for Ω(A(Σ)), Φ(Σ) for Φ(A(Σ)), and
Ψ(Σ) for Ψ(A(Σ)). The class of ed signatures is denoted by SigE↓

.

Any ed signature Σ determines a class of semantic structures, the event/data
transition systems which are reachable transition systems with sets of initial
states and events as labels on transitions. The states are pairs γ = (c, ω), called
configurations, where c is a control state recording the current execution state
and ω is an A(Σ)-data state; we write c(γ) for c and ω(γ) for ω.

Definition 2. A Σ-event/data transition system (Σ-edts, for short) M =
(Γ,R, Γ0) over an ed signature Σ consists of a set of configurations Γ ⊆
C × Ω(Σ) for a set of control states C; a family of transition relations
R = (Re ⊆ Γ × Γ )e∈E(Σ); and a non-empty set of initial configurations
Γ0 ⊆ {c0} × Ω0 for an initial control state c0 ∈ C and a set of initial data
states Ω0 ⊆ Ω(Σ) such that Γ is reachable via R, i.e., for all γ ∈ Γ there are
γ0 ∈ Γ0, n ≥ 0, e1, . . . , en ∈ E(Σ), and (γi, γi+1) ∈ Rei+1 for all 0 ≤ i < n with
γn = γ. We write Γ (M) for Γ , C(M) for C, R(M) for R, c0(M) for c0, Ω0(M)
for Ω0, and Γ0(M) for Γ0. The class of Σ-edts is denoted by EdtsE↓

(Σ).

Atomic actions are given by expressions of the form e�ψ with e an event and
ψ a state transition predicate. The intuition is that the occurrence of the event
e causes a state transition in accordance with ψ, i.e., the pre- and post-data
states satisfy ψ, and ψ specifies the possible effects of e. Following the ideas
of dynamic logic we also use complex, structured actions formed over atomic
actions by union, sequential composition and iteration. All kinds of actions over
an ed signature Σ are called Σ-event/data actions (Σ-ed actions, for short). The
set Λ(Σ) of Σ-ed actions is defined by the grammar

λ ::= e� ψ | λ1 + λ2 | λ1;λ2 | λ∗



A Hybrid Dynamic Logic for Event/Data-Based Systems 83

where e ∈ E(Σ) and ψ ∈ Ψ(Σ). We use the following shorthand notations
for actions: For a subset F = {e1, . . . , ek} ⊆ E(Σ), we use the notation F
to denote the complex action e1� true + . . . + ek� true and −F to denote the
action E(Σ) \ F . For the action E(Σ) we will write E. For e ∈ E(Σ), we
use the notation e to denote the action e� true and −e to denote the action
E \ {e}. Hence, if E(Σ) = {e1, . . . , en} and ei ∈ E(Σ), the action −ei stands for
e1� true + . . . + ei−1� true + ei+1� true + . . . + en� true.

The actions Λ(Σ) are interpreted over a Σ-edts M as the family of relations
(R(M)λ ⊆ Γ (M) × Γ (M))λ∈Λ(Σ) defined by

– R(M)e�ψ = {(γ, γ′) ∈ R(M)e | (ω(γ), ω(γ′)) |=D
A(Σ) ψ},

– R(M)λ1+λ2 = R(M)λ1 ∪ R(M)λ2 , i.e., union of relations,
– R(M)λ1;λ2 = R(M)λ1 ;R(M)λ2 , i.e., sequential composition of relations,
– R(M)λ∗ = (R(M)λ)∗, i.e., reflexive-transitive closure of relations.

To define the event/data formulae of E↓ we assume given a countably infinite
set X of control state variables which are used in formulae to denote the control
part of a configuration. They can be bound by the binder operator ↓x and
accessed by the jump operator @x of hybrid logic. The dynamic part of our logic
is due to the modalities which can be formed over any ed action over a given ed
signature. E↓ thus retains from hybrid logic the use of binders, but omits free
nominals. Thus sentences of the logic become restricted to express properties of
configurations reachable from the initial ones.

Definition 3. The set FrmE↓
(Σ) of Σ-ed formulae over an ed signature Σ is

given by

 ::= ϕ | x | ↓x .  | @x .  | 〈λ〉 | true | ¬ | 1 ∨ 2

where ϕ ∈ Φ(Σ), x ∈ X, and λ ∈ Λ(Σ). We write [λ] for ¬〈λ〉¬ and we
use the usual boolean connectives as well as the constant false to denote ¬true.1

The set SenE↓
(Σ) of Σ-ed sentences consists of all Σ-ed formulae without free

variables, where the free variables are defined as usual with ↓x being the unique
operator binding variables.

Given an ed signature Σ and a Σ-edts M , the satisfaction of a Σ-ed formula
 is inductively defined w.r.t. valuations v : X → C(M), mapping variables to
control states, and configurations γ ∈ Γ (M):

– M,v, γ |=E↓
Σ ϕ iff ω(γ) |=D

A(Σ) ϕ;

– M,v, γ |=E↓
Σ x iff c(γ) = v(x);

– M,v, γ |=E↓
Σ ↓x .  iff M,v{x → c(γ)}, γ |=E↓

Σ ;
– M,v, γ |=E↓

Σ @x .  iff M,v, γ′ |=E↓
Σ  for all γ′ ∈ Γ (M) with c(γ′) = v(x);

– M,v, γ |=E↓
Σ 〈λ〉 iff M,v, γ′ |=E↓

Σ  for some γ′ ∈ Γ (M) with (γ, γ′) ∈ R(M)λ;

1 We use true and false for predicates and formulae; their meaning will always be clear
from the context. For boolean values we will use instead the notations tt and ff .
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– M,v, γ |=E↓
Σ true always holds;

– M,v, γ |=E↓
Σ ¬ iff M,v, γ �|=E↓

Σ ;
– M,v, γ |=E↓

Σ 1 ∨ 2 iff M,v, γ |=E↓
Σ 1 or M,v, γ |=E↓

Σ 2.

If  is a sentence then the valuation is irrelevant. M satisfies a sentence  ∈
SenE↓

(Σ), denoted by M |=E↓
Σ , if M,γ0 |=E↓

Σ  for all γ0 ∈ Γ0(M).
By borrowing the modalities from dynamic logic [9,10], E↓ is able to express

liveness and safety requirements as illustrated in our running ATM example
below. There we use the fact that we can state properties over all reachable
states by sentences of the form [E∗]ϕ. In particular, deadlock-freedom can be
expressed by [E∗]〈E〉true. The logic E↓, however, is also suited to directly express
process structures and, thus, the implementation of abstract requirements. The
binder operator is essential for this. For example, we can specify a process which
switches a boolean value, denoted by the attribute val, from tt to ff and back
by the following sentence:

↓x0 . val = tt ∧ 〈switch� val′ = ff 〉〈switch� val′ = tt〉x0.

2.3 Bisimulation and Invariance

Bisimulation is a crucial notion in both behavioural systems specification and
in modal logics. On the specification side, it provides a standard way to identify
systems with the same behaviour by abstracting the internal specifics of the
systems; this is also reflected at the logic side, where bisimulation frequently
relates states that satisfy the same formulae. We explore some properties of E↓

w.r.t. bisimilarity. Let us first introduce the notion of bisimilarity in the context
of E↓:

Definition 4. Let M1,M2 be Σ-edts. A relation B ⊆ Γ (M1) × Γ (M2) is a
bisimulation relation between M1 and M2 if for all (γ1, γ2) ∈ B the following
conditions hold:
(atom) for all ϕ ∈ Φ(Σ), ω(γ1) |=D

A(Σ) ϕ iff ω(γ2) |=D
A(Σ) ϕ;

(zig) for all e� ψ ∈ Λ(Σ) and for all γ′
1 ∈ Γ (M1) with (γ1, γ

′
1) ∈ R(M1)e�ψ,

there is a γ′
2 ∈ Γ (M2) such that (γ2, γ

′
2) ∈ R(M2)e�ψ and (γ′

1, γ
′
2) ∈ B;

(zag) for all e� ψ ∈ Λ(Σ) and for all γ′
2 ∈ Γ (M2) with (γ2, γ

′
2) ∈ R(M2)e�ψ,

there is a γ′
1 ∈ Γ (M1) such that (γ1, γ

′
1) ∈ R(M1)e�ψ and (γ′

1, γ
′
2) ∈ B.

M1 and M2 are bisimilar, in symbols M1 ∼ M2, if there exists a bisimulation
relation B ⊆ Γ (M1) × Γ (M2) between M1 and M2 such that

(init) for any γ1 ∈ Γ0(M1), there is a γ2 ∈ Γ0(M2) such that (γ1, γ2) ∈ B and
for any γ2 ∈ Γ0(M2), there is a γ1 ∈ Γ0(M1) such that (γ1, γ2) ∈ B.

Now we are able to establish a Hennessy-Milner like correspondence for a
fragment of E↓. Let us call hybrid-free sentences of E↓ the formulae obtained by
the grammar

 ::= ϕ | 〈λ〉 | true | ¬ | 1 ∨ 2.
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Theorem 1. Let M1,M2 be bisimilar Σ-edts. Then M1 |=E↓
Σ  iff M2 |=E↓

Σ  for
all hybrid-free sentences .

The converse of Theorem 1 does not hold, in general, and the usual image-
finiteness assumption has to be imposed: A Σ-edts M is image-finite if, for all
γ ∈ Γ (M) and all e ∈ E(Σ), the set {γ′ | (γ, γ′) ∈ R(M)e} is finite. Then:

Theorem 2. Let M1,M2 be image-finite Σ-edts and γ1 ∈ Γ (M1), γ2 ∈ Γ (M2)
such that M1, γ1 |=E↓

Σ  iff M2, γ2 |=E↓
Σ  for all hybrid-free sentences . Then

there exists a bisimulation B between M1 and M2 such that (γ1, γ2) ∈ B.

3 Specifications of Event/Data Systems

3.1 Axiomatic Specifications

Sentences of E↓-logic can be used to specify properties of event/data systems
and thus to write system specifications in an axiomatic way.

Definition 5. An axiomatic ed specification Sp = (Σ(Sp),Ax (Sp)) in E↓

consists of an ed signature Σ(Sp) ∈ SigE↓
and a set of axioms Ax (Sp) ⊆

SenE↓
(Σ(Sp)).

The semantics of Sp is given by the pair (Σ(Sp), Mod(Sp)) where Mod(Sp) =
{M ∈ EdtsE↓

(Σ(Sp)) | M |=E↓
Σ(Sp) Ax (Sp)}. The edts in Mod(Sp) are called

models of Sp and Mod(Sp) is the model class of Sp.

As a direct consequence of Theorem 1 we have:

Corollary 1. The model class of an axiomatic ed specification exclusively
expressed by hybrid-free sentences is closed under bisimulation.

This result does not hold for sentences with hybrid features. For instance,
consider the specification Sp =

(
({e}, {a}), {↓x . 〈e� a′ = a〉x}): An edts with

a single control state c0 and a loop transition Re = {(γ0, γ0)} for c(γ0) = c0

is a model of Sp. However, this is obviously not the case for its bisimilar edts
with two control states c0 and c and the relation R′

e = {(γ0, γ), (γ, γ0)} with
c(γ0) = c0, c(γ) = c and ω(γ0) = ω(γ).

Example 1. As a running example we consider an ATM. We start with an
abstract specification Sp0 of fundamental requirements for its interaction
behaviour based on the set of events E0 = {insertCard, enterPIN, ejectCard,
cancel}2 and on the singleton set of attributes A0 = {chk} where chk is boolean
valued and records the correctness of an entered PIN. Hence our first ed signa-
ture is Σ0 = (E0, A0) and Sp0 = (Σ0,Ax 0) where Ax 0 requires the following
properties expressed by corresponding axioms (0.1–0.3):

2 For shortening the presentation we omit further events like withdrawing money, etc.



86 R. Hennicker et al.

– “Whenever a card has been inserted, a correct PIN can eventually be entered
and also the transaction can eventually be cancelled.”

[E∗; insertCard](〈E∗; enterPIN� chk′ = tt〉true ∧ 〈E∗; cancel〉true) (0.1)

– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected.”

[E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉true (0.2)

– “Whenever an incorrect PIN has been entered three times in a row, the current
card is not returned.” This means that the card is kept by the ATM which is
not modelled by an extra event. It may, however, still be possible that another
card is inserted afterwards. So an ejectCard can only be forbidden as long as
no next card is inserted.

[E∗; (enterPIN� chk′ = ff )3; (−insertCard)∗; ejectCard]false (0.3)

where λn abbreviates the n-fold sequential composition λ; . . . ; λ.

The semantics of an axiomatic ed specification is loose allowing usually for
many different realisations. A refinement step is therefore understood as a restric-
tion of the model class of an abstract specification. Following the terminology
of Sannella and Tarlecki [18,19], we call a specification refining another one
an implementation. Formally, a specification Sp′ is a simple implementation of
a specification Sp over the same signature, in symbols Sp � Sp′, whenever
Mod(Sp) ⊇ Mod(Sp′). Transitivity of the inclusion relation ensures gradual
step-by-step development by a series of refinements.

Example 2. We provide a refinement Sp0 � Sp1 where Sp1 = (Σ0,Ax 1) has the
same signature as Sp0 and Ax 1 are the sentences (1.1–1.4) below; the last two
use binders to specify a loop. As is easily seen, all models of Sp1 must satisfy
the axioms of Sp0.

– “At the beginning a card can be inserted with the effect that chk is set to ff ;
nothing else is possible at the beginning.”

〈insertCard� chk′ = ff 〉true ∧ (1.1)
[insertCard� ¬(chk′ = ff )]false ∧ [−insertCard]false

– “Whenever a card has been inserted, a PIN can be entered (directly after-
wards) and also the transaction can be cancelled; but nothing else.”

[E∗; insertCard](〈enterPIN〉true ∧ 〈cancel〉true ∧ (1.2)
[−{enterPIN, cancel}]false)
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– “Whenever either a correct PIN has been entered or the transaction has been
cancelled, the card can eventually be ejected and the ATM starts from the
beginning.”

↓x0 . [E∗; (enterPIN� chk′ = tt) + cancel]〈E∗; ejectCard〉x0 (1.3)

– “Whenever an incorrect PIN has been entered three times in a row the ATM
starts from the beginning.” Hence the current card is kept.

↓x0 . [E∗; (enterPIN� chk′ = ff )3]x0 (1.4)

3.2 Operational Specifications

Operational event/data specifications are introduced as a means to specify in a
more constructive style the properties of event/data systems. They are not appro-
priate for writing abstract requirements for which axiomatic specifications are
recommended. Though E↓-logic is able to specify concrete models, as discussed
in Sect. 2, the use of operational specifications allows a graphic representation
close to familiar formalisms in the literature, like UML protocol state machines,
cf. [12,16]. As will be shown in Sect. 3.3, finite operational specifications can be
characterised by a sentence in E↓-logic. Therefore, E↓-logic is still the common
basis of our development approach. Transitions in an operational specification
are tuples (c, ϕ, e, ψ, c′) with c a source control state, ϕ a precondition, e an event,
ψ a state transition predicate specifying the possible effects of the event e, and
c′ a target control state. In the semantic models an event must be enabled when-
ever the respective source data state satisfies the precondition. Thus isolating
preconditions has a semantic consequence that is not expressible by transition
predicates only. The effect of the event must respect ψ; no other transitions are
allowed.

Definition 6. An operational ed specification O = (Σ,C, T, (c0, ϕ0)) is given
by an ed signature Σ, a set of control states C, a transition relation specification
T ⊆ C ×Φ(Σ)×E(Σ)×Ψ(Σ)×C, an initial control state c0 ∈ C, and an initial
state predicate ϕ0 ∈ Φ(Σ), such that C is syntactically reachable, i.e., for every
c ∈ C \{c0} there are (c0, ϕ1, e1, ψ1, c1), . . . , (cn−1, ϕn, en, ψn, cn) ∈ T with n > 0
such that cn = c. We write Σ(O) for Σ, etc.

A Σ-edts M is a model of O if C(M) = C up to a bijective renaming,
c0(M) = c0, Ω0(M) ⊆ {ω | ω |=D

A(Σ) ϕ0}, and if the following conditions hold:

– for all (c, ϕ, e, ψ, c′) ∈ T and ω ∈ Ω(A(Σ)) with ω |=D
A(Σ) ϕ, there is a ((c, ω),

(c′, ω′)) ∈ R(M)e with (ω, ω′) |=D
A(Σ) ψ;
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Fig. 1. Operational ed specification ATM

– for all ((c, ω), (c′, ω′)) ∈ R(M)e there is a (c, ϕ, e, ψ, c′) ∈ T with ω |=D
A(Σ) ϕ

and (ω, ω′) |=D
A(Σ) ψ.

The class of all models of O is denoted by Mod(O). The semantics of O is given
by the pair (Σ(O),Mod(O)) where Σ(O) = Σ.

Example 3. We construct an operational ed specification, called ATM , for the
ATM example. The signature of ATM extends the one of Sp1 (and Sp0) by an
additional integer-valued attribute trls which counts the number of attempts to
enter a correct PIN (with the same card). ATM is graphically presented in Fig. 1.
The initial control state is Card , and the initial state predicate is true. Precondi-
tions are written before the symbol →. If no precondition is explicitly indicated
it is assumed to be true. Due to the extended signature, ATM is not a simple
implementation of Sp1, and we will only formally justify the implementation
relationship in Example 5.

Operational specifications can be composed by a syntactic parallel composi-
tion operator which synchronises shared events. Two ed signatures Σ1 and Σ2

are composable if A(Σ1) ∩ A(Σ2) = ∅. Their parallel composition is given by
Σ1 ⊗ Σ2 = (E(Σ1) ∪ E(Σ2), A(Σ1) ∪ A(Σ2)).

Definition 7. Let Σ1 and Σ2 be composable ed signatures and let O1 and O2

be operational ed specifications with Σ(O1) = Σ1 and Σ(O2) = Σ2. The parallel
composition of O1 and O2 is given by the operational ed specification O1 ‖ O2 =
(Σ1 ⊗ Σ2, C, T, (c0, ϕ0)) with c0 = (c0(O1), c0(O2)), ϕ0 = ϕ0(O1) ∧ ϕ0(O2), and
C and T are inductively defined by c0 ∈ C and

– for e1 ∈ E(Σ1) \ E(Σ2), c1, c
′
1 ∈ C(O1), and c2 ∈ C(O2), if (c1, c2) ∈ C and

(c1, ϕ1, e1, ψ1, c
′
1) ∈ T (O1), then (c′

1, c2) ∈ C and ((c1, c2), ϕ1, e1, ψ1 ∧ idA(Σ2),
(c′

1, c2)) ∈ T ;
– for e2 ∈ E(Σ2) \ E(Σ1), c2, c

′
2 ∈ C(O2), and c1 ∈ C(O1), if (c1, c2) ∈ C and

(c2, ϕ2, e2, ψ2, c
′
2) ∈ T (O2), then (c1, c

′
2) ∈ C and ((c1, c2), ϕ2, e2, ψ2 ∧ idA(Σ1),

(c1, c
′
2)) ∈ T ;
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– for e ∈ E(Σ1) ∩ E(Σ2), c1, c
′
1 ∈ C(O1), and c2, c

′
2 ∈ C(O2), if (c1, c2) ∈ C,

(c1, ϕ1, e, ψ1, c
′
1) ∈ T (O1), and (c2, ϕ2, e, ψ2, c

′
2) ∈ T (O2), then (c′

1, c
′
2) ∈ C

and ((c1, c2), ϕ1 ∧ ϕ2, e, ψ1 ∧ ψ2, (c′
1, c

′
2)) ∈ T .3

3.3 Expressiveness of E↓-Logic

We show that the semantics of an operational ed specification O with finitely
many control states can be characterised by a single E↓-sentence O, i.e., an edts
M is a model of O iff M |=E↓

Σ(O) O. Using Algorithm 1, such a characterising
sentence is

O = ↓c0 . ϕ0 ∧ sen(c0, ImO(c0), C(O), {c0}) ,

where c0 = c0(O) and ϕ0 = ϕ0(O). Algorithm 1 closely follows the procedure
in [15] for characterising a finite structure by a sentence of D↓-logic. A call sen(c,
I, V,B) performs a recursive breadth-first traversal through O starting from c,
where I holds the unprocessed quadruples (ϕ, e, ψ, c′) of transitions outgoing
from c, V the remaining states to visit, and B the set of already bound states.
The function first requires the existence of each outgoing transition of I, provided
its precondition holds, in the resulting formula, binding any newly reached state.
Then it requires that no other transitions with source state c exist using calls
to fin. Having visited all states in V , it finally requires all states in C(O) to be
pairwise different.

Algorithm 1. Constructing a sentence from an operational ed specification
Require: O ≡ finite operational ed specification

ImO(c) = {(ϕ, e, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O)
ImO(c, e) = {(ϕ, ψ, c′) | (c, ϕ, e, ψ, c′) ∈ T (O)} for c ∈ C(O), e ∈ E(Σ(O))

1 function sen(c, I, V, B) � c: state, I: image to visit, V : states to visit, B: bound states
2 if I �= ∅ then
3 (ϕ, e, ψ, c′) ← choose I
4 if c′ ∈ B then

5 return @c . ϕ → 〈e� ψ〉(c′ ∧ sen(c, I \ {(ϕ, e, ψ, c′)}, V, B))

6 else
7 return @c . ϕ → 〈e� ψ〉(↓c′ . sen(c, I \ {(ϕ, e, ψ, c′)}, V, B ∪ {c′}))

8 V ← V \ {c}
9 if V �= ∅ then

10 c′ ← choose B ∩ V

11 return fin(c) ∧ sen(c′, ImO(c′), V, B)

12 return fin(c) ∧ ∧
c1∈C(O),c2∈C(O)\{c1} ¬@c1 . c2

13 function fin(c)
14 return @c .

∧
e∈E(Σ(O))

∧
P⊆ImO(c,e)

[e�
( ∧

(ϕ,ψ,c′)∈P (ϕ ∧ ψ)
) ∧

¬( ∨
(ϕ,ψ,c′)∈ImO(c,e)\P (ϕ ∧ ψ)

)
]
( ∨

(ϕ,ψ,c′)∈P c′)

3 Note that joint moves with e cannot become inconsistent due to composability of ed
signatures.
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It is fin(c) where this algorithm mainly deviates from [15]: To ensure that
no other transitions from c exist than those specified in O, fin(c) produces the
requirement that at state c, for every event e and for every subset P of the
transitions outgoing from c, whenever an e-transition can be done with the com-
bined effect of P but not adhering to any of the effects of the currently not
selected transitions, the e-transition must have one of the states as its target
that are target states of P . The rather complicated formulation is due to possi-
bly overlapping preconditions where for a single event e the preconditions of two
different transitions may be satisfied simultaneously. For a state c, where all out-
going transitions for the same event have disjoint preconditions, the E↓-formula
returned by fin(c) is equivalent to

@c .
∧

e∈E(Σ(O))

∧
(ϕ,ψ,c′)∈ImO(c,e)[e� ϕ ∧ ψ]c′ ∧

[e� ¬(∨
(ϕ,ψ,c′)∈ImO(c,e)(ϕ ∧ ψ)

)
]false.

Example 4. We show the first few steps of representing the operational ed spec-
ification ATM of Fig. 1 as an E↓-sentence ATM . This top-level sentence is

↓Card . true ∧ sen(Card , {(true, insertCard, chk′ = ff ∧ trls′ = 0,PIN )},
{Card ,PIN ,Return}, {Card}).

The first call of sen(Card , . . .) explores the single outgoing transition from Card
to PIN , adds PIN to the bound states, and hence expands to

@Card . true → 〈insertCard� chk′ = ff ∧ trls′ = 0〉↓PIN .
sen(Card , ∅, {Card ,PIN ,Return}, {Card ,PIN }).

Now all outgoing transitions from Card have been explored and the next call of
sen(Card , ∅, . . .) removes Card from the set of states to be visited, resulting in

fin(Card) ∧ sen(PIN , {(trls < 2, enterPIN, . . .), (trls = 2, enterPIN, . . .),
(trls ≤ 2, enterPIN, . . .), (true, cancel, . . .)},

{PIN ,Return}, {Card ,PIN }).

As there is only a single outgoing transition from Card , the special case of disjoint
preconditions applies for the finalisation call, and fin(Card) results in

@Card . [insertCard� chk′ = ff ∧ trls′ = 0]PIN ∧
[insertCard� chk′ = tt ∨ trls′ �= 0]false ∧
[enterPIN� true]false ∧ [cancel� true]false ∧ [ejectCard� true]false.

4 Constructor Implementations

The implementation notion defined in Sect. 3.1 is too simple for many practical
applications. It requires the same signature for specification and implementation
and does not support the process of constructing an implementation. Therefore,
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Sannella and Tarlecki [18,19] have proposed the notion of constructor implemen-
tation which is a generic notion applicable to specification formalisms which are
based on signatures and semantic structures for signatures. We will reuse the
ideas in the context of E↓-logic.

The notion of constructor is the basis: for signatures Σ1, . . . , Σn, Σ ∈ SigE↓
,

a constructor κ from (Σ1, . . . , Σn) to Σ is a (total) function κ : EdtsE↓
(Σ1) ×

. . . × EdtsE↓
(Σn) → EdtsE↓

(Σ). Given a constructor κ from (Σ1, . . . , Σn) to Σ
and a set of constructors κi from (Σ1

i , . . . , Σki
i ) to Σi, 1 ≤ i ≤ n, the constructor

(κ1, . . . , κn);κ from (Σ1
1 , . . . , Σk1

1 , . . . , Σ1
n, . . . , Σkn

n ) to Σ is obtained by the usual
composition of functions. The following definitions apply to both axiomatic and
operational ed specifications since the semantics of both is given in terms of ed
signatures and model classes of edts. In particular, the implementation notion
allows to implement axiomatic specifications by operational specifications.

Definition 8. Given specifications Sp,Sp1, . . . ,Spn and a constructor κ from
(Σ(Sp1), . . . , Σ(Spn)) to Σ(Sp), the tuple 〈Sp1, . . . ,Spn〉 is a constructor imple-
mentation via κ of Sp, in symbols Sp �κ 〈Sp1, . . . ,Spn〉, if for all Mi ∈
Mod(Spi) we have κ(M1, . . . , Mn) ∈ Mod(Sp). The implementation involves a
decomposition if n > 1.

The notion of simple implementation in Sect. 3.1 is captured by choosing the
identity. We now introduce a set of more advanced constructors in the context of
ed signatures and edts. Let us first consider two central notions for constructors:
signature morphisms and reducts. For data signatures A,A′ a data signature
morphism σ : A → A′ is a function from A to A′. The σ-reduct of an A′-data
state ω′ : A′ → D is given by the A-data state ω′|σ : A → D defined by
(ω′|σ)(a) = ω′(σ(a)) for every a ∈ A. If A ⊆ A′, the injection of A into A′ is a
particular data signature morphism and we denote the reduct of an A′-data state
ω′ to A by ω′�A. If A = A1 ∪ A2 is the disjoint union of A1 and A2 and ωi are
Ai-data states for i ∈ {1, 2} then ω1+ω2 denotes the unique A-data state ω with
ω�Ai = ωi for i ∈ {1, 2}. The σ-reduct γ|σ of a configuration γ = (c, ω′) is given
by (c, ω′|σ), and is lifted to a set of configurations Γ ′ by Γ ′|σ = {γ′|σ | γ′ ∈ Γ ′}.

Definition 9. An ed signature morphism σ = (σE , σA) : Σ → Σ′ is given by
a function σE : E(Σ) → E(Σ′) and a data signature morphism σA : A(Σ) →
A(Σ′). We abbreviate both σE and σA by σ.

Definition 10. Let σ : Σ → Σ′ be an ed signature morphism and M ′ a Σ′-edts.
The σ-reduct of M ′ is the Σ-edts M ′|σ = (Γ,R, Γ0) such that Γ0 = Γ0(M ′)|σ,
and Γ and R = (Re)e∈E(Σ) are inductively defined by Γ0 ⊆ Γ and for all e ∈
E(Σ), γ′, γ′′ ∈ Γ (M ′): if γ′|σ ∈ Γ and (γ′, γ′′) ∈ R(M ′)σ(e), then γ′′|σ ∈ Γ and
(γ′|σ, γ′′|σ) ∈ Re.

Definition 11. Let σ : Σ → Σ′ be an ed signature morphism. The reduct con-
structor κσ from Σ′ to Σ maps any M ′ ∈ EdtsE↓

(Σ′) to its reduct κσ(M ′) =
M ′|σ. Whenever σA and σE are bijective functions, κσ is a relabelling construc-
tor. If σE and σA are injective, κσ is a restriction constructor.



92 R. Hennicker et al.

Example 5. The operational specification ATM is a constructor implementation
of Sp1 via the restriction constructor κι determined by the inclusion signature
morphism ι : Σ(Sp1) → Σ(ATM ), i.e., Sp1 �κι

ATM .

A further refinement technique for reactive systems (see, e.g., [8]), is the
implementation of simple events by complex events, like their sequential compo-
sition. To formalise this as a constructor we use composite events Θ(E) over a
given set of events E, given by the grammar θ ::= e | θ + θ | θ; θ | θ∗ with e ∈ E.
They are interpreted over an (E,A)-edts M by R(M)θ1+θ2 = R(M)θ1 ∪R(M)θ2 ,
R(M)θ1;θ2 = R(M)θ1 ;R(M)θ2 , and R(M)θ∗ = (R(M)θ)∗. Then we can intro-
duce the intended constructor by means of reducts over signature morphisms
mapping atomic to composite events:

Definition 12. Let Σ,Σ′ be ed signatures, D′ a finite subset of Θ(E(Σ′)), Δ′ =
(D′, A(Σ′)), and α : Σ → Δ′ an ed signature morphism. The event refinement
constructor κα from Δ′ to Σ maps any M ′ ∈ EdtsE↓

(Δ′) to its reduct M ′|α ∈
EdtsE↓

(Σ).

Finally, we consider a semantic, synchronous parallel composition construc-
tor that allows for decomposition of implementations into components which
synchronise on shared events. Given two composable signatures Σ1 and Σ2, the
parallel composition γ1 ⊗ γ2 of two configurations γ1 = (c1, ω1), γ2 = (c2, ω2)
with ω1 ∈ Ω(A(Σ1)), ω2 ∈ Ω(A(Σ2)) is given by ((c1, c2), ω1 +ω2), and lifted to
two sets of configurations Γ1 and Γ2 by Γ1 ⊗ Γ2 = {γ1 ⊗ γ2 | γ1 ∈ Γ1, γ2 ∈ Γ2}.

Definition 13. Let Σ1, Σ2 be composable ed signatures. The parallel compo-
sition constructor κ⊗ from (Σ1, Σ2) to Σ1 ⊗ Σ2 maps any M1 ∈ EdtsE↓

(Σ1),
M2 ∈ EdtsE↓

(Σ2) to M1 ⊗ M2 = (Γ,R, Γ0) ∈ EdtsE↓
(Σ1 ⊗ Σ2), where

Γ0 = Γ0(M1)⊗Γ0(M2), and Γ and R = (Re)E(Σ1)∪E(Σ2) are inductively defined
by Γ0 ⊆ Γ and

– for all e1 ∈ E(Σ1) \ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2 ∈ Γ (M2), if γ1 ⊗ γ2 ∈ Γ

and (γ1, γ
′
1) ∈ R(M1)e1 , then γ′

1 ⊗ γ2 ∈ Γ and (γ1 ⊗ γ2, γ
′
1 ⊗ γ2) ∈ Re1 ;

– for all e2 ∈ E(Σ2) \ E(Σ1), γ2, γ
′
2 ∈ Γ (M2), and γ1 ∈ Γ (M1), if γ1 ⊗ γ2 ∈ Γ

and (γ2, γ
′
2) ∈ R(M2)e2 , then γ1 ⊗ γ′

2 ∈ Γ and (γ1 ⊗ γ2, γ1 ⊗ γ′
2) ∈ Re2 ;

– for all e ∈ E(Σ1) ∩ E(Σ2), γ1, γ
′
1 ∈ Γ (M1), and γ2, γ

′
2 ∈ Γ (M2), if γ1 ⊗

γ2 ∈ Γ , (γ1, γ
′
1) ∈ R(M1)e1 , and (γ2, γ

′
2) ∈ R(M2)e2 , then γ′

1 ⊗ γ′
2 ∈ Γ and

(γ1 ⊗ γ2, γ
′
1 ⊗ γ′

2) ∈ Re.

An obvious question is how the semantic parallel composition constructor is
related to the syntactic parallel composition of operational ed specifications.

Proposition 1. Let O1, O2 be operational ed specifications with composable sig-
natures. Then Mod(O1)⊗Mod(O2) ⊆ Mod(O1 ‖ O2), where Mod(O1)⊗Mod(O2)
denotes κ⊗(Mod(O1),Mod(O2)).
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The converse Mod(O1 ‖ O2) ⊆ Mod(O1)⊗Mod(O2) does not hold: Consider
the ed signature Σ = (E,A) with E = {e}, A = ∅, and the operational ed
specifications Oi = (Σ,Ci, Ti, (ci,0, ϕi,0)) for i ∈ {1, 2} with C1 = {c1,0}, T1 =
{(c1,0, true, e, false, c1,0)}, ϕ1,0 = true; and C2 = {c2,0}, T2 = ∅, ϕ2,0 = true.
Then Mod(O1) = ∅, but Mod(O1 ‖ O2) = {M} with M showing just the initial
configuration.

The next theorem shows the usefulness of the syntactic parallel composi-
tion operator for proving implementation correctness when a (semantic) parallel
composition constructor is involved. The theorem is a direct consequence of
Proposition 1 and Definition 8.

Theorem 3. Let Sp be an (axiomatic or operational) ed specification, O1, O2

operational ed specifications with composable signatures, and κ an implemen-
tation constructor from Σ(O1) ⊗ Σ(O2) to Σ(Sp): If Sp �κ O1 ‖ O2, then
Sp �κ⊗;κ 〈O1, O2〉.

Example 6. We finish the refinement chain for the ATM specifications by apply-
ing a decomposition into two parallel components. The operational specifica-
tion ATM of Example 3 (and Example 5) describes the interface behaviour
of an ATM interacting with a user. For a concrete realisation, however, an
ATM will also interact internally with other components, like, e.g., a clear-
ing company which supports the ATM for verifying PINs. Our last refinement
step hence realises the ATM specification by two parallel components, repre-
sented by the operational specification ATM ′ in Fig. 2a and the operational
specification CC of a clearing company in Fig. 2b. Both communicate (via
shared events) when an ATM sends a verification request, modelled by the
event verifyPIN, to the clearing company. The clearing company may answer
with correctPIN or wrongPIN and then the ATM continues following its speci-
fication. For the implementation construction we use the parallel composition
constructor κ⊗ from (Σ(ATM ′), Σ(CC )) to Σ(ATM ′) ⊗ Σ(CC ). The signa-
ture of CC consists of the events shown on the transitions in Fig. 2b. More-
over, there is one integer-valued attribute cnt counting the number of verifica-
tion tasks performed. The signature of ATM ′ extends Σ(ATM ) by the events
verifyPIN, correctPIN and wrongPIN. To fit the signature and the behaviour
of the parallel composition of ATM ′ and CC to the specification ATM we
must therefore compose κ⊗ with an event refinement constructor κα such that
α(enterPIN) = (enterPIN; verifyPIN; (correctPIN+wrongPIN)); for the other events
α is the identity and for the attributes the inclusion. The idea is therefore that
the refinement looks like ATM �κ⊗; κα

〈ATM ′,CC 〉. To prove this refinement
relation we rely on the syntactic parallel composition ATM ′ ‖ CC shown in
Fig. 2c, and on Theorem3. It is easy to see that ATM �κα

ATM ′ ‖ CC . In
fact, all transitions for event enterPIN in Fig. 1 are split into several transitions
in Fig. 2c according to the event refinement defined by α. For instance, the loop
transition from PIN to PIN with precondition trls < 2 in Fig. 1 is split into
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Fig. 2. Operational ed specifications ATM ′, CC and their parallel composition

the cycle from (PIN , Idle) via (PINEntered , Idle) and (Verifying ,Busy) back to
(PIN , Idle) in Fig. 2c. Thus, we have ATM �κα

ATM ′ ‖ CC and can apply
Theorem 3 such that we get ATM �κ⊗; κα

〈ATM ′,CC 〉.
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5 Conclusions

We have presented a novel logic, called E↓-logic, for the rigorous formal devel-
opment of event-based systems incorporating changing data states. To the best
of our knowledge, no other logic supports the full development process for this
kind of systems ranging from abstract requirements specifications, expressible
by the dynamic logic features, to the concrete specification of implementations,
expressible by the hybrid part of the logic.

The temporal logic of actions (TLA [13]) supports also stepwise refinement
where state transition predicates are considered as actions. In contrast to TLA
we model also the events which cause data state transitions. For writing con-
crete specifications we have proposed an operational specification format captur-
ing (at least parts of) similar formalisms, like Event-B [1], symbolic transition
systems [17], and UML protocol state machines [16]. A significant difference to
Event-B machines is that we distinguish between control and data states, the
former being encoded as data in Event-B. On the other hand, Event-B sup-
ports parameters of events which could be integrated in our logic as well. An
institution-based semantics of Event-B has been proposed in [7] which coincides
with our semantics of operational specifications for the special case of determin-
istic state transition predicates. Similarly, our semantics of operational specifi-
cations coincides with the unfolding of symbolic transition systems in [17] if we
instantiate our generic data domain with algebraic specifications of data types
(and consider again only deterministic state transition predicates). The syntax
of UML protocol state machines is about the same as the one of operational
event/data specifications. As a consequence, all of the aforementioned concrete
specification formalisms (and several others) would be appropriate candidates
for integration into a development process based on E↓-logic.

There remain several interesting tasks for future research. First, our logic is
not yet equipped with a proof system for deriving consequences of specifications.
This would also support the proof of refinement steps which is currently achieved
by purely semantic reasoning. A proof system for E↓-logic must cover dynamic
and hybrid logic parts at the same time, like the proof system in [15], which,
however, does not consider data states, and the recent calculus of [5], which
extends differential dynamic logic but does not deal with events and reactions to
events. Both proof systems could be appropriate candidates for incorporating the
features of E↓-logic. Another issue concerns the separation of events into input
and output as in I/O-automata [14]. Then also communication compatibility
(see [2] for interface automata without data and [3] for interface theories with
data) would become relevant when applying a parallel composition constructor.



96 R. Hennicker et al.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2013)

2. de Alfaro, L., Henzinger, T.A.: Interface automata. In: Tjoa, A.M., Gruhn, V. (eds.)
Proceedings 8th European Software Engineering Conference & 9th ACM SIGSOFT
International Symposium Foundations of Software Engineering, pp. 109–120. ACM
(2001)

3. Bauer, S.S., Hennicker, R., Wirsing, M.: Interface theories for concurrency and
data. Theoret. Comput. Sci. 412(28), 3101–3121 (2011)

4. ter Beek, M.H., Fantechi, A., Gnesi, S., Mazzanti, F.: An action/state-based model-
checking approach for the analysis of communication protocols for service-oriented
applications. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 133–
148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79707-4 11

5. Bohrer, B., Platzer, A.: A hybrid, dynamic logic for hybrid-dynamic information
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Abstract. We present Pyro, a framework for enabling domain-specific
modeling via the internet. Provided with an adequate metamodel spec-
ification, Pyro turns your browser into a collaborative, domain-specific,
graphical development environment with features reminiscent of desktop
IDEs for textual programming languages. The required metamodeling
is supported in a high-level, simplicity-driven fashion, and the entire
ready-to-run browser-based domain-specific development environment is
generated fully automatically. We will illustrate the steps of this devel-
opment along the realization of a graphical IDE for the Architecture
Analysis and Design Language (AADL).

1 Introduction

Domain-specific languages (DSLs) aim at closing the gap between domain knowl-
edge and software development by explicitly supporting the required domain
concepts. Graphical domain-specific languages have turned out to be particu-
larly suitable for domain experts without any programming background. The
bottleneck in practice is the enormous effort to develop the required domain-
specific graphical modeling tools. The Cinco SCCE Meta Tooling Suite [26] has
been designed to overcome this bottleneck by providing a holistic, simplicity-
driven [22] approach for the creation of such domain-specific graphical modeling
tools. A key feature of Cinco is that it generates the entire graphical modeling
environment (referred to as ‘Cinco Products’ in the remainder of the paper)
from high-level specifications of the defined model structures and functionali-
ties. The (translational) semantics of the specified modeling language is defined
in terms of code generation, model transformation, evaluation, and/or interpre-
tation [20]. Cinco Products are Eclipse-based, graphical modeling tools that are
realized via a number of Eclipse plug-ins [13]. Thus, setting up a Cinco Prod-
uct involves some technical aspects that are beyond the competence of typical
domain experts, and it becomes even more tedious when one wants to enable a
cooperative development.

In this paper, we present Pyro, a tool that enables one to generate Cinco
Products for collaborative modeling that run in a web browser. Conceptually,
Pyro borrows from modern online editors for collaborative work, like Google
c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 101–115, 2019.
https://doi.org/10.1007/978-3-030-16722-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_6&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_6


102 P. Zweihoff et al.

Fig. 1. Cinco generation architecture.

Docs, Microsoft Office 365, or solutions like ShareLaTeX/Overleaf that even
free one from maintaining a corresponding build and runtime environment.

Key to the realization of Pyro is that Cinco follows a fully generative app-
roach on the meta level, which allows one to modularly ‘retarget’ the Cinco
Product Generation for the web (cf. Fig. 1). Technically, Pyro web modeling
environments utilize DyWA [27] (Dynamic Web Application) for data modeling,
empowering prototype-driven application development.

In order to achieve this retargeting and to enable collaborative work, Pyro
needs to, in particular, compensate for all the required functionality provided
by the Eclipse platform, like the EMF framework with GMF or Graphiti for
graphical editors. Altogether, this poses the following three key challenges:

– Developing an adequate web solution for the metamodel-based model han-
dling (API, persistence, event system, etc.) that in the Eclipse world is pro-
vided by the EMF framework [33] (see Architecture Backend, Sect. 3.1).

– Developing a frontend on top of these model structures that feels like a modern
integrated development environment with a graphical editor for the models,
which in the Eclipse world is provided by the Rich Client Platform (RCP) [24]
and the Graphiti editor framework [2] (see Architecture Frontend, Sect. 3.2).

– Enabling real-time live collaborative working on models, which is not foreseen
in an offline client like Eclipse (see Collaborative Editing, Sect. 4).

In the course of this tool paper, Pyro is illustrated along the development of a
graphical modeling environment for the Architecture Analysis and Design Lan-
guage (AADL), an SAE standard for modeling the architecture of embedded
real-time systems [29]. Cinco was used to develop a graphical AADL modeling
tool supporting a subset of AADL’s features tailored to be used in teaching [28],
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Fig. 2. Pyro web-based modeling environment for the AADL language.

where it replaces the graphical editor of the OSATE tool [8] (AADL’s refer-
ence implementation). Furthermore, a dedicated code generator was developed
to support verification with behavior specified with the BLESS language [17].
Another example for Pyro realizing a DSL for point and click adventures can be
found in [21].

Figure 2 shows the web-based graphical AADL editor in Pyro1. We will use
this editor in the remainder of this paper to illustrate Cinco’s and Pyro’s core
ideas and concepts. The user interface is designed after commonly known con-
cepts from integrated development environments, like Eclipse or IntelliJ. The
main area in the center is covered by the modeling canvas showing the currently
edited model. On the right, there is the palette showing the available types of
modeling elements. They can be placed onto the canvas just by drag&drop. The
attributes of the currently selected element in the editor can be set via the prop-
erties view at the bottom. The validation view (bottom right corner) constantly
checks for the syntax and static semantics of the model in the canvas and pro-
vides appropriate error or warning messages. Finally, a project explorer and a
menu bar complete the IDE-like appearance.

The remainder of the paper is organized as follows: While Sect. 2 briefly describes
the use of Cinco’s specification languages to define a sophisticated graphical

1 The editor is available for experimentation on the Pyro website: https://pyro.scce.info.

https://pyro.scce.info
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modeling language, the generation to a web-based environment and the resulting
architecture is explained in Sect. 3. The mechanisms and techniques used to
enable simultaneous collaboration are explained in Sect. 4. The paper closes with
a summary, related work, and an outlook of the future development in Sect. 5.

2 DSL Development with Cinco

Cinco is a language workbench [11] for the simplicity-driven development of
graphical modeling environments that are domain-specific [12], support full code
generation [10,15], and easily integrate existing solutions in the form of ser-
vices [23]. As Cinco is itself a meta-level application of these principles [25], it
is specialized to the domain of ‘graph-based graphical modeling tools’ and fully
generates such tools from meta-level descriptions (models) – the key enabling
factor for the whole Pyro approach. Primarily relevant in this regard are two
Cinco metamodeling languages:2

1. The Meta Graph Language (MGL) allows for the definition of the abstract
syntax of the developed language, i.e., which types of language elements exist
and how they can be related. In the context of AADL, this means, for instance,
that a system model consists of devices, processes and threads, and that all
of them have ports (of different types) that can be connected with data/in-
formation flow edges.

2. The Meta Style Language (MSL) is used to specify the concrete graphical
syntax of those MGL-defined concepts by means of simple hierarchical shapes
and their appearance (such as color, line type/width, etc.). As can be seen in
Fig. 2, for instance, devices are depicted by a black thick line rectangle, while
threads appear as a grey dashed line parallelogram.

With these meta-level specification files, the Cinco Product Generator
(which is part of Cinco) generates plug-ins for the Eclipse Rich Client Plat-
form (RCP) that realize the editor based on the Eclipse Modeling Framework
(EMF) and the Graphiti graphical editor framework. Further additions to the
editor, which are not covered by these two specification files, can be injected in
an aspect-oriented fashion [16]: Cinco provides a so-called mechanism of hooks
that are triggered on the occurrence of certain events, for instance, when a node
is created, moved, or deleted. Hooks are inserted into the MGL file with anno-
tations on the model elements defined therein. The effect of a hook can either
be modeled in a transformation language [20] or directly be written as Java
code using the generated model API. In the context of the AADL editor, e.g., a
postMoveHook is used to move a port to the nearest border within its container
after it has been moved by the user. This results in a very natural ‘snapping to
the border’ effect during modeling.

As Cinco follows a fully generative approach, the very same specification
files are utilized by Pyro to generate a web-based modeling editor that runs in
2 For a more elaborate introduction on how to define a graphical editor with Cinco,

as well as other case studies and exemplary modeling languages, please refer to [26].
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the browser (cf. Fig. 1). Of course, in this context, the running platform won’t be
based on Eclipse anymore, but based on common web frameworks like Angular
for the frontend and Java EE for the backend. The aspects of a Cinco Product
included in a service-oriented fashion via native components written in Java (for
instance a code generator or editor-assisting features like the hooks discussed
above) can thus directly be run also in the backend of the Pyro editor.

In the following, we will focus on two particularly important aspects of Pyro:
After discussing the frontend/backend architecture of the generated Pyro mod-
eling environments in Sect. 3, we will take a deeper look at the communication
pattern between the involved components that facilitates synchronous collabo-
rative modeling (cf. Sect. 4).

3 Architecture

In contrast to developing an Eclipse-based modeling environment, for the real-
ization of a web-based solution one nearly has to start from scratch. Eclipse
itself is built on a huge amount of plug-ins, developed over the past seventeen
years. In particular, the Eclipse Modeling Project provides many frameworks for
developing modeling languages based on metamodels and bundling them into
a rich IDE. In the context of the web, development of integrated environments
has just started, so that only a few best practices, plug-ins, and frameworks are
available. This means, even fundamental features often have to be implemented
to enable basic functionalities. The main difference between local desktop IDEs
and a web-based environment like Pyro is the opportunity to provide distributed
access to a centralized instance by multiple users at the same time. This results
in new challenges and requirements regarding the synchronization between mul-
tiple users and conflict resolution for oppositional modifications.

Thus, the Pyro architecture must be built in a way that adequately substi-
tutes what Eclipse already provides in the desktop application context, but also
be prepared for the distributed setting with multiple users – in particular for
supporting live collaborative editing on the same models. In this section, the
generation of Pyro web-based modeling environments is described in a way that
shows how the needed information is collected from Cinco’s high-level specifi-
cation metamodels and where the generated code is placed and distributed in
the overall context to build the Pyro architecture.

The previously introduced specification of the AADL modeling language con-
stitutes the source for the tool generation step. After the Pyro generator is trig-
gered, all MGL and MSL files for a Cinco-based modeling tool are collected to
gather the required information. At this point, all modeling languages, including
their available node and edge types, are visible for the generator.

In the next step, a template of the modeling environment web application
is created. The gray parts with dotted borders in Fig. 3 show the static ele-
ments independent of the given language specification, whereas the blue parts
with solid borders are specifically generated from this specification. The tem-
plate consists of a DyWA-based backend, extended by a specific Domain Layer
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Fig. 3. Overall architecture of the generated web-based modeling environment.

for communication. On the client side, some general parts provide Registration,
Login, and Project Management, but the main component is the specific Editor
generated to handle instances of the graphical modeling language. The underly-
ing single-page web application framework Angular Dart [1] is utilized to enable
the required features of a rich internet application, like versatile user interaction
and asynchronous communication.

Essentially, in the backend, the challenge of providing the metamodel-based
model handling (persistence, API, event handling, etc.) is solved, which in the
Cinco desktop client world is provided by the EMF framework. The frontend,
on the other hand, realizes the rich IDE-like frame application with the graph-
ical editor for the models. In the following, these two parts are explained in
more detail to show how the different layers are connected and which parts are
generated to establish the entire integrated environment.

3.1 Backend

The backend of a modeling environment generated using Pyro consists of two
main layers: One is responsible for the centralized persistence of model instances,
the other for receiving and distributing modifications. The lowest level of the
web application is the database to store information in a centralized fashion.
This layer handles the representation of predefined metamodels for the given
domain-specific languages. Pyro modeling environments utilize the DyWA as
an abstraction layer of a database to store types and objects in a dynamic
and loosely coupled fashion [27]. Based on the specified languages’ node and
edge types, a Domain Data Plug-in (see Fig. 4) is generated by Pyro which
declares types, associations, attributes, and inheritance. The main reason for
using the DyWA as model layer is its Domain Generator, which generates a
specific DyWA API providing entities and controllers for the previously given
types to handle their instances on a simplified layer above the database. This
closely resembles the APIs generated by EMF in the Eclipse world, so that
the effort of generating the required CINCO API adapters is greatly reduced,
which provides functionalities with identical signatures as EMF, so that already
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Fig. 4. Backend component architecture and interaction.

existing code can directly be applied (see below). Beyond that, DyWA is prepared
for dynamic change of the metamodel, which becomes necessary during modeling
language evolution (see [19]).

Since Cinco supports to extend the definition of graphical modeling lan-
guages by user-written Java code for hooks, actions, validation checks, and code
generators, a holistic reuse mechanism has to be provided in the context of
Pyro. To meet this goal, the same Cinco interfaces are rebuilt in the generated
web-based modeling environment, providing the same structure and identical
signatures. As a result of this, the domain-specific interfaces (see Fig. 4, CINCO

API ) generated by Pyro are compatible to the one Cinco generates for Eclipse
and EMF to be used identically by these extensions. In contrast to the desktop-
based Cinco Product, a Pyro graph model instance is not persisted in a file on
the local system. The Pyro web modeling environment as a distributed system
utilizes the DyWA database for storage and centralized access as a server. Thus,
the CINCO API is internally connected to the corresponding generated DyWA
API to persist changes in the database, which is hidden from the extensions.

Multi-user collaborative editing with the generated domain-specific modeling
languages is one of the main challenges for Pyro. All changes to a centrally held
instance of a graph model have to be shared with all participants. For the distri-
bution of the changes performed on a graph model by calling the CINCO API )
methods, a Command Stack is used, to store each individual modification. Since
Cinco provides hooks for aspect-oriented extensions, a single action like the
movement of a node on the canvas can result in multiple successive commands.
As a result, all modifications on a model or any of their elements at runtime are
encoded in commands and sequentially stored in the stack. The recorded com-
mands during the CINCO API usage are used to synchronize between different
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clients looking at the same model as well as the realization of redo and undo
functionalities. This synchronization mechanism is described in more detail in
Sect. 4.

To use the web modeling environment in a desktop application fashion, an
uninterruptible user interaction is necessary. Thus, Pyro utilizes REST-based
asynchronous communication for non-blocking data exchange. As a result of
this, the outermost component of the generated web application is a REST
Interface. The interface consists of Static Endpoints for project, file, and user
management, which are independent from the given modeling languages. These
parts are supplemented by generated Endpoints, which are based on the Cinco
specification and provide methods to create, read, update, and delete (CRUD)
a single graph model. In addition to this, the interface contains the central
endpoint for commands sent from a client’s frontend to the backend. Depending
on the used Extensions, additional Endpoints are generated to fetch and trigger
user-written actions or a generator.

3.2 Frontend

To mimic the look and feel of a local desktop modeling environment, the web-
based variant generated by Pyro has to provide versatile user interactions. As a
result of this, the Frontend of the generated web application (see Fig. 5), which
realizes the interface for the user, is focused on quick responses and familiar input
behavior. To achieve this goal, the frontend part of a web modeling environment
is built upon the Angular Dart [1] framework, which is used to realize single-
page web applications with built-in cross-platform support and comprises an
architecture focused on reusable components. In addition to this, it is tailored
to asynchronous user interaction and client-side routing, so that it can be used
to build rich internet applications, like, for instance, ones resembling integrated
development environments (IDEs).

In contrast to a local desktop application, a web application requires addi-
tional multi-user focused interfaces. Therefore, the template for the frontend,
which is initially created, consists of static user interfaces for Registration and
Login as well as a Project Management area to create, edit, and share projects.
The specifically generated parts are used by the Editor, which comprises domain-
specific components. Its user interface is similar to the known Eclipse IDE used
by regular Cinco Products (see Fig. 2).

The challenge of preventing delays in the system’s response on a user input
to enable fluent interaction can be met by avoiding synchronized communication
with the backend. The editor facilitates this frontend-side computation by two
layers used to interact with instances of the graph models. The Mirror Layer
stores a snapshot of the model present in the database, whereas the Interaction
Layer is a direct representation of a visible graph which can be modified by
the user. This separation enables a delta between the last valid graph, stored
in the Mirror Layer and the currently visible graph. Thanks to this, generated
syntactical validators (e.g., for ensuring lower bounds of given cardinalities) can
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Fig. 5. Front end architecture.

raise errors and the appropriate rollback operation works immediately on the
client side without additional communication with the backend.

Pyro specifically aims at supporting users switching from already existing
Cinco Products to the web-based modeling environment. Thus, the Editor,
which is the main part of the frontend, provides multiple components similar
to the Eclipse IDE. To not confuse users, functions, behavior and arrangement
are recreated. Besides common user interface parts like a project explorer and a
menu, specific components for the modeling environment are generated, like the
Canvas, a Properties View, and the Palette.

The Canvas is based on the JointJS framework [9], which in general renders
SVGs and adds versatile user interaction for manipulation of nodes and edges
via drag&drop functionalities. Using this, it was possible that the web modeling
environment running in a browser provides very similar handling to the Eclipse-
based desktop application with its Graphiti editor. The exact replication of the
node and edge appearance is a central goal of the generated Canvas. Ideally,
a user cannot distinguish between a Pyro and Cinco visualization of a graph
model. This requires the same hierarchical shape structure for the web as in
the Graphiti editor, which can be realized by scalable vector graphics (SVGs).
The SVG Markup, which defines the shapes and styling information of the nodes
and edges, is generated based on the concrete syntax specified in the MSL files
of Cinco. The JointJS framework and SVG Markup files are observed by a
domain-specific User Event Controller, which realizes the listeners and stream
handling mechanisms for a single graph model to modify the underlying layers.

Besides the distinct and visible modifications available directly in the Can-
vas, attributes of an edge, node or the graph model (as defined in the MGL
metamodel) can be modified using the Properties View. It has a generic frame
based on a tree view to recursively walk through associated types of the currently



110 P. Zweihoff et al.

selected element. For every type present in an MGL file, a form for editing the
primitive attributes (e.g string, Boolean or integer) is generated. The single fields
are tailored to the specified data type of the attribute, to give as much support as
possible. Thanks to the two-way data binding of the underlying Angular frame-
work, every change to an attribute is immediately propagated to the underlying
layer.

The Palette is generated based on the given MGL specifications. It lists all
node types available for modeling. In addition to this, the optional annotations
of the MGL, e.g. for grouping nodes and dedicated icons for visual support, are
considered as well.

4 Collaborative Editing

One of the main features of modeling environments generated by Pyro is the
simultaneous editing of graph models by multiple clients at the same time.
The continuous synchronization between clients avoids classical revision control
repositories for distributed access and instead enables immediate collaboration.
To reach the goal of simultaneous synchronization, different aspects have been
considered to maintain consistency, scalability and achieve a real-time effect.

In this section, the mechanism used for Pyro web-based modeling environ-
ments to communicate is presented and explained. The first part discusses the
different challenges of a distributed system with respect to the domain of graph-
ical modeling environments, whereas the second part describes the realization of
the command pattern used to exchange modifications on a graph model.

4.1 Simultaneous Synchronization Mechanism

The main communication concept of a generated modeling environment by Pyro
as a distributed system is the optimistic replication strategy [30]. This concept
replicates data and allows the single replicas to diverge, which in the context of
Pyro is realized by the separated graph model replicas held in each client. The
optimistic replication belongs to the eventually consistent consistency model
and is furthermore classified as basically available, soft state and eventually con-
sistent (BASE) [36]. It benefits from high availability, since it only exchanges
updates on given items. In the context of a web-based modeling environment,
the updates are based on the modifications a client can do to a node or edge.
To enable conflict resolution and maintain consistency regarding commutativity
and idempotency, conflict-free replicated data types (CRDTs) are represented
by commands. CRDT was originally used for text-based synchronization as a
simplification of operational transformation [34]. It utilizes an additional data
structure, based on an identifier of the client, the changed value and the position
to create a unique identifier for each changed character of the text. Regarding
the graph models handled by Pyro, CRDTs are realized by commands for each
type of possible model element modification, which store a unique identifier and
the changed properties of the relevant element. In addition to this, the previous
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values of the updated properties are stored as well, to enable rollback, undo, and
redo functionalities. Thus, Pyro uses operation-based and state-based CRDTs.
Thanks to the CRDTs, conflicts of simultaneously editing the same model ele-
ment at the same time can be detected. In the context of graphical DSLs, conflicts
can arise by violating the given static semantics defined in the metamodel. If
a conflict is detected, the corresponding command is flagged for rollback and
returned to its sender. The client then inverts the modification encoded by the
command and applies it to revert the conflicting change.

4.2 Distributed Command Pattern

The distribution of modifications made to a graph model in the Pyro web model-
ing environment is realized by a command pattern [14]. It belongs to the behav-
ioral design pattern, which is used to encapsulate all information needed to per-
form an update on an object. The commands are sent as HTTP POST requests,
combining the graph model and client identifier. An exemplified collaboration of
two clients (red and green) modifying the same graph model simultaneously is
presented in Fig. 6.

After the initial read from the database, a client only calculates, exchanges
and receives commands when a modification is done (see Fig. 6(1)). For every
possible change on nodes and edges (e.g., moving a node or bending an edge), a
dedicated command encoding the modification is created and sent to the server,
extended with a unique identifier of the sender. Thanks to this assignment, all
commands can be differentiated (see red commands by client A and green com-
mands by client B in Fig. 6). As an example, the command for the creation of
a node consists of the node type, the position and an identifier of the container
where it should be instantiated. Other commands, e.g., the move node com-
mands, contain information of the previous as well as the new position, so that
they store the delta of the modification.

The Serializer (see Fig. 6(2)) is used to parse the received payload and assign
the commands to the associated Command Applier. Thanks to additional reflec-
tive type annotations, the received payload can be parsed to recreate the correct
command type. The assignment depends on the given graph model type the
command belongs to.

The Command Applier (see Fig. 6(3)) is the main component of the web
server, since it receives, validates and executes the commands. Every modifica-
tion encoded by a command is initially validated against the syntactical con-
straints defined by the graph model type. In the case of a constraint violation,
the command is inverted based on the given delta, and returned to undo the
invalid operation sent from a client. After a successful validation, the modifica-
tion encoded by the command is applied to the generated domain-specific API,
which also triggers the annotated hooks and finally modify the node or edge
instances in the central database. Modifications performed on the API itself
(e.g., performed by a hook implementation) are again internally encoded as
commands for further distribution to other clients. The updates resulting from
the hook execution inside the API are combined with the initial command to be
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Fig. 6. Concept of the distributed command pattern. (Color figure online)

interpreted as a single transaction shown by the packages of Fig. 6. To ensure the
consistency between the sender of a command and the other clients, the initiator
is also informed about internally arisen modification based on hook execution.
All commands, collected during the execution of the initial modification, are
broadcast to other listening clients (see Fig. 6(4)). This mechanism uses bidirec-
tional ongoing connections, so that clients can request to listen on changes made
to their currently open graph model.

The commands received by a client (see Fig. 6(5)) are parsed and inspected,
to ensure that commands initiated by the client itself are neglected. New changes
from other clients are applied to all layers and displayed on the canvas. In addi-
tion to this, the client is notified about received changes. Updates caused as a
result of self-sent commands (e.g., a modification performed during a hook exe-
cution), are only partially applied to guarantee that nodes and edges will not be
modified twice.

The command pattern applied to the generated modeling environments is
tailored to enable real-time collaborative editing. The main design decisions are
focused on scalability and high availability by BASE and CRDT. The operational
approach realized with this command pattern is more suitable than a textual
language protocol like the Language Server Protocol (LSP) [3]. The main dif-
ference between the command pattern and the LSP is the way of distributing
modifications on the model. In contrast to the presented communication protocol
of Pyro, the LSP uses changed regions of a text document for propagation. The
intention of the modification has to be evaluated afterwards, whereas in graph-
ical DSLs the commands are used for a direct representation of the occurred
change.
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5 Conclusion and Perspectives

We have presented Pyro, a framework for enabling domain-specific modeling via
the internet. Provided with an adequate metamodel specification, Pyro turns
a browser into a collaborative, domain-specific, graphical development envi-
ronment with features reminiscent of desktop IDEs for programming textual
languages. The required metamodeling is supported in a high-level, simplicity-
driven fashion: The MGL describes the available node types, edge types, and
syntactical constraints, whereas the MSL defines the visual appearance of the
modeling artifacts defined in the MGL. Based on these specifications, the entire
ready-to-run browser-based domain-specific development environment is gener-
ated fully automatically, as has been illustrated along the construction of a
graphical development environment for the Architecture Analysis and Design
Language (AADL).

The field of web-based development environments is still quite young, so
that not many related solutions exist yet. There are the aforementioned collab-
orative online text editors like Google Docs, Microsoft Office 365 and ShareLa-
TeX/Overleaf, but in the area of DSLs and modeling, so far we only encountered
WebGME [5], an (early stage) online adaption of Vanderbilt University’s Generic
Modeling Environment [18] and Theia [4], a cross-platform web and desktop IDE
for textual DSLs. In addition, itemis (the German company who significantly
contributed to the well-known Xtext [6] DSL framework) is currently working
on a platform called ‘Convecton’, which aims at bringing modeling with and
execution of domain-specific languages online into the cloud [35]. However, none
of these solutions provide a Pyro-like, graphical, collaborative modeling support.

Pyro is still in an early stage of development, and there is a lot of room for
improvement, like further enhancing and easing the graphical modeling features,
or improving the performance of collaborative modeling by taking advantage
of peer-to-peer communication. Pyro is envisioned to enable cross-competence
collaboration on a single project in a domain/purpose-specific fashion according
to the Language-Driven Engineering (LDE) paradigm [31]. LDE aims at allowing
the different stakeholders to formulate their intents in they way they are used to,
i.e., in their domain language, and restricted in a fashion that the efforts of the
other involved stakeholders are maintained, or as we say, constitute Archimedean
points [32] of the considered domain-specific language. Currently, we are starting
to explore the impact of the Pyro technology on a larger scale for DIME [7], our
framework for developing Web applications.
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Abstract. Model synchronization, i.e., the task of restoring consistency
between two interrelated models after a model change, is a challeng-
ing task. Triple Graph Grammars (TGGs) specify model consistency
by means of rules. They can be used to automatically derive specifica-
tions of edit operations for single models and repair rules that propagate
model changes to related models. model (re-)synchronization activities
more effectively, a construction mechanism for short-cut rules has been
recently developed. They describe consistency-preserving complex edit
operations across model boundaries. We show that edit and repair rules
can be derived from short-cut rules. As proof of concept, we implemented
the construction and application of short-cut edit and repair rules in
eMoflon. Our evaluation shows that short-cut-rule-based repair processes
have considerably decreased data loss and improved runtime compared
to former model synchronization processes in eMoflon.

Keywords: Model synchronization · Triple Graph Grammars ·
Short-cut rule

1 Introduction

Model-driven engineering has become an important technique to cope with the
increasing complexity of modern software systems. In the field of Concurrent
Engineering [7], for example, products are no longer realized in series but allow
parallel tasks. Each of these tasks has its view onto the product and, as a view
evolves, it may become inconsistent with the other ones. Keeping views synchro-
nized by checking and preserving their consistency can be a challenging problem
which is not only subject to ongoing research but also of practical interest for
industrial applications such as stated above.

Triple Graph Grammars (TGGs) [24] are a declarative, rule-based bidirec-
tional transformation approach that aims to synchronize models stemming from
different views (usually called domains in the TGG literature). Their purpose
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is to define a consistency relationship between pairs of models in a rule-based
manner by defining traces between their elements. Given a finite set of rules that
define how both models co-evolve, a TGG can be automatically operationalized
into source and forward rules. The source rules of an operationalized TGG can
be used to build up models of one domain while forward rules translate them to
models of the other domain, thereby establishing traces between their elements.
From a synchronization point of view, source rules specify edit operations to
change one model while forward rules specify repair operations to synchronize
model changes with one another [16,19,24]. Even though both, the translation
and the synchronization process, are formally defined and sound, there are in
fact several practical issues that arise for model synchronization from (poten-
tially transitive) dependencies between rule applications: To synchronize changed
models, popular TGG approaches do not always fix inconsistencies locally but
revert all dependent rule applications and start a retranslation process. However,
this kind of synchronization often deletes and recreates a lot of model elements
to reestablish model consistency, potentially losing information that is local to
just one model and wasting processing time. Existing solutions for this problem
are rather ad hoc and come without any guarantee to reestablish the consistency
of modified models [12,14].

As a new solution to this synchronization problem, we derive repair rules from
short-cut rules [8] that we recently introduced to handle complex consistency-
preserving model updates more effectively and efficiently. The construction of
short-cut rules is a kind of sequential rule composition that allows to replace
a rule application with another one while preserving involved model elements
(instead of deleting and re-creating them). We used short-cut rules to describe
model changes exchanging one edit step by another one. Since in this paper we
want to use short-cut rules for model synchronization as well, they have to be
operationalized into source and forward rules.

Our formal contributions (in Sect. 4) are two-fold: As short-cut rules may
be non-monotonic, i.e., may be deleting, we formalize the operationalization of
non-monotonic TGG rules which decomposes short-cut rules into (semantically
equivalent sequences of) source (edit) and forward (repair) rules. Moreover, we
obtain sufficient conditions under which an application of a short-cut rule pre-
serves the consistency of related pairs of models. This was left to future work
in [8]. Together, this constitutes the correctness of our approach using opera-
tionalized short-cut rules for model synchronization.

Practically, we implement our synchronization approach in eMoflon [21], a
state-of-the-art bidirectional graph transformation tool, and evaluate it (Sect. 5).
The results show that the construction of short-cut repair rules enables us to react
to model changes in a less invasive way by preserving information and increasing
the performance. We thus contribute to a more comprehensive research trend in
the bx-community towards Least Change synchronization [5]. Before presenting
these results in detail, we illustrate our approach using an example in (Sect. 2)
and recall some preliminaries in (Sect. 3). Finally, we discuss related work in
(Sect. 6) and conclude with pointers to future work in (Sect. 7). A technical
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report that includes additional preliminaries, all proofs, and the rule set used
for our evaluation (including more complex examples) is available online [9].

2 Introductory Example

We motivate the use of short-cut repair processes by synchronizing a Java AST
(abstract syntax tree) model and a custom documentation model. For model
synchronization, we consider a Java AST model as source model and its doc-
umentation model as target model, i.e., changes in a Java AST model have to
be transferred to its documentation model. There are correspondence links in
between such that both models become correlated.
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Fig. 2. Example: TGG forward rules

TGG rules. Figure 1 shows the rule set of our running example consisting of
three TGG rules: Root-Rule creates a root Package together with a root Folder
and a correspondence link in between. This rule has an empty precondition
and only creates elements which are depicted in green and with the annotation
(++). Sub-Rule creates a Package and Folder hierarchy given that an already
correlated Package and Folder pair exists. Finally, Leaf-Rule creates a Class and
a Doc-File under the same precondition as Sub-Rule.

These rules can be used to generate consistent triple graphs in a synchronized
way consisting of source, correspondence, and target graph. A more general
scenario of model synchronization is, however, to restore the consistency of a
triple graph that has been altered on just one side. For this purpose, each TGG
rule has to be operationalized to two kinds of rules: source rules enable changes
of source models which is followed by translating this model to the target domain
with forward rules. As source rules for single models are just projections of TGG
rules to one domain, we do not show them explicitly.

Forward translation rules. Figure 2 depicts the forward rules. Using these rules,
we can translate the Java AST model depicted on the source side of the triple
graph in Fig. 3(a) to a documentation model such that the result is the complete
graph in Fig. 3(a). To obtain this result we apply Root-FWD-Rule at the root
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Package, Sub-FWD-Rule at Packages p and subP, and finally Leaf-FWD-Rule
at Class c. To guide the translation process, context elements that have already
been translated are annotated with �� in forward rules. A formerly created source
element gets the marking � → �� to indicate that applying the rule will mark
this element as translated; a formalization of this marking is given in [20]. Note
that Root-FWD-Rule can always be applied when Sub-FWD-Rule is applicable
which can lead to untranslated edges. For simplicity, we assume that the correct
rule is applied which in praxis can be achieved through negative application
conditions [15].

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

pDoc : 
Doc-File

subF : 
Folder

subP : 
Package

subPDoc : 
Doc-File

cDoc : 
Doc-File

c : 
Class

rootF : 
Folder

rootP: 
Package

rootF : 
Folder

rootP: 
Package

f : 
Folder

p : 
Package

subF : 
Folder

subP : 
Package

subPDoc : 
Doc-File

cDoc : 
Doc-File

c : 
Class

p : 
Package

subP : 
Package

c : 
Class

(a) (b) (c)

Fig. 3. Exemplary synchronization scenario

Model synchronization. Given the triple graph in Fig. 3(a), a user might want
to change a sub Package such as p to be a root Package, e.g., as could be the
case when the project is split up into multiple projects. Since p was created and
translated as a sub Package rather than a root element, this change introduces
an inconsistency. To resolve this issue, one approach is to revert the transla-
tion of p into f and re-translate p with an appropriate translation rule such
as Root-FWD-Rule. Reverting the former translation step may lead to further
inconsistencies as we remove elements that were needed as context elements by
other rule applications. The result is a reversion of all translation steps except
for the first one which translated the original root element. The result is shown
in Fig. 3(b). Now, we can re-translate the unmarked elements yielding the result
graph in (c). This example shows that this synchronization approach may delete
and re-create a lot of similar structures which appears to be inefficient. Sec-
ond, it may lose information that exists on the target side only, e.g., a use case
may be assigned to a document which does not have a representation in the
corresponding Java project.

Model synchronization with short-cut repair. In [8] we introduced short-cut rules
as a kind of rule composition mechanism that allows to replace a rule applica-
tion by another one while preserving elements (instead of deleting and re-creating
them). In our example, Root-Rule and Sub-Rule overlap in elements as the first
rule can be completely embedded into the latter one. Figure 4 depicts two possi-
ble short-cut rules based on Root-Rule and Sub-Rule. While the upper short-cut
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Root-To-Sub-SC-Rule

(++)
(++)

FolderPackage

FolderPackage Doc-File
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Fig. 4. Short-cut rules (Color figure
online)
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Fig. 5. Repair rules

rule replaces Root-Rule with Sub-Rule, the lower short-cut rule replaces Sub-
Rule with Root-Rule. Both short-cut rules preserve the model elements on both
sides and solely create elements that do not yet exist (++), or delete those
depicted in red and annotated with (−−). They are constructed by overlapping
both original rules such that each created element that can be mapped to the
other rule becomes context and as such, is not touched. When a created element
cannot be mapped because it only appears in the replacing rule, it is created.
Consequently, an element is deleted if the created element only appears in the
replaced rule. Finally, context elements occurring in both rules appear also in
the short-cut rule while overlapped context elements appear only once. Using
Sub-To-Root-SC-Rule enables the user to transform the triple graph in Fig. 3(a)
directly to the one in (c).

Yet, these rules can still not cope with the change of a single model since
short-cut rules transform both models at once as TGG rules usually do. Hence,
in order to be able to handle the deleted edge between rootP and p, we have to
forward operationalize short-cut rules, thereby obtaining short-cut repair rules.
Figure 5 depicts the resulting short-cut repair rules derived from short-cut rules
in Fig. 4. A non-monotonic TGG-rule is forward operationalized by removing
deleted elements from the rule’s source graphs as they should not be present after
a source rule application. Short-cut repair rules allow to propagate source graph
changes directly to target graphs to restore consistency. In our example, after
having transformed Package p into a root element, the rule of choice is Sub-To-
Root-Repair-Rule which transforms Folder f in Fig. 3(a) into a root element and
deletes the superfluous Doc-File. The result is again the consistent triple graph
depicted in Fig. 3(c). This repair allows to skip the costly reversion process with
the intermediate result in Fig. 3(b). Note that applying Sub-To-Root-Repair-Rule
at arbitrary matches may have undesired consequences: One could, e.g., delete
the edge between two Folders even if the matched Packages are still connected.
Our Theorem8 characterizes matches where such violations of the language of
the grammar cannot happen. In our implementation, we exploit an incremental
pattern matcher to identify valid matches. Using suitable negative application
conditions [6] would be an alternative approach.
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3 Preliminaries

To understand our formal contributions, we assume familiarity with the basics of
double-pushout rewriting in graph transformation and, more generally in adhe-
sive categories [6,18] as well as the definition of TGGs and in particular, their
operationalizations [24]. Here, we recall non-basic preliminaries for our work
which are the construction of short-cut rules, the notion of sequential indepen-
dence, and a (simple) categorical definition of partial maps.

In [8], we introduced short-cut rules as a new way of sequential composition
for monotonic rules. Given an inverse rule of a monotonic rule (i.e., a rule that
only deletes) and a monotonic rule, a short-cut rule combines their respective
actions into a single rule. Its construction allows to identify elements that are
deleted by the first rule as re-created by the second one. These elements are pre-
served in the resulting short-cut rule. A common kernel, i.e., a common subrule
of both, serves to identify how the two rules overlap and which elements are
preserved instead of being deleted and re-created. We recall their construction
since our construction of repair rules is based on it. Examples are depicted in
Fig. 4.

Definition 1 (Short-cut rule). In an adhesive category C, given two mono-
tonic rules ri : Li ↪→ Ri, i = 1, 2, and a common kernel rule k : L∩ ↪→ R∩ for

them, the Short-cut rule r−1
1 �k r2 := (L

l←−↩ K
r

↪−→ R) is computed by executing
the following steps depicted in Figs. 6 and 7:

1. The union L∪ of L1 and L2 along L∩ is computed as pushout (2).
2. The LHS L of the short-cut rule r−1

1 �k r2 is computed as pushout (3a).
3. The RHS R of the short-cut rule r−1

1 �k r2 is computed as pushout (3b).
4. The interface K of the short-cut rule r−1

1 �k r2 is computed as pushout (4).
5. Morphisms l : K → L and r : K → R are obtained by the universal property

of K.

Fig. 6. Construction of LHS and RHS
of short-cut rule r−1

1 �k r2

Fig. 7. Construction of interface K of
r−1
1 �k r2
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Sequential independence of two rule applications intuitively means that none
of these applications enables the other one. This implies that the order of their
application may be switched. The definition of sequential independence can be
extended to a sequence of rule applications longer than 2. In Theorem 8, we will
use this to identify language-preserving applications of short-cut rules.

Definition 2 (Sequential independence). Given two rules pi = (Li
li←−↩

Ki
ri

↪−→ Ri) with i = 1, 2, two direct transformations G ⇒p1,m1 H1 and
H1 ⇒p2,m2 H2 via the rules r1 and r2 are sequentially independent if there
exist two morphisms d1 : R1 → D2 and d2 : L2 → D1 as depicted below such
that n1 = f2 ◦ d1 and m2 = f1 ◦ d2.

L1 K1 R1 L2 K2 R2

G D1 H1 D2 H2

m1 n2

l1 r1

n1 m2

l2 r2

f1
e1 f2 e2

d1d2

Given rules p = (L ←↩ K ↪→ R) and pi = (Li ←↩ Ki ↪→ Ri) with 1 ≤ i ≤ t, a
transformation Gt ⇒p,m H is sequentially independent from a sequence of trans-
formations G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt

Gt, t ≥ 2 if first, Gt ⇒p,m H and
Gt−1 ⇒pt,mt

Gt are sequentially independent and then, the arising transforma-
tions Gt−1 ⇒p,et◦dt

2
G′

t and Gt−2 ⇒pt−1,mt−1 Gt−1 are sequentially independent
and so forth back to the transformations G0 ⇒p1,m1 G1 and G1 ⇒p,e2◦d2

2
G′

2

(where ei : Di ↪→ Gi−1 is given by the transformation and di
2 : L ↪→ Di exists by

sequential independence as in the figure above).

To formalize the application of non-monotonic TGG rules, we need to con-
sider triple graphs with partial morphisms from correspondence to source (or
target) graphs. For expressing such triple graphs categorically, we recall a sim-
ple definition of partial morphisms [23] to be used in Sect. 4.1. An elaborated
theory of triple graphs with partial morphisms is out of scope of this paper.

Definition 3 (Partial morphism. Commuting square with partial mor-
phisms). A partial morphism a from an object A to an object B is a(n equiva-
lence class of) span(s) A

ιA←−↩ A′ a−→ B where ιA is a monomorphism (denoted by
↪→). A partial morphism is denoted as a : A ��� B; A′ is called the domain of
a. A diagram with two partial morphisms a and c as depicted as square (1) in
Fig. 8 is said to be commuting if there exists a (necessarily unique) morphism
x : A′ → C ′ such that both arising squares (2) and (3) in Fig. 9 commute.
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Fig. 8. Square of partial morphisms Fig. 9. Commuting square of partial
morphisms

4 Constructing Language-Preserving Repair Rules

The general idea of this paper is to use short-cut repair rules allowing an opti-
mized model synchronization process based on TGGs. To this end, we opera-
tionalize short-cut rules being constructed from the rules of a given TGG. Since
those rules are not necessarily monotonic, we generalize the well-known opera-
tionalization of TGG rules to the non-monotonic case and show that the basic
property is still valid: An application of a source rule followed by an applica-
tion of the corresponding forward rule is equivalent to applying the original rule
instead. This is the content of Sect. 4.1. Constructing shortspscut rules in [8], we
identified the following problem: Applying a short-cut rule derived from rules
of a given grammar might lead to an instance that is not part of the language
defined by that grammar. Therefore, in Sect. 4.2, we provide sufficient conditions
for applications of short-cut rules leading to instances of the grammar-defined
language only. Combining both results ensures the correctness of our approach,
i.e., a shortspscut repair rule actually propagates a model change from the source
to the target model if it is correctly matched.

4.1 Operationalization of Generalized TGG Rules

Since the operationalization of TGG rules has been introduced for monotonic
rules only, we extend the theory to general triple rules and, moreover, allow
for partial morphisms from correspondence to source and target graph in triple
graphs. We split a rule on triple graphs into a source rule that only affects the
source part and a forward rule that affects correspondence and target part.

Definition 4 (TGG rule). Let the category of triple graphs and graph mor-
phisms be given. A triple rule p is a span of triple graph morphisms

p = ((LS

σL←−−LC

τL−→LT )
(lS,lC ,lT )←−−−−−−↩(KS

σK←−−KC

τK−−→KT )
(rS,rC ,rT )

↪−−−−−−−→(RS

σR←−−RC

τR−−→RT ))

which, wherever possible, are abbreviated by

p = (LSCT

(lS,lC,lT )←−−−−−−↩KSCT

(rS,rC,rT )
↪−−−−−−−→RSCT ).

Rules pS and pF are called source rule and forward rule of p.

pS = ((LS←∅→∅)
(lS,id∅,id∅)←−−−−−−−↩(KS←∅→∅)

(rS,id∅,id∅)

↪−−−−−−−→(RS←∅→∅)),
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pF = (RSLCT

(idRS
,lC ,lT )←−−−−−−−−RSKCT

(idRS
,rC,rT )−−−−−−−−→RSCT )

with ∅ being the empty graph. In RSLCT = (RS ��� LC
τL

↪−→ LT ), the morphism

from LC to RS may be partial and is defined by the span (LC
lC←−↩ KC

rS◦σK
↪−−−−→

RS) with σK : KC ↪−→ RC . Target and backward rules pT and pB are defined
symmetrically in the other direction.

Given a TGG, a short-cut repair rule is a forward rule pF of a short-cut rule
p = r−1

1 �k r2 where r1, r2 are (monotonic) rules of the TGG, i.e., a repair rule
is an operationalized short-cut rule.

The above definition is motivated by our application scenario, i.e., the case where
a user edits the source (or target) model independently of the other parts. The
partial morphism in the forward rule reflects that a model change may introduce
a situation where the result is no longer a triple graph. A deleted source element
may have a preimage in the correspondence graph that is not deleted as well.
In the example short-cut rules in Fig. 4, this problem does not occur since edges
are deleted only. But in general, this definition of pS has the disadvantage that
often, pS is not applicable to any triple graph since the result would not be one.

In practical applications, however, the source rule specifies a user edit action
that is performed on the source part only, ignoring correspondence and target
graphs. The fact that the result is not a triple graph any longer is not a technical
problem. A missing source element that should be referenced by a correspondence
element gives information about a location that needs some repair. Therefore,
we define the application of a source rule such that the resulting triple graph
is allowed to be partial. Furthermore, forward rules may be applied to partial
triple graphs allowing for dangling correspondence relations.

Definition 5 (Constructing an operationalized rule application). Let a

triple graph rule p = (LSCT
(lS ,lC ,lT )←−−−−−− KSCT

(rS ,rC ,rT )−−−−−−−→ RSCT ) with source rule
pS and forward rule pF be given. An operationalized rule application G ⇒pS ,mS

G′ ⇒pF ,mF
H is constructed as follows:

1. The rule ppr
S = LS

lS←− KS
rS−→ RS is the projection of pS to its source part.

2. Given a match mpr
S for ppr

S , construct the transformation tpr
S : GS ⇒ppr

S ,mpr
S

HS, called source application and inducing the span GS
fS←−↩ DS

gS
↪−→ HS.

3. The transformation tpr
S can be extended to the transformation tS : G =

(GS
σG←−− GC

τG−−→ GT ) ⇒pS ,mS
G′ = (HS ��� GC

τG−−→ GT ) via pS at match
mS. The partial morphism GC ��� HS is given as the span GC ←↩ G′

C → HS

that arises as pullback of the co-span GC → GS ←↩ DS as depicted in Fig. 10,
i.e., as morphism gS ◦ pD : GC ��� HS with domain G′

C .
4. Given co-match nS : RS ↪→ HS and matches mX : LX ↪→ GX with

X ∈ {C, T} such that both arising squares are commuting, i.e., mF =
(nS ,mC ,mT ) is a morphism of partial triple graphs, construct transforma-
tion tF : G′ ⇒pF ,mF

H = (HS
σH←−− HC

τH−−→ HT ), called forward applica-
tion, using transformations GX ⇒pX ,mX

HX for X ∈ {C, T} if they exist



Efficient Model Synchronization 125

and if there are morphisms σ′
D : DC → HS and τD : DC → DT such that

HSDCDT ↪→ HSGCGT and RSKCKT ↪→ HSDCDT are triple morphisms.

Fig. 10. Retrieval of partial morphism GC ��� HS

In the setting of this paper, it is enough to allow for partial morphisms only
in the input graph and not in the output graph of a forward rule application.
Intuitively this means that such an application deletes those elements from the
correspondence graph that could not be mapped to elements in the source graph
any longer and additionally deletes the preimages in the correspondence graph
of all deleted elements from the target graph as well (if there are any). The next
lemma states that the application of a source rule is well-defined, i.e., that the
mentioned partial morphism actually exists.

Lemma 6 (Correctness of application of source rules). Let a (non-
monotonic) triple graph rule

p = (LSCT

(lS,lC ,lT )←−−−−−−KSCT

(rS,rC,rT )−−−−−−−→RSCT )

with source rule pS and projection ppr
S to the source part be given. Given a match

mS for pS to a triple graph G = (GS
σG←−− GC

τG−−→ GT ) such that GS ⇒ppr
S ,mS

HS,
the partial morphism DC ��� HS as described in Definition 5 exists.

The next theorem states that a sequential application of a source and a
forward rule indeed coincides with an application of the original rule as long
as the matches are consistent. This means that the forward rule has to match
the RHS RS of the source rule again and the LHS LC of the correspondence
rule needs to be matched in such a way that all elements not belonging to the
domain of the partial morphism from correspondence to source part in the input
model are deleted. The forward rule application defined in Definition 5 fulfills
this condition by construction.

Theorem 7 (Synthesis of rule applications). Let a triple graph rule p with
source and forward rules pS and pF be given. If there are applications G ⇒pS ,mS

G′ with co-match nS and G′ ⇒pF ,mF
H with mF = (nS ,mC ,mT ) as constructed

above, then there is an application G ⇒p,m H with m = (mS ,mC ,mT ).
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4.2 Language-Preserving Short-Cut Rules

In this section we identify sufficient conditions for an application of a short-cut
rule that guarantee the result to be an element of the language of the original
grammar. Since our conditions apply to arbitrary adhesive categories and are
not specific for TGGs, we present the result in its general form.

Theorem 8 (Characterization of valid applications). In an adhesive cat-
egory C, given a sequence of transformations

G ⇒r,m G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt
Gt ⇒r−1

�kr′,msc
H

with rules p1, . . . , pt and r−1
�k r′ being the short-cut rule of monotonic rules

r : L ↪→ R and r′ : L′ ↪→ R′ along a common kernel k, there is a match m′ for
r′ in G and a transformation sequence

G ⇒r′,m′ G′
1 ⇒p1,m′

1
. . . G′

t−1 ⇒pt,m′
t
H,

provided that

1. the application of r−1
�k r′ with match msc is sequentially independent of the

sequence of transformations G0 ⇒p1,m1 G1 ⇒p2,m2 · · · ⇒pt,mt
Gt and

2. the thereby implied match m′
sc for r−1

�k r′ in G0, restricted to the RHS R
of r, equals the co-match n : R ↪→ G0 of the transformation G ⇒r,m G0 (i.e.,
m′

sc ◦ jR = n where jR embeds R into the LHS of r−1
�k r′ as in Fig. 6).

In particular, given a grammar GG = (R, S) such that r, r′, p1, . . . , pt ∈ R and
G ∈ L(GG), then H ∈ L(GG).

Independence of the short-cut rule application tsc : Gt ⇒r−1
�kr′,msc

H from
the preceding transformation sequence t : G ⇒ Gt requires the existence of mor-
phisms in two directions: morphisms di

2 from the LHS of the short-cut rule to
the context objects Di arising in t and morphisms di

1 from the right-hand sides
Ri of the rules pi to the context object of tsc (shifted further and further to the
beginning of the sequence). In the case of (typed triple) graphs, the existence of
morphisms di

2 ensures that none of the rule applications in t enabled the trans-
formation tsc. The existence of morphisms di

1 ensures that the transformation
tsc does not delete structure needed to perform the transformation sequence t.

Application to model synchronization. The results in Theorems 7 and 8 are the
formal basis for an automatic construction of repair rules. Theorem7 ensures that
a suitable edit action followed by application of a repair rule at the right match is
equivalent to the application of a short-cut rule. Thus, whenever an edit action
on the source model (or symmetrically the target model) corresponds to the
source-action (target-action) of a short-cut rule, application of the corresponding
forward (backward) rule synchronizes the model again. Since the language of a
TGG is defined by its rules, every valid model can be reached from every other
valid model by inverse application of some of the rules of the grammar followed
by normal application of some rules. Often, edit actions are rather small steps
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(or at least consist of those). Thus, it is not unreasonable to expect that many
typical edit actions can be realized as short-cut rules as these formalize the
inverse application of a rule followed by application of a normal one. Theorem8
characterizes the matches for short-cut rules at which application stays in the
language of the TGG. For operational short-cut rules, this can either be used
for detecting invalid edit actions or determining valid matches for synchronizing
forward rules.

5 Implementation and Evaluation

Implementation. Our implementation1 of an optimized model synchronizer is
based on the existing EMF-based general purpose graph and model transforma-
tion tool eMoflon [21]. It offers support for rule-based unidirectional and bidirec-
tional graph transformations where the latter is based on TGGs. To support an
effective model synchronizer, we automatically calculate a small but useful subset
of all possible short-cut rules. This is done by overlapping as many created ele-
ments as possible and only varying in the way that context elements are mapped
onto each other. These selected short-cut rules are operationalized to get repair
rules that allow us to repair broken links similar to our example in Sect. 2. The
model synchronization process is based on an incremental graph pattern matcher
that tracks all matches that dis-/appear due to model changes. Thus, it offers the
ability to react to model changes without the need to recompute matches from
scratch. Our implementation uses this technique by processing all those matches
marked as broken by the pattern matcher after a model change. A broken match
is the starting point to find a repair match as it is defined by the co-match of
the performed model change and has to be extended. If the pattern matcher can
extend a broken match to a repair match, the corresponding short-cut repair rule
can be applied. Otherwise, we fall back to the old synchronization strategy of
revoking the current step. This completely automatized synchronization process
ensures that we are able to restore consistency as long as the edited domain
model still resides in the language of our TGG.

Evaluation. Our experimental setup consists of 23 TGG rules (shown in our
technical report [9]) that specify consistency between Java AST and custom
documentation models and 37 short-cut rules derived from our TGG rule set. A
small modified excerpt of this rule set was given in Sect. 2. For this evaluation,
however, we define consistency not only between Package and Folder hierarchies
but also between type definitions, e.g., Classes and Interfaces, and Methods
with their corresponding documentation entries. We extracted five models from
Java projects hosted on Github using the tool MoDisco [4] and translated them
into our own documentation structure. Also, we generated five synthetic models
consisting of n-level Package hierarchies with each non-leafPackage containing
five sub-Packages and each leaf Package containing five Classes. Given such Java
1 Both the implementation and evaluation workspace can be accessed via https://

github.com/Arikae00/FASE19 eMoflon-evaluation.

https://github.com/Arikae00/FASE19_eMoflon-evaluation
https://github.com/Arikae00/FASE19_eMoflon-evaluation
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models, we refactored each model in three different scenarios such as by moving
a Class from one Package to another or completely relocating a Package. Then
we used eMoflon to synchronize these changes in order to restore consistency to
the documentation model, with and without repair rules.

These synchronization steps are subject to our evaluation and we pose the
following research questions: (RQ1) For different kinds of changes, how many
elements can be preserved that would otherwise be deleted and recreated? (RQ2)
How does our new approach affect the runtime performance? (RQ3) Are there
specific scenarios in which our approach performs especially good or bad?

Repair rules were developed to avoid unnecessary deletions of elements by
reverting too many rule applications in order to restore consistency as shown
exemplary in Sect. 2. This means that model changes where our approach should
perform especially good, have to target rule applications close to the beginning
of a rule sequence as this possibly renders many rule applications invalid. This
means that altering a root Package by creating a new Package as root would
imply that many rule applications have to be reverted to synchronize the changes
correctly (Scenario 1). In contrast, our approach might perform poorly when a
model change does not inflict a large cascade of invalid rule applications. Hence,
we move Classes between Packages to measure if the effort of applying repair
rules does infer a performance loss when both the new and old algorithm do not
have to repair many broken rule applications (Scenario 2). Finally, we simulate
a scenario between the first two by relocating leaf Packages (Scenario 3).

Table 1. Legacy vs. new synchronizer – Time in sec. and number of created elements

Both Legacy Synchronization Synchro. by Repair Rules

Trans. Scen. 1 Scen. 2 Scen. 3 Scen. 1 Scen. 2 Scen. 3

Models Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts Sec Elts

lang.List 0.3 25 0.2 20 – – 0.06 5 0.2 0 – – 0.03 0

tgg.core 6.4 1.6k 39 1.6k 3.8 99 0.64 17 0.8 0 0.11 0 0.05 0

modisco.java 9.9 3.2k 228 3.3k 18.6 192 3.6 33 2.5 0 0.2 0 0.09 0

eclipse.graphiti 20.7 6.5k 704 6.5k 63.9 490 5.65 25 6.1 0 0.21 0 0.09 0

eclipse.compare 10.74 3.8k 83 3.7k 3.1 76 2.36 47 0.7 0 0.08 0 0.04 0

synthetic n = 1 0.3 35 0.32 30 0.2 30 0.03 1 0.1 0 0.05 0 0.03 0

synthetic n = 2 0.9 160 1.03 155 0.3 30 0.03 1 0.1 0 0.05 0 0.02 0

synthetic n = 3 2.8 785 6 780 0.4 30 0.04 1 0.1 0 0.07 0 0.02 0

synthetic n = 4 13.5 3.9k 86.3 3.9k 1.2 30 0.08 1 0.4 0 0.14 0 0.04 0

synthetic n = 5 91.5 20k 2731 20k 17.4 30 0.14 1 1.5 0 0.37 0 0.09 0

Table 1 depicts the measured times (Sec) and the number of created elements
(Elts) in each scenario. Each created element also represents a deleted element,
e.g., through revoking and reapplying a rule or applying a repair rule that creates
and deletes elements. In more detail, the table shows measurements for the
initial translation of the MoDisco model into the documentation structure and
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synchronization steps for each scenario using the legacy synchronizer without
repair rules and the new synchronizer with repair rules.

W.r.t. our research questions stated above, we interpret this table as follows:
The right columns of the table show clearly that using repair rules preserves all
those elements in our scenarios that would otherwise be deleted and recreated by
the legacy algorithm2 (RQ1). The runtime shows a significant performance gain
for Scenario 1 including a worst-case model change (RQ2). Repair rules do not
introduce an overhead compared to the legacy algorithm as can be seen for the
synthetic time measurements in Scenario 3 where only one rule application has
to be repaired or reapplied. (RQ2). Our new approach excels when the cascade
of invalidated rule applications is long. Even if this is not the case, it does not
introduce any measurable overhead compared to the legacy algorithm as shown
in Scenarios 2 and 3 (RQ3).

Threats to validity. Our evaluation is based on five real world and five synthetic
models. Of course, there exists a wide range of projects that differ significantly
from each other due to their size, purpose, and developer styles. Thus, the results
may probably differ for other projects. Nonetheless, we argue that the four larger
projects extracted from Github are representative since they are part of estab-
lished tools from the Eclipse community. In this evaluation, we selected three
edit operations that are representative w.r.t. their dependency on other edit
operations. They may not be representative w.r.t. other aspects such as size or
kind of change, which seems to be of minor importance in this context. Also
we limited our evaluation to one TGG rule set due to space issues. However, in
our experience the approach shows similar results for a broader range of TGGs
which can be accessed through eMoflon.

6 Related Work

Reuse in existing work on TGGs. Several approaches to model synchronization
based on TGGs suffer from the fact that the revocation of a certain rule applica-
tion triggers the revocation of all dependent rule applications as well [12,16,19].
Especially from a practical point of view such cascades of deletions shall be
avoided: In [10], Giese and Hildebrandt propose rules that save nodes instead
of deleting and then re-creating them. Their examples can be realized by our
construction of repair rules. But they do not present a general construction or
proof of correctness. This is left as future work in [11] again, where other aspects
of [10] are formalized and proven to be correct.

In [3], Blouin et al. added a specially designed repair rule to the rules of their
case study to avoid information loss. Greenyer et al. [14] also propose to not
directly delete elements but to mark them for deletion and allow for reuse of these
marked elements in other rule applications. But this approach comes without
any formalization or proof of correctness as well. Again, the given example can
be realized as short-cut repair. These uncontrolled and informal approaches are
2 Scenario 1: We expect the new root element to already be translated.
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potentially harmful. Re-using elements wrongly may lead to, e.g., containment
cycles or unconnected data. Hence, providing precise and sufficient conditions
for correct re-use of data is highly desirable as re-use may improve scalability
and decrease data-loss. Our short-cut rules formalize when data can be correctly
reused. In summary, we do not only offer a unifying principle behind different
practically used improvements of TGGs but also give a precise formalization
that allows for automatic construction of the rules needed. Thereby, we present
conditions under which rule applications lead to valid outputs.

Comparison to other bx approaches. Anjorin et al. [2] compared three state-of-
the-art bx tools, namely eMoflon [21] (rule-based), mediniQVT [1] (constraint-
based) and BiGUL [17] (bx programming language) w.r.t. model synchroniza-
tion. They point out that synchronization with eMoflon is faster than with both
other tools as the runtime of these tools correlates with the overall model size
while the runtime of eMoflon correlates with the size of the changes done by
edit operations. Furthermore, eMoflon was the only tool able to solve all but one
synchronization scenario. One scenario was not solved because it deleted more
model elements than absolutely necessary in that case. Using short-cut repair
rules, we can solve the remaining scenario and moreover, can further increase
eMoflons model synchronization performance.

Change-preserving model repair. Change-preserving model repair as presented
in [22,25] is closely related to our approach. Assuming a set of consistency-
preserving rules and a set of edit rules to be given, each edit rule is accompanied
by one or more repair rules completing the edit step, if possible. Such a com-
plement rule is considered as repair rule of an edit rule w.r.t. an overarching
consistency-preserving rule. Operationalized TGG rules fit into that approach
but provide more structure: As graphs and rules are structured in triples, a source
rule is also an edit rule being complemented by a forward rule. In contrast to
that approach, source and forward rules can be automatically deduced from a
given TGG rule. By our use of short-cut rules we introduce a pre-processing step
to first enlarge the sets of consistency-preserving rules and edit rules.

Generalization of correspondence relation. Golas et al. provide a formalization of
TGGs in [13] which allows to generalize correspondence relations between source
and target graphs as well. They use special typings for the source, target, and
correspondence parts of a TGG and for edges between a correspondence part and
source and target part instead of using graph morphisms. That approach also
allows for partial correspondence relations. But it makes the deletion of elements
more complex as it becomes important how many incident edges a node has (at
least in the double-pushout approach). We therefore opted for introducing triple
graphs with partial morphisms. They allow us to just delete a node without
caring if it is needed within an existing correspondence relation.
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7 Conclusion

Model synchronization, i.e., the task of restoring consistency between two mod-
els after a model change, poses challenges to modern bx approaches and tools:
We expect them to synchronize changes without losing data in the process, thus,
preserving information and furthermore, we expect them to show a reasonable
performance. While Triple Graph Grammars (TGGs) provide the means to per-
form model synchronization tasks in general, both requirements cannot always
be fulfilled since basic TGG rules do not define the adequate means to support
intermediate model editing. Therefore, we propose additional edit operations
being short-cut rules, a special form of generalized TGG rules that allow to take
back one edit action and to perform an alternative one. In our evaluation, we
show that operationalized short-cut rules allow for a model synchronization with
considerably decreased data loss and improved runtime.

To better cope with practical application scenarios, we like to extend our
approach by formally incorporating type inheritance, application conditions and
attributes in the model synchronization process. Since all of these have been
formalized in the setting of (M-)adhesive categories and our present work uses
that framework as well, these extensions are prepared but up to future work.
Propagating changes from one domain to another is basically done here by oper-
ationalizing short-cut rules. A more challenging task is what we call model inte-
gration where related pairs of models are edited concurrently and have to be
synchronized. These model edits may be in conflict across model boundaries. It
is up to future work to allow short-cut rules in model integration. Our hope is
to decrease data loss and to improve runtime of model integration tasks as well.
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Abstract. When model transformations are used to implement consis-
tency relations between very large models (VLMs), incrementality plays
a cornerstone role in the realization of practical consistency maintainers.
State-of-the-art model transformation engines with support for incre-
mentality normally rely on a publish-subscribe model for linking model
updates − deltas − to the application of model transformation rules,
in so called dependencies, at run time. These deltas can then be propa-
gated along an already executed model transformation. A small number
of such engines use domain-specific languages (DSLs) for representing
model deltas offline in order to enable their use in asynchronous, event-
based execution environments.

The principal contribution of this work is the design of a forward
delta propagation mechanism for incremental execution of model trans-
formations, which decouples dependency tracking from delta propagation
using two innovations. First, the publish-subscribe model is replaced with
dependency injection, physically decoupling domain models from consis-
tency maintainers. Second, a standardized representation of model deltas
is reused, facilitating interoperability with EMF-compliant tools, both for
defining deltas and for processing them asynchronously. This procedure
has been implemented in a model transformation engine, whose perfor-
mance has been evaluated empirically using the VIATRA CPS bench-
mark. In the experiments performed, the new transformation engine
shows gains in the form of several orders of magnitude in the initial
phase of the incremental execution of the benchmark model transforma-
tion and delta propagation is performed in real time, independently of
the size of the models involved, whereas the up-to-now best-performant
approach is dependent.

Keywords: Mappings between languages · Traceability ·
Incremental model transformation · Performance benchmark

1 Introduction

Significant issues in the application of Model-Driven Engineering (MDE) in
large-scale industrial problems stem from interoperability and scalability of
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current MDE tools [1,16,17]. Model transformation, widely accepted as the heart
and soul of MDE [23], deals with model manipulation either by translating mod-
els or by synchronizing them. Current tool support for model transformation is a
key root cause for many of the bottlenecks hampering scalability in MDE [2,8].
This is particularly crucial when transformations are used to implement consis-
tency maintainers between very large models (VLMs), consisting of milions of
elements. In this context, incrementality ensures that only those parts of the
model that are inconsistent or that have been modified − a model delta − are
transformed or, more precisely, propagated along an already executed transfor-
mation [11,12].

Current state-of-the-art approaches that support incremental execution of
model transformations share common features: the delta propagation mecha-
nism is usually decoupled from the delta detection mechanism in order to facil-
itate maintainability of the consistency maintainer; and deltas are represented
either in memory for synchronous notification or offline, with dedicated domain-
specific languages, for asynchronous notification. The most mature tools rely
on a publish/subscribe mechanism, where model deltas are notified at run time
whenever a model is updated. This notification mechanism is synchronous and
loosely couples model updates with the delta propagation mechanism, facilitat-
ing maintainability of the underlying transformation engine after fixing the type
of notification. However, it usually requires an observer for each object that can
be modified, with a consequent impact on performance, and the model transfor-
mation must be live, in memory, in order to listen for changes. These problems
can be avoided by using offline deltas. The publish/subscribe mechanism can be
extended to enable asynchronous delta notification but this is normally achieved
by using dedicated domain-specific languages to represent deltas offline, which do
not involve standardized formats, hindering the interoperability of those trans-
formation engines in existing modeling tool ecosystems.

In this paper, the design of a forward delta propagation procedure is pre-
sented for executing model transformations in incremental mode that can handle
documented change scenarios [4], i.e. documents representing a change to a given
source model. Such documents are defined with the EMF change model [24],
both conceptually and implementation-wise, guaranteeing interoperability with
EMF-compliant tools. This design decision replaces a publish/subscribe notifi-
cation with dependency injection: each notification is directly performed by the
implementation of the domain model at run time by injecting the dependency
corresponding to the model update that has been performed. Aspect-oriented
programming is used to weave code into an already existing implementation of a
domain model totally decoupling domain models from the consistency maintainer
at design time. The proposed forward delta propagation procedure has been
implemented in YAMTL [6], a model transformation engine for VLMs, enabling
the execution of model transformations both in batch mode and in incremental
mode without additional user specification overhead. This new extension dra-
matically improves the performance of the batch execution mode when dealing
with sparse model deltas, which can be propagated in real time (i.e. in μs.).
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This work is structured as follows: Sect. 2 provides a self-contained descrip-
tion of the class of model transformations supported using a class diagram to
relational schema model transformation; Sect. 3 presents the forward propaga-
tion procedure implemented in the model transformation engine together with
the main innovations; Sect. 4 discusses the performance of the transformation
engine with an adaptation of the VIATRA CPS benchmark; Sect. 5 discusses
related work from reactive and bidirectional model transformation.

2 Model Transformation: A Running Example

The type of model transformations that are considered in this work are classified
as unidirectional and out-place. For example, when considering the well-known
example that maps class diagrams to relational schemas, a class diagram is used
by queries to extract information and a relational schema is built from scratch. If
we consider a graph transformation perspective, both models are considered to
form part of the same graph in order to enable transformation by rewriting. In
that case, we are only considering transformations where the two models are two
clearly disjoint subgraphs and where rewriting is performed deterministically.

In this work, model transformations are represented using an implementation-
agnostic graphical syntax, quite close to that used in the graph transformation
literature. In this representation, metamodels are given as class diagrams, the
abstract syntax of models is given as object diagrams and model transformations
are represented as a collection of rules, where each rule is defined as a pair of
model patterns, called left-hand side (LHS) and right-hand side (RHS). The
notion of metamodel, model and model pattern correspond to those of type
graph, attributed graph with containments and node inheritance, and graph
pattern in the graph transformation literature [5,10]. For example, the rules
A->C and R->FK of Fig. 1 map attributes to columns. The $ before a variable
denotes string interpolation.

Graph patterns in rules can be augmented with universally quantified vari-
ables (represented by an overlaid box). Moreover, rules are augmented with a
when clause to express conditions that must be satisfied by the variables in LHS,
and with a where clause to indicate how variables from LHS and from RHS
are related via the application of other rules, expressed as two graph patterns.
Formulas in a when clause may be expressed in conjunctive form, as all filter
conditions must be satisfied in order for the rule to be applied, whereas formu-
las in a where clause may be expressed in disjunctive form (assuming mutually
exclusive conditions), as all the side effects expressed in a where clause must be
evaluated. The variables of RHS of the main rule must appear either in the LHS
of the main rule or in the RHS of a where transformation step. The rule C->T of
Fig. 1 illustrates how to map a class to a table with a primary key column PK COL

and for each attribute A whose type is a DataType, the corresponding column is
obtained by applying a rule, with the rule A->C, and for each attribute OTHER

whose type is the class C, matched in LHS of the main rule, a new foreign key
column is added to the table T, with the rule R->FK.
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Fig. 1. Metamodels, example and transformation rules.

From an operational point of view, transformation rules are applied unidi-
rectionally from LHS to RHS performing an out-place transformation following
two steps. First, during the matching phase, matches for the rules in the model
transformation are found as long as they are not shared by different rules and
these are included in a set matchPool . A match is formally defined as a graph
morphism from LHS to the source graph, which satisfies the when conditions,
but it is represented as a map from variables to object identifiers for the sake of
presentation in this paper.

Second, during the execution phase, each match is processed by triggering the
application of a transformation rule, which is represented as a transformation
step, denoted by r :

−−−−→
in �→ ς → −−−−−→

out �→ ς, which consists of a labelled pair of
two matches, the match for the input pattern of the rule, which enables its
application, and the match for the output pattern of the rule, with the objects
that result from applying the rule. When a rule is applied, the source model is
only used for query purposes but the target model is constructed by adding the
pattern of the RHS instantiated with values from the variables both in the LHS
and in the RHS of where transformation steps. In addition, where transformation
steps may further expand the structure of the target model. This execution
model resembles the application of forward rules used in triple graph grammars
(TGGs) [22], where the source graph is annotated as rules are applied and only
the target graph is constructed together with a link in a correspondence graph,
where each link denotes a transformation step.
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3 Delta-Driven Model Transformations

This section presents the mechanism to propagate documented deltas δt from a
source model Ms to a target model Mt in an incremental way, when the (unidirec-
tional) synchronization correspondence between these two models is represented
with a model transformation t as described in the previous section. This has
been implemented in the YAMTL transformation engine [6], which has been
extended with two modes of execution: initialization, the transformation is exe-
cuted in batch mode but, additionally, tracks those parts of the source model
involved in transformation steps as dependencies; propagation, the transforma-
tion is executed incrementally for a given source delta.

In order for a model transformation to be executed in propagation mode, it
first needs to be executed in initialization mode in order both to create trans-
formation steps and to inject the dependencies that facilitate the analysis of the
impact of changes in the already executed model transformation. Therefore, the
transformation t is applied to Ms using the original batch semantics [6] while
injecting dependencies in the transformation engine. Once the initialization is
done, any number of source forward deltas δs can be propagated.

Given a source documented delta δs between a source model Ms, already
synchronized with a target model Mt via a model transformation t : Ms

∗−→ Mt

(where ∗−→ denotes a sequence of transformation steps), and an updated source
model M ′

s, the transformation engine propagates the model update δs along t.
The effect of this forward propagation is the application of an update δt on the
target model Mt.

In the following subsections, we explain the different phases of the new exe-
cution modes, initialization and propagation, in more detail. As the initialization
mode faithfully corresponds to the batch execution of a model transformation,
the discussion of this mode focuses on the type of dependencies that are injected
in the transformation engine in Sect. 3.1. The discussion on the propagation
mode focuses on how deltas are represented in Sect. 3.2. Then, the two main
phases of the propagation execution mode, namely impact analysis and delta
propagation, are explained in Sects. 3.3 and 3.4, respectively.

3.1 Dependency Injection

When running a model transformation in initialization mode, the engine mon-
itors the source model and whenever an object ς is matched or a feature call,
represented as a pair (ς, f) of an EMF object ς and a feature name f , is per-
formed, a dependency is injected into the dependency registry. A dependency
thereby links either an object ς or a feature call (ς, f) to transformation steps
r :

−−−−→
in �→ ς → −−−−−→

out �→ ς in which it is used. Such dependencies are detected both
during the matching phase and during the execution phase.

In the matching phase, while finding a match for a rule, the engine keeps track
of all of the feature calls used in both element and rule when conditions. When
a match is found to be valid, the collection of dependencies is injected into the
dependency registry for the transformation step that uses that match. Otherwise,
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Table 1. Analysis of dependencies for the initial MT t : Ms
∗−→ Mt of Fig. 2.

Rule Source Match Target Match Dependencies from Ms

C->T c �→ 1 t �→ 1, (1,name), (1,att),

pk col �→ 4 (5, type), (5, multiValued)

C->T c �→ 4 t �→ 6, pk col �→ 7 (4, name), (4, attr)

A->C att �→ 2 col �→ 2 (2, name)

A->C att �→ 3 col �→ 3 (3, name)

R->FK ref �→ 5 fk col �→ 5 (5,name), (5,type),

fk col �→ 5 (1, name), (4,name)

when the match is not valid, the collected dependencies are discarded. Addition-
ally, when inserting a match in the matchPool , the transformation engine also
records reverse matches as injected dependencies between matched objects ς and
the transformation step in which they are matched.

Dependencies may also be found when executing a transformation step, e.g.,
while executing initialization expressions associated with attributes in model
patterns in RHS and in where clauses. In such cases, the transformation engine
injects a dependency for the transformation step every time a feature call in
the source model is detected. As a result, note that several transformation steps
may depend on the same object ς, when rules have more than one single input
element, or on the same feature call (ς, f).

Table 1 shows the dependencies that are found when executing the transfor-
mation of Fig. 1 in initialization mode from model Ms. Each row in the table
represents a transformation step, where: the source match indicates where the
rule has been applied, the target match indicates what objects were created, and
dependencies refers to the set of feature calls associated with a transformation
step. Reverse matches are extracted from source matches, by reading them in
the opposite direction.

Dependency injection is configured with an aspect whose pointcut matches
feature calls under a user-defined namespace. Hence, the model transformation
engine is entirely decoupled from the domain model at design time. They become
tightly coupled at compilation time and, hence, at run time.

3.2 Representable Deltas

The EMF change model [24] is used to represent deltas to an instance of any
other EMF model. It is built-in in EMF and, therefore, available for any EMF-
compliant tool. In this section, we describe how a documented delta is repre-
sented with the EMF change model and how it can be automatically defined
given any potentially live atomic update.

A delta consists of a ChangeDescription which contains a map of
objectChanges, which refer to those objects that are updated and, for each
such object, it contains a list of FeatureChanges. A FeatureChange (FC) refers
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to the structural feature that needs to be updated and provides the new
value. For single-valued attributes, a FeatureChange contains the new dataValue

if the feature is an attribute. For references and multi-valued attributes,
a FeatureChange includes a containment reference listChanges pointing to
ListChange. ListChanges are used to represent addition to, removal from, or
movement within the given feature values. In particular, movement only cap-
tures when an object changes to a different index within the collection. However,
it does not capture structural changes, e.g. change of container, which are rep-
resented as a removal from and an addition to the corresponding containment
references. When a FeatureChange refers to a containment reference, objects to
be added are pointed by objectsToAttach and objects to be removed are pointed
by objectsToDetach.

FeatureChanges capture when a feature value is updated for an object but
EMF also permits adding and removing root objects to a resource, representing
the model in memory, which need not be contained by any other object. Such
changes are considered to be performed on the resource itself and are represented
with ResourceChanges, one for each changed resource. A ResourceChange (RC)
contains the ListChanges for the root objects of the corresponding resource,
similarly to multi-valued features. For a more detailed explanation of the EMF
change model, we refer the reader to [24].

Table 2 shows a classification of atomic model updates that are representable
with the EMF change model as explained above. Note that moving and object
structurally, case 12 − move (inter.), − is represented in a composite delta by
two opposite actions, removing the object either from the root contents of the
resource − if it is a root object (case 2) − or from a containment reference − if it
is a contained object (case 10) − and adding it either to the root contents of the
resource − if it is to become a root object (case 1) − or to another containment
reference in another container object (case 9). This case is not captured by the
EMF change model explicitly but the transformation engine is able to infer it,
as explained in the following section.

Table 2. Summary of model update types, with their representation in EMF.

Cases Granularity Level Feature Delta action Delta representation DO DFC

1,2 atomic root add/remove RC::listChanges �
3 atomic root move (intra.) RC::listChanges

4,5 atomic any single-valued att add/remove FC �
6,7 atomic any multi-valued att add/remove FC::listChanges � �
8 atomic any multi-valued att move (intra.) FC::listChanges �
9,10 atomic any ref add/remove FC::listChanges �
11 atomic any ref move (intra.) FC::listChanges �
12 composite any containment ref move (inter.) opposite remove �

and add actions

in cases {2, 10}/{1, 9}
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A delta, which may represent atomic and composite changes, is defined as
an instance of the EMF change model and can be serialized. EMF also provides
facilities for applying them and reversing them. Furthermore, EMF provides a
change recorder, which enables recording live updates as a ChangeDescription for
either a root object, a collection of root objects, a resource or a resource set.
The resulting ChangeDescription is the representation of a history scenario [4],
from the updated model to the original one, which is optimized. That is, atomic
changes for the same feature of the same object may be discarded or merged,
as long as the optimization process preserves reversibility. Hence, reversing the
recorded delta may yield less changes than were originally made. Reversed deltas
represent documented scenarios and can be propagated along a model transfor-
mation, as discussed in subsequent sections.

Fig. 2. Source/target metamodels, initial synchronized models and forward delta prop-
agation (a–e).
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The EMF change recorder enables the possibility of deferring the observation
of updates to the point in which they occur, saving memory resources, and
interoperability. Furthermore, recorded (history) deltas can be regarded as a
rollback mechanism for implementing transactional model updates, which may
be performed live.

Figure 2 shows examples of documented deltas, defined over the source model
Ms of the running example. Such deltas are representable as EMF model changes,
i.e. operationally, but are graphically depicted using the abstract syntax of Ms,
using their state-based representation for the sake of presentation. Additions and
updates, including moves, are highlighted in grey colour. Objects that are added,
and thus created, have a new identifier. Objects that are updated and/or moved
preserve their identifier. Removals are highlighted by using dashed lines for the
contour lines of the corresponding shapes. The given deltas are instantiations of
case 4 (delta a), changing the name of the class Order to Invoice; case 1 (delta
b), adding a root class Product; case 9 (delta c), adding a single-valued attribute
amount to class Item; case 10 (delta d), removing the attribute date from class
Item; and case 11 (delta e), structurally moving the attribute date from class
Item to class Order.

In the following subsections, the different phases of the procedure for forward
propagation of source deltas is discussed and the aforementioned examples will
be used for illustrating them.

3.3 Impact Analysis

In this subsection, we discuss how source documented deltas are analyzed in
order to determine which transformation steps are affected by source changes.
This analysis is comprised of three main steps: identification of atomic model
updates from a documented delta, initialization of locations for newly enabled
rules, and marking of transformation steps impacted by changes.

Identification of atomic model updates. In the first step, the transformation
engine infers which objects and which feature calls have been impacted by
changes. For objects, it also infers whether an object has been added or removed,
ignoring if the object is moved, either within the same collection or structurally.

For affected objects, such information is recorded in the set DO of dirty
objects of the form (ς, ctype), where ς is the affected object and ctype is the type
of change from the set { ADD, DEL}. To obtain a dirty object from the delta,
FeatureChanges and ResourceChanges are traversed considering two cases: when
an object ς is added either to a containment feature (for a FeatureChange) or to
the root contents of the resource (for a ResourceChange) and such object is not
removed elsewhere in the delta, either from a containment reference or from the
root contents of the resource; and, similarly, when an object is deleted and it
is not added elsewhere in the delta. DO is augmented with (ς, ADD) in the first
case and with (ς, DEL) in the second case.

For affected feature calls, such information is recorded in the set DFC of
dirty feature calls of the form (ς, f), where ς is an object and f is a feature
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Table 3. Impact analysis of source deltas a–e.

Case DO DFC Rule Source Match Target Match matchPoolΔ dirty?

a 4 − (4, name) C->T c �→ 4 t �→ 6, pk col �→ 7 � �
b 1 (6, ADD) − C->T c �→ 6 �
c 9 (1, attr) C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(6, ADD) A->C att �→ 6 �
d 10 (1, attr) C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(3, DEL) A->C att �→ 3 col �→ 3 �
e 11 − (1, attr), C->T c �→ 1 t �→ 1, pk col �→ 4 � �

(4, attr) C->T c �→ 4 t �→ 6, pk col �→ 7 � �

name. For each FeatureChange of an ObjectChange, the dirty feature call (ς, f)
with the object ς referred by the ObjectChange and the feature name f referred
to by the FeatureChange is added to DFC .

Table 2 shows how atomic model update types are represented using the EMF
change model (column delta representation), internally, using the sets DO and
DFC . Table 3 shows the sets DO of dirty objects and DFC of dirty feature calls
for the source deltas of Fig. 2. Note that the sets DO and DFC decouple the
transformation engine from the EMF change model and provide another entry
point for defining deltas programmatically, which can be used for capturing
atomic live changes received via EMF adapters.

Initialization of delta locations. For each dirty object (ς, ADD), the object ς
is added to the extent associated with type(o) in the location map used for
delta propagation. This potentially enables new matches when rules are matched
during the delta propagation phase.

Marking of impacted transformation steps. In this step, transformation steps
that are affected by the atomic changes in the source delta are marked as dirty.
For each dirty object (ς, ADD) ∈ DO , the extent of type type(ς) is augmented
with ς. This will potentially enable new matches for some rule during the change
propagation phase. For each dirty object (ς, DEL) ∈ DO , we obtain the list of
transformation steps that are affected from the map of reverse matches. Such
transformation steps will then remain transient and the objects in their target
match will not be linked to other objects in the target models. In particular,
note that when processing root objects or a containment reference, an object
that is removed in the delta is not present in the updated source model and,
therefore, it does not trigger the transformation step that had been executed in
the initial transformation.

For each dirty feature call (ς, f) ∈ DFC we obtain the list of transformation
steps that are affected from the registry of dependencies. For each such transfor-
mation step, the satisfaction of its source match is checked. If such source match
is still valid, then it is inserted into matchPoolΔ, the pool of matches that are
used to schedule rule applications during the change propagation phase.
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For each atomic change in Fig. 2, Table 3 shows the marking of transforma-
tion steps that are (re-)scheduled according to the dependencies of Table 1. In
particular, if a transformation step is re-scheduled, its current source and target
matches are included, it is marked as dirty and included in matchPoolΔ. If a
transformation step is not to be re-executed, it is simply marked as dirty. New
transformation steps, with fresh matches due to new objects, are scheduled in
matchPoolΔ. This last step is actually achieved by augmenting the correspond-
ing type extent with the new objects and the matches are scheduled during the
change propagation phase, explained in the next subsection.

3.4 Change Propagation

After the impact analysis phase, delta propagation proceeds by executing a
model transformation using the matching and execution phases, as outlined in
Sect. 2. Figure 2 illustrates the propagation of source deltas according to the
model transformation of Fig. 1. We highlight how incrementality has been con-
sidered in these two phases below.

Matching Phase. During the matching phase (in batch/initialization execution
mode), matches for a given rule are found by traversing objects from the extent
of the types associated with the elements of the source pattern of the rule,
with the constraints specified in the form of graphical patterns and when condi-
tions. In propagation mode, the transformation engine employs the same pattern
matching algorithm but it fetches objects from the location map used for delta
propagation, initialized during the change impact analysis phase. Therefore, new
matches may be found for objects that have been created by the source delta.
Those matches are inserted both into matchPool and matchPoolΔ, scheduling
new transformation steps. Table 3 shows that two new transformation steps are
scheduled, one for rule C->T in delta b, and one for rule A->C in delta c.

Execution Phase. During the execution phase, transformation steps determined
by the matches in matchPoolΔ are executed. Such matches originate from the
impact analysis phase, corresponding to transformation steps that are dirty and
need to be re-executed, and from the matching phase above, corresponding to
new transformation steps.

The re-execution of a transformation step is performed as in the
batch/initialization mode but for the creation of transformation steps. Whereas
a newly scheduled transformation step needs to get its output objects initialized
(instantiated for output elements), a dirty transformation step reuses the objects
of the target match and unsets their features. This avoids loss of contextual
information, which is not affected by changes, when re-executing a transforma-
tion step. In particular, those references to output objects that emerge from the
external context are preserved. On the other hand, references from those output
objects are re-calculated by re-executing the transformation step. It is worth
noting that the transformation engine uses where clauses to define references to
objects that are created by other rules, which in turn uses a cache mechanism



Offline Delta-Driven Model Transformation with Dependency Injection 145

to avoid re-executing the transformation step that produced it. Therefore, when
a dirty transformation rule is re-executed, the initialization of output element
bindings are performed again. However, those bindings that are initialized in a
where clause are also initialized incrementally. That is, only those objects that
belong to a match of a new scheduled transformation step will be transformed
from scratch. References to already initialized objects will be simply fetched.
Hence, the granularity of the target delta is as fine grained (at binding level) as
the source delta for the underlying graph structure of the model.

4 Performance Analysis

For the empirical analysis of the incremental execution of model transformations
in YAMTL using the propagation procedure presented above, we have used the
VIATRA CPS benchmark [27]. The transformation YAMTL-incr implemented
for our model transformation engine passes the sanity checks of the benchmark.
The software artifacts used in this section and the results obtained are publicly
available in a GitHub repository [7] and YAMTL is available at https://yamtl.
github.io/.

This evaluation is an extension of the one performed for the batch com-
ponent of the VIATRA CPS benchmark in [6]. From the original VIATRA
CPS benchmark, two incremental variants of the transformation implemented
with EMF-IncQuery have been selected: ExplicitTraceability (EXPL) [25] and
QueryResultTraceability (QRT) [26], out of which the first one is the best per-
forming solution up to now. These transformations have been extracted as inde-
pendent Java projects. Classes implementing them have been kept intact in the
new projects, including their namespaces, so that errors are not introduced due
to lack of expertise. Although these two transformations produce results that
are different from the other transformations, the main differences are due to
reordering of multi-valued references and we have considered them valid for this
evaluation. On the other hand, a benchmark measurement harness considering
the best practices recommended by the VIATRA team [13] was developed in
order both to fine-tune measurements and to crosscheck results. This harness
removes dependencies to other components of the VIATRA CPS benchmark so
that experiments can be run locally.

In the present work, we aimed at answering the following research questions:
(RQ1) Does YAMTL-incr show any performance penalty w.r.t. its execution in
batch mode (YAMTL-batch)? (RQ2) Does YAMTL-incr show any improvement
in performance w.r.t EXPL or QRT during initialization phase? (RQ3) And
during propagation phase?

From the scenarios provided in the original benchmark, the scenarios client-
server and statistic based [29] were considered. The CPS model generator [28]
was used to obtain the input models to be used for the analysis so that their size
depends on a logarithmic factor. The biggest models considered, in the client
server scenario, consist of millions of nodes (10.16M) and edges (27.53M) and
are, hence, VLMs.

https://yamtl.github.io/
https://yamtl.github.io/
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For each tool and scenario, the experiments are run in isolation, i.e. in a
separate Java process. For each of the input models, an initial experiment is
performed to warm up the JVM and, then, twelve more experiments to measure
performance. Each experiment consists of four phases: model load and engine
initialization, initial transformation, delta propagation and model storage. In
between each execution phase, the harness sends hints to the JVM to run garbage
collection and waits for one second before proceeding on to the next phase. The
first phase includes the instantiation of a fresh engine instance, avoiding interfer-
ence between experiments as caches are not reused. The delta propagation phase
includes the application of the delta to the source model and its propagation.
Only initial transformation and delta propagation times have been considered in
the quantitative analysis. For the results the median obtained for each of these
two phases out of ten experiments is used, after removing the minimum and the
maximum results.

In both solutions EXPL [25] and QRT [26], the delta is applied to the source
model by directly modifying the resource containing the model. In the solution
with YAMTL such delta was recorded and persisted using the EMF change
model as described in Sect. 3.2. To analyze whether this feature could become
a threat to validity, a separate experiment was run by excluding the query part
of the model update (searching for the objects to be updated) in the solution
EXPL but this change did not affect performance results perceptibly and the
original solutions provided by the authors of the VIATRA CPS benchmark were
considered. Therefore, the actions performed during the propagation phase are
equivalent in all of the evaluated solutions.

Fig. 3. Performance of initialization (top) and delta propagation (bottom).
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Figure 3 shows the performance results obtained both for the initial model
transformation and for forward delta propagation for the models generated for
the client-server scenario. Scales both for time (ms.) along Y axis and for model
size factors along X axis are logarithmic allowing us to compare the scalability
of the different approaches. In the initialization phase, we have included the
execution of YAMTL in batch mode (YAMTL-batch) over the source model,
and it can be seen that tracking dependencies incurs a small penalty. However,
the other two solutions (EXPL and QRT) operate several orders of magnitude
slower. In the propagation phase, it can be observed that while YAMTL-incr
exhibits a constant propagation time (in μs.) for the source delta, the cost of
the other solutions depends on the size of the input model. Furthermore, for
the other incremental approaches, when both initial and propagation time are
combined their performance worsens due to their costly initialization phase.

5 Related Work

In this section, we discuss techniques used in related work for achieving incre-
mentality in both reactive and bidirectional model transformation.

Reactive model transformation [3,21] enable the propagation of model
updates from source models to target models on demand. State-of-the-art tool
support relies on notification mechanisms, enabling live detection of source model
updates either for immediate processing, as in VIATRA [3], or for deferred pro-
cessing, as in ReactiveATL [21]. In these approaches, source model update notifi-
cations are usually fine-grained and kept in memory. Such notifications can only
be detected when the transformation engine is in memory (live) as well. The use
of a notification mechanism means that models are loosely coupled to the trans-
formation engine. Working with offline model updates, as in the proposed delta
propagation procedure, completely decouples detection of deltas from the trans-
formation engine, freeing model update developers from the overhead of hav-
ing the transformation infrastructure in memory. The latter is only needed for
propagating changes but not for defining them. In reactive approaches, when an
observer receives an update notification, information about the intent of the over-
all model delta, i.e. the contextual information relating different atomic updates,
is lost. This problem is avoided using documented deltas, which may be serial-
ized, enabling their processing − e.g. aggregating composite changes like the
move operation − and optimization − reduction of atomic operations that are
cancelled when composed. We refer the reader to [9] for an additional discussion
of delta-based model updates against state-based model updates.

Among bidirectional model transformation approaches, Triple Graph Gram-
mars (TGG), introduced in [22], are a declarative approach for specifying bidi-
rectional consistency relations between models. Although our approach is not
bidirectional, it is worth comparing how incrementality is supported in opera-
tional TGG rules. Incrementality was first introduced in TGG synchronization
in [11,12]. Efficient approaches for TGG synchronization [18–20] avoid analyzing
the whole model by relying on dependencies which hint at the impact of a model
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update directly. Precedence-based approaches [18,20] keep a binary precedence
relation over the set of model elements in order to determine when creation or
deletion of a model element affects another one. While [18] overestimates the
actual dependencies by defining them at the type level, others underestimate
them relying on user feedback [20] or on special correspondences [12]. [19] decou-
ples impact analysis of model updates from consistency restoration by delegat-
ing the former to VIATRA’s incremental pattern matcher, which has a built-in
dependency tracker, and by defining operational rules using a reactive model
transformation approach. However, these two phases are still tightly coupled
using a synchronous communication mechanism between the incremental pattern
matcher and the synchronization procedure since the pattern matcher may trig-
ger revocations/applications of forward marking rules after revoking/applying
one of them. That is, the model synchronization procedure uses the pattern
matcher to know when synchronization terminates. In the delta propagation
mechanism proposed in the present work, either the revocation of applied trans-
formation steps or the creation of new transformation steps cannot trigger fur-
ther applications because rule matches are computed against the source model
and they are unique, that is the same match cannot enable two different rules.
A new transformation step may be found when new elements are inserted in the
source model. On the other hand, when a transformation step is revoked, no
other rule can be applied or a conflict would have been detected when the rule
was applied the first time.

Some transformation engines with support for bidirectional transformations,
like NMF [14,15], support the offline representation of model deltas. However,
to the best of our knowledge, none of the aforementioned approaches uses a
standardized notation for them, such as the EMF model change, which can be
regarded as the de-facto standard for representing model deltas in the EMF
modeling tool ecosystem.

6 Concluding Remarks

The main contribution of this work is the design of a delta propagation procedure
for executing delta-driven model transformations, which has been implemented
in YAMTL. The novelty of the approach consists in the use of a standard-
ized representation of model deltas, which facilitates interoperability with EMF-
compliant tools, and in the use of dependency injection mechanism, which allows
the transformation engine to be aware of model updates without having to rely
on a publish-subscribe infrastructure. The VIATRA CPS benchmark has been
used to justify that (1) the initialization transformation in YAMTL is several
orders of magnitude faster than the up-to-now fastest incremental solutions and
that (2) propagation of sparse deltas can be performed in real time for VLMs,
independently of their size, whereas other solutions show a clear dependence on
their size. Hence, YAMTL shows satisfactory scalability in incremental execu-
tion of model transformations on VLMs. Additional studies with larger classes
of models will be considered in future work.
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13. Harmath, D., Ráth, I.: VIATRA/query/FAQ: performance optimization guidelines
(2016). https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance optimization
guidelines

14. Hinkel, G.: Change propagation in an internal model transformation language. In:
Kolovos, D., Wimmer, M. (eds.) ICMT 2015. LNCS, vol. 9152, pp. 3–17. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-21155-8 1

15. Hinkel, G., Burger, E.: Change propagation and bidirectionality in internal trans-
formation DSLs. Softw. Syst. Model. 18(1), 249–278 (2017)

16. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.: Empirical assess-
ment of MDE in industry. In: ICSE, pp. 471–480. ACM (2011)

17. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The grand challenge of scalability for
model driven engineering. In: Chaudron, M.R.V. (ed.) MODELS 2008. LNCS, vol.
5421, pp. 48–53. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-
01648-6 5

https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/11557432_36
https://doi.org/10.1007/978-3-319-21155-8_8
https://github.com/yamtl/viatra-cps-incr-benchmark
https://github.com/yamtl/viatra-cps-incr-benchmark
https://doi.org/10.1007/978-3-642-24485-8_22
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/11880240_38
https://doi.org/10.1007/11880240_38
https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance_optimization _guidelines
https://wiki.eclipse.org/VIATRA/Query/FAQ#Performance_optimization_guidelines
https://doi.org/10.1007/978-3-319-21155-8_1
https://doi.org/10.1007/978-3-642-01648-6_5
https://doi.org/10.1007/978-3-642-01648-6_5


150 A. Boronat
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Abstract. Graph repair, restoring consistency of a graph, plays a promi-
nent role in several areas of computer science and beyond: For example,
in model-driven engineering, the abstract syntax of models is usually
encoded using graphs. Flexible edit operations temporarily create incon-
sistent graphs not representing a valid model, thus requiring graph repair.
Similarly, in graph databases—managing the storage and manipulation
of graph data—updates may cause that a given database does not satisfy
some integrity constraints, requiring also graph repair.

We present a logic-based incremental approach to graph repair, gen-
erating a sound and complete (upon termination) overview of least-
changing repairs. In our context, we formalize consistency by so-called
graph conditions being equivalent to first-order logic on graphs. We
present two kind of repair algorithms: State-based repair restores consis-
tency independent of the graph update history, whereas delta-based (or
incremental) repair takes this history explicitly into account. Technically,
our algorithms rely on an existing model generation algorithm for graph
conditions implemented in AutoGraph. Moreover, the delta-based app-
roach uses the new concept of satisfaction (ST) trees for encoding if and
how a graph satisfies a graph condition. We then demonstrate how to
manipulate these STs incrementally with respect to a graph update.

1 Introduction

Graph repair, restoring consistency of a graph, plays a prominent role in several
areas of computer science and beyond. For example, in model-driven engineering,
models are typically represented using graphs and the use of flexible edit opera-
tions may temporarily create inconsistent graphs not representing a valid model,
thus requiring graph repair. This includes the situation where different views of
an artifact are represented by a different model, i.e., the artifact is described by a
multi-model, see, e.g. [6], and updates in some models may cause a global incon-
sistency in the multimodel. Similarly, in graph databases—managing the storage
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and manipulation of graph data—updates may cause that a given database does
not satisfy some integrity constraints [1], requiring also graph repair.

Numerous approaches on model inconsistency and repair (see [12] for an
excellent recent survey) operate in varying frameworks with diverse assumptions.
In our framework, we consider a typed directed graph (cf. [7]) to be inconsistent
if it does not satisfy a given finite set of constraints, which are expressed by
graph conditions [8], a formalism with the expressive power of first-order logic
on graphs. A graph repair is, then, a description of an update that, if applied
to the given graph, makes it consistent. Our algorithms do not just provide
one repair, but a set of them from which the user must select the right repair
to be applied. Moreover, we derive only least changing repairs, which do not
include other smaller viable repairs. Our approach uses techniques (and the tool
AutoGraph) [17] designed for model generation of graph conditions.

We consider two scenarios: In the first one, the aim is to repair a given graph
(state-based repair). In the second one, a consistent graph is given together with
an update that may make it inconsistent. In this case, the aim is to repair the
graph in an incremental way (delta-based repair).

The main contributions of the paper are the following ones:

– A precise definition of what an update is, together with the definition of some
properties, like e.g. least changing, that a repair update may satisfy.

– Two kind of graph repair algorithms: state-based and incremental (for the
delta-based case). Moreover, we demonstrate for all algorithms soundness
(the repair result provided by the algorithms is consistent) and completeness
(upon termination, our algorithms will find all possible desired repairs)1.

Summarizing, most repair techniques do not provide guarantees for the func-
tional semantics of the repair and suffer from lack of information for the deploy-
ment of the techniques (see conclusion of the survey [12]). With our logic-based
graph repair approach we aim at alleviating this weakness by presenting formally
its functional semantics and describing the details of the underlying algorithms.

The paper is organized as follows: After introducing preliminaries in Sect. 2,
we proceed in Sect. 3 with defining graph updates and repairs. In Sect. 4, we
present the state-based scenario. We continue with introducing satisfaction trees
in Sect. 5 that are needed for the delta-based scenario in Sect. 6. We close with a
comparison with related work in Sect. 7 and conclusion with outlook in Sect. 8.
For proofs of theorems and example details we refer to our technical report [18].

2 Preliminaries on Graph Conditions

We recall graph conditions (GCs), defined here over typed directed graphs, used
for representing properties on such graphs. In our running example2, we employ
1 Note that completeness implies totality (if the given set of constraints is satisfiable

by a finite graph, then the algorithms will find a repair for any inconsistent graph).
2 We refer to Sect. 1 with pointers to related work including diverse use cases in Soft-

ware Engineering for graph repair with more complex and motivating examples.
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:A :B
:E2

:E1 ¬∃(a,¬(∃(a be , true) ∧ ¬∃(a e, true)))

Fig. 1. The type graph TG (left) and the GC ψ (right) for our running example

the type graph TG from Fig. 1 and we use nodes with names ai and bi to indicate
that they are of type :A and :B, respectively.

GCs state facts about the existence of graph patterns in a given graph, called
a host graph. For example, in the syntax used in our running example, the GC
∃(a, true) means that the host graph must include a node of type :A. Also,
∃(a b, true) means that the host graph must include a node of type :A,
another node of type :B, and an edge from the :A-node to the :B-node.

In general, in the syntax that we use in our running example, an atomic
GC is of the form ∃(H,φ) (or ¬∃(H,φ)) where H is a graph that must be (or
must not be) included in the host graph and where φ is a condition expressing
more restrictions on how this graph is found (or not found) in the host graph.
For instance, ∃(a,¬∃(a be , true)) states that the host graph must include
an :A-node such that it has no outgoing edge e to a :B-node. Moreover, we use
the standard boolean operators to combine atomic GCs to form more complex
ones. For instance, ∃(a,¬(∃(a be , true) ∧ ¬∃(a e, true))) states that the
host graph must include an :A-node, such that it does not hold that there is
an outgoing edge e to a :B-node and node a has no loop. In addition, as an
abbreviation for readability, we may use the universal quantifier with the mean-
ing ∀(H,φ) = ¬∃(H,¬φ). In this sense, the condition φ from Fig. 1, used in our
running example, states that every node of type :A must have an outgoing edge
to a node of type :B and that such an :A-node must have no loop.

Formally, the syntax of GCs [8], expressively equivalent to first-order logic on
graphs [5], is given subsequently. This logic encodes properties of graph exten-
sions, which must be explicitly mentioned as graph inclusions. For instance, the
GC ∃(a,¬∃(a be , true)) in simplified notation is formally given in the syn-
tax of GCs as ∃(iH ,¬∃(a ↪−→ (a be ), true)), where iH denotes the inclusion
∅ ↪−→ H with H the graph consisting of node a. This is because it expresses a
property of the extension iH . Moreover, therein the GC ¬∃(a ↪−→ (a be ), true)
is actually a property of the extension a ↪−→ (a be ).

Definition 1 (Graph Conditions (GCs) [8]). The class of graph condi-
tions ΦGC

H for the graph H is defined inductively:

– ∧S ∈ ΦGC
H if S ⊆fin ΦGC

H .
– ¬φ ∈ ΦGC

H if φ ∈ ΦGC
H .

– ∃(a : H ↪−→ H ′, φ) ∈ ΦGC
H if φ ∈ ΦGC

H′ .

In addition true, false, ∨S, φ1 ⇒ φ2, and ∀(a, φ) can be used as abbreviations,
with their obvious replacement.

A mono m : H ↪−→ G satisfies a GC ψ ∈ ΦGC
H , written m |=GC ψ, if one of

the following cases applies.
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– ψ = ∧S and m |=GC φ for each φ ∈ S.
– ψ = ¬φ and not m |=GC φ.
– ψ = ∃(a : H ↪−→ H ′, φ) and ∃q : H ′ ↪−→ G. q ◦ a = m ∧ q |=GC φ.

A graph G satisfies a GC ψ ∈ ΦGC
∅ , written G |=GC ψ or G ∈ �ψ�, if iG |=GC ψ.

3 Graph Updates and Repairs

In this section, we define graph updates to formalize arbitrary modifications of
graphs, graph repairs as the desired graph updates resulting in repaired graphs,
as well as further desireable properties of graph updates.

In particular, it is well known that a modification or update of G1 resulting
in a graph G2 can be represented by two inclusions or, in general two monos,
which we denote by (l : I ↪−→ G1, r : I ↪−→ G2), where I represents the part of G1

that is preserved by this update. Intuitively, l : I ↪−→ G1 describes the deletion
of elements from G1 (i.e., all elements in G1 \ l(I) are deleted) and r : I ↪−→ G2

describes the addition of elements to I to obtain G2 (i.e., all elements in G2\r(I)
are added).

Definition 2 (Graph Update). A (graph) update u is a pair (l : I ↪−→ G1, r :
I ↪−→ G2) of monos. The class of all updates is denoted by U .

Graph updates such as (iG : ∅ ↪−→ G, iG : ∅ ↪−→ G) where G is not the empty
graph delete all the elements in G that are added by r afterwards. To rule out
such updates, we define an update (l : I ↪−→ G1, r : I ↪−→ G2) to be canonical
when the graph I is as large as possible, i.e. intuitively I = G1 ∩ G2. Formally:

Definition 3 (Canonical Graph Update). If (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U
and every (l′ : I ′ ↪−→ G1, r

′ : I ′ ↪−→ G2) ∈ U and mono i : I ↪−→ I ′ with l′ ◦ i = l
and r′ ◦ i = r satisfies that i is an isomorphism then (l, r) is canonical, written
(l, r) ∈ Ucan.

G1 I G2

I ′

l r

l′ r′
i

An update u1 is a sub-update (see [14]) of u whenever the modifications defined
by u1 are fully contained in the modifications defined by u. Intuitively, this is the
case when u1 can be composed with another update u2 such that (a) the resulting
update has the same effect as u and (b) u2 does not delete any element that was
added before by u1. This is stated, informally speaking, by requiring that I is
the intersection (pullback) of I1 and I2 and that G2 is its union (pushout).

Definition 4 (Sub-update [14]). If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U ,
u1 = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G3) ∈ U , u2 = (l2 : I2 ↪−→ G3, r2 : I2 ↪−→ G2) ∈ U ,
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(r′
1 : I ↪−→ I1, l

′
2 : I ↪−→ I2) is the pullback of (r1, l2), and (r1, l2) is the pushout of

(r′
1, l

′
2) then u1 is a sub-update of u, written u1 ≤u2 u or simply u1 ≤ u.

G1 I1 G2 I2 G3

I

l1 r1 l2 r2

r′
1 l′2

l r

Moreover, we write u1 <u2 u or u1 < u when u1 ≤u2 u and not u ≤ u1.

We now define graph repairs as graph updates where the result graph satisfies
the given consistency constraint ψ.

Definition 5 (Graph Repair). If u = (l : I ↪−→ G1, r : I ↪−→ G2) ∈ U , ψ ∈
ΦGC

∅ , and G2 |=GC ψ then u is a graph repair or simply repair of G1 with respect
to ψ, written u ∈ U(G1, ψ).

To define a finite set of desirable repairs, we introduce the notion of least chang-
ing repairs that are repairs for which no sub-updates exist that are also repairs.

Definition 6 (Least Changing Graph Repair). If ψ ∈ ΦGC
∅ , u = (l : I ↪−→

G1, r : I ↪−→ G2) ∈ U(G1, ψ), and there is no u′ ∈ U(G1, ψ) such that u′ < u then
u is a least changing graph repair of G1 with respect to ψ, written u ∈ Ulc(G1, ψ).

Note that every least changing repair is canonical according to this definition.
Moreover, the notion of least changing repairs is unrelated to other notions of
repairs such as the set of all repairs that require a smallest amount of atomic
modifications of the graph at hand to result in a graph satisfying the consistency
constraint. For instance, a repair u1 adding two nodes of type :A may be a least
changing repair even if there is a repair u2 adding only one node of type :B.

A graph repair algorithm is stable [12], if the repair procedure returns the
identity update (idG : G ↪−→ G, idG : G ↪−→ G) when graph G is already consistent.
Obviously, a graph repair algorithm that only returns least changing repairs is
stable, since the identity update is a sub-update of any other repair.

4 State-Based Repair

In this section, we introduce two state-based graph repair algorithms (see [18]
for additional technical detail), which compute a set of graph repairs restoring
consistency for a given graph.

Definition 7 (State-Based Graph Repair Algorithm). A state-based
graph repair algorithm takes a graph G and a GC ψ ∈ ΦGC

∅ as inputs and returns
a set of graph repairs in U(G,ψ).

Note that the tool AutoGraph [17] can be used to verify this condition as
follows: It determines the operation A that constructs a finite set of all minimal
graphs satisfying a given GC ψ. Formally, A(ψ) = ∩{S ⊆ �ψ� | ∀G′ ∈ �ψ�.∃G ∈
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S.∃m : G ↪−→ G′.true}. While AutoGraph may not terminate when comput-
ing this operation due to the inherent expressiveness of GCs, it is known that
AutoGraph terminates whenever ψ is not satisfied by any graph.

The state-based algorithm Repairsb,1 uses A to obtain repairs. Repairsb,1

computes the set A(ψ ∧ ∃(iG, true)) that contains all minimal graphs that (a)
satisfy ψ and (b) include a copy of G. All these extensions of G correspond
to a graph repair. For our running example, we do not obtain any repair for
graph G′

u from Fig. 2 and GC ψ from Fig. 1 because the loop on node a2 would
invalidate any graph including G′

u. We state that Repairsb,1 indeed computes
the non-deleting least changing graph repairs.

Theorem 1 (Functional Semantics of Repairsb,1). Repairsb,1 is sound, i.e.,
Repairsb,1(G,ψ) ⊆ Ulc(G,ψ), and complete (upon termination) with respect to
non-deleting repairs in Ulc(G,ψ).

The second state-based algorithm Repairsb,2 computes all least changing graph
repairs. In this algorithm we use the approach of Repairsb,1 but compute A(ψ ∧
∃(iGc

, true)) whenever an inclusion l : Gc ↪−→ G describes how G can be restricted
to one of its subgraphs Gc. Every graph G′ obtained from the application of A
for one of these graphs Gc then results in one graph repair returned by Repairsb,2

except for those that are not least changing.
To this extent we introduce the notion of a restriction tree (see example in

Fig. 2) having all subgraphs Gc of a given graph G as nodes as long as they
include the graph Gmin , which is the empty graph in the state-based algorithm
Repairsb,2 but not in the algorithm Repairdb in Sect. 6, and where edges are
given in this tree by inclusions that add precisely one node or edge.

Definition 8 (Restriction Tree RT). If G and Gmin are graphs and S = {l :
Gc ↪−→ Gp | Gmin ⊆ Gc ⊂ Gp ⊆ G, l is an inclusion}, S′ is the least subset of S
such that the closure of S′ under ◦ equals S then a restriction tree RT(G,Gmin)
is a least subset of S′ such that for all two inclusions l1 : G ↪−→ G1 ∈ S′ and
l2 : G ↪−→ G2 ∈ S′ one of them is in RT(G,Gmin).

Considering our running example, the restriction tree in Fig. 2 is traversed
entirely except for the four graphs without a border, which are not traversed
as they have the supergraph marked 9 satisfying ψ and therefore traversing
those would generate repairs that are not least changing. The resulting graph
repairs for the condition ψ are given by the graphs marked by 3–6.

Our second state-based graph repair algorithm is indeed sound and complete
whenever the calls to AutoGraph using A terminate.

Theorem 2 (Functional Semantics of Repairsb,2). Repairsb,2 is sound, i.e.,
Repairsb,2(G,ψ) ⊆ Ulc(G,ψ), and complete, i.e., Ulc(G,ψ) ⊆ Repairsb,2(G,ψ),
upon termination.

5 Satisfaction Trees

The state-based algorithms introduced in the previous section are inefficient
when used in a scenario where a graph needs repair after a sequence of updates
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Fig. 2. The restriction tree RT(G′
u, ∅) (enclosed by the polygon) and four graph repairs

(marked 3–6) generated using Repairsb,2

that all need repair. We thus present in Sect. 6 an incremental algorithm reducing
the computational cost for a repair when an update is provided. This algorithm
uses an additional data structure, called satisfaction tree or ST, which stores
information on if and how a graph G satisfies a GC ψ (according to Definition 1).
In this section, given ψ and G, we define how such an ST γ is constructed and
how it is updated once the graph G is updated.

If ψ is a conjunction of conditions, its associated ST γ is a conjunction of STs
and if ψ is a negation of a conditions, its associated γ is a negation of an ST. In
the case when ψ is a ∃(a : H ↪−→ H ′, φ), recall that a match m : H ↪−→ G satisfies
ψ if there exists a q : H ′ ↪−→ G such that m = q◦a and q |=GC φ. For this case, we
keep in ST each q satisfying these two conditions and also each q that satisfies
the first condition, but not the second. More precisely, for the case of existential
quantification, the corresponding ST is of the form ∃(a : H ↪−→ H ′, φ,mt,mf ),
where mt and mf are partial mappings (we use sup(f) to denoted the elements
actually mapped by a partial map f) that map matches q : H ′ ↪−→ G that satisfy
m = q ◦ a (for a previously known m : H ↪−→ G) to an ST for the subcondition
φ. The difference between both partial functions is that mt maps matches q to
STs for which q |=GC φ while mf maps matches q to STs for which q �|=GC φ.
Consider Fig. 3b for an example of an ST γu.

The following definition describes the syntax of STs. The STs are defined
over matches into a graph G to allow for the basic well-formedness condition
that every mapped match q satisfies q ◦ a = m.

Definition 9 (Satisfaction Trees (STs)). The class of all Satisfaction Trees
ΓST

m for a mono m : H ↪−→ G contains γ if one of the following cases applies.

– γ = ∧S and S ⊆fin ΓST
m .

– γ = ¬χ and χ ∈ ΓST
m .

– γ = ∃(a, φ,mt,mf ), a : H ↪−→ H ′, φ ∈ ΦGC
H′ , mt,mf ⊆fin {(q : H ′ ↪−→ G, γ̄) |

q ◦ a = m, γ̄ ∈ ΓST
q }, and mt,mf are partial maps.
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Fig. 3. A graph update and an ST with its propagation over the graph update where
GCs are underlined in STs for readability

The following satisfaction predicate |=GC for STs defines when an ST γ for
a mono m states that the contained GC ψ is satisfied by the morphism m.

Definition 10 (ST Satisfaction). An ST γ ∈ ΓST
m:H↪−→G is satisfied, written

|=ST γ, if one of the following cases applies.

– γ = ∧S and |=ST χ (for each χ ∈ S)
– γ = ¬χ and �|=ST χ.
– γ = ∃(a, φ,mt,mf ) and mt �= ∅.
The following recursive operation constructs an ST γ for a graph G and a con-
dition ψ so that γ represents how G satisfies (or not satisfies) ψ. Note that the
match m in the definition of STs above and the construction of an ST below
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corresponds to the match m : H ↪−→ G from Definition 1 that we operationalize
in the following definition. For conjunction and negation, we construct the STs
from the STs for the subconditions. For the case of existential quantification,
we consider all morphisms q : H ′ ↪−→ G for which the triangle q ◦ a = m com-
mutes and construct the STs for the subcondition φ under this extended match
q. The resulting STs are inserted into mt and mf according to whether they are
satisfied.

Definition 11 (Construct ST (cst)). Given m : H ↪−→ G and ψ ∈ ΦGC
H , we

define cst(ψ,m) = γ, with γ ∈ ΓST
m as follows.

– If ψ = ∧S then γ = ∧{cst(φ,m) | φ ∈ S}.
– If ψ = ¬φ then γ = ¬ cst(φ,m).
– If ψ = ∃(a : H ↪−→ H ′, φ), mall = {(q : H ′ ↪−→ G,χ) | q ◦ a = m, cst(φ, q) = χ},

mt = {(q, χ) ∈ mall ||=ST χ}, mf = mall \ mt, then γ = ∃(a, φ,mt,mf ).

If G is a graph and ψ ∈ ΦGC
∅ , then cst(ψ,G) = cst(ψ, iG).

This construction of STs then ensures that |=ST γ if and only if G |=GC ψ. Note
that |=ST γu holds for the ST γu from Fig. 3b, the GC ψ from Fig. 1, and the
graph Gu from Fig. 3.

Theorem 3 (Sound Construction of STs). Given m : H ↪−→ G, ψ ∈ ΦGC
H ,

and cst(ψ,m) = γ then |=ST γ iff m |=GC ψ.

Subsequently, we define a propagation operation ppgU of an ST γ for a graph
update u = (l : I ↪−→ G, r : I ↪−→ G′) to obtain an ST γ′ such that γ′ =
cst(ψ,G′) whenever γ = cst(ψ,G). This overall propagation is performed by a
backward propagation of γ for l using the operation ppgB followed by a forward
propagation of the resulting ST for r using the operation ppgF.

For backward propagation, we describe how the deletion of elements in G by
l : I ↪→ G affect its associated ST γ. To this end, we preserve those matches
q : H ↪−→ G for which no matched elements are deleted. This is formalized by
requiring a mono q′ : H ↪−→ I such that l ◦ q′ = q. The matches q with deleted
matched elements can not be preserved and are therefore removed.

Definition 12 (Propagate Match (ppgMatch)). If q : H ↪−→ G and l : I ↪−→ G
are monos, then ppgMatch(q, l) is the unique q′ : H ↪−→ I such that l ◦ q′ = q if
it exists and ⊥ otherwise.

The following recursive backward propagation defines how deletions affect the
maps mt and mf of the given ST. That is, when γ = ∃(a, φ,mt,mf ), we (a)
entirely remove a mapping (m,χ) from mt or mf if ppgMatch(q, l) = ⊥ and
(b) construct for a mapping (m,χ) from mt or mf the pair (ppgMatch(q, l), χ′)
where χ′ is obtained from recursively applying the backward propagation on
χ when ppgMatch(q, l) �= ⊥. The updated pair (ppgMatch(q, l), χ′) must be
rechecked to decide to which partial map this pair must be added to ensure that
the resulting ST corresponds to the ST that would be constructed for G′ directly.
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Definition 13 (Backward Propagation (ppgB)). If m : H ↪−→ G, γ ∈ ΓST
m ,

l : I ↪−→ G, ppgMatch(m, l) = m′ : H ↪−→ I, and γ′ ∈ ΓST
m′ then ppgB(γ, l) = γ′ if

one of the following cases applies.

– γ = ∧S and γ′ = ∧{ppgB(χ, l) | χ ∈ S}.
– γ = ¬χ and γ′ = ¬ppgB(χ, l).
– γ = ∃(a, φ,mt,mf ), mall = {(q′, χ′) | (q, χ) ∈ mt ∪ mf ∧ ppgMatch(q, l) =

q′ �= ⊥ ∧ ppgB(χ, l) = χ′}, m′
t = {(q, χ) ∈ mall ||=ST χ}, m′

f = mall \ m′
t,

and γ′ = ∃(a, φ,m′
t,m

′
f ).

Note that ppgMatch(iG, l) = iG and, hence, the operation ppgB is applicable
for all ST γ ∈ ΓST

iG
, which is sufficient as we define consistency constraints using

GCs over the empty graph as well.
In the case of forward propagation where additions are given by r : I ↪−→ G′

we can preserve all matches using an adaptation. But the addition of further
elements may result in additional matches as well that may satisfy the conditions
to be included in the corresponding mt and mf from the ST at hand.

Definition 14 (Forward Propagation (ppgF)). If γ ∈ ΓST
m:H↪−→I , r : I ↪−→ G′,

and γ′ ∈ ΓST
r◦m then ppgF(γ, r) = γ′ if one of the following cases applies.

– γ = ∧S and γ′ = ∧{ppgF(χ, r) | χ ∈ S}.
– γ = ¬χ and γ′ = ¬ppgF(χ, r).
– γ = ∃(a, φ,mt,mf ), mall = {(r ◦ q, γ′) | (q, χ) ∈ mt ∪mf ∧ppgF(χ, r) = γ′}∪

{(q, γq) | q ◦ a = r ◦ m, (�q′ ∈ sup(mt) ∪ sup(mf ). r ◦ q′ = q), cst(φ, q) = γq},
m′

t = {(q, χ) ∈ mall ||=ST χ}, m′
f = mall \ m′

t, and γ′ = ∃(a, φ,m′
t,m

′
f ).

We now define the composition of both propagations to obtain the operation
ppgU that updates an ST for an entire graph update.

Definition 15 (Update Propagation (ppgU)). If m : H ↪−→ G, γ ∈ ΓST
m , l :

I ↪−→ G, ppgMatch(m, l) = m′ : H ↪−→ G′, and r : I ↪−→ G′ then ppgU(γ, (l, r)) =
ppgF(ppgB(γ, l), r) ∈ ΓST

m′ .

The overall propagation given by this operation is incremental, in the sense that
the operation cst is only used in the forward propagation on parts of the graph
G′, where the addition of graph elements by r from the graph update results in
additional matches q according to the satisfaction relation for GCs. Finally, we
state that ppgU incrementally computes the ST obtained using cst. The proof of
this theorem relies on the fact that this property also holds for ppgB and ppgF.

Theorem 4 (ppgU is Compatible with cst). If G is a graph, ψ ∈ ΦGC
∅ ,

l : I ↪−→ G, and r : I ↪−→ G′ then ppgU(cst(ψ,G), (l, r)) = cst(ψ,G′).

6 Delta-Based Repair

The local states of delta-based graph repair algorithms may contain, besides the
current graph as in state-based graph repair algorithms, an additional value. In
our delta-based graph repair algorithm this will be an ST.
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Fig. 4. An example for delta-based graph repair using Repairdb

Definition 16 (Delta-Based Graph Repair Algorithm). Delta-based
graph repair algorithms take a graph G, a GC ψ ∈ ΦGC

∅ , and a value q as inputs
and return a set of pairs (u, q′) where u ∈ U(G,ψ) is a graph repair and q′ is a
value.

Our delta-based graph repair algorithm Repairdb will be based on the single step
operation Repairdb1. Given a graph G, a GC ψ ∈ ΦGC

∅ , the ST γ that equals
cst(ψ,G), and a graph update u = (l : I ↪−→ G, r : I ↪−→ G′), the single step
operation Repairdb first updates γ using ppgU for the graph update u and then
determines using Repairdb1, if necessary, graph repairs for the resulting ST γ′

according to the repair rules described in the following. The algorithm Repairdb

then uses Repairdb1 in a breadth first manner to obtain multi-step repairs.
For our example from Fig. 3a, such a multi-step repair of G′

u is given in
Fig. 4 where the graph updates are obtained resulting in the graphs marked 1–3,
of which only the graph marked 1 satisfies ψ. The algorithm Repairdb then com-
putes further graph updates resulting in the graph marked 4 also satisfying ψ.

The operation Repairdb1 for deriving single-step repairs depends on two local
modifications. Firstly, a GC ∃(a : H ↪−→ H ′, φ) occurring as a subcondition in
the consistency constraint ψ may be violated because, for the match m : H ↪−→
G that locates a copy of H in the graph G under repair, no suitable match
q : H ′ ↪−→ G can be found for which q ◦ a = m and q |=GC φ are satisfied.
The operation Repairadd resolves this violation by (a) using AutoGraph to
construct a suitable graph Hs and by (b) integrating this graph Hs into G
resulting in G′ such that a suitable match q : H ′ ↪−→ G′ can be found.

Definition 17 (Local Addition Operation Repairadd). If a : H ↪−→ H ′, φ ∈
ΦGC

H′ , m : H ↪−→ G, Hs ∈ A(∃(iH ,∃(a, φ))), k : H ↪−→ Hs, and (m̄ : Hs ↪−→ G′, r :
G ↪−→ G′) is the pushout of (m, k) then r ∈ Repairadd(a, φ,m).

G G′

HH ′ Hs
a

m

k

m̄
r

In our running example, Repairadd determines a graph repair resulting in the
graph marked 2 in Fig. 4. For this repair, we considered the sub-ST marked by
(R2) in Fig. 3d, where the morphism m matches the node a from ψ to the node
a2 in G′

u, but where no extension of m can also match a node :B and an edge
between these two nodes. The repair performed then uses a be for the graph
Hs, resulting in the addition of the node b2 and the edge from a2 to b2.
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Secondly, a GC ∃(a : H ↪−→ H ′, φ) occurring as a subcondition in the consis-
tency constraint ψ may be satisfied even though it should not when occurring
underneath some negation. Such a violation is determined, again for a given
match m : H ↪−→ G, by some match q : H ′ ↪−→ G satisfying q ◦ a = m and
q |=GC φ. The local repair operation Repairdel repairs such an undesired satis-
faction by selecting a graph Hp such that H ⊆ Hp ⊂ H ′ using a restriction tree
(see Definition 8) and deleting Gdel = q(H ′) \ q(Hp) from G. Technically, we can
not use the pushout complement of a′ and q as it does not exists when edges
from G \ Gdel are attached to nodes in Gdel . Hence, we determine the pushout
complement of a′′ and k′, which must be constructed for this purpose suitably.

Definition 18 (Local Deletion Operation Repairdel ). If a : H ↪−→ H ′, q :
H ′ ↪−→ G, a′ : Hp ↪−→ H ′ ∈ RT(H ′,H), m1 : H ′ ↪−→ X2 where X2 is obtained
from q(H ′) by adding all edges (with their nodes) that are connected to nodes in
q(H ′)\ q(a′(Hp)), k′ : X2 ↪−→ G is obtained such that k′ ◦m1 = q, m2 : Hp ↪−→ X1

where X1 is obtained from Hp by adding all nodes in X2 \ q(H ′), a′′ : X1 ↪−→ X2

is obtained such that a′′ ◦ m2 = m1 ◦ a′, and (l : G′ ↪−→ G,m′ : X1 ↪−→ G′) is the
pushout complement of (a′′, k′) then l ∈ Repairdel(a, q).

G G′

X2

H ′H Hp

X1

m1 m2

a

m
q

a′

a′′

k′ m′
l

In our example, Repairdel determines a repair resulting in the graph marked 1
in Fig. 4. For this repair, we considered the sub-ST marked by (R1) in Fig. 3d
where the mono m matches the node a from ψ to the node a2 in G′

u. The
repair performed then uses Hp = ∅ for the removal of the node a2 along with its
adjacent loop (for which the technical handling in Repairdel is required).

The recursive operation Repairdb1 below derives updates from an ST γ that
corresponds to the current graph G (for our running example, these are γ′

u

and G′
u from Fig. 3d). In the algorithm Repairdb, we apply Repairdb1 for the

initial match iG, γ, and true where this boolean indicates that we want γ to be
satisfied. This boolean is changed in Rule 3 whenever the recursion is applied
to an ST ¬γ′ because we expect that γ′ is not to be satisfied iff we expect that
¬γ′ is to be satisfied. For conjunction, we either attempt to repair a sub-ST
for b = true in Rule 1 or we attempt to break one sub-ST for b = false. For
existential quantification and b = true, we use Repairadd as discussed before in
Rule 4 or we attempt to repair one existing match contained in mf in Rule 5.
Also, for existential quantification and b = false, we use Repairdel as discussed
before in Rule 6 or we attempt to break one existing match contained in mt in
Rule 7.

Definition 19 (Single-Step Delta-Based Repair Algorithm Repairdb1).
If m : H ↪−→ G, γ ∈ ΓST

m , and b ∈ B then (l : I ↪−→ G, r : I ↪−→ G′) ∈
Repairdb1(m, γ, b) if one of the following cases applies.
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– Rule 1 (repair one subcondition of a conjunction):
b = true,γ = ∧S, χ ∈ S, �|=ST χ, (l, r) ∈ Repairdb1(m,χ, b).

– Rule 2 (break one subcondition of a conjunction):
b = false,γ = ∧S, χ ∈ S, |=ST χ, (l, r) ∈ Repairdb1(m,χ, b).

– Rule 3 (repair/break the subcondition of a negation):
γ = ¬χ, (l, r) ∈ Repairdb1(m,χ,¬b).

– Rule 4 (repair an existential quantification by local extension):
b = true,γ = ∃(a, φ,mt,mf ), mt = ∅, r ∈ Repairadd(a, φ,m), l = idG.

– Rule 5 (repair an existential quantification recursively):
b = true,γ = ∃(a, φ,mt,mf ), mt = ∅, mf (k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

– Rule 6 (break an existential quantification by local removal):
b = false,γ = ∃(a, φ,mt,mf ), mt(k) �= ⊥, l ∈ Repairdel(a, k), r = idG′ .

– Rule 7 (break an existential quantification recursively):
b = false,γ = ∃(a, φ,mt,mf ), mt(k) = χ, (l, r) ∈ Repairdb1(k, χ, b).

We define the recursive algorithm Repairdb to apply Repairdb1 to obtain repairs
as iterated applications of single-step repairs computed by Repairdb1.

Definition 20 (Delta-Based Repair Algorithm Repairdb ). If u = (l : I ↪−→
G, r : I ↪−→ G′) ∈ U , γ ∈ ΓST

iG
, and γ′ = ppgU(γ, u) then Repairdb(u, γ) = S if

one of the following cases applies.

– |=ST γ′ and S = {((idG′ , idG′), γ′)}.
– �|=ST γ′, S′ = {(u′,ppgU(γ′, u′)) | u′ ∈ Repairdb1(iG, γ′, true)}, and

S = {(u′, γ′) ∈ S′ ||=ST γ′} ∪ ⋃{(u′′ ◦ u′, γ′′) | (u′, γ′) ∈ S′, �|=ST γ′, (u′′, γ′′) ∈
Repairdb(u′, γ′), u′′ ◦ u′ �= ⊥}.3

This computation does not terminate when repairs trigger each other ad
infinitum. However, a breadth-first-computation of Repairdb gradually computes
a set of sound repairs. Obviously, GCs that trigger such nonterminating compu-
tations should be avoided but machinery for detecting such GCs is called for.

Note that the algorithm Repairdb computes fewer graph repairs compared to
Repairsb,2 because repairs are applied locally in the scope defined by the GC ψ.
For example, no repair would be constructed resulting in the graph marked 4
in Fig. 2. In general, explicitly also using bigger contexts in ψ results in the
additional computation of less–local graph repairs. For example, the condition
ψ may be rephrased into ψ′ = ψ∧¬∃(a b,¬∃(a be , true)) to also obtain the
graph repair marked 4 in Fig. 2. We now define the updates, which we expect
to be computed by Repairdb1, as those that repair a single violation of the GC
ψ by defining a local update to be embeddable into the resulting update via a
double pushout diagram as in the DPO approach to graph transformation [16].

Definition 21 (Locally Least Changing Graph Update). If G1 is a graph,
ψ ∈ ΦGC

∅ , G1 �|=GC ψ, (l : I ↪−→ G1, r : I ↪−→ G2) ∈ Ulc(G1, ψ), G2 |=GC ψ, X1 is
a minimal subgraph of G1 with a violation of ψ that is also a violation of ψ in

3 If u1 and u2 are updates then u1 ◦ u2 = u if u1 ≤u2 u or u = ⊥ otherwise (see
Definition 4).
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G, and the diagram below exists and the right part of it is a DPO diagram then
(l, r) is a locally least changing graph update.

X1 I ′ X2

G1 I G2
l r

Repairdb1 indeed generates such locally least changing graph updates because
the graph X1 in this definition corresponds to the H1 and the H2 from an
ST ∃(a : H1 ↪−→ H2, φ,mt,mf ) that is subject to Repairadd and Repairdel,
respectively. For example, for Repairadd, the graph H1 in the ST determines a
subgraph in G1 that is a violation of the overall consistency condition given by
a GC ψ as its match can not be extended to the graph H2.

We now define the locally least changing graph repairs (which are to be
computed by Repairdb such as for example the graphs marked 1 and 4 in Fig. 4)
as the composition of a sequence of locally least changing updates where precisely
the last graph update results in a graph satisfying the GC ψ.

Definition 22 (Locally Least Changing Graph Repair). If G1 is a graph,
ψ ∈ ΦGC

∅ , π = (l1 : I1 ↪−→ G1, r1 : I1 ↪−→ G2) . . . (ln : In ↪−→ Gn, rn : In ↪−→ Gn+1) is
a sequence of locally least changing graph updates, G1 ∈ �ψ� implies n = 0 and
l1 = r1 = idG1 , Gi /∈ �ψ� (for each 2 ≤ i ≤ n), Gn+1 ∈ �ψ�, (l, r) is the iterated
composition of the updates in π, and (l, r) ∈ U(G1, ψ) is a least changing graph
repair then (l, r) is a locally least changing graph repair.

We now state that our delta-based graph repair algorithm Repairdb returns all
desired locally least changing graph repairs upon termination.

Theorem 5 (Functional Semantics of Repairdb ). Repairdb is sound (i.e.,
it generates only locally least changing graph repairs) and complete (upon termi-
nation) with respect to locally least changing graph repairs.

The state-based algorithms Repairsb,1 and Repairsb,2 are inappropriate in envi-
ronments where numerous updates that may invalidate consistency are applied
to a large graph because the procedure of AutoGraph has exponential cost. The
incremental delta-based algorithm Repairdb is a viable alternative when addi-
tional memory requirements for storing the ST are acceptable. The AutoGraph
applications for this algorithm have negligible costs because they may be per-
formed a priori and must only be performed for subconditions of the consistency
constraint, which can be assumed to feature reasonably small graphs only.

Finally, a classification of locally least changing repairs is useful for user-
based repair selection. Delta preserving repairs defined below represent such a
basic class, containing only those repairs that preserve the update resulting in a
graph not satisfying GC ψ, i.e., it may be desirable to avoid repairs that revert
additions or deletions of this update. In our example, the repair related to the
graph marked 4 in Fig. 4 is not delta preserving w.r.t. u from Fig. 3a.

Definition 23 (Delta Preserving Graph Repair). If ψ ∈ ΦGC
∅ , u2 = (l2 :

I2 ↪−→ G2, r2 : I2 ↪−→ G3) ∈ U(G2, ψ) is a graph repair, u1 = (l1 : I1 ↪−→ G1, r1 :
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I1 ↪−→ G2) is a graph update, and there exists a graph update u such that u1 <u2 u
then u2 is a delta preserving graph repair with respect to u1.

7 Related Work

According to the recent survey on model repair [12], and the corresponding
exhaustive classification of primary studies selected in the literature review,
published online [11], we can see that the amount and wide variety of exist-
ing approaches makes a detailed comparison with all of them infeasible.

We consider our approach to be innovative, not only because of the proposed
solutions, but because it addresses the issues of completeness and least changing
for incremental graph repair in a precise and formal way. From the survey [11,12]
we can see that only two other approaches [10,19] address completeness and
least changing, relying also on constraint-solving technology. The main differ-
ence with our approach is that they are not incremental. In particular, the work
of Schoenboeck et al. [19] proposes a logic programming approach allowing the
exploration of model repair solutions ranked according to some quality crite-
ria, re-establishing conformance of a model with its metamodel. Soundness and
completeness of these repair actions is not formally proven. Moreover, the least
changing bidirectional model transformation approach of Macedo et al. [10] has
only a bounded search for repairs, relying on a bounded constraint solver.

Some recent work on rule-based graph repair [9] (not covered by the survey)
addresses the least-changing principle by developing so-called maximally preserv-
ing (items are preserved whenever possible) repair programs. This state-based
approach considers a subset of consistency constraints (up to nesting depth 2)
handled by our approach, and is not complete, since it produces repairs including
only a minimal amount of deletions. Some other recent rule-based graph repair
approach [13,20] (also not covered by the survey) proposes so-called change
preserving repairs (similar to what we define as delta-preserving). The main dif-
ference with our work is that we do not require the user to specify consistency-
preserving operations from which repairs are generated, since we derive repairs
using constraint solving techniques directly from the consistency constraints.

Finally, there is a variety of work on incremental evaluation of graph queries
(see e.g. [2,4]), developed with the aim of efficiently re-evaluating a graph query
after an update has been performed. Although not employed with the specific aim
of complete and least changing graph repair, this work is related to our newly
introduced concept of satisfaction trees, also using specific data structures to
record with some detail the set of answers to a given query (as described for
graph conditions, for example, also in [3]). It is part of ongoing work to evaluate
how STs can be employed similarly in this field of incremental query evaluation.

8 Conclusion and Future Work

We presented a logic-based incremental approach to graph repair. It is the first
approach to graph repair returning a sound and complete overview of least
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changing repairs with respect to graph conditions equivalent to first-order logic
on graphs. Technically, it relies on an existing model generation procedure for
graph conditions together with the newly introduced concept of satisfaction
trees, encoding if and how a graph satisfies a graph condition.

As future work, we aim at supporting partial consistency and gradually
improving it. We are confident that we can extend our work to support attributes,
since our underlying model generation procedure supports it. Ongoing work is
the support of more expressive consistency constraints, allowing path-related
properties. Moreover, we are in the process of implementing the algorithms pre-
sented here and evaluating them on a variety of case studies. The evaluation also
pertains to the overall efficiency (for which we employ techniques for localized
pattern matching) and includes a comparison with other approaches for graph
repair. Finally, we aim at presenting new and refined properties distinguishing
between all possible repairs supporting the implementation of interactive repair
selection procedures.
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Abstract. Deep Neural Networks (DNNs) are increasingly deployed in
safety-critical applications including autonomous vehicles and medical
diagnostics. To reduce the residual risk for unexpected DNN behaviour
and provide evidence for their trustworthy operation, DNNs should be
thoroughly tested. The DeepFault whitebox DNN testing approach pre-
sented in our paper addresses this challenge by employing suspiciousness
measures inspired by fault localization to establish the hit spectrum of
neurons and identify suspicious neurons whose weights have not been cal-
ibrated correctly and thus are considered responsible for inadequate DNN
performance. DeepFault also uses a suspiciousness-guided algorithm to
synthesize new inputs, from correctly classified inputs, that increase the
activation values of suspicious neurons. Our empirical evaluation on sev-
eral DNN instances trained on MNIST and CIFAR-10 datasets shows
that DeepFault is effective in identifying suspicious neurons. Also, the
inputs synthesized by DeepFault closely resemble the original inputs,
exercise the identified suspicious neurons and are highly adversarial.

Keywords: Deep Neural Networks · Fault localization ·
Test input generation

1 Introduction

Deep Neural Networks (DNNs) [33] have demonstrated human-level capabilities
in several intractable machine learning tasks including image classification [10],
natural language processing [56] and speech recognition [19]. These impressive
achievements raised the expectations for deploying DNNs in real-world appli-
cations, especially in safety-critical domains. Early-stage applications include
air traffic control [25], medical diagnostics [34] and autonomous vehicles [5]. The
responsibilities of DNNs in these applications vary from carrying out well-defined
tasks (e.g., detecting abnormal network activity [11]) to controlling the entire
behaviour system (e.g., end-to-end learning in autonomous vehicles [5]).
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Despite the anticipated benefits from a widespread adoption of DNNs, their
deployment in safety-critical systems must be characterized by a high degree of
dependability. Deviations from the expected behaviour or correct operation, as
expected in safety-critical domains, can endanger human lives or cause significant
financial loss. Arguably, DNN-based systems should be granted permission for
use in the public domain only after exhibiting high levels of trustworthiness [6].

Software testing is the de facto instrument for analysing and evaluating the
quality of a software system [24]. Testing enables at one hand to reduce the risk
by proactively finding and eliminating problems (bugs), and on the other hand to
evidence, through using the testing results, that the system actually achieves the
required levels of safety. Research contributions and advice on best practices for
testing conventional software systems are plentiful; [63], for instance, provides a
comprehensive review of the state-of-the-art testing approaches.

Nevertheless, there are significant challenges in applying traditional software
testing techniques for assessing the quality of DNN-based software [54]. Most
importantly, the little correlation between the behaviour of a DNN and the soft-
ware used for its implementation means that the behaviour of the DNN cannot
be explicitly encoded in the control flow structures of the software [51]. Further-
more, DNNs have very complex architectures, typically comprising thousand
or millions of parameters, making it difficult, if not impossible, to determine a
parameter’s contribution to achieving a task. Likewise, since the behaviour of a
DNN is heavily influenced by the data used during training, collecting enough
data that enables exercising all potential DNN behaviour under all possible sce-
narios becomes a very challenging task. Hence, there is a need for systematic and
effective testing frameworks for evaluating the quality of DNN-based software [6].

Recent research in the DNN testing area introduces novel white-box and
black-box techniques for testing DNNs [20,28,36,37,48,54,55]. Some techniques
transform valid training data into adversarial through mutation-based heuris-
tics [65], apply symbolic execution [15], combinatorial [37] or concolic testing [55],
while others propose new DNN-specific coverage criteria, e.g., neuron cover-
age [48] and its variants [35] or MC/DC-inspired criteria [52]. We review related
work in Section 6. These recent advances provide evidence that, while traditional
software testing techniques are not directly applicable to testing DNNs, the
sophisticated concepts and principles behind these techniques, if adapted appro-
priately, could be useful to the machine learning domain. Nevertheless, none of
the proposed techniques uses fault localization [4,47,63], which can identify parts
of a system that are most responsible for incorrect behaviour.

In this paper, we introduce DeepFault, the first fault localization-based white-
box testing approach for DNNs. The objectives of DeepFault are twofold: (i)
identification of suspicious neurons, i.e., neurons likely to be more responsible
for incorrect DNN behaviour; and (ii) synthesis of new inputs, using correctly
classified inputs, that exercise the identified suspicious neurons. Similar to con-
ventional fault localization, which receives as input a faulty software and out-
puts a ranked list of suspicious code locations where the software may be defec-
tive [63], DeepFault analyzes the behaviour of neurons of a DNN after training to
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establish their hit spectrum and identifies suspicious neurons by employing sus-
piciousness measures. DeepFault employs a suspiciousness-guided algorithm to
synthesize new inputs, that achieve high activation values for suspicious neurons,
by modifying correctly classified inputs. Our empirical evaluation on the popular
publicly available datasets MNIST [32] and CIFAR-10 [1] provides evidence that
DeepFault can identify neurons which can be held responsible for insufficient
network performance. DeepFault can also synthesize new inputs, which closely
resemble the original inputs, are highly adversarial and increase the activation
values of the identified suspicious neurons. To the best of our knowledge, Deep-
Fault is the first research attempt that introduces fault localization for DNNs to
identify suspicious neurons and synthesize new, likely adversarial, inputs.

Overall, the main contributions of this paper are:

– The DeepFault approach for whitebox testing of DNNs driven by fault local-
ization;

– An algorithm for identifying suspicious neurons that adapts suspiciousness
measures from the domain of spectrum-based fault localization;

– A suspiciousness-guided algorithm to synthesize inputs that achieve high acti-
vation values of potentially suspicious neurons;

– A comprehensive evaluation of DeepFault on two public datasets (MNIST
and CIFAR-10) demonstrating its feasibility and effectiveness;

The reminder of the paper is structured as follows. Section 2 presents briefly
DNNs and fault localization in traditional software testing. Section 3 introduces
DeepFault and Section 4 presents its open-source implementation. Section 5
describes the experimental setup, research questions and evaluation carried out.
Sections 6 and 7 discuss related work and conclude the paper, respectively.

2 Background

2.1 Deep Neural Networks

Fig. 1. A four layer fully-connected DNN
that receives inputs from vehicle sensors
(camera, LiDAR, infrared) and outputs a
decision for speed, steering angle and brake.

We consider Deep Learning software
systems in which one or more system
modules is controlled by DNNs [13].
A typical feed-forward DNN com-
prises multiple interconnected neu-
rons organised into several layers: the
input layer, the output layer and at
least one hidden layer (Fig. 1). Each
DNN layer comprises a sequence of
neurons. A neuron denotes a com-
puting unit that applies a nonlinear
activation function to its inputs and
transmits the result to neurons in
the successive layer. Commonly used
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activation functions are sigmoid, hyperbolic tangent, ReLU (Rectified Linear
Unit) and leaky ReLU [13]. Except from the input layer, every neuron is con-
nected to neurons in the successive layer with weights, i.e., edges, whose values
signify the strength of a connection between neuron pairs. Once the DNN archi-
tecture is defined, i.e., the number of layers, neurons per layer and activation
functions, the DNN undergoes a training process using a large amount of labelled
training data to find weight values that minimise a cost function.

In general, a DNN could be considered as a parametric multidimensional
function that consumes input data (e.g, raw image pixels) in its input layer,
extracts features, i.e., semantic concepts, by performing a series of nonlin-
ear transformations in its hidden layers, and, finally, produces a decision that
matches the effect of these computations in its output layer.

2.2 Software Fault Localization

Fault localization (FL) is a white box testing technique that focuses on identify-
ing source code elements (e.g., statements, declarations) that are more likely to
contain faults. The general FL process [63] for traditional software uses as inputs
a program P, corresponding to the system under test, and a test suite T, and
employs an FL technique to test P against T and establish subsets that represent
the passed and failed tests. Using these sets and information regarding program
elements p ∈ P , the FL technique extracts fault localization data which is then
employed by an FL measure to establish the “suspiciousness” of each program
element p. Spectrum-based FL, the most studied class of FL techniques, uses
program traces (called program spectra) of successful and failed test executions
to establish for program element p the tuple (es, ef , ns, nf ). Members es and ef

(ns and nf ) represent the number of times the corresponding program element
has been (has not been) executed by tests, with success and fail, respectively. A
spectrum-based FL measure consumes this list of tuples and ranks the program
elements in decreasing order of suspiciousness enabling software engineers to
inspect program elements and find faults effectively. For a comprehensive survey
of state-of-the-art FL techniques, see [63].

3 DeepFault

In this section, we introduce our DeepFault whitebox approach that enables to
systematically test DNNs by identifying and localizing highly erroneous neurons
across a DNN. Given a pre-trained DNN, DeepFault, whose workflow is shown in
Fig. 2, performs a series of analysis, identification and synthesis steps to identify
highly erroneous DNN neurons and synthesize new inputs that exercise erroneous
neurons. We describe the DeepFault steps in Sections 3.1, 3.2 and 3.3.

We use the following notations to describe DeepFault. Let N be a DNN with
l layers. Each layer Li, 1 ≤ i ≤ l, consists of si neurons and the total number of
neurons in N is given by s =

∑l
i=1 si. Let also ni,j be the j-th neuron in the i-th

layer. When the context is clear, we use n ∈ N to denote any neuron which is part
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of the DNN N irrespective of its layer. Likewise, we use NH to denote the neurons
which belong to the hidden layers of N, i.e., NH = {nij |1 < i < l, 1 ≤ j ≤ sj}.
We use T to denote the set of test inputs from the input domain of N , t ∈ T
to denote a concrete input, and u ∈ t for an element of t. Finally, we use the
function φ(t, n) to signify the output of the activation function of neuron n ∈ N .

3.1 Neuron Spectrum Analysis

The first step of DeepFault involves the analysis of neurons within a DNN to
establish suitable neuron-based attributes that will drive the detection and local-
ization of faulty neurons. As highlighted in recent research [18,48], the adop-
tion of whitebox testing techniques provides additional useful insights regarding
internal neuron activity and network behaviour. These insights cannot be easily
extracted through black-box DNN testing, i.e., assessing the performance of a
DNN considering only the decisions made given a set of test inputs T .

Fig. 2. DeepFault workflow.

DeepFault initiates the identification of suspicious neurons by establish-
ing attributes that capture a neuron’s execution pattern. These attributes are
defined as follows. Attributes attras

n and attraf
n signify the number of times neu-

ron n was active (i.e., the result of the activation function φ(t, n) was above
the predefined threshold) and the network made a successful or failed decision,
respectively. Similarly, attributes attrns

n and attrnf
n cover the case in which neu-

ron n is not active. DeepFault analyses the behaviour of neurons in the DNN
hidden layers, under a specific test set T , to assemble a Hit Spectrum (HS) for
each neuron, i.e., a tuple describing its dynamic behaviour. We define formally
the HS as follows.

Definition 1. Given a DNN N and a test set T , we say that for any neuron n ∈
NH its hit spectrum is given by the tuple HSn = (attras

n , attraf
n , attrns

n , attrnf
n ).

Note that the sum of each neuron’s HS should be equal to the size of T .
Clearly, the interpretation of a hit spectrum (cf. Definition 1) is meaning-

ful only for neurons in the hidden layers of a DNN. Since neurons within the
input layer L1 correspond to elements from the input domain (e.g., pixels from
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an image captured by a camera in Fig. 1), we consider them to be “correct-by-
construction”. Hence, these neurons cannot be credited or held responsible for a
successful or failed decision made by the network. Furthermore, input neurons
are always active and thus propagate one way or another their values to neu-
rons in the following layer. Likewise, neurons within the output layer Ll simply
aggregate values from neurons in the penultimate layer Ll−1, multiplied by the
corresponding weights, and thus have limited influence in the overall network
behaviour and, accordingly, to decision making.

3.2 Suspicious Neurons Identification

During this step, DeepFault consumes the set of hit spectrums, derived from
DNN analysis, and identifies suspicious neurons which are likely to have made
significant contributions in achieving inadequate DNN performance (low accu-
racy/high loss). To achieve this identification, DeepFault employs a spectrum-
based suspiciousness measure which computes a suspiciousness score per neu-
ron using spectrum-related information. Neurons with the highest suspiciousness
score are more likely to have been trained unsatisfactorily and, hence, contribut-
ing more to incorrect DNN decisions. This indicates that the weights of these
neurons need further calibration [13]. We define neuron suspiciousness as follows.

Table 1. Suspiciousness measures used in DeepFault

Suspiciousness Measure Algebraic Formula

Tarantula [23]:
attraf

n /(attraf
n +attrnf

n )

attraf
n /(attraf

n +attrnf
n )+attras

n /(attras
n +attrns

n )

Ochiai [42]:
attraf

n√
(attraf

n +attrnf
n )·(attraf

n +attras
n )

D* [62]:
attraf∗

n

attras
n +attrnf

n

∗ > 0 is a variable. We used ∗ = 3, among the most widely explore values [47,63].

Algorithm 1. Identification of suspicious neurons
1: function SuspiciousNeuronsIdentification(N , T , k)
2: S ← ∅ � suspiciousness vector
3: for all n ∈ N do
4: HSn ← ∅ � n-th neuron hit spectrum vector
5: for all p ∈ {as, af, ns, nf} do
6: ap

n =attr(T , p) � establish attribute for property p
7: HSn = HSn ∪ {ap

n} � construct hit spectrum (cf. Def. 1)

8: S = S ∪ {Susp(HSn)} � determine neuron suspiciousness (cf. Def. 2)

9: SN = {n|Susp(HSn) ∈ Select(S, k)} � select the k most suspicious neurons
10: return SN
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Definition 2. Given a neuron n ∈ NH with HSn being its hit spectrum,
a neuron’s spectrum-based suspiciousness is given by the function Suspn :
HSn → R.

Intuitively, a suspiciousness measure facilitates the derivation of correlations
between a neuron’s behaviour given a test set T and the failure pattern of T as
determined by the overall network behaviour. Neurons whose behaviour pattern
is close to the failure pattern of T are more likely to operate unreliably, and
consequently, they should be assigned higher suspiciousness. Likewise, neurons
whose behaviour pattern is dissimilar to the failure pattern of T are considered
more trustworthy and their suspiciousness values should be low.

In this paper, we instantiate DeepFault with three different suspiciousness
measures, i.e., Tarantula [23], Ochiai [42] and D* [62] whose algebraic formulae
are shown in Table 1. The general principle underlying these suspiciousness mea-
sures is that the more often a neuron is activated by test inputs for which the
DNN made an incorrect decision, and the less often the neuron is activated by
test inputs for which the DNN made a correct decision, the more suspicious the
neuron is. These suspiciousness measures have been adapted from the domain of
fault localization in software engineering [63] in which they have achieved com-
petitive results in automated software debugging by isolating the root causes
of software failures while reducing human input. To the best of our knowledge,
DeepFault is the first approach that proposes to incorporate these suspiciousness
measures into the DNN domain for the identification of defective neurons.

The use of suspiciousness measures in DNNs targets the identification of a set
of defective neurons rather than diagnosing an isolated defective neuron. Since
the output of a DNN decision task is typically based on the aggregated effects of
its neurons (computation units), with each neuron making its own contribution

Algorithm 2. New input synthesis guided by the identified suspicious neurons
Input: SN ← suspicious neurons (Algorithm 1), step ← step size in gradient ascent
Ts ← test inputs correctly classified by N , d ← new inputs maximum allowed distance
1: function SuspiciousnessGuidedInputSynthesis(SN, Ts, d, step)
2: NT ← ∅ � set of synthesized inputs
3: for all t ∈ Ts do
4: Gt ← ∅ � gradient collection of suspicious neurons
5: for all n ∈ SN do
6: nv = φ(t, n) � determine output of neuron
7: G = ∂nv/∂t � establish gradient of neuron for t
8: Gt = Gt ∪ {G} � collect gradients of suspicious neurons for t

9: t′ ← ∅ � initialisation of input to be synthesised
10: for all u ∈ t do
11: ugradient =

∑
G∈Gt

G/|Gt| � determine average gradient of u
12: ugradient = GradientConstraint(ugradient, d, step)
13: t′ = t′ � {DomainConstraints(u + ugradient)}
14: NT = NT ∪ {t′}
15: return NT
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to the whole computation procedure [13], identifying a single point of failure (i.e.,
a single defective neuron) has limited value. Thus, after establishing the suspi-
ciousness of neurons in the hidden layers of a DNN, the neurons are ordered in
decreasing order of suspiciousness and the k, 1 ≤ l ≤ s, most probably defective
(i.e., “undertrained”) neurons are selected. Algorithm1 presents the high-level
steps for identifying and selecting the k most suspicious neurons. When multiple
neurons achieve the same suspiciousness score, DeepFault resolves ties by pri-
oritising neurons that belong to deeper hidden layers (i.e., they are closer to the
output layer). The rationale for this decision lies in fact that neurons in deeper
layers are able to learn more meaningful representations of the input space [69].

3.3 Suspiciousness-Guided Input Synthesis

DeepFault uses the selected k most suspicious neurons (cf. Section 3.2) to synthe-
size inputs that exercise these neurons and could be adversarial (see Section 5).
The premise underlying the synthesis is that increasing the activation values of
suspicious neurons will cause the propagation of degenerate information, com-
puted by these neurons, across the network, thus, shifting the decision boundaries
in the output layer. To achieve this, DeepFault applies targeted modification of
test inputs from the test set T for which the DNN made correct decisions (e.g., for
a classification task, the DNN determined correctly their ground truth classes)
aiming to steer the DNN decision to a different region (see Fig. 2).

Algorithm 2 shows the high-level process for synthesising new inputs based
on the identified suspicious neurons. The synthesis task is underpinned by a gra-
dient ascent algorithm that aims at determining the extent to which a correctly
classified input should be modified to increase the activation values of suspicious
neurons. For any test input t ∈ Ts correctly classified by the DNN, we extract
the value of each suspicious neuron and its gradient in lines 6 and 7, respectively.
Then, by iterating over each input dimension u ∈ t, we determine the gradient
value ugradient by which u will be perturbed (lines 11–12). The value of ugradient

is based on the mean gradient of u across the suspicious neurons controlled by
the function GradientConstraints. This function uses a test set specific step
parameter and a distance d parameter to facilitate the synthesis of realistic test
inputs that are sufficiently close, according to L∞-norm, to the original inputs.
We demonstrate later in the evaluation of DeepFault (cf. Table 4) that these
parameters enable the synthesis of inputs similar to the original. The function
DomainConstraints applies domain-specific constraints thus ensuring that u
changes due to gradient ascent result in realistic and physically reproducible
test inputs as in [48]. For instance, a domain-specific constraint for an image
classification dataset involves bounding the pixel values of synthesized images
to be within a certain range (e.g., 0–1 for the MNIST dataset [32]). Finally, we
append the updated u to construct a new test input t′ (line 13).

As we experimentally show in Section 5, the suspiciousness measures used by
DeepFault can synthesize adversarial inputs that cause the DNN to misclassify
previously correctly classified inputs. Thus, the identified suspicious neurons can
be attributed a degree of responsibility for the inadequate network performance
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meaning that their weights have not been optimised. This reduces the DNN’s
ability for high generalisability and correct operation in untrained data.

4 Implementation

To ease the evaluation and adoption of the DeepFault approach (cf. Fig. 2), we
have implemented a prototype tool on top of the open-source machine learn-
ing framework Keras (v2.2.2) [9] with Tensorflow (v1.10.1) backend [2]. The
full experimental results summarised in the following section are available on
DeepFault project page at https://DeepFault.github.io.

5 Evaluation

5.1 Experimental Setup

We evaluate DeepFault on two popular publicly available datasets. MNIST [32]
is a handwritten digit dataset with 60,000 training samples and 10,000 testing
samples; each input is a 28× 28 pixel image with a class label from 0 to 9.
CIFAR-10 [1] is an image dataset with 50,000 training samples and 10,000 testing
samples; each input is a 32× 32 image in ten different classes (e.g., dog, bird,
car).

For each dataset, we study three DNNs that have been used in previous
research [1,60] (Table 2). All DNNs have different architecture and number
of trainable parameters. For MNIST, we use fully connected neural networks
(dense) and for CIFAR-10 we use convolutional neural networks with max-
pooling and dropout layers that have been trained to achieve at least 95% and
70% accuracy on the provided test sets, respectively. The column ‘Architecture’
shows the number of fully connected hidden layers and the number of neurons per
layer. Each DNN uses a leaky ReLU [38] as its activation function (α = 0.01),
which has been shown to achieve competitive accuracy results [67].

We instantiate DeepFault using the suspiciousness measures Tarantula [23],
Ochiai [42] and D* [62] (Table 1). We analyse the effectiveness of DeepFault
instances using different number of suspicious neurons, i.e., k ∈ {1, 2, 3, 5, 10}
and k ∈ {10, 20, 30, 40, 50} for MNIST and CIFAR models, respectively. We also
ran preliminary experiments for each model from Table 2 to tune the hyper-
parameters of Algorithm 2 and facilitate replication of our findings. Since gra-
dient values are model and input specific, the perturbation magnitude should
reflect these values and reinforce their impact. We determined empirically that
step = 1 and step = 10 are good values, for MNIST and CIFAR models, respec-
tively, that enable our algorithm to perturb inputs. We also set the maximum
allowed distance d to be at most 10% (L∞) with regards to the range of each
input dimension (maximum pixel value). As shown in Table 4, the synthesized
inputs are very similar to the original inputs and are rarely constrained by d.
Studying other step and d values is part of our future work. All experiments were
run on an Ubuntu server with 16 GB memory and Intel Xeon E5-2698 2.20 GHz.

https://DeepFault.github.io
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Table 2. Details of MNIST and CIFAR-10 DNNs used in the evaluation.

Dataset Model Name # Trainable Params Architecture Accuracy

MNIST MNIST 1 27,420 <5 × 30> 96.6%

MNIST 2 22,975 <6 × 25> 95.8%

MNIST 3 18,680 <8 × 20> 95%

CIFAR-10 CIFAR 1 411,434 <4 × 128> 70.1%

CIFAR 2 724,010 <2 × 256> 72.6%

CIFAR 3 1,250,858 <1 × 512> 76.1%

5.2 Research Questions

Our experimental evaluation aims to answer the following research questions.

RQ1 (Validation): Can DeepFault find suspicious neurons effectively?
If suspicious neurons do exist, suspiciousness measures used by DeepFault
should comfortably outperform a random suspiciousness selection strategy.

RQ2 (Comparison): How do DeepFault instances using different suspi-
ciousness measures compare against each other? Since DeepFault can
work with multiple suspiciousness measures, we examined the results pro-
duced by DeepFault instances using Tarantula [23], Ochiai [42] and D* [62].

RQ3 (Suspiciousness Distribution): How are suspicious neurons found
by DeepFault distributed across a DNN? With this research question,
we analyse the distribution of suspicious neurons in hidden DNN layers using
different suspiciousness measures.

RQ4 (Similarity): How realistic are inputs synthesized by DeepFault?
We analysed the distance between synthesized and original inputs to examine
the extent to which DeepFault synthesizes realistic inputs.

RQ5 (Increased Activations): Do synthesized inputs increase activa-
tion values of suspicious neurons? We assess whether the suspiciousness-
guided input synthesis algorithm produces inputs that reinforce the influence
of suspicious neurons across a DNN.

RQ6 (Performance): How efficiently can DeepFault synthesize new
inputs? We analysed the time consumed by DeepFault to synthesize new
inputs and the effect of suspiciousness measures used in DeepFault instances.

5.3 Results and Discussion

RQ1 (Validation). We apply the DeepFault workflow to the DNNs from
Table 2. To this end, we instantiate DeepFault with a suspiciousness measure,
analyse a pre-trained DNN given the dataset’s test set T , identify k neurons
with the highest suspiciousness scores and synthesize new inputs, from correctly
classified inputs, that exercise these suspicious neurons. Then, we measure the
prediction performance of the DNN on the synthesized inputs using the stan-
dard performance metrics: cross-entropy loss, i.e., the divergence between output
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and target distribution, and accuracy, i.e., the percentage of correctly classified
inputs over all given inputs. Note that DNN analysis is done per class, since the
activation pattern of inputs from the same class is similar to each other [69].

Table 3 shows the average loss and accuracy for inputs synthesized by Deep-
Fault instances using Tarantula (T), Ochiai (O), D∗ (D) and a random selection
strategy (R) for different number of suspicious neurons k on the MNIST (top)
and CIFAR-10 (bottom) models from Table 2. Each cell value in Table 3, except
from random R, is averaged over 100 synthesized inputs (10 per class). For R, we
collected 500 synthesized inputs (50 per class) over five independent runs, thus,
reducing the risk that our findings may have been obtained by chance.

As expected (see Table 3), DeepFault using any suspiciousness measure (T,
O, D) obtained considerably lower prediction performance than R on MNIST
models. The suspiciousness measures T and O are also effective on CIFAR-10
model, whereas the performance between D and R is similar. These results show
that the identified k neurons are actually suspicious and, hence, their weights
are insufficiently trained. Also, we have sufficient evidence that increasing the
activation value of suspicious neurons by slightly perturbing inputs that have
been classified correctly by the DNN could transform them into adversarial.

We applied the non-parametric statistical test Mann-Whitney with 95% con-
fidence level [61] to check for statistically significant performance difference
between the various DeepFault instances and random. We confirmed the signifi-
cant difference among T-R and O-R (p-value < 0.05) for all MNIST and CIFAR-
10 models and for all k values. We also confirmed the interesting observation that
significant difference between D-R exists only for MNIST models (all k values).
We plan to investigate this observation further in our future work.

Another interesting observation from Table 3 is the small performance differ-
ence of DeepFault instances for different k values. We investigated this further
by analyzing the activation values of the next k′ most suspicious neurons accord-
ing to the suspiciousness order given by Algorithm1. For instance, if k = 2 we
analysed the activation values of the next k′ ∈ {3, , 5, 10} most suspicious neu-
rons. We observed that the synthesized inputs frequently increase the activation
values of the k′ neurons whose suspiciousness scores are also high, in addition
to increasing the values of the top k suspicious neurons.

Considering these results, we have empirical evidence about the existence of
suspicious neurons which can be responsible for inadequate DNN performance.
Also, we confirmed that DeepFault instances using sophisticated suspiciousness
measures significantly outperform a random strategy for most of the studied
DNN models (except from the D-R case on CIFAR models; see RQ3).

RQ2 (Comparison). We compare DeepFault instances using different sus-
piciousness measures and carried out pairwise comparisons using the Mann-
Whitney test to check for significant difference between T, O, and D∗. We show
the results of these comparisons on the project’s webpage. Ochiai achieves bet-
ter results on MNIST 1 and MNIST 3 models for various k values. This result
suggests that the suspicious neurons reported by Ochiai are more responsible
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Table 3. Accuracy and loss of inputs synthesized by DeepFault on MNIST (top) and
CIFAR-10 (bottom) datasets. The best results per suspiciousness measure are shown
in bold. (k:#suspicious neurons, T:Tarantula, O:Ochiai, D:D*, R:Random)

k Measure MNIST 1 MNIST 2 MNIST 3

T O D R T O D R T O D R

1 Loss 3.55 6.19 4.03 2.42 3.48 3.53 3.97 2.78 7.35 8.23 6.36 3.66

Accuracy 0.26 0.16 0.2 0.59 0.3 0.2 0.5 0.49 0.16 0.1 0.13 0.39

2 Loss 3.73 6.08 3.18 2.67 3.12 3.76 4.08 0.9 4.27 6.81 6.5 3.06

Accuracy 0.16 0.23 0.4 0.58 0.23 0.23 0.13 0.77 0.29 0.13 0.26 0.56

3 Loss 4.1 6.19 6.25 1.14 2.39 3.94 3.04 1.61 3.33 7.59 6.98 2.91

Accuracy 0.23 0.23 0.33 0.77 0.46 0.26 0.23 0.67 0.26 0.06 0.16 0.61

5 Loss 4.63 6.68 6.97 1.1 2.49 3.64 3.48 0.94 4.15 7.22 6.47 1.22

Accuracy 0.23 0.23 0.13 0.79 0.26 0.26 0.2 0.73 0.16 0.1 0.26 0.77

10 Loss 4.97 6.95 7.4 1.3 2.08 3.06 3.82 0.49 4.45 7.16 5.9 0.57

Accuracy 0.23 0.2 0.23 0.75 0.4 0.23 0.26 0.86 0.13 0.13 0.13 0.87

k Measure CIFAR 1 CIFAR 2 CIFAR 3

T O D R T O D R T O D R

10 Loss 12.75 13.49 1.33 3.25 8.42 8.41 0 2.49 6.12 1.77 1.12 1.21

Accuracy 0.2 0.16 0.9 0.79 0.47 0.47 1.0 0.84 0.62 0.88 0.92 0.91

20 Loss 12.79 12.43 0.45 1.8 8.81 6.92 0.32 1.67 6.12 1.12 0.96 0.64

Accuracy 0.2 0.22 0.96 0.88 0.44 0.55 0.97 0.89 0.62 0.92 0.93 0.95

30 Loss 13.19 13.13 0.38 1.43 8.35 6.32 0.55 0.86 5.64 0.76 0.42 0.41

Accuracy 0.18 0.18 0.95 0.9 0.48 0.6 0.95 0.94 0.64 0.93 0.96 0.97

40 Loss 13.69 11.92 0.8 1.29 9.4 5.01 0.32 0.61 4.51 1.12 0.22 0.54

Accuracy 0.14 0.26 0.92 0.91 0.41 0.68 0.97 0.95 0.72 0.92 0.97 0.96

50 Loss 12.1 13.37 0.36 0.9 9.59 3.38 0 0.56 4.67 0.04 0.64 0.48

Accuracy 0.24 0.17 0.96 0.94 0.4 0.78 1.0 0.96 0.71 0.98 0.96 0.96

for insufficient DNN performance. D∗ performs competitively on MNIST 1 and
MNIST 3 for k ∈ {3, 5, 10}, but its performance on CIFAR-10 models is sig-
nificantly inferior to Tarantula and Ochiai. The best performing suspiciousness
measure in CIFAR models for most k values is, by a great amount, Tarantula.

These findings show that multiple suspiciousness measures could be used for
instantiating DeepFault with competitive performance. We also have evidence
that DeepFault using D∗ is ineffective for some complex networks (e.g., CIFAR-
10), but there is insufficient evidence for the best performing DeepFault instance.
Our findings conform to the latest research on software fault localization which
claims that there is no single best spectrum-based suspiciousness measure [47].

RQ3 (Suspiciousness Distribution). We analysed the distribution of suspi-
cious neurons identified by DeepFault instances across the hidden DNN layers.
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Fig. 3. Suspicious neurons distribution on MNIST 3 (left) and CIFAR 3 (right) models.

Figure 3 shows the distribution of suspicious neurons on MNIST 3 and CIFAR 3
models with k = 10 and k = 50, respectively. Considering MNIST 3, the major-
ity of suspicious neurons are located at the deeper hidden layers (Dense 4-Dense
8) irrespective of the suspiciousness measure used by DeepFault. This observa-
tion holds for the other MNIST models and k values. On CIFAR 3, however, we
can clearly see variation in the distributions across the suspiciousness measures.
In fact, D∗ suggests that most of the suspicious neurons belong to initial hidden
layers which is in contrast with Tarantula’s recommendations. As reported in
RQ2, the inputs synthesized by DeepFault using Tarantula achieved the best
results on CIFAR models, thus showing that the identified neurons are actually
suspicious. This difference in the distribution of suspicious neurons explains the
inferior inputs synthesized by D∗ on CIFAR models (Table 3).

Another interesting finding concerns the relation between the suspicious neu-
rons distribution and the “adversarialness” of synthesized inputs. When suspi-
cious neurons belong to deeper hidden layers, the likelihood of the synthesized
input being adversarial increases (cf. Table 3 and Fig. 3). This finding is explained
by the fact that initial hidden layers transform input features (e.g., pixel val-
ues) into abstract features, while deeper hidden layers extract more semantically
meaningful features and, thus, have higher influence in the final decision [13].

RQ4 (Similarity). We examined the distance between original, correctly classi-
fied, inputs and those synthesized by DeepFault, to establish DeepFault’s ability
to synthesize realistic inputs. Table 4 (left) shows the distance between orig-
inal and synthesized inputs for various distance metrics (L1 Manhattan, L2

Euclidean, L∞ Chebyshev) for different k values (# suspicious neurons). The
distance values, averaged over inputs synthesized using the DeepFault suspi-
ciousness measures (T, O and D∗), demonstrate that the degree of perturbation
is similar irrespective of k for MNIST models, whereas for CIFAR models the
distance decreases as k increases. Given that a MNIST input consists of 784
pixels, with each pixel taking values in [0, 1], the average perturbation per input
is less than 5.28% of the total possible perturbation (L1 distance). Similarly,
for a CIFAR input that comprises 3072 pixels, with each pixel taking values
in {0, 1, ..., 255}, the average perturbation per input is less that 0.03% of the
total possible perturbation (L1 distance). Thus, for both datasets, the difference
of synthesized inputs to their original versions is very small. We qualitatively
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Table 4. Distance between synthesized and original inputs. The values shown represent
minimal perturbation to the original inputs (< 5% for MNIST and < 1% for CIFAR-
10).

k MNIST CIFAR
MNIST(CIFAR) L1 L2 L∞ L1 L2 L∞
1(10) 41.4 2.0 0.1 179.07 7216.6 15.46
2(20) 41.2 1.99 0.1 144.95 5897.4 12.45
3(30) 40.9 1.98 0.1 124.61 5073.9 10.67
5(40) 40.7 1.97 0.1 113.45 4579.2 9.89
10(50) 40.3 1.96 0.1 104.72 4273 9.24

Susp. MNIST CIFAR
measure L1 L2 L∞ L1 L2 L∞
Tarantula 40.3 1.97 0.1 180.23 6575.6 19.41
Ochiai 41.0 1.98 0.1 110.45 4825.3 7.84
D* 41.5 1.99 0.1 109.4 4823.2 7.39
Random 39.2 1.92 0.1 121.73 4988.1 11.63

Fig. 4. Synthesized images (top) and their originals (bottom). For each dataset, suspi-
cious neurons are found using (from left to right) Tarantula, Ochiai, D∗ and Random.

support our findings by showing in Fig. 4 the synthesized images and their orig-
inals for an example set of inputs from the MNIST and CIFAR-10 datasets.

We also compare the distances between original and synthesized inputs based
on the suspiciousness measures (Table 4 right). The inputs synthesized by Deep-
Fault instances using T, O or D∗ are very close to the inputs of the random
selection strategy (L1 distance). Considering these results, we can conclude that
DeepFault is effective in synthesizing highly adversarial inputs (cf. Table 3) that
closely resemble their original counterparts.

Table 5. Effectiveness of suspiciousness-guided
input synthesis algorithm to increase activations
values of suspicious neurons.

k: MNIST(CIFAR)

Datasets 1(10) 2(20) 3(30) 5(40) 10(50)

MNIST 98% 99% 97% 97% 91%

CIFAR 91% 92% 90% 89% 88%

RQ5 (Increasing Activations).
We studied the activation values
of suspicious neurons identified
by DeepFault to examine whether
the synthesized inputs increase
the values of these neurons. The
gradients of suspicious neurons
used in our suspiciousness-guided
input synthesis algorithm might be conflicting and a global increase in all sus-
picious neurons’ values might not be feasible. This can occur if some neurons’
gradients are negative, indicating a decrease in an input feature’s value, whereas
other gradients are positive and require to increase the value of the same fea-
ture. Table 5 shows the percentage of suspicious neurons k, averaged over all
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suspiciousness measures for all considered MNIST and CIFAR-10 models from
Table 2, whose values were increased by the inputs synthesized by DeepFault.
For MNIST models, DeepFault synthesized inputs that increase the suspicious
neurons’ values with success at least 97% for k ∈ {1, 2, 3, 5}, while the aver-
age effectiveness for CIFAR models is 90%. These results show the effective-
ness of our suspiciousness-guided input synthesis algorithm in generating inputs
that increase the activation values of suspicious neurons (see https://DeepFault.
github.io).

RQ6 (Performance). We measured the performance of Algorithm 2 to syn-
thesize new inputs (https://DeepFault.github.io). The average time required to
synthesize a single input for MNIST and CIFAR models is 1 s and 24.3 s, respec-
tively. The performance of the algorithm depends on the number of suspicious
neurons (k), the distribution of those neurons over the DNN and its architecture.
For CIFAR models, for instance, the execution time per input ranges between
3 s (k = 10) and 48 s (k = 50). We also confirmed empirically that more time
is taken to synthesize an input if the suspicious neurons are in deeper hidden
layers.

5.4 Threats to Validity

Construct validity threats might be due to the adopted experimental method-
ology including the selected datasets and DNN models. To mitigate this threat,
we used widely studied public datasets (MNIST [32] and CIFAR-10 [1]), and
applied DeepFault to multiple DNN models of different architectures with com-
petitive prediction accuracies (cf. Table 2). Also, we mitigate threats related to
the identification of suspicious neurons (Algorithm 1) by adapting suspiciousness
measures from the fault localization domain in software engineering [63].
Internal validity threats might occur when establishing the ability of Deep-
Fault to synthesize new inputs that exercise the identified suspicious neurons.
To mitigate this threat, we used various distance metrics to confirm that the
synthesized inputs are close to the original inputs and similar to the inputs syn-
thesized by a random strategy. Another threat could be that the suspiciousness
measures employed by DeepFault accidentally outperform the random strategy.
To mitigate this threat, we reported the results of the random strategy over five
independent runs per experiment. Also, we ensured that the distribution of the
randomly selected suspicious neurons resembles the distribution of neurons iden-
tified by DeepFault suspiciousness measures. We also used the non-parametric
statistical test Mann-Whitney to check for significant difference in the perfor-
mance of DeepFault instances and random with a 95% confidence level.
External validity threats might exist if DeepFault cannot access the internal
DNN structure to assemble the hit spectrums of neurons and establish their sus-
piciousness. We limit this threat by developing DeepFault using the open-source
frameworks Keras and Tensorflow which enable whitebox DNN analysis. We also
examined various spectrum-based suspiciousness measures, but other measures
can be investigated [63]. We further reduce the risk that DeepFault might be dif-
ficult to use in practice by validating it against several DNN instances trained on

https://DeepFault.github.io
https://DeepFault.github.io
https://DeepFault.github.io
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two widely-used datasets. However, more experiments are needed to assess the
applicability of DeepFault in domains and networks with characteristics different
from those used in our evaluation (e.g., LSTM and Capsule networks [50]).

6 Related Work

DNN Testing and Verification. The inability of blackbox DNN testing to
provide insights about the internal neuron activity and enable identification
of corner-case inputs that expose unexpected network behaviour [14], urged
researchers to leverage whitebox testing techniques from software engineer-
ing [28,35,43,48,54]. DeepXplore [48] uses a differential algorithm to gener-
ate inputs that increase neuron coverage. DeepGauge [35] introduces multi-
granularity coverage criteria for effective test synthesis. Other research proposes
testing criteria and techniques inspired by metamorphic testing [58], combina-
torial testing [37], mutation testing [36], MC/DC [54], symbolic execution [15]
and concolic testing [55].

Formal DNN verification aims at providing guarantees for trustworthy DNN
operation [20]. Abstraction refinement is used in [49] to verify safety properties of
small neural networks with sigmoid activation functions, while AI2 [12] employs
abstract interpretation to verify similar properties. Reluplex [26] is an SMT-
based approach that verifies safety and robustness of DNNs with ReLUs, and
DeepSafe [16] uses Reluplex to identify safe regions in the input space. DLV [60]
can verify local DNN robustness given a set of user-defined manipulations.

DeepFault adopts spectrum-based fault localization techniques to systemati-
cally identify suspicious neurons and uses these neurons to synthesize new inputs,
which is mostly orthogonal to existing research on DNN testing and verification.

Adversarial Deep Learning. Recent studies have shown that DNNs are vul-
nerable to adversarial examples [57] and proposed search algorithms [8,40,41,44],
based on gradient descent or optimisation techniques, for generating adversarial
inputs that have a minimal difference to their original versions and force the DNN
to exhibit erroneous behaviour. These types of adversarial examples have been
shown to exist in the physical world too [29]. The identification of and protection
against these adversarial attacks, is another active area of research [45,59]. Deep-
Fault is similar to these approaches since it uses the identified suspicious neurons
to synthesize perturbed inputs which as we have demonstrated in Section 5 are
adversarial. Extending DeepFault to support the synthesis of adversarial inputs
using these adversarial search algorithms is part of our future work.

Fault Localization in Traditional Software. Fault localization is widely
studied in many software engineering areas including including software debug-
ging [46], program repair [17] and failure reproduction [21,22]. The research focus
in fault localization is the development of identification methods and suspicious-
ness measures that isolate the root causes of software failures with reduced engi-
neering effort [47]. The most notable fault localization methods are spectrum-
based [3,23,30,31,62], slice-based [64] and model-based [39]. Threats to the value
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of empirical evaluations of spectrum-based fault localization are studied in [53],
while the theoretical analyses in [66,68] set a formal foundation about desirable
formal properties that suspiciousness measures should have. We refer interested
readers to a recent comprehensive survey on fault localization [63].

7 Conclusion

The potential deployment of DNNs in safety-critical applications introduces
unacceptable risks. To reduce these risks to acceptable levels, DNNs should be
tested thoroughly. We contribute in this effort, by introducing DeepFault, the
first fault localization-based whitebox testing approach for DNNs. DeepFault
analyzes pre-trained DNNs, given a specific test set, to establish the hit spec-
trum of each neuron, identifies suspicious neurons by employing suspiciousness
measures and synthesizes new inputs that increase the activation values of the
suspicious neurons. Our empirical evaluation on the widely-used MNIST and
CIFAR-10 datasets shows that DeepFault can identify neurons which can be
held responsible for inadequate performance. DeepFault can also synthesize new
inputs, which closely resemble the original inputs, are highly adversarial and
exercise the identified suspicious neurons. In future work, we plan to evaluate
DeepFault on other DNNs and datasets, to improve the suspiciousness-guided
synthesis algorithm and to extend the synthesis of adversarial inputs [44]. We will
also explore techniques to repair the identified suspicious neurons, thus enabling
to reason about the safety of DNNs and support safety case generation [7,27].
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Abstract. Variability models allow effective building of many custom
model variants for various configurations. Lifted model checking for a
variability model is capable of verifying all its variants simultaneously
in a single run by exploiting the similarities between the variants. The
computational cost of lifted model checking still greatly depends on the
number of variants (the size of configuration space), which is often huge.
One of the most promising approaches to fighting the configuration space
explosion problem in lifted model checking are variability abstractions. In
this work, we define a novel game-based approach for variability-specific
abstraction and refinement for lifted model checking of the full CTL,
interpreted over 3-valued semantics. We propose a direct algorithm for
solving a 3-valued (abstract) lifted model checking game. In case the
result of model checking an abstract variability model is indefinite, we
suggest a new notion of refinement, which eliminates indefinite results.
This provides an iterative incremental variability-specific abstraction and
refinement framework, where refinement is applied only where indefinite
results exist and definite results from previous iterations are reused.

1 Introduction

Software Product Line (SPL) [6] is an efficient method for systematic develop-
ment of a family of related models, known as variants (valid products), from a
common code base. Each variant is specified in terms of features (static con-
figuration options) selected for that particular variant. SPLs are particularly
popular in the embedded and critical system domains (e.g. cars, phones, avion-
ics, healthcare).

Lifted model checking [4,5] is a useful approach for verifying properties of
variability models (SPLs). Given a variability model and a specification, the
lifted model checking algorithm, unlike the standard non-lifted one, returns pre-
cise conclusive results for all individual variants, that is, for each variant it
reports whether it satisfies or violates the specification. The main disadvantage
of lifted model checking is the configuration space explosion problem, which refers
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to the high number of variants in the variability model. In fact, exponentially
many variants can be derived from only few configuration options (features).
One of the most successful approaches to fighting the configuration space explo-
sion are so-called variability abstractions [12,14,15,17]. They hide some of the
configuration details, so that many of the concrete configurations become indis-
tinguishable and can be collapsed into a single abstract configuration (variant).
This results in smaller abstract variability models with a smaller number of
abstract configurations. In order to be conservative w.r.t. the full CTL temporal
logic, abstract variability models have two types of transitions: may-transitions
which represent possible transitions in the concrete model, and must-transitions
which represent the definite transitions in the concrete model. May and must
transitions correspond to over and under approximations, and are needed in
order to preserve universal and existential CTL properties, respectively.

Here we consider the 3-valued semantics for interpreting CTL formulae over
abstract variability models. This semantics evaluates a formula on an abstract
model to either true, false, or indefinite. Abstract variability models are designed
to be conservative for both true and false. However, the indefinite answer gives
no information on the value of the formula on the concrete model. In this case,
a refinement is needed in order to make the abstract models more precise.

The technique proposed here significantly extends the scope of existing
automatic variability-specific abstraction refinement procedures [8,18], which
currently support the verification of universal LTL properties only. They use
conservative variability abstractions to construct over-approximated abstract
variability models, which preserve LTL properties. If a spurious counterexample
(introduced due to the abstraction) is found in the abstract model, the pro-
cedures [8,18] use Craig interpolation to extract relevant information from it
in order to define the refinement of abstract models. Variability abstractions
that preserve all (universal and existential) CTL properties have been previ-
ously introduced [12], but without an automatic mechanism for constructing
them and no notion of refinement. The abstractions [12] has to be constructed
manually by an engineer before verification. In order to make the entire verifi-
cation procedure automatic, we need to develop an abstraction and refinement
framework for CTL properties.

In this work, we propose the first variability-specific abstraction refinement
procedure for automatically verifying arbitrary formulae of CTL. To achieve this
aim, model checking games [24–26] represent the most suitable framework for
defining the refinement. In this way, we establish a brand new connection between
games and family-based (SPL) model checking. The refinement is defined by
finding the reason for the indefinite result of an algorithm that solves the corre-
sponding model checking game, which is played by two players: Player∀ (trying
to refute the formula Φ on an abstract model M) and Player∃ (trying to verify
Φ on M). The game is played on a game board, which consists of configurations
of the form (s, Φ′) where s is a state of the abstract model M and Φ′ is a sub-
formula of Φ, such that the value of Φ′ in s is relevant for determining the final
model checking result. The players make moves between configurations in which
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they try to verify or refute Φ′ in s. All possible plays of a game are captured
in the game-graph, whose nodes are the elements of the game board and whose
edges are the possible moves of the players. The model checking game is solved
via a coloring algorithm which colors each node (s, Φ′) in the game-graph by T ,
F , or ? iff the value of Φ′ in s is true, false, or indefinite, respectively. Player∀
has a winning strategy at the node (s, Φ′) iff the node is colored by F iff Φ′ does
not hold in s, and Player∃ has a winning strategy at (s, Φ′) iff the node is colored
by T iff Φ′ holds in s. In addition, it is also possible that neither of players has
a winning strategy, in which case the node is colored by ? and the value of Φ′ in
s is indefinite. In this case, we want to refine the abstract model. We can find
the reason for the tie by examining the game-graph. We choose a refinement
criterion, which splits abstract configurations so that the new, refined abstract
configurations represent smaller subsets of concrete configurations.

2 Background

Variability Models. Let F = {A1, . . . , An} be a finite set of Boolean variables
representing the features available in a variability model. A specific subset of
features, k ⊆ F, known as configuration, specifies a variant (valid product) of a
variability model. We assume that only a subset K ⊆ 2F of configurations are
valid. An alternative representation of configurations is based upon propositional
formulae. Each configuration k ∈ K can be represented by a formula: k(A1) ∧
. . .∧k(An), where k(Ai) = Ai if Ai ∈ k, and k(Ai) = ¬Ai if Ai /∈ k for 1 ≤ i ≤ n.

We use transition systems (TS) to describe behaviors of single-systems.

Definition 1. A transition system (TS) is a tuple T = (S,Act, trans, I, AP,L),
where S is a set of states; Act is a set of actions; trans ⊆ S × Act × S is a
transition relation which is total, so that for each state there is an outgoing
transition; I ⊆ S is a set of initial states; AP is a set of atomic propositions;
and L : S → 2AP is a labelling function specifying which propositions hold in a
state. We write s1

λ−−→s2 whenever (s1, λ, s2) ∈ trans.

An execution (behaviour) of a TS T is an infinite sequence ρ = s0λ1s1λ2 . . .

with s0 ∈ I such that si
λi+1−→ si+1 for all i ≥ 0. The semantics of the TS T ,

denoted as [[T ]]TS , is the set of its executions.
A featured transition system (FTS) is a particular instance of a variability

model, which describes the behavior of a whole family of systems in a single
monolithic description, where the transitions are guarded by a presence condition
that identifies the variants they belong to. The presence conditions ψ are drawn
from the set of feature expressions, FeatExp(F), which are propositional logic
formulae over F: ψ:: = true | A ∈ F | ¬ψ | ψ1 ∧ ψ2. We write [[ψ]] to denote the
set of configurations from K that satisfy ψ, i.e. k ∈ [[ψ]] iff k |= ψ.

Definition 2. A featured transition system (FTS) represents a tuple F =
(S,Act, trans, I, AP,L, F, K, δ), where S,Act, trans, I, AP , and L form a TS; F

is the set of available features; K is a set of valid configurations; and δ : trans→
FeatExp(F) is a total function decorating transitions with presence conditions.
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Fig. 1. VendMach Fig. 2. π∅(VendMach) Fig. 3. αjoin(VendMach)

The projection of an FTS F to a configuration k ∈ K, denoted as πk(F), is the
TS (S,Act, trans′, I, AP,L), where trans′ = {t ∈ trans | k |= δ(t)}. We lift
the definition of projection to sets of configurations K

′ ⊆K, denoted as πK′(F),
by keeping the transitions admitted by at least one of the configurations in K

′.
That is, πK′(F), is the FTS (S,Act, trans′, I, AP,L, F, K′, δ′), where trans′ =
{t ∈ trans | ∃k ∈ K

′.k |= δ(t)} and δ′ = δ|trans′ is the restriction of δ to trans′.
The semantics of an FTS F , denoted as [[F ]]FTS , is the union of behaviours of
the projections on all valid variants k ∈ K, i.e. [[F ]]FTS = ∪k∈K[[πk(F)]]TS .

Modal transition systems (MTSs) [22] are a generalization of transition sys-
tems equipped with two transition relations: must and may. The former (must)
is used to specify the required behavior, while the latter (may) to specify the
allowed behavior of a system. We will use MTSs for representing abstractions of
FTSs.

Definition 3. A modal transition system (MTS) is represented by a tuple M =
(S,Act, transmay, transmust, I, AP,L), where transmay ⊆ S × Act × S describe
may transitions of M; transmust ⊆ S ×Act×S describe must transitions of M,
such that transmay is total and transmust ⊆ transmay.

A may-execution in M is an execution (infinite sequence) with all its transitions
in transmay; whereas a must-execution in M is a maximal sequence with all
its transitions in transmust, which cannot be extended with any other transi-
tion from transmust. Note that since transmust is not necessarily total, must-
executions can be finite. We use [[M]]may

MTS (resp., [[M]]must
MTS) to denote the set of

all may-executions (resp., must-executions) in M starting in an initial state.

Example 1. Throughout this paper, we will use a beverage vending machine as
a running example [4]. Figure 1 shows the FTS of a VendMach family. It has
two features, and each of them is assigned an identifying letter and a color.
The features are: CancelPurchase (c, in brown), for canceling a purchase after
a coin is entered; and FreeDrinks (f , in blue) for offering free drinks. Each
transition is labeled by an action followed by a feature expression. For instance,
the transition s0

free/f−−−→ s2 is included in variants where the feature f is enabled.
For clarity, we omit to write the presence condition true in transitions. There is
only one atomic proposition served ∈ AP , which is abbreviated as r. Note that
r ∈ L(s2), whereas r �∈ L(s0) and r �∈ L(s1).

By combining various features, a number of variants of this VendMach can
be obtained. The set of valid configurations is: K

VM = {∅, {c}, {f}, {c, f}} (or,
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equivalently K
VM ={¬c∧¬f, c∧¬f,¬c∧f, c∧f}). Figure 2 shows a basic version

of VendMach that only serves a drink, described by the configuration: ∅ (or,
as formula ¬c ∧¬f). It takes a coin, serves a drink, opens a compartment so the
customer can take the drink. Figure 3 shows an MTS, where must transitions
are denoted by solid lines, while may transitions by dashed lines. �

CTL Properties. We present Computation Tree Logic (CTL) [1] for specifying
system properties. CTL state formulae Φ are given by:

Φ:: = true | false | l | Φ1 ∧Φ2 | Φ1 ∨Φ2 | Aφ | Eφ, φ:: = ©Φ | Φ1UΦ2 | Φ1VΦ2

where l ∈ Lit = AP ∪ {¬a | a ∈ AP} and φ represent CTL path formulae. Note
that the CTL state formulae Φ are given in negation normal form (¬ is applied
only to atomic propositions). The path formula ©Φ can be read as “in the next
state Φ”, Φ1UΦ2 can be read as “Φ1 until Φ2”, and its dual Φ1VΦ2 can be read
as “Φ2 while not Φ1” (where Φ1 may never hold).

We assume the standard CTL semantics over TSs is given [1] (see also [16,
Appendix A]). We write [T |= Φ] = tt to denote that T satisfies the formula Φ,
whereas [T |= Φ] = ff to denote that T does not satisfy Φ.

We say that an FTS F satisfies a CTL formula Φ, written [F |= Φ] = tt, iff
all its valid variants satisfy the formula, i.e. ∀k∈K. [πk(F) |= Φ] = tt. Otherwise,
we say F does not satisfy Φ, written [F |= Φ] = ff. In this case, we also want
to determine a non-empty set of violating variants K

′ ⊆ K, such that ∀k′ ∈
K

′. [πk′(F) |= Φ] = ff and ∀k∈K\K
′. [πk(F) |= Φ] = tt.

We define the 3-valued semantics of CTL over an MTS M slightly differently
from the semantics for TSs. A CTL state formula Φ is satisfied in a state s of
an MTS M, denoted [M, s |=3 Φ], iff (M is omitted when clear from context):1

(1) [s |=3 a] =

{
tt, if a ∈ L(s)
ff, if a �∈ L(s)

, [s |=3 ¬a] =

{
tt, if a �∈ L(s)
ff, if a ∈ L(s)

(2) [s |=3 Φ1 ∧ Φ2] =

⎧⎪⎨
⎪⎩

tt, if [s |=3 Φ1] = tt and [s |=3 Φ2] = tt
ff, if [s |=3 Φ1] = ff or [s |=3 Φ2] = ff
⊥, otherwise

(3) [s |=3 Aφ] =

⎧⎪⎨
⎪⎩

tt, if ∀ρ ∈ [[M]]may,s
MTS . [ρ |=3 φ] = tt

ff, if ∃ρ ∈ [[M]]must,s
MTS . [ρ |=3 φ] = ff

⊥, otherwise

[s |=3 Eφ] =

⎧⎪⎨
⎪⎩

tt, if ∃ρ ∈ [[M]]must,s
MTS . [ρ |=3 φ] = tt

ff, if ∀ρ ∈ [[M]]may,s
MTS . [ρ |=3 φ] = ff

⊥, otherwise

where [[M]]may,s
MTS (resp., [[M]]must,s

MTS ) denotes the set of all may-executions (must-
executions) starting in the state s of M. Satisfaction of a path formula φ for a
may- or must-execution ρ = s0λ1s1λ2 . . . of an MTS M (we write ρi = si to
1 See [16, Appendix A] for definitions of [s |=3 Φ1∨Φ2], [ρ |=3 ©Φ], and [ρ |=3 (Φ1VΦ2)].
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denote the i-th state of ρ, and |ρ| to denote the number of states in ρ), denoted
[M, ρ |=3 φ], is defined as (M is omitted when clear from context):

(4) [ρ |=3 (Φ1UΦ2)]=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tt, if ∃0≤ i≤|ρ|.([ρi |=3 Φ2]= tt ∧ (∀j <i.[ρj |=3 Φ1]= tt)
)

ff, if
∀0≤ i≤|ρ|.(∀j <i.[ρj |=3 Φ1] �=ff =⇒ [ρi |=3 Φ2]=ff

)

∧ ∀i≥0.[ρi |=3 Φ1] �=ff =⇒ |ρ| = ∞
⊥, otherwise

A MTS M satisfies a formula Φ, written [M |=3 Φ] = tt, iff ∀s0 ∈ I. [s0 |=3

Φ] = tt. We say that [M |=3 Φ] = ff if ∃s0 ∈ I. [s0 |=3 Φ] = ff. Otherwise,
[M |=3 Φ] = ⊥.

Example 2. Consider the FTS VendMach and MTS αjoin(VendMach) in
Figs. 1 and 3. The property Φ1 = A(¬rUr) states that in the initial state
along every execution will eventually reach the state where r holds. Note
that [VendMach |= Φ1] = ff. E.g., if the feature c is enabled, a counter-
example where the state s2 that satisfies r is never reached is: s0 → s1 →
s0 → . . .. The set of violating products is [[c]] = {{c}, {f, c}} ⊆ K

V M .However,
[π[[¬c]](VendMach) |= Φ1] = tt. We also have that [αjoin(VendMach) |=3 Φ1] =
⊥, since (1) there is a may-execution in αjoin(VendMach) where s2 is never
reached: s0 → s1 → s0 → . . ., and (2) there is no must-execution that violates Φ1.

Consider the property Φ2 = E(¬rUr), which describes a situation where in
the initial state there exists an execution that will eventually reach s2 that sat-
isfies r. Note that [VendMach |= Φ2] = tt, since even for variants with the fea-
ture c there is a continuation from the state s1 to s2. But, [αjoin(VendMach) |=
Φ2] = ⊥ since (1) there is no a must-execution in αjoin(VendMach) that reaches
s2 from s0, and (2) there is a may-execution that satisfies Φ2. �

3 Abstraction of FTSs

We now introduce the variability abstractions [12] which preserve full CTL. We
start working with Galois connections2 between Boolean complete lattices of
feature expressions, and then induce a notion of abstraction of FTSs.

The Boolean complete lattice of feature expressions (propositional formulae
over F) is: (FeatExp(F)/≡, |=,∨,∧, true, false,¬). The elements of the domain
FeatExp(F)/≡ are equivalence classes of propositional formulae ψ ∈ FeatExp(F)
obtained by quotienting by the semantic equivalence ≡. The ordering |= is the
standard entailment between propositional logics formulae, whereas the least
upper bound and the greatest lower bound are just logical disjunction and con-
junction respectively. Finally, the constant false is the least, true is the greatest
element, and negation is the complement operator.

2 〈L, ≤L〉 −−−→←−−−
α

γ 〈M, ≤M 〉 is a Galois connection between complete lattices L (concrete
domain) and M (abstract domain) iff α : L → M and γ : M → L are total functions
that satisfy: α(l) ≤M m ⇐⇒ l ≤L γ(m), for all l ∈ L, m ∈ M .
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Over-approximating abstractions. The join abstraction, αjoin, replaces each
feature expression ψ with true if there exists at least one configuration from
K that satisfies ψ. The abstract set of features is empty: αjoin(F) = ∅, and
abstract set of configurations is a singleton: αjoin(K) = {true}. The abstraction
and concretization functions between FeatExp(F) and FeatExp(∅) are:

αjoin(ψ)=

{
true if ∃k ∈ K.k |= ψ

false otherwise
γjoin(ψ)=

{
true if ψ is true∨

k∈2F\K k if ψ is false

which form a Galois connection [15]. In this way, we obtain a single abstract
variant that includes all transitions occurring in any variant.

Under-approximating abstractions. The dual join abstraction, α̃join,
replaces each feature expression ψ with true if all configurations from K sat-
isfy ψ. The abstraction and concretization functions between FeatExp(F) and
FeatExp(∅), forming a Galois connection [12], are defined as [9]: α̃join = ¬ ◦
αjoin ◦ ¬ and γ̃join = ¬ ◦ γjoin ◦ ¬, that is:

α̃join(ψ) =

{
true if ∀k ∈ K.k |= ψ

false otherwise
γ̃join(ψ)=

{∧
k∈2F\K

(¬k) if ψ is true
false if ψ is false

In this way, we obtain a single abstract variant that includes only those transi-
tions that occur in all variants.

Abstract MTS and Preservation of CTL. Given a Galois connection
(αjoin,γjoin) defined on the level of feature expressions, we now define the
abstraction of an FTS as an MTS with two transition relations: one (may) pre-
serving universal properties, and the other (must) preserving existential proper-
ties. The may transitions describe the behaviour that is possible in some variant
of the concrete FTS, but not need be realized in the other variants; whereas the
must transitions describe behaviour that has to be present in all variants of the
FTS.

Definition 4. Given the FTS F = (S,Act, trans, I, AP,L, F, K, δ), define MTS
αjoin(F) = (S,Act, transmay, transmust, I, AP,L) to be its abstraction, where
transmay = {t ∈ trans | αjoin(δ(t)) = true}, and transmust = {t ∈ trans |
α̃join(δ(t))= true}.

Note that the abstract model αjoin(F) has no variability in it, i.e. it contains
only one abstract configuration. We now show that the 3-valued semantics of
the MTS αjoin(F) is designed to be sound in the sense that it preserves both
satisfaction (tt) and refutation (ff) of a formula from the abstract model to the
concrete one. However, if the truth value of a formula in the abstract model is ⊥,
then its value over the concrete model is not known. We prove [16, Appendix B]:
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Theorem 1 (Preservation results). For every Φ ∈ CTL, we have:

(1) [αjoin(F) |=3 Φ]= tt =⇒ [F |= Φ]= tt.
(2) [αjoin(F) |=3 Φ] = ff =⇒ [F |= Φ] = ff and [πk(F) |= Φ] = ff for all
k ∈ K.

Divide-and-conquer strategy. The problem of evaluating [F |= Φ] can be
reduced to a number of smaller problems by partitioning the configuration space
K. Let the subsets K1, K2, . . . , Kn form a partition of the set K. Then, [F |=
Φ] = tt iff [πKi

(F) |= Φ] = tt for all i = 1, . . . , n. Also, [F |= Φ] = ff iff
[πKj

(F) |= Φ] = ff for some 1 ≤ j ≤ n. By using Theorem 1, we obtain the
following result.

Corollary 1. Let K1, K2, . . . , Kn form a partition of K.

(1) If [αjoin(πK1(F)) |= Φ] = tt ∧ . . . ∧ [αjoin(πKn
(F)) |= Φ] = tt, then [F |=

Φ]= tt.
(2) If [αjoin(πKj

(F)) |= Φ] = ff for some 1 ≤ j ≤ n, then [F |= Φ] = ff and
[πk(F) |= Φ]=ff for all k ∈ Kj.

Example 3. Recall the FTS VendMach of Fig. 1. Figure 3 shows the MTS
αjoin(VendMach), where the allowed (may) part of the behavior includes the
transitions that are associated with the optional features c and f in Vend-
Mach, and the required (must) part includes transitions with the presence
condition true. Consider the properties introduced in Example 2. We have
[αjoin(VendMach) |=3 Φ1] = ⊥ and [αjoin(VendMach) |=3 Φ2] = ⊥, so we
cannot conclude whether Φ1 and Φ2 are satisfied by VendMach or not. �

4 Game-Based Abstract Lifted Model Checking

The 3-valued model checking game [24,25] on an MTS M with state set S, a
state s ∈ S, and a CTL formula Φ is played by Player ∀ and Player ∃ in order
to evaluate Φ in s of M. The goal of Player ∀ is either to refute Φ on M or
to prevent Player ∃ from verifying it. The goal of Player ∃ is either to verify Φ
on M or to prevent Player ∀ from refuting it. The game board is the Cartesian
product S × sub(Φ), where sub(Φ) is defined as:

if Φ= true, false, l, then sub(Φ)={Φ}; if Φ=Æ©Φ1, then sub(Φ)={Φ}∪sub(Φ1)
if Φ = Φ1 ∧ Φ2, Φ1 ∨ Φ2, then sub(Φ) = {Φ} ∪ sub(Φ1) ∪ sub(Φ2)
if Φ = Æ(Φ1UΦ2),Æ(Φ1VΦ2), then sub(Φ) = exp(Φ) ∪ sub(Φ1) ∪ sub(Φ2)

where Æ ranges over both A and E. The expansion exp(Φ) is defined as:

Φ = Æ(Φ1UΦ2) : exp(Φ) = {Φ,Φ2 ∨ (Φ1 ∧ Æ © Φ), Φ1 ∧ Æ © Φ,Æ © Φ}
Φ = Æ(Φ1VΦ2) : exp(Φ) = {Φ,Φ2 ∧ (Φ1 ∨ Æ © Φ), Φ1 ∨ Æ © Φ,Æ © Φ}

A single play from (s, Φ) is a possibly infinite sequence of configurations
C0 →p0 C1 →p1 C2 →p2 . . ., where C0 = (s, Φ), Ci ∈ S × sub(Φ), and pi ∈
{Player ∀,Player ∃}. The subformula in Ci determines which player pi makes
the next move. The possible moves at each configuration are:
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(1) Ci = (s, false), Ci = (s, true), Ci = (s, l): the play is finished. Such configu-
rations are called terminal.

(2) if Ci = (s,A©Φ), Player ∀ chooses a must-transition s−→ s′ (for refutation)
or a may-transition s−→ s′ of M (to prevent satisfaction), and Ci+1 = (s′, Φ).

(3) if Ci = (s,E©Φ), Player ∃ chooses a must-transition s−→ s′ (for satisfaction)
or a may-transition s−→ s′ of M (to prevent refutation), and Ci+1 = (s′, Φ).

(4) if Ci = (s, Φ1 ∧ Φ2), then Player ∀ chooses j ∈ {1, 2} and Ci+1 = (s, Φj).
(5) if Ci = (s, Φ1 ∨ Φ2), then Player ∃ chooses j ∈ {1, 2} and Ci+1 = (s, Φj).
(6), (7) if Ci = (s,Æ(Φ1UΦ2)), then Ci+1 = (s, Φ2 ∨ (Φ1 ∧ Æ © Æ(Φ1UΦ2))).
(8), (9) if Ci = (s,Æ(Φ1VΦ2)), then Ci+1 = (s, Φ2 ∧ (Φ1 ∨ Æ © Æ(Φ1VΦ2))).

The moves (6)–(9) are deterministic, thus any player can make them.
A play is a maximal play iff it is infinite or ends in a terminal configuration.

A play is infinite [26] iff there is exactly one subformula of the form AU, AV,
EU, or EV that occurs infinitely often in the play. Such a subformula is called a
witness. We have the following winning criteria:

– Player ∀ wins a (maximal) play iff in each configuration of the form Ci =
(s,A©Φ), Player ∀ chooses a move based on must-transitions and one of the
following holds: (1) the play is finite and ends in a terminal configuration of
the form Ci = (s, false) or Ci = (s, a) where a �∈ L(s) or Ci = (s,¬a) where
a ∈ L(s); (2) the play is infinite and the witness is of the form AU or EU.

– Player ∃ wins a (maximal) play iff in each configuration of the form Ci =
(s,E ©Φ), Player ∃ chooses a move based on must-transitions and one of the
following holds: (1) the play is finite and ends in a terminal configuration of
the form Ci = (s, true) or Ci = (s, a) where a ∈ L(s) or Ci = (s,¬a) where
a �∈ L(s); (2) the play is infinite and the witness is of the form AV or EV.

– Otherwise, the play ends in a tie.

A strategy is a set of rules for a player, telling the player which move to
choose in the current configuration. A winning strategy from (s, Φ) is a set of
rules allowing the player to win every play that starts at (s, Φ) if he plays by
the rules. It was shown in [24,25] that the model checking problem of evaluating
[M, s |=3 Φ] can be reduced to the problem of finding which player has a winning
strategy from (s, Φ) (i.e. to solving the given 3-valued model checking game).

The algorithm proposed in [24,25] for solving the given 3-valued model check-
ing game consists of two parts. First, it constructs a game-graph, then it runs an
algorithm for coloring the game-graph. The game-graph is GM×Φ = (N,E)
where N ⊆ S × sub(Φ) is the set of nodes and E ⊆ N × N is the set of
edges. N contains a node for each configuration that was reached during the
construction of the game-graph that starts from initial configurations I × {Φ}
in a BFS manner, and E contains an edge for each possible move that was
applied. The nodes of the game-graph can be classified as: terminal nodes, ∧-
nodes, ∨-nodes, A©-nodes, and E©-nodes. Similarly, the edges can be classified
as: progress edges, which originate in A© or E© nodes and reflect real transi-
tions of the MTS M, and auxiliary nodes, which are all other edges. We distin-
guish two types of progress edges, two types of children, and two types of SCCs
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(Strongly Connected Components). Must-edges (may-edges) are edges based on
must-transitions (may-transitions) of MTSs. A node n′ is a must-child (may-
child) of the node n if there exists a must-edge (may-edge) (n, n′). A must-SCC
(may-SCC ) is an SCC in which all progress edges are must-edges (may-edges).

The game-graph is partitioned into its may-Maximal SCCs (may-MSCCs),
denoted Qi’s. This partition induces a partial order ≤ on the Qi’s, such that
edges go out of a set Qi only to itself or to a smaller set Qj . The partial order
is extended to a total order ≤ arbitrarily. The coloring algorithm processes the
Qi’s according to ≤, bottom-up. Let Qi be the smallest set that is not fully
colored. The nodes of Qi are colored in two phases, as follows.
Phase 1. Apply these rules to all nodes in Qi until none of them is applicable.

– A terminal node C is colored: by T if Player ∃ wins in it (when C = (s, true)
or C = (s, a) with a ∈ L(s) or C = (s,¬a) with a �∈ L(s)); and by F if Player
∀ wins in it (when C = (s, false) or C = (s, a) with a �∈ L(s) or C = (s,¬a)
with a ∈ L(s)).

– An A© node is colored: by T if all its may-children are colored by T ; by F if
it has a must-child colored by F ; by ? if all its must-children are colored by
T or ?, and it has a may-child colored by F or ?.

– An E© node is colored: by T if it has a must-child colored by T ; by F if all
its may-children are colored by F ; by ? if it has a may-child colored by T or
?, and all its must-children are colored by F or ?.

– An ∧-node (∨-node) is colored: by T (F ) if both its children are colored by T
(F ); by F (T ) if it has a child that is colored by F (T ); by ? if it has a child
colored by ? and the other child is colored by ? or T (F ).

Phase 2. If after propagation of the rules of Phase 1, there are still nodes in
Qi that remain uncolored, then Qi must be a non-trivial may-MSCC that has
exactly one witness. We consider two cases.

Case U. The witness is of the form A(Φ1UΦ2) or E(Φ1UΦ2).
Phase 2a. Repeatedly color by ? each node in Qi that satisfies one of the
following conditions, until there is no change:
(1) An A© node that all its must-children are colored by T or ?; (2) An E©
node that has a may-child colored by T or ?; (3) An ∧ node that both its
children are colored T or ?; (4) An ∨ node that has a child colored by T or ?.
In fact, each node for which the F option is no longer possible according to
the rules of Phase 1 is colored by ?.
Phase 2b. Color the remaining nodes in Qi by F .

Case V. The witness is of the form A(Φ1VΦ2) or E(Φ1VΦ2) (see [16,
Appendix B]).

The result of the coloring is a 3-valued coloring function χ : N → {T, F, ?}.

Theorem 2 ([24]). For each n = (s, Φ′) ∈ GM×Φ:

(1) [(M, s) |=3 Φ′] = tt iff χ(n) = T iff Player ∃ has a winning strategy at n.
(2) [(M, s) |=3 Φ′] = ff iff χ(n) = F iff Player ∀ has a winning strategy at n.
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Fig. 4. The colored game-graph for αjoin(VendMach) and Φ1 = A(¬rUr). (Color
figure online)

(3) [(M, s) |=3 Φ′] =⊥ iff χ(n)=? iff none of players has a winning strategy
at n.

Using Theorems 1 and 2, given the colored game-graph of the MTS αjoin(F), if
all its initial nodes are colored by T then [F |= Φ] = tt, if at least one of them is
colored by F then [F |= Φ] = ff. Otherwise, we do not know.

Example 4. The colored game-graph for the MTS αjoin(VendMach) and Φ1 =
A(¬rUr) is shown in Fig. 4. Green, red (with dashed borders), and white nodes
denote nodes colored by T , F , and ?, respectively. The partitions from Q1 to Q6

consist of a single node shown in Fig. 4, while Q7 contains all the other nodes.
The initial node (s0, Φ1) is colored by ?, so we obtain an indefinite answer. �

5 Incremental Refinement Framework

Given an FTS πK′(F) with a configuration set K
′ ⊆ K, we show how to exploit

the game-graph of the abstract MTS M = αjoin(πK′(F)) in order to do refine-
ment in case that the model checking resulted in an indefinite answer. The
refinement consists of two parts. First, we use the information gained by the
coloring algorithm of GM×Φ in order to split the single abstract configuration
true ∈ αjoin(K′) that represents the whole concrete configuration set K

′. We then
construct the refined abstract models, using the refined abstract configurations.
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Fig. 5. The refinement procedure that checks [F |= Φ].

There are a failure node and a failure reason associated with an indefinite
answer. The goal in the refinement is to find and eliminate at least one of the
failure reasons.

Definition 5. A node n is a failure node if it is colored by ?, whereas none of
its children was colored by ? at the time n got colored by the coloring algorithm.

Such failure node can be seen as the point where the loss of information occurred,
so we can use it in the refinement step to change the final model checking result.

Lemma 1 ([24]). A failure node is one of the following.

– An A©-node (E©-node) that has a may-child colored by F (T ).
– An A©-node (E©-node) that was colored during Phase 2a based on an AU

(AV) witness, and has a may-child colored by ?.

Given a failure node n = (s, Φ), suppose that its may-child is n′ = (s′, Φ′
1)

as identified in Lemma 1. Then the may-edge from n to n′ is considered as
the failure reason. Since the failure reason is a may-transition in the abstract
MTS αjoin(πK′(F)), it needs to be refined in order to result either in a must
transition or no transition at all. Let sα/ψ−−→s′ be the transition in the concrete
model πK′(F) corresponding to the above (failure) may-transition. We split the
configuration space K

′ into [[ψ]] and [[¬ψ]] subsets, and we partition πK′(F) in
π[[ψ]]∩K′(F) and π[[¬ψ]]∩K′(F). Then, we repeat the verification process based on
abstract models αjoin(π[[ψ]]∩K′(F)) and αjoin(π[[¬ψ]]∩K′(F)). Note that, in the
former, αjoin(π[[ψ]]∩K′(F)), sα−→s′ becomes a must-transition, while in the lat-
ter, αjoin(π[[¬ψ]]∩K′(F)), sα−→s′ is removed. The complete refinement procedure is
shown in Fig. 5. We prove that (see [16, Appendix A]):

Theorem 3. The procedure Verify(F , K, Φ) terminates and is correct.

Example 5. We can do a failure analysis on the game-graph of αjoin(VendMach)
in Fig. 4. The failure node is (s1, A © A(¬rUr)) and the reason is the may-
edge (s1, A © A(¬rUr))cancel−−−→(s0, A(¬rUr)). The corresponding concrete transi-
tion in VendMach is s1

cancel/c−−−−−→s0. So, we partition the configuration space K
VM

into subsets [[c]] and [[¬c]], and in the next second iteration we consider FTSs
π[[c]](VendMach) and π[[¬c]](VendMach). �
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Fig. 6. Gα join(π[[c]](VendMach))×Φ1
. Fig. 7. αjoin(π[[c]](VendMach))

The game-based model checking algorithm provides us with a convenient
framework to use results from previous iterations and avoid unnecessary calcu-
lations. At the end of the i-th iteration of abstraction-refinement, we remember
those nodes that were colored by definite colors. Let D denote the set of such
nodes. Let χD : D → {T, F} be the coloring function that maps each node in
D to its definite color. The incremental approach uses this information both in
the construction of the game-graph and its coloring. During the construction of
a new refined game-graph performed in a BFS manner in the next i + 1-th iter-
ation, we prune the game-graph in nodes that are from D. When a node n ∈ D
is encountered, we add n to the game-graph and do not continue to construct
the game-graph from n onwards. That is, n ∈ D is considered as terminal node
and colored by its previous color. As a result of this pruning, only the reachable
sub-graph that was previously colored by ? is refined.

Example 6. The property Φ1 holds for π[[¬c]](VendMach). The initial node
of the game-graph Gα join(π[[¬c]](VendMach))×Φ1 (see [16, Fig. 13, Appendix C]),
is colored by T . On the other hand, we obtain an indefinite answer for
π[[c]](VendMach). The model αjoin(π[[c]](VendMach)) is shown in Fig. 7,
whereas the final colored game-graph Gα join(π[[c]](VendMach))×Φ1 is given in
Fig. 6. The failure node is (s0, A © A(¬rUr)), and the reason is the may-edge
(s0, A © A(¬rUr))pay−−→(s1, A(¬rUr)). The corresponding concrete transition in
π[[c]](VendMach) is s0

pay/¬f−−−−→s1. So, in the next third iteration we consider FTSs
π[[c∧¬f ]](VendMach) and π[[c∧f ]](VendMach).

The initial node of the graph Gα join(π[[c∧¬f]](VendMach))×Φ1 (see [16,
Fig. 16, Appendix C]) is colored by F in Phase 2b. The initial node of
Gα join(π[[c∧f]](VendMach))×Φ1 (see [16, Fig. 17, Appendix C]) is colored by T .
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In the end, we conclude that Φ1 is satisfied by the variants {¬c ∧ ¬f,¬c ∧
f, c ∧ f}, and Φ is violated by the variant {c ∧ ¬f}.

On the other hand, we need two iterations to conclude that Φ2 = E(¬rUr)
is satisfied by all variants in K

VM (see [16, Appendix D] for details). �

6 Evaluation

To evaluate our approach, we use a synthetic example to demonstrate spe-
cific characteristics of our approach, and the Elevator model which is often
used as benchmark in SPL community [4,12,15,20,23]. We compare (1) our
abstraction-refinement procedure Verify with the game-based model checking
algorithm implemented in Java from scratch vs. (2) family-based version of
the NuSMVmodel checker, denoted fNuSMV, which implements the standard
lifted model checking algorithm [5]. For each experiment, we measure T(ime)
to perform an analysis task, and Call which is the number of times an app-
roach calls the model checking engine. All experiments were executed on a 64-
bit Intel�CoreTM i5-3337U CPU running at 1.80 GHz with 8 GB memory. All
experimental data is available from: https://aleksdimovski.github.io/automatic-
ctl.html.

Synthetic example. The FTS Mn (where n > 0) consists of n features A1, . . . , An

and an integer data variable x, such that the set AP consists of all evaluations
of x which assign nonnegative integer values to x. The set of valid configurations
is Kn = 2{A1,...,An}. Mn has a tree-like structure, where in the root is the initial
state with x = 0. In each level k (k ≥ 1), there are two states that can be reached
with two transitions leading from a state from a previous level. One transition
is allowable for variants with the feature Ak enabled, so that in the target state
the variable’s value is x + 2k−1 where x is its value in the source state, whereas
the other transition is allowable for variants with Ak disabled, so that the value
of x does not change. For example, M2 is shown in Fig. 8, where in each state
we show the current value of x and all transitions have the silent action τ .

We consider two properties: Φ = A(trueU(x ≥ 0)) and Φ′ = A(trueU(x ≥
1)). The property Φ is satisfied by all variants in K, whereas Φ′ is violated
only by one configuration ¬A1∧. . .∧¬An (where all features are disabled). We
have verified Mn against Φ and Φ′ using fNuSMV (e.g. see fNuSMVmodels for
M1 and M2 in [16, Fig. 23, Appendix E]). We have also checked Mn using our
Verify procedure. For Φ, Verify terminates in one iteration since αjoin(Mn)
satisfies Φ (see Gα join(M1)×Φ in [16, Fig. 24, Appendix E]). For Φ′, Verify needs
n + 1 iterations. First, an indefinite result is reported for αjoin(Mn) (e.g. see
Gα join(M1)×Φ′ in [16, Fig. 27, Appendix E]), and the configuration space is split
into [[¬A1]] and [[A1]] subsets. The refinement procedure proceeds in this way
until we obtain definite results for all variants. The performance results are
shown in Fig. 9. Notice that, fNuSMV reports all results in only one iteration.
As n grows, Verify becomes faster than fNuSMV. For n = 11 (|K| = 211),
fNuSMV timeouts after 2 h. In contrast, Verify is feasible even for large values
of n.

https://aleksdimovski.github.io/automatic-ctl.html
https://aleksdimovski.github.io/automatic-ctl.html
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Fig. 8. The model M2. Fig. 9. Verification of Mn (T in seconds).

Fig. 10. Verification of Elevator properties (T in seconds).

Elevator. We have experimented with the Elevator model with four floors,
designed by Plath and Ryan [23]. It contains about 300 LOC of fNuSMV code
and 9 independent optional features that modify the basic behaviour of the
elevator, thus yielding 29 = 512 variants. To use our Verify procedure, we have
manually translated the fNuSMV model into an FTS and then we have called
Verify on it. The basic Elevator system consists of a single lift that travels
between four floors. There are four platform buttons and a single lift, which
declares variables floor, door, direction, and a further four cabin buttons. When
serving a floor, the lift door opens and closes again. We consider three properties
“Φ1 = E(ttU(floor=1 ∧ idle ∧ door=closed))”, “Φ2 = A(ttU(floor=1 ∧ idle ∧
door=closed))”, and “Φ3 = E(ttU((floor=3∧¬liftBut3.pressed∧direction=
up) =⇒ door = closed))”. The performance results are shown in Fig. 10. The
properties Φ1 and Φ2 are satisfied by all variants, so Verify achieves speed-ups
of 28 times for Φ1 and 2.7 times for Φ2 compared to the fNuSMV approach.
fNuSMV takes 1.76 sec to check Φ3, whereas Verify ends in 0.67 sec thus giving
2.6 times performance speed-up.

7 Related Work and Conclusion

There are different formalisms for representing variability models [2,21]. Classen
et al. [4] present Featured Transition Systems (FTSs). They show how specifically
designed lifted model checking algorithms [5,7] can be used for verifying FTSs
against LTL and CTL properties. The variability abstractions that preserve LTL
are introduced in [14,15,17], and subsequently automatic abstraction refinement
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procedures [8,18] for lifted model checking of LTL are proposed, by using Craig
interpolation to define the refinement. The variability abstractions that preserve
the full CTL are introduced in [12], but they are constructed manually and
no notion of refinement is defined there. In this paper, we define an automatic
abstraction refinement procedure for lifted model checking of full CTL by using
games to define the refinement. To the best of our knowledge, this is the first
such procedure in lifted model checking.

One of the earliest attempts for using games for CTL model checking has been
proposed by Stirling [26]. Shoham and Grumberg [3,19,24,25] have extended this
game-based approach for CTL over 3-valued semantics. In this work, we exploit
and apply the game-based approach in a completely new direction, for automatic
CTL verification of variability models.

The works [11,13] present an approach for software lifted model checking of
#ifdef-based program families using symbolic game semantics models [10].

To conclude, in this work we present a game-based lifted model checking for
abstract variability models with respect to the full CTL. We also suggest an
automatic refinement procedure, in case the model checking result is indefinite.
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Abstract. Modeling and analysis of timing constraints is crucial in real-
time automotive systems. Modern vehicles are interconnected through
wireless networks which creates vulnerabilities to external malicious
attacks. Violations of cyber-security can cause safety related accidents
and serious damages. To identify the potential impacts of security related
threats on safety properties of interconnected automotive systems, this
paper presents analysis techniques that support verification and valida-
tion (V&V) of safety & security (S/S) related timing constraints on those
systems: Probabilistic extension of S/S timing constraints are specified
in PrCcsl (probabilistic extension of clock constraint specification lan-
guage) and the semantics of the extended constraints are translated into
verifiable Uppaal models with stochastic semantics for formal verifica-
tion. A set of mapping rules are proposed to facilitate the translation. An
automatic translation tool, namely ProTL, is implemented based on the
mapping rules. Formal verification are performed on the S/S timing con-
straints using Uppaal-SMC under different attack scenarios. Our app-
roach is demonstrated on a cooperative automotive system case study.

Keywords: Automotive system · Safety and security · PrCcsl ·
Uppaal-SMC

1 Introduction

Model based development (MBD) is rigorously applied in automotive systems in
which the software controllers interact with physical environments. The contin-
uous time behaviors of those systems often rely on complex dynamics as well as
on stochastic behaviors. Formal verification and validation (V&V) technologies
are indispensable and highly recommended for development of safe and reliable
automotive systems [11,12]. Conventional V&V, i.e., testing and model checking
have limitations in terms of assessing the reliability of hybrid systems due to both
stochastic and non-linear dynamical features. To ensure the reliability of safety
c© The Author(s) 2019
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critical hybrid dynamic systems, statistical model checking (SMC) techniques
have been proposed [7,8,19]. These techniques for fully stochastic models vali-
date probabilistic performance properties of given deterministic (or stochastic)
controllers in given stochastic environments.

Modern vehicles are being equipped with communication devices and inter-
connected with each other through wireless networks. Vehicular Ad Hoc Net-
works (Vanet) [28] are the technologies of wireless networks that establish com-
munication among vehicles and roadside units (RSU). Nevertheless vehicular
communication contributes to the safety and efficiency of traffic, it introduces
vulnerabilities to vehicles. Transmitted information can be corrupted or modified
by attackers, resulting in serious safety consequences (e.g., rear-end collision).
Analysis of the potential impacts of cyber-security violations on safety proper-
ties is crucial in automotive systems. However, traditional automotive system
design often addresses the correctness of safety properties without consideration
of security breaches. There is still a lack of techniques that enable an integrated
analysis of safety & security (S/S) properties. Moreover, message transmission
in Vanet that pertains to S/S requires restrictions by time deadlines [10]. In
this paper, we focus on S/S related timing constraints and propose analysis tech-
niques that support formal verification on interconnected automotive systems.

East-adl [9,22] is an architectural description language for modeling of
automotive systems. The latest release of East-adl has adopted the time
model proposed in Timing Augmented Description Language (Tadl2) [5], which
expresses and composes basic timing constraints, i.e., repetition rates, end-to-end
delays. Tadl2 specializes the time model of MARTE, the UML profile for Mod-
eling and Analysis of Real-Time and Embedded systems [30]. MARTE provides
Ccsl, a Clock Constraint Specification Language, that supports specification of
both logical and dense timing constraints, as well as functional causality con-
straints [16,23]. A probabilistic extension of Ccsl, called PrCcsl [14], has been
proposed to formally specify timing constraints associated with stochastic prop-
erties in weakly-hard real-time systems [4], i.e., a bounded number of constraints
violations would not lead to system failures when the results of the violations
are negligible.

In this paper, we present a formal analysis of S/S related timing constraints
for interconnected automotive systems at the design level: 1. To identify vulner-
abilities of automotive systems under malicious attacks, we adopt and modify
the behavioral model of a cooperative automotive system (CAS) [13] in Uppaal-
SMC by adding it with the models of an RSU-aided (Raise) communication
protocol in Vanet and malicious attacks. The modification results in a refined
behavioral model of the system, i.e., more details in terms of vehicular commu-
nication and security breaches are depicted; 2. Probabilistic extension of S/S
timing constraints are specified in PrCcsl and the semantics of the extended
constraints are translated into verifiable models with stochastic semantics for
formal verification; 3. A set of mapping rules are proposed to facilitate the
translation, based on which an automatic translation tool ProTL is implemented;
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4. Formal verification is performed on the S/S timing constraints using Uppaal-
SMC under different attack scenarios.

The paper is organized as follows: Sect. 2 presents an overview of PrCcsl and
Uppaal-SMC. CAS is introduced as a running example in Sect. 3. Section 4.1
presents the Uppaal-SMC model of CAS complemented with model of Raise
protocol and three types of attacks. S/S related timing constraints are specified
in PrCcsl and translated into verifiable Uppaal-SMC models in Sect. 5. The
applicability of our approach is demonstrated by performing verification on CAS
case study in Sect. 6. Sections 7 and 8 present related works and conclusion.

2 Preliminary

In our framework, S/S related timing constraints are specified in PrCcsl.
Uppaal-SMC is employed to perform formal verification on the timing
constraints.

2.1 Probabilistic Extension of Clock Constraint Specification
Language (PrCCSL)

PrCcsl [14] is a probabilistic extension of Ccsl [3,23] for formal specification
of timing constraints associated with stochastic behaviors. In PrCcsl, a clock
represents a sequence of (possibly infinite) instants. An event is a clock and
the occurrences of an event correspond to a set of ticks of the clock. PrCcsl
provides two types of clock constraints, i.e., expressions and relations, to specify
the progression/occurrences of clocks. An expression derives new clocks from the
already defined clocks [3]. Let c1, c2 ∈ C, ITE (if-then-else) expression, denoted
as β ? c1 : c2, defines a new clock that behaves either as c1 or as c2 according
to the value of the boolean variable/formula β. DelayFor (denoted ref (d) �
base) results in a new clock by delaying the reference clock ref for d ticks (or d
time units) of a base clock. FilterBy (c � base � u(v)) builds a new clock c by
filtering the instants of a base clock according to a binary word w=u(v), where
u is the prefix and v is the period. “(v)” denotes the infinite repetition of v. This
expression results in a clock c that ∀ k ∈ N+, if the kth bit in w is 1, then at
the kth tick of base, c ticks.

A relation limits the occurrences among different events, which are defined
based on run and history. A run corresponds to an execution of the system
model where the clocks tick/progress. The history of a clock c represents the
number of times the clock c has ticked prior to the current step.

Definition 1 (Run). A run R consists of a finite set of consecutive steps where
a set of clocks tick at each step i. The set of clocks ticking at step i is denoted as
R(i), i.e., for all i, 0 � i � n, R(i) ∈ R, where n is the number of steps of R.

Definition 2 (History). The history of clock c in a run R is a function: Hc
R:

N → N. Hc
R(i) indicates the number of times the clock c has ticked prior to step

i in run R, which is initialized as 0 at step 0. It is defined as: (1) Hc
R(0) = 0;
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(2) ∀ i ∈ N
+, c /∈ R(i) =⇒ Hc

R(i + 1) = Hc
R(i); (3) ∀ i ∈ N

+, c ∈ R(i) =⇒
Hc

R(i + 1) = Hc
R(i) + 1.

A probabilistic relation in PrCcsl is satisfied if and only if the probability of
the relation constraint being satisfied is greater than or equal to the probability
threshold p ∈ [0, 1]. Given k runs = {R1, . . . , Rk}, the probabilistic subclock,
coincidence, exclusion and precedence in PrCcsl are defined as follows:

Probabilistic Subclock: c1⊆pc2 ⇐⇒ Pr[c1⊆c2] � p, where Pr[c1⊆c2] =

1
k

k∑

j=1

{Rj |= c1⊆c2}, representing the ratio of runs that satisfies the relation

out of k runs. A run Rj satisfies the subclock relation between c1 and c2 “if
c1 ticks, c2 must tick” holds at every step i in Rj , s.t., (Rj |= c1⊆c2) ⇐⇒ (∀i
0 � i � n, c1 ∈ R(i) =⇒ c2 ∈ R(i)). “Rj |= c1⊆c2” returns 1 if Rj satisfies
c1⊆c2, otherwise it returns 0.

Probabilistic Coincidence: c1≡pc2 ⇐⇒ Pr[c1≡c2] � p, where Pr[c1≡c2] =

1
k

k∑

j=1

{Rj |= c1≡c2}, which represents the ratio of runs that satisfies the

coincidence relation out of k runs. A run, Rj satisfies the coincidence relation on
c1 and c2 if the assertion holds: ∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 ∈ R(i))∧ (c2 ∈
R(i) =⇒ c1 ∈ R(i)). In other words, the satisfaction of coincidence relation is
established when the two conditions “if c1 ticks, c2 must tick” and “if c2 ticks,
c1 must tick” hold at every step.

Probabilistic Exclusion: c1#pc2 ⇐⇒ Pr[c1#c2] � p, where Pr[c1#c2] =

1
k

k∑

j=1

{Rj |= c1#c2}, indicating the ratio of runs that satisfies the exclusion

relation out of k runs. A run, Rj , satisfies the exclusion relation on c1 and c2 if
∀i, 0 � i � n, (c1 ∈ R(i) =⇒ c2 /∈ R(i)) ∧ (c2 ∈ R(i) =⇒ c1 /∈ R(i)), i.e., for
every step, if c1 ticks, c2 must not tick and vice versa.

Probabilistic Precedence: c1≺pc2 ⇐⇒ Pr[c1≺c2] � p, where Pr[c1≺c2] =

1
k

k∑

j=1

{Rj |= c1≺c2}, which denotes the ratio of runs that satisfies the precedence

relation out of k runs. A run Rj satisfies the precedence relation if the condition
∀i, 0 � i � n, (Hc1

R (i) � Hc2
R (i)) and (Hc2

R (i) = Hc1
R (i)) =⇒ (c2 /∈ R(i)) hold,

i.e., the history of c1 is greater than or equal to the history of c2, and c2 must
not tick when the history of the two clocks are equal.

2.2 UPPAAL-SMC

UPPAAL-SMC [31] performs the probabilistic analysis of properties by monitor-
ing simulations of the complex hybrid system in a given stochastic environment
and using results from the statistics to determine whether the system satisfies
the property with some degree of confidence. Uppaal-SMC provides a number
of queries related to the stochastic interpretation of Timed Automata (STA)
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[8] and they are as follows, where N and bound indicate the number of sim-
ulations to be performed and the time bound on the simulations respectively:
1. Probability Estimation estimates the probability of a requirement property
φ being satisfied for a given STA model within the time bound: Pr[bound] φ;
2. Hypothesis Testing checks if the probability of φ is satisfied within a certain
probability P0: Pr[bound] φ ≥ P0; 3. Simulations: Uppaal-SMC runs multiple
simulations on the STA model and the k (state-based) properties/expressions
φ1, ..., φk are monitored and visualized along the simulations: simulate N [≤
bound]{φ1, ..., φk}.

3 Running Example

A cooperative automotive system (CAS) [13] is adopted to illustrate our
approaches. CAS includes distributed and coordinated sensing, control, and actu-
ation over three vehicles (denoted as vi, where i ∈ {0, 1, 2}) which are running
in the same lane. As shown in Fig. 1, a lead vehicle (v0) runs automatically by
recognizing traffic signs on the road. The following vehicle must set its desired
velocity identical to that of its immediate preceding vehicle. Vehicles should
maintain sufficient braking distance to avoid rear-end collision while remaining
close enough to guarantee communication quality. Vehicle movement relies on
availability of environmental information, e.g., traffic signs, obstacles, etc. The
position of vi is represented by Cartesian coordinate (xi, yi), where xi and yi are
distances measured from the vehicle to the two fixed perpendicular lines, i.e.,
x-axis and y-axis, respectively.

Fig. 1. Overview of Cooperative Automotive System

The cooperative driving of CAS requires prompt and secure information
transmission among vehicles. We adopt a roadside unit aided (Raise) [33] com-
munication protocol in Vanet to achieve the data transmission. Each vehicle
periodically broadcasts its own position and velocity to its immediate following
vehicle through wireless connection. The authentication of the identities of each
vehicle and verification of messages sent by the vehicles is performed by RSU.
For further details of Raise, refer to Sect. 4.1. The following S/S properties on
CAS are considered:
R1. The follower vehicle should not overtake its leading vehicle when the vehicles
run at a positive direction of x-axis.
R2. When the lead vehicle detects a stop sign, all the three vehicles must stop
within a given time, e.g., 2000 ms.
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R3. If the distance between a vehicle and its preceding vehicle is less than mini-
mum safety distance, the vehicle should decelerate within a certain time (200 ms).
R4. If the distance between a vehicle and its preceding vehicle is greater than
the maximum safety distance (e.g., 100 m), the vehicle should accelerate within
a certain time, e.g., 300 ms.
R5. When the lead vehicle starts to turn left (or turn right), the two follower
vehicles should finish turning and run in the same lane within a given time.
R6. Authenticity: If a vehicle receives a message, its preceding vehicle must have
sent a corresponding message before, i.e., the protocol should be resistant to
message spoofing attack.
R7. Secrecy: Symmetric keys of vehicles should be kept confidential to attackers.
R8. Integrity: The content of messages must not be modified during transmission,
i.e., the protocol should be resistant to message falsification attack.
R9. Freshness: The vehicles should not accept an “obsolete” message, namely, the
difference between the current time and the timestamp of the accepted message
should be less than the predefined time threshold.
R10. The symmetric key agreement (i.e., mutual authentication) process between
RSU and three vehicles should be completed within a certain time, e.g., 600 ms.
R11. A vehicle should send messages to its subsequent vehicle periodically with
a period 200 ms and a jitter 100 ms.

Among the above S/S requirements, R1–R5 are safety [20] properties, which
specify that the system should not cause undesirable results on its environment
and aim at protecting human lives, health and assets from being damaged. R6-
R11 are security properties, which refer to the inability of the environment to
affect the system in an undesirable way and aim to guarantee the confidential-
ity and integrity of transmitted information. The interdependencies among those
S/S properties are conditional dependencies [17], i.e., violations of security prop-
erties can lead to the violations on safety properties. The events associated with
those S/S properties can be interpreted as logical clocks in PrCcsl, which pro-
vides a way to express S/S properties in the logical time manner [16]. Therefore,
S/S properties can be interpreted as logical timing constraints, i.e., the temporal
and causality clock relations in PrCcsl.

The methodology for analysis of S/S related timing constraints in this paper
can be generalized in Fig. 2. First, on the basis of the existing behavioral model
of CAS described in [13], we enhance the CAS model by augmenting (paral-
lelly composing) it with models of Raise protocol and malicious attacks, result-
ing in a refined CAS model regarding vehicular communication characteristics
and security-related adversary interference. Second, we specify S/S timing con-
straints (R1–R11) in PrCcsl and translate the PrCcsl specifications into corre-
sponding STA and probabilistic queries. Finally, we combine the model of CAS
and the STA of PrCcsl specifications, and perform formal verification based on
the combined model using Uppaal-SMC.
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Fig. 2. Methodology for analysis of S/S timing constraints

4 Modeling and Refinement of CAS in UPPAAL-SMC

The behaviors of CAS are modeled as a network of stochastic timed automata
(NSTA) in Uppaal-SMC described in [13]. In this section, we refine the CAS
model by adding it with the models of Raise protocol and security attacks.

4.1 Modeling of RAISE Protocol in UPPAAL-SMC

We present a simplified version of Raise protocol [33] and its Uppaal-SMC
model. The original Raise protocol is modified to facilitate the communica-
tion mechanism of CAS, i.e., each follower vehicle receives messages from its
immediate preceding vehicle and RSU. Furthermore, timing constraints are also
appended to restrict the time duration of each step (e.g., encryption and decryp-
tion) during communication process. There are two phases in Raise protocol,
i.e., symmetric key agreement and information transmission.
1. Symmetric key agreement (SKA) is performed to obtain symmetric key ki

for guaranteeing security of communication and generates pseudo identities IDi

of vehicles for covering their real identities. The shared symmetric key between
RSU and vi is ki = gab, where g, a, b are three positive random numbers. As
shown in Fig. 3, Encry(msg, k) (Decry(msg, k)) denotes the encryption (decryp-
tion) of message msg with key k, where k can be either a public key or symmetric
key. Sign(msg, k) generates signature of msg with a private key k. We use PKi

to denote the public key of vi and SKi to represent the corresponding private
key. “||” is the concatenation operation on messages.

Initially, vi randomly picks g and a (step 1), encrypts “g||a” and sends the
encrypted result (mi) to RSU (step 2). Upon receiving mi, RSU decrypts the
message (step 3). It then generates b and IDi, signs and sends the signed message
(rmi) to vi (step 4 and 5). vi verifies the rmi’s signature (step 6) and sends back
the signature of g||a||b||IDi (step 7). Finally, RSU verifies the signature si (step
8). If all the steps are completed correctly, the key agreement process succeeds.

Fig. 3. Symmetric key agreement in Raise
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2. Information transmission (IT) initiates after the SKA is completed. The
traffic information (i.e, brake, direction, position and speed) of vi is integrated
into a message msgi = brakei||directioni||xi||yi||speedi. As presented in Fig. 4,
initially, vi generates the message authentication code (MAC) of msgi with the
symmetric key ki (generated in SKA). Then, vi concatenates the MAC code with

Fig. 4. Information transmission in Raise

msgi and sends it to RSU and vi+1 (step 1). Upon receiving vmi, vi+1 checks
the freshness of the message (step 2), i.e., if the time interval between the current
time and the time when vmi is sent is greater than the predefined threshold,
vi+1 drops vmi. At the same time, RSU checks the authenticity of vmi (step
3). If maci is correct, RSU computes the hash code hi of message msgi (step
4). Afterwards, it encrypts hi and sends the encrypted result hmi to vi+1 (step
5). vi+1 decrypts hmi and get the hash code h (step 6). Furthermore, to ensure
the consistency of the message, vi+1 itself also computes the hash code of msgi

(step 7). It then verifies whether the hash code calculated by itself is the same
as the decrypted hash code and decides to accept or reject msgi (step 8).

To model Raise in Uppaal-SMC, interactions among vehicles and RSU (i.e.,
sending/receiving messages) are modeled by synchronization channels [31] and
global variables. The cryptographic operations in Raise refer to public and pri-
vate key encryption and decryption, i.e., a message encrypted by public key can
be decrypted using the corresponding private key, and vice versa. The automaton
of cryptographic device [6] is adopted to model the encryption and decryption.
Figure 5 presents the STA capturing behaviors of vehicle vi and RSU in SKA.
startEn (resp. startDe) and finDe (resp. finEn) are channels for indicating the
starting and finishing of encryption (resp. decryption). The encryption/decryp-
tion result is denoted en res/de res. In the STA, names of locations indicate the
corresponding steps pictured in Fig. 3.

IT phase from v0 to v1 is established with the help of RSU, modeled as the
STA shown in Fig. 6 (the transmission from v1 to v2 can be modeled similarly).
The behaviors of v0 (sender), v1 (receiver) and RSU in the IT phase are modeled
in IT v0, IT v1 and IT RSU STA, respectively.

The SKA (or IT) succeeds if each step of the SKA (IT) is completed correctly
within a given time interval, modeled by invariant “t≤ d” (the value of d varies
in different steps). If timeout occurs (i.e., “t≥ d”), fail location will be activated
and the procedure is restarted from the initial step.
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Fig. 5. Uppaal-SMC model of SKA

Fig. 6. Uppaal-SMC model of IT

4.2 Modeling of Attacks in UPPAAL-SMC

We present the modeling of three types of attacks commonly used in the secu-
rity analysis, i.e., message falsification, message replaying and message spoofing
attacks [2]. The models of attacks are illustrated in Fig. 7, where the ls parame-
ter (ls ∈ [0, 100]) serves as an indicator of level of adversarial strength while qc
(qc ∈ [0, 100]) is an indicator of the adversarial channel quality.

Message Falsification Attack (MFA) aims to falsify messages transmitted
from vi to vi+1, which is modeled as MFA STA in Fig. 7. As described earlier, in
Raise, RSU verifies the authenticity of messages by checking the correctness of
the MAC code of messages. To deceive the RSU on the validity of the modified
message and avoid exposing itself to RSU, MFA attempts to obtain the symmet-
ric key and utilizes the key to compute the MAC code of the falsified message. At
s1 state, MFA eavesdrops on rmi (generated at step 5 in Fig. 3), which contains
the information for symmetric key generation (i.e., g, a, b). It tries to decrypt rmi

when receiving it via sendrm[i]?. The probability that the decryption can suc-
ceed is ls%, modeled by probabilistic choices [31] (dashed edges) with probability
weight as ls

100 and 100−ls
100 . If the decryption succeeds, MFA obtains the symmet-

ric key of vi based on the decrypted result (getKey(de res)). Finally, it modifies
the content of message using the key, and tries to send the modified message to
vi+1 (sendvm[i]!). The probability that the message can be sent successfully is
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(100-qc)%. In our setting, MFA modifies the speedi field in the message into a
random value in [100, 120], and changes the direction as directioni = 4, which
indicates that the vi is running at the positive direction on y-axis.

Fig. 7. STA of attacks

Message Replaying Attack (MRA) targets to replay obsolete messages that
contain old information. The MRA STA represents an MRA that replays messages
sent by vi. Upon capturing a message (via sendvm[i]?), MRA stores the message
(m=vm[i]) and tries to replay it at a later time (i.e., after 10 s). The probability
that the attacker can replay the message successfully is (100-qc)%.

Message Spoofing Attack (MSA) impersonates a vehicle (vi) in order to
inject fraudulent information into its subsequent vehicle (vi+1). Similar to MFA,
MSA STA first obtains the symmetric key of vi by detecting and decrypting
rmi. It then fabricates a new message whose content is “brakei = 0, speedi =
0, directioni = 4, xi = 0, yi = 10” (denoted “encode(i)”) and tries to send
the message to vi+1 (sendvm[i]!), with the probability of the message being sent
successfully as (100-qc)%.

5 Representation of S/S Related Timing Constraints
in UPPAAL-SMC

To enable the formal verification of S/S related timing constraints (given in
Sect. 3), we first investigate how to specify those constraints in PrCcsl. Then,
translation from PrCcsl specifications of the constraints into verifiable STA is
demonstrated. Furthermore, a tool ProTL that supports the automatic trans-
formation based on the proposed translation rules is introduced.

5.1 Specifications of S/S Related Timing Constraints in PrCCSL

The specifications of R1–R11 are presented in Table 1, where ac is a clock that
always ticks while nc represents a clock that never ticks. R1 is specified as an
exclusion relation between xdir (the event that the vehicles are running at the
positive direction of x-axis) and ovtake (the event that the position of follower v1

on x-axis is greater than that of leader v0). Similarly, R7 and R9 can be specified
as exclusion relations.

In the specification of R2, stopD is a clock generated by delaying stopSign
(the event that the leader vehicle detects a stop sign) for 2000 ms. vstop refers
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Table 1. PrCCSL specifications of R1–R11

Req PrCCSL Specification

R1 xdir � dir = 1? ac : nc, ovtake � x1 ≥ x0 ? ac : nc, xdir #0.95 ovtake

R2 stopSign � sign = 5 ? signRec : nc, stopD � stopSign (2000) � ms,
vstop �0.95 stopD

R3 vUnsafeDe � vUnsafe (200) � ms, vDec ≺0.95 vUnsafeDe

R4 vFarDisDe � vFarDis (300) � ms, startAcc ≺0.95 vFarDisDe

R5 v0TurnDe � v0Turn (3000) � ms, finTurn �0.95 v0TurnDe

R6 msgRec ⊆0.95 msgSent

R7 leakK #0.95 ac

R8 validMsg � rMsg = sMsg ? msgRec : nc, msgRec ≡0.95 validMsg

R9 oldMsg � time − ts > thre ? msgAcpt : nc, msgAcpt #0.95 oldMsg

R10 startSKADe � startSKA (600) � ms, finSKA ≺0.95 startSKADe

R11 fclk � msgSent �01(1), sentDe1 � msgSent (100) � ms,

sentDe2 � msgSent (300) � ms, sentDe1 �0.95 fclk,
fclk �0.95 sentDe2

to the event that three vehicles are completely stopped, which should occur no
later than stopD. Hence, R2 is expressed as a causality relation between vstop
and stopD. R3–R5 can be specified in a similar manner.

R6 (authenticity) is expressed as a subclock relation between msgRec and
msgSent, where msgRec (msgSent) represents the event that a message is
received (sent) by the follower (leader) vehicle. R8 is specified as a coincidence

relation between msgRec and validMsg, where validMsg is a clock that ticks
with msgRec when the received message rMsg is identical with the sent message
sMsg (i.e., rMsg== sMsg). For R10, startSKA (finSKA) represents the starting
(completion) of SKA. startSKADe is a clock constructed by delaying startSKA
for 600 ms. R10 delimits that finSKA must occur before startSKADe. R11 states
that two consecutive occurrences of msgSent must has a interval of [period −
jitter, period+ jitter ]ms (i.e., [100, 300] ms). In the specification of R11, fclk is
a clock generated by filtering out the 1st tick of msgSent. sentDe1 and sentDe2
are two clocks generated by delaying msgSent for 100 ms and 300 ms. R11 can
be interpreted as: ∀i ∈ N

+, the ith tick of fclk should occur later than the ith

tick of sentDe1 but prior to the ith tick of sentDe2.

5.2 Translation of PrCCSL into STA

We present how the S/S related timing constraints specified in PrCcsl can
be transformed into STA and probabilistic queries in Uppaal-SMC. We first
describe how clock tick and history (introduced in Sect. 2) can be represented in
Uppaal-SMC. Using the mapping, we then demonstrate that expressions and
relations in PrCcsl can be translated into STA and queries.
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In the earlier work [14], the semantics of PrCcsl operators are translated into
STA based on discrete time, i.e., the continuous physical time is discretized into
a set of equalized steps. As a result, two clock instants are still considered coinci-
dent even if they are one time step apart. To alleviate this restriction and enable
the representation of PrCcsl that pertains to continuous real-time semantics,
the mapping patterns are refined: two clock instants are coinstantaneous only if
the time difference between them is insignificant, i.e., the time difference between
them is less than a positive infinitesimal value e, e.g., e = 0.000001.

Fig. 8. History

In PrCcsl, a logical clock represents an event and the
instants of the clock correspond to the occurrences of the
event. A logical clock c is represented as a synchronization
channel c! in Uppaal-SMC. The history of c is modeled
as the STA shown in Fig. 8: whenever c occurs (c?), the
value of its history is increased by 1 (i.e., h++).

Based on the mapping patterns of tick and history, the PrCcsl expressions
(including ITE, DelayFor and filterBy), as well as relations (including subclock,
coincidence, exclusion and precedence), can be represented as STA and queries
shown in Fig. 9.

The STA of expressions trigger the ticks of the new clock (denoted res!)
based on the occurrences of existed clocks. To represent relations, observer STA
that capture the semantics of standard subclock, coincidence, exclusion and
precedence relations are constructed. Each observer STA contains a “fail” loca-
tion (see Fig. 9), which indicates the violation of the corresponding relation.
Recall the definition of PrCcsl in Sect. 2, the probability of a relation being
satisfied is interpreted as a ratio of runs that satisfies the relation among all
runs. It is specified as Hypothesis Testing queries in Uppaal-SMC, H0: m

k � p
against H1: m

k < p, where m is the number of runs satisfying the given relation
out of all k runs. As a result, the probabilistic relations are interpreted as the
query (see Fig. 9): Pr[bound]([ ] ¬STA.fail) ≥ p, which means that the proba-
bility of the “fail” location of the observer STA never being reached should be
greater than or equal to p. The STA of expressions and relations are composed to
the system NSTA in parallel. Then, the probabilistic analysis is performed over
the composite NSTA that enables us to verify the S/S related timing constraints
over the entire system using Uppaal-SMC.

Tool support: Manual translation of PrCcsl specifications into Uppaal mod-
els for verification can be time-consuming and error-prone. To improve the accu-
racy and efficiency of translation, we implement a tool ProTL (Probabilistic-
Ccsl TransLator) [26] that provides a push-button transformation from PrCcsl
specifications into corresponding STA & queries. Furthermore, verification and
simulation support is provided in ProTL by employing the Uppaal-SMC as the
backend analysis engine. ProTL encompasses the following features: (1) An edi-
tor for editing PrCcsl specification of requirements (stored as “.txt” files); (2)
Automated transformation of PrCcsl specifications into Uppaal-SMC STA;
(3) Integration of the STA and the system behavioral model (imported by users);
(4) A configuration palette for setting parameters (e.g., time bound of simula-
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Fig. 9. STA of PrCcsl operators

tion, number of simulations) used for verification and simulation; (5) Automatic
generation of probabilistic queries (introduced in Sect. 2) based on user-specified
parameters; (6) Capability of performing verification and simulation on PrCcsl
specifications against the integrated model and generated queries.

The GUI of ProTL is implemented by applying the Python package TKIN-
TER [27]. The implementation of Translator is achieved by the ANother Tool
for Language Recognition (ANTLR) [24], a parser generator that can constructs
lexical parsers for a language by analyzing user-defined syntax of the language.
We specified the syntax of PrCcsl in Backus-Naur Form (BNF) and apply
ANTLR to generate a parser that can analyze and recognize encodings in the
format of PrCcsl. The parser reads the PrCcsl specifications and generates
abstract syntax trees (AST), i.e., an intermediate form that has tree structures.
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By traversing AST, the information (i.e., operators and parameters) of PrCcsl
can be extracted and utilized for generation of corresponding STA.

6 Experiment

To identify vulnerabilities of system to external malicious attackers, we combine
the refined CAS system model (including the models of Raise protocol) with
models of three different attackers. Formal verification on S/S related timing
constraints (R1–R11) for the combined model is performed by Uppaal-SMC.
The combined CAS model contains the stochastic behaviors in terms of the
unpredictable environments (e.g., the traffic signs are randomly recognized by the
leader vehicle of CAS and the probability of each sign type occurring is equally
set as 16.7%), as well as the indeterministic behaviors modeled by weighted
probability choices in the STA of attacks (see Fig. 7). In our setting, ls and qc
are configured as 10 and 90, respectively. To estimate the probability of an attack
being launched on CAS successfully, Probability Estimation query is applied to
check the probability that the “attack” location in each attack STA is reachable
from the system NSTA. The time bound of the verification is set as 10000.
The probability of message falsification, message replaying and message spoofing
attack being successfully completed by the corresponding attacker is within the
range of [0.109, 0.209], [0.563, 0.663] and [0.143, 0.243], respectively.

In our experiments, S/S related timing constraints are specified in PrCcsl
and transformed into STA using ProTL. Each constraint is specified as a PrCcsl
relation (as described in Sect. 5.1) whose probability threshold is 95%. The verifi-
cation results are demonstrated in Table 2, in which “

√
” denotes the correspond-

ing requirement is satisfied while “×” indicates the violation of the requirement:
Under the message replaying attack, all the S/S timing constraints are estab-
lished as valid with 95% level of confidence. In the message falsification attack,
the secrecy and integrity properties (R7 and R8), as well as three safety proper-
ties (R3–R5), are violated. The MSA damages the authenticity (R6) and secrecy
(R7) of communication, and leads to the violations of four safety properties, i.e.,
R1 and R3–R5.

Table 2. Verification results of timing constraints under different attacks

Attacks R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 Average Time Mem (Mb)

Message Falsification
√ √ × × × √ × × √ √ √

40.20 57.94

Message Replaying
√ √ √ √ √ √ √ √ √ √ √

68.33 61.49

Message Spoofing × √ × × × × × √ √ √ √
58.11 40.23

The experiment results indicate the severity of impacts on safety and security
caused by the demonstrated attacks on CAS: No requirement is violated under
MRA scenario while the MSA causes the violations of most safety properties.
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When CAS is attached with the STA of MSA or MFA, the secrecy of symmetric
key is violated. With the obtained symmetric key, MSA can masquerade message
as legitimate vehicles and MFA is able to tamper the content of messages without
being detected, leading to the violations of authenticity (R6) and integrity (R7)
respectively. To explore how the malicious attackers can influence the safety of
system, we conduct simulation by using Simulations queries. The simulation
results in Fig. 10 illustrate how an MSA drives the system to undesirable states.

(a) R1 (b) R4

Fig. 10. Simulation results of R1 and R4: (a) At Time =2345, the attack occurs (indi-
cated by the rising edge of the red line). MSA sends the fabricated position information
of V0 to V1 (the value of recx becomes 0), which tricks V1 to think that the distance
between V0 and V1 exceeds the maximum limit. V1 keeps increasing its speed (speed1)
and thus leading to the collision (indicated by x0 == x1) at Time =3815, which vio-
lates R1. (b) When an attack takes place at Time =2496 (indicated by the rising edge
of the blue line), V1 receives the message from the attacker and is deluded into believing
that the speed of V0 is 0. Therefore, V1 keeps decreasing its speed even if the distance
between V0 and V1 becomes greater than 100 m, which violates R4. (Color figure online)

7 Related Work

Formal verification of (non)-functional properties of automotive systems con-
taining stochastic behaviors were investigated in several works [13–15]. In these
works, systems are by default resilient to security threats and the safety prop-
erties are analyzed under no malicious attack scenarios, which is inadequate for
design of automotive systems interconnected via wireless communications. Com-
bined analysis of safety and security (S/S) properties for interconnected cyber
physical systems have been addressed in earlier works [1,21,29], which are how-
ever, limited to theoretical frameworks and high-level descriptions of S/S prop-
erties without the support for formal verification. Pedroza et al. [25] proposed
a SysML based environment called AVATAR for the formal verification of S/S
properties, which enables assessment of the impacts of cyber-security threats on
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functional safety. Wardell et al. [32] proposed an approach for identifying secu-
rity vulnerabilities of industrial control systems by modeling malicious attacks as
PROMELA models amenable to formal verification. However, those approaches
lack precise probabilistic annotations specifying stochastic properties regarding
to S/S aspects. Kumar et al. [18] introduced the attack-fault trees formalism for
descriptions of attack scenarios and conducted formal analysis by using Uppaal-
SMC to obtain quantitative estimation on impacts of system failures or security
threats. On the other hand, our work is based on the probabilistic extension of
S/S related timing constraints with the focus on probabilistic verification of the
extended constraints.

8 Conclusion

This paper presents a model-based approach for probabilistic formal analysis of
safety and security (S/S) related timing constraints for interconnected automo-
tive system in East-adl at the early design phase. The behavioral model of
automotive system in Uppaal-SMC is refined by adding the models of vehic-
ular communication protocol and malicious attacks, which facilitates to exploit
the impacts of adversary environment on S/S of the system. Timing constraints
are specified in PrCcsl and translated into stochastic timed automata (STA)
amenable to formal verification using Uppaal-SMC. A set of translation rules
from PrCcsl to STA, as well as the corresponding tool support for automating
the translation are provided. We demonstrate our approach by performing formal
verification on a cooperative automotive system (CAS) case study. Although, we
have shown the one-to-one mapping patterns from a subset of PrCcsl operators
to STA for conducting formal verification on timing constraints using Uppaal-
SMC, as ongoing work, systematic and formal translation techniques covering a
full set of PrCcsl constraints are further studied. Furthermore, new features
of ProTL with respect to analysis of Uppaal-SMC models involving wider
range of variable/query types (e.g., urgent channels, bounded integers) are further
developed.
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Abstract. Verifying whether a procedure is observationally pure (that
is, it always returns the same result for the same input argument) is
challenging when the procedure uses mutable (private) global variables,
e.g., for memoization, and when the procedure is recursive.

We present a deductive verification approach for this problem. Our
approach encodes the procedure’s code as a logical formula, with recur-
sive calls being modeled using a mathematical function symbol assum-
ing that the procedure is observationally pure. Then, a theorem prover is
invoked to check whether this logical formula agrees with the function
symbol referred to above in terms of input-output behavior for all argu-
ments. We prove the soundness of this approach.

We then present a conservative approximation of the first approach
that reduces the verification problem to one of checking whether a
quantifier-free formula is satisfiable and prove the soundness of the sec-
ond approach.

We evaluate our approach on a set of realistic examples, using the
Boogie intermediate language and theorem prover. Our evaluation shows
that the invariants are easy to construct manually, and that our approach
is effective at verifying observationally pure procedures.

1 Introduction

A procedure in an imperative programming language is said to be observationally
pure (OP) if for each specific argument value it has a specific return value, across
all possible sequences of calls to the procedure, irrespective of what other code
runs between these calls. In other words, the input-output behavior of an OP
procedure mimics a mathematical function.

A deterministic procedure that does not read any pre-existing state other
than its arguments is trivially OP. However, it is common for procedures to
update and read global variables, typically for performance optimization, while
still being OP. In this paper, we focus on the problem of checking observational
purity of procedures that read and write global variables, especially in the pres-
ence of recursion, which makes the problem harder.
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1

2 int g := −1;
3 int lastN := 0 ;
4 int factCache ( int n) {
5 i f (n <= 1) {
6 r e s u l t := 1 ;
7 } else i f ( g != −1 && n == lastN ) {
8 r e s u l t := g ;
9 } else {

10 g = n ∗ factCache ( n − 1 ) ;
11 lastN = n ;
12 r e s u l t := g ;
13 }
14 return r e s u l t ;
15 }
Listing 1.1. Procedure factCache: returns n!, and memoizes most recent result.

Motivating Example. We use procedure ‘factCache’ in Listing 1.1 as our run-
ning example. It returns n! for a given argument n, and caches the return value of
the most recent call. It uses two private global variables, g and lastN, to imple-
ment the caching. g is initialized to −1. After the first call to the procedure
onwards, g stores the return value of the most recent call, and lastN stores the
argument of the most recent call. Clearly this procedure is OP, and mimics the
input-output behavior of a factorial procedure that does not cache any results.

Proposed Approach. Our approach is based on Floyd-Hoare logic, which typ-
ically requires a specification of the procedure to be provided. One candidate
specification would be a full functional specification of the procedure. If the user
specifies that factCache realizes n!, then the verifier could replace Line 10 in
the code with ‘g = n * (n− 1)!’. This, on paper, is sufficient to assert that
Line 12 always assigns n! to result. However, to establish that Line 8 also does
the same, an invariant would need to be provided that describes the possible
values of g before an invocation to the procedure. In our example, a suitable
invariant would be ‘(g = −1) ∨ (g = lastN!)’. The verifier would also need to
verify that at the procedure’s exit the invariant is re-established. Lines 10–12,
with the recursive call replaced by (n− 1)!, suffices on paper to re-establish the
invariant.

The candidate approach described above, while plausible, suffers from two
weaknesses. First, a mathematical specification of the function being computed
may be complex and non-trivial to write. (Note, for example, that factCache is
defined for negative integers while factorial is not. Thus, the previous candidate
specification is actually incorrect for this edge case.) Second, the underlying
theorem prover would need to prove complex arithmetic properties, e.g., that n
* (n− 1)! is equal to n!. Complex proofs such as this may be beyond the scope
of many existing theorem provers.

Our key insight is to sidestep the challenges mentioned by introducing a
function symbol, say factCache, and replacing the recursive call for the purposes
of verification with this function symbol. (Note that we reuse the same sym-
bol for two purposes, which may be slightly confusing here. One denotes the
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procedure name, while the other denotes a function symbol for use in a logi-
cal formula. The italicized name here denotes the function symbol.) Intuitively,
factCache represents the mathematical function that the given procedure mim-
ics if the procedure is OP. In our example, Line 10 would become ‘g = n *
factCache(n − 1)’. This step needs no human involvement. The approach needs
an invariant; however, in a novel manner, we allow the invariant also to refer
to factCache. In our example, a suitable invariant would be ‘(g = −1) ∨ (g =
lastN * factCache(lastN− 1))’. This sort of invariant is relatively easy to con-
struct; e.g., a human could arrive at it just by looking at Line 2 and with a
local reasoning on Lines 10 and 11. Given this invariant, (a) a theorem prover
could infer that the condition in Line 7 implies that Line 8 necessarily copies
the value of ‘n * factCache(n− 1)’ into ‘result’. Due to the transformation to
Line 10 mentioned above, (b) the theorem prover can infer that Line 12 also
does the same. Note that since these two expressions are syntactically identical,
a theorem prover can easily establish that they are equal in value. Finally, since
Line 6 is reached under a different condition than Lines 8 and 12, the verifier
has finished establishing that the procedure always returns the same expression
in n for any given value of n.

Similarly, using the modified Line 10 mentioned above and from Line 11, the
prover can re-establish that g is equal to ‘lastN * factCache(lastN − 1)’ when
control reaches Line 12. Hence, the necessary step of proving the given invariant
to be a valid invariant is also complete.

Note, the effectiveness of the approach depends on the nature of the given
invariant. For instance, if the given invariant was ‘(g = −1) ∨ (g = lastN!)’, which
is also technically correct, then the theorem prover may not be able to establish
that in Lines 8 and 12 the variable ‘g’ always stores the same expression in n.
However, it is our claim that in fact it is the invariant ‘(g =− 1) ∨ (g = lastN *
factCache(lastN− 1))’ that is easier to infer by a human or by a potential tool,
as justified by us two paragraphs above.

Salient Aspects of Our Approach. This paper makes two significant con-
tributions. First, it tackles the circularity problem that arises due to the use
of a presumed-to-be OP procedure in assertions and invariants and the use of
these invariants in proving the procedure to be OP. This requires us to prove
the soundness of an approach that simultaneously verifies observational purity
as well the validity of invariants (as they cannot be decoupled).

Secondly, we show that a direct approach to this verification problem (which
we call the existential approach) reduces it to a problem of verifying that a
logical formula is a tautology. The structure of the generated formula, however,
makes the resulting theorem prover instances hard. We show how a conservative
approximation can be used to convert this hard problem into an easier problem
of checking satisfiability of a quantifier-free formula, which is something within
the scope of state-of-the-art theorem provers.

The most closely related previous approaches are by Barnett et al. [1,2], and
by Naumann [3]. These approaches check observational purity of procedures that
maintain mutable global state. However, none of these approaches use a function
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L ∈ Lib ::= g := c P

P ∈ Proc ::= p (x) { S; return y }
S ∈ Stmt ::= x := e | x := p(y) | S ; S | if (e) then S else S

e ∈ Expr ::= c | x | e op e | unop e

op ∈ Ops ::= + | - | / | * | % | > | < | == | ∧ | ∨
unop ∈ UnOps ::= ¬

x, y ∈ LocalId ∪ GlobalId, g ∈ GlobalId, c ∈ V, p ∈ ProcId

Fig. 1. Programming language syntax and meta-variables

symbol in place of recursive calls or within invariants. Therefore, it is not clear
that these approaches can verify recursive procedures. Barnett et al., in fact,
state “there is a circularity - it would take a delicate argument, and additional
conditions, to avoid unsoundness in this case”. To the best of our knowledge
ours is the first paper to show that it is feasible to check observational purity
of procedures that maintain mutable global state for optimization purposes and
that make use of recursion.

Being able to verify that a procedure is OP has many potential applications.
The most obvious one is that OP procedures can be memoized. That is, input-
output pairs can be recorded in a table, and calls to the procedure can be
elided whenever an argument is seen more than once. This would not change the
semantics of the overall program that calls the procedure, because the procedure
always returns the same value for the same argument (and mutates only private
global variables). Another application is that if a loop contains a call to an OP
procedure, then the loop can be parallelized (provided the procedure is modified
to access and update its private global variables in a single atomic operation).

The rest of this paper is structured as follows. Section 2 introduces the core
programming language that we address. Section 3 provides formal semantics
for our language, as well as definitions of invariants and observational purity.
Section 4 describes our approach formally. Section 5 discusses an approach for
generating an invariant automatically in certain cases. Section 6 describes eval-
uation of our approach on a few realistic examples. Section 7 describes related
work. More details about the proofs and the examples can be found in [4].

2 Language Syntax

In this paper, we assume that the input to the purity checker is a library con-
sisting of one or more procedures, with shared state consisting of one or more
variables that are private to the library. We refer to these variables as “global”
variables to indicate that they retain their values across multiple invocations of
the library procedures, but they cannot be accessed or modified by procedures
outside the library (that is, the clients of the library).

In Fig. 1, we present the syntax of a simple programming language that we
address in this paper. Given the foundational focus of this work, we keep the
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programming language very simple, but the ideas we present can be generalized.
A return statement is required in each procedure, and is permitted only as
the last statement of the procedure. The language does not contain any looping
construct. Loops can be modelled as recursive procedures. The formal parameters
of a procedure are readonly and cannot be modified within the procedure. We
omit types from the language. We permit only variables of primitive types. In
particular, the language does not allow pointers or dynamic memory allocation.
Note that expressions are pure (that is, they have no side effects) in this language,
and a procedure call is not allowed in an expression. Each procedure call is
modelled as a separate statement.

For simplicity of presentation, without loss of conceptual generality, we
assume that the library consists of a single (possibly recursive) procedure, with
a single formal parameter. In the sequel, we will use the symbol p (as a metavari-
able) to represent this library procedure, p (as a metavariable) to represent the
name of this procedure, and will assume that the name of the formal parameter
is n. If the procedure is of the form “p (n) { S; return r }”, we refer to r
as the return variable, and refer to “S; return r” as the procedure body and
denote it as body(p). The library also contains, outside of the procedure’s code,
a sequence of initializing declarations of the global variables used in the proce-
dure, of the form “g1 := c1; . . .; gN := cN”. These initializations are assumed
to be performed once during any execution of the client application, just before
the first call to the procedure p is placed by the client application.

Throughout this paper we use the word ‘procedure’ to refer to the library
procedure p, and use the word ‘function’ to refer to a mathematical function.

3 A Semantic Definition of Purity

In this section, we formalize the input-output semantics of the procedure p as a
relation �p, where n �p r indicates that an invocation of p with input n may
return a result of r. The procedure is defined to be observationally pure if the
relation �p is a (partial) function: that is, if n �p r1 and n �p r2, then r1 = r2.

The object of our analysis is a single-procedure library, not the entire
(client) application. (Our approach can be generalized to handle multi-procedure
libraries.) The result of our analysis is valid for any client program that uses the
procedure/library. The only assumptions we make are: (a) The shared state
used by the library (the global variables) are private to the library and cannot
be modified by the rest of the program, and (b) The client invokes the library
procedures sequentially: no concurrent or overlapping invocations of the library
procedures by a concurrent client are permitted.

The following semantic formalism is motivated by the above observations. It
can be seen as the semantics of the so-called “most general sequential client”
of procedure p, which is the program: while (*) x = p (random());. The
executions (of p) produced by this program include all possible executions (of
p) produced by all sequential clients.

Let G denote the set of global variables. Let L denote the set of local variables.
Let V denote the set of numeric values (that the variables can take). An element
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Fig. 2. A small-step operational semantics for our language, represented as a relation
σ1 →p σ2. A state σi is a configuration of the form ((S, ρ�)γ, ρg) where S captures
statements to be executed in current procedure, ρ� assigns values to local variables, γ
is the call-stack (excluding current procedure), and ρg assigns values to global variables.

ρg ∈ ΣG = G ↪→ V maps global variables to their values. An element ρ� ∈
ΣL = L ↪→ V maps local variables to their values. We define a local continuation
to be a statement sequence ending with a return statement. We use a local
continuation to represent the part of the procedure body that still remains to
be executed. Let ΣC represent the set of local continuations. The set of runtime
states (or simply, states) is defined to be (ΣC × ΣL)∗ × ΣG, where the first
component represents a runtime stack, and the second component the values of
global variables. We denote individual states using symbols σ, σ1, σi, etc. The
runtime stack is a sequence, each element of which is a pair (S, ρ�) consisting
of the remaining procedure fragment S to be executed and the values of local
variables ρ�. We write (S, ρ�)γ to indicate a stack where the topmost entry is
(S, ρ�) and γ represents the remaining part of the stack.

We say that a state ((S, ρ�)γ, ρg) is an entry-state if its location is at the
procedure entry point (i.e., if S is the entire body of the procedure), and we
say that it is an exit-state if its location is at the procedure exit point (i.e., if S
consists of just a return statement).
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A procedure p determines a single-step execution relation →p, where σ1 →p

σ2 indicates that execution proceeds from state σ1 to state σ2 in a single step.
Figure 2 defines this semantics. The semantics of evaluation of a side-effect-free
expression is captured by a relation (ρ, e) ⇓ v, indicating that the expression e
evaluates to value v in an environment ρ (by environment, we mean an element of
(G ∪ L) ↪→ V). We omit the definition of this relation, which is straightforward.
We use the notation ρ1 � ρ2 to denote the union of two disjoint maps ρ1 and ρ2.

Note that most rules captures the usual semantics of the language constructs.
The last two rules, however, capture the semantics of the most-general sequential
client explained previously: when the call stack is empty, a new invocation of
the procedure may be initiated (with an arbitrary parameter value).

Note that all the following definitions are parametric over a given procedure
p. E.g., we will use the word “execution” as shorthand for “execution of p”.

We define an execution (of p) to be a sequence of states σ0σ1 · · · σn such that
σi →p σi+1 for all 0 ≤ i < n. Let σinit denote the initial state of the library;
i.e., this is the element of ΣG that is induced by the sequence of initializing
declarations of the library, namely, “g1 := c1; . . .; gN := cN”. We say that an
execution σ0σ1 · · · σn is a feasible execution if σ0 = σinit. Note, intuitively, a fea-
sible execution corresponds to the sequence of states visited within the library
across all invocations of the library procedure over the course of a single exe-
cution of the most-general client mentioned above; also, since the most-general
client supplies a random parameter value to each invocation of p, in general
multiple feasible executions of the library may exist.

We define a trace (of p) to be a substring π = σ0 · · · σn of a feasible execution
such that: (a) σ0 is entry-state (b) σn is an exit-state, and (c) σn corresponds
to the return from the invocation represented by σ0. In other words, a trace is a
state sequence corresponding to a single invocation of the procedure. A trace may
contain within it nested sub-traces due to recursive calls, which are themselves
traces. Given a trace π = σ0 · · · σn, we define initial(π) to be σ0, final(π) to be
σn, input(π) to be value of the input parameter in initial(π), and output(π) to
be the value of the return variable in final(π).

We define the relation �p to be {(input(π), output(π)) | π is a trace of p}.

Definition 1 (Observational Purity). A procedure p is said to be observa-
tionally pure if the relation �p is a (partial) function: that is, if for all n, r1,
r2, if n �p r1 and n �p r2, then r1 = r2.

Logical Formula and Invariants. Our methodology makes use of logical for-
mulae for different purposes, including to express a given invariant. Our logical
formulae use the local and global variables in the library procedure as free vari-
ables, use the same operators as allowed in our language, and make use of uni-
versal as well as existential quantification. Given a formula ϕ, we write ρ |= ϕ to
denote that ϕ evaluates to true when its free variables are assigned values from
the environment ρ.
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As discussed in Sect. 1, one of our central ideas is to allow the names of the
library procedures to be referred to in the invariant; e.g., our running example
becomes amenable to our analysis using an invariant such as ‘(g = −1) ∨ (g =
lastN * factCache(lastN − 1))’. We therefore allow the use of library procedure
names (in our simplified presentation, the name p) as free variables in logical
formulae. Correspondingly, we let each environment ρ map each procedure name
to a mathematical function in addition to mapping variables to numeric values,
and extend the semantics of ρ |= ϕ by substituting the values of both variables
and procedure names in ϕ from the environment ρ.

Given an environment ρ, a procedure name p, and a mathematical function
f , we will write ρ[p 	→ f ] to indicate the updated environment that maps p to
the value f and maps every other variable x to its original value ρ[x]. We will
write (ρ, f) |= ϕ to denote that ρ[p 	→ f ] |= ϕ.

Given a state σ = ((S, ρ�)γ, ρg), we define env(σ) to be ρ� � ρg, and given a
state σ = ([], ρg), we define env(σ) to be just ρg. We write (σ, f) |= ϕ to denote
that (env(σ), f) |= ϕ. For any execution or trace π, we write (π, f) |= ϕ if for
every entry-state and exit-state σ in π, (σ, f) |= ϕ. We now introduce another
definition of observational purity.

Definition 2 (Observational Purity wrt an Invariant). Given an invari-
ant ϕinv, a library procedure p is said to satisfy pure(ϕinv) if there exists a
function f such that for every trace π of p, output(π) = f(input(π)) and
(π, f) |= ϕinv.

It is easy to see that if procedure p satisfies pure(ϕinv) wrt any given candidate
invariant ϕinv, then p is observationally pure as per Definition 1.

4 Checking Purity Using a Theorem Prover

In this section we provide two different approaches that, given a procedure p
and a candidate invariant ϕinv, use a theorem prover to check conservatively
whether procedure p satisfies pure(ϕinv).

4.1 Verification Condition Generation

We first describe an adaptation of standard verification-condition generation
techniques (e.g., see [5]) that we use as a common first step in both our
approaches. Given a procedure p, a candidate invariant ϕinv, our goal is to
compute a pair (ϕpost, ϕvc) where ϕpost is a postcondition describing the state
that exists after an execution of body(p) starting from a state that satisfies
ϕinv, and ϕvc is a verification-condition that must hold true for the execution
to satisfy its invariants and assertions.

We first transform the procedure body as below to create an internal repre-
sentation that is input to the postcondition and verification condition generator.
In the internal representation, we allow the following extra forms of statements
(with their usual meaning): havoc(x), assume e, and assert e.
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1. For any assignment statement “x := e” where e contains x, we introduce a
new temporary variable t and replace the assignment statement with “t :=
e; x := t”.

2. For every procedure invocation “x := p(y)”, we first ensure that y is a local
variable (by introducing a temporary if needed). We then replace the state-
ment by the code fragment “assert ϕinv; havoc(g1); ... havoc(gN);
assume ϕinv∧ x = p(y)”, where g1 to gN are the global variables.
Note that the procedure call has been eliminated, and replaced with an
“assume” expression that refers to the function symbol p. In other words,
there are no procedure calls in the transformed procedure.

3. We replace the “return x” statement by “assert ϕinv”. Note that we inten-
tionally do not assert that the return value equals p(n).

Let TB(p, ϕinv) denote the transformed body of procedure p obtained as above.

post(ϕpre, x := e) = (∃x.ϕpre) ∧ (x = e) (if x �∈ vars(e))
post(ϕpre, havoc(x)) = ∃x.ϕpre

post(ϕpre, assume e) = ϕpre ∧ e

post(ϕpre, assert e) = ϕpre

post(ϕpre, S1; S2) = post(post(ϕpre, S1), S2)
post(ϕpre, if e then S1 else S2) = post(ϕpre ∧ e, S1) ∨ post(ϕpre ∧ ¬e, S2)

vc(ϕpre, assert e) = (ϕpre ⇒ e)
vc(ϕpre, S1; S2) = vc(ϕpre, S1) ∧ vc(post(ϕpre, S1), S2)
vc(ϕpre, if e then S1 else S2) = vc(ϕpre ∧ e, S1) ∧ vc(ϕpre ∧ ¬e, S2)
vc(ϕpre, S) = true(for all other S)

postvc(p, ϕinv) = (post( ϕinv,TB(p, ϕinv)),vc(ϕinv,TB(p, ϕinv)) ∧ (init(p) ⇒ ϕinv))

Fig. 3. Generation of verification-condition and postcondition.

We then compute postconditions as formally described in Fig. 3. This lets us
compute for each program point 	 in the procedure, a condition ϕ� that describes
what we expect to hold true when execution reaches 	 if we start executing the
procedure in a state satisfying ϕinv and if every recursive invocation of the
procedure also terminates in a state satisfying ϕinv. We compute this using the
standard rules for the postcondition of a statement. For an assignment statement
“x := e”, we use existential quantification over x to represent the value of x prior
to the execution of the statement. If we rename these existentially quantified
variables with unique new names, we can lift all the existential quantifiers to
the outermost level. When transformed thus, the condition ϕ� takes the form
∃x1 · · · xn.ϕ, where ϕ is quantifier-free and x1, · · · , xn denote intermediate values
of variables along the execution path from procedure-entry to program point 	.

We compute a verification condition ϕvc that represents the conditions we
must check to ensure that an execution through the procedure satisfies its obli-
gations: namely, that the invariant holds true at every call-site and at procedure-
exit. Let 	 denote a call-site or the procedure-exit. We need to check that
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1 g := −1;
2 lastN := 0 ;
3 factCache (n) {
4 i f (n <= 1) {
5 r e s u l t := 1 ;
6 } else i f ( g != −1 && n == lastN ) {
7 r e s u l t := g ;
8 } else {
9 t1 := n−1;

10 // t2 := factCache ( t1 ) ;

11 a s s e r t ϕinv ;
12 havoc ( g ) ; havoc ( lastN ) ;

13 assume ϕinv∧ ( t2 = factCache ( t1 ) ) ;
14 g := n ∗ t2 ;
15 lastN := n ;
16 r e s u l t := g ;
17 }
18 // return r e s u l t ;

19 a s s e r t ϕinv ;
20 }

Listing 1.2. Procedure factCache from Listing 1.1 transformed to incorporate a
supplied candidate invariant ϕinv.

ϕ� ⇒ ϕinv holds. Thus, the generated verification condition essentially consists
of the conjunction of this check over all call-sites and procedure-exit.

Finally, the function postvc computes the postcondition and verification
condition for the entire procedure as shown in Fig. 3. (Thus, it returns a pair of
formulae.) Note that this function also adds the check that the initial state must
satisfy ϕinv to the verification condition (as the basis condition for induction).
init(p) is basically the formula “g1 = c1 ∧ . . . gN = cN” (see Sect. 2).

Example. We now illustrate the postcondition and verification condition gener-
ated from our factorial example presented in Listing 1.1. Listing 1.2 shows the
example expressed in our language and transformed as described earlier (using
function TB), using a supplied candidate invariant ϕinv.

Figure 4 illustrates the computation of postcondition and verification condi-
tion from this transformed example. In this figure, we use ϕpre

cs to denote the
precondition computed to hold just before the recursive callsite, and ϕpost

cs to
denote the postcondition computed to hold just after the recursive callsite. The
postcondition ϕpost (at the end of the procedure body) is itself a disjunction of
three path-conditions representing execution through the three different paths
in the program. In this illustration, we have simplified the logical conditions
by omitting useless existential quantifications (that is, any quantification of the
form ∃x.ψ where x does not occur in ψ). Note that the existentially quantified
g and lastN in ϕpost

cs denote the values of these globals before the recursive call.
Similarly, the existentially quantified g and lastN in ϕpath

3 denote the values of
these globals when the recursive call terminates, while the free variables g and
lastN denote the final values of these globals.
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init(p) = (g = -1) ∧ (lastN = 0)

ϕpath
1 = ϕinv ∧ (n <= 1) ∧ (result = 1)

ϕpath
2 = ϕinv ∧ ¬(n <= 1) ∧ (g != 1) ∧ (n = lastN) ∧ (result = g)

ϕpre
cs = ϕinv ∧ ¬(n <= 1) ∧ ¬((g != 1) ∧ (n = lastN)) ∧ (t1 = n-1)

ϕpost
cs = (∃g∃lastN ϕpre

cs ) ∧ ϕinv ∧ (t2 = factCache (t1))

ϕpath
3 = (∃g∃lastN ϕpost

cs ) ∧ (g = n * t2) ∧ (last N = n) ∧ (result = g)

ϕpost = ϕpath
1 ∨ ϕpath

2 ∨ ϕpath
3

ϕvc = (ϕpre
cs ⇒ ϕinv) ∧ (ϕpost ⇒ ϕinv) ∧ (init(p) ⇒ ϕinv)

Fig. 4. The different formulae computed from the procedure in Listing 1.2 by our post-
condition and verification-condition computation.

4.2 Approach 1: Existential Approach

Let p be a procedure with input parameter n and return variable r. Let
postvc(p, ϕinv) = (ϕpost, ϕvc). Let ψe denote the formula ϕvc ∧ (ϕpost ⇒ (r =
p(n))). Let x denote the sequence of all free variables in ψe except for p. We
define ea(p, ϕinv) to be the formula ∀x.ψe.

In this approach, we use a theorem prover to check whether ea(p, ϕinv)
is satisfiable. As shown by the following theorem, satisfiability of ea(p, ϕinv)
establishes that p satisfies pure(ϕinv).

Theorem 1. A procedure p satisfies pure(ϕinv) if ∃p.ea(p, ϕinv) is a tautology
(which holds iff ea(p, ϕinv) is satisfiable).

Proof. Note that p is the only free variable in ea(p, ϕinv). Assume that [p 	→ f ]
is a satisfying assignment for ∀x.ψe. We show that for every feasible execu-
tion π: (P1) (π, f) � ϕinv, and (P2) for every trace π′ inside π, output(π′) =
f(input(π′)). This implies that p satisfies pure(ϕinv).

In particular, for any feasible execution π, we prove by induction over the
execution steps in π that

1. For any entry state σ in π, (σ, f) � ϕinv.
2. For any exit state σ in π, (σ, f) � ϕinv.
3. For any exit state σ in π, if it is the exit state of a trace π′, then output(π′) =

f(input(π′)).

If the above properties fail to hold, we can identify a trace π′ corresponding
to the first such failure. It can be shown that the sequence of states visited by
this trace, when substituted for x, are a witness that [p 	→ f ] is not a satisfying
assignment for ∀x.ψe. This is a contradiction of our original assumption.

Please see [4] for more details of the proof. ��
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4.3 Approach 2: Impurity Witness Approach

The existential approach presented in the previous section has a drawback.
Checking satisfiability of ea(p, ϕinv) is hard because it contains universal quan-
tifiers and existing theorem provers do not work well enough for this approach.
We now present an approximation of the existential approach that is easier to use
with existing theorem provers. This new approach, which we will refer to as the
impurity witness approach, reduces the problem to that of checking whether a
quantifier-free formula is unsatisfiable, which is better suited to the capabilities
of state-of-the-art theorem provers. This approach focuses on finding a coun-
terexample to show that the procedure is impure or it violates the candidate
invariant.

Let p be a procedure with input parameter n and return variable r. Let
postvc(p, ϕinv) = (ϕpost, ϕvc). Let ϕpost

α denote the formula obtained by replac-
ing every free variable x other than p in ϕpost by a new free variable xα. Define
ϕpost

β similarly. Define iw(p, ϕinv) to be the formula (¬ϕvc) ∨ (ϕpost
α ∧ ϕpost

β ∧
(nα = nβ) ∧ (rα �= rβ)).

The impurity witness approach checks whether iw(p, ϕinv) is satisfiable. This
can be done by separately checking whether ¬ϕvc is satisfiable and whether
(ϕpost

α ∧ ϕpost
β ∧ (nα = nβ) ∧ (rα �= rβ)) is satisfiable. As formally defined, ϕvc

and ϕpost contain embedded existential quantifications. As explained earlier,
these existential quantifiers can be moved to the outside after variable renaming
and can be omitted for a satisfiability check. (A formula of the form ∃x.ψ is
satisfiable iff ψ is satisfiable.) As usual, these existential quantifiers refer to
intermediate values of variables along an execution path. Finding a satisfying
assignment to these variables essentially identifies a possible execution path (that
satisfies some other property).

Theorem 2. A procedure p satisfies pure(ϕinv) if iw(p, ϕinv) is unsatisfiable.

Proof. We say that two traces disagree if they receive the same argument value
but return different values. We say that a pair of feasible executions (π1, π2) is
an impurity witness if there is a trace πa in π1 and a trace πb in π2 such that πa

and πb disagree.
A trace is said to be compatible with a function f (and vice versa) if the

trace’s input-output behavior matches that of the function. An execution is said
to be compatible with a function (and vice versa) if every trace in the execution
is compatible with the function. We say that a feasible execution π strongly
satisfies ϕinv if for every function f that is compatible with π, (π, f) |= ϕinv.

We prove the theorem using the following lemmas: if iw(p, ϕinv) is unsatis-
fiable, then Lemmas 2 and 3 imply that the preconditions of Lemma 1 hold and,
hence, p satisfies pure(ϕinv).

1. If there exists no impurity witness, and every feasible execution strongly sat-
isfies ϕinv, then p satisfies pure(ϕinv).

2. If a feasible execution π that does not strongly satisfy ϕinv exists, iw(p, ϕinv)
is satisfiable.
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3. If an impurity witness exists, then iw(p, ϕinv) is satisfiable.

1 is straightforward.
For 2, we use a “minimal” feasible execution π that does not strongly satisfy

ϕinv to construct a satisfying assignment to ¬ϕvc.
For 3, we use a “minimal” impurity witness to construct a satisfying assign-

ment to (ϕpost
α ∧ ϕpost

β ∧ (nα = nβ) ∧ (rα �= rβ)).
Please see [4] for more details of the proof. ��

5 Generating the Invariant

We now describe a simple but reasonably effective semi-algorithm for generating
a candidate invariant automatically from the given procedure. Our approach of
Sect. 4 can be used with a manually provided invariant or the candidate invariant
generated by this semi-algorithm (whenever it terminates).

The invariant-generation approach is iterative and computes a sequence of
progressively weaker candidate invariants I0, I1, · · · and terminates if and when
Im ≡ Im+1, at which point Im is returned as the candidate invariant. The
initial candidate invariant I0 captures the initial values of the global variable.
In iteration k, we apply a procedure similar to the one described in Sect. 4 and
compute the strongest conditions that hold true at every program point if the
execution of the procedure starts in a state satisfying Ik−1 and if every recursive
invocation terminates in a state satisfying Ik−1. We then take the disjunction
of the conditions computed at the points before the recursive call-sites and at
the end of the procedure, and existentially quantify all local variables. We refer
to the resulting formula as Next(Ik−1,TB(p, Ik−1)). We take the disjunction of
this formula with Ik−1 and simplify it to get Ik.

Figure 5 formalizes this semi-algorithm. Here, we exploit the fact that the
assert statements are added precisely at every recursive callsite and end of
procedure and these are the places where we take the conditions to be disjuncted.

In our running example, I0 is ‘g = −1∧ lastN = 0’. Applying Next to I0

yields I0 itself as the pre-condition at the point just before the recursive call-site,
and ‘(g = −1∧ lastN = 0) ∨ g = lastN * p(lastN − 1)’ (after certain simplifi-
cations) as the pre-condition at the end of the procedure. Therefore, I1 is ‘(g
= −1∧ lastN = 0) ∨ g = lastN * p(lastN − 1)’. When we apply Next to I1,

I0 = init(p)
Ik = Simplify(Ik−1 ∨ Next(Ik−1,TB(p, Ik−1)))

Next(ϕpre, assert e) = ∃�1 · · · �mϕpre(where �1, · · · , �m are local variables in ϕpre)
Next(ϕpre, S1; S2) = Next(ϕpre, S1) ∨ Next(post(ϕpre, S1), S2)
Next(ϕpre, if e then S1 else S2) = Next(ϕpre ∧ e, S1) ∨ Next(ϕpre ∧ ¬e, S2)
Next(ϕpre, S) = false(for all other S)

Fig. 5. Iterative computation of invariant.
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the computed pre-conditions are I1 itself at both the program points mentioned
above. Therefore, the approach terminates with I1 as the candidate invariant.

6 Evaluation

We have implemented our OP checking approach as a prototype using the Boogie
framework [6], and have evaluated the approach using this implementation on
several examples. The objective of this evaluation was primarily a sanity check,
to test how our approach does on a set of OP as well as non-OP procedures.

We tried several simple non-OP programs, and our implementation termi-
nated with a “no” answer on all of them. We also tried the approach on several
OP procedures: (1) the ‘factCache’ running example, (2) a version of a factorial
procedure that caches all arguments seen so far and their corresponding return
values in an array, (3) a version of factorial that caches only the return value for
argument value 19 in a scalar variable, (4) a recursive procedure that returns
the nth Fibonacci number and caches all its arguments and corresponding return
values seen so far in an array, and (5) a “matrix chain multiplication” (MCM)
procedure. The last example is based on dynamic programming, and hence nat-
urally uses a table to memoize results for sub-problems. Here, observational
purity implies that the procedure always returns the same solution for a given
sub-problem, whether a hit was found in the table or not. The appendix of a
technical report associated with this paper depicts all the procedures mentioned
above as created by us directly in Boogie’s language, as well as the invariants
that we supplied manually (in SMT2 format).

It is notable that the theorem prover was not able to handle the instances
generated by the“existential approach” even for simple examples. The “impurity
witness” approach, however, terminated on all the examples mentioned above
with the correct answer, with the theorem prover taking less than 1 s on each
example. Please see [4] for more information about the examples used in our
evaluation.

7 Related Work

The previous work that is most closely related to our work is by Barnett
et al. [1,2]. Their approach is based on the same notion of observational purity as
our approach. Their approach is structurally similar to ours, in terms of needing
an invariant, and using an inductive check for both the validity of the invariant
as well as the uniqueness of return values for a given argument. However, their
approach is based on a more complex notion of invariant than our approach,
which relates pairs of global states, and does not use a function symbol to repre-
sent recursive calls within the procedure. Hence, their approach does not extend
readily to recursive procedures; they in fact state that “there is a circularity -
it would take a delicate argument, and additional conditions, to avoid unsound-
ness in this case”. Our idea of allowing the function symbol in the invariant to
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represent the recursive call allows recursive procedures to be checked, and also
simplifies the specification of the invariant in many cases.

Cok et al. [7] generalize the work of Barnett et al.’s work, and suggest classi-
fying procedures into categories “pure”, “secret”, and “query”. The “query” pro-
cedures are observationally pure. Again, recursive procedures are not addressed.

Naumann [3] proposes a notion of observational purity that is also the same
as ours. Their paper gives a rigorous but manual methodology for proving the
observational purity of a given procedure. Their methodology is not similar to
ours; rather, it is based finding a weakly pure procedure that simulates the given
procedure as far as externally visible state changes and the return value are
concerned. They have no notion of an invariant that uses a function symbol
that represents the procedure, and they don’t explicitly address the checking of
recursive procedures.

There exists a significant body of work on identifying differences between two
similar procedures. For instance, differential assertion checking [8] is a represen-
tative from this body, and is for checking if two procedures can ever start from
the same state but end in different states such that exactly one of the ending
states fails a given assertion. Their approach is based on logical reasoning, and
accommodates recursive procedures. Our impurity witness approach has some
similarity with their approach, because it is based on comparing the given pro-
cedure with itself. However, our comparison is stricter, because in our setting,
starting with a common argument value but from different global states that
are both within the invariant should not cause a difference in the return value.
Furthermore, technically our approach is different because we use an invariant
that refers to a function symbol that represents the procedure being checked,
which is not a feature of their invariants. Partush et al. [9] solve a similar prob-
lem as differential assertion checking, but using abstract interpretation instead
of logical reasoning.

There is a substantial body of work on checking if a procedure is pure, in the
sense that it does not modify any objects that existed before the procedure was
invoked, and does not modify any global variables. Sălcianu et al. [10] describe
a static analysis to check purity and Madhavan et al. [11] present an abstract-
interpretation based generalization of this analysis. Various tools exist, such as
JML [12] and Spec# [13], that use logical techniques based on annotations to
prove procedures as pure. Purity is a more restrictive notion than observational
purity; procedures such as our ‘factCache’ example are observationally pure, but
not pure because they use as well as update state that persists between calls to
the procedure.
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Abstract. In this paper we address the challenge of cross-language clone
detection. Due to the rise of cross-language libraries and applications
(e.g., apps written for both Android and iPhone), it has become com-
mon for code fragments in one language to be ported over into another
language in an extension of the usual “copy and paste” coding methodol-
ogy. As with single-language clones, it is important to be able to detect
these cross-language clones. However there are many real-world cross-
language clones that existing techniques cannot detect.

We describe the first general, cross-language algorithm that combines
both structural and nominal similarity to find syntactic clones, thereby
enabling more complete clone detection than any existing technique. This
algorithm also performs comparably to the state of the art in single-
language clone detection when applied to single-language source code;
thus it generalizes the state of the art in clone detection to detect both
single- and cross-language clones using one technique.

1 Introduction

The clone detection problem has long been recognized by the community, with
many existing papers exploring different techniques for finding clones amongst
code written in a single language [5,13,14,21,22]. However, in recent years
an interesting twist has arisen due to the rising popularity of cross-language
libraries and applications: cross-language clones. Consider the parser genera-
tor ANTLR [3], which has runtimes that are written in C#, C++, Go, Java,
JavaScript, Python (2 and 3), and Swift. Also consider multi-platform mobile
applications, which are often ported between Java and Objective-C or Swift,
the languages used by Android and iPhone applications. In these kinds of set-
tings, clones can actually cross language boundaries: a fragment of code in one
language can be copied and massaged to conform to the syntax and seman-
tics of another language. Existing single-language clone detection techniques are
unable to effectively detect these sorts of cross-language clones. In this paper we
propose a method to detect cross-language clones and demonstrate that it (1)
finds cross-language clones that no existing method can detect; and (2) performs
comparably to existing single-language clone detectors for finding clones within
a corpus of single-language code sources. Therefore, our technique generalizes

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 247–263, 2019.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-16722-6_14&domain=pdf
https://doi.org/10.1007/978-3-030-16722-6_14


248 L. Nichols et al.

Trees._findAllNodes = function(t, index, findTokens, nodes) {
// check this node (the root) first
if(findTokens && (t instanceof TerminalNode)) {

if(t.symbol.type===index) {
nodes.push(t);

}
} else if(!findTokens && (t instanceof ParserRuleContext)) {

if(t.ruleIndex===index) {
nodes.push(t);

}
}
// check children
for(var i=0;i<t.getChildCount();i++) {

Trees._findAllNodes(t.getChild(i), index, findTokens, nodes);
}

};

template<typename T>
static void _findAllNodes(ParseTree *t, size_t index, bool findTokens, std::vector<T> &nodes) {

// check this node (the root) first
if (findTokens && is<TerminalNode *>(t)) {

TerminalNode *tnode = dynamic_cast<TerminalNode *>(t);
if (tnode->getSymbol()->getType() == index) {

nodes.push_back(t);
}

} else if (!findTokens && is<ParserRuleContext *>(t)) {
ParserRuleContext *ctx = dynamic_cast<ParserRuleContext *>(t);
if (ctx->getRuleIndex() == index) {

nodes.push_back(t);
}

}
// check children
for (size_t i = 0; i < t->children.size(); i++) {

_findAllNodes(t->children[i], index, findTokens, nodes);
}

}

Fig. 1. A JavaScript (top) and C++ (bottom) clone pair doing a pre-order search.

VerletParticle2D.prototype.setWeight = function(w){
this.weight = w;
this.invWeight =
(w !== 0) ? 1 / w : 0; //avoid divide by zero

};

public void setWeight(float w) {
weight = w;
invWeight = 1f / w;

}

Fig. 2. A JavaScript (left) and Java (right) clone pair setting the weight and inverse
weight of a particle in a graphics application. A bug-fix has been applied to the
JavaScript clone but not the Java clone.

the current state of the art in clone detection by extending it to allow for both
single-language and cross-language clone detection using a single technique.

To make this problem more concrete, consider Fig. 1, which shows a real-life
case (found during our evaluation described in Sect. 6) of code clones involving
C++ and JavaScript source code from the ANTLR parser generator [3]. To
demonstrate the importance of finding cross-language clones, consider Fig. 2,
which shows another real-life case (also found during our evaluation) of code
clones involving JavaScript and Java in which a bug-fix has been applied to
one of the clones but not the other. In addition, a quick search of the CVE
(Common Vulnerabilities and Exposures) database yields a vulnerability due
to incorrect message authentication checking that exists in multiple different
language implementations of the relevant code [9].

There are only four existing papers that we are aware of that introduce
new techniques for cross-language clone detection (discussed in more detail in
Sect. 2). That initial work has either focused on clones across languages that
share a common intermediate representation such as .NET [1,15] or has deviated
from classical clone detection and taken a more restricted, natural language-
based approach, sometimes relying on assumptions that may not be met in real
code [7,8]. None of that existing work would detect the clone examples given in
Figs. 1 and 2 without extensive modification.



Structural and Nominal Cross-Language Clone Detection 249

The main reason for these restrictions in previous work is that the syntac-
tic structure (i.e., parse trees) of different languages can be extremely different
even for code that, at the source level, seems similar. We demonstrate this phe-
nomenon later in this paper. In order to overcome this problem, previous work
has either restricted itself to languages with a common intermediate representa-
tion (thus enforcing that the syntactic structure is similar for similar code) or
abandoned structural matching entirely and looked only at the names of variables
and other user-defined abstractions (what we call nominal clone detection). We
observe that using purely structural or purely nominal matching is sub-optimal
in a cross-language setting, in that each can yield both false positives and false
negatives.

Our technique consists of (1) a method for enabling structural matching for
cross-language clones even in those cases where syntactic structure is different
(Sect. 4); and (2) a method for composing both structural and nominal matching
into a singular matcher, maintaining the strengths of each while mitigating their
individual weaknesses (Sect. 5). We have implemented our technique in a tool
called Fett1 that works at the granularity of function pairs; we use Fett to
empirically compare our proposed technique against existing techniques (Sect. 6).
We begin by describing related work and background information in Sect. 2 and
giving a high-level overview of our technique in Sect. 3.

2 Background and Related Work

The concept of clone detection is not new, and the different techniques involved
have been surveyed extensively [5,21]. Most existing non-semantics-based tech-
niques can be categorized into the classes of “structural,” “nominal,” or “hybrid,”
which we define below.

Before we begin, there is a bit of misleading terminology in the literature:
there exist many clone detection tools that are considered language-generic or
language-agnostic (e.g., [22]), but can only be configured to work for programs
written in a single language at a time. CCFinder [14], for example, can detect
clones for six different programming languages; however, the user cannot (outside
of naive text-only modes) truly cross language boundaries during a “language-
generic” clone detection phase.

2.1 What Exactly Is a Cross-Language Clone?

Intuitively, we consider a cross-language clone to be the same as any same-
language clone—two pieces of code that implement similar functionality—the
only difference is the setting. We highlight here what kinds of clones our tool
is able to find, and what kinds of clones we include in our evaluation based on
their classification (i.e., Type I, II, III or IV [24]).

1 Our implementation is located at http://www.cs.ucsb.edu/∼pllab under the
“Downloads” link.

http://www.cs.ucsb.edu/~pllab
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The usual code clone hierarchy does not translate well to a cross-language
setting: type I and type II clones [24] may not exist across languages because
of syntactic differences between languages (e.g., switch statements exist in C
but not in Python). In this paper, we present methods that discover syntactic
clones modulo the differences in language syntax, and we do this by creating
a correspondence between related but different constructs. We do not consider
semantic (type IV) clones that implement the same functionality in a different
way (e.g., quicksort vs. selection sort). Readers familiar with the standard clone
hierarchy can think of the clones that we find as type III clones generalized
across languages.

2.2 Structural Program Similarity

Intuitively, two programs (or subprograms) can be considered similar if they look
the same, disregarding identifier names—i.e., if their syntax trees have roughly
the same shape. We refer to structural clone detection as the process of taking
advantage of this similarity.

Same-language clone detection tools usually also consider identifier data,
and we are not aware of any purely structural cross-language clone detector. A
notable same-language tool that operates via structural similarity is Deckard,
which converts syntax trees into vectors for fast comparison [13].

Structural similarity is useful in all settings, but it is a hard problem in a
multi-language setting—all the hybrid structural/nominal methods we describe
below make some restriction on the languages involved. A major part of the
novelty of our technique is a method for purely structural matching across lan-
guages (though the final algorithm then combines structural with nominal (i.e.,
identifier-based) techniques for greater accuracy).

2.3 Nominal Program Similarity

Whereas structural similarity disregards identifiers and instead looks at code
shape, nominal similarity does the exact opposite. Nominal similarity relies on
the insight that similar code, especially copied and pasted snippets, will have
the same identifier names throughout, regardless of code structure.

Notable same-language clone detection tools that operate via nominal simi-
larity are CCFinder and SourcererCC, which compare program tokens [14,25].

Across Languages. Cheng et al. describe CLCMiner [8], the first cross-
language clone detection tool that does not require the languages involved to
translate to the same intermediate form. It compares revision histories (diffs)
in repository logs for cross-platform C# and Java programs; the tokens inside
commits are used to compute similarity scores. CLCMiner is the basis for the
Nominal algorithm defined in Sect. 5.1.

Cheng et al. study a different notion of nominal similarity in [7], where they
measure the effectiveness of token distributions in finding clones among cross-
platform mobile applications; they obtain a negative result for identifier names
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alone. Flores et al. [10] use natural language processing techniques to discover
cross language clones at the function level.

2.4 Hybrid Program Similarity

It is logical to combine structural and nominal similarity methods, as the results
they provide are complementary. A notable same-language, hybrid clone detec-
tion tool is NiCad, which performs its comparisons at the parse tree level [23].
Syntax tree-based comparison is quite common [4,27].

Tree similarity is computationally expensive [6], and it is more efficient to
linearize programs in some way; sequence similarity algorithms can then do
the comparison. Existing same-language work compares the tokens in the order
in which they appear in the parse tree [11], and we also take advantage of
linearization of full parse trees in this work.

Across Languages. Kraft et al. present C2D2 [15], the first cross-language
clone detection tool, for C# and Visual Basic programs. This work requires that
the languages involved be compiled to the same intermediate representation
(IR)—.NET IR in this case. From a graph derived from that IR, they create
sequences of tokens for subgraphs and use a Levenshtein distance-based token
similarity algorithm to compare them.

Al-Omari et al. build on Kraft et al.’s work and find clones by comparing
CIL intermediate code text [1]. Again, they are restricted to .NET languages.

This work. Our method is a hybrid method, works on any language with a
grammar definition, and relies on just the source code (in contrast to, e.g.,
CLCMiner which requires the existence of revision history). We linearize pre-
processed parse trees at the function level and compare the linearized sequences
in a novel way that generalizes Kraft et al.’s work and incorporates features of
Cheng et al.’s work.

2.5 CLCMiner

Our main comparison is with the only tool designed for cross-language clone
detection and capable of handling arbitrary languages: CLCMiner [8]. We pro-
vide further background on it here. CLCMiner is based on having the source
code in a version control system, and requires a revision history by design.
Section 5.1 gives a detailed explanation of our adaptation of CLCMiner. The
original CLCMiner algorithm works on diffs and lexes them, whereas our ver-
sion works on function parse trees.

We were not able to obtain access to the original CLCMiner source code
from the authors. In order to compare against this method, we implement our
own version which adapts CLCMiner to work with the entire text of a function
and have it calculate the distance metric above when given a function pair. Our
new implementation may perform better or worse than the original (which uses
revision history rather than function pairs) in certain cases.
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We incorporate CLCMiner’s distance metric in a novel way in Fett, and
show that our combination of structural and nominal information produces bet-
ter results. As we have adapted CLCMiner’s algorithm to work on functions
instead of diffs, it relies on having a parser to extract the functions and does
not rely on a version control system. We refer to our nominal-only adaptation
of CLCMiner’s algorithm as “Nominal” for the rest of the paper.

3 Overview

In this section we provide a high-level overview of Fett and provide justification
for some of our steps. We give an end-to-end example of our clone detection
process in our tech report [18]. Fett’s pipeline is:

1. Take as input a corpus of source code (which may exist in multiple languages);
2. Using existing ANTLR grammars, parse and create a separate parse tree for

each function (we currently handle C++, Java, and JavaScript);
3. Simplify parse trees that have an unnecessarily large depth;
4. Abstract the multilingual parse trees into a common representation to facili-

tate comparison;
5. Linearize the resulting trees using a preorder traversal;
6. Compare all linearized function pairs using a Smith-Waterman local sequence

alignment algorithm; and finally
7. Present the pairwise similarity scores to the user.

The following sections fill in the details of the structural and nominal aspects
of Fett’s cross-language clone detection process.

4 Structural Clone Detection

One key insight of our structural algorithm is that abstract syntax trees (ASTs),
which eliminate details in the concrete parse trees about how exactly the input
was parsed or what language it came from, tend to look more similar for similar
code even across languages. Unfortunately, ASTs are not part of a language’s
specification, and AST grammars and formats are implementation dependent.
We are not aware of any single compiler that has frontends for the variety of
languages that we compare. Our structural clone detection algorithm processes
reduced parse trees (Sect. 4.1) to eliminate nonessential details about parsing and
obtain a structure similar to ASTs.

Another source of disparity between trees generated by two grammars is that
the nonterminals are different. The other key insight of our structural algorithm
is that abstracting reduced parse trees by putting nonterminals in equivalence
classes (Sect. 4.2) strikes a balance between preserving necessary information
and smoothing out differences across languages.

Our structural algorithm proceeds by extracting functions from an abstracted
parse tree and then computes similarity scores between functions using the
Smith-Waterman local sequence alignment algorithm.
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Flattening a tree using a preorder traversal helps smooth out most remaining
inconsistencies between inter-language reduced parse trees. To demonstrate the
dissimilarities due to grammatical differences that preorder traversal removes,
see Fig. 3: a grammar that uses nested if statements will have a parse tree like
Fig. 3b, while a grammar that uses unnested if statements will look more like
Fig. 3c. As the else if cases become more numerous in the first grammar the
nesting becomes more severe, emphasizing the differences in the resulting parse
trees.

if ( exp ) block [else block] (G1)
if exp : block [elif exp : block]* [else block] (G2)

(a) Two different kinds of grammars for if statements.

G1 B1

G2 B2 E

if

if

(b) An example parse tree using the
nested if grammar (G1).

G1 B1 G2 B2 E

if

(c) An example parse tree using the
unnested if grammar (G2).

Fig. 3. Grammars and parse trees for nested vs. unnested if statements.

4.1 Precedence Woes

Some grammar definitions encode operator precedence into the grammar2,
whereas others use facilities provided by the parser generators to encode the
precedence. Direct encoding of precedence causes spurious chains of nontermi-
nals in the resulting parse tree, which would be removed when the parse tree is
converted to an AST. We collapse the chains of nonterminals encountered in a
parse tree for the direct encoding case to remove the chains and mitigate this
disparity between different styles of grammars. Figure 4 demonstrates the kinds
of issues that are apparent when a grammar hard-codes precedence—because
precedence in this case appears in the form of nested productions, we always
see “AdditiveExpression” even when there is only a multiplication expression
present; this will throw off any clone detector that is working directly on plain
parse trees.

If precedence is handled indirectly through the parser generator, then the
resulting parse tree is much closer to an AST. This is an example of an issue
that only arises in a cross-language setting, and which makes cross-language
clone detection strictly more difficult than same-language clone detection. We
condense any chains of nonterminals, and we refer to the parse trees after this
stage as reduced parse trees.

2 We encountered this only in the C++ grammar during our evaluation.
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· · ·

MultiplicativeExpression

MultiplicativeExpression
‘*’

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘5’

AdditiveExpression

ConditionalExpression

Expression

PMExpression

CastExpression

UnaryExpression

PostfixExpression

PrimaryExpression

Literal

‘7’

AssignmentExpression

Fig. 4. A subtree of the original C++ parse tree for the text “5*7”.

4.2 Abstracting Parse Tree Nonterminals

Consider the two reduced parse trees for the expression binarySearch(array,
mid+1, high, x) in Figs. 5a and b. Although they look similar to the naked eye,
because the node names are different, even a tree edit distance algorithm would
say that the trees are not similar at all. We thus need to abstract the nonterminal
names while preserving essential information about the tree structure. After
performing this abstraction, we call the resulting parse trees abstracted parse
trees.

Primary

Primary

Primary

PrimaryPrimary

Literal

AdditiveExpression

ExpressionList

FunctionCall

(a) Reduced parse tree
from a Java parser .

IdentifierExpression

IdentifierExpression AdditiveExpression

ArgumentList

IdentifierExpression

IdentifierExpressionIdentifierExpression

NumericLiteral

ArgumentsExpression

(b) Reduced parse tree from a
JavaScript parser .

c2

c2

c2 c4

c2 c2

c3

c5

c1

(c) Abstraction of the trees in
Figures 5a and 5b .

Fig. 5. Reduced parse trees for expression binarySearch(array, mid+1, high, x) in
Java and JavaScript, and their abstraction. The terminals are omitted for simplicity.

Our method instead groups node types with similar meanings across lan-
guages, so that node types that “mean” similar things are in the same group.
To do this, we manually categorize node types into equivalence classes once
per pair of languages. For example, consider the equivalence classes c1 =
{FunctionCall, ArgumentsExpression}, c2 = {Primary, IdentifierExpression},
c3 = {ArgumentList, ExpressionList}, c4 = {NumericLiteral, Literal}, c5 =
{AdditiveExpression} and the set C = {c1, c2, c3, c4, c5}. After replacing each
node in Figs. 5a and b with its equivalence class in C, we end up with trees that
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are exactly the same (Fig. 5c). In this specific example the abstracted trees are
the same, though this is not always the case in practice.

We define the abstraction algorithm in two parts: EqClassMapOf(C) pro-
duces a map from each node to a symbol corresponding to its equivalence class.
Abstract(tree,map) does the abstraction by traversing the given tree bottom up
and applying the map. It removes the nonterminals which do not belong to any
equivalence class. When the abstraction algorithm removes a node, it connects
any children of the removed node to the removed node’s parent.

4.3 Sequence Alignment for Clone Detection

Linearizing the trees via a preorder traversal of the nodes will remove most
traces of the structural differences demonstrated in Fig. 3. Moreover, the state
of the art tree edit distance algorithms are not as scalable as sequence alignment
algorithms3. These observations led us to explore sequence alignment algorithms
as an alternative to tree-edit distance. Levenshtein distance is a popular choice
in this category. Smith-Waterman is strictly more general than Levenshtein dis-
tance, and it supports assigning weights to different elements in the sequence.
Hence, we use the Smith-Waterman algorithm on preordered trees to compute
similarity scores. We evaluate the precision and recall of both Smith-Waterman
and tree edit distance in Sect. 6 and observe that sequence alignment performs
better in terms of precision and scalability.

We convert function subtrees to sequences by computing the preorder traver-
sal. Finally, we execute Smith-Waterman using custom weights on each sequence
pair and normalize the resulting score using the normalization factor Z described
below. We chose the weights based on the hypothesis that certain nodes like con-
ditionals indicate important program structure, and should generally appear in
the same order in a cloned pair of functions; therefore, we assign higher weights
to penalize the function pairs in which this alignment does not occur. In the
algorithm, the function SmithWaterman(a, b,M, g) computes a similarity score
between two sequences a and b using the Smith-Waterman algorithm with sub-
stitution matrix M and linear gap penalty coefficient g; a detailed explanation
of these parameters can be found in [2].

Normalizing Smith-Waterman results. The result of the Smith-Waterman
algorithm depends on the size of the input, and longer sequence pairs have
higher scores. In order to find both short and long clones, we normalize the
resulting similarity score from the Smith-Waterman algorithm to neutralize the
bias towards longer clones.

We define the self-similarity score of a sequence a as the score assigned
to the pair (a, a) by the unnormalized Smith-Waterman algorithm; denote
this score S(a). We normalize score assigned to a pair (a, b) by 1

Z where
Z = max {S(a), S(b)}. Note that Z is an upper bound for the score obtained
by Smith-Waterman, and the score is equal to Z if and only if a = b. Thus,
3 APTED, the state of the art tree edit distance algorithm has a time complexity of

O(n3) [20] whereas the variant of Smith-Waterman algorithm we use is O(n2) [2].



256 L. Nichols et al.

using the normalization factor 1
Z is useful if one is looking for similar whole

functions rather than looking for a small snippet in a larger piece of code.

5 Hybrid Algorithm

Combining nominal and structural clone detection in a cross-language setting
provides the best of both worlds, and mitigates any issues that running just one
detection method might have.

Identifier names carry some meaning about the programmer intent and give a
code snippet context. On the other hand, structure of code (conditionals, loops,
function calls etc.) also carry information about programmer intent. Without
this structural information, we might misidentify two pieces of code as clones.
Our hybrid algorithm is guided by structural information while consulting the
Nominal algorithm to use local context within structurally similar pieces of code.

5.1 Our Nominal Algorithm

We have adapted CLCMiner’s algorithm to work on functions as our purely
Nominal algorithm. For a given pair of functions (f1, f2), our nominal matching
algorithm consists of two parts.

The first part takes a function f , removes the comments and splits the tokens
on each non-letter character (such as underscores or dashes). It then splits the
camel case tokens into words and converts them to lowercase—each function
becomes a bag of words that is represented by a characteristic vector, which holds
the number of occurrences of each word. We denote the resulting characteristic
vector as v(f).

The second part of the algorithm computes a normalized distance between the
two characteristic vectors v1, v2 according to the formula d(v1, v2) = ‖v1−v2‖1

‖v1‖1+‖v2‖1

where ‖·‖1 is the �1 norm (i.e., the sum of the absolute values of every entry in
the vector). This algorithm computes a distance between two given functions; to
make it comparable to the other algorithms, we use 1 − d(v1, v2) as a similarity
score.

5.2 Full Algorithm

Our full algorithm is provided in our tech report [18]. It is a combination of the
structural and nominal algorithms: we linearize the parse trees, and consecutive
terminal nodes become bags of words. Nonterminals are compared using our
structural method, and bags of words are compared using our nominal method.

6 Evaluation

In this section we compare our work against existing work on both cross-language
and same-language clone detection.
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6.1 Implementation and Environment

We have implemented our tool Fett in Scala and used the ANTLR parser
framework as its front end, so that any language with an ANTLR grammar can
be easily connected.

To test whether Fett can handle same-language clone detection with similar
accuracy as specialized, language-specific tools, we configured NiCad 4.0 [23] to
work at the function-level granularity and experimented with configurations until
we found the best-performing one for our tests4.

Because we are comparing parse trees, we also want to determine how
well we compete against the state-of-the-art tree edit distance algorithms, thus
we compare one data set with APTED [19,20]. We normalize the similarities
using the method described in [17], and, as this normalization method requires
a metric distance, we could not introduce weights for matches. We can still
weight mismatches, though. We found that the parameters mismatch = 1, dele-
tion = insertion = 5, match =0 gave us the best results overall.

We chose the threshold for ignored functions (defined in Sect. 4.3) to be
θ = 35 for every experiment, and the exact tolerance parameters are given below
for each case. We used the same set of equivalence classes with the same weights
for all cases: conditional, loop, return, and function call were all weighted 5;
assignments were weighted 2; and all other considered nodes were weighted 1.

Our experiments were run on a computer with an Intel i7 4790 3.6 GHz
processor. Fett, Structural, Tree Edit Distance, and Nominal were given 8 GB
maximum heap size and were set to use 4 threads.

6.2 Methodology

We used the standard statistical metrics of precision, recall, and F -measure to
quantitatively assess the effectiveness of our different techniques.

Due to the sheer amount of possible clone candidates in large projects, it
is difficult to manually obtain complete ground truth for clones in real-world
programs. Hence, we created two separate data sets for evaluation:

Manual programs set (handwritten set). We implemented a set of small
programs in different languages to create a setting in which we have complete
knowledge of whether a pair of functions are clones. Statistics about the code
are in Table 1.

Randomly sampled program set (large set). We chose four libraries that
have implementations in different languages and set the tolerance parameters5

defined in our algorithm (see [18]) to give the best results on a per-language
4 NiCad: threshold =0.5, minsize = 4, maxsize = 2500, rename=blind, filter =none,

abstract=none, normalize =none.
5 For Fett: μ = 6 (match coefficient) and g = −4 (gap penalty) for the case of compar-

ing Java and JavaScript, and (μ, g) = (9, −1) for Java/C++ and JavaScript/C++,
and (8, −3) for Java/Java. The nominal multiplier was set to 2 for all but the
Java/C++ and JavaScript/C++ cases, where it was set to 3. For the Structural algo-
rithm: (7, −1) for JavaScript/Java, (8, −4) for Java/C++, (0.5, −2) for Java/Java,
and (9, −4) for JavaScript/C++.
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Table 1. Statistics of handwritten clones.

Language Pair LoC #Functions #Pairs #Clones

Java 201 12
132 11

JavaScript 177 11

Java 201 12
144 12

C++ 195 12

JavaScript 177 11
132 11

C++ 195 12

pair basis. We randomly sampled functions from the files with the same names
(ignoring extensions) and manually checked the pairs to create a sample with
ground truth—this is essentially the sampling strategy used by Cheng et al. [8]
applied to functions instead of diffs. We chose to reuse this sampling strategy
due to the manual nature of our evaluation, and because we only possess finite
human resources; it does not reflect the true distribution of clones, as function
clone pairs are unlikely to be chosen in a standard uniform random sample—
had we gone that route, our precision and recall scores would not have been
meaningful. We are not aware of a better solution to this problem.

The first three libraries considered for this set are: the ANTLR parser frame-
work, version 4 [3]; the toxiclibs computational design library [26]; and the ZXing
barcode image processing library [28]. We also considered two ports of the LAME
MP3 encoding library in different languages that were ported by different devel-
opers to assess the efficacy of clone detection tools in such a scenario: lamejs, a
JavaScript port [16]; and java-lame, a Java port [12]. Statistics about the libraries
are in Table 2.

Table 2. Statistics of libraries considered for evaluation. LoC: non-blank non-comment
lines of code, Fun’s: # of functions found in each project, Nont’l (Nontrivial) Fun’s:
# of functions whose reduced parse trees are > θ (the chosen threshold), Pairs: the #
of possible fun. pairs, Same-File Pairs: # of pairs of functions coming from files with
the same name (ignoring extensions), Sel’d: # of selected pairs, Runtime: total time
(H:M:S) to run our method.

Data set Library Lang. Pair LoC Fun’s Nont’l Fun’s Pairs Same-File Pairs Sel’d Runtime Clones

antlrj ANTLR Java 13,770 1,393 694 240,471 4,942 505 0:56:18 14
Java 13,770 1,393 694

antlrjsj ANTLR Java 13,770 1,393 694 281,070 6,240 663 0:25:01 45
JavaScript 7,323 728 405

antlrcppjs ANTLR C++ 15,766 1,222 480 194,400 3,762 752 0:17:11 17
JavaScript 7,323 728 405

toxic toxiclibs Java 36,178 3,734 2,156 5,004,076 11,637 1,060 3:01:12 63
JavaScript 36,976 4,108 2,321

zxing ZXing Java 38,968 2,659 1,689 684,045 1,388 254 2:10:51 45
C++ 22,784 866 405

lame java-lame Java 20,950 575 436 101,152 4,645 873 0:27:37 34
lamejs JavaScript 11,112 285 232
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6.3 Results

For our main set of tests, we compare Fett against (1) our purely Structural
algorithm (i.e., no token similarity), and (2) our Nominal algorithm. We also
apply the APTED tree edit distance algorithm combined with our abstraction
method on our handwritten data set; tree edit distance takes at least an order
of magnitude longer than the other tools, and we did not evaluate the large data
set using tree edit distance because of this and due to its poor performance on
the handwritten tests. We use NiCad on the Java-Java same-language case of
our large data set.

Cumulative clone ratios. We look at the graphs of cumulative clone distri-
butions to choose a good cut-off point for each of the three techniques. These
graphs were originally used in [8], and they are meant to give an intuition about
where a clone detector separates clones from non-clones.

Similarity vs. cumulative clone ratio graphs track the ratio of clones to non-
clones as the similarity score varies from 1.0 to 0. For example, at point 0.4
on the similarity axis, we plot the ratio of clones to non-clones of all samples
with similarity scores > 0.4. A successful clone detector would have a similarity
value at which there is a significant drop in this ratio, and that would create
the optimal cutoff point. A clone detector may not assign very high scores to
any pairs based on its similarity metric; in such cases, we start the plot from
the first nonempty bin. Figure 7 shows the cumulative clone ratios for antlrj and
toxic; graphs of other test cases are omitted because of space constraints, but
they are of similar overall shape. We chose a cutoff point for each clone detector
based on the drops from these graphs (e.g. we chose the cutoff point of 0.4 for
Fett’s Java/Java case). The relative shape of the graph is more important than
absolute scores—squishing or stretching the similarity scores only affects the
choice of the optimal cutoff point.

Handwritten test set. When evaluating the manually created (handwritten)
data set, we used the same parameters μ = 7, g = −2 overall for all pairs of func-
tions in the data set and considered the combined results for both Fett and the
Structural algorithm. Fett had its nominal multiplier set to 2. Figure 6 shows
the clone distributions of different clone detection methods for the handwritten
program set; and precision, recall, and F -measure (harmonic mean of precision
and recall) for this set are given in Table 3. Fett and the Structural algorithm
had a cutoff of 0.5, and the Nominal algorithm’s cutoff was 0.6.

Handwritten test set discussion. The table and the figures paint a similar
picture. Both Fett and the Structural algorithm seem to perform the best
on this data set—the graphs for the higher similarity scores have a high clone
ratio, and there is a sharp decline visible in both graphs as the similarity score
is allowed to lower. The Nominal algorithm has a less sharp drop, and this
indicates that it is assigning mid-range similarity scores with low precision. It is
also notable that tree edit distance does so poorly; we believe that this is because
we are not allowed to give weights to matches, as described above.
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Fig. 6. Cumulative clone ratio
distribution for handwritten pro-
grams. Results of Fett and struc-
tural coincide.

Table 3. Precision, recall, and F -measure for
handwritten program set.

Data set Method Precision Recall F -measure

Handwritten

Fett 1.000 0.970 0.985

Structural 1.000 0.970 0.985

Nominal 0.886 0.939 0.912

Tree Edit Dist. 0.821 0.697 0.754

Large test set. We now present and discuss all the cross-language results for
our large test set. The same-language case is different from the cross-language
cases, so the reader is asked to consult Fig. 7b, which is indicative of all the
cross-language cases, and not Fig. 7a.

Cutoffs were chosen on a per-language pair basis that maximized a given
tool’s score. For Fett, for the three JavaScript/Java test cases and the
Java/C++ test case, we used a cutoff of 0.4, and the rest used a cutoff of 0.5.
For the Structural algorithm, we used a cutoff of 0.6 for JavaScript/Java, 0.5
for Java/C++ and JavaScript/C++, and 0.4 for Java/Java. For the Nominal
algorithm, we used a cutoff of 0.5 for JavaScript/C++, and 0.6 for the rest.

Figure 8 shows precision, recall and F -measure of all the tools we compared
for each data set and provides a visual and quantitative assessment of efficacy
of all the techniques.

Large test set discussion. Clone ratios relate most closely to the precision
scores for each data set, and from the results it appears that the Structural
algorithm generally has the upper hand in this area—applying the intuition
described above, we see that the Structural algorithm seems to cut off at the
sharpest angle in most cases. It makes sense why this is the case, as pieces of
code that look similar across languages are generally prime candidates for clones.

Precision is of course not the whole story. It is clear that Fett is able to take
the best of both the nominal and structural worlds, and the F -measure is always
the highest. When it comes to Structural’s results, the toxiclibs case is an outlier,
where we found that there were more cases of the structural differences; Fett’s
hybrid structural/nominal algorithm was able to make up for this, though.

Same-language test case. To assess performance on same-language clones,
we compared our tool with NiCad on the Java version of ANTLR. Returning to
the same figures, the antlrj case is quite similar to the other language pairs in
terms of precision, recall, and F -measure, which demonstrates that our tool is
capable of holding its ground in a same-language setting.

Fett performs slightly worse (by one percentage point in terms of F -
measure) than NiCad. This result is not surprising because NiCad uses more
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Fig. 7. Similarity vs. cumulative clone ratio for the samples from the large open-source
program set.

Fig. 8. Precision, recall and F -measure of clone detection tools on the large program
set.

information about the code whereas we deliberately discard some information
by abstracting parse trees to work in a cross-language setting. Even with our fil-
tering of parse trees, Fett’s F -measure score is very close, and this shows that
our tool is capable of producing similar results to a dedicated same-language
tool.

Overall results. We observe that the Fett’s hybrid algorithm, in terms of F -
measure, outperforms both the Nominal algorithm and the Structural algorithm
consistently in our large test set experiments.

Limitations. Fett may have difficulty scaling to repositories with large num-
bers of large functions—a run of Fett on the entire toxiclibs library (comparing
every function pair, not just same file pairs) takes 5.13 h—and so further improve-
ments will be required to enable such a target. One possible future direction for
improvements could be to develop semi-automated solutions where we have the
user use her domain knowledge and pick out the files or functions to compare
beforehand, or the user can prune the search space by telling the tool which
modules are unrelated.

7 Conclusion

We have presented Fett, a hybrid structural/nominal clone detection method
that is capable of operating across programming languages and that is generic in
the sense that it does not require any languages involved to belong to the same
language family. It is syntax-based, uses ready-made grammar specifications, and
requires minimal manual effort—the keys to the process are syntax abstraction
and sequence alignment. We have provided a two-part evaluation of Fett, and
we empirically demonstrate on multiple test sets that Fett is accurate in terms
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of the standard metrics of precision and recall. We also confirm that our method
is on a par with previous work when it comes to same-language clone detection,
thus proving that it is strictly more general than single-language methods.

Acknowledgments. This work was supported by NSF CCF-1319060.
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Abstract. In the Matlab Simulink environment, systems can be mod-
elled using Simulink block diagrams and Stateflow state charts. While
stateful logic is more naturally modelled using Stateflow, in practice com-
plex block diagrams are often used instead, resulting in models that are
hard to understand and maintain. In order to improve the maintainabil-
ity and understandability of large industrial models, this paper presents
a strategy for refactoring Simulink block diagrams implementing stateful
logic into functionally equivalent Stateflow state charts that more nat-
urally represent the intended behaviour. To bridge the gap between the
syntax of block diagrams and state charts, Mealy machines represented
by tabular expressions are used as an intermediate representation. The
compositional language of block diagrams is used to combine tables mod-
elling individual blocks into a table for the entire block diagram which
describes the high level state machine encoded in the Simulink subsys-
tem. A prototype tool that performs the translation from Simulink to
Stateflow automatically is discussed.

Keywords: Simulink · Stateflow · Refactoring · Mealy machines ·
Tabular expressions · Monoidal categories

1 Introduction

The adoption of Model-Based Design in the development of embedded control
systems across industries has led to the wide use of Matlab/Simulink/Stateflow
as a supporting environment. The modelling capabilities provided by Simulink
block diagrams and Stateflow state charts complement each other by providing
languages for functional and stateful system specifications. Due to their individ-
ual strengths, one modelling formalism may be preferable for specifying certain
classes of behaviours. For example, the MathWorks Automotive Advisory Board
(MAAB) guidelines [25] advise the use of Stateflow over Simulink for modelling
stateful logic. This is because Simulink block diagrams that are used to model
mode switching logic are often cumbersome and difficult to understand. In this
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case, Stateflow state charts should be used to implement the same logic resulting
in a structure which is easier to read, maintain, and verify.

For example, each model in Fig. 1 executes periodically to update its state
and outputs. When the block diagram in Fig. 1a updates, each signal line is
given a value and each block uses the values of the incoming signals to determine
the values of the outgoing signals. When the state chart in Fig. 1b updates, it
checks each condition on transitions leaving its current mode (i.e. state node).
If a condition is satisfied, the state chart transitions to the associated target
mode and executes the exit actions of the mode it is leaving, the actions on the
transition it is taking, and the entry actions of the mode it is entering. If no
transitions are valid, the state chart remains in its current mode and executes
the during actions of that mode.

Fig. 1. Model of a timer in Simulink and Stateflow.

The Simulink and Stateflow models shown in Fig. 1 are functionally equiv-
alent. Both models capture a timer with one boolean input, start , and one
boolean output, running . When start becomes true, the system starts count-
ing down from ten to zero. While the system is counting down, running is true.
Once the counter reaches zero, running is set to false and becomes true again
if start is true. Although there are relatively few blocks in Fig. 1a, it is difficult
to understand how this model achieves the behaviour while the state chart in
Fig. 1b clearly captures the system’s modes and the conditions triggering mode
changes.

Our industrial experience has identified the need to refactor Simulink block
diagrams to Stateflow state charts for easier comprehension and maintenance.
More precisely, practice shows that Simulink is often used to specify stateful logic
even though Stateflow would be a more appropriate implementation language.
This might occur during model evolution when modes of operation are added
to previously mode-free block diagrams, and developers find it easier to modify
the existing Simulink logic to accommodate the change than to reproduce the
behaviour from scratch in a state chart. Other times, a developer’s preference
dictates the choice of modelling formalism. Manual refactoring from Simulink
to Stateflow, although feasible, is a time consuming and error prone process
which requires that the behaviour of complex Simulink models is completely
understood.
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This paper presents an approach to translate block diagrams into
behaviourally equivalent state charts. The approach converts individual blocks
into tabular expressions [21] to expose their latent state variables and decision
logic. The data flow between blocks is then used to combine tables into a single,
larger table describing the entire block diagram. Then, the elements of state
charts (states, transitions) are identified by reconfiguring the combined tables
into a form similar to state charts. Behavioural equivalence is established by
giving semantics to block diagrams, state charts, and the intermediate tables as
Mealy machines. The paper’s main contributions are: (i) A method for translat-
ing Simulink block diagrams to Stateflow state charts via tabular expressions.
(ii) A categorical framework for composing Mealy machines by combining their
update functions as the basis of the translation. (iii) A prototype tool imple-
menting the translation from Simulink to Stateflow.

This paper is organized as follows. Section 2 describes how we model sys-
tems and our categorical framework for combining them. Section 3 illustrates
the translation method with a simple example. Section 4 describes the applica-
tion of the categorical framework to convert block diagrams to tabular expres-
sions. Section 5 explains how tabular expressions are converted to state charts.
Section 6 describes the prototype tool. Related work is covered in Sect. 7 and the
paper concludes with Sect. 8.

2 Background: Modelling Systems and Their
Combinations

This section describes the formalisms underlying the proposed translation app-
roach: Mealy machines, tabular expressions, and monoidal categories.

2.1 Mealy Machines: Modelling Stateful Systems

To preserve behaviour, the semantics of both block diagrams and state charts
are modeled using Mealy machines.

Definition 1. A Mealy Machine m is a tuple (S, s0, Σ, Λ, ud), where S is a
set of states (the state space), s0 ∈ S (the initial state), Σ is a set of input
values (the input alphabet), Λ is a set of output values (the output alphabet),
and ud : Σ × S → Λ × S is a function (the update function) which computes the
current output and next state from the current input and current state.

For example, the unit delay 1
z block labelled counter in Fig. 1a can be mod-

elled as the Mealy machine delay = (R, 0,R,R, shift). The block has an input
variable (port) i, an output variable (port) o, and an internal state variable
counter , where i, o, counter ∈ R. When the block updates, it outputs the cur-
rent state value o = counter , and updates the state to store the current input
value counter ′ = i, i.e. (o, counter ′) = shift(i, counter), where shift : R2 → R2

is defined as shift(i, counter) = (counter , i).
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While Simulink has no formal semantics, our use of Mealy machines to model
their behaviours is consistent with the informal semantics described in Chap. 3
of the Simulink User Guide [26].

2.2 Tabular Expressions: Representing Conditional Behaviours

Both block diagrams and state charts can specify decision logic, but in rather dis-
tinct ways. We unify the presentation of decision logic in the two formalisms using
two similar forms of tabular expressions: horizontal condition tables (HCTs) as
presented in [28]; and state transition tables (STTs), which specialize HCTs to
describe state charts similarly to the ones presented in [24].

Fig. 2. Intermediate representations

An HCT is represented in Fig. 2a. It is a tabular representation of the update
function of a Mealy machine which models the block diagram from Fig. 1a. Given
the variable values start = true and counter = 0, the table can be evaluated
from left to right in the following way. Since the first condition start of the first
column is satisfied, and the sub-condition counter ≤ 0 in the second row of the
second column is satisfied, we use the second row to determine that running is
given the value of false, and counter ′ is given a value of 10.

The second tabular representation, STTs, are also used to represent the
update function of Mealy machines. Their special format closely matches the
state charts they model. For example, the STT in Fig. 2b represents the state
chart in Fig. 1b. Each mode is listed in the first column, and the condition of
each transition is listed in the second column, adjacent to the mode they leave.
The columns after the double bars describe how each output/state variable is
updated by the actions of the associated transition. The final column of each
row indicates which mode the associated transition leads to.

Tabular expressions were given a precise semantics in [10]. The structure
of tables can be rearranged without changing the function they describe, e.g.,
conditions can be reordered as in [4]; conditions can be combined with sub-
conditions (via conjunction) to flatten the hierarchy of conditions; and normal
expressions in the table can be simplified by assuming the conditions to their
left hold.
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2.3 Categorical Framework: Combining Systems

The key idea of block diagrams is to combine simple, predefined blocks to
describe a behaviour. The language of monoidal categories explains how to break
down the complex data flow of block diagrams and describe it in terms of simpler
data flow [5] (i.e. cascading blocks in sequence, placing blocks in parallel, and
feeding outputs of blocks back to their inputs).

Monoidal categories describe data flow in an abstract setting where blocks
are called morphisms. Simple data flow constructs are described as operations
on morphisms, which can be visualized using block diagrams called string dia-
grams [5,22]. In this section, we discuss the wiring constructs in the concrete
setting of the category Set, where morphisms are functions from an input set
of tuples to an output set of tuples (called the domain/codomain objects of the
morphism).

Fig. 3. Functional fragment of timer example

A fragment of the block diagram from Fig. 1a can be used to illustrate the
idea behind the basic data flow operations. The string diagram in Fig. 3 describes
a function that is broken down into sub-functions combined via two operations:
sequential combination (denoted “;”) and parallel combination (denoted “⊗”).
The fragment describes a function g from R×B to R. Each wire extending from
the left/right of the large compound function indicates an input/output value,
respectively. The wire is labelled with the set from which the value comes. If
there are multiple wires, the domain or codomain of the function is given as the
Cartesian product of those sets. In monoidal categories, the Cartesian product
is generalized as an operation called the monoidal product on objects.

The function g is composed of a sequence of sub-functions, g = f1; f2; f3; f4.
The sub-functions (except for f4) consist of functions composed in parallel with
wires and other functions. The wiring “data routing functions” are then defined
as follows: a normal wire is the identity function idX = {(x) �→ (x)}; wires
crossing over each other define the braiding function BrA,B = {(a, b) �→ (b, a)};
and branching wires are called the diagonal function ΔX = {(x) �→ (x, x)}. The
functions are indexed with the set(s) over which they are defined. Morphisms



SL2SF: Refactoring Simulink to Stateflow 269

like these functions have special status in monoidal categories and must satisfy
some axioms to verify that they “act like wiring” in the host category.

Sub-function f3 can now be described as f3 = add ⊗ idR ⊗ idR. Functions
combined in parallel have domains/codomains which are the Cartesian products
of the domain/codomain of the component functions. The parallel combination
uses each component function independently to calculate each component of
the output. For example, taking add = {(x1, x2) �→ (x1 + x2)}, the function
add ⊗ idR ⊗ idR is given by {(x1, x2, x3, x4) �→ (x1 + x2, x3, x4)}. In monoidal
categories this operation is generalized as the monoidal product on morphisms,
where the domain/codomain of a product morphism is given by the monoidal
product of the domain/codomain objects of the component morphisms. It is
notable that we can also describe sub-function f3 as f3 = add ⊗ idR2 , where
the two wires are treated as one function. This is useful, for example, when
describing the sub-function f2 as f2 = BrR2,R ⊗ swB.

Describing f1 requires modelling constant blocks as functions. Therefore,
constants are described as functions with inputs from the singleton set 1 =
{()}, and we draw functions with domain/codomain 1 as blocks with no wires
extending from the left/right side, respectively. Functions modelling constant
blocks, [k] = {() �→ (k)}, always take the empty tuple as input, and always
produce the same value k as output. The function f1 can now be described
as f1 = ΔR ⊗ [−1] ⊗ [10] ⊗ idB ⊗ [0]. Objects like 1 have special status in
monoidal categories and are called the monoidal unit. Taking their monoidal
product with any other object X yields the same object X. Intuitively, this
means that concatenating any tuple (x1, .., xn) with the empty tuple () does
nothing. This explains why the product of the domains of the functions in f1 is
the set R × 1 × 1 × B × 1, but the domain of f1 is described as R × B—the
former simplifies to the latter.

We now describe the entire function g in terms of simple data flow:

g = (ΔR ⊗ [−1] ⊗ [10] ⊗ idB ⊗ [0]); (BrR2,R ⊗ swB); (add ⊗ idR ⊗ idR); swR

However, this example does not contain feedback loops. Loops are obtained
when inputs and outputs of a function are connected by some common wire(s),
such as the wire connecting the first input and first output of the inner box in
Fig. 4a. Adding looping wires to a function f : X × A → X × B yields a new
function f∗ : A → B (e.g., the outer box in Fig. 4a) where f∗(a) = b if there
exists a unique x ∈ X such that f(x, a) = (x, b). When such an x exists for
each a ∈ A, the loop configuration is considered well-formed. Following [11], we
encode the addition of such loops with a trace operation: TrX

A,B(f) = f∗.
For example, consider the function f = {(x, y) �→ (x + x, x + y)}. In the

function TrRR,R(f) the trace applies the constraint that the first input is equal
to the first output (i.e. x = x + x) to which there is a unique solution: x = 0.
Given any y ∈ R, f(0, y) = (0, y), therefore TrRR,R(f) = {(y) �→ (y)}. This
approach uses fixed point equations to specify traces, which is generalized by
the approach from [8]. Since these fixed point equations are not guaranteed to
have a unique solution, the trace operation is partial—it is only defined for loop
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configurations that are well-formed. Partial traces have been described in [15],
and the guarded structure introduced in [7] compositionally describes which
feedback configurations are valid. For the loops to “act like wiring”, certain
axioms must be satisfied, e.g., the yanking axiom (as shown in Fig. 4b) states
that TrX

X,X(BrX,X) = idX for any set X.

(a) TrX
A,B(f) (b) Yanking: TrX

X,X(BrX,X) = idX

Fig. 4. String diagrams for traced categories

3 Translation Strategy

The translation strategy is composed of three steps. This section illustrates these
steps by considering the example from Fig. 1.

First, the decision logic implemented by the block diagram is encoded as
the HCT in Fig. 8a. This step is described in Sect. 4. In the second step, the
representation is simplified as, depending on the value of counter , only some rows
of the table can be valid. By associating a certain range of state variable values
with a mode of operation, we simplify the representation by considering only
the conditions which are possible. This allows us to leverage the conditions from
HCTs to determine the modes of operation by rearranging HCTs into equivalent
STTs such as Fig. 2b. The final step trivially rearranges the information from
STTs into a state chart by creating a transition for each row. The conversion from
HCTs to STTs to state charts is described in Sect. 5, and possible simplifications
to the resulting state chart are discussed.

Even with such a simple example, the importance of automated refactoring
becomes apparent. If the model were to be refactored manually, a state chart
that is not equivalent to the block diagram could be created unintentionally.
For example, one can manually produce a state chart that transitions out of the
Running mode when counter is zero, rather than one.

4 Block Diagrams to HCTs: Mealy Composition

The first step of the translation strategy is to model the entire block diagram
as a Mealy machine whose update function is represented as a HCT. To achieve
this, Simulink block diagrams are modelled in a category Mealy, where mor-
phisms (i.e. blocks) are Mealy machines, not functions. We then show how
the update functions of composite Mealy machines built from the operations
described in Sect. 2.3 can be built from the update functions of the component
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Mealy machines using the same operations on functions. Then, the predefined
update functions of individual blocks can be represented using HCTs and com-
bined according to the functional combinations derived from the block diagram.

4.1 Mealy Machines and Their Combinations via Functions

In this section, we consider a category Mealy whose objects are sets, and whose
morphisms m : Σ → Λ are Mealy machines with input alphabet Σ, and output
alphabet Λ. Composition of morphisms is given by the usual definition of cascade
composition of Mealy machines [13]. We also introduce a monoidal product,
giving the category a monoidal structure. It is defined on objects as the Cartesian
product of sets, and on morphisms as the parallel composition of Mealy machines.
The unit of the monoidal product is the same as for sets, the set containing one
element: 1. Considering equality of morphisms up to bisimilarity results in a
structure similar to the one used in [9] to describe symmetric lenses—according
to [9], this structure forms a (symmetric) monoidal category.

While the cascade/parallel composition of Mealy machines is well understood
(see, e.g. [13]), we introduce a definition for the update functions of the composed
machines which wires together the update functions of the individual machines.
Because string diagrams are used to represent both Mealy machines and their
update functions, let us introduce some graphical notation to differentiate them.
For Mealy machines, the string diagrams use black boxes to denote component
Mealy machines (e.g. Fig. 5a). The update function ud of a Mealy machine m can
be expressed using the projection mapping �m�ud = ud . For update functions,
the string diagram is decorated with grey backing to group the inputs/outputs of
the update function into two main components: the upper components describe
the inputs/outputs to the Mealy machine, and the lower components describe
the current/next state (e.g. Fig. 5d).

Fig. 5. Composite Mealy machines and their update functions
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Two Mealy machines m1 = (S1, s
1
0, Σ,Θ, ud1), and m2 = (S2, s

2
0, Θ, Λ, ud2)

can be composed in sequence as illustrated by Fig. 5a to form the composite
Mealy machine m1;m2 = (S1 × S2, (s1

0, s
2
0), Σ, Λ, ud′). The update function ud′

for m1;m2 with the string diagram in Fig. 5d, is defined as:

�m1;m2�ud = (�m1�ud ⊗ idS2); (idΘ ⊗ BrS1,S2); (�m2�ud ⊗ idS1); (idΛ ⊗ BrS2,S1)

The parallel composition of m1 and m2 is the Mealy machine m1 ⊗ m2 =
(S1 × S2, (s1

0, s
2
0), Σ1 × Σ2, Λ1 × Λ2, ud′) as illustrated by Fig. 5b. The update

function ud′ for m1 ⊗ m2, with string diagram Fig. 5e, is defined as:

�m1 ⊗m2�ud = (idΣ1 ⊗BrΣ2,S1 ⊗ idS2); (�m1�ud ⊗�m2�ud); (idΛ1 ⊗BrS1,Λ2 ⊗ idS2)

Feedback configurations of Mealy machines (e.g., Fig. 5c) can be defined with
fixed-point equations, such as in [13]. We give an equivalent description in terms
of the trace operation in Set. A Mealy machine m = (S, s0, Θ×Σ,Θ×Λ, ud) can
be traced to form the machine TrΘ

Σ,Λ(m) = (S, s0, Σ, Λ, ud′) where the update
function ud ′ is defined as �TrΘ

Σ,Λ(m)�ud = TrΘ
Σ×S,Λ×S(�m�ud) as illustrated by

Fig. 5f. Since this operation is defined in terms of traces in Set, many of the
properties of traces can be derived from traces in Set.

The above results mean that if we know the update functions of individual
Simulink blocks, then we can model the update functions of block diagrams
which configure those blocks in sequence, in parallel, and with feedback.

4.2 Functional Embedding and Wiring Morphisms

In this section, we address the fact that a large part of a Simulink block diagram
looks very functional (i.e. stateless). For example, many of the blocks and wiring
in Fig. 1a can be modelled as functions. For this reason, we consider a class
of Mealy machines which produce outputs as a function of only their current
inputs. Any function f : X → Y can be described as the Mealy machine Mf =
(1, (),X, Y, f), with one state, and update function f (see Fig. 6a). The mapping
M embeds morphisms from Set into the category Mealy, because any two
embedded functions Mf and Mg interact in Mealy very similarly to the way
they interact as functions in Set.

Fig. 6. Embedded functions and their interactions
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This explains how functional aspects of Simulink block diagrams can be mod-
elled with Mealy machines. For example, the block labelled Mode in Fig. 1a can
be modelled with the Mealy machine MswR. Perhaps more importantly, the
morphisms introduced to describe wiring in functional diagrams (i.e. idX , ΔX ,
BrA,B) can again be used to describe the same (functional) wiring for Mealy
machines. Therefore, in string diagrams representing Mealy machines, plain wires
represent the morphism MidX which carries data without changing it, branch-
ing wires represent the morphism MΔX which duplicates data, and crossing
wires represent the morphism MBrA,B which reorders the components of data.
The fact that MidX and MBrA,B “act like wiring” is established in [9].

This establishes how to model wiring and functional blocks in Simulink block
diagrams as Mealy machines. We can now use the operations from Sect. 4.1
to describe block diagrams which use complex wiring and functional blocks in
combinations with stateful blocks.

4.3 Block Diagrams to Horizontal Condition Tables

We have explained how the categorical structure from Sect. 2.3 applies to Mealy,
and related it to the same structure in Set. This framework allows us to
combine update functions of individual blocks into update functions of entire
block diagrams using the above definitions. For example, the update function
�MswR; delay�ud of the machine from Fig. 6b is equal to

(�MswR�ud ⊗ idR); (idR ⊗ Br1,R); (�delay�ud ⊗ id1); (idR ⊗ BrR,1),

as shown in Fig. 6c, where the “1” wire is drawn in grey to illustrate how it
achieves the data flow described by Fig. 5d (normally, this wire is not drawn).
This can be simplified, e.g., the final sequential sub-function idR⊗BrR,1 is given
by {(x, (y, ())) �→ (x, ((), y))} which simplifies to {(x, y) �→ (x, y)} by flatten-
ing tuples. Our presentation of monoidal categories skips the formalities which
describe this simplification, but it can be intuitively understood by considering
the data flow described in Fig. 6c if the grey wire were absent (as usual). Taking
�delay�ud = shift (as defined in Sect. 2.1) which we now describe as BrR,R and
using �MswR�ud = swR along with appropriate axioms over the wiring mor-
phisms, �MswR; delay�ud simplifies to (swR ⊗ idR); BrR,R. This simplification
can be intuitively understood by considering only the black data flow in Fig. 6c.
In the same way that we describe the functional data flow of Fig. 3, this app-
roach can be repeated to describe the entire block diagram in Fig. 1a, not just
the combination of blocks labelled Mode and counter.

This example illustrates how our categorical algebra for Mealy machines is
structurally similar to the one used in [6] which describes the algorithm that rep-
resents block diagrams in terms of sequential/parallel/feedback configurations
of components. The algorithm from [6] constructs descriptions which contain no
feedback operations. A similar result can be shown in our framework, allowing
us to produce trace-free descriptions of update functions in terms of the update
functions of their components.
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Fig. 7. The update function of a Mealy machine with feedback

As mentioned in Sect. 2.3, not all feedback configurations are valid. The valid-
ity of a feedback configuration describing a Mealy machine is decided by deter-
mining whether or not the trace on its update function is defined. In many
settings, the trace is defined if the aforementioned fixed-point equations have
a unique solution [13]. However, for Simulink models that are used to generate
embedded software, the configuration must satisfy a more strict validity con-
dition: there must be no algebraic loops. This means there can be no cyclic
dependencies in the underlying update function, any feedback can be trivially
removed by rearranging the components and wiring to “yank out” the loops
while preserving the connections between blocks. For example, Fig. 7 illustrates
how the update function of a simple feedback configuration can be rearranged
to remove loops. This can be formalized by the notion of vacuous guardedness
introduced in [7].

This means that the update functions of well-formed block diagrams can
be modelled without traces. In this manner, the update function of the block
diagram in Fig. 1a can be described as

BrB,R; ([−1]⊗ΔR⊗[10]⊗idB⊗[0]); (add⊗ΔR⊗swB); (idR2 ⊗BrR,R); (swR⊗gtz); BrR,B

where each individual function has a fixed definition, and can be represented
as a predefined tabular expression. Here gtz denotes the > 0 block labelled
IsRunning. Functions whose behaviours are not conditional are trivially rep-
resented by a table with a single condition: true.

HCTs—being representations of functions—can be composed like functions.
We modify the composition operation in [20] to describe HCTs so that we
can compose predefined tabular expressions as stated above. When compos-
ing two HCTs sequentially, the conditions of the first HCT appear first in the
composed HCT and the conditions of the second HCT are included as sub-
conditions. The conditions from the second HCT are evaluated using the out-
put values from the first one. Consider, for example, the composition of Fig. 8a
with Fig. 8b, where the output counter ′ of the first table is routed to the input
counter of the second (ignore the running output for now). Their composition
is shown in Fig. 8c (ignore the running and counter ′ outputs). The conditions
counter > 0 and start (and their complements) appear in the same configura-
tion as the first HCT. However, the sub-conditions (e.g. counter − 1 ≤ 0) come
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running counter ′

counter > 0 true counter − 1

counter ≤ 0
start false 10

¬start false 0

(a) ud

mode

counter > 0 Running

counter ≤ 0 Stopped

(b) md

running counter ′ mode ′

counter − 1 > 0 true counter − 1 Running
counter > 0

counter − 1 ≤ 0 true counter − 1 Stopped

10 > 0 false 10 Running
start

10 ≤ 0 false 10 Stopped
0 > 0 false 0 Running

counter ≤ 0
¬start

0 ≤ 0 false 0 Stopped

(c) ud+

Fig. 8. Introducing modes

from the conditions (counter ≤ 0) in the second HCT, evaluated with the values
(counter �→ counter − 1) from the row in the first HCT associated with the
parent condition (counter > 0). The conditions 10 > 0 and 0 > 0 (and their
complements) are generated in a similar manner, but because they are trivially
satisfied/impossible conditions, the sub-conditions/entire row can be removed
(the removable conditions/rows are shaded in Fig. 8c).

Similarly to the conditions, the output expressions of the second HCT are
evaluated with the corresponding values from the first HCT, and those are used
as the output expressions of the combined HCT. In Fig. 8b, the output values
for mode are constants, therefore they appear unchanged in Fig. 8c. For HCTs
composed in parallel, the conditions from the second HCT are once again used
as sub-conditions, but they are not modified. Similarly, the output expressions
from both HCTs are placed in the combined table unchanged.

The predefined HCTs representing each function in the equation above can be
combined using the operations described above to achieve a tabular expression
for the entire block diagram. For example, the tabular expression in Fig. 2a can
be obtained this way.

5 HCTs to STTs: Modes via Tables

The HCTs produced using the technique described in Sect. 4 are an intermediate
representation in our translation strategy. They illustrate the decision logic of
the system as a whole, but the logic is not related to state the way it is for state
charts, i.e., through modes. This section explains how HCTs are augmented with
modes to form STTs, and finally state charts.

5.1 Defining Modes

The STTs described in Sect. 2.2 have obvious similarities to state charts, but they
are just syntactic sugar for HCTs. STTs and state charts are modelled as Mealy
machines with a special state variable mode with values from an enumerated
set M (see, e.g., extended state machines in [2]). The cells in the first column
of STTs (see Fig. 2b) express conditions of the form mode = Running which
compare the value of mode to each element of M . The last column identifies the
updated value of mode ′. Therefore, the state spaces of Mealy machines modelling
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STTs and state charts have the form Q = S × M , where M is the set of modes,
and S contains tuples of the other state variable values.

A HCT produced via the techniques in the previous section describes
the update function ud of a Mealy machine m = (S, s0, Σ, Λ, ud). We will
enhance m with a state variable mode to produce a Mealy machine m+ =
(S ×M, (s0,mode0), Σ, Λ, ud+) whose update function is given by a HCT which
matches the format of an STT. To achieve the goal of improving readability, we
leverage the existing decision logic in HCTs.

When a state chart updates, it only considers the transitions leaving its
current mode, i.e., depending on its state, only some behaviours are possible.
The same dependence on state is expressed in HCTs by conditions which depend
only on the values of state variables, which will be referred to as state conditions.
For example, in Fig. 8a, if the condition counter > 0 is satisfied, the system can
only do one thing: decrement counter and set running to true. Our strategy
associates the condition counter > 0 with a mode of operation Running ∈ M ,
and replaces the original condition with mode = Running. We augment the
HCTs into STTs in a way that preserves the behaviour of the Mealy machines.

As the modes are all listed in the first column of an STT, the first augmen-
tation reorders conditions in HCTs so that the state conditions appear first. For
example, the conditions in Fig. 2a can be rearranged via the methods in [4] to
obtain Fig. 8a. While our example contains only one pair of state conditions,
HCTs describing general block diagrams may contain multiple nested state con-
ditions. The second augmentation uses conjunction to flatten nested state con-
ditions into a single column with a condition for each branch of the stateful
logic.

The augmented HCT now has a specific form (Fig. 8a) which superficially
resembles an STT, but the behaviour is unchanged. We now introduce a set
of modes M with each element associated with a distinct condition in the first
column of the augmented HCT. This association is defined by a function md :
S → M which maps tuples of state variable values to the mode whose associated
state condition is satisfied. This function is represented by an HCT with the state
conditions from the augmented HCT, and distinct values from M as outputs.
The md function for the timer example is given by the HCT in Fig. 8b.

Next, the Mealy machine is enhanced by introducing a state variable mode
with values from M . We design the enhancement to maintain the invariant
that the value of mode always corresponds with the state condition which
the other state variables satisfy. The invariant is satisfied by the initial state
(s0,md(s0)). The enhanced update function trivially preserves the original
behaviour by ignoring the value of mode, but updates mode′ to maintain the
invariant by evaluating md with the updated state variable values. The update
function is therefore defined as ud+ = (ud⊗!M ); (idΛ ⊗ (ΔS ; (idS ⊗md))), where
!M : M → 1 = {(mode) �→ ()} introduces an input whose value is discarded.
Since ud and md are given as HCTs (e.g. Fig. 8a and b), the enhanced update
function can be achieved through composition of tables (e.g. Fig. 8c).
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This enhanced Mealy machine operates within a subset of the state space S×
M where the aforementioned invariant holds. The validity of any state condition
can now be deduced from the value of the mode variable (e.g. (counter > 0) ⇔
(mode = Running)). Thus, replacing those conditions with the corresponding
modes in the HCT representation of ud+ does not modify its behaviour. This is
the final step in rearranging the HCT from Fig. 8c into the STT in Fig. 2b.

5.2 Converting to State Charts and Simplifying

The state chart in Fig. 9 implements the STT in Fig. 2b by creating a transition
for each row and by creating assignment actions to update state and output
variables. State charts produced in this manner can often be simplified by moving
common actions from transitions to entry/exit actions of modes, or by removing
transitions and performing the corresponding actions as during actions. For
example, the state chart in Fig. 9 simplifies to the one in Fig. 1b.

In the example given above, it is crucial that the new state variable mode is
tracked in addition to the existing variable counter . The mode variable tracks the
high level system state, but the counter variable is still important for tracking
the detailed system state. This additional information is not always important,
i.e., sometimes the mode is sufficient and the old state variable may be removed
from the description of the Mealy machine. This may happen if a Boolean state
variable generates a state condition; knowing the value of mode can be sufficient
to deduce the value of the original state variable. It is also possible that a state
variable from the block diagram stores more detailed information than necessary,
and knowing the mode is sufficient for the state chart to act. In these cases, the
unnecessary state variables can be removed from the state chart.

6 Prototype, Evaluation, and Future Work

The methodologies presented here have been used to develop a prototype tool
which automatically refactors Simulink model fragments to Stateflow [18]. The
tool supports a large subset of discrete Simulink blocks typically used for imple-
mentation of embedded software. The refactoring tool is implemented in Matlab
and integrates with Simulink allowing the user to select the blocks they would
like to replace. When the tool is invoked, it generates a Stateflow chart and uses
the Simulink Design Verifier [17] to verify that it is equivalent to the selected
blocks.

The prototype tool improves the readability of small to medium sized block
diagrams such as the one in Fig. 1a. However, we found that the stateful logic of
complex industrial-scale models incorporates multiple state machines interacting
with each other and with stateless conditional logic. To elegantly represent these
complex block diagrams in Stateflow, the translation methodologies presented
here can be enhanced to utilize the more sophisticated mechanisms of state
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charts such as hierarchical/parallel modes. We believe that many state chart
mechanisms have analogies in tabular expressions, e.g., using hierarchies of state
conditions can be leveraged to specify sub-modes. We found that block diagrams
encoding more than 4 high-level modes can often become difficult to understand
without these mechanisms.

Fig. 9. State chart equivalent to STT

We also recognize the importance of finding refactorable fragments in large
models. In fact, the translation methodology presented in this paper was devel-
oped in parallel with an identification strategy that pinpoints block diagrams
which are candidates for refactoring—it searches for certain patterns of logical
and stateful blocks which indicate complex state update logic. An elaborated
description of both translation and identification strategies will be presented in
the master’s thesis of the first author [29].

7 Related Work

Several papers propose translating Simulink block diagrams to formal languages
to enable their verification using existing tools (e.g., [1,6,14,23,27,30]). Only
a few, however, translate Simulink block diagrams to state transition diagrams.
In [19], Simulink block diagrams are converted into an extended version of hybrid
automata, with each block in a block diagram converted to a hybrid automa-
ton, leading to an explosion in the number of states of the resulting model.
In [31], Simulink models are converted to finite state machines, but transitions
between states represent the small execution steps of individual blocks updates,
not changes in the high level system modes. Both studies [19,31], as well as [16],
do not aim to capture the high-level state machine of an entire block diagram.
This is exactly what our approach does, with maintainability of the resulting
model as a prime motivator.

Our approach to modelling Mealy machines and their interactions using the
monoidal category Mealy follows a general trend in behavioural modelling. For
example, monoidal categories have been used to describe interactions of quantum
processes [5], labelled transition systems [12], and control systems [3]. The alge-
bra of (traced symmetric) monoidal categories is similar to the algebra used to
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describe block diagrams in [6], but our approach uses a standard mathematical
framework with a rich history and many known results. For example, the results
of [9] indicate that by considering equivalence up to bisimilarity, the category
Mealy is symmetric monoidal, meaning the appropriate axioms and resulting
properties of this structure are already known.

8 Conclusion

In this paper, we proposed a method for translating Simulink block diagrams
to Stateflow state charts via tabular expressions representing their respective
Mealy machines update functions. A categorical framework for composing Mealy
machines provides a theoretical basis for the translation. To the best of our
knowledge, this is the first method for Simulink to Stateflow translation. Our
proposed method is relevant to industrial development where it can help improve
software maintainability and aid compliance with modelling guidelines.
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Abstract. Various kinds of typed attributed graphs can be used to rep-
resent states of systems from a broad range of domains. For dynamic sys-
tems, established formalisms such as graph transformation can provide
a formal model for defining state sequences. We consider the case where
time may elapse between state changes and introduce a logic, called Met-
ric Temporal Graph Logic (MTGL), to reason about such timed graph
sequences. With this logic, we express properties on the structure and
attributes of states as well as on the occurrence of states over time that
are related by their inner structure, which no formal logic over graphs
concisely accomplishes so far.

Firstly, based on timed graph sequences as models for system evolu-
tion, we define MTGL by integrating the temporal operator until with
time bounds into the well-established logic of (nested) graph conditions.
Secondly, we outline how a finite timed graph sequence can be repre-
sented as a single graph containing all changes over time (called graph
with history), how the satisfaction of MTGL conditions can be defined for
such a graph and show that both representations satisfy the same MTGL
conditions. Thirdly, we present how MTGL conditions can be reduced
to (nested) graph conditions and show using this reduction that both
underlying logics are equally expressive. Finally, we present an extension
of the tool AutoGraph allowing to check the satisfaction of MTGL
conditions for timed graph sequences, by checking the satisfaction of the
(nested) graph conditions, obtained using the proposed reduction, for
the graph with history corresponding to the timed graph sequence.

Keywords: Nested graph conditions · Metric temporal logic ·
Sequence properties · Typed attributed graphs · Symbolic graphs

1 Introduction

Various kinds of typed attributed graphs are used to represent states of systems
from a broad range of domains. Also, the evolution of such systems can be
described using a multitude of graph transformation formalisms in which the
possible behavior in form of graph sequences is defined by a set of rules and their
application. In many cases, the analysis of this induced behavior with respect
to a specification in form of a temporal logic that defines the admissible graph
sequences is of paramount importance.
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In our running example, from which we derive the lack of suitable specifi-
cation formalisms, we consider a dynamic system describing an operating sys-
tem, which generates timed sequences of (typed attributed) graphs to model the
change of the operating system states over time. In this example, users may cre-
ate tasks with identifiers id , the operating system may create handlers specific
to task identifiers to allow for the task execution, and the handlers may produce
a result when a task has been executed (marking the successful handling of the
task). To model the states of the operating system, we employ graphs that store
the tasks, the handlers, and the computed results. In the remainder, we refer in
the context of this example to the sequence property P to be checked w.r.t. the
timed graph sequence at hand describing systems’ state changes over time.

P: Whenever a task T with identifier id is created on a system S, a handler H
for this task (i.e., with a task identifier t_id equal to id of T ) must exist.
Moreover, within 120 timeunits, the handler must produce a result R with
value success and, during the computation of the result, no other handler
H ′ for the same task (i.e., with the same task identifier t_id) may exist.

We consider the problem that existing specification formalisms for graph-
based systems cannot cover properties such as P. The available (metric) tempo-
ral logics, such as Metric Temporal Logic (MTL) [16], are defined over Kripke
structures abstracting from the system states by labeling each state with a sub-
set of the finite set of atomic propositions. The commonly used operator until
allows then to formalize the part of property P stating that every graph that
contains a task T is followed by some graph containing some result R before t
time units. However, the existing metric temporal logics do not support the use
of bindings of elements contained in the graphs to express how a certain matched
pattern evolves in a sequence of graphs. Therefore, they are insufficient when e.g.
creating different tasks T and T ′ must be followed by creating the corresponding
results R and R′ while also treating the deadlines for their existence separately.

As a first contribution, we define Metric Temporal Graph Logic (MTGL)
for the concise specification of systems that generate timed graph sequences. In
MTGL, we express properties on states using the well-known formalism of nested
graph conditions [12,24] (called GCs for short). The satisfaction of a GC that
states the existence of a graph pattern H in the given graph G results in a match
m from H to G. We extend the logic of GCs to MTGL by extending GCs with
the metric temporal operator until that may appear in the scope of a previously
determined match m. Using this extension, we can express properties, such as
property P, on the structure and attributes of states as well as on the occurrence
of states over time where the preservation/extension of matches during a systems’
evolution increases the expressiveness beyond the existing formal logics.

As a second contribution, we outline how a finite timed graph sequence can
be represented as a single graph containing all changes over time (called graph
with history), how the satisfaction of MTGL conditions can be defined for such
a graph, and show that both representations satisfy the same MTGL conditions.

As a third contribution, we show that MTGL conditions can be reduced to
GCs using attribute constraints to encode the metric temporal requirements,
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while preserving the satisfaction for finite timed graph sequences. This encoding
enables the direct application of techniques for GCs such as [25].

As a fourth contribution, we present an extension of the tool AutoGraph [25]
allowing to check the satisfaction of MTGL conditions for timed graph sequences
by checking the satisfaction of the GCs obtained using the proposed reduction for
the graph with history corresponding to the timed graph sequence at hand.

The paper is structured as follows. Section 2 discusses related work. Section 3
iterates on technical preliminaries. Section 4 defines timed graph sequences,
MTGL, and the satisfaction of MTGL conditions for timed graph sequences.
In Sect. 5, we show how to represent a finite timed graph sequence as a single
graph with history, define satisfaction of MTGL conditions for a graph with
history, and prove that both representations satisfy the same MTGL conditions.
In Sect. 6, we introduce a reduction of MTGL conditions to GCs and show the
equivalence of these two logics. Finally, Sect. 7 discusses the tool support and
Sect. 8 concludes the paper with a summary and remarks on future work.

2 Related Work

There are several related formal and informal approaches for the specification
and verification of different kinds of sequence properties.

In [13] the satisfaction of CTL (state/sequence) properties is checked where
the tool Groove [10,26] is used to generate the finite state space of the graph
transformation system (GTS) at hand. In [7] invariants are checked for a GTS
with a possibly infinite state space. The validity of given pre/post conditions for
a program over a GTS has been presented in [23]. In [2,15] temporal properties
for GTS with infinite state space are checked using the tool Augur2.

In [19] the satisfaction of graph-based probabilistic timed CTL properties is
checked where the tool Henshin [1,8] is used to generate the finite state space of
a GTS and where the tool Prism [17] is used to model check translations of the
given properties. In [6] a sequence of timed events are checked against sequence
properties given by regular languages based on deterministic finite automata.

The use of bindings, as in this paper, is supported in [3] where bindings are
part of the Metric First-Order Temporal Logic in which system states are repre-
sented by a set of relations that are adapted during the execution of the system.

A visual but informal notation for the specification of sequence properties
involving time and graph bindings was introduced in [14].

In conclusion, existing approaches with a formal semantics do not support
either time, bindings, or graphs in a concise manner. Thereby, our graph-based
logic MTGL for graph-based systems complements existing approaches since
(a) it eases usability in graph-based contexts similarly to the usage of GCs that
are favored over first-order logic in these contexts, (b) it enables further develop-
ments and combinations with other graph-based techniques such as those in [25],
and, (c) as to be shown by future tool-based evaluations, it can be expected that
domain-specific tools for checking MTGL conditions are more efficient compared
to general-purpose tools such as shown analogously for GCs in [23].
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Fig. 1. The type graph TG for our running example where the attributes cts and dts of
sort real used in later sections are omitted in every node and edge to improve readability

3 Typed Attributed Graphs and Graph Conditions

We now recall typed attributed graphs and nested graph conditions used for
representing system states and properties on these states, respectively.

We use symbolic graphs [21] to encode (finite) typed attributed graphs. Sym-
bolic graphs are an adaptation of E-Graphs [9] where a graph does not contain
data nodes (i.e., elements that represent actual values) but instead node and edge
attributes are connected to variables, which replace the data nodes. Symbolic
graphs are also equipped with attribute constraints over these (sorted) variables
(e.g. x = 5, x ≤ 5, and y = “aabb”).

We consider symbolic graphs that are typed over a type graph TG using a
typing morphism type : G → TG . Type graphs restrict attributed graphs to an
admitted subset. For our running example, we employ the type graph TG from
Fig. 1. An example of a symbolic graph that is typed over TG is given in Fig. 4.

We state the existence and nonexistence of graph patterns in a given symbolic
graph, which is called a host graph, by representing graph patterns by symbolic
graphs and by using monomorphisms (called monos and denoted using ↪−→ sub-
sequently) to extend graph patterns. Formally, we rely on the notion of nested
graph conditions (GCs) [12], which are expressively equivalent to first-order logic
on graphs [5] as shown in [12,24].

Definition 1 (Graph Conditions (GCs)). The class of graph conditions
(GCs) ΦGC

H for the graph H contains ψ if one of the following cases applies.

– ψ = ∧S and S = {φ1, . . . , φn} ⊆ ΦGC
H .

– ψ = ¬φ and φ ∈ ΦGC
H .

– ψ = ∃(a, φ), a : H ↪−→ H ′, and φ ∈ ΦGC
H′ .

GCs allow for further abbreviations such as true, false, ∨S, and ∀(a, φ).

Intuitively, a GC is satisfied if the positive but not the negative patterns given by
the GC can be found in the given host graph. For the case of the exists operator,
a previously determined match m must be extendable using a mono q according
to the mono a from the GC.

Definition 2 (Satisfaction of GCs). A GC ψ ∈ ΦGC
H is satisfied by a

mono m : H ↪−→ G, written m |= ψ, if one of the following cases applies.
– ψ = ∧S and m |= φ for each φ ∈ S.
– ψ = ¬φ and not m |= φ.
– ψ = ∃(a : H ↪−→ H ′, φ) and there exists q : H ′ ↪−→ G such

that q ◦ a = m and q |= φ (as depicted on the right).

H
=

H ′

G

a

m q

A GC ψ over the empty graph is satisfied by a graph G, written G |= ψ, if iG |= ψ
where iG : ∅ ↪−→ G is the initial morphism to G.
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4 Metric Temporal Graph Logic

We build upon GCs [12] and the future fragment of MTL [16,22] to introduce
Metric Temporal Graph Logic (MTGL) by defining its syntax and semantics.

We assume a graph transformation based formalism for the definition of steps
changing a graph while possibly also determining a progress of time. We abstract
from the actual timed graph transformation formalism employed but only assume
that it is capable to generate so-called timed graph sequences (short TGSs),
which contain the graphs, their modifications, and the elapsed time between
successive graphs. In the following, we are concerned with TGSs in which either
only the past states of sequences are given in the form of finite TGSs or where,
alternatively, an infinite TGS describes a nonterminating evolution of a system.

A step from a graph G to a graph G′ where G has remained unchanged
for a duration of δ, which may be determined by a timed graph transformation
formalism, is represented by G · (δ, l, r) · G′ in our notion of TGSs. In this repre-
sentation, the monos l : IG ↪−→ G and r : IG ↪−→ G′ identify the graph elements
that are preserved from G to G′, i.e., G − l(IG) are the nodes and edges that
are present in G but are deleted to obtain G′ and G′ − r(IG) are the nodes and
edges that do not exist in G but are created to obtain G′.1

Definition 3 (Timed Graph Sequences (TGSs)). We inductively define the
class of finite timed graph sequences (TGSs) Πfin as follows:

– If π = Ginit is the sequence containing only the graph Ginit , then π ∈ Πfin .
– If π ∈ Πfin is a TGS ending with a graph G, l : IG ↪−→ G, r : IG ↪−→ G′ are

monos (for an interface graph IG), and δ ∈ R0 is the timepoint where the
graph G is changed relative to the previous change, then π · (δ, l, r) ·G′ ∈ Πfin .

The class of TGSs Π contains the finite TGSs Πfin from above and all infinite
sequences that have only finite TGSs from Πfin as prefixes.

Moreover, dur(π) denotes the sum of all durations δ contained in π. Addi-
tionally, if dur(π) = ∞, πt denotes the unique graph at time t, i.e., if π = G
then πt = G and if π = G · (δ, l, r) · π′ then (πt = G for t < δ) and (πt = π′

t−δ

for t ≥ δ). Finally, if dur(π) = ∞, π[t1,t2] denotes the finite TGS contained in
π between and including πt1 and πt2 .

We do not require that every step modifies the current graph (i.e., we permit
G = G′ possibly using l = r = idG). Also, time may not elapse in a step (i.e.,
we permit δ = 0) but for well-definedness of the satisfaction relation for TGSs
we require that time diverges in every infinite TGS π (i.e., dur(π) = ∞).

In our running example, we simplify the presentation by using only inclusions
l and r. The TGS π given in Fig. 2 contains five graphs Gi for i ∈ {0, 1, 2, 3, 4}
showing the system states in five different points in time, namely 0, 5, 10, 13,
and 15. The corresponding durations where the respective graphs Gi remain
unchanged are denoted by δi for i ∈ {0, 1, 2, 3}.

1 The span G
l←↩ IG

r
↪−→ G′ does not correspond to a rule as used in the DPO approach

but rather to a rule application describing changes between the graphs G and G′.
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Fig. 2. A TGS π for our running example. For i ∈ {0, 1, 2, 3}, the arrows δi=⇒ between
graphs of the TGS describe changes Gi · (δi, li, ri) · Gi+1 where the inclusions li and ri

are implicitly given by the usage of the same names in all graphs.

Fig. 3. The property P from our running example formalized by the MTGC ψ

The syntax of MTGL is given by Metric Temporal Graph Conditions (short
MTGCs) introduced in the following definition. The distinguishing feature of
MTGL is the extension of the binding of graph elements used by the operator
exists in GCs to the until operator of MTL. This allows for the formalization
of properties where a match into a graph is preserved/extended over multiple
timepoints in the subsequently introduced semantics for TGSs.

Definition 4 (Metric Temporal Graph Conditions (MTGCs)). The class
of metric temporal graph conditions (MTGCs) ΦMTGC

H for the graph H contains
ψ if one of the following cases applies.

– ψ = ∧S and S = {φ1, . . . , φn} ⊆ ΦMTGC
H .

– ψ = ¬φ and φ ∈ ΦMTGC
H .

– ψ = ∃(a, φ), a : H ↪−→ H ′, and φ ∈ ΦMTGC
H′ .

– ψ = φ1 UI φ2, I is an interval over R0, and {φ1, φ2} ⊆ ΦMTGC
H .

Further metric temporal operators can be defined as for MTL and GCs.
For our running example, we formalize the property P from Sect. 1 by the

MTGC ψ depicted in Fig. 3. In this MTGC, we additionally use the forall-new
operator in the form of ∀N(a : H ↪−→ H ′, φ) to match the pattern H ′ into the
considered TGS as soon as possible, i.e., precisely at the minimal timepoint, at
which all elements of H ′ exist. This operator can be encoded by the equivalent
MTGC ¬((¬∃(a,¬φ)) U[0,∞) ∃(a,¬φ)), which intuitively states that “there is no
violation ever that did not exist before”. Moreover, we use notational conventions
to simplify our presentation of MTGCs by omitting elements in subconditions.
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Firstly, we omit nodes (such as T ) if no new edges or attributes are attached to
them. Secondly, we omit edges (such as e1 ) if no new attributes are attached to
them. Finally, we omit attributes (such as id of T ) in general.

The MTGC ψ properly formalizes the property P using the binding capa-
bilities of MTGL as follows: the nodes T , S , and H (together with the edges
e1, e2 as well as their attributes) are shared among the two subconditions of the
until operator. This implies that the Handler node that must be matched by the
right subcondition of the until operator is the previously bound Handler node
H . Similarly, the System node that may be matched by the left subcondition of
the until operator is the previously bound System node S .

Next we present the MTGL semantics for TGSs that defines when a given
TGS satisfies a given MTGC. For the definition of this semantics, we first intro-
duce the concept of a match that is preserved over a finite number of steps given
by a finite TGS. In the following, we also call such a preserved match a binding.
The preservation of the match is guaranteed by adapting it according to the
renaming determined by the steps of the TGS for the case where these steps do
not remove any element initially matched.

Definition 5 (Preserved Match for a Finite TGS). A mono m : H ↪−→ G0

is preserved over a finite TGS π that starts in G0 and ends in Gn resulting in a
mono m′ : H ↪−→ Gn, written m π m′, if one of the following cases applies.
– π = G0 = Gn and m = m′.
– π = G0 · (δ, l : IG ↪−→ G0, r : IG ↪−→ G1) · π′ and

there is m′′ : H ↪−→ IG such that m = l ◦ m′′ and
r ◦ m′′ π′

m′.

G0 IG G1

H

= =
m

l r

m′′
m′

The fact that the step does not remove elements that are matched by a mono
m is obtained from the existence of a mono m′′ making the triangle m = l ◦ m′′

commute. The required renaming is then performed by replacing the match m
by r ◦ m′′. The mono m′′ is uniquely defined when it exists.

Based on the preservation of matches, we now define the semantics for TGSs.

Definition 6 (Satisfaction of MTGCs by TGSs). A given MTGC ψ ∈
ΦMTGC

H is satisfied by a TGS π, an observation timepoint t ∈ R0, and a mono
m : H ↪−→ πt, written (π, t,m) |=TGS ψ, if one of the following cases applies.

– ψ = ∧S and (π, t,m) |=TGS φ for each φ ∈ S.
– ψ = ¬φ and not (π, t,m) |=TGS φ.
– ψ = ∃(a : H ↪−→ H ′, φ) and there is some q : H ′ ↪−→ πt such that q ◦a = m and

(π, t, q) |=TGS φ.
– ψ = φ1 UI φ2 and there is some t′ ∈ I such that

• there is m′ : H ↪−→ πt+t′ s.t. m
π[t,t+t′] m′ and (π, t + t′,m′) |=TGS φ2 and

• for every t′′ ∈ [0, t′) it holds that there is an m′′ : H ↪−→ πt+t′′ such that
m

π[t,t+t′′] m′′ and (π, t + t′′,m′′) |=TGS φ1.

An MTGC ψ over the empty graph is satisfied by a TGS π, written π |=TGS ψ,
if (π, 0, iπ0) |=TGS ψ where iπ0 : ∅ ↪−→ π0 is the initial morphism to the graph at
timepoint 0 of π (i.e., the first graph of π).
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This semantics is similar to the semantics of GCs for conjunction, negation,
and the exists operator since for the triple (π, t,m) it always holds that the
codomain of m is the graph πt and since the checked MTGC is defined for the
domain of m. The TGS π and the current timepoint t are used in the case for
the until operator where we rely on the preserved match relation from above to
change the codomain of a match from πt to the graphs πt+t′ and πt+t′′ at later
timepoints.

Example 1 (TGS satisfies MTGC). Considering our running example, we argue
that the MTGC given in Fig. 3 is satisfied by the TGS given in Fig. 2. Firstly,
the forall-new operator matches the nodes T , S and the edge e1 in G2 at time-
point 10, which is the maximal creation timepoint of these three elements. Then,
the exists operator matches the node H together with the edge e2 in G2 at the
same timepoint. Finally, the until operator matches subsequently the node R
and the edge e3 in G3 at the timepoint 13 and the remainder true is trivially
satisfied for the timepoint 13. In addition, as also required by the until operator,
for every timepoint in the interval [10, 13), it is not possible to match a second
Handler node H ′ that is connected to S. This holds because the graph in π for
the timepoints in this interval is the graph G2, which indeed does not contain
such a second Handler node.

5 Mapping of TGSs to Graphs with History

Subsequently, we are concerned with finite TGSs π (which have a finite number
of steps and therefore also satisfy dur(π) < ∞) for which the satisfaction of
an MTGC ψ is decidable [4] when replacing in ψ right-open intervals [r,∞) and
(r,∞) by [r,dur(π)) and (r,dur(π)), respectively. Such an adaptation of intervals
leads to an MTGC ψ′ that is bounded and for which the satisfaction by the finite
TGS π is equivalent (i.e., π |=TGS ψ ⇐⇒ π |=TGS ψ′).

To analyze the satisfaction of an MTGC by a given finite TGS, we now
introduce the notion of graphs with history (in short, GHs) as an equivalent
representation of a given finite TGS. Afterwards, we introduce a semantics oper-
ating on this alternative representation (called in the following semantics for
GHs) that is compatible with the semantics introduced before for TGSs. The
translation from finite TGSs to GHs reduces the size of the representation in
terms of the stored data. Moreover, it decouples the observation of modifications,
resulting in a GH, and the subsequent satisfaction check for possibly several
MTGCs.

The notion of GHs for capturing the changes to a current graph over time as
given by a TGS π, requires that the used type graph TG contains for all nodes
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and edges the attributes cts and dts of sort real to capture the total timepoint
at which an element was created and (if applicable) deleted, respectively.2

Definition 7 (Graphs with History (GHs)). Let TG be a type graph where
all nodes and edges have attributes cts denoting the timepoint of their creation
and dts denoting the timepoint of their deletion. Then GH is a graph with history
(GH) if it is typed over TG satisfying the following consistency requirements.3

– There is precisely one cts attribute for every graph node and edge.
– There is at most one dts attribute for every graph node and edge.
– For an edge e, the value of the cts attributes of the source and the target nodes

of e are less or equal to the cts attribute of e.
– For an edge e, the value of the dts attributes of the source and the target

nodes of e are greater or equal to the dts attribute of e.

We now define the operation Fold, which converts a finite TGS π (i.e., a
TGS with a finite number of steps) into the corresponding GH GH . This recursive
operation handles the renaming given by the monos l and r in the steps of π and,
moreover, encodes the insertion of additional nodes/edges α by adding attributes
cts = t for these nodes/edges in the constructed GH and by equipping removed
nodes/edges α with an additional attribute dts = t where t is the current total
time of the considered TGS π in both cases.

Definition 8 (Map TGS to GH (Operation Fold)).

– If π = Ginit , then GH = Fold(π) is obtained from Ginit by adding the
attributes cts(α) = 0 to each node or edge α in Ginit .

– If π = π′ · (δ, l : IG ↪−→ G, r : IG ↪−→ G′) · G′ is a TGS, G′
H = Fold(π′) is the

GH obtained from the mapping of the TGS π′ using the operation Fold, and
t = dur(π′) is the total time of G′

H , then GH = Fold(π) is constructed from
G′

H by adding the attributes dts(α) = t+δ to each node or edge α ∈ G−l(IG),
by renaming each node and edge α ∈ l(IG) according to l, by adding each
node and edge α ∈ G′ − r(IG), by renaming each node and edge α ∈ r(IG)
according to r, and by adding the attributes cts(α) = t + δ to each node or
edge α ∈ G′ − r(IG).

The following example covers an application of Fold to a finite TGS.

Example 2 (Map TGS to GH). We map the finite TGS π from Fig. 2 to the
GH GH shown in Fig. 4 using the operation Fold as follows. Since π starts
with an empty graph G0, we first map it into the empty GH. The second state
of π given by G1 including the System node S is added to the TGS after 5
timeunits. We map this TGS state to the GH by adding S to the empty GH
2 The total timepoints of additions and removals of attributes and their values can

be encoded by moving attributes into separate nodes, for which their cts and dts
attributes then encode the relevant timepoints.

3 Note that the consistency requirements used in this definition are not guaranteed by
the formalisms of E-Graphs or symbolic graphs.
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Fig. 4. Mapping of the TGS π from Fig. 2 to the GH GH = Fold(π)

and by, additionally, equipping this node with the creation timepoint cts = 5.
After another 5 timeunits, an additional Task node T , a Handler node H, and
edges e1, e2 between the existing System node S and the new Task node T resp.
the new Handler node H are added to the TGS resulting in the TGS state G2.
These changes are again mapped to the GH by adding the Task node T , the
Handler node H, and the edges e1, e2 to the current version of GH as well as by
additionally equipping them with the creation timepoints cts = 10. In a similar
manner the Result node R together with the edges e3 and e4 (see the TGS state
G3) are added to the GH with the creation timepoints cts = 13. Finally, after 2
timeunits, the edge e3 is deleted to obtain the TGS state G4. To reflect this in
the GH, we add to the edge e3 in GH the additional deletion timepoint dts = 15.

For the satisfaction of an MTGC of the form ∃(a : H ↪−→ H ′, φ), where the
exists operator is inherited from GCs, it is still required that the pattern that is
found so far (given by some mono m : G ↪−→ GH) in the host graph GH can be
extended to a larger pattern (given by some mono m′ : G′ ↪−→ GH). Additionally,
we have to check that all matched elements are already created (because the GH
also contains the elements created with higher cts values) but not yet deleted
(because the GH also contains the elements deleted at earlier timepoints). For
the satisfaction of an MTGC of the form φ1 UI φ2, where the until operator
is inherited from MTL, it is still required that φ2 must be satisfied at some
timepoint t′ in the interval I relative to the current observation timepoint t and
that φ1 is continuously satisfied (by a possibly varying match for each timepoint)
for all timepoints preceding t′.

Definition 9 (Satisfaction of MTGCs by GHs). An MTGC ψ ∈ ΦMTGC
H is

satisfied by a mono m : H ↪−→ GH and an observation timepoint t ∈ R0, written
(m, t) |=GH ψ, if max({0} ∪ cts(m(H))) ≤ t < min({∞} ∪ dts(m(H))) and one
of the following cases applies.

– ψ = ∧{φ1, . . . , φn} and (m, t) |=GH φi (for all 1 ≤ i ≤ n).
– ψ = ¬φ and not (m, t) |=GH φ.
– ψ = ∃(a : H ↪−→ H ′, φ) and there is some q : H ′ ↪−→ GH such that q ◦ a = m

and (q, t) |=GH φ.
– ψ = φ1 UI φ2 and there is some t′ ∈ I such that (m, t + t′) |=GH φ2 and for

every t′′ ∈ [0, t′) it holds that (m, t + t′′) |=GH φ1.

An MTGC ψ over the empty graph is satisfied by a GH GH , written GH |=GH ψ,
if (iGH

, 0) |=GH ψ where iGH
: ∅ ↪−→ GH is the initial morphism to GH .

Note that the reasoning for the satisfaction of the MTGC ψ from Fig. 3 by
GH = Fold(π) from Fig. 4 proceeds analogously to Example 1.
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In the following theorem (see [11] for its proof), we state the compatibility of
the two satisfaction relations for the case of finite TGSs showing that they can
be used interchangeably to determine the satisfaction of an MTGC in this case.

Theorem 1 (Soundness of Operation Fold). If π ∈ Πfin and ψ ∈ ΦMTGC
∅

then π |=TGS ψ iff Fold(π) |=GH ψ.

6 Reduction of MTGL to GCs

We now introduce a procedure for checking the satisfaction of an MTGC by a
GH using a reduction of an MTGC to a corresponding GC. Based on the Fold
operation from the previous section, we thereby obtain a checking procedure for
finite TGSs as well. Moreover, this reduction shows that MTGL is as expressive
as the logic of GCs on finite TGSs (since every GC is trivially also an MTGC).

We first present the operation Reduce for translating an MTGC into the
corresponding GC and then show that this translation (also called reduction in
the following) is compatible with our semantics for GHs and the operation Fold
from before. The operation Reduce encodes in the resulting GC all parts of the
satisfaction relation |=GH that are not covered by the satisfaction relation |= for
GCs. In particular, the operation Reduce removes all occurrences of the until
operator and encodes the check that the elements that are matched by the exists
operator have all been created as well as that none of them has yet been deleted.

Technically, we translate a GH GH = Fold(π) for a finite TGS π, ψ ∈
ΦMTGC

∅ , and an observation timepoint t ∈ R0 (where GH and ψ are typed over
a type graph TG) into a graph G′

H and ψ′ ∈ ΦGC
∅ (where both are typed over

a changed type graph TG ′) using the procedure presented in Definition 10. We
obtain ψ′ from ψ by encoding the until operator suitably and by implementing
the checks of cts and dts attributes according to Definition 9 for the exists and
until operators using attribute constraints, for which we add variables to ψ. We
also add the same variables to GH to obtain G′

H .

Definition 10 (Reduce MTGC to GC (Operation Reduce )). The recur-
sive operation Reduce takes 3 arguments: a GH GH that has been obtained by
application of the operation Fold to a TGS π, an observation timepoint t ∈ R0,
and an MTGC ψ ∈ ΦMTGC

∅ . GH and all graphs contained in ψ are typed over
the type graph TG.

The operation Reduce returns a pair (G′
H , ψ′) consisting of a graph G′

H

(which is a slight modification of GH) and a GC ψ′ ∈ ΦGC
∅ . The graph G′

H and
all graphs contained in ψ′ are typed over an adapted type graph TG ′ (called a
reduction type graph) introduced below.

1. (Construction of the reduction type graph TG ′):
We adapt the original type graph TG to TG ′ by adding an Encoding node
with attributes num : int and var : real.

2. (Construction of the MTGC ψatt with cts and dts attributes):
We obtain ψatt from ψ by adding the attributes cts = xc,α and dts = xd,α to
all nodes and edges α contained in graphs in ψ.
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Fig. 5. The GC ψ′ and the adapted graph G′
H resulting from applying the operation

Reduce to the GH from Fig. 4, the timepoint t = 10, and the MTGC ψ from Fig. 3
(where the outermost forall-new operator has been simplified to the forall operator)

3. (Construction of the GC ψ′):
ψ′ = ∃(iG0 ,Reducerec(ψatt , x0, G0, ∅)) where G0 is the graph containing the
Encoding node v0 with the attributes num = 0 , var = x0 as well as the
attribute constraint x0 = t and iG0 : ∅ ↪−→ G0 is the initial morphism to G0.
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Then, Reducerec(ψatt, xo, Ga, G) = ψ′
att if one of the following cases applies

(where ψatt is the condition to be reduced, xo is the timepoint at which the
subcondition must be satisfied, Ga is the graph containing additional nodes,
edges, and attribute constraints to be added to the graphs in conditions con-
structed, and G is the graph over which the condition ψatt is defined).
(a) ψatt = ∧S and ψ′

att = ∧{Reducerec(φ, xo, Ga, G) | φ ∈ S}.
(b) ψatt = ¬φ and ψ′

att = ¬Reducerec(φ, xo, Ga, G).
(c) ψatt = ∃(a : H1 ↪−→ H2, φ) and ψ′

att = ∃(a′ : H ′
1 ↪−→ H ′

2,¬∃(m : H ′
2 ↪−→

H ′
3, true) ∧ Reducerec(φ, xn, G′

a,H ′
2)) where G′

a equals the graph Ga, to
which an Encoding node vn with the attributes num = n, var = xn

(where no Encoding node has been created in the reduction for n so far)
and the attribute constraint xn = xo have been added, H ′

1 = Ga ∪ H1,
H ′

2 = G′
a ∪H2, H ′

3 equals the graph H ′
2, to which the attribute constraints

¬alive(xn,H2) have been added,4 a′ is obtained as the union of a and the
identity morphism idGa

, and m is an inclusion.
(d) ψatt = φ1 UI φ2 and ψ′

att = ∃(m0 : G0 ↪−→ G1,Reducerec(φ2, xn1 , G
′
a, G1)

∧ ∀(m1 : G1 ↪−→ G2,Reducerec(φ1, xn2 , G
′′
a, G2))) where G′

a equals the
graph Ga, to which an Encoding node vn1 with the attributes num = n1 ,
var = xn1

(where no Encoding node has been created in the reduction for
n1 so far) and the attribute constraints equivalent to xn1 ∈ I have been
added, G0 = G ∪ Ga, G1 = G ∪ G′

a, m0 is an inclusion, G′′
a equals the

graph G′
a, to which an Encoding node vn2 with the attributes num = n2 ,

var = xn2
(where no Encoding node has been created in the reduction for

n2 so far) and the attribute constraints equivalent to xn2 ∈ [xo, xo + xn1)
have been added, G2 = G1 ∪ G′′

a, and m1 is an inclusion.
4. (Construction of the graph G ′

H ):
We obtain G′

H by adding elements to GH as follows:
(a) We add the attribute dts = −1 to all nodes/edges without that attribute.
(b) We insert all Encoding nodes contained in graphs in ψ′ together with their

num = n and var = xn attributes.
(c) We add the attribute constraints added during the reduction except for the

alive constraints.

We now demonstrate how the operation Reduce can be applied to the MTGC
from our running example.

Example 3 (Reduce MTGC to GC). We now apply the Reduce operation to GH
from Fig. 4, the timepoint t = 10, and the MTGC ψ from Fig. 3 resulting in G′

H

and ψ′ given in Fig. 5. However, to simplify the presentation, we replaced the
enclosing forall-new operator by the forall operator to avoid the substitution of
the forall-new operator by its encoding from Sect. 4.

1. We add the attribute dts = xd,α to all nodes/edges α of GH without dts
attribute and add the attribute constraint xd,α = −1 to the set of constraints.

4 For a graph H, alive(x, H) equals alive(x, S) for the disjoint union S of the nodes and
edges of H. For a set S of nodes and edges, alive(x, S) equals ∪{alive(x, α) | α ∈ S}.
For a node or an edge α, alive(x, α) equals {xc,α ≤ x, xd,α = −1 ∨ x < xd,α}.
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With these additional attributes and the cts = xc,α attributes introduced by
the operation Fold, we are able to state the existence of nodes/edges at a
given timepoint xn using attribute constraints in the resulting GC ψ′.

2. We add a unique Encoding node to each graph in ψ′ as a container for addi-
tional variables xn that are used in attribute constraints to encode the current
observation timepoint (the num attributes are included to decrease the num-
ber of matches to be considered). Initially, we add an enclosing exists operator
with the attribute constraint x0 = t (see Θ0) where t is the input observa-
tion timepoint that is 10 for this application of Reduce. Further attribute
constraints then relate the additional variables xn for existential/universal
quantifications (see Θ1, Θ2, Θ4, and Θ6). For the encoding of the until oper-
ator, these observation timepoints (x3 in Θ3 and x5 in Θ5) are restricted to
some interval as described below.

3. We encode the exists operator ∃(a : H1 ↪−→ H2, φ) for the MTGC φ accord-
ing to Definition 9 using an additional negative graph condition stating that
the matched nodes/edges α are not violating the attribute constraints in
alive(xn, α). The set alive(xn, α) contains the constraint xn ≤ xc,α (to state
that α was created before xn) and the constraint xd,α = −1 ∨ xn < xd,α (to
state that α was not deleted or that it is deleted later than xn).

4. We encode the until operator φ1 UI φ2 for the MTGCs φ1 and φ2 according
to Definition 9 using the exists operator (the forall operator used in the GC
below is only an abbreviation for a usage of the exists operator according to
Definition 1). Informally, φ1 U[t1,t2] φ2 (the construction is similar for other
kinds of intervals) is equivalent to ∃(t′ ∈ [xn + t1, xn + t2], φ′

2 ∧ ∀(t′′ ∈ [xn +
t1, t

′), φ′
1)) where φ′

1 and φ′
2 are the reductions of φ1 and φ2, respectively. The

variable xn refers to the current observation timepoint that depends on the
timepoint where an enclosing condition has been matched. In the example,
the variables xn, t′, and t′′ are represented in ψ′ by the variables x2, x3, and
x5, respectively. The reduction is recursively applied to φ1 and φ2 resulting
in φ′

1 and φ′
2, respectively. The replacement GC for the until subcondition

spans the last four lines of ψ′ in Fig. 5.
5. We add all Encoding nodes occurring in ψ′ to GH as depicted in Fig. 5.

The Encoding nodes are used in ψ′ as containers for the additional variables
employed in the attribute constraints and are required in G′

H to allow for
matchings from the adapted graphs of ψ′ to G′

H .

In the following theorem (see [11] for its proof), we state that the operation
Reduce is sound w.r.t. the satisfaction relations for MTGCs and GCs.

Theorem 2 (Soundness of Operation Reduce). If π ∈ Πfin , GH =
Fold(π), ψ ∈ ΦMTGC

∅ , t ∈ R0 is a timepoint, iGH
: ∅ ↪−→ GH is the initial

morphism to GH , and (G′
H , ψ′) = Reduce(GH , t, ψ), then (iGH

, t) |=GH ψ iff
G′

H |= ψ′.

By application of Theorem2, we can deduce for our running example that the
MTGC ψ from Fig. 3 translated by the operation Reduce is satisfied by the graph
G′

H (both given in Fig. 5). For this purpose observe that ψ from Fig. 3 (simplified
as stated in Fig. 5) is satisfied by the GH from Fig. 4 for the timepoint t = 10
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since the unique match of the Task node T , the on edge e1, and the System node
S satisfies the remaining condition starting at timepoint t = 10.

7 Tool Support

We provide tool support for checking finite TGSs against MTGCs as an exten-
sion of AutoGraph [25]. Firstly, we extended the support of AutoGraph to
handle TGSs and MTGCs. Secondly, we implemented the operation Fold from
Definition 8 to consolidate a TGS π to a GH GH . Thirdly, we implemented the
operation Reduce from Definition 10 to reduce an MTGC ψ to a GC ψ′ and
to adapt GH to a graph G′

H . On the foundation of these three steps and as
applications of our theoretical results (see Theorems 1 and 2), we then use the
built-in support of AutoGraph for checking whether the obtained graph G′

H

satisfies the reduced GC ψ′. Note that AutoGraph depends in this scenario on
the constraint solver Z3 [20] to check satisfiability of expressions involving the
values of cts and dts attributes of sort real as well as the additional constraints
introduced by Reduce that contain further variables of sort real.

Considering our running example, we observed negligible runtime and mem-
ory consumption when verifying that the finite TGS π from Fig. 2 satisfies the
MTGC ψ from Fig. 3 using our implementation due to the short length of π.
Overall, the application of the AutoGraph extension to our running example
shows promising results albeit the potential of further improvements regarding
efficiency for handling more elaborate problem instances.

8 Conclusion and Future Work

We defined Metric Temporal Graph Logic (MTGL) by integrating the metric
temporal operator until with time bounds into the well-established logic of
(nested) graph conditions (GCs). This new logic allows to maintain an estab-
lished binding of graph elements throughout the analysis of a timed sequence of
(typed attributed) graphs (TGSs). Furthermore, to enable a satisfaction check
for MTGL conditions by finite TGSs, we introduced a mapping of a finite TGS
π into a graph with history GH = Fold(π) and defined a reduction of an MTGL
condition ψ to a GC ψ′ given by (GH , ψ′) = Reduce(GH , 0, ψ) where the graph
with history GH is extended to a graph G′

H . For this mapping and this reduction,
we have proven that the satisfaction checks for the different representations are
consistent (i.e., π |=TGS ψ ⇐⇒ GH |=GH ψ ⇐⇒ G′

H |= ψ′). Finally, we pre-
sented an extension of the tool AutoGraph allowing to check the satisfaction
of MTGL conditions by finite TGSs via the introduced mapping and reduction.

In the future, we want to develop checking procedures bounded MTGL con-
ditions such that only violations that hold for any possible continuation are
reported. Moreover, we intend to use our reduction of MTGL conditions to
related GC counterparts for invariant checking for graph transformation sys-
tems as considered in [7]. Furthermore, we want to develop extensions of MTGL
that include branching such as in timed CTL, that are applicable to the setting
of probabilistic timed graph transformation systems as introduced in [19], or
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that support additional features e.g. permitting variables in the interval bounds
of MTGL conditions or in attribute constraints. Finally, we intend to develop a
model checking procedure for MTGL and these extensions. Besides these tech-
nical advancements we intend to evaluate and compare our approach based on
benchmarks from applications domains such as runtime monitoring [18].
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Abstract. Dynamic Software Updating (DSU) is a useful technique for
updating running software without incurring any downtime. Its correct-
ness must be guaranteed because updating a running software is a com-
plicated and safety-critical process. In this paper, we present a formal
tool called KupC for modeling and verifying dynamic updating of C pro-
grams. The tool is built on K–a formal semantic framework for program-
ming languages. We formalize a patch-based dynamic updating mecha-
nism in K based on the formal executable operational semantics of C.
The formalization automatically yields an interpreter and several veri-
fication tools, which can be used to formally analyze the correctness of
dynamic updating for C programs. To our knowledge, KupC is the first
formal tool for code-level verification of dynamic software updating.

1 Introduction

Software systems require frequent updating to fixate defects, improve perfor-
mance, and add new features. For those systems providing 24 × 7 service com-
mitment, Dynamic Software Updating (DSU) is a useful technique as it does not
incur system downtime while updating [5]. Such systems are becoming preva-
lent with the diffusion of Internet of Things (IoT) and Cyber-Physical Systems
(CPS), where additions, modifications, and removal of behaviors could be done
in a quick and localized fashion. There is a comprehensive survey on DSU [10].

The difficulty of guaranteeing the correctness of dynamic updating is a fun-
damental barrier when we adopt this technique widely as expected. Correctness
is crucial to those systems that need dynamic updating because they are usu-
ally safety-critical and highly-dependable. Meanwhile, dynamically updating a
running software system is a complicated process, and it is difficult to predict
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all possible updating results. In order to update a program successfully while
it is running in practice one has to know everything about that program [6].
However, it still lacks effective methodologies and tools to help understand all
possible behaviors of running programs caused by updating.

Formal methods are rigorous approaches to program verification. Some
attempts have been made on applying formal methods to DSU [3,4]. The exist-
ing approaches suffer one or more difficulties as follows. In some approaches
formalizing a dynamic update may require abstraction of target programs. Such
abstraction is usually done manually. It requires both formal methods expertise
and human intellection to interpret target programs. Some approaches [1,11]
lack tool support while developing such tools needs substantial efforts.

To mitigate the above difficulties, we present a formal tool called KupC for
modeling and verifying dynamic updating of C programs in this paper. KupC
is built upon the formalization of a DSU tool called Ginseng [8] for C programs.
We formalize the updating strategy of Ginseng atop the operational semantics
of C in the formal semantic framework called K [9]. From the formalization,
K automatically generates several tools that can be used for formal analysis of
dynamic updating of C programs. According to our knowledge, KupC is the
first tool for the code-level formal verification of dynamic software updating.

KupC has the following three features. (1) KupC is focused on the code-
level verification of dynamic updating. It does not require any abstraction or
transformation of target C programs that are subject to dynamic updating. (2)
The verification functionalities of KupC are automatically generated from the
formalization of dynamic updating mechanisms. No extra effort is needed on the
implementation. (3) The formalization is built upon the operational semantics
of the C language. One can easily develop similar tools for the formal analy-
sis of dynamic updating of other languages such as Java and Python, whose
operational semantics have already been formally defined in K.

2 KUPC Design

Patch-based DSU. Many DSU tools achieve dynamic updating by injecting
patches into running programs [10]. A patch contains all updating contents,
e.g., new functions and data. Figure 1 (left) is an overview of the patch-based
updating process. An old-version program is first made updatable by attaching
additional version information, wrapping user-defined types, and inserting possi-
ble updating points. They are achieved by the two operations called Dependants
Updating and Restriction Generating. Next, a patch file p1.c is generated and
complied by comparing the differences between old and new programs. After an
update request is invoked, a DSU tool checks whether it is safe to inject the
compiled patch whenever the running program reaches a pre-specified updating
point. Safety means that the behavior of the updated program is consistent with
the expectation. It is guaranteed by the adopted updating policies in DSU tools.
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The operational semantics of target programming language 
(E.g. C, Java, Python) 

v0.c v1.c

Patch  
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Patch 
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Patch
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nsforming
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An overview of patch-based dynamic software updating process

Formalization of Dependants
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Formalization of State
Transforming 

Verification tools for dynamic software updating

State Space
Explorer  Interpreter LTL Model

Checker ...Updating

Automatic generation by K 

Fig. 1. Patch-based dynamic updating and its formalization using K

If it is safe, the patch is injected and the running program state is transformed
into the new version by a transformation function that is predefined in the patch.
The patched program continues to execute from the new state. If updating at
this point is not safe, the program continues to execute the old version.

It is worth mentioning that the entire updating process is atomically per-
formed, that is, the execution keeps being suspended until the completion of the
updating. Updating in an atomic manner is the most consistent approach that
simplifies the updating process and reduces unexpected errors.

The K Framework. K [9] is a state-of-art semantic framework for program-
ming languages. Many mainstream languages such as C and Java have been
completely defined in K. One only needs to focus on the formalization of an
updating mechanism using the pre-defined operational semantics of the targeted
language. After formalizing the updating mechanism, K automatically gener-
ates several analysis tools such as program interpreter, state space explorer, and
model checker.

Formalization of dynamic updating strategy in K. The basic idea of for-
malizing a dynamic updating mechanism using K is to formalize the function-
alities of the mechanism on the basis of the operational semantics of the target
programming language that the mechanism supports. The right part of Fig. 1
shows the formalization of the patch-based dynamic updating mechanism, con-
sisting of the formalization of the five functionalities, respectively.

The functionalities of an updating mechanism are formalized by a set of
rewrite rules. For instance, below is a rewrite rule that formalizes the function
of checking the safety of updating a set of functions at an updating point Loc.
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Fig. 2. The snippets of old-version and new-version programs of a GPS application

In the rule, a pair of brackets is a labeled cell, representing a piece of program
execution information. F

· means F is deleted from the set if the conduction that
follows the keyword when is true. The condition says that either F is updatable
(represented by F �∈ Re) or it is un-updatable at the point Loc but its types
T and T ′ (before and after updating, respectively) are the same. Here, Re is
the set of un-updatable contents at Loc. If the second argument of TypeSafety
becomes an empty set, it means all the functions in the set are safe to update.

We totally defined 371 rewrite rules to formalize the updating mechanism
of Ginseng. We tested the correctness of the rules using the example dynamic
updating programs provided in Ginseng. These rules are seamlessly compiled
by K together with the rules defined for the operational semantics of C [2].
The compilation yields the formal tool KupC which supports formal analysis
of dynamic updating of C programs in various ways such as simulation, state
exploration, and LTL model checking.

3 KUPC Usage

KupC is equipped with an interpreter to execute updatable C programs, a state
space explorer to search for all possible updating results, and an LTL model
checker to verify temporal properties of dynamic updating. We demonstrate
the usage of KupC using a dynamic updating to a GPS application. The tool,
examples and a demo video are available https://github.com/dexter-qjq/KupC.

The program in Fig. 2 (left) is the old version of a GPS system. It calculates
the shortest path. In the new version in Fig. 2 (right), the new program not only
shows the shortest path, but also finds the most economic path. Three update
points are inserted in function Query from Line 24 to Line 30.

https://github.com/dexter-qjq/KupC
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Fig. 3. The shortest path before and after updating (Color figure online)

Simulating a dynamic updating scenario. Given an original C program
annotated with update points, KupC can compile it with a patch file and gener-
ate binary code that is executable on K. During execution, updating is applied
once reaching a safe updating point. It simulates the behavior of a dynamic
updating to a program that is running on a real-world operating system.

Figure 3 shows the results of the simulation. Figures 3(a) and (b) show the
original graph and the updated graph, respectively. When the update takes place
at point1, the output of first call is the red path in Fig. 3(a). While the second
call produces two paths as shown in Fig. 3(b). The red one is the shortest path
and the green one is the most economic path.

Fig. 4. All possible updating results searched by the state space explorer of KupC

Exploring all dynamic updating results. In addition to simulating one
possible updating scenario, KupC can search for all possible updating results by
exploring each possible updating point using the state space explorer.

We compile and execute the program map with the option UPSEARCH=1 to
invoke the state exploration function. Figure 4 shows all five different updating
results. The outputs are divided into two parts by semicolon, representing the
results of the two function calls of Query, respectively. Case 1 and Case 2 show
the results when updating occurs at point1. Case 3 and Case 4 are for point3.
Case 4 shows the result when updating is not performed.

While the dynamic updating occurs during the first call of the function Query
at point3 in Case 3, the output of the first call is not affected by updating. The
reason is that the updated content will not take effect until the next access after
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updating. Therefore, the outputs in Case 4 are exactly the same as the ones in
Case 5. Updating at point2 violates the safety policies. Therefore, there is no
case corresponding to point2. All the updating results searched are valid.

Model checking temporal properties. Dynamic updating is a temporal
behavior in that the properties before and after updating may be different. Such
differences can be formalized as temporal properties. Another attractive function
of KupC is to verify these temporal properties using LTL model checking.

As an example, we verify whether or not updating in the GPS exam-
ple can be finally deployed. First, we introduce an atomic proposition called
__update, which is false before updating and becomes true after the program
is updated. Given the command UPLTLMC = "TrueLtl ULtl __update" ./map,
KupC returns true, indicating that updating can be eventually performed.

Another property of interest is that the shortest path must become 7 after the
system is updated. It can be defined as an LTL formula __update->(<>(x==7)),
where variable x stores the value of the shortest path. Given the com-
mand UPLTLMC="’(’~Ltl__update’\’/Ltl’(’TrueLtlULtl’(’x==7’)’’)’’)’"./map,
KupC returns true, indicating that updating result is correct as expected.

4 Concluding Remarks and Ongoing Work

We have presented the design and implementation of an operational semantics-
based verification tool called KupC for dynamic software updating. Three case
studies showed the effectiveness of KupC for the formal analysis of the dynamic
software updating of C programs by simulation, state exploration, and LTL
model checking. Semantics-based formalization is promising in providing effec-
tive and practical solutions for guaranteeing the correctness of dynamic software
updating. For instance, Lounas et al. achieved formal verification of dynamic
updating of Java programs based on Java’s semantics [7]. Compared with their
approach, our approach is more general and extendable as K provides an ele-
gant semantic framework for the definition of programming languages and an
easy-to-use automated verification tool generation service.

KupC is at a good position for practical code-level verification of DSU. It is
directly applicable to the code and shows the feasibility of formalizing a dynamic
updating mechanism on the basis of the operational semantics of target program-
ming languages. To verify the dynamic updating of more complex and practical
programs, a complete semantics of C including those of standard libraries is
needed. The efficiency of KupC also needs to examine although the efficiency of
K has been validated [9]. There is ongoing work on these directions.

KupC has some limitations because of theoretical and practical challenges
in the formal verification of DSU. Theoretically, Gutpa et al. have shown the
undecidability of the reachability of updating points [3]. Another issue is that
there is no uniform definition of correctness of dynamic updating. The logical
correctness of dynamic updating depends on target programs and its formal-
ization relies on programmers’ interpretation. Although KupC does not require
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any abstraction of target programs, we suspect that certain abstraction is nec-
essary for optimizing efficiency and scalability of the verification. For instance,
a function that is not modified in a new version can be considered atomic for
verification purpose. It is still an ongoing quest for an appropriate abstraction of
target programs for the scalability while maintaining the validity of verification.
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Abstract. Pleak is a tool to capture and analyze privacy-enhanced
business process models to characterize and quantify to what extent the
outputs of a process leak information about its inputs. Pleak incorpo-
rates an extensible set of analysis plugins, which enable users to inspect
potential leakages at multiple levels of detail.

1 Introduction

Data minimization is a core tenet of the European General Data Protection
Regulation (GDPR) [2]. According to GDPR, usage of private data should be
limited to the purpose for which it has been collected. To verify compliance with
this principle, privacy analysts need to determine who has access to the data and
what private information these data may disclose. Business process models are
a rich source of metadata to support this analysis. Indeed, these models capture
which tasks are performed by whom, what data are taken as input and output
by each task, and what data are exchanged with external actors. Process models
are usually captured using the Business Process Model and Notation (BPMN).

This paper introduces Pleak1 – the first tool to analyze privacy-enhanced
BPMN models in order to characterize and quantify to what extent the outputs
of a process leak information about its inputs. The top level (Boolean level,
Sect. 2), tell us whether or not a given data in the process may reveal information
about a given input. The middle level, the qualitative level (Sect. 3), goes further
by indicating which attributes of (or functions over) a given input data object are
potentially leaked by each output, and under what conditions this leakage may
occur. The lower level quantifies to what extent a given output leaks information
about an input, either in terms of a sensitivity measure (Sect. 4) or in terms of
the guessing advantage that an attacker gains by having the output (Sect. 5).
1 https://pleak.io (account: demo@example.com, password: pleakdemo, manual:

https://pleak.io/wiki/, source code: https://github.com/pleak-tools/).
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Fig. 1. Aid distribution process

To illustrate the capabilities of Pleak, we refer to an “aid distribution”
process in Fig. 1. This process starts when a nation requests aid from the inter-
national community to handle an emergency and a country offers to route a ship
to help transport people and/or goods. The goal of the process is to allocate
a port and a berth to the ship but not to reveal information about ships that
are unable to help or the parameters of the ports. The process uses a type of
privacy-enhancing technology (PET) known as secure multiparty computation
(MPC). MPC allows participants to perform joint computations such that none
of the parties gets to see the data of the other parties, but can learn the out-
put depending on the private inputs. Given a ship, a deadline and the list of
ports, task “Compute reachable ports” retrieves the list of ports reachable by
the deadline. Tasks with identical names in different pools denote MPC compu-
tations carried out jointly by multiple stakeholders. Task “Select feasible ports”
retrieves ports with the capacity to host the ship. The third task selects a port,
a berth, and a slot for the ship, and discloses them to both participants.

Related Work. We are interested in privacy analysis of business processes and
in this space Anica [1] is closest to our work. However, Pleak’s analysis is more
fine-grained. Anica allows designers to see that a given object O1 may contain
information derived from a sensitive data object O2, but it can neither explain
how the data in O2 is derived from O1 (cf. Leaks-When analysis) nor to what
extent the data in O2 leaks information from O1 (cf. sensitivity and guessing
advantage analysis). In addition, they are interested in security levels and our
high level analysis looks at PETs deployed in the process.

2 PE-BPMN Editor and Simple Disclosure Analysis

The model in Fig. 1 is captured Privacy-Enhanced BPMN (PE-BPMN) [7,8]. PE-
BPMN uses stereotypes to distinguish used PETs, e.g. MPC or homomorphic
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encryption, that affect which data is protected in the process. The PE-BPMN
editor allows users to attach stereotypes to model elements and to enter the
stereotype’s parameters where applicable. The editor integrates a checker, which
verifies stereotype specific restrictions. For example, that: (1) when a task has
an MPC stereotype, there is at least one other “twin” task with the same label
in another pool, since an MPC computation involves at least two parties; (2)
when one of these tasks is enabled, the other twin tasks is eventually enabled;
and (3) the joint computation has at least one input and one output.

Given a valid PE-BPMN model, Pleak runs a binary privacy analysis, which
produces a simple disclosure report and data dependency matrix. The disclosure
report in Fig. 2 tells us whether or not a stakeholder gets to see a given data
object. In the report “V” indicates that a data object (in columns) is visible to a
stakeholder (in rows). Marker “H” (hidden) is used for data with cryptographic
protection, e.g. encrypted data. Row “shared over” refers to the network service
provider, who may also see some of the data (e.g. unencrypted data objects).

Fig. 2. Simple disclosure report for the aid distribution process in Fig. 1

3 Qualitative Leaks-When Analysis

Leaks-When analysis [3] is a technique that takes as input a SQL workflow and
determines, for each (output, input) pair which attributes, if any, of the input
object are disclosed by the output object and under which conditions. A SQL
workflow is a BPMN process model in which every data object corresponds to a
database table, defined by a table schema, and every task is a SQL query that
transforms the input tables of the task into its output tables. Figure 3 shows a
sample collaborative SQL workflow – a variant of the “aid distribution” example
where the disclosure of information about ships to the aid-requesting country is
made incrementally. The figure shows the SQL workflow alongside the query
corresponding to task “Select reachable ports”. All data processing tasks and
input data objects are specified analogously.

To perform a Leaks-When analysis, the user selects one or more output data
objects and clicks the “SQL LeaksWhen” button. The Leaks-When analysis
shows one tab for each output data object and one report for each column in the
output table. The report is generated by extracting all runs of the workflow and
applying dataflow analysis techniques to each run in order to infer all relevant
data dependencies. An example of a leaks-when report (in graphical form) is
shown in Fig. 4. The first input to Filter is the disclosed value (leaks branch), e.g.
the arrival time. The second input (when branch) is the condition of outputting



Business Process Privacy Analysis in Pleak 309

the first input, e.g. that the arrival time is less than the deadline and the ship
has the required name. Each Leaks-When report ends with such filter but the
rest of the graph aggregates the computations described in SQL.

Fig. 3. Aid distribution SQL workflow in Pleak SQL editor

4 Sensitivity Analysis and Differential Privacy
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Fig. 4. Sample leaks-when report

The sensitivity of a function is the
expected maximum change in the out-
put, given a change in the input of
the function. Sensitivity is the basis
for calibrating the amount of noise to
be added to prevent leakages on sta-
tistical database queries using a differ-
ential privacy mechanism [6]. Differ-
ential privacy ensures that it is diffi-
cult for an attacker, who observes the
query output, to distinguish between
two input databases that are suffi-
ciently “close” to each other, e.g. differ
in one row. Pleak tells the user how to sample noise to achieve differential pri-
vacy, and how this affects the correctness of the output. Pleak provides two
methods – global and local – to quantify sensitivity of a task in a SQL workflow
or of an entire SQL workflow. These methods can be applied to queries that
output aggregations (e.g. count, sum, min, max).

Global sensitivity analysis [5] takes as input a database schema and a query,
and computes the theoretical bounds for sensitivity, which are suitable for any
instance of the database. This shows how the output changes if we add (remove)
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a row to (from) some input table. The analysis output is a matrix that shows the
sensitivity w.r.t. each input table separately. It supports only COUNT queries.

Sometimes, the global sensitivity may be very large or even infinite. Local
sensitivity analysis is an alternative approach, which requires as input not only
a schema and a query, but also a particular instance of the underlying database,
and it tells how the output changes with the change from the given input. Using
the database instance improves the amount of noise needed to ensure differential
privacy w.r.t. the number of rows. Moreover, it supports COUNT, SUM, MIN,
MAX aggregations, and allows to capture more interesting distances between
input tables, such as change in a particular attribute of some row. In Pleak,
we have investigated a particular type of local sensitivity, called derivative sen-
sitivity [4], which is in first place adapted to continuous functions, and is closely
related to function derivative. Pleak uses derivative sensitivity to quantify the
required amount of noise as described in [4].

An example of derivative sensitivity analysis output is shown in Fig. 5a. It
tells that the derivative sensitivity w.r.t. the Ship table is 4, and that a differential
privacy level of ε = 1 can be achieved using smoothness parameter β = 0.05.
To this end, we would have to add an amount of (Laplacian) noise such that
the relative error of the output is 74%. More precisely, if the correct output
is y, the noised answer will be between 0.26y and 1.74y with probability 80%.
A tutorial on sensitivity analyzer can be found at https://pleak.io/wiki/sql-
derivative-sensitivity-analyser. More examples can be found in the full version
of this paper [9].

(a) Derivative sensitivity analysis
(b) Guessing advan-
tage analysis

Fig. 5. Examples of quantitative analysis

https://pleak.io/wiki/sql-derivative-sensitivity-analyser
https://pleak.io/wiki/sql-derivative-sensitivity-analyser
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5 Attacker’s Guessing Advantage

While function sensitivity as defined in Sect. 4 can be used directly to compute
the noise required to achieve ε-differential privacy, it is in general not clear which
ε is good enough, and the “goodness” depends on the data and the query [6].
We want a more standard security measure, such as guessing advantage, defined
as the difference between the posterior (after observing the output) and prior
(before observing the output) probabilities of attacker guessing the input.

The guessing advantage analysis of PLEAK takes as input the desired upper
bound on attacker’s advantage, which ranges between 0% and 100%. The user
specifies particular subset of attributes that the attacker is trying to guess for
some data table record, within given precision range. The user may define prior
knowledge of the attacker, which is currently expressed as an upper and a lower
bound on an attribute. The analyzer internally converts these values to a suitable
ε, and computes the noise required to achieve the bound on attacker’s advantage.

Figure 5b shows an example parameters and output of this analysis. The
attacker already knows that the longitude and latitude of a ship are in the range
[0...300] while the speed is in [20...80]. His goal is to learn the location of any
ship with a precision of 5 units. If we want to bound the guessing advantage by
30% using differential privacy, the relative error of the output will be 43.25%.
For a tutorial see https://pleak.io/wiki/sql-guessing-advantage-analyser.
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Abstract. Massive parallelism, and energy efficiency of GPUs, along
with advances in their programmability with OpenCL and CUDA pro-
gramming models have made them attractive for general-purpose com-
putations across many application domains. Techniques for testing GPU
kernels have emerged recently to aid the construction of correct GPU
software. However, there exists no means of measuring quality and effec-
tiveness of tests developed for GPU kernels. Traditional coverage criteria
over CPU programs is not adequate over GPU kernels as it uses a com-
pletely different programming model and the faults encountered may be
specific to the GPU architecture.

We address this need in this paper and present a framework,
CLTestCheck, for assessing quality of test suites developed for OpenCL
kernels. The framework has the following capabilities, 1. Measures ker-
nel code coverage using three different coverage metrics that are inspired
by faults found in real kernel code, 2. Seeds different types of faults in
kernel code and measures fault finding capability of test suite, 3. Simu-
lates different work-group schedules to check for potential deadlocks and
data races with a given test suite. We conducted empirical evaluation of
CLTestCheck on a collection of 82 publicly available GPU kernels and
test suites. We found that CLTestCheck is capable of automatically mea-
suring effectiveness of test suites, in terms of kernel code coverage, fault
finding and revealing data races in real OpenCL kernels.

Keywords: Testing · Code coverage · Fault finding · Data race ·
Mutation testing · GPU · OpenCL

1 Introduction

Recent advances in the programmability of Graphics Processing Units (GPUs),
accompanied by the advantages of massive parallelism and energy efficiency, have
made them attractive for general-purpose computations across many application
domains [19]. However, writing correct GPU programs is a challenge owing to
many reasons [13] – a program may spawn millions of threads, which are clustered
in multi-level hierarchies, making it difficult to analyse; programmer assumes
responsibility for ensuring concurrently executing threads do not conflict by
checking threads access disjoint parts of memory; complex striding patterns of
memory accesses are hard to reason about; GPU work-group execution model
and thread scheduling vary platform to platform and the assumptions are not
c© The Author(s) 2019
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explicit. As a consequence of these factors, GPU programs are difficult to analyse
with existing static or dynamic approaches [13]. Static techniques are thwarted
by the complexity of the sharing patterns. Dynamic techniques are challenged
by the combinatorial explosion of thread interleavings and space of possible data
inputs. Given these difficulties, it becomes important to understand the extent
to which a GPU program has been analysed and tested, and the code portions
that may need further attention.

In this paper, we focus on GPU program testing and address concerns with
respect to quality and adequacy of tests developed for GPU programs. We
present a framework, CLTestCheck, that measures test effectiveness over GPU
kernels written using OpenCL programming model [7]. The framework has three
main capabilities. The first capability is a technique called schedule amplifica-
tion to check execution of test inputs over several work-group schedules. Existing
GPU architecture and simulators do not provide a means to control work-group
schedules. The OpenCL specification provides no execution model for inter work-
group interactions [21]. As a result, the ordering of work-groups when a kernel
is launched is non-deterministic and there is, presently, no means for checking
the effect of schedules on test execution. We provide this monitoring capability.
For a test case Ti in test suite TS, instead of simply executing it once with
an arbitrary schedule of work-groups, we execute it many times with a differ-
ent work-group schedule in each execution. We build a simulator that can force
work-groups in a kernel execution to execute in a certain order. This is done in
an attempt to reveal test executions that produce different outputs for different
work-group schedules which inevitably point to problems in inter work-group
interactions.

The second capability of CLTestCheck is measuring code coverage for
OpenCL kernels. The structures we chose to cover were motivated by OpenCL
bugs found in public repositories like Github and research papers for GPU
testing. We define and measure coverage over synchronisation statements, loop
boundaries and branches in OpenCL kernels.

The final capability of the framework is creating mutations by seeding differ-
ent classes of faults relevant to GPU kernels. We assess the effectiveness of test
suites in uncovering the seeded faults.

We empirically evaluate CLTestCheck using 82 kernels and associated test
input workloads from industry standard benchmarks. The schedule ampli-
fier in CLTestCheck was able to detect deadlocks and inter work-group data
races in benchmarks. We were able to detect barrier divergence and kernel
code that requires further tests using the coverage measurement capabilities
of CLTestCheck. Finally, the fault seeding capability was able to expose unnec-
essary barriers and unsafe accesses in loops.

The CLTestCheck framework aims to help developers assess how well the
OpenCL kernels have been tested, kernel regions that require further testing,
uncover bugs sensitive to work-group schedules. In summary, the main contri-
butions in this paper are:

1. Schedule amplification to evaluate test executions using different work-group
schedules.

2. Definition and measurement of kernel code coverage considering synchronisa-
tion statements, loop boundaries and branch conditions.
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3. Fault seeder for OpenCL kernels that seeds faults from different classes. The
seeded faults are used to assess the effectiveness of test suites with respect to
fault finding.

4. Empirical evaluation on a collection of 82 publicly available GPU kernels,
examining coverage, fault finding and inter work-group interactions.

The rest of this paper is organised as follows. We present background on the
OpenCL programming model in Sect. 2. Related work in GPU program testing
and verification is discussed in Sect. 3. CLTestCheck capabilities is discussed in
Sect. 4. Experiment setup and results of our empirical evaluation is discussed in
Sects. 5 and 6, respectively.

2 Background

The success of GPUs in the past few years has been due to the ease of pro-
gramming using the CUDA [17] and OpenCL [7] parallel programming models,
which abstract away details of the architecture. In these programming models,
the developer uses a C-like programming language to implement algorithms. The
parallelism in those algorithms has to be exposed explicitly. We now present a
brief overview of the core concepts of OpenCL, the programming model used in
this paper.

OpenCL is a programming framework and standard set from Khronos, for
heterogeneous parallel computing on cross-vendor and cross-platform hardware.
In the OpenCL architecture, CPU-based Host controls multiple Compute Devices
(for instance CPUs and GPUs are different compute devices). Each of these
coarse grained compute devices consists of multiple Compute Units which in
turn contain one or more processing elements (a.k.a streaming processors). The
processing elements execute groups of individual threads, referred to as work-
groups, concurrently. The functions executed by the GPU threads are called
kernels, parameterised by thread and group id variables. OpenCL has four types
of memory regions: global and constant memory shared by all threads in all
work-groups, local memory shared by threads within the same work-group and
private memory for each thread. Kernels cannot write to the constant memory.

GPUs have SIMT (single instruction, multiple thread) execution model that
executes batches of threads (warps) in lock-step, i.e all threads in a work-group
execute the same instruction but on different data. If the control flow of threads
within the same work-group diverges, the different execution paths are scheduled
sequentially until the control flows reconverge and lock-step execution resumes.
Sequential scheduling caused by divergence results in a performance penalty,
slowing down execution of the kernel.

Betts et al. [2] describe two specific classes of bugs that make GPU kernels
harder for verification than sequential code, data races and barrier divergence.
Inter work-group data race is referred to as a global memory location is written
by one or more threads from one work-group and accessed by one or more threads
from another work-group. Intra work-group data race is referred to as a global or
local memory location is written by one thread and accessed by another from the
same work-group. Barrier is a synchronisation mechanism for threads within a
work-group in OpenCL and is used to prevent intra work-group data race errors.
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Barrier divergence occurs if threads in the same group reach different barriers,
in which case kernel behaviour is undefined [2] and may lead to intra work-group
data race.

In this paper, we focus on covering barrier functions to help detect intra
work-group barrier divergence errors and revealing problems with inter work-
group interactions using work-group schedule amplification.

3 Related Work

We discuss related work in the context of work-group synchronisation, verifica-
tion and testing of GPU programs.

Inter Work-group Synchronisation for OpenCL Kernels. Barrier functions in the
OpenCL specification [7] help synchronise threads within the same work-group.
There is no mechanism, however, to synchronise threads belonging to different
work-groups. One solution for this problem is to split a program into multi-
ple kernels with the CPU executing the kernels in sequence providing implicit
synchronisation. The drawback with this method is the overhead incurred in
launching multiple kernels. Xiao et al. [24] proposed an implementation of inter
work-group barrier that relies on information on the number of work-groups.
This method is not portable as the number of launched work-groups depends on
the device. Sorensen et al. [22] extended it to be portable by discovering work-
group occupancy dynamically. Their implementation of inter work-group barrier
synchronisation is useful when the developer knows there is interaction between
work-groups that needs to be synchronised. Our contribution is in detecting
undesired inter work-group interactions, not intended by the developer.

GPU Kernel Verification. Verification of GPU kernels to detect data races and
barrier divergence bugs has been explored in the past. Li et al. [14] introduced a
Satisfiability Modulo Theories (SMT) based approach for analysing GPU kernels
and developed a tool called Prover of User GPU (PUG). The main drawback of
this approach is scalability. With an increasing number of threads, the number of
possible thread interleavings grows exponentially, making the analysis infeasible
for large number of threads. GRace [25] and GMRace [26] were developed for
CUDA programs to detect data races using both static and dynamic analysis.
However, they do not support detection of inter work-group data races.

GKLEE [15] and KLEE-CL [3], based on dynamic symbolic execution, pro-
vides data race checks for CUDA and OpenCL kernels, respectively. Both tools
are restricted by the need to specify a certain number of threads, and the lack
of support for custom synchronisation constructs. Scalability and general appli-
cability is a challenge with these tools.

Leung et al. [13] present a flow-based test amplification technique for verifying
race freedom and determinism of CUDA kernels. For a single test input under a
particular thread interleaving, they log the behaviour of the kernel and check the
property. They then amplify the result of the test to hold over all the inputs that
have the same values for the property integrity-inputs. The test amplification
approach in [13] can check the absence of data-races, not the presence. Addi-
tionally, their approach amplifies across the space of test inputs, not work-group
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schedules as done in our schedule amplifier. GPUVerify [2] is a static analy-
sis tool that transforms a parallel GPU kernel into a two-threaded predicated
program with lock-step execution and checks data races over this transformed
model. The drawback of GPUVerify is that it may report false alarms and has
limited support for atomic operations.

Test Effectiveness Measurement. Measuring effectiveness of tests in terms of
code coverage and fault finding is common for CPU programs [6,18]. Support for
GPU programs is scarce. GKLEE is the only tool that provides support for code
coverage for CUDA GPU kernels. Given a kernel, it converts it into its sequential
C program version (using Perl scripts) and applies the Gcov utility supplied
with GCC for measuring code coverage. This form of coverage measurement
disregards the GPU programming model. In our approach, we measure coverage
conforming to the OpenCL programming model. With respect to fault seeder
and schedule amplification, we are not aware of any existing work that provides
these capabilities for GPU kernels to help measure effectiveness of test suites.
The CLTestCheck framework is discussed in the next Sect. 4.

4 Our Approach

In this Section, we present the CLTestCheck framework that provides capabilities
for kernel code coverage measurement, mutant generation and schedule amplifi-
cation. To understand the kinds of programming bugs1 encountered by OpenCL
developers, we surveyed several publicly available OpenCL kernels and associ-
ated bug fix commits. A summary of our findings is shown in Table 1. We found
bugs most commonly occur in the following OpenCL code constructs: barriers,
loops, branches, global memory accesses and arithmetic computations. We seek
to aid the developer in assessing quality of test suites in revealing these bug
types using CLTestCheck. A detailed discussion of CLTestCheck capabilities is
presented in the following sections.

4.1 Kernel Code Coverage

We define coverage over barriers, loops and branches in OpenCL code to check
rigour of test suites in exercising these code structures.

Branch Coverage. GPU programs are highly parallelised, executed by numerous
processing elements, each of them executing groups of threads in lock step, which
is very different from parallelism in CPU programs, where each thread executes
different instructions with no implicit synchronisation, as seen in lock-step exe-
cution. Kernel code for all the threads is the same, however, the threads may
diverge, following different branches based on the input data they process. As
seen in Table 1, uncovered branches and branch conditions are an important class
of OpenCL bugs. Lidbury et al. [16] report in their work that branch coverage

1 These are kernel bugs that violate the specification of the program or are associated
with executions that lead to undefined behaviour.
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Table 1. Summary of bug fixing commits we collected

# Code Structure Bug Type Repository

1 Barrier Missing barriers Winograd-OpenCL [10],
histogram [13],
reduction [13], OP2 [3]

2 Removing unnecessary barriers Winograd-OpenCL [10]

3 Loop Incorrect condition mcxcl [5], particles [8]

4 Incorrect boundary value clSPARSE [1]

5 Missing loop boundary Pannotia [21]

6 Branch Missing else branch liboi [11]

7 Incorrect condition mcxcl [5],
ClGaussianPyramid [4]

8 Global memory access Inter work-group data race Parboil-spmv [16],
lonestar-bfs [21],
lonestar-sssp [21]

9 Arithmetic Computations Incorrect arithmetic operators mcxcl [5],
ClGaussianPyramid [4]

measurement is crucial for GPU programs but is currently lacking. To address
this need, we define branch coverage for GPU programs as follows,

branch coverage =
#covered branches

total #branches
× 100% (1)

Branch coverage measures adequacy of a test suite by checking if each branch
of each control structure in GPU code has been executed by at least one thread.

Loop Boundary Coverage. In our survey of kernel bugs shown in Table 1, we
found bugs related to loop boundary values and loop conditions were fairly
common. For instance, bug #3 found in the mcxcl program allowed the loop
index to access memory locations beyond the end of the array due to an erroneous
loop condition. We assess adequacy of test executions with respect to loops by
considering the following cases,

1. Loop body is not executed,
2. Loop body is executed exactly once,
3. Loop body is executed more than once
4. Loop boundary value is reached

Loop boundary coveragecase i =
#loops satisfying case i

total #loops
× 100% (2)

where casei refers to one of the four loop execution cases listed above.

Barrier Coverage. Barrier divergence occurs when the number of threads within
a work-group executing a barrier is not the same as the total number of threads in
that work-group. Kernel behaviour with barrier divergence is undefined. Barrier
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related bugs, missing barriers and unnecessary barriers, is a common class of
GPU bugs according to our survey. We define barrier coverage as follows.

barrier coverage =
#covered barriers

total #barriers
× 100% (3)

Barrier coverage measures adequacy of a test suite by checking if each barrier
in GPU code is executed correctly. Correct execution of a barrier without barrier
divergence, covered barrier, is when it is executed by all threads in any given
work-group.

4.2 Fault Seeding

Mutation testing is known to be an effective means of estimating the fault finding
effectiveness of test suites for CPU programs [9]. We generate mutations using
traditional mutant operators, namely, arithmetic, relational, bitwise, logical and
assignment operator types. In Table 1, bug fixes #3, #7 and #8 show that
traditional arithmetic and relational operator mutations remain applicable to
GPU programs. In addition, we define three mutations specifically for OpenCL
kernels: barrier mutation, image access mutation and loop boundary mutation
inspired by bug fixes #1 to #5.

The barrier mutation operator we define is deletion of an existing barrier
function call, to reproduce bugs similar to #1 and #2 in Table 1. OpenCL pro-
vides 2D and 3D image data structures to facilitate access to images. Multi-
dimensional arrays are not supported in OpenCL. Image structures are accessed
using read and write functions that take the pixel coordinates in the image
as parameter. We perform image access mutations for 2D or 3D coordinates
by increasing or decreasing one of the coordinates or exchanging coordinates.
Finally, we define loop boundary mutations as either (1) skipping the loop, (2)
allowing n-1 iterations of the loop and (3) allowing n+1 iterations of the loop
where n is the number of iterations when the loop boundary is reached. The
mutant operators we use in this paper are summarised in Table 2.

Table 2. Summary of mutation operators

Type of Operator Mutants

Arithmetic Binary +, −, *, /, %

Unary -(negation), ++, --

Relational <, >, ==, <=, >=, ! =

Logical &&, ||, !
Bitwise &, |, ,̂ ,̃ <<, >>

Assignment =, +=, −=, ∗=, /=, %=, <<=, >>=, &=, |=,̂ =

Barrier Delete barrier function call

Image coordinates Change coordinates when accessing images

Loop boundary Change the boundary value in loop condition check



322 C. Peng and A. Rajan

4.3 Schedule Amplification

When a kernel execution is launched the GPU schedules work-groups on com-
pute units in a certain order. Presently, there is no provision for determining
this schedule or setting it in advance. The scheduler makes the decision on the
fly subject to availability of compute units and readiness of work-groups for exe-
cution. The order in which work-groups are executed with the same test input
can differ every time the kernel is executed. OpenCL specification has no execu-
tion model for inter work-group interactions and provides no guarantees on how
work-groups are mapped to compute units. In our approach, we execute each
test input over a set of schedules. In each schedule, we fix the work-group that
should execute first. All other work-groups wait till it has finished execution.
The work-group going first is picked so that we achieve a uniform distribution
over the entire range of work-groups in the set of schedules. The order of exe-
cution for the remaining work-groups is left to the scheduler. For a test case, T
over a kernel with G work-groups, we will generate N schedules, with N < G,
such that a different work-group is executed first in each of the N schedules.
The number of schedules, N , we generate is much lesser than the total num-
ber of schedules which is typically infeasible to check. The reason we only fix
the first work-group in the schedule is because, most data races or deadlocks
involve interactions between two work-groups. Fixing one of them and picking a
different work-group each time, significantly reduces the search space of possible
schedules. We cannot provide guarantees with this approach. However, with lit-
tle extra cost we are able to check significantly more number of schedules than is
currently possible. We believe this approach will be effective in revealing issues,
if any, in inter work-group interactions.

To illustrate this, we consider a kernel co running on four work-groups. The
CLTestCheck schedule amplifier will insert code on the host and GPU side,
shown in Listings 1.1 and 1.2, to generate different work-group schedules.

In this example, before the GPU kernel is launched, the host side generates a
random value in the range of available work-group ids. This value is the id of the
selected work-group to be executed first and is passed to the kernel code using a
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macro definition. On the kernel side, each thread determines if it belongs to the
selected work-group. Threads in the selected work-group proceed with executing
the kernel code while threads belonging to other work-groups wait. After the
selected work-group completes execution, the remaining work-groups execute
the original kernel in an order based on mapping to available compute units
(occupancy bound execution model [22]). With different work-group schedules
generated by the schedule amplifier, we were able to detect the presence of inter
work-group data races using a single GPU platform. Betts et al. [2], on the other
hand, focus on intra work-group data races on different GPU platforms.

4.4 Implementation

CLTestCheck is implemented using Clang LibTooling [12]. We instrument
OpenCL kernel source code to measure coverage, generate mutations and mul-
tiple work-group schedules automatically. Our implementation is available at
https://github.com/chao-peng/CLTestCheck.
Coverage Measurement. To record branches, loops and barriers executed
within each kernel when running tests, we instrument the kernel code with data
structures and statements recording the execution of these code structures. For
each work-group, we introduce three local arrays, whose size is determined by the
number of branches, loops and barriers accessible by threads in that work-group.
To measure branch coverage, we add statements at the beginning of each then-
and else-branch to record whether that branch is enabled. Similarly, statements
to record the number of iterations of loops are added at the beginning of each loop
body. At the end of the kernel, the information contained in the data structures
is processed to compute coverage.
Fault Seeder and Mutant Execution. The CLTestCheck fault seeder gen-
erates mutants and executes them with each of the tests in the test suite to
compute mutation score, as the fraction of mutants killed. The CLTestCheck
fault seeder translates the target kernel source code into an intermediate form
where all the applicable operators are replaced by a template string containing
the original operator, its ID and type. The tool then generates mutants from this
intermediate form. Once mutants are generated, the tool executes each of the
mutant files and checks if the test suite kills the mutant. We term the mutant
as killed if one of the following occurs: program crashes, deadlocks or produces
a result different from the original kernel code.
Schedule Amplification. As mentioned earlier, we generate several schedules
for each test execution by requiring a target work-group to execute the kernel
code first and then allowing other work-groups to proceed. The target work-
group is selected uniformly across the input space of work-group ids. To achieve
coverage of this input space, we partition work-group ids into sets of 10 work-
groups. Thus if we have N work-groups, we partition them into N /10 sets. The
first set has work-group ids 0 to 9, the second set has ids 10 to 19 and so on.
We then randomly pick a target work-group, Wt, from each of these sets to go
first and generate a corresponding schedule of work-groups, {Wt, SN−1}, where
SN−1 refers to the schedule of remaining N − 1 work-groups generated by the
GPU execution model which is non-deterministic. For N /10 sets of work-groups,
we will have N /10 schedules of the form {Wt, SN−1} (a Wt first schedule). The
test input is executed using each of these N /10 Wt first schedules. Due to the

https://github.com/chao-peng/CLTestCheck
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non-deterministic nature of SN−1, we repeat the test execution with a chosen
Wt first schedule 20 times. This will enable us to check if the execution model
generates different SN−1 and evaluate executions with 20 such orderings.

5 Experiment

In our experiment, we evaluate the feasibility and effectiveness of the coverage
metrics, fault seeder and work-group schedule amplifier proposed in Sect. 4 using
OpenCL kernels from industry standard benchmark families and their associated
test suites. We investigate the following questions:

Q1. Coverage Achieved: What is the branch, barrier and loop coverage
achieved by test suites over OpenCL kernels in our subject benchmarks?
To answer this question, we use our implementation to instrument and anal-
yse kernel source code to record visited branches, barrier functions, loop
iterations along with information on executing work-group and threads.

Q2. Fault Finding: What is the mutation score of test suites associated with
the subject programs?
For each benchmark, we generate all possible mutants by analysing the
kernel source code and applying the mutation operators, discussed in Sect. 4,
to eligible locations. We then assess number of mutants killed by the tests
associated with each benchmark. To check if a mutant is killed, we compared
execution results between the original program and mutant.

Q3. Deadlocks and Data Races: Can the tests in the test suite give rise to
unusual behaviour in the form of deadlocks or data races? Deadlocks occur
when two or more work-groups are waiting on each other for a resource.
Inter work-group data races occur when test executions produce different
outputs for different work-group schedules. For each test execution in each
benchmark, we generate 20 ∗N/10 different work-group schedules, where N
is total number of work-groups for the kernel, and check if the outputs from
the execution change based on work-group schedule.

Subject Programs. We used the following benchmarks for our experiments, 1.
Nine scientific benchmarks with 23 OpenCL kernels from Parboil benchmark
suite [23], 2. scan benchmark [20], with 3 kernels, that computes parallel prefix
sum, 3. Five applications containing 13 kernels from Rodinia benchmark suite
for heterogeneous computing, 4. 20 benchmarks from PolyBench with 43 kernels
spanning linear algebra, data mining and stencil computations.

We ran our experiments on Intel CPU (i5-6500) and GPU (HD Graphics
530) using OpenCL SDK 2.0.

6 Results and Analysis

For each of the subject programs presented in Sect. 5, we ran the associated
test suites and report results in terms of coverage achieved, fault finding and
overhead incurred with CLTestCheck framework. We executed the test suites
20 times for each measurement. Our results in the context of the questions in
Sect. 5 is presented below.
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6.1 Coverage Achieved

Branch and Loop coverage (with 0, exactly 1 and >1 iterations) for each of the
subject programs in the three benchmark suites2 is shown in the plots in Fig. 1.
The first row shows branch coverage, the second loop coverage. Mutation score
and surviving mutation types shown in the last two rows of Fig. 1 is discussed
in the next Sect. 6.2.

Fig. 1. Coverage achieved - Branch and Loop, mutation score and percentage of sur-
viving mutations by type for each subject program in the 3 benchmark suites.

2 20 applications in Parboil counting different test suites separately, 6 in Scan/Rodinia,
and 20 in PolyBench.
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Barrier Coverage is not shown in the plots since for all, except one, applica-
tions with barriers, the associated test suites achieved 100% barrier coverage.
The only subject program with less than 100% barrier coverage was scan, which
had 87.5% barrier coverage. The uncovered barrier is in a loop whose condition
does not allow some threads to enter the loop, resulting in barrier divergence
between threads. We find that less than 100% barrier coverage is a useful indi-
cator of barrier divergence in code.
Branch Coverage. For most subject programs in Parboil and Scan/Rodinia,
test suites achieve high branch coverage (>83%). The histo benchmark is an
outlier with a low branch coverage of 31.6%. Its kernel function, histo main,
contains 20 branches in a code block handling an exception condition (overflow).
The test suite provided with histo does not raise the overflow exception, and
as a result, these branches are never executed. We found uncovered branches in
other applications, with >80% coverage, in Parboil and Scan/Rodinia to also
result from exception handing code that is not exercised by the associated test
data.

Branch coverage achieved for 13 of the 20 applications in PolyBench is at
50%. This is very low compared with other benchmark suites. Upon investigat-
ing the kernel code, we found that all the uncovered branches reside within a
condition check for out of range array index. Tests associated with a majority of
the applications did not check out of range array index access, resulting in low
branch coverage.
Loop Coverage. Test suites for nearly all applications (with loops) execute
loops more than once. Thus, coverage for >1 iterations is 100% for all but one
of the applications, srad in Rodinia suite, that has 80%. The uncovered loop in
srad is in an uncovered then-branch that checks exception conditions. We also
checked if the boundary value in loop conditions is reached when >1 iterations
is covered by test executions. We found pathfinder in Rodinia to be the only
application to have full coverage for >1 iterations but not reach the boundary
value. The unusual scenario in pathfinder is because one of the loops is exited
using a break statement.

We find that test suites for most applications are unable to achieve any loop
coverage for 0 and exactly 1 iteration. The boundary condition for most loops
is based on the size of the work-groups which is typically much greater than
1. As a result, test suites have been unable skip the loop or execute it exactly
once. The only exceptions were applications in the Parboil suite - bfs, cutcp,
mri-gridding, spmv, and two applications in Rodinia - lud, srad, that have
boundary values dependent on variables that maybe set to 0 or 1.
Overhead. For each benchmark and associated test suite, we assessed over-
head introduced by our approach. We compared time needed for executing the
benchmark with instrumentation and additional data structures that we intro-
duced for coverage measurement against the original unchanged benchmark.
Overhead varied greatly across benchmarks and test suites. Overhead for Par-
boil and Rodinia benchmarks was in the range of 2% to 118%. Overhead was
lower for benchmarks that took longer to execute as the additional execution
time from instrumentation is a smaller fraction of the overall time. Overhead for
most programs in PolyBench ranges from 2% to 70%, which is similar to Parboil
and Rodinia benchmarks. The overhead for lu, fdtd-2d and jacobi-2d-imper
programs are >100%. The code for kernel computations in these benchmarks is
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small with fast execution. Consequently, the relative increase in code size and
execution time after instrumentation with CLTestCheck is high.

6.2 Fault Finding

Fault finding for the subject programs is assessed using the mutants we generate
with the fault seeder, described in Sect. 4. The mutation score, percentage of
mutants killed, is used to estimate fault finding capability of test suites associated
with the subject programs. Each test suite associated with a benchmark is run
20 times to determine the killed mutants. A mutant is considered killed if the
test suite generates different outputs on the mutant than the original program
in all 20 repeated runs of the test suite. In addition to killed mutants, we also
report results on “Undecided Mutants”, that refers to mutants that are killed in
at least one of the executions of the test suite, but not all 20 repeated executions.
Changes in GPU thread scheduling between runs causes this uncertainty. We do
not count the undecided mutants towards killed mutants in the mutation score.
Mutation score for all subject programs in each benchmark suite is shown in the
third row of plots in Fig. 1.
Mutation Score. In general, we find that test suites for subject programs
achieving high branch, barrier and loop coverage also have high mutation score.
For instance, for spmv and stencil, their test suites achieving 100% coverage,
also achieved 100% mutation score. An instance of a program that does not
follow this trend is mri-gridding that has 100% branch, barrier, and loop (>1
iterations) coverage but only 82% mutation score. On analysing the survived
mutants, we found a significant fraction (160 out of 232) were arithmetic operator
mutations within a function named kernel value that contained variables defining
a fourteenth-order polynomial and a cubic polynomial. Effect of mutations on
the polynomials did not propagate to the output of the benchmark with the
given test suite. The histo program with low branch coverage, 100% barrier
and loop coverage has 65.9% mutation score. Nearly two thirds of the branches
in histo cannot be reached by the input data, as a result, all the mutations in
the untouched branches is not killed, resulting in a low mutation score. A few of
the programs in PolyBench have mutation scores that are between 60–70%. In
these programs, most surviving mutations are arithmetic operator mutations.

As seen in the last row of Fig. 1 showing surviving mutations by operator
type, arithmetic operators are the dominant surviving mutations in all three
benchmark suites. Control flow adequate tests can kill arithmetic operator muta-
tions only if they propagate to a control condition or the output. Data flow
coverage may be better suited for estimating these mutations. Around 20% of
relational operator mutations also survive in our evaluation. Most of the surviv-
ing relational operator mutations made slight changes to operators, such as < to
<=, or > to >= and vice versa. The test suites provided with the benchmarks
missed such boundary mutations.
Undecided mutants occur during executions of 9, out of the 46 subject pro-
grams and test suites across all three benchmark suites. Number of undecided
mutants during the 9 executions is generally small (<= 5). The only excep-
tion is tpacf in the Parboil benchmark suite, that resulted in 18 undecided
mutants when executing one of its test suite. Undecided mutants point to non-
deterministic behaviour in the kernel, that is dependent on GPU thread execu-
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tion model. A large number of undecided mutants is alarming and developers
should examine kernel code more closely to ensure that the behaviour observed
is as intended.
Barriers were not used in all benchmarks. Only 5 out of the 9 benchmarks in
Parboil, and 4 of the 6 in Scan/Rodinia had barriers. PolyBench programs did
not use any barriers. Mutations removed barrier function calls in these bench-
marks and we ecorded the number of mutants killed by test suites. Percentage
of killed barrier mutations is generally low across all benchmarks with barriers.
For instance, removing 2 out of 3 barriers in the histo program in Parboil,
and removing all barriers in the cutcp program had no effect on outputs of the
respective program executions. This may either mean that the test suites are
inadequate with respect to the barrier mutations or it could be an indication
that these barriers are superfluous with respect to program outputs, and the
need for synchronisation should be further justified. For the programs in our
experiment, we found barriers, whose mutations survived, to be unnecessary.
Coverage versus Mutation Score. The plots in Fig. 1 illustrate total muta-
tion score over all types of mutations for each subject program and test suite.
We also compute mutation scores specifically for branches, barriers, and loops
using mutations relevant to them. We do this to compare against branch, bar-
rier and loop coverage achieved for each of the subject programs. We found
that mutation score for branches closely follows branch coverage for most sub-
ject programs. Outliers include adi, nn, convolution-2d and convolution-3d.
Mutations that change < to <= are not killed in these kernels; these comprise
one third of all branch mutations.

Mutation score for barriers is quite different from barrier coverage. This is
because test suites are able to execute the barriers and achieve coverage. How-
ever, they are unable to produce different outputs when the barriers are removed.
This may be a problem with the superfluous manner in which barriers are used
in these programs.

Loop coverage with >1 iterations is 100% for all but one subject program
(srad in Rodinia). Mutation score for loops on the other hand is variable. In
general, tests achieving loop coverage are unable to reveal loop boundary muta-
tions. Histo and srad are worth noting with high loop coverage but low loop
mutation scores. We find that mutations to the loop boundary value in these
two benchmarks survive, which implies that access to loop indices outside the
boundary go unchecked in these programs. These unsafe values of loop indices
should be disallowed in these kernels and loop boundary mutations in our fault
seeder help reveal them.

6.3 Schedule Amplification: Deadlocks and Data Races

Kernel Deadlocks: When we used the CLTestCheck schedule amplifier on
our benchmarks, we found kernel executions deadlock when the work-group ID
selected to go first exceeds the number of available compute units. As there are
no guarantees on how work-groups are mapped to compute units, we allow work-
group IDs exceeding number of compute units to go first in some test executions
using our schedule amplifier. However, it appears that the GPU makes unstated
assumptions on what work-group IDs are allowed to go first. As noted by Soren-
son et al. [22], “execution of large number of work-groups is in any occupancy
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bound fashion, by delaying the scheduling of some work-groups until others have
executed to completion”. They observed deadlocks in kernel execution due to
inter work-group barriers. However, in the benchmarks in our evaluation, there
is no explicit inter work-group barrier. It may be the case that developers made
implicit assumptions on inter work-group barriers using the occupancy bound
model and our schedule amplification approach violates this assumption. Nev-
ertheless, our finding exposes the need for an inter work-group execution model
that explicitly states the details and assumptions related to mapping of work-
groups to compute units for a given kernel on a given GPU platform.
Inter Work-group Data Races: We were able to reveal a data race in the
spmv application from the Parboil benchmark suite. We found that when work-
groups 0 or 1 are chosen to go first in our schedules, the kernels execution always
produces the same result. However, when we pick other work-group ids to go first,
the test output is not consistent. Among twenty executions for each schedule,
the frequency of producing correct output varies from 45% to 70%.

We observe similar behaviour in the tpacf application in Parboil when we
delete the last barrier function call in the kernel. The kernel execution produces
consistent outputs when we pick work-group 0 or 1 to go first. When we pick
other work-groups to go first using our schedule amplifier, the kernel execution
results are non-deterministic.

We observe no unusual behaviour in any of the PolyBench programs. These
programs split the computation into multiple kernels and the CPU program
launches GPU kernels one by one. The transfer of control from the GPU to the
CPU between kernels acts like a barrier as the CPU will wait until a kernel
finishes before launching the next kernel. In addition, care has been taken in
the kernel code to ensure threads do not access the same memory location. As
a result, we observe no data races in PolyBench with our schedule amplifier.

7 Conclusion

We have presented the CLTestCheck framework for measuring test effectiveness
over OpenCL kernels with capabilities to measure code coverage, fault seeding
and mutation score measurement, and finally amplify the execution of a test
input with multiple work-group schedules to check inter work-group interactions.
Our empirical evaluation of CLTestCheck capabilities with 82 publicly available
kernels revealed the following,

1. The schedule amplifier was able to detect deadlocks and inter work-group
data races in Parboil benchmarks when higher work-group ids were forced to
execute first. This finding emphasizes the need for transparency and clearly
stated assumptions on how work-groups are mapped to compute units.

2. Barrier coverage served as a useful measure in identifying barrier divergence
in benchmarks (scan).

3. Branch coverage pointed to inadequacies in existing test suites and found test
inputs for exercising error handling code were missing.

4. Across all benchmark suites, we found arithmetic operator and relational
operator mutations that changed < to <=, > to >= or vice versa were hard
to kill. More rigorous test suites to handle these mutations are needed.
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5. The use of barrier mutations revealed several instances of unnecessary barrier
use. Barrier usage and its implications is not well understood by developers.
Barrier mutations can help reveal incorrect barrier uses.

6. Loop boundary mutations helped reveal unsafe accesses to loop indices out-
side the loop boundary.

In sum, the CLTestCheck framework is an automated, effective and useful tool
that will help developers assess how well OpenCL kernels have been tested,
kernel regions that require further testing, uncover bugs with respect to work-
group schedules. In the future, we plan to add further metrics, like data flow
coverage with work-group schedule, to strengthen test adequacy measurement.
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Abstract. This paper describes the development of a parallel simulator
of a multicore memory system from a model formalized as a structural
operational semantics (SOS). Our implementation uses the Abstract
Behavioral Specification (ABS) language, an executable, active object
modelling language with a formal semantics, targeting distributed sys-
tems. We develop general design patterns in ABS for implementing SOS,
and describe their application to the SOS model of multicore memory
systems. We show how these patterns allow a formal correctness proof
that the implementation simulates the formal operational model and dis-
cuss further parallelization and fairness of the simulator.

1 Introduction

Structural operational semantics (SOS) [1], introduced by Plotkin in 1981,
describes system behavior as transition relations in a syntax-oriented, compo-
sitional way, using inference rules for local transitions and their composition.
Process synchronization in SOS rules is expressed abstractly using, e.g., asser-
tions over system states and reachability conditions over transition relations as
premises, and label synchronization for parallel transitions. This high level of
abstraction greatly simplifies the verification of system properties, but not the
simulation of system behavior as execution quickly becomes a reachability prob-
lem with a lot of backtracking. In this paper, we study how to implement a
parallel simulator with a formal correctness proof from a SOS model, in terms
of a case study of a multicore memory system. Such a correctness proof requires
that the implementation language is also defined formally by an operational
semantics.
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A major challenge in software engineering is the exploitation of the computa-
tional power of multicore (and manycore) architectures. One important aspect of
this challenge is the memory systems of these architectures. These memory sys-
tems generally use caches to avoid bottlenecks in data access from main memory,
but caches introduce data duplication and require protocols to ensure coherence.
Although data duplication is usually not visible to the programmer, the way a
program interacts with these copies largely affects performance by moving data
around to maintain coherence. To develop, test and optimize software for multi-
core architectures, we need correct, executable models of the underlying memory
systems. A SOS model of multicore memory systems with correctness proofs for
cache coherency has been described in [2], together with a prototype imple-
mentation in the rewriting logic system Maude [3]. However, this fairly direct
implementation of the SOS model is not well suited to simulate large systems.

This paper considers an implementation of the SOS model in ABS [4], a lan-
guage tailored to the description of distributed systems based on active objects
[5]. ABS is formally defined by an operational semantics and supports parallel
execution on backends in Erlang, Haskell, and Java. The following features of
ABS allow a high-level, coarse-grained view of the execution of different method
invocations by different active objects: encapsulation of local state in active
objects, communication using asynchronous method calls and futures, and coop-
erative scheduling of the method invocations of an active object. Our case study
fully exploits these features and the resulting abstractions to correctly implement
the complex process synchronization of the original SOS model.

The main contributions of this paper are as follows:

– We provide general design patterns in ABS for implementing structural oper-
ational semantics with active objects, and apply these patterns to the imple-
mentation in ABS of a structural operational semantics of multicore memory
systems.

– We show how these patterns allow a formal correctness proof of this imple-
mentation by means of a simulation relation between the formal operational
semantics of the ABS implementation and the operational model of multicore
memory systems.

– We discuss how these ABS design patterns can be used to further parallelize
the implementation while preserving correctness.

– Finally, we show how the ABS modeling concepts of symbolic time and vir-
tual resources can be used to obtain a parallel implementation of the SOS
model which abstractly ensures fairness between the progress of different par-
allel components, independently of the number of cores that are used in the
simulation.

2 An Abstract Model of a Multicore Memory System

Design decisions for a program running on top of a multicore memory systems
can be explored using simulators based on abstract models. Bijo et al. [2,6]
developed a model which takes as input tasks (expressed as data access) to
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be executed, the corresponding data layout in main memory (indicating where
data is allocated), and a parallel architecture consisting of cores with private
multi-level caches and shared memory (see Fig. 1). Additionally, the model is
configurable in the number of cores, the number and size of caches, and the
associativity and replacement policy. Memory is organized in blocks which move
between caches and main memory. For simplicity, the model assumes that the
size of cache lines and memory blocks in main memory coincide, abstracts from
the data content of memory blocks, and transfers memory blocks from the caches
of one core to the caches of another core via main memory.

Fig. 1. Abstract model of a multicore memory system.

Tasks from the pro-
gram are scheduled for
execution from a shared
task pool. Task execution
on a core requires mem-
ory blocks to be trans-
ferred from main mem-
ory to the closest cache.
Each cache has a pool
of fetch/flush instructions
to move blocks among
caches and between caches
and main memory. Con-
sistency between multiple
copies of a memory block
is ensured using the stan-
dard cache coherence protocol MSI (e.g., [7]), with which a cache line is either
modified, shared or invalid. A modified cache line has the most recent value of
the memory block, therefore all other copies are invalid (including the one in
main memory). A shared cache line indicates that all copies of the block are con-
sistent. The protocol’s messages are broadcast to the cores. The details of the
broadcast (e.g., on a mesh or a ring) can be abstracted into an abstract commu-
nication medium. Following standard nomenclature, Rd messages request read
access and RdX messages read exclusive access to a memory block. The latter
invalidates other copies of the same block in other caches to provide write access.

To access data from a block n, a core looks for n in its local caches. If n is not
found in shared or modified state, a read request !Rd(n) is broadcast to the other
cores and to main memory. The cache can fetch the block when it is available in
main memory. Eviction is required if the cache is full. Writing to block n requires
n to be in shared or modified state in the local cache; if it is in shared state, an
invalidation request !RdX (n) is broadcast to obtain exclusive access. If a cache
with block n in modified state receives a read request ?Rd(n), it flushes the block
to main memory; if a cache with block n in shared state receives an invalidation
request ?RdX (n), the cache line will be invalidated ; the requests are discarded
otherwise. Read and invalidation requests are broadcast instantaneously in the
abstract model, reflecting that signalling on the communication medium is order
of magnitude faster than moving data to or from main memory.
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Fig. 2. Syntax of runtime configurations, where over-bar denotes sets (e.g., CR).

2.1 Formalization of the Multicore Memory System as an SOS
Model

An operational meaning for the abstract model described above has be defined
using structural operational semantics (SOS) [1] with labeled transitions to
model broadcast in the abstract communication medium. The resulting formal-
ization [2,6] is shown to guarantee standard correctness properties for data con-
sistency and cache coherence from the literature [8,9], including the preservation
of program order in each core, the absence of data races, and no access to stale
data. We briefly outline the main aspects of the formal model. The runtime syn-
tax is given in Fig. 2. A configuration cf consists of main memory M , cores CR,
caches Ca, and tasks dap to be scheduled. (We syntactically abuse set opera-
tions for multisets, including union ∪ and subtraction \.) A core cid • rst with
identifier cid executes runtime statements rst . A cache with identifier caid has a
local cache memory M and data instructions dst . We assume that caid encodes
the cid of the core to which the cache belongs and its level in the cache hierarchy.
We denote by Status ∪ {⊥} the extension of the set of status tags with the unde-
fined value ⊥. Thus, a memory M : Address → Status ∪ {⊥} maps addresses n
to either a status tags Status or to ⊥ if the memory block with address n is not
found in M .

Data access patterns dap model tasks consisting of read(r) and write(r)
operations to references r and control flow operations for sequential composition
dap1; dap2, non-deterministic choice dap1 � dap2, repetition dap∗, task creation
spawn(dap), and commit which flushes the entire cache after task execution.
The empty access pattern is denoted ε. Cores execute runtime statements rst ,
which extend dap with readBl(r) and writeBl(r) to block execution while
waiting for data. Caches execute data instructions dst to fetch and flush the
memory block with address n, here fetchBl(n) blocks execution while waiting
for data, and flush flushes the entire cache.

The abstract communication medium allows messages from one cache to be
transmitted to the other caches and to main memory in a parallel instantaneous
broadcast. Communication in the abstract communication medium is formalized
in terms of label matching on transitions. The formal syntax for this label mech-
anism is as follows:
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S ::=!Rd(n) |!RdX (n) R ::=?Rd(n) |?RdX (n)

Here, for any address n, a request of the form !Rd(n) or !RdX (n) is sent by
one node and its dual of the form dual(!Rd(n)) =?Rd(n) or dual(!RdX (n)) =
?RdX (n) is broadcast to the rest of nodes and main memory. The syntax of the
model is further detailed in [2,6].

2.2 Local and Global SOS Rules

The semantics is divided into local and global rules. Local rules capture inter-
action inside a node containing a core and the hierarchy of caches. Global rules
capture synchronization and coordination between different nodes and main
memory. In an initial configuration cf0 , all blocks in main memory M have
status sh, all cores are idle, all caches are empty, and the task pool in dap has
a single task representing the main block of a program. Let cf ∗−→ cf ′ denote an
execution starting from cf and reaching cf ′ by applying global transition rules,
which in turn apply local transition rules for each core and its cache hierarchy.
In the rules, let the auxiliary function addr(r) return the address n of the block
containing reference r, cid(caid) the identity of the core associated with cache
caid, lid(caid) the cache level of caid, and status(M,n) the status of block n
in map M . Let the predicate first(caid) hold when caid is the first level and
last(caid) when caid is the last level cache. Note that unlabelled transitions →
can be executed asynchronously, while labelled transitions S−→ require synchro-
nization between all the nodes and main memory (see Figs. 3 and 4). We discuss
some representative rules for local and global level of the SOS model. The full
SOS formalization can be found in [6].

Local semantics. The first rules of Fig. 3 involve a core and its first level
cache. In PrRd1, reading reference r succeeds if the block containing r is avail-
able. Otherwise, in PrRd2 a fetch(n) instruction is added to the data instruc-
tions dst of the first level cache and further execution of the core is blocked by
readBl(r). Writing to r only succeeds if the associated memory block has mo
status in the first level cache. If the cache line is shared, the core broadcasts a
!RdX (n) request to acquire exclusive access, where the broadcast appears as a
label on the transition in PrWr2. Otherwise, the block must be fetched from
main memory in PrWr3 and writeBl(r) blocks execution.

For the remaining rules of Fig. 3, LC-Hit1 and LC-Miss1 capture interac-
tions between adjacent levels of caches, and LCC-Miss1 local state change in
a cache line. If cache caidi needs a block n that is sh or mo in the next level
cache, the address where block n should be placed is decided by a function
select(Mi, n) which reflects the cache associativity and the replacement policy.
If eviction is needed, block n in caidj will be swapped with the selected block
in caidi in LC-Hit1. LC-Miss1 shows how fetch(n)-instructions propagate to
lower cache levels: fetch(n) is replaced by fetchBl(n) in caidi and added to
the data instructions in caidj . If the block cannot be found in any local cache,
we have a cache miss : Execution is blocked by fetchBl(n) and a read request
!Rd(n) is broadcast, represented by the label in LLC-Miss1.
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Fig. 3. Local transition rules.

Fig. 4. Global transition rules.

Global semantics. The global rules synchronize the cache hierarchies of dif-
ferent cores and main memory, and ensures coherence. Selected global rules are
given in Fig. 4. Rule Synch1 captures a global step with synchronization on a
label S, which can be either !Rd(n) or !RdX (n). The request will be broadcast to
other caches. To maintain data consistency, these caches must process the requests
at the same time. The receiving label R is the dual of S. For synchronization, the
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transition is decomposed into a premise for main memory with label R and another
premise for the caches with label S. Rule Synch2 distributes the receiving label
to caches Ca2, which do not belong to the cache hierarchy of the sender core CR1.
The predicate belongs(Ca, CR) expresses that any cache in Ca belongs to exactly
one core in CR. Rule Asynch captures parallel transitions without label. These
transitions can be local to individual nodes and caches, parallel memory accesses,
or the parallel spawning and scheduling of new tasks.

3 The ABS Model of the Multicore Memory System

In this section we outline the translation of the formal model into an exe-
cutable object-oriented model using the ABS modeling language. We first briefly
introduce the language and later explain the structural and behavioural corre-
spondence between these two models, with a focus on the main challenges.

3.1 The ABS Language

ABS is a modeling language for designing, verifying, and executing concurrent
software [4]. The language combines the syntax and object-oriented style of Java
with the Actor model of concurrency [10] into active objects which decouple
communication and synchronization using asynchronous method calls, futures
and cooperative scheduling [5]. Although only one thread of control can execute
in an active object at any time, cooperative scheduling allows different threads
to interleave at explicitly declared points in the code. Access to an object’s
fields is encapsulated, so any non-local (outside of the object) read or write to
fields must happen explicitly via asynchronous method calls so as to mitigate
race-conditions or the need for mutual exclusion (locks).

Fig. 5. Bus lock implementation in ABS using await on
Booleans.

We explain the basic
mechanism of asynchronous
method calls and coopera-
tive scheduling in ABS by
the simple code example
of a class Bus. First, the
execution of a statement
res = await o!m(args) con-
sists of storing a message m(args) corresponding to the asynchronous call to the
message pool of the callee object o. This await statement releases the control
of the caller until the return value of that method has been received. Releas-
ing the control means that the caller can execute other messages from its own
message pool in the meantime. ABS supports the shorthand o.m(args) to make
an asynchronous call f=o!m(args) followed by the operation f.get which blocks
the caller object (does not release control) until the future f has received the
return value from the call. As a special case the statement this.m(args) models a
self-call, which corresponds to a standard subroutine call and avoids this block-
ing mechanism. The code in Fig. 5 illustrates the use of the await statement
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Unit run()

IScheduler sched
ICache l1
SstList currentTask

Core

SstList getTask()
Unit putTask(SstList newTask)

List<SstList> q = Nil
RRScheduler()

1..*

1

Unit read(Reference r)
Unit write(Reference r)
Unit commit(Reference r)
Unit commitAll()
Unit fetch(Address a)

Maybe<Status> swap(Address a_out, Maybe<CacheLine> m_in)
Unit fetchFromMain(Address a, ICache sender)
Unit receiveRd(Address a, IBarrier start, IBarrier end, ICache sender)
Unit receiveRdX(Address a, IBarrier start, IBarrier end, ICache sender)

IBus bus
IMemory mainMemory 
Maybe<ICache> nextLevel
MemMap cacheMemory

Cache

1

1

1

1

Status fetchM(Address b)

Unit receiveRdXM(Address a)

MemMap mainMemory
Memory

1..*

1

Unit lock_bus()
Unit release_bus()
Unit sendRd(Address b, ICache sender)
Unit sendRdX(Address b, ICache sender)

IMemory mainMemory
Bool unlocked
List<ICache> caches

Bus

1..*

1

1

1

Unit synchronize()
Int nbrOfCaches

Barrier

1..*

1..*

Fig. 6. Class diagram of the ABS model.

on a Boolean condition to model a binary semaphore, which is used to enforce
exclusive access to a communication medium implemented as a “bus”. Thus, the
statement await bus!lock bus() will suspend the calling method invocation (and
release control in the caller object) and will be resumed when the generated
invocation of the method lock bus of the “bus” itself has been resumed when the
local condition unlocked (of the “bus”) has become true.

3.2 The Structural View

The runtime syntax of the SOS is represented by ABS classes, as outlined in
Fig. 6. We briefly overview the translation. In ABS, object identifiers guarantee
unique names and object references are used to capture how cores and caches
are related. These references are encoded in a one-to-one correspondence with
the naming scheme of the SOS.

A core cid • rst is translated into a class Core with a field currentTask repre-
senting the current task rst . Each core holds a reference to the first level cache.
A cache memory caid •M • dst is translated into a class Cache with an interface
ICache and a class parameter nextLevel. In a cache, nextLevel holds a reference
to the next level cache. If this reference is Nothing, it is last level cache (in the
SOS, a predicate last is used to identify the last level). The field cacheMemory
models the cache’s memory M in SOS. The process pool of each cache object in
ABS represents the data instruction set dst .

An ABS configuration consists of a number of cores with their corresponding
cache hierarchies, the main memory, a scheduler with tasks waiting to be sched-
uled, and the ABS classes Bus and Barrier, which model the abstract communi-
cation medium and the global synchronization with labels !Rd(n) and !RdX (n)
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s: IScheduler

c1: ICore cm: ICore

l1c1: ICache

lnc1: ICache

l1cm: ICache

lncm: ICache

b: IBus

mm: IMemory

br:IBarrierbr:IBarrierbr:IBarrierbr: IBarrier

Fig. 7. Object diagram of an initial configuration.

in the SOS. The object diagram in Fig. 7 shows an initial configuration corre-
sponding to the one depicted in Fig. 1.

3.3 The Behavioral View

We discuss in this section the design patterns in ABS that implement the syn-
chronization inherent in the SOS model. We observe here that the combination
of asynchronous method calls and cooperative scheduling is crucial because of
the multitasking inherent in the SOS model, which requires that objects need to
be able to process other requests; e.g., caches need to flush memory blocks while
waiting for a fetch to succeed.

Fig. 8. Local synchronization between
two ABS objects.

Local synchronization in the SOS model
between two structural entities (e.g., two
caches in rule LC-Hit1 of Fig. 3), is imple-
mented by the following synchronization
pattern in ABS (see Fig. 8). Given two
objects o1 and o2, let o1 execute method
m1, which checks the local conditions of o1

(highlighted as region A in Fig. 8). If these
local conditions hold, method m2 on o2 is
called asynchronously. Method m2 com-
pletes when the local conditions of o2 hold
(highlighted as region B in Fig. 8). How-
ever, when m2 has returned and object
o1 again schedules method m1, the con-
ditions on object o2 need no longer hold.
Therefore, o1 next calls the method m3

synchronously to check these conditions
again. If these condition still hold, method m3 returns successfully (in general,
having updated o2), and we can proceed to do the local changes in o1 (highlighted
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Fig. 9. Extract of ABS method fetch. When this code is reached, the requested cache
line n has status invalid or it is not in the cache. The function select chooses a cache line
to be swapped with n. If there is still free space in the cache, select returns Nothing. If n
has either shared or modified status in the next level cache, the method swap removes
the cache line with address n, inserts the selected cache line and returns the current
status of n; otherwise, swap simply returns Nothing.

as region C in Fig. 8). Otherwise, the process needs to be repeated until we
succeed. Note that method m3 should not contain release points; because this
method is called synchronously from a different object, a release point will in
general have the potential of introducing deadlocks in the caller object.

To illustrate the above protocol, consider the code snippet in Fig. 9, which
corresponds to part of several rules in the SOS (in particular, rule LC-Hit1).
Here, the current object this corresponds to caidi in the SOS, running method
fetch, and the referenced object in nextCache corresponds to caidj . When fetch
from nextCache returns, all the required conditions in nextCache are True. How-
ever, since the call is asynchronous, (some of) the conditions may no longer hold
when execution continues in this. This is addressed by checking the return value
of method swap: If swap returns an address, it means the conditions still hold and
the necessary updates are performed both locally and in nextCache; otherwise
(when swap returns Nothing) fetch will be called again.

Global synchronization in the SOS (see Fig. 10a) is modelled by matching
labelled transitions. To simulate this instantaneous communication in ABS, we
introduced the classes Bus and Barrier. The synchronization protocol is activated
by asynchronous calls to the respective methods sendRd and sendRdX of the bus.
The bus subsequently asynchronously calls the corresponding methods receiveRd
and receiveRdX of the caches. Two barriers start and end are used by the caches
to synchronize the start, as well as the completion, of the local executions of
methods receiveRd and receiveRdX.

However, observe that objects in ABS are input enabled: it is always pos-
sible to call a method on an object. In our model, this scheme may give rise
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!Rd()
caller

?Rd()implicit 
bus

(a) State machine of the global synchro-
nization using labels in the SOS model.

receiveRd()

lock bus()

unlock bus()

start 
barrier

end 
barrier

sendRd()
buscallercaller

(b) State machine of the global synchronization
using a bus and barriers in the ABS model.

Fig. 10. Synchronization in SOS vs ABS. In the SOS model (a), circles represent
nodes in the memory system and shaded arrows labelled transitions. Note that the bus
is implicit in the SOS model, as synchronization is captured by label matching. In the
ABS model (b), circles represent the same nodes as in the SOS model, shaded arrows
method invocations, solid arrows mutual access to the bus object and dotted arrows
barrier synchronizations.

to inconsistent states: the local status of a memory location which triggers an
asynchronous call of one of the methods sendRd and sendRdX of the bus may
be invalidated by other bus synchronizations. Therefore, we add a lock to the
bus (see Figs. 5 and 6), which is used to ensure exclusive access to the message
pool of the bus when one of the methods read, write, and fetch are executed. The
lock is released in case bus synchronization is not needed. The overall scheme is
depicted in Fig. 10b. The exclusive access to the message pool of the bus guar-
antees that the message pool of the bus contains at most one call to one of
the methods sendRd and sendRdX. Consequently, the triggering condition of the
call cannot be invalidated before the call has been executed. This strict locking
strategy, however, decreases concurrency in the distributed system, but reduces
the complexity of the proof of equivalence between the SOS and the distributed
implementation. We discuss how to further enhance the parallelization in Sect. 5.

4 Correctness

In this section we discuss the correctness of the ABS model by means of a
simulation relation between the transition system describing the semantics of the
ABS model of the multicore memory system and the transition system described
by the SOS model.

The semantics of an ABS model can be described by a transition relation
between global configurations. A global configuration is a (finite) set of object
configurations. An object configuration is a tuple of the form 〈oid , σ, p,Q〉, where
oid denotes the unique identity of the object, σ assigns values to the instance
variables (fields) of the object, p denotes the currently executing process, and Q
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denotes a set of (suspended) processes. A process is a closure (τ, S) consisting
of an assignment τ of values to the local variables of the statement S.

We refer to [4] for the details of the structural operational semantics for
deriving transitions G → G′ between global configurations in ABS. Since in ABS
concurrent objects only interact via asynchronous method calls and processes are
scheduled non-deterministically (which provides an abstraction from the order in
which the processes are generated by method calls), the ABS semantics satisfies
the following global confluence property that allows to commute consecutive
computations steps of independent processes which belong to different objects.
Two processes are independent if neither one is generated by the other by an
asynchronous call.

Lemma 1 (Global confluence). For any two transitions G → G1 and G →
G2 that describe execution steps of independent processes of different objects,
there exists a global configuration G′ such that G1 → G′ and G2 → G′.

An object configuration is stable if the statement S to be executed has termi-
nated or starts either with a get operation on a future or with an await statement
on a Boolean condition or a future. A global ABS configuration is stable if all its
object configurations are stable. Observe that our ABS model does not give rise
to local divergent computations without passing through stable configurations;
i.e., every local computation eventually enters a stable configuration. Together
with the global confluence property in Lemma 1, this allows to restrict the seman-
tics of the ABS model in the simulation relation to stable global configurations;
i.e., transitions G ⇒ G′ between stable global configurations G and G′ which
result from a (non-empty) sequence of local execution steps of a single process
from one stable configuration to a next one.

Because of the global synchronization with the bus in ABS described above,
we may also represent without loss of generality the synchronization on the bus
by a single global transition G ⇒ G′ which involves a completed execution of
the method sendRd(...) (or sendRdX(...)) by the bus. This is justified because
the global confluence allows for a scheduling policy such that the execution of
the processes that are generated by these methods, i.e., the calls of the methods
receiveRd(...) (or receiveRd(...)) are not interleaved with any other processes.

The simulation relation. The structural correspondence between a global con-
figuration of the ABS model and a configuration of the SOS model is described
in Sect. 3.2. For each method we have constructed a table which, among oth-
ers, associates with some, so-called observable, occurrences of await statements
(appearing in the method body) a corresponding dst instruction. In general, the
execution of the remaining (occurrences of) await statements, for which there
does not exist a corresponding dst instruction, involves some asynchronous mes-
saging preparing for the corresponding synchronous exchange of information in
the SOS model. In some cases, the execution of these unobservable statements
(e.g., the read and write methods) also does not correspond to a change of the
SOS configuration. Let α map every stable global configuration G of the ABS
model to a structurally equivalent configuration α(G) of the SOS model, which
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additionally maps every observable process (either queued or active) to the asso-
ciated dst instruction (a process is observable if its corresponding statement is
observable).

We arrive at the following theorem which expresses that the ABS model is a
correct implementation of the abstract model.

Theorem 1. Let G be a stable global configuration of the ABS model. If G ⇒ G′

then α(G) →∗ α(G′), where →∗ denotes the reflexive, transitive closure of →.

Proof. The proof proceeds by a case analysis of the given transition G ⇒ G′,
which, as discussed above, involves the local execution of some basic sequential
code by a single object. For example, for the case of a completed execution of
a method sendRd(...) (or sendRdX(...) ) by the bus, a simple inspection of the
sequential code of the methods that have been executed, e.g., sendRd(...) and
receiveRd(...), suffices to establish the existence of a corresponding transition
α(G) → α(G′).

The remaining cases are captured by tables (as mentioned above) which pro-
vide for each method the following information. The statements in the Location
column of each table represent for the respective method all possible processes
generated by a call, i.e., a call to the method itself, and the processes which
correspond to the await statements appearing in its body. In each row the Next
release point statement indicates the next await statement or return state-
ment that can be reached (statically). The dst instruction in each row specifies
the instruction which corresponds to the Location statement in the simula-
tion. Finally, Enable condition in each row specifies the enabling conditions
(expressed in the abstract model) of the rule applications (of the abstract model)
specified in Rules. In general these rule applications involve the sequential appli-
cation of one or more rules. For unobservable statements, for which there is no
corresponding dst instruction, the latter two columns are left unspecified.

The case analysis then consists of checking statically for each row the local
structural correspondence between the resulting ABS process (the Next release
point) and the resulting SOS configuration described by the specified rule appli-
cations.

5 Parallelism and Fairness of the ABS Model

This section discusses how to relax the eager locking policy of the bus imple-
mentation, without generating inconsistent states. Instead of locking the bus
unconditionally when executing the read, write, and fetch methods in the ABS
model, and releasing the lock when no bus synchronization is required, we only
lock the bus when the triggering conditions of the bus synchronization may be
invalidated. For example, an optimistic write implementation (see Fig. 11) tries
to acquire the lock of the bus, and only after the acquisition checks if a race-
condition has happened and invalidated the shared status of the address n; in
this case, the write method will backtrack and retry (by calling itself); otherwise
the write operation can safely be performed.
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Fig. 11. Alternative, optimistic implementation of the write method to detect a bus
race-condition and, in that case, retry the operation.

The strict and relaxed variations of the global synchronization bear strong
resemblance respectively to conservative [11,12] and optimistic [13] algorithms in
parallel and distributed discrete-event simulation (PDES) [14]. As with PDES,
there is no clear winner between the strict (conservative) and relaxed (optimistic)
versions of our cache simulator; certain computer programs (input-models) will
be simulated faster using one version or the other, depending on the inter-
dependency of the parallel components (for us, the caches). For the contrived
experiment, we implemented a penalty system in the ABS model. A cache
penalty is the cost (delay) incurred by failing to read or write to a particular level
of cache—set here to (L1, L2, L3) =cost (1, 10, 100) [15]. We compared the two
versions for a scenario with full inter-dependency (simultaneous write instruc-
tions on the same memory block) and a scenario with minimal inter-dependency
(write instructions on separate memory blocks) between 16 simulated cores. In
these experiments the strict version was slightly faster up to 2% for the first
case and losing out by up to 12% in the second case. The experiments were
executed using the ABS-Erlang backend [16] and Erlang version 21, running
on quad-socket 8-cores 16-hyperthreads Xeon R©L7555, which yielded in total 64
hardware threads.

Fairness. A concern that often arises in parallel execution is fairness: the degree
of variability when distributing the computing resources among different parallel
components—here, the simulated cores. Fairness of parallel execution can affect
the simulation’s accuracy in approximating the intended (or idealized) many-
core hardware. To ensure fairness of the simulation, we make use of deployment
components [17] in ABS.

A Deployment Component (DC) is an ABS execution location that is created
with a number of virtual resources (e.g., execution speed, memory use, network
bandwidth), which are shared among its deployed objects. Any annotated state-
ment [Cost: x] S decrements by x the resources of its DC and then completes, or
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Table 1. Total cache penalties between strict/relaxed, with/without DC configurations.

Strict with DC Relaxed with DC Strict Relaxed
∑

penalty 43068 43290 39183 24956

it will stall its computation if there are currently not enough resources remain-
ing; the statement S may continue on the next passage of the global symbolic
time where all the resources of the DCs have been renewed, and will eventually
complete when its Cost has reached zero.

We make use of this resource modeling of ABS to assign equal (fair) resources
of virtual execution speed to the simulated cores of the system. Each Core object
is deployed onto a separate DC with fixed Speed(1) resources. The processing of
each instruction has the same cost [Cost: 1]—a generalization, since common pro-
cessor architectures execute different instructions in different speeds (cycles per
instruction); e.g., JUMP is faster than LOAD. The result is that all Cores can exe-
cute maximum one instruction in every time interval of the global symbolic clock,
and thus no Core can get too far ahead with processing its own instructions—a
problem that manifests upon the parallel simulation of N number of cores using
a physical machine of M cores, where N is vastly greater than M . To test this,
we performed a write-congested experiment with a configuration of 20 simulated
cores and 3 cache levels, comparing the strict and relaxed variations, with and
without the use of deployment components. The results (shown in Table 1) were
measured on a quad-core system running ABS-Erlang, counting the total cache
penalties of all the cores. With respect to the strict variation, the results with and
without DC have similar penalties; this can be attributed to the lock-step nature
of strict bus synchronization, where no cache (and thus core) can unfairly stride
forward. In the relaxed variation, however, where synchronization is less strict,
we see that without the fairness imposed by DC, the penalties are almost halved,
which means some cores are allowed to do multiple (successful) write operations
while other cores are still waiting on the “backlog” to be simulated. This gives
rise to less penalties, because of less runtime interleavings of the simulated cores
and thus less competition between them.

6 Related Work

There is in general a significant gap between a formal model and its implemen-
tation [18]. SOS [1] succinctly formalizes operational models and are well-suited
for proofs, but direct implementations of SOS quickly lead to very inefficient
implementations. Executable semantic frameworks such as Redex [19], rewrit-
ing logic [20,21], and K [22] reduce this gap, and have been used to develop
executable formal models of complex languages like C [23] and Java [24]. The
relationship between SOS and rewriting logic semantics has been studied [25]
without proposing a general solution for label matching. Bijo et al. implemented
their SOS multicore memory model [26] in the rewriting logic system Maude
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[3] using an orchestrator for label matching, but do not provide a correctness
proof wrt. the SOS. Different semantic styles can be modeled and related inside
one framework; for example, the correctness of distributed implementations of
KLAIM systems in terms of simulation relations have been studied in rewrit-
ing logic [27]. Compared to these works on semantics, we implemented an SOS
model in a distributed active object setting, and proved the correctness of this
implementation.

Correctness-preserving compilation is related to correctness proofs for imple-
mentations, and ensures that the low-level representation of a program preserves
the properties of the high-level model. Examples of this line of work include type-
preserving translations into typed assembly languages [28] and formally verified
compilers [29,30], which proves the semantic preservation of a compiler from C
to assembler code, but leaves shared-variable concurrency for future work. In
contrast to this work which studies compilation from one language to another,
our work focuses on a specific model and its implementation and specifically
targets parallel systems.

Simulation tools for cache coherence protocols can evaluate performance and
efficiency on different architectures (e.g., gems [31] and gem5 [32]). These tools
perform evaluations of, e.g., the cache hit/miss ratio and response time, by run-
ning benchmark programs written as low-level read and write instructions to
memory. Advanced simulators such as Graphite [33] and Sniper [34] run pro-
grams on distributed clusters to simulate executions on multicore architectures
with thousands of cores. Unlike our work, these simulators are not based on a
formal semantics and correctness proofs. Our work complements these simulators
by supporting the executable exploration of design choices from a programmer
perspective rather from hardware design. Compared to worst-case response time
analysis for concurrent programs on multicore architectures [35], our focus is on
the underlying data movement rather than the response time.

7 Conclusion

We have introduced in this paper a methodology for implementing SOS mod-
els in the active object language ABS, and applied this methodology to the
implementation of a SOS model of an abstraction of multicore memory systems,
resulting in a parallel simulator for these systems. A challenge for this implemen-
tation is to correctly implement the synchronization patterns of the SOS rules,
which may cross encapsulation barriers in the active objects, and in particular
label synchronization on parallel transitions steps. We prove the correctness of
this particular implementation, exploiting that the ABS model allows for a high-
level coarse-grained semantics. We investigated the further parallelization and
fairness of the ABS model.

The results obtained in this paper provide a promising basis for further devel-
opment of the ABS model for simulating the execution of (object-oriented) pro-
grams on multicore architectures. A first such development concerns an extension
of the abstract memory model with data. In particular, having the addresses of
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the memory locations themselves as data allows to model and simulate different
data layouts of the dynamically generated object structures.
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Abstract. Microservices are highly modular and scalable Service Ori-
ented Architectures. They underpin automated deployment practices like
Continuous Deployment and Autoscaling. In this paper we formalize
these practices and show that automated deployment — proven undecid-
able in the general case — is algorithmically treatable for microservices.
Our key assumption is that the configuration life-cycle of a microservice
is split into two phases: (i) creation, which entails establishing initial con-
nections with already available microservices, and (ii) subsequent bind-
ing/unbinding with other microservices. To illustrate the applicability
of our approach, we implement an automatic optimal deployment tool
and compute deployment plans for a realistic microservice architecture,
modeled in the Abstract Behavioral Specification (ABS) language.

1 Introduction

Inspired by service-oriented computing, Microservices structure software appli-
cations as highly modular and scalable compositions of fine-grained and loosely-
coupled services [18]. These features support modern software engineering prac-
tices, like continuous delivery/deployment [30] and application autoscaling [3].
Currently, these practices focus on single microservices and do not take advan-
tage of the information on the interdependencies within an architecture. On
the contrary, architecture-level deployment supports the global optimization of
resource usage and avoids “domino” effects due to unstructured scaling actions
that may cause cascading slowdowns or outages [27,35,39].

In this paper, we formalize the problem of automatic deployment and recon-
figuration (at the architectural level) of microservice systems, proving formal
properties and presenting an implemented solution.

In our work, we follow the approach taken by the Aeolus component
model [13–15], which was used to formally define the problem of deploying
component-based software systems and to prove that, in the general case, such
problem is undecidable [15]. The basic idea of Aeolus is to enrich the specification
of components with a finite state automaton that describes their deployment life
cycle. Previous work identified decidable fragments of the Aeolus model: e.g.,
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removing from Aeolus replication constraints (e.g., used to specify a minimal
amount of services connected to a load balancer) makes the deployment problem
decidable, but non-primitive recursive [14]; removing also conflicts (e.g., used to
express the impossibility to deploy in the same system two types of components)
makes the problem PSpace-complete [34] or even poly-time [15], but under the
assumption that every required component can be (re)deployed from scratch.

Our intuition is that the Aeolus model can be adapted to formally reason on
the deployment of microservices. To achieve our goal, we significantly revisit the
formalization of the deployment problem, replacing Aeolus components with a
model of microservices. The main difference between our model of microservices
and Aeolus components lies in the specification of their deployment life cycle.
Here, instead of using the full power of finite state automata (like in Aeolus and
other TOSCA-compliant deployment models [10]), we assume microservices to
have two states: (i) creation and (ii) binding/unbinding. Concerning creation,
we use strong dependencies to express which microservices must be immediately
connected to newly created ones. After creation, we use weak dependencies to
indicate additional microservices that can be bound/unbound. The principle
that guided this modification comes from state-of-the-art microservice deploy-
ment technologies like Docker [36] and Kubernetes [29]. In particular, the weak
and strong dependencies have been inspired by Docker Compose [16] (a lan-
guage for defining multi-container Docker applications) where it is possible to
specify different relationships among microservices using, e.g., the depends on
(resp. external links) modalities that force (resp. do not force) a specific startup
order similarly to our strong (resp. weak) dependencies. Weak dependencies are
also useful to model horizontal scaling, e.g., a load balancer that is bound to/un-
bound from many microservice instances during its life cycle.

In addition, w.r.t. the Aeolus model, we also consider resource/cost-aware
deployments, taking inspiration from the memory and CPU resources found
in Kubernetes. Microservice specifications are enriched with the amount of
resources they need to run. In a deployment, a system of microservices runs
within a set of computation nodes. Nodes represent computational units (e.g.,
virtual machines in an Infrastructure-as-a-Service Cloud deployment). Each node
has a cost and a set of resources available to the microservices it hosts.

On the model above, we define the optimal deployment problem as follows:
given an initial microservice system, a set of available nodes, and a new target
microservice to be deployed, find a sequence of reconfiguration actions that, once
applied to the initial system, leads to a new deployment that includes the target
microservice. Such a deployment is expected to be optimal, meaning that the
total cost (i.e., the sum of the costs) of the nodes used is minimal. We show that
this problem is decidable by presenting an algorithm working in three phases:
(1) generate a set of constraints whose solution indicates the microservices to be
deployed and their distribution over the nodes; (2) generate another set of con-
straints whose solution indicates the connections to be established; (3) synthesize
the corresponding deployment plan. The set of constraints includes optimization
metrics that minimize the overall cost of the computed deployment.
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Fig. 1. Example of microservice deployment (blue boxes: nodes; green boxes: microser-
vices; continuous lines: the initial configuration; dashed lines: full configuration). (Color
figure online)

The algorithm has NEXPTIME complexity because, in the worst-case, the
length of the deployment plan could be exponential in the size of the input.
However, we consider this worst-case unfeasible in practice, as the number
of microservices deployable on one node is limited by the available resources.
Under the assumption that each node can host at most a polynomial amount
of microservices, the deployment problem is NP-complete and the problem of
deploying a system minimizing its total cost is an NP-optimization problem.
Moreover, having reduced the deployment problem in terms of constraints, we
can exploit state-of-the-art constraint solvers [12,23,24] that are frequently used
in practice to cope with NP-hard problems.

To concretely evaluate our approach, we consider a real-world microservice
architecture, inspired by the reference email processing pipeline from Iron.io [22].
We model that architecture in the Abstract Behavioral Specification (ABS) lan-
guage, a high-level object-oriented language that supports deployment model-
ing [31]. We use our technique to compute two types of deployments: an initial
one, with one instance for each microservice, and a set of deployments to hor-
izontally scale the system depending on small, medium or large increments in
the number of emails to be processed. The experimental results are encouraging
in that we were able to compute deployment plans that add more than 30 new
microservice instances, assuming availability of hundreds of machines of three
different types, and guaranteeing optimality.

2 The Microservice Optimal Deployment Problem

We model microservice systems as aggregations of components with ports.
Each port exposes provided and required interfaces. Interfaces describe offered
and required functionalities. Microservices are connected by means of bindings
indicating which port provides the functionality required by another port. As
discussed in the Introduction, we consider two kinds of requirements: strong
required interfaces, that need to be already fulfilled when the microservice is
created, and weak required interfaces, that must be fulfilled at the end of a
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deployment (or reconfiguration) plan. Microservices are enriched with the spec-
ification of the resources they need to properly run; such resources are provided
to the microservices by nodes. Nodes can be seen as the unit of computation
executing the tasks associated to each microservice.

As an example, in Fig. 1 we have reported the representation of the deploy-
ment of a microservice system inspired by the email processing pipeline that
we will discuss in Sect. 3. Here, we consider a simplified pipeline. A Message
Receiver microservice handles inbound requests, passing them to a Message Ana-
lyzer that checks the email content and sends the attachments for inspection to
an Attachment Analyzer. The Message Receiver has a port with a weak required
interface that can be fulfilled by Message Analyzer instances. This requirement is
weak, meaning that the Message Receiver can be initially deployed without any
connection to instances of Message Analyzer. These connections can be estab-
lished afterwards and reflect the possibility to horizontally scale the application
by adding/removing instances of Message Analyzer. This last microservice has
instead a port with a strong required interface that can be fulfilled by Attachment
Analyzer instances. This requirement is strong to reflect the need to immediately
connect a Message Analyzer to its Attachment Analyzer.

Figure 1 presents a reconfiguration that, starting from the initial deploy-
ment depicted in continuous lines, adds the elements depicted with dashed lines.
Namely, a couple of new instances of Message Analyzer and a new instance of
Attachment Analyzer are deployed. This is done in order to satisfy numerical
constraints associated to both required and provided interfaces. For required
interfaces, the numerical constraints indicate lower bounds to the outgoing bind-
ings, while for provided interfaces they specify upper bounds to the incoming
connections. Notice that the constraint ≥ 3 associated to the weak required
interface of Message Receiver is not initially satisfied; this is not problematic
because constraints on weak interfaces are relevant only at the end of a recon-
figuration. In the final deployment, such a constraint is satisfied thanks to the
two new instances of Message Analyzer. These two instances need to be immedi-
ately connected to an Attachment Analyzer: only one of them can use the initially
available Attachment Analyzer, because of the constraint ≤ 2 associated to the
corresponding provided interface. Hence, a new instance of Attachment Analyzer
is added.

We also model resources: each microservice has associated resources that it
consumes (see the CPU and RAM quantities associated to the microservices in
Fig. 1). Resources are provided by nodes, that we represent as containers for the
microservice instances, providing them the resources they require. Notice that
nodes have also costs: the total cost of a deployment is the sum of the costs
of the used nodes (e.g., in the example the total cost is 598 cents per hour,
corresponding to the cost of 4 nodes: 2 C4 large and 2 C4 xlarge virtual machine
instances of the Amazon public Cloud).

We now move to the formal definitions. We assume the following disjoint sets:
I for interfaces, Z for microservices, and a finite set R for kinds of resources.
We use N to denote natural numbers, N

+ for N \ {0}, and N
+
∞ for N

+ ∪ {∞}.



Optimal and Automated Deployment for Microservices 355

Definition 1 (Microservice type). The set Γ of microservice types, ranged
over by T1, T2, . . ., contains 5-ples 〈P,Ds,Dw, C,R〉 where:

– P = (I �→ N
+
∞) are the provided interfaces, defined as a partial function from

interfaces to corresponding numerical constraints (indicating the maximum
number of connected microservices);

– Ds = (I �→ N
+) are the strong required interfaces, defined as a partial func-

tion from interfaces to corresponding numerical constraints (indicating the
minimum number of connected microservices);

– Dw = (I �→ N) are the weak required interfaces (defined as the strong ones,
with the difference that also the constraint 0 can be used indicating that it is
not strictly necessary to connect microservices);

– C ⊆ I are the conflicting interfaces;
– R = (R → N) specifies resource consumption, defined as a total function

from resources to corresponding quantities indicating the amount of required
resources.

We assume sets dom(Ds), dom(Dw) and C to be pairwise disjoint.1

Notation: given a microservice type T = 〈P,Ds,Dw, C,R〉, we use the following
postfix projections .prov, .reqs, .reqw, .conf and .res to decompose it; e.g., T .reqw
returns the partial function associating arities to weak required interfaces. In
our example, for instance, the Message Receiver microservice type is such that
Message Receiver.reqw(MA) = 3 and Message Receiver.res(RAM) = 4. When the
numerical constraints are not explicitly indicated, we assume as default value
∞ for provided interfaces (i.e., they can satisfy an unlimited amount of ports
requiring the same interface) and 1 for required interfaces (i.e., one connection
with a port providing the same interface is sufficient).

Inspired by [14], we allow a microservice to specify a conflicting interface
that, intuitively, forbids the deployment of other microservices providing the
same interface. Conflicting interfaces can be used to express conflicts among
microservices, preventing both of them to be present at the same time, or cases
in which only one microservice instance can be deployed (e.g., a consistent and
available microservice that can not be replicated).

Since the requirements associated with strong interfaces must be immediately
satisfied, it is possible to deploy a configuration with circular dependencies only
if at least one weak required interface is involved in the cycle. In fact, having a
cycle with only strong required interfaces would mean to deploy all the microser-
vices involved in the cycle simultaneously. We now formalize a well-formedness
condition on microservice types to guarantee the absence of such configurations.

Definition 2 (Well-formed Universe). Given a finite set of microservice
types U (that we also call universe), the strong dependency graph of U is
as follows: G(U) = (U, V ) with V = {(T , T ′)|T , T ′ ∈ U ∧ ∃p ∈ I.p ∈
dom(T .reqs) ∩ dom(T ′.prov)}. The universe U is well-formed if G(U) is acyclic.
1 Given a partial function f , we use dom(f) to denote the domain of f , i.e., the set

{e | ∃e′ : (e, e′) ∈ f}.
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In the following, we always assume universes to be well-formed. Well-formedness
does not prevent the specification of microservice systems with circular depen-
dencies, which are captured by cycles with at least one weak required interface.

Definition 3 (Nodes). The set N of nodes is ranged over by o1, o2, . . . We
assume the following information to be associated to each node o in N .

– A function R = (R → N) that specifies node resource availability: we use
o.res to denote such a function.

– A value in N that specifies node cost: we use o.cost to denote such a value.

As example, in Fig. 1, the node Node1 large is such that Node1 large.res(RAM) =
4 and Node1 large.cost = 100.

We now define configurations that describe systems composed of microservice
instances and bindings that interconnect them. A configuration, ranged over by
C1, C2, . . ., is given by a set of microservice types, a set of deployed microservices
(with their associated type), and a set of bindings. Formally:

Definition 4 (Configuration). A configuration C is a 4-ple 〈Z, T,N,B〉
where:

– Z ⊆ Z is the set of the currently deployed microservices;
– T = (Z → T ) are the microservice types, defined as a function from deployed

microservices to microservice types;
– N = (Z → N ) are the microservice nodes, defined as a function from deployed

microservices to nodes that host them;
– B ⊆ I × Z × Z is the set of bindings, namely 3-ples composed of an inter-

face, the microservice that requires that interface, and the microservice that
provides it; we assume that, for (p, z1, z2) ∈ B, the two microservices z1 and
z2 are distinct and p ∈ (dom(T (z1).reqs)∪dom(T (z1).reqw))∩dom(T (z2).prov).

In our example, if we use mr to refer to the instance of Message Receiver, and
ma for the initially available Message Analyzer, we will have the binding (MA,
mr, ma). Moreover, concerning the microservice placement function N , we have
N(mr) = Node1 large and N(ma) = Node2 xlarge.

We are now ready to formalize the notion of correctness of configuration.
We first define a provisional correctness, considering only constraints on strong
required and provided interfaces, and then we define a general notion of config-
uration correctness, considering also weak required interfaces and conflicts. The
former is intended for transient configurations traversed during the execution of
a reconfiguration, while the latter for the final configuration.

Definition 5 (Provisionally correct configuration). A configuration C =
〈Z, T,N,B〉 is provisionally correct if, for each node o∈ran(N), it holds2

∀ r∈R. o.res(r) ≥
∑

z∈Z,N(z)=o

T (z).res(r)

and, for each microservice z ∈ Z, both following conditions hold:
2 Given a (partial) function f , we use ran(f) to denote the range of f , i.e., the function

image set {f(e) | e ∈ dom(f)}.
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– (p �→ n) ∈ T (z).reqs implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– (p �→ n) ∈ T (z).prov implies that there exist no m distinct microservices
z1, . . . , zm ∈ Z \{z}, with m > n, such that, for every 1 ≤ i ≤ m, we have
〈p, zi, z〉 ∈ B.

Definition 6 (Correct configuration). A configuration C = 〈Z, T,N,B〉 is
correct if C is provisionally correct and, for each microservice z ∈ Z, both fol-
lowing conditions hold:

– (p �→ n) ∈ T (z).reqw implies that there exist n distinct microservices
z1, . . . , zn ∈Z\{z} such that, for every 1 ≤ i ≤ n, we have 〈p, z, zi〉 ∈ B;

– p∈T (z).conf implies that, for each z′ ∈ Z\{z}, we have p /∈ dom(T (z′).prov).

Notice that, in the example in Fig. 1, the initial configuration (in continuous
lines) is only provisionally correct in that the weak required interface MA (with
arity 3) of the Message Receiver is not satisfied (because there is only one outgoing
binding). The full configuration — including also the elements in dotted lines —
is instead correct: all the constraints associated to the interfaces are satisfied.

We now formalize how configurations evolve by means of atomic actions.

Definition 7 (Actions). The set A contains the following actions:

– bind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: add a binding between
z1 and z2 on port p (which is supposed to be a weak-require port of z1 and a
provide port of z2);

– unbind(p, z1, z2) where z1, z2 ∈Z, with z1 �=z2, and p∈I: remove the specified
binding on p (which is supposed to be a weak required interface of z1 and a
provide port of z2);

– new(z, T , o, Bs) where z∈Z, T ∈Γ, o∈N and Bs =(dom(T .reqs)→2Z−{z});
with Bs (representing bindings from strong required interfaces in T to sets of
microservices) being such that, for each p ∈ dom(T .reqs), it holds |Bs(p)| ≥
T .reqs(p): add a new microservice z of type T hosted in o and bind each of
its strong required interfaces to a set of microservices as described by Bs;3

– del(z) where z∈Z: remove the microservice z from the configuration and all
bindings involving it.

In our example, assuming that the initially available Attachment Analyzer
is named aa, we have that the action to create the initial instance of Message
Analyzer is new(ma,MessageAnalyzer,Node2 xlarge, (AA �→ {aa})). Notice that it
is necessary to establish the binding with the Attachment Analyzer because of
the corresponding strong required interface.

The execution of actions can now be formalized using a labeled transition
system on configurations, which uses actions as labels.

3 Given sets S and S′ we use: 2S to denote the power set of S, i.e., the set {S′ | S′ ⊆ S};
S − S′ to denote set difference; and |S| to denote the cardinality of S.
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Definition 8 (Reconfigurations). Reconfigurations are denoted by transitions
C α−→ C′ meaning that the execution of α ∈ A on the configuration C produces a
new configuration C′. The transitions from a configuration C = 〈Z, T,N,B〉 are
defined as follows:

C bind(p,z1,z2)−−−−−−−−→ 〈Z, T, N, B ∪ 〈p, z1, z2〉〉
if 〈p, z1, z2〉 	∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C unbind(p,z1,z2)−−−−−−−−−−→ 〈Z, T, N, B\〈p, z1, z2〉〉
if 〈p, z1, z2〉 ∈ B and
p ∈ dom(T (z1).reqw) ∩ dom(T (z2).prov)

C new(z,T ,o,Bs)−−−−−−−−−→ 〈Z ∪ {z}, T ′, N ′, B′〉
if z 	∈ Z and
∀ p ∈ dom(T .reqs). ∀z′ ∈ Bs(p).

p ∈ dom(T (z′).prov) and
T ′ = T ∪ {(z �→ T )} and
N ′ = N ∪ {(z �→ o)} and
B′ = B ∪ {〈p, z, z′〉 | z′ ∈ Bs(p)}

C del(z)−−−−→ 〈Z\{z}, T ′, N ′, B′〉
if T ′ = {(z′ �→ T ) ∈ T | z 	= z′} and
N ′ = {(z′ �→ o) ∈ N | z 	= z′} and
B′ = {〈p, z1, z2〉 ∈ B | z 	∈ {z1, z2}}

A deployment plan is simply a sequence of actions that transform a pro-
visionally correct configuration (without violating provisional correctness along
the way) and, finally, reach a correct configuration.

Definition 9 (Deployment plan). A deployment plan P from a provisionally
correct configuration C0 is a sequence of actions α1, . . . , αm such that:

– there exist C1, . . . , Cm provisionally correct configurations, with Ci−1
αi−→ Ci

for 1 ≤ i ≤ m, and
– Cm is a correct configuration.

Deployment plans are also denoted with C0
α1−→ C1

α2−→ · · · αm−−→ Cm.

In our example, a deployment plan that reconfigures the initial provisionally
correct configuration into the final correct one is as follows: a new action to
create the new instance of Attachment Analyzer, followed by two new actions
for the new Message Analyzers (as commented above, the connection with the
Attachment Analyzer is part of these new actions), and finally two bind actions
to connect the Message Receiver to the two new instances of Message Analyzer.

We now have all the ingredients to define the optimal deployment problem,
that is our main concern: given a universe of microservice types, a set of available
nodes and an initial configuration, we want to know whether and how it is
possible to deploy at least one microservice of a given microservice type T by
optimizing the overall cost of nodes hosting the deployed microservices.

Definition 10 (Optimal deployment problem). The optimal deployment
problem has, as input, a finite well-formed universe U of microservice types, a
finite set of available nodes O, an initial provisionally correct configuration C0

and a microservice type Tt ∈ U . The output is:
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– A deployment plan P = C0
α1−→ C1

α2−→ · · · αm−−→ Cm such that
• for all Ci = 〈Zi, Ti, Ni, Bi〉, with 1 ≤ i ≤ m, it holds ∀z ∈ Zi. Ti(z) ∈

U ∧ Ni(z) ∈ O, and
• Cm = 〈Zm, Tm, Nm, Bm〉 satisfies ∃z ∈ Zm : Ti(z) = Tt;

if there exists one. In particular, among all deployment plans satisfying
the constraints above, one that minimizes

∑
o∈O.(∃z.Nm(z)=o) o.cost (i.e., the

overall cost of nodes in the last configuration Cm), is outputted.
– no (stating that no such plan exists); otherwise.

We are finally ready to state our main result on the decidability of the opti-
mal deployment problem. To prove the result we describe an approach that splits
the problem in three incremental phases: (1) the first phase checks if there is a
possible solution and assigns microservices to deployment nodes, (2) the inter-
mediate phase computes how the microservices need to be connected to each
other, and (3) the final phase synthesizes the corresponding deployment plan.

Theorem 1. The optimal deployment problem is decidable.

Proof. The proof is in the form of an algorithm that solves the optimal deploy-
ment problem. We assume that the input to the problem to be solved is given
by U (the microservice types), O (the set of available nodes), C0 (the initial
provisionally correct configuration), and Tt ∈ U (the target microservice type).
We use I(U) to denote the set of interfaces used in the considered microservice
types, namely I(U) =

⋃
T ∈U dom(T .reqs) ∪ dom(T .reqw) ∪ dom(T .prov) ∪ T .conf.

The algorithm is based on three phases.
Phase 1 The first phase consists of the generation of a set of constraints that,

once solved, indicates how many instances should be created for each microser-
vice type T (denoted with inst(T )), how many of them should be deployed on
node o (denoted with inst(T , o)), and how many bindings should be established
for each interface p from instances of type T — considering both weak and strong
required interfaces — and instances of type T ′ (denoted with bind(p, T , T ′)).
We also generate an optimization function that guarantees that the generated
configuration is minimal w.r.t. its total cost.

We now incrementally report the generated constraints. The first group of
constraints deals with the number of bindings:

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqs)

T .reqs(p) · inst(T ) ≤
∑

T ′∈U

bind(p, T , T ′) (1a)

∧

p∈I(U)

∧

T ∈U, p∈dom(T .reqw)

T .reqw(p) · inst(T ) ≤
∑

T ′∈U

bind(p, T , T ′) (1b)

∧

p∈I(U)

∧

T ∈U, T .prov(p)<∞

T .prov(p) · inst(T ) ≥
∑

T ′∈U

bind(p, T ′, T ) (1c)

∧

p∈I(U)

∧

T ∈U, T .prov(p)=∞

inst(T ) = 0 ⇒
∑

T ′∈U

bind(p, T ′, T ) = 0 (1d)

∧

p∈I(U)

∧

T ∈U, p/∈dom(T .prov)

∑

T ′∈U

bind(p, T ′, T ) = 0 (1e)
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Constraint 1a and 1b guarantee that there are enough bindings to satisfy all the
required interfaces, considering both strong and weak requirements. Symmetri-
cally, constraint 1c guarantees that the number of bindings is not greater than
the total available capacity, computed as the sum of the single capacities of each
provided interface. In case the capacity is unbounded (i.e., ∞), it is sufficient
to have at least one instance that activates such port to support any possible
requirement (see constraint 1d). Finally, constraint 1e guarantees that no bind-
ing is established connected to provided interfaces of microservice types that are
not deployed.

The second group of constraints deals with the number of instances of
microservices to be deployed.

inst(Tt) ≥ 1 (2a)
∧

p∈I(U)

∧

T ∈U,

p∈T .conf

∧

T ′∈U−{T },

p∈dom(T ′.prov)

inst(T ) > 0 ⇒ inst(T ′) = 0 (2b)

∧

p∈I(U)

∧

T ∈U, p∈T .conf ∧
p∈dom(T .prov)

inst(T ) ≤ 1 (2c)

∧

p∈I(U)

∧

T ∈U

∧

T ′∈U−{T }

bind(p, T , T ′) ≤ inst(T ) · inst(T ′) (2d)

∧

p∈I(U)

∧

T ∈U

bind(p, T , T ) ≤ inst(T ) · (inst(T ) − 1) (2e)

The first constraint 2a guarantees the presence of at least one instance of
the target microservice. Constraint 2b guarantees that no two instances of dif-
ferent types will be created if one activates a conflict on an interface provided
by the other one. Constraint 2c, consider the other case in which a type acti-
vates the same interface both in conflicting and provided modality: in this case,
at most one instance of such type can be created. Finally, the constraints 2d
and 2e guarantee that there are enough pairs of distinct instances to establish
all the necessary bindings. Two distinct constraints are used: the first one deals
with bindings between microservices of two different types, the second one with
bindings between microservices of the same type.

The last group of constraints deals with the distribution of microservice
instances over the available nodes O.

inst(T ) =
∑

o∈O

inst(T , o) (3a)

∧

r∈R

∧

o∈O

∑

T ∈U

inst(T , o) · T .res(r) ≤ o.res(r) (3b)

∧

o∈O

( ∑

T ∈U

inst(T , o) > 0
)

⇔ used(o) (3c)

min
∑

o∈O, used(o)

o.cost (3d)
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Constraint 3a simply formalizes the relationship among the variables inst(T )
and inst(T , o) (the total amount of all instances of a microservice type, should
correspond to the sum of the instances locally deployed on each node). Con-
straint 3b checks that each node has enough resources to satisfy the requirements
of all the hosted microservices. The last two constraints define the optimization
function used to minimize the total cost: constraint 3c introduces the boolean
variable used(o) which is true if and only if node o contains at least one microser-
vice instance; constraint 3d is the function to be minimized, i.e., the sum of the
costs of the used nodes.

These constraints, and the optimization function, are expected to be given
in input to a constraint/optimization solver. If a solution is not found it is not
possible to deploy the required microservice system; otherwise, the next phases
of the algorithm are executed to synthesize the optimal deployment plan.

Phase 2 The second phase consists of the generation of another set of con-
straints that, once solved, indicates the bindings to be established between any
pair of microservices to be deployed. More precisely, for each type T such that
inst(T ) > 0, we use sT

i , with 1 ≤ i ≤ inst(T ), to identify the microservices of
type T to be deployed. We also assume a function N that associates microser-
vices to available nodes O, which is compliant with the values inst(T , o) already
computed in Phase 1, i.e., given a type T and a node o, the number of sT

i , with
1 ≤ i ≤ inst(T ), such that N(sT

i ) = o coincides with inst(T , o).
In the constraints below we use the variables b(p, sT

i , sT ′
j ) (with i �= j, if

T = T ′): its value is 1 if there is a connection between the required inter-
face p of sT

i and the provided interface p of sT ′
j , 0 otherwise. We use n and

m to denote inst(T ) and inst(T ′), respectively, and an auxiliary total func-
tion limProv(T ′, p) that extends T ′.prov associating 0 to interfaces outside its
domain.

∧

T ∈U

∧

p∈I(U)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≤ limProv(T ′, p) (4a)

∧

T ∈U

∧

p∈dom(T .reqs)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≥ T .reqs(p) (4b)

∧

T ∈U

∧

p∈dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) ≥ T .reqw(p) (4c)

∧

T ∈U

∧

p/∈dom(T .reqs)∪dom(T .reqw)

∧

i∈1...n

∑

j∈(1...m)\{i|T =T ′}

b(p, sT
i , sT ′

j ) = 0 (4d)

Constraint 4a considers the provided interface capacities to fix upper bounds
to the bindings to be established, while constraints 4b and 4c fix lower bounds
based on the required interface capacities, considering both the weak (see 4b) and
the strong (see 4c) ones. Finally, constraint 4d indicates that it is not possible
to establish connections on interfaces that are not required.

A solution for these constraints exists because, as also shown in [13], the
constraints 1a . . . 2e (already solved during Phase 1) guarantee that the config-
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uration to be synthesized contains enough capacity on the provided interfaces
to satisfy all the required interfaces.

Phase 3 In this last phase we synthesize the deployment plan that, when
applied to the initial configuration C0, reaches a new configuration Ct with nodes,
microservices and bindings as computed in the first two phases of the algorithm.
Without loss of generality, in this decidability proof we show the existence of
a simple plan that first removes the elements in the initial configuration and
then deploys the target configuration from scratch. However, as also discussed
in Sect. 3, in practice it is possible to define more complex planning mechanisms
that re-use microservices already deployed.

Reaching an empty configuration is a trivial task since it is always possible
to perform in the initial configuration unbind actions for all the bindings con-
nected to weak required interfaces. Then, the microservices can be safely deleted.
Thanks to the well-formedness assumption (Definition 2) and using a topological
sort, it is possible to order the microservices to be removed without violating
any strong required interface (e.g., first remove the microservice not requiring
anything and repeat until all the microservices have been deleted).

The deployment of the target configuration follows a similar pattern. Given
the distribution of microservices over nodes (computed in the first phase) and the
corresponding bindings (computed in the second phase), the microservices can be
created by following a topological sort considering the microservices dependen-
cies following from the strong required interfaces. When all the microservices are
deployed on the corresponding nodes, the remaining bindings (on weak required
ports) may be added in any possible order. ��

Remark 1. The constraints generated during Phase 2 of the algorithm, in order
to establish the microservice bindings, are expected to be given in input to a
constraint/optimization solver. One can enrich such constraints with metrics
to optimize, e.g., the number of local bindings (i.e., give a preference to the
connections among microservices hosted in the same node):

min
∑

T ,T ′∈U,i∈1...inst(T ),j∈1...inst(T ′),p∈I(U),N(sT
i )�=N(sT ′

j )

b(p, sT
i , sT ′

j )

Another example, used in the case study discussed in Sect. 3, is the following
metric that maximizes the number of bindings4:

max
∑

sT
i ,sT ′

j ,p∈I(U)

b(p, sT
i , sT ′

j )

From the complexity point of view, it is possible to show that the decision
versions of the optimization problem solved in Phase 1 is NP-complete, in Phase
4 We model a load balancer as a microservice having a weak required interface, with

arity 0, that can be provided by its back-end service. By adopting the above maxi-
mization metric, the synthesized configuration connects all possible services to such
required interface, thus allowing the load balancer to forward requests to all of them.
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Fig. 2. Microservice architecture for email processing.

2 is in NP, while the planning in Phase 3 is synthesized in polynomial time.
Unfortunately, due to the fact that numeric constraints can be represented in
log space, the output of Phase 2 requiring the enumeration of all the microser-
vices to deploy can be exponential in the size of the output of Phase 1 (indi-
cating only the total number of instances for each type). For this reason, the
optimal deployment problem is in NEXPTIME. However, we consider unfeasi-
ble in practice the deployment of an exponential number of microservices on one
node having limited resources. If at most a polynomial number of microservices
can be deployed on each node, we have that the optimal deployment problem
becomes an NP-optimization problem and its decision version is NP-complete.
See the companion technical report [8] for the formal proofs of complexity.

3 Application of the Technique to the Case-Study

Given the asymptotic complexity of our solution (NP under the assumption
of polynomial size of the target configuration) we have decided to evaluate its
applicability in practice by considering a real-world microservice architecture,
namely the email processing pipeline described in [22]. The considered archi-
tecture separates and routes the components found in an email (headers, links,
text, attachments) into distinct, parallel sub-pipelines with specific tasks (e.g.,
remove malicious attachments, tag the content of the mail). We report in Fig. 2
a depiction of the architecture. When an email reaches the Message Receiver it
is forwarded to the Message Parser, which sends each component into a specific
sub-pipeline. In the sub-pipelines, some microservices — e.g., Text Analyzer and
Attachment Analyzer — coordinate with other microservices — e.g., Sentiment
Analyzer and Virus Scanner — to process their inputs. Each microservice in the
architecture has a given resource consumption (expressed in terms of CPU and
memory). As expected, the processing of each email component entails a specific
load. Some microservices can handle large inputs, e.g., in the range of 40K simul-
taneous requests (e.g., Header Analyzer that processes short and uniform inputs).
Other microservices sustain heavier computations (e.g., Image Recognizer) and
can handle smaller simultaneous inputs, e.g., in the range of 10K requests.
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To model the system above, we use the Abstract Behavioral Specification
(ABS) language, a high-level object-oriented language that supports deploy-
ment modeling [31]. ABS is agnostic w.r.t. deployment platforms (Amazon AWS,
Microsoft Azure) and technologies (e.g., Docker or Kubernetes) and it offers
high-level deployment primitives for the creation of new deployment components
and the instantiation of objects inside them. Here, we use ABS deployment
components as computation nodes, ABS objects as microservice instances, and
ABS object references as bindings. Finally, to describe the requirements in our
model, we use ABS with SmartDepl [25], an extension that supports deployment
annotations. Strong required interfaces are modeled as class annotations indi-
cating mandatory parameters for the class constructor: such parameters contain
the references to the objects corresponding to the microservices providing the
strongly required interfaces. Weak required interfaces are expressed as anno-
tations concerning specific methods used to pass, to an already instantiated
object, the references to the objects providing the weakly required interfaces. We
define a class for each microservice type, plus one load balancer class for each
microservice type. A load balancer distributes requests over a set of instances
that can scale horizontally. Finally, we model nodes corresponding to Amazon
EC2 instances: c4 large, c4 xlarge, and c4 2xlarge (with the corresponding
provided resources and costs).

Microservice (max computational load) Initial (10K) +20K +50K +80K

MessageReceiver(∞) 1 - - -

MessageParser(40K) 1 - +1 -

HeaderAnalyzer(40K) 1 - +1 -

LinkAnalyzer(40K) 1 - +1 -

TextAnalyzer(15K) 1 +1 +2 +2

SentimentAnalyzer(15K) 1 +3 +4 +6

AttachmentsManager(30K) 1 +1 +2 +2

VirusScanner(13K) 1 +3 +4 +6

ImageAnalyzer(30K) 1 +1 +2 +2

NSFWDetector(13K) 1 +3 +4 +6

ImageRecognizer(13K) 1 +3 +4 +6

MessageAnalyzer(70K) 1 +1 +2 +2

In the table above, we report the result of our algorithm w.r.t. four incre-
mental deployments: the initial in column 2 and under incremental loads in
3–5. We also consider an availability of 40 nodes for each of the three node
types. In the first column of the Table, next to a microservice type, we report
its corresponding maximum computational load, i.e., the maximal number of
simultaneous requests that it can manage. As visible in columns 2–5, differ-
ent maximal computational loads imply different scaling factors w.r.t. a given
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number of simultaneous requests. In the initial configuration we consider 10K
simultaneous requests and we have one instance of each microservice type (and
of the corresponding load balancer). The other deployment configurations deal
with three scenarios of horizontal scaling, assuming three increasing increments
of inbound messages (20K, 50K, and 80K). In the three scaling scenarios, we
do not implement the planning algorithm described in Phase 3 of the proof of
Theorem 1. Contrarily, we take advantage of the presence of the load balancers
and, as described in Remark 1, we achieve a similar result with an optimiza-
tion function that maximizes the number of bindings of the load balancers. For
every scenario, we use SmartDepl [33] to generate the ABS code for the plan that
deploys an optimal configuration, setting a timeout of 30 min for the computa-
tion of every deployment scenario.5 The ABS code modeling the system and the
generated code are publicly available at [7]. A graphical representation of the
initial configuration is available in the companion technical report [8].

4 Related Work and Conclusion

In this work, we consider a fundamental building block of modern Cloud sys-
tems, microservices, and prove that the generation of a deployment plan for an
architecture of microservices is decidable and fully automatable; spanning from
the synthesis of the optimal configuration to the generation of the deployment
actions. To illustrate our technique, we model a real-world microservice archi-
tecture in the ABS [31] language and we compute a set of deployment plans.

The context of our work regards automating Cloud application deployment,
for which there exist many specification languages [5,11], reconfiguration proto-
cols [6,19], and system management tools [26,32,37,38]. Those tools support the
specification of deployment plans but they do not support the automatic distri-
bution of software instances over the available machines. The proposals closest to
ours are those by Feinerer [20] and by Fischer et al. [21]. Both proposals rely on
a solver to plan deployments. The first is based on the UML component model,
which includes conflicts and dependencies, but lacks the modeling of nodes. The
second does not support conflicts in the specification language. Neither proposals
support the computation of optimal deployments.

Three projects inspire our proposal: Aeolus [13,14], Zephyrus [1], and Conf-
Solve [28]. The Aeolus model paved the way to reason on deployment and recon-
figuration, proving some decidability results. Zephyrus is a configuration tool
based on Aeolus and it constitutes the first phase of our approach. ConfSolve is
a tool for the optimal allocation of virtual machines to servers and of applications
to virtual machines. Both tools do not synthesize deployment plans.

5 Here, 30min are a reasonable timeout since we predict different system loads and
we compute in advance a different deployment plan for each of them. An interesting
future work would aim at shortening the computation to a few minutes (e.g., around
the average start-up time of a virtual machine in a public Cloud) to obtain on-the-fly
deployment plans tailored to unpredictable system loads.
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Regarding autoscaling, existing solutions [2,4,17,29] support the automatic
increase or decrease of the number of instances of a service/container, when some
conditions (e.g., CPU average load greater than 80%) are met. Our work is an
example of how we can go beyond single-component horizontal scaling policies
(as analyzed, e.g., in [9]).

As future work, we want to investigate local search approaches to speed-up
the solution of the optimization problems behind the computation of a deploy-
ment plan. Shorter computation times would open our approach to contexts
where it is unfeasible to compute plans ahead of time, e.g., due to unpredictable
loads.
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31. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.: ABS: a core lan-
guage for abstract behavioral specification. In: Aichernig, B.K., de Boer, F.S.,
Bonsangue, M.M. (eds.) FMCO 2010. LNCS, vol. 6957, pp. 142–164. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-25271-6 8

32. Kanies, L.: Puppet: next-generation configuration management. ;login: USENIX
Mag. 31(1), 19–25 (2006)

33. Mauro, J.: Smartdepl. https://github.com/jacopoMauro/abs deployer. Accessed
Jan 2019

https://doi.org/10.1007/978-3-642-33826-7_11
https://doi.org/10.1007/978-3-642-33826-7_11
https://docs.docker.com/compose/
https://docs.docker.com/engine/swarm/
https://doi.org/10.1007/978-3-319-67425-4_12
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
https://read.acloud.guru/thinking-serverless-how-new-approaches-address-modern-data-processing-needs-part-1-af6a158a3af1
http://www.gecode.org
http://www.gecode.org
https://developers.google.com/optimization/
https://doi.org/10.1007/978-3-319-44482-6_8
https://doi.org/10.1007/978-3-319-44482-6_8
https://www.ansible.com/
http://arxiv.org/abs/1812.03651
https://doi.org/10.1007/978-3-642-25271-6_8
https://github.com/jacopoMauro/abs_deployer


368 M. Bravetti et al.

34. Mauro, J., Zavattaro, G.: On the complexity of reconfiguration in systems with
legacy components. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS
2015. LNCS, vol. 9234, pp. 382–393. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48057-1 30

35. Mccombs, S.: Outages? Downtime? https://sethmccombs.github.io/work/2018/
12/03/Outages.html. Accessed Jan 2019

36. Merkel, D.: Docker: lightweight Linux containers for consistent development and
deployment. Linux J. 2014(239), 2 (2014)

37. Opscode: Chef. https://www.chef.io/chef/. Accessed Jan 2019
38. Puppet Labs: Marionette collective. http://docs.puppetlabs.com/mcollective/.

Accessed Jan 2019
39. Woods, D.: On infrastructure at scale: a cascading failure of distributed systems.

https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-
failure-of-distributed-systems-7cff2a3cd2df. Accessed Jan 2019

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-662-48057-1_30
https://doi.org/10.1007/978-3-662-48057-1_30
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://sethmccombs.github.io/work/2018/12/03/Outages.html
https://www.chef.io/chef/
http://docs.puppetlabs.com/mcollective/
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
https://medium.com/@daniel.p.woods/on-infrastructure-at-scale-a-cascading-failure-of-distributed-systems-7cff2a3cd2df
http://creativecommons.org/licenses/by/4.0/


A Data Flow Model with Frequency
Arithmetic

Paul Dubrulle(B) , Christophe Gaston , Nikolai Kosmatov ,
Arnault Lapitre , and Stéphane Louise
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Abstract. Data flow formalisms are commonly used to model systems
in order to solve problems of buffer sizing and task scheduling. A pre-
requisite for static analysis of a modeled system is the existence of a
periodic schedule in which the sizes of communication channels can be
bounded for an unbounded execution (consistency), and that communi-
cation dependencies do not introduce a deadlock in such an execution
(liveness). In the context of Cyber-Physical Systems, components are
often interfaced with the physical world and have frequency constraints.
The existing data flow formalisms lack expressiveness to fully cover the
expected behavior of these components. We propose an extension to Syn-
chronous Data Flow (SDF) formalism, called Polygraph, that includes
frequency constraints and adjustable communication rates. We show that
with these extensions, the conditions for a model to be consistent and live
are no longer sufficient, and we extend the corresponding theorems with
necessary and sufficient conditions to preserve these properties. We also
introduce a framework to check the liveness of a Polygraph model, imple-
mented in the tool DIVERSITY, along with preliminary experiments to
validate this approach.

1 Introduction

Context. Cyber-Physical Systems (CPS) are increasingly present in everyday
life. In these systems, the components require a certain amount of input data
to produce a known amount of output data, and some of them must do so
in synchrony with a reference time scale. For example, the next generation of
autonomous vehicles will heavily rely on sensor fusion systems to operate the
car. Sensors and actuators have specified frequencies. To produce its output, the
fusion kernel requires a certain number of samples from several sources, with a
temporal correlation between them.

Often, when implementing this kind of system, the prediction of its perfor-
mance is important to the system designer. The performance prediction covers
different characteristics of the system, including its throughput, memory foot-
print, and latency. In distributed implementations of such systems, an analysis of
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the communications between the components is necessary to configure a network
capable to respect the application’s real-time requirements.

Data flow formalisms [3,14] can be used to perform this kind of performance
analysis [4,5,10–12]. A prerequisite to analyze a model is the existence of a
periodic schedule with two properties. The first property, consistency, requires
that the sizes of the communication buffers remain bounded for an unbounded
execution of the periodic schedule. In practice, if a model is not consistent, it
is not possible to implement the communications without losing data samples.
The second property, liveness, requires the absence of deadlocks in the schedule.

Motivation and Goals. The limitation of the existing data flow formalisms to
model the considered systems is the lack of expressiveness regarding the syn-
chronization on a common time scale for different components. Overcoming this
limitation is the subject of recent research work [6]. Our goal is to extend an
existing data flow formalism for which the consistency and liveness properties of
a given model are decidable. In doing so, we want to ensure that the expressive-
ness extension does not impact the decidability of these properties. With this
extension, all applicative constraints are taken into account when checking the
prerequisites for a performance analysis. The verification can be performed in
abstraction of a particular implementation’s characteristics (like execution times
or mapping), and the results are the same for different implementations. More-
over, the performance analysis can benefit from the additional information on
the system provided by the extension.

Approach and Main Results. This paper introduces Polygraph, an extension to
Synchronous Data Flow (SDF) [14] for specification of frequency constraints on
the components. We use an arithmetic based on rational numbers to reason on
data exchanges between components. We show that the theorems that provide
a theoretical foundation for practical verification of consistency and liveness for
an SDF model can be generalized to this new formalism. Finally, we propose
a symbolic execution framework to decide the liveness of models expressed in
Polygraph, in a way similar to [11,14].

The contributions of this work include:

– a data flow formalism, called Polygraph, extending the well-known SDF [14]
formalism, to support the synchronization of data production and consump-
tion on a reference time scale;

– a demonstration that the decidability of two classical properties of dataflow
models, namely consistency and liveness, is preserved for this new formalism;

– an adaptation to the new formalism of an existing symbolic execution tech-
nique for evaluation of liveness in the DIVERSITY tool and initial experi-
ments to validate this approach.

Outline. The remainder of this paper is organized as follows. Section 2 gives an
informal introduction to the proposed modeling approach, with a step-by-step
explanation relying on an illustrative system. In Sect. 3, we formalize Polygraph
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Fig. 1. Motivating example: a data fusion system modeled as a data flow graph. The
upper indexes “a” to “d” denote an amount of data exchanged by the components in
different variants of the model. The rates denoted by upper index “d” are those of
Polygraph, and initial conditions for this configuration are denoted by (i) and (ii).

and provide extended statements and a sketch of proof for the consistency and
liveness theorems. Section 4 presents a framework to check the liveness property
for Polygraph and a preliminary evaluation. In Sect. 5, we discuss related work,
while Sect. 6 presents conclusion and perspectives.

2 Motivation and Running Example

Running Example. To introduce the modeling approach behind Polygraph, we
use a toy example of a data fusion system that could be integrated into the
cockpit display of a car, depicted in Fig. 1. The system is composed of three
sensors producing data samples to be used by a data fusion component, and a
display component. The function of the sensor components is to read the data
from their sensors, while the function of the data fusion component is to compute
a result based on this data. The function of the display component is to render
the fusion result on a screen. To do so, the sensor components send the data to
the fusion component, and the fusion component sends the result to the display
component. The first sensor component is a video camera producing frames. The
other two sensor components analyze radar and lidar based samples to produce
a descriptor of the closest detected obstacles. The fusion component uses this
information to draw the obstacle descriptors on the corresponding frame.

The first step to model this system is to build a graph capturing data depen-
dencies between the components. Each vertex of this graph models an actor, an
abstract entity representing the function of a component. Each directed edge of
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the graph models a communication channel, the source actor being the producer
of data consumed by the destination actor. The structure of the graph in Fig. 1
illustrates the dependencies in our example. The communication policy on the
channels is First-In First-Out (FIFO), the write operation is non-blocking, and
the read operation is blocking. On each channel, the atomic amount of data
exchanged by the connected actors is called a token, and all write and read oper-
ations are measured in tokens. An actor produces (resp. consumes) a certain
number of tokens on a channel when it writes (resp. reads) the corresponding
amount of data. With this policy, the graph can be assimilated to a Kahn Pro-
cess Network (KPN) [13]. In a KPN, the communications are determinate, but
in general it is not possible to decide if the sizes of the channels can be bounded
for an unbounded execution of the system.

Synchronous and Asynchronous Constraints. In practice, sensors and actuators
have a fixed sampling rate, and the production of each data sample occurs at
that specified frequency. To model these constraints, we propose to label some
actors with frequencies, corresponding to the real-life constraint. An actor with a
frequency label must fire at that frequency. We further detail this notion of firing
below, but for now it is sufficient to say that the firing of an actor is an atomic
process, during which it performs the actions and communications expected from
the modeled component. A global clock provides ticks to synchronize the firing
of frequency labeled actors. For our example, we consider the frequency labeling
illustrated by Fig. 1.

Generally, in real-life systems, computation kernels compute when input data
is available and do not have frequency constraints. In our frequency labeling, the
actors modeling such components can be left without a frequency label. In our
example, this is the case for the fusion actor.

The possibility to have unlabeled actors is an important part of our app-
roach, as further discussed in Sect. 5. It allows to mix a synchronous firing policy
for labeled actors, and an asynchronous firing policy for unlabeled actors. This
means that the scheduling of firings has periodic constraints only where needed,
which offers more options for optimization algorithms.

Static Rates. Another characteristic of real-life software components in our con-
text is that they require a fixed number of input samples from each different
source. Also, there must be a correlation between the production time of the
samples consumed from different sources. In our example, the fusion component
requires one token from each sensor, and these samples must have a close-enough
production time. This constraint can be captured by KPN restrictions, such
as Synchronous Data Flow (SDF) [14]. In SDF, both ends of each channel are
assigned a communication rate, denoting the fixed number of tokens produced or
consumed by the connected actors’ firings. This characteristic allows to decide
whether the sizes of the channels are bounded for an unbounded execution.
Graphs respecting this property are said to be consistent.

Without taking frequencies into account, the communication rates denoted
by an upper index “a” in Fig. 1 match the description of the system. Indeed, the
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sensor actors produce one token each, the fusion actor consumes these tokens,
and in turn produces one token to be consumed by the display actor. With these
rates, considering a marking of the graph with any number of tokens stored in
the channels, if firing all the actors once, the same number of tokens remains in
the channels. Hence, the SDF graph is consistent. But when taking frequencies
into account, the graph is no longer consistent. In this example, the camera
produces 30 tokens per second, the radar produces 120 tokens per second, and
the lidar produces 10 tokens per second. This means that per second, because
of the production rate and frequency of the lidar, the fusion actor will be able
to fire only 10 times. It will consume only 10 tokens from the camera and radar
actors, leaving 20 and 110 unconsumed tokens per second on their respective
channels. Hence, it is no longer possible to bound the size of these channels for
an unbounded execution of the graph. This shows that to achieve consistency, for
any frequency labeled actor, the number of asynchronous firings of its unlabeled
predecessors and successors should be limited.

A possible adaptation of communication rates, denoted by upper index “b”
in Fig. 1, takes frequency inheritance into account and restores the consistency
property. With the production and consumption rates both set to 1 on the
channel connecting the camera and the fusion actors, the fusion actor basically
inherits a frequency constraint of 30 Hz. It inherits the same frequency constraint
from the radar and lidar actors since it now consumes 4 × 30 = 1 × 120 tokens
per second from the radar, and 1 × 30 = 3 × 10 tokens per second from the
lidar. The rates on the channel connecting the fusion and display actors are also
balanced. But with these rates, the number of tokens does not reflect accurately
the expected behavior of the modeled components. For example, the fusion actor
would consume 4 tokens per activation from the radar actor, while in reality the
component only requires 1.

Cyclo-Static Rates. It is possible to use Cyclo-Static Data Flow (CSDF) [3]
to get closer to the real communication requirements. In CSDF, the rates of
the actors are fixed as in SDF, but the successive firings of an actor cyclically
consume and produce a different number of tokens on every connected channel.
The successive rates on each channel are expressed as a sequence of natural
numbers. For example, an actor with a cyclo-static sequence of output rates
[1, 2] produces 1 token for its first firing, 2 tokens for the second, 1 for the third
and so on. A zero rate may occur in the sequence, meaning that the actor does
not push or pull tokens on the channel for the corresponding firing.

A cyclo-static sequence is necessary on a channel if the connected actors have
frequency constraints conflicting with the expected communication behavior.
In this case, we propose that one of the actors must be chosen as having the
reference frequency for the communication, and the other actor must adapt its
communication rate to a cyclo-static sequence accordingly. Back to our example
(see variant “c” in Fig. 1), the fusion actor requires one token from each sensor
every firing. Since the component is synchronized on camera frames, we decide
that the actor’s reference frequency should be 30 Hz. In this case, the frequency
constraints do not conflict with the expected communication behavior, and we
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Fig. 2. Firings of actors of the motivating example: the firings are identified by the
initial letter of the corresponding actor and the rank of the firing, arrows show data
dependencies between firings, and a reference time scale constrains the firing of timed
actors. The data dependencies marked by a cross in (a) introduce a causality issue.

assign production and consumption rates of 1 on the channel connecting the
fusion and camera actors. Now, considering the radar actor, the fusion actor
only requires 30 tokens per second out of 120. Considering this ratio, we assign
the sequence [0, 0, 0, 1] as production rates for the radar actor, and the rate 1
for the fusion actor. The same logic applies for the lidar actor, the fusion actor
requires 30 tokens per second, but only 10 tokens per second are produced. We
then assign the cyclo-static sequence [1, 0, 0] as consumption rates for the fusion
actor, and the rate 1 for the lidar actor. A similar logic is applied for the display
actor. The consequence on the stream of actual data values highly depends on
the implemented function, and is therefore out of the scope of the data flow
modeling. In the particular case of the radar actor in our example, the software
implementation could perform a downsampling of the sensed data, or just send
the latest sample.

The corresponding communication rates, denoted by upper index “c” in
Fig. 1, give a graph where only the required tokens are exchanged on the chan-
nels, and the consistency property is preserved. But in all generality, choosing
the appropriate cyclic rate sequences for all the channels in a graph is time
consuming and error prone.

Rational Rates. We propose instead to extend the SDF model with rational com-
munication rates. A rational communication rate r = p/q specifies that the actor
produces or consumes p tokens every q firings, and the natural number of tokens
produced or consumed by any firing is r rounded either up or down, denoted �r�
and �r� respectively. With the semantic formalized in the next section, there is
a unique default cyclo-static sequence that corresponds to a given rational rate.
The default sequences for the rates denoted by an upper index “d” in Fig. 1 are
those denoted by upper index “c”. As explained earlier when assigning cyclo-
static sequences, in this extension, only one rate on a given channel can be a
rational number with denominator greater than one. The methodology remains
the same, for any channel, one actor’s frequency is considered as a reference, and
the other one adapts its rates according to that reference.
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Initial Conditions. With the frequency labeling and rational communication
rates, we obtain a model that describes as closely as possible the communication
and timing requirements of our illustrative example. But there are causality
issues in this model. Figure 2(a) illustrates the timing of actor firings in our
example, and the data dependencies between them, according to the semantic
defined in the next section. It is obvious that the data dependencies marked by
a cross are not satisfied in time.

This kind of causality issue can also appear in SDF: in the case of cyclic
graphs, the firings of the actors in a cycle all depend on each other. To prevent
this, it is possible to mark the channels with an initial number of tokens, allowing
sufficient initial firings to complete the firing of all actors in the cycle. The
liveness property of an SDF graph is verified when all the cycles in the graph are
marked with enough tokens to prevent a deadlock [14]. With the SDF extensions
we propose, this condition is no longer sufficient. We need to be able to shift the
production or consumption of tokens in order to make sure that when a firing
requires input tokens, they are produced at an earlier tick of the global clock.

One way to achieve this is to rotate the default sequences defined by the
rational rates. For this, we propose a rational initial marking of the graph. Each
channel with natural rates at both ends can be marked with an initial number
of tokens as in SDF. Each other channel with rational rate r = p/q on either
end can be initially marked with a rational number n + k/q with k < q, which
denotes that the channel initially holds n tokens (as in SDF), and the default
sequence is rotated by k. If the rational rate is on the producer, the default
sequence is rotated left, otherwise it is rotated right. In Fig. 1, considering the
default sequences denoted by “c”, the corresponding rational rates denoted by
upper index “d”, and the initial marking (ii), the marking of 3/4 on the channel
connecting the radar and fusion actors rotates the default sequence [0, 0, 0, 1] by
3 elements to the right, yielding the sequence [1, 0, 0, 0].

Another way to prevent unsatisfied data dependencies is to shift the first
tick on which a frequency labeled actor must fire. We propose to add a phase to
each of these actors, giving the offset from the first tick at which it must fire.
With the semantic formalized in the next section, that phase is constrained in
order to have a periodic global clock. Figure 2(b) takes into account the marking
and phase denoted (ii) in Fig. 1. With the rational marking, the dependencies
between the radar and fusion firings are now satisfied, and with the phase on
the display actor, the dependencies between the camera and display firings are
also satisfied.

3 Formalization of the Polygraph Model

We denote by B the set {0, 1}, by Z the set of integers, by N = {n ∈ Z | n � 0}
the set of natural integers, and by Q the set of rational numbers. For any set S,
the free semigroup on S is denoted S+.

System graph. A system graph is a structure used to represent the topology of
the communications. Formally, it is a connected finite directed graph G = (V,E)
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with set of vertices V and set of edges E ⊆ V × V such that V is the set
of actors and E is the set of channels. We use an index notation to identify
elements with respect to a given actor or channel, considering that E and V
are sets indexed respectively in {1, · · · , |E|} and {1, · · · , |V |}. We denote vi

(resp. ej) the actor (resp. channel) of index i (resp. j). For an actor v ∈ V ,
let in(v) = {〈v′, v〉 ∈ E | v′ ∈ V } denote the set of input channels of v and
out(v) = {〈v, v′〉 ∈ E | v′ ∈ V } the set of output channels of v.

Topology matrix and channel states. As for SDF and its derivations [3,14], the
communication rates are defined by a topology matrix with one row per channel
and one column per actor. The only difference in this definition is that we rely
on rational numbers. The absolute value of a rate in the matrix defines how
many tokens are produced or consumed per firing of the corresponding actor
on the corresponding channel, and the sign of that rate indicates if the tokens
are produced (positive rate) or consumed (negative rate). For a given actor and
channel, the rate must be 0 if the actor is not connected to the channel, or if the
actor is connected to both ends of the channel.

Definition 1 (Topology matrix). A matrix Γ = (γij) ∈ Q
|E|×|V | is a topol-

ogy matrix of a system graph G if for every channel ei = 〈vj , vk〉 ∈ E we have:

– γil = 0 for all l 
= j, k;
– if j 
= k, then γij > 0 and γik < 0 are irreducible fractions, and at most one

of them has a denominator greater than 1;
– if j = k, then γij = 0.

We also use a rational number per channel to track the communication state
of the system during an execution. A channel state is a vector with one row per
channel. Each coordinate in the vector tracks the respective number of firings
of the connected actors, by addition of their rates when they fire, and that
coordinate rounded down is the number of tokens in the channel.

Definition 2 (Channel state). A vector c ∈ Q
|E|×1 is a channel state of a

system graph G with topology matrix Γ if for every channel ei = 〈vj , vk〉 ∈ E,
the denominator of ci is the maximum between the denominators of γij and γik,
and �ci� is the number of tokens in the channel. We denote C ⊆ Q

|E|×1 the set
of all these possible states.

Timed actors and global clock. A subset VF ⊆ V of timed actors are constrained
by a frequency, expressed as a strictly positive natural number. We use a fre-
quency mapping ω : VF −→ N

>0 in order to map the timed actors to their
frequency. There is an implicit system time unit, and each timed actor vi ∈ VF

is supposed to be fired exactly ωi := ω(vi) times per system time unit. In order
to have a minimal system time unit, we consider that the greatest common divi-
sor of all the frequencies is gcd(ω[VF ]) = 1. This is not limiting, since any set of
frequencies and system time unit can be adjusted to fit this constraint.

In addition, the timed actors must fire synchronously with respect to a global
clock. The resolution of that global clock is a sufficient number of ticks per system



A Data Flow Model with Frequency Arithmetic 377

time unit to associate to each tick the set of timed actors that must fire at the
corresponding date. For this, we consider the ticks 0, 1, . . . , π − 1 per system
time unit, where π is the least common multiple of all the actor frequencies
π = lcm({ωi|vi ∈ VF }). Note that if VF is empty, π = 1, and the global clock
does not constrain the firing of any actor.

Given a timed actor vi ∈ VF , there should be ωi out of π ticks associated
with that actor’s firings. To reflect the periodic nature of the firing of timed
actors, for a timed actor vi of period pi = π/ωi, it fires every pi-th tick.

As mentioned in Sect. 2, all the timed actors have a phase. We use a phase
mapping ϕ : VF −→ N to map the timed actors to their phase. The first firing
of each timed actor vi ∈ VF occurs at the tick ϕi := ϕ(vi). The only con-
straint to respect the expected frequency of the firings is that ∀vi ∈ VF we have
0 � ϕi < π/ωi.

Definition 3 (Global clock, firing ticks). For a system graph G with fre-
quency mapping ω, resolution π, and phase mapping ϕ, the global clock is a set
T = {0, 1, . . . , π − 1} and for each timed actor vi ∈ VF there is a subset of firing
ticks Ti = {τ ∈ T | τ ≡ ϕi (mod π/ωi)}.

Polygraphs. We now define the notion of polygraph which introduces a basic
communication topology, a topology matrix, a frequency and phase mapping for
all timed actors, and an initial marking of the graph.

Definition 4 (Polygraph, initial marking). A polygraph is a tuple P =
〈G,Γ, ω, ϕ,m〉 where G is a system graph, Γ is a topology matrix, ω is a frequency
mapping, ϕ is a phase mapping and m ∈ C is an initial marking such that
∀ei ∈ E we have mi � 0.

In the following, we consider that a polygraph P = 〈G,Γ, ω, ϕ,m〉 is given,
with its global clock T and sets of firing ticks Ti for all the timed actors vi ∈ VF .

States and transitions. The state of a polygraph is composed of a channel state,
the current tick of the global clock, and a vector with one row per actor used
to track the number of firings of the timed actors since the last change in the
current tick. This tracking vector is used to check that the timed actors respect
their synchronous firing constraints.

Definition 5 (State). A state of a polygraph P is a tuple s = 〈c, τ,a〉 where
c ∈ C is a channel state, τ ∈ T is a tick, and a ∈ N

|V |×1 is a tracking vector.
We denote S ⊆ C × T × N

|V |×1 the set of all possible states for P.

The effect of the firing of an actor on the channel state is to add its rates to
the respective coordinate of all the channels. For an actor vi, the i-th column
of Γ gives all the rates per channel. Therefore, to extract that column from the
matrix for each actor vi ∈ V , we use a unitary firing vector u ∈ B

|V |×1, such
that ui = 1, and for all j 
= i we have uj = 0. We denote U ⊂ B

|V |×1 the set
of these vectors, and for convenience we denote the unitary activation vector of
actor vi by ui. With the unitary firing vector of any actor vi, the product Γui
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gives a vector holding for each channel ej the rate of vi on ej . For any channel
state c, the channel state after the atomic firing of vi is then c + Γui. Also,
the firing of a timed actor is tracked by adding its unitary firing vector to the
tracking vector. The firing of an actor has no effect on the current tick.

Definition 6 (Fire). For a polygraph P, the mapping fire : U × S −→ S maps
a unitary activation vector ui and a state s = 〈c, τ,a〉 to the state s′ = 〈c′, τ ′,a′〉
such that we have c′ = c+Γui, τ ′ = τ , and if vi ∈ VF then a′ = a+ui, otherwise
a′ = a.

Remark 1. For two consecutive firings of any actors vi and vj from a state s =
〈c, τ,a〉, the resulting state s′′ = 〈c′′, τ ′′,a′′〉 does not depend on the order of
the firings, and c′′ = c + Γ(ui + uj). This property can be generalized to any
finite number of consecutive firings.

The other possible transition between two states occurs when the global clock
ticks. When the global clock ticks, the channel state is not changed, the current
tick is adjusted, and the tracking vector is reset.

Definition 7 (Tick). For a polygraph P, the mapping tick : S −→ S maps
a state s = 〈c, τ,a〉 to the state s′ = 〈c′, τ ′,a′〉 such that we have c′ = c,
τ ′ = (τ + 1) mod π, and a′ = 0.

Executions. The state of P can evolve by successive application of either fire or
tick. An execution of P is a sequence of such applications starting from a state
s1 ∈ S and leading to states e = s1 · · · sn ∈ S+. However, with the frequency
constraints, there are some conditions for the applications.

Consider the firing fire(ui, s) of a timed actor vi in a state s = 〈c, τ,a〉. In
this case, vi may fire only if the current tick τ is one of its firing ticks, i.e. τ ∈ Ti.
Since it must fire exactly once on such a tick, an additional constraint to fire a
timed actor vi is that it has not fired yet, i.e. its coordinate in the tracking vector
a is ai = 0. To capture this constraint, we define a tick firing vector tτ ∈ B

|V |×1

for each tick τ ∈ T, in which a coordinate is set to one if the corresponding
actor is expected to fire at tick τ . More formally, for any vi ∈ V \ VF we have
tτi = 0, and for any vj ∈ VF we have tτj = 1 if τ ∈ Tj , and tτj = 0 otherwise. The
constraint to fire vi ∈ VF in a state with current tick τ and tracking vector a is
then ai < tτi .

The clock update tick(s) in a state s = 〈c, τ,a〉 is also subject to a constraint:
the timed actors that were supposed to fire synchronously with the current tick
have done so exactly once, i.e. a = tτ .

Definition 8 (Synchronous execution). An execution e = s1 · · · sn ∈ S+ of
a polygraph P is synchronous if ∀1 � k < n, we have sk = 〈c, τ,a〉 such that:

– either sk+1 = fire(ui, sk) for some vi ∈ V , and in addition, if vi ∈ VF , then
ai < tτi ,

– or sk+1 = tick(sk), and in addition, a = tτ .
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Until now, we considered executions of a polygraph where the order of the
firings is constrained only by the frequencies. However, for an actor to fire, there
must be enough tokens on its input channels, or its rational communication rate
must allow firings consuming 0 tokens. In order to fire an actor vi in a state
s = 〈c, τ,a〉, we require that for each input channel ej of vi, since the rate γji is
negative, the channel state cj must be large enough to avoid reaching a negative
state, i.e. cj + γji � 0, or equivalently cj � |γji|. This constraint requires an
ordering of the actor firings such that a producer is fired a sufficient number of
times for a consumer to be able to fire in turn.

Definition 9 (Non-blocking execution). An execution e = s1 · · · sn ∈ S+ of
a polygraph P is non-blocking if ∀1 � k < n, we have sk = 〈c, τ,a〉 such that:

– either sk+1 = fire(ui, sk) for some vi ∈ V , and in addition, ∀ej ∈ in(vi),
cj � |γji|,

– or sk+1 = tick(sk).

Consistency property. If verified, the consistency property of P guarantees that
it is possible to build a synchronous execution e = s1 · · · sn ∈ S+ such that
s1 = 〈m, 0,0〉 and s1 = sn. Such an execution is called a consistent execution
of P, and can obviously be repeated an indefinite number of times to build a
consistent execution of arbitrary length. [14, Theorem 1] states that a necessary
and sufficient condition for a given SDF graph to be consistent is that there is a
non-trivial solution x to Γx = 0.

To extend this result to polygraphs, as explained in the previous section, we
need to take into account the frequencies of the timed actors. In other words, we
need to make sure that it is possible to have a synchronous execution with xi

firings per actor vi. The additional constraint due to the frequencies is that the
number of firings xi of all the timed actors vi corresponds to a number r ∈ N of
repetitions of the global clock period.

To state the conditions for a polygraph to be consistent, we thus want to
separate the number of firings of the timed actors from the others. We define the
vector t =

∑
∀τ∈T tτ giving for each timed actor vi the number ti of expected

firings per period of the global clock. We then define the set Y ⊂ N
|V |×1 of

vectors y such that we have a number of firings yi 
= 0 only for vi ∈ V \ VF .

Theorem 1. A polygraph P has a consistent execution if and only if there exists
a non-trivial solution x ∈ N

|V |×1 to Γx = 0 such that x = y+rt for some y ∈ Y
and r ∈ N. Any such solution is called a repetition vector of P. Moreover, there
exists a minimal repetition vector x such that for any other repetition vector x′

we have x′ = kx for some k ∈ N.

Sketch of proof. First, we prove that the condition is sufficient, and suppose that
there exists such a solution x. Then we can decompose:

x = y + (t0 + . . . + tπ−1)
︸ ︷︷ ︸

=t

+ . . . + (t0 + . . . + tπ−1)
︸ ︷︷ ︸

=t
︸ ︷︷ ︸

=rt
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The required consistent execution can be obtained by constructing sub-
executions corresponding to this decomposition, relying on Definition 8 and
Remark 1.

Claim (1). There exists a synchronous execution e1 ∈ S+ with starting state
s = 〈m, 0,0〉 and ending state s′ = 〈m + Γy, 0,0〉.
The execution e1 is constructed by applying yi firings of each actor vi ∈ V \ VF

(in any order). Since the fired actors are not timed actors, any such sequence is
synchronous. The resulting channel state is m + Γy as per Remark 1.

Claim (2). For any starting state s = 〈c, τ,0〉, there exists a synchronous execu-
tion e2 ∈ S+ starting from s with ending state s′ = 〈c + Γtτ , (τ + 1) mod π,0〉.
The execution e2 for τ is constructed by firing exactly once each timed actor
supposed to do so at tick τ , and then applying the tick mapping.

Claim (3). For any starting state s = 〈c, 0,0〉, there exists a synchronous exe-
cution e3 ∈ S+ starting from s with ending state s′ = 〈c + Γt, 0,0〉.
The execution e3 is obtained by successively executing e2 for τ = 0, . . . , π − 1.

Claim (4). There exists a synchronous execution e4 ∈ S+ with starting state
s = 〈m, 0,0〉 and ending state s′ = 〈m + Γ(y + rt), 0,0〉.
The sequence e4 is constructed by executing e1, followed by e3 repeated r times.
Hence, given that Γx = 0 and x = y+rt, it can be easily checked that the ending
state of e4 is the same as its starting state, and e4 is consistent. The fact that
the condition is also necessary follows from the definitions. Since the current tick
must return to 0 after a consistent execution, such an execution must perform a
number r of periods of the global clock for some r ∈ N, in other words it must
contain rπ applications of the tick mapping and rti firings of each timed actor
vi. The existence of a minimal solution immediately follows from the fact that
in this case rank(Γ) = |V | − 1 according to [14, Corollary of Lemma 2].

Due to lack of space, a detailed proof is left to the reader. ��
Liveness property. If verified, the liveness property of P guarantees that it is
possible to build a consistent execution e = s1 · · · sn ∈ S+ such that e is also a
non-blocking execution. Such an execution e is called a live execution.

In a way similar to [14, Theorem 3], we define the notion of a scheduler
building only synchronous and non-blocking executions. Our goal is to show that
P has a live execution if and only if any such scheduler can build a consistent
execution.

From now on, we consider that P is consistent with minimal repetition vector
x. We define the mapping count : V × S+ −→ N that given an actor vi and an
execution e = s1 · · · sn ∈ S+ returns the number of firings of vi in e, i.e. the
number of k such that 1 � k < n and sk+1 = fire(ui, sk). Notice that since a live
execution e of P is also consistent, by definition we have ∀vi ∈ V, count(vi, e) =
xi. Also, we say that an actor vi ∈ V is runnable after an execution e ∈ S+

with ending state s if count(vi, e) < xi and the one-step execution ss′ ∈ S+ with
s′ = fire(ui, s) is synchronous and non-blocking.
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Definition 10 (Scheduler). A scheduler of P is a mapping σ : S+ −→ S+

that maps an execution e = s1 · · · sn ∈ S+ to an execution e′ ∈ S+ such that if
we denote sn = 〈c, τ,a〉 we have:

– either e′ = s1 · · · sns′ ∈ S+ with s′ = fire(ui, sn) for some actor vi runnable
after e;

– or e′ = s1 · · · sns′ ∈ S+ with s′ = tick(sn) and a = tτ ;
– or e′ = e if there is no runnable actor after e and a 
= tτ .

An execution defined by a scheduler σ is the fixed point constructed by
recursive application1 of σ starting from an initial execution e = (〈m, 0,0〉).
Theorem 2. Let P be a consistent polygraph with minimal repetition vector x,
σ a scheduler of P, and e the execution defined by σ. Then P has a live execution
if and only if ∀vi ∈ V, count(vi, e) = xi.

Sketch of proof. The condition is obviously sufficient. The proof that it is also
necessary can be easily made by induction. If e is a live execution and e′ is a
synchronous and non-blocking execution constructed by σ so far, with |e′| < |e|,
we can show that e′ can be extended by one more step (e.g. by taking the first
step present in e but not in e′, since its preconditions are necessarily satisfied).

��

4 Tool Support for Liveness Checking

DIVERSITY is a customizable model analysis tool based on symbolic execution,
available in the Eclipse Formal Modeling Project [17]. DIVERSITY provides a
pivot language called xLIA (eXecutable Language for Interaction and Archi-
tecture) introducing a set of communication and execution primitives allowing
one to encode a wide class of dynamic model semantics [2,9], Communicating
STS [1], and abstractions of hybrid systems [15]. In this work, we use it to ana-
lyze Polygraph models, to check their liveness in a similar way to that defined
by a scheduler as per Definition 10.

The root entity in an xLIA model is a so-called system. A system is an
executable entity that can be atomic (state-machine) or compositional or hier-
archical. A Polygraph model translated to xLIA is a system where the actors are
state-machines with input/output ports associated with the ends of the channels.
They communicate asynchronously over FIFO queues, bounded or not, using
xLIA connectors. Variables are used to store received tokens on input instruc-
tions in transitions, with guards conditioning their firing, and output statements
to model their token productions.

Figure 3 represents such a state machine for any actor of the polygraph in
Fig. 1. Each transition is labeled with xLIA macros representing the actions per-
formed. The init macro moves the initial marking from the input queues to the

1 Hence, a scheduler can be also defined as a partial mapping on σ∗(〈m, 0,0〉).
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Fig. 3. xLIA state machine pattern for an actor of a polygraph

counter of available input tokens, canFire() tests if enough tokens are present
for a non-blocking firing, consumption decrements the counter of available input
tokens, production sends the production rate on the successor’s queue, and recep-
tion reads that rate and adds it to the number of available tokens. Regarding
state machine semantics, all the states are pseudo-states, except idle which is
stable. This means that any fired transition must be completed until returning
to the idle state. The else transition will be evaluated if there is no possible
reception.

The xLIA language allows a fine-grained definition of an execution model for
the actors of a polygraph. Some instructions associate a sequence of actors to
fire with each tick of a clock. When attempting to fire a timed actor, only one
firing is triggered if possible, and when attempting the same for other actors, as
many firings as possible are triggered. Hence, the timed actors are only fired at
the expected tick, and cause a deadlock result if it’s not possible. For the other
actors, a counter limits their number of firings to their coordinate in the minimal
repetition vector, as required by Theorem 2. With this setup, for a polygraph P
with minimal repetition vector x = y + rt, the length of a live execution path
is rπ, plus one for the initialization step handling the initial marking. Any path
with less steps leads to a deadlock.

We tested this technique using DIVERSITY on an Intel core i7. For the poly-
graph of Fig. 1 with initial marking (ii), the tool finds that the liveness property
is verified. We also tested the initial marking (i), and the tool correctly identified
a deadlock in less than 200 ms. This example is extracted from a more complex
polygraph modeling an Advanced Driver-Assistance System (ADAS), that we
also used to evaluate the liveness checking tool. The considered polygraph has
18 actors (5 of which are timed actors), 32 channels (6 of which have an initial
marking), where 10 actors have rational communication rates. For a correctly
marked model, we find a live execution sequence in 4s.

5 Discussion and Related Work

In [16], an extension to SDF is proposed to add a single throughput constraint on
a channel of a consistent graph. From this constraint, a firing frequency is derived
for the actors by transitivity. This approach, while preserving the consistency
property by construction, does not allow the expression of a frequency constraint
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per actor, based on a real-life constraint on the modeled component, nor the
explicit synchronization of the firings on a reference time scale.

The programming model PTIDES [18] combines a real-time semantic for
sensors and actuators, and a discrete event semantic for other components like
computation kernels. These other components have an awareness of the real time
through a logical time abstraction. The resulting execution semantic has simi-
larities with Polygraph, since some components are constrained by real-time and
others only react to their stimuli. The semantic of PTIDES is much more flex-
ible than Polygraph, since it does not require fixed production or consumption
rates. On the other hand, and as opposed to Polygraph, there is no way to derive
a consistent and live periodic schedule in PTIDES, which makes static perfor-
mance prediction more difficult. Nevertheless, since the semantics are similar,
we believe that the notion of logical time as defined in PTIDES is applicable to
practical distributed implementations of polygraphs.

Synchronous programming languages [7,8] can be used to express a data flow
between synchronous periodic nodes, in order to generate correct-by-construction
programs. In these approaches, all the nodes are synchronous, while in Poly-
graph, some actors fire asynchronously when enabled. Also, the goal of our app-
roach is to be able to reason formally on the modeled systems, and automate as
many tasks as possible in its design, implementation and validation. Such a task
could be the association of the asynchronous firings to ticks of the global clock,
and the generation of a synchronous program for automatic code generation.

Recently published research [6] follows a similar approach to ours. By mixing
elements from two existing formalisms, one allowing the specification of time-
triggered tasks and the other the specification of data flow actors, the expressive-
ness of the resulting modeling framework is comparable to that of Polygraph. The
main difference is that Polygraph is a single formalism with decidable properties
and algorithms to check them in practice. In [6], the impact of the combination
of constraints from two different formalisms on their respective properties is not
discussed, as the proposed approach is more focused on the performance evalua-
tion. The experimental results the authors obtained are in favor of the modeling
approach we have in common.

6 Conclusion

We have introduced Polygraph, a data flow formalism extending SDF with syn-
chronous firing semantics for the actors. We have shown that with this extension,
the existing conditions to decide of a given SDF graph’s consistency and liveness
were no longer sufficient. We have extended the corresponding theorems and
shown that the expressiveness extensions we proposed do not impact the decid-
ability of these properties. Finally, as a first step towards tool assisted modeling
of polygraphs, we have introduced a framework relying on DIVERSITY to verify
their liveness.

Our next step is to further extend Polygraph to add flexibility in the exe-
cution semantic, with the same objective to preserve the capability to perform
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accurate static analysis of a system’s performance. Still, with this first extension,
there are already interesting research perspectives regarding the applicability of
existing static performance analysis techniques, and their potential extensions
to take into account the specifics of a polygraph’s scheduling.

Acknowledgement. Part of this work has been realized in the FACE project, involv-
ing CEA List and Renault. The Polygraph formalism has been used as a theoretical
foundation for the software methodology in the project.
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Abstract. Testing is a widely used method to assess software quality.
Coverage criteria and coverage measurements are used to ensure that
the constructed test suites adequately test the given software. Since
manually developing such test suites is too expensive in practice, various
automatic test-generation approaches were proposed. Since all approaches
come with different strengths, combinations are necessary in order to
achieve stronger tools. We study cooperative combinations of verification
approaches for test generation, with high-level information exchange.
We present CoVeriTest, a hybrid approach for test-case generation, which
iteratively applies different conditional model checkers. Thereby, it allows
to adjust the level of cooperation and to assign individual time budgets
per verifier. In our experiments, we combine explicit-state model checking
and predicate abstraction (from CPAchecker) to systematically study
differentCoVeriTest configurations.Moreover,CoVeriTestachieves higher
coverage than state-of-the-art test-generation tools for some programs.

Keywords: Test-case generation · Software testing · Test coverage ·
Conditional model checking · Cooperative verification · Model checking

1 Introduction

Testing is a commonly used technique to measure the quality of software. Since
manually creating such test suites is laborious, automatic techniques are used: e.g.,
model-based techniques for black-box testing and techniques based on control-flow
coverage for white-box testing. Many automatic techniques have been proposed,
ranging from random testing [36,57] and fuzzing [26,52,53], over search-based
testing [55] to symbolic execution [23,24,58] and reachability analyses [5,12,45,46].
The latter are well-suited to find bugs and derive test suites that achieve high
coverage, and several verification tools support test generation (e.g., Blast [5],
PathFinder [61],CPAchecker [12]). The reachability checks for all test goals seem
too expensive, but in practice, those approaches can be made pretty efficient.

Encouraged by tremendous advances in software verification [3] and a recent
case study that compared model checkers with test tools w.r.t. bug finding [17],
we study a new kind of combination of reachability analyses for test generation.
Combinations are necessary because different analysis techniques have different
strength and weaknesses. For example, consider function foo in Listing 1. Explicit
state model checking [18,33] tracks the values of variables i and s and easily

c© The Author(s) 2019
R. Hähnle and W. van der Aalst (Eds.): FASE 2019, LNCS 11424, pp. 389–408, 2019.
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Fig. 1. Example program foo

detects the reachability of the
statements in the outermost if
branch (lines 3–6), while it has
difficulties with the complex
condition in the else-branch
(line 8). In contrast, predicate
abstraction [33,39] can easily
derive test values for the complex
condition in line 8, but to handle
the if branch (lines 3–6) it must
spent effort on the detection
of the predicates s = 0, s = 1,
and i = 0. Independently of each
other, test approaches [1,34,47,54] and verification approaches [9,10,29,37]
employ combinations to tackle such problems. However, there are no approaches
yet that combine different reachability analyses for test generation.

Inspired by abstraction-driven concolic testing [32], which interleaves concolic
execution and predicate abstraction, we propose CoVeriTest, which stands
for cooperative verifier-based testing. CoVeriTest iteratively executes a given
sequence of reachability analyses. In each iteration, the analyses are run in
sequence and each analysis is limited by its individual, but configurable time limit.
Furthermore, CoVeriTest allows the analysis to share various types of analysis
information, e.g., which paths are infeasible, have already been explored, or which
abstraction level to use. To get access to a large set of reachability analyses,
we implemented CoVeriTest in the configurable software-analysis framework
CPAchecker [15]. We used our implementation to evaluate different CoVeriTest

configurations on a large set of well-established benchmark programs and to com-
pare CoVeriTest with existing state-of-the-art test-generation techniques. Our
experiments confirm that reachability analyses are valuable for test generation.
Contributions. In summary, we make the following contributions:

• We introduce CoVeriTest, a flexible approach for high-level interleaving of
reachability analyses with information exchange for test generation.

• We perform an extensive evaluation of CoVeriTest studying 54 different
configurations and two state-of-the-art test-generation tools1.

• CoVeriTest and all our experimental data are publically available2 [13].

2 Testing with Verifiers

The basic idea behind testing with verifiers is to derive test cases from counter-
examples [5,61]. Thus, meeting a test goal during verification has to trigger a
specification violation. First, we remind the reader of some basic notations.

1 We choose the best two tools VeriFuzz and Klee from the international competition
on software testing (Test-Comp 2019) [4]. https://test-comp.sosy-lab.org/2019/

2 https://www.sosy-lab.org/research/coop-testgen/

https://test-comp.sosy-lab.org/2019/
https://www.sosy-lab.org/research/coop-testgen/
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Programs. Following literature [9], we represent programs by control-flow
automata (CFAs). A CFA P = (L, �0, G) consists of a set L of program locations
(the program-counter values), an initial program location �0 ∈ L, and a set of
control-flow edges G ⊆ L×Ops×L. The set Ops describes all possible operations,
e.g., assume statements (resulting from conditions in if or while statements) and
assignments. For the program semantics, we rely on an operational semantics,
which we do not further specify.
Abstract Reachability Graph (ARG). ARGs record the work done by reach-
ability analyses. An ARG is constructed for a program P = (L, �0, G) and stores
(a) the abstract state space that has been explored so far, (b) which abstract states
must still be explored, and (c) what abstraction level (tracked variables, considered
predicates, etc.) is used. Technically, an ARG is a five-tuple (N, succ, root , F, π)
that consists of a set N of abstract states, a special node root ∈ N that represents
the initial states of program P , a relation succ ⊆ N × G × N that records already
explored successor relations, a set F ⊆ N of frontier nodes, which remembers
all nodes that have not been fully explored, and a precision π describing the
abstraction level. Every ARG must ensure that a node n is either contained in F
or completely explored, i.e., all abstract successors have been explored. We use
ARGs for information exchange between reachability analyses.

Fig. 2. Encoding test goals as speci-
fication violation

Test Goals. In this paper, we are interested
in structural coverage, e.g., branch coverage.
Transferred to our notion of programs, this
means that our test goals are a subset of the
program’s control-flow edges. For using a
verifier to generate tests, we have to encode
the test goals as a specification violation. Figure 2 shows a possible encoding,
which uses a protocol automaton. Whenever a test goal is executed, the automaton
transits from the initial, safe state q0 to the accepting state qe, which marks a
property violation. Note that reachability analyses, which we consider for test
generation, can easily monitor such specifications during exploration.

Now, we have everything at hand to describe how reachability analyses
generate tests. Algorithm1 shows the test-generation process. The algorithm gets
as input a program, a set of test goals, and a time limit for test generation. For
cooperative test generation, we need to guide state-space explorations. To this
end, we also provide an initial ARG and a condition. A condition is a concept
known from conditional model checking [10] and describes which parts of the state
space have already been explored by other verifiers. A verifier, e.g., a reachability
analysis, can use a condition to ignore the already explored parts of the state
space. Verifiers that do not understand conditions can safely ignore them.

At the beginning, Alg. 1 sets up the data structures for the test suite and the
set of covered goals. To set up the specification, it follows the idea of Fig. 2. As
long as not all test goals are covered, there exist abstract states that must be
explored, and the time limit has not elapsed, the algorithm tries to generate new
tests. Therefore, it resumes the exploration of the current ARG [5] taking into
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Algorithm 1. Generating tests with a (conditional) reachability analysis
Input: prog = (L, �0, G), goals ⊆ G, limit ∈ N, arg =(N,succ, root, F, π),

condition ψ
Output: generated test_suite, covered goals, updated arg

1: test_suite=∅; covered=∅;
2: ϕ=generate_specification(goals);

3: while (goals �= ∅ and arg.F �= ∅ and elapsed_time<limit) do
4: arg = explore(prog, ϕ, arg, ψ, limit − elapsed_time);

5: if (arg.F �= ∅ and elapsed_time<limit) then
6: τ = extract_counterexample_trace(arg);
7: test_suite = test_suite ∪ generate_test_from_trace(τ);

8: goals = goals\{last_edge(τ)}; covered = covered ∪ {last_edge(τ)}

9: ϕ=generate_specification(goals);
10: return (test_suite, covered, arg);

account program prog, specification ϕ, and (if understood) the condition ψ.
If the exploration stops, then it returns an updated ARG. Exploration stops
due to one of three reasons: (1) the state space is explored completely (F = ∅),
(2) the time limit is reached, or (3) a counterexample has been found.3 In the
latter case, a new test is generated. First, a counterexample trace is extracted
from the ARG. The trace describes a path through the ARG that starts at the
root and its last edge is a test goal (the reason for the specification violation).
Next, a test is constructed from the path and added to the test suite. Basically,
the path is converted into a formula and a satisfying assignment4 is used as
the test case. For the details, we refer the reader to the work that defined the
method [5]. Additionally, the covered goal (last edge on the counterexample path)
is removed from the set of open test goals and added to the set of covered goals.
Finally, the specification is updated to no longer consider the covered goal. When
the algorithm finishes, it returns the generated test suite, the set of covered goals
and the last ARG considered. The ARG is returned to enable cooperation.

3 CoVeriTest

The previous section described how to use a single reachability analysis to pro-
duce tests for covering a set of test goals. Due to different strengths and weak-
nesses, some test goals are harder to cover for one analysis than for another. To

3 We assume that an exploration is only complete if no counterexample exists.
4 We assume that only feasible counterexamples are contained and infeasible counter-

examples were eliminated by the reachability analysis during exploration.
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Algorithm 2. CoVeriTest: alternating reachability analyses to generate tests
Input: prog = (L, �0, G), goals ⊆ G, total_limit ∈ N, configs ∈ (analysis × N)+

Output: test_suite
1: test_suite=∅; args=〈〉; current=0;
2: while (goals �= ∅ and elapsed_time<total_limit) do
3: analysis = configs[current].first; limit = configs[current].second;

4: (arg,ψ) = cooperateAndInit(prog, args, configs.length);
5: (tests, covered, arg) = analysis(prog, goals, limit, arg, ψ);

6: test_suite=test_suite ∪ tests; goals=goals\covered; args=args ◦〈arg〉;
7: if (arg.F=∅) then
8: return test_suite;
9: current = (current+1) % configs.length;

10: return test_suite;

maximize the number of covered goals, different analyses should be combined. In
CoVeriTest, we rotate analyses for test generation. Thus, we avoid that analyses
try to cover the same goal in parallel and we do not need to know in advance
which analysis can cover which goals. Moreover, analyses that get stuck trying to
cover goals that other analyses handle later, get a chance to recover. Additionally,
CoVeriTest supports cooperation among analyses. More concrete: analyses may
extract and use information from ARGs constructed by previous analysis runs.

Algorithm2 describes the CoVeriTest workflow. It gets four inputs. Program,
test goals, and time limit are already known from Alg. 1 (test generation with
a single analysis). Additionally, CoVeriTest gets a sequence of configurations,
namely pairs of reachability analysis and time limit. The time limit accompanied
with the analysis restricts the runtime of the respective analysis per call (see
line 5). In contrast to Alg. 1, CoVeriTest does not get an ARG or condition. To
enable cooperation between analyses, CoVeriTest constructs these two elements
individually for each analysis run. During construction, it may extract and use
information from results of previous analysis runs.

After initializing the test suite and the data structure to store analysis
results (args), CoVeriTest repeatedly iterates over the configurations. It starts
with the first pair in the sequence and finishes iterating when its time limit
exceeded or all goals are covered. In each iteration, CoVeriTest first extracts the
analysis to execute and its accompanied time limit (line 3). Then, it constructs
the remaining inputs of the analysis: ARG and condition. Details regarding the
construction are explained later in Alg. 3. Next,CoVeriTest executes the current
analysis with the given program, the remaining test goals, the accompanied time
limit, and the constructed ARG and condition. When the analysis has finished,
CoVeriTest adds the returned tests to its test suite, removes all test goals
covered by the analysis run from the set of goals, and stores the analysis result for
cooperation (concatenates arg to the sequence of ARGs). If the analysis finished
its exploration (arg.F=∅), any remaining test goal should be unreachable and
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Algorithm 3. cooperateAndInit: set up start point for analysis exploration,
possibly transferring knowledge from previous analysis runs
Input: prog = (L, �0, G), args ∈ (arg)+, numAnalyses ∈ N

Output: ARG for program prog, condition describing explored state space
1: ψ=false; π = ∅; root = (�0, 
);
2: if (length(args)≥numAnalyses) then
3: if (reuse-arg) then
4: return (last_arg_of_analysis(numAnalyses, args), ψ);
5: if (reuse-precision) then
6: π = last_arg_of_analysis(numAnalyses, args).π;
7: if (use-condition ∧ length(args)>0) then
8: ψ = extract_condition(args[length(args)-1]);
9: return (({root}, ∅, root, {root}, π), ψ);

CoVeriTest returns its test suite. Otherwise, CoVeriTest determines how to
continue in the next iteration (i.e., which configuration to consider). At the end
of all iterations, CoVeriTest returns its generated test suite.

Next, we explain how to construct the ARG and the condition input for
an analysis. The ARG describes the level of abstraction and where to con-
tinue exploration while the condition describes which parts of the state space
have already been explored. Both guide the exploration of an analysis, which
makes them well-suited for cooperation. While there are plenty of possibilities for
cooperation, we currently only support three basic options: continue exploration
of the previous ARG of the analysis (reuse-arg), reuse the analysis’ abstraction
level (reuse-precision), and restrict the exploration to the state space left out
by the previous analysis (use-condition). The first two options only ensure that
an analysis does not loose too much information due to switching. The last option,
which is inspired by abstraction-driven concolic execution [32], indeed realizes
cooperation between different analyses. Note that the last two options can also
be combined.5 If all options are turned off, no information will be exchanged.

Algorithm3 shows the cooperative initialization of ARG and condition dis-
cussed above. It gets three inputs: the program, a sequence of args needed to
realize cooperation, and the number of analyses used. At the beginning, it ini-
tializes the ARG components and the condition assuming no cooperation should
be done. The condition states that nothing has been explored, the abstraction
level becomes the coarsest available, and the ARG root considers the start of all
program executions (initial program location and arbitrary variable values). If
no cooperation is configured or the ARG required for cooperation is not available
(e.g., in the first round), the returned ARG and condition tell the analysis to
explore the complete state space from scratch. In all other cases, the analysis
will be guided by information obtained in previous iterations. Option reuse-arg

5 In contrast, the options reuse-arg and use-conditions cannot be combined because
they are incompatible. The existing ARG does not fit to the constructed condition.
Since reuse-arg subsumes reuse-precision, a combination makes no sense.
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looks up the last ARG of the analysis stored in args. Reuse-precision con-
siders the same ARG as reuse-arg, but only provides the ARG’s precision π. For
use-condition, a condition is constructed from the last ARG in args. For the
details of the condition construction, we refer to conditional model checking [10].

Next, we study the effectiveness of different CoVeriTest configurations and
compare CoVeriTest with existing test-generation tools.

4 Evaluation

We systematically evaluate CoVeriTest along the following claims:
Claim 1. For analyses that discard their own results from previous iterations
(i.e., reuse-arg and reuse-precision turned off), CoVeriTest achieves higher
coverage if switches between analyses happen rarely. Evaluation Plan: We look
at CoVeriTest configurations in which analyses discard their own, previous
results and compare the number of covered test goals reported by configurations
that only differ in the analyses’ time limits.
Claim 2. For analyses that reuse knowledge from their own, previous exe-
cution (i.e., reuse-arg or reuse-precision turned on), CoVeriTest achieves
higher coverage if favoring more powerful analyses. Evaluation Plan: We look at
CoVeriTest configurations in which analyses reuse their own, previous knowledge
and compare the number of covered test goals reported by configurations that
only differ in the analyses’ time limits.
Claim 3. CoVeriTest performs better if analyses reuse knowledge from their
own, previous execution (i.e., reuse-arg or reuse-precision turned on). Eval-
uation Plan: From all sets of CoVeriTest configurations that only differ in the
analyses’ time limits, we select the best and compare these.
Claim 4. Interleaving multiple analyses with CoVeriTest often achieves better
results than using only one of the analyses for test generation. Evaluation Plan:
We compare the number of covered goals reported by the best CoVeriTest

configuration with those numbers achieved when running only one analysis of
the CoVeriTest configuration for the total time limit.
Claim 5. Interleaving verifiers for test generation is often better than running
them in parallel. Evaluation Plan: We compare the number of covered goals
reported by the best CoVeriTest configuration with the number achieved when
running all analyses of the CoVeriTest configuration in parallel.
Claim 6. CoVeriTest complements existing test-generation tools. Evaluation
Plan: We use the same infrastructure and resources as used by the International
Competition on Software Testing (Test-Comp’19)6 and let the best CoVeriTest

configuration construct test suites. These test suites are executed by the Test-
Comp’19 validator to measure the achieved branch coverage. Then, we compare
the coverage achieved by CoVeriTest with the coverage of the best two
test-generation tools from Test-Comp’19.

6 https://test-comp.sosy-lab.org/2019/

https://test-comp.sosy-lab.org/2019/
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4.1 Setup

COVERITEST Configurations. We implemented CoVeriTest in the software
analysis framework CPAchecker [15]. Basically, we implemented Algs. 1, 2 and
integrated Alg. 3 into Alg. 2. For condition construction, we reuse the code from
conditional model checking [10]. For our experiments, we combine value [18] and
predicate analysis [16]. Both have been used in cooperative verification [10,11,21].

Value analysis. CPAchecker’s value analysis [18] tracks the values of variables
stored in its current precision explicitly while assuming that the remaining
variables may have any possible value. It iteratively increases its precision, i.e.,
the variables to track, combining counterexample-guided abstraction [28] with
path-prefix slicing [22], and refinement selection [21]. Value analysis is efficient
if few variable values need to be tracked, but it may get stuck in loops or suffers
from a large state space in case variables are assigned many different values.

Predicate analysis. CPAchecker’s predicate analysis uses predicate ab-
stractionwithadjustable-block encoding (ABE) [16].ABE is configured toabstract
at loop heads and uses the strongest postcondition at all remaining locations. To
compute the set of predicates—its precision—, it uses counterexample-guided ab-
straction refinement [28] combined with lazy refinement [43] and interpolation [41].
While the predicate analysis is powerful and often summarizes loops easily, succes-
sor computation may require expensive SMT solver calls.

For both analyses, a CoVeriTest configuration specifies how Alg. 3 reuses
the ARGs returned by previous analysis runs to set up the initial ARG and
condition. In our experiments, we consider the following types of reuses.

plain Ignores all ARGs returned by previous analysis runs, i.e., reuse-arg,
reuse-prec, and use-condition are turned off.

condv The value analysis does not obtain information from previous ARGs and
the predicate analysis is only steered by the condition extracted from the
ARG returned by the previous value analysis.

condp The value analysis is steered by the condition extracted from the ARG
returned by the previous run of the predicate analysis and the predicate
analysis ignores all previous ARGs.

condv,p Value and predicate analysis are steered by the condition extracted from
the last ARG returned, i.e., only use-condition turned on.

reuse-prec In each round, each analysis resumes its precision from the previous
round, but restarts exploration, i.e., only reuse-prec is turned on.

reuse-arg In each round, each analysis continues to explore the ARG it returned
in the previous round, i.e., only reuse-arg is turned on.

condv+r Similar to condv, but additionally the value analysis continues to
explore the ARG it returned in the previous round and the predicate analysis
restarts exploration with its precision from the previous round.

condp+r Similar to condp, but additionally the value analysis restarts explo-
ration with its precision from the previous round and the predicate analysis
continues to explore the ARG it returned in the previous round.

condv,p+r Like condv,p, but additionally the value and predicate analysis reuse
their previous precision, i.e., reuse-prec and use-condition are turned on.
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Finally, we need to fix the time limit for each analysis. We want to find out
whether switches between analyses are important to the CoVeriTest approach.
Therefore, we chose four limits (10 s, 50 s, 100 s, 250 s) that are applied to both
analyses and trigger switches often, sometimes, or rarely. Additionally, we want
to study whether it is advantageous if the time CoVeriTest spends in a round
is not equally spread among the analyses. Thus, we come up with two additional
time limit pairs: (20 s, 80 s) and (80 s, 20 s).

We combine all nine reuse types with the six time limit pairs, which results
in 54 CoVeriTest configurations. All 54 configurations aim at generating tests
to cover the assume edges of a program.

Tools. For CoVeriTest, we used the implementation in CPAchecker

version 29 347. Moreover, we compare CoVeriTest against the two best tools
VeriFuzz [26] and Klee [23] from Test-Comp’19 (in the versions submitted to
Test-Comp’197). The tool VeriFuzz is based on the evolutionary fuzzer AFL
and uses verification techniques to compute initial input values and parameters
for AFL. Klee applies symbolic execution. To compare CoVeriTest against
Klee and VeriFuzz, we use the validator TBF Test-Suite Validator v1.28 to
measure branch coverage. TBF Test-Suite Validator is based on gcov9.

Programs. CoVeriTest, Klee, and VeriFuzz produce tests for C programs.
All three tools participated in TestComp’19. Thus, for comparison of the three
tools, we consider all 1 720 tasks of the TestComp’19 benchmark set10 that
support the branch-coverage property. Since we do not need to execute tests
for the comparison of the different CoVeriTest configurations, we evaluated
them on a larger benchmark set, which contains all 6 703 C programs from the
well-established SV-benchmark set11 in the version tagged svcomp18.

Computing Resources. We run our experiments on machines with 33GB
of memory and an Intel Xeon E3-1230 v5 CPU with 8 processing units and a
frequency of 3.4GHz. The underlying operating system is Ubuntu 18.04 with
Linux kernel 4.15. As in TestComp’19, for test generation we grant each run a
maximum of 8 processing units, 15min of CPU time, and 15GB of memory, and
for test-suite execution (required to compare against Klee and VeriFuzz), the
TBF Test-Suite Validator is granted 2 processing units, 3 h of CPU time, and
7GB of memory per run. We use BenchExec [20] to enforce the limits of a run.

Availability. Our experimental data are available online12 [13].

7 https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
8 https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/

tbf-testsuite-validator.zip
9 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

10 https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
11 https://github.com/sosy-lab/sv-benchmarks
12 https://www.sosy-lab.org/research/coop-testgen/

https://gitlab.com/sosy-lab/test-comp/archives-2019/tree/testcomp19/2019
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gitlab.com/sosy-lab/test-comp/archives-2019/blob/testcomp19/2019/tbf-testsuite-validator.zip
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://github.com/sosy-lab/sv-benchmarks/tree/testcomp19
https://github.com/sosy-lab/sv-benchmarks
https://www.sosy-lab.org/research/coop-testgen/
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Fig. 3. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations with different time
limits. All configurations let analyses discard their own knowledge gained in previous
executions.

4.2 Experiments

Claim 1 (Reduce switching when discarding own results). Four types of
reuse (namely, plain, condv, condp, and condv,p) let the analyses discard their own
knowledge from their previous executions. For each of these types, we compare
the coverage achieved by all six CoVeriTest configurations that use this type13.
More concrete, for all six CoVeriTest configurations applying the same reuse
type, we first compute for each program the maximum over the number of covered
goals achieved by each of these six configurations for that program. Then, for
each of the six CoVeriTest configurations that use that reuse type, we divide
the number of covered goals achieved for a program by the respective maximum
computed. We call this measure relative coverage because the value is relative
to the maximum and not the total number of goals. Figure 3 shows box plots
per reuse type. The box plots show the distribution of the relative coverage. The
closer the bottom border of a box is to value one, the higher coverage is achieved.
For all four reuse types, the fourth box plot has the bottom border closest to
value one. Since the fourth box plot is a configuration that grants each analysis
250 s per round (highest limit considered, only three switches), the claim holds.
Claim 2 (Favor powerful analysis when reusing own results). Five types
of reuse (namely, reuse-prec, reuse-arg, condv+r, condp+r, and condv,p+r) let
analyses reuse knowledge from their own, previous execution. Similar to the
previous claim, we compute for each of these types the relative coverage of
all six configurations using this particular type of reuse. For each reuse type,

13 Note that those six configurations only differ in the analyses’ time limits.
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Fig. 4. Comparing relative coverage (number of covered goals divided by maximal
number of covered goals) achieved by CoVeriTest configurations when using different
time limits and a fixed reuse type. All considered configurations let analyses reuse
knowledge from their own, previous execution.

Fig. 4 shows box plots of the distributions of the relative coverage. As before, a
bottom border closer to value one reflects higher coverage. In all five cases, the last
box plot has the bottom border closest to value one. The last box plots represent
CoVeriTest configurations that grant the value analysis 20 s and the predicate
analysis 80 s in each round. Since the predicate analysis, which gets more time per
round, is more powerful than the value analysis, our claim is valid.14
Claim 3 (Better reuse own results). So far, we know how to configure
time limits. Now, we want to find out how to reuse information from previous
analysis runs. For each reuse type, we select from the six available configurations
the configuration that performed best. Again, we use the relative coverage to
compare the resulting nine configurations. Figure 5 shows box plots of the
distributions of the relative coverage. The first four box plots show configurations
in which analyses discard their own results, while the last five box plots refer
to configurations in which analyses reuse knowledge from their own, previous
executions. Since the last five boxes are smaller than the first four and their
bottom borders are closer to one, the last five configurations achieve higher
coverage. Hence, our claim holds. Moreover, from Fig. 5 we conclude that it is
best to reuse the ARG (although condv+r and condp+r are close by).
Claim 4 (Interleave multiple analyses rather than use one of them).
To evaluate whether CoVeriTest benefits from interleaving, we compare
CoVeriTest against the analyses used by it. CoVeriTest interleaves value and
predicate analysis. Figure 6(a) and 6(b) show scatter plots that compare for each
program the coverage, i.e., number of covered goals divided by number of total
goals, achieved by the best CoVeriTest configuration (x-axis) with the coverage
achieved when only using either value or predicate analysis for test generation.
Note that we excluded those programs from the scatter plots, for which we miss

14 This insight is independently partially backed by a sequential combination of explicit-
value analysis and predicate analysis that performed well in SV-COMP 2013 [62].



400 D. Beyer and M.-C. Jakobs

0.5

0.6

0.7

0.8

0.9

1

1.1

plain cond v cond p cond v,p reuse-prec reuse-arg cond v+r cond p+r cond v,p+r

Re
la

ve
 c

ov
er

ag
e

Best CoVeriTest configura on per reuse type

Fig. 5. Comparing relative coverage achieved by CoVeriTest configurations applying
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vs. value and predicate
analysis in parallel

Fig. 6. Compares the coverage achieved by CoVeriTest (best configuration) with the
coverage achieved when running CoVeriTest’s analyses alone or in parallel

the number of covered goals for at least one test generator, e.g., due to timeout of
the analysis. Figure 6(a) compares CoVeriTest and value analysis; we see that
almost all points are in the lower right half. Thus, CoVeriTest typically achieves
higher coverage than value analysis alone. Figure 6(b), comparing CoVeriTest

with predicate analysis, is more diverse. About 54% of the points are on the
diagonal, i.e., CoVeriTest and predicate analysis cover the same number of
goals. The upper left half contains 19% of the points, i.e., predicate analysis
alone achieves higher coverage. These points for example reflect float programs
and ECA programs without arithmetic computations. In contrast, CoVeriTest

achieves higher coverage in 27% of the programs. CoVeriTest is beneficial for
programs that only need few variable values to trigger the branches, like ssh
programs or programs from the product-lines subcategory. CoVeriTest also
profits from the value analysis when considering ECA programs with arithmetic
computations, since the variables have a fixed value in each loop iteration. All
in all, CoVeriTest performs slightly better than predicate analysis alone.
Claim 5 (Interleave rather than parallelize). Figure 6(c) shows a
scatter plot that compares for each program the coverage achieved by
CoVeriTest (x-axis) and a test generator that runs the value analysis and
the predicate analysis in parallel15. As before, we exclude programs for which

15 The test generator uses CPAchecker’s parallel algorithm and lets the two analyses
share information about covered test goals.
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Fig. 7. Compares the branch coverage achieved by CoVeriTest (best configuration)
with the branch coverage achieved by existing state-of-the-art test-generation tools

we could not get the number of covered goals for at least one of the analyses.
Looking at Fig. 6(c), we observe that many points (60%) are on the diagonal, i.e.,
the achieved coverage is identical. Moreover, CoVeriTest performs better for
30% (lower right half), while approximately 10% of the points are in the upper
left half. Since CoVeriTest achieves the same or better coverage results in about
90% of the cases, it should be preferred over parallelization. This is no surprise
since we showed that a test generator should favor the more powerful analysis
(which CoVeriTest does, but parallelization evenly distributes CPU time).
Claim 6 (COVERITEST complementary). Our goal is to compare
CoVeriTest and the two best tools of Test-Comp’19 [4]: VeriFuzz and Klee.
All three tools aim at constructing test suites with high branch coverage. Thus, we
use branch coverage as comparison criterion. We measure branch coverage with
TBF Test-Suite Validator. Figure 7 shows two scatter plots. Each plot compares
branch coverage achieved by CoVeriTest and by one of the other techniques.16
Points in the lower right half indicate that CoVeriTest achieved higher coverage.
Looking at the two scatter plots, we observe that there exist programs for
which CoVeriTest performs better and vice versa. Generally, we observed that
CoVeriTest has problems with array tasks and ECA tasks. We already know
from verification that CPAchecker sometimes lacks refinement support for array
tasks. Moreover, the problem with the ECA tasks is that CPAchecker splits
conditions with conjunctions or disjunctions—which ECA tasks contain a lot—
into multiple assume edges. Thus, the number of test goals is much larger than
the actual branches to be covered. However, CoVeriTest seems to benefit from
splitting for some of the float tasks. Additionally, CoVeriTest is often better on
tasks of the sequentialized subcategory. We think that CoVeriTest benefits from
the value analysis since the tasks of the sequentialized subcategory contain lots of
branch conditions checking for a specific value or interpreting variable values as
booleans. All in all, CoVeriTest is not always best, but is also not dominated.
Thus, CoVeriTest complements the existing approaches.

16 Note that the scatter plots only contain points that have a positive x and y value
because there exist different reasons (timeout, out of memory, tool failure, etc.) why
we might get no or a zero coverage value from the test validator. The plots contain
points for about 98% of the 1 720 programs.
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4.3 Threats to Validity

All our CoVeriTest configurations consider the same two analyses. Our results
might not apply if using CoVeriTest with a different set of analyses. In our
experiments, we used benchmark programs instead of real-world applications.
Although the benchmark set is diverse and well-established, our results may not
carry over into practice.

The validator TBF Test-Suite Validator might contain bugs that result
in wrong coverage numbers. However, the validator was used in Test-Comp’19
already, and is based on the well-established coverage-measurement tool gcov.

For the comparison of theCoVeriTest configurations aswell as the comparison
of CoVeriTest with the single analyses and the parallel approach, we relied
on the number of covered goals reported by CoVeriTest. Invalid counterexamples
could be used to cover test goals. The analyses used by CoVeriTest apply
CEGAR approaches and should detect spurious counterexamples. Moreover, these
analyses run in the SV-COMP configuration of CPAchecker and are tuned to
not report false results. Another problem is that whenever CPAchecker does not
output statistics (due to timeout, out of memory, etc.), we use the last number of
covered goals reported in the log. However, this might be an underapproximation
of the number of covered goals. All these problems do not occur in the comparison
of CoVeriTest with Klee and VeriFuzz, in which the coverage is measured by
the validator. Thus, this comparison still supports the value of CoVeriTest.

5 Related Work

CoVeriTest interleaves reachability analyses to construct tests for C programs.
To enable cooperation, CoVeriTest extracts information from ARGs constructed
by previous analysis runs.

A few tools use reachability analyses for test generation. Blast [5] considers
a target predicate p and generates a test for each program location that can be
reached with a state fulfilling the predicate p. For test generation, Blast uses
predicate abstraction. FShell [44–46] and CPA/Tiger [12] generate tests for
a coverage criterion specified in the FShell query language (FQL) [46]. Both
transform the FQL specification into a set of test-goal automata and check for
each automaton whether its final state can be reached. FShell uses CBMC to
answer those reachability queries and CPA/Tiger uses predicate abstraction.

Various combinations have been proposed for verification [2,10,11,14,25,27,
29–31,35,37,40,50,64] and test-suite generation [1,32,34,36,38,47,51,54,56,59,
60,63]. We focus on combinations that interleave approaches. SYNERGY [40]
and DASH [2] alternate test generation and proof construction to (dis)prove a
property. Similarly, SMASH [37] combines underapproximation with overapproxi-
mation. Interleaving is also used in test generation. Hybrid concolic testing [54]
interleaves random testing with symbolic execution. When random testing gets
stuck, symbolic execution is started from the current state. As soon as a new goal
is covered, symbolic execution hands over to random testing providing the values
used to cover the goal. Similarly, Driller [60] and Badger [56] combine fuzzing
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with concolic execution. However, they only exchange inputs. Xu et al. [51,63]
interleave different approaches to augment test suites. The approach closest to
CoVeriTest is abstraction-driven concolic testing [32]. Abstraction-driven con-
colic testing interleaves concolic execution and predicate analysis. Furthermore,
it uses conditions extracted from the ARGs generated by the predicate analysis to
direct the concolic execution towards feasible paths. Abstraction-driven concolic
testing can be seen as one particular configuration of CoVeriTest.

Also, ARG information has been reused in different contexts. Precision
reuse [19] uses the precision determined in a previous analysis run to reverify
a modified program. Similarly, extreme model checking [42] adapts an ARG
constructed in a previous analysis to fit to the modified program. CPA/Tiger [12]
transforms an ARG that was constructed for one test goal such that it fits to a
new test goal. Lazy abstraction refinement [43] adapts an ARG to continue ex-
ploration after abstraction refinement. Configurable program certification [48,49]
constructs a certificate from an ARG, which can be used to reverify a program.
Similarly, reachability tools like CPAchecker construct witnesses [6,7] from
ARGs. Conditional model checking [10,14] constructs a condition from an ARG
when a verifier gives up. The condition describes the remaining verification task
and is used by a subsequent verifier to restrict its exploration.

6 Conclusion

Testing is a standard technique for software quality assurance. But state-of-
the-art techniques still miss many bugs that involve sophisticated branching
conditions [17]. It turns out that techniques performing abstract reachability
analyses are well-suited for this task. They simply need to check the reach-
ability of every branch and generate a test for each positive check. However, in
practice, for every such technique there exist reachability queries on which the
technique is inefficient or fails [8]. We propose CoVeriTest to overcome these
practical limitations. CoVeriTest interleaves different reachability analyses for
test generation. We experimented with various configurations of CoVeriTest,
which vary in the time limits of the analyses and the type of information
exchanged between different analysis runs. CoVeriTest works best when each
analysis resumes its exploration, different analyses only share test goals, and more
powerful analyses get larger time budgets. Moreover, a comparison of CoVeriTest

with (a) the reachability analyses used by CoVeriTest and (b) state-of-the-art
test-generation tools witness the benefits of the new CoVeriTest approach.

CoVeriTest participated in Test-Comp 2019 [4] and achieved rank 3 (out of 9)
in both categories, bug finding and branch coverage.17

In future, we plan to integrate further analyses, e.g., bounded model
checking or symbolic execution, into CoVeriTest and to evaluate CoVeriTest

on real-world applications.

17 https://test-comp.sosy-lab.org/2019/results/

https://test-comp.sosy-lab.org/2019/results/
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Abstract. Test cases play an important role in testing and debugging
software. Smaller tests are easier to understand and use for these tasks.
Given a test that demonstrates a bug, test case reduction finds a smaller
variant of the test case that exhibits the same bug. Classically, one of the
challenges for test case reduction is that the process is slow, often taking
hours. For hierarchically structured inputs like source code, the state of
the art is Perses, a recent grammar aware and queue driven approach for
test case reduction. Perses traverses nodes in the abstract syntax tree
(AST) of a program (test case) based on a priority order and tries to
reduce them while preserving syntactic validity.

In this paper, we show that Perses’ reduction strategy suffers from pri-
ority inversion, where significant time may be spent trying to perform
reduction operations on lower priority portions of the AST. We show that
this adversely affects the reduction speed. We propose Pardis, a tech-
nique for priority aware test case reduction that avoids priority inversion.
We implemented Pardis and evaluated it on the same set of benchmarks
used in the Perses evaluation. Our results indicate that compared to
Perses, Pardis is able to reduce test cases 1.3x to 7.8x faster and with
46% to 80% fewer queries.

Keywords: Test case reduction · Automated debugging ·
Priority aware reduction

1 Introduction

Test case reduction is a technique that aids in testing and debugging software.
When an input for a program causes the program to exhibit a property of interest,
like a bug, finding a smaller input that also exhibits the property can help to
explain the behavior [1–3]. Given an input I ∈ I and an oracle ψ : I → B that
performs a test and returns true iff a property holds, test case reduction aims to
find a smaller input I ′ such that ψ(I ′) = true. Often, this problem is approached
through Delta Debugging (DD), a longstanding and effective algorithm for test
case reduction that essentially generalizes binary search [2]. However, for inputs
with significant structure, generic DD can perform poorly, requiring significant
time and not performing much reduction [3,4]. For compilers in particular, where

c© The Author(s) 2019
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the inputs must be valid programs, this has led to specialized techniques like
Hierarchical Delta Debugging [3,4], language specific reducers like C-Reduce [5],
and most recently to Syntax Guided Program Reduction as seen in Perses [6].

Syntax Guided Program Reduction (SGPR) is the present state of the art
for compiler targeted test case reduction. The intuition behind SGPR is that the
grammar defining the language of inputs eliminates many invalid sub-inputs from
the search space. For example, when an input must adhere to the C programming
language [7], removing the return type of a function declaration would not be
valid because the C grammar specifies that the return type is required. Such
syntactically invalid inputs are removed from the search space by SGPR.

Perses, a form of SGPR, takes as arguments not only a program p and oracle
ψ, but also the context free grammar G of valid inputs [6]. It transforms the
grammar so that removable parts of the input can be identified by the names
of the grammar rules used to parse them. This also normalizes the grammar so
that all removable components are expressed through quantifiers in an extended
context free grammar [8], i.e. optionality (?) and lists (*, +). This transformation
is illustrated in Fig. 1. Notice, for instance, that the recursive rule BAR denoting
a list is transformed (=⇒) into a Kleene-+ quantified list. Individual elements of
the list may be removed while preserving syntactic validity. Perses then parses
the input of interest into an abstract syntax tree (AST) and traverses the AST
while trying to (1) remove optional nodes and (2) perform DD to minimize
the children of nodes representing lists. The grammar transformations have the
benefit of making many syntactically correct removals easy and efficient to locate.

Fig. 1. Overview of Perses grammar transformations for SGPR.

Perses has significantly improved the speed of program reduction. However,
it still takes several hours to reduce some inputs. Consider the code in Listing 1.1
along with its AST in Fig. 3. This example is similar to a C program generated
by the compiler testing tool CSmith [9]. In this example, Perses first considers
the root node with ID 1 of the AST. Since the rule for this node ends in star,
it is a list node, and its children are the elements of the list. Thus, Perses applies
DD to the list of children for node 1 to minimize the number of children. When
such lists are long, significant time can be devoted to this task. We show in
Sect. 4 that this can lead to substantial stalls in reduction, where no progress
is made while a list is being processed. However, most of the children of this
node have low token weight, the number of tokens beneath a given node that
is denoted by w: in Fig. 3. Indeed, greater value would be found by focusing
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on just one of its children, node 5 , which contains the majority of the input
beneath it. By spending greater effort up front on portions of the AST of lesser
value, Perses suffers from a form of priority inversion. Priority inversion occurs
when a low priority task is scheduled instead of a high priority task. In this case,
Perses focuses on removing low token weight nodes instead of high token weight
nodes. Indeed, Perses may even fail to remove elements that would enable better
reduction success overall. In this case, the declarations of foo, S, and d are used
within the code beneath node 5 . Thus, those uses need to be eliminated before
any of the declarations can be removed successfully. In practice, we find that
priority inversion has a significant impact on reduction time in SGPR.

To address priority inversion, we have developed priority aware reduction
strategies for program reduction. By focusing the reduction effort on the nodes
of the AST that cover the greatest number of tokens, we prioritize reduction
of the most complex parts of the input first. This has multiple important ben-
efits: (1) Dependencies between program elements are more likely to be broken
by eliminating the complex uses first. (2) Stalls in reduction from unsuccessful
rounds of DD can be mitigated. (3) By removing large portions of an input ear-
lier on, each oracle query to ψ can take less time because smaller inputs tend to
be faster to check. We have designed and evaluated a tool, Pardis, that makes
use of these techniques and found that it leads to consistent and significant
performance improvements over Perses on the Perses benchmarks [6].

In summary, this paper makes the following contributions:

1. Priority awareness. We identify priority inversion as a key problem facing
SGPR techniques and develop priority aware reduction strategies as a poten-
tial solution. Priority aware reduction strategies focus the reduction effort on
the complex portions of an input first, enabling earlier and thus faster test
case reduction (Sects. 3, 4.1).

2. Optimization. We identify redundancies in the reduction process when using
Perses’ transformed grammars and develop a solution to prune them from the
candidate search space (Sect. 3.2).

3. Significant performance improvement. We implemented our strategies
in a tool, Pardis, and evaluated it on the same benchmarks used by Perses.
Experimental results show that Pardis both removes more of the input earlier
on and is faster overall. Compared to Perses, Pardis reduces test cases 1.3x
to 7.8x faster and with 46% to 80% fewer oracle queries (Sect. 4.1).

2 Background and Motivation

Consider again the example in Fig. 3 and suppose that the oracle (ψ) checks that
this program p should print "Hello World!" on line 24 (marked with ∗). Thus,
the smallest subprogram for which ψ returns true is the main function with the
desired print statement.

To search for this smaller input inside the original input, Perses traverses the
AST using a priority queue ordered by the token weight. In each trial, the node
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Fig. 2. One round of removal trials in
Perses, Pardis and Pardis Hybrid for
the AST in Fig. 3. Numbers are node IDs.

Fig. 3. AST of the program in Listing 1.1. w denotes the token weight of each node.

with the maximum weight is removed from the work queue and traversed. In
our example, the queue starts out containing only the root of the AST, node 1 .
Perses performs specific reduction operations on different types of nodes during
traversal. For instance, on optional nodes, Perses tries to remove the optional
child node. For list nodes, Perses minimizes the list of children using DD. Any
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remaining children of the traversed node are then added to the priority queue
in order to be traversed in the future.

Observe that in this example, Perses will first examine node 1 and remove
it from the queue. Because 1 is a list node, DD is applied to the children of 1 .
Different combinations of children are removed from 1 and the result is checked
by ψ to find a smaller input. First, all children are removed and ψ is checked.
After this fails, the first half of the children ( 2 and 3 ) are removed, but ψ
returns false again because this removes required declarations. Since removing
the second half of the children ( 4 and 5 ) also fails, the process continues
recursively. First DD tries shrinking the list by removing each individual child,
and next it tries only keeping each individual child. Ultimately none of the trials
succeed, so all children are added to the queue, and reduction continues with
node 5 . The intervening node 6 is not tested by SGPR because it is not
syntactically removable. The next node removed from the work queue is node
7 . This continues until the queue is empty. The precise trials exercised in this

process are illustrated in Fig. 2(a). Note that 16 steps elapse until a successful
trial occurs.

While the priorities used by Perses are controlled by the token weight, they
determine how the children of the traversed nodes are removed. Thus, any node
whose parent in the AST is a list is given the same priority as all other elements
in the list. This is because DD recursively tries to minimize the entire list until
no single element can be removed, regardless of the priorities of individual list
elements. As a result, Perses must employ DD on the entirety of the children of
1 even though it would be more beneficial to focus on just one child, node 5 .

Instead, Pardis more directly models the priorities. We note that in an
optional or list node, such as 1 , each child may be removed in a syntactically
valid fashion. We call such removable nodes nullable. When traversing a nullable
node in the AST, we can simply try directly to remove it, adding its children
if the removal fails. For instance, in the running example, we would visit 1
first. Because 1 cannot get removed, we would simply add its children to the
priority queue. Note that all children of 1 are nullable, but 5 has the highest
token weight. Thus, we next select 5 to traverse but removing 5 also fails.
From the given token weights, we next traverse 6 , which is syntactically not
removable, and then 7 , which we attempt to remove but is unsuccessful. Next
11 is visited and successfully removed. Removing 11 enables the removal of 4 ,
3 and 2 . Thus, they are removed in a single pass of the tree using Pardis,

whereas Perses would require multiple traversals of the AST to remove them.
This process continues until the desired output is achieved. As seen in Fig. 2(b),
just 4 steps elapse until the first successful trial removes node 11.

Note that in this example, Pardis is able to reduce to the desired output in
a single pass, while Perses requires multiple passes of the AST. In practice, all
program reduction techniques continue until a fixed point is reached, including
Pardis, however Pardis can achieve greater reduction in a single traversal of
the AST, accelerating convergence on the fixed point.

This priority aware approach can still have drawbacks, however. After focus-
ing on the highest priority nodes, there may be many lower priority nodes remain-
ing. For example, there are multiple remaining nodes of weight 7 in the tree after
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performing the reduction by Pardis as described above. We also show experi-
mentally that these lower priority nodes occur in practice in Sect. 5. The above
approach of Pardis considers each node one at a time, which can have poor per-
formance when reducing such long lists. In addition, we thus propose a hybrid
approach that still prioritizes nodes by maximum token weight but also uses a list
based reduction technique for spans of nodes that have the same token weight.
This hybrid approach is able to achieve the benefits of being priority aware while
still avoiding the cost of considering each node of the AST individually.

Section 3 presents the algorithms behind these techniques in detail.

3 Approach

Recall that the core of Pardis, similar to Perses, maintains a priority queue of
the nodes in an AST and traverses the nodes in order to process them. It also
makes use of Perses Normal Form, the result of the grammar transformations
that Perses introduced [6]. The key difference is that instead of using the token
weight of a parent node to determine when its nullable children may be removed,
Pardis identifies all nullable nodes (see Sect. 3.2) and uses their token weights
directly to prioritize the search. The core algorithm for this process is quite
straightforward and presented in Algorithm 1.

Line 1 of the algorithm constructs the priority queue (a max-heap), initial-
izing it with the root of the AST and using a parameterizable priority ρ. ρ is
simply a function that takes a node and returns its priority as a tuple. The
priority queue selects the element with a lexicographically maximal priority, so
ties on the first element of the priority tuple are broken by the second element
and so on. As seen in Fig. 4, for Pardis, ρPardis returns a pair of numbers, the
token weight of the node and the position of the node in a decreasing, right-to-
left, breadth first search. The specific breadth first order means that for an AST
with n nodes, bfsOrder(p.root)=n, the last child c of p.root has bfsOrder(c)=n-1,
and so on. Thus, if several nodes have the same token weight, the one highest in
the AST and furthest to the right is selected next. This ordering decreases the
chances of trying to remove a declaration before its uses [10].

Line 2 starts the core of the algorithm. While there are more nodes to explore
in the queue, the node with the next highest priority is considered. If it is nullable
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and can be successfully removed, we remove it from the AST, otherwise we add
its children to the queue so that they will also be traversed.

While the algorithm is surprisingly simple, we have found it to perform sig-
nificantly better than the state of the art in practice. As we explore in Sect. 4.2,
this results from prioritizing the search toward those portions of the input where
reduction can have the greatest impact. To more closely compare with Perses,
consider a version of Perses that upon visiting a list or optional node only tries
removing each child of that node once1. This “one node at a time” variant of
Perses can also be implemented using Algorithm 1 by carefully choosing the pri-
ority formula ρ. Because Perses considers removing the children of the nodes it
traverses, it actually prioritizes the work queue using the token weight of the par-
ent rather than the token weight of nullable nodes being considered for removal.
This leads to the alternative prioritizer ρperses presented in Fig. 4. Observe that
all children of a list node receive the same token weight, that of the entire list.
This can inflate the priority of some nodes in the work queue and leads to poor
performance.

Fig. 4. Prioritizers used for Pardis, node at a time Perses, and Pardis Hybrid.

Like other program reduction algorithms [3,5,6,11,12], Algorithm 1 is used
to compute a fixed point. That is, in practice the algorithm is repeated until
no further reductions can be made. As in prior work, we omit this from our
presentation for clarity. In theory, this means that the worst case complexity of
the technique is O(n2) where n is the number of nodes in the AST. This arises
when only one leaf of the AST is removed in each pass through the algorithm.
In practice, most nodes are not syntactically nullable, and we show in Sect. 4.1
that performance of Pardis exceeds the state of the art.

In addition, while we focus on removing nodes of the AST, Perses also tries
to replace non-list and -optional nodes with compatible nodes in their subtrees.
We do not focus on this aspect of the algorithm. In practice, we found it to

1 We compare against both versions of Perses in Sect. 4.1.
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significantly hurt performance (see Sect. 4.1) and we consider efficient replace-
ment strategies to be orthogonal to and outside the scope of this work.

3.1 Pardis Hybrid

The initial priority aware technique from Algorithm 1 can also encounter perfor-
mance bottlenecks, however. The original motivation for using DD on lists of
children in the AST was that its best case behavior is O(log(n)) where n is the
number of children in the list. This is because it tries removing multiple children
at the same time. Processing one node at a time, however, requires that every
list element is considered individually, guaranteeing O(n) time for one round of
Algorithm 1. Priority aware reduction that proceeds one node at a time faces a
different set of inefficiencies that can still cause stalls in the reduction process.

Thus, we desire a means of removing multiple elements from lists at the
same time while still preserving priority awareness. In order to achieve this, we
developed Pardis Hybrid, as presented in Algorithm 2. This approach uses a
modified prioritizer as presented in Fig. 4 that first orders by token weight, then
by parent traversal order, then by node traversal order. The effect this has is
that all children of the same parent with the same weight are grouped together.
As a result, we can remove them from the priority queue together and perform
list based reduction (like DD) to more efficiently remove groups of elements in
a list that have the same priority (for instance, nodes 9 and 10 get removed as
a group in one trial using Pardis Hybrid as shown in Fig. 2(c)). Because the
search is still primarily directed by the token weights of the removed nodes, the
technique still fully respects the priorities of the removed nodes.

Similar to the previous approach, line 1 of Algorithm 2 starts by creating the
priority queue. Note that it specifically uses the prioritizer ρPardis Hybrid, which
groups children having the same token weight in the priority queue. As long as
there are more nodes to consider, line 3 takes all nodes from the queue with the
same weight and parent. If the weight of a node is unique, this simply returns
a list of length 1. Line 4 filters out non-nullable nodes from the trial, and line
5 just applies list based reduction to any nullable nodes. Lines 6 and 7 then
remove the eliminated nodes from the tree and add the children of remaining
nodes to the work queue. Again, this algorithm actually runs to a fixed point.
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While the worst case behavior of DD is O(n2) [2], this can be improved
to O(n) by giving up hard guarantees on minimality [13]. Since this reduction
process is performed to a fixed point anyway, minimize on line 5 makes use of this
O(n) approach to list based reduction (OPDD) without losing 1-minimality. As
a result, the theoretical complexity of Pardis Hybrid is the same as Pardis.

3.2 Nullability Pruning

Finally, we observed that many oracle queries were simply unnecessary. Specif-
ically, recall that a node can be tagged nullable because it is an element of a
list or a child of an optional node, as previously defined by Perses grammar
transformations [6]. The complete algorithm for this tagging is in TagNullable of
Algorithm 3. However, for example, a list of one element could contain another
list of one element. In the AST, this appears as a chain of nodes, at least two of
which are nullable. Removing any one of these nodes removes the same tokens
from the AST. Thus, it is only necessary to select a single nullable node from
any chain of nodes, and the others can be disregarded.

We exploit this through an optimization called nullability pruning. We tra-
verse every chain of nodes in the AST, preserving the nullability of the highest
node in the chain and removing nullability from those below it. The complete
algorithm is presented in PruneNullable of Algorithm 3. In effect, it is just a
depth first search that removes redundant nullability from nodes along the way
instantaneously.

In practice, we find that this can statically (ahead of time) prune most of the
AST from the search space. Specifically, in the benchmarks we examine in Sect. 4,
we find that of 1,593,875 total nullable nodes, 17% are redundant optional nodes
and 44% are redundant list element nodes. We observe the impact of this pruning
on the actual reduction process in Sect. 4.1.
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4 Evaluation

We evaluate Pardis’s performance and examine the impact of priority inversion
on reduction by answering the following research questions:

• RQ1. How does Pardis perform compared to Perses in terms of reduction
time and speed, number of oracle queries, and size of the reduced test case?

• RQ2. Does priority inversion adversely affect the reduction efficiency? In
particular, does reduction require more work with a traversal order suffering
from priority inversion?

4.1 RQ1. Performance: Pardis vs. Perses

Experimental Set-Up. We evaluate Pardis on the set of C test cases used
in the evaluation of Perses, including the oracle scripts provided by authors of
Perses. While using these, we observed that they still allowed for some unde-
fined behavior [5,14], so we updated all oracles to reject test case variants with
undefined behavior. As a result, we were able to reproduce bugs for 14 out of
20 original test cases. The remaining benchmarks that could not reproduce their
original failures were elided for this study. Since the implementation of Perses’
components is not publicly available, we implemented the Perses grammar trans-
formations and reduction based on the algorithms available in the paper [6] using
the C++ bindings of ANTLR [15]. All of our implementations have been made
available2. Our experiments were conducted on an Intel Xeon E5-2630 CPU and
64 GB memory running Ubuntu.

Variants of Reduction Techniques. To better explain performance dif-
ferences, we benchmark several algorithms that each add one difference. All
approaches compute fixed points as previously described.

• Perses DD- The removal-based algorithm of Perses that applies DD on chil-
dren of list nodes [6].

• Perses OPDD- The same as Perses DD but using the O(n) reduction algo-
rithm of OPDD [13]. It is faster than Perses DD in practice.

• Perses N - The one node at a time Perses that does not apply DD on list
elements but removes them one by one using Perses’ parent oriented priorities.

• Pardis w/o Pruning- This uses the Pardis algorithm but does not apply
nullability pruning optimization proposed in Sect. 3.2.

• Pardis- Our proposed removal algorithm that also applies nullability
pruning.

• Pardis Hybrid- The hybrid version of Pardis with nullability pruning and
OPDD as its version of DD.

2 https://github.com/golnazgh/PARDIS.

https://github.com/golnazgh/PARDIS
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Table 1. Original and reduced test case size and number of oracle queries.

Reduction Performance. We compare these techniques in terms of the number
of oracle queries (Q), reduction quality or size of the final reduced test case (R),
reduction time (T), and reduction speed or the average number of tokens removed
per second (E). Results are presented in Tables 1 and 2. The best values of queries,
time, and speed are highlighted for each test case. As can be seen, in all cases,
either Pardis or Pardis Hybrid outperform all variants of Perses. Compared to
the full removal-based Perses algorithm (Perses DD), our proposed algorithms
reduce 1.3x to 7.8x faster and with 46% to 80% fewer queries. The results
across variants suggest that these benefits arise from priority awareness and
nullability pruning. Due to fixed point computation, all approaches produce test

Table 2. Reduction time and speed for different variants of reduction techniques.
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cases from which no one token can be removed while satisfying ψ (1-minimal) [2],
but they can produce different final reduced test cases [2]. On average, Pardis
yields reduced test cases with 574 tokens compared to Perses DD with 609 tokens.

In addition, we graphed the reduction progress of each test case for the
different variants. Fig. 5 shows the percentage of remaining tokens over time
during reduction. For sake of space, we only include graphs for six of the test
cases. Note that the y-axis is log scaled. Pardis and Pardis Hybrid show much
faster convergence to a reduced test case compared to Perses variants. Recall that
the only factor differentiating Perses N from Pardis w/o Pruning is the order
in which the queue of nodes is traversed. Unlike Perses N, Pardis w/o Pruning
does not suffer from priority inversion and guides the reduction process based
on token weights of the nodes to remove. As can be seen, this advantage leads
to faster convergence to a reduced test case. We examine the impact of priority
inversion on reduction speed more rigorously in Sect. 4.2.

Replacement. As mentioned in Sect. 3, Perses also considers a replacement
strategy for non-list or -optional nodes in addition to removal for other nodes. For
instance, in Fig. 3, Perses will attempt to replace node 6 with node 14 because
they both match the same grammar rule (compound stmt). This replacement
fails since required declarations will get removed and ψ will return false.

Including replacement significantly increases the work done by reduction. For
completeness, we implemented Perses DD with replacement as described in their
paper [6] and defined a four-hour timeout for the reduction process. In 11 out
of 14 cases, Perses DD with replacement could not finish the reduction process
before reaching the timeout. In the remaining three, it generated reduced test
cases with the same size or slightly smaller while performing a significantly larger
number of oracle queries (more than 3× over Perses DD without replacement).

4.2 RQ2. The Impact of Priority Inversion

As shown in Fig. 5, avoiding priority inversion leads to faster convergence. One
explanation for this is that priority awareness may decrease the amount of work
required to remove a token (as seen in the motivating example). We explore
this in a case study on gcc-64990 with 148,931 tokens. The number of removal
attempts for a token is number of times a single token is considered for removal.
Removing any ancestor of a token in the AST will remove that token, so if a
first attempt fails, a deeper ancestor may be attempted. We compute this for
every token of the test case to get a sense of the work required for each token.
A better traversal order of the AST should cause fewer overall token removal
attempts. To measure only the impact of different traversal orders, we compare
Pardis w/o Pruning with Perses N. As described in Sect. 4.1, they follow the
exact same reduction rules and differ only in their traversal orders.

Figure 6 depicts histograms of the distributions of token removal attempts for
Pardis w/o Pruning and Perses N. For clearer visualization, we show only the
distributions for the number of attempts less than or equal to 20. We can see how
Perses N distribution is inclined toward a larger number of removal attempts,
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Fig. 5. Converging to a reduced test case in six variants of reduction techniques.

an indicator of more work required in order to remove individual tokens. In
addition, we statically measure that the difference between the removal attempt
distributions is significant. We use a one sided Wilcoxon rank-sum test [16] to
determine whether the distribution of Perses N is indeed greater than that of
Pardis w/o Pruning. The p-value computed for our data was less than 2.2e−16

which strongly supports this observation.
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Fig. 6. Distributions of token removal attempts for Pardis w/o Pruning and
Perses N.

5 Discussion

Pardis Hybrid as a sweet spot in reducing test cases: As discussed earlier,
unlike Perses, Pardis Hybrid does not suffer from priority inversion because it
prioritizes the search primarily on the token weight of nodes being considered
for removal. Moreover, unlike Pardis, it does not strictly remove one node at a
time and allows the removal of nodes with the same weight and the same parent
as a group. Hence, it can be considered a sweet spot in reducing test cases. We
conduct two studies that can further explore this idea.

(1) Oracle Verification Time. The number of oracle queries is a common met-
ric used in similar studies to reason about reduction efficiency since it directly
impacts the total reduction time [2,3,6,13,17]. For instance, both Pardis and
Pardis Hybrid perform fewer oracle queries and take less time than Perses.
However, the number of oracle queries is not the only factor involved. The time
required to run each of these queries, or oracle verification time, also affects
the total running time. For instance, as presented in Sect. 4.1, Pardis has the
smallest number of oracle queries in 12 out of 14 test cases. However, in terms
of total reduction time and speed, Pardis Hybrid is the fastest in 8 out of 14
cases, even while performing more queries compared to Pardis in 6 of them.
Oracle verification time can depend on multiple elements such as the size and
complexity of the test case. Since Pardis Hybrid takes advantage of the possi-
bility to remove more than one node at a time, it may try variants of the test
case that are smaller and may be faster to verify compared to Pardis. To check
this hypothesis, we conducted a case study on gcc-64990 and recorded the run-
ning time of each oracle query during reduction. As shown in Tables 1 and 2,
Pardis reduces this test case in 932 s with 2,632 queries, and Pardis Hybrid
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has a total reduction time of 916 s (16 s shorter) while performing 3,148 oracle
queries (516 more queries). Both techniques yield the same final test case.

Figure 7 depicts the distribution of oracle verification times in Pardis and
Pardis Hybrid, showing that Pardis has more queries that take longer com-
pared to Pardis Hybrid. The shorter queries in Pardis Hybrid directly
decrease its overall reduction time making it reduce test cases with fewer queries
compared to Perses and shorter queries compared to Pardis.

Fig. 7. Distribution of oracle verification
time for Pardis and Pardis Hybrid.

Fig. 8. Distribution of token weights of
nodes visited during Pardis reduction.

(2) Distribution of Token Weights. The motivation behind proposing
Pardis Hybrid as discussed in Sect. 3.1 was that if lists in a test case shrink
after removing nodes with large unique token weights, applying DD on list ele-
ments with the same weight can be beneficial. In fact, the more of the remaining
nodes that share token weights, the more beneficial using DD becomes since it
provides the opportunity to remove those nodes in just one trial. This can avoid
the possibly time-consuming process of visiting nodes one by one. To understand
the distribution of token weights in practice, we perform Pardis (the one node
at a time removal) on gcc-64990 and record token weights of nodes visited dur-
ing the removal process. Figure 8 shows the distribution with 5 as the median of
token weights of nodes visited during the reduction. The small median motivates
the use of Pardis Hybrid in practice since it indicates that half of the nodes
have one of only five different token weights and can benefit from the grouped
removals.
Syntactic vs Semantic Validity: Perses and Pardis discard syntactically
invalid variants of the test case during reduction. However, there are also seman-
tically invalid queries such as removing the declaration of a variable before remov-
ing its use. SGPR techniques cannot entirely avoid these queries since they guide
the reduction process based on the syntax of the grammar. However, the priority
order of Pardis can mitigate this problem. By prioritizing by token weight, it
is more likely to visit and remove uses before spending effort on declarations.
One reason for this is that a higher token weight tends to mean that there are
more uses beneath that node. For instance, in Fig. 3, uses of variables a, b and
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c are descendants of node 11 with nodes 8 , 9 and 10 as their declarations.
Pardis removes the uses by first removing 11 while Perses tries to remove the
declarations first due to priority inversion. Hence, Pardis prunes nodes in one
pass of the AST that Perses may require a fixed point mode to remove.
Threats to Validity: We evaluated Pardis on the same set of C test cases
used in the evaluation of Perses. The implementation of Perses’ grammar trans-
formations and reduction is not publicly available, so we reimplemented Perses
as described in its paper. Our implementation has been made available to pro-
vide a consistent platform for future work. However, the exact implementations,
environmental settings and the scripts to check the property of interest can
all impact the final results. For instance, the final sizes of the reduced test
cases reported for the original Perses’ implementation [6] are smaller than those
using our reimplemented version of Perses. As discussed in Sect. 4.1, this may be
because Perses’ oracles allowed for undefined behavior, which can lead through
smaller but invalid reduced test cases. To mitigate this problem, we made the
oracles strictly prevent undefined behavior for both Pardis and Perses. Note
that Pardis significantly outperforms both Perses’ original implementation [6]
and our reimplementation in terms of number of oracle queries.

While the techniques presented in Pardis are general in ability, our eval-
uation focuses on C in order to compare with Perses. Further investigation is
required to claim that the performance benefits extend to other languages.

6 Related Work

The closest work to this paper is Perses [6]. Unlike Pardis, it suffers from
priority inversion that adversely affects the reduction speed. Other generic
test case reduction techniques are Delta Debugging (DD) [2], its O(n) vari-
ant [13], and Berkeley Delta [18]. These face challenges when reducing hier-
archical inputs. Several techniques focus on reducing hierarchically structured
test cases [3,4,6,11,12,19,20]. Among these, only Perses is priority aware, in
spite of its priority inversion. Indeed, most techniques process the input level by
level. Like Pardis, Perses and Simp [20] are notable exceptions in that they can
search across levels when deciding how to reduce. However, Simp is specific to
SQL Queries. GTR [12] is notable in that it is trained when to apply different
reduction operations. Finally, C-Reduce [5] is a tool for reducing C/C++ test
cases that requires extensive domain-specific knowledge.

7 Conclusions

We have shown that the prior state of the art for test case reduction suffers from
priority inversion and that this causes a significant increase in reduction time.
We proposed priority aware reduction techniques, Pardis and Pardis Hybrid,
that focus reduction effort where they can have the most impact. These tech-
niques can speed reduction by 1.3× to 7.8× over the prior state of the art.
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19. Kiss, Á., Hodován, R., Gyimóthy, T.: HDDr: a recursive variant of the hierarchical
delta debugging algorithm. In: Proceedings of the 9th ACM SIGSOFT Interna-
tional Workshop on Automating TEST Case Design, Selection, and Evaluation,
A-TEST 2018, pp. 16–22 (2018)

20. Bruno, N.: Minimizing database repros using language grammars. In: Proceedings
of 13th International Conference on Extending Database Technology, EDBT 2010,
Lausanne, Switzerland, 22–26 March 2010, pp. 382–393, 2010

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://delta.stage.tigris.org/
http://delta.stage.tigris.org/
http://creativecommons.org/licenses/by/4.0/


Automatically Identifying Sufficient
Object Builders from Module APIs

Pablo Ponzio1,3(B), Valeria S. Bengolea1, Mariano Politano1,3,
Nazareno Aguirre1,3, and Marcelo F. Frias2,3
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Abstract. Various approaches to software analysis (e.g. test input gen-
eration, software model checking) require engineers to (manually) iden-
tify a subset of a module’s methods in order to drive the analysis. Given a
module to be analyzed, engineers typically select a subset of its methods
to be considered as object builders to define a so-called driver, that will
be used to automatically build objects for analysis, e.g., combining them
non-deterministically, randomly, etc. This requires a careful inspection
of the module and its API, since both the relative exhaustiveness of the
analysis (leaving important methods out may systematically avoid gen-
erating different objects), as well as its efficiency (the different bounded
combinations of methods grows exponentially as the number of methods
increases), are affected by the selection.

We propose an approach for automatically selecting a set of builders
from a module’s API, based on an evolutionary algorithm that favors sets
of methods whose combinations lead to producing larger sets of objects.
The algorithm also takes into account other characteristics of these sets
of methods, trying to prioritize the selection of methods with less and
simpler parameters. As the implementation of this evolutionary mecha-
nism requires in principle handling and comparing large sets of objects,
and this grows very quickly both in terms of space and running times,
we employ an abstraction of sets of objects, called field extensions, that
involves using the field values of the objects in the set instead of the
actual objects, and enables us to effectively implement our mechanism.
An experimental assessment on a benchmark of stateful classes shows
that our approach can automatically identify sets of builders that are
sufficient (can be used to create any instance of the module) and mini-
mal (do not contain superfluous methods), in a reasonable time.

1 Introduction

As software is becoming more ubiquitous thanks to the rapid advances in tech-
nology, guaranteeing the functional correctness of software is more crucial than
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ever. Thus, a research area of growing importance is that of automated software
analysis, whose goal is to assist engineers, through the provision of tools for
automated analysis, in finding deficiencies both in software and software related
models. Automated test generation [1,11,13,17,24,25,28,29,32], software model
checking [9,34,35], and static analyses [6,16], among many others, are prominent
approaches in this line of research.

While these techniques involve in many cases fully automated analyses, their
application often requires some effort from the engineers. Software model check-
ers rely on the definition of drivers, programs that allow one to build inputs for
the code under analysis. Similarly, in parameterized-unit testing approaches [33]
a mechanism for building inputs is mandatory. Some symbolic execution based
tools require the so-called “object factories” to build tests cases involving inputs
with non-primitive types [32]. Automated test generation techniques based on
a module’s API can be used for building inputs for non-primitive types [11,24],
thus automating the above-mentioned input-generation issues. But they usually
present difficulties in generating a good set of diverse inputs for stateful, complex
structures. This is even more difficult for structures with rich APIs [26]. Many
authors have addressed this problem by defining different approaches for guiding
test generation, to create more diverse sets of inputs [7,26].

In this paper, we take a different approach to address the problem of gener-
ating better inputs for stateful modules. We observe that the selection of rou-
tines from a module API, to feed an input generation tool so as to build input
structures for program analysis (drivers for model checking, input structures
for parameterized unit tests, etc.), has a crucial impact on the analysis. We
call builders a set of routines B, drawn from a module’s M API, that can be
employed to create input structures in an automated program analysis for M
(e.g. a driver for model checking). Clearly, the higher the number of different
structures that can be created with B, the better the chances to find bugs in M .
As the number of instances of a software module is potentially infinite, and the
program analyses we target are also limited in the number of structures they can
employ, we limit ourselves to a bounded-exhaustive set of structures for M [4]
(e.g. all the instances of a linked list with up to k nodes). We denote this set by
BE(M,k). We say that a builders are sufficient if they can combined to build all
the instances in BE(M,k). Thus, sufficient builders are the best possible choice
for bug finding (in a bounded setting). Notice that B can contain superfluous
routines. A superfluous routine s is such that BE(M,k) can be built using rou-
tines in B − {s} (the simplest example being routines that never change the
state of their parameters). These routines provide no benefits in terms of bug
finding capabilities of the analysis. We call minimal a set of builders with no
superfluous routines. Minimality is important because providing an analysis tool
with superfluous routines often negatively impacts its efficiency (the number of
ways k routines can be combined usually increases exponentially with k).

Manually selecting sufficient and minimal builders is not an easy task: it
requires a thorough analysis of the available routines and a deep understanding
of the program semantics. This is especially hard for programs with rich APIs,
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where there are many routines and a lot of redundancy in the API (see Sect. 2).
We propose an automated approach for identifying such a sufficient and minimal
set of builders, based on an evolutionary algorithm that searches for a minimal
set of routines that is capable of generating the maximum number of different
(bounded) objects (i.e., BE(M,k)). Moreover, our evolutionary approach also
takes into account other characteristics of the builders, such as the number
and complexity of their parameters, so that “simpler” routines are favored in
the search. The goal is to choose builders that can be more easily and more
efficiently used by the subsequent program analyses.

The fitness value for a set of routines R is based on the number of bounded
structures that can be generated using combinations of these routines. To com-
pute the fitness we use a modified version of a random test case generation tool
(Randoop [24]) to generate as many bounded structures as possible from R,
allowing at most k of objects of each type in the structures (a parameter to our
algorithm). As sets of objects are very expensive to maintain and manipulate,
both in terms of space and running time, we employ an efficient abstraction of a
set of objects, called field extensions, defined as the set of field values appearing
in any of the objects in the set [25]. Thus, instead of counting the number of
different objects achieved by a candidate, the fitness function will compute the
field extensions as objects are generated, and return the number of field values in
the extensions. Intuitively, a higher number of field values in the field extensions
means that the builders can be used to construct a more diverse set of objects,
and therefore they should be preferred over other sets of builders.

We assess our approach experimentally on a benchmark of stateful Java
classes drawn from the literature. The results show that in our case studies our
approach identifies sets of routines that are sufficient and minimal, in a reason-
able time. We also assess the impact of our approach in an automated analysis,
namely, in the generation of test cases for parameterized tests. We compare how
the random test case generation tool Randoop behaves when fed with the full
module API, against providing the tool with only the builders identified by our
approach. The results indicate that in the latter case Randoop generated more
(and larger) objects, within a fixed time budget.

2 Motivating Example

In this section, we motivate our approach by means of a running example. The
Apache NodeCachingLinkedList (NCL for short) [36] consists of a main circular
doubly linked list, that holds the elements of the collection, and a secondary
singly linked list that acts as a cache for nodes that have been removed from
the main list. Nodes stored in the cache can be reused, and added again to
the main list when inserting elements in the main list. Thanks to its cache, in
applications where insertions and removals from the list are very frequent, NCL
can significantly reduce the overhead needed for memory allocation and garbage
collection of nodes. As an illustration, Fig. 1 shows the three NCL instances that
can be built with exactly two nodes.
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Fig. 1. Three NodeCachingLinkedList instances with exactly two nodes

Table 1. Apache’s NodeCachingLinkedList API

NCL has a very rich API, as shown in Table 1. However, for building any
feasible NCL object only a few methods from the API suffice. For example,
combinations of the methods in Fig. 1.1, when instantiated with appropriate
parameters, can be used to build any desired (finite) NCL object. Thus, the
methods therein are an example of a sufficient set of builders. Notice that, after
using the constructor, the main list of NCL can be populated just by using the
addFirst method. However, if we want to generate instances where the cache is
not empty, we can do so through the removeFirst method, as the sufficient set
of builders suggests. For most automated analyses, we would like to consider as
varying scenarios (inputs) as possible, hence the motivation to build sufficient
sets of builders. Furthermore, the builders in Fig. 1.1 are also minimal, since
the lack of any one of them would imply that some NCL’s objects cannot be
constructed anymore with the routines.
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(0 ) NodeCachingLinkedList ( )
(7 ) addFirs t ( Object )
(25) removeFirst ( )

Figure 1.1. A sufficient set of builders for NCL

(3 ) add ( Object )
(4 ) add ( int , Object )
(7 ) addFirs t ( Object )
(8 ) addLast ( Object )

Figure 1.2. Add variants that can be used to populate NCL’s main list

Notice that there can be many sets of sufficient and minimal builders. For
example, we get sufficient and minimal builders by replacing addFirst in Fig. 1.1
with any of the other add variants shown in Fig. 1.2, as for any way of filling up
NCL’s main list with addFirst there exists a different way to build the same
object using another add variant (perhaps invoked with different parameters and
changing the execution order).

We also observe that the simpler the parameters of a routine, the eas-
ier to use the routine is for generating inputs in the context of a program
analysis. For instance, among the alternative add routines for NCL (Fig. 1.2),
add(int,Object) receives more parameters than the other three methods, there-
fore it is harder to generate parameters for it when generating inputs. This
makes the other three alternatives preferred over it. Thus, our approach takes
into account the number of parameters and their complexities for selecting the
best possible builders.

Many methods in Table 1 are marked as observers (column Obs?), meaning
that they do not modify the objects they operate on, nor they are useful for
creating non-primitive objects. Hence, observers are always superfluous, and
should never be included in a set of minimal builders. Our approach tries to
recognize them beforehand, and discards them from the search to significantly
reduce the search space.

To conclude this section we remark that, when fed with the whole NCL’s API,
our approach automatically identified the sufficient and minimal set of builders
for NCL shown in Fig. 1.1.

3 Background

3.1 Field Extensions

The idea behind field extensions [25] is to define a representation for a set of
objects that is smaller in size and easier to manipulate algorithmically. This
representation implies some loss of information, but for certain applications (like
the one in this paper) they are precise enough to be useful in practice [1,12,25,
26,29].
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head = (L0, null), (L0, N0)
cache = (L0, null), (L0, N1), (L0, N0)
next = (N0, N1), (N1, N0), (N0, N0), (N1, null)
prev = (N0, N1), (N0, N0), (N1, null), (N0, null)

Figure 1.3. Field extensions for the set of instances in Fig. 1

Given a set S of objects, its field extensions representation consist of a set
of pairs for each field f, such that (obj,val) belongs to the field extensions of f if
obj.f = val (i.e., the value of f for obj equals to val), for some object obj in S.
As an example, consider the instances displayed in Fig. 1. Its corresponding field
extensions are shown in Fig. 1.3. We omit the values stored in the nodes for the
sake of clarity. Notice that structure (a) in Fig. 1 can be built using only add
methods, whereas for (b) and (c) we have to also employ some kind of remove
operation, to move nodes from the main list to the cache. Notice that values
(L0, N0) and (L0, N1) for the cache field only appear in the field extensions when
the structures have nodes in the cache, like (b) and (c). In addition, prev fields of
nodes in the cache are always null, but prev fields can never be null in the main
list (due to its circularity). This means that field extensions for structures that
have non-empty caches have the potential of having a larger number of values
than those for structures with no caches.

It is important to canonicalize structures before computing field exten-
sions [12]. Canonicalization involves assigning unique identifiers N0, N1, ... to
each of its nodes during a traversal of the structure (we employ a breadth first
traversal), starting at the root. Nodes visited first receive smaller identifiers than
those visited afterwards during the traversal. Fields must be visited in a fixed
order. Note that structures in Fig. 1 are all in canonical breadth-first form.

3.2 Random Test Case Generation

Random test generation consists of randomly producing inputs in order to test
software [8,21,24]. Random input generation is straightforward when consider-
ing basic (numeric) data types, but producing inputs of other more complex
types, in particular instances of stateful classes, is less obvious and calls for a
more complex mechanism, other than just using random number generators. One
such mechanism, that has been implemented by various tools for random test
generation for object-oriented code, is based on randomly combining method
sequences, that produce inputs of different types [8,21,24]. The process associ-
ated with the Randoop tool [24] that we use here, works essentially as follows.
For every datatype, a set of sequences that produce inputs of such datatype, is
maintained. To start with, for basic data types, a set of initial values is consid-
ered, and for class types, only null is considered at first (these can be considered
test sequences of size one). The procedure to build a new test sequence starts
by randomly selecting a method m, among all methods in the software under
test. For example, one could randomly choose one of the methods for the NCL’s
API (Table 1), say add(Object). To actually build the test sequence, values for
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each of the parameters of the method m, of the corresponding types, have to
be provided. These are obtained by randomly selecting test sequences, from the
sets of sequences of the corresponding types, and sequentially composing them,
with method m as a last statement. As an example, say that a sequence con-
taining only the constructor of NCL is randomly selected, from the available
sequences for the NCL type, and for the parameter of add, an Integer with value
0 is randomly chosen. Combining all these sequences together results in:

NodeCachingLinkedList l = NodeCachingLinkedList ( ) ;
l . add (new In t eg e r ( 0 ) ) ;

This new sequence can now be stored for later use a as parameter for other
methods that operate on NCL objects.

This process is repeated until either a time budget is exhausted, or the desired
number of tests (set by the user) is generated. Randoop uses guidance from the
execution of tests to avoid generating illegal tests. We refer the interested reader
to the article introducing Randoop [24], for further details.

An important issue to remark here is that the execution of each test sequence
generated by Randoop produces a number of objects for the given type (NCL in
the example). We exploit this characteristic of Randoop to compute the fitness
function for a set of methods, although instead of storing actual objects we will
maintain field extensions, as we explain in more detail in Sect. 4.

4 An Evolutionary Algorithm for Identifying Sufficient
Object Builders

As mentioned before, to find a sufficient set of builders from a program API we
design a genetic algorithm, that we describe below. Genetic algorithms [14] are
non-exhaustive guided search algorithms, based on a hill climbing strategy [30].
The search space is composed of a generally very large set of individuals (the
candidates), and the search objective is to find an individual with sought-for
features. As opposed to classic search algorithms, genetic algorithms maintain
a set of individuals, called the population, and search progresses by iteratively
selecting a number of individuals in the population, using these for evolution
(building new individuals out of these), and leaving out some individuals of the
whole set (the “old” ones and the “new” ones). Selection of individuals for popu-
lation evolution, as well as individuals’ removal, are guided by a fitness function,
the heuristic function used to guide the search. This function applies to individ-
uals, and its result is generalizable to the population too (e.g., the fitness of the
population may be taken as the fitness of its “fittest” individual). This function
captures the features sought for in the search, and thus can be used as a halting
criterion (e.g., algorithm stops after finding an individual with fitness above a
certain threshold). Finally, individuals are often called chromosomes, and repre-
sented as vectors of genes that capture their characteristics. This idea is strongly
related to how new individuals are constructed: by representing candidates as



434 P. Ponzio et al.

vectors of independent characteristics, one can build new candidates by combin-
ing part of the characteristics of an individual with part of the characteristics of
another, or by arbitrarily changing a characteristic of a given individual. These
two forms of evolution are called crossover and mutation, respectively, and are
the traditional mechanism to build new candidates out of existing ones in genetic
algorithms. For further details, we refer the reader to [22].

4.1 Chromosome Representation

In the context of our problem, candidate solutions represent sets of methods
from the API of the module being analyzed. We then employ vectors of boolean
values as chromosome representation. Let n be the number of methods in the
API; the chromosomes in our algorithm will be vectors of size n. For any vector,
the i-th position is true if and only if the chromosome contains the i-th method
of the API. For example, there are 34 methods in the NCL’s API (Table 1),
and we enumerated them from 0 to 33. The sufficient set of builders in Fig. 1.1
is characterized by the vector with positions 0, 7 and 25 set to true, and the
remaining positions set to false. In this case, the whole search space consists of
the 234 possible chromosomes.

4.2 Fitness Function

Given a chromosome representing a set of methods M , our fitness function com-
putes an approximation of the number of bounded objects that can be built
using combinations of methods in M . Chromosomes with higher fitness values
are estimated to build more objects than those that have smaller fitness values.

Ideally, we would like to explore all the feasible objects within a small
bound k, that can be built using the methods of the current chromosome, i.e.,
BE(M,k). In other words, we need a bounded exhaustive generator for the set
of methods. The bound k represents the maximum number of objects that can
be created for each class (in Fig. 1, the number of nodes in the NCL objects
are bounded by k = 2), and the maximum number of primitive values available
(for example, integers from 0 to k − 1). For this purpose, we developed a proto-
type modifying the Randoop tool, discussed briefly in Sect. 3.2. First, we altered
Randoop to work with a fixed set of primitive values (integers from 0 to k − 1).
(Normally, Randoop would save primitive values that are returned by the execu-
tion of tests, and reuse these values in future tests.) Second, we make Randoop
drop sequences of methods that create objects with more than k objects (of any
type), to stop it from building objects larger than needed. To achieve this, we
canonicalize the objects generated by the execution of each sequence, and we
discard the sequence if some object has an index equal or larger than k. Third,
we extend Randoop with “global” field extensions, and when the execution of a
sequence terminates all the field values of the objects generated by the sequence
are added to the field extensions. For example, if Randoop had generated the
objects in Fig. 1, then the global field extensions would have the values shown
in Fig. 1.3. Our goal is that, given a bound k, when our modified version of
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(0 ) NodeCachingLinkedList ( )
(7 ) addFirs t ( Object )
(8 ) addLast ( Object )
(25) removeFirst ( )

Figure 1.4. A set of sufficient but not minimal builders for NCL

(0 ) NodeCachingLinkedList ( )
(4 ) add ( int , Object )
(23) remove ( Object )

Figure 1.5. Sufficient and minimal builders for NCL with more complex parameters
than the ones in Fig. 1.1

Randoop terminates the global field extensions contain all the field values of the
bounded exhaustive set of structures with up to k nodes, BE(M,k). The result
of the fitness function for the chromosome is the number of field values in the
global extensions computed by the tool.

Our rationale for using bounded sets of objects is akin to the small scope
hypothesis for bug finding [2]: if one set of methods cannot be used to build
small objects that allow to differentiate it from another set of methods, then
it is unlikely that these two sets can be distinguished with larger objects. This
hypothesis held during our empirical evaluation across all our case studies.

We found that, besides being affected by chance, our tool rarely misses build-
ing objects that should add relevant values to the global extensions, when small
values for k are employed.

Choosing Better Sets of Builders. In this section, we propose two ways to
improve our evolutionary algorithm by tailoring the fitness function to obtain
better sets of builders. This is strongly motivated by the way builders are used
to build inputs in program analysis. On the one hand, if we have two sufficient
set of builders, the set with the smaller number of methods should always be
preferred. In this context, there is no reason to include superfluous methods in
builders. For example, the builders in Fig. 1.4 can be used to create the same
NCL objects as the builders in Fig. 1.1 of Sect. 2 (both sets are sufficient), but
they are not minimal since addLast is superfluous.

On the other hand, builders with more parameters, or more complex ones,
are more taxing on program analysis, as they require more effort to be ade-
quately instantiated. Thus, we define a simple criterion of parameter complexity
and adapt our fitness to favor builders with simpler parameters over the more
complex ones. For example, both sets of builders in Figs. 1.1 and 1.5 are sufficient
and minimal (with 3 routines each), but builders in Fig. 1.5 have more param-
eters that need to be instantiated. Comparing Figs. 1.1 and 1.5 we can observe
that addFirst has been replaced by add, which has an additional integer param-
eter, and that removeFirst was interchanged with remove, which possesses a
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non-primitive parameter of type Object. Following the criteria explained above,
we would like our algorithm to choose the set in Fig. 1.1 over that of Fig. 1.5.

Incorporating these ideas, the fitness function of our approach is defined by:

f (M) = #fieldExt (M)+
⎛
⎝w1 ∗

(
1 − #M

#MT

)
+ w2 ∗

(
1 − (#PP (M)+w3∗RP (M))

(#PP (MT )+w3∗RP (MT ))

)

w1 + w2

⎞
⎠

For a chromosome representing a set M of methods, drawn from the whole set
of available methods of the API, MT , the most important part of the fitness for
M , is the number of values in the field extensions, #fieldExt(M), that can be
generated using our custom Randoop tool as explained in the previous section.
The summand on the right implements the ideas presented in this section. It
returns a real value in the interval [0, 1] that is useful to break ties for sets
of methods that generate field extensions with the same number of values. In
the dividend, the first summand penalizes sets with larger numbers of methods,
by computing the quotient of the number of methods in M to the number of
methods in MT , and subtracting the result to 1. Constant w1 (w1 ≥ 1) allows
us to increase/decrease the weight of this summand with respect to the other
summand. The second summand in the dividend penalizes sets of methods with
more complex parameters. Similarly to w1, constant w2 (w2 ≥ 1) serves the pur-
pose of increasing/decreasing the weight of this factor in the sum. Notice that
we sum up the parameters differently depending on their types: each primitive
parameter adds 1 (PP (M) is the number of primitive parameters in the methods
of M), and each reference parameter adds a constant w3 (w3 ≥ 1, RP (M) is the
number of reference-typed parameters in the methods of M), which allows us to
increase the weight of reference parameters with respect to primitive ones. Intu-
itively, the whole right-hand summand computes the ratio between the number
of parameters of M (with added weight for reference parameters) to the number
of (weighted) parameters for MT . The result is then subtracted from 1. Finally,
we divide by w1 + w2 to obtain the desired number in the interval [0, 1].

In our experimental assessment we set w1 = 2, w2 = 1, w3 = 2. These values
were good enough for our approach to produce sufficient and minimal sets of
builders in all our case studies.

It is important to remark that the presented criteria for choosing better
builders is based on the kind of program analyses we target (generation of tests
cases for parameterized tests, software model checking). New criteria can be
defined with other goals in mind, and our approach can be adapted to support
them by modifying the fitness function as we did in this section.

4.3 Overall Structure of the Genetic Algorithm

The previously described elements are the constituting parts of the genetic algo-
rithm implementing our approach. A pseudocode of the genetic algorithm is
shown in Algorithm1. Notice that Algorithm1 follows the general structure of
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Algorithm 1. Genetic Algorithm implementing our approach
1: pop ← chromosomes with exactly one true gene
2: for i = 1...numEvo do
3: pop ← keep the popSize fittest chromosomes from pop
4: for j = 1...cRate ∗ popSize do
5: c1, c2 ← select two random chromosomes from pop
6: new ← single point crossover c1, c2
7: add new to pop
8: end for
9: for c ∈ pop do

10: new ← mutate each gene of c with probability mRate
11: if new �= c then
12: add new to pop
13: end if
14: end for
15: end for
16: result ← fittest chromosome of pop

a genetic algorithm. The initial population is generated by producing all the
feasible chromosomes with only one available method (vectors with false in all
positions except one, set to true) (line 3). Then, it starts to iteratively evolve
the population (lines 4–15). At the beginning of each evolution iteration, the
algorithm discards some individuals to control population size, by keeping the
popSize fittest individuals of the current population and discarding the rest (line
5). Then, the algorithm performs single-point crossover on randomly selected
individuals (lines 6–10). Crossover is applied a number of times that is propor-
tional to the population size popSize, determined by the product of popSize
and the crossover rate parameter cRate (0 ≤ cRate ≤ 1). Then, the algorithm
mutates individuals (lines 11–15) by changing the value of each of its genes
with probability mRate (0 ≤ mRate ≤ 1). Any newly created individual by the
crossover and mutation operations are added to the population.

The algorithm stops after numEvo evolutions, with numEvo a parameter of
the algorithm. Notice that, we don’t have a target value for our fitness, since an
untried set of methods might produce a larger number of field extensions than
the algorithm has currently seen. Again, there is a compromise to be made for
choosing a good value for numEvo: a larger number increases the precision of
the algorithm but increases its running time, whereas a smaller number makes
it run faster but it might not result in the best set of builders.

As usual, we found a number for the parameters of our algorithm that seems
to work well in practice. In our experimental evaluation, we set numEvo =
20, popSize = 30, cRate = 0.35,mRate = 0.08 (the last two are the default for
the JGap library).

Most of Algorithm 1 is a default evolutionary implementation of the JGap
Java library [37]. Notice that, if we take away the complexity of the fitness func-
tion, our evolutionary algorithm is rather standard, so it is not surprising that
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an existing implementation works well for our purposes. Of course, improve-
ments to the evolutionary algorithm, and fine tuning for its parameters (e.g.,
crossover/mutation rate) might yield faster execution times.

We also implemented a simple multi-threaded version of our approach, that
helps improving its performance. Basically, at each iteration we make t copies of
the current population, where t is the number of available threads, and evolve
each of the population replicas independently of the others. After all the threads
have finished, we keep the 100/t fittest individuals of the population evolved by
each thread, and use them to build the population for the next iteration of the
algorithm.

4.4 Reducing the Search Space by Observers Classification

We say a routine is an observer if it never modifies the parameters it takes,
and never generates a non-primitive value as a result of its execution. Column
Obs? in Table 1 (Sect. 2) indicates whether each NCL method is an observer
or not. Clearly, an observer cannot be used to modify nor build new objects,
and therefore can never belong to a minimal set of builders. Hence, if we can
classify them correctly beforehand, we can remove the observers from the search
to significantly reduce the search space, without losing precision. For example, in
the NCL API (Table 1) there are 13 observers out of 34 methods, so by removing
observers we prune more than one third of the search space.

To detect observers we run another customized Randoop version before our
evolutionary algorithm. This time, we check for each method whether it modifies
its inputs at each test sequence generated by Randoop involving the method,
by canonicalizing the objects before and after execution of the method, and
checking if the field values of the objects change after execution. If this is the
case, the method is marked as a builder (not an observer). For return values, if
in any test sequence generated by Randoop the method returns a non-primitive
value, then we mark it as a builder as well. We run this custom Randoop until
it generates a large number of scenarios for each method. Ten to twenty seconds
was enough for our case studies. At the end of the Randoop execution, methods
not marked as builders are considered observers and discarded before invoking
the evolutionary algorithm.

Other approaches exist for the detection of pure methods [15,31] (similar to
our observers). Note that our evolutionary algorithm is not dependent on the
method classification algorithm, so any of them could be useful for our purposes.

5 Experimental Results

In this section, we experimentally assess our approach. The evaluation is based on
a benchmark of data structure implementations, including: NCL from Apache Col-
lections [36]; BinaryTree, BinomialHeap, FibonacciHeap, RedBlackTree taken
from [35]; UnionFind, an implementation of disjoint sets taken from JGrapht
[38]. We also evaluate our technique on components of real software projects



Automatically Identifying Sufficient Object Builders from Module APIs 439

such as Lits from the implementation of Sat4j [3], taken from [20], which con-
sists of a variable store that monitors when a guess was last made about a value
of a variable, and whether listeners are watching the state of that variable; and
Scheduler, an implementation of a process scheduler taken from [10]. All the
experiments were run on 3.4 GHz quad-core Intel Core i7-6700 machines with
8 GB of RAM, running GNU/Linux.

The evaluation consists of two parts. First, we ran our approach (Algorithm 1)
on the whole module APIs of the aforementioned classes, to compute sets of
builders for each case study. The goal is to assess how good are the builders
identified, and the time it takes our approach to compute them. For each case
study we ran our approach 5 times. The results are shown in Table 2, includ-
ing the number of routines in the whole API (#API), a sample of identified
builders (some methods might be interchanged in different runs, e.g., addFirst
and addLast in NCL), and the average running time (in seconds) of the 5 runs.
We manually inspected the results, and found that the automatically identi-
fied sets of builders were in all cases sufficient (all the feasible objects for the
structure can be constructed using the builders) and minimal (do not contain
superfluous methods). The approach is reasonably efficient, taking about 30 min
in the worst case.

The second part of the evaluation regards how helpful are the identified
builders in the context of a program analysis, namely, the automated generation
of test cases. These objects might be used, for example, as inputs in parameter-
ized unit tests. For the case studies that provide mechanisms to measure the size
of objects and to compare objects by equality (i.e., the size and equals methods
of data structures), we generated tests with Randoop using all the methods avail-
able in the API (API), and then we generated tests with Randoop using only the
builder methods (BLD) identified by our approach in the previous experiment
(Table 2). We then compare the number of different objects (No. of Objs.), and
the size of the largest object (Max Obj. Size) created by the tests generated from
the API, against the tests generated using methods from BLD only. We set three
different test generation budgets: 60, 120 and 180 seconds (Budget). The results
are summarized in Table 3. In addition, we consider another approach, API+,
that involves the generation of tests using the API for a budget that encom-
passes the test generation budget (Budget) plus the time it takes our approach
to identify builders for the corresponding case study. The results show that in
the same test budget BLD generates in average 1280% more objects than API.
Furthermore, when builders identification time is added to the test generation
budget for API (API+), BLD can generate 568% more objects in average (w.r.t
API+). In all cases, BLD also generates significantly larger objects than API and
API+. In view of these results, it is clear that automated builders identification
pays off for the automated generation of structures for stateful classes.

The experiments can be reproduced by following the instructions in the paper
website [27]. Furthermore, in the site we experimentally show that the builders
identified by our approach can be employed to build efficient drivers for software
model checking. We don’t show these results here due to space constraints.
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Table 2. Builders computation
results

Sample Builders Time

NCL NCLinkedList(int)

addFirst(Object) 1744

#API: 34 removeFirst()

UFind UnionFind()

addElement(int) 215

#API: 9 union(int,int)

FHeap FibonacciHeap()

insert(int) 72

#API: 7 removeMin()

RBT TreeMap()

#API: 8 put(int) 73

BTree BinTree()

#API: 7 add(int) 73

BHeap BinomialHeap()

#API: 10 insert(int) 121

Lits Lits()

#API: 26 getFromPool(int)

forgets(int) 1229

setLevel(int,int)

setReason(int)

Sched. Schedule()

#API: 10 addProcess(int)

blockProcess() 377

quantumExpire()

Table 3. Assessment of using the identified
builders (BLD) vs the whole API (API) in test case
generation. API+ involves test case generation with
the whole API, with budget = (Budget + builders
computation time)

Budget Max Obj. Size No. of Objs.

API BLD API+ API BLD API+

NCL 60 8 16 11 1442 42021 13119

#API: 34 120 8 18 11 2423 69017 13247

#BLD: 3 180 9 18 11 3166 91647 13505

UFind 60 8 13 9 3388 34250 8351

#API: 9 120 9 13 9 5180 56418 8574

#BLD: 3 180 9 13 9 6695 74425 9387

FHeap 60 11 15 12 6989 32639 11499

#API: 7 120 12 17 13 11447 54264 17202

#BLD: 3 180 12 17 13 15344 72413 20775

RBT 60 8 15 8 1812 23034 3041

#API: 8 120 8 15 8 2678 35635 3698

#BLD: 2 180 8 15 8 3358 44807 3940

BTree 60 8 15 8 3600 24908 6019

#API: 7 120 8 15 8 5471 39239 7387

#BLD: 2 180 8 15 9 6975 50671 9247

BHeap 60 9 26 10 3874 65915 8076

#API: 10 120 10 29 10 5970 111402 9708

#BLD: 2 180 10 29 11 7638 147260 10606

6 Related Work

As mentioned throughout the paper, the problem of identifying sufficient builders
is recurrent in various program analyses, including but not limited to software
model checking and test generation. In works like [18,23], in the context of
software model checking, and [5,24,32,33], in the context of automated test
generation, and just to cite a few, the problem of identifying part of an API and
provide it for analysis is present. Typically the problem is dealt with manually.

The use of search-based techniques to solve challenging software engineering
problems is an increasingly popular strategy, which has been applied successfully
to a number of problems, including test input generation [11], program repair
[19], and many others. As far as we are aware of, this is a novel application of
evolutionary computation in software engineering. An approach that tackles a
related, but different, problem, is that associated with the SUSHI tool [5]. The
aim with SUSHI is to feed a genetic algorithm with a path condition, produced
by a symbolic execution engine, so that an input satisfying the provided path
condition can be reproduced using a module’s API. This approach assumes that
the API (or the subset of relevant methods) is provided, as opposed to our work,
that precisely tackles the provision of the restricted API.

Our technique requires a mechanism for identifying observers, which we
have solved within the work in the paper, resorting to random test generation,
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and instrumentation for state monitoring. Approaches to the identification of
observers, or more precisely pure methods, exist in the literature [15,31]. Regard-
ing these lines of work, notice that the focus of our evolutionary algorithm is not
the identification of observers, but the construction of minimal and sufficient set
of builders. Moreover, our approach is in fact independent of the mechanism used
to identify observers/pure methods, and thus could be combined with the works
just cited (i.e., replacing our random testing based approach by an alternative
one).

7 Conclusions

In this work, we presented an evolutionary algorithm for automatically detecting
sets of builders from a module’s API. We assessed our algorithm over several case
studies from the literature, and found that it is capable of precisely identifying
sets of builders that are sufficient and minimal, within reasonable running times.
To the best of our knowledge, this is the first work that addresses this problem,
which is typically dealt with manually.

We also showed preliminary results indicating that our approach can be
exploited by test case generation tools to yield larger and more diverse objects.
Other techniques, like software model checking, can benefit as well by using the
identified set of builders to automatically construct efficient drivers. More exper-
imentation needs to be done, but given the results in this paper our approach
looks very promising.

One of the biggest challenges of this work was the construction of a tool to
allow us to generate all the bounded structures, for a given maximum number k
of objects, from the methods of the program API. The proposed solution worked
well enough for our case studies, but avoiding randomness in the process would
be desirable. Using bounded exhaustive generation tools rather than random
generation would better fit our purposes [4], but unfortunately none of the tools
for bounded exhaustive test generation produce inputs from a module’s API.
We believe that a promising research direction, that we plan to further explore
in future work, is to adapt our presented approach for bounded exhaustive test
generation.

Some aspects of our genetic algorithm can be further improved. For instance,
a more powerful classification for argument types, in the prioritization of meth-
ods according to their complexities, can be defined. Moreover, one may also
incorporate other dimensions, such as code complexity, to favor simpler meth-
ods. We will explore this direction as future work. Also, our genetic algorithm
implementation is, for most parts, a default evolutionary implementation of the
JGap Java library [37]. Of course, improvements to the evolutionary algorithm,
and fine tuning for its parameters (e.g., crossover/mutation rate) might yield
faster execution times, so we plan to investigate this further in future work.
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35. Visser, W., Pǎsǎreanu, C.S., Pelánek, R.: Test input generation for Java containers
using state matching. In: Proceedings of the 2006 International Symposium on
Software Testing and Analysis, ISSTA 2006, pp. 37–48. ACM, New York (2006)

36. Website of the Apache Collections library. https://commons.apache.org/proper/
commons-collections/

37. Website of the Java Genetic Algorithms Package. http://jgap.sourceforge.net
38. Website of the JGrapht library. https://jgrapht.org/

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-540-79124-9_10
https://doi.org/10.1007/11537328_5
https://commons.apache.org/proper/commons-collections/
https://commons.apache.org/proper/commons-collections/
http://jgap.sourceforge.net
https://jgrapht.org/
http://creativecommons.org/licenses/by/4.0/


Author Index

Aguirre, Nazareno 427
Arora, Himanshu 228

Bengolea, Valeria S. 427
Beyer, Dirk 389
Bezirgiannis, Nikolaos 332
Boronat, Artur 134
Bravetti, Mario 351

Chechik, Marsha 3
Chen, Xiaohong 61
Cleophas, Loek 25

de Boer, Frank 332
Diab, Moustapha 264
Dimovski, Aleksandar S. 192
Diskin, Zinovy 264
Dubrulle, Paul 369
Dumas, Marlon 306

Emre, Mehmet 247
Eniser, Hasan Ferit 171

Frias, Marcelo F. 427
Fritsche, Lars 116

García-Bañuelos, Luciano 306
Gaston, Christophe 369
Gerasimou, Simos 171
Gharachorlu, Golnaz 409
Giallorenzo, Saverio 351
Giese, Holger 282

Hardekopf, Ben 247
Hennicker, Rolf 79
Huang, Li 210

Jakobs, Marie-Christine 389
Johnsen, Einar Broch 332
Jordan, Alexander 43

Kang, Eun-Young 210
Knapp, Alexander 79

Kokaly, Sahar 3
Komondoor, Raghavan 228
Kosiol, Jens 116
Kosmatov, Nikolai 369
Kourie, Derrick 25

Lambers, Leen 151
Lapitre, Arnault 369
Laud, Peeter 306
Lawford, Mark 264
Legay, Axel 192
Louise, Stéphane 369

Madeira, Alexandre 79
Mallet, Frédéric 61
Matulevičius, Raimundas 306
Mauro, Jacopo 351
Maximova, Maria 282
Milo, Curtis 264

Naujokat, Stefan 101
Nichols, Lawton 247

Ogata, Kazuhiro 299
Orejas, Fernando 151

Pankova, Alisa 306
Pantelic, Vera 264
Park, Joonyoung 43
Peng, Chao 315
Pettai, Martin 306
Politano, Mariano 427
Ponzio, Pablo 427
Pullonen, Pille 306
Pun, Ka I 332

Qian, Jiaqi 299

Rahimi, Mona 3
Rajan, Ajitha 315
Ramalingam, G. 228
Runge, Tobias 25
Ryu, Sukyoung 43



Sakizloglou, Lucas 282
Salay, Rick 3
Schaefer, Ina 25
Schneider, Sven 151, 282
Schürr, Andy 116
Selim, Gehan 264
Sen, Alper 171
Song, Fu 61
Steffen, Bernhard 101
Sumner, Nick 409

Taentzer, Gabriele 116
Talevi, Iacopo 351
Tapia Tarifa, S. Lizeth 332
Thüm, Thomas 25
Tom, Jake 306

Toots, Aivo 306
Tuuling, Reedik 306

Viger, Torin 3

Wang, Yi 299
Wasowski, Andrzej 192
Watson, Bruce W. 25
Weslati, Feisel 264
Wynn-Williams, Stephen 264

Yerokhin, Maksym 306

Zavattaro, Gianluigi 351
Zhang, Min 61, 299
Zweihoff, Philip 101

446 Author Index


	ETAPS Foreword
	Preface
	Organization
	Contents
	FASE Invited Talk
	Software Assurance in an Uncertain World
	1 Introduction
	2 Background on Assurance Case Modeling Notation
	3 Sources of Uncertainty in Software Development
	4 Formality in Assurance Cases
	5 Combining Evidence
	6 Assurance Cases for ML Systems
	7 Summary and Future Outlook
	References

	Software Verification I
	Tool Support for Correctness-by-Construction
	1 Introduction
	2 Foundations of Correctness-by-Construction
	3 Correctness-by-Construction by Example
	4 Tool Support in CorC
	4.1 Graphical Editor
	4.2 Textual Editor
	4.3 Verification of CorC Programs
	4.4 Implementation as Eclipse Plugin

	5 Evaluation
	6 Related Work
	7 Conclusion and Future Work
	References

	Automatic Modeling of Opaque Code for JavaScript Static Analysis
	1 Introduction
	2 Modeling via Sample-Run-Abstract
	3 Combinatorial Sampling Strategy
	3.1 Abstract Domains for Primitive Values
	3.2 Abstract Domains for Object Values

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Answers to Research Questions
	5.3 Limitations

	6 Related Work
	7 Conclusion
	References

	SMT-Based Bounded Schedulability Analysis of the Clock Constraint Specification Language
	1 Introduction
	2 The Clock Constraint Specification Language
	2.1 Logical Clock, History and Schedule
	2.2 Syntax and Semantics of CCSL

	3 Scheduling Problem of CCSL
	3.1 Schedulability
	3.2 Bounded Scheduling Problem

	4 Decision Procedure for the Scheduling Problem
	4.1 Transformation from CCSL into SMT
	4.2 Decision Procedure for the Bounded Scheduling Problem
	4.3 A Sound Algorithm for the Scheduling Problem

	5 Case Study and Performance Evaluation
	5.1 Schedulability of an Interlocking System
	5.2 Automatic Proof of CCSL Algebraic Properties
	5.3 Performance Evaluation

	6 Related Work
	7 Conclusion and Future Work
	References

	A Hybrid Dynamic Logic for Event/Data-Based Systems
	1 Introduction
	2 A Hybrid Dynamic Logic for Event/Data Systems
	2.1 Data States
	2.2 E"3223379 -Logic
	2.3 Bisimulation and Invariance

	3 Specifications of Event/Data Systems
	3.1 Axiomatic Specifications
	3.2 Operational Specifications
	3.3 Expressiveness of E"3223379 -Logic

	4 Constructor Implementations
	5 Conclusions
	References

	Model-Driven Development and Model Transformation
	Pyro: Generating Domain-Specific Collaborative Online Modeling Environments
	1 Introduction
	2 DSL Development with Cinco
	3 Architecture
	3.1 Backend
	3.2 Frontend

	4 Collaborative Editing
	4.1 Simultaneous Synchronization Mechanism
	4.2 Distributed Command Pattern

	5 Conclusion and Perspectives
	References

	Efficient Model Synchronization by Automatically Constructed Repair Processes
	1 Introduction
	2 Introductory Example
	3 Preliminaries
	4 Constructing Language-Preserving Repair Rules
	4.1 Operationalization of Generalized TGG Rules
	4.2 Language-Preserving Short-Cut Rules

	5 Implementation and Evaluation
	6 Related Work
	7 Conclusion
	References

	Offline Delta-Driven Model Transformation with Dependency Injection
	1 Introduction
	2 Model Transformation: A Running Example
	3 Delta-Driven Model Transformations
	3.1 Dependency Injection
	3.2 Representable Deltas
	3.3 Impact Analysis
	3.4 Change Propagation

	4 Performance Analysis
	5 Related Work
	6 Concluding Remarks
	References

	A Logic-Based Incremental Approach to Graph Repair
	1 Introduction
	2 Preliminaries on Graph Conditions
	3 Graph Updates and Repairs
	4 State-Based Repair
	5 Satisfaction Trees
	6 Delta-Based Repair
	7 Related Work
	8 Conclusion and Future Work
	References

	Software Verification II
	DeepFault: Fault Localization for Deep Neural Networks
	1 Introduction
	2 Background
	2.1 Deep Neural Networks
	2.2 Software Fault Localization

	3 DeepFault
	3.1 Neuron Spectrum Analysis
	3.2 Suspicious Neurons Identification
	3.3 Suspiciousness-Guided Input Synthesis 

	4 Implementation
	5 Evaluation
	5.1 Experimental Setup
	5.2 Research Questions 
	5.3 Results and Discussion
	5.4 Threats to Validity 

	6 Related Work
	7 Conclusion 
	References

	Variability Abstraction and Refinement for Game-Based Lifted Model Checking of Full CTL
	1 Introduction
	2 Background
	3 Abstraction of FTSs
	4 Game-Based Abstract Lifted Model Checking
	5 Incremental Refinement Framework
	6 Evaluation
	7 Related Work and Conclusion
	References

	Formal Verification of Safety & Security Related Timing Constraints for a Cooperative Automotive System
	1 Introduction
	2 Preliminary
	2.1 Probabilistic Extension of Clock Constraint Specification Language (PrCCSL)
	2.2 UPPAAL-SMC

	3 Running Example
	4 Modeling and Refinement of CAS in UPPAAL-SMC
	4.1 Modeling of RAISE Protocol in UPPAAL-SMC
	4.2 Modeling of Attacks in UPPAAL-SMC

	5 Representation of S/S Related Timing Constraints in UPPAAL-SMC
	5.1 Specifications of S/S Related Timing Constraints in PrCCSL
	5.2 Translation of PrCCSL into STA

	6 Experiment
	7 Related Work
	8 Conclusion
	References

	Checking Observational Purity of Procedures
	1 Introduction
	2 Language Syntax
	3 A Semantic Definition of Purity
	4 Checking Purity Using a Theorem Prover
	4.1 Verification Condition Generation
	4.2 Approach 1: Existential Approach
	4.3 Approach 2: Impurity Witness Approach

	5 Generating the Invariant
	6 Evaluation
	7 Related Work
	References

	Software Evolution and Requirements Engineering
	Structural and Nominal Cross-Language Clone Detection
	1 Introduction
	2 Background and Related Work
	2.1 What Exactly Is a Cross-Language Clone?
	2.2 Structural Program Similarity
	2.3 Nominal Program Similarity
	2.4 Hybrid Program Similarity
	2.5 CLCMiner

	3 Overview
	4 Structural Clone Detection
	4.1 Precedence Woes
	4.2 Abstracting Parse Tree Nonterminals
	4.3 Sequence Alignment for Clone Detection

	5 Hybrid Algorithm
	5.1 Our Nominal Algorithm
	5.2 Full Algorithm

	6 Evaluation
	6.1 Implementation and Environment
	6.2 Methodology
	6.3 Results

	7 Conclusion
	References

	SL2SF: Refactoring Simulink to Stateflow
	1 Introduction
	2 Background: Modelling Systems and Their Combinations
	2.1 Mealy Machines: Modelling Stateful Systems
	2.2 Tabular Expressions: Representing Conditional Behaviours
	2.3 Categorical Framework: Combining Systems

	3 Translation Strategy
	4 Block Diagrams to HCTs: Mealy Composition
	4.1 Mealy Machines and Their Combinations via Functions
	4.2 Functional Embedding and Wiring Morphisms
	4.3 Block Diagrams to Horizontal Condition Tables

	5 HCTs to STTs: Modes via Tables
	5.1 Defining Modes
	5.2 Converting to State Charts and Simplifying

	6 Prototype, Evaluation, and Future Work
	7 Related Work
	8 Conclusion
	References

	Metric Temporal Graph Logic over Typed Attributed Graphs
	1 Introduction
	2 Related Work
	3 Typed Attributed Graphs and Graph Conditions
	4 Metric Temporal Graph Logic
	5 Mapping of TGSs to Graphs with History
	6 Reduction of MTGL to GCs
	7 Tool Support
	8 Conclusion and Future Work
	References

	KUPC: A Formal Tool for Modeling and Verifying Dynamic Updating of C Programs
	1 Introduction
	2 KUPC Design
	3 KUPC Usage
	4 Concluding Remarks and Ongoing Work
	References

	Business Process Privacy Analysis in PLEAK
	1 Introduction
	2 PE-BPMN Editor and Simple Disclosure Analysis
	3 Qualitative Leaks-When Analysis
	4 Sensitivity Analysis and Differential Privacy
	5 Attacker's Guessing Advantage
	References

	Specification, Design, and Implementation of Particular Classes of Systems
	CLTestCheck: Measuring Test Effectiveness for GPU Kernels
	1 Introduction
	2 Background
	3 Related Work
	4 Our Approach
	4.1 Kernel Code Coverage
	4.2 Fault Seeding
	4.3 Schedule Amplification
	4.4 Implementation

	5 Experiment
	6 Results and Analysis
	6.1 Coverage Achieved
	6.2 Fault Finding
	6.3 Schedule Amplification: Deadlocks and Data Races

	7 Conclusion
	References

	Implementing SOS with Active Objects: A Case Study of a Multicore Memory System
	1 Introduction
	2 An Abstract Model of a Multicore Memory System
	2.1 Formalization of the Multicore Memory System as an SOS Model
	2.2 Local and Global SOS Rules

	3 The ABS Model of the Multicore Memory System
	3.1 The ABS Language
	3.2 The Structural View
	3.3 The Behavioral View

	4 Correctness
	5 Parallelism and Fairness of the ABS Model
	6 Related Work
	7 Conclusion
	References

	Optimal and Automated Deployment for Microservices
	1 Introduction
	2 The Microservice Optimal Deployment Problem
	3 Application of the Technique to the Case-Study
	4 Related Work and Conclusion
	References

	A Data Flow Model with Frequency Arithmetic
	1 Introduction
	2 Motivation and Running Example
	3 Formalization of the Polygraph Model
	4 Tool Support for Liveness Checking
	5 Discussion and Related Work
	6 Conclusion
	References

	Software Testing
	CoVeriTest: Cooperative Verifier-Based Testing
	1 Introduction
	2 Testing with Verifiers
	3 CoVeriTest
	4 Evaluation
	4.1 Setup
	4.2 Experiments
	4.3 Threats to Validity

	5 Related Work
	6 Conclusion
	References

	Pardis: Priority Aware Test Case Reduction
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Pardis Hybrid
	3.2 Nullability Pruning

	4 Evaluation
	4.1 RQ1. Performance: Pardis vs. Perses
	4.2 RQ2. The Impact of Priority Inversion

	5 Discussion
	6 Related Work
	7 Conclusions
	References

	Automatically Identifying Sufficient Object Builders from Module APIs
	1 Introduction
	2 Motivating Example
	3 Background
	3.1 Field Extensions
	3.2 Random Test Case Generation

	4 An Evolutionary Algorithm for Identifying Sufficient Object Builders
	4.1 Chromosome Representation
	4.2 Fitness Function
	4.3 Overall Structure of the Genetic Algorithm
	4.4 Reducing the Search Space by Observers Classification

	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Author Index

