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Preface

Computer science was created by humankind to solve problems. In 100 BC,
early hand-powered computing devices such as the Antikythera mechanism were
designed to calculate astronomical positions. In the 1800s, Charles Babbage
proposed the Analytical Engine to solve general-purpose computational tasks. In
the 1900s, the Bomde by Turing and Welchman was critical to code-breaking.
Advances in computer science have been driven by the need for humanity to solve
the most pressing challenges of the day. Today, computer science tackles significant
societal challenges like organising the world’s information, personalised medicine,
the search of the Higgs boson, climate change, and weather forecasts.

This book aims to educate the reader on how recent advances in technologies,
methods, and processes for big data and data-driven Artificial Intelligence (AI) can
deliver value to address problems in real-world applications. The book explores
cutting-edge solutions and best practices for big data and data-driven AI and
applications for the data-driven economy. It provides the reader with a basis for
understanding how technical issues can be overcome to offer real-world solutions to
major industrial areas, including health, energy, transport, finance, manufacturing,
and public administration.

The book’s contributions emanate from the Big Data Value Public-Private
Partnership (BDV PPP) and the Big Data Value Association, which have acted as
the European data community’s nucleus to bring together businesses with leading
researchers to harness the value of data to benefit society, business, science, and
industry. The technological basis established in the BDV PPP will seamlessly enable
the European Partnership on AI, Data, and Robotics.

The book is of interest to two primary audiences: first, undergraduate and
postgraduate students and researchers in various fields, including big data, data
science, data engineering, machine learning, and AI. Second, practitioners and
industry experts engaged in data-driven systems and software design and deploy-
ment projects who are interested in employing these advanced methods to address
real-world problems.

This book is arranged in two parts. The first part contains “horizontal” contribu-
tions of technologies and methods which can be applied in any sector. The second
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part includes contributions of innovative processes and applications within specific
“vertical” sectors. Chapter 1 provides an overview of the book by positioning the
chapters in terms of their contributions to technology frameworks, including the Big
Data Value Reference Model and the European AI, Data and Robotics Framework,
which are key elements of the BDV PPP and the Partnership on AI, Data and
Robotics.

Part I: Technologies and Methods details key technical contributions which
enable data value chains. Chapter 2 investigates ways to support semantic data
enrichment at scale. The trade-offs and challenges of serverless data analytics are
examined in Chap. 3. Benchmarking of big data and AI pipelines is the objective of
Chap. 4, while Chap. 5 presents an elastic software architecture for extreme-scale
big data analytics. Chapter 6 details privacy-preserving technologies for trusted
data spaces. Leveraging data-driven infrastructure management to facilitate AIOps
is the focus of Chap. 7, and unified big-data workflows over High-Performance-
Computing (HPC) and the cloud are tackled in Chap. 8.

Part II: Processes and Applications details experience reports and lessons from
using big data and data-driven approaches in processes and applications. The
chapters are co-authored with industry experts and cover domains including health,
law, finance, retail, manufacturing, mobility, and smart cities. Chapter 9 presents a
toolkit for deep learning and computer vision over HPC and cloud architectures.
Applying AI to manage acute and chronic clinical conditions is the focus of
Chap. 10, while Chap. 11 explores 3D human big data exchange between the
health and garment sectors. In Chap. 12, we see how legal knowledge graphs can
be used for multilingual compliance services in labour law, contract management,
and geothermal energy. Chapter 13 focuses on big data analytics in the banking
sector with guidelines and lessons learned from CaixaBank. Chapter 14 explores
data-driven AI and predictive analytics for the maintenance of industrial machinery
using digital twins. Chapter 15 investigates big data analytics in the manufacturing
sector, and Chap. 16 looks at the next generation of data-driven factory operations
and optimisation. Large-scale trials of data-driven service engineering are covered
in Chap. 17. Chapter 18 describes approaches for model-based engineering and
semantic interoperability for digital twins across the product life cycle. In Chap. 19,
a data science pipeline for big linked earth observation data is presented, and
Chap. 20 looks ahead towards cognitive ports of the future. Distributed big data
analytics in a smart city is the focus of Chaps. 21, and 22 looks at system
architectures and applications of big data in the maritime domain. The book closes
with Chap. 23 exploring knowledge modelling and incident analysis for cargo.

Galway, Ireland Edward Curry
January 2022
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Abstract The continuous and significant growth of data, together with improved
access to data and the availability of powerful computing infrastructure, has led
to intensified activities around Big Data Value (BDV) and data-driven Artificial
Intelligence (AI). Powerful data techniques and tools allow collecting, storing,
analysing, processing and visualising vast amounts of data, enabling data-driven
disruptive innovation within our work, business, life, industry and society.

The adoption of big data technology within industrial sectors facilitates organisa-
tions to gain a competitive advantage. Driving adoption is a two-sided coin. On one
side, organisations need to master the technology necessary to extract value from
big data. On the other side, they need to use the insights extracted to drive their
digital transformation with new applications and processes that deliver real value.
This book has been structured to help you understand both sides of this coin and
bring together technologies and applications for Big Data Value.

This chapter defines the notion of big data value, introduces the Big Data Value
Public-Private Partnership (PPP) and gives some background on the Big Data Value
Association (BDVA)—the private side of the PPP. It then moves on to structure the
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contributions of the book in terms of three key lenses: the BDV Reference Model,
the Big Data and AI Pipeline, and the AI, Data and Robotics Framework.

Keywords Data ecosystem · Big data value · Data-driven innovation · Big Data

1 Introduction

The continuous and significant growth of data, together with improved access to
data and the availability of powerful computing infrastructure, has led to intensified
activities around Big Data Value (BDV) and data-driven Artificial Intelligence (AI).
Powerful data techniques and tools allow collecting, storing, analysing, processing
and visualising vast amounts of data, enabling data-driven disruptive innovation
within our work, business, life, industry and society. The rapidly increasing volumes
of diverse data from distributed sources create significant technical challenges for
extracting valuable knowledge. Many fundamental, technological and deployment
challenges exist in the development and application of big data and data-driven AI
to real-world problems. For example, what are the technical foundations of data
management for data-driven AI? What are the key characteristics of efficient and
effective data processing architectures for real-time data? How do we deal with
trust and quality issues in data analysis and data-driven decision-making? What
are the appropriate frameworks for data protection? What is the role of DevOps
in delivering scalable solutions? How can big data and data-driven AI be used to
power digital transformation in various industries?

For many businesses and governments in different parts of the world, the
ability to effectively manage information and extract knowledge is now a critical
competitive advantage. Many organisations are building their core business to
collect and analyse information, to extract business knowledge and insight [3]. The
impacts of big data value go beyond the commercial world to significant societal
impact, from improving healthcare systems, the energy-efficient operation of cities
and transportation infrastructure to increasing the transparency and efficiency of
public administration.

The adoption of big data technology within industrial sectors facilitates organ-
isations to gain competitive advantage. Driving adoption is a two-sided coin. On
one side, organisations need to master the technology needed to extract value from
big data. On the other side, they need to use the insights extracted to drive their
digital transformation with new applications and processes that deliver real value.
This book has been structured to help you understand both sides of this coin and
bring together technologies and applications for Big Data Value.

The chapter is structured as follows: Section 2 defines the notion of Big Data
Value. Section 3 explains the Big Data Value Public-Private Partnership (PPP) and
Sect. 4 summarises the Big Data Value Association (BDVA). Sections 5, 6 and 7
structure the contributions of the book in terms of three key lenses: BDV Reference
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Model (Sect. 5), Big Data and AI Pipeline (Sect. 6) and the AI, Data and Robotics
Framework (Sect. 7). Finally, Sect. 8 provides a summary.

2 What Is Big Data Value?

The term “Big Data” has been used by different major players to label data with
different attributes [6, 8]. Several definitions of big data have been proposed in the
literature; see Table 1.

Big data brings together a set of data management challenges for working with
data which exhibits characteristics related to the 3 Vs:

• Volume (amount of data): dealing with large-scale data within data processing
(e.g., Global Supply Chains, Global Financial Analysis, Large Hadron Collider).

• Velocity (speed of data): dealing with streams of high-frequency incoming real-
time data (e.g., Sensors, Pervasive Environments, Electronic Trading, Internet of
Things).

• Variety (range of data types/sources): dealing with data using differing syntactic
formats (e.g., Spreadsheets, XML, DBMS), schemas, and meanings (e.g., Enter-
prise Data Integration).

The Vs of big data challenge the fundamentals of existing technical approaches
and require new data processing forms to enable enhanced decision-making, insight
discovery and process optimisation. As the big data field matured, other Vs have
been added, such as Veracity (documenting quality and uncertainty) and Value [1,
16].

Table 1 Definitions of big data [4]

Big data definition Source

“Big data is high volume, high velocity, and/or high variety information assets that
require new forms of processing to enable enhanced decision making, insight
discovery and process optimisation.”

[10][13]

“When the size of the data itself becomes part of the problem and traditional
techniques for working with data run out of steam.”

[12]

Big data is “data whose size forces us to look beyond the tried-and-true methods
that are prevalent at that time.”

[9]

“Big data is a field that treats ways to analyse, systematically extract information
from, or otherwise deal with data sets that are too large or complex to be dealt with
by traditional data-processing application software.”

[19]

“Big data is a term encompassing the use of techniques to capture, process, analyse
and visualise potentially large datasets in a reasonable timeframe not accessible to
standard IT technologies. By extension, the platform, tools and software used for
this purpose are collectively called “big data technologies”

[15]

“Big data can mean big volume, big velocity, or big variety.” [17]
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Table 2 Definitions of big data value [5]

Big data value definition Source

“Top-performing organisations use analytics five times more than lower
performers . . . a widespread belief that analytics offers value.”

[11]

“The value of big data isn’t the data. It’s the narrative.” [7]
“Companies need a strategic plan for collecting and organising data, one that aligns
with the business strategy of how they will use that data to create value.”

[18]

“We define prescriptive, needle-moving actions and behaviors and start to tap into the
fifth V from big data: value.”

[1]

“Data value chain recognises the relationship between stages, from raw data to
decision making, and how these stages are interdependent.”

[14]

The definition of value within the context of big data also varies. A collection of
definitions for Big Data Value is provided in Table 2. These definitions clearly show
a pattern of common understanding that the Value dimension of big data rests upon
successful decision-making and action through analytics [5].

3 The Big Data Value PPP

The European contractual Public-Private Partnership on Big Data Value (BDV PPP)
commenced in 2015. It was operationalised with the Leadership in Enabling and
Industrial Technologies (LEIT) work programme of Horizon 2020. The BDV PPP
activities addressed the development of technology and applications, business model
discovery, ecosystem validation, skills profiling, regulatory and IPR environments
and many social aspects.

With an initial indicative budget from the European Union of 534 million euros
for 2016–2020 and 201 million euros allocated in total by the end of 2018, since its
launch, the BDV PPP has mobilised 1570 million euros of private investments (467
million euros for 2018). Forty-two projects were running at the beginning of 2019.
The BDV PPP in just 2 years developed 132 innovations of exploitable value (106
delivered in 2018, 35% of which are significant innovations), including technolo-
gies, platforms, services, products, methods, systems, components and/or modules,
frameworks/architectures, processes, tools/toolkits, spin-offs, datasets, ontologies,
patents and knowledge. Ninety-three per cent of the innovations delivered in 2018
had an economic impact, and 48% had a societal impact. By 2020, the BDV PPP
had projects covering a spectrum of data-driven innovations in sectors including
advanced manufacturing, transport and logistics, health and bioeconomy. These
projects have advanced the state of the art in key enabling technologies for big data
value and non-technological aspects, such as providing solutions, platforms, tools,
frameworks, and best practices for a data-driven economy and future European
competitiveness in Data and AI [5].
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4 Big Data Value Association

The Big Data Value Association (BDVA) is an industry-driven international non-
for-profit organisation that grew over the years to more than 220 members across
Europe, with a well-balanced composition of large, small and medium-sized
industries as well as research and user organisations. BDVA has over 25 working
groups organised in Task Forces and subgroups, tackling all the technical and non-
technical challenges of big data value.

BDVA served as the private counterpart to the European Commission to imple-
ment the Big Data Value PPP program. BDVA and the Big Data Value PPP pursued
a common shared vision of positioning Europe as the world leader in creating big
data value. BDVA is also a private member of the EuroHPC Joint Undertaking and
one of the leading promoters and driving forces of the European Partnership on AI,
Data and Robotics in the framework programme MFF 2021–2027.

The mission of the BDVA is “to develop the Innovation Ecosystem that will
enable the data-driven digital transformation in Europe delivering maximum eco-
nomic and societal benefit, and, to achieve and to sustain Europe’s leadership on Big
Data Value creation and Artificial Intelligence.” BDVA enables existing regional
multi-partner cooperation to collaborate at the European-level by providing tools
and know-how to support the co-creation, development and experimentation of
pan-European data-driven applications and services and know-how exchange. The
BDVA developed a joint Strategic Research and Innovation Agenda (SRIA) on Big
Data Value [21]. It was initially fed by a collection of technical papers and roadmaps
[2] and extended with a public consultation that included hundreds of additional
stakeholders representing both the supply and the demand side. The BDV SRIA
defined the overall goals, main technical and non-technical priorities, and a research
and innovation roadmap for the BDV PPP. The SRIA set out the strategic importance
of big data, described the Data Value Chain and the central role of Ecosystems,
detailed a vision for big data value in Europe in 2020, analysed the associated
strengths, weaknesses, opportunities and threats, and set out the objectives and goals
to be accomplished by the BDV PPP within the European research and innovation
landscape of Horizon 2020 and at national and regional levels.

5 Big Data Value Reference Model

The BDV Reference Model (see Fig. 1) has been developed by the BDVA, taking
into account input from technical experts and stakeholders along the whole big
data value chain and interactions with other related PPPs [21]. The BDV Reference
Model may serve as a common reference framework to locate big data technologies
on the overall IT stack. It addresses the main concerns and aspects to be considered
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Fig. 1 Big data value reference model

for big data value systems. The model is used to illustrate big data technologies in
this book by mapping them to the different topic areas.

The BDV Reference Model is structured into horizontal and vertical concerns.

• Horizontal concerns cover specific aspects along the data processing chain,
starting with data collection and ingestion, and extending to data visualisation. It
should be noted that the horizontal concerns do not imply a layered architecture.
As an example, data visualisation may be applied directly to collected data (the
data management aspect) without the need for data processing and analytics.

• Vertical concerns address cross-cutting issues, which may affect all the horizontal
concerns. In addition, vertical concerns may also involve non-technical aspects.

The BDV Reference Model has provided input to the ISO SC 42 Reference
Architecture, which now is reflected in the ISO 20547-3 Big Data Reference
Architecture.

5.1 Chapter Analysis

Table 3 shows how the technical outcomes presented in the different chapters in this
book cover the horizontal and vertical concerns of the BDV Reference Model.
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As this table indicates, the chapters in this book provide a broad coverage of
the model’s concerns, thereby reinforcing the relevance of these concerns that were
spelt out as part of the BDV SRIA.

The majority of the chapters cover the horizontal concerns of data processing
architectures and data analytics, followed by data management. This indicates the
critical role of big data in delivering value from large-scale data analytics and the
need for dedicated data processing architectures to cope with the volume, velocity
and variety of data. It also shows that data management is an important basis for
delivering value from data and thus is a significant concern.

Many of the chapters cover the vertical concern engineering and DevOps,
indicating that sound engineering methodologies for building next-generation Big
Data Value systems are relevant and increasingly available.

6 Big Data and AI Pipeline

A Big Data and AI Pipeline model (see Fig. 2) suitable for describing Big Data
Applications is harmonised with the Big Data Application layer’s steps in ISO
20547-3. This is being used to illustrate Big Data Applications in this book and
a mapping to the different topic areas of the BDV Reference Model. Chapter 4
describes the Big Data and AI Pipeline in more detail and relates it to the Big
Data Value Reference Model in Fig. 1 and the European AI, Data and Robotics
Framework and Enablers in Fig. 3.

6.1 Chapter Analysis

Table 4 gives an overview to which extent the technical contributions described in
the different chapters of this book are related to the four Big Data and AI Pipeline
steps and in particular any of the six big data types.

The Big Data and AI Pipeline steps are the following:

• P1: Data Acquisition/Collection.
• P2: Data Storage/Preparation.
• P3: Analytics/AI/Machine Learning.
• P4: Action/Interaction, Visualisation and Access.

Part I on Technologies and Methods includes chapters that focus on the various
technical areas mainly related to the pipeline steps P2 and P3, and mostly indepen-
dent of the different big data types.

Part II on Processes and Applications includes chapters which typically covers
the full big data pipeline, but some chapters also have a more specific focus. With
respect to the big data types, a majority of the chapters are related to time series and
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Fig. 3 European AI, data and robotics framework and enablers [20]

IoT data (12), followed by image data (8), spatiotemporal data (7), graph data (6)
and also chapters with a focus on text and natural language processing (2).

7 AI, Data and Robotics Framework and Enablers

In September 2020, BDVA, CLAIRE, ELLIS, EurAI and euRobotics announced the
official release of the Joint Strategic Research Innovation and Deployment Agenda
(SRIDA) for the AI, Data and Robotics Partnership [21], which unifies the strategic
focus of each of the three disciplines engaged in creating the Partnership.
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Together, these associations have proposed a vision for an AI, Data and
Robotics Partnership: “The Vision of the Partnership is to boost European industrial
competitiveness, societal wellbeing and environmental aspects to lead the world in
developing and deploying value-driven trustworthy AI, Data and Robotics based on
fundamental European rights, principles and values.”

To deliver on the vision, it is vital to engage with a broad range of stakeholders.
Each collaborative stakeholder brings a vital element to the functioning of the
Partnership and injects critical capability into the ecosystem created around AI,
Data and Robotics by the Partnership. The mobilisation of the European AI,
Data and Robotics Ecosystem is one of the core goals of the Partnership. The
Partnership needs to form part of a broader ecosystem of collaborations that cover
all aspects of the technology application landscape in Europe. Many of these
collaborations will rely on AI, Data and Robotics as critical enablers to their
endeavours. Both horizontal (technology) and vertical (application) collaborations
will intersect within an AI, Data and Robotics Ecosystem.

Figure 3 sets out the primary areas of importance for AI, Data and Robotics
research, innovation and deployment into three overarching areas of interest. The
European AI, Data and Robotics Framework represents the legal and societal fabric
that underpins the impact of AI on stakeholders and users of the products and ser-
vices that businesses will provide. The AI, Data and Robotics Innovation Ecosystem
Enablers represent essential ingredients for practical innovation and deployment.
Finally, the Cross Sectorial AI, Data and Robotics Technology Enablers represent
the core technical competencies essential for developing AI, Data and Robotics
systems.

7.1 Chapter Analysis

Table 5 gives an overview to which extent the technical contributions described in
the different chapters of this book are in line with the three levels of enablers covered
in the European AI, Data and Robotics Framework.

Table 5 demonstrates that the European AI, Data and Robotics partnership and
framework will be enabled by a seamless continuation of the current technological
basis that the BDV PPP has established.

All cross-sectorial AI, Data and Robotics technology enablers are supported
through contributions in this book. However, we observe bias towards the topics
“Knowledge and Learning,” “Reasoning and Decision Making” and “System,
Methodologies, Hardware and Tools.” This is not surprising as the topics related
to the management and analysis of heterogeneous data sources—independently
whether they are stored in one or distributed places—is one of the core challenges
in the context of extracting value out of data. In addition, tools and methods and
processes that integrate AI, Data, HPC or Robotics into systems while ensuring that
core system properties and characteristics such as safety, robustness, dependability
and trustworthiness can be integrated into the design cycle, tested and validated for
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use, have been in the past and will be in the future core requirements and challenges
when implementing and deploying data-driven industrial applications. Finally, many
of the chapters describe how data-driven solutions bring value to particular vertical
sectors and applications.

8 Summary

The continuous and significant growth of data, together with improved access to
data and the availability of powerful computing infrastructure, has led to intensified
activities around Big Data Value and data-driven Artificial Intelligence (AI).

The adoption of big data technology within industrial sectors facilitates organi-
sations to gain a competitive advantage. Driving adoption requires organisations to
master the technology needed to extract value from big data and use the insights
extracted to drive their digital transformation with new applications and processes
that deliver real value. This book is your guide to help you understand, design and
build technologies and applications that deliver Big Data Value.
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Supporting Semantic Data Enrichment
at Scale

Michele Ciavotta, Vincenzo Cutrona, Flavio De Paoli, Nikolay Nikolov,
Matteo Palmonari, and Dumitru Roman

Abstract Data enrichment is a critical task in the data preparation process in
which a dataset is extended with additional information from various sources to
perform analyses or add meaningful context. Facilitating the enrichment process
design for data workers and supporting its execution on large datasets are only
supported to a limited extent by existing solutions. Harnessing semantics at scale
can be a crucial factor in effectively addressing this challenge. This chapter presents
a comprehensive approach covering both design- and run-time aspects of tabular
data enrichment and discusses our experience in making this process scalable. We
illustrate how data enrichment steps of a Big Data pipeline can be implemented via
tabular transformations exploiting semantic table annotation methods and discuss
techniques devised to support the enactment of the resulting process on large tabular
datasets. Furthermore, we present results from experimental evaluations in which we
tested the scalability and run-time efficiency of the proposed cloud-based approach,
enriching massive datasets with promising performance.

Keywords Big data processing · Data integration · Data enrichment · Data
extension · Linked data · Scalability

1 Introduction

Big Data and Business Analytics are among the main value-creating assets for
private companies and public institutions—estimates indicate yearly earnings in
the order of 274 billion dollars by 2022 [1]. This is made possible by theoretical
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Fig. 1 Infographic representing the main stages of a data project and the related stakeholders

and practical advancements for processing massive amounts of data and developing
highly accurate and effective decision-making processes via analytical models.
However, very different time frame and effort are required to commission each
phase of a data-driven project, which includes, as its primary stages, data acqui-
sition, extraction, cleaning, integration/enrichment, and data analysis and results
visualization [2]. Remarkably, the data preparation stage (which encompasses data
transformations that also cover cleaning and integration/enrichment) takes up to
80% of the time required by a project. Only the remaining 20% of the time is
spent on data analysis and exploration [3]. Such an imbalance (see Fig. 1) poses
a problem that gets increasingly more severe with the progressive growth of volume
and variability of the involved data [4]. This issue is now widely recognized and
needs appropriate tools and methodologies, especially to support the crucial step of
data enrichment.

Data enrichment is a specific data integration problem where a dataset that the
user (typically a data engineer/scientist) knows is extended with additional infor-
mation coming from external, possibly unknown, sources. Intuitively, enrichment
requires reconciliation between values in the main and the external sources to fetch
related data from the latter and extend the former. Data enrichment is often pivotal in
analytics projects where the model might benefit from features that are not present
in the main dataset, e.g., weather-based analysis of digital marketing campaign
performance [5]. In recent years, a number of proposals have been presented,
both academic and business related, to help data workers in the data preparation
phase and, more specifically, in data enrichment tasks; many proposals involve the
adoption of semantic techniques.

Semantics play an increasingly important role in Big Data, and, more specifically,
in Big Data enrichment, as also acknowledged by the European Big Data Value
Strategic Research and Innovation Agenda [2], and dedicated special issues in
scientific journals [6–8]. A semantic paradigm that has gained popularity is based
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on Knowledge Graphs (KGs), which provide graph structures where entities are
interconnected and classified. Semantic web technologies support the publication of
KGs with standards and shared vocabularies that facilitate access and manipulation
of knowledge via web protocols. Several approaches have been proposed to integrate
data in different Knowledge Graphs, e.g., using entity reconciliation techniques [6].
However, in most data analytics problems, the user starts with some source legacy
dataset that is not structured as a KG. Therefore, approaches have been proposed
to transform legacy datasets by giving them a graph structure enriched with shared
vocabularies, and, possibly, with background knowledge already available in a graph
structure [9]. Such a transformation process is a complex task that can be (partly)
sustained by semantic table interpretation [10] and annotation approaches. These
approaches aim at mapping an initial relational table to the schema of a reference
KG and finally linking values in the source table to entities in the KG [11, 12]. In
this case, the focus of the interpretation algorithm is to automatically provide an
annotation that enables the fusion of the source table with information in the target
KG (e.g., a large and cross-domain information source like Wikidata), aiming at
delivering an enriched KG. DAGOBAH [13] is an example of such an algorithm.

In this work, we leverage and take existing work on semantic table interpretation
a step forward. We argue that semantic table annotation can provide a valuable
paradigm to support data enrichment, modularly and at scale, in a much wider
number of scenarios, including when the final objective is to enrich datasets, and
not to their transformation into Knowledge Graphs. With modularly, we mean that
the paradigm can be implemented by an ecosystem of services that provide access to
different Knowledge Graphs to support automatic entity linking and data extensions.
Automation is a key factor for managing large volumes of data and reaching the at
scale dimension under certain assumptions that we discuss in this chapter.

We propose a comprehensive approach and a scalable solution to provide data
workers with suitable tools to (1) interactively design transformation pipelines on
datasets in tabular format, including semantic enrichment using curated knowledge
bases (general purpose or domain specific), and (2) deploy and run such pipelines
against massive datasets taking full advantage of the potential of scalability offered
by modern Cloud services. Most of the related work in this field tackles the problem
of automatically inferring the annotations that encode the semantics of a table.
However, the primary contribution of this work consists of addressing the issue of
implementing reconciliation and extension mechanisms to support both interactive
data enrichment on small-size tabular datasets and automatic execution on massive
workloads. To this end, we devised a two-phase approach and a service-oriented
architecture to support it, whose engine consists of a collection of reconciliation and
extension microservices implementing an open interface that can easily be scaled up
to manage larger datasets.

To demonstrate the suitability of the proposed approach, we created both general-
purpose services for linked data and specialized ones (for instance, for geographical
toponyms, weather, and events), which support industry-driven analytic projects
that motivated our work and guided a rigorous activity of requirements elicitation
[14]. We used these services and business datasets to evaluate the efficiency of
the proposed methods, achieving promising results (namely, linear scalability and



22 M. Ciavotta et al.

a performance boost ranging from 4× to 770× over a baseline). Finally, we
discuss the current limitations, which point to open issues in making semantic table
enrichment approaches applicable at the Big Data scale. In this context, this chapter
contributes to a better understanding of the role and challenges of semantics in
supporting data enrichment, provides an approach and the corresponding implemen-
tation for semantic enrichment of tabular data at scale (thus, contributing to the Data
Management and Data Processing Architectures horizontal concerns of the BDV
Technical Reference Model [2] and to the Knowledge and Learning cross-sectorial
technology enablers of the AI, Data and Robotics Strategic Research, Innovation
and Deployment Agenda [15]), reports on the lessons learned in developing the
solution, and presents the open problems for future research in the field of scalable
semantic enrichment.

Ultimately, the proposed solution aims at filling an existing gap between
technologies available today to support data enrichment at scale. This is a process
where a natively semantic task like entity reconciliation plays a crucial role and
semantics (especially KGs) are a facilitator of the enrichment process. Indeed, some
tools provide users with user-friendly functionalities for data preparation, but few
offer semantic support. The few solutions that offer such support (e.g., OpenRefine)1

essentially cover the needs of the exploratory phases of a project by supporting
manual transformation and enrichment of datasets. However, they neglect the life-
cycle management needed to implement and run production-ready data pipelines
and ensure scalability for large volumes of data. On the other hand, tools that
provide support for running pipelines on large volumes of data are designed for
users who are familiar with programming and process definition and are, therefore,
unsuitable for use by data scientists [16]. Furthermore, these solutions, while often
offering a wide variety of configurable components to create data pipelines, are
poorly designed to incorporate user-specific knowledge, which is often essential to
perform data reconciliation tasks effectively.

The rest of the chapter is structured as follows. Section 2 provides a discussion
of the main design principles that have driven the definition of the architecture. The
components of the platform and the workflow are discussed in Sect. 3. Section 4
illustrates experiments with datasets of different sizes. Finally, a review of the state
of the art is reported in Sect. 5, and Sect. 6 concludes the chapter.

2 A Two-Phase Approach

Before discussing the proposed solution for data manipulation and enrichment
at scale, we introduce a real-life analytics use case consisting of different data
manipulation and enrichment tasks to motivate the principles that guided the
formulation of the approach.

1 http://openrefine.org

http://openrefine.org
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2.1 Scenario: Weather-Based Digital Marketing Analytics

The JOT Internet Media (JOT)2 company is analyzing the performance of its digital
marketing campaigns using reports from Google AdWords (GAW), and needs to
aggregate data on performance (e.g., impressions and clicks) by city, region, or
country. Furthermore, JOT, seeking to boost the effectiveness of future advertising
campaigns, is interested in investigating the effect of weather on the performance of
its campaigns at a regional level, and in training a machine learning model able to
predict the most suitable moment to launch a campaign. To train the model and run
the analytics, JOT aims to use 3 years of historical data concerning the performance
of keywords used in previous campaigns.

The first step might be to enrich the GAW report (the white columns in Table 1)
directly with weather data. In this scenario, JOT would access the European Centre
for Medium-Range Weather Forecasts (ECMWF)3 service that provides current
forecasts, queryable using geographic bounding boxes and ISO 8601 formatted
dates. Since both properties are missing in the original dataset, JOT has to first add
them to the dataset. The ISO-formatted date can be easily obtained by applying a
data transformation function to the date column (and adding the rightmost column
in Table 1). Thus, the next step will be to extend the dataset with GeoNames (GN)
identifiers for all mentioned locations. This operation requires to match the region
labels adopted by GAW (Google GeoTargets labels) with GN identifiers, which are
used in turn to geolocate the regions. Henceforth, this process is referred to as data
reconciliation and represents a fundamental stage in the enrichment pipeline. Once
the working dataset locations have been reconciled against GN (adding the fifth
column in Table 1), it is possible to perform the extension step where the ECMWF
is queried to collect the desired weather-related information (and add the sixth and
seventh columns in Table 1). The reconciled and extended data are now suitable for
performing the desired analysis.

Table 1 JOT dataset enriched with data from GN and ECMWF

Keyword ID Clicks City Region Region

ID (GN)

Temp.

(WS)

Prec.

(WS)

Date Date
(ISO)

194906 64Altenburg Thuringia 2822542 287.70 0.08 06/09/2017 2017-09-06

517827 50Ingolstadt Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06

459143 42Berlin Berlin 2950157 290.48 0.00 06/09/2017 2017-09-06

891139 36Munich Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06

459143 30Nuremberg Bavaria 2951839 288.18 0.02 06/09/2017 2017-09-06
Colored columns are appended by different functions: transformation (Date), reconciliation
(Region ID), and extension (Temp., Prec.)

2 https://www.jot-im.com
3 https://www.ecmwf.int

https://www.jot-im.com
https://www.ecmwf.int
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Fig. 2 Semantics for data enrichment

2.2 Semantics as the Enrichment Enabler

As demonstrated by the above scenario, data enrichment plays a critical role in
the preparation phase of many analytics pipelines, since it can add contextual
information to the original dataset to build more effective models.

In the integration of relational datasets, traditional approaches (e.g., record
linkage) have proven to be appropriate when the entity values of the involved
schemas are compatible (e.g., they feature the same date format). In a more general
scenario, however, the user is interested in enriching a dataset (known to the user)
by fetching additional information from external datasets (possibly unknown to the
user) that only relate semantically with the working dataset. This means that, in
general, the terms of the schema and the values of the entities belong to different
(possibly implicit) vocabularies or Knowledge Bases (KBs). The role of semantic
approaches in such a process is to lift the latent semantics of records and metadata
to support the integration of otherwise incompatible data sources.

In our use case, a semantic approach allows JOT to link the company dataset to
the ECMWF data source by using a system of identifiers provided by a reference KB
(i.e., GN). In this specific example, the reconciliation is performed directly against
GN (see Fig. 2). In a more general case, it can happen that the data sources involved
refer to different KBs; therefore, the KBs exploited for reconciliation need to be
interlinked (e.g., using the sameAs predicate) to enable integration.

2.3 Challenges

Three main challenges emerge from the above scenario; indeed, the JOT data
scientists have to: (1) investigate how to reconcile locations to GN, i.e., they need
to look for a service that meets this requirement (suitable for users familiar with
programming languages), or to check out the Knowledge Base (KB) that describes
GN and build an ad hoc reconciliation service (suitable for users experienced in
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semantics and the geospatial domain); (2) query a ECMWF endpoint, i.e., they
must look for the API documentation (usually geared towards users familiar with
programming languages, less applicable to data scientists and domain experts);
(3) come up with a scalable architectural solution able to manage and efficiently
enrich the whole dataset, meeting possible time constraints. Specifically, since the
enrichment process would unavoidably lead to querying external services, efficiency
constraints require an effective solution to network latency issues that represent a
bottleneck when a large number of API requests have to be issued.

In summary, the key features required to support the design and execution of
enrichment-based data transformation at scale can be summarized as follows:

• Column values reconciliation against a reference KB, e.g., matching the spatial
references adopted in the source dataset against the system of spatial identifiers
adopted by the weather service.

• Data extension based on the reconciliation results, which represents the bridge
between the dataset at hand and a reference KB. The extension could add one or
more columns to the original dataset.

• An approach that supports the development of a user-friendly environment to
design the reconciliation/extension process, and a scalable platform to execute it
on massive input datasets.

2.4 Approach Overview

The approach we propose in this work is mainly based on a small-scale design/full-
scale execution principle, harnessing semantics to support the reconciliation tasks
in data enrichment. A high-level description of the approach is sketched in Fig. 3.
The driving principle is to separate the transformation process into two phases: the
design phase, where the user defines the transformation pipeline by working on a
sample and produces a transformation model (i.e., an executable representation of
the transformation pipeline), and the processing phase, where the model is executed
against the original dataset to obtain an enriched version of it to feed the analytical
activities. Both phases rely on external data sources (e.g., GN and ECMWF) to
support reconciliation and extension activities.

A fully automated approach is unsuitable from a user perspective since it would
entirely remove the operator control over the process and results. In processes
where the matching phase is performed based on semantics, the contribution of the
knowledge and experience of a domain expert can impact the final dataset quality.
Therefore, complete automation would entail a substantial risk of generating low-
quality results and, consequently, be of little use. For this reason, the approach gives
full control over the definition of the transformations to the user while automating
the enactment of the resulting process. The role of the human in the design phase is
to define the pipeline steps over a smaller dataset so that she can control the resulting
quality (e.g., they can avoid misinterpretations). In this scenario, the approach
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Fig. 3 Summary of design/processing approach

envisions computer-aided support tools offered as a service (the reader is referred to
Sect. 3 for more details on the proposed solution) to guide the user in the pipeline
composition, facilitating the process and reducing the need for strong programming
skills. Once the transformation process has been defined, a full-scale processing
phase, where the choices of the operator are packed within an executable artifact
and run in batch mode over a different (possibly larger) dataset (Fig. 3), takes place.

As for the design phase, the approach proposes a reference implementation
for the pipeline execution environment (see Sect. 3 for more details). Notice
that featuring independent design and execution improves the efficiency of data
management while mitigating confidentiality issues. Since the design phase exploits
only a sample, the limited quantity of data to be transferred and manipulated
simplifies the support system from an architectural and operational point of view (in
practice, data would be handled by browsers on regular hardware) and reduces the
risk of leakage of confidential information that might arise whenever full datasets
are exposed. The full-scale execution phase can be performed on-premise, thus
exploiting corporate infrastructure and tools, without the need for moving the data.
Further details on the two phases are summarized as follows.

Design Phase In the design phase, the operator designing the pipeline performs
three iterative steps on the working dataset: (1) the enrichment design, where the
user designs each transformation step for enriching the working table employing
a graphical interface that facilitates and automates interactions with reconciliation
and extension services; (2) the pipeline execution (small-size processing), where
each step of the enrichment process is performed over the current dataset; and
(3) attaining quality insights, i.e., a handful of statistics to enable a general
understanding of the overall quality of the result (e.g., the number of missing
values). This interactive process is executed every time the user edits the pipeline
definition (e.g., adding a new step in the pipeline). The outputs of the design phase
are (1) the enriched dataset and (2) an executable transformation model, packaged
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in an executable that encompasses the steps of the pipeline. It is worth noting that if
the user needs to enrich tables with a few thousand rows sporadically, the enriched
table produced in the design phase concludes the process. If the user is required to
enrich large volumes of data (or at least too large to be interactively managed), our
approach assumes that the user carries out the design phase using a representative
sample of the original dataset. In that case, the executable with the transformation
model can be downloaded and used as the primary step in the processing phase
(referred to as Data Flow), presented and discussed in the next section.

Processing Phase This phase aims to execute the transformation pipeline, which
has been designed and tested on a smaller (loadable in memory) sample during
the previous phase, on a large dataset. As in the previous phase, three steps are
implied: (1) data flow definition (stack configuration) to support the execution of
the enrichment pipeline; (2) batch execution (possibly in parallel) of the pipeline;
and, finally, (3) quality assessment to evaluate the resulting dataset. If the result
does not achieve an acceptable quality level (e.g., the number of reconciliation
mismatches is above a given threshold), the user could go back to the design phase
and modify the pipeline on an updated sample dataset. The new sample could be
populated according to an analysis of the log files (e.g., adding a set of rows with
values that could not be matched). The goal is to converge after a few iterations and
be able to manage the dataset evolution. The stack configuration phase defines the
pre- and post-processing actions to execute the enrichment pipeline on the dataset.
It is composed of standard steps that can be customized according to the project
requirements. To serve as an example, the reference data flow that supports the
JOT scenario features the following steps: (1) decompress the input dataset and
store it in a distributed file system; (2) split data in chunks for parallel processing;
(3) execute the pipeline (which includes invoking enrichment services); (4) export
the enriched data. The choice of relying on external services implementing the
reconciliation and extension functionalities is supported by most available platforms
and derives from precise design requirements (not least the requisites of modularity,
extensibility, and flexibility). Consequently, the need to perform service invocations
to get access to data for enrichment constitutes a fundamental scalability limitation
of the entire enrichment process, which is much better performing and predictable
for transformations that can be encapsulated within the executable transformation
model. In the next section, the issue is discussed in detail.

Finally, on the one hand, these phases have different time requirements—i.e., in
the design phase, the system has to be responsive in real time so that the user can
provide feedback interactively, while the processing phase can last several hours.
On the other hand, the phases deal with datasets of different sizes—the design phase
processes only a sample of a dataset, while the processing phase must handle the full
data. Therefore, we built an architecture where two main logical components share
a set of back-end services to manage these phases. In the following, we provide
details about the implementation of those components.
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3 Achieving Semantic Enrichment of Tabular Data at Scale

This section outlines the different measures we took to ensure an adequate level
of scalability for the enrichment process. The service architecture supporting the
described approach is presented in Sect. 3.1. In Sect. 3.2 we discuss the design
decisions, strategies, and lessons learned while designing for scalability in this
domain, and examine the limitations of the proposed solution as well as possible
improvements.

3.1 The Architectural View

The architecture underpinning the execution of our open-source solution, named
ASIA (Assisted Semantic Interpretation and Annotation of tabular data) [17] (see
Fig. 4), has been designed for modularity and loose coupling resulting in the
components specified below:

ASIA User Interface The ASIA front-end is a single-page web application meant
to interact with the final user exposing all the services required to support the
enrichment. This application is fully integrated within Grafterizer [16] (part of
DataGraft [18]), a tool that provides the pipeline abstraction, support for data
cleaning and ETL data transformations, a tabular-to-Linked-data generator, and a
compiler to produce portable and repeatable data manipulation pipelines. ASIA
inherits and extends those features by providing functionalities to streamline the

Fig. 4 Detailed architecture of ASIA
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mapping between the columns of the working dataset and semantic types and
properties (i.e., the schema annotation). This is done by analyzing the table headers
and matching them with schema patterns and statistics provided by ABSTAT
(Linked Data Summarization with ABstraction and STATistics) [19], an ontology-
driven linked data profiling service. Moreover, ASIA UI provides widgets for
semantic matching of column values against a shared system of identifiers.

ASIA Back-end This ecosystem consists of an orchestrator (API gateway) and a
set of services4 that are grouped in three categories: Conciliators, Mapping Services,
and Extension Services.

– API Gateway. This service provides a unified view of the ASIA back-end
ecosystem services by isolating the architectural details and relationships of these
modules in the background. Moreover, it provides high-level functionalities by
orchestrating the execution of the underlying services.

– Conciliators. Services for reconciling entity labels to a specific KB. They provide
a REST interface compliant with the OpenRefine Reconciliation and Extension
APIs.5 In Fig. 4, conciliator blocks represent reconciliation services, while the
GeoNames block also supports KB-based extensions, i.e., the possibility to
extend the table with information from the reference KB.

– Mapping Services. Services in charge of linking KBs to each other, enabling the
user to translate seamlessly between different Shared System of Identifiers (SSIs)
by identifying URIs that provide suitable inputs to the extension services. The
current implementation provides links between GeoTargets (location identifiers
used in Google Analytics services) and GeoNames, plus additional sameAs links
retrieved from DBpedia and Wikidata.

– Extension Services. Services for extending the input dataset with information
coming from external data sources by using the URIs returned by conciliators
and mapping services as inputs. In the JOT use case, we address weather
and event datasets. The current implementation relies on data regularly being
downloaded and curated (fetched from the ECMWF and EventRegistry6 services,
respectively). This is done to overcome network latency issues.

It is important to note that the ASIA back-end provides functionality to both the
front-end (for the definition of the enrichment steps) and the Big Data Environment
(presented below). The substantial difference is that in the first case its deployment
is designed to provide multi-tenant support in Software-as-a-Service mode,7 while
in the second case, it is deployed in a dedicated way (and often replicating some
services) to ensure scalability and efficiency.

4 https://github.com/UNIMIBInside/asia-backend
5 github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers
6 eventregistry.org
7 A DataGraft deployment that includes ASIA module is available online at https://datagraft.io

https://github.com/UNIMIBInside/asia-backend
http://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Developers
http://eventregistry.org
https://datagraft.io
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The Big Data Environment This macro-component is mainly responsible for the
orchestration and execution of enrichment operations at scale. It provides a high-
level interface to configure, process, and monitor data flows. In particular, to handle
the scale of data, this component distributes the different replicas of the pipeline
steps over a cluster of computational resources (physical machines). For this reason,
the operator establishes an appropriate deployment in terms of resources and service
replicas to support the parallel execution of each step and leaves the system with
the burden of configuring, deploying, and running the flow. More details about this
component can be found in the following section.

3.2 Achieving Scalability

The purpose of this section is to present the techniques and strategies employed to
achieve a system capable of providing scalable enrichment functionalities.

Stateless, Shared-Nothing Processing The ecosystem of the ASIA back-end is
made up of various services and databases capable of serving a number of
concurrent invocations. In essence, ASIA services receive a label (in the case
of reconciliation) or a URI (in the case of extension) and return one or more
corresponding values. They are built to be stateless and thus enable the creation of a
platform in which the enrichment pipeline is executed in parallel on non-overlapping
segments of the working table (shared-nothing approach [20]).

Distribution and Parallelization The Big Data Environment (Fig. 5) is the com-
ponent in charge of fostering parallelism and is implemented as a private cloud
consisting of a cluster of bare-metal servers running the Docker engine,8 connected
via Gigabit Ethernet and sharing a distributed file system (i.e., GlusterFS).9 In this
environment, data flows are compiled into a chain of Docker containers that are, in
turn, deployed and managed by a container Orchestration system (i.e., Rancher).10

Each of the steps consists of containers working independently and in parallel and
scalable on-demand. The communication between two consecutive steps of the
chain, i.e., the handover of the partial results, occurs through writing and reading
from the file system. For details on the approach for setting up the Big Data
Environment, see [21]. The implementation of this container-based solution has
several benefits: it makes the data flow deployment independent from the particular
stakeholder’s hardware infrastructure, also working in heterogeneous distributed
environments; it guarantees a flexible deployment, better resource utilization, and
seamless horizontal scalability. The GlusterFS distributed file system is fast (as it

8 https://www.docker.com
9 https://www.gluster.org
10 https://rancher.com

https://www.docker.com
https://www.gluster.org
https://rancher.com


Supporting Semantic Data Enrichment at Scale 31

Fig. 5 An overview of the proposed Big Data Environment

lacks a central repository for metadata), linearly scalable, and, therefore, able to
support massive amounts of data.

Data and Service Locality One of the primary issues to be addressed for achieving
scalability for the enrichment process is the use of remote services. The use of
services accessible over the Internet is certainly incompatible with datasets featuring
more than a few thousand rows due to the network latency and the high number
of invocations. The use of remote, multi-tenant services is generally acceptable in
the design phase due to the limited size of managed datasets. However, when large
datasets need to be processed, it is imperative to address the issue by making the life-
cycle of enrichment data local. In the scenario we adopt, the weather information is
downloaded daily from the provider and is treated to enable access using geospatial
SSIs. This solution is suitable for datasets that change at a known rate and are thus
stable. In the general case, refresh frequency depends on the application domain
and the nature of data. The local management of these KBs has the advantage of
rightsizing the resources allocated against the incoming workload; moreover, the
control over the local network enables reduced and stable round-trip delay times
(RDT). Similar considerations have led to deploying the reconciliation services of
the ASIA back-end as close as possible (in network terms) to both the reference
KBs and the agents (containers) performing the reconciliation pipeline steps.

Scaling up the Enrichment Services In order to manage the workload caused by
the simultaneous invocation of reconciliation and extension functions (by the step
executing the reconciliation pipeline), the ASIA ecosystem has been implemented
to be easily replicable to achieve horizontal scalability of performance. This is
achievable as the knowledge bases are used in read-only mode; accordingly, they
can be duplicated without consistency issues. A load balancer is used for dispatching
requests across the various replicas of ASIA.
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Hierarchical Caching Lastly, it should be noted that the same request for reconcil-
iation or extension can be made multiple times by the agents because columns in
the processed data can contain repeating values. This, if not mitigated, generates a
high number of identical requests. To address this, we implemented a hierarchical
caching system in which each agent directly manages the first level of the hierarchy,
while the other levels are managed by the stack of ASIA services and databases.

3.3 Discussion on the Limitations

In this section, we discuss the current limitations and aspects that could be improved
to bring significant enhancements to the performance of the entire process.

Data Locality In this initial implementation of the Big Data Environment, the data
locality principles, intended as one of the chief scalability enablers, are only partially
implemented and exploited. Data locality is limited to the life-cycle management
of the knowledge bases used by the enrichment services, which are physically
brought to the Big Data Enrichment platform to reduce service access times.
At the same time, the agents that perform the transformation pipeline may be
physically separated from the working dataset they are processing (due to the use
of a distributed file system). By deploying the enrichment services in the Big Data
Enrichment platform, the speed of the functionalities relying on enrichment services
increases dramatically. Similarly, the working dataset is stored in a distributed file
system and accessible through the local network. This architectural choice, which
enables uniform access times to data, has the disadvantage of raising the average
read/write times of a quantity equal to twice the network latency (each agent reads
a data chunk and writes a larger one). Nonetheless, by moving the data as close
as possible to the agents that have to process it, we can improve the reading and
writing performances and affect the whole process positively. This can be done
by onboarding partitions of the working dataset on the machines that execute the
containers of the agents instead of using the network to transmit partitions.

Distributed Caching The hierarchical caching system that was implemented can be
further optimized, mainly because each ASIA replicated deployment has its local
memory. Moreover, due to the presence of a load balancer running a round-robin
dispatching policy (thus caching unaware), identical requests can be assigned to
different replicas of ASIA causing preventable cache misses. The cache used at the
agent level is also private, which results in generating much more requests than
are strictly necessary. An improved solution to the problem of duplicated requests
to the enrichment services can be done through the use of a distributed cache
shared among the various instances of ASIA and among the agents that carry out
the pipeline in parallel. Such a service (e.g., Ehcache [22]), once deployed on the
machines that configure the cluster of the big data environment, would guarantee
rapid synchronization of the local caches and would reduce the number of cache
misses.



Supporting Semantic Data Enrichment at Scale 33

Efficient API Interaction The enrichment service API is another component that
may be optimized to provide significant improvement to execution times. In the
current implementation, for both the design and processing phases, reconciliation
and extension are invoked for each row of the working table. This means that
for each line the agent running the pipeline must wait a time equal to the RTD,
forcing the system to wait a time roughly equal to twice the network latency at
every invocation. A considerable improvement would be obtained by throttling the
invocations to the service. The processing times of the input dataset could be further
improved if light network protocols (such as Websocket [23]) were used together
with improved message serialization (such as Google Protobuf [24]).

4 Evaluation of the Approach

To test the flexibility and scalability of the proposed solution, we performed three
experiments of increasing scale involving real datasets. The experiments make use
of two enrichment services: the geospatial reconciliation and extension service GN,
and the weather extension service W, which is used to enrich the input dataset with
weather information. GN takes only one attribute as input (e.g., a toponym), and
creates one (reconciliation) or more (extension) columns; W takes two attributes as
input—location and date—and appends as many columns as the number of desired
weather features.

First, we designed a small-scale experiment reproducing the scenario where a
data scientist executes the enrichment pipeline on a commodity machine (the whole
cloud-native platform has been installed on a multi-tenant machine with 4 CPUs
Intel Xeon Silver 4114 2.20 GHz, and 125GB RAM). The main objective was to
assess the performance boost attributable to the introduction different caching levels.
We started by testing the reconciliation performance with no caching strategy: 200 K
rows (21 columns) from a real company dataset featuring 2227 different toponyms
(from Germany and Spain) have been extracted and a pipeline featuring only
reconciliation has been created. The measured average time per row was 12.927 ms.
The same test was then repeated, enabling the caching level implemented at the
reconciliation service level. The cache system improved performance achieving an
average processing time of 2.558 ms per row (5 times faster over the baseline).
Finally, we enabled the first cache layer, which is implemented locally on the
level of the executable of the enrichment pipeline. The objective was to avoid the
network latency whenever possible, which is substantial even in a local setup (via
the loopback interface). The pipeline, in this case, ran ∼770 times faster than the
baseline (0.0168 ms/row on average).

To analyze the behavior of the cache over time, a second experiment was
designed, extending the first one as follows: a more complex pipeline (referred
to as full-pipeline) was implemented. It reconciles city toponyms to GN, extends
reconciled entities with the corresponding first-level administrative division from
GN (i.e., regions). After that, it fetches weather information about regions, using the
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Fig. 6 Request execution time in milliseconds for the second experiment without duplicates

Fig. 7 Request execution time in milliseconds for the second experiment with four duplicates

reconciled administrative level and the date column (i.e., temperature for a specific
date and the following one) generating a new dataset with 25 columns. This pipeline
was used to enrich a dataset derived from the one used in the first experiment,
filtering out duplicates in the reconciliation target column (i.e., each value occurs
at most once), resulting in 2227 unique cities (and rows). The outcomes of this
experiment, where the cache did not significantly improve the performance (as it
was built but never used), are depicted in Fig. 6.11 Afterwards, a synthetic dataset
was built where each line from the previous one is replicated four times to exploit the
local cache. As reported in Fig. 7, spikes are still visible due to cache building, but
the cache reuse speeds up the process progressively (4× on average), considerably
reducing the execution time (which tends to be purely cache access time).

11 Initial spikes are due to the system startup (e.g., database connectors initialization).
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Fig. 8 Total execution time (in seconds) and linear regression curve, for different dataset sizes and
two experimental setups

The final experiment was devoted to investigating the system scalability. Firstly,
a single physical machine with a single instance of ASIA back-end was used. The
full-pipeline was ran to enrich datasets of different sizes: 100MB, 1GB, 5GB,
and 10GB. The dataset was split in 10 chunks of equal size and assigned to
10 agents. Performance results (in blue), reported in Fig. 8, measure the total
pipeline completion time for different dataset sizes. The implementation achieves
a linear trend, which highlights the scalability of the proposed solution. Finally, the
enrichment of a ~100GB dataset (~500 million rows, 21 columns) was performed;
the pipeline was run on the Big Data Environment deployed on a private cloud
infrastructure featuring an 8-node cluster of heterogeneous hosts. Five of the nodes
have 4-core CPUs and 15.4GB RAM and three nodes with 12-core CPUs, 64GB
RAM, with six 3 TB HDDs holding a GlusterFS distributed file system (shared
across the whole cluster). The enrichment agents were deployed on the three 12-
core servers.

The transformation accessed a load-balanced (using round-robin load balancing)
set of 10 replicas of ASIA back-end services deployed on the same stack.

The linear trend with R2 = 0.998 (please notice Fig. 8 uses a base-10 log scale for
the axes) is maintained also for the data point pertaining to the 100GB experiment,
despite the different context in which the experiments have been carried out. This is
mainly due to similar access and reconciliation times between the two experimental
configurations.

5 Related Work

During the past decade, a number of tools devoted to tabular data transformation,
reconciliation, and extension have been proposed. Probably the most popular is
OpenRefine, an open-source solution that provides reconciliation services (with a
focus on Wikidata) to semantic experts. It is a generic tool that cannot be easily
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customized to use third-party services. OpenRefine provides an interactive user
interface with spreadsheet-style interaction in a similar way as Grafterizer does,
hence they both encounter memory limitations to handle datasets. We refer the
reader to [25] for a detailed discussion on data anomalies in tabular data together
with an introduction to the table manipulation approach that was adopted in our
work. OpenRefine was designed as a web application without support for batch
execution of pipelines, hence the size of data that can be processed is constrained by
the available memory. More recently, tools for extending OpenRefine with support
to large data processing have been proposed, for example, OpenRefine-HD,12 which
extends OpenRefine to use Hadoop MapReduce jobs on HDFS. One of the few
works on transformations of Big Data is discussed in [26], where the authors
address how to exploit Apache Spark as a processing engine for iterative data
preparation processes. However, all the above proposals require manual preparation
of the executions, while in our approach we foresee an automatic deployment of the
pipelines. An issue with all such tools is the lack of documentation that explains how
the proposed solutions have been implemented, and how they can support scalability
when working with distributed workloads, e.g., involving external services.

Semantic table annotation approaches have been proposed for reconciling values
in tables; however, most of them cover only schema-level annotations. Approaches,
such as [10, 27], are sophisticated and are targeted at Web tables, which are very
small (a few hundred rows) and still require considerable computation time, making
them inapplicable in Big Data environments. Karma [9] is a tool that provides an
interface and a collection of algorithms to interpret tables, maps their schema to
an ontology, and learns data transformations. However, Karma does not support
external services for value-level reconciliation and data extension. The tool has been
used in projects where these processing steps have been applied, but without explicit
support by the tool itself [28]. Karma supports the execution of domain-specific
scripts for data manipulations, i.e., to implement data cleaning tasks.

One of the commercial tools that are relevant to this work is Trifacta Wrangler,13

which is a commercial suite of web applications for the exploration and preparation
of raw datasets. The toolkit aims to provide data workers with specific smart tools
to prepare datasets for different analysis types. Advanced techniques of machine
learning, parallel processing, and human–machine interaction are also provided. The
suite consists of three software solutions with increasingly advanced features. Large
volumes of data can be handled by exploiting Cloud data warehouse deployments.
KNIME14 is a free software for analytics with a modular platform for building and
executing workflows using predefined components called nodes. Knime core func-
tionalities are used for standard data mining, analysis, and manipulation, and these
features and functionalities can be extended through extensions from various groups
and vendors. Big Data extensions allow the user to deploy workflows on Apache

12 https://github.com/rmalla1/OpenRefine-HD
13 https://www.trifacta.com
14 https://www.knime.com

https://github.com/rmalla1/OpenRefine-HD
https://www.trifacta.com
https://www.knime.com
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Spark and Hadoop clusters. Talend15 is an Eclipse-based visual programming editor.
Similar to KNIME, Talend uses predefined components (called nodes) to set up a
pipeline, which can be compiled into executable Java code. Talend also provides
an open-source data integration platform with Big Data extensions. None of these
tools offer specific functionality for semantic enrichment. However, it is possible,
using ad hoc methods (such as downloading data sources locally or using SPARQL
queries), to approximate the functionality offered by ASIA. This result, however,
can only be obtained by expert users and through specific code implementation. An
extensive comparison of these tools with ASIA/DataGraft, where several factors are
compared, including the number of correct, incorrect, and missing reconciliations,
as well as the number of ambiguous toponyms correctly recognized, is available in
[29], where the advantages of our solution in the reconciliation task are discussed in
further detail.

6 Conclusions

In this work, we outlined and discussed an approach that addresses the efficient
enrichment of massive datasets. The approach was developed as a result of the
experience gained by closely working with business partners. We linked it to the
practice by identifying the main challenges in the data science field, where actors
need to integrate large datasets but often have limited programming expertise. More-
over, we proposed an open-source solution that features several enrichment services,
which makes KBs accessible to non-expert users, supporting data enrichment both
at the design and run time. Furthermore, repeatability is addressed by packaging
the human expert actions within executable models, which can also be exploited to
run the user-designed enrichment at a larger scale. The first implementation of our
solution was deployed and tested in a real-world scenario. Preliminary experiments
highlighted promising performance in terms of scalability; indeed, the prototype
system was used to successfully execute a data flow to enrich data in the magnitude
of hundreds of GBs continuously. In terms of future work, we plan to further
improve the overall performance by addressing the limitations discussed in Sect.
3.2. We also plan to investigate more sophisticated solutions for entity linking in
tabular data, which is particularly challenging in large tables [30]. To this end, we
plan to develop approaches combining the feedback of possibly more than one users
as proposed for analogous tasks [31].
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15 https://www.talend.com
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Abstract Serverless computing has become very popular today since it largely
simplifies cloud programming. Developers do no longer need to worry about
provisioning or operating servers, and they have to pay only for the compute
resources used when their code is run. This new cloud paradigm suits well for many
applications, and researchers have already begun investigating the feasibility of
serverless computing for data analytics. Unfortunately, today’s serverless computing
presents important limitations that make it really difficult to support all sorts
of analytics workloads. This chapter first starts by analyzing three fundamen-
tal trade-offs of today’s serverless computing model and their relationship with
data analytics. It studies how by relaxing disaggregation, isolation, and simple
scheduling, it is possible to increase the overall computing performance, but at the
expense of essential aspects of the model such as elasticity, security, or sub-second
activations, respectively. The consequence of these trade-offs is that analytics
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applications may well end up embracing hybrid systems composed of serverless
and serverful components, which we call ServerMix in this chapter. We will review
the existing related work to show that most applications can be actually categorized
as ServerMix.

Keywords Serverless computing · Data analytics · Cloud computing

1 Introduction

The chapter relates to the technical priority Data Processing Architectures of the
European Big Data Value Strategic Research & Innovation Agenda [36]. It addresses
the horizontal concerns Data Analytics and The Cloud and HPC of the BDV
Technical Reference Model. The chapter relates to the Systems, Methodologies,
Hardware and Tools cross-sectorial technology enablers of the AI, Data and
Robotics Strategic Research, Innovation & Deployment Agenda [37].

With the emergence of serverless computing, the cloud has found a new
paradigm that removes much of the complexity of its usage by abstracting away the
provisioning of compute resources. This fairly new model was culminated in 2015
by Amazon in its Lambda service. This service offered cloud functions, marketed as
FaaS (Function as a Service), and rapidly became the core of serverless computing.
We say “core,” because cloud platforms usually provide specialized serverless
services to meet specific application requirements, packaged as BaaS (Backend as
a Service). However, the focus of this chapter will be on the FaaS model, and very
often, the words “serverless computing” and “FaaS” will be used interchangeably.
The reason why FaaS drew widespread attention is because with FaaS platforms,
a user-defined function and its dependencies are deployed to the cloud, where they
are managed by the cloud provider and executed on demand. Simply put, users just
write cloud functions in a high-level language and the serverless systems manage
everything else: instance selection, auto-scaling, deployment, sub-second billing,
fault tolerance, and so on. The programming simplicity of functions paves the way
to soften the transition to the cloud ecosystem for end users.

Current practice shows that the FaaS model is well suited for many types of
applications, provided that they require a small amount of storage and memory
(see, for instance, AWS Lambda operational limits [3]). Indeed, this model was
originally designed to execute event-driven, stateless functions in response to user
actions or changes in the storage tier (e.g., uploading a photo to Amazon S3),
which encompasses many common tasks in cloud applications. What was unclear
is whether or not this new computing model could also be useful to execute
data analytics applications. This question was answered partially in 2017 with
the appearance of two relevant research articles: ExCamera [10] and “Occupy the
Cloud” [19]. We say “partially,” because the workloads that both works handled
mostly consisted of “map”-only jobs, just exploiting embarrassingly massive paral-
lelism. In particular, ExCamera proved to be 60% faster and 6x cheaper than using
VM instances when encoding videos on the fly over thousands of Lambda functions.
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The “Occupy the Cloud” paper showcased simple MapReduce jobs executed over
Lambda Functions in their PyWren prototype. In this case, PyWren was 17% slower
than PySpark running on r3.xlarge VM instances. The authors claimed that the
simplicity of configuration and inherent elasticity of Lambda functions outbalanced
the performance penalty. They, however, did not compare the costs between their
Lambda experiments against an equivalent execution with virtual machines (VMs).

While both research works showed the enormous potential of serverless data
analytics, today’s serverless computing offerings importantly restrict the ability
to work efficiently with data. In simpler terms, serverless data analytics are way
more expensive and less performant than cluster computing systems or even
VMs running analytics engines such as Spark. Two recent articles [17, 20] have
outlined the major limitations of the serverless model in general. Remarkably,
[20] reviews the performance and cost of several data analytics applications and
shows that: a MapReduce-like sort of 100 TB was 1% faster than using VMs, but
costing 15% higher; linear algebra computations [33] were 3x slower than an MPI
implementation in a dedicated cluster, but only valid for large problem sizes; and
machine learning (ML) pipelines were 3–5x faster than VM instances, but up to 7x
higher total cost.

Furthermore, existing approaches must rely on auxiliary serverful services to cir-
cumvent the limitations of the stateless serverless model. For instance, PyWren [19]
uses Amazon S3 for storage, coordination, and as indirect communication channel.
Locus [28] uses Redis through the ElastiCache service, while ExCamera [10] relies
on an external VM-based rendezvous and communication service. Also, Cirrus [7]
relies on disaggregated in-memory servers.

The rest of the chapter is structured as follows. Section 1.1 presents the Server-
Mix model. Trade-offs of serverless architectures are analyzed in Sect. 2, while
related work is revisited in Sect. 3. The challenges and advances in CloudButton
project are presented in Sect. 4. Finally, Sect. 5 concludes the chapter.

1.1 On the Path to Serverless Data Analytics: The ServerMix
Model

In the absence of a fully fledged serverless model in today’s cloud platforms (e.g.,
there is no effective solution to the question of serverless storage in the market),
current incarnations of serverless data analytics systems are hybrid applications
combining serverless and serverful services. In this chapter, we identify them as
“ServerMix.” Actually, we will show how most related work can be classified under
the umbrella term of ServerMix. We will first describe the existing design trade-
offs involved in creating ServerMix data analytics systems. We will then show that
it is possible to relax core principles such as disaggregation, isolation, and simple
scheduling to increase performance, but also how this relaxation of the model may
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compromise the auto-scaling ability, security, and even the pricing model and fast
startup time of serverless functions. For example:

• Relaxation of disaggregation: Industry trends show a paradigm shift to dis-
aggregated datacenters [12]. By physically decoupling resources and services,
datacenter operators can easily customize their infrastructure to maximize the
performance-per-dollar ratio. One such example of this trend is serverless
computing. That is, FaaS offerings are of little value by themselves and need
a vast ecosystem of disaggregated services to build applications. In the case
of Amazon, this includes S3 (large object storage), DynamoDB (key-value
storage), SQS (queuing services), SNS (notification services), etc. Consequently,
departing from a serverless data-shipping model built around these services to
a hybrid model where computations can be delegated to the stateful storage tier
can easily achieve performance improvements [30]. However, disaggregation is
the fundamental pillar of improved performance and elasticity in the cloud.

• Relaxation of isolation: Serverless platforms leverage operating system con-
tainers such as Docker to deploy and execute cloud functions. In particular, each
cloud function is hosted in a separate container. However, functions of the same
application may not need such a strong isolation and be co-located in the same
container, which improves the performance of the application [1]. Further, cloud
functions are not directly network-addressable in any way. Thus, providing direct
communication between functions would reduce unnecessary latencies when
multiple functions interact with one another, such that one function’s output is
the input to another one. Leveraging lightweight containers [26], or even using
language-level constructs, would also reduce cold starts and boost inter-function
communication. However, strong isolation and sandboxing is the basis for multi-
tenancy, fault isolation, and security.

• Flexible QoS and scheduling: Current FaaS platforms only allow users to
provision some amount of RAM and a time slice of CPU resources. In the
case of Amazon Lambda, the first determines the other. Actually, there is no
way to access specialized hardware or other resources such as the number of
CPUs, GPUs, etc. To ensure service level objectives (SLOs), users should be
able to specify resource requirements. But, this would lead to implement complex
scheduling algorithms that were able to reserve such resources and even execute
cloud functions in specialized hardware such as GPUs with different isolation
levels. However, this would make it harder for cloud providers to achieve high
resource utilization, as more constraints are put on function scheduling. Simple
user-agnostic scheduling is the basis for short start-up times and high resource
utilization.

It is clear that these approaches would obtain significant performance improve-
ments. But, depending on the changes, such systems would be much closer to
a serverful model based on VMs and dedicated resources than to the essence
of serverless computing. In fact, we claim in this chapter that the so-called
limitations of the serverless model are indeed its defining traits. When applications
should require less disaggregation (computation close to the data), relaxation of
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isolation (co-location, direct communication), or tunable scheduling (predictable
performance, hardware acceleration), a suitable solution is to build a ServerMix
solution. At least for serverless data analytics, we project that in the near future
the dependency on serverful computing will increasingly “vanish,” for instance, by
the appearance of high-throughput, low-latency BaaS storage services, so that many
ServerMix systems will eventually become 100% serverless. Beyond some technical
challenges, we do not see any fundamental reason why pure serverless data analytics
would not flourish in the coming years.

In the meantime, we will scrutinize the ServerMix model to provide a simplified
programming environment, as much closer as possible to serverless, for data
analytics. To this aim, under the context of the H2020 CloudButton project, we
will work on the following three points: (i) Smart scheduling as a mechanism
for providing transparent provisioning to applications while optimizing the cost-
performance tuple in the cloud; (ii) fine-grained mutable state disaggregation built
upon consistent state services; and (iii) lightweight and polyglot serverful isolation-
novel lightweight serverful FaaS runtimes based on WebAssembly [15] as universal
multi-language substrate.

2 Fundamental Trade-Offs of Serverless Architectures

In this section, we will discuss three fundamental trade-offs underpinning cloud
functions architectures—packaged as FaaS offerings. Understand these trade-offs
are important, not just for serverless data analytics but to open the minds of
designers to a broader range of serverless applications. While prior works such
as [17, 20] have already hinted these trade-offs, the contribution of this section
is to explain in more detail that the incorrect navigation of these trade-offs can
compromise essential aspects of the FaaS model.

The first question to ask is which are the essential aspects of the serverless model.
For this endeavor, we will borrow the Amazon’s definition of serverless computing,
which is an unequivocal reference definition of this new technology. According to
Amazon, the four characteristic features of a serverless system are:

• No server management: implies that users do not need to provision or maintain
any servers

• Flexible scaling: entails that the application can be scaled automatically via units
of consumption (throughput, memory) rather than units of individual servers

• Pay for value: is to pay for the use of consumption units rather than server units
• Automated high availability: ensures that the system must provide built-in

availability and fault tolerance.

As we argue in this section, these four defining properties can be put in jeopardy
but relaxing the tensions among three important architectural aspects that support
them. These implementation aspects, which are disaggregation, isolation, and
simple scheduling, and their associated trade-offs, have major implications on the
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success of the FaaS model. In this sense, while a designer can decide to alter one or
more of these trade-offs, for example, to improve performance, an oversimplifying
or no comprehension of them can lead to hurt the four defining properties of the
serverless model. Let us see how the trade-offs affect them.

2.1 Disaggregation

Disaggregation is the idea of decoupling resources over high bandwidth networks,
giving us independent resource pools. Disaggregation has many benefits, but
importantly, it allows each component to (auto-)scale in an independent manner.
In serverless platforms, disaggregation is the standard rather than an option, where
applications are run using stateless functions that share state through disaggregated
storage (e.g., such Amazon S3) [17, 20, 33]. This concept is backed up by the
fact that modern high-speed networks allow for sub-millisecond latencies between
the compute and storage layers—even allowing memory disaggregation like in
InfiniSwap [14].

Despite the apparent small latencies, several works propose to relax disaggre-
gation to favor performance. The reason is that storage hierarchies, across various
storage layers and network delays, make disaggregation a bad design choice for
many latency and bandwidth-sensitive applications such as machine learning [7].
Indeed, [17] considers that one of the limitations of serverless computing is its
data-shipping architecture, where data and state are regularly shipped to functions.
To overcome this limitation, the same paper proposes the so-called fluid code
and data placement concept, where the infrastructure should be able to physically
co-locate code and data. In a similar fashion, [2] proposes the notion of fluid
multi-resource disaggregation, which consists of allowing movement (i.e., fluidity)
between physical resources to enhance proximity, and thus performance. Another
example of weakening disaggregation is [20]. In this paper, authors suggest to co-
locate related functions in the same VM instances for fast data sharing.

Unfortunately, while data locality reduces data movements, it can hinder the
elastic scale-out of compute and storage resources. In an effort to scale out wider
and more elastically, processing mechanisms near the data (e.g., active storage [29])
have not been put at the forefront of cloud computing, though recently numer-
ous proposals and solutions have emerged (see [18] for details). Further, recent
works such as [30] show that active storage computations can introduce resource
contention and interferences into the storage service. For example, computations
from one user can harm the storage service to other users, thereby increasing the
running cost of the application (pay for value). In any case, shipping code to data
will interfere with the flexible scaling of serverless architectures due to the lack of
fast and elastic datastore in the cloud [7].

Furthermore, ensuring locality for serverless functions would mean, for example,
placing related functions in the same server or VM instance, while enabling fast
shared memory between them. This would obviously improve performance in appli-
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cations that require fast access to shared data such as machine learning and PRAM
algorithms, OpenMP-like implementations of parallel algorithms, etc. However, as
pinpointed in [20], besides going against the spirit of serverless computing, this
approach would reduce the flexibility of cloud providers to place functions and
consequently reduce the capacity to scale out while increasing the complexity of
function scheduling. Importantly, this approach would force developers to think
about low-level issues such as server management or whether function locality
might lead suboptimal load balancing among server resources.

2.2 Isolation

Isolation is another fundamental pillar of multi-tenant clouds services. Particularly,
perfect isolation enables a cloud operator to run many functions (and applications)
even on a single host, with low idle memory cost, and high resource efficiency. What
cloud providers seek is to reduce the overhead of multi-tenant function isolation and
provide high-performance (small startup times), for they leverage a wide variety of
isolation technologies such as containers, unikernels, library OSes, or VMs. For
instance, Amazon has recently released Firecracker microVMs for AWS Lambda,
and Google has adopted gVisor. Other examples of isolation technologies for
functions are CloudFlare Workers with WebAssembly or optimized containers such
as SOCK [26]. These isolation techniques reduce startup times to the millisecond
range, as compared to the second timescale of traditional VMs.

Beyond the list of sandboxing technologies for serverless computing, most of
them battled-tested in the industry (e.g., Amazon Firecracker VMs), several research
works have proposed to relax isolation in order to improve performance. For
instance, [2] proposes the abstraction of a process in serverless computing, with
the property that each process can be run across multiple servers. As a consequence
of this multi-server vision, the paper introduces a new form of isolation that ensures
multi-tenant isolation across multiple servers (where the functions of the same
tenant are run). This new concept of isolation is called coordinated isolation in the
paper. Further, [17] proposes two ways of relaxing isolation. The first one is based
on the fluid code and data placement approach, and the second way is by allowing
direct communication and network addressing between functions. In particular, the
paper claims that today’s serverless model stymies distributed computing due to
its lack of direct communication among functions and advocates for long-running,
addressable virtual agents instead.

Another technique to increase performance is to relax isolation and co-locate
functions in the same VMs or containers [1, 20]. Co-location may be achieved using
language-level constructs that reuse containers when possible. This can make sense
for functions belonging to the same tenant [1], since it would heavily reduce cold
starts and execution time for function compositions (or workflows). Unfortunately, it
is possible that independent sets of sandboxed functions compete for the same server
resources and interfere with each other’s performance. Or simply, that it becomes
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impossible to find a single host that have the necessary resources for running a
sandbox of multiple functions, affecting important defining properties of serverless
computing such as flexible scaling, pay for value, and no server management, among
others.

Experiencing similar issues as above, it could be also possible to enable direct
communication between functions of the same tenant. In this case, direct commu-
nication would permit a variety of distributed communication models, allowing, for
example, the construction of replicated shared memory between functions. To put it
baldly, each of these forms of relaxing isolation might in the end increase the attack
surface, for instance, by opening physical co-residency attacks and network attacks
not just to single functions but a collection of them.

2.3 Simple Scheduling

Simple scheduling is another essential pillar of serverless computing. Indeed, cloud
providers can ensure Quality of Service (QoS) and Service Level Agreements
(SLAs) to different tenants by appropriately scheduling the reserved resources and
bill them correspondingly. The goal of cloud scheduling algorithms is to maximize
the utilization of the cloud resources while matching the requirements of the
different tenants.

In today’s FaaS offerings, tenants only specify the cloud function’s memory
size, while the function execution time is severely limited—for instance, AWS
limits the execution time of functions to 15 min. This single constraint simplifies
the scheduling of cloud functions and makes it easy to achieve high resource
utilization through statistical multiplexing. For many developers, this lack of control
on specifying resources, such as the number of CPUs, GPUs, or other types of
hardware accelerators, is seen as an obstacle. To overcome this limitation, a clear
candidate would be to work on more sophisticated scheduling algorithms that
support more constraints on functions scheduling, such as hardware accelerators,
GPUs, or the data dependencies between the cloud functions, which can lead to
suboptimal function placement. For instance, it is not hard to figure out that a
suboptimal placement of functions can result in an excess of communication to
exchange data (e.g., for broadcast, aggregation, and shuffle patterns [20]) or in
suboptimal performance. Ideally, these constraints should be (semi-)automatically
inferred by the platform itself, for instance, from static code analysis, profiling, etc.,
to not break the property of “no server management,” that is, the core principle of
serverless. But even in this case, more constraints on function scheduling would
make it harder to guarantee flexible scaling.

The literature also proposes ideas to provide predictable performance in server-
less environments. For instance, [2] proposes the concept of “fine-grained live
orchestration,” which involves complex schedulers to allocate resources to server-
less processes that run across multiple servers in the datacenter. Hellerstein et al.
[17] advocates for heterogeneous hardware support for functions where developers
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could specify their requirements in DSLs and the cloud providers would then
calculate the most cost-effective hardware to meet user SLOs. This would guarantee
the use of specialized hardware for functions. In [20], it is supported the claim
of harnessing hardware heterogeneity in serverless computing. In particular, it is
proposed that serverless systems could embrace multiple instance types (with prices
according to hardware specs) or that cloud providers may select the hardware
automatically depending on the code (like GPU hardware for CUDA code and TPU
hardware for TensorFlow code).

Overall, the general observation is that putting more constraints on function
scheduling for performance reasons could be disadvantageous in terms of flexible
scaling and elasticity and even hinder high resource utilization. Moreover, it would
complicate the pay per use model, as it would make it difficult to pay for the use of
consumption units, rather than server units, due to hardware heterogeneity.

2.4 Summary

As a summary, we refer to Fig. 1 as a global view of the overall trade-offs.
These trade-offs have serious implications on the serverless computing model and
require careful examination. As we have already seen, disaggregation, isolation,
and simplified scheduling are pivotal to ensure flexible scaling, multi-tenancy, and
millisecond startup times, respectively.

Weakening disaggregation to exploit function and data locality can be useful to
improve performance. However, it also means to decrease the scale-out capacity of
cloud functions and complicate function scheduling in order to meet user SLOs.
The more you move to the left, the closer you are to serverful computing or running
VMs or clusters in the datacenter.

With isolation the effect is similar. Since isolation is the key to multi-tenancy,
completely relaxing isolation leaves nothing but dedicated resources. In your
dedicated VMs, containers, or clusters (serverful), you can run functions very fast

Fig. 1 Trade-offs
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without caring about sandboxing and security. But this also entails more complex
scheduling and pricing models.

Finally, simple scheduling and agnostic function placement is also inherent to
serverless computing. But if you require QoS, SLAs, or specialized hardware,
the scheduling and resource allocation gets more complex. Again, moved to the
extreme, you end up in serverful settings that already exist (dedicated resources,
VMs, or clusters).

Perhaps, the most interesting conclusion of this figure is the region in the middle,
which we call ServerMix computing. The zone in the middle involves applications
that are built combining both serverless and serverful computing models. In fact, as
we will review in the related work, many existing serverless applications may be
considered ServerMix according to our definition.

3 Revisiting Related Work: The ServerMix Approach

3.1 Serverless Data Analytics

Despite the stringent constraints of the FaaS model, a number of works have
managed to show how this model can be exploited to process and transform
large amounts of data [19, 21, 31], encode videos [10], and run large-scale linear
algebra computations [33], among other applications. Surprisingly, and contrary to
intuition, most of these serverless data analytics systems are indeed good ServerMix
examples, as they combine both serverless and serverful components.

In general, most of these systems rely on an external, serverful provisioner
component [10, 19, 21, 31, 33]. This component is in charge of calling and
orchestrating serverless functions using the APIs of the chosen cloud provider.
Sometimes the provisioner is called “coordinator” (e.g., as in ExCamera [10]) or
“scheduler” (e.g., as in Flint [21]), but its role is the same: orchestrating functions
and providing some degree of fault tolerance. But the story does not end here.
Many of these systems require additional serverful components to overcome the
limitations of the FaaS model. For example, recent works such as [28] use
disaggregated in-memory systems such as ElastiCache Redis to overcome the
throughput and speed bottlenecks of slow disk-based storage services such as S3. Or
even external communication or coordination services to enable the communication
among functions through a disaggregated intermediary (e.g., ExCamera [10]).

To fully understand the different variants of ServerMix for data analytics, we
will review each of the systems one by one in what follows. Table 1 details which
components are serverful and serverless for each system.

PyWren [19] is a proof of concept that MapReduce tasks can be run as serverless
functions. More precisely, PyWren consists of a serverful function scheduler (i.e.,
a client Python application) that permits to execute “map” computations as AWS
Lambda functions through a simple API. The “map” code to be run in parallel is
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Table 1 ServerMix applications

Components

Systems Serverful Serverless

PyWren [19] Scheduler AWS Lambda, Amazon S3

IBM PyWren [31] Scheduler IBM Cloud Functions, IBM COS,
RabbitMQ

ExCamera [10] Coordinator and rendezvous
servers (Amazon EC2 VMs)

AWS Lambda, Amazon S3

gg [11] Coordinator AW Lambda, Amazon S3, Redis

Flint [21] Scheduler (Spark context on client
machine)

AW Lambda, Amazon S3,
Amazon SQS

Numpywren [33] Provisioner, scheduler (client
process)

AWS Lambda, Amazon S3,
Amazon SQS

Cirrus [20] Scheduler, parameter servers
(large EC2 VM instances with
GPUs)

AWS Lambda, Amazon S3

Locus [28] Scheduler, Redis service (AWS
ElastiCache)

AWS Lambda, Amazon S3

first serialized and then stored in Amazon S3. Next, PyWren invokes a common
Lambda function that deserializes the “map” code and executes it on the relevant
datum, both extracted from S3. Finally, the results are placed back into S3. The
scheduler actively polls S3 to detect that all partial results have been uploaded to S3
before signaling the completion of the job.

IBM-PyWren [31] is a PyWren derived project which adapts and extends
PyWren for IBM Cloud services. It includes a number of new features, such as
broader MapReduce support, automatic data discovery and partitioning, integration
with Jupiter notebooks, and simple function composition, among others. For func-
tion coordination, IBM-PyWren uses RabbitMQ to avoid the unnecessary polling
to the object storage service (IBM COS), thereby improving job execution times
compared with PyWren.

ExCamera [10] performs digital video encoding by leveraging the parallelism
of thousands of Lambda functions. Again, ExCamera uses serverless components
(AWS Lambda, Amazon S3) and serverful ones (coordinator and rendezvous
servers). In this case, apart from a coordinator/scheduler component that starts and
coordinates functions, ExCamera also needs a rendezvous service, placed in an EC2
VM instance, to communicate functions among each other.

Stanford’s gg [11] is an orchestration framework for building and executing
burst-parallel applications over Cloud Functions. gg presents an intermediate
representation that abstracts the compute and storage platform, and it provides
dependency management and straggler mitigation. Again, gg relies on an external
coordinator component, and an external Queue for submitting jobs (gg’s thunks) to
the execution engine (functions, containers).

Flint [21] implements a serverless version of the PySpark MapReduce frame-
work. In particular, Flint replaces Spark executors by Lambda functions. It is similar
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to PyWren in two main aspects. On the one hand, it uses an external serverful
scheduler for function orchestration. On the other hand, it leverages S3 for input
and output data storage. In addition, Flint uses Amazon’s SQS service to store
intermediate data and perform the necessary data shuffling to implement many of
the PySpark’s transformations.

Numpywren [33] is a serverless system for executing large-scale dense linear
algebra programs. Once again, we observe the ServerMix pattern in numpywren.
As it is based on PyWren, it relies on an external scheduler and Amazon S3 for
input and output data storage. However, it adds an extra serverful component in the
system called provisioner. The role of the provisioner is to monitor the length of the
task queue and increase the number of Lambda functions (executors) to match the
dynamic parallelism during a job execution. The task queue is implemented using
Amazon SQS.

Cirrus machine learning (ML) project [20] is another example of a hybrid system
that combines serverful components (parameter servers, scheduler) with serverless
ones (AWS Lambda, Amazon S3). As with linear algebra algorithms, a fixed cluster
size can either lead to severe underutilization or slowdown, since each stage of a
workflow can demand significantly different amounts of resources. Cirrus addresses
this challenge by enabling every stage to scale to meet its resource demands by
using Lambda functions. The main problem with Cirrus is that many ML algorithms
require state to be shared between cloud functions, for it uses VM instances to share
and store intermediate state. This necessarily converts Cirrus into another example
of a ServerMix system.

Finally, the most recent example of ServerMix is Locus [28]. Locus targets one
of the main limitations of the serverless stateless model: data shuffling and sorting.
Due to the impossibility of function-to-function communication, shuffling is ill-
suited for serverless computing, leaving no other choice but to implement it through
an intermediary cloud service, which could be cost-prohibitive to deliver good
performance. Indeed, the first attempt to provide an efficient shuffling operation
was realized in PyWren [19] using 30 Redis ElastiCache servers, which proved to
be a very expensive solution. The major contribution of Locus was the development
of a hybrid solution that considers both cost and performance. To achieve an optimal
cost-performance trade-off, Locus combined a small number of expensive fast Redis
instances with the much cheaper S3 service, achieving comparable performance to
running Apache Spark on a provisioned cluster.

We did not include SAND [1] in the list of ServerMix systems. Rather, it proposes
a new FaaS runtime. In the article, the authors of SAND present it as an alter-
native high-performance serverless platform. To deliver high performance, SAND
introduces two relaxations in the standard serverless model: one in disaggregation,
via a hierarchical message bus that enables function-to-function communication,
and another in isolation, through application-level sandboxing that enables packing
multiple application-related functions together into the same container. Although
SAND was shown to deliver superior performance than Apache OpenWhisk, the
paper failed to evaluate how these relaxations can affect the scalability, elasticity,
and security of the standard FaaS model.
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3.2 Serverless Container Services

Hybrid cloud technologies are also accelerating the combination of serverless and
serverful components. For instance, the recent deployment of Kubernetes (k8s) clus-
ters in the big cloud vendors can help overcome the existing application portability
issues in the cloud. There exists a plenty of hosted k8s services such as Amazon
Elastic Container Service (EKS), Google Kubernetes Engine (GKE), and Azure
Kubernetes Service (AKS), which confirm that this trend is gaining momentum.
However, none of these services can be considered 100% “serverless.” Rather, they
should be viewed as a middle ground between cluster computing and serverless
computing. That is, while these hosted services offload operational management of
k8s, they still require custom configuration by developers. The major similarity to
serverless computing is that k8s can provide short-lived computing environments
like in the customary FaaS model.

But a very interesting recent trend is the emergence of the so-called serverless
container services such as IBM Code Engine, AWS Fargate, Azure Container
Instances (ACI), and Google Cloud Run (GCR). These services reduce the complex-
ity of managing and deploying k8s clusters in the cloud. While they offer serverless
features such as flexible automated scaling and pay-per-use billing model, these
services still require some manual configuration of the right parameters for the
containers (e.g., compute, storage, and networking) as well as the scaling limits
for a successful deployment.

These alternatives are interesting for long-running jobs such as batch data
analytics, while they offer more control over the applications thanks to the use of
containers instead of functions. In any case, they can be very suitable for stateless,
scalable applications, where the services can scale out by easily adding or removing
container instances. In this case, the user establishes a simple CPU or memory
threshold and the service is responsible for monitoring, load balancing, and instance
creation and removal. It must be noted that if the service or application is more
complex (e.g., a stateful storage component), the utility of these approaches is rather
small, or they require important user intervention.

An important open source project related to serverless containers is CNCF’s
KNative. In short, KNative is backed by big vendors such as Google, IBM,
and RedHat, among others, and it simplifies the creation of serverless containers
over k8s clusters. Knative simplifies the complexity of k8s and Istio service
mesh components, and it creates a promising substrate for both PaaS and FaaS
applications.

As a final conclusion, we foresee that the simplicity of the serverless model
will gain traction among users, so many new offerings may emerge in the next few
years, thereby blurring the borders between both serverless and serverful models.
Further, container services may become an interesting architecture for ServerMix
deployments.
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4 CloudButton: Towards Serverless Data Analytics

Serverless technologies will become a key enabler for radically simpler, user-
friendly data analytics systems in the coming years. However, achieving this goal
requires a programmable framework that goes beyond the current FaaS model and
has user-adjustable settings to alter the IDS (Isolation-Disaggregation-Scheduling)
trade-off (see Sect. 2 for more details)—for example, by weakening function
isolation for better performance.

The EU CloudButton project [8] was born out of this need. It has been heavily
inspired by “Occupy the Cloud” paper [19] and the statement made by a professor
of computer graphics at UC Berkeley quoted in that paper:

“Why is there no cloud button?” He outlined how his students simply wish
they could easily “push a button” and have their code—existing, optimized,
single-machine code—running on the cloud.”

Consequently, our primary goal is to create a serverless data analytics platform,
which “democratizes Big Data” by overly simplifying the overall life cycle and
cloud programming models of data analytics. To this end, the 3-year CloudBut-
ton research project (2019–2021) will be undertaken as a collaboration between
key industrial partners such as IBM, RedHat, and Atos, and academic partners
such as Imperial College London, Institut Mines Télécom/Télécom SudParis, and
Universitat Rovira i Virgili. To demonstrate the impact of the project, we target
two settings with large data volumes: bioinformatics (genomics, metabolomics)
and geospatial data (LiDAR, satellital), through institutions and companies such
as EMBL, Pirbright Institute, Answare, and Fundación Matrix.

The project aims to provide full transparency [13] for applications which implies
that we will be able to run unmodified single-machine code over effectively unlim-
ited compute, storage, and memory resources thanks to serverless disaggregation
and auto-scaling.

As we can see in Fig. 2, the CloudButton′s Lithops toolkit [32] will realize this
vision of transparency relying on the next building blocks:

• A high-performance serverless compute engine for Big Data: The main goal
is to support stateful and highly performant execution of serverless tasks. It
will also provide efficient QoS management of containers that host serverless
functions and a serverless execution framework to support typical dataflow
models. As we can see in the Fig. 2, our design includes an extensible backend
architecture for compute and storage that covers the major Cloud providers and
Kubernetes cluster technologies.

• Mutable, shared data support in serverless computing: To simplify the
transitioning from sequential to (massively-)parallel code, CloudButton has
designed the Crucial [5] middleware on top of RedHat Infinispan that allows



Trade-Offs and Challenges of Serverless Data Analytics 55

CloudButton Toolkit

Orchestrator

module
analyzerserializer

Federated FaaS
Invoker

Storage Backend

Serverless Compute
Backend

Result
Worker

Runtime
Function

+
Modules

Data

Mutable Shared
Data

SLAQoSQoS

Triggers

Fig. 2 CloudButton architecture

the quickly spawning and easy sharing of mutable data structures in serverless
platforms. This goal will explore the disaggregation area of the IDS trade-off.

• Novel serverless cloud programming abstractions: The goal is to express
a wide range of existing data-intensive applications with minimal changes.
The programming model should at the same time preserve the benefits of a
serverless execution model and add explicit support for stateful functions in
applications. Thanks to Lithops [32] and FaaSM [34] the toolkit will support
almost unmodified data analytics applications in Python [32] but also C/C++
applications [34] using MPI and OpenMP programming models.
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In what follows, we will delve deeper into each of these goals, highlighting in
more detail the advance of each one with respect to the state of the art.

4.1 High-performance Serverless Runtime

In many real-life cloud scenarios, enterprise workloads cannot be straightforwardly
moved to a centralized public cloud due to the cost, regulation, latency and
bandwidth, or a combination of these factors. This forces enterprises to adopt a
hybrid cloud solution. However, current serverless frameworks are centralized and,
out-of-the-box, they are unable to leverage computational capacity available in
multiple locations.

Big Data analytics pipelines (a.k.a. analytics workflows) need to be efficiently
orchestrated. There exists many serverless workflows orchestration tools (Fission
flows, Argo, Apache Airflow), ephemeral serverless composition frameworks (IBM
Composer), and stateful composition engines (Amazon Step Functions, Azure
Durable Functions). To the best of our knowledge, workflow orchestration tools
treat FaaS runtimes as black boxes that are oblivious to the workflow structure. A
major issue with FaaS, which is exacerbated in a multi-stage workflow, is its data
shipment architecture. Usually, the data is located in a separate storage service, such
as Amazon S3 or IBM COS, and shipped for computation to the FaaS cluster. In
general, FaaS functions are not scheduled with data locality in mind, even though
data locality can be inferred from the workflow structure.

Further, and to the best of our knowledge, none of the existing workflow
orchestration tools is serverless in itself. That is, the orchestrator is usually a
stateful, always-on service. This is not necessarily the most cost-efficient approach
for long running big data analytics pipelines, which might have periods of very high
peakedness requiring massive parallelism interleaved with long periods of inactivity.

In CloudButton, we address the above challenges as follows:

• Federated FaaS Invoker: CloudButton exploits k8s federation architecture to
provide a structured multi-clustered FaaS run time to facilitate analytics pipelines
spanning multiple k8s clusters and Cloud Backends.

• SLA, QoS, and scheduling: programmers will be enabled to specify desired QoS
levels for their functions. These QoS constraints will be enforced by a specialized
scheduler (implemented via the k8s custom scheduler framework).

• Serverless workflow orchestration: we have constructed a Trigger-based
orchestration framework [24] for ServerMix analytics pipelines. Tasks in the
supported workflows can include massively parallel serverless computations
carried out in Lithops.

• Operational efficiency: an operations cost-efficiency advisor will track the time
utilization of each ServerMix component and submit recommendations on its
appropriate usage.
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4.2 Mutable Shared Data for Serverless Computing

In serverless Big Data applications, thousands of functions run in a short time. From
a storage perspective, this requires the ability to scale abruptly the system to be on
par with demand. To achieve this, it is necessary to decrease startup times (e.g., with
unikernels [25]) and consider new directions for data distribution (e.g., Pocket [22]).

Current serverless computing platforms outsource state management to a dedi-
cated storage tier (e.g., Amazon S3). This tier is agnostic of how data is mutated
by functions, requiring serialization. This is cumbersome for complex data types,
decreases code modularity and re-usability, and increases the cost of manipulating
large objects. In contrast, we advocate that the storage tier should support in-place
modifications. Additionally, storage requirements for serverless Big Data include:

• Fast access (sub-millisecond) to ephemeral mutable data: to support iterative and
stateful computations (e.g., ML algorithms)

• Fine-grained operations to coordinate concurrent function invocations
• Dependability: to transparently support failures in both storage and compute

tiers.

In CloudButton, we tackle these challenges by designing a novel storage layer
for stateful serverless computation called Crucial [5]. Our goal is to simplify the
transitioning from single-machine to massively parallel code. This requires new
advances on data storage and distributed algorithms, such as:

• Language support for mutable shared data. The programmer can declare
mutable shared data types in a piece of serverless code in a way transparently
integrated to the programming language (e.g., with annotations). The storage tier
knows the data types, allowing in-place mutations to in-memory shared data.

• Data consistency. Shared data objects are distributed and replicated across the
storage layer, while maintaining strong consistency. To improve performance,
developers can degrade data consistency [4, 35] on a per-object basis.

• Just-right synchronization. The implementation uses state machine replication
atop a consensus layer [23, 27]. This layer self-adjusts to each shared data item,
synchronizing replicas only when necessary, which improves performance.

4.3 Novel Serverless Cloud Programming Abstractions: The
CloudButton Toolkit

Containers are the foundation of serverless runtimes, but the abstractions and
isolation they offer can be restrictive for many applications. A hard barrier between
the memory of co-located functions means all data sharing must be done via
external storage, precluding data-intensive workloads and introducing an awkward
programming model. Instantiating a completely isolated runtime environment for
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each function is not only inefficient but at odds with how most language runtimes
were designed.

This isolation boundary and runtime environment have motivated much prior
work. A common theme is optimizing and modifying containers to better suit the
task, exemplified by SOCK [26], which makes low-level changes to improve start-
up times and efficiency. Others have partly sacrificed isolation to achieve better
performance, for example, by co-locating a tenant’s functions in the same container
[1]. Also, a few frameworks for building serverless applications have emerged [10,
19, 21]. But these systems still require a lot of engineering effort to port existing
applications.

Software fault isolation (SFI) has been proposed as an alternative isolation
approach, offering memory-safety at low cost [6]. Introducing an intermediate
representation (IR) to unify the spectrum of languages used in serverless has also
been advocated [17]. WebAssembly is perfectly suited on both counts. It is an IR
built on the principles of SFI, designed for executing multi-tenant code [16]. This
is evidenced by its use in proprietary serverless technologies such as CloudFlare
Workers and Fastly’s Terrarium [9].

With the CloudButton toolkit, we build on these ideas and re-examine the
serverless programming and execution environment. We have investigated new
approaches to isolation and abstraction, focusing on the following areas:

• Lightweight serverless isolation. In the Faasm Backend [34], we combine SFI,
WebAssembly, and existing OS tooling to build a new isolation mechanism,
delivering strong security guarantees at a fraction of the cost of containers.

• Efficient localized state. This new isolation approach allows sharing regions of
memory between co-located functions, enabling low-latency parallel processing
and new opportunities for inter-function communication.

• Stateful programming abstractions. To make CloudButton programming
seamless, we have created a new set of abstractions [5, 34], allowing users
to combine stateful middleware with efficient localized state to easily build
high-performance parallel applications.

• Polyglot libraries and tooling. By using a shared IR we can reuse abstractions
across multiple languages. In this manner we will build a suite of generic
tools to ease porting existing applications in multiple languages, including the
CloudButton genomics and geospatial use-cases.

5 Conclusions and Future Directions

In this chapter, we have first analyzed three important architectural trade-offs
of serverless computing: disaggregation, isolation, and simple scheduling. We
have explained that by relaxing those trade-offs, it is possible to achieve higher
performance, but also how that loosening can impoverish important serverless traits
such as elasticity, multi-tenancy support, and high resource utilization. Moving the
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trade-offs to the extremes, we have distinguished between serverful and serverless
computing, and we have also introduced the new concept of ServerMix computing.

ServerMix systems combine serverless and serverful components to accomplish
an analytics task. An ideal ServerMix system should keep resource provisioning
transparent to the user and consider the cost-performance ratio as first citizen.

Finally, we have presented the CloudButton Serverless Data Analytics Platform
and explained how it addresses the aforementioned trade-offs. CloudButton has
demonstrated different levels of transparency for applications, enabling to run
unmodified single-machine code over effectively unlimited compute, storage, and
memory resources thanks to serverless disaggregation and auto-scaling. We predict
that next-generation Cloud systems will offer a fully Serverless experience to users
by combining both Serverless and Serverful infrastructures in a transparent way.
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Big Data and AI Pipeline Framework:
Technology Analysis
from a Benchmarking Perspective

Arne J. Berre, Aphrodite Tsalgatidou, Chiara Francalanci, Todor Ivanov,
Tomas Pariente-Lobo, Ricardo Ruiz-Saiz, Inna Novalija,
and Marko Grobelnik

Abstract Big Data and AI Pipeline patterns provide a good foundation for the
analysis and selection of technical architectures for Big Data and AI systems. Expe-
riences from many projects in the Big Data PPP program has shown that a number of
projects use similar architectural patterns with variations only in the choice of vari-
ous technology components in the same pattern. The project DataBench has devel-
oped a Big Data and AI Pipeline Framework, which is used for the description of
pipeline steps in Big Data and AI projects, and supports the classification of bench-
marks. This includes the four pipeline steps of Data Acquisition/Collection and
Storage, Data Preparation and Curation, Data Analytics with AI/Machine Learning,
and Action and Interaction, including Data Visualization and User Interaction as
well as API Access. It has also created a toolbox which supports the identification
and use of existing benchmarks according to these steps in addition to all of the
different technical areas and different data types in the BDV Reference Model. An
observatory, which is a tool, accessed via the toolbox, for observing the popularity,
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importance and the visibility of topic terms related to Artificial Intelligence and Big
Data technologies has also been developed and is described in this chapter.

Keywords Benchmarking · Big Data and AI Pipeline · Blueprint · Toolbox ·
Observatory

1 Introduction

Organizations rely on evidence from the benchmarking domain to provide answers
to how their processes are performing. There is extensive information on why and
how to perform technical benchmarks for the specific management and analytics
processes, but there is a lack of objective, evidence-based methods to measure
the correlation between Big Data Technology (BDT) benchmarks and business
benchmarks of an organization and demonstrate return on investment. When more
than one benchmarking tool exist for a given need, there is even less evidence as
to how these tools compare to each other, and how the results can affect their
business objectives. The DataBench project has addressed this gap by designing
a framework to help European organizations developing BDT to reach for excel-
lence and constantly improve their performance, by measuring their technology
development activity against parameters of high business relevance. It thus bridges
the gap between technical and business benchmarking of Big Data and Analytics
applications.

The Business Benchmarks of DataBench focus on Quantitative benchmarks
for areas such as Revenue increase, Profit increase and Cost reduction and on
Qualitative benchmarks for areas such as Product and Service quality, Customer
satisfaction, New Products and Services launched and Business model innovation.
The business benchmarks are calculated on the basis of certain business Key
Performance Indicators (KPIs). The business KPIs selected by the project are valid
metrics and can be used as benchmarks for comparative purposes by researchers or
business users for each of the industry and company-size segments measured. These
indicators have been classified in the following four features which group relevant
indicators from different points of views: Business features, Big Data Application
features, Platform and Architecture features, Benchmark-specific features. For
each feature, specific indicators have been defined. Actually, none of the existing
Big Data benchmarks make any attempt to relate the technical measurements
parameters, metrics and KPIs (like Latency, Fault tolerance, CPU utilization, Mem-
ory utilization, Price performance, Energy, bandwidth, data access patterns, data
processed per second, data processed per joule, query time, execution time, number
of completed jobs) with the business metrics and KPIs (like operational efficiency,
increased level of transparency, optimized resource consumption, improved process
quality and performance), customer experience (increased customer loyalty and
retention, precise customer segmentation and targeting, optimized customer interac-
tion and service), or new business models (expanded revenue streams from existing
products, creation of new revenue streams from entirely (new) data products).
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This chapter presents a Big Data and AI Pipeline Framework that supports
technology analysis and benchmarking for both the horizontal and vertical technical
priorities of the European Big Data Value Strategic Research and Innovation
Agenda [1], and also for the cross-sectorial technology enablers of the AI, Data
and Robotics Strategic Research, Innovation and Deployment Agenda [2]. In the
following sections, we focus on the DataBench approach for Technical Benchmarks
which are using a Big Data and AI Pipeline model as an overall framework, and
they are further classified depending on the various areas of the Big Data Value
(BDV) Reference Model. Technical benchmarks are also related to the areas of the
AI Strategic Research, Innovation and Deployment Agenda (SRIDA) [1] and the
ISO SC42 Big Data and AI Reference models [3].

The DataBench Framework is accompanied by a Handbook and a Toolbox,
which aim to support industrial users and European technology developers who need
to make informed decisions on Big Data Technologies investments by optimizing
technical and business performance. The Handbook presents and explains the main
reference models used for technical benchmarking analysis. The Toolbox is a
software tool that provides access to benchmarking services; it helps stakeholders
(1) to identify the use cases where they can achieve the highest possible business
benefit and return on investment, so they can prioritize their investments; (2) to
select the best technical benchmark to measure the performance of the technical
solution of their choice; and (3) to assess their business performance by comparing
their business impacts with those of their peers, so they can revise their choices
or their organization if they find they are achieving less results than median
benchmarks for their industry and company size. Therefore, the services provided by
the Toolbox and the Handbook support users in all phases of their journey (before,
during and in the ex-post evaluation of their BDT investment) and from both the
technical and business viewpoints.

In the following section, we present the Big Data and AI Pipeline Framework,
which is used for the description of pipeline steps in Big Data and AI projects, and
which supports the classification of benchmarks; the framework also serves as a
basis for demonstrating the similarities among Big Data projects such as those in
the Big Data Value Public-Private Partnership (BDV PPP) program [4]. We also
discuss its relationship with the BDV Reference Model and the Strategic Research
and Innovation Agenda (SRIA) [1] and the Strategic Research, Innovation and
Deployment Agenda (SRIDA) for a European AI, Data and Robotics Partnership
(AI PPP SRIDA) [2]. In Sect. 3, we present Big Data and AI Pipeline examples
from the DataBio project [5] for IoT, Graph and SpatioTemporal data. In Sect.
4, we present categorizations of architectural blueprints for realisations of the
various steps of the Big Data and AI Pipeline with variations depending on the
processing types (batch, real-time, interactive), the main data types involved and
on the type of access/interaction (which can be API access action/interaction or
a Human interaction). Specializations can also be more complex aggregations/-
compositions of multiple specializations/patterns. These blueprints are a basis for
selecting specializations of the pipeline that will fit the needs of various projects
and instantiations. Section 5 presents how existing Big Data and AI Technical
Benchmarks have been classified according to the Big Data and AI Pipeline
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Framework that is presented in Sect. 2. These are benchmarks that are suitable
for benchmarking of technologies related to the different parts of the pipeline
and associated technical areas. Section 6 describes the DataBench Toolbox as
well as the DataBench Observatory, which is a tool (accessed via the toolbox)
for observing the popularity, importance and the visibility of topic terms related
to Artificial Intelligence and Big Data, with particular attention dedicated to the
concepts, methods, tools and technologies in the area of Benchmarking. Finally, the
conclusions in Sect. 7 present a summary of the contributions and plans for further
evolution and usage of the DataBench Toolbox.

2 The Big Data and AI Pipeline Framework

The Big Data and AI Pipeline Framework is based on the elements of the Big Data
Value (BDV) Big Data Value Reference Model, developed by the Big Data Value
Association (BDVA) [1]. In order to have an overall usage perspective on Big Data
and AI systems, a top-level generic pipeline has been introduced to understand the
connections between the different parts of a Big Data and AI system in the context
of an application flow. Figure 1 depicts this pipeline, following the Big Data and AI
Value chain.

The steps of the Big Data and AI Pipeline Framework are also harmonized with
the ISO SC42 AI Committee standards [3], in particular the Collection, Preparation,
Analytics and Visualization/Access steps within the Big Data Application Layer
of the recent international standard ISO 20547-3 Big Data reference architecture
within the functional components of the Big Data Reference Architecture [3, 6].
The following figure shows how the Big Data and AI Pipeline can also be related
to the BDV Reference Model and the AI PPP Ecosystem and Enablers (from
SRIDA AI). Benchmarks often focus on specialized areas within a total system
typically identified by the BDV Reference Model. This is in particular useful for
the benchmarking of particular technical components. Benchmarks can also be
directly or indirectly linked to the steps of a Big Data and AI Pipeline, which is
useful when benchmarks are being considered from a Big Data and AI application
perspective, where practical project experiences has shown that these steps can
easily be recognized in most application contexts.

Benchmarks are useful both for the evaluation of alternative technical solutions
within a Big Data and AI project and for comparing new technology develop-

Analy�cs/AI/
Machine Learning

(including data 
analy�cs, ML model 

training, model 
verifica�on, opera�on)

Ac�on/Interac�on,
Visualisa�on/Access

(including  data presenta�on 
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Data 
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Fig. 1 Top-level, generic Big Data and AI Pipeline pattern
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ments/products with alternative offerings. This can be done both from a technical
area perspective for selected components and from a pipeline step perspective when
seen from the steps of a Big Data and AI application.

As it can be seen in Fig. 1, this pipeline is at a high level of abstraction. Therefore,
it can be easily specialized in order to describe more specific pipelines, depending on
the type of data and the type of processing (e.g. IoT data and real-time processing).
The 3D cube in Fig. 2 depicts the steps of this pipeline in relation to the type of
data processing and the type of data being processed. As we can see in this figure,
the type of data processing, which has been identified as a separate topic area in
the BDV Reference Model, is orthogonal to the pipeline steps and the data types.
This is due to the fact that different processing types, like batch/data-at-rest and
real-time/data-in-motion and interactive, can span across different pipeline steps
and can handle different data types, as the ones identified in the BDV Reference
Model, within each of the pipeline steps. Thus, there can be different data types like
structured data, times series data, geospatial data, media, image, video and audio
data, text data, including natural language data, and graph data, network/web data
and metadata, which can all imply differences in terms of storage and analytics
techniques.

Other dimensions can similarly be added for a multi-dimensional cube, e.g. for
Application domains, and for the different horizontal and vertical technology areas
of the BDV Reference Model, and for the technology locations of the Computing
Continuum/Trans Continuum—from Edge, through Fog to Cloud and HPC—for
the actual location of execution of the four steps, which can happen on all these
levels. The same orthogonality can be considered for the area of Data Protection,
with Privacy and anonymization mechanisms to facilitate data protection. It also has
links to trust mechanisms like Blockchain technologies, smart contracts and various

Fig. 2 Top-level, generic Big Data and AI Pipeline cube
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forms for encryption. This area is also associated with the area of CyberSecurity,
Risk and Trust.

The BDV Reference Model shown in Fig. 3 has been developed by the BDVA
[1], taking into account input from technical experts and stakeholders along the
whole Big Data Value chain as well as interactions with other related Public–
Private Partnerships (PPPs). An explicit aim of the BDV Reference Model in the
SRIA 4.0 document is to also include logical relationships to other areas of a digital
platform such as Cloud, High Performance Computing (HPC), IoT, Networks/5G,
CyberSecurity, etc.

The following describes the steps of the Big Data and AI Pipeline shown on the
left of the BDV Reference Model in Fig. 3, with lines connecting them to the typical
usage of some of the main technical areas.

Data Acquisition/Collection This step includes acquisition and collection from
various sources, including both streaming data and data extraction from relevant
external data sources and data spaces. It includes support for handling all relevant
data types and also relevant data protection handling for this step. This step is often
associated with the use of both real-time and batch data collection, and associated
streaming and messaging systems. It uses enabling technologies in the area using
data from things/assets, sensors and actuators to collect streaming data-in-motion
as well as connecting to existing data sources with data-at-rest. Often, this step also
includes the use of relevant communication and messaging technologies.

Data Storage/Preparation This step includes the use of appropriate storage
systems and data preparation and curation for further data use and processing.
Data storage includes the use of data storage and retrieval in different databases
systems—both SQL and NoSQL, like key-value, column-based storage, document
storage and graph storage, as well as storage structures such as file systems. This is
an area where there historically exist many benchmarks to test and compare various
data storage alternatives. Tasks performed in this step also include further data
preparation and curation as well as data annotation, publication and presentation
of the data in order to be available for discovery, reuse and preservation. Further
in this step, there is also interaction with various data platforms and data spaces
for broader data management and governance. This step is also linked to handling
associated aspects of data protection.

Analytics/AI/Machine Learning This step handles data analytics with relevant
methods, including descriptive, predictive and prescriptive analytics and use of
AI/Machine Learning methods and algorithms to support decision making and
transfer of knowledge. For Machine learning, this step also includes the subtasks
for necessary model training and model verification/validation and testing, before
actual operation with input data. In this context, the previous step of data storage
and preparation will provide data input both for training and validation and test
data, as well as operational input data.

Action/Interaction, Visualization and Access This step (including data presen-
tation environment/boundary/user action and interaction) identifies the boundary
between the system and the environment for action/interaction, typically through
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a visual interface with various data visualization techniques for human users
and through an API or an interaction interface for system boundaries. This is
a boundary where interactions occur between machines and objects, between
machines, between people and machines and between environments and machines.
The action/interaction with the system boundaries can typically also impact the
environment to be connected back to the data acquisition/collection step, collecting
input from the system boundaries.

The above steps can be specialized based on the different data types used in
the various applications, and are set up differently based on different processing
architectures, such as batch, real-time/streaming or interactive. Also, with Machine
Learning there is a cycle starting from training data and later using operational data
(Fig. 4).

The steps of the Big Data and AI Pipeline can relate to the AI enablers as follows:

Data Acquisition/Collection Using enablers from Sensing and Perception tech-
nologies, which includes methods to access, assess, convert and aggregate signals
that represent real-world parameters into processable and communicable data assets
that embody perception.

Data Storage/Preparation Using enablers from Knowledge and learning tech-
nologies, including data processing technologies, which cover the transformation,
cleaning, storage, sharing, modelling, simulation, synthesising and extracting of
insights of all types of data, both that gathered through sensing and perception
as well as data acquired by other means. This will handle both training data and
operational data. It will further use enablers for Data for AI, which handles the
availability of the data through data storage through data spaces, platforms and data
marketplaces in order to support data-driven AI.

Analytics/AI/Machine Learning Using enablers from Reasoning and Decision
making which is at the heart of Artificial Intelligence. This technology area also
provides enablers to address optimization, search, planning, diagnosis and relies on
methods to ensure robustness and trustworthiness.

Action/Interaction, Visualization and Access Using enablers from Action and
Interaction—where Interactions occur between machines and objects, between
machines, between people and machines and between environments and machines.
This interaction can take place both through human user interfaces as well as
through various APIs and system access and interaction mechanisms. The action/in-
teraction with the system boundaries can typically also be connected back to the data
acquisition/collection step, collecting input from the system boundaries.

These steps are also harmonized with the emerging pipeline steps in ISO SC42
AI standard of “Framework for Artificial Intelligence (AI) Systems Using Machine
Learning (ML), ISO/IEC 23053, with Machine Learning Pipeline with the related
steps of Data Acquisition, Data Pre-processing, Modeling, Model Deployment and
Operation.
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Benchmarks can be identified related both to technical areas within the BDV
Reference Model and the AI Frameworks and to the various steps in the DataBench
Toolbox that supports both perspectives.

3 Big Data and AI Pipeline Examples for IoT, Graph
and SpatioTemporal Data: From the DataBio Project

In the following, we present example pipelines which handle different data types.
Specifically, they handle IoT data, Graph data and Earth Observation/Geospatial
data. Each pipeline is mapped to the four phases of the top-level Generic Big
Data and AI Pipeline pattern, presented in Sect. 2. All these pipelines have been
developed in the DataBio project [5], which was funded by the European Union’s
Horizon 2020 research and innovation programme. DataBio focused on utilizing
Big Data to contribute to the production of the best possible raw materials from
agriculture, forestry, and fishery/aquaculture for the bioeconomy industry in order
to produce food, energy and biomaterials, also taking into account responsibility
and sustainability issues. The pipelines that are presented below are the result of
aggregating Big Data from the three aforementioned sectors (agriculture, forestry
and fishery) and intelligently processing, analysing and visualising them.

Pipeline for IoT Data Real-Time Processing and Decision Making
The “Pipeline for IoT data real-time processing and decision making” has been
applied to three pilots in the DataBio project from the agriculture and fishery
domain, and, since it is quite generic, it can also be applied to other domains. The
main characteristic of this pipeline is the collection of real-time data coming from
IoT devices to generate insights for operational decision making by applying real-
time data analytics on the collected data. Streaming data (a.k.a. events) from IoT
sensors (e.g. are collected in real-time, for example: agricultural sensors, machinery
sensors, fishing vessels monitoring equipment. These streaming data can then be
pre-processed in order to lower the amount of data to be further analysed. Pre-
processing can include filtering of the data (filtering out irrelevant data and filtering
in only relevant events), performing simple aggregation of the data, and storing the
data (e.g. on cloud or other storage model, or even simply as a computer’s file
system) such that conditional notification on data updates to subscribers can be
done. After being pre-processed, data enters the complex event processing (CEP)
[7] component for further analysis, which generally means finding patterns in time
windows (temporal reasoning) over the incoming data to form new, more complex
events (a.k.a. situations or alerts/warnings). These complex events are emitted to
assist in decision-making processes either carried out by humans (“human in the
loop” [8]) or automatically by actuators, e.g. sensors that start irrigation in a
greenhouse as a result of a certain alert. The situations can also be displayed using
visualization tools to assist humans in the decision-making process (as, e.g., in [8]).



Big Data and AI Pipeline Framework: Technology Analysis. . . 73

Fig. 5 Mapping of steps of the “Pipeline for IoT data real-time processing and decision making”
to the “Generic Big Data and AI Pipeline” steps

The idea is that the detected situations can provide useful real-time insights for
operational management (e.g. preventing a possible crop pest or machinery failure).

Figure 5 shows the steps of the pipeline for real-time IoT data processing and
decision making that we have just described and their mapping to the steps of top-
level Generic Big Data and AI Pipeline pattern that we have analysed in Sect. 2.

Pipeline for Linked Data Integration and Publication
In the DataBio project and some other agri-food projects, Linked Data has been
extensively used as a federated layer to support large-scale harmonization and inte-
gration of a large variety of data collected from various heterogeneous sources and
to provide an integrated view on them. The triplestore populated with Linked Data
during the course of DataBio project (and a few other related projects) resulted in
creating a repository of over one billion triples, making it one of the largest semantic
repositories related to agriculture, as recognized by the EC innovation radar naming
it the “Arable Farming Data Integrator for Smart Farming”. Additionally, projects
like DataBio have also helped in deploying different endpoints providing access to
the dynamic data sources in their native format as Linked Data by providing a virtual
semantic layer on top of them. This action has been realized in the DataBio project
through the implementation of the instantiations of a “Pipeline for the Publication
and Integration of Linked Data”, which has been applied in different use cases
related to the bioeconomy sectors. The main goal of these pipeline instances is to
define and deploy (semi-)automatic processes to carry out the necessary steps to
transform and publish different input datasets for various heterogeneous sources as
Linked Data. Hence, they connect different data-processing components to carry out
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the transformation of data into RDF format [9] or the translation of queries to/from
SPARQL [10] and the native data access interface, plus their linking, as well as the
mapping specifications to process the input datasets. Each pipeline instance used in
DataBio is configured to support specific input dataset types (same format, model
and delivery form).

A high-level view of the end-to-end flow of the generic pipeline and its mapping
to the steps of the Generic Big Data and AI Pipeline is depicted in Fig. 6. In general,
following the best practices and guidelines of Linked Data Publication [11, 12],
the pipeline takes as input selected datasets that are collected from heterogeneous
sources (shapefiles, GeoJSON, CSV, relational databases, RESTful APIs), curates
and/or pre-processes the datasets when needed, selects and/or creates/extends the
vocabularies (e.g., ontologies) for the representation of data in semantic format,
processes and transforms the datasets into RDF triples according to underlying
ontologies, performs any necessary post-processing operations on the RDF data,
identifies links with other datasets and publishes the generated datasets as Linked
Data, as well as applies required access control mechanisms.

The transformation process depends on different aspects of the data like the
format of the available input data, the purpose (target use case) of the transformation
and the volatility of the data (how dynamic is the data). Accordingly, the tools and
the methods used to carry out the transformation were determined firstly by the
format of the input data. Tools like D2RQ [13] were normally used in the case of
data coming from relational databases; tools like GeoTriples [14] was chosen mainly
for geospatial data in the form of shapefiles; tools like RML Processor [15] for CSV,
JSON, XML data formats; and services like Ephedra [16] (within Metaphactory
platform) for Restful APIs.

Pipeline for Earth Observation and Geospatial Data Processing
The pipeline for Earth Observation and Geospatial data processing [17], developed
in the DataBio project, depicts the common data flow among six project pilots, four
of which are from the agricultural domain and two from the fishery domain. To
be more specific, from the agricultural domain there are two smart farming pilots,
one agricultural insurance pilot and one pilot that provides support to the farmers
related to their obligations introduced by the current Common Agriculture Policy
[18]. The two pilots from the fishery domain were in the areas of oceanic tuna
fisheries immediate operational choice and oceanic tuna fisheries planning.

Some of the characteristics of this pipeline include the following:

• Its initial data input is georeferenced data [19], which might come from a variety
of sources such as satellites, drones or even from manual measurements. In
general, this will be represented as either in the form of vector or raster data [20].
Vector data usually describes some spatial features in the form of points, lines
or polygons. Raster data, on the other hand, is usually generated from image-
producing sources such as Landsat or Copernicus satellites.

• Information exchanged among the different participants in the pipeline can be
either in raster or vector form. Actually, it is possible and even common that the
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Fig. 7 Mapping of steps of the “Pipeline for earth observation and geospatial data processing” to
the “Generic Big Data and AI Pipeline” steps

form of the data will change from one step to another. For example, this can result
from feature extraction based on image data or pre-rendering of spatial features.

• For visualization or other types of user interaction options, information can be
provided in other forms like: images, maps, spatial features, time series or events.

Therefore, this pipeline can be considered as a specialization of the top-level
Generic Big Data and AI Pipeline pattern, presented in Sect. 2, as it concerns the
data processing for Earth Observation and Geospatial data. The mapping between
the steps of these two pipelines can be seen in Fig. 7.

4 DataBench Pipeline Framework and Blueprints

The top-level Generic Big Data and AI Pipeline pattern discussed in the previous
sections has been used as a reference to build architectural blueprints specifying the
technical systems/components needed at different stages in a pipeline. For example,
in the data acquisition phase of a pipeline, a software broker synchronizing data
source and destination is needed. A data acquisition broker will then send data to a
lambda function that transforms data in a format that can be stored in a database.
In DataBench, we have identified and classified all these technical components with
an empirical bottom-up approach as follows: we started from Big Data Analytics
(BDA) use cases and then we recognized the commonalities among the technical
requirements of the different use cases. Finally, we designed a general architectural
blueprint, an overview of which is depicted in Fig. 8. This figure has been detailed
in Figs. 9 and 10 for better readability.
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The general blueprint is consistent with the Big Data Value Association data
types classification. This can be seen, e.g., in the “Advanced statistics, AI &
Machine Learning” area (see bottom right of Figs. 8 and 10). Specifically, the
“Model Search” and “Model Train” architectural components (depicted clearly in
Fig. 10) have been replicated for every data type in Fig. 8. The components of the
general blueprint can be also seen in the perspective of the horizontal concerns of the
BDV Reference Model. Thus, in Fig. 8, we have assigned a specific colour to every
horizontal concern of the BDV Reference Model (see Legend for the BDV Reference
Model horizontal concerns) and each component of the general blueprint has been
associated with one or more horizontal concerns by using the respective colours. By
mapping the different components of the general blueprint to the horizontal concerns
of the BDV Reference Model, we can highlight the interaction among the different
Big Data conceptual areas.

We have ensured the generality of this blueprint by addressing the needs of a
cross-industry selection of BDA use cases. This selection has been performed based
on a European-level large-scale questionnaire (see DataBench deliverables D2.2,
D2.3 and D2.4 and desk analyses D4.3, D4.3 and D4.4 in [21]) that have shown the
most frequent BDA use cases per industry. We have also conducted an in-depth case
study analysis with a restricted sample of companies to understand the functional
and technical requirements of each use case. Based on this body of knowledge, we
have designed an architectural blueprint for each of the use cases and then inferred
the general blueprint which is depicted in the above figure.

We would like to note that the general blueprint can be instantiated to account for
the different requirements of different use cases and projects. In DataBench, we have
derived use-case-specific blueprints from the general blueprint. The entire collection
of use-case-specific blueprints is available from the DataBench Toolbox, as it is
discussed in the following section. The Toolbox guides the user from the end-to-end
process of the pipelines, the selection of a use case, the specification of technical
requirements, down to the selection and benchmarking of specific technologies for
the different components of the use-case-specific blueprint.

5 Technical Benchmarks Related to the Big Data and AI
Pipeline Framework

As mentioned before, the goal of the DataBench framework is to help practition-
ers discover and identify the most suitable Big Data and AI technologies and
benchmarks for their application architectures and use cases. Based on the BDV
Reference Model layers and categories, we initially developed a classification with
more than 80 Big Data and AI benchmarks (currently between 1999 and 2020) that
we called Benchmark matrix [22]. Then, with the introduction of the DataBench
Pipeline Framework, we further extended the benchmark classification to include
the pipeline steps and make it easier for practitioners to navigate and search through
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Fig. 11 DataBench Pipeline mapping to benchmarks

the Benchmark matrix. Figure 11 depicts the mapping between the four pipeline
steps and the classified benchmarks.

In addition to the mapping of existing technical benchmarks into the four main
pipeline steps, there also have been mappings for relevant benchmarks for all of the
horizontal and vertical areas of the BDV Reference model. This includes vertical
benchmarks following the different data types, such as Structured Data Benchmarks,
IoT/Time Series and Stream processing Benchmarks, SpatioTemporal Benchmarks,
Media/Image Benchmarks, Text/NLP Benchmarks and Graph/Metadata/Ontology-
Based Data Access Benchmarks. It also includes horizontal benchmarks such
as benchmarks for Data Visualization (visual analytics), Data Analytics, AI and
Machine Learning; Data Protection: Privacy/Security Management Benchmarks
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Fig. 12 DataBench Pipeline step mapping to specific category of Benchmarks

related to data management; Data Management: Data Storage and Data Manage-
ment Benchmarks, Cloud/HPC, Edge and IoT Data Management Benchmarks.

The overall number of technical benchmarks that have been identified and
described for these areas are close to 100. All identified benchmarks have been
made available through the DataBench Toolbox.

As we can see in Fig. 11, the steps are quite general and map to multiple
benchmarks, which is very helpful for beginners that are not familiar with the
specific technology types. Similarly, advanced users can go quickly in the pipeline
steps and focus on a specific type of technology like batch processing. In this
case, focusing on a specific processing category reduces the number of retrieved
benchmarks, like in the example in Fig. 12, where only four benchmarks from the
BenchCouncil are selected. Then, if further criteria like data type or technology
implementation are important, the selection can be quickly reduced to a single
benchmark that best suits the practitioner requirements.

The above-described approach for mapping between the DataBench Pipeline
Framework and the Benchmark matrix is available in the DataBench Toolbox. The
toolbox enables multiple benchmark searches and guidelines via a user-friendly
interface that is described in the following sections.

6 DataBench Toolbox

The DataBench Toolbox aims to be a one-stop shop for big data/AI benchmarking;
as its name implies, it is not a single tool, but rather a “box of tools”. It serves as an
entry point of access to tools and resources on big data and AI benchmarking. The
Toolbox is based on existing efforts in the community of big data benchmarking
and insights gained about technical and business benchmarks in the scope of
the DataBench project. From the technical perspective, the Toolbox provides a
web-based interface to search, browse and, in specific cases, deploy big data
benchmarking tools, or direct to the appropriate documentation and source code
to do so. Moreover, it allows to browse information related to big data and AI use
cases, lessons learned, business KPIs in different sectors of application, architectural
blueprints of reference and many other aspects related to benchmarking big data and
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AI from a business perspective. The Toolbox provides access via a web interface to
this knowledge base encapsulated in what is called “knowledge nuggets”.

The main building blocks of the Toolbox are depicted in Fig. 13 and comprise
a front-end DataBench Toolbox Web user interface, Toolbox Catalogues and the
Toolbox Benchmarking Automation Framework, which serves as a bridge to the
Execution of Benchmarks building block located outside the Toolbox.

The intended users of the Toolbox are technical users, business users, bench-
marking providers, and administrators. The support and benefits for each type of
user is highlighted in their dedicated user journeys accessible from the Toolbox
front-page, except for administrators, who are needed to support all kinds of users
and facilitate the aggregation and curation of content to the tool. The Toolbox
Catalogues building block shown in Fig. 13 comprises the backend functionality and
repositories associated with the management, search and browsing of knowledge
nuggets and benchmarking tools. The Toolbox Benchmarking Automation Frame-
work building block serves as a bridge to the Execution of Benchmarks building
block located in the infrastructure provided by the user outside the Toolbox (in-
house or in the cloud), as the Toolbox does not provide a playground to deploy
and execute benchmarks. The automation of the deployment and execution of the
benchmarks is achieved via the generation of Ansible Playbooks [23] and enabled
by an AWX project [24] for process automation. The steps to be followed by a
Benchmark Provider with the help of the Administrator to design and prepare the
benchmark with the necessary playbooks for the automation from the Toolbox are
described in detail in Sect. 3.1 “Support for adding and configuring benchmarks”
of DataBench Deliverable D3.4, which can be found in [21]. Last but not least, the
DataBench Toolbox Web building block is the main entry point for the users.

The DataBench Toolbox Web user interface is publicly available for searching
and browsing, although some of the options are only available to registered users.
Registering to the Toolbox is free and can be done from the front-page. This web
user interface is accessible via https://toolbox.databench.eu/. Via this interface, a
user can access (1) the Big Data Benchmarking Tools Catalogue (2) the Knowledge
Nuggets Catalogue; (3) User journeys which provide a set of tips and advice to
different categories of users on how to use and navigate throughout the Toolbox;
(4) links to other tools such as the DataBench Observatory explained below in
this chapter; and (5) search features. The Toolbox provides several search options,
including searching via a clickable representation of the BDV Reference Model
and via clickable depiction of the big data architectural blueprints and the generic
pipeline presented in Sect. 2. The latter type of searching, depicted in Fig. 14,
enables accessing technical benchmarks as well as nuggets related to the clicked
elements.

As we mentioned before, one of the tools accessible from the Toolbox is the
DataBench Observatory. This is a tool for observing the popularity, importance and
the visibility of topic terms related to Artificial Intelligence and Big Data, with
particular attention dedicated to the concepts, methods, tools and technologies in
the area of Benchmarking.

https://www.databench.eu/wp-content/uploads/2020/07/databench_d3.4_databench-toolboxrelease-v1.0.pdf
https://toolbox.databench.eu/
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Fig. 14 Search by Pipeline/Blueprint available from the DataBench Toolbox

The DataBench Observatory introduces the popularity index, calculated for
ranking the topic terms in time, which is based on the following components: (1)
Research component, such as articles from the Microsoft Academic Graph (MAG)
[25]; (2) Industry component, such as job advertisements from Adzuna service [26];
(3) Research and Development component, such as EU research projects, e.g. in
CORDIS [27] dataset (4) Media component, such as cross-lingual news data from
the Event Registry system [28]; (5) Technical Development component, such as
projects on GitHub [29]; and (6) General Interest, such as Google Trends. The
DataBench observatory provides ranking and trending functionalities, including
overall and monthly ranking of topics, tools and technologies, as well as customized
trending options. See, e.g., Fig. 15 that demonstrates that Microsoft tools are highly
requested in job postings, Python is one of the most popular languages at GitHub
(as it is also mentioned in [30, 31]) and users on the web search a lot for Node.js
solutions. It is possible here to search for the popularity of various Big Data and AI
tools and also for Benchmarks.

See also Fig. 16, which shows time series for topics from the areas of Artificial
Intelligence, Big Data and Benchmarking. Users interested in the “Artificial Intelli-
gence” topic can observe its high popularity (score 10 is the maximum normalized
popularity) within academic papers.

In the context of the DataBench Toolbox, the DataBench Observatory is targeted
at different user groups, such as industrial and business users, academic users,
general public, etc. Each type of user can use the Observatory to explore popular
topics as well as tools and technologies in areas of their interest.
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Fig. 15 DataBench popularity index (Tools and Technologies, accessed in November 2020)

Fig. 16 Time series (Topics, accessed in November 2020)

Furthermore, in order to develop the DataBench observatory tool, we
have composed a DataBench ontology based on Artificial Intelligence, Big
Data, Benchmarking-related topics from Microsoft Academic Graph and
extended/populated the ontology with tools and technologies from the relevant
areas, by categories. Microsoft Academic Graph (MAG) taxonomy has been
expanded with DataBench terms—over 1700 tools and technologies related to
Benchmarking, Big Data, and Artificial Intelligence. New concepts have been
aligned with MAG topic, MAG keyword, Wikipedia (for analysis in wikification)
and Event Registry concepts. The DataBench ontology is used in the semantic
annotation of the unstructured textual information from the available data sources.
Figure 17 illustrates the popular tools and technologies in the Graph databases
category, sorted by popularity for GitHub data source.

7 Conclusions

This chapter has presented a Big Data and AI Pipeline Framework developed in the
DataBench project, supported by the DataBench Toolbox. The Framework contains
a number of dimensions, including pipelines steps, data processing types and types
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Fig. 17 DataBench popularity index (Tools and Technologies, Category: Graph Database, sorted
by GitHub data source, accessed in November 2020)

of different data. The relationship of the Framework is with existing and emerging
Big Data and AI reference models such as the BDV Reference Model and the AI
PPP, and also the ISO SC42 Big Data Reference Architecture (ISO 20547) [3] and
the emerging AI Machine Learning Framework (ISO 23053) [6], with which the
pipeline steps also have been harmonized.

Further work is now related to populating the DataBench Toolbox with additional
examples of actual Big Data and AI Pipelines realized by different projects, and
further updates from existing and emerging technical benchmarks.

The DataBench Toolbox observatory will continuously collect and update pop-
ularity indexes for benchmarks and tools. The aim for the DataBench Toolbox is
to be helpful for the planning and execution of future Big Data and AI-oriented
projects, and to serve as a source for the identification and use of relevant technical
benchmarks, also including links to a business perspective for applications through
identified business KPIs and business benchmarks.
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An Elastic Software Architecture
for Extreme-Scale Big Data Analytics

Maria A. Serrano, César A. Marín, Anna Queralt, Cristovao Cordeiro,
Marco Gonzalez, Luis Miguel Pinho, and Eduardo Quiñones

Abstract This chapter describes a software architecture for processing big-data
analytics considering the complete compute continuum, from the edge to the
cloud. The new generation of smart systems requires processing a vast amount
of diverse information from distributed data sources. The software architecture
presented in this chapter addresses two main challenges. On the one hand, a new
elasticity concept enables smart systems to satisfy the performance requirements
of extreme-scale analytics workloads. By extending the elasticity concept (known
at cloud side) across the compute continuum in a fog computing environment,
combined with the usage of advanced heterogeneous hardware architectures at the
edge side, the capabilities of the extreme-scale analytics can significantly increase,
integrating both responsive data-in-motion and latent data-at-rest analytics into
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a single solution. On the other hand, the software architecture also focuses on
the fulfilment of the non-functional properties inherited from smart systems, such
as real-time, energy-efficiency, communication quality and security, that are of
paramount importance for many application domains such as smart cities, smart
mobility and smart manufacturing.

Keywords Smart mobility · Software architecture · Distributed big data
analytics · Compute continuum · Fog computing · Edge computing · Cloud
computing · Non-functional requirements · Cyber-security · Energy-efficiency ·
Communications

1 Introduction

The extreme-scale big data analytics challenge refers not only to the heterogeneity
and huge amount of data to be processed both on the fly and at rest but also to
the geographical dispersion of data sources and the necessity of fulfilling the non-
functional properties inherited from the system, such as real-time, energy efficiency,
communication quality or security. Examples of smart systems that can exploit
the benefits of extreme-scale analytics include production lines, fleets of public
transportation and even whole cities. Providing the required computing capacity for
absorbing extreme (and geographically dispersed) amounts of collected complex
data, while respecting system properties, is of paramount importance to allow
converting the data into few concise and relevant facts that can be then consumed
and be decided or acted upon.

In a typical smart system (e.g., a smart city), data is collected from (affordable)
sensors to gather large volumes of data from distributed sources using Internet
of Things (IoT) protocols. The data is then transformed, processed and analysed
through a range of hardware and software stages conforming the so-called compute
continuum, that is from the physical world sensors close to the source of data
(commonly referred to as edge computing) to the analytics backbone in the
data centres (commonly located in the cloud and therefore referred to as cloud
computing). Due to the computing complexity of executing analytics and the limited
computing capabilities of the edge side, current approaches forward most of the
collected data to the cloud side. There, big data analytics are applied upon large
datasets using high-performance computing (HPC) technologies. This complex and
heterogeneous layout presents two main challenges when facing extreme-scale big
data analytics.

The first challenge refers to the non-functional properties inherited from the
application domain:

• Real-time big data analytics is becoming a main pillar in industrial and societal
ecosystems. The combination of different data sources and prediction models
within real-time control loops will have an unprecedented impact in domains
such as smart city. Unfortunately, the use of remote cloud technologies makes
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infeasible to provide real-time guarantees due to the large and unpredictable
communication costs on cloud environments.

• Mobility shows increased trade-offs and technological difficulties. Mobile
devices are largely constrained by the access of energy, as well as suffering
from unstable communication, which may increase random communication
delays, unstable data throughput, loss of data and temporal unavailability.

• Security is a continuously growing priority for organization of all sizes, as
it affects data integrity, confidentiality and potentially impacting on safety.
However, strict security policy management may hinder the communication
among services and applications, shrinking overall performance and real-time
guarantees.

Overall, while processing time and energetic cost of computation is reduced
as data analytics is moved to the cloud, the end-to-end communication delay
and the performance of the system (in terms of latency) increases and becomes
unpredictable, making not possible to derive real-time guarantees. Moreover, as
computation is moved to the cloud, the required level of security increases to
minimize potential attacks, which may end up affecting the safety assurance levels,
hindering the execution and data exchange among edge and cloud resources.

The second challenge refers to the elasticity concept. In recent years, the
dramatic growth in both data generation and usage has resulted in the so-called
three V’s challenges of big data: volume (in terms of data size), variety (in terms
of different structure of data, or lack of structure), and velocity (in terms of the
time at which data need to be processed). These factors have contributed to the
development of the elasticity concept, in which cloud computing resources are
orchestrated to provide the right level of service (in terms of system throughput) to
big data workloads. The elasticity concept, however, does not match the computing
requirements when considering extreme-scale analytics workloads. On the one
side, elasticity does not take into account the computing resources located on the
edge. The advent of new highly parallel and energy-efficient embedded hardware
architectures featuring graphical processing units (GPUs), many-core fabrics or
FPGAs, have significantly increased the computing capabilities on the edge side.
On the other side, elasticity mainly focuses on system throughput, without taking
into account the non-functional properties inherited from the domain.

Addressing together these two important challenges along the compute contin-
uum, that is from the edge to the cloud, is of paramount importance to take full
benefit of extreme-scale big data analytics in industrial and societal environments
such as smart cities. This chapter describes an end-to-end solution applied along
the complete compute continuum to overcome these challenges. Concretely, the
ELASTIC project [1], funded by the European Union’s Horizon 2020 Programme,
faces these challenges and proposes a novel software platform that aims to satisfy
the performance requirements of extreme-scale big data analytics through a novel
elasticity concept that distributes workloads across the compute continuum. The
proposed software framework also considers the non-functional requirements of the
system, that is operation with real-time guarantees, enhanced energy efficiency, high
communication quality and security against vulnerabilities.
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The chapter relates to the technical priority “Data Processing Architectures”
of the European Big Data Value Strategic Research & Innovation Agenda [13].
Moreover, the chapter relates to the “Systems, Methodologies, Hardware and Tools”
cross-sectorial technology enablers of the AI, Data and Robotics Strategic Research,
Innovation & Deployment Agenda [14]. The rest of the chapter is organized as
follows: Sect. 2 describes the ELASTIC software architecture. Concretely, Sect. 2.1
motivates the use of such framework in the smart city domain, Sect. 2.2 provides an
overview of the layered software framework, and Sects. 2.3–2.6 describe each layer
in detail. Finally, Sect. 3 concludes the chapter.

2 Elastic Software Architecture

2.1 Applicability to the Smart City Domain

One of the domains in which extreme-scale big data analytics can have a significant
impact on people’s day-to-day life is Smart Cities. Big data is increasingly seen as
an effective technology capable of controlling the available (and distributed) city
resources in a safely, sustainably, and efficiently way to improve the economical
and societal outcomes. Cities generate a massive amount of data from heterogeneous
and geographically dispersed sources including citizens, public and private vehicles,
infrastructures, buildings, etc.

Smart cities can clearly benefit from the proposed software architecture, capable
of deploying federated/distributed, powerful and scalable big data systems to extract
valuable knowledge, while fulfilling the non-functional properties inherit from the
smart cities. This opens the door to a wide range of advanced urban mobility
services, including public transportation and traffic management. Therefore, the
proposed software architecture is being tested in the city of Florence (Italy),
to enhance the tramway public transportation services, as well as its interaction
with the private vehicle transportation. The new elasticity concept will enable the
efficient processing of multiple and heterogeneous streams of data collected from
an extensive deployment of Internet of Things (IoT) sensors, located on board the
tram vehicles, along the tramway lines, as well as on specific urban spots around the
tram stations (e.g. traffic lights).

Concretely, three specific applications have been carefully identified to assess
and highlight the benefits of ELASTIC technology for newly conceived mobility
solutions (more details can be found in the ELASTIC project website [1]):

• Next Generation Autonomous Positioning (NGAP) and Advanced Driving Assis-
tant System (ADAS): NGAP enables the accurate and real-time detection of the
tram position through data collected and processed from on-board sensors. The
positioning information is then sent through a reliable connection to the tram
operation control system on the ground. This information also enables the devel-
opment of ADAS, for obstacle detection and collision avoidance functionalities
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based on an innovative data fusion algorithm combining the output of multiple
sensors (radars, cameras and LIDARs). Data from additional sources, such as
fixed sensors placed at strategic positions in the streets (e.g., road crossings), are
also integrated to increase the reliability of the system.

• Predictive maintenance: It monitors and profiles the rail track status in real time,
enabling the identification of changes in equipment behaviour that foreshadow
failure. Furthermore, through offline analytics, potential correlations between
unexpected detected obstacles (obtained through the NGAP/ADAS application)
and rail track damages are examined. The application also provides recom-
mendations, enabling maintenance teams to carry out remedial work before the
asset starts to fail. Finally, the power consumption profile is also monitored and
processed in real time, in order to potentially minimize consumption and have an
environmentally positive impact.

• Interaction between the public and private transport in the City of Florence:
ELASTIC uses the information from the city network of IoT sensors to enhance
the quality of the city traffic management, providing valuable outputs for both
users and operators that will enable them to: (1) Identify critical situations (e.g.
vehicles crossing the intersection with the tram line despite having a red traffic
light) (2) Optimize the local traffic regulation strategies (e.g. reduce the waiting
time of cars at tram crossings through improved light priority management, or
slow down trams to reduce a queue of waiting vehicles, etc.)

2.2 ELASTIC Layered Software Architecture: Overview

In any smart system, large volumes of data are collected from distributed sensors,
transformed, processed and analysed, through a range of hardware and software
stages conforming the so-called compute continuum, that is from the physical world
sensors (commonly referred to as edge computing), to the analytics back-bone in
the data centres (commonly referred to as cloud computing). The proposed software
architecture to efficiently manage and process this complex data processing scenario
is shown in Fig. 1, and it is composed of the following layers:

• Distributed Data Analytics Platform (DDAP): It provides the data accessibility
and storage solutions, and the APIs. The data solutions provide the set of
mechanisms needed to cope with all data-type variants: formats, syntax, at-
rest and in-motion, 3V’s (volume, velocity and variety), edge, cloud, etc. The
APIs allow to extract valuable knowledge from the connected data sources using
distributed and parallel programming models.

• Computation Orchestrator: It implements the elasticity concept in which the
computing resources will be properly orchestrated across the compute continuum
to provide the right level of service to big data analytics workloads. To do so, the
orchestrator does not only consider the overall system throughput but also the
fulfilment of non-functional properties inherited from the application domain.
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Fig. 1 Overview of the elastic software architecture

This layer supports the APIs exposed to the programmer to efficiently distribute
the execution of the analytics in a transparent way, while exploiting the inherent
parallelism of the system and abstracting the application from the underlying
distributed fog computing architecture.

• Non-functional Requirements (NFR) Tool: It provides the required support to
monitor and manage the behaviour of the system, in order to guarantee some
level of fulfilment of the non-functional requirements of the supported applica-
tions, that is real-time guarantees, energy efficiency, communication quality and
security properties.

• Hybrid Fog Computing Platform: It abstracts the multiple edge and cloud
computing resources spread across the compute continuum. To do so, this layer
deploys the application components, that is the computational units distributed
by the above layer, to virtual resources using container technologies, and
considering configuration and infrastructural requirements.
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Overall, the aim of the elastic software architecture is to enable the design,
implementation and efficient execution of extreme-scale big data analytics. To do
so, it incorporates a novel elasticity concept across the compute continuum, with
the objective of providing the level of performance needed to process the envisioned
volume and velocity of data from geographically dispersed sources at an affordable
development cost, while guaranteeing the fulfilment of the non-functional properties
inherited from the system domain. The following subsections provide a detail
description of each software architecture component.

2.3 Distributed Data Analytics Platform

The distributed data analytics platform is developed to cater for domain specific as
well as generic needs of analysing data across the compute continuum. Concretely,
this layer takes care of two important matters: (1) the actual development of data
analytics, providing APIs support (Sect. 2.3.1), and (2) the management, storage
and retrieval of data at the time it is needed and at the location where it is needed
(Sect. 2.3.2).

2.3.1 Application Programming Interfaces (APIs)

The software architecture provides support for the development of big data analytics
methods, capable of analysing all the data collected by IoT sensors and distributed
devices. As an example, Deep Neural Networks (DNNs) are used for image pro-
cessing and predictive modelling, and aggregation and learning methods (based on
unsupervised-learning strategies) are used for automatically detecting data patterns,
including ant-based clustering, formal concept analysis and frequent pattern mining.

This layer also provides an API to support distributed and parallel computation.
This enables the simultaneous use of multiple compute resources to execute
software applications. Concretely, the COMPSs [4] task-based programming model
is supported to allow developers to simply specify the functions to be executed as
asynchronous parallel tasks. At runtime, the system exploits the concurrency of the
code, automatically detecting and enforcing the data dependencies between tasks
and deploying these tasks to the available resources, which can be edge devices or
nodes in a cluster. More details of this component are provided in Sect. 2.4.

One of the key competitive advantages of the DDAP is that these methods are
offered to the software developer in a unique development environment. Moreover,
big data analytics methods can be optimized to be executed at both, the edge and the
cloud side, providing the required flexibility needed to distribute the computation of
complex big data analytics workflows across the compute continuum.
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2.3.2 Data Accessibility and Storage

One of the main goals of the distributed data analytics platform (DDAP) is to ensure
data accessibility across the compute continuum, covering aspects such as data-
in-motion and data-at-rest, for data analytic applications. To do so, the DDAP is
currently composed of the following main components:

• dataClay [8], distributed at the edge/fog side, is responsible for managing the
information generated in real time, covering the data-in-motion needs. dataClay
is an active object store that can handle arbitrary data structures in the form of
objects and collections, as in object-oriented programming, which allows the
application programmer to manage data as if it was just in memory. It is highly
optimized for accessing and manipulating data at a fine granularity, and it can run
in heterogeneous devices, from the edge to the cloud.

• Druid [3], distributed across the fog/cloud side, is responsible for collecting
all information generated and shared across DDAP; it is a column-based data
warehouse tuned to ingest large amounts of time series data such as that generated
by a transport infrastructure. Druid is distributed by design and optimized for
visual analytics. It contains mechanisms for a fast and easy access to data
regardless of its location. This functionality makes Druid a complementing
element in DDAP suitable for covering data-at-rest needs.

• Kafka [2] is a well-known message queue for streaming data; it functions as a
transient message queue to transfer data from dataClay to Druid at each station.
In DDAP, Kafka can be seen as the boundary between data-in-motion and data-
at-rest.

The combination of dataClay, Druid, and Kafka makes DDAP suitable for
real-time and historical big data analytics at the same time, as these solutions
complement each other. In particular, Kafka helps enforce a unidirectional data flow
from dataClay to Druid, effectively making DDAP operate as a well-known Content
Delivery Network. In the latter, data is generated and processed at the edge for real-
time needs, then it is collected at the cloud from distributed locations, and finally the
content, that is historical big data analytics results, is delivered to interested users.

An example of the DDAP functionality can be seen in Fig. 2. The applications
executed in the tram provide different kinds of data, such as the objects detected
by its cameras and sensors, or the tram position. In the meantime, the applications
executed in the context of a tram stop, which includes the stop itself as well as
cabinets with cameras in surrounding intersections, also detect objects that may
fall out of the visibility scope of the tram. To provide real-time performance, these
applications use COMPSs to distribute the work between the different devices. Both
data sources are merged in the tram stop in order to predict possible collisions
between the objects detected according to their current trajectories. Simultaneously,
the objects detected and their positions at each point in time are pushed to Kafka so
that they can be ingested by Druid as they are created, thus immediately enabling
them to take part of historical analytics triggered from the cloud.
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Fig. 2 Example application of DDAP in a transport infrastructure

2.4 Computation Orchestrator

This layer provides the software component in charge of distributing the compu-
tation across available computing resources in the hybrid for computing platform.
Specifically, it implements the elasticity concept to properly orchestrate the comput-
ing resources across the compute continuum to provide the right level of service to
analytics workloads. Moreover, elasticity will not only consider the overall system
throughput but also the fulfilment of non-functional properties inherited from the
application domain.

The software component in charge of implementing these features is COMPSs
[4]. COMPSs is a distributed framework developed at the Barcelona Supercomput-
ing Center (BSC) mainly composed of a task-based programming model, which
aims to ease the development of parallel applications for distributed infrastructures,
such as Clusters, Clouds and containerized platforms, and a runtime system that
distributes workloads transparently across multiple computing nodes with regard
to the underlying infrastructure. In cloud and big data environments, COMPSs
provides scalability and elasticity features allowing the dynamic provision of
resources. More specifically, the COMPSs task-based model is offered in the
DDAP layer to implement big data analytics methods, and the COMPSs runtime
implements the scheduling techniques and deployment capabilities to interact with
hybrid resources in a transparent way for the programmer.

2.4.1 Task-based Programming Model

COMPSs offers a portable programming environment based on a task execution
model, whose main objective is to facilitate the parallelization of sequential source
code (written in Java, C/C++ or Python programming languages) in a distributed
and heterogeneous computing environment. One of the main benefits of COMPSs is
that the application is agnostic from the underlying distributed infrastructure. Hence,
the COMPSs programmer is only responsible for identifying the portions of code,
named COMPSs tasks, that can be distributed by simply annotating the sequential
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Fig. 3 Video analytics
COMPSs example

1 @task ( camera = IN , returns = numpy . n d a r r a y )
2 def g e t _ v i d e o _ f r a m e ( cameraID ) :
3 re turn get_next_frame ( cameraID )

5 @task ( f rame = IN , returns = l i s t )
6 def v i d e o _ a n a l y t i c s ( f rame ) :
7 re turn p r o c e s s ( f rame )

9 @task ( l i s t _ r e s u l t s = IN )
10 def c o l l e c t _ a n d _ d i s p l a y ( l i s t _ r e s u l t s ) :
11 u p d a t e _ d a s h b o a r d ( l i s t _ r e s u l t s )

13 ### Main function ###
14 whi le ( t r u e ) :
15 f o r i , cam in enumerate ( c a m e r a s _ s e t )
16 f rame [ i ] = get_video_frame ( cam )
17 r e s u l t s [ i ] = video_analytics ( f rame [ i ] )
18 collect_and_display ( r e s u l t s )

source code. Data dependencies and their directionality (i.e. in, out or inout)
are also identified. Upon them, the COMPSs runtime determines the order in which
COMPSs tasks are executed and also the data transfers across the distributed system.
A COMPSs task with an in or inout data dependency cannot start its execution
until the COMPSs task with an out or inout dependency over the same data
element is completed. At run-time, COMPSs tasks are spawned asynchronously
and executed in parallel (as soon as all its data dependencies are honoured) on a set
of distributed and interconnected computing resources. Moreover, the data elements
marked as in and inout are transferred to the compute resource in which the task
will execute if needed.

Figure 3 shows a basic example of a Python COMPSs application (PyCOMPSs
[12]) that performs video analytics. COMPSs tasks are identified with a standard
Python decorator @task, at lines 1, 5 and 9. The returns argument specifies
the data type of the value returned by the function (if any), and the IN argument
defines the data directionality of function parameters. The main code starts at line
14, where the application iterates to process video frames over the time. Then, at
line 15 a loop iterates over the available camera video feeds, and first it gets the next
frame by instantiating the COMPSs task defined at line 1. At line 17, the COMPSs
task that process the video frame (defined at line 5) is instantiated. Finally, all the
results are collected at line 18, instantiating the COMPSs task defined at line 9.

2.4.2 Runtime System

The task-based programming model of COMPSs is supported by its runtime
system, which manages several aspects of the application execution, keeping the
underlying infrastructure transparent to it. The two main aspects are the deployment
on the available infrastructure and the scheduling of tasks to available computing
resources.
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Deployment
One of the main features of COMPSs is that the model abstracts the application
from the underlying distributed infrastructure; hence, COMPSs programs do not
include any detail that could tie them to a particular platform boosting portability
among diverse infrastructures and enabling execution in a fog environment. Instead,
it is the COMPSs runtime that features the capabilities to set up the execution
environment. The COMPSs runtime is organized as a master-worker structure. The
Master is responsible for steering the distribution of the application, as well as
for implementing most of the features for initialising the execution environment,
processing tasks or data management. The Worker(s) are in charge of responding to
task execution requests coming from the Master.

The COMPSs runtime support various scenarios regarding deployment strategy
and interoperability between edge/cloud resources. Three different scenarios, com-
patible between them, are supported:

• Native Linux, monolithic: The big data analytics workload is natively executed
in a Linux-like environment. In this configuration, all the nodes available for the
execution of a COMPSs workflow require the native installation of COMPSs,
and the application.

• Containerized, Docker: A Docker COMPSs application image contains the
needed dependencies to launch a COMPSs worker and the user application. In
this case, there is no need for setting up the execution environment in advance in
all the nodes, but only Docker must be available. Docker image repositories, e.g.
Docker Hub, can make the image, and hence the application, available anytime
and anywhere. In this deployment, COMPSs takes care of making the image
available at the nodes and launching the containers.

• Cloud provider: A cloud infrastructure, in this context, refers to a data centre or
cluster with great computing capacity that can be accessed through an API and
that can lend some of that computational power, for example in the form of a
container. This is the case of a Docker Swarm or Kubernetes cluster. COMPSs
also supports the deployment of workers in these infrastructures, using the Nuvla
API (see Sect. 2.6).

Scheduling
One key aspect of the COMPSs runtime scheduler is that it maintains the inter-
nal representation of a COMPSs application as a Direct Acyclic Graph (DAG)
to express the parallelism. Each node corresponds to a COMPSs task instance
and edges represent data dependencies. As an example, Fig. 4 shows the DAG
representation for three iterations of the COMPSs application presented in Fig. 3,
when three camera video feeds are processed. Based on this DAG, the runtime can
automatically detect data dependencies between COMPSs tasks.

The COMPSs scheduler is in charge of distributing tasks among the available
computing resources and transferring the input parameters before starting the
execution, based on different properties of the system such as the non-functional
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Fig. 4 DAG representation of the COMPSs example in Fig. 3

requirements (real-time, energy, security and communications quality) analysed by
the NFR tool (see Sect. 2.5).

2.5 Non-functional Requirements Tool

The software architecture presented in this chapter addresses the challenge of
processing extreme-scale analytics, considering the necessity of fulfilling the non-
functional properties inherited from the system and its application domain (e.g.
smart manufacturing, automotive, smart cities, avionics), such as real time, energy
efficiency, communication quality or security.

This task is led by the Non-functional Requirements (NFR) Tool layer (see
Fig. 1), in collaboration with the Orchestrator layer, and the Hybrid Fog Computing
Platform. The NFR tool continuously monitors and evaluates the extent to which
non-functional properties’ required levels are guaranteed in the fog computing
platform. Moreover, this tool identifies and implements the appropriate mechanisms
to deal with the NFRs, monitoring system behaviour and helping taking decisions
(such as offloading or reducing performance). Runtime monitoring of system status
is used to detect NFR violations, while a Global Resource Manager guides the
evolution towards configurations that are guaranteed to satisfy the system’s NFRs.

The NFR monitoring is conceptually constituted by probes, i.e. the system tools
that provide monitoring data. The probes are in charge of interfacing with the
underlying fog platform (OS and/or hardware), to collect the required information,
which is used to detect NFR violations. The NFR Monitors are per-property-
specific components, which, based on the information from the probes, and the
application information, determines if some requirement is not being met. This
information is shared with the Orchestrator that may (re)configure the scheduling of
a given application to meet its requirements. The Global Resource Manager is the
component that considers a holistic approach, providing decisions based on a global
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Fig. 5 NFR tool architecture and synergies within the elastic software architecture

view of the system (composed of distributed computing nodes), and considering
simultaneously all non-functional properties. This decision is also shared with the
Orchestrator to (re)configure the applications accordingly. Figure 5 shows the NFR
tool internal structure and the synergies with the Fog platform (see Sect. 2.6) and
the Orchestrator layer (see Sect. 2.4).

Next subsections describe the concrete NFR metrics analysis.

2.5.1 Real Time

Coping with real-time computing across the compute continuum requires the ability
to specify and manage different timing perspectives. Two main challenges arise:
tasks deployed at the edge (e.g. on board the connected car) need to guarantee
“hard real-time” responses (e.g. very low latency), while those deployed at the
cloud need to guarantee certain QoS levels regarding time: right-time or “soft real-
time” guarantees. Closer to the environment, at the edge, tight timing mapping
and scheduling approaches can be used, while at the cloud, time is measured in
terms of average statistical performance with Quality of Service (QoS) constraints.
These perspectives complement each other, and the elastic software architecture
provides solutions that try to guarantee the required response time to applications
while optimizing energy and communication costs.

To do so, it is necessary to monitor different timing properties, in all nodes of the
distributed fog infrastructure. This ranges from monitoring actual CPU utilization
and execution time of applications to detection of deadline violations or memory
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accesses.1 This monitoring allows to dynamically adjust the system resources to
which the application is mapped, depending on the actual load of the system.

2.5.2 Energy

The NFR tool augments the system “introspection” capabilities in terms of power
consumption, by means of energy-aware execution models, from the hardware
platform to the holistic system. This allows to propagate workload-specific mon-
itoring information from the run-time to the decision-making module, which can be
exploited to better adapt to the requirements, as well as to the time predictability
and security optimization levels. Furthermore, a richer knowledge of applications’
requirements and concurrency structure, coupled with precise energy models for
the underlying hardware, combined with the possibility of dynamically switching
between edge and cloud deployments, constitutes an enabling factor towards larger
energy savings.

Concretely, the NFR tool monitors the power consumption of the different
hardware components on edge devices (e.g. System on Chip (SoC), CPU, GPU,
etc.). This allows to develop energy-aware execution models and efficiency tune
power consumption over the complete continuum.

2.5.3 Security

Verifying that applications correctly comply with security mechanisms and do not
contain vulnerabilities is essential. This implies much more than an online analysis
and monitoring, e.g. GDPR [6] regulation compliance, secure communication
protocols, the use of device certificates and mutual authentication (server and
client), etc. Besides these design decisions, in order to guard against security
threats, the NFR tool continuously monitors the systems and applications deployed
and incorporates security upgrades to software and deploy updates to existing
configurations.

The security monitoring component is based on OpenSCAP [9], an open-source
tool that simply implements the Security Content Automation Protocol (SCAP),
as a vulnerability scanner. OpenSCAP can easily handle the SCAP standards and
generate neat, HTML-based reports. The NFR monitor tool and the global resource
manager take simple decisions concerning security: The security status of the
computing nodes is monitored, providing a security score for each of them. Then,
the list of available (secure) nodes is updated for each application, based on its
particular requirements.

1 Memory accesses can be used to provide information on contention accessing shared memory,
providing a more accurate timing analysis for hard real-time applications.
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2.5.4 Communications Quality

In the context of wireless communications, and especially LTE networks, several
performance parameters need to be considered to characterize system behaviour.
Different types of service prioritize different figures of merit due to the nature of the
information to be transmitted and/or received. For instance, packet loss rate plays a
paramount role in VoIP services, whereas high throughput is not strictly required,
given that VoIP does not generate high volumes of data. On the contrary, video
streaming and file transfer services demand a much higher throughput.

The NFR tool considers the following communication monitoring metrics to
evaluate the communications quality of the system: active network interfaces,
transmitted/received data volume, average throughput, roundtrip time (RTT), packet
loss rate (PLR). These metrics provide information that is considered both at
the orchestrator, to take fine-grained scheduling decisions (see Sect. 2.4), and at
the global resource manager to consider communications quality in the holistic
approach.

2.6 Hybrid Fog Computing Platform

Fog computing encompasses the benefits of edge and cloud computing: on the
one hand, devices have increased computer capability, on the other hand, Cloud
Computing has matured strongly. The main focus of the elastic software architecture
is to obtain the best from both approaches (edge and cloud) into fog architecture.
While fog computing has recently led to great interest by the research community
and industry, it is still a conceptual approach [2]. The elastic software architecture
presented in this chapter considers two main concepts for its hybrid fog architecture:
(1) a software stack that can be run in (almost) any computing device and (2) the
coordination between edge and cloud components to efficiently support elasticity
across the compute continuum.

The proposed hybrid fog-computing platform is based on standard open-source
reusable components. It follows a microservice-based design, thus decoupling the
composing components, which makes the overall solution generic and capable of
coping with a wide range of smart edge devices and clouds. The hybrid architecture
(see Fig. 6) allows the use of dynamic applications in the form of microservices
(containers) or native applications (monolithic). Predictability (native) and flexibil-
ity (microservices) can be achieved with this approach. The platform is compatible
with both systems offering a high level of flexibility for the use case.

Next subsections provide an overview of each component.
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Fig. 6 Hybrid Fog Architecture

2.6.1 Cloud: Nuvla

Nuvla [10] acts both as the orchestration support and deployment engine for all
micro-service-based workloads being submitted into both cloud infrastructures and
edge devices. As an open-source software stack, Nuvla can be run anywhere. In
particular, the elastic software architecture profits from its existing SaaS offering
running in the Exoscale cloud,2 at https://nuvla.io/. Nuvla offers the following
services:

• Application Registration: users can register Docker Swarm and Kubernetes
applications in Nuvla.

• Infrastructure Registration: users can register new Docker Swarm and Kuber-
netes infrastructures in Nuvla (be those at the cloud or at the edge).

• NuvlaBox Registration: users can create new NuvlaBoxes via Nuvla. Nuvla will
provide users with a “plug-and-play” installation mechanism that can be executed
on any Docker compatible device.

• Resource Sharing: users can share their Nuvla resources (applications, infras-
tructures, etc.) with other users.

2 https://www.exoscale.com/.

https://nuvla.io/
https://www.exoscale.com/
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• Application deployment: users can launch their applications into any of their
Nuvla infrastructures.

• Application Monitoring: all the deployed applications are monitored from Nuvla,
giving users an overall view of the deployment status.

• Edge Monitoring: all NuvlaBoxes can be monitored and managed from Nuvla.
Resource consumption, external peripheral, and lifecycle management options
are provided to users from Nuvla.

• RESTful API: a standardized and language-agnostic API is available to all Nuvla
users, providing full resource management capabilities, plus a comprehensive
querying and filtering grammar.

2.6.2 Edge: KonnektBox and NuvlaBox

Two commercial edge solutions are being used as the ground foundation for the
edge infrastructure in the elastic software architecture: the KonnektBox [7] and the
NuvlaBox [11].

The IKERLAN KonnektBox is an industry-oriented digitization solution built
over EdgeXFoundry [5], an open-source project backed by Linux Foundation which
provides basic edge building blocks. KonnektBox uses a mix between vanilla
EdgeXFoundry components and custom services tailored for Industry 4.0 use cases.

The NuvlaBox is a secured plug-and-play edge to cloud solution, capable of
transforming any Docker compatible device into an edge device. This software
solution has been developed by SixSq and is tightly coupled with the application
management platform, Nuvla.

2.6.3 Fog Components

As the officially adopted edge software appliances for ELASTIC, both the Konnek-
tBox and NuvlaBox provide their own implementation for each of ELASTIC’s Fog
Architecture building blocks:

Docker-Compatible OS

In order to comply with the reconfiguration and dynamic fog-cloud service exe-
cution requirements of the project, a micro services architecture is required.
Docker is the standard open-source micro services software. Docker allows the
execution of micro services in the form of Docker containers. Each one of the
containers runs in an isolated environment and interfaces with other services via
network communications (REST APIs, message brokers, etc.). Docker allows the
configuration of priorities and limits for each container. For example, the maximum
CPU usage by each container, number of CPUs to use, CPU quota, maximum RAM,
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etc. If a Linux kernel with the real-time extension is used, the priority of each
container can also be defined.

Microservices Manager

The dynamic services refer to the different applications that the platform will
run. The applications range from industrial protocol drivers to AI inference, DB
manager, etc. These applications shall be independent from one another, and the
communication between them should be established via some predefined APIs
defined in the data router. The NuvlaBox self-generates TLS credentials to be used
on a secure and dedicated endpoint which relays the Docker API via HTTPS, for
external orchestration platforms, like Nuvla, to speak with.

Monolithic Native Services Manager

The native services manager is the module in charge of controlling the monolithic
native applications run in the system. The NuvlaBox provides the execution of
remotely issued operations, via a secured and dedicated HTTPS endpoint, exposing
a RESTful API. Such operations include the generation of user-specific SSH keypair
for executing Native workflows via SSH. The KonnektBox supports the remote
deployment of services via a secured MQTT-over-TLS cloud connection.

Local Storage

The local/distributed storage of the system will be implemented as a software mid-
dleware. BSC component dataClay platform will be used as the base component for
structured data. The KonnektBox provides an additional local database using Redis
and Consul. Apart from the local system storage (in the form of Docker volumes),
the NuvlaBox does not provide any dedicated storage for user applications. Such
functionality is left entirely to the user’s preferences. The selected storage element
for ELASTIC (dataClay) is supported, as an additional module, by the NuvlaBox.

Fog Manager

The system manager is the application in charge of starting up the whole fog
platform, monitor it and manage it. The system manager will run as a standalone
Linux application. This service will send telemetry and statistics data to the cloud in
order to update the NFR analysis (QoS, security, etc.). It will implement a watchdog
service in order to control that all the microservices are running correctly and the
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health of the system is good. The manager can stop, start and update each micro
service. A local configuration UI can be deployed to allow the local configuration
of the platform. Both the NuvlaBox and KonnektBox include several microservices
which are responsible for discovering external peripherals, collecting telemetry data,
categorizing the host environment and performing regular performance and security
scans. All of this information is periodically sent (on a configurable frequency) both
to Nuvla and to a local edge dashboard running on the hosting edge device.

Communications

The communications service offers an abstraction layer between platform services
and multiple communication protocols. This service allows the platform user to
define rules to select automatically the appropriate communication protocol to be
used in different use cases or environments. All the protocols would be secured
with TLS1.2 (or DTLS1.2 for UDP-based protocols). The KonnektBox uses MQTT-
over-TLS for all the connections with the cloud. The NuvlaBox exposes secure and
dedicated HTTPS endpoints for configuration application management (separately).

Data Router

The data router abstracts the communication between micro services and serves as a
central point for all data communication. A decision algorithm can be implemented
to decide where to send the data (other local micro service, the cloud, the edge, etc.).
The NuvlaBox together with the Fog Manager’s peripheral discovery functionality
provides an MQTT-based messaging system, which not only brokers internal
application messages but also automatically consumes and serves sensor data from
the existing peripherals, to any subscribing user applications.

Security

The security module handles the security credentials of the platform and it
checks the device data and binaries for unintended manipulation. All the critical
applications of the system should be signed to only allow the execution of trusted
and original applications. If the security module detects some anomalies, the device
will be restored to factory defaults. The KonnektBox is integrated with OpenSCAP
vulnerability scanner. The NuvlaBox on top of the security scans within the Fog
Manager has the ability to automatically update its own database of common
vulnerabilities. Upon every scan, and for a configurable set of vulnerabilities found,
it can proactively take action, halting certain sensitive internal services or even
moving the whole edge device into a quarantine state.
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2.6.4 Distributed Storage

The distributed storage component in ELASTIC is implemented by dataClay (see
Sect. 2.3). Since dataClay runs on different kinds of devices, it can be integrated at
any level throughout the edge to cloud continuum. Its function within the elastic
architecture is twofold. On the one hand, it is in charge of storing data gathered by
the Data Router and making it accessible in other devices. The embedded computing
capabilities of dataClay enable the association of a given behaviour to each type of
data, such as synchronization policies or filters before handling it to other devices.
On the other hand, dataClay is used by other components, such as the NFR tool, or
the DDAP.

2.6.5 Communication Middleware

The communication middleware is the software component in charge of the
exchange of information between services and other devices. This component offers
an abstraction over the communication protocols and physical devices used.

Inter-Service Communication

For communication between services, the middleware offers a standard MQTT
broker. MQTT is an IoT-oriented pub-sub communication protocol built over
TCP/IP. For example, a service which is getting readings from a temperature
sensor can publish data to a topic (e.g. /sensor/temperature/data). Other services
can subscribe to that same topic in order to get updates of the temperature in real
time.

External Communication

The communication between services and other devices (other edge nodes, cloud,
etc.) can be separated in different data streams depending on the desired QoS.
Different levels of QoS can be defined with different requirements in order to choose
between communication interfaces or protocols. For example, a high priority data
stream can be mapped to the 4G/LTE modem. A bulk-data data stream (e.g. high
volume of data for offline analysis, etc.) can be transferred when Wi-Fi connectivity
is available, because this is not a critical data with real-time constraints.
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3 Conclusions

Big data analytics have become a key enabling technology across multiple appli-
cation domains, to address societal, economic and industrial challenges for safe
mobility, well-being and health, sustainable production and smart manufacturing,
energy management, etc. A particular challenge for big data analytics in the near
future (or even today) is managing large and complex real-world systems, such
as production lines, fleets of public transportation and even whole cities, which
continuously produce large amounts of data that need to be processed on the fly.
Providing the required computational capacity level for absorbing extreme amounts
of complex data, while considering non-functional properties, is of paramount
importance to allow converting the data into few concise and relevant facts that
can be then consumed by humans and be decided or acted upon. The ELASTIC
project [1] is facing this challenge by proposing the end-to-end software framework
described in this chapter. The final goal is to efficiently distribute extreme-scale
big data analytic methods across the compute continuum, to match performance
delivered by the different computing resources with the required precision and
accuracy.
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Abstract The quality of a machine learning model depends on the volume of data
used during the training process. To prevent low accuracy models, one needs to
generate more training data or add external data sources of the same kind. If the
first option is not feasible, the second one requires the adoption of a federated
learning approach, where different devices can collaboratively learn a shared
prediction model. However, access to data can be hindered by privacy restrictions.
Training machine learning algorithms using data collected from different data
providers while mitigating privacy concerns is a challenging problem. In this
chapter, we first introduce the general approach of federated machine learning
and the H2020 MUSKETEER project, which aims to create a federated, privacy-
preserving machine learning Industrial Data Platform. Then, we describe the Privacy
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Operations Modes designed in MUSKETEER as an answer for more privacy before
looking at the platform and its operation using these different Privacy Operations
Modes. We eventually present an efficiency assessment of the federated approach
using the MUSKETEER platform. This chapter concludes with the description of a
real use case of MUSKETEER in the manufacturing domain.

Keywords Industrial data platform · Federated learning · Privacy-preserving
technologies · Quality assessment

1 Introduction

In recent years, the advancements in Big Data technologies have fostered the
penetration of AI and machine learning in many application domains, produc-
ing a disruptive change in society and in the way many systems and services
are organized. Machine learning technologies provide significant advantages to
improve the efficiency, automation, functionality and usability of many services
and applications. In some cases, machine learning algorithms are even capable of
outperforming humans. It is also clear that machine learning is one of the key pillars
for the fourth industrial revolution, and it will have a very significant impact in the
future economy. Machine learning algorithms learn patterns, and they are capable
of extracting useful information from data [1]. But in some cases, the amount of
data needed to achieve a high level of performance is significant. A few years
ago, Peter Norvig, Director of Research at Google, recognized: “we don’t have
better algorithms, we just have more data.” Thus, apart from the expertise and the
computational resources needed to develop and deploy machine learning systems,
for many companies, the lack of data can be an important obstacle to participate
in this new technological revolution. This can have a profound negative effect on
SMEs, which, in many cases, will not be able to compete with the largest companies
in this sector. In recent years, this problem has been alleviated by the growth and
development of data markets, which enables companies to have access to datasets to
develop AI and machine learning models. However, in many sectors, the access to
these data markets is very difficult because of the sensitivity of the data or privacy
restrictions that impede companies to share or commercialize the data. This can be
the case, for example, for healthcare applications, where the privacy of the patients
must be preserved and where often the data cannot leave the data owner’s facilities.
The chapter relates to the technical priority “Mechanisms ensuring data protection
and anonymisation, to enable the vast amounts of data which are not open data (and
never can be open data) to be part of the Data Value Chain” of the European Big
Data Value Strategic Research & Innovation Agenda [27]. It addresses the horizontal
concern “Data Protection” of the BDV Technical Reference Model. It addresses the
vertical concerns “Data sharing platforms, Industrial/Personal”. The chapter relates
to the “Systems, Methodologies, Hardware and Tools” cross-sectorial technology
enablers of the AI, Data and Robotics Strategic Research, Innovation & Deployment
Agenda [28]. In this chapter, we present a solution developed for the MUSKETEER
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project based on a federated learning approach (Sect. 2) [15, 16, 18, 24], detailing the
different Privacy Operations Modes designed to offer higher standards of privacy to
the stakeholders of the platform (Sect. 3). From this conceptual level, we then deep
dive into the concrete part with an architecture description of the platform (Sect. 4)
and an efficiency assessment of the federated approach using the MUSKETEER
platform (Sect. 5) before concluding with a real use case description (Sect. 6).

2 Tackling Privacy Concerns: The Solution of Federated
Learning

Federated learning is a machine learning technique that allows building collabora-
tive learning models at scale with many participants while preserving the privacy
of their datasets [15, 16, 18, 24]. Federated learning aims to train a machine
learning algorithm using multiple datasets stored locally in the facilities or devices
of the clients participating in the collaborative learning task. Thus, the data is not
exchanged between the clients and always remains in their own facilities.

2.1 Building Collaborative Models with Federated Learning

In federated learning, there is a central node (or server) that orchestrates the
learning process and aggregates and distributes the information provided by all
the participants (or clients). Typically, the server first collects and aggregates the
information provided by the different clients, updating the global machine learning
model. Then, the server sends the parameters of the updated global model back to
the clients. On the other side, the clients get the new parameters sent by the server
and train the model locally using their own datasets. This communication process
between the server and the clients is repeated for a given number of iterations to
produce a high-performance collaborative model. Depending on the application,
there are different variants for learning federated machine learning models [16].
For example, in some cases, a global collaborative model is learned from all the
clients’ data. In other scenarios, only part of the parameters of the machine learning
models are shared between participants, whereas the rest of the parameters are
local (specific for each client). This allows a level of customization specific to the
clients. This approach is also useful in cases where the datasets from the different
participants are not completely aligned, that is they do not have exactly the same
features.

2.2 Where Can We Use Federated Machine Learning?

To reduce the amount of data to be stored in the cloud, as the computational power of
small devices like smartphones and other IoT devices increases, federated machine
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learning offers new opportunities to build more efficient machine learning models
at scale by keeping the data locally on these devices and using their computational
power to train the model. This approach was used in one of the first successful use
cases of federated learning: “Gboard” for Android, a predictive keyboard developed
by Google which leverages the smartphones of millions of users to improve the
precision of the machine learning model that makes the predictions. In this case
Google did not require upload of the text messages from millions of users to the
cloud, which can be troublesome from a regulatory perspective, helping to protect
the privacy of the users’ data. This use case showed that federated machine learning
can be applied in settings with millions of participants that have small datasets.
Federated learning is also a suitable solution in applications where data sharing or
access to data markets is limited. In these cases, the performance of the machine
learning models achieved using smaller datasets for training can be unacceptable
for their practical application. Thus, federated machine learning boosts performance
by training a collaborative model that uses the data from all the participants in the
learning task but keeps the data private. The performance of this collaborative model
is similar to the one we would obtain by training a standard machine learning model
merging the datasets from all the participants, which would require data sharing.

2.3 MUSKETEER’s Vision

Our mission in MUSKETEER is to develop an industrial data platform with scalable
algorithms for federated and privacy-preserving machine learning techniques,
including detection and mitigation of adversarial attacks and a rewarding model
capable of fairly monetizing datasets according to the real data value. In Fig. 1 we
represent the IDP concept.

In MUSKETEER we are addressing specific fundamental problems related to the
privacy, scalability, robustness and security of federated machine learning, including
the following objectives:

• To create machine learning models over a variety of privacy-preserving scenar-
ios: in MUSKETEER we are defining and developing a platform for federated
learning and distributed machine learning with different privacy operation modes
to provide compliance with the legal and confidentiality restrictions of most
industrial scenarios.

• To ensure security and robustness against external and internal threats: in
MUSKETEER we are not only concerned with the security of our software but
also with the security and robustness of our algorithms to internal and external
threats. We are investigating and developing new mechanisms to make the
algorithms robust and resilient to failures, malicious users and external attackers
trying to compromise the machine learning algorithms [20].

• To provide a standardized and extendable architecture: the MUSKETEER
platform aims to enable interoperability with Big Data frameworks by providing
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Fig. 1 Musketeer Industrial Data Platform to share data in a federated way

portability mechanisms to load and export the predictive models from/to other
platforms. For this, the MUSKETEER design aims to comply with the Reference
Architecture model of the International Data Spaces Association (IDSA) [13].

• To enhance the data economy by boosting cross-domain sharing: the MUS-
KETEER platform will help to foster and develop data markets, enabling data
providers to share their datasets to create predictive models without explicitly
disclosing their datasets.

• To demonstrate and validate in two different industrial scenarios: in MUSKE-
TEER we want to show that our platform is suitable, providing effective solutions
in different industrial scenarios such as manufacturing and healthcare, where
federated learning approaches can bring important benefits in terms of cost,
performance and efficiency.

3 Privacy Operation Modes (POMs)

Training models with data from different contributors is an appealing approach,
since when more and more data is used, the performance of the resulting models is
usually better. A centralized solution requires that the data from the different users is
gathered in a common location, something that is not always possible due to priva-
cy/confidentiality restrictions. The MUSKETEER platform aims at solving machine
learning (ML) problems using data from different contributors while preserving
the privacy/confidentiality of the data and/or the resulting models. Essentially, it
aims at deploying a distributed ML setup (Fig. 2) such that a model equivalent to
the one obtained in the centralized setup is obtained. Nevertheless, even under the
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Fig. 2 Centralized approach (a) vs our privacy-preserving distributed scenario (b) where every
user provides a portion of the training set

assumption that the raw data of the users is never directly exchanged or shared
among the participants in the training process, any distributed privacy-preserving
approach requires the exchange of some information among the participants or at
least some interaction among them, otherwise no effective learning is possible.

In the MUSKETEER Machine Learning Library (MMLL) we foresee different
possible Privacy Operation Modes (POMs) with different assumptions/characteris-
tics. In what follows, we briefly describe every one of the implemented POMs, each
offering a variety of machine learning models/algorithms, but always respecting the
privacy restrictions defined in that POM. In what follows, we will name as Master
Node (MN) or Aggregator the central object or process that controls the execution
of the training procedure and the Workers or participants will be running at the end
user side as a part of the MUSKETEER client, and they have direct access to the
raw data provided by every user.

3.1 POM 1

This POM is designed for scenarios where the final trained model is not private,
since at the end of the training every worker node and also the master node have a
copy of the model. This POM implements a federated-learning framework based on
the concept introduced by Google in 2016 [15]. Under this paradigm [25], a shared
global model is trained under the coordination of the central node, from a federation
of participating devices. It enables different devices to collaboratively learn a shared
prediction model while keeping all the training data on device, decoupling the ability
to perform machine learning from the need to store the data in the cloud. Using this
approach, data owners can offer their data to train a predictive model without being
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exposed to data leakage or data attacks. In addition, since the model updates are
specific to improving the current model, there is no reason to store them on the server
once they have been applied. Any model trainable by gradient descent or model
averaging [14] can be deployed under this scheme. The model is not private, since
every worker and the central node will receive it at every iteration. The algorithms
developed under this POM conform to the following steps: The aggregator defines
the model, which is sent to every worker. Every participant computes the gradient
of the model or updates the model (for a model averaging schema) with respect to
his data and sends aggregated gradient or the model back to the aggregator, which
joins the contributions from all participants and updates the model. This process
is repeated until a stopping criterion is met. Under this POM the model is sent to
the workers unencrypted and the workers send an averaged gradient vector/updated
model to the aggregator.

3.2 POM 2

In some use cases, data owners belong to the same company (e.g. different factories
of the same company) and the server that orchestrates the training is in the cloud.
The work proposed in [22] shows that having access to the predictive model and to
the gradients, it is possible to leak information. Since the orchestrator has access to
this information in POM1, if is not completely under our control (e.g. Azure or AWS
cloud), POM2 solves the problem by protecting the gradients over the honest-but-
curious cloud server. This POM also implements the Federated Machine Learning
(FML) paradigm described in POM1 but uses additively homomorphic encryption
[26] to preserve model confidentiality from the central node. All gradients are
encrypted and stored on the cloud server, and the additive property enables the
computation across the gradients. This protection of gradients against the server
comes with the cost of increased computational and communication between the
learning participants and the server. At the end of the training stage the model is
known by all the workers but not by the aggregator. In this POM all the participants
use the same pair of public/private keys for encryption/decryption. The aggregator
has access to the public key but not to the private one, meaning that it cannot have
access to the data encrypted by the workers. It comprises the following steps: every
worker has the same pair of public/private keys; the public key is shared with the
aggregator, which defines the model and encrypts it. The encrypted model is sent to
every participant, which decrypts it with the private key and computes the gradients.
Then, it sends back to the master the encrypted computed gradients. The aggregator
finally averages the received gradients and updates the local copy of model weights
in the encrypted domain thanks to the homomorphic encryption properties. The
process is repeated until the end of the training. In this case the model is sent to the
workers encrypted, the workers send encrypted gradient vector/updated model to
the aggregator, who updates the model in the encrypted domain with no possibility
of decryption.
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3.3 POM 3

In POM2, every data owner trusts each other, and they can share the private key
of the homomorphic encryption (e.g. different servers with data that belongs to
the same owner). Using the same key, every data owner uses the same encrypted
domain. In many situations it is not possible to transfer the private key in a safe
way. POM3 is an extension of POM2 that makes use of a proxy re-encryption [7]
protocol to allow that every data owner can handle her/his own private key. This
POM is an extension of POM2 that makes use of a proxy re-encryption protocol to
allow that every data owner can handle her/his own private key [11]. The aggregator
has access to all public keys and is able to transform data encrypted with one public
key to a different public key so that all the participants can share the final model. The
learning operation under this POM is as follows: every worker generates a different
key pair randomly and sends the public key to the aggregator, which defines the
initial model, such that it is sent unencrypted to every participant. Here the model
is sent to every worker in its own encrypted domain in a sequential communication,
the workers send encrypted gradient vector/updated model to the aggregator and the
aggregator updates the model in the encrypted domain and uses proxy re-encrypt
techniques to translate among different encrypted domains.

3.4 POM 4

This POM uses an additively homomorphic cryptosystem to protect the confidential-
ity of the data and requires the cooperation of a special node named as Crypto Node
(CN), which is an object/process providing support for some of the cryptographic
operations not supported by the homomorphism [9]. The CN is able to decrypt, but
it only receives encrypted data previously masked by the aggregator. The scheme
is cryptographically secure if we guarantee that CN and Master Node (MN) do not
cooperate to carry out any operation outside of the established protocols (“honest
but curious” assumption). Therefore, the scheme is cryptographically secure if we
guarantee that there is no collusion between the MN and the CN. The steps to train a
given model are as follows: the MN asks the CN some general public encryption key
and distributes it to the workers, which will use it to encrypt the data and send it to
the aggregator. The MN starts the training procedure by operating on the (encrypted)
model parameters and (encrypted) users’ data. The MN is able to perform some
operations on the encrypted data (the ones supported by the homomorphism), but for
the unsupported ones, it needs to establish a secure protocol with the CN consisting
in sending some masked data to the CN, which decrypts the data, computes the
unsupported operation in clear text, encrypts the result and sends it back to the
MN, which finally removes the masking to obtain the encrypted desired result. As
a result of repeating these operations during the training process, the MN never
sees the data or the result in clear text, and the CN only sees the clear text of
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blinded/masked data. The training procedure continues until a stopping criterion is
met. This POM is especially useful when the participants cannot actively cooperate
during the training process (computational outsourcing) and the crypto node and
master node are computationally powerful such that operations on the encrypted
domain are highly efficient. Under this POM the MN, CN and Worker Node (WN)
are assumed not to collude, and they do not operate outside of the specified protocols
(“honest but curious” assumption).

3.5 POM 5

This POM is able to operate only with the aggregator and worker nodes. It uses an
additively homomorphic cryptosystem to protect the confidentiality of the model
[8]. The data is also protected, since it does not leave the worker facilities, and
only some operation results are sent to the aggregator. The MN will help in some
of the unsupported operations, that is the MN will play the role of CN. The
scheme is cryptographically secure if we guarantee that the workers and aggregator
do not operate outside of the protocols. The steps to train a given model are:
the MN generates public and private keys and the public keys are distributed
to all participants. The initial model parameters are generated at random by the
MN. The MN encrypts the model parameters with the secret key and sends the
encrypted model to the WNs, which start the training procedure by operating on the
(encrypted) model and (un-encrypted) users’ data. The WN is able to perform some
operations on the encrypted data (the homomorphically supported ones), and for the
unsupported ones, it establishes a secure protocol with the MN such that the WN
sends some encrypted data with blinding to the MN, which decrypts it, computes
the unsupported operation in clear text, encrypts the result and sends it back to the
worker, which finally removes the blinding to obtain the result. As a result of this
protocol, the MN never sees the data or the result in clear text, and the WN only sees
the encrypted model. The procedure is repeated for every needed operation of every
algorithm, until a stopping criterion is met. The MN, CN and WN are assumed not
to collude and they do not operate outside of the specified protocols (“honest but
curious” assumption).

3.6 POM 6

This POM does not use encryption; it relies on Secure Two-Party Computation [4]
protocols to solve some operations on distributed data such that both model and
data privacy are preserved [2]. Under this POM, raw data is not encrypted, but it is
never sent outside the WN. The model trained in the MN can also be kept secret to
the WN. Some transformations of the data can be exchanged with the MN, such as
aggregated or correlation values, but always guaranteeing that the raw data cannot
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be derived from them by reverse engineering. Every implemented algorithm will
explicitly describe which information in particular is revealed to the MN, such that
the participants are aware of this potential partial disclosure before participating in
the training process. Some important operations can be directly implemented using
protocols for secure dot product or secure matrix multiplication. The security of
these operations will be as described in the reference sources of protocol, and in
general terms, they prove that the raw data is not exposed. An improved security is
achieved during some aggregation operations if a “round robin” or “ring” protocol
is used such that global aggregations can be computed without revealing the specific
contributions from every participant. POM6 is not a generally applicable procedure,
it requires that every algorithm is implemented from scratch, and also it is not
guaranteed that any algorithm can be implemented under this POM. The MN, CN
and WN are assumed not to collude, and they do not operate outside of the specified
protocols (“honest but curious” assumption).

3.7 Algorithms

Over the different POMs, in the MMLL library, there are implementations of
several algorithms. The library will contain algorithms capable to infer functions
of different nature: Linear models: A simple but widely used class of machine
learning models, able to make a prediction by using a linear combination of the input
features [8]. MMLL includes alternatives for classification (logistic regression)
and regression (linear regression) with different regularization alternatives and
cost functions. Kernel Methods: They comprise a very popular family of machine
learning models. The main reason of their success is their ability to easily adapt
linear models to create non-linear solutions by transforming the input data space
onto a high-dimensional one where the inner product between projected vectors can
be computed using a kernel function [12]. MMLL provides solutions for classifica-
tion (SVMs) and regression (SVRs), possibly under model complexity restrictions
(budgeted models) [5, 6, 19]. Deep Neural Networks: Deep learning architectures
[17] such as multilayer perceptrons or convolutional neural networks are currently
the state of the art over a wide variety of fields, including computer vision, speech
recognition, natural language processing, audio recognition, machine translation,
bioinformatics and drug design, where they have produced results comparable to and
in some cases superior to human experts [10]. Clustering: Unsupervised learning is
the machine learning task of inferring a function to describe hidden structure from
“unlabelled” data. The library will include algorithms for clustering, that is the task
of dividing the population or data into a number of groups such that data points
in the same groups are more similar to other data points in the same group than
those in other groups [21]. In simple words, the aim is to segregate groups with
similar characteristics and assign them into clusters. The library will include general
purpose clustering algorithms such as k-means [23].
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4 Setting Your Own Federated Learning Test Case:
Technical Perspective

How to train machine learning algorithms using data collected from different data
providers while mitigating privacy concerns is a challenging problem. The concept
of a trusted data space serves the need of establishing trusted networks where
data can be transferred, accessed and used in a secure mode, to offer secure data
access and transfer. This section presents the MUSKETEER platform in relation to
how it leverages new paradigms and advancements in machine learning research,
such as Federated Machine Learning, Privacy-Preserving Machine Learning and
protection against Adversarial Attacks. Moreover, the MUSKETEER platform,
following actual industrial standards, implements a trusted and secure data space,
to enable scalable privacy-preserving machine learning in a decentralized dataset
ownership scenario.

4.1 How to Properly Train Your Machine Learning Model?

That is definitely not an easy question, and it depends on many different aspects. As
it will take too much time to make a complete analysis of all of them, we will
concentrate only on one of them: the amount of training data. The quality of a
machine learning model depends on the volume of training data used during the
training process. Small amount of data can produce low accuracy models that cannot
be really usable. In this case, we can consider two options to solve the problem: (i)
produce more training data by yourself or (ii) increase the training data volume by
adding more data sources of the same kind. If the first option is not feasible (e.g.
for technical or economic reasons), you can explore the second one by looking for
other subjects with the same need. Here is where the concept of federation comes
into play. In short, the model that can be produced thanks to the collaboration of
the federation participants is better than the one produced by each participant on
their own. This paradigm was initially introduced by Google and refers to different
devices which collaboratively learn a shared prediction model while keeping all
the training data on each device, decoupling the ability to do machine learning
from the need to transfer data as well. The collaboration among the federation
participants can be implemented with different levels of complexity and has to take
into consideration other non-technical aspects. The simplest case is the one that
concentrates all data in a single place and the training operation of the model is done
using that single data repository. In this case, confidentiality and privacy should not
be strong requirements. When the training data cannot be disclosed (e.g. business
and/or legal reasons), a more sophisticated configuration has to be adopted. Every
single federated participant will train an ML model locally (at their premises and
not sending data outside) and will share only the model parameters. All the models
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produced by the participants are collected by a single subject that aggregates all of
them and produces a new one that incorporates all contributions.

4.2 The MUSKETEER Platform

The main result of the MUSKETEER project is the implementation of an indus-
trial data platform with scalable algorithms for federated and privacy-preserving
machine learning techniques. The solution is based on the federation of a number
of stakeholders contributing together, to build a machine learning model, in a
collaborative (or co-operative) way. Different roles are to be assigned: (i) the
aggregator, starting the process and taking charge of the computation of the final
ML model; (ii) the participants, taking part in a single machine learning model
process, built using their own (local) training datasets. From the architectural point
of view, the MUSKETEER platform enables the interoperability between a number
of distributed big data systems (federation participants) by providing a mechanism
to send and retrieve machine learning models. That interoperability mechanism
is based on the principles defined in the Reference Architecture Model of the
International Data Space Association (IDSA) [13]. The MUSKETEER platform
architecture consists of a server side and a client side. The server side is hosted
in the cloud (as a number of micro-services), and it makes use of message queues
for asynchronous exchange of information among the federation participants, which
are often widely distributed geographically. One of the main activities of the server
component is to coordinate the exchange of machine learning models between
participants and aggregators. Besides the exchange of information for the execution
of the actual federated learning tasks, the server side also provides services to
manage tasks throughout their lifecycle, such as creating new tasks, browsing
created tasks, aggregating tasks, joining tasks as a participant or deleting tasks. The
meta-information that is required for task management is stored in a cloud-hosted
database (Figs. 3 and 4).

4.3 MUSKETEER Client Connector Components

The client side is represented by the MUSKETEER Client Connector that is a self-
contained component that each user has to deploy on-premise in order to work with
the MUSKETEER platform. We consider now the case where the training data is
stored locally (e.g. in hard drives, Network Attached Storage (NAS) or removable
devices that are attached to a single computer), and we want to make use of them
to create predictive models without explicitly transferring datasets outside of our
system. In this case, the MUSKETEER Client Connector can be deployed in any
environment using Docker in order to containerize the Client Connector application
itself. Docker containers ensure a lightweight, standalone and executable package
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of the software that includes everything needed to run the MUSKETEER Client
Connector: operating system, code, runtime, system tools, libraries and settings. In
this way the whole application can be easily made available in a sandbox that runs on
the host operating system of the user. The MUSKETEER Client Connector consists
of five core components and two additional ones that are loaded (as external plug-
ins) after the application is up and running: the communication messenger and the
federated machine learning library.

1. User Interface is a local web application that performs a set of functionalities
where the main ones are: (i) to access the target server platform; (ii) to connect
the local data for executing the federated ML model training; (iii) to manage the
different tasks for taking part in the federation.

2. Client Back-End acts as a RESTful Web Service that handle all user requests,
ranging from local operations (e.g. to connect user data to the Client Connector)
to server operations (e.g. tasks and user management); these operations need to
use a Communication Messenger library to communicate with a target external
server.

3. Data Connector connects user data, which may come from different sources or
storage layers, to the Client Connector. In addition, to connect data from different
source types, the component can manage and support different kinds of data: in
fact, a user can load a .csv tabular data from the file system, images files, binary
data, a table from a database and so on.

4. Abstract Communication Interface allows the import and use of the communica-
tion library. In the MUSKETEER project the Communication Messenger library
used is the pycloudmessenger library developed by IBM.1 After such a library is
configured and installed, the MUSKETEER Client Connector can use the APIs
to communicate with the MUSKETEER cloud server provided by IBM.

5. Execution component instantiates and runs federated machine learning algo-
rithms according to interfaces defined by the Federated Machine Learning library
imported into the MUSKETEER client Connector. In the MUSKETEER project,
the FML library imported is provided by the partners TREE Technology and
Carlos III de Madrid University.

4.4 Give It a Try

The first prototype of the MUSKETEER Client Connector is available as open-
source software from GitHub repositories (Client Connector Backend,2 Client

1 https://github.com/IBM/pycloudmessenger.
2 https://github.com/Engineering-Research-and-Development/musketeer-client-connector-
backend.

https://github.com/IBM/pycloudmessenger
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-backend
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Connector Frontend3). Together with the source code you can also find the installa-
tion guide. We kindly invite you to download the Client Connector components and
try it by setting up your test case of Federated Machine Learning process.

5 Federated Machine Learning in Action: An Efficiency
Assessment

This section provides a test use case to show a practical application of Federated
Machine Learning in the manufacturing context. The test bed aims to demonstrate,
in a easily intuitive way, the potentiality of such algorithms in production environ-
ments.

5.1 Robots Learn from Each Other

COMAU is an automation provider, and its robots are installed in dozens of plants,
in the automotive domain. In this context, these industrial automation customers
are not eager to share their data. Nevertheless, those data are precious for the
robot maker with regard to both business (new added value services for customers)
and technical aspects (to improve robot performance and quality). Robot joints
contain a belt that naturally loses its elasticity over time. With time and usage,
the belt tensioning changes, and actually, in order to prevent failures caused by
a wrong tension, operators have to regularly check the belt status with a manual
maintenance intervention. These operations require time, effort and eventually a
production stop. Moreover, these manual tasks bear the risk to be useless if the
belt status is still good. The identified solution implemented for this case is a
machine learning model able to predict the status of the belt based on the analysis
of a set of specific parameters. In order to achieve a solution that provides a
reasonable quality of the prediction, it is extremely important to identify the proper
training set to use. Given that the same kind of Robot may be operating in different
plants and under control of different owners (customers of COMAU), it is possible
to assume that: (i) each one of the customers may be interested in running the
same predictive ML model for those specific class of robots so as to increase
their efficiency; (ii) each one of the customers may face the issue of not having
enough training data to produce an effective machine learning model suitable for
the production: (iii) customers are not keen to open their data to third parties.
In a similar scenario, the MUSKETEER platform comes into play enabling data
sharing in a privacy-preserving way for COMAU and its customers and thereafter

3 https://github.com/Engineering-Research-and-Development/musketeer-client-connector-
frontend.

https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
https://github.com/Engineering-Research-and-Development/musketeer-client-connector-frontend
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Fig. 5 RobotBox testbeds used for the experiment

with the possibility to use all available training data to build a classification
model based on federated machine learning. To test the MUSKETEER platform
functionalities and in particular the MUSKETEER Client Connector, two test beds
called RobotBox have been setup. The first RobotBox (from now on called “real
RobotBox”) is located in COMAU headquarters in Turin and the second one (the
“virtual RobotBox”) is a virtual simulator hosted in an ENGINEERING facility in
Palermo. Both test beds are simulating two different customer plants.

5.2 Defining Quality Data

Going a bit more into the details, the RobotBox replicates an axis of a COMAU
robot. It is composed of a motor, a belt, a gearbox reducer and a weight (yellow
part in Fig. 5). In order to collect data at different belt tensioning levels, we had to
space out the motor and gearbox from each other. To do this we installed a slicer
to move the motor and a dial gauge to measure the distance between the two parts.
We have decided to consider three different belt tensioning levels. The RobotBox
always performs the same movement called cycle. After each 24-second cycle, we
collected signals from the RobotBox motion controller. For each cycle we calculated
141 features describing the different signals’ aspects (e.g. mean value, maximum,
minimum, root mean square, skewness, integral, etc.). Those features have been
chosen based on the knowledge and literature about belt tensioning. For each level,
we have performed around 6000 cycles, for a total of 18,000 samples for each
RobotBox, considering the 3 different belt tension levels. For this scenario, we have
chosen to train a classification model using an artificial neural network. COMAU
plays the role of the aggregator for the federated machine learning task and for this
use case also the role of the first participant. On the other side, ENGINEERING
plays the role of the second participant. So, COMAU (located in Turin) created the
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task choosing the MUSKETEER Privacy Operation Mode 1 (POM1), where data
cannot leave the facilities of the participants, the predictive models are transferred
without encryption and the artificial neural network as algorithm. Moreover, the
maximum number of iterations was set to 300 and the learning rate to 0.00015. The
architecture of the model shaped as a neural network is a three-layer neural network
with 48, 16 and 3 units tuned in the preparatory phase of this evaluation. After
the task creation, including validation and test data, COMAU joined the federated
process as participant that provides the training data of the real RobotBox. Finally,
ENGINEERING joined the same task providing the training data of the virtual
RobotBox.

5.3 Federated Data Sharing Is Better than Playing Alone

The final results of the federated task are very promising in comparison with
the results of a non-federated approach. Looking at the right side of Fig. 6, it is
possible to see how the overall accuracy obtained by the trained model, thanks to
the federated task, with both RobotBoxes is 89% and the related confusion matrix is
very diagonal. On the other hand, on the left side of Fig. 6, the accuracy of a model
trained only with the data of the real RobotBox or only with the data of the virtual
RobotBox is lower, respectively 86% and 81%.

6 Use Case Scenario: Improving Welding Quality
Assessment Thanks to Federated Learning

The emerging data economy holds the promise of bringing innovation and huge
efficiency gains to many established industries. However, the confidentiality and
proprietary nature of data is often a barrier as companies are simply not ready to
give up their data sovereignty. Solutions are needed to realize the full potential of
these new profit pools.

6.1 A Twofold Challenge

MUSKETEER offers to tackle these two dimensions by bringing efficiency while
respecting the sovereignty of data providers in industrial assembly lines. Two
challenges are presented:

• Improving welding quality assessment to develop predictive maintenance for
robots while increasing product safety at the same time

• Training a welding quality assessment algorithm on large datasets from multiple
factories
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The presence of a huge number of machines in industrial automation factories
and the elevated cost of downtime result in large expenses for production line
maintenance. Getting a more accurate evaluation of robot performance helps to
avoid damaging the production capacity contingently (by 5–20% in certain cases) as
presented in the report “Predictive maintenance and the smart factory” (Deloitte) [3].
The welding quality assessment can be improved using machine learning algorithms
which support the status monitoring of machinery. But a single factory might offer
too few data points to create such algorithms. It requires accessing larger datasets
from COMAU’s robots located in different places to boost the robustness and quality
of the machine learning model. However, COMAU’s customers can be competitors.
Those companies do not intend to share data with competitors and simply waive
their data sovereignty. With federated machine learning techniques, COMAU can
offer an appropriate level of security for customers and save them costs at the
same time. Besides, the aforementioned data might include personal information
regarding operators working in the manufacturing plant which can raise additional
privacy concerns that have to be tackled by the solution.

6.2 Training an Algorithm While Preserving the Sovereignty
of Data Providers

At each piece’s welding point, some welding parameters are recorded automatically
from the welding robot (represented in Fig. 7), such as the current between the
electrodes, resistance, number of points already welded by those electrodes and so
on.

Then, a minimum amount of those pieces are sampled from the line to make an
ultrasonic non-destructive test to assess the welding spot quality. An operator applies
a probe on each welded spot which sends a signal to a computer to be interpreted

Fig. 7 Model of a COMAU robot and welding gun used for the welding of car parts
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Fig. 8 Presentation of Q+ points on a car door

(graph representing the reflected sound energy versus time). The operator then
classifies the welding points into different categories. In a production line only
one or two pieces are verified each day whereas the total number of welded pieces
goes up to 400 per day. Therefore, only a scarce percentage of pieces are subject
to ultrasound testing. Besides, the manual test is limited to a few critical welding
points on each piece, called Q+ points, which are always the same. On each car
body, there are more than 3000 welding spots, while the Q+ points represent only a
very small percentage of them. As an example, Fig. 8 shows which are the few Q+
points in a car door.

Our action here consists of collecting this manual ultrasound testing data and
combining it with the welding data from the robot in order to locally train the
algorithm. In parallel, this machine learning model is trained on different datasets
from other factories. Trained models are eventually merged on the MUSKETEER
platform (in different location) to provide the final version of the model. The entire
flow is represented in Fig. 9.

As mentioned, collecting data from different factories also raises privacy issues.
These data can be sensitive company data but also lead to personal data concerns
(e.g. data can include information about operators working at the plant). Using
the MUSKETEER platform provides a robust solution mixing a federated machine
learning approach (local training) with privacy preserving technologies (highly cus-
tomized encryption, data poisoning attacks mitigation) while respecting sovereignty
of the stakeholders as defined in the reference architecture model of the International
Data Spaces Association (IDSA) [13].
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Fig. 9 Data collection and processing in federated learning environment

6.3 Less Data but More Information

Based on the combined data coming from robots and ultrasound tests, a robust
model is built. In this case the Privacy Operation Mode selected is POM3 (Porthos),
where the final trained model is private, the model is hidden to the aggregator and
the encryption is implemented with a different private key for each data owner.
One of the main reasons to adopt this model is because there is no trust among the
data owners, for example in a scenario in which the data providers are competitors.
Once the model is trained and has a satisfactory accuracy, thanks to the federated
approach, it becomes possible to provide the classification of the welding spot
directly from the welding data. This leads to numerous advantages over the limited
manual testing:

• Opportunity to estimate the quality of all the welding points (not only the Q+
points) and raise the safety of products accordingly.

• Opportunity to understand if a specific combination of parameters helps to weld
with fewer defects.

• Data sharing is allowed while sovereignty of each participant is preserved, and
privacy concerns are tackled.

7 Conclusion

In this chapter, we introduced MUSKETEER, a federated machine-learning-based
platform and the custom Privacy Operations Modes designed for it, aiming at
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increasing privacy when sharing data. We presented an efficiency assessment of the
federated learning process. The results showed an improved overall accuracy of a
model trained in a federated task. The experiment was done using the MUSKETEER
platform. The chapter concluded with the presentation of a real use case in the
automotive sector to optimize the welding quality of robots in production lines. The
data coming from different locations was used to create a federated task.
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Abstract As institutions increasingly shift to distributed and containerized appli-
cation deployments on remote heterogeneous cloud/cluster infrastructures, the cost
and difficulty of efficiently managing and maintaining data-intensive applications
have risen. A new emerging solution to this issue is Data-Driven Infrastruc-
ture Management (DDIM), where the decisions regarding the management of
resources are taken based on data aspects and operations (both on the infrastructure
and on the application levels). This chapter will introduce readers to the core
concepts underpinning DDIM, based on experience gained from development
of the Kubernetes-based BigDataStack DDIM platform (https://bigdatastack.eu/).
This chapter involves multiple important BDV topics, including development,
deployment, and operations for cluster/cloud-based big data applications, as well
as data-driven analytics and artificial intelligence for smart automated infrastructure
self-management. Readers will gain important insights into how next-generation
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DDIM platforms function, as well as how they can be used in practical deployments
to improve quality of service for Big Data Applications.

This chapter relates to the technical priority Data Processing Architectures of the
European Big Data Value Strategic Research & Innovation Agenda [33], as well
as the Data Processing Architectures horizontal and Engineering and DevOps for
building Big Data Value vertical concerns. The chapter relates to the Reasoning and
Decision Making cross-sectorial technology enablers of the AI, Data and Robotics
Strategic Research, Innovation & Deployment Agenda [34].

Keywords Data processing architectures · Engineering and DevOps for big data

1 Introduction to Data-Driven Infrastructure

For nearly a decade, advances in cloud computing and infrastructure virtualization
have revolutionized the development, deployment, and operation of enterprise
applications. As a prominent example, the advent of containers and operating
system (OS) virtualization facilitates the packaging of complex applications within
isolated environments, in ways that raise the abstraction level towards application
developers, as well as boosting cost effectiveness and deployment flexibility [32].
Likewise, microservice architectures enable the provision of applications through
composite services that can be developed and deployed independently by different
IT teams [8]. In this context, modern industrial organizations are realizing a gradual
shift from conventional static and fragmented physical systems to more dynamic
cloud-based environments that combine resources from different on-premises and
cloud environments. As a result of better application isolation and virtualized
environments, basic semi-autonomous management of applications has become
possible. Indeed, current cloud/cluster management platforms can natively move
applications across physical machines in response to hardware failures as well
as perform scaling actions based on simple rules. However, while useful, such
basic autonomous decision making is insufficient given increasingly prevalent
complex big data applications [31]. In particular, such applications rely on complex
interdependent service ecosystems and stress the underlying hardware to its limits
and whose properties and workloads can vary greatly based on the changing state of
the world [4].

Hence, there is an increasing need for smarter infrastructure management
solutions, which will be able to collect, process, analyse, and correlate data from
different systems, modules, and applications that comprise modern virtualized
infrastructures. In this direction, recent works have developed and demonstrated
novel Data-Driven Infrastructure Management (DDIM) solutions. For instance,
experimental DDIM solutions exist that process infrastructure data streams to detect
errors and failures in physical systems (e.g. [16, 29]). In other cases, more advanced
data mining techniques like machine learning have been used to detect anomalies in
the operation of cloud infrastructures (e.g. [10]). This is complemented by works on
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data-driven performance management of cloud infrastructures [9] and resources [5].
However, these solutions address individual optimization and resilience concerns,
where a more holistic Data-Driven Infrastructure Management approach is required.

This chapter introduces a holistic DDIM approach, based on outcomes of
BigDataStack [15], a new end-to-end DDIM solution. The main contributions
and innovations of the presented DDIM approach are the following: (i) Data-
oriented modelling of applications and operations by analysing and predicting
the corresponding data flows and required data services, their interdependencies
with the application micro-services and the required underlying resources for
the respective data services and operations. Allowing the identification of the
applications data-related properties and their data needs, it enables the provision
of specific performance and quality guarantees. (ii) Infrastructure management
decisions based on the data aspects and the data operations governing and affecting
the interdependencies between storage, compute, and network resources, going
beyond the consideration of only computational requirements. The proposed DDIM
leverages AI and machine learning techniques to enable more efficient and more
adaptive management of the infrastructure, known as the AIOps (Artificial Intel-
ligence Operations) paradigm, considering the applications, resources, and data
properties across all resource management decisions (e.g. deployment configura-
tions optimizing data operations, orchestration of application and data services,
storage and analytics distribution across resources, etc.). (iii) Optimized runtime
adaptations for complex data-intensive applications throughout their full lifecycle,
from the detection of fault and performance issues to the (re)configuration of
the infrastructure towards optimal Quality of Service (QoS) according to data
properties. The latter is achieved through techniques that enable monitoring of all
aspects (i.e. applications, analytics, data operations, and resources) and enforcement
of optimal runtime adaptation actions through dynamic orchestration that addresses
not only resources but also data operations and data services adaptations. The
proposed DDIM approach has been deployed and validated in the context of three
enterprise application environments with pragmatic workloads for different vertical
industries, including retail, insurance, and shipping.

The rest of the chapter is structured to incrementally introduce the key building
blocks that enable DDIM in BigDataStack. In particular, Sect. 2 introduces the core
modelling of user applications, their environment, as well as additional concepts
needed to realize DDIM. Section 3 discusses how profiling of user applications can
be performed prior to putting them in production. In Sect. 4, we discuss how to
monitor applications in production, as well as measure quality of service. Section 5
introduces AIOps decision making within BigDataStack, while Sect. 6 discusses
how to operationalize the decisions made. Finally, we provide an illustrative
example of DDIM in action within BigDataStack for a real use case in Sect. 7.
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2 Modelling Data-Driven Applications

At a fundamental level, DDIM is concerned with altering the deployment of a user’s
application (to maintain some target state or quality of service objectives) [14, 22].
As such, the first question that needs to be asked is ‘what is a user application?’ From
a practical perspective, a user application is comprised of one or more programs,
each needing a compatible environment to run within. However, we cannot assume
any language or framework is being used if a general solution is needed. To solve
this, the programs comprising the user’s application and associated environments
need to be encapsulated into packaged units that are readily deployable without
additional manual effort. There are two common solutions to this, namely virtual
machines and containers [26]. For the purposes of DDIM, containers are generally
a better solution, as they have a smaller footprint, have fewer computational
overheads and are faster to deploy/alter at runtime [26]. We assume container-
based deployment for the remainder of this chapter.

Given container-based deployment, we can now model the user application in
terms of containers. It is good practice for a container to be mono-task, that is
each container runs only a single program, as this simplifies smarter scheduling
on the physical hardware [3]. A user application is then comprised of a series
of containers, each performing a different role. DDIM systems then configure,
deploy, and maintain these containers over large hardware clusters or clouds.
There are a range of commercial and open-source container management solutions
currently available, such as Docker Swarm and Kubernetes. The primary function
of these solutions is to schedule containers onto cloud or cluster infrastructures.
This involves finding machines with sufficient resources for each container, copying
the container (image) to those machine(s), mounting any required attached storage
resources, setting up networks for communication, starting the container(s), and
finally monitoring the container states and restarting them if necessary. At the time
of writing, the most popular container management solution is the open-source
Kubernetes platform, which is what we will assume is being used moving forward.
We discuss the most important Kubernetes concepts for DDIM systems below.

2.1 Application Modelling Concepts

Pods, Deployments, and Jobs For the purposes of modelling the user application
in a containerized cloud/cluster, it is reasonable to consider an application to be
comprised of a series of ‘Pods’, where a pod is comprised of one or more containers.
A pod abstraction here exists to provide a means to group multiple containers
into a single unit that can be deployed and managed together. In our experience,
it is useful to distinguish pods along two dimensions: lifespan and statefulness.
First, considering pod lifespan, ‘continuous’ pods are those that are expected to
run indefinitely, representing permanent services which may be user-facing (e.g. a
web host). Meanwhile, ‘finite’ pods are those that are aimed at performing a task,
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and will end once that task is complete (e.g. a batch learning or analytics task).
Continuous pods in effect have an implied Service-Level Objective, that is that they
must be kept running regardless of changes to the underlying infrastructure (e.g.
due to hardware failures), while finite pods do not. In Kubernetes, continuous pods
are managed using ‘Deployment’ objects, while finite pods are represented as ‘Job’
objects. Second, considering statefulness, a pod can be stateless meaning that it does
not retain any data between requests made to it. This type of pod is the easiest to
manage, it holds no critical data that could be lost if the pod needs to be restarted or
moved and can often be replicated without issue. On the other hand, stateful pods
maintain or build up data over time, which is lost if the pod fails or is killed. As such,
the ‘cost’ of altering the configuration of an application that is comprised of stateful
pods can be high, as data is lost when those pods are moved or restarted. In this case,
the lost data needs to either be regenerated requiring more time and computational
power or may simply be unrecoverable if the underlying input that created the data
is no longer available. For this reason, it is recommended that application architects
design their system to use only stateless pods where possible.

Services and Routes When scheduling a pod, a machine with the needed resources
is only selected at runtime, meaning the network address of that pod cannot be
known before then. Furthermore, that address may not be static, as changes in the
infrastructure environment may result in the pod being lost/deleted and then a new
copy spawned on a different physical node. This complicates the configuration
of user applications, as it is commonplace for user programs to expect to be
preconfigured with static URLs or IP addresses when two components need to talk
to one another. A ‘Service’ is the solution to this issue, as it is a special entity
in Kubernetes in that it has a static URL. Traffic directed at a service will then be
forwarded to one or more pods based on a service-to-pod mapping, which is updated
over time if changes occur and can also be used for load-balancing requests across
multiple copies of a pod. A service can be paired with a ‘Route’ object to produce
an external end-point, enabling requests from the outside world to reach a pod.

Volumes and Volume Claims Containers by their nature are transient, that is
their state is lost when they exit. Hence, most pods need some form of persistent
storage to write to, for example for writing the final output of a batch operation or
as a means to achieve statelessness by reading/writing all state information to an
external store. This is handled in Kubernetes using volumes. A volume is simply
a definition of a directory within a storage medium that can be mounted to one or
more containers, such as an NFS directory or distributed file system like HDFS.
However, the available storage amounts and storage types available will vary from
cluster to cluster, and as such it is not good practice to directly specify a volume,
as this ties the pod to only clusters with that exact volume. Instead, Volume Claims
exist, which represent a generic request for a desired amount and type of storage.
If a pod specifies a volume claim, Kubernetes will attempt to automatically provide
the requested amount and types of storage from its available pool of volumes. In this
way, an application can still obtain storage, even if the application owner does not
know what exact storage volumes are available on the target cluster.
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2.2 Data-Driven Infrastructure Management Concepts

In this section, we will describe additional concepts that are required for DDIM
systems to function based on experience from developing BigDataStack, namely
Pod Level Objectives, Resource Templates, Workloads, and Actions.

Pod Level Objectives For DDIM systems to meaningfully function, they need a
set of objectives to achieve, representing the needs of the application owner. Given
the application modelling discussed above, we can consider that an application
component, represented by a running pod (and created via a Deployment or
Job), could have zero or more objectives associated with it. In the literature,
such objectives are typically referred to as Service-Level Objectives (SLOs) [24].
However, this may be somewhat confusing as in containerized environments a
‘Service’ means something different, as such we will instead refer to these as Pod-
Level Objectives (PLOs). A PLO defines a quality of service (QoS) target for a pod
to achieve, such as ‘cost less than 1.2 U.S. dollars per hour’, or ‘provide response
time less than 300 ms’. A QoS target is comprised of three parts: (1) a metric (e.g.
response time), (2) a target value (e.g. 300 ms), and (3) a comparator (e.g. less than).
Note an implicit assumption here is that the specified metric is measurable for the
pod, either because the pod exports it (e.g. response time), or it can be calculated
for the pod by a different component (e.g. cost). If so, a PLO can be checked by
comparing the current measured metric value against the QoS target, resulting in
a pass or failure. PLO failures are the primary drivers of DDIM systems, as they
indicate that changes in the user application or data infrastructure are needed.

Resource Templates To launch a Deployment or Job in a cluster or cloud
environment, sufficient computational resources need to be provided, that is CPU
capacity, system memory, and potentially GPUs or other specialized hardware [6].
The modelling of resources assigned to a pod is a critical part of DDIM systems,
as a lack (or in some cases excess) of such resources is the primary cause of PLO
failures. Moreover, the resource allocation for individual pods are often a variable
that the DDIM system has control over and hence can manage automatically.
In theory, resources, such as allocated system memory, are continuous variables,
where any value could be set up to a maximum defined by the target cluster.
However, predefined Resource Templates that instead define aggregate ‘bundles’
of resources for a fixed cost are very common, such as Amazon EC2 Instances.
Resource Templates exist as they both simplify the resource selection process for
the application owner, while also enabling the cluster owner to divide their available
resources in a modular fashion. A basic Resource Template needs to specify CPU
capacity and system memory for a pod, as all pods require some amount of these.
A Resource Template may optionally list more specialized hardware, such as
Nvidia GPUs or Quantum cores based on the requirements of the application and
cluster/cloud support available.

Workloads Another factor that DDIM systems often need to consider is the
application environment. Continuous applications will typically be serving requests,
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either from users or other applications. Meanwhile, finite applications most com-
monly will be concerned with processing very large datasets. We can consider these
environmental factors as sources of workload that is placed on pods, that is they
quantify the properties of the input to those pods over time. In the case of continuous
applications, this might manifest in the number of API calls being made per second
and may vary over time (e.g. for user-facing applications distinct day-night cycles
are commonly observable). On the other hand, for finite applications, the size of
the dataset or database table(s) being processed can be considered to define the
workload. Some types of DDIM systems will model such workloads and may even
condition their PLOs upon them, for example if the number of requests is less than
500 per second, then response latency should be less than 100 ms.

Actions The final aspect of a user application that is critical to enable DDIM sys-
tems is how they can be altered. For a DDIM system to function, it requires a finite
set of actions that it can perform for an application. In effect, these actions form a
‘toolbox’ that the DDIM system can use to rectify PLO failures. Relatively simple
actions in containerized environments might include adding/removing replicas or
altering the Resource Template for a pod. However, as applications become more
complex, associated actions often require multiple steps. For example, scaling a
data-intensive API service might involve first replicating an underlying database to
provide increased throughput, followed by a reconfiguration step joining the new
database instance into the swarm, followed by a scaling action on the API pods to
make use of the increased capacity. Moreover, as actions become more complex,
the time taken to complete them will grow, hence DDIM systems need to track what
actions are currently in progress and their state to enable intelligent decision making.

3 Application Performance Modelling

Much of the emphasis for DDIM systems is on how to manage user applications
(semi-)automatically post-deployment. However, some types of DDIM systems,
including BigDataStack, support optional functionality to analyse the user appli-
cation pre-deployment. The core concept here is to gain some understanding of
the expected properties of the application, which can be used later to enable more
intelligent decision making. From a practical perspective, this is achieved via
benchmark tooling, whereby application components can be temporarily deployed
with resource templates, subjected to a variety of predefined workloads, in a
parameter sweep fashion, and their performance characteristics measured and
recorded. This enables the quantification at later stages of the effects of a workload
on the QoS metrics of this service.

How Does Benchmarking Function? Fundamentally, benchmarking has three
main aspects: (1) the deployment of part or all of the user application with a
defined set of resources; (2) the creation of a workload for that application; and
(3) measurement of the observed performance characteristics. Deployment in a
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containerized environment is greatly simplified, as the containers needing tested
can be deployed as pods directly upon the infrastructure if correctly configured.
On the other hand, generating a workload for the application is more complicated.
For continuous pods, typically an external service is needed to generate artificial
requests, for example to simulate user traffic patterns. Meanwhile, for finite pods,
use of a standard dataset or data sample is used for benchmarking. Finally,
measurement of the performance characteristics of an application typically comes
in three forms: application exported metrics, infrastructure reported metrics for
the application, and metrics about the infrastructure itself. As the name suggests,
application exported metrics are metrics directly reported by the application itself
based on logging integrated into it by the application engineer, for example request
processing time for a website host. Infrastructure metrics about the application
represent monitoring the management platform (e.g. Kubernetes) that is passively
performing, such as pod-level CPU and system memory consumption. Finally,
infrastructure metrics (which are not typically available on public clouds) can
provide information about the wider state of the cluster/cloud providing insights into
how busy it is. Metrics here might include node-level CPU and memory allocation
and information about node-to-node network traffic.

Benchmarking Tools in BigDataStack BigDataStack incorporates a Bench-
marking-as-a-Service framework (Flexibench), developed in the context of the
project, that exploits baseline tools such as Apache Jmeter and OLTPBench and
orchestrates their operation towards a target endpoint (database or otherwise).
Flexibench retrieves the necessary setup (type of client to use, workload to launch,
desired rate of requests, etc.) via a REST-based interface or a UI-based interface
and undertakes their execution. Multiple features are supported such as parallel
versus isolated execution of the experiment, trace-driven load injection (based
on historical data files), inclusion of the defined data service in the process, or
load injection towards an external datapoint. The tool offers REST interfaces for
test monitoring and result retrieval and is based on Node-RED, a visual flow
programming environment of node.js.

Predictive Benchmarking While undertaking actual benchmarking is the most
accurate way to determine the performance characteristics for an application, it can
be costly and time consuming to implement as the application needs to be physically
deployed and the parameter search space may be extensive. An alternative to this is
predictive benchmarking. The idea is to use machine learning to estimate what the
outcome of a benchmark run would look like, by considering the benchmarking
outcomes from other similar application deployments. BigDataStack also supports
the creation of predictive benchmarking models via Flexibench through the same
UI- or REST-based environment, therefore integrating the two processes (result
acquisition and model creation). The creation is performed following a REST- or
UI-based request, in which the test series is defined, as well as other parameters that
are necessary for result acquisition (such as the identifiers of related services to use
for predictions). The framework retrieves the relevant training data and launches
a containerized version of an automated model creation algorithm defined in [13].
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The resultant model is subsequently validated, and the respective results are made
available for the user to examine via the UI. Following, the model can be queried
if the relevant input values are supplied (e.g. type and size of workload, resource
used, etc.) and the predicted QoS metric (e.g. response time, throughput, etc.) will
be returned to the user.

4 Metric Collection and Quality of Service Monitoring

To enable the validation of the application PLOs that act as the triggers for DDIM,
constant quantitative performance measurement for pods is required. Therefore,
metrics must be collected, stored, and exposed. Indeed, the performance of applica-
tions running on platforms like BigDataStack is impacted by many factors, such
as infrastructure state, data transaction speeds, and application resourcing. For
this reason, the monitoring engine of BigDataStack was developed using a triple
monitoring approach. By triple monitoring we mean the collection of performance
indicators from: (1) the infrastructure, (2) data transactions, and (3) applications
exported metrics.

Metric Collection Strategies Any metric monitoring system can be considered as
comprised of multiple agents and a manager. The agents perform measurements
and prepare metrics for collection by the manager, which might be a pod within
the user application, a database, or Kubernetes itself. Most commonly, the manager
periodically requests metrics from the agents (known as polling) via standardized
metric end-points. An interval (scraping interval) then defines how frequently the
metrics are collected. An alternative approach is to have the agents directly post
metric updates to the manager or an intermediate storage location (known as the
push method). This can be useful for applications or services that do not/cannot
expose a metrics end-point that a manager can connect to. BigDataStack supports
both polling and push methods for data collection. The measurement data collected
by the manager is then typically held in a time-series database, enabling persistent
storage of performance history over time.

Triple Monitoring in BigDataStack BigDataStack’s monitoring solution is based
on Prometheus, which is the official monitoring tool of Kubernetes. Prometheus
requires a definition of target endpoints exposing metrics in its configuration file.
However, manually defining this for the many applications that are managed by
BigDataStack is infeasible. Instead, BigDataStack exploits the service discovery
functionality of Prometheus to automatically configure metric collection from
new pods as they are deployed. Under the hood, in this scenario Prometheus
periodically communicates with the Kubernetes API to retrieve a list of port
end-points exposed by running pods in the BigDataStack managed namespaces,
and checks them to see if they export metrics in a format that Prometheus can
understand. Some applications may wish to control their own metric collection via
their own Prometheus instance. In this context, the triple monitoring engine is able
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to aggregate metrics collection from multiple Prometheus instances concurrently
using Thanos. The monitoring engine of BigDataStack adopts a federated model
where several Prometheus instances can be added dynamically for reducing the
total scraping duration, thus allowing the collection of very large volumes of data
points from a large number of sources. This is coupled with metrics compression by
aggregation, minimizing the overhead when working with Big Data applications.
For the purposes of DDIM, three different groups of metrics are collected by the
triple monitoring engine: infrastructure information, data operations information
(i.e. data produced, exchanged, and analysed by applications), and all the data
involved in database transactions and object storage operations. Since these metrics
are produced by applications with different purposes, specifications, functionalities,
and technologies, the triple monitoring engine integrates a data sanitizer to prepare
incoming measurements such that they conform with a standard specification. The
triple monitoring engine also provides an output REST API for exposing data to
all services, as well as a publish/subscription service that enables the streaming
consumption of measurements by other applications.

Quality of Service Evaluation Within a DDIM system, the core reason to collect
measurements about a user application and infrastructure is to enable evaluation
of application Quality of Service (QoS). QoS represents the degree to which the
application is meeting the user needs. More precisely, QoS evaluation is concerned
with guaranteeing the compliance of a given KPI (Key Performance Indicator) as
defined in one or more PLOs (Pod-Level Objectives), typically for a given time
period or window. When a user requests a service from BigDataStack, a minimum
QoS is agreed between the user and the system, expressed as PLOs. At runtime,
metric data is collected by the Triple Monitoring Engine and evaluated against these
PLOs to determine whether the application is (or in some cases soon will be) failing
to meet the user needs. Such failures can then be used to trigger orchestration actions
aimed at rectifying such failures, as discussed in the next section.

5 Automated Decision Making

Having discussed the monitoring of user applications and how to determine when
failures have occurred that need to be rectified, we next discuss how DDIM systems
can solve these issues through automatic service orchestration.

QoS as an Optimization Problem Service orchestration in the context of Big Data
has usually the goal of a Quality of Service (QoS) or Quality of Experience (QoE)
sensitive optimization [27]. This optimization problem, under varying contexts,
is complex and considered an NP-hard problem [17]. Previous approaches have
tackled this optimization problem with heuristics [7, 30] or genetic algorithms [2]
that aim to find near-optimal configurations and service compositions, such as
configurations respecting overall QoS/QoE constraints, while maximizing a QoS
utility function. The composition of services in current cloud-edge Big Data/AI
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applications usually follows a pipeline pattern in which stream and batch data
(potentially recorded at the edge) is processed by multiple components in order to
derive the desired results. These new pipelines add new requirements and challenges
to service orchestration as they inherently contain complex trade-offs between
computation and performance (e.g. resulting accuracy), and errors introduced
in early components cascade through the overall pipeline, affecting end-to-end
performance and making it impossible to treat the problem as an independent
orchestration of components. Initial approaches have addressed the orchestration
problem with reasoning across the pipeline components in a probabilistic manner,
allowing the user to manually decide the adequate trade-off [25].

We model QoS as a constrained optimization problem. Specifically, (1) we model
requirements as constraints, for example to process documents with an end-to-end
latency less or equal than 1 s or to run at a cost of less or equal than 10 $ per
hour, and (2) we model service performance, such as precision, accuracy, or battery
consumption, as objective. There is an important difference between the objective
and the constraints: whereas the constraints define a minimum or maximum value
for the variable involved (e.g. latency, cost, etc.), the objective does not have a
minimum or maximum value expected. In this way, we can define the service
requirements as:

maximize
θ

O(θ)

subject to ci(θ) ≤ Ci, i = 1, . . . , N

where:

• θ : is the configuration of parameters used for all of the operators.
• O(θ): represents the objective of the service, which is determined by the

configuration of parameters used.
• ci(θ): is a constraint to the service (such as latency), also determined by θ .
• Ci : is the constraint target (e.g. 1 s).
• N : is the total number of constraints.

The developer is in charge of defining the service requirements along with the
metrics to monitor them, as well as the parameters that can be adapted and the
values they can assume. During runtime, the system is in charge of finding the best
configuration of parameter values that maximize (or minimize) the objective while
respecting the constraints.

Optimization via Reinforcement Learning Recently, reinforcement learning
(RL) has been successfully applied to node selection for execution [19] as well as
optimization of overall pipelines using, among others, meta-reasoning techniques
to ensure an overall optimization of the pipeline [1, 18, 21]. A key issue with
RL-based approaches is the bootstrapping problem, that is how to obtain sufficient
performance from the first moment the agent begins to operate. A simple solution
is to explore the state space randomly, but this approach is usually time consuming
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and costly when the state/action space is large, as illustrated in [1]. An alternative
approach is to gain experience more cheaply and faster via a sandbox simulation.
With enough computational resources, it is possible to produce large volumes of
experience data in a short time period, but it is difficult to ensure that the simulated
experiences are realistic enough to reflect an actual cloud/cluster environment. To
reduce the cost of training RL agents, some works have examined how to leverage
external knowledge to improve their exploration efficiency. For example, in [11, 23]
prior knowledge like pretrained models and policies are used to bootstrap the
exploration phase of an RL agent. However, this type of prior knowledge still
originates in previous training and is limited by the availability of such data. In
BigDataStack, we leverage Reinforcement Learning in conjunction with expert
knowledge to drive service orchestration decisions, as discussed next.

Dynamic Orchestrator in BigDataStack The Dynamic Orchestrator (DO) works
alongside the Triple Monitoring Engine (TME) to monitor and trigger the rede-
ployment of BigDataStack applications during runtime to ensure they comply with
their Service-Level Objectives (SLOs). The DO receives and manages monitoring
requests when a new application or service is deployed into the BigDataStack
platform, informing the TME and the Quality of Service (QoS) component what
metrics and PLOs should be monitored. When any violation to these PLOs occur,
the QoS informs the DO, and the DO is in charge of deciding what redeployment
change is necessary, if any. In BigDataStack, we developed flexible orchestration
logic that can be applied to any kind of application by applying Reinforcement
Learning (RL) that leverages external knowledge to bootstrap the exploration phase
of the RL agent. We call this method Tutor4RL. For Tutor4RL, we have modified
the RL framework by adding a component we call the Tutor. The tutor possesses
external knowledge and helps the agent to improve its decisions, especially in the
initial phase of learning when the agent is inexperienced. In each step, the tutor takes
as input the state of the environment and outputs the action to take, in a similar way
to the agent’s policy. However, the tutor is implemented as a series of programmable
functions that can be defined by domain experts and interacts with the agent during
the training phase. We call these functions knowledge functions and they can be of
two types:

• Constraint functions: are programmable functions that constrain the selection of
actions in a given state, ‘disabling’ certain options that must not be taken by the
agent. For example, if the developer of the application has decided a maximum
budget for the application, even if the application load is high and this could be
fixed by adding more resources to the deployment, this should not be done if the
budget of the user has already reached its maximum.

• Guide functions: are programmable functions that express domain heuristics
that the agent will use to guide its decisions, especially in moments of high
uncertainty, for example at the start of the learning process or when an unseen
state is given. Each guide function takes the current RL state and reward as the
inputs and then outputs a vector to represent the weight of each preferred action
according to the encoded domain knowledge. For example, a developer could
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Fig. 1 Overall Working of Tutor4RL

create a guide function that detects the number of current users for an application,
and if the number is higher than a certain threshold, more resources might be
deployed for the application (Fig. 1).

The benefit coming from using Tutor4RL is twofold. First, during training, the
tutor enables a faster bootstrapping to a reasonable performance level. Furthermore,
the experience generated by the tutor is important because it provides examples of
good behaviour, as it already uses domain knowledge for its decisions. Second, the
knowledge the tutor provides does not need to be perfect or extensive. The tutor
might have partial knowledge about the environment, that is know what should be
done in certain cases only, or might not have a perfectly accurate knowledge about
what actions should be taken for a given state. Instead, the tutor provides some ‘rules
of thumb’ the agent can follow during training, and based on experience, the agent
can improve upon the decisions of the tutor, achieving a higher reward than it.

Learning What Actions to Take Within BigDataStack, the application engineer
(i.e. the domain expert) defines sample guide and constraint functions for the learner.
These functions encode domain knowledge of the developer that can guide decision
making. Indeed, for some applications these guide functions will be sufficient to
manage the application without further effort. On the other hand, for cases where
the guide functions are insufficient, reinforcement learning can be enabled. During
RF training (i.e. pre-production), the RL agent will experiment with the different
available alteration actions that can be performed (discussed in the next section),
learning how each affects the metrics tracked by the triple monitoring engine, as
well as the downstream PLOs. After a period of exploration, the RF agent can be
deployed with the application in production, where it will intelligently manage the
application by triggering the optimal alteration action or actions in response to PLO
failures.

How Effective is Automatic Service Orchestration? We have compared
Tutor4RL performance against vanilla DQN [20] in a scenario where the DO
is in charge of controlling two metrics: cost per hour (which varies according to
resources used by application) and response time. These are two opposite objectives:
if we increase the use of resources, the response time decreases but the cost per hour
increases, and if we decrease the use of resources, the opposite is true. However,
the SLOs specify thresholds for each metric: cost per hour should be less or equal
to $0.03 and response time should be less than 200 ms. The DO must find the
sweet spot that satisfies these two SLOs as long as the application allows it. In
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Fig. 2 Tutor4RL Performance compared to Vanilla DQN [20]. DO performance to manage 2
SLOs: costPerHour <0.03 and responseTime <200. Vanilla DQN is shown on the left, while
Tutor4RL, with 2 guides and 1 constrain, is shown on the right. The horizontal blue dashed lines
show the SLO threshold for the metrics and the pink dotted line show the moment in which guides
are not used anymore

fact, it might happen that the application load is too high, and then there is no
way of satisfying both SLOs, in these cases the DO behaviour will tend to find the
configuration that violates the SLOs proportionally less. However, we believe these
are corner cases in which even a human might not be sure what to do, and therefore
we have not evaluated the DO’s performance in these situations. In Fig. 2, we see
the performance of the vanilla DQN agent (left) and the Tutor4RL agent (right) for
managing this scenario with two SLOs. Note that on the images we have marked
with horizontal lines the thresholds for SLOs and with a vertical line, the moment in
which the guide functions from the Tutor are not used anymore, until that point the
functions are used on and off with a diminishing frequency from 0.9 to 0. As we can
see, the Tutor4RL agent performs better than the vanilla agent by achieving a better
satisfaction of SLOs. We still see that once the guides are completely abandoned,
the agent commits some mistakes, but it can quickly correct its error. We can avoid
this by adding constraints such as not changing the deployment configuration if
no SLO is violated, but we wanted to show a case in which the agent is free in its
actions and therefore show its learned behaviour better.
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6 Operationalizing Application Alterations

Once the decision to alter the user application (as an attempt to rectify a failing PLO)
has been made, and the action to perform has been decided, the DDIM needs to
operationalize that alteration. In this section we discuss the types of alterations that
are possible, as well as how these can be encoded as actions within BigDataStack.

6.1 Types of Alteration Actions

Depending on the type and complexity of the deployed application, as well as the
level of permissions that the DDIM has with the infrastructure management system
(e.g. Kubernetes), there can be a wide range of alteration actions that might be
performed. A useful way to structure actions is based on what problem they aim
to solve. In general, there are four common types of problems that can arise as
follows:

Insufficient Resources for a Pod Based on unexpectedly poor performance
reported by a pod in conjunction with maximized utilization for that pod, the DDIM
might decide that a pod needs more resources. This can be solved by the allocation
of a different (in terms of resources) pod, which actually refers to a larger Resource
Template for that pod. Notably, in Kubernetes this is a destructive action, that is it
will involve the pod being killed. For continuous applications, this is typically not an
issue, as the pods involved are stateless. However, for Jobs performing this type of
operation might result in all progress up to that point being lost. In either scenario,
the alteration action involves the launching of a new copy of the target pod with
the new larger Resource Template, then halting the previous pod once the new one
reaches running status.

Insufficient Application Capacity In this scenario, one or more pods may be
reporting unexpectedly poor performance, but the resources are not saturated for
any of the application pods. This would indicate that the existing pods are working
correctly, but they are unable to keep up with the current workload. The solution here
is to scale-up the application to increase its capacity, if supported by the application.
For simple applications, this might only involve increasing the number of replicas
for one of the pods, which is a non-destructive action (load-balancing across
the replicas can be handled by a Service automatically). However, for complex
applications this may require multiple steps and can be destructive. For example,
consider the scaling of an Apache Spark Streaming application. First, the number of
Spark workers needs to be increased, which can be handled by a simple replication
factor change on the worker pods. These new workers will be automatically added
to the ‘Spark Cluster’ and will show ready for work. However, the streaming
application running on that Spark cluster will not automatically scale to use the
additional workers. Instead, the application must be killed and then resubmitted to
the Spark cluster before the workers will be allocated to the application.
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Insufficient Data Availability Not all issues that might cause PLO failures are
necessarily application-related. In this scenario, the DDIM might observe unex-
pectedly poor performance for the application and at the same time a saturation of
resources for one or more data infrastructure components in use by that application
(e.g. a database). In this case, the most efficient response would be to scale the
data infrastructure components (in the example above, the database) to provide the
required additional capacity. This is typically a costly action to perform, in terms of
both time and resources. First, appropriate data storage volumes need to be created
to hold the replicated data. Second, new infrastructure pods need to be started, and
when they are ready, the associated data needs to be imported. Note that this import
process is typically performed from some archive service, not via copying from
currently running data infrastructure instances, as those are already overloaded by
application requests.

Insufficient Network Bandwidth The last case represents failures in the net-
working/communication infrastructure. Within distributed cluster environments,
pod-to-pod as well as external service-to-pod communications are channelled across
physical communication links, which can become saturated. A classical example
of this is a Denial of Service attack, where external servers attempt to overload
an application with requests. While there is no easy fix for this type of failure,
specific DDIM setups can control traffic prioritization. In this case, some portion
of low-priority in-flight network traffic will be dropped to free up bandwidth for
high-priority traffic. This is achieved by re-configuring the cluster’s network routing
policies based on detected in-bound workloads.

6.2 Considerations When Modelling Alteration Actions

Given the above adaptation scenarios and their possible solutions, it is clear that
DDIM solutions require the means to perform complex alteration actions at runtime.
There are four key aspects that need to be considered when modelling these
alteration actions:

Sequencing and State Dependencies First, a single alteration action can be a
complex affair that involves multiple steps. Moreover, the individual steps may have
dependencies that require progression to wait until particular application states are
achieved. For example, for a scaling action on the data infrastructure, the alteration
action is not complete when the new infrastructure pods have started, but rather
once the data has finished importing. Hence, an action must be seen as a composite
set of lower-level operations that together form the desired action, where both the
application and operations have states that can be tracked to determine when new
operations can start (as well as when the action as a whole is complete).

Actions Are Application (Type) Dependent Second, it is worth stating that the
available alteration action set is not the same across applications. While there are
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standard operations that are built into management platforms like Kubernetes for
controlling factors such as pod replication, just because an operation is technically
valid, it does not mean that performing the operation would be efficient for the
current application. For example, for deployments where state loss is not an
issue, the option to perform destructive runtime resource template changes may
be desirable. But such an option might not be effective or cost too much for jobs
where progress is reset when the underlying pod is restarted, even if it is possible
to do so [28]. Moreover, any reasonably complex application will need support for
multistage alteration actions that are not supported natively by existing management
platforms. On the other hand, it is notable that applications that are of a similar type,
for example those that use a common framework like Apache Spark or Ray, may
be able to share actions, enabling common action sets to be shared among similar
applications.

Available Actions Can Change Over Time The set of available actions for an
application may change depending on that application’s state, or the states of
associated actions being performed. In the simplest case, once an alteration action
is triggered, it makes sense to remove that action from the available set until it
completes, as the DDIM system should wait to see the outcome of that alteration
before attempting the same action again. Meanwhile, in more complex scenarios, the
application engineer might want more control over what actions the DDIM system
will consider under different conditions, effectively providing the DDIM system
expert knowledge of what actions are reasonable given different application states.

Actions Are Data-Dependent Finally, the potential different actions to be applied
heavily depend on the data: Data volumes might highlight the need for altering
the data services settings tackling both storage (e.g. dynamic split or dynamic
migration of data regions) and analytics (e.g. triggering of scalability of a real-
time complex event processing engine). In this context, the DDIM system should
monitor and account for the data operations and the related workloads (of data-
intensive applications) and trigger the optimum adaptation actions during runtime -
including deployment configurations and orchestration decisions.

6.3 Alteration Actions in BigDataStack

BigDataStack delivers a solution for enabling complex alteration actions: the
Realization Engine. At its core, the Realization Engine has three roles: (1) to act
as a central point of reference by storing all application-related information, (2) to
maintain up-to-date state information about the application alteration actions, and
(3) to enable triggering and subsequent operationalization of alteration actions for
each application. Figure 3 illustrates the application model within BigDataStack.
In particular, under this model, the user account or ‘owner’ owns one or more
applications and can also define metrics. A single application has a state, zero or
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more object (templates) representing the different components of the application,
zero or more operation sequences representing actions that can be performed for
the application, and a series of events generated about the application. An object
template (application component) can be instantiated multiple times, producing
object instances. Object instances may have an associated resource template describ-
ing the resources assigned to that object. An object instance contains a definition
of an underlying Kubernetes or OpenShift object that contains the deployment
information. Operation sequences represent actions to perform on the application
and contain multiple atomic operations. An operation targets either an object
template or instance, performing alteration or deployment actions upon it. Service-
level objectives can be attached to an object instance, which tracks a metric exported
by or about that object.

In this way, alteration actions and their stages have an explicit representation,
that is as Operation Sequences and Operations, respectively, which are associated
with an application. The application engineer can define any number of operation
sequences for their application by specifying the list of operations to perform and
their configuration (e.g. the target object(s) for that operation), and can condition
the availability of each operation sequence upon the application’s current state.
An Operation conceptionally performs a single change to a BigDataStack Object.
Examples of operations include: Deploy, Execute Command On, Build, Delete, and
Wait For. When an operation sequence is triggered within the Realization Engine,
internally this first takes the operation sequence template and generates an instance
from it that can be run and monitored separately. The Realization Engine then
creates a new Pod object on the Kubernetes cluster to run the operation sequence
targeting this new instance. Once the Pod object has been created, the responsibility
for that operation sequence is passed to the Pod. Once the new Pod reaches running
state, it will first load the target operation sequence instance, and subsequently it will
process each operation within the sequence in order. State updates are reported to
and stored by the Realization Engine within the operation sequence instance itself,
enabling BigDataStack mechanisms to track progress for it.

7 Example Use-Case: Live Grocery Recommendation

Finally, having discussed all of the concepts and components of DDIM systems,
in this section we summarize how this comes together in BigDataStack to enable
a use case: the connected consumer. The connected consumer use case utilizes the
BigDataStack environment to implement and offer a recommender system for the
grocery market. All of the data that are used for training the analytic algorithms of
the use case are corporate data provided by one of the top food retailers companies
in Spain. The goal from a DDIM perspective is to host and manage all aspects of
the underlying grocery recommendation system.
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Fig. 4 Overview of the connected consumer grocery recommender

The Grocery Recommendation System Fig. 4 provides an illustration of the
grocery recommendation system used by the use case. Each box in this diagram
represents a pod. From an external perspective, this system has two end-points:
recommendations, which respond with recommended products for a user, and
feedback, which receives click and purchase events generated by the user. When
a logged-in user opens a homepage on the grocery company store-front, a request is
sent to recommendations end-point, which retrieves cached grocery recommenda-
tions for that user from a transactional database (in the specific case, LeanXcale [12]
has been used as a transactional database). Meanwhile, when a user clicks or
purchases a product, an event is sent to the feedback end-point, which reformats the
data and sends it via Kafka queue into the main recommendation update component.
This is a continuous application component that runs in parallel over multiple
Apache Spark workers, which upon receiving item feedback for a user, updates their
cached recommendations in real time based on that feedback.

Metrics, Pod Level Objectives, and Workload Within this application, the user
cares about three main factors: (1) the response time for recommendations (e.g. less
than 100 ms), (2) the delay between feedback being recorded and when the user’s
recommendations will finish updating (e.g. less than 1 s) and (3) the total cost of the
system (e.g. less than 2 US dollars per hour). The volume of both recommendation
requests and feedback varies over the course of each day (following the day/night
cycle for mainland Europe), with periodic bursts of activity that correspond to flash
sales.

Available Actions To achieve these goals, the DDIM system has access to the
following actions it can take: (1) increase/decrease replicas for the Feedback
Collector, Kafka and/or the Recommender, (2) increase/decrease table replication
within the transactional database, and (3) increase the number of Spark workers the
recommendation update service has access to.

A Day of Data-Driven Infrastructure Management In the early hours of the
morning, the DDIM system will have the application running in a minimal config-
uration (typically only one instance of each pod) to minimize cost (0.5 USD/hour)
when there is little traffic. Around 7am, the workload begins to increase, as online
shoppers order groceries before starting work. The triple monitoring engine reports
that response times and feedback updates are still within acceptable bounds. At
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8:30am, quality of service monitoring reports a POS failure on recommendation
updates of 1.1 s on average. The dynamic orchestrator determines based on resource
usage that the bottleneck is in the recommendation updater. It triggers an enlarge-
ment of the spark cluster, adding an additional worker, and once ready performs a
rapid restart of the recommendation updater such that it now leverages both workers.
The POS failure is rectified, although cost per hour has increased (0.6 USD/hour).
As traffic approaches its peak around mid-day, a second POS failure is reported this
time on average recommendation response time (115 ms). In response, the dynamic
orchestrator increases the replication factor of the recommender component. After
a short delay to collect new measurements, the POS failure is still not resolved, and
hence the dynamic orchestrator instructs the database to increase its table replication
on the assumption that is where the bottleneck is occurring. This process takes
around 10 min to complete, during which the dynamic orchestrator refrains from
taking further action for that POS failure. Once the change action has completed, the
response time decreases once again, and the POS failure is resolved. Cost per hour
is now 1.2 USD/hour. After 6pm, the workloads decrease, and in response, the RL
agent within the dynamic orchestrator experiments with decreasing the replication
on the recommender to save cost, which results in a POS failure on recommendation
response time and so rolls back the change. It tries again a couple of hours later,
which does not result in any POS failure. As workloads continue to decrease as
the day ends, the dynamic orchestrator instructs the database and recommendation
updater to reduce their table replication and number of workers respectively.

8 Conclusions

The future of infrastructure management will be data driven, leveraging recent
advances in Big Data Analytics and AI technologies to provide exceptional automa-
tion and optimization in the management of diverse virtualized software-defined
cloud resources. This chapter has introduced the building blocks of data-driven
infrastructure management (DDIM) systems in general and a new DDIM platform,
BigDataStack, in particular. Contrary to state-of-the-art DDIM systems that focus
on specific optimization aspects (e.g. fault detection or resource allocation), the
BigDataStack platform takes a holistic, end-to-end approach to optimizing the con-
figuration of cloud environments. Specifically, BigDataStack-based DDIM includes
cutting-edge functionalities in three complementary areas:

• Deep Application and Action Modelling: Through deep data-oriented mod-
elling, BigDataStack maintains a more complete view of both data services, their
corresponding data flows and the alteration/action space for applications, backed
by a metric and state monitoring system that is both efficient and scalable for use
with high-parallelism Big Data applications. Indeed, a key take-home message
of BigDataStack is that DDIM systems need to not just model applications, but
the actions that can be performed on them and have the ability to monitor and
interpret the impacts from those actions.
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• Intelligent AIOps Decision Making: As cluster/cloud infrastructures have
become better instrumented and easier to manipulate programmatically, it is now
possible to have AI agents learn how to manage such infrastructures as well as
humans can (for a fraction of the cost). AI-based decision making enables fast
and adaptive management of the infrastructure based on real-time data about the
running applications, cluster resources, and data being processed.

• Complex Multistage Action Management: BigDataStack provides an atomic
operation set from which a wide variety of complex actions can be constructed.
Once defined, such actions form templates that can be used to drive fully
automated complex runtime adaptations by the AIOps system, enabling end-to-
end automated DDIM.

BigDataStack has been validated and evaluated in different real-life environ-
ments, including retail, insurance, and shipping, illustrating the efficiency, cost-
effectiveness, and flexibility of its DDIM approach. Overall, BigDataStack has
provided a novel AIOps showcase, which demonstrates the potential of DDIM
for monitoring, analysing, and optimizing the deployment of cloud applications.
Moving forward, we aim to extend BigDataStack with support for novel types of
cloud computing resources and services, such as the Function-as-a-Service (FaaS)
paradigm. Indeed, via FaaS support, we believe big data value chains can be more
efficiently enabled, as function-level DDIM is easier to reason about than broader
application-level DDIM, increasing precision while also reducing the time-to-
convergence to an effective configuration. We also plan to investigate the real-world
impact of service performance degradation vs. the cost of maintaining services at
different quality of service levels, with the aim of developing future AI models for
optimizing this trade-off for the business owner.
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IT4Innovations, VŠB—Technical University of Ostrava, Ostrava, Czechia
e-mail: martin.golasowski@vsb.cz; jan.martinovic@vsb.cz; katerina.slaninova@vsb.cz

M. Levrier
Atos, Campus Teratec, Bruyères-le-Châtel, France
e-mail: marc.levrier@atos.com

A. Scionti · G. Vitali · O. Terzo
LINKS Foundation, Torino, Italy
e-mail: alberto.scionti@linksfoundation.com; giacomo.vitali@linksfoundation.com;
olivier.terzo@linksfoundation.com

F. Donnat
Outpost24, Valbonne, France
e-mail: fdo@outpost24.com

D. Magarielli
AvioAero, Rivalta di Torino (TO), Italy
e-mail: donato.magarielli@avioaero.it

T. Goubier
CEA LIST, Gif-sur-Yvette, France
e-mail: thierry.goubier@cea.fr

A. Parodi · A. Parodi
CIMA Foundation, Savona, Italy
e-mail: antonio.parodi@cimafoundation.org; andrea.parodi@cimafoundation.org

P. Harsh
Cyclops Labs GmbH, Zürich, Switzerland
e-mail: piyush@cyclops-labs.io

A. Dees
Irish Centre for High-End Computing, Technology and Enterprise Campus, Dublin, Ireland
e-mail: aaron.dees@ichec.ie

© The Author(s) 2022
E. Curry et al. (eds.), Technologies and Applications for Big Data Value,
https://doi.org/10.1007/978-3-030-78307-5_8

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78307-5_8&domain=pdf
mailto:hachinger@lrz.de
mailto:hayek@lrz.de
mailto:garcia@lrz.de
mailto:martin.golasowski@vsb.cz
mailto:jan.martinovic@vsb.cz
mailto:katerina.slaninova@vsb.cz
mailto:marc.levrier@atos.com
mailto:alberto.scionti@linksfoundation.com
mailto:giacomo.vitali@linksfoundation.com
mailto:olivier.terzo@linksfoundation.com
mailto:fdo@outpost24.com
mailto:donato.magarielli@avioaero.it
mailto:thierry.goubier@cea.fr
mailto:antonio.parodi@cimafoundation.org
mailto:andrea.parodi@cimafoundation.org
mailto:piyush@cyclops-labs.io
mailto:aaron.dees@ichec.ie
https://doi.org/10.1007/978-3-030-78307-5_8


160 S. Hachinger et al.

Abstract Traditional usage models of Supercomputing centres have been extended
by High-Throughput Computing (HTC), High-Performance Data Analytics
(HPDA) and Cloud Computing. The complexity of current compute platforms
calls for solutions to simplify usage and conveniently orchestrate computing tasks.
These enable also non-expert users to efficiently execute Big Data workflows. In
this context, the LEXIS project (‘Large-scale EXecution for Industry and Society’,
H2020 GA 825532, https://lexis-project.eu) sets up an orchestration platform
for compute- and data-intensive workflows. Its main objective is to implement
a front-end and interfaces/APIs for distributed data management and workflow
orchestration. The platform uses an open-source Identity and Access Management
solution and a custom billing system. The data management API allows data
ingestion and staging between various infrastructures. The orchestration API allows
execution of workflows specified in extended TOSCA. LEXIS uses innovative
technologies like YORC and Alien4Cloud for orchestration or iRODS/EUDAT-
B2SAFE for data management, accelerated by Burst Buffers. Three pilot use cases
from Aeronautics Engineering, Earthquake/Tsunami Analysis, and Weather and
Climate Prediction are used to test the services. On the road towards longer-term
sustainability, we are expanding this user base and aiming at the immersion of more
Supercomputing centres within the platform.

Keywords High performance computing · Cloud computing · Big data ·
Workflows · Distributed data management · Orchestration

1 High-Performance Computing, Cloud and Big Data in
Science, Research and Industry—and LEXIS

In this chapter, we present how the Horizon-2020 project ‘Large-scale EXecution
for Industry and Society’ (LEXIS1) addresses the ‘Big Data’ theme, establishing
automated data analysis and simulation workflows across world-class Supercom-
puting and Cloud Computing centres in Europe. We relate to the technical priorities
‘Data Management’ and ‘Data Processing Architectures’ of the European BDV
Strategic Research and Innovation Agenda [1], addressing horizontal (‘Cloud and
High Performance Computing’) and vertical concerns (‘Data sharing platforms’,
‘Cybersecurity and Trust’) of the BDV Reference Model (cf. [1]). With respect to
the AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda
[2], we present ‘Systems, Methodologies, Hardware and Tools’ as cross-sectorial
technology enablers.

The LEXIS collaboration is made up of two of the major European scientific
Supercomputing centres (IT4I/CZ and LRZ/DE), scientific and industrial/SME
partners with compute- and data-intensive use cases, and industrial/SME technology

1 https://lexis-project.eu, H2020 Grant Agreement No. 825532.

https://lexis-project.eu
https://lexis-project.eu
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partners. It thus aims to bring the power of scientific Supercomputing to the
industrial and enterprise Big Data landscape, but also to equip scientists with
industry-standard Big Data tools. In these ways, it seeds knowledge transfer between
science, SMEs and industry, and addresses institutions of societal relevance like
governmental agencies.

When looking at the history of large-scale computing and Big Data in the last
decade, it turns out that science was leading the introduction of powerful distributed
computing grids (in particular LCG [3] for CERN’s Large Hadron Collider), but
industry drove innovations such as Infrastructure-as-a-Service (IaaS) Clouds and
Big Data ecosystems. Cloud Computing services (with, e.g. Amazon as one of the
pioneers), but also famous frameworks for Big Data analytics like Hadoop (e.g. [4]),
were of immediate and sometimes even almost exclusive practical relevance for
implementing top-notch data services. Much of the bare compute power, however,
remained with scientific High-Performance Computing (HPC), and – in countries
with pronounced geopolitical interest – also with the military.

In this situation, bringing ideas from the science and industry/SME worlds
together is clearly a key to further development and innovation. The LEXIS project
accomplishes this by co-developing an easily-usable platform for the processing
of data- and compute-intensive workflows. The LEXIS platform with its ambitious
ideas is backed not only by strong computing systems and by an orchestration facil-
ity but also by a Distributed Data Infrastructure immersed with the EUDAT [5, 6]
(EUropean DATa) system, which will be extensively discussed in this chapter.

From the scientific HPC centres’ point of view, our agenda is certainly motivated
by practical problems scientists have faced with their computing projects for the last
decades. Using a Supercomputer has traditionally involved a steep learning curve
and hard work on scripting workflows and submitting them to a job queue. Only
researchers with very long-term experience have thus been able to efficiently run
extreme-scale simulations.

Clearly, this usage pattern is not practicable for industrial/SME applications and
their – often shorter – life cycles. However, it also excluded a major part of all
scientists – those without focus on IT – from efficient scientific computing and
data analysis. Nowadays, the average scientist appreciates modern low-threshold IT
offers, such as (often commercial) IaaS or container platforms, while industry has
become aware of the capabilities of supercomputers and of academic developments,
for example in quantum computing. Thus, we witness a sort of ‘golden age’ for
projects such as LEXIS which make these worlds converge in order to reach new
levels of optimisation.

Below, we present the LEXIS ideas, in the light of collaborations such as the Big
Data Value Association (BDVA [7]) and EUDAT, and of the European computing
and data landscape in general. We will first cover the vision of HPC-Cloud-Big
Data convergence in LEXIS and basics of the LEXIS concept (Sect. 2) and then
the LEXIS approach to Authentication/Authorisation as a prerequisite for a secure
platform (Sect. 3). Section 4 extensively discusses the European data management
approach for Big Data in LEXIS. We close the chapter with a description of the
LEXIS Portal as a one-stop shop for our users (Sect. 5) and our conclusions (Sect. 6).
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Fig. 1 Simplified scheme of the LEXIS platform: main components as of 2020 (extension to
more computing and data centres is planned). The ‘back-end essentials’ box represents technical
components not mentioned in this overview

2 LEXIS Basics: Integrated Data-Heavy Workflows on
Cloud/HPC

2.1 LEXIS Vision

The vision of LEXIS is a distributed platform which enables industry, SMEs and
scientists to leverage the most powerful European computing and data centres for
their simulations, data analytics and visualisation tasks. Via a user-friendly portal
with a modern REST-API2 architecture behind it, the LEXIS Orchestration System
for workflows and the LEXIS Distributed Data Infrastructure are addressed. The
user uploads necessary data and software containers and specifies workflows with
all computing tasks and data flows. From this point on, the Orchestration System
takes care of an optimised execution on the LEXIS resources.

Figure 1 gives an overview of the federated systems within the LEXIS platform,
from hardware systems (lower part), over service-layer components to APIs and
the LEXIS Portal (top part). The architecture can be considered a blueprint for
data processing architectures aligned with the BDVA strategy [1, Sect. 3.2]. It
federates decentralised, heterogeneous resources to offer data processing services.
The platform is the result of a strong initial focus on co-design, identifying available
systems to be leveraged and key technologies required. Technological choices were

2 REpresentational State Transfer Application Programming Interface.
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made with a preference for state-of-the-art, open-source, extensible and sufficiently
mature products. The details of this become clearer in the following parts of
this book chapter, which discuss the LEXIS ecosystem from low- to high-level
components.

In this section, we describe the LEXIS basics, beginning with hardware systems
(Sect. 2.2), which include devices to accelerate computation (GPU and FPGA
cards) and data transfer (Burst Buffers). Then, we discuss the Orchestration System
(Sect. 2.3), which addresses our hybrid HPC/Cloud Computing facilities, realising a
novel processing architecture for Big Data. The section is completed with a glimpse
on the LEXIS Pilot use cases (Sect. 2.4), used to co-design and test the platform,
and on our billing concept (Sect. 2.5) as part of a future business model.

2.2 LEXIS Hardware Resources

The LEXIS system flexibly utilises computing-time and storage grants on different
back-end systems, as specified by the user.

While the LEXIS federation is planned to be constantly extended, currently
the compute and data back-end resources (see Fig. 1) are contributed by two
flagship Supercomputing centres: the Leibniz Supercomputing Centre (LRZ, Garch-
ing near Munich/D) and the IT4Innovations National Supercomputing Centre
(IT4I, Ostrava/CZ). Systems available (cf. Fig. 1) include traditional and accel-
erated Supercomputing resources, on-premises compute clouds, high-end storage
resources, and Burst Buffers equipped with GPUs and FPGAs.

At LRZ, ‘SuperMUC-NG’ (originally one of the world’s top-10 HPC machines)
provides 311’040 CPU cores (26.9 PFlops) and 719 TB of RAM. Compute time is
granted via calls for proposals, which need to devise a promising research agenda.
The smaller LRZ Linux Cluster offers (with less bureaucracy) roughly 30’000
CPU cores and 2 PFlops of compute power. This system is also used in LEXIS.
Furthermore, a NVIDIA DGX-1 with eight Tesla V-100 GPUs is available for AI
workloads.

At IT4I, the ‘Barbora’ (7’232 compute cores and 45 TB RAM) and ‘Salomon’
(12-core Xeon, 24’192 cores with 129 TB RAM) HPC systems are available. With
some nodes accelerated by NVIDIA Tesla V100-SXM2 and Intel Xeon Phi cards,
these systems altogether offer about 3 Pflops. Usage of them is subject to an open-
call procedure as for SuperMUC-NG. Some millions of CPU hours have already
been allocated to LEXIS in general and can readily be distributed to use cases.

The central LEXIS objective of bringing together HPC and Cloud resources in
unified workflows is supported by integrating the LRZ Compute Cloud and IT4I’s
visualisation nodes into the platform. Altogether, these infrastructures provide
more than 3’000 CPU cores for on-demand needs via on-premises OpenStack
installations.

Storage resources in the ramp-up phase of LEXIS include access to 50 TB in
LRZ’s Data Science Storage (DSS, based on IBM Spectrum Scale, formerly known
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as GPFS [8]) and 150 TB in an ‘Experimental Storage System’ at LRZ, while IT4I
provides 120 TB of Ceph-based [9] storage. These resources serve as back-end
for the LEXIS Distributed Data Infrastructure (Sect. 4). They can be extended at
any time, allocating more space in the (shared-usage) background storage of the
computing centres, which is currently in the 100 PB range.

A typical issue in many data-intensive applications is the slowdown of actual data
processing during in- and output of large data sets. LEXIS addresses this by flexibly
inserting two ‘Burst Buffer’ systems per compute site in the data flows. Each of
them offers about 10 TB of very fast NVDIMM and NVMe storage. Running the
Atos ‘Smart Burst Buffer’ software, they are able to pre-fetch data or transparently
cache output data. Thus, I/O is practically ‘instantaneous’ for the application, while
the Burst Buffer manages the communication with the actual file system (pre-read
or delayed write) in the background. In addition, the systems can reprocess data
leveraging GPU and FPGA accelerator cards, and their NVDIMM/NVMe storage
can be exported via NVMEoF [10] using the Atos ‘Smart Bunch of Flash’ tools.

2.3 LEXIS Orchestration

Automatising the execution of complex workflows3 is crucial to enable more users
to bring their applications onto efficient computing and data platforms. To address
this challenge, the LEXIS Orchestration System uses technologies which minimise
the need of users to acquire expertise outside their own domain. It provides the
capabilities of composing application workflows in a simple way and of automati-
cally running them on the most suitable set of resources (cf. Sect. 2.2). Moreover, it
enables an automated, unified management of workflow steps based on different
processing concepts, such as HPDA (High-Performance Data Analytics), HPC
and HTC (High-Throughput Computing), fulfilling the respective infrastructural
requirements.

The key difference of projects as LEXIS with respect to earlier projects on
orchestration is the mixed usage of HPC and IaaS-Cloud (OpenStack) resources,
and prospectively also, for example, container platforms to run tasks within one
given workflow. Orchestrators that can address all this have been unavailable when
designing the LEXIS architecture, and only recently, a few solutions are emerging
(cf. [11]). In this context, we decided to use and co-develop Yorc (Ystia Orches-
trator, [12]) to orchestrate workflows in LEXIS, and Alien4Cloud (Application
LIfecycle ENablement for Cloud, [13]) as a front-end for designing workflows.
This open-source system, with which LEXIS partner Atos is experienced, has since
been extended to become an HPC-aware meta-orchestrator, addressing all relevant
systems via plug-ins.

3 We understand workflows – to give a simplified hint of a definition – as directed acyclic graphs
with computational, pre-/post-processing, visualisation or data movement tasks as vertices here.
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Alien4Cloud first helps the user to define the so-called topology for his appli-
cation. This includes the hardware resources (e.g. the amount of CPU cores and
RAM) and the software (e.g. frameworks or libraries) needed. Afterwards, it greatly
simplifies the specification of the actual workflow (i.e. tasks and their order). Behind
its drag-and-drop interface, Alien4Cloud describes all this in an extended version of
TOSCA (cf. e.g. [14]). Extensible, generic application templates are provided.

Once the workflow description is generated, the back-end engine will run it on
appropriate and available resources. To this end, it considers system characteristics,
the user’s access rights, locations where data sets reside, and custom constraints in
the application template (e.g. deadlines for execution in urgent computing). LEXIS
Orchestration is furthermore being equipped with dynamic scheduling capabilities,
taking into account, for example, the load and availability of systems in real time.

The actual access to computing resources is mediated by the HEAppE middle-
ware [15, 16], which serves two purposes: (i) security layer for mapping LEXIS
users (cf. Sect. 3) to internal Supercomputing-centre accounts, used to actually
execute jobs; (ii) sending an appropriately formatted job description (with pointers
to the executables, etc.) to the workload managers of LEXIS resources. A wealth
of middleware frameworks with this functionality is available on the market since
grid times (cf. e.g. [17]). Clearly, HEAppE – besides providing a state-of-the-art
implementation with a REST API – has the advantage that it is developed at IT4I as
a project partner. Thus, it can easily be adapted, for example to provide usage data
for billing (cf. Sect. 2.5).

2.4 LEXIS Pilots

Having described the basics of LEXIS orchestration, we give an impression of the
first workflows (‘Pilots’) the platform is designed to run. These Pilot use cases have
been a key for the early requirements analysis and co-design activities to create the
LEXIS platform. They have been carefully selected to be sufficiently heterogeneous
in order to make LEXIS generically useful.

The three initial LEXIS Pilots cover the following themes: (i) data- and compute-
intensive modelling of turbo-machinery and gearbox systems in aeronautics, (ii)
earthquake and tsunami data processing and simulations, which are accelerated to
enable accurate real-time analysis, and (iii) weather and climate models, where
massive amounts of in situ data are assimilated to improve forecasts (also predicting,
e.g., flash floods). While Pilot (i) is certainly industry-centric, and (ii) is interesting
for public authorities, Pilot (iii) has a broad and mixed range of applications.

Fully orchestrated workflows of the Weather and Climate Large-scale Pilot in
LEXIS have already reached considerable intrinsic complexity (Fig. 2; for more
details see [18]). Because of their broad range of applications, these are a prime
example to elaborate somewhat upon. In the example shown in Fig. 2, the Weather
and Research Forecasting (WRF) model [19] as an HPC core drives a fire risk
prediction system (RISICO, cf. [18]). Likewise, hydrological risks and air quality
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Fig. 2 WRF-RISICO workflow [18] from the Weather and Climate Large-scale Pilot, as presented
on a SC20 conference poster (M. Hayek et al.)

can be assessed. However, we strongly target commercial applications here as
well. As one example, we aim at predicting optimum sites for wind energy plants
with unprecedented accuracy. Also, in collaboration with the SME NUMTECH,
highly accurate modelling of agricultural conditions shall be exploited to select, for
example, optimum seeding or harvesting times. With respect to previous projects
(e.g. [20]), where only limited workflow automation was available, a much broader
range of applications is possible without experts having to stand by or even execute
steps manually. The available computing systems are optimally leveraged, as the
WRF preprocessing system (WPS) and the application models run perfectly as
containers on the Cloud infrastructures at LRZ and IT4I, while WRF is a classical
HPC job.

Pilots (i) and (ii) will test the LEXIS platform with another variety of different
application characteristics. The Earthquake and Tsunami Pilot works with additional
database services and urgent computing to feed warning systems before certain
deadlines. The Aeronautics Pilot boosts the performance of turbomachinery and
gearbox simulations performance to make such computations part of a ‘real-time’
design process. It thus involves experiments with low-level code optimisation for
GPUs attached to HPC nodes, but also quick post-processing and visualisation of
simulation snapshots will play a role. Further use cases attracted through a LEXIS
‘Open Call’ complement all this and contribute to a broad validation of the platform.

2.5 Billing for LEXIS Usage

In order to position LEXIS as a viable innovation platform for SMEs and industry,
flexible accounting and billing mechanisms are a must. The accounting process
in LEXIS is designed to accommodate resources from both HPC and Cloud
systems and to take into account metered consumption of data storage. Abilities to
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comprehensively support flat-rate or tiered pricing, as well as completely dynamic
rating, charging and billing are crucial to support a sustainable LEXIS business
model.

Similar to the situation in orchestration, no combined Cloud/HPC/Storage billing
framework matching our requirements was known when LEXIS was initiated. Thus,
the SME ‘Cyclops’ (CH) participates in LEXIS and enhances their successful
Cyclops cloud billing system to include, for example, HPC usage (compute time)
data collectors. The system with its data collectors samples resource usage in near
real time. Thus, we will be able to offer paid LEXIS usage with attractive and
accurate cost models.

3 Secure Identity and Access Management in LEXIS –
LEXIS AAI

The Authentication and Authorisation Infrastructure (AAI) of LEXIS is the actual
basis for secure access, and thus a cornerstone for the distributed computing and
data platform. All LEXIS systems rely on this AAI and thus offer access control
complying with industry standards.

To elaborate a bit more on this, we lay out the motivation (Sect. 3.1) for
setting up a LEXIS AAI, give some technical details on our resilient solution and
(Sect. 3.2) and describe the role-based access control (RBAC, Sect. 3.3) model thus
implemented. The concepts follow current best practices in IT.

3.1 Why an Own LEXIS AAI?

LEXIS as a platform provides unified access to various computing and data
facilities, all with their existing, operational user administration and access-rights
concepts. As the European identity-provider and AAI federation landscape takes
time to consolidate, LEXIS must provide access to its users in a pragmatic and
secure way.

Therefore, the LEXIS partners decided, already in the early stages of co-design,
to set up a simple, federated and open-standard Identity and Access Management
(IAM) solution as a basis for the LEXIS AAI. Thus, a single sign on (SSO) to
all parts of the LEXIS platform with the necessary convenience is provided. The
LEXIS AAI integrates smoothly with the existing systems for granting access at
computing/data centres: Once users authenticate via the LEXIS AAI, they use
compute systems via the HEAppE middleware (cf. Sect. 2.3), which addresses the
back-end systems using regular, site-specific accounts via secure mechanisms.
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3.2 Realisation of LEXIS AAI Following ‘Zero-Trust’ Security
Model

With its central role, the LEXIS AAI had to be built upon a reliable framework
with industrial-level backing and widespread usage, but also a rich, state-of-the-
art feature set. Based on a requirement analysis [21], considering also experience
and prospective maintainability, the LEXIS AAI was decided to rely on the open-
source IAM solution ‘Keycloak’ [22]. Keycloak constitutes the upstream of the ‘Red
Hat SSO’ product. It allows for the implementation of basically any access-policy
scheme (role-based or user-based access control, etc.), and for easy integration with
applications using OpenID Connect [23], SAML 2.0 [24] and further authentication
flows. With its further abilities, for example of delegating authentication to third-
party identity providers (also Facebook, Google), it covers almost any imaginable
use case.

All components of the LEXIS platform (cf. Fig. 1 in Sect. 2.1) use the central
AAI via its APIs, and LEXIS users authenticate preferably via OpenID-Connect
tokens. Because LEXIS has opted for a ‘zero-trust’ model, not a single service on
the platform is blindly trusted by any other service. This means, each service checks
the provided tokens independently against Keycloak. When tokens are forwarded as
needed to back-end services, these will revalidate them.

In order to ensure high availability of the AAI service, a Keycloak cluster is run
across IT4I and LRZ in ‘Cross-Datacenter-Replication’ mode. As all critical traffic
between the two centres, the traffic within this cluster is encapsulated in secure
channel communication (merely using an encrypted virtual private network).

Keycloak is configured to use one ‘realm’ for LEXIS identity with several
‘clients’ (in Keycloak terminology), which are the different components/services
of the platform. Authorisations are configured at realm level and are then accessible
at client level, allowing reusability, centralisation and simplicity of the configuration
and management. If needed, additional client-level settings can be added.

Keycloak’s OpenID Connect tokens follow the JSON Web Token (JWT, [25])
standard, which consists of three parts: header, payload and signature. The verifica-
tion of the signature enables a service to ensure that the token was not modified
by a third party and was produced by the expected source. The content of the
tokens includes the user identity and information about their granted permissions.
We decided to use a unified token for all services in order to minimise load on the
Keycloak service. If the need arises for the user’s permissions in one resource to
be kept hidden from other resources, this concept can, however, easily be modified.
Some effort (e.g. [26]) was invested to customise all systems used in LEXIS such
that they support the authentication flows of Keycloak.
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3.3 RBAC Matrix and Roles in LEXIS

In LEXIS, rights are granted using a role-based access control (RBAC) model. This
means that all users are assigned roles, depending on their job and responsibility
scope. A fundamental concept in this context is the ‘LEXIS Computational Project’,
where each project corresponds to a group of collaborators who use a set of compute
time and storage grants together. Registration of each new LEXIS user and account
creation (including the role settings) are subject to an administrative verification
process.

A fixed ‘LEXIS RBAC matrix’ defines all the access policies; that is, which
role implies access to which particular LEXIS services, resources or data. When
a user tries to access a service or resource, their role attribute key is checked
for authorisation. The LEXIS RBAC model not only controls regular user access
but also includes elevated-rights roles, for example, for project and organisation
management. LEXIS systems already implementing a (more or less sophisticated)
access-control mechanism were adapted such that their internal permissions consis-
tently reflect those within the RBAC model.

This being said, all processing, visualisation, data or system-related steps on the
LEXIS platform are packaged as workflows, which are being executed on behalf
of the user by the LEXIS Orchestration System. These workflows are created by
the user via the LEXIS portal. Already for this workflow-building process, the web
portal implements a view adapted to the user’s roles/rights, comprising, for example,
data and systems in the user’s scope. For then running the workflow in the back-
end, tokens (OpenID Connect/SAML 2.0) issued to the user by the LEXIS AAI are
passed through and used to log into the relevant (compute and data) services.

4 Big Data Management for Workflows – LEXIS DDI

LEXIS acts as an infrastructure provider (or ‘reseller’), enabling data-heavy work-
flows on distributed European Supercomputing facilities. This means, it does not
directly implement Big Data frameworks such as Spark (e.g. [27]) or Hadoop
(e.g. [4]), but leaves it to the users to leverage optimum tools in their workflows.
Thus, a prime task in LEXIS is to enable efficient data storage, access and transfer
by employing a forefront distributed data management framework in a European
context.

For the LEXIS ‘Distributed Data Infrastructure’ (DDI), we chose to adopt the
EUDAT-B2SAFE solution (cf. [6]), based on the Integrated Rule-Oriented Data
System (iRODS, [28]). The design is open for federation with new prospective
LEXIS partners, for which installation recipes can be provided. The EUDAT
(‘EUropean DATa’) project aims at unifying research data infrastructure, and
working with their tools gives us an outstanding opportunity to transfer knowledge
from academic data management to the enterprise world.
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We expand on system choices, construction plan and features of the DDI below.
Section 4.1 gives more details on concept and necessary interfaces of the DDI.
The later subsections describe how our system matches the requirements and
integrates geographically distributed storage systems (Sect. 4.2), how it handles
access rights (Sect. 4.3), how it immerses in the EUDAT context (Sect. 4.4) and how
the orchestrator addresses the DDI via APIs (Sect. 4.5).

4.1 Concept of Unified Data Management in LEXIS

The LEXIS DDI must enable the orchestrator and portal, and thus the authenticated
users, to retrieve their LEXIS data – no matter where they are physically stored –
in a unified, secure and efficient manner at all LEXIS sites. This is ensured by a
system for distributed data management fulfilling the following requirements from
the early co-design process:

(i) Unified access on LEXIS data in a file-system-like semantics
(ii) Reliability and redundancy

(iii) Support for diverse storage back-end systems
(iv) Support for the LEXIS AAI
(v) Support for implementing storage policies, for example selective data mirror-

ing
(vi) Support for having metadata and persistent identifiers in the system

(vii) Support for the system to be addressed via REST APIs

With these features, the LEXIS DDI aims to be an academic/industrial data
platform (IDP) facilitating data management as envisaged by the BDVA [1,
Sect. 3.1]. Basic annotation with metadata shall foster semantic interoperability, and
the entire data lifecycle (data taking and processing, internal re-usage with rights
management, publication, etc.) is considered in the DDI design.

Within workflows, data access and transfer are to be automatically controlled
by the orchestrator (cf. Sect. 2.3), by addressing the DDI via APIs. In order to
save precious execution time, the orchestrator may, for example, query the physical
location of input data and move compute jobs to the same computing/data centre.
Likewise, it may identify and use mirror copies of the data at a proposed computing
site, if the user pre-ordered his input data sets to be replicated, for example on IT4I
and LRZ.

4.2 Choice of DDI System, Integration of Distributed Storage
Systems

Unified access to geographically distributed storage back-ends is probably the most
challenging requirement of all discussed above. The back-end systems to be used
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are of different technological nature and dedicated to various computing clusters,
projects or purposes. Often (e.g. in the case of LRZ), the resources are operationally
supported and served as a particular file system (e.g. NFS), not as bare storage.

Building the LEXIS DDI on such back-ends, leveraging a distributed file system
which needs ‘raw disk’ access or particular back-end file systems for efficiency (e.g.
Ceph [9]) is hard. Various solutions are, however, on the market to integrate existing
file systems into one common data management system. Frameworks with a ‘file
system on file systems’ approach (e.g. GlusterFS, or in a way also HDFS, cf. [29])
are usually efficient and scale well but come with a trade-off in terms of flexibility,
for example in their storage policies. Also, this approach usually implies a tightly
coupled system, whose behaviour in case of high WAN latencies or site failure is
certainly not trivial. Thus, we rather went for a looser, middleware-based storage
federation approach, whose possible performance penalties [29] are mitigated by the
use of burst buffers and HPC-cluster file systems in LEXIS. Excellent open systems
in this sector are, for example, iRODS, Onedata, Rucio and dCache (cf. [28, 30]).
iRODS stands out through its intuitive file-system-like semantics, flexibility as for
storage policies and metadata stored, and most of all through its integration in the
feature-rich, European EUDAT [6] data management ecosystem and many other
European projects.

Thus, we adopted for the LEXIS DDI an iRODS/EUDAT-B2SAFE based
solution, which optimally matches the LEXIS requirements (cf. list/numbering in
Sect. 4.1):

(i) Unified LEXIS data access: iRODS has a file-system-like view on all data,
which are structured in ‘data objects’ (similar to files) and ‘collections’ (∼
folders).

(ii) Reliability: can be boosted with the high-availability setup “HAIRS’ [31].
(iii) Support for diverse storage back-end systems: iRODS is extremely flexible

and can address any common file system, but also, for example, S3 buckets.
(iv) Support for the LEXIS AAI: here, iRODS has an iRODS-OpenID plugin

which we modified to make it work with Keycloak [26].
(v) Support for implementing storage and mirroring policies: this is a traditional

strength of the iRODS rule engine.
(vi) iRODS supports storing custom metadata including persistent identifiers.

(vii) The various iRODS clients available (e.g. command-line, Java & Python
clients) facilitate the programming of custom ‘LEXIS Data System REST
APIs’.

Different geographical sites can be loosely bound in iRODS via a ‘zone
federation’ mechanism, which enables transparent data access between the zones,
while they are operated independently. Figure 3 gives an overview over the LEXIS
iRODS federation, in which each major data/compute site (currently IT4I and LRZ)
has its own iRODS zone. To move data between zones/centres, a simple copy
command is sufficient, as the zones just appear as different top-level directories. On
(transparent) data access, iRODS automatically handles the necessary data transfers
with an internal SSL-secured protocol allowing multiple parallel data streams.
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Fig. 3 LEXIS DDI federation. The zone names (IT4ILexisZone and LRZLexisZone) refer to the
two computing/data centres federated in the LEXIS DDI by end of 2020. Two main operational
back-end storage systems (LRZ’s ‘Data Science Storage’ or ‘DSS’, and IT4I’s Ceph system – cf.
Sect. 2.2) are illustrated, as well as the transfer possibilities to Cloud and HPC infrastructure via
API calls (cf. Sect. 4.5). Such transfers may leverage the LEXIS Burst Buffers (cf. Sect. 2.2)

Each zone in iRODS has a so-called ‘iCAT’ or ‘provider’ iRODS server (cf. [28])
which holds the information on the stored data, permissions, local resources and all
other necessary zone-specific information in a database. In case of major problems
in one zone (e.g. long-term power outage), the rest of the DDI infrastructure thus
remains operational. In addition, the iRODS zones in LEXIS are each set up with
a redundant iCAT (cf. [31]), using also a redundant PostgreSQL database back-end
with a configuration based on repmgr and pgpool (cf. [32]).

Data mirroring between different zones, as optionally offered in LEXIS to
increase resiliency and accelerate immediate data access from different centres,
is implemented by the EUDAT-B2SAFE extension (cf. [6]) for iRODS. The DDI
thus provides functionality to request replication on different granularity levels,
for example by LEXIS Computational Project or by iRODS collection. B2SAFE
then helps to set appropriate replication rules for iRODS; that is, it leverages the
ability of iRODS to execute rules as a sort of ‘event handlers’ at so-called policy
enforcement points (PEPs). This effectively means that, for example after storing a
file in the LEXIS DDI, an arbitrary rule script (written, e.g. in Python and acting on
iRODS or also at the operating-system level) can automatically be executed in order
to implement data management policies (also beyond B2SAFE-related rules).

4.3 Reflecting AAI Roles in the DDI

Section 3.3 mentioned that LEXIS systems with own access-control mechanisms are
set up such as to reflect the LEXIS AAI settings. The iCAT user databases on all sites
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are thus mirrored from the LEXIS AAI, and iRODS groups are used to implement
LEXIS roles, in particular the membership or administrator role of a person in a
LEXIS Computational Project (cf. Sect. 3). Actual access rights (for users/groups)
are set via the iRODS access control lists.

However, also the directory (or more precisely, iRODS ‘collection’) structure
itself of our DDI reflects project memberships and privacy levels of different data
sets. The collection structure of the DDI starts with the iRODS zone (currently
‘/IT4ILexisZone’ and ‘/LRZLexisZone’). Three collections then exist on the next
level, which are named ‘user’, ‘project’ and ‘public’, for data sets which can be
accessed only by the user, by all the members of a project or by everybody. At the
second level in each of these, collections for each project exist. The third level in
‘user’ and ‘project’ contains a collection for each user to write his data sets into.
Each data set is automatically stored in a collection named according to a unique
identifier. A project administrator can delete project data sets or publish them by
moving them to the public collection hierarchy.

All this is implemented by automatically setting up the iRODS access rights
(and appropriate inheritance flags) at creation of LEXIS Computational Projects
and users as part of the necessary administrative process.

4.4 Immersion in the European ‘FAIR’ Research Data
Landscape

Having taken care of security and privacy where needed, the next most important
aspect in modern Research Data Management is controlled data sharing and reuse.
In science, this reflects in the ‘FAIR’ principles [33], also cited by the BDVA [1,
Sect. 2.5.2]: Data should be findable, accessible, interoperable and reusable. Even
in a context of embargoed or secret enterprise data, companies can strongly profit
from a basic ‘FAIR’ implementation, facilitating internal data sharing and reuse.
Such an implementation relies on the assignment of persistent identifiers (PIDs) to
data, the availability of a basic description of the data set (i.e. metadata) and clearly
actual possibilities of data transfer.

In LEXIS, these prerequisites are largely addressed with the immersion of the
DDI in the EUDAT [5, 6] ecosystem. EUDAT calls itself a collaborative data
infrastructure (‘CDI’) for European research and builds its software and services
along this line.

Besides EUDAT-B2SAFE (cf. Sect. 4.2), we use the EUDAT-B2HANDLE PID
service (cf. [6]) in LEXIS.

Metadata, such as PIDs, but also further basic information (e.g. data set
contributors, creation dates or description) are then stored directly in the Attribute-
Value-Unit store for each data object and collection in iRODS. Thus, we practically
cover the Dublin Core Simple and DataCite metadata schemes (cf. [34, 35]) for each
LEXIS data product, enabling us to later make LEXIS data findable via research data
search engines (e.g. EUDAT-B2FIND, cf. [6]) on user request.
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4.5 APIs of the LEXIS DDI, and Data Transfer Within
Workflows

Usage of the LEXIS DDI, be it via the LEXIS Portal (Sect. 5) or other systems
of the LEXIS platform, is relying on dedicated REST APIs. These DDI APIs, with
standard JSON interfaces, serve to sanitise the DDI usage pattern and thus make data
manageable within an automation/orchestration context. Connection to the APIs is
secured by the use of HTTPS and Keycloak Bearer tokens. Figure 4 illustrates how
the DDI is thus immersed in the LEXIS ecosystem. API specifications and Swagger
documentation will be released within the release cycle of the LEXIS platform.

Besides a (meta-)data search API, and many ‘smaller’ APIs (e.g. for user/rights
management), the LEXIS DDI provides a REST API for data staging, which is of
immediate importance for our workflows and shall thus be discussed in some detail.

Although data in the LEXIS DDI are available at all participating centres,
actual compute jobs on HPC clusters normally require input and output data to
be (temporarily) stored on a bare, efficient parallel file system attached to the
cluster. Within a given workflow, the orchestrator thus addresses the staging API
and automatically manages data movement between the different systems and the
DDI as required. This includes moving input, intermediate and output files.

Performing data transfer takes time, necessitating an asynchronous and non-
blocking solution for execution of staging API requests. To this purpose, the API
uses – behind its front-end – a distributed task queue connected to a broker (cf.
the design of [36]). At request submission, the API returns a request ID to the
orchestrator. With this ID, the status of the transfer task (in progress, done, failed)
can be queried via a separate API endpoint.

On the Orchestration-System side, two TOSCA components have been defined
and added to the Ystia/Alien4Cloud catalogue (cf. Sect. 2.3) for transferring data to
and from a computing system when executing a task (CopyToJob, CopyFromJob).
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Fig. 4 Immersion of the Distributed Data Infrastructure in the LEXIS ecosystem via its most
important APIs (middle part of figure)
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These components are associated to a HEAppE job component in the workflow by
means of a relationship, which provides attribute values required for the necessary
data transfers (e.g., source and target directories). The attribute values are then
passed to the staging API to initiate the concrete transfer.

Under the hood, the back-end of the staging API is able to perform transfers
using a variety of mechanisms, including those common in the world of scientific
computing and HPC. It ‘speaks’ B2SAFE/GridFTP [6, 37], GLOBUS [38] and
SCP/SFTP/SSHFS (e.g. [39]) and chooses the most efficient possibility. In the
current optimisation phase of the DDI, we are beginning to regularly benchmark
point-to-point speeds between all LEXIS source and target data systems. Thus, we
will eliminate bottlenecks and allow the orchestrator to optimise data-transfer paths.

5 The LEXIS Portal: A User-friendly Entry Point to the
‘World of HPC/Cloud/Big Data’

The ability to attract a large number of customers to the LEXIS platform mainly
depends on the user-friendliness of the system. The LEXIS Portal thus plays a
crucial role in lowering the barrier for SMEs to use HPC and cloud resources
for solving their Big Data processing needs. It serves as a one-stop-shop and easy
entry point to the entire LEXIS platform. Thus, the user does not have to deal with
details of our complex infrastructure with its world-class compute and data handling
capabilities.

5.1 Portal: Concept and Basic Portal Capabilities

The LEXIS Portal is highly modular by design. It integrates in a plug-and-play
manner with the LEXIS DDI, Orchestration System, accounting and billing engine
and AAI solution. It gives secure, role-based access to federated resources at
multiple computing/data centres. The portal supports (but is not limited to) the
following capabilities:

• Registration of users and organisations, and log in
• Creation and management of LEXIS Computational Projects (including addi-

tion/deletion of users)
• Requesting access to resources; view of available resources
• View of public and private data sets; data set upload
• Creation of LEXIS workflows, running of workflows as a ‘LEXIS job’
• Monitoring and output retrieval for LEXIS jobs
• View of consumption of resources and billing status



176 S. Hachinger et al.

In addition, the portal back-end tracks the relationship of centre-specific HPC and
cloud computing grants to the organisations and Computational Projects of LEXIS
users.

The development strategy of the Portal involves an Agile methodology, however
with H2020-compatible project planning for the main directions. Given the unique
LEXIS requirements, we are implementing the portal from grounds up, instead of
reusing existing portal frameworks. The portal front-end uses React [40], while
back-end services are written entirely in Go [41], following API-driven best
practices.

5.2 Workflow and Data Management and Visualisation via the
Portal

Leveraging the experience with the Alien4Cloud UI [13] for creating workflows, the
LEXIS Portal will implement an interface for workflow creation, management and
monitoring. A prototype of the latter interface, focusing on part of a Weather and
Climate Large-Scale Pilot workflow (cf. Sect. 2.4), is showcased in Fig. 5.

Likewise, the portal provides easy in-browser capabilities to upload new data
sets (including resumable uploads based on ‘tus’ [42]), to find data sets (also
by their metadata) and to modify their content. Links to high-bandwidth, out-
of-browser data-transfer options for large data sets, such as GridFTP/B2STAGE
endpoints of the LEXIS DDI, are provided as well. Output data of user workflows

Fig. 5 Prototype of the LEXIS web portal with its workflow-monitoring interface activated. The
workflow shown is at the step ‘CreatePreProcess Dirs_start’
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are automatically registered – with basic metadata – as data products in the LEXIS
DDI and can thus be conveniently retrieved via the Portal, or also used as an input
for other workflows.

LEXIS will also provide advanced data-visualisation facilities, with the Portal as
an entry point. Besides offering resource-friendly in-browser visualisation, the user
can also be guided to powerful remote-visualisation systems of the LEXIS centres.

6 Conclusions

In this contribution, we presented LEXIS as a versatile and high-performance
Cloud/HPC/Big Data workflow platform, focusing on its EUDAT-based Distributed
Data Infrastructure and federation aspects. The LEXIS H2020 project, producing the
platform, creates unique opportunities for knowledge transfer between the scientific
and industrial IT communities treating Big Data. It enables industrial companies
and SMEs to leverage the best European data and Supercomputing infrastructures
from academia, while science can profit from applying industrial techniques, be it,
for example, in the ‘Cloud-Native’ or Service Management sectors.

Right from the beginning of the project, the platform was implemented within
a co-design framework. We strongly targeted the practical requirements of three
representative ‘Pilot’ use cases in aeronautics engineering, earthquake/tsunami
prediction and weather modelling. The pilot simulations, such as the weather
models, are of concrete societal and commercial use, for example for the selection
of wind energy sites. Despite this practical orientation, the project has managed to
consistently follow modern, API-based and secure service design principles.

As more use cases are attracted, the platform is broadly validated, usability will
be optimised, and collaboration with European users and projects can be established.
This will put all components to a test, including the iRODS systems of our EUDAT-
based data infrastructure, which takes care of transparent data transfers within
workflows and serves the users for managing their data via the LEXIS Portal. As
a result, the LEXIS platform will be optimised to reliably and efficiently execute an
entire spectrum of workloads, including visualisation and GPU- or even FPGA-
accelerated tasks. Orchestrated LEXIS workflows will thus efficiently combine
different computing paradigms (HPC, HTC, Cloud) and analysis methods (classical
modelling, AI, HPDA).

We are looking forward to extend the LEXIS federation to more computing
and data sites, and software necessary to join the platform will be conveniently
packaged. With this open approach, we will continue to push towards a convergence
of industrial and academic data science in Europe and towards a convergence of the
HPC, Cloud and Big Data ecosystems on the strongest European compute systems.
Enlarging the federated LEXIS platform and making it sustainable, besides work on
novel functionalities, is the key focus of the project in its second half.
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scenario, funding projects to implement large-scale pilot testbeds that combine
the latest advances in Artificial Intelligence, High-Performance Computing, Cloud
and Big Data technologies. The DeepHealth project is an example focused on the
health sector whose main outcome is the DeepHealth toolkit, a European unified
framework that offers deep learning and computer vision capabilities, completely
adapted to exploit underlying heterogeneous High-Performance Computing, Big
Data and cloud architectures, and ready to be integrated into any software platform
to facilitate the development and deployment of new applications for specific
problems in any sector. This toolkit is intended to be one of the European
contributions to the field of AI. This chapter introduces the toolkit with its main
components and complementary tools, providing a clear view to facilitate and
encourage its adoption and wide use by the European community of developers
of AI-based solutions and data scientists working in the healthcare sector and
others.

Keywords Hybrid big data HPC architectures · High performance data
analytics · Hardware-specific capabilities for big data GPUs FPGAs ·
Performance for large-scale processing

1 Context: The European AI and HPC Landscape
and the DeepHealth Project

The rapid progress of different technologies is taking place within a virtuous circle
that emerged thanks to the synergies between such technologies and has brought us
three important advances in recent years, namely, the increase in storage capacity
at a reduced price, the increase in data transmission speed and the increase in
computing power provided by High-Performance Computing (HPC) and hardware
accelerators. These three advances, in combination with the availability of large-
enough volumes of data, have considerably boosted the growth and development
of Artificial Intelligence (AI) in recent years. Mainly, thanks to the fact that the
techniques of Machine Learning (ML), able to learn from data, have reached
a good level of maturity and are improving the best results obtained by expert
systems at the core of knowledge-based solutions in most application domains.
Machine Learning is one of the most important areas of AI, which in turn includes
Deep Learning (DL). As such, descriptive/predictive/prescriptive models based on
AI/ML/DL techniques are becoming key components of applications and systems
deployed in real scenarios for solving problems in a wide variety of sectors (e.g.,
manufacturing, agriculture and food, Earth sciences, retail, fintech and smart cities,
among others). Nevertheless, its use in the health sector is still far from being widely
spread (see [1]).

In this scenario, the European Union (EU) is fostering strategic actions to
position the EU as a big worldwide player in AI, HPC and Big Data, capable
of creating and deploying solutions based on cutting-edge technologies. The
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DeepHealth project whose title is “Deep-Learning and HPC to Boost Biomedical
Applications for Health” [2], funded by the EC under the topic ICT-11-2018-2019
“HPC and Big Data enabled Large-scale Test-beds and Applications”, is one of
the innovation actions supported by the EU to boost AI and HPC leadership and
promote large-scale pilots. DeepHealth is a 3-year project, kicked off in January
2019 and scheduled to conclude in December 2021. DeepHealth aims to foster the
use of technology in the Healthcare sector by reducing the current gap between
the availability of mature-enough AI-based medical imaging solutions and their
deployment in real scenarios. The main goal of the DeepHealth project is to put
HPC power at the service of biomedical applications that require the analysis of
large and complex biomedical datasets and apply DL and Computer Vision (CV)
techniques to support new and more efficient ways of diagnosis, monitoring and
treatment of diseases.

Following this aim, one of the main outcomes of DeepHealth addressing industry
needs is the DeepHealth toolkit, a free and open-source software designed to
be a European unified framework to offer DL and CV capabilities completely
adapted to exploit underlying heterogeneous HPC, Big Data and cloud architec-
tures. The DeepHealth toolkit is aimed at computer and data scientists as well
as to developers of AI-based solutions working in any sector. It is a piece of
software ready to be integrated into any software platform, designed to facili-
tate the development and deployment of new applications for specific problems.
Within the framework of the DeepHealth project, the toolkit is being developed,
tested and validated by using it to implement descriptive/predictive models for 14
healthcare use cases; nevertheless, its usefulness goes beyond the health sector,
being applicable, as said, to any application domain or industrial sector. Thanks
to all its features, which will be detailed throughout this chapter, the DeepHealth
toolkit is technology made in EU that contributes to the development of AI in
Europe.

This chapter is aligned with the technical priorities of Data Processing
Architectures and Data Analytics of the European Big Data Value Strategic
Research and Innovation Agenda [3]. It addresses the vertical concern
Engineering and DevOps of the BDV Technical Reference Model, and
the horizontal concerns Data Analytics and Data Processing Architectures
focusing on the Cloud and HPC. And this chapter also relates to the Systems,
Methodologies, Hardware and Tools cross-sectorial technology enablers of the
AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda
[4].

This chapter also introduces the toolkit, its functionalities and its enabling
capabilities with the objective to bring it closer to potential users in both industry
and academia. To do so, the authors present the toolkit, its components, the
adaptations that allow exploiting HPC and cloud computing infrastructures thanks
to complementary HPC frameworks, and describe practical aspects to guide on its
use and how to effectively integrate it for the development of AI-based applications.
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2 A General Overview of the DeepHealth Toolkit

The DeepHealth toolkit is a general-purpose deep learning framework, including
image processing and computer vision functionalities, enabled to exploit HPC
and cloud infrastructures for running parallel/distributed training and inference
processes. All the components of the toolkit are available as free and open-source
software under the MIT license [5]. This framework enables data scientists to design
and train predictive models based on deep neural networks, and developers to easily
integrate the predictive models into existing software applications/platforms in order
to quickly build and deploy AI-based solutions (e.g., support decision tools for
diagnosis).

The toolkit is specifically designed to cope with big and constantly growing
datasets (e.g., medical imaging datasets). Large-enough datasets enable the use
of more complex neural networks and drive to improve both the accuracy and
robustness of predictive models, but at the cost of dramatically increasing the
demand of computing power. To do so, the DeepHealth toolkit incorporates, in
a transparent manner, the most advanced parallel programming models to exploit
the parallel performance capabilities of HPC and cloud infrastructures, featuring
different acceleration technologies such as symmetric multi-processors (SMPs),
graphic processing units (GPUs) and field-programmable gate arrays (FPGAs). It
also integrates additional frameworks (i.e., COMPSs [6] and StreamFlow [7]) that
allow to exploit specialized infrastructures, enabling parallelization mechanisms at
different levels. Moreover, the toolkit provides functionalities to be used for both
training and inference, addressing the complexity of the different available compu-
tational resources and target architectures at both the training and inference stages.
Training is performed by AI experts, commonly in research-focused environments,
using specialized HPC architectures equipped with FPGAs and GPUs; the goal
is to maximize the number of samples processed per second keeping the overall
accuracy. Inference is done with trained models in production environments (even
using small devices in the edge), where the response time for predicting single
samples is crucial.

The core of the toolkit consists of two libraries, namely the European Computer
Vision Library (ECVL) and the European Distributed Deep Learning Library
(EDDL), that are accompanied by the back end and the front end, two components
to allow and facilitate the use of the libraries. The back end is a software-as-a-
service module that offers a RESTful API to give access to all the functionalities
of both libraries and provides independency from the programming language. The
front end is a web-based graphical user interface, mainly oriented to be used by data
scientists, for designing, training and testing deep neural networks. Both libraries
are implemented in C++ and include a Python API to facilitate the development
of client applications and integration with the wide array of Python-based data
analysis libraries. Figure 1 depicts the components of the toolkit and highlights the
two possible alternatives for developers of domain-specific applications to use the
functionalities provided by both libraries: (1) the use of a RESTful API provided
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Fig. 1 Components of the
DeepHealth toolkit and the
two possible alternatives of
interacting with the libraries.
One through the back end
using a RESTful API, and
another using the API of both
libraries. The execution of
training and inference
procedures over HPC + cloud
infrastructures is performed
by the runtime. The runtime
includes adaptations to HPC
frameworks ready to be
executed under the control of
resource managers
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by the back end (represented in Fig. 1 by the arrows labelled 1) or (2) the use
of the specific APIs (C++ or Python) of each library (represented in Fig. 1 by
the arrows labelled 2). This second option is not independent of the programming
language, yet it provides more control and flexibility over the software at the cost
of additional programming complexity. The former option requires less effort from
platform developers and makes applications independent of specific versions of the
libraries. Only versions including changes in the RESTful API will require updating
and recompiling applications. It can also be observed from Fig. 1 that all the DL
and CV functionalities can be thoroughly used via the front end or via a software
application/platform, in this last case with or without the back end. Additionally,
Fig. 1 shows the runtime of both libraries, which can be used to launch distributed
learning processes to train models on HPC and cloud architectures. Both libraries
are designed to run under the control of HPC-specific workflow managers such as
COMPSs [6] and StreamFlow [7], presented in Sect. 6. Once the trained models
are tested and validated, they are ready to be used in production environments to
perform inference from new samples by using the software applications/platforms
in which libraries are integrated.

The following describes the typical workflow of the usage of the toolkit by a
development team who is requested to address a new use case in a real scenario,
considering that the libraries of the DeepHealth toolkit are already integrated in the
platform any company developed to deploy AI-based solutions in the health sector.
First, (i) data scientists, members of the team, prepare the dataset by splitting it into
three subsets, namely training, validation and testing subsets. Next, (ii) the team
designs several artificial neural networks and (iii) launches the training processes on
HPC and cloud architectures by means of the runtime of the toolkit adapted to HPC
frameworks like the ones described in Sect. 6. (iv) The team evaluates the models
using the validation subset, and goes back to step (ii) to redesign some models if
necessary. Sometimes, the team should come back to step (i) to consider the dataset
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itself with the knowledge gained from previous iterations. (v) The model that gets
the best accuracy using the testing subset is selected; then (vi) computer scientists,
members of the same team, configure an instance of the application with the best
model and deploy the solution in a production environment.

In itself, the DeepHealth toolkit provides the following features to AI-based
application developers, data scientists and ML practitioners in general:

• Increases the productivity of computer and data scientists by decreasing the time
needed to design, train and test predictive models throughout the parallelization
of the training operations on top of HPC and cloud infrastructures, and without
the need for combining numerous tools.

• Facilitates the easy and fast development and deployment of new AI-based
applications, providing in a single toolkit, ready to be integrated, the most
common DL and CV functionalities with support for different operating systems.
Furthermore, it allows to perform training processes outside the application/-
platform installed on production environments. To use the resulting predictive
models, applications/platforms only need to integrate the libraries following one
of the two possible alternatives presented.

• Relaxes the need of having highly skilled AI and HPC/cloud experts. Training
processes can be executed in a distributed manner in a transparent way for
data/computer scientists, and applications/platforms in production environments
do not need to be adapted to run distributed processes on HPC and cloud
infrastructures. Therefore, data scientists and developers do not need to have a
deep understanding of HPC, DL, CV, Big Data or cloud computing.

3 The European Distributed Deep Learning Library

EDDL is a general-purpose deep learning library initially developed to cover deep
learning needs in healthcare use cases within the DeepHealth project. As part of the
DeepHealth toolkit, EDDL is a free and open-source software available on a GitHub
public repository [5]. Currently, it supports most widely used deep neural network
topologies, including convolutional and sequence-to-sequence models, and is being
used in different tasks like classification, semantic segmentation of images, image
description, event prediction from time-series data, and machine translation. In order
to be compatible with existing developments and other deep learning toolkits, the
EDDL uses ONNX [8], the standard format for neural network interchange, to
import and export neural networks, including both weights and topology.

EDDL provides hardware-agnostic tensor operations to facilitate the develop-
ment of hardware-accelerated deep learning functionalities and the implementation
of the necessary tensor operators, activation functions, regularization functions,
optimization methods and all layer types (dense, convolutional and recurrent) to
implement state-of-the-art neural network topologies. The EDDL exposes two APIs
(C++ and Python) with functionalities belonging to two main groups: neural
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network manipulation (models, layers, regularization functions, initializers) and
tensor operations (creation, serialization, I/O, mathematical transformations). The
neural networks section provides both high-level tools, such as fitting and evaluating
the whole model, and lower-level ones that allow developers to act on individual
epochs and batches, providing finer control albeit with a slight efficiency loss in the
case of using the Python API, since a larger part of the program needs to be written
in Python to handle loops.

EDDL is implemented in C++, and the Python API, called PyEDDL [5], has
been developed to enhance the value of EDDL to the scientific community. The
availability of a Python library allows to integrate EDDL functionalities with widely
used scientific programming tools such as NumPy/SciPy [9] and Pandas [10]. In
particular, PyEDDL supports converting between EDDL tensors and NumPy arrays,
which are key to enable interoperability with other Python scientific libraries.
Moreover, since PyEDDL is based on a native extension module that wraps
the C++ EDDL code, users can take advantage of the simplicity and speed of
development of Python without sacrificing performance, using Python as a “glue”
language that ties together computationally intensive native routines. PyEDDL
allows Python access to the EDDL API and, as mentioned above, adds NumPy
interoperability, allowing interaction with a wide array of data sources and tools.
Like the rest of the DeepHealth Toolkit, PyEDDL is released as free and open-
source software and its source code is available on GitHub [5].

In relation to hardware accelerators, EDDL is ready to run on single computers
using either all or a subset of the available cores, all or a subset of the available
GPU cards, and coordinating the computation flow on the FPGA cards connected
to a single computer. The C++ and Python APIs of the EDDL both include a
function to build neural networks that creates all the data structures according to
the network topology and allocates all the necessary memory; one of the parameters
of the build function is an object for describing the available hardware devices
the EDDL will use to run the training and inference processes. EDDL defines the
concept of Computing Service to describe hardware devices. Currently, three types
of computing services are defined, namely CPU, GPU and FPGA. The number of
CPU cores, GPU cards or FPGA cards to be used are indicated by the Computing
Service.

Any neural network topology is internally represented by means of two directed
and acyclic graphs (DAGs), one for the forward step and another one for the
backward step. Each DAG defines the sequence of tensor operations to perform
the computation corresponding to the entire network, so that the computations
corresponding to a given layer will be performed when all its input dependencies
according to the DAG have been satisfied, i.e., when the output of all the layers
used as input to a given one are ready. Tensor operations are performed using the
hardware devices specified by means of the Computing Service provided as a param-
eter to the build function. On manycore CPUs, tensor operations are performed by
using the Eigen library [11] and parallelized using OpenMP [12]. When using GPU
or FPGA cards, the forward and backward algorithms are designed to minimize
the number of memory transfers between the CPU and GPU/FPGA cards. In the
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particular case of GPUs, EDDL has three modes of memory management to address
the lack of memory when a given batch size does not fit in the memory of a GPU.
The most efficient one tries to allocate the whole batch in the GPU memory to reduce
memory transfers at the minimum, the intermediate and least-efficient modes allow
to work with larger batch sizes at the cost of increasing the number of memory
transfers to perform the forward and backward steps for a given batch of samples.

GPU support in EDDL is done by means of CUDA kernels developed as part
of the EDDL code. As mentioned above, the use of different hardware accelerators
is completely transparent to developers and programmers who use the EDDL; they
only need to create the corresponding Computing Service to use all or a subset of
the computational resources. Integrating NVIDIA cuDNN library in the EDDL as
an alternative to CUDA kernels is in the work plan of the DeepHealth project.

Table 1 shows the performance in terms of the accuracy obtained with the test
set and the time per epoch in seconds during training. The EDDL is compared
with TensorFlow [13] and PyTorch [14], the two most popular DL toolkits. The
Cifar10 dataset was used. It can be observed that EDDL performs similar to the other
toolkits, but EDDL still needs to improve the performance on both CPUs and GPUs
when using Batch Normalization and larger topologies like VGG16 and VGG19.

EDDL support for FPGA cards is quite similar to the support for GPU cards.
The developer or data scientist using the EDDL simply indicates the target device
to run training or inference processes by means of a Computing Service object.
Although FPGAs can also be used for training, they are more appealing for inference
processes, and, therefore, FPGA support has been optimized for the inference
process. Depending on the trained model, FPGA cards can be directly used. This

Table 1 Benchmark to compare EDDL with TensorFlow and PyTorch using Cifar10 with and
without Batch Normalization

TensorFlow PyTorch EDDL
Model Accuracy/time No BN BN No BN BN No BN BN

VGG16 Test accuracy 77.4% 71.7% 77.9% / 76.2% 74.6% 76.4%
GPU time per epoch 62 s 68 s 72 s 77 s 146 s 204 s
CPU time per epoch 1313 s 1375 s 887 s 956 s 3107 s 2846 s

VGG19 Test accuracy 66.0% 59.9% 65.5% 59.7% 68.2% 61.0 s
GPU time per epoch 76 s 81 s 120 s 126 s 190 s 260 s
CPU time per epoch 1703 s 1809 s 1262 s 1352 s 3872 s 3838 s

RestNet18 Test accuracy 67.6% 64.0% 66.4% 65.7% 67.3% 64.8%
GPU time per epoch 25 s 26 s 59 s 60 s 36 s 49 s
CPU time per epoch 1234 s 1244 s 456 s 485 s 932 s 1207 s

ResNet34 Test accuracy 66.6% 66.4% 67.8% 65.5% 66.1% 60.4%
GPU time per epoch 44 s 46 s 97 s 101 s 65 s 89 s
CPU time per epoch 2125 s 2140 s 834 s 895 s 1674 s 2119 s

ResNet50 Test accuracy 68.4% 61.3% 68.1% 63.1% 66.4% 61.9%
GPU time per epoch 47 s 52 s 84 s 92 s 75 s 132 s
CPU time per epoch 1995 s 2044 s 706 s 835 s 1684 s 2622 s
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is the case when the models fit on the typically lower memory resources available
on FPGA devices. If models do not fit, then two options can be used. The first one
is to iteratively use FPGA cards to run the complete inference process on the model,
performing operations on a step-by-step manner driven by the CPU. The FPGA
support has been provided to allow this operational mode. However, quantization
and compression strategies can be deployed once the model has been trained. In
the DeepHealth project, the FPGA kernels mostly used on the Medical sector use
cases are being optimized and adapted to quantized and compressed models. In
order to deploy a model on FPGAs targeting low resource constraints and high
energy efficiency, the EDDL incorporates a strategy to reduce the complexity of a
deep neural network. Many techniques have been proposed recently to reduce such
complexity [15–17]. These approaches include the so-called pruning techniques,
whose aim is to detect and remove the irrelevant parameters from a model [18].
Removing parameters from a model has a huge impact on the deployment of the
trained model on FPGA cards, since the overall size of the model reduces as well as
the number of operations to generate the outcome decreases and, for instance, the
power consumption. This is allowed by the typically high dimensionality of these
models, where sparser and more efficient solutions can be found [19]. Towards this
end, in order to deploy the model on FPGA cards targeting low resource constraints
and high energy efficiency, the approach used in the EDDL is to include a structured
sparsity step, where as many neurons as possible are removed from the model with
a negligible performance loss.

Regarding distributed learning on HPC/cloud/HPC + cloud architectures, the
EDDL includes specific functions to simplify the distribution of batches when
training and inference processes are run by means of HPC frameworks like COMPSs
or StreamFlow. Concretely, the COMPSs framework allows to accelerate the DL
training operations by dividing the training data sets across a large set of computing
nodes available on HPC and cloud infrastructures, and upon which partial training
operations can then be performed. To do so, EDDL allows to distribute the weights
of the network from the master node to worker nodes, and to report gradients from
worker nodes to the master node, both synchronously and asynchronously. The
EDDL serializes networks using ONNX to transfer weights and gradients between
the master node and worker nodes. The serialization includes the network topology,
the weights and the bias. To facilitate distributed learning, the serialization functions
implemented in the EDDL allow to select whether to include weights or gradients.

EDDL and PyEDDL code is covered by an extensive test suite and complemented
by numerous usage examples in Python and C++, including network training and
evaluation with different models, ONNX serialization and NumPy compatibility. To
facilitate their adoption, EDDL and PyEDDL also provide extensive documentation
on installation, tensor and neural network manipulation, API usage and examples
[5]. The “getting started” section contains simple examples; the most advanced ones
show the use of topologies like VGG16/VGG19 [20] and U-Net [21]. Concerning
installation, developers can choose between installing from source code, via conda
[22], and via Homebrew for Mac OS X [23]. Additionally, pre-built Docker
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images with the DeepHealth toolkit components ready to be used are available on
DockerHub [24] (see Sect. 6.1).

4 The European Computer Vision Library

ECVL is a general-purpose computer vision library developed to support healthcare
use cases within the DeepHealth project, with the aim of facilitating the integration
of existing state-of-the-art libraries such as OpenCV [25]. ECVL currently includes
high-level computer vision functionalities implementing specialized and accelerated
versions of algorithms commonly employed in conjunction with deep learning;
functionalities that are useful for image processing tasks in any sector beyond health.

The design of ECVL is based on the concept of Image, which represents
the core element of the entire library. It allows to store raw data, images, and
videos in a multi-dimensional dense numerical single- or multi-channel tensor.
Multiple types of scientific imaging data and data formats (e.g., jpeg, png, bpm,
ppm, pgm, etc.) are natively supported by ECVL. Moreover, the library provides
specific functionalities to handling medical data, such as DICOM, NIfTI and many
proprietary Virtual Slides (VS) formats. In the case of VS, the Image object allows
to choose the area and the resolution to be extracted from the file. The availability
of a common software architecture provided by the ECVL Hardware Abstraction
Layer (HAL) allows great flexibility for device differentiation (SMPs, GPUs, and
FPGAs) while keeping the same user interface. This hardware-agnostic API ensures
versatility, flexibility, and extensibility, simplifying the library usage and facilitating
the development of distributed image analysis tasks.

The Image class has been designed for representing and manipulating different
types of images with diverse channel configurations, providing both reading
and writing functionalities for all the aforementioned data formats. Arithmetic
operations between images and scalars are performed through the Image class.
Obviously, all the classic operations for image manipulation such as rotation,
resizing, mirroring and colour space change are available. Extremely optimized
processing functions, like noising, blurring, contour finding [26], image skeletoniza-
tion [27] and connected components labelling [28] are implemented as well. ECVL
image-processing operations can be applied on-the-fly during deep neural networks
training to implement data augmentation. Given the relevance of data augmentation,
ECVL provides with a simple Domain-Specific Language (DSL) to facilitate the
definition of transformations to be applied and their configuration parameters. A set
of transformations can thus be defined for each split of a dataset (train, validation
and test subsets). Augmentation can be either provided in compiled code or through
the DSL and thus read from file at runtime. More details are available in [29].

Optional modules are supplied with the library and can be activated to enable
additional functionalities, such as the cross-platform GUI based on wxWidgets [30],
which provides simple exploration and visualization of images contained in ECVL
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Image objects, and a 3D volumes visualizer to observe different slices of a CT scan
from different views.

In order to ensure an efficient and straightforward mechanism to perform
distributed model training, ECVL defines the DeepHealth Dataset Format (DDF):
a simple and flexible YAML-based syntax [31] that allows to describe a dataset.
Regardless of the task being analysed, a DDF file provides all the information
required to characterize the dataset and thus performing data loading, image pre-
and post-processing and model training. A detailed description of such a format
can be found in [29]. Moreover, a specific module to load and parse DDF-defined
datasets is implemented and exposed by the library interface.

Like EDDL, ECVL is complemented by a Python API called PyECVL [5]. In
addition to simplified programming, its main advantage is the ability to integrate
with other scientific programming tools, which are abundant in the Python ecosys-
tem. This interoperability is enabled by supporting the conversion between ECVL
images and NumPy arrays. Like PyEDDL, PyECVL is based on a wrapper extension
module that reroutes calls to the C++ code, allowing to reap the benefits of Python
development without taking a big hit on performance. PyECVL exposes ECVL
functionalities to Python, including Image objects, data and colour types, arithmetic
operations, image processing, image I/O, augmentations, the DeepHealth dataset
parser and the ECVL-EDDL interaction layer. As discussed earlier, its support for
to/from array conversion allows to process data with NumPy as well as many other
scientific tools based on it.

Regarding hardware accelerators, the ECVL supports the use of GPU and FPGA
cards to run the computer vision algorithms needed in training and inference
processes. The implementation for GPUs has been done using CUDA kernels, while
for FPGA cards it is somewhat more complicated as FPGA cards are reconfigurable
devices which allow the designer to fully customize their design and to adapt it
to the algorithm they need to run. This enables, for specific application domains,
more power- and energy-efficient solutions than, for instance, CPUs and GPUs.
The DeepHealth project advocates for the use of FPGAs as accelerator devices
for the inference process. In particular, the trained models ready for production
can be launched to an FPGA card by using the FPGA support provided in both
the ECVL and the EDDL libraries. The use of FPGA cards is totally transparent
to data scientists who use the DeepHealth toolkit. Indeed, both libraries enable the
developers who use them just to indicate which type of device the application should
be using. For the specificities of the ECVL library, the use of FPGAs is appealing
as most computer vision algorithms (e.g., image resize, mirror) deal with pixels
rather than floating point values. FPGA devices excel at integer operations and offer
massive parallelism possibilities within the device.

Like other software packages of the toolkit, ECVL and PyECVL are available
as free and open-source software on a public GitHub repository, including doc-
umentation, comprehensive tests, and several usage examples of both the C++
and Python APIs [5]. Examples include data augmentation usage, handling of
DeepHealth datasets, interaction with EDDL/PyEDDL, image processing and I/O.
The documentation includes detailed instructions to install ECVL and PyECVL
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from different options as in the case of EDDL and PyEDDL. As mentioned in the
EDDL section, a set of pre-built Docker images including the components of the
DeepHealth toolkit are available in the Docker hub for the DeepHealth project [24].

5 The Back End and the Front End

The four components of the DeepHealth toolkit are the ECVL, the EDDL, the
back end and the front end. Figure 1 shows how the back end and the front end
are interconnected with the libraries. The back end is a software module where
ECVL and EDDL are fully integrated, which offers a RESTful API to allow
any software application or platform to access all the functionalities provided by
both libraries without the need to use the C++ or Python API. Ready-to-use
pre-built Docker images (see Sect. 6.1) are available, including the back end and
all the other components of the toolkit, in such a way that the developers of
applications/platforms do not have to worry about the installation and configuration
of the DeepHealth toolkit, they only need to provision Docker containers and,
obviously, programming, using their preferred programming language, the module
for their application/platform that will interact with the RESTful API offered by
the back end. This way, the back end enables managed service usage scenarios,
where a potentially complex and powerful computing infrastructure (e.g., high-
performance computing, cloud computing or even heterogeneous hardware) could
be transparently used to run deep learning jobs without the users needing to directly
interface with it.

The front end is a web-based graphical user interface that facilitates the use of
all the functionalities of the libraries by interacting with the back end through the
RESTful API. The front end is the component of the toolkit visible to any type
of user, but it has been mainly designed for data scientists. Without going into
implementation details, the main functionalities provided by the front end are: (1)
creation/edition of user profiles; (2) creation/edition of projects; (3) dataset upload-
ing; (4) dataset selection; (5) model creation/import/export/edition/selection; (6)
definition of tasks (currently supported types are classification and segmentation);
(7) definition of data augmentation transformations; (8) launching training/inference
processes; (9) monitoring of training processes, including visualization of the
evolution of different neural network related KPIs (e.g., accuracy and loss) with
respect to both training and validation data subsets; and (10) model evaluation.

In the common usage of the front end, users have the option of loading from the
back end any one of the available models in the set of pre-designed models, which
can be already trained. Trained models can be used to perform transfer learning
tasks or just to reuse the topology by resetting weights and bias before launching a
new training process.
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6 Complements to Leverage HPC/Cloud Infrastructures

EDDL, ECVL and the back end are designed to be deployed on HPC and cloud
infrastructures to distribute the workload of training and inference processes by
following the data parallelization programming paradigm. Both libraries include
specific functions to enable distributed learning. The distribution of the workload
on multiple worker nodes is not directly performed by ECVL and EDDL. Instead,
the libraries are complemented with workflow managers like COMPSs [6] and
StreamFlow [7], specially designed for HPC/cloud environments, that manage the
workload distribution of training and inference processes in combination with
resource managers like SLURM [32]. To leverage hybrid HPC + cloud architec-
tures, pre-built Docker images with all the components of the DeepHealth toolkit
are ready to be deployed in scalable environments orchestrated by Kubernetes [33].

The DeepHealth toolkit is being tested on multiple HPC, cloud and hybrid
HPC + cloud infrastructures to validate its ability to exploit a wide variety of
architectures. The infrastructures considered in the DeepHealth project are:

• The Marenostrum supercomputer, composed of 3456 computed nodes based on
Intel Xeon Platinum chips, hosted at the Barcelona Supercomputing Center.

• The MANGO cluster, composed of eight interconnected FPGAs, hosted by the
Technical University of Valencia (UPV).

• The OpenDeepHealth (ODH) platform, implemented by the University of Torino
on top of a hybrid HPC + cloud infrastructure. The HPC component is a
C3S OCCAM cluster composed of 46 heterogeneous nodes, also including
GPU nodes (K40 or V100). The cloud component, serving multi-tenant private
Kubernetes instances, is HPC4AI [34], comprising Intel Xeon Gold 80-cores
computing nodes (+2000 CPU cores) with 4 GPUs per node (80 CPU cores
+ V100 or T4 GPUs).

• The hybrid cloud platform, composed of a Kubernetes cluster on premise (private
cloud) and another cluster running in Amazon Web Services (public cloud),
provided by the company TREE Technology.

The Marenostrum supercomputer and the ODH platform are similar in terms of
use; both are HPC infrastructures and both are ready to hold private clouds. The
hybrid cloud facilitates vertical and horizontal scalability, providing good adapt-
ability to different situations and uses, the possibility of deploying applications and
work with data that can be shared between clouds, improving the performance of the
workload. The private part of the hybrid cloud can be deployed on Marenostrum and
ODH, as well as in the on-premise computer cluster of any SME. On the other hand,
the MANGO cluster is an FPGA-specific computing infrastructure that is being used
to evaluate some use cases of the DeepHealth project.

It is worth noting that these infrastructures offer a wide range of computing
environments at different levels:

• High number of CPU computing nodes on Marenostrum, multi-GPUs nodes on
the ODH platform and FPGAs in the MANGO cluster.
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• The private OpenStack cloud implemented in ODH (HPC4AI), and the hybrid
private+public cloud provided by TREE Technology.

• Docker containers technology used on top of bare metal layer in ODH (C3S)
and in cloud platforms, using orchestration tools like Kubernetes, in TREE
Technology platform and ODH (HPC4AI), and StreamFlow, which is described
in Sect. 6.3.

6.1 Use of Docker Images Orchestrated by Kubernetes

The hybrid cloud platform provided by TREE Technology is a computing environ-
ment that offers the possibility of combining public and private clouds, allowing the
deployment of applications and work with data that can be shared between them.
This solution was built using Kubernetes technology [33], a distributed container
and microservice platform that orchestrates computing, networking and storage
infrastructure to support user workloads.

Software containers demonstrated to provide a good way to bundle and
deploy applications. However, as system complexity increases (e.g., complex
multi-component software applications, multi-node clusters) running deployments
become increasingly difficult. Kubernetes supports the automation of much of
the work required to maintain and operate such complex services in a distributed
environment. The objective of this hybrid environment is to dynamically operate
in different Kubernetes clusters running on several public clouds and on-
premise infrastructures. Different Kubernetes clusters can have different hardware
configurations, that is, they can have different memory and CPU settings, with or
without GPUs. Once the different clusters are deployed, both in public and private
clouds, it is necessary to orchestrate all the resources. For this ecosystem to work
properly and be able to be coupled in the global scheme, two stages must be taken
into account:

• Within a multi-cloud or hybrid-cloud context, a tool is needed to facilitate
management and security tasks, as this can become a highly error prone and
tedious task, while resources and Kubernetes clusters grow.

• A high-level RESTful API helps to abstract the user from the infrastructure itself,
simplifying and speeding up the deployment and management of the workflows.
It provides functions of varying complexity, which implements functionality
abstracting the user from the potentially complex configuration of the clusters
(e.g., multi-cloud, hybrid cloud, etc.). The API itself can support the addition
of new Kubernetes clusters both on-premise and in the cloud from any provider
with the limitation of having a minimum Kubernetes version.

The proposed hybrid cloud based on Kubernetes is a complex system, and its
scalability is determined by several factors, like the number and type of nodes in
a pool of nodes, the number of Pods available (Pods are the minimum deployable
computer units that can be created and managed in Kubernetes), the number of
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services or back ends behind a service and how resources are allocated. Usually, in
a public cloud, the concept of autoscaling is available, which refers to the possibility
of scaling the resources of a cluster in a self-managed manner. In the DeepHealth
project, the public cloud has been configured with this autoscaling option, while for
the private cloud there is no scaling policy in relation to machines.

Concerning the automatic deployment of the DeepHealth toolkit in any cloud
configuration, and regardless of the complexity level of the computing infras-
tructures that any development team of AI-based solutions may have on hand,
a set of pre-built CUDA-enabled DeepHealth Docker images, including all the
components of the toolkit, are ready to be used on GPU-enabled computing
resources to accelerate compute-intensive operations. All the DeepHealth Docker
images available in the DockerHub [24] are CUDA-enabled and provide pre-
built binaries of the libraries along with all their dependencies, such that these
images can be used to create Docker-ready applications. In addition, a toolkit image
flavour is also provided to support the developers of applications/platforms directly
integrating the EDDL and the ECVL, who may prefer the C++ or Python API.
These Docker images are built on the devel flavour of the NVIDIA/CUDA images,
and add a full DeepHealth build configuration to provide a ready-to-use compilation
environment for applications.

For simplified scalable deployments on cloud computing resources, a Kubernetes
[33] deployment of the DeepHealth toolkit, with the web service configured, has
been created and made available. The deployment automatically configures a server
for the DeepHealth front end and all the back-end components (i.e., web service,
worker, database, job queue, and static content server) in a flexible and scalable
way. In fact, once a deployment is created, the available processing capacity can
be dynamically scaled using some of the standard features of Kubernetes, such
as configuring the required number of worker replicas to achieve the required
throughput. The Kubernetes deployment of the DeepHealth toolkit is packaged
as a Helm chart for easy deployment [35]. For simpler use cases that do not
have particular scalability requirements, a Docker-compose deployment is also
available. This configuration cannot distribute work over multiple nodes, but it can
be trivially deployed on a single node and thus is well suited for small workloads
and exploratory or development work.

6.2 COMPSs

COMPSs [6] offers a portable programming environment based on a task model,
whose main objective is to facilitate the parallelization of sequential source code,
written in Java or Python programming languages, to run in a distributed and
heterogeneous computing environment. In COMPSs, the programmer is responsible
for identifying the units of parallelism (named COMPSs tasks) and the synchroniza-
tion data dependencies existing among them by annotating the sequential source
code. The task-based programming model of COMPSs is then supported by its
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runtime system, which manages several aspects of the application execution and
keeps the underlying infrastructure transparent to the programmer. This is a key
feature to guarantee the portability of COMPSs applications across a wide range
of computing platforms. This will allow the DeepHealth toolkit to be tested and
validated within the DeepHealth project in the infrastructures enumerated above.
Regarding cloud configurations, the COMPSs runtime is being adapted within the
DeepHealth project to support the hybrid cloud infrastructure. COMPSs runtime
interacts with the API developed by TREE Technology to deploy workers and
distribute the workload on hybrid cloud architectures. The COMPSs runtime is
organized as a master-worker structure:

• The Master, executed in the computing resource where the application is
launched, is responsible for steering the distribution of the application and data
management.

• The worker(s), co-located with the Master or in remote computing resources, are
in charge of responding to task execution requests coming from the Master.

One key aspect is that the master maintains the internal representation of a
COMPSs application as a Directed Acyclic Graph (DAG) to express the parallelism.
Each node corresponds to a COMPSs task and edges represent data dependencies
(and so potential data transfers). Based on this DAG, the runtime can automatically
detect data dependencies between COMPSs tasks: as soon as a task becomes
ready (i.e., when all its data dependencies are resolved), the master is in charge
of distributing it among the available workers, transferring the input parameters
before starting the execution. When the COMPSs task is completed, the result is
either transferred to the worker in which the destination COMPSs task executes
(as indicated in the DAG), or transferred to the master if a barrier synchronization
call is invoked. The parallelization of the EDDL training operation has been
developed with the COMPSs tasking programming model. Due to the fine grain
data dependency synchronization mechanisms supported by COMPSs, two parallel
training paradigms are supported: synchronous, in which weights are collected
and aggregated at the end of each epoch, and asynchronous, in which weights
are increasingly aggregated as soon as a partial training is completed on the
corresponding data set.

COMPSs is perfectly adapted to run in environments managed by SLURM [32],
an open-source resource manager widely used in High-Performance Computing
data centres to manage job queues and job allocation of incoming tasks to servers.
The Ecole Polytechnique Fédérale de Lausanne (EPFL) has enhanced the core
version of the SLURM resource manager with novel plugins that enable energy- and
performance-aware task allocation for CPU- and memory-intensive tasks in order
to increase the efficiency (in terms of performance per watt) of multiple tasks when
running simultaneously on the same server and cluster. EPFL do so by proposing the
use of graph-based techniques and reinforcement learning, which are low overhead
and do not impact the execution time of applications. SLURM can interact with
COMPSs in order to launch multiple instances of applications in a coordinated
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way in an HPC infrastructure, creating a separation of concerns between resource
managers, while still working in a coordinated way.

6.3 StreamFlow

StreamFlow is a novel Workflow Management System (WMS) explicitly designed
in the DeepHealth project, supporting AI pipeline design and execution in different
execution environments, including hybrid HPC + cloud and multi-cloud infrastruc-
tures. The portability of AI pipelines on critical data across different infrastructures
is crucial for the sustainability of DeepHealth foreground technologies. To address
this issue, OpenDeepHealth embraces StreamFlow. The ability of StreamFlow to
handle sequences of computational steps makes it possible to describe a complex
application as a workflow and annotate each step with an execution plan potentially
targeting different nodes, e.g., selecting GPU nodes when needed, spawning across
multiple sites—e.g., allowing transparent access to OCCAM and HPC4AI clusters.
The idea behind this approach is that the ability to deal with hybrid workflows (i.e.,
to coordinate tasks running on different execution environments) can be a crucial
aspect for performance optimization when working with massive amounts of input
data and different needs in computational steps. Accelerators like GPUs and, in
turn, different infrastructures like HPC and clouds, can be used more efficiently by
selecting the execution plan that best suits the specific computational needs of each
ML application developed in the project.

The StreamFlow framework is a container-native WMS written in Python. It has
been designed to explore the potential benefits deriving from waiving two common
properties of existing WMSs that can prevent them from fully exploiting the
potential of containerization technologies. Instead of forcing a one-to-one mapping
between workflow steps and Docker containers, StreamFlow allows the execution of
tasks in potentially complex, multi-container environments. This allows support for
concurrent execution of multiple communicating tasks in a multi-agent ecosystem,
e.g., a SPMD application implemented with MPI or a COMPSs-based distributed
training. StreamFlow relaxes the requirement of a single shared data space among
all the worker nodes, allowing to spread different steps of a single workflow on
multiple, potentially federated architectures without forcing direct communication
channels among them. Moreover, StreamFlow clearly separates the definition of
the AI pipeline, described as a declarative workflow, from the description of the
runtime environment in charge of executing it, enforcing a separation of concerns.
This allows taking advantage of using the most efficient infrastructures for the
specific purpose of complex AI pipelines without burdening the AI experts with
the configuration and management complexity of such infrastructures. At a very
high level, an AI pipeline can comprise a training step, which usually requires very
high computational power and distributed programming techniques to handle huge
datasets, and an inference step, in which a fully trained model should be directly
reachable from one or more user applications. StreamFlow can orchestrate the
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execution of the AI pipeline, targeting the training step on HPC facilities, e.g., by
using EDDL with COMPSs distributed runtime, and the inference step on the cloud
cluster, e.g., by leveraging EDDL Docker containers deployed on a Kubernetes
infrastructure.

7 Conclusions

The DeepHealth toolkit is presented here as a new and emerging software frame-
work that provides European industry and research institutions with deep learning
and computer vision functionalities. To cope with huge and constantly growing
data sets, the toolkit has been designed to leverage hybrid and heterogeneous
HPC + cloud architectures in which either all or some of the worker nodes
are equipped with hardware accelerators (e.g., GPUs, FPGAs). The distributed
execution of learning and inference processes is done by the runtime of the
DeepHealth toolkit in a transparent manner to the common user, i.e., computer and
data scientists who do not need a deep understanding of parallel programming, HPC,
deep learning or cloud architectures.

The two libraries at the core of the toolkit can be easily integrated into
existing software applications/platforms that European companies (SMEs and large
industry) have developed to deploy AI-based solutions in any sector (e.g., decision
support systems that clinicians can use to diagnose), and can be used to boost the
development of new platforms and solutions. All the components of the toolkit are
free and open-source software available on public repositories.

In order to foster the use of the DeepHealth toolkit, the authors have introduced
the potential user to all the toolkit components and how to integrate the libraries
in existing or new software applications. It is worth mentioning that, thanks to pre-
built Docker images including all components with all dependencies satisfied, data
scientists only need to provision Docker containers according to their needs.

The toolkit constitutes a contribution from Europe in Artificial Intelligence and
smart big data analytics. Besides all the features introduced in this chapter (free
and open-source framework, easy to use, portable to different architectures, wide
application scope), it contributes to reducing the bottlenecks in turning AI into an
enabling technology for Science (e.g., provides a way to reduce the complexity of
numerical methods used in scientific environments), bringing closer the separate
worlds of AI and HPC. Furthermore, it is expected to boost the adoption of AI and
HPC technologies by the industry. The toolkit paves the way towards the offering of
AI coupled with HPC as a service, which could be a game changer aspect in order
to reach a greater number of companies. On the one hand, it offers improvements
for companies that only have temporary needs for high-performance computing
resources, which will be able to improve their productivity by developing their
own AI solutions, and on the other hand, it could unlock the development of novel
applications that need to run computationally intensive processes regularly.
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Applying AI to Manage Acute
and Chronic Clinical Condition

Rachael Hagan, Charles J. Gillan, and Murali Shyamsundar

Abstract Computer systems deployed in hospital environments, particularly phys-
iological and biochemical real-time monitoring of patients in an Intensive Care Unit
(ICU) environment, routinely collect a large volume of data that can hold very useful
information. However, the vast majority are either not stored and lost forever or are
stored in digital archives and seldom re-examined. In recent years, there has been
extensive work carried out by researchers utilizing Machine Learning (ML) and
Artificial Intelligence (AI) techniques on these data streams, to predict and prevent
disease states. Such work aims to improve patient outcomes, to decrease mortality
rates and decrease hospital stays, and, more generally, to decrease healthcare costs.

This chapter reviews the state of the art in that field and reports on our
own current research, with practicing clinicians, on improving ventilator weaning
protocols and lung protective ventilation, using ML and AI methodologies for
decision support, including but not limited to Neural Networks and Decision Trees.
The chapter considers both the clinical and Computer Science aspects of the field.
In addition, we look to the future and report how physiological data holds clinically
important information to aid in decision support in the wider hospital environment.

Keywords Healthcare · Predictive analytics · Artificial Intelligence · Clinical
decision support

The chapter relates to the technical priorities Data Analytics of the European Big
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tal concern Data Analytics of the BDV Technical Reference Model and addresses
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to the Reasoning and Decision Making cross-sectorial technology enablers of the
AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda [2].
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1 Overview

The chapter begins by discussing Intensive Care medicine and the types of machines
and data that is being recorded continuously, and thus producing ‘Big Data’. It
proceeds to explain some of the challenges that can arise when working with such
data, including measurement errors and bias. The subsequent section explains some
of the common methodologies used to provide predictive analytics with examples
given for both acute and chronic clinical conditions, and discuss our own work
for the promotion of lung protective ventilation, to highlight the accuracies that
can be achieved when pairing health ‘Big Data’ with common machine learning
methodologies. The chapter concludes by discussing the future of this field and
how we, as a society, can provide value to our healthcare systems by utilizing the
routinely collected data at our disposal.

2 Intensive Care Medicine and Physiological Data

Intensive Care Units (ICU) offer expensive and labor-intensive treatments for the
critically ill and are therefore a costly resource for the health sector around the
world. They can also be referred to as Intensive Therapy Units (ITU) or Critical
Care Units (CCU). UK estimates in 2007 highlighted that intensive care in the NHS
costs £719 million per year [3]. Comparably, American studies reported in 2000
have shown that median costs per ICU stay can range between $10,916 and $70,501
depending on the length of stay [4]. A typical length of stay varies depending on
the condition of the patient with studies showing the mean length of stay being
5.04 days [3], while the condition of the patient can change quickly and sometimes
unpredictably.

Patients will normally be admitted to intensive care after a serious accident, a
serious condition such as a stroke, an infection or for surgical recovery. Throughout
their stay in ICU, these patients are monitored closely due to their critical condition,
and on average require one nurse for every one or two patients. Many devices and
tests may be used to ensure the correct level of care is provided. Patients will be
placed on machines to monitor their condition, support organ function and allow for
the detection of any improvements or deterioration. The functions of these machines
can vary: from the monitoring of vital parameters such as heart rate via the patient
monitor to the use of mechanical ventilators that provide respiratory function when
a patient is not able to do so themselves.

The workload on the clinical staff in ICU is intense and so utilizing Big Data
analytics will allow for healthcare providers to improve their efficiency through
better management of resources, detection of decompensation and adverse events,
and treatment optimization, among many benefits to both patient outcomes and
hospital costs [5].
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2.1 Physiological Data Acquisition

Health data recorded in ICU can be classified as ‘Big Data’ due to the volume,
complexity, diversity and timeliness of the parameters [6], the aim being to turn
these ‘Big Data’ records into a valuable asset in the healthcare industry.

As highlighted, patients requiring critical care are placed on numerous monitors
and machines to help with and provide their care. Equipment can include, but is not
limited to [7]:

• Patient monitoring system to monitor clinical parameters such as electrocardio-
gram (ECG), peripheral oxygen saturation, blood pressure, temperature.

• Organ support systems such as mechanical ventilator, extracorporeal organ
support such as continuous renal replacement therapy.

• Syringe pump for the delivery of medicines.

These machines are all monitoring continuously (24×7) and thus representing
one example of the emerging field of Big Data. It is important to wean patients off
these machines as quickly as possible to avoid dependency and to lower the risk
of infection. In addition to the organ support machines, the electronic health record
includes laboratory data, imaging reports such as X-rays and CT scans, and daily
review record.

2.1.1 Time Series Data

The human physiologic state is a time-dependent picture of the functions and mech-
anisms that define life and is amenable to mathematical modeling and data analysis.
Physiology involves processes operating across a range of time scales resulting in
different granularities. Parameters such as heart rate and brain activity are monitored
on the millisecond level while others such as breathing have time windows over
minutes and blood glucose regulation over hours. Analysis of instantaneous values
in these circumstances is rarely of value. On the other hand, application of analytical
techniques for time series offers the opportunity to investigate both the trends
in individual physiological variables and the temporal correlation between them,
thereby enabling the possibility to make predictions.

Features can also be extracted from these time series using packages such as the
Python tsfresh software toolkit to use as input into Machine Learning models and
to gain further insights into the relationship between the parameter and time [8]. By
analyzing the time series we can make predictions on the future trajectory and alert
care givers of possible issues in order to prevent complications.

Prior research has shown that these streams of data have very useful information
buried in them, yet in most medical institutions today, the vast majority of the data
collected is either dropped and lost forever, or is stored in digital archives and
seldom reexamined [9].
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In the past number of years there has been a rapid implementation of Electronic
health records, or EHRs, around the world. EHRs are a common practice to record
and store real-time, patient health data, enabling authorized users to track a patient
from initial admission into the hospital, their deterioration/improvement, diagnoses,
and all physiological parameters monitored and drugs given across all healthcare
systems.

2.1.2 Publicly Available Datasets

As part of a global effort to improve healthcare, numerous institutions have put
together publicly available data sets based on their EHRs for people to use in
research; enabling visualization, analysis, and model development.

One of the best-known and commonly used publicly available databases is
MIMIC, the Multiparameter Intelligent Monitoring in Intensive Care database.
Produced from the critical care units of the Beth Deaconess Medical Centre at
Harvard Medical School, Boston, this large, freely available database consists of
de-identified health-related data associated with over 40,000 patients who were in
critical care between 2001 and 2012 [10]. After being approved access, users are
provided with vital signs, medications, laboratory measurements, observations, and
charted notes. Furthermore, waveforms are available for use, along with patient
demographics and diagnoses.

PhysioNet offers access to a large collection of health data and related open-
source software, including the MIMIC databases [11]. All data recorded in these
publically available databases are anonymous, ensuring no patient can be identified
from their data.

3 Artificial Intelligence in ICU

The broad field of Data Science has emerged within the discipline of Computer
Science over the past 10 years, approximately. Its roots arguably lie in the work
of Fayyad et al. [12], which defined a pipelined process for the extraction of
abstract models from data using an amalgam of techniques, including Statistics and
Machine Learning. Artificial Intelligence (AI) is the ability of a computer system to
perform tasks that aim to reach the level of intelligent thinking of the human brain
through applying machine learning methodologies, further details are discussed in
the methodologies section.

3.1 Challenges

As in majority of real-world applications, there comes a series of challenges that
arise when applying Big Data-driven analytics to such sensitive and intense data. We
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must aim to build trust and quality between the decision support tools and the end
users. It is always important to question if there is real clinical impact from carrying
out such work and exploring AI methodologies for solving particular problems.

3.1.1 Data Integrity

Before building any Big Data-driven analytic system, it is important to ensure data
has been collected and preprocessed correctly, with any errors handled accurately.
It is crucial to ensure data harmonization, the process of bringing together all
data formats from the different machines and tests into one database. Without this
step, the algorithms will produce unreliable results, which in turn could result in a
critically dangerous implementation and a lack of trust in the system. Errors in the
data can be due to a variety of reasons:

• Data input errors: In intensive care, caregivers often have to input readings on the
system. Fields will have a required metric in which the data should be entered and
these may sometimes be ignored or mishandled. For example, height that should
be entered in centimeters but a user may enter the reading in meters, e.g., 1.7 m
instead of the 170 cm.

• Sensor errors: With the complexity and multitude of monitors, leads, and
machines that a patient can be on at any given time, the sensors can sometimes
fail or miss a reading. Sensors can be disconnected for a period of time to deliver
medicines or for imaging tests. Patients’ movements in the bed can cause a
sensor error or unexpected result. These errors will present as outliers in the
data and should be dealt with accordingly as to not throw off any predictive
modeling.

• Bias in the data: AI methodologies are only as good as the data of which
they are trained on. If this data contains, e.g., racial or gender biases, the
algorithm will learn from this and produce similar results such as women not
being given the same number of tests as men. Similarly, statistical biases can
be present due to small sample numbers from underrepresented groups, for
instance, an algorithm only being trained with White patients may not pick up
the same diagnosis when presented with Hispanic patients [13]. Furthermore,
selection biases exist when the selection of study participants is not a true
representation of the true population, resulting in both cultural and social
differences.

• Bias in the study: Studies can also contain information bias. These include
measurement errors for continuous variables and misclassification for categor-
ical variables. For example, a tumor stage being misdiagnosed would lead to
algorithms being trained on incorrect data [14].
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We must ensure to implement appropriate techniques such as imputation,
smoothing and oversampling to prevent errors in our data and build trust with
the user.

3.1.2 Alert Fatigue

When building decision support tools, it is crucial to ensure the integrity of alerts
raised. Too many can result in alert fatigue, leading to alarms being switched off
or ignored. Research has shown that there is on average 10.6 alarms per hour, too
many for a single person to handle amidst their already busy work schedule [15].

In addition, 16% of health care professionals will switch off an alarm and 40.4%
will ignore or silence the alarm [16].

This influx of alarms resulting in the monitoring system being turned off will
lead to vital physiological problems being missed. We need to be confident that our
systems are only producing true alerts and that false alerts generated are minimized.

It has further been highlighted that reducing the number of alerts repeated per
patient will help reduce override rates and fatigue [17].

3.1.3 Bringing AI Systems to Clinical Trials

While we know these AI models, derived from Big Data-driven predictive analytics,
can provide value to the healthcare industry, we must be able to test them in real time
in order for them to be implemented and used throughout the world. This requires a
clinical trial to be carried out using the system on patients in real time. While there
exist the SPRIRT 2013 and CONSORT 2010 checklists for clinical trials, covering
checklists for what you intended to do and what you actually did, respectively,
neither of these include steps for AI implementation [18].

With the rise of AI, these guidelines have been extended in 2020 to include
steps for reporting the quality of data, errors, clinical context, intended use, and
any human interactions involved. These additional steps allow reviewers to better
evaluate and compare the quality of research and thus systems created in the future
[19, 20]. Other authors are further expanding these checklists to include reporting
for diagnostic accuracies and prediction models [21, 22].

Researchers have analyzed the current work that has been published in this area
[23]. With 93% of papers exploring model development to demonstrate potential for
such systems, and only 5% validating these models with data from other centers. A
further 1% of the work currently published reports on models that have actually
been implemented and tested in real-time hospital systems and the final 1% of
research have integrated their models in routine clinical practice which has proven to
work. This summary highlights the large potential for the future of AI in healthcare
systems, with huge opportunities for bringing forward accurate models to real-world
clinical trials.
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3.2 AI Methodology

Machine Learning methodologies are commonly used to enable machines to become
‘intelligent’ and can be classified as being supervised, predicting using a labeled
dataset, i.e., a known output or target, or unsupervised, i.e., finding patterns or
groupings in unlabeled data [24]. Common methodologies are utilized across the
board for predictive and analytical purposes. This chapter focuses on commonly
used supervised learning techniques; however, unsupervised methods can further
be used to understand data. We can categorize supervised learning techniques into
regression and classification models. Regression techniques aim to find relationships
between one dependent variable and a series of other independent variables, e.g., a
time series as previously discussed is common in physiological data. Classification
techniques on the other hand attempt to label outcomes and draw conclusions from
observed values, e.g., if patient has disease or not.

The question of whether the numerical models that are generated can actually
be understood by humans has become a hot research topic. In the United States,
DARPA has conducted significant investigative research in this field [25]. Other
research teams have begun to define the concept of explainable AI with respect
to several problem domains. They identify three classifications: opaque systems
that offer no insight; interpretable systems where mathematical analysis of the
algorithm is viable; and comprehensible systems that emit symbols enabling user-
driven explanations of how a conclusion is reached [26].

We know from previous research that utilizing Big Data within the ICU can lead
to many benefits to both patient and hospital. We can not only greatly improve
the care given and thus patient outcomes, see Table 1, but also reduce hospital
costs [5] and the stress levels of care givers [27]. McGregor and colleagues have
demonstrated the viability of monitoring physiological parameters to detect sleep
apnea in neo-natal ICU leading to the software architecture of the IBM InfoSphere
product, which has now been extended into a Cloud environment (the Artemis
project) making the functionality available at remote hospital sites [28, 29].

Patient deterioration can often be missed due to the multitude of and complicated
relational links between physiological parameters. AI-driven multivariate analysis
has the potential to ameliorate the work load of ICU staff. Multiple studies have
shown AI to be comparable to routine clinical decision making, including ECG
analysis, delirium detection, sedation, and identification of septic patients [28, 37–
39].

AI-driven predictive analytics within healthcare most commonly uses supervised
learning approaches, due to which we aim to base algorithms and decisions on
previous examples and train our models with accurate outcomes, in particular
regression analysis is used for time series data.

Below we review the more widely adopted Machine Learning methodologies
developed [31], and examples are highlighted in Table 1, where these have been
used in previous research.
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3.2.1 Expert Systems

In a rule-based expert system, also known as a knowledge-based clinical decision
support system, knowledge is represented by a series of IF-THEN rules that
are created by knowledge acquisition, which involves observing and interviewing
human experts and finalizing rules in format ‘IF X happens THEN do Y’. These
rules cannot be changed, learnt from or adapted to different environments, meaning
the human experts must manually monitor and modify the knowledge base through
careful management of the rules. Expert systems allow us to view and understand
each of the rules applied by the system.

The systems can take over some mundane decision tasks and discussions of
health care professionals, saving vital time and money. An example expert system
was created for Diabetes patients to provide decision support for insulin adjustment
based on simple rules depending on the regimen that patients were placed on [32].

3.2.2 Decision Trees

A decision tree can be used to visually represent a series of decisions used to reach a
certain conclusion, useful when exploring medical reasons behind decisions made.
The tree starts at the root, asking a specific question to split the data by the given
condition. The tree then splits into branches and edges at each node representing the
input variables, continually splitting by conditions until the final decision is achieved
at the leaf node or the output variable.

They can also be referred to as Classification and Regression Trees (CART) as
they can solve both classification and regression problems. A classification tree
will arrive at a binary condition, leaf node, i.e., patient survives or not, whereas
the regression trees will predict a certain continuous value, i.e., the heart rate of a
patient.

The tree will not only explore the conditions used to split the data at each decision
but also the features used and which features are the most significant at splitting
the data, added as top-level nodes. Researchers have utilized simple decision tree
models for the classification of patients with diabetes, among other disease states.
Features include age, BMI, and both systolic and diastolic blood pressure of the
patient to arrive at a decision whether the patient has diabetes or is healthy. Figure 1
shows how the features are split and decisions are made, in this circumstance [33].

When building decision tree models it is important to monitor the maximum
depth of the tree to avoid overfitting and lengthy training times.

3.2.3 Ensemble Methods

To achieve the greatest predictive performance when working with complex prob-
lems, ensembles can be created. The decision trees are combined in different ways
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Fig. 1 Decision tree for the classification of diabetes [20]

Fig. 2 Decision trees and ensemble methods

depending on the methodology used. The methods can be categorized as bagging or
boosting (Fig. 2).

Boosting methods build the trees in a sequential way; for each predicted
value multiple models or decision trees are made using different features and
combinations of features, then weights are given to these models based on their
error so that the final prediction is the most accurate. AdaBoost is an example of
this method where very short trees are produced and higher weights are given to
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more difficult decisions. GradientBoosting further combines boosting with gradient
descent, allowing for the optimization of loss functions.

In contrast, for bagging methods, each model is given equal weights, they are
combined in parallel and all of the predictions are averaged to get a final, most
accurate decision, examples include Bagging and Extra Trees. Bagging can be
extended to the RandomForest algorithm by randomly selecting the features used,
and decision trees are built to have as many layers as possible.

3.2.4 Neural Networks

A neural network saves a lot of time when working with large amounts of data
by combining variables, figuring out which are important and finding patterns
that humans might not ever see. The neural network is represented as a set of
interconnected nodes, connected by neurons.

They feed the weighted sum of the input values through an activation function,
which takes the value and transforms it before returning an output. These activation
functions in turn improve the way the neural network learns and allows for more
flexibility to model complex relationships between the input and output (Fig. 3).

The neural network can be described as ‘Deep Learning’ when it has multiple
hidden layers between the input and output layers. The neural network learns by

Fig. 3 Neural network structure
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figuring out what it got wrong and working backwards to determine what values
and connections made the prediction incorrect.

Additionally, there are different types of neural networks, and the list continues
to expand as researchers propose new types. There are feedforward neural networks,
where all the nodes only feed into the next layer from initial inputs to the output.
Recurrent neural networks (RNN) make it possible to feed the output of a node
back into the model as an input the next time you run it. Nodes in one layer can
be connected to each other and even themselves. Furthermore, they work well with
sequential data as they remember previous outputs. The long short-term memory
form of the RNN enables the model to store information over longer periods of time,
ideal for modeling time series data. Additionally, there are convolutional neural
networks (CNN) which look at windows of variables rather than one at a time.
Convolution applies a filter, or transformation, to the windows to create features.
When working with large databases, pooling is a technique that takes a huge number
of variables to create a smaller number of features. The neural network will then use
the features generated by convolution and pooling to give its output.

The key parameters to distinguish neural networks are the number of layers and
the shape of the input and the output layers.

Researchers have utilized many different formats of neural networks for predic-
tion problems. A medical decision support tool for patient extubation was developed
using a multilayer perception artificial neural network, a class of feedforward neural
networks. The input layer consisted of 8 input parameters, defining 17 perceptions,
and 2 perceptions in the output layer for prediction output. Perceptions can be
described as a classifying decision. They explored the change in performance based
on the number of perceptions in the hidden layer: 19 producing highly accurate
results [34]. Other studies have shown that RNNs produce accurate results for the
prediction of kidney failure [35] and CNNs have shown promise in the prediction of
atrial fibrillation in ECG analysis [36],

However, it is difficult to explain predictions from neural networks to healthcare
professionals due to having to understand a particular weight as a discrete piece of
knowledge, although work is being done in the area [37].

With common limitations reoccurring, such as generalization, dataset size, noisy
and unbalanced data, we highlight the importance of continuing research and
building of larger datasets, across multiple centers, and further the exploration of
methodologies to smooth noisy data in order to advance the work of producing
accurate systems that can be implemented in real-world healthcare settings.

Imaging and waveforms are a further, huge division of physiological monitoring.
Machines such as X-rays and CTs can produce images of internal organs to provide
a greater insight into patient state. In addition, ECG waveforms and brain waves
can be analyzed for diagnoses. Thus, signal processing is an integral part of
understanding physiological data and getting the full picture of patient state.

Furthermore, Machine Learning methodologies can be used for natural language
processing to analyze lab notes and patient charts in order to summarize and detect
common words and phrases used by care givers, in turn automating the process of
flipping through hundreds of pages of records and saving vital time.
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4 Use Case: Prediction of Tidal Volume to Promote Lung
Protective Ventilation

Around 44.5% of patients in ICU are placed on mechanical ventilation to support
respiratory function at any given hour [52]. However, the delivery of high tidal
volume values can often lead to lung injury. Tidal volume being the amount of air
delivered to the lungs; it is common knowledge amongst critical care providers that
tidal volume values should be no greater than 8 ml per kg of ideal body weight. In
our recent work we explored regressors for ensemble methods and the long short-
term memory (LSTM) form of neural networks to predict tidal volume values to aid
in lung protective ventilation [53].

Data acquisition took place at the Regional Intensive Care Unit (RICU), Royal
Victoria Hospital, Belfast, over a 3-year period and the VILIAlert system was
introduced [54]. The data streams were monitored against the thresholds for lung
protective ventilation and if thresholds were breached continuously, an alert was
raised. We then turned our attention to predicting these alerts with the aim of
preventing violations and protecting the patient’s lungs. The VILIAlert system ran
for nearly 3 years, recording minutely tidal volume values for almost a thousand
patients.

As discussed, noisy signals are common in ICU data. Time series often needs
to be filtered to remove noise in the data and produce smooth signals. Methods
such as moving average and exponential smoothing can be applied to the data to
extract true signals, such as the work we carried out to extract true tidal volume
trends [53]. Figure 4 shows how smoothing the time series, shown in blue, removes
anomaly in the data, the large jumps, and extracts the true patient trend as shown
in red. This work is related to the efforts of the international project known as
the Virtual Physiological Human (http://www.vph-institute.org), which seeks to use
individualized physiology-based computer simulations in all aspects of prevention,
diagnosis, and treatment of diseases [55]. This computational approach has provided
immediate insight into the COVID-19 pandemic [56].

We compare multiple regressor ensemble methods for initially predicting 15 min
ahead. For each patient, we use the tsfresh toolkit to extract features to use as input
into the regressor models in order to predict one time bin ahead and report the RMSE
between the true observed values and the predicted values from our models. Table 2
reports RMSE calculated for 8 of the patients using each of the ensemble methods.
In all models the maximum number of trees is set to 10. We can compare the
depth of the bagging method trees: RandomForest being 32 ± 5, ExtraTrees being
37 ± 4, and Bagging being 33 ± 5. In contrast, the boosting methods: AdaBoost
and GradientBoosting, set trees of depth four by default. As expected, increasing
the number of trees decreases the RMSE.

It is important to take computational time into consideration when choosing
algorithms to make predictions in real time. From our experiments we found
AdaBoost to give the best trade-off between RMSE and computation time.

http://www.vph-institute.org
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Table 2 Comparison of regressor ensemble models performance for the prediction of patient’s
tidal volume one time step ahead

AdaBoost RandomForest Bagging ExtraTrees GradientBoosting
Patient No. data points RMSE RMSE RMSE RMSE RMSE

1 517 0.69 0.68 0.70 0.68 0.84
2 150 1.05 1.03 1.03 1.05 1.23
3 1358 0.38 0.38 0.38 0.36 0.39
4 40 1.05 0.99 1.02 1.00 0.95
5 162 0.34 0.32 0.32 0.34 0.41
6 178 1.38 1.28 1.35 1.39 1.32
7 1153 0.62 0.63 0.62 0.62 0.61
8 1245 0.83 0.84 0.84 0.84 0.91

One might expect that predicting further ahead in time would lead to larger
RMSE values, however, the change in RMSE is small. We therefore explore using
AdaBoost regression for the prediction of tidal volume values up to 1 h ahead,
finding very little increase in RMSE values across patients.

As described in this chapter, a benefit of using ensemble models made from
decision trees is that we can visualize the features and decisions used to make
decisions. Figure 5 is one of the decision trees created when using the AdaBoost
method.

The features were extracted by tsfresh as the most significant features for this
problem. It is interesting here to discuss what these features can mean for our
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problem domain. The Ricker Wavelet is used to describe properties of a viscoelastic
homogeneous media and the Friedrich coefficient aims at describing the random
movement of a particle in a fluid. We can hypothesize from this finding that the
amount of fluid in the lungs would be an impacting factor in how a patient’s tidal
volume can change over time.

A comparison is then made applying long short-term memory neural networks
to the same problem: predicting tidal volume 1 h ahead. Two models are created:
ModelA has one hidden layer and ModelB has three hidden layers, with a 20%
dropout layer between the second and third layers to avoid overfitting. In contrast
to the regressor models that work with features extracted from the time series, the
LSTM models use the time series values directly; requiring 70% of the time series
to train the models. Each layer in our LSTM models has 50 nodes and both models
use 20 input points to predict 4 ahead.

The RMSE values for our LSTM models are significantly greater than the
AdaBoost method for predicting 1 h ahead, so we deem AdaBoost the better method
of the two for this problem.

The VILIAlert system alerted when four consecutive bins were greater than the
8 ml/kg tidal volume threshold. These alert times were stored in the database. We
can thus work out the accuracy of our models to predict these alerts, showcasing
the possibility of preventing threshold breaches and preventing injury. Table 3
highlights the predictive accuracy of the AdaBoost model for the 8 patients. Total
Alerts being the total number of alerts recorded by the VILIAlert system, TP being
the true positives: the alerts that would have been predicted by the model, and FN
being false negatives: the alerts that would not have been predicted. The accuracy is
then calculated using:

Accuracy = TP

TP + FN.

For the 84 alerts that were generated for patient 1, 81 would have been predicted
using our models and thus those threshold breaches could have been prevented.
These results showcase how Machine Learning algorithms, when paired with big

Table 3 Prediction accuracy
of alerts using AdaBoost

Patient Total alerts TP FN Accuracy

1 84 81 3 0.96
2 25 23 2 0.92
3 0 0 0 1.00
4 2 1 1 0.50
5 3 2 1 0.67
6 11 3 8 0.27
7 0 0 0 1.00
8 167 142 25 0.85
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data, can provide value in preventing lung injury during mechanical ventilation of
intensive care patients.

4.1 The ATTITUDE Study

The ATTITUDE study operated by Queen’s University, Belfast, and funded by The
Health Foundation UK, aims to develop a clinical decision support tool to improve
weaning protocols commonly used in clinical practice, and further understand the
barriers in implementing evidence-based care from these tools tested in a proof-of-
concept study carried out at the Royal Victoria Hospital ICU, Belfast. Improving
patient care, outcomes, and mortality by reducing the duration of weaning can lead
to reduced hospital stays and costs, and this study aims to find out if the use of
clinical decision support tools can improve the quality of critical care practices.

5 Future of ML and AI in ICU

The methodology discussed in this chapter can, and must be, explored with various
and extensive types and volumes of data, to investigate more disease states and
clinical conditions. This data is currently being recorded worldwide in what are
known as Electronic Health Records and these hold valuable insights which must
be utilized to improve healthcare going forward.

From the European Big Data Value Strategic Research and Innovation Agenda
[1] we understand the importance of Big Data and utilizing it to benefit both
the economy and society. By exploring the already available EHRs we can
provide societal benefit by improving patient outcomes and saving lives, and
further economic benefits of saving millions in hospital costs, through shorter
lengths of stays and disease prediction, among others. Healthcare, being one of
the most important and largest sectors, can greatly impact the agenda of a data-
driven economy across Europe. Data-driven predictive analytics, built using the
methodologies discussed in the chapter, can produce clinical decision support tools,
allowing for advanced decision making or automation of procedures. The Machine
Learning methodologies can further provide greater insights into patient states and
inform healthcare professionals with new information or possible reasoning that
would not have been caught by a human. These new insights result in further
research questions that can be explored.

This chapter can be aligned with the Big Data Reference model in various
ways. The data recorded in ICU is extensive and in various different formats, from
structured data and time series to imaging and text inputs. Advanced visualization
tools can be used to add value to data by presenting it in user-friendly ways. Data
analytics and Machine Learning can be applied for prediction and reasoning of
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disease states. There exist further protocols and guidelines for the handling of patient
information, ensuring efficient data protection and management.

The new AI, data and robotics partnership highlights the value opportunities
that exist when transforming the healthcare sector by applying AI to produce
value-based and patient-centric care in areas such as pandemic response, disease
prevention, diagnosis decision support, and treatment [2].

High-performance computing is an integral part in deploying real-time predictive
analytic models in intensive care. We must ensure our machines can process the data
efficiently and quickly. Utilizing parallelism will provide speed up data processing
and model predictions.

This chapter has explored the use of Big Data-driven analytics for acute and
chronic clinical conditions to provide value to healthcare services. While there exists
vast research carried out in certain disease states, such as Sepsis [30, 40–42], work
is needed to provide greater in-depth analysis and insights into patients’ complex
physiologic state while in such critical conditions. Recent developments have led to
a greater acceptance and excitement in this field, resulting in updated guidelines for
testing AI models in real-life clinical trials to promote worldwide acceptance of the
use of AI in healthcare.
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Abstract 3D personal data is a type of data that contains useful information for
product design, online sale services, medical research and patient follow-up.

Currently, hospitals store and grow massive collections of 3D data that are not
accessible by researchers, professionals or companies. About 2.7 petabytes a year
are stored in the EU26.

In parallel to the advances made in the healthcare sector, a new, low-cost 3D
body-surface scanning technology has been developed for the goods consumer
sector, namely, apparel, animation and art. It is estimated that currently one person
is scanned every 15 min in the USA and Europe. And increasing.

The 3D data of the healthcare sector can be used by designers and manufacturers
of the consumer goods sector. At the same time, although 3D body-surface scanners
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have been developed primarily for the garment industry, 3D scanners’ low cost,
non-invasive character and ease of use make them appealing for widespread clinical
applications and large-scale epidemiological surveys.

However, companies and professionals of the consumer goods sector cannot
easily access the 3D data of the healthcare sector. And vice versa. Even exchanging
information between data owners in the same sector is a big problem today. It is
necessary to overcome problems related to data privacy and the processing of huge
3D datasets.

To break these silos and foster the exchange of data between the two sectors, the
BodyPass project has developed: (1) processes to harmonize 3D databases; (2) tools
able to aggregate 3D data from different huge datasets; (3) tools for exchanging data
and to assure anonymization and data protection (based on blockchain technology
and distributed query engines); (4) services and visualization tools adapted to the
necessities of the healthcare sector and the garment sector.

These developments have been applied in practical cases by hospitals and
companies of in the garment sector.

Keywords 3D body · Blockchain · Clothing · Obesity

1 Introduction

Three-dimensional (3D) anthropometry refers to the measurement of the human
body shape. From 3D data it is possible to obtain more information than from tradi-
tional one-dimensional anthropometry, which only uses length, radius or perimeter.
Anthropometry plays an important role in industrial design, clothing design and
ergonomics where statistical data about the distribution of body dimensions in the
population are used to optimize products. Also, changes in lifestyles and nutrition
lead to changes in the distribution of body dimensions (e.g. the rise in obesity) and
require regular updating of anthropometric data collections.

3D anthropometric data is a key value in scientific and economic sectors like
healthcare, consumer goods and professional sports. In the past, the usage of such
data was limited by the high price and low precision of 3D scanning technologies.
The recent advances in scanning technologies have notoriously widened their usage
opportunities. As a result, different actors from different sectors work on the
generation of their own dataset of anthropometric data for their own purposes,
without taking advantage of similar effort taken by other actors.

In this context, a system to share anthropometric data would allow the different
data consumers access to larger datasets and also to reduce the data acquisition costs,
thus augmenting their scientific or business opportunities. Besides, data holders
would be able to extend the economic benefit reported by their data.

Developing an effective data sharing system is challenging. Success requires a
system that gives support to interests from any participant, forming a symbiotic eco-
system. Participants in a data-sharing system can be categorized as data providers



3D Human Big Data Exchange Between the Healthcare and Garment Sectors 227

and data consumers. Regarding this categorization, the participants will have, at
least, the following requirements:

• A data provider will want to preserve their data, preventing other users from
replicating their dataset. Also, due to legal restrictions, a data provider may need
to anonymize any data before sharing it.

• A data consumer needs to know, in detail, the type of data available at any dataset
(a sort of data dictionary). The availability of tools to query for specific data (i.e.
data filtering tools) is another important requirement.

The chapter relates to the technical priorities data management and data pro-
tection of the European Big Data Value Strategic Research and Innovation Agenda
[1]. The BodyPass project focuses on 3D anthropometric data management and data
protection. In this context BodyPass has generated tools for:

• Semantic annotation of data. BodyPass has defined an anthropometric data
dictionary, or data catalogue, to accomplish seamless integration with and smart
access to the various heterogeneous data sources (see Sect. 2.1).

• Templates to harmonize 3D datasets and facilitate 3D data exchange (Sect. 2.2).
• 3D anonymization tools for individual body scans (Sect. 3.1) and rules to protect

privacy of health data (Sect. 3).
• Data lifecycle management with control of the data provenance with blockchain

(see Sect. 4). BodyPass applies distributed ledger/blockchain technology to
enforce consistency in transactions and data management.

The complete BodyPass ecosystem has been tested in practical cases described
in Sects. 5 and 6.

2 The Process to Harmonize 3D Datasets

Anthropometric data has key value in many economic and social areas, among
others healthcare, apparel and furniture design. The relevance of anthropometric
data motivated a number of research efforts to standardize and effectively measure
a human body [2–5]. But measuring a human body presents important challenges
that are difficult to meet: important features such as repeatability, extrapolation of
metrics or accuracy [6–9]. Some problems rely on the fact that the human body
is not a rigid body, but a soft, articulated and never fully static body. Some other
problems rely on the measuring tools, methodologies or different interpretations of
the metric. In this context, the standardization efforts taken up to now seem to be
insufficient.

The BodyPass project aims to develop a system where different actors share
anthropometric data. Data sources in BodyPass belong to different sectors, currently
healthcare and consumer goods sectors. As a matter of fact, this means that the
measuring methodologies and measuring tools employed may differ for every
dataset in the global federated database of the project. In particular, the healthcare



228 J. V. Durá Gil et al.

sector data is produced by a commercial solution from Philips and is, in essence,
an automatic digital measuring tape. Data from the consumer goods sector is
provided by IBV and is obtained from its proprietary automatic digital measuring
tape [10, 11]. As a result, all measurements in the federated BodyPass database
come from digital measuring tools, meaning that there is a high risk of incompatible
measurements due to the use different measuring algorithms.

In this context, the project success has required:

(a) The design and creation of an anthropometric data dictionary that clearly
defines every metric. This dictionary must be open to all users and data
providers, so they can validate that metrics in their databases are compatible
with that in the dictionary (e.g. same metric units are employed in all databases).

(b) To agree on a common parameterization of a reference mesh so that any partner
can conduct a template/model fitting process using its proprietary template and
afterwards, compute the mapping between both templates. Such reference mesh
can act as a kind of ‘Rosetta stone’ to translate body semantics between different
mesh topologies and allow to build compatible body surfaces coming from
different sources and parameterised with different template topologies.

2.1 The Anthropometric Data Dictionary

The anthropometric data dictionary developed in the BodyPass project is based on
previous international standardization efforts from organizations such as ISO1 or
ISAK,2 and it considers the project data consumers’ requirements as well. Every
metric is defined by the following fields:

• Mandatory fields:

– ID: code that identifies the metric. It is defined as a string that partly includes
the metric designation.

– Designation: It is a self-descriptive name of the metric.
– Definition: Unambiguous description of the metric.
– Source: Reference to the company or organization that defined the metric. It

usually refers to a standard definition.
– Other std.: Other standard definitions that can be compatible with the metric

as defined.
– Units: Metrics units employed.

• Optional fields:

1 International Organization for Standardization (http://iso.org).
2 International Society for the Advancement of Kinanthropometry (https://www.isak.global/
Home/Index).

http://iso.org
https://www.isak.global/Home/Index
https://www.isak.global/Home/Index
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Fig. 1 Details of the definition of a metric in the BodyPass dictionary

– PartnerCodes: A List of tuples ‘partner-code’ where partner represents a
member of the BodyPass ecosystem and code is the internal ID used on the
partner’s database to identify the metric.

– Media: URLs to media files (images, 3D data or videos) that facilitate metric
understanding.

The BodyPass anthropometric data dictionary includes about 100 body metrics
and it is available via the project’s API and its web interface.3 The web interface
includes resources to access all the BodyPass API services. Among them, the
resource DataResourceCatalogue [12] permits to visit the list of metrics in the
project’s anthropometric data dictionary. BodyPass members can use this resource
to append, edit or delete metrics to/from the dictionary. In addition, the resource
DataProviderMetrics lists the metrics in the dictionary supported by a given data
provider. These two resources allow data consumers to consult which metrics are
available in the project and also to check which data provider supports a given
metric.

To facilitate the dictionary consultation to data providers, IBV lists all the
metrics available in their BodyPass database, about 90 metrics, on a webpage.4 This
webpage includes an index and is far more readable than the BodyPass services
deployed to this end. For every metric, the web displays the content of all the
mandatory fields and also the related images in the dictionary.

Figure 1 shows the description of a metric in the aforementioned webpage. This
particular metric is defined in three standardization international publications, two
from ISO and one from ASTM.5 Its definition includes two images that facilitates
its understanding.

3 http://145.239.67.20:3001/explorer/
4 http://personales.upv.es/alrego/body/BodyPass_DigitalMeasuringTape.html
5 American Society for Testing and Materials (http://astm.org).

http://145.239.67.20:3001/explorer/
http://personales.upv.es/alrego/body/Bodypass_DigitalMeasuringTape.html
http://astm.org
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2.2 3D Templates

(a) The initial approach for sharing 3D data was the use of static 3D templates
agreed between BodyPass members. However, we discovered that some com-
panies that process 3D data did not accept this approach. They thought that
reverse engineering could be used for disclosing its proprietary algorithms. This
problem has been solved with an innovative approach: random templates (on-
the-fly templates). For this reason, BodyPass supports standardized templates:
agreed definitions of bodies (or body parts). Standardized templates are being
defined and registered in the system once and being reused in the processing
of several queries. The pre-computed mapping based on one example could be
used to change the ‘skin’ of any human surface registered with its own mesh to
the reference one (or vice-versa) in a very efficient way. Upon demand by any
BodyPass member, the set of agreed body part definitions can also be extended
in a similar fashion as body metric definitions. In order to protect the proprietary
background of BodyPass members, the topology of the released 3D content to
the clients will differ from its own developed body template structure. Meaning
that, prior to its delivery, data nodes will remesh or resample all 3D content
hiding their own topology and parameterization.

(b) On-the-fly templates. The BodyPass platform defines a new template for every
single data request, herein called ‘on-the-fly templates’. This means to create
a unique template every time the system processes a new query requiring 3D
body surfaces. This strategy provides a higher protection level compared to
using standardized templates by making it more difficult to conduct reverse
engineering of individual data.

The procedure to manage on-the-fly templates is the following: anytime a data
query arrives to the BodyPass system, a template is created on-the-fly and distributed
among the processing nodes. In the next query, a new template is created and used.
The template creation will provide it a random parameterization and geometry,
making it unique. All the subsequent outputs from the nodes must be compliant
with the template’s features (namely parameterization and pose). Thus, they all can
be aggregated in simple operation, i.e. weighted average of average body surfaces
created by different nodes (where the weight assigned to a particular average is
related to the amount of individual data used to obtain it). In summary, on-the-
fly templates will be unique in terms of parameterization and geometry and will
determine the parameterization, rigid alignment and pose of the query outputs, i.e.,
the 3D contents delivered to the client will match the template’s features (Fig. 2).

3 Anonymization and Privacy

In this section, we will briefly address the solutions adopted to protect personal data.
We have applied two solutions:
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Fig. 2 Examples of on-the-fly templates with random geometry and topology (A-Pose)

(a) Anonymization of individual body scans.
(b) Architectural solution ensuring data security and privacy at hospitals with on-

premise data node.

The General Data Protection Regulation (GDPR) in Europe classifies health data
as sensible data, and it asks for special protection. For this reason, it was necessary to
implement the architectural solution (on-premise data nodes) for processing medical
images and to assure that only aggregated data is obtained from the hospitals.

3.1 The Anonymization of Body Scans

The data node of the Institute of Biomechanics (IBV) stores a database with more
than 30,000 3D anonymous avatars and their related metrics. BodyPass provides
tools to add new data to the database and to query and retrieve data from the database
as well. This means that BodyPass’s users are allowed to incorporate their own
avatars to the database. To this end, the user just needs a 3D scan and basic data
from the subject. During the registration of a new avatar in the database, the avatar
is measured using the IBV’s automatic digital measuring tape, which provides about
80 metrics from the avatar that are also stored in the database.

A basic requirement of the database is to assure the anonymization of the models.
The data stored from every model includes:

• Gender, age, country, weight and height.
• The 3D avatar.
• List of metrics automatically extracted from the avatar.
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From this data, the only one that can be used to identify the model is the avatar
id. Given an avatar id, it would be possible to identify the model using marks on
the skin (e.g. tattoos) or facial features. For this reason, avatars are stored without
texture, so no skin features are stored. In this context, the face represents the only
identifiable feature of the avatar.

A straightforward solution would be to remove or blur the face of the avatar,
but this would end in a database full of non-human-faced avatars. This is why we
considered a more sophisticated solution that incorporates a synthetic human face
to every avatar.

This is performed in a three-step process:

1. The first step identifies the vertices in the raw scan that lay on the model’s face.
2. Then, the identified vertices are removed, obtaining a de-faced scan.
3. Finally, the avatar registration process will add a synthetic human-looking face

to the avatar.

This process presents two main challenges: The first one is to identify the vertices
in the raw scan that belong to the model’s face and the second is provide the
avatar a human-like face. To identify the vertices which lay on the face, we use AI,
in particular a convolutional neural network. The development of such a network
required the exploitation of a large dataset generated in previous projects. The
dataset was used to train the net and to improve its effectivity.

The computational kernel developed presents a high performance. Although the
time-to-solution highly depends on the number of vertices of the input 3D object,
a regular mesh of about 50,000 vertices can be processed in just few seconds.
In addition, the algorithm presents a high degree of parallelism, allowing the use
of massive parallel architectures like GPUs. This brings the possibility to further
optimize the kernel if needed.

Once the vertices are identified, they are removed from the 3D object, obtaining
a de-faced version of the raw scan.

Finally, the last step is again a challenging process that removes artifacts from the
input data, including tasks as hole-filling and noise removal. This is performed via
a template-fitting approach [13], which provides a realistic 3D closed avatar. This
process is capable of replacing missing data, i.e. holes in the original mesh, with
realistic data. In the case of the face, this means that the final avatar will have a face
that will perfectly fit to the rest of the avatar and also present a human flavour (Fig.
3).

3.2 Architectural Solution Ensuring Data Security and Privacy
at Hospitals

The purpose of the software installed in hospitals is twofold: extract body mea-
surements by processing CT images and serve queries for aggregated data coming
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Fig. 3 Detail of the head in a raw scan (left), identification of vertices in the face (middle),
synthetic face (right)

Fig. 4 Software architecture

from the Consortium users via Hyperledger. The software was created to meet the
following privacy and security requirements: (1) no personal data should leave the
hospital; clients outside the hospital can only receive aggregated data, resistant to
de-anonymization efforts via differential privacy; (2) the server holding the personal
data cannot be connected to the internet; (3) hospitals should be able to review
all outgoing data; (4) no data is sent through the Hyperledger; Consortium users
should be able to pick up their data directly at the hospital endpoint; (5) the derived
individuals’ data (e.g. measurements) is IP sensitive and therefore must be kept
out of the hospital’s reach, whilst also being unavailable to Philips due to privacy
restrictions. Our software solution addressing the above requirements is shown in
Fig. 4.

The solution requires the use of two virtual machines (VMs): ‘Edge’ and
‘Internal’. The Edge VM has software that enables it to communicate with BodyPass
members. It receives data queries from Hyperledger and makes the results available
for download by users. The Internal machine is intended for the processing of raw
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and derived data. Due to security constraints, it operates without any connection
to the internet. Every 20 s data is exchanged between Edge and Internal by means
of secure bidirectional file transfers controlled by the hospital, where hospital can
review all outgoing data. Both VMs use ‘Barista’6 infrastructure for storage and
access to the data. Internally Barista consists of two modules. The first module is a
cloud-based data repository (SDR) organized in different ‘Studies’ and ‘Datasets’,
with access control capabilities. The second module is a web GUI (CUSI) for
data manipulation. Datasets in the SDR are used both for the storage of derived
data as well as acting as a sort of basic message passing interface for various
data processing agents. This way the data processing agents are released from the
implementation of their own endpoints. CUSI provides general (image) annotation
and 3D visualization capabilities for the data stored in SDR.

4 The Secure Exchange of 3D Data with Blockchain

This chapter aims to describe in detail how the BodyPass approach solves the secure
exchange of 3D data from a blockchain perspective. The main objective is to foster
exchange, linking and re-use, as well as to integrate 3D data assets from the different
business sectors. To cover this, BodyPass has adapted and created tools that allow
a secure exchange of information between data owners, companies and subjects
(patients and customers). In the BodyPass context, 3D personal data contains useful
information for product design, online sale services, medical research and patient
follow-up.

A conceptual view of the BodyPass solution is shown in Fig. 5, including the
different stakeholders and main building blocks. The building blocks represent
aggregated functionality, giving an idea of the flows of usage and retrieval tools.

One of the main drawbacks of the blockchain technology is the incompatibility
with managing large amounts of data because of the size limitation in the trans-
actions and the need to replicate the information in the different nodes for the
consensus. To overcome this issue, we divided the BodyPass architecture into two
different planes as shown in Fig. 6. The first plane depicts the data sharing itself
(the Data Sharing Plane), while the second (the Data Management Plane) focuses on
the management of the large data elements not so suitable to the blockchain-based
plane. In addition, this modular architecture provides two key advantages: It allows
scaling the number of data providers easily and facilitates additional control over
the data made available by these data providers in the network and who accesses
them.

6 Barista is an integrated suite of tools, developed in Philips Research, enabling study-oriented data
collection, AI algorithm creation and rapid implementation in user-facing workflows, see https://
barista.eu1.phsdp.com

https://barista.eu1.phsdp.com
https://barista.eu1.phsdp.com
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Fig. 5 High level abstraction of the BodyPass ecosystem

Fig. 6 BodyPass conceptual architecture

There are three different profiles that interact in the BodyPass ecosystem
considering their relationship with the data: (1) data providers, (2) data processors
and (3) data consumers.

Figure 6 shows these three different profiles, including examples of users of each
profile with members of BodyPass.7 BodyPass attempts to break data silos from
several data providers from different sectors and foster exchange and reutilization
of data assets that may help data consumers of the network to get external data. On
the other hand, trust is a key aspect when devising a data sharing platform, especially
if this platform is decentralized and should avoid the intervention of a central

7 https://www.bodypass.eu/partners

https://www.bodypass.eu/partners
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authority or intermediary to certify that trust. Finally, there are several entities in
the network that may generate interactions, transactions or dependencies between
transactions that must also be shared in the repository. This set of characteristics led
to the selection of blockchain technology [14] as the main driver of the BodyPass
architecture.

The BodyPass ecosystem makes use of blockchain as a distributed ledger.
Given the characteristics of the project and the business objectives, the approach
selected is a permissioned blockchain, utilized by the members of BodyPass. Public
blockchain networks are completely open to interact with the network and require
self-governance, and private blockchain networks only allow the participation of
selected entities. However, permissioned blockchain networks can adapt to hybrid
scenarios like the one in BodyPass, not only letting the participants access the
network once their identity has been verified but also assigning concrete permissions
that can restrict which activities each participant is able to perform on the network.

Data providers usually have storage solutions for their existing assets. Therefore,
the storage of the assets is not part of the scope of the blockchain in the BodyPass
ecosystem. Considering these non-transactional data, which occasionally could be
dynamically changed or too large, the BodyPass architecture has adopted the design
pattern of off-chain storage [15], composed consequently of off-chain data (big
chunks of data managed outside the blockchain network).

This approach carries some benefits, like saving bandwidth and storage capacity
in the BodyPass ecosystem nodes and avoiding potential confidentiality issues
derived from data being distributed out of a designated storage center. General
Data Protection Regulation (GDPR) in Europe and companies doing business in
Europe drive the need for new off-chain storage in blockchain applications. It is
recommended to store sensitive information as off-chain data so that you can delete
it if need be [16].

The Data Sharing Plane shown in Fig. 6 represents the implementation of
the blockchain and provides the features to be a flexible trust model. It is built
upon a modular architecture, configurable to choose the most suitable consensus
mechanism or certification authority. There is a Membership Service Provider to
deal with identity management and authentication. Inside the Data Sharing Plane,
members can participate as if they were private groups by means of channels. Each
member can be included in more than one channel, each of them with their own
policies. All transactions are stored in the distributed ledger and, therefore, audit
efficiency and quality are improved.

Due to the limitation regarding the handling of big data volumes of blockchain
networks, this Data Sharing Plane is where the metadata and the permissions of the
network components are managed. This has been implemented in BodyPass using
Hyperledger Fabric [17] following the logic specified in the chaincode (i.e. a set of
rules that govern the blockchain network) developed through the Hyperledger tool
Composer [18]. Hyperledger Fabric is a permissioned blockchain network.

Considering that a building block is an asset or software piece from an archi-
tectural point of view, the BodyPass functional building blocks have interfaces to
access the functionality that they provide. The green boxes shown in Fig. 7 represent
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Fig. 7 BodyPass ecosystem
interfaces

the implementation of these interfaces. This means both planes represented in Fig.
8 have their own API (BODYPASS REST API for the interactions with the Data
Sharing Plane and a Data Plane REST API called from the Data Sharing Plane to
perform the operations in the Data Management Plane).

The Data Management Plane exposes a REST API that will only be consumed
by the Data Sharing Plane, and therefore the BodyPass actors do not have direct
access to the Data Management plane, thus reinforcing the sense of security. Any
data-related query will be executed via this API (after it has been ‘authorized’ and
initiated in the Data Sharing Plane). The functionality of the whole ecosystem is
exposed also as a REST API, in such a way the interactions with network assets,
participants and transactions are available through standard HTTP operations,
following the REST architecture (Representational State Transfer). This way, each
HTTP request contains all the information necessary to execute it, which allows
neither client nor server to remember any previous status. The interface is uniform,
only specific actions (POST, GET, PUT and DELETE) are applied on the resources.
As benefits, the protocol increases the scalability of the project and allows the
internal components to evolve independently.

The Data Management Plane, as shown in Fig. 7, is the component that manages
access to all off-chain data sources and orchestrates queries to be executed over the
distributed storage. The Data Management Plane provides the security and required
constraints for the blockchain members. Hash values are stored in order to verify
the data when objects are accessed subsequently.

The Data Management Plane contains all the information supplied by the
different data providers, which may be accessed for certain users of the BodyPass
system who have previously reached an agreement with the data owners.

A detailed view of the Data Management Plane is shown in Fig. 8.
To access the Data Sharing plane REST API, it will be necessary to login in the

system, since it is protected with an OAuth Keycloak server. The ATOS Data Hub
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Fig. 8 Data storage plane architecture

REST API will consult the different catalogues supplied by the data providers and
will obtain the necessary access information so that the user can retrieve these data.
This access information is returned to the third-party application that will make
the necessary call to the data providers’ APIs, obtaining as a response the required
information.

For the access of the blockchain network to the different data catalogs supplied
by the data providers through the data plane REST API, PrestoDB [19] will be
used. PrestoDB allows to perform federated queries among multiple (relational and
NoSQL) databases such as Cassandra, Redis, MongoDB or PostgreSQL with a
reasonable performance.

Although it has a slightly higher response time than other query engines, such
as Apache Impala, it has a much more complete SQL syntax and has a longer list
of database connectors (widening the scope of technologies to be used by the data
providers) (Fig. 9).

The BodyPass system will generate a query plan from every request made by
the user in the blockchain network. Using this query plan, PrestoDB will be able
to consult the necessary data catalogs in order to obtain the necessary access
information to retrieve the final data of the supplier. Figure 10 depicts the different
steps taken in the application architecture in order to execute a query, showing the
interaction between the different data planes and the data providers.

The query planner is the component of the BodyPass system that will be
responsible for translating the requirements of the end users in queries to those
catalog databases that contain the desired information, considering possible com-
binations between different data sources. This will be invoked through the POST
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Fig. 9 Transaction data pipeline in a high-level representation of the BodyPass architecture

Fig. 10 Internal organ visualization and measurement

method getQueryPlan of the data plane REST API and used by the POST method
runFederatedQuery.

In the case of aggregate queries, these could be directly carried out by PrestoDB
for simple metrics, but it would be necessary to coordinate between 3D image
processing services in the case of more complex aggregates, such as the average
chest 3D scans of a certain segment of the population.

In this way, both the blockchain network and the data providers can have an
exhaustive control over what information has been accessed by which user, thus
facilitating monetization of data if necessary.

Finally, to conclude, it is important to note that the data sharing approach
designed and implemented for the BodyPass project is accessible through the public
endpoint http://145.239.67.20:3001/explorer/#/, through which an end user could
access the functionalities behind the data sharing solution described in this chapter.

http://145.239.67.20:3001/explorer/%23/


240 J. V. Durá Gil et al.

A Jason Web Token (JWT) will be required for accessing BodyPass endpoint
in addition to a valid identity for accessing the private blockchain network that
supports BodyPass. The identity will be provided by one of the existing Certification
Authorities (CA) in the BodyPass blockchain private network.

5 The Application of BodyPass Results in Healthcare:
Obesity

BodyPass generates tools to access huge data sets extracting useful 3D data
information for assessment of body shape and its relationship to the amount of
fat and body distribution. BodyPass has adapted and created tools for the secure
exchange of information of 3D body shape and CT scan fat distribution.

Overweight and obesity are conditions highly prevalent worldwide, and 60%
of adults in Europe meet the criteria that define these conditions [20]. Worldwide,
obesity is a growing health concern. Endocrinologists treat patients who are obese
because of metabolic and hormonal problems and want to provide insights into
metabolic and cardiovascular disease risk [21]. The classification of obesity using
BMI (Body Mass Index) does not fully encompass the complex biology of excess
adiposity [22]. Obesity is closely related to metabolic risk factors and is associ-
ated with significant cardiovascular morbidity and mortality. Obese patients with
metabolic abnormalities have insulin resistance, atherogenic dyslipidemia, low-
grade inflammation and hypertension with a high risk to develop type 2 diabetes,
atherosclerosis and cardiovascular diseases. However, not all obese subjects have
these cardiometabolic abnormalities, and it is crucial to know which patients are at
risk and which are not, since prognosis and therapeutic approach are different in
those named Obese Healthy and Obese Unhealthy [23, 24].

The different metabolic statuses are related to fat distribution. In the Obese
Healthy, fat accumulates in the subcutaneous tissue of the abdomen, around the
hip and in the legs, while in the Obese Unhealthy accumulation is mainly in the
mesenterium, liver, mediastinum, muscle and epicardial.

Assessment in the clinic has been the object of multiple research studies
trying to properly identify measurements that predict fat distribution. Two kinds
of approaches have been used, a combination of anthropometric parameters and
different kinds of scans [25].

The most used among the anthropometric measurement were BMI, which
indicates the presence or not of overweight and obesity but not fat distribution,
abdominal circumference, waist-to-hip ratio and body shape index calculated with
[WC (cm) × BMI0.66 × height (m)0.3]. All these parameters have the challenge of
low accuracy and variability when measured in the clinic [26].

The scan methods obtain images from CT scan (Computed Tomography), MRI
(Magnetic Resonance Imaging) and MRS (Magnetic Resonance Spectroscopy).
The challenges of these methods is irradiation of patients, cost of the equipment,
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maintenance, cost of operators and time consuming. Using the BodyPass ecosystem
it is possible to develop an easy, fast, accurate and inexpensive method to assess fat
distribution.

Two hospitals in Italy and Spain developed a pilot with patients in order to test
BodyPass, the first one includes the recording and integration of 3D Body Surface
shape with data of internal fat amount and disposition in subcutaneous and visceral
territories in a research environment and the second collect and transfer 3D Body
Surface from a clinical environment. A summary or the pilot process is described
below.

Patients recruitment was based on inclusion and exclusion criteria. This should
be done in the hospital when subjects come to take CT.

Inclusion criteria: Age 19 or above, both sexes, thorax-abdominal CT and signed
consent form. Exclusion criteria: Limitations for stand up and no signed consent
form.

Data collection. In the Radiology Department a researcher recorded in a research
protocol several data including:

• Demographic, clinical and anthropometric parameters to phenotype the subjects:
age, gender, weight, height, BMI, waist circumference, blood pressure, personal
history (diabetes, hypertension, dyslipidemia, atherosclerosis disease, other med-
ical conditions).

• Biochemical parameters: fasting glucose, creatinine, urea, uric acid, total choles-
terol, triglycerides, HDL cholesterol, AST/ALT.

• 3D scan and thoracic-abdominal CT are taken.
• Phenotype, biochemical parameters, 3D scan and CT data are gathered and stored

by the researcher following the security protocol, Fig. 4.

Data integration: Integration of demographic and biochemical parameters with
the results of the 3D Body Scan and CT images obtained the following data:

• Total volume of ectopic fat.
• Anatomical distribution of ectopic fat (localization).
• Total volume of VAT (Visceral Adipose Tissue) and fat in the mesenterium, liver,

mediastinum, pericardium and psoas muscle.
• 3D images as an Avatar (IBV) from the subjects to explore correlation with

classical clinical, anthropometric and biological parameters that are used for
obesity classification and for subject’s risk (BMI, waist circumference, definition
of metabolic syndrome)

• Correlation of ectopic fat total volume and 3D Avatar images.

The Data Node consists of a number of software components, which, besides the
extraction of measurements, also processes data queries for average measurements
and body shapes, resisting data de-anonymization and providing graphical tools for
exploration of the data. The software components extend the BARISTA platform
which is an integrated suite of tools, developed in Philips Research, enabling
study-oriented data collection, AI algorithm creation and rapid implementation in
user-facing workflows; see https://barista.eu1.phsdp.com. The two components of

https://barista.eu1.phsdp.com
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Barista, CUSI and SDR, have different functions. SDR is a web-based repository
organized in the studies and datasets with a separate access control. SDR is used to
store data within the workflow of processing individual raw data and within the data
query workflow. Section 5.1 describes in more detail the workflow of processing
individual raw data, extracting measurements, such as organ fat from data and the
anthropometric data. Section 5.2 describes the workflow for processing data queries
coming from the BodyPass system. CUSI is a graphical web interface that allows
data manipulation, data visualization and annotation tools. Within the Data Node
CUSI is used as a GUI to control the workflows, for visualization of the avatars and
for annotation of the DICOM images. During the BodyPass project doctors used
CUSI to define new volumes inside the parametric body for fat measurements and
to get the visualization of the computed avatars.

This pilot has demonstrated that BodyPass ecosystem is a promising tool for
developing new, less-invasive methods to measure fat than current ones.

Below, we describe the process for:

(a) CT image processing.
(b) Data query processing.

5.1 CT Image Processing

The primary aim of DICOM processing is to extract internal and external body
measurements required by healthcare and consumer goods pilots, see Table 1.

Table 1 Body measurements

Internal measurements FatFractionHeart, VolumeHeart, FatFractionLiver,
VolumeLiver, FatFractionKidneys,a VolumeKideneys,
FatFractionSubcutaneous,b VolumeSubcutaneous,
VolumeBody, FatFractionPsoas, VolumePsoas,
FatFractionSinus, VolumeSinus, FatFractionViceral,
VolumeViceral

External measurements HeadGirth, NeckGirth, UpperArmGirth, WristGirth,
BustGirthContoured, WaistGirth, HipGirth,
Mid_ThighGirth, LowerKneeGirth_Calf_, AnkleGirth,
UpperArmLength, LowerArmLength, HandLength,
UpperLimbLength, InsideLegHeight, HipBreadth,
ShouldersLength, TrunkLength, ForearmGirth,
ThighLength, CalfLength, stature

Reported in the DICOM header Age, gender, weight, height
Low-resolution skin avatars Full-body avatar

aThe small size of kidney and psoas organs put high demand on the accuracy of the localization
of the organs for fat and fat fraction counting, which requires further feasibility and accuracy
evaluations
bSince raw DICOM scans are limited to thorax-abdomen scans, the measurement model of the
subcutaneous volume is also limited to the thorax-abdomen area
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Table 2 Different surfaces and volumes in the avatar

Body part # Points # Triangles # Tetrahedrons/q5k

Full body 82, 880 106, 119 384, 868
Subcutaneous 40, 071 20, 270 219, 053
Liver 33, 034 7000 92, 785
Kidneys 30, 994 5000 179, 703
Psoas 31, 095 5000 180, 955
Lungs 36, 064 9670 213, 988
Heart 42, 122 25, 000 217, 730
Sinus 29, 923 3600 174, 238

Fig. 11 Introduction of new fat measurements using BARISTA CUSI

The software relies on proprietary Philips algorithms. Since these algorithms
have never been published, we can only disclose a brief outline on the underlying
computations.

We start with pre-processing of the raw DICOM scans including automatic seg-
mentation of some key 3D surfaces of the human body’s anatomy. At the beginning
of the BodyPass project, we had a choice whether to extract fat measurements
directly from the CT scans, which would require to find and segment each organ
of interest, or to register a 3D body avatar and use it as organ atlas. We have chosen
the second approach because it allows to define and add new fat measurement
locations after the avatar registration. Thus we register the volumetric 3D body
avatar to the DICOM scan volume. The volumetric 3D body avatar is a graph in
Euclidean space consisting, in our case, of 356,106 vertices, where neighbouring
vertices are connected by 185,259 triangles and 1,937,558 tetrahedrons. Table 2
shows an example of the allocation of the avatar elements to different organs of
interest.

Barista CUSI provides a collection of data annotation tools, and, amongst others,
a tool for manual segmentation of slices on a reference CT scan, which can be used
to define new volumes for fat measurements, see Fig. 11.

The registration process consists of two stages: at the first stage an approximate
avatar is computed from the Age, Gender, Weight and Height parameters of the
patient, using statistical shape models trained on about 30,000 3D scans. In the
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second stage the avatar is consistently refined so that the boundaries of organs
on the avatar become aligned to the boundaries of the organs segmented on the
DICOM image. In the initial version of the registration algorithm only three organs
are automatically segmented—skin, subcutaneous volume and lungs—which limits
the accuracy of the registration in smaller organs of the visceral cavity like kidney
and psoas. There is ongoing work to improve the registration accuracy by adding
more automatically segmented organs. The registered avatar is then used as a sort
of ‘atlas’ to compute the local fat volumes according to the parametrically defined
sampling positions. This results in the creation of ‘internal’ measurements. Please,
note that the DICOM images are acquired in the laying pose with hands lifted up,
while, according to D3.1, it is required that the measurements are collected in the
standing A-pose. Therefore, an experimental algorithm was implemented that, for
every registered volumetric avatar, computes another avatar in the standing pose.
The external measurements are defined parametrically, as close as possible to ISO
8559-1:2017 according to the anthropometric data dictionary previously defined.
This assures data harmonization with the consumer goods sector.

5.2 Data Query Processing

The software implements asynchronous query processing where the BodyPass
system has to submit new queries, using forms to the dataset ‘MeasurementQueries’
in the study called ‘BodyPass’; and then retrieve the same forms augmented with
the query results. The avatar query forms should have filled the ‘TemplateId’ field
with a web-link and a randomized 3D body template. The form field ‘Sql’ specifies
the cohort selection, followed by an optional ‘average’ or ‘regression’ operator.
Figure 12 shows an example query form and some possible SQL specifications.
The processed form received contains a ‘DataLink’ pointing to the form with the
query results that are stored in the dataset specified by ‘UseCaseName’ in the Study
corresponding to the ‘ClientName’.

1)   {"sql":"select Avatar, Gender, Weight FROM Measurements WHERE  Age > 
30 AND Gender = female'", "operation":"average“} 

2)   {"sql":"select WaistGirth, Age, Stature, Weight, Gender FROM 
Measurements WHERE Age > 10", "operation":"CubicRegression", 
"input_feature_names":"Weight", "output_feature_names":"Age, Stature, 
WaistGirth"} 

Fig. 12 CUSI Data query form (left), and example specifications of ‘Sql’ field (right)

https://www.iso.org/standard/61686.html
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Fig. 13 The polynomial regression model

Table 3 Execution times

Operation Time

Query transfer from ‘edge’ to ‘internal’ Barista + (de)serialization 16 s
SQL parsing (in memory active DB synchronization) <1 s
De-anonymization control (after many queries, threshold = 10 <6 s in avg
Random template registration <40 s
Average measurement/avatar computation <1 s
Query transfer from ‘internal’ to ‘edge’ Barista + (de)serialization 16 s

Figure 13 shows an example response of the system for the query to compute
on-premise at INCLIVA hospital the polynomial regression of the fat percentage in
the visceral cavity as a function of weight.

Observe that the polynomial regression models can be easily aggregated, there-
fore providing opportunity for federated learning.

Table 3 shows the time required to execute different stages of the query
processing, averaged over 100 queries on a data set of 37,000 records.
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6 The Application of the BodyPass Ecosystem in the Apparel
Industry

We describe in this section the application of the BodyPass ecosystem by two
companies in the apparel industry.

P&R Têxteis S.A., founded on May 13, 1982, operates in the sector of the
clothing industry, more specifically in the Apparel Sport Technical segment. Since
its foundation, P&R’s investment policy priorities have focused on the permanent
readjustment of the Company’s structure to its markets. This strategy was reflected
in a constant focus on productive innovation, as well as in research and development
of new innovative products that surprise the market, in differentiating factors
such as quality, environment, responsiveness, flexibility and customer proximity
service. P&R applies BodyPass for improving the design process of sports technical
clothing.

ELSE Corp is an Italian startup that offers B2B and B2B2C solutions to brands,
retailers, manufacturers and independent designers. ELSE designs and develops a
Cloud SaaS platform that puts together the front-end retail processes such as product
personalization and virtual 3D commerce of exclusive, personalized, possibly made
to measure products. ELSE applies BodyPass for developing better online services
for the apparel industry.

6.1 The Use of 3D Data for Designing Sports Technical
Clothing

Sports garments require precise fitting, especially in the market segment aimed at
high-performance at athletes. The traditional process needs to manufacture several
prototypes until the final result is obtained: a perfect fit! The importance of this
development is related to the fact that garments worn by athletes influence their
performance, achievements and results.

The process of design and engineering of functional clothing design is based
on the outcomes of an objective assessment of many requirements of the user,
such as physiological, biomechanical, ergonomic and psychological [27]. All these
requirements intensify its importance, when we are talking about high-performance
athletes, such as Olympics athletes, when all the details, which could influence
winning or losing by seconds, matter.
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Fig. 14 Design process: scanner (left), 3D avatar (middle), pattern design (right)

For example, badly fitted clothing can cause friction and injury: loose shorts can
cause drag on pedalling motions, a tight top can prevent fluid movement, among so
many others. In this sense, 3D design is more than a tendency from the market, it’s
a need to the textile industry, among other criteria like quality and sustainability, to
guarantee competitiveness in a worldwide market.

The API-Ecosystem developed by BodyPass is used for processing and exchang-
ing 3D data in a secure manner, respecting privacy protocols. The BodyPass API’s
are used for:

(a) Processing the 3D data obtained with in-house 3D body scanner in order to
retrieve accurate 3D human models and metrics for the development of sports
garments. The 3D data obtained from BodyPass and the metrics are used by
patternmaking software (Fig. 14). In this way, P&R reduces the number of
prototypes needed to achieve a perfect fit for customized products is reduced,
improving the efficiency of the process.

(b) BodyPass also allows access to specific 3D information from specific target
consumers (e.g. by country or age), in view of the possibility to create, for
example, a new collection for the segment of Winter bikewear directed to
taller athletes (e.g. Northen Europe). This statistical 3D data could transmit
pertinent information that will help in the development of the collection, having
in concern the requirements of the market.

Looking to the future, BodyPass represents the next step in the secure trans-
mission of 3D data between sectors, improving the ability of customization. A
possibility to have access to a customer scan from the other side of the world (taken
in another company) that will be used to produce an in-house garment perfectly
fitting this customer, without the need for further fitting travels.
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6.2 Use of 3D Personal Data in Online Services for
the Apparel Industry

The apparel industry is going digital and every day more brands are joining this
inevitable process. From the business and consumer point of view, traditional 2D
images are becoming outdated because products are now presented and delivered
digitally. Garments should be elaborated in a three-dimensional format that demon-
strates the real physical properties such as material, texture, color and the product
physical construction. In addition, 3D clothes are shown on realistic bodies and body
parts. This makes BodyPass a crucial element of the new digital environment for the
apparel industry.

BodyPass ecosystem can be made available and easily used by retail companies
and tech providers. We have tested in three different scenarios how the data comes
from the consumer, passes through the BodyPass ecosystem and is transformed
to make it available via APIs. The processed information can be incorporated by
applications such as ELSE Corp’s Virtual Retail platform, which is used directly by
brands.

– Manufacturing Scenario, also called Industrial Made to Measure: To enable
companies to produce garments which are almost made to measure but still
manufactured in an industrial way. This allows individual fitting by finding the
most suitable items for the consumer.

– Design Process: To help brands and designers to create new collections by being
oriented to the concrete avatars, group of people and target markets.

– Marketing and Operations: Reliable 3D data allows better segmentation and
understanding of specific markets. The information can be used to take more
accurate decisions regarding brand positioning and distribution channels.

6.2.1 Manufacturing

The apparel manufacturing process is a complex and detailed work. In the case of
made to measure production, the complexity and operations increase significantly.
Made to measure items must fit the persons body, and at the same time be produced
together with other orders to maintain efficiency in an industrial level. The use
of reliable information of body measurements allow manufacturers to create more
flexible production lines. 3D data can be utilized for improved production planning
and to achieve better understanding of orders placed.

Nowadays privacy is one of the most valuable assets for customers. Automation
of virtual fitting on 3D body avatars in an anonymous way is one of the obligatory
tasks, and BodyPass database allows to find similar bodies by measurements and
create individual online orders without disclosing private information.
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6.2.2 Design

In the design scenario, the BodyPass 3D anthropometric data is key. Currently,
one of the most important stages of design collection creation and production is
determining the size stage, which is traditionally based on statistical data. This data
is often outdated because it is difficult to renew such a huge amount of statistical
information in a short period of time. It represents an inconvenience for the apparel
manufacturing industry, because the body parameters of the average person change
more often than when the statistics are updated. Based on the dimensions of the
past, the so-called “bullwhip effect” is created, when a single size range that differs
significantly from reality is still used by designers. As a result, the market is
overflowing with clothing that doesn’t fit the potential buyer.

Based on the value created by BodyPass, it is now becoming a reality for the
clothing industry to create products, which covers all parameters of the human body.
It is important for producers to classify data according to different criteria (gender,
age, geographical area, etc.). Updating BodyPass data regularly will be necessary
because these parameters are dynamic.

Traditional body data in tables can often give the designer a blurry view of the
body. But with the use of 3D modelling, it is easier for designers to understand the
overall body shape and make measurements of any part of the body that is necessary
for sewing a separate unit of clothing. The BodyPass technology allows not only
to produce a relevant product, but to reduce the production of unsuitable clothes,
creating only what will be worn.

BodyPass is not just a database of human body data. Digital analogs of the human
figure can help to understand the proportions of the body. The use of BodyPass
and designer’s creativity together provide the ability to create a unique style based
on individual characteristics of the body. The correct selection of clothing models
will emphasize the advantages and provide aesthetic enhancements based on precise
measurements.

6.2.3 Marketing and Operations

In the Era of Body Positivity, which focuses on challenging body standards, it
becomes important for people to be able to wear clothing that will be tailored
to their individual standards. This approach can increase brand positioning due
to product comfort and tailored services. In addition, companies can support and
execute strategies based on personalized made to measure items. This can act
as a communication tool to refresh brand positioning and enhance customers’
perception.

Creating clothes according to individual requirements is a trend that has been
around for years already. Examples there are many, from luxury brands that have
offered made to measure services along their history, to more affordable brands
that have democratized product customization. In fact, according to Deloitte [28],
on average 36% of consumers expressed an interest in purchasing personalized
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products or services. Nowadays it is possible to save the parameters of body types
and measurements for future use, and thanks to 3D modeling brands are able to
modify collections according to the figure of a specific person or market, producing
products that fit perfectly without compromising any of its features.

By getting statistical data about body measurements, it is possible to reduce
costs because knowing the exact size stage, brands can buy the necessary amount
of materials. After adjusting some necessary parameters (height, chest, waist, etc.)
and using 3D modeling as a tool, the perfect collection for a market can be created
and sent to production. Another advantage that 3D data offers is the possibility of
segmenting orders by body type and regions, which enables businesses to optimize
their distribution channels and to reduce transportation and warehouse costs.

Nowadays e-commerce represents an essential revenue stream for businesses
around the world. Even though online sales are already a developed form of retail,
there are still disadvantages specially for products that have a measure for fitting.
Sizing issue is a reason for shoppers returning online orders. According to a research
performed by Global Web Index in the USA and UK, 52% of people had to return
an item because the fit was not right and they could not try it on before they bought
it [29]. The use of avatars and anthropometric data segmented by range of age and
country could solve the fitting problem for online retailers.

The benefits of a reliable database of body measurements do not stop there. The
information can be utilized to develop better shipping and return policies. Almost
50% of online shoppers buy multiple sizes of a product in order to ensure the right fit
[30]. In addition, 14% of customers buy items they don’t need so they could qualify
for free shipping, with the intention of returning them after [29]. In the US alone,
a more accurate size segmentation and access to reliable data, could help online
retailers to reduce return expenses for more than US$107 billion lost yearly [31].

Thus, the usage technology of BodyPass in online services for the apparel
industry will contribute to the digital transformation of the fashion industry,
optimizing production process, reducing costs and waste.

7 Conclusions

BodyPass has developed an ecosystem of APIs and tools that allow the exchange
of 3D anthropometric data that preserves IP rights and personal privacy. This is
achieved through the use of:

• Semantic data annotation with a data dictionary compatible with ISO and CEN
(European) standards.

• GDPR compliance with the use of tools that create anonymous synthetic data in
3D, the implementation of an architectural solution in hospitals that guarantees
additional protection to sensitive data and the use of off-chain storage blockchain.

BodyPass ecosystem offers a novel approach for effective data sharing of 3D
human data between data silos. The tools developed in BodyPass contribute specifi-
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cally to two of the technical priorities defined in the framework of the European Big
Data Value Strategic Research and Innovation Agenda: data management and data
protection.
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Insights into the industry solutions include the concrete business cases, the problem
statements and requirements, the relevant data identified and used, and the LySP
AI services combined to realize powerful multilingual compliance solutions in
the respective fields. The chapter closes with findings and learnings from the
implementation phase and a future outlook for further developments, specifically
for the three vertical solutions and LySP.

The chapter relates to the technical priorities of Data Management and Data
Analytics of the European Big Data Value Strategic Research and Innovation
Agenda [1]. It addresses all challenges of the horizontal concern Data Management
and some of the challenges of the horizontal concern Data Analytics of the BDV
Technical Reference Model. It addresses the vertical concerns: (a) Big Data Types
and Semantics (with a focus on Text data, including Natural Language Processing
data and Graph data, Network/Web data and Metadata) as well as (b) Standards
(standardization of Big Data technology areas to facilitate data integration, sharing,
and interoperability). The chapter relates to the Reasoning and Decision Making
cross-sectorial technology enablers of the AI, Data and Robotics Strategic Research,
Innovation and Deployment Agenda [16].

1 Introduction: Building the Legal Knowledge Graph for
Smart Compliance Services in Multilingual Europe

Currently, European small and medium-sized enterprises (SMEs) and companies
operating internationally or wanting to branch out to other countries and markets,
face multiple difficulties to engage in trade abroad and to localize their products and
services to other countries, owing to legal and also to language barriers in Europe.
As reported by the European Commission, only 7% of European SMEs sell across
borders. SMEs that sell their products and services internationally exhibit 7% job
growth and 26% innovation in their offering, compared to 1% and 8% for SMEs that
do not go outside their local markets [2]. A key challenge for businesses in Europe
is, thus, how to engage with customers effectively across the legal and language
barriers.

One of the main problems is the management of compliance across different
countries. “Compliance is a term generally used to refer to the conformance to
a set of laws, regulations, policies, or best practices” [3]. When companies want
to sell a product or offer a service in a new market they must comply with the
applicable legislation (European, regional, local), implement different standards
(e.g., from ISO, AENOR, or DIN [4]) and possibly follow sector-specific best
practices. Dealing with legal and regulatory compliance data is a cumbersome task
usually delegated to legal and consultancy firms that obtain documents from several
data sources, published by various institutions according to different criteria and
formats.
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While data analytics is trying to address the issue of data heterogeneity from
a technical viewpoint, the more human side of the data still remains a greenfield,
i.e., the inherent incompatibility of multiple natural languages, which not only
involve different words but also different syntax and different semantics. Europe is
determined to make the most of the linguistic wealth that characterizes the continent.
An increasing number of voices are in favor of a stronger commitment towards
a multilingual Digital Single Market (DSM) as the key for becoming the most
competitive market in the world [5]. As per the former EC vice president Andrus
Ansip: “Overcoming language barriers is vital for building the DSM, which is by
definition multilingual. It is now time to reduce and remove the language barriers
that are holding back its advance, and turn them into competitive advantages” [6].

With the aim of addressing the challenges posed by the European market,
currently fragmented into legal silos and split into more than 20 linguistic islands,
constituting a competitive disadvantage for SMEs and large companies in general,
and in line with other initiatives in Europe that share the same spirit (e.g., Digital
Single Market, ISA, CEF.AT [7]), Lynx has created an ecosystem of smart cloud
services that exploit a multilingual Legal Knowledge Graph (LKG) of legislation,
regulations, policies, and standards from multiple jurisdictions.

This cloud of services integrated in the Lynx Services Platform (LySP) provides
mass-customized regulatory information to European businesses. Additionally, it
supports the creation of a common legal ICT infrastructure that will contribute to
unlocking the potential of a multilingual and truly single digital market.

In order to achieve these objectives, the Lynx platform managed to: (1) create
a novel and unique knowledge base related to compliance, integrating information
from heterogeneous data and content sources; (2) provide a set of multilingual and
smart core services to extract value from the knowledge base, and (3) translate its
value into the market in the form of three business-driven pilots, making use of
LySP.

In the first step, the LySP acquired—and continuously maintains—data and
documents related to compliance from multiple jurisdictions in different languages,
as well as interlinked terminologies and language resources, open standards, and
sectorial best practice guidelines. This collection of structured data and unstructured
documents, obtained from open sources, was the base of the LKG [8].

In the second step, a set of core domain-agnostic services was put in place to
analyze and process the documents and data in order to integrate them into the
LKG. Existing multilingual terminologies, semantic tools, and machine learning
mechanisms were adapted and customized to the legal domain and used to annotate,
structure, and interlink the LKG contents. Iteratively and incrementally, the LKG
has been developed and augmented by linking to external databases and corpora,
by discovering topics and entities linked implicitly, as well as by using translation
services to translate documents not previously available in certain languages.

In the third and final step, these services have been configured in three real-world
pilots according to the industry needs represented by the Lynx business cases. These
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vertical solutions exploit the knowledge available in the LKG and have been driven
forward and evaluated by companies with an existing customer base.

The main objective of Lynx is to facilitate compliance for companies in
internationalization processes, by leveraging the existing European legal and
regulatory open data seamlessly interlinked and offered through a set of
cross-sectorial, cross-lingual smart services in the Lynx Services Platform:
LySP. SMEs and other organizations can benefit from LySP through: (1)
companies directly making use of the LySP Services and (2) companies in the
portfolio of law firms and consultancy companies making use of LySP, both
through using LySP Services either standalone (as a self-service) or integrated
into existing IT systems.

2 The Lynx Services Platform: LySP

LySP is a cloud of smart and multilingual services working on top of the LKG
and acting as a basis for training and operation of end user services. As illustrated in
Fig. 1, the LKG contains law and legal information, directives, regulations, and other

Fig. 1 Lynx legal knowledge graph
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relevant data and information harvested from public sources, integrated and enriched
by making use of the Lynx data model [15]. Additionally, the LKG has been
expanded—in a secure layer—by data and information of the pilot applications.

LySP Services have been developed (1) from scratch by the Lynx partners:
Universidad Politécnica de Madrid (Spain), Semantic Web Company (Austria),
Cybly GmbH (Austria), Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH (Germany), Alpenite (Italy), or (2) through the adaptation of existing
software components, namely: Tilde Translator (https://tilde.com/products-and-
services/machine-translation) by Tilde, Lexicala (https://www.lexicala.com/) by
KDictionaries, and PoolParty Semantic Suite (https://www.poolparty.biz) by
Semantic Web Company, all of them docked onto and trained by the LKG to
ensure the full value of LySP Services in the field of LegalTech and compliance.
Through the orchestration of these services, a broad portfolio of real-world use
cases can be created [9]. In the framework of the project, three pilots have been
developed, as further explained in Sect. 3.

The key principles according to which LySP is being built are summarized in the
following [10]:

• Token-based OAuth2 protocol for authorization together with the centralized
access control and authorization rules management based on Keycloak.

• An established LynxDocument schema according to the LKG ontology.
• Containerized deployment in an orchestrated application platform making use of

Red Hat OpenShift.
• Workflow Manager based on Camunda.
• LinkedDataPlatform-inspired Document Manager.
• Common rules for the development of web APIs: REST + API gateway patterns,

including OpenAPI 3 description.

In its current status, LySP provides 16 services that accomplish different
purposes, as listed below:

LySP Enrichment Services

LySP Annotation Services

1. Temporal Expression Recognition (TimEx): finds temporal expressions in docu-
ments.

2. Named Entity Recognition (NER): finds named entities using state-of-the-art
methods.

3. Geographical NER (Geo): finds geographical entities in documents.
4. Relation Extraction (RelEx): extracts relations between entities.
5. Entity Linking (EL): identifies and links entities, provides annotations, including

word sense disambiguation.

LySP Conversion Services

1. Machine Translation: translates documents.
2. Summarization: summarizes the content of a document.

https://tilde.com/products-and-services/machine-translation
https://tilde.com/products-and-services/machine-translation
https://www.lexicala.com/
https://www.poolparty.biz


258 M. Kaltenboeck et al.

LySP Search and Information Retrieval Services
1. Question Answering (QADoc): retrieves the most relevant answer for a given

question.
2. Cross Lingual Search (Sear): searches a text string in documents across different

languages.
3. Semantic Similarity (SeSim): calculates similarity between any two documents.
4. Terminology Query (TermQ): obtains information about a certain term with

examples and notes of use.

LySP Vocabulary Services
1. Dictionary Services (DA): queries domain-independent dictionaries from

SPARQL endpoint.
2. Terminology Extraction (TermEx): extracts terminology from document corpus.

LySP Platform Services
1. Workflow Manager (WM): manages workflows defined in BPMN.
2. Document Manager (DCM): manages documents and annotations in the LKG.
3. Authentication and Identity Management (APIM): provides Lynx identity,

OAuth2 flows, and social login.

At the moment, most of the services are available for the languages English,
German, Spanish, and Dutch [11]. The current version of the LySP Architecture can
be seen in Fig. 2, where arrows and colors illustrate the principal workflows. Broadly
speaking, a collection of documents (corpus) is ingested into the platform where
TermEx performs a terminology extraction process (red arrow). Next, documents
are annotated by means of LySP Enrichment Services. Some services depend on the
annotations produced by specific services, whereas others can run in parallel. To
efficiently orchestrate the different services, a dedicated Workflow Manager based
on Camunda is used. The result of this process is what we call an Enriched Lynx
Document. The service in charge of efficiently storing, updating, and retrieving
documents is the Document Manager. Enriched documents are then stored for
subsequent retrieval by LySP Search and Information Retrieval Services (Storage
and Information Retrieval box in Fig. 2). For more details on how the services are
orchestrated in LySP, we refer the interested reader to [9]. All three Lynx compliance
solutions described in detail in the next section are built on top of LySP and the
workflows explained above.

3 Lynx Compliance Solutions

The purpose of this section is to describe the three real-world compliance solutions
that have been developed on top of LySP together with Lynx’s industry partners,
namely: (1) Labor Law (Cuatrecasas, Spain), (2) Contract Management (Cybly,
Austria), and (3) Geothermal Energy (DNV.GL, the Netherlands).
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Fig. 2 Architecture of LySP

Each solution is described according to the same structure. First, the industry
partner involved in the solution is introduced, to provide the context for the needs
and requirements of each business case in what we have called “Problem Statement
and Business Case.” Next, the solution is spelled out and, finally, details of the Lynx
services involved are provided.

3.1 Compliance Services in Labor Law (Cuatrecasas, Spain)

About Cuatrecasas
Cuatrecasas (www.cuatrecasas.com) is an international law firm with headquarters
in Barcelona, Madrid, and Lisbon. The firm is specialized in all areas of business
law, applying a sectoral approach and covering all types of business. It represents
several of the largest international companies, advising them on their investments
in the major markets in which they operate. Cuatrecasas is present in the main
financial centers of Europe, America, Africa, and Asia through international offices;
European Network teams in Germany, France, and Italy; and international desks

http://www.cuatrecasas.com
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covering over 20 regions. Thanks to its international presence, it has expert
knowledge of various industries and regions, and is well aware of the challenges
posed to companies in internationalization processes.

Problem Statement and Business Case
Labor law is generally the most common regulation companies have to deal with
on a daily basis. In any company acquisition—Mergers and Acquisitions (M&A)
operations or prior Due Diligence analysis—or when supporting international
business expansion, the “local labor legislation” has crucial implications. Due
to the relevance of labor law, Cuatrecasas has highly specialized lawyers in
Spanish and Portuguese labor law and dedicates a constant effort to be updated
on legislative changes and binding precedents. However, when crossing the Iberian
borders, coverage decreases and the firm has to rely on associated firms (similar to
International Legal Networks).

The main objective of this business case is to provide a reliable service that helps
companies (starting with Cuatrecasas itself and ending with any company and, of
course, the majority of Cuatrecasas’ clients) to solve typical issues related to labor
law, which are commonly regulated by each country with significant discrepancies.
More commonly than not, these differences are crucial to making strategic business
decisions in an overseas expansion strategy. The typical Cuatrecasas client operates
internationally. Around 30% of the current customer base has international problems
of one kind or another, and at least half of them have implications for labor law.

In this context, Cuatrecasas has created two distinct but complementary business
cases in the context of the Lynx project:

Internal Usage. A tool for Cuatrecasas’ lawyers
The first business case is based on an internal approach that would result in time

and cost savings for Cuatrecasas’ legal assessment related to country-specific labor
law. The firm, typically as part of an M&A (Mergers and Acquisitions) operation
or Due Diligence, normally sends out questionnaires on labor law with frequently
asked questions (one questionnaire has between 10 and 50 questions) to an average
of six to ten partner firms from different countries (jurisdictions). Usually, the
completion of these questionnaires is subcontracted to local partner law firms. The
partial cost savings estimation gives a basis for the ROI justification. The pilot
developed during the Lynx project lifetime covers the four countries/languages of
the Lynx project (ES, IT, DE, EN) due to available resources. However, the numbers
are also interesting when other countries (languages and jurisdictions) of interest
for Cuatrecasas clients (e.g., Russia, China, Mexico, Brazil) are included. In the
second scenario (EU and non-EU countries), the expected cumulative cost reduction
benefits would be close to the 3 MM AC in 5 years.

External Usage. A tool for Cuatrecasas customers
The second business case is based on a SaaS (Software as a Service) approach

(new line of business income), putting the solution directly in the hands of
Cuatrecasas’ big customers with a high level of internationalization. This scenario
is not a very aggressive one regarding pricing, since it could be considered rather a
loyalty system than a software product itself. The cumulative figures of this second
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use case are quite similar to the first one. Estimating 3MM AC in a 5-year plan is a
conservative projection, given that a minimum of 25 existing Cuatrecasas’ clients
could use the Lynx platform.

The Solution
In Lynx we focused on the internal use case in the Lynx project. The idea was to
test, improve, and evaluate accuracy, and show internal value before presenting the
solution to customers. As a support tool for Cuatrecasas’ lawyers this application
should be executed internally (inside the corporate Cuatrecasas’ network).

Cuatrecasas provides a range of services to clients, including (1) specific
operations, which typically involve a project with a limited scope and period; and
(2) general legal advice, which is usually categorized by practice area (e.g., labor,
tax, and corporate) due to the different legal specializations required. Moreover,
lawyers at Cuatrecasas may work on more than one matter and with multiple clients
at a given time. For this reason, the system must provide lawyers with the tools they
need to organize and optimize their tasks, enabling them to configure and save their
favorite options (more common/default): personal or client/company.

Although Cuatrecasas has offices in multiple countries, the firm’s official lan-
guages are Spanish, English, and Portuguese. Despite being specialized in Spanish
and Portuguese jurisdictions, the firm offers global international coverage to its
clients, with a focus on Latin America. Typical clients of Cuatrecasas include large
(Spanish and Portuguese) companies with businesses around the world. The main
problem that nonlocal lawyers usually face is accessing and understanding foreign
local laws and regulations that are often unavailable in other languages.

For this internal use case, users are assumed to be legal experts. Often, they are
junior lawyers who are tasked to investigate external regulations. Currently, these
lawyers have to contact the internal Knowledge and Innovation Team to find out
about (1) the legal particularities of a specific country/jurisdiction, (2) the legal
sources available and (3) whether they can count on local lawyers from partnering
institutions that can be contacted, if necessary. These lawyers are accustomed
to use legal databases and other information resources (e.g., the ones provided
by LexisNexis, Thomson Reuters or vLex). Moreover, they usually have a good
command of the legal terminology in their own language and in English, but limited
knowledge of the legal terminology in other languages.

To fulfill the requirements of this business case, an application has been devel-
oped in which the user formulates a complete query in natural language (Spanish,
English, German, Dutch) about labor law and workers’ regulations, specifying one
or more jurisdictions (Spain, Austria, Netherlands). Then, the system returns the
most relevant results based on the direct texts of the law, and translated to the
language previously selected by the user, including the following:

• The most precise answer possible (when the question is specific, asking for a
value, data and name).

• The paragraph(s) related with the topic/question, where the possible answer
appears as part of the text (ideally highlighted).
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• The context by showing the article (and section) from which the paragraph(s) is
extracted, showing the number and title, and allowing the user to view the full
text of the article and law, which the user should be able to access and download.

Complex legal questions are almost impossible to answer by only highlighting
parts of the law. Context and additional information are often needed. This
additional information is sometimes difficult to incorporate into a question and these
context words are not always easy to find directly mentioned in laws. To palliate this
issue, the system is designed to be used as an intelligent search tool, providing legal
guidance to lawyers, to help substitute or minimize some of their less-valued work.

The Use of LySP Services
The Cuatrecasas Lynx Pilot is comprised of four main parts/components (see
Fig. 3): a Front-end Application, with the presentation layer responsible for the
user experience; a Back-end Application and business logic layer, to encapsulate
the defined modules (login, configuration, and Q&A modules) and provide all
the required application functionalities; an Application database, to ensure data
persistency; and, finally, the Cuatrecasas-Lynx API, a middleware component to
encapsulate and centralize interaction with Lynx Services.

The LySP Services used in the Cuatrecasas Lynx Pilot are described below:

• WM, DCM, and LKG
The Cuatrecasas Lynx Pilot makes use of the LySP Services, as defined in

Sect. 2, namely, the Workflow Manager (WM), responsible for the effective
orchestration of the LySP Services, and the Document Manager (DCM) service,
where documents are stored and maintained. As already mentioned, the basic

Fig. 3 Pilot modules and components schema of the Cuatrecasas Lynx Pilot
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functionality of the DCM includes storing documents and their annotations,
particularly in regards to the support of their synchronization, providing read
and write access, as well as updates of documents and annotations. The DCM
can be queried in terms of annotations (e.g., “which documents mention this
entity?”), as well as in terms of documents (e.g., “what are the contents/anno-
tations of document X?”). The interface includes a set of APIs to manage the
following resources within LySP: collections, documents, and annotations. DCM
is responsible for storing the LKG (Legal Knowledge Graph) and the documents
once they have been processed through the different workflows.

Additionally to the LySP Platform services, this application relies on some
LySP Annotation and LySP Search and Information Retrieval Services, as specified
below:

• SEAR Service
The Cross-lingual search service is used to retrieve documents from col-

lections previously defined by end users. Documents are retrieved from the
Document Manager based on metadata and content filters. The service generates
a first list of ranked candidate answers (previously broken down into paragraphs),
and highlights the text segment that is responsible for the selection. The SEAR
service relies on the document enrichment processes performed by the LySP
Enrichment Services to allow filtering out searches and to score the results based
on the query. Additionally, this service uses Query Expansion (QE) mechanisms
to improve search precision and cover the main use case requirements.

• QADoc Service
The QADoc service receives a query posed in natural language and a source

text to find a precise answer within it. Only when the service returns a result with
a high level of confidence, the application will show this result to the user.

• TimEx Service
Temporal expressions are very relevant in any legal document. For example,

expressions for deadlines or regulated procedures are common in the labor
context, such as “something has to be done 10 days after the contract is signed,”
“the probationary period does not exceed six months,” or “the cost of dismissing
an employee is 20 days per worked year.” The pilot makes use of this service to
identify time expressions that may contain the answer to a question.

• Machine Translation Service
The translation service provides automated machine translation by using the

Tilde MT cloud platform. Currently, the translation service provides support for a
runtime scenario and an endpoint for the Lynx platform’s asynchronous process
in the background. Neural Machine Translation (NMT) systems were trained for
the project languages. In the domain of labor law, specific legal and business
data was gathered and processed before training the NMT systems on a mix of
broad-domain and in-domain data that is able to translate both in-domain and
out-of-domain texts.



264 M. Kaltenboeck et al.

3.2 Smart Contract Management (Cybly, Austria)

About Cybly
Cybly (www.cybly.tech) is a legal tech company based in Salzburg and Vienna,
Austria. It combines two brands or product lines under one roof—“LawThek”
and “Legalnetics.” “LawThek” is a legal database with content from EUR-Lex
(directive, regulation, and decisions), Austria (federal and state laws, decisions),
and Germany (federal laws), offering cross-platform access to standardized and
interlinked sources of law. In addition to the desktop version, the RIS:App (Right
Information System) is distributed. This enables mobile access and is available for
free download in the Apple and Google app stores. “LawThek” is complemented
by the high-end products and services of “Legalnetics.” The range of services
offered by “Legalnetics” includes process-oriented, integrated IT solutions in the
areas of law, finance, and compliance, as well as all other areas with a legal or legal
information background.

Problem Statement and Business Case
Contracting is a common activity in companies, but managing contracts systemati-
cally, which means keeping track of changes or updates, is a cumbersome activity
only few companies are effective at. Many SMEs (small and medium enterprises)
do not have a database with all the information of their contracts, which prevents
them from easily finding information or applying changes.

Let us imagine the following situations in the context of a company:

1. There is a change in law, and you need to know which contracts are affected.
2. An overview on all obligations with a certain company is needed.
3. A contract is needed urgently and no one knows where to find the latest version

because the responsible employee left the company. Moreover, the opposing
party confronts you with a signed amendment or a subsidiary agreement you’ve
never seen before.

Countless organizations are confronted with similar scenarios, although we
are all significantly shaping our legal reality by concluding various contracts.
Abstractly, the problem can be summarized as follows: Contracts and contract-
relevant documents are physically and electronically distributed across the entire
organization and tools, e.g., file server, emails, physical documents. As a result,
there is often no overview, which leads to inconsistent applications, breaches of
contracts, and (financial) disadvantages.

The implementation of a comprehensive cross-organizational contract manage-
ment process appears to be the solution. Flitsch [14] defines contract management
as the creation of ideal structures for: contract planning, contract design, contract
negotiations, implementation of contracts, contract administration, and contract
archiving. In many cases, organizations are lacking these structures.

When it comes to contracts, there are very few tools being used: a word processor
to create the contracts, email to communicate with the client or the other party,

http://www.cybly.tech
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a file storage in a defined directory structure, and/or a legal software to store the
documents. To keep history recorded, they often add the different versions of the
document and individual mail communication to this software or put them on the
file system. With this in mind, we are focusing on automated contract administration
and archiving.

The Solution
The aim of our solution is not to change the existing workflow, which is well-
established in most companies and law firms, but to provide an integrated solution
to the existing toolset and workflows.

The starting point and, at the same time, the simplest use case is the analysis of
a single contract/document. However, the reality is much more complex: Regularly,
a large number of contracts of diverse nature and purposes need to be analyzed and
kept track of, taking into account various regulatory frameworks. In order to achieve
this, we have two approaches. On the one hand, we have a pure back-end solution,
and, on the other hand, we provide a visualization of the created data space for end
users.

In the course of the Contracts Management Lynx Pilot, our goal is to develop
reasonable strategies for automated contract analysis and contract archiving. Con-
tract administration and management are crucial when it comes to defining the
application:

To harvest documents, a command line tool has been implemented to provide the
following two main functionalities: Recursively send all documents of a directory
and its subdirectory to the Document Service for processing them. Monitoring a
given directory and its subdirectory and send notifications when the contents of the
specified files or directories are modified. With this tool it is possible to ingest a
large set of documents to the system and also to monitor this set for any subsequent
changes. Other external systems can use the REST interface of the Document
Service to ingest contract-related documents too.

To make use of the harvested document, the Conversion Service converts
documents in different data formats into a Lynx-Document that includes metadata
and document structure where possible. The following main document formats are
currently supported: Microsoft Office document formats, Open Document Format,
iWorks, HTML, PDF, Images, Outlook Messages (*.msg), MIME Messages. The
newly created Lynx Document is then annotated by the Annotation Service which
orchestrates the calls to the different LySP Annotations Services and also to
others. The document and its extracted information are stored within the LawThek
Document Store. To do so, LawThek has been extended with the possibility to store
Lynx Documents with the annotations beside the original document.

Through the front-end solution a single user has the possibility of managing (add,
delete, update, group, search, etc.) contracts/documents. The user can view a single
contract and related annotations or get a broader view of the corresponding data
space, e.g., legislation, similar contracts, other contracts with the same partner, etc.

The search builds on top of the Lynx SEAR service. It is possible to search
for documents by full text, document type, annotations, metadata, e.g., document
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date (facets) and any combination. It is therefore possible to search for newly
added/modified documents or for certain document names, etc.

The Use of LySP Services
To ingest documents into the system, the following tasks are performed: (1) convert
files into Lynx Documents with the Converter Service; (2) store, update, delete the
file in Customers’ local LawThek Document Store, which is a neo4j database for
metadata and relationships in combination with file storage to persist the original
file; and (3) store, update, delete the document in the search index.

The Lynx Services used in this pilot (at the time of writing or in a near future)
are specified in the following:

• TimEx—Temporal Expression Recognition—used to detect temporal expressions
in documents, e.g., the date when the offer was made.

• NER—Named Entity Recognition—used to identify named entities such as
persons and organizations (companies).

• RelEx—Relation Extraction between entities within a single document—used to
find, e.g., cause-effect relationships, such as “The agreement ends by 20.1.2020.”

• EntEx + WSID—Entity Extraction and Word Sense Disambiguation Service—
used to enrich documents with entities from a previously defined vocabulary.

• Geo—Geographical NER—used to find geographical expressions in documents,
mainly addresses.

• SEAR—Cross Lingual Search—provides the ability to search for documents by
full text, document type, annotations, metadata, e.g., document date (facets) and
any combinations. It is therefore possible to search for newly added/modified
documents, or for certain document names, for example.

• APIM—Authentication and Identity Management—exposes RESTful API to
first-party clients, end users, and administrators. It will represent the main entry
point to the Lynx Services in the future.

3.3 Compliance Solution for Geothermal Energy (DNV GL,
the Netherlands)

About DNV GL
DNV GL (www.dnvgl.com) is the independent expert in risk management and
assurance, operating in more than 100 countries. Through its broad experience and
deep expertise, DNV GL advances safety and sustainable performance, sets industry
benchmarks, and inspires and invents solutions.

Whether assessing a new ship design, optimizing the performance of a wind
farm, analyzing sensor data from a gas pipeline, or certifying a food company’s
supply chain, DNV GL enables its customers and their stakeholders to make critical
decisions with confidence.

http://www.dnvgl.com
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Driven by its purpose, to safeguard life, property, and the environment, DNV
GL helps tackle the challenges and global transformations facing its customers and
the world today and is a trusted voice for many of the world’s most successful and
forward-thinking companies.

Problem Statement and Business Case
Geothermal Energy is an emerging source of sustainable energy. Its application
is expected to show accelerated growth driven by the need for the global energy
transition. To achieve sustainable and controlled growth, modernization of legisla-
tion and regulations, as well as industry standards and best practices, is required.
Stakeholders—such as project developers, regulators, and engineers—typically
struggle to find this information, resulting in delayed application and imposing
additional risks. The pilot developed during the Lynx project aims to demonstrate
how the structuring of documents in the Legal Knowledge Graphs can help users
to find and select relevant regulatory documents (e.g., permits) and recommended
reading on safety and environmental risks. For this pilot, it was essential to find
and correctly link entities from the regulations to taxonomies (in the enrichment
phase) and to quickly and reliably estimate the semantic similarity between the
user’s document and the previously collected documents. Moreover, to improve the
accessibility and discoverability of data, it was essential to translate the documents
automatically.

Governments play a crucial role in legislating and assuring compliance to
mitigate safety and environmental risks, in all sectors, and in the energy industry
in particular, due to the transition which is currently undergoing. With the expected
growth in sustainable energy alternatives, continuous standardization of technology
to bring down costs and risks can be expected. Most countries will develop policies
and laws individually or together with other countries. Governments will seek
balance in the use of subsidy schemes to accelerate growth and develop regulation
or legislation to mitigate safety and environmental risks to guide the sustainable
growth of technologies and markets. Companies active in these supply chains are
likely to seek cross-border growth in order to develop economies of scale and bring
costs down. If cross-border growth is envisioned, keeping up with the latest legal
and regulatory rules is likely to become a challenge as country-specific clauses and
local languages complicate when trying to gain an overview.

In the DNV GL Lynx Pilot, this specific context and challenge is explored for
the geothermal energy domain as a proxy of the wider renewable energy domain.
Geothermal energy is heat generated in the sub-surface of the earth. A geothermal
fluid or steam carries the geothermal energy to the earth’s surface. Geothermal
energy operators drill a production and an injection well (also known as a doublet)
to a certain depth (between 100 m and 4000 m) to circulate fluid to produce
“heat.” Depending on the temperatures, this fluid can be used to produce clean
electricity, or as a baseload for municipal district or industry heating or cooling.
Geothermal energy is seen as a promising sustainable energy alternative, and the
industry (supply) and its users (demand) are at the dawn of accelerated growth.
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To prove the value of LySP, two business cases were designed to explore the
typical problems and challenges in this domain:

1. National actors in the geothermal energy supply chain facing regulatory risks,
missing potential opportunities, are taking poor decisions due to compliance
information being fragmented over multiple information sources. The first
geothermal energy challenge is better expressed by the following question:
“Can value be generated by connecting machine-readable regulatory information
resources for geothermal energy?”

2. International actors in the geothermal energy supply chain struggle with a lack of
understanding of country-specific regulatory frameworks (which is a competitive
disadvantage), thus limiting international competition and the potential benefits
of economies of scale as well as standardization. The second geothermal energy
challenge is: “Can internationalization be stimulated by providing the same
level of access to relevant compliance information for, and from, different EU
countries?”

The Solution: The Use of LySP Services
To address these two challenges, a web application “Recommender” (see Fig. 4)
was developed on top of LySP. It facilitates searching for relevant documents in
multilingual corpora. The Recommender accepts plain text and PDF documents.
The documents are preprocessed and plain text is extracted. The plain text is
then annotated by the Entity Linking (EL) service. The annotated documents are
processed by the Semantic Similarity (SeSim) service (see Fig. 4). On the left the
original document title and content are displayed (A) with highlighted entities from
the LKG, identified through the EL service. The SeSim service not only creates
similarity scores, but it is also the reasoning behind these scores visualized as a

Fig. 4 Geothermal use case: recommender results page
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table (D) and relevant metadata (C). The documents are translated (B) using the
MachineTranslation (MT) service and presented to the user in the user’s language
(E).

4 Key Findings, Challenges, and Outlook: LySP—The Lynx
Services Platform

To summarize, the Lynx Services Platform (LySP) provides a total of 16 smart
services that can be used either standalone or orchestrated in specific combinations
to provide powerful solutions for multilingual compliance-related applications. The
services have been developed and trained on top of the Legal Knowledge Graph
(LKG) to ensure domain-specific solutions with high precision, whereby the LKG
consists of both: open data from public sources as well as solution-specific data and
information inside a secure layer that can only be used by the respective vertical
solution.

LySP Services include: 7 Enrichment Services (5 Annotation Services, 2 Conver-
sion Services), 4 Search and Information Retrieval Services, 2 Vocabulary Services,
3 Platform Services, and are available in 4 languages—English, German, Spanish,
and Dutch at the moment—and trained for legal, regulatory, and compliance
use cases. However, it is worth noting that LySP Services are developed for a
generic use, meaning that LySP Services can be trained for other domains (e.g.,
health information of financial industry) and for other languages (e.g., French and
Portuguese) to allow for future scalability and the exploitation of LySP.

As a result, LySP Services can become an integral part of the European Digital
Single Market [12] to be used and provided via the continuously growing number
of European Data Markets and Data Spaces. Services can be trained on specific
domains and languages and can thereby be used either as a core service of a Data
Market and/or offered as a service for customers of Data Markets and Data Spaces.
A first exercise into this direction is in progress with the European Language Grid,
ELG [13] and ongoing discussions in regards to industrial Data Spaces and Markets
are currently taking place.

The biggest challenges in the realization of LySP and the three industry business
cases can be summarized as below:

1. The specification and the development of the LGK in regards to the harvesting
of available law and regulations and other relevant information as well as the
regular update of these, as such legal information is only partly available as open
data, and is available in different formats and through different access paths.

2. The training of LySP Services for the three different industry use cases, as of
the requirement to make use of additional data and information and as of the
training effort required for specific areas of law. Again in regards to identification,
specification and harvesting of data, but also the training of some services by
domain experts.
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3. The development of a LySP pricing model that takes into account dynamic
infrastructure costs, as well as continuous maintenance costs of services and the
Legal Knowledge Graph, to establish a stable and sustainable pricing model in a
complex market of services available on the internet.

At the time of writing, the Lynx consortium is working on the exploitation
strategy of LySP to bring LySP to the market in 2021. Besides the commercial
offering of LySP, the pilot partners are going to use LySP Services internally and
for their businesses, and the Lynx technology partners are integrating LySP Services
into their own product and professional service offerings.
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and external active users and services are processing them every day. In order to
harness value from such high-volume and high-variety of data, banks need to resolve
several challenges, such as finding efficient ways to perform Big Data analytics and
to provide solutions that help to increase the involvement of bank employees, the
true decision-makers. In this chapter, we describe how these challenges are resolved
by the self-service solution developed within the I-BiDaaS project. We present three
CaixaBank use cases in more detail, namely, (1) analysis of relationships through
IP addresses, (2) advanced analysis of bank transfer payment in financial terminals
and (3) Enhanced control of customers in online banking, and describe how the
corresponding requirements are mapped to specific technical and business KPIs. For
each use case, we present the architecture, data analysis and visualisation provided
by the I-BiDaaS solution, reporting on the achieved results, domain-specific impact
and lessons learned.

Keywords Self-service solution · Banking · Security applications · Big data
analytics · Advanced analytics · visualisations

1 Introduction

Collection, analysis and monetisation of Big Data is rapidly changing the financial
services industry, upending the longstanding business practices of traditional finan-
cial institutions. By leveraging vast data repositories, companies can make better
investment decisions, reach new customers, improve institutional risk control and
capitalise on trends before their competitors. But given the sensitivity of financial
information, Big Data also spawns a variety of legal and other challenges for
financial services companies.1

Following this digitalisation trend, CaixaBank has been developing its own Big
Data infrastructure since years and has been awarded several times (e.g. ‘2016 Best
Digital Retail Bank in Spain and Western Europe’ by Global Finance). With almost
14 million clients across Spain (and Portugal under their subsidiary brand BPI),
CaixaBank has a network of more than 5000 branches with over 40,000 employees

1 https://www.wilmerhale.com/uploadedFiles/Shared_Content/PDFs/Services/WilmerHale-
BigData-FinancialServices.pdf
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and manages an infrastructure with more than 9500 ATMs, 13,000 servers and
30,000 handhelds. All those figures represent a massive amount of data collected
every day by all the bank systems and channels, gathering relevant information
of the bank’s operation from the clients, employees, third-party providers and
autonomous machines. In total, CaixaBank has more than 300 different data sources
used by their consolidated Big Data models and more than 700 internal and external
active users enriching their data every day, which is translated into a Data Warehouse
with more than 4 PetaBytes (PBs), which increases by 1 PB per year.

Much of this information is already used in CaixaBank by means of Big
Data analytics techniques, for example, to generate security alerts and prevent
potential frauds—CaixaBank faces around 2000 attacks per month. However,
CaixaBank is one of the banking leaders in the European and national collaborative
research, taking part in pre-competitive research projects. Within the EU I-BiDaaS
project (funded by the Horizon 2020 Programme under Grant Agreement 780787),
CaixaBank identified three concrete use cases, namely (1) analysis of relationships
through IP addresses, (2) advanced analysis of bank transfer payment in financial
terminals and (3) Enhanced control of customers in online banking to study the
potential of a Big Data self-service solution that will empower its employees, who
are the true decision-makers, giving them the insights and the tools they need to
make the right decisions in a much more agile way.

In the rest of this chapter, Sect. 2 discusses the requirements and challenges for
Big Data in the banking sector. Section 3 details the different use cases considered,
together with their technical and business KPIs. In Sect. 4, for each use case, we
present the architecture, data analysis and visualisation of the I-BiDaaS solution,
reporting on the achieved results and domain-specific impact. It also relates the
described solutions with the BDV reference model and priorities of the BDV
Strategic Research and Innovation Agenda (SRIA) [1]. Section 5 summarises the
lessons learned through all the experiments deployed by CaixaBank and the rest of
I-BiDaaS partners, especially on how to handle data privacy and how to iteratively
extend data usage scenarios. Finally, Sect. 6 presents some conclusions.

2 Challenges and Requirements for Big Data in the Banking
Sector

The vast majority of banking and financial firms globally believe that the use of
insight and analytics creates a competitive advantage. The industry also realises that
it is sitting on a vast reservoir of data, and insights can be leveraged for product
development, personalised marketing and advisory benefits. Moreover, regulatory
reforms are mainly leading to this change. Ailing business and customer settlements,
continuous economic crisis in other industry verticals, high cost of new technology
and business models, and high degree of industry consolidation and automation
are some of the other growth drivers. Many financial services currently focus on
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improving their traditional data infrastructure as they have been addressing issues
such as customer data management, risk, workforce mobility and multichannel
effectiveness. These daily problems led the financial organisation to deploy Big Data
as a long-term strategy and it has turned out to be the fastest growing technology
adopted by financial institutions over the past 5 years.2

Focusing on the customer is increasingly important and the critical path towards
this direction is to move the data analytics tools and services down to the employees
with direct interaction with the customers, utilising Big-Data-as-a Self-Service
solutions3 [2].

Another critical requirement for financial organisations is to use data and
advanced analytics for fraud and risk mitigation and achieving regulatory and
compliance objectives. With cyber security more important than ever, falling behind
in the use of data for security purposes is not an option. Real-time view and analysis
are critical towards competitive advantage in the financial/banking sector.

The usage of Big Data analytics is gradually being integrated in many depart-
ments of the CaixaBank (security, risks, innovation, etc.). Therefore, there is a
heterogeneous group of experts with different skills but the bank also relies on
several Big Data analytics experts that provide consultancy services. However, the
people working with the huge amount of data collected from the different sources
and channels of CaixaBank can be grouped into the following categories (which
indeed could be fairly generalised to other financial entities):

• IT and Big Data expert users: employees and third-party consultants with
excellent programming skills and Big Data analytics knowledge.

• Intermediate users: People with some notion on data analytics that are used to
work with some Big Data tools, especially for visualisation and Big Data visual
analysis (such as QlikSense/QlikView4). They are not skilled programmers,
although they are capable of programming simple algorithms or functions with
Python or R.

• Non-IT users: People with an excellent knowledge of the field and the sector;
they could interpret the data, but they lack programming skills or Big Data
analytics knowledge.

Although ‘IT and Big Data expert users’ are getting more involved and being
a relevant part of the day-by-day business operations of the entity, there are few
compared to the ‘Intermediate’ and ‘Non-IT users’. Reducing the barriers and the
knowledge required by those user categories in exploiting efficiently the collected
data represents one of the most relevant challenges for CaixaBank.

With all this, the I-BiDaaS methodology for eliciting CaixaBank requirements
(see Table 1) took into consideration the specific challenges faced by CaixaBank, as

2 https://www.mordorintelligence.com/industry-reports/big-data-in-banking-industry
3 http://www.gartner.com/it-glossary/self-service-analytics
4 https://www.qlik.com/

https://www.mordorintelligence.com/industry-reports/big-data-in-banking-industry
http://www.gartner.com/it-glossary/self-service-analytics
https://www.qlik.com/
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Table 1 CaixaBank consolidated requirements

Business requirements

R1 To speed up the implementation of new big data analytics applications (business goal)
R2 To be able to test new data analytics tools and algorithms outside CaixaBank premises

whilst assuring maximum level of security/privacy (business goal)
R3 To enable third parties to efficiently implement and test new tools and algorithms

without accessing real data (business goal)
R4 To ensure accuracy and reliability of analytics process (quality business goal)
R5 To improve efficiency of the analytics process (quality business goal)
R6 Time efficiency
R7 Cost reduction
User requirements

R8 Data is collected by several different sources (ATMs, online banking services,
employees’ workstations, external providers’ activity, network devices, etc.) (data
provider requirement)

R9 Data are owned by CaixaBank and are not publicly available. They can be shared with
third parties only once the data is anonymised (data provider requirement)

R10 Support the use of techniques related to log analysis, such as process mining
algorithms or similar (big data analytics provider requirement)

R11 Users will be able to download results (in several formats such as .csv, .xls, etc.) in
order to analyse them by their own or send them to other employees of the Security
Operation Centre (data consumer requirement)

R12 Intermediate users will be able to modify parameters of the algorithms and refine the
initial results (data consumer requirement)

System requirements

R13 The system should enable the generation of anonymised and synthetic data to enable
safe experimentation and testing (functional requirement)

R14 The system should support diversified, analytic processing, machine learning and
decision support techniques to support multiple stages of analysis (functional
requirement)

R15 The system should ensure security of sensitive data (non-functional requirement)

well as the literature on Requirements Engineering (RE) approaches specifically for
Big Data applications [3].

In particular, the I-BiDaaS methodology followed a goal-oriented approach
to requirements engineering [4], whereby elicitation of requirements was seen
as the systematic transformation of high-level business goals that reflect the
company vision with respect to the Big Data analytics activity or project, the user
requirements of the groups of stakeholders involved (e.g., data providers, Big Data
capability providers, data consumers) and finally the specific system functional and
non-functional requirements, which describe the behaviour that a Big Data system
(or a system component) should expose, or the capabilities it should own in order to
realise the intentions of its users.

The requirements elicitation process was carried out in collaboration with both
CaixaBank stakeholders and Big Data technology providers. It involved two steps:
the first step was to extract specific requirements based on the characteristics of each
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CaixaBank use case; the second step involved the consolidation of all requirements
in a comprehensive list. Appropriate questionnaires were used to assist participants
in expressing their requirements. Requirements consolidation was guided by generic
requirements categories identified through the review of RE works for big data
applications [5].

Although described in a linear fashion, the above activities were carried out in
an iterative manner resulting in a stepwise refinement of the results being produced.
The complete list of all requirements elicited is described in detail in [6].

3 Use Cases Description and Experiments’ Definition:
Technical and Business KPIs

The CaixaBank experiments aim at evaluating and validating the self-service Big
Data platform [7] proposed in the framework of the I-BiDaaS project, and its imple-
mentation in the specific CaixaBank use cases. More precisely, the experiments aim
to test the efficiency of the I-BiDaaS platform for reducing the costs and the time of
analysing large datasets whilst preserving data privacy and security.

The definition of the experiments follows a goal-oriented approach, whereby
for each experiment: the experiment’s goal(s) towards which the measurement will
be performed are first defined. Then a number of questions are formed aiming to
characterise the achievement of each goal and, finally, a set of Key Performance
Indicators (KPIs) and the related metrics are associated with every question in order
to answer it in a measurable way.

Such KPIs have been defined at the business level during the user requirements
elicitation phase (see Sect. 2). However, they need to be further elaborated and
refined so that they can be mapped onto specific indicators at the Big Data
application and platform level. This ensures that (a) both business and technical
requirements and (b) the traceability among business and application performance
are taken into consideration. In addition, for each KPI, the baseline (current) value
and the desired improvement should also be defined, whose measurement relates to
the achievement (or not) of the specific indicator.

The definition of each experiment also included the definition of the experiment’s
workflow in terms of the type and order of activities (workflow) involved in each
experiment, as well as the definition of the experimental subjects that will be
involved in the experiment.

Taking all the aforementioned into account, CaixaBank proposed three different
use cases and evaluated the I-BiDaaS tools from the perspective of potential usage
by those different groups of employees:

• Analysis of relationships through IP addresses.
• Advanced analysis of bank transfer payment in financial terminals.
• Enhanced control of customers in online banking.
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The rest of the section includes the final use cases definitions in chronological
order as developed and deployed in the project. We also refer the reader to Sect. 4 for
further details of the use cases corresponding solutions and Sect. 5, which provides
a complementary description, collecting the lessons learned during the respective
processes.

3.1 Analysis of Relationships Through IP Addresses

Analysis of relationships through IP addresses was the first use case selected to
test the I-BiDaaS Minimum Viable Product (MVP). In this use case, CaixaBank
aims to validate the usage of synthetic data and the usage of external Big Data
analytics platforms. It is deployed in the context of identifying relationships between
customers that use the same IP address when connecting to online banking.
CaixaBank stores information about their customers and the operations they perform
(bank transfer, check their accounts, etc.) using channels such as mobile apps or
online banking, and they afterwards use this data for security and fraud-prevention
processes. One of the processes is to identify relationships between customers
and use them to verify posterior bank transfers between linked customers. Such
operations are considered with lower possibility to be fraudulent transactions. It
allows CaixaBank’s Security Operation Centre (SOC) to directly discard those bank
transfers during the revision processes. The goal of this experiment is to validate
the use of synthetic data for analysis (i.e. one of the I-BiDaaS platform features),
evaluate the quality of the synthetic data (i.e. if the algorithm can find the same
amount and patterns of connections using the real and the synthetic datasets) and to
test the time efficiency of the I-BiDaaS solution.

3.2 Advanced Analysis of Bank Transfer Payment in Financial
Terminals

The second CaixaBank use case that was studied in I-BiDaaS is advanced analysis
of bank transfer payment in financial terminals. This use case aims to detect the
differences between reliable transfers and possible fraudulent cases. The goal of
this experiment is to test the efficiency of the I-BiDaaS solution in the context
of anomaly detection in bank transfers from employees’ workstations (financial
terminals).

For that reason, the first step was to identify all the contextual information from
the bank transfer (i.e. time execution, transferred amount, etc.), the sender and
receiver (e.g. name, surname, nationality, physical address, etc.), the employee (i.e.
employee id, authorisation level, etc.) and the bank office (e.g. office id, type of bank
office, etc.). All this information is coming from several relational database tables
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stored in the CaixaBank Big Data infrastructure (called ‘datapool’). The meaningful
information was extracted and flattened in a single table. This task is particularly
challenging because it is needed to identify events and instances from the log
file corresponding to the money transfer operations carried out by an employee
from a bank centre and to connect those related to the same bank transfer. The
heterogeneous nature of the log files, as saved in the CaixaBank datapool, makes
this task even more difficult. There is a total of 969,351,155 events in the log data
just for April 2019. These events are heterogeneous in nature and arise from mixing
of disparate operations associated with services provided by the different types of
bank offices. After a laborious table flattering and composition process, a table of
32 fields was obtained and then tokenised.

3.3 Enhanced Control of Customers in Online Banking

In this use case, we focused on analysing the mobile-to-mobile bank transfers
executed via online banking (web and application). It focuses on the assessment that
the controls applied to user authentication are adequately implemented (e.g. Strong
Customer Authentication (SCA) by means of second-factor authentication) accord-
ing to PSD2 regulation and depending on the context of the bank transfer. With that
aim, we wanted to cluster a dataset collected from mobile-to-mobile transfers. Most
of the information of this dataset does not need encryption because only a few fields
were sensitive. The main objective of the use case is to identify useful patterns of
mobile-to-mobile bank transfers and enhance current cybersecurity mechanisms. A
set of mobile-to-mobile bank transfers and the authentication mechanisms applied
by CaixaBank to authenticate the senders of those transfers is analysed in order to
identify if different mechanisms should be applied to specific subsets of transfers.
The use case tries to identify small subsets of transfers that present similar patterns
to larger sets of transfers with other types of authentication mechanisms, to re-assess
if the correct authentication mechanism is being applied to this subset of transfers
or if the level of security in the authentication process should be increased.

4 I-BiDaaS Solutions for the Defined Use Cases

4.1 Analysis of Relationships Through IP Addresses

4.1.1 Architecture

The architecture uses a traditional component-based architecture where the compo-
nents communicate via a message queue (Universal Messaging component). This
approach is important for a scalable and flexible hardware resource organisation.
The architecture includes a batch and a stream processing subcase, complemented
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Fig. 1 Updated data flow for the components of the architecture

with the Universal Messaging component (mentioned earlier) for easing communi-
cation between components, an Orchestration layer that coordinates their interaction
and a Visualisation layer providing an extensible visualisation framework that
helps with data inspection and user interaction with the system. The Universal
Messaging component uses a message queue system that allows easy, robust and
concurrent communication between components. The Orchestration layer uses
Docker for managing other components, which are all running individually as
Docker containers. Figure 1 depicts the components of the architecture, as well as
their interactions.

The batch processing subcase starts with the creation of a file of realistic synthetic
data in SQLite format (TDF component5), which is then imported in a Cassandra
Database, which is specifically used for its distributed properties, and COMPSs [8]
with Hecuba6 are used to run the analysis. In the streaming subcase, transactions
of users are created and published via the Message Queuing Telemetry Transport
(MQTT) protocol (Universal Messaging), and later an APAMA7 GPU-enabled data
processing application loads the data analysis created in the batch subcase, and
compares any data coming from the stream to it, generating a new message if there
is a match. 3D data analysis through visualisation is also available via the Qbeast
tool [9].

The rationale for using realistic synthetic data (TDF component in Fig. 1) is that
technology development and testing processes can be simplified and accelerated,
before or in parallel with carrying out the processes of making real data available
(e.g. a tedious data tokenisation process). The incorporation of realistic synthetic
data is done with care and is subject to data quality assessment (see Sect. 4.1.2)

5 TDF: https://www.ibm.com/il-en/marketplace/infosphere-optim-test-data-fabrication
6 Hecuba: https://github.com/bsc-dd/hecuba
7 APAMA: https://www.softwareag.com/corporate/products/apama_webmethods/analytics/
overview/default.asp

https://www.ibm.com/il-en/marketplace/infosphere-optim-test-data-fabrication
https://github.com/bsc-dd/hecuba
https://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp
https://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview/default.asp


282 A. Alexopoulos et al.

An operational-ready solution then replaces the realistic synthetic data with the
corresponding real, tokenised data, as described in the subsequent sections.

4.1.2 Data Generation

In this first use case, we tried to evaluate the usage of fabricated data, which was
created using TDF according to a set of rules defined by CaixaBank. The rules
were refined several times in order to create realistic data for all different fields
considering the format of the real data. It is difficult to distinguish a data sample
from a field in the synthetic dataset and a sample from the same field in the real
dataset. Some properties were difficult to model as constraint rules, e.g. the concrete
time connectivity patterns that the real data follows, and thus they were not included
in the specification of the synthetic dataset. Constraints for parameters which were
not critical for the relationship analysis that was performed in the use case were
sometimes relaxed as long as they allowed the synthetic dataset to remain valid for
assessing that there exist the same percentage of relationships as in the real dataset.

4.1.3 Data Analytics

The goal of the case is to find relations between people, given a set of connections
to IP addresses, maximising the detection of close relations between users. This
application has been implemented using the COMPSs programming model and
Hecuba as the data interface with the Cassandra database.

We have defined several parallel tasks, not only to exploit parallelism but also
to benefit from the automatic detection of the dependencies from COMPSs. Using
Cassandra to store the data allows us to delegate on the database the management of
the global view of the data. This approach frees programmers from implementing
an explicit synchronisation between those parallel tasks that modify the data
structure. This way, removing the synchronisation points, we are able to maximise
the parallelism degree of the application and thus the utilisation of the hardware
resources. Notice that the interface for inserting data in Cassandra is asynchronous
with the execution of the application, this way overlapping data storage with
computation.

The approach to solve this implementation has been to define a clustering-
based analysis of CaixaBank’s IP address connections using a synthetic dataset.
The purpose of the analysis is to provide additional modelling possibilities to
this CaixaBank’s use case. The obtained results should be understood relative to
the fact that the data set utilised is synthetic, even though the initial feedback
from CaixaBank about the usefulness of the developed process is positive, and the
approach is promising. The data set contains 72,810 instances, with each instance
containing the following attributes:



Big Data Analytics in the Banking Sector: Guidelines and Lessons Learned. . . 283

• User ID—representing a unique identification number for each user.
• IP address—representing the IP address of the connection of the user.
• Date—representing the date and the time of the connection made by the user.
• Operation—representing the code of the business operation made by the user.
• Status—representing the code of the status of the operation made by the user.

Initially, the dataset is transformed as follows: each user represents a sample,
while each IP address represents a feature. In such a data matrix, the value in
position (i, j) represents the number of times user i connected via IP address j.
Such a dataset turns out to be extremely sparse. In order to tackle this problem
and retain only meaningful data, the next pre-processing step is to drop all the
IP addresses that were used by only one user (intuitively, such IP addresses
represent home network, etc. and thus cannot be used to infer relationships
between users). After dropping all such IP addresses, 1075 distinct IP addresses
remain from the initial 22,992 contained in the original dataset. Subsequently,
we filter out the users that are not connected to any of the remaining IP
addresses.

To infer relationships between users, we applied clustering algorithms. In
particular, we used K-means [10] and DBSCAN [11], which are both available in
the dislib library [12]. Additionally, we used the t-distributed Stochastic Neighbour
Embedding (t-SNE) method [13] to visualise the reduced dataset in 2D. The
visualisation is presented in Fig. 2.

Both K-means and DBSCAN offer some interesting hyperparameters. In partic-
ular, K-means allowed us the flexibility of setting the desired number of clusters.
A preset number of clusters could be a limitation, especially in an exploration
phase. However, the possibility to set up the number of clusters allowed us to define
them according to the number of authentication mechanisms, for example, which
was useful in the analysis of the use case. On the other hand, DBSCAN decides

Fig. 2 t-SNE 2D visualisation
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on the number of clusters internally while providing us with the parameters that
represent the minimum number of samples in a neighbourhood for a point to be
considered a core point, and the maximum distance between two samples for them
to be considered as in the same neighbourhood. These parameters are to be set by an
end-user based on experimentation and domain knowledge and are tuneable through
the I-BiDaaS user interface.

Moreover, the evaluation of this use case was especially focused on analysing
the validation of fabricated data for identifying patterns and number of connections.
Therefore, a more advanced analysis with K-means and DBSCAN was done using
both, the synthetic dataset and a tokenised version of a real dataset. The data
tokenisation process included the encryption of all the fields of the dataset. The
analysis performed over this dataset allowed the inference of conclusions and
relationships in the real non-encrypted data.

4.1.4 Visualisations

The visualisation of the use case includes several graphic types. First, a graph shows
the distribution of relationships detected based on their IP addresses (Fig. 3a).

Using these relationships, visualisation of real-time bank transfers in the form
of a continuous stream of sender-receiver records is used to emulate real-time
detection of possibly fraudulent transactions (Fig. 3b). The visualisation utilises the
previously detected relationships to display a graph of connected users so as to aid
operators in determining possible relationships between users and decide whether
further actions should be taken.

4.1.5 Results

Results obtained from both real tokenised data and the synthetic data using those
algorithms showed that the majority of the clusters found were 2-point clusters,
indicating a good similarity for this use case.

An additional evaluation process was performed to determine a specific utility
score, i.e. the similarity of results of analyses from the synthetic data and the original
data. The propensity mean-squared-error (pMSE) was used as a general measure of
data utility to the specific case of synthetic data. As specific utility measures we
used various types of data analyses, confidence intervals overlap and standardised
difference in summary statistics, which were combined with the general utility
results (Fig. 4).

By randomly sampling 5000 datapoints from real and synthetic datasets, and
using logistic regression to provide the probability for the label classification,
we were able to show that the measured mean pMSE score for the ‘analysis of
relationships through IP addresses’ dataset is 0.234 with a standard deviation of
0.0008.
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Fig. 3 (a) User groups per IP relationships. (b) Real-time relationship detection
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Fig. 4 Results for 100 random sampling taken from the real and synthetic data (5 K datapoints
each) and the pMSE calculated using a logistic model

Those quantitative results showed that the fabricated data is objectively realistic
to be used for testing the use case. However, the rule-generation process that
involves the data fabrication through TDF can be complex and long in other cases in
which the knowledge of the data is not complete or the extraction of rules through
statistical analysis is not clear.

4.2 Advanced Analysis of Bank Transfer Payment in Financial
Terminals

4.2.1 Architecture

The architecture (i.e. the specific components of the I-BiDaaS general architecture)
in this use case is the same as the one described in Sect. 4.1.1, focused on the batch
processing part. Therefore, what essentially changes are the algorithms used for
processing the data (i.e. the bank transfers conducted by employees on their financial
terminals). These algorithms will be described in the next sections.
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4.2.2 Data Analytics

This CaixaBank use case is focused on advanced analysis of bank transfers executed
by employees on financial terminals to detect possible fraud, or any other potential
anomalies that differ from the standard working procedure. The used dataset is
composed of different attributes which record the different steps that the employee
performs and other important data such as the account, client or amount of money
transferred. All the data is encrypted using the Dice Coefficient [14], which codifies
the data without losing important information.

All data processing techniques, like the K-means, PCA (Principal Component
Analysis) [15] and DBSCAN have been performed using the dislib library. Also,
the data structure used by dislib has been modified to be stored on a Cassandra
Database using the Hecuba library.

The received dataset must be pre-processed before using the data transformation
techniques from dislib. First, the attributes which contained the same value for all
the registers have been deleted, as they do not give any relevant information. Also,
all nulls and blank registers have been transformed into 0 values. Finally, for those
categorical attributes, we transform the variable categories into columns (1, 0), a
transformation known as one-hot encoding [16].

Due to the encoding transformations, the number of attributes has increased
considerably from 89 to 501. This large amount of attributes made it difficult to
perform K-means, and for this reason, it was decided to apply a PCA transformation
to reduce the number of dimensions to 3, to also be able to represent it graphically.
Before applying the PCA transformation, and due to the differences in the magni-
tude of the attributes, we have standardised the data using the scikit-learn method
StandardScaler.

Finally, we have executed two different clustering algorithms: DBSCAN and K-
means. As K-means requires the desired number of clusters as an input parameter,
we have executed first DBSCAN and we have used the obtained number of clusters
as the input parameter of K-means.

4.2.3 Visualisations

For this use case, a 3D graph of the data and detected anomalies has been developed.
Users can select parts of the graph to focus on and can also extract the specific data
samples that are included in the selection (Fig. 5).

4.2.4 Results

Figure 6a shows the graphical representation of the clusters generated by DBSCAN
in a three-dimensional space, where the third dimension of the PCA is shown as
the Z-axis. The result of K-means can be examined in Fig. 6b, we can observe that
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Fig. 5 Visualisation of detected anomalies in 3D graph
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Fig. 6 (a) DBSCAN representation. (b) K-means representation

Fig. 7 Heat-plot of the 84 most relevant attributes from the 501 original attributes

some values in the Z-axis are far away from the main cluster and, thus, are potential
anomalies in the data.

The PCA reduced the attributes from 501 to 3, thus it is difficult to understand
which is the correlation between the resultant three dimensions and the 501 original
attributes. In Fig. 7, we have printed the mentioned correlation. We only show the
first 84 because they are the most interesting with respect to the third dimension
of the Z-axis. We can appreciate that this third dimension is heavily influenced by
attributes from 64 to 82.
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4.3 Enhanced Control of Customers in Online Banking

4.3.1 Architecture

As in Sect. 4.2.1, the set of components used to analyse bank transfers which were
executed using online banking options (both web and mobile app) are the same as
the ones described in Sect. 4.1.1, also with a main focus on the batch processing part,
and selecting a different set of algorithms to analyse the data, as will be described
in the following sections.

4.3.2 Data Analytics

Following the objective of the use case in Sect. 3.3, this use case tried to
identify useful patterns of mobile-to-mobile bank transfers and enhance current
cybersecurity mechanisms by identifying if there is a set of transactions in which the
level of security in the authentication process should be increased. For that reason,
we decided to analyse a dataset collecting the information of all mobile-to-mobile
bank transfers from clients for a month and work on non-supervised methods such
as clustering. That cluster was done on a categorical database so that most known
algorithms lost efficacy. The first attempt was to apply a K-means. However, since
the vast majority of available variables were not numerical, calculating the distances
for grouping in K-means algorithm was no longer so simple (e.g. if there are three
types of enhanced authentication, should the distance between them be the same?
Should it be greater since some of them are more restrictive than the others?). This
type of question affects the result of the model; therefore, a transformation was
made to the data. We applied one-hot encoding [16]. This transformation allowed
to eliminate the problems of calculating the distance between categories. Even so,
the results were not satisfactory. Given the situation, a search/investigation process
was carried out for an appropriate model for this case series. We find the k-modes
library that includes algorithms to apply clustering on categorical data.

The k-modes algorithm [17] is basically the already known K-means, but with
some modification that allows us to work with categorical variables. The k-modes
algorithm uses a simple matching dissimilarity measure to deal with categorical
objects, replaces the means of clusters with modes, and uses a frequency-based
method to update modes in the clustering process to minimise the clustering cost
function.

Once the algorithm has been decided, we must calculate the optimal number of
clusters for our use case. For this, the method known as the elbow method is applied,
which allows us to locate the optimal cluster as follows. We first define:

• Distortion: It is calculated as the average of the squared distances from the cluster
centres of the respective clusters.

• Inertia: It is the sum of squared distances of samples to their closest cluster
centre.
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Then we iterated the values of k from 1 to 10 and calculated the values of
distortion for each value of k and calculated the distortion and inertia for each value
of k in the given range. The idea is to select the number of clusters that minimise
inertia (separation between the components of the same cluster) (Fig. 8).

To determine the optimal number of clusters, we had to select the value of k at
the ‘elbow’ in the point after which the distortion/inertia starts decreasing in a linear
fashion. Thus, for the given data, we conclude that the optimal number of clusters
for the data is 4. Once we know the optimal number of clusters, we apply k-modes
with k = 4 and analyse the results obtained.

4.3.3 Visualisations

A dynamically updated chart depicting the clusters in which the monitored transac-
tions fall into was used for this use case. The number of clusters is automatically
updated to reflect new ones being detected by the processing pipeline (Fig. 9).

4.3.4 Results

With this use case, I-BiDaaS allowed CaixaBank’s ‘Intermediate users’ and ‘Non-
IT users’ to modify the number of clusters and run the algorithm over a selected
dataset of transactions in a very fast and easy way. It was used for exploring clients’
mobile-to-mobile transaction patterns, identifying anomalies in the authentication
methods and potential frauds, allowing fast and visual analysis of the results in the
platform (Fig. 10).

The results were checked with the Digital Security and Security Operation Centre
(SOC) employees from CAIXA in order to correctly understand if the clustering
algorithm applied allowed to identify potential errors in our automated authen-
tication mechanisms in mobile-to-mobile bank transfers. The obtained clusters
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Fig. 9 Sample of the I-BiDaaS graphical interface showing the identified clusters of incoming
mobile-to-mobile bank transfers

Fig. 10 Sample of the ‘Enhanced control of customers in online banking’ use case clustering
results in the I-BiDaaS platform

of entries were useful to identify the different mobile-to-mobile bank transfers
patterns and reconsider the way we are selecting the authentication method to
proceed with the transfer. I-BiDaaS tools made it easier for the SOC employees
and Digital Security department to analyse and identify bank transfer patterns in
which a higher level of security would be beneficial. The rules on the authentication
mechanism application for those patterns were redefined, applying a more restrictive
authentication mechanism in around 10% of the mobile-to-mobile bank transfers (in
a first iteration).
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4.4 Relation to the BDV Reference Model and the BDV
Strategic Research and Innovation Agenda (SRIA)

The described solution can be contextualised within the BDV Reference Model
defined in the BDV Strategic Research and Innovation Agenda (BDV SRIA) [1] and
contributes to the model in the following ways. Specifically, the work is relevant to
the following BDV Reference Model horizontal concerns:

• Data visualisation and user interaction: We develop several advanced and
interactive visualisation solutions applicable in the banking sector, as illustrated
in Figs. 3, 5, and 9.

• Data analytics: We develop data analytics solutions for the three industrial use
cases in the banking sector, as described in Sects. 4.1–4.3. While the solutions
may not correspond to state-of-the-art advances in algorithm development, they
clearly contribute to revealing novel insights into how Big Data analytics can
improve banking operations.

• Data processing architectures: We develop an architecture as shown in Fig. 1
that is well suited for banking applications where both batch analytics (e.g.,
analysing historical data) and streaming analytics (e.g., online processing of new
transactions) are required. A novelty of the architecture is the incorporation of
realistic synthetic data fabrication and the definition of scenarios of usefulness
and quality assurance of the corresponding synthetic data.

• Data protection: We describe in Sect. 5 how data tokenisation and realistic
synthetic data fabrication can be used in baking applications to allow for more
agile development of Big Data analytics solutions.

• Data management: We present innovative ways for data management utilising
efficient multidimensional indexing, as described in Sect. 4.3.

Regarding the BDV Reference Model vertical concerns, the work is relevant to
the following:

• Big Data Types and Semantics: The work is mostly concerned with structured
data, meta-data and graph data. The work contributes to a generation of realistic
synthetic data from the corresponding domain-defined meta-data.

• Cybersecurity: The presented solutions that include data tokenisation correspond
to novel best practice examples for securely sharing sensitive banking data
outside bank premises.

Therefore, in relation to BDV SRIA, we contribute to the following technical
priorities: data protection, data processing architectures, data analytics, data visual-
isation and user interaction.

Finally, the chapter relates to the following cross-sectorial technology enablers of
the AI, Data and Robotics Strategic Research, Innovation and Deployment Agenda
[18], namely: Knowledge and Learning, Reasoning and Decision Making, and
Systems, Methodologies, Hardware and Tools.
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5 Lessons Learned, Guidelines and Recommendations

CaixaBank, as many entities in critical sectors, was initially very reluctant to use
any Big Data storage or tool outside its premises. To overcome that barrier, the main
goal of CaixaBank when enrolling in the I-BiDaaS project was to find an efficient
way to perform Big Data analytics outside its premises, which would speed up the
process of granting new external providers to access CaixaBank data (which usually
encompasses a bureaucratic process that takes weeks or even a month). Additionally,
CaixaBank wanted to be much more flexible in the generation of proof-of-concept
(PoC) developments (i.e. to test the performance of new data analytics technologies
to be integrated into its infrastructure). Usually, for any new technology testing, even
a small test, if any hardware is needed to be arranged, it should be done through the
infrastructure management subsidiary who will finally deploy it. Due to the size
and level of complexity of the whole CaixaBank infrastructure and rigid security
assessment processes, its deployment can take months.

For those reasons, CaixaBank wanted to find ways to bypass these processes
without compromising the security of the entity and the privacy of its clients.
General Data Protection Regulation (GDPR)8 really limits the usage of the bank
customers’ data, even if it is used for potential fraud detection and prevention and
for enhancing the security of its customers’ accounts. It can be used internally to
apply certain security policies, but how to share this data with other stakeholders
is still an issue. Furthermore, bank sector is strictly regulated, and National and
European regulators are supervising all the security measures taken by the bank
in order to provide a good level of security for the entity and, at the same time,
maintain the privacy of the customers at all times. The current trend of externalising
many services to the cloud also implies establishing a strict control of the location
of the data and who has access to it for each migrated service.

The I-BiDaaS CaixaBank roadmap (Fig. 11) had a turning point, in which the
entity completely changed its approach from a non-sharing real data position to
looking for the best way possible to share real data and perform Big Data analytics
outside its facilities. I-BiDaaS helped to push for internal changes in policies and
processes and evaluate tokenisation processes as an enterprise standard to extract
data outside their premises, breaking both internal and external data silos.

Results obtained from the first use case validated the usage of rule-based
synthetically generated data and indicated that it can be very useful in accelerating
the onboarding process of new data analytics providers (consultancy companies
and tools). CaixaBank validated that it could be used as high-quality testing data
outside CaixaBank premises for testing new technologies and PoC developments,
streamlining grant accesses of new, external providers to these developments, and
thus reducing the time of accessing data from an average of 6 days to 1.5 days. This
analysis was beneficial for CaixaBank purposes, but it was also concluded that the

8 https://eur-lex.europa.eu/eli/reg/2016/679/oj

https://eur-lex.europa.eu/eli/reg/2016/679/oj
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Table 2 Summary of the impact of the CaixaBank use cases studied in I-BiDaaS

Benefits KPIs

To increase the efficiency and competitiveness in
the management of its vast and complex amounts
of data

75% time reduction in data access by
external stakeholders using synthetic data
(from 6 to 1.5 days)

To break data silos not only internally, but also
fostering and triggering internal procedures to
open data to external stakeholders

Real data accessed by at least six different
external entities skipping long-time data
access procedures

To evaluate big data analytics tools with real-life
use cases of CaixaBank in a much more agile
way

I-BiDaaS overall solution and tools
experimentation with three different
industrial use cases with real data

analysis of rule-based fabricated data did not enable the extraction of new insights
from the generated dataset, simply the models and rules used to generate the data.

The other two use cases focused on how extremely sensitive data can be tokenised
to extract real data for its usage outside CaixaBank premises. By tokenising, we
mean encrypting the data and keeping the encryption keys in a secure data store
that will always reside in CaixaBank facilities. This approach implied that the data
analysis will always be done with the encrypted data, and it can still limit the results
of the analysis. One of the challenges of this approach is to find ways to encrypt the
data in a way that it loses as little relevant information as possible. Use case 2 and
use case 3 experimentation was performed with tokenised datasets built by means
of three different data encryption algorithms: (1) format-preserving encryption for
categorical fields, (2) order-preserving encryption for numerical fields and (3) a
bloom-filtering encryption process for free text fields. This enabled CaixaBank to
extract the dataset, upload it to I-BiDaaS self-service Big Data analytics platform
and analyse it with the help of external entities without being limited by the corpo-
rate tools available inside CaixaBank facilities. I-BiDaaS Beneficiaries proceeded
with an unsupervised anomaly detection in those use cases, identifying a set of
pattern anomalies that were further checked by CaixaBank’s Security Operation
Center (SOC), helping to increase the level of financial security of CaixaBank.
However, beyond that, we consider this experimentation very beneficial, and should
be replicated in other commercial Big Data analytics tools, prior to their acquisition.

The main benefits obtained by CaixaBank due its participation in I-BiDaaS
(highlighted in Table 2) directly relate to the evaluation of the different requirements
presented in Sect. 2 (Table 1).

We were able to speed up the implementation of Big Data analytics applications
(R1), test algorithms outside CaixaBank premises (R2) and test new tools and
algorithms without data privacy concerns by exploring and validating the usage
of synthetic data and tokenised data (R3) in three different use cases, improving
the efficiency in time and cost (R5, R6, R7) by means of skipping some data access
procedures and being able to use new tools and algorithms in a much more agile way.
User requirements regarding the availability of ‘Intermediate and Non-IT users’ to
analyse and process the data of the use cases were also validated through several
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internal and external workshops9 in which the attendees from several departments of
CaixaBank and other external entities (data scientists, business consultants, IT and
Big Data managers) provided very positive feedback about the platform usability.
Moreover, use cases 2 and 3, as mentioned previously, were also validated by the
corresponding business processes employees, being able to extract the results by
themselves.

Last but not least, it is important to highlight that those results should be
applicable to any other financial entity that faces the same challenges and tries to
overcome the limitations of data privacy regulation, the common lack of agility of
large-scale on-premise Big Data infrastructures and very rigid but necessary security
assessment procedures.

6 Conclusion

The digitalisation of the financial sector and the exploitation of the incredible
amount of sensitive data collected and generated by the financial entities day by
day makes their Big Data infrastructure very difficult to manage and to be agile in
integrating innovative solutions. I-BiDaaS integrated platform provided a solution to
manage it in a much more friendly manner and makes Big Data analytics much more
accesible to the bank employees with less technical and data science knowledge. It
also explored ways to reduce the friction between data privacy regulation and the
exploitation of sensitive data for other purposes, showcasing it in several use cases
on enhancing an entity’s cybersecurity and preventing fraud toward their clients.
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Abstract This chapter presents a Digital Twin Pipeline Framework of the COG-
NITWIN project that supports Hybrid and Cognitive Digital Twins, through four
Big Data and AI pipeline steps adapted for Digital Twins. The pipeline steps are
Data Acquisition, Data Representation, AI/Machine learning, and Visualisation and
Control. Big Data and AI Technology selections of the Digital Twin system are
related to the different technology areas in the BDV Reference Model. A Hybrid
Digital Twin is defined as a combination of a data-driven Digital Twin with First-
order Physical models. The chapter illustrates the use of a Hybrid Digital Twin
approach by describing an application example of Spiral Welded Steel Industrial
Machinery maintenance, with a focus on the Digital Twin support for Predictive
Maintenance. A further extension is in progress to support Cognitive Digital Twins
includes support for learning, understanding, and planning, including the use of
domain and human knowledge. By using digital, hybrid, and cognitive twins, the
project’s presented pilot aims to reduce energy consumption and average duration
of machine downtimes. Data-driven artificial intelligence methods and predictive
analytics models that are deployed in the Digital Twin pipeline have been detailed
with a focus on decreasing the machinery’s unplanned downtime. We conclude that
the presented pipeline can be used for similar cases in the process industry.
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1 Introduction

The COGNITWIN project,1 “Cognitive Plants Through Proactive Self-Learning
Hybrid Digital Twins”, is a 3-year project in the Horizon 2020 program for the
Process Industry, from 2019 to 2022. The project focuses on using Big Data and AI
for the European Process Industry through the development of a framework with a
toolbox for Hybrid and Cognitive Digital Twins.

This chapter describes the Digital Twin approach and demonstrates its applica-
tion to one of the project’s six use case pilots: Spiral Welded Machinery (SWP)
in the steel pipe industry. The chapter relates to the data spaces, platforms, and
“Knowledge and Learning” cross-sectorial technology enablers of the AI, Data and
Robotics Strategic Research, Innovation & Deployment Agenda [32]. The chapter
is organised as follows:

Section 2 presents the Digital Twin Pipeline Framework from the COGNITWIN
project supporting Digital, Hybrid and Cognitive Digital Twins, through the four
pipeline steps. Section 3 briefly introduces the state of the art and state of the practice
in maintenance of industrial machinery. Section 4 presents the pilot Application
of Maintenance of Industrial Machinery for Spiral Welded Steel, focusing on the
Digital Twin support for Predictive Maintenance for Machines in the Welded steel
plant/factory. Section 5 describes the Big Data and AI Technology selections of
the Digital Twin system applied for the steel industry case related to the different
technology areas in the BDV Reference Model. Section 6 details COGNITWIN
Digital Twin Pipeline Architecture and the Platform Developed and presents the
four pipeline steps of the COGNITWIN Digital Twin Pipeline realised in the
context of the Spiral Welded Steel pilot case. Section 6.1 explains how Digital
Twin Data Acquisition and Collection is taking place from factory machinery and
assets with connected devices, and controllers through protocols and interfaces like
OPC UA and MQTT. Section 6.2 exemplifies Digital Twin Data Representation
in various forms, based on the sensor and data sources connections involving
event processing with Kafka and storage in relevant SQL and NoSQL databases
combined with Digital Twin API access opportunities being experimented with,
such as the Asset Administration Shell (AAS). Section 6.3 presents Digital Twin
Hybrid (Cognitive) Analytics with AI/Machine learning models based on applying
and evaluating different AI/machine learning algorithms. This is further extended
with first-principles physical models—to form a Hybrid Digital Twin with examples
of data and electrical and mechanical models for a DC motor to support predictive
maintenance. Section 6.4 describes the pipeline step for Digital Twin Visualisation
and Control, including the use of 3D models and dashboards suitable for interacting
with Digital Twin data and further data access and system control through control
feedback to the plant/factory. Finally, the conclusion in Sect. 7 presents a summary

1 http://cognitwin.eu/

http://cognitwin.eu/
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of this chapter’s contributions and the plans for future improvement of technologies
and use case pilots in the COGNITWIN project.

2 Digital Twin Pipeline and COGNITWIN Toolbox

Many of the advancements and requirements related to Industry 4.0 are being
fulfilled by the use of Digital Twins (DT). We have in earlier papers introduced
our definitions for Digital, Hybrid, and Cognitive Twins [1–3]—which also aligns
with definitions of others [4, 5]: “A DT is a digital replica of a physical system that
captures the attributes and behaviour of that system” [6]. The purpose of a DT is to
enable measurements, simulations, and experimentations with the digital replica to
gain an understanding of its physical counterpart. A DT is typically materialised as
a set of multiple isolated models that are either empirical or first-principles based.
Recent developments in artificial intelligence (AI) and DT bring more abilities to
the DT applications for smart manufacturing.

A hybrid twin (HT) is a set of interconnected DTs, and being an extension of a
HT, a cognitive twin (CT) is a self-learning and proactive system [6]. The concepts
of HT and CT are introduced as elements of the next level of process control
and automation in the process and manufacturing industry. In the COGNITWIN
project, we define an HT as a DT that integrates data from various sources (e.g.,
sensors, databases, simulations, etc.) with the DT models, and applies AI analytics
techniques to achieve higher predictive capabilities, while optimising, monitoring,
and controlling the behaviour of the physical system. A Cognitive Twin (CT) is
defined as an extension of HT incorporating cognitive features to enable sensing
complex and unpredicted behaviour and reason about dynamic strategies for process
optimisation. A CT will combine expert knowledge with the power of HT.

We have adopted the Big Data and AI Pipeline that have been described in [7]
and specialised this for the context of Digital Twins as shown in Fig. 1.

The proposed pipeline architecture starts with data acquisition and collection to
be used by the DT. This step includes acquiring and collecting data from various
sources, including streaming data from the sensors and data at rest.

Fig. 1 Big Data and AI Pipeline architecture—applied for Digital Twins
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Fig. 2 Cognitive Twin Toolbox with identified components for the various pipeline steps

Following the data acquisition and collection, the next step is the DT data
representation in which the acquired data is stored and pre-processed. The DT
(Hybrid) Cognitive Analytics Models step of the pipeline enables integration of
multiple models and the addition of cognitive elements to the DT through data-
analytics. Finally, the DT Visualisation and Control step of the pipeline provides
a visual interface for the DT, and it provides interaction between the twin and the
physical system.

Figure 2 shows various components in the COGNITWIN Toolbox that can be
selected in order to create Digital Twin pipelines in different application settings.

The COGNITWIN Toolbox is being used to create operational Digital Twin
pipelines in a set of use cases as follows:

• Operational optimisation of gas treatment centre (GTC) in aluminium produc-
tion, with support for the recommendation of optimal operating parameters
for adsorption based on real-time data gathered about conditions such as the
pressure, temperature, humidity, etc., from sensors.

• Minimise health and safety risks and maximise the metallic yield in Silicon (Si)
production to provide best estimates of when the furnace can be emptied to the
ladle for further operations.

• Real-time monitoring of finished steel products for operational efficiency with an
ability to react on its own to situations requiring intervention, thus stabilising the
production process further.

• Improving heat exchanger efficiency by predicting the deposition of unburnt fuel
mixtures, ash, and other particles on the heat-exchanger tubes based on both
historical practices and real-time process.
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In the following, we illustrate the approach for creating an operational Digital
Twin pipeline for the use case on predictive maintenance for Steel Pipe Welding.
We plan to apply it to improve the Steel Pipe Welding process further as follows:

• Life cycle optimisation of Spiral Welded Machine (SWP) in steel pipe produc-
tion, where CT of the SWP monitors the condition and health of the machinery,
offers early warnings, and suggests optimised predictive maintenance plans for
the machinery based on real-time data gathered from sensors such as the pressure,
temperature, vibration, etc., and alarm and status information.

• Improving operational performance of the production process by predicting and
identifying the optimal operating parameters based on both historical practices
and real-time process and thus improving the overall productivity of the plant.

• Improving energy consumption efficiency by monitoring and predicting the
energy analyser and operational parameters based on both historical practices
and real-time process.

• Enhanced utilisation of computing infrastructure with virtual machines and
containerisation technologies to achieve optimised RAM and CPU usage.

• Minimise health and safety risks and maximise the human operator performance
by early warning of machine and system problems.

• Real-time monitoring of parameters like pipe diameter, pitch angle, belt width,
production speed, pipe diameter and wall thickness for semi-finished and finished
steel products for ensuring operational efficiency and stabilising the production
process.

3 Maintenance of Industrial Machinery and Related Work

Maintenance in the production industry has always been an important building block
providing essential requirements, such as cost minimisation, prolonged machine
life, and increased safety and reliability. On the other hand, Predictive Maintenance
(PM) has been a popular topic of research for decades with hundreds of papers
having been published in the area. Since machine learning techniques came into
prominence in the field with the emergence of industry 4.0, PM has become an even
more important area of interest [8].

There are three maintenance strategies. The first is Reactive Maintenance (RM)
in which little or no maintenance is undertaken until the machine is broken. The
second type is Preventive Maintenance, which is based on the repair or replacement
of equipment on a fixed calendar schedule regardless of their condition. This
approach has benefits over RM, but it can lead to the unnecessary replacement
of components that may still be in good working condition, resulting in increased
downtime and waste. The last and most recent method is Predictive Maintenance,
in which the main goal is to precisely estimate the Remaining Useful Life (RUL) of
machinery based on various readings of sensor data (heat, vibration, etc.).
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Unplanned downtime of machinery often results in economic losses for compa-
nies. Thus, predicting timely machine needs for maintenance can result in financial
gain [9] and reduce unnecessary maintenance operation due to the preventive
approach [10]. Another advantage of PM is cost minimisation, including minimising
fatal breakdowns and reducing certain components’ replacement, which is closely
related to the other benefits [11].

There are many uses for PM in industrial application. A large amount of event
data related to errors and faults in the internet of things (IoT) and digital platforms
are continuously collected. An event records the behaviour of an asset, and by nature
it comes in the form of data-streams. Event Processing is a method for processing
streams of events to extract useful information, and complex event processing (CEP)
is used for detecting anomalies and for predictive analytics [12]. Although event
processing has been a paradigm for data processing for nearly three decades, there
have been recent advancements in the last decade due to novel applications by the
IoT and machine learning technologies. The presence of large amounts of streaming
sensor data that can be widely generated is another reason for the growing interest in
event processing. Predictive analytics uses the streams of data to make predictions
of future events.

Making use of Predictive Analytics and CEP together provides synergy in
PM performance [13]. Lately, there has been increased usage of event processing
platforms that use open source technologies for Big Data and stream processing.
Sahal, Breslin and Ali used an open-source computation pipeline and showed that
the aggregated event-driven data, such as errors and warnings, are associated with
machine downtime and can be qualified as predictive markers [14]. Calabrese et. al.
performed equipment failure prediction from event log data based on the SOPHIA
architecture, which is an event-based IoT and machine learning architecture for PM
in Industry 4.0 [15]. Aivaliotis, Georgoulias and Chryssolouris investigated PM for
manufacturing resources by utilising physics-based simulation models and the DT
concept [16].

This research aimed to approach PM based on an open-source event processing
platform and allow for the accurate prediction of time to failure to increase machine
availability. Data-driven models are accompanied by a machine learning library
and the DT concept to analyse the components of a machine’s health status. The
DT enables the platform under study to be a PM system, rather than a predictive
analytics system. The DT concept used together with the open-source event-driven
platform is detailed in [6], and the DT developed together with the platform is
presented in [2].

Maintenance approaches that can monitor equipment conditions for diagnostic
and prognostic purposes can be grouped into three main categories: statistical,
artificial intelligence, and model based [17]. The model-based approach requires
mechanical and theoretical knowledge of the equipment to be monitored. The
statistical approach requires a mathematical background, whereas, in artificial
intelligence, data are sufficient; thus, despite the challenges in the data science
pipeline (data understanding, integration, cleaning, etc.), the last approach has been
increasingly applied in PM applications.
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In this study [18], the authors defined three types of PM approaches: (1) The
data-driven approach, also known as the machine learning approach, uses data;
(2) the model-based approach relies on the analytical model of the system; and
(3) the hybrid approach, combining both methods. Dalzochio et. al. evaluated the
application of machine learning techniques and ontologies in the context of PM and
reported the application areas as fault diagnosis, fault prediction, anomaly detection,
time to failure, and remaining useful life estimation, which refer to the several stages
of PM [19].

According to [20], artificial neural networks (ANNs) are widely used for PM
purposes. Carvalho et. al. noted that random forest (RF) was the most used method
in PM applications [21]. Compared to the other machine learning methods in PM
applications, RF was found to be more complex and it took more computational
time [21]. In their review, the authors also noted that ANNs were one of the most
common and applied machine learning algorithms in industrial applications since
they were only based on previous data, requiring minimum expert knowledge, and
the need for coping with challenges of data science pipeline.

Another study [22] evaluated the performance of k-Nearest neighbour (kNN),
back-propagation feed-forward neural network (FFNN), DecisionTree, RF, support
vector machine (SVM), and naïve Bayesian and assessed the results for time-series
prediction. Rivas et. al. used the long short-term memory (LSTM) recurrent neural
network (RNN) model, another type of ANN capable of using memory, for failure
prediction [23]. Kanawaday and Sane discussed the use of autoregressive integrated
moving average to predict possible failures and quality defects [24]. They basically
used this method to predict future failure points in the data series for the diagnosis
of machine downtimes.

Another research [15] presented an architecture that used tree-based algorithms
to predict the probability of a failure where the gradient boosting machine generated
the models that obtained the best results for classification when compared to the
distributed RF models and extreme gradient boosting models. The use of deep
learning algorithms is another promising area in PM. In this context, [25] used
convolutional neural networks in performing the task of extracting features, and
[26] used deep neural networks to reduce the dimensionality of data.

4 Maintenance of Spiral Welded Pipe Machinery

Figure 3 presents the Spiral Welded Steel (SWP) pipe production process. The SWP
pilot of the COGNITWIN project is one of the six pilots that aims at enabling
predictive maintenance (PM) for the SWP machinery presented in Fig. 4. NOKSEL
is one of the use case partners of the COGNITWIN project [27]. The figure
shows the machinery used in NOKSEL’s facilities, and the process followed by
this machinery to produce steel pipes. With the Digital Twin-supported condition
monitoring platform, an infrastructure that aims to analyse the operational and
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Fig. 3 Spiral welded steel pipe process

Fig. 4 SWP Machinery and process for which PM is developed

automation data received from sensors and PLC/SCADA will be used for PM, which
will help increase the overall equipment performance.

In the steel pipe sector, operations run on a 24/7 basis. Due to the multi-step
and interdependent nature of the production process, a single malfunction in one of
the work stations can bring the whole production process to a halt. Thus, the cost of
machine breakdown is very high. Under the COGNITWIN project scope, the Digital
Twin is developed for the production process of Spiral Welded Steel Pipe machinery
(SWP). The goal is to make use of developed models and analyse multiple sensors’
data streams in real-time and enable predictive maintenance to reduce downtimes
by Digital Twins. The main targets to be achieved are:

• 10% reduction in energy consumption
• 10% reduction in the shifted average duration of downtimes



Data-Driven Artificial Intelligence and Predictive Analytics for. . . 307

A DT on NOKSEL’s production process of Spiral Welded Steel Pipes (SWP)
collects, integrates, and analyses multiple sensors’ data. CT will be built upon
DT with an aim to autonomously detect changes in the process and to know how
to respond in real time to the constantly changing scenario with minimal human
intervention. The first iteration of DT and CT systems will be an HT where human
input will be required to take action based on the CT system’s feedback. The
CT will have cognitive capabilities by using real-time operational data to enable
understanding, self-learning, reasoning, and decisions.

All the parameters in the first-order model are set as same as the real ones
and expert knowledge is integrated into the model for HT. The data collected
from the plant and the results of the simulation model are compared to ensure
consistency in an iterative process. The model is modified, and simulation is
repeated iteratively until the difference between the simulation results and the
data retrieved is negligible. The collected data are used to train machine learning
models and make predictions. In the next step, the predictions from the data-driven
model will be taken as the observation value of the hybrid algorithms to adjust the
theoretical values. The theoretical values coming from first-order models and data
coming from the digital platform will be fused by hybrid algorithms like Kalman
filtering and particle filtering algorithms.

In the NOKSEL pilot case, CT will introduce improved decision-making by
integrating human knowledge into decision-making process. The anomalies, alarms,
and early warnings of machine and system problems will be tackled by CT, and
the decision-making process will emulate the experienced human operator with an
embedded knowledge base. CT will augment expert knowledge for unforeseeable
cases on HT and DT. The human operator’s experience is added to process
knowledge model and physics-based models with parametric values as well as
thresholds and causality relations. Expert knowledge on the causes of breakdowns is
collected with the series of problematic operations and the initial causes that trigger
the successive reactions.

Data Analytics is deployed to extract knowledge from data. Machine learning
techniques are used for this purpose, and a machine learning library is built. In
the top layer, Data Visualisation and User Interaction, an advanced visualisation
approach is provided for improved user experience with low latency. In vertical
layers Cybersecurity and Trust is supported by IDS Security component and the
Communication and Connectivity layer is composed of REST API, Kafka [28],
MQTT [29], and OPC [30] components.

In Fig. 5, relevant components from the COGNITWIN toolbox have been used
in the creation of a DT pipeline for the Steel Pipe Welding. The platform is aimed
to be used for use cases where continuous availability, high performance, flexibility,
robustness, and scalability are critical.
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5 Components and Digital Twin Pipeline for Steel Pipe
Welding

The Digital Twin pipeline components are in the following mapped to the BDV
Reference Model of the Big Data Value Association [31], which serves as a common
reference framework to locate Big Data technologies on the overall IT stack. It has
been presented in Fig. 6 and detailed in BDVA SRIA [32].

Things, assets, sensors, and actuator (IoT, CPS, edge computing) layer contain
PLC as the main source of data, as well as the control units containing sensor data,
alarms, and states of assets. In the Cloud and High-Performance Computing layer,
the Big Data processing platform and data management operation are supported by
the effective use of a private cloud system and computing infrastructure. Docker
[33] is used here as a packaging and deployment methodology to easily manage the
variety of the underlying hardware resources efficiently.

To meet system needs, Data Management is handled to collect and store raw
data and manage the transformation of these data into the required form. The
protection of these data is handled via privacy and anonymisation mechanisms like
encryption, tokenisation and access control in the Data Protection layer. In the Data
Processing Architecture layer, an optimised and scalable architecture is developed
for the analytics of both batch and stream processing via SIMATIC and Spark [34]
stream processing. Data clean-up and pre-processing are also handled in this layer.

Fig. 6 The architecture aligned with BDVA Big Data Value Reference Model
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6 COGNITWIN Digital Twin Pipeline Architecture

The four-step Digital Twin pipeline also has a mapping to the technical areas in
the SRIDA for AI, Data and Robotics Partnership [45] as follows: Digital Twin
Data Acquisition and Collection relate to enablers from Sensing and Perception
technologies. Digital Twin Data Representation relates to enablers from Knowledge
and Learning technologies, and also to enablers for Data for AI. Hybrid and
Cognitive Digital Twins relate to enablers from Reasoning and Decision. Digital
Twin Visualisation and Control relate to enablers from Action and Interaction.
These four steps are described in more detail in the following.

6.1 Digital Twin Data Acquisition and Collection

IIoT refers to IoT technologies used in industry, and it has been the primary building
block of the systems facilitating the convergence and integration of operational
technology (OT) and information technology (IT) for gathering data from sites [35].
This section details the IIoT system used for data acquisition and collection.

Figure 7 shows the hardware topology of the previously existing system. With
the Digital Twin-supported condition monitoring platform to be developed, and
infrastructure that aims to analyse the operational and automation data received from
sensors and PLC/SCADA will be used for PM, which will help increase the overall
equipment performance.

The topology of the infrastructure established is shown in Fig. 7. Communication
between these two topologies is provided with the industrial communication
protocol PROFINET, and the two structures will communicate with each other. Data
required from the existing structure can be obtained using the existing controller.
Figure 8 presents the added hardware topology.

Fig. 7 Existing hardware topology



Data-Driven Artificial Intelligence and Predictive Analytics for. . . 311

Fig. 8 Added hardware topology

Fig. 9 Coupling of the PROFINET subnets with the PN/PN Coupler

The current PLC model used for process control is S7 300. The operation details
of the components; status information; process information, such as speed and
power; production details; and system alarms are kept on this PLC while the newly
added sensor data and alarms will be located in the S7 1500 PLC. The existing PLC
data will be transferred to the S7 1500 PLC through the PN/PN Coupler module,
allowing all data tracking to be carried out over the new PLC.

The PN/PN Coupler module provides the simple connection of two separate
PROFINET networks. The PN/PN Coupler enables data transmission between two
PROFINET controllers. The output data from one network becomes the input data
of the other. For data transfer, additional function blocks are not required and the
transfer is realised without latency. For the new sensors added to the system not to
affect the existing process, a new PLC is employed and the controls are implemented
over it. The communication structure between the PLCs is designed using the
PN/PN Coupler module as shown in Fig. 9.

PLC transmits the data it receives from the sensors to OPC, which then transfers
the data to the platform via MQTT. The received data is transmitted to Kafka, which
passes it on to the Cassandra [36] database to be stored for further processing or later
access.
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6.2 Digital Twin Data Representation

DT representation step follows the data acquisition/collection step. In this step, data
collected in the data acquisition step is stored in the information domain, and the
stored data is used by the business domain.

The data obtained from the sensors, such as temperature, pressure and vibration,
voltage, and current, are transmitted to MQTT over OPC in the first tier, and then
to Kafka in the JSON format. Apache Kafka is a data streaming platform developed
specifically to transmit real-time data with a low error margin and short latency.
Kafka achieves superior success in systems with multiple data sources, such as
sensor data, and reduces the inter-system load. It has an integration that can also
process Big Data coming from sensors operating at high frequencies.

Instant data received by Kafka is transmitted to the Python [37]-based server,
where the attribute extraction process begins. Incremental principal component
analysis (PCA), which is the most well-known method used in the Big Data flow,
applies PCA stages to the instantaneous data using data in a certain window range,
and thus large data that cannot fit into the memory can also be processed effectively.
PCA performs dimensional reduction by making the incoming high-dimensional
data low-dimensional, providing more accurate results for machine learning, and
therefore it is frequently used for categorisation problems.

A fully asynchronous communication structure with the event-bus method is used
for the transmission of data collected from the source with OPC. Data transmission
is provided in the JSON format. In the architecture managed based on Microser-
vices, Cassandra is used as the NoSQL database with a database presented as a
log file to users. Cassandra is a database that provides continuous availability, high
performance, and scalability. PostgreSQL [38], a relational database (RDBMS), is
used by the interface program that provides user interaction to display time-series
data in real time.

A total of 120 sensor values are monitored on the SWP machine to capture data
on temperature, vibration, pressure, current, oil temperature, and viscosity. A value
is taken every 10 ms from the vibration sensors, once every 100 ms from the current
sensors, and every 1000 ms from the temperature and pressure sensors plus alarm
and status fields. The SWP machinery has a total of 120 sensor values, 122 alarms,
and 175 status data which create 11 GB of incoming data in 1 day (24 h).

To organise the collected data in a Digital Twin structure, we have analysed
several emerging Digital Twin open source-initiatives and standards, as reported
in the COGNITWIN project survey paper “Digital Twin and Internet of Things-
Current Standards Landscape” [3]. Based on this, we have selected to use the
Asset Administration Shell (AAS) for further Digital Twin API development. AAS
was developed by Platform Industry 4.0, and similar to DT, AAS is a digital
representation of a resource [3]. Descriptions of AAS can be serialised using
JSON, XML, RDF, AutoML and OPC UA [39]. To realise COGNITWIN vision,
the AAS model and APIs are not sufficient. For COGNITWIN, the models and
the components using different technologies should be reusable. For this purpose,
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Fig. 10 An example pipeline created in Apache StreamPipes

it is decided to utilise Apache StreamPipes [40] for the IIoT. StreamPipes is
expected to provide an environment to host different models, components, and
services, and to orchestrate them. Figure 10 presents a sample pipeline generated
in Apache StreamPipes. As shown, MQTT data is retrieved by Kafka and stored in
the Cassandra database in a pipeline. The main purpose of the developed pipeline
is to create a path from sensory data to the neural network output, depicting the
state of the tool, through several pipeline elements. Besides, this pipeline triggers
notification when the value of a particular property goes above a certain threshold
and shows results. The below sample shows the pipeline elements regarding data
collection on data storage.

6.3 Hybrid and Cognitive Digital Twins

In the Machine Learning Library (MLL) module, different machine learning
algorithms are applied through the incremental PCA stage to detect anomalies.
Prediction results are produced using various machine learning libraries. First, is
Spark MLlib produced entirely by Spark, which uses Spark’s engine optimised for
large-scale data processing. Keras library utilises TensorFlow, and is used for deep
learning. The LSTM algorithm of this library is utilised. This open-source neural
network library makes it simpler to work with artificial neural networks through
its user interface facilities and modular structure. The Scikit-Learn [41] library is
another open-source machine learning library that contains several algorithms for
regression, classification, clustering. We used algorithms like RF, GBT, LSTM,
SVM, KNN and multi-layer perceptron (MLP) from Scikit-Learn library for data
modeling and prediction.

The MLL module is used for comparing the different machine learning models.
When setting up a machine learning model, it is difficult to predict which model



314 P. Unal et al.

architecture will provide the best results. The parameters that can affect the model
architecture are called hyper-parameters. For each machine learning algorithm used,
hyper-parameters tuning is performed by comparing the previously determined
success criteria and selecting the best result combination by looking at the results
obtained by testing possible combinations of the values of the hyper-parameters in a
certain range. For each ML algorithms used, in addition to different parameters, such
as precision, recall, F1 score, error detection rate, total training time, total test time,
average training time, Type 1 error, and Type II error were calculated and displayed
to the user. Besides, the user is offered a voting option for deciding the algorithm
to use. Selected graphical user interfaces of the application are provided in Fig. 6.
The application enables users to select the machine learning model for a given set
of data and then compares the output using graphical elements. For developing and
testing purposes, AML Workshop dataset from Microsoft [42] is used in the MLL
module.

Hybrid Digital Twin
The above-described platform is enhanced by DT, which contains two related
models: Data-Driven and Physics-Driven (first-order principal models); thus a
Hybrid DT is generated.

In the context of hybrid Digital Twins, Physics-Driven models can be beneficial
over the Data-Driven ones in many aspects, including but not limited to:

– Generating synthetic data in case of “data-poor” cases: A typical example is
training a ML pipeline for predictive maintenance. Meanwhile, very often, when
a machine is new, it does not have historical sensor data that can be used to train
a data-driven approach. When carefully designed, the virtual physics-based twin
can generate the needed supervised training dataset.

– Quality control of data-driven Digital Twin: When operating a critical infras-
tructure or asset, it is seen as a risky approach to fully rely on data-driven
approaches in taking real-time decisions. To mitigate such risks, it is possible
to build a control pipeline in which the physics-based model will be a controller
to the data-driven predictor. A broker needs to be designed to integrate the two
approaches in a seamless way.

On the other hand, data-driven models can be used to continuously calibrate
physics-based models. In fact, machine degradation, wearing of parts, environment,
and other factors impact the overall process performance over time. The state of
the practice is that an operator will manually recalibrate the control system when
a deviation is identified. Such manual operation can be replaced by setting a data-
driven model that will identify and calibrate critical process variables that will be
fed into a physics-based model that will optimise the process’s control system.

An example of first-order model tools we have is a DC motor, which is a
commonly used component. The motor is made of two coupled electrical and
mechanical models based on the governing equations from Newton’s second law
(v = R·i + L·di/dt + ve) and Kirchhoff’s voltage law (Te = TL + B·ω + JL·dω/dt)
where v is the voltage [V], i is the current [A], ve is the back electromotive force
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Fig. 11 Physics-based schematic of a DC motor (http://pubs.sciepub.com/ajme/4/7/27/)

Fig. 12 Synthetic data generation for Predictive Maintenance Pipeline

[V], ω is the angular velocity [rad/s], TL is the Load torque [Nm], JL is Load inertia
+ Rotor inertia [kg·mˆ2], ve = Kv·ω, Te = Kt·i, Kt is Torque constant [Nm/A],
Kv is the back EMF constant [V/(rad/s)], R is the Phase Resistance [Ohm], L is the
Phase Inductance [H], J is the Rotor Inertia [kg·mˆ2], and B is the Rotor Friction
[Nm/(rad/s)] (Fig. 11).

A hybrid Digital Twin for predictive maintenance of a DC motor is built using the
principles given above and the architecture given in Fig. 12. For the physics-based
model, the MATLAB environment has been used to model the physical elements of
the electric DC motor and related electric and mechanical components. Real data
has been obtained by means of real sensor data collected, but they are not with
enough failure cases to train an ML model. On the DC motor, the following sensors
have been installed (current, voltage, temperature, and vibration). The physics-based
model is being calibrated by comparing the measured data with the MATLAB
predicted one. Results show a qualitative similarity between the synthetic and the
sensors data. The models will later be added to the knowledge base by integrating
the cognitive elements into the model.

Cognitive Digital Twin
In the Steel Pipe Welding pilot case, CT will introduce improved decision-making
by integrating human knowledge into the decision-making process. The anomalies,
alarms, and early warnings of machine and system problems will be tackled
by CT, and the decision-making process will emulate the experienced human
operator with the embedded knowledge base. CT will augment expert knowledge
for unforeseeable cases on HT and DT. The human operator’s knowledge is reflected
to process knowledge and physics-based models with parametric values as well as

http://pubs.sciepub.com/ajme/4/7/27/
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thresholds and causality relations. Expert knowledge on the causes of breakdowns is
collected with the series of problematic operations and the initial causes that trigger
the successive reactions.

Cognition will be integrated to support Cognitive Digital Twins for learning,
understanding, and planning, including the use of domain and human knowledge
by making use of the ML algorithms, ontologies, and Knowledge Graphs (KG) to
capture background knowledge, entities, and their relationships. CT will bring life
cycle optimisation by reacting to early warnings and suggesting optimised predictive
actions to improve operational performance by optimising operational parameters
and enhance the utilisation of computing infrastructure and energy usage.

6.4 Digital Twin Visualisation and Control

This component contains dashboards suitable for sensor data, error detection, and
transfer of regular information obtained from data processing to the real-time status
monitoring system, and development of end-user applications.

Three.js, an open-source JavaScript library, was used to develop animated or non-
animated 3D applications that can be opened in the web browser using WebGL.
Three.js is supported by all WebGL-supported web browsers. In addition to Three.js
for visualisation of the Digital Twin elements, Solidworks [43] is used for 3D
visualisation.

For the web interface, the JSON data received with JavaScript have been parsed
and then transferred to PHP pages. In this communication, the post method has been
used in the requests sent with JavaScript. With the help of PHP, the information is
placed in HTML objects. Grafana [44] is used in the process of placing graphics
within the card object. Dynamic graphics created on Grafana are placed on cards in
iframe tags.

Sensor data on temperature, vibration, pressure, current, and oil temperature
are given in dashboards. Alarm and status information are provided as they occur.
Besides sensor, alarm, and status values, real-time monitoring of parameters like
pipe diameter, pitch angle, belt width, production speed, motor speed (RPM), energy
consumption, instant output power, pipe diameter, and wall thickness are visualised
in the dashboards.

7 Conclusions

This chapter has presented the Digital Twin Pipeline Framework of the COG-
NITWIN project that supports Hybrid and Cognitive Digital Twins, through four
Big Data and AI pipeline steps. The approach has been demonstrated with a Digital
Twin pipeline example for Spiral Welded Steel Pipe Machinery maintenance. The
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components used in this pipeline have also been mapped into the different technical
areas of the BDV Reference Model.

The COGNITWIN project has further five use case pilots which include also
other types of sensors, in particular for image and video analytics with RGB and
infrared cameras, and support for image analytics through deep learning, including
AI@Edge support through FPGA hardware. This includes also high temperature
processes for aluminium, silicon, and steel production and Digital Twin pipeline
support including analytics for nonlinear model predictive control combined with
machine learning.

Synergies between and combinations of different elements for hybrid Digital
Twin are now being further enhanced through the use of orchestration technologies
like StreamPipes and Digital Twin access APIs like AAS.

The COGNITWIN project is now proceeding with further Hybrid Digital Twins
in all of the six pilot cases, extending this also with cognitive element for self-
learning and control, for the establishment of a Toolbox with relevant and reusable
tools within each of the four pipeline steps. This will be further applied and
evaluated for the six pilot use cases of the project, including the steel welding pilot
described in this chapter.
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analysed not only for the monitoring of the processes but also for increasing their
robustness and efficiency. This chapter describes the solution, best practices, lessons
learned and guidelines for Big Data analytics in two manufacturing scenarios
defined by CRF, within the I-BiDaaS project, namely ‘Production process of
aluminium die-casting’, and ‘Maintenance and monitoring of production assets’.
First, it reports on the retrieval of useful data from real processes taking into
consideration the privacy policies of industrial data and on the definition of the
corresponding technical and business KPIs. It then describes the solution in terms of
architecture, data analytics and visualizations and assesses its impact with respect
to the quality of the processes and products.

Keywords Big Data · Self-service solution · Manufacturing · Die-casting ·
Maintenance and Monitoring · Advanced analytics and visualizations

1 Introduction

The manufacturing industry transforms material or assembles components to pro-
duce finished goods that are ready to be sold in the marketplace. The organizational
structure of manufacturing companies is very complex and involves many business
and operative functions with different roles and responsibilities in order to guarantee
efficiency at every level [1]. The fourth industrial revolution [2, 3] has initiated
many changes in the industrial value chain, transforming the shop floor, which is the
production part of the manufacturing industries. Companies are introducing process
equipment provided with several robots and digital tools. In this way, it is possible
to set and control processes in an automated manner that speeds up production
with a high level of accuracy [4]. Furthermore, large volumes of data are generated
every day that may be collected and analysed for increasing process robustness and
efficiency and building a technical cycle that reduces the consumption of energy and
material. However, despite the potential benefits offered by the exploitation of Big
Data, its usage is still at an early stage in many manufacturing companies [5].

Centro Ricerche FIAT (CRF) is one of the main private research centres in
Italy and represents Fiat Chrysler Automobiles (FCA) in European and national
collaborative research projects. In the context of the European Horizon 2020 I-
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BiDaaS project,1 CRF identified two use cases, in which complex datasets are
retrieved from real processes. By exploiting Big Data analytics in these two cases,
CRF aims to improve the process and product quality in a much more agile
way through the collaborative effort of self-organizing and cross-functional teams,
reducing costs due to further processing and predicting faults and unnecessary
actions. This requires solutions that will allow manufacturing experts to interact
with Big Data [6] in order to understand how to easily utilize important information
often hidden in raw data. In other words, the first best practice (1)2 is the correlation
between the value of Big Data technology and the skills of people involved in the
data management process. The I-BiDaaS approach follows this best practice and
develops a self-service [7] Big Data analytics platform that enables different CRF
end-users to exploit Big Data in order to gain new insights assisting them to make
the right decisions in a much more agile way.

The aim of this chapter is to demonstrate how advanced analytic tools can
empower end-users [8] in the manufacturing domain (see Sect. 5) to create a tangible
value from the process data that they are producing, and to identify a number of best
practices, guidelines and lessons learned. For future reference, we list here the main
best practices with the identified guidelines and lessons learned, while they will be
discussed in detail throughout the chapter:

• The correlation between the value of Big Data technology and the skills of people
involved in the data management process with the involvement of different
departments belonging to the same or different organizations in order to extract
the value of all data collected from several sources and levels (breaking data
silos).

• The alignment of the Big Data requirements with the business needs and
the definition of appropriate experiments with the identification of Big Data
technologies most suitable for the specific identified business requirements.

• The management of the type of data generated with the identification of the types
of data useful for the analysis, their anonymization and generation of synthetic
data in parallel with the process of data anonymization.

• The development of a solution that satisfies Big Data requirements of specific
use cases by mapping the identified functional and non-functional concerns into
a concrete software architecture with the development of Advanced Visualization
tools for showing high-value Big Data analytics solutions for domain experts and
operators.

The remainder of this chapter is organized as follows. Section 2 describes
the process followed for the identification of the Big Data requirements in the
manufacturing sector and demonstrates how it was applied to elicit the requirements
of the CRF use cases, which are imposed the design of the I-BiDaaS Big Data

1 http://www.ibidaas.eu/
2 As explained below, we identify throughout the chapter several best practices for the application
of Big Data analytics in manufacturing.

http://www.ibidaas.eu/
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solution. Furthermore, CRF requirements guide the definition of the experiments
for assessing the developed system, described in Sect. 3. The architecture of the
I-BiDaaS solution is described in Sect. 4. Finally, Sect. 5 reports on the lessons
learned, challenges and guidelines reflecting the experience of the I-BiDaaS project.
Section 5 also provides the connection of the described work with the Big Data
Value (BDV) reference model and its Strategic Research and Innovation Agenda
(SRIA) [9]. Finally, Sect. 6 concludes the chapter.

2 Requirements for Big Data in the Manufacturing Sector

Alignment between business strategy and Big Data solutions is a critical factor for
achieving value through Big Data [10]. Manufacturers must understand how the
adoption of Big Data technologies [11] is related to their business objectives in
order to identify the right datasets and increase the value of the analytics results.
Therefore tailoring Big Data requirements to the business needs is the second best
practice (2) reported in this chapter.

In more detail, the I-BiDaaS methodology for eliciting CRF requirements draws
on work in the area of early Requirements Engineering (RE), which considers
the interplay between business intentions and system functionality [12, 13]. In
particular, the requirements elicitation followed a (mostly) top-down approach
whereby business goals reflecting the company’s vision were progressively refined
in order to identify the user requirements of specific stakeholder groups (i.e.
data providers, Big Data capability providers and data consumers). Their analysis
resulted in the definition of system functional and non-functional requirements,
which describe the behaviour that a Big Data system (or a system component)
should expose in order to realize the intentions of its users. This process was
facilitated by the use of appropriate questionnaires. In the cases that information on
the requirements was available (either collected in the context of the project setup
phase, or identified through a review of related literature [10, 14]), this was used
to partly pre-fill the questionnaires and minimize end-users’ effort. Evidently, users
were asked to check pre-filled fields and ensure that documented information was
valid and accurate.

Table 1 gives a summary of the CRF requirements. Although it provides only
an excerpt of the elicited CRF requirements, it demonstrates the application of the
I-BiDaaS way-of-working in the CRF use cases.

In more detail, the strategic CRF business goal (R1) was refined into a number of
more operational business goals that need to be satisfied through Big Data analytics
(R3). In addition, a number of relevant KPIs (R6) were defined that can be used to
assess the proposed solution (see Sect. 3). Continuing, at the user requirements level,
requirements were described in terms of the characteristics of different data sources
that are planned to be used (requirements R7 and R8), the analytics capability of
the proposed solution envisaged (R9) and the different interface requirements of the
end-users that will consume the analytics results (R10–R12). Finally, analysis of
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Table 1 CRF Big Data requirements

Business requirements
R1 Improve and optimize business processes and operations (business goal)
R2 Improve monitoring and maintenance of production assets (business goal)
R3 Improve decisions about production line re-planning based on the analysis of

maintenance data (business goal)
R4 Maintain efficiency (quality business goal)
R5 Cost reduction (KPI)
R6 Product/service quality (KPI)
User requirements
R7 Data is stored locally in the Manufacturing Execution System (data provider

requirement)
R8 Real-time data on the operating status of the machines is obtained from SCADA

sensors in real time (data provider requirement)
R9 MES and SCADA sensor data information will be combined and proceed to real-time

re-planning (Big Data analytics provider requirement)
R10 Line operators will only visualize the results (data consumer requirement)
R11 Data scientist will customize and then analyse data (data consumer requirement)
R12 Process manager will collaborate with the data scientist to decide on the action to

actuate as a consequence of the analysis (data consumer requirement)
System requirements
R13 The system should enable aggregation of both attribute level and transaction level data

coming from a variety of internal data sources and in multiple formats (FR)
R14 The system should support multilevel access control at resource and application level

(NFR)
R15 The system should enable near real-time re-planning (NFR)

the above user requirements resulted in the generation of the system requirements,
both functional (R13) and non-functional (R14 and R15). Although described in a
linear fashion, the above activities were carried out in an iterative manner, resulting
in a stepwise refinement of the results being produced. The complete list of CRF
requirements elicited is described in detail in [15].

Further to forming the baseline of the I-BiDaaS solution (see Sect. 4), these
requirements also assist the definition of experiments as described in Sect. 3.

3 Use Cases Description and Experiments’ Definition:
Technical and Business KPIs

The aim of experimentation is to assist stakeholders’ acceptance of any new
Big Data solution. The definition of appropriate experiments is thus another best
practice (3) reported in this chapter. In particular, the definition of CRF experiments
aims at evaluating and validating the I-BiDaaS solution and its implementation in
the context of CRF use cases. It follows a goal-oriented approach, whereby the
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experiment’s goal(s) towards which the measurement will be performed are defined,
then a number of questions are formed aiming to characterize the achievement of
each goal and, finally, a set of Key Performance Indicators (KPIs) and associated
metrics is associated with every question in order to answer it in a measurable way.

The definition of each experiment also involved the specification of the experi-
ment’s workload in terms of the use case datasets and type of analysis envisaged,
as well as the definition of the experimental subjects that will be involved in
the experiment, as reported in the following Sects. 3.1 and 3.2 that discuss,
respectively, the ‘Production process of aluminium die-casting’ and ‘Maintenance
and monitoring of production assets’ use cases.

3.1 Production Process of Aluminium Die-Casting

The ‘Production process of aluminium die-casting’ use case generates complex
datasets from the production process of the engine blocks. During the die-casting
process [16, 17], molten aluminium is injected into a die cavity, mounted in a
machine, in which it solidifies quickly. In this case, we have a large number of
interconnected process parameters that influence the flow behaviour of molten metal
inside the die cavity, and, consequently, the productivity and the quality [18–20].
Henceforth, the fourth best practice (4) is to identify the type of data generated.
Data collected from several sources can be disorganized and in different formats
and data may not be exploited.

In this use case, the data provided for the analyses consist of a collection of
casting process parameters, such as piston speed in the first and second phase,
intensification pressures and others. In addition to the process data, CRF also
provided a large dataset of thermal images of the engine block casting process,
under a hypothesis that there is a correlation among process data, thermal data and
the outcome of the process.

For the mentioned complexity of the process, it is important to not only carefully
design parameters and temperatures but also to control them because they have a
direct impact on the quality of the casting.

Analysis of the datasets aims to predict whether an engine block will be produced
correctly during the casting process in order to avoid further processing and scraps,
which would lead to financial savings for the manufacturers.

To test the efficiency of the I-BiDaaS solution in this context, an experiment
has been defined, as shown in Table 2. As seen in Table 2, the Business KPI
‘Product/service quality’ identified during requirements elicitation (see Sect. 2)
was further elaborated in order to define appropriate metrics (quality control levels
related to good and defective products) and to map it to appropriate indicators at the
I-BiDaaS solution level (execution time, data quality, cost).

For each KPI, a baseline value for evaluating the performance of the I-BiDaaS
solution has also been defined. For example, an increase of 2–6% of the quality
control level related to good products and a decrease of 1–4% and 0.05–2% of the
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Table 2 Overview of the ‘Production process of aluminium die-casting’ experiment

Experiment’s goals To test the efficiency of I-BiDaaS solution in the context of correlating
defects with the production process parameters.

Experiment’s questions Q1. What is the quality of the analytics results?
Q1.1 What is the accuracy of new models with respect to internal CRF
aluminium die-casting models?
Q2. How efficient is the process of data analytics?
Q2.1 How efficient is the performance of the analytics application
(algorithm)?
Q2.2 How efficient is the visualization of the analytics solution to
allow a quick intervention with specific actions?

KPIs Indicator Metric

Business level Product
quality

Quality control 1; Quality control 2; Quality control 3.

Application level Execution
time

Time to produce automated decisions

Data quality Accuracy of new models with respect to internal CRF
aluminium die-casting models

Platform level Cost Cost regarding personnel time spent on using the system
(for analysis process), e.g. time spent for data
anonymization

Experimental subjects
Quality assurance and control managers, data analysts, financial
administrators, infrastructure engineers, IT security personnel

two quality control levels related to defective products is sought in order to satisfy
manufacturers’ requests in terms of product quality.

3.2 Maintenance and Monitoring of Production Assets

In this use case, data have been retrieved from sensors mounted on several machines
(e.g. linear stages, robots, elevators) along the production line of vehicles. Many
related works are conducted in this field concerning, e.g., sensor applications in tool
condition monitoring in machining [21], predictive maintenance of industrial robots
[22] and assessing the health of sensors using data historians [23].

We focused on welding lines in which robots are used to assemble vehicle
components, and flexibility is required for the continual changes of the types of
components and vehicles. A data server gathers sensor data, which is categorized
into two different datasets, namely SCADA and MES. The SCADA dataset contains
production, process and control parameters of daily vehicle production and is
structured as in Table 3.

There are over 100 sensors and each one is identified by a specific number (id).
The other columns report on the value of the specific sensor, the unit of measurement
and the timestamp.
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Table 3 Structure of the dataset for the SCADA data

Id Value Unit Timestamp

Example 667 49.75 Mg 23/04/2018

Table 4 Structure of the dataset for the MES data

Date Time OP020.Passo20 modello_op_020

Format Date Hour Boolean Number
Example 06/10/2018 09:44:22 0 11

The MES dataset contains specific data associated with the type of vehicle being
produced and is structured as in Table 4.

When OP020.Passo20 changes from 0 to 1, a new vehicle enters into the area
provided with sensors and modello_op_020 indicates the model of the vehicle being
processed.

Analysis of this data aims at predicting unnecessary actions and the improvement
of the efficiency of manufacturing plants by reducing production losses. Once again,
an experiment has been defined in order to test the efficiency of the I-BiDaaS
solution in this context. The key points of the ‘Maintenance and monitoring of
production assets’ experiment are shown in Table 5. In particular, data was analysed
to obtain thresholds for anomalous measurements for all sensors. The fifth best
practice (5) is the building of a foundational database with the history of anomalies
that may help end-users to plan maintenance through prevision of asset failures only
when it is necessary.

As shown in Table 5, the business KPIs reported during requirements elicitation
were further elaborated to identify related metrics (Overall Equipment Effectiveness
(OEE) [24, 25] and maintenance costs [26]) and to map them on specific indicators
at the Big Data solution level (execution time, data quality and cost).

For each KPI, a baseline value for evaluating the performance of the I-BiDaaS
solution has been defined. For example, the prediction of unnecessary actions and
the improvement of the efficiency should reduce production losses and achieve
greater competitiveness of the company by an increase of 0.05% of the current
Overall Equipment Effectiveness (OEE) and a decrease of 50% in maintenance
costs.

4 I-BiDaaS Solutions for the Defined Use Cases

The final best practice (6) reported in the following sections relates to the
development of a solution that satisfies Big Data requirements of specific use cases
by mapping the identified functional and non-functional concerns into a concrete
software architecture [27]. In particular, the general requirements reported in Sect.
2 were further clarified, taking into consideration the specific context of each use
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Table 5 Overview of the ‘Maintenance and monitoring of production assets’ experiment

Experiment goals To test efficiency of I-BiDaaS solution in the context of anticipation of
maintenance events (alarm).

Experiment questions Q1. What is the quality of the analytics results?
Q1.1 What is the accuracy of new models with respect to internal CRF
models in use (geographical representation of the process)?
Q2. How efficient is the process of data analytics?
Q2.1 How efficient is the performance of the analytics application
(algorithm)?
Q2.2 How efficient is the visualization of the analytics solution to allow
the workers a quick intervention with specific actions?

KPIs Indicator Metric

Business level Product/
service
quality

Overall Equipment Effectiveness (OEE)
Job per Hour (JpH)

Cost
reduction

Maintenance cost

Application level Execution
time

Time to produce automated decisions

Data quality Accuracy of new models with respect to internal CRF
models

Platform level Cost Cost regarding personnel time spent on using the
system (for analysis process), e.g. time spent for data
anonymization

Experimental subjects
Quality assurance and control managers, data analysts, financial
administrators, infrastructure engineers, IT security personnel

case (described in Sect. 3), resulting in customized solutions per use case described
in Sects. 4.1 and 4.2.

For both use cases, data gathered from the production lines are sent to CRF,
where they are manipulated and masked. After the anonymization, data are sent
to the I-BiDaaS Platform, hosted in a Virtual Machine. This represents a bridge
between the I-BiDaaS infrastructure and CRF internal server, created by the I-
BiDaaS technical partners. The same bridge is used to send the analytics results
to the production plant end-users, as seen in Fig. 1.

Fig. 1 Flow of data and results
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4.1 Production Process of Aluminium Die-Casting

In this section, the architecture, data analytics, visualization and results for the
‘Production process of aluminium die-casting’ use case are described.

4.1.1 Architecture

Figure 2 shows the architecture of this use case, which consists of several well-
defined components. The Universal Messaging component is used for communica-
tion with most of the other components. To start with describing the data flow for this
use case, we first consider the dataset. Data is transferred from CRF’s internal server
to the I-BiDaaS platform server. Therein, the data is pre-processed and cleaned—
this step is important as the data needs to be prepared for model training and
inference tasks. Then, the data is given to the Machine Learning algorithm from
the I-BiDaaS pool of ML algorithms. In this use case, the model is a complex
neural network implemented in PyTorch3 and trained jointly from thermal images
and sensor datasets. The Machine Learning component outputs two results: training
metrics/results for visualization purposes—used in the Advanced Data Visualization
component—and the trained model used for inference. Both these results are
transferred through Universal Messaging. In the end, for inference purposes, the
Model Serving (Inference) Service component is used. In the initial phases of
development, before the real data is fully prepared (e.g. retrieved, anonymized, etc.),
the architecture uses realistic synthetic data for initial components development.
The use of synthetic data can make the development significantly more agile, but
is utilized with care and under a quality assurance process. For example, a final
trained ML model has to be delivered on real data. We refer to Sect. 4.1.5 for details
on realistic synthetic data generation and quality assessment.

4.1.2 Data Analytics

In this section, we describe in more detail the data analytics solution that corre-
sponds to the four respective modules in Fig. 2 (Data pre-processing, PyTorch neural
network model, Trained model and Training results) and that analyses the thermal
images and the sensors datasets.

Under the hypothesis that there is a correlation among sensor data, thermal
data and the outcome of the process, a further task is to classify combined image
and sensor data inputs to see whether the cast engine blocks are without any
production faults. Formally, data analytics here corresponds to an M-ary supervised

3 http://pytorch.org

http://pytorch.org
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Fig. 2 Architecture of the ‘production process of aluminium die-casting’ use case

classification task [28]. As the dataset involves image classification, for this task we
utilize Deep Convolutional Neural Networks [29].

We tried three approaches during this use-case analytics development regarding
the input data: unmodified thermal images, grayscale thermal images and raw sensor
data. For raw sensor data the thermal camera provides a matrix of values which is
the same dimension as the image, which when normalized provides very similar
(almost the same, depends on the normalization process) input to the grayscale
image from the computing standpoint. While the grayscale image and the raw
sensor data did have faster training times (one channel for convolutions versus
three for thermal images) from our experiments the thermal images gave best
accuracy/precision/recall metrics so we decided to keep using them. We suspect
that this is the case because modern neural network architectures we are using (e.g.
DenseNet [29, 30]) are optimized to work with coloured images (e.g. ImageNet
dataset [31]). The corresponding results are reported in Sect. 4.1.4.
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Fig. 3 Real-time aggregated results

4.1.3 Visualizations

The approach to visualize the die-casting process results in real time involves the
deployment of a number of constantly updated visualizations which offer a complete
overview of the results. These include the values of monitored sensor variables and
the final classification of the end products of the process.

We report here, as example, the Global Live Chart that allows end-users to
timely visualize the trend of the main parameters (e.g. velocity, pressure, standard
deviation, etc.) and to check the classification levels (Fig. 3).

4.1.4 Results

The models described in Sect. 4.1.2 were trained on both the original and the
newly balanced datasets. We favour the model trained on the balanced dataset as
it learns to recognize faulty engine blocks much better than the model trained on the
imbalanced dataset, even though the overall accuracy is lower—simply because we
have less faultless engines. In Fig. 4, we see the accuracies of both models on the
training and testing datasets (standard 80/20 split). The orange (top) line is the model
trained on the full dataset and the pink line is the model trained on the balanced
dataset4 [32].

4 Visualization with TensorBoard: https://www.tensorflow.org/tensorboard

https://www.tensorflow.org/tensorboard
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Fig. 4 Training and testing accuracy for the two joint neural network models: when trained on full
imbalanced data (orange line) and when trained on sub-sampled balanced data (pink line)

4.1.5 Synthetic Data Generation and Quality Assessment

An initial development of the use case solution was carried out with realistic
synthetic data. In parallel with the process of data anonymization, making data
structured, etc., it was useful to carry out a synthetic data generation for early
development stages with particular caution when extracting insights from synthetic
data.

The fabrication of synthetic data that exhibits similar characteristics and similar
distribution as the real data is a challenging task. The IBM Test Data Fabrica-
tion technology (TDF) was used for that purpose. TDF requires constraint rules
that model the relationships and dependencies between the data and leverages a
Constraint Satisfaction Problems (CSP) solver to fabricate data that satisfies these
constraints. The rules for the production of synthetic data were set by CRF with
the help of IBM. The correlation between the real parameters and the synthesized
parameters was further refined after reiteration of the data analysis.

For the initial evaluation of the synthetic data, we performed empirical and
analytical validations. The empirical technique consisted of delivering these data to
the expert production technicians, which were not able to indicate any difference
with the actual production data, as there was no distinguishing factor for them.
The second analytical technique was carried out by the CRF research team. They
used the K-Means algorithm [33] as their desired technique. Further evaluation
was carried out by IBM while striving to perform a qualitative generic evaluation
process for the real data compared with the fabricated data. This evaluation was
concerned with methods to judge whether the distributions of the fabricated data and
the original data were comparable, what is commonly referred to in the literature
as the general utility of the datasets. In addition to the general utility, IBM also
considered the specific utility, i.e. the similarity between the synthetic data and the
original data.

The propensity mean-squared-error (pMSE) [34] was used as a general measure
of data utility to the specific case of synthetic data. Propensity scores represent
probabilities of group memberships. If the propensity scores are well modelled, this
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Fig. 5 Results for 100 random sampling taken from the real and the synthetic data (5K datapoints
each) and the pMSE calculated using a logistic model

general measure should capture relationships among the data that methods such as
the empirical Cumulative Distribution Function (CDF) may miss.

The method is a classification problem where the desired result is poor classifi-
cation (50% error rate), giving better utility for low values of the pMSE.

Randomly sampling 5000 data points from the real and synthetic datasets, and
using a logistic regression to provide the probability for the label classification, we
were able to show that the measured mean pMSE score for the ‘Production process
of aluminium die-casting’ dataset is 0.218 with a standard deviation of 0.0017, as
shown in Fig. 5.

4.2 Maintenance and Monitoring of Production Assets

In this section, the architecture, data analytics, visualization and results for the
‘Maintenance and monitoring of production assets’ use case are described.

4.2.1 Architecture

Figure 6 shows the architecture, which consists of several well-defined components.
The Universal Messaging component is used for communication in most of the
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Fig. 6 Architecture of the ‘maintenance and monitoring of production assets’ use case

components. To start to describe the data flow, we start with the dataset. Data
are sent from CRF to the I-BiDaaS platform. There, the data is pre-processed
and prepared for model training with an outlier detection model. The outlier
detection model outputs two results: training results for visualization purposes—
used in the Advanced Data Visualization component, and the trained model used for
inference. Training results are transferred through Universal Messaging. In the end,
for inference purposes, the Model Inference Serving component is used. It is also
important to say that all the components use containerized (i.e. Docker5) backbone
from the Storage and Container Orchestration Service. Data is visualized and the
jobs are scheduled through the I-BiDaaS User Interface component.

4.2.2 Data Analytics

Data, described in Sect. 3, has been transformed into separate time series—one per
sensor so that each sensor can be monitored separately. Since the measurements
were not labelled (anomalous/non-anomalous), outlier detection algorithms arose

5 https://www.docker.com/

https://www.docker.com/
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as natural candidates for this use case [35]. We constructed an outlier detection
model for each of the time series. While more advanced algorithms can be used, we
adopted a simple, easy-to-implement and computationally cheap, yet here effective,
solution based on the Inter-Quartile Range (IQR) test. Results of these models could
be used for suggesting if a measurement is an outlier and for discovering the pairs
of sensors that have anomalous measurements at similar timestamps. Preparation of
these models was done using Python, and it consisted of the following steps:

1. For each sensor, obtain thresholds for anomalous measurements using a modified
interquartile range (IQR) test. Three different variants of IQR-like tests were
performed:

(Q1, Q3) ∈ {(5th, 95th), (10th, 90th), (25th, 75th)} where Q1 and Q3 are the
corresponding percentiles.

2. With obtained thresholds, filter the time series such that only anomalous
measurements were kept, as shown in Fig. 8.

3. Calculate the Dynamic Time Warping (DTW) [36] distance between outlier time
series.

4. Rescale distances to [0, 1].
5. Group pairs of sensors by the distance into groups:

[0, 0.1), [0.1, 0.2) . . . [0.9, 1].

Time series with anomalous measurements obtained in step 2 enabled us to see
the outlier trends for each sensor and to compare their behaviour. Comparison of
anomalous trends was made using steps 3, 4 and 5. If the distance obtained in step
5 is small, it means that two sensors output anomalous measurements in a similar
fashion. Therefore, if one of them fails, then the other sensor in the pair should also
be inspected. We present the distribution of sensors’ similarity in Fig. 9.

4.2.3 Visualizations

Data stemming from the aforementioned analysis are presented using a multi-step
approach that allows operators drill down to sensory data and detected anomalies in
an intuitive and easy-to-use way. Starting from a given month, operators then select
the category of sensors they wish to see and immediately have an overview of the
ones having anomalies detected, as shown in Fig. 7. Upon selection of a sensor,
operators see the anomalies detected during the selected month and can furthermore
select a specific day to see the actual values and therefore review the actual anomaly
that was detected, as shown in Fig. 8.

4.2.4 Results

The obtained boundaries (from step 2 in Sect. 4.2.2) could be used for daily analysis
of sensors and various visualization tasks, such as showing the number of anomalous
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Fig. 7 Sensor selection

measurements for the current day, as seen in Fig. 8, comparing the number of
outliers between two sensors for the given time window, etc., as shown in Fig. 9.

5 Discussion

Reflecting on CRF’s experience and all the work done within the I-BiDaaS Project,
this section develops several recommendations addressed to any manufacturing
company willing to undertake Big Data projects. This section also positions the
I-BiDaaS solution within Big Data Value (BDV) reference model and Strategic
Research and Innovation Agenda (SRIA).

5.1 Lessons Learned, Challenges and Guidelines

The I-BiDaaS project developed an integrated platform for processing and extract-
ing actionable knowledge from Big Data in the manufacturing sector. Based on the
challenges experienced and lessons learned through our involvement in I-BiDaaS,
we propose a set of guidelines for the implementation of Big Data analytics in the
manufacturing sector, with respect to the following concerns:

1. Data storage and ingestion from various data sources and its preparation:
In a production line deploying digital instruments, there are many devices
which setup operating values and adjust and control parameters during the
production processes. Depending on whether we want to act on the quality
of the production process or on the maintenance of the equipment, the first
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Fig. 9 Number of outliers between sensors

challenge is to understand how data will be ingested and managed from data
sources over time and who will be able to access them. Furthermore, this aspect
highlights the importance of breaking data silos by extracting the value of all
data collected from several sources and levels and may be necessary to involve
different departments belonging to the same or different organizations.

2. Data cleaning: A second important aspect is to understand which types of data
can be useful for analysis. This implies the importance of data cleaning in order
to identify incomplete, inaccurate and irrelevant parts of the generated dataset.

3. Fabrication of realistic synthetic data for experimentation and testing:
Data are strictly confidential, so another challenge is to decide how data

will be shared if external analysis is required. In this case, manufacturers
need to evaluate the possibility of fabrication of realistic synthetic data for
experimentation of the analytical models that will be developed and then to test
the same models with anonymized real data.

4. Batch and stream analytics for increasing the speed of data analysis: After
collecting and analysing data, it is necessary to understand which Big Data
technologies are most suitable for the specific identified business requirements.
Batch and stream analytics cover all aspects, which may occur in real-world
environments, including cases that require a deeper analysis of large amounts
of data collected over a period of time (batch) or those that require velocity and
agility for the events that we need to monitor in real or near-real-time (streaming).

5. Simple, intuitive and effective visualization of results and interaction capa-
bilities for the end-users: Advanced visualization tools which provide the
insights, value and operational knowledge extracted from available data need
to consider both expert and non-expert end-users (e.g. manufacturers, engineers
and operators)
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5.2 Connection to BDV Reference Model, BDV SRIA, and AI,
Data and Robotics SRIDA

The described solution for the defined manufacturing use cases can be contextual-
ized within the BDV reference model defined in the BDV Strategic Research and
Innovation Agenda (BDV SRIA). They contribute to the BDV reference model in
the following ways. Specifically, regarding the BDV reference model horizontal
concerns, we address:

• Data visualization and user interaction: By developing several advanced and
interactive visualization solutions applicable in the manufacturing sector, as
detailed in Sects. 4.1.3 and 4.2.3.

• Data analytics: By developing data analytics solutions for the two industrial use
cases in the manufacturing sector, as described in Sects. 4.1.2 and 4.2.2. While
the solutions may not correspond to state-of-the-art advances in AI/machine
learning algorithms development, they clearly contribute to revealing novel
insights and best practices on how Big Data analytics can improve manufacturing
operations.

• Data processing architectures: We develop architectures as shown in Figs. 2
and 6 that are well suited for manufacturing applications wherein both batch
analytics (e.g. analysing historical data) and streaming analytics (e.g. online
processing of the data that correspond to a newly manufactured engine) are
required.

• Data protection and data management: Real data were anonymized by CRF
that manipulated and masked them after they were retrieved from an internal
proprietary server.

Regarding the BDV reference model vertical concerns, we address the follow-
ing:

• Big data types and semantics: Our work here is mostly concerned with struc-
tured sensory data, meta-data and thermal images data (which corresponds to the
Media, Image, Video and Audio data types according to the BDV nomenclature).
The work also contributes to best practices in the generation of realistic synthetic
data from the corresponding domain-defined meta-data, as well as a systematic
way to assess the quality and usefulness of the generated synthetic data.

• Communication and connectivity: the work describes innovative ways to
communicate with and retrieve data from an internal manufacturing company
proprietary server, as described in Sect. 4 and outlined in Fig. 1.

Therefore, in relation with BDV SRIA, the I-BiDaaS solution contributes to the
following technical priorities: Data protection; Data Processing Architectures; Data
Analytics; and Data Visualization and User Interaction.

Furthermore, in relation to the BDVA SRIA priority areas in connection with
Factories of the Future with EFFRA, we address the following dimensions:
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(a) Excellence in manufacturing: advanced manufacturing processes and services
for zero-defect and innovative processes and products

(b) Sustainable value networks: manufacturing driving the circular economy
(c) Inter-operable digital manufacturing platforms: supporting an ecosystem of

manufacturing services

In more detail, CRF use cases have been selected in order to develop innovative
tools and solutions that may ensure better product quality towards zero-defect
manufacturing. In particular, the existing production lines may be improved to
maximize the quality of their product through the integration of solutions that
exploit Big Data technologies. A better process efficiency can result in energy saving
and cost reduction in the context of circular economy and allow manufacturers to
reach a high level of competitiveness and sustainability.

Finally, the chapter relates to the following cross-sectorial technology enablers
of the AI, Data and Robotics Strategic Research, Innovation & Deployment Agenda
[37], namely: Knowledge and Learning, Reasoning and Decision Making, and
Systems, Methodologies, Hardware and Tools.

6 Conclusion

The increasing levels of digitalization in the manufacturing sector contribute
to generate a large amount of data that often contain a high value of hidden
information. This is due to the complexity of real processes that require several
interconnected stages to obtain finished goods. Variables and parameters are set for
the operation of each digital machine and just like we assemble components, we
need to pull together data generated from different sources and levels if we want to
improve the quality of processes and products. I-BiDaaS developed an integrated
platform, taking into consideration how complex data can be managed and how to
help manufacturers who are not sufficiently enabled to analyse complex datasets, by
empowering them to easily utilize and interact with Big Data technologies.
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under a unified framework: the Boost 4.0 big data reference architecture and Digital
Factory Alliance (DFA) service development framework.

Keywords Data Visualization · Data Quality · Data Lake · Big Data Stream
Analytics · Brownfield · Trial · Predictive Maintenance 4.0 · Injection Moulding
4.0 · SUMA 4.0 · Intra-logistics

1 Introduction

The rapidly growing number of sensors, embedded systems and connected devices
as well as the increasing horizontal and vertical networking of value chains result in
a huge continuous data flow. In fact, the manufacturing sector generates more data
annually than any other sector in the EU or US economy, and the manufacturing
industry (83%) expects data to have a big impact on decision-making in 5 years.
As highlighted by the European data strategy [1], by 2025, we will experience a
530% increase in global data volume from 33 zettabytes in 2018 to 175 zettabytes,
and data will represent an economic value of 829 million AC in the EU27 economy
compared to the AC301 million that it represented in 2018 (2.4% of the EU GDP).

Big Data will have a profound economic and societal impact in the Industry
4.0 sector, which is one of the most active industries in the world, contributing to
approximately 15% of EU GDP. According to the World Economic Forum report
on Digital Transformation of Industry [2], Big Data is expected to take off in
the consumer market to a value at stake of over $600 billion for industry and
$2.8 trillion for society in improved customer service and retailing experience.
Moreover, the total value that companies can create in five key areas of data sharing
is estimated to be more than $100 billion. In fact, 72% of the factories consider
that sharing data with other manufacturers can improve operations and 47% find
enhanced asset optimization to be the most relevant application area. Big Data as
part of European Industrial Digitization could see manufacturing industry add gross
value worth 1.25 TAC—or more importantly suffer the loss of 605 BEUR in foregone
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value added if it fails to incorporate new data, connectivity, automation and digital
customer interface enablers and getting their digital manufacturing processes ready,
i.e. cognitive and predictive, in automotive engineering and logistics. The European
Commission foresees that advanced analytics in predictive maintenance systems
only could reduce equipment downtime by 50% and increase production by 20%.
Overall, only the top 100 European manufacturers could save around 160 BEUR
thanks to improved error-correcting systems and the ability to adjust production in
real time. Additionally, 10% production efficiency improvement can be realized in
top 100 EU manufacturers with an associated 265 BEUR gain for the industry.

Despite the big data promises, interestingly (1) only 3% of useful manufacturing
data is tagged and even less is analysed, (2) manufacturing industry are currently
losing up to 99% of the data value they capture since evidence cannot be presented
at the speed decisions are made and (3) only half of industry is currently using any
data to drive decisions with a much lower 15% of EU industry employing Big Data
solutions as part of value creation and business processes.

Boost 4.0 [3] is a European lighthouse initiative for the large-scale trial of big
data-driven factories. The Boost 4.0-enabled Connected Smart Factory 4.0 vision
is one where digital design technologies enable short times to market, resources
are optimally planned, downtime is predicted and prevented, waste and defects
are eliminated, surplus production is minimized, machine behaviour is optimized
as conditions change and systems can make context-based ‘next best’ actions.
Connected devices in the factory report their status, giving operations personnel and
decision-makers access to real-time, actionable information. Wearable technology
tracks employee location and status in case of emergency. A global ecosystem of
partners ensures that specific parts are replenished based on automated, real-time
needs analysis. Data is at the heart of Industry 4.0, the experience economy and the
manufacturing digital transformation towards ‘servitised’ product service systems
and outcome-based digital business models; as opposed to traditional product
ownership business models. But the massively growing information flow brings little
value without the right analytics techniques.

Full adoption of a data-driven Factory 4.0 has been largely hampered by: unclear
ownership and access right definition in the data value chain; need to harmonise
cross-border heterogeneous flows of data; limited availability of open datasets
to feed industrial ecosystems; insufficient diffusion of advanced technologies to
preserve data confidentiality and privacy. All these issues, which broadly relate
to data sovereignty, remain largely un-addressed challenges by current Digital
Manufacturing Platforms solutions. The lack of such reference framework has the
following drawbacks:

• Manufacturing big data sets are highly heterogeneous in nature and are spread
across the product and factory lifecycles.

• Manufacturing big data is highly unstructured, hard to analyse and distributed
across various sectors and different stakeholders involved in the product and
factory lifecycles.
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• Data is usually duplicated across many digital manufacturing platforms and
systems (data multi-homing), thereby making it difficult to maintain ‘quality’
and updated data to base decisions upon.

• Data analysis necessarily implies a loose of control over the use of data from the
data owner since the transfer of data across digital platforms and enterprises is
mandatory for data consolidation and processing.

• Often valuable data is measured for real-time use in specialized systems, but not
stored for later processing or recorded in a way suitable for data collation across
individual systems.

• Data-driven decision support is slow and contextualization of information is
cumbersome and involves intensive manual operation on data sources.

• Data transactions (grant of data access rights, data transfer) are slow, mediated
and cumbersome.

• Machine- and shopfloor-generated data is usually not ready for sharing with
external stakeholders.

• Engineering, production, IT and IoT data remain as isolated silos that make costly
and complex the development of smart services on top of smart products.

In addition, Big Data will be exponentially created, processed and stored
in the coming years—see EU Data strategy projections above—but no single
infrastructure, let alone a single stakeholder, can do the job on its own. Boost 4.0
has addressed the lack of European and global standards and an Industry 4.0 big
data reference framework that ensures data sovereignty, while enabling the agile
and value-driven creation of ad hoc trusted data networks across currently isolated
consumer experience data, usage-context data, production and engineering data
‘clouds’ (Fig. 1).

1.1 Big Data-Centric Factory 4.0 Operations

Data-centric operations is one of the fundamental cornerstones of modern industrial
automation technologies and also one of the bases for decision-making and control
operation. While the use of statistical data analysis for control is well established,
recently the diffusion of big data methodologies added a new dimension, by
providing additional approaches to data-centric automation. A big data-centric
approach to Factory 4.0 operations opens the door to migration from an asset-centric
decision process towards truly real-time, predictive and coordinated multi-level
process centric decision processes. Such process-centric, holistic and integrated
data space for Factory 4.0 operations calls for significant improvements in speed,
flexibility, quality and efficiency (Fig. 2).

Within the Boost 4.0 project, pilots have leveraged Industrial Internet of Things
(IIoT), big data space technologies, advanced visualization, predictive analytics
and collaborative AI engineering and decision support systems for the benefit
of significant improved operations. As shown in Fig. 3, Boost 4.0 is consider-
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Fig. 1 Boost 4.0 ‘whole’ lifecycle digital thread synchronization big data challenge

Fig. 2 Boost 4.0 ‘process-centric’ data space connecting industrial things and platforms
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Fig. 3 Boost 4.0 manufacturing 4.0 processes supported

ing the development and evaluation of process-centric, data-centric, AI-powered
advanced manufacturing 4.0 processes. Boost 4.0 is considering a highly diverse
set of manufacturing 4.0 processes under a unified big data framework, ensuring
high portability and replicability. The manufacturing 4.0 processes supported by
Boost 4.0 range from light metal casting to augmented manual assembly, hot
stamping, metrology 4.0, hydroforming, autonomous automated assembly islands,
predictive maintenance, autonomous intra logistics and business network tracing,
high-precision lot-size machining, mass manufacturing injection moulding 4.0,
adaptive welding and spare part management customer services. Moreover, these
processes are implemented across a number of sectors (automotive, white goods,
high-end textiles, machine tool industry, ceramics, elevation, aero), thereby ensuring
that highly varied sectors are amenable to big data transformations. The interested
reader is referred to the additional chapters in this book for more details on the
manufacturing processes implemented.

These Boost 4.0 data-driven manufacturing processes are supported by advanced
big data technologies—e.g. data streaming, batch and predictive analytics, Machine
Learning (ML) and Artificial Intelligence (AI)—which are applied seamlessly
across the full product and process lifecycle (Smart Digital Engineering, Smart
Digital Planning & Commissioning, Smart Digital Workplace & Operations, Smart
Connected Production, Smart Service & Maintenance). Boost 4.0 has thereby lever-
aged a number of high-performance big data algorithms and platform features that,
as illustrated by the implemented trials, can deliver high impact and performance
improvements in factory operations; see Fig. 4.

The three Boost 4.0 lighthouse pilots that are presented in this chapter have intro-
duced into their processes new big data methodologies to optimize different aspects
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Fig. 4 Boost 4.0 big data algorithms and platforms

of the product lifecycle, from the production itself to the distribution of spares for
the after-sales services. In the next section, Philips present their Injection Moulding
Smart Operations & Digital Workspace, in which the Drachten premises pave the
way for a generic platform usable for the full fleet of injection-moulding machines
across Philips’ factories. Afterwards, the BENTELER Automotive lighthouse trial
is discussed, which deployed a big data platform for smart maintenance of industrial
assets, focusing on the example of a hydraulic press. A novel predicted structured
and effective approach toward assets’ failure management and synchronization with
higher level plant management system has been provided, where predicted failures
and estimated RUL are dynamically assessed in real time for their severity and
potential impact on the plant, evaluating their criticality in order to provide the
right recommendation for remedy actions. Next, the FCA trial is introduced. In
this use case, the focus is on the smart collaboration between mobile robots, more
specifically AGVs and laser machine. Finally, some conclusions are drawn.

This chapter relates mainly to the technical priorities Data Analytics and
Advanced Visualization and User Experience of the European Big Data Value
Strategic Research & Innovation Agenda [4]. It addresses the horizontal concerns
of analytics frameworks and processing, predictive and prescriptive analytics and
interactive visual analytics of multiple-scale data of the BDV Technical Reference
Model. It addresses the vertical concerns regarding the use of standards to facilitate
integration of data end-points from legacy and heterogenous systems and develop-
ment of trusted and sovereign data spaces across production sites and development
of third-party applications and services. The work in this chapter relates mainly, but
not only, to the Reasoning and Decision Making cross-sectorial technology enablers
of the AI, Data and Robotics Strategic Research, Innovation & Deployment Agenda
[5].
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2 Mass Injection Moulding 4.0 Smart Digital Operations:
The Philips Trial

2.1 Data-Driven Digital Shopfloor Automation Process
Challenges

Philips Drachten encompasses a large suite of highly automated processes used
during the manufacturing of electric shavers. Of these manufacturing processes,
injection moulding is of particular importance, as it is used during the fabrication of
plastic components for electric shavers. Injection moulding is a competitive market,
which makes it essential for Philips Drachten to continuously improve on quality,
production performance, and costs where this process is concerned.

All the plastic parts are manufactured on-site at Drachten, requiring approxi-
mately 80–90 moulding machines of multiple vendors, models and generations.
For large manufacturing sites, generalization is key to deploy data-driven solutions.
It is simply not feasible to develop a specialized solution for each machine in
the machine park. Thus, in this pilot our main challenge is to develop scalable
solutions.

Furthermore, specialized custom solutions do not yield a positive business case
in the case of moulding; plastic is relatively cheap, meaning that fall-off is not that
expensive. Building a solution per machine type would simply be too costly: the
time investment required to build these custom solutions is too high compared to
the potential annual savings. However, focusing on the fall-off rate of the entire
plastic-part-making departments and all such departments, the financial gains are
significant. By lowering the amount of time required to enable analytic capabilities
for each machine, we can transform it into a positive business case. This is why in
this pilot the focus has also been on developing general predictive maintenance and
process control solutions that are cloud-enabled and thus easily scalable.

Another challenge that has been tackled is the interaction of data-driven digital
processes with the current manufacturing processes and how data-driven decision
should be translated into actionable insights within production.

From a strategic standpoint, it is expected that the technologies developed using
data-driven processes can be developed into new autonomous modes of manufactur-
ing. Production customization has been made possible, implying frequent product
changeover and smaller batch sizes, so-called Innovative Big Data Cognitive
Manufacturing Processes. This pilot has deployed a series of technologies that
facilitate increased quality and productivity, while also investigating generalization
and scalability of these technologies in an industrial setting.
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2.2 Big Data-Driven Shopfloor Automation Value for Injection
Moulding 4.0

Philips Drachten wants to remain a pilot location for Industry 4.0-related activities.
The business experiences need to become more data driven, while the effort of
achieving this should reduce over time. Over the years, there have been data-driven
solutions demonstrated and implemented within production; however, they have
never been successful in scaling up nor maintaining those data-driven solutions,
as they have focused on special solutions for unique cases.

The data business process value lies in developing generic automated solutions
capable of scaling up across multiple injection moulding machines. A failure
prediction model is one example of a generic automated solution, which can be
applied for multiple machines and it results in reduction of fall-off rate and reduction
of machines’ downtime.

The application of Big Data and fact-based decision-making, along with seamless
connectivity in the manufacturing process, results in efficient ramp-up times
between different moulds, along with full traceability along the process chain
all the way to the customer. A new data collection and storage infrastructure
has been deployed to effectively integrate various types of data into a single
common repository. This includes state-of-the-art technologies like streaming,
edge computing and cloud computing in order to provide our operators with
actionable insights. The results of the data monitoring and machine learning
must be made available to process engineers, assembly line operators and data
scientists.

2.3 Implementation of Big Data-Driven Quality Automation
Solutions for Injection Moulding 4.0

To successfully implement Big Data solutions within the production process, an
architecture map was made for the pilot phase during Boost 4.0. From this pilot
setup, we identified the basic components and tested the concepts of connecting
machines to a ‘data collection’ platform. In addition, several technical elements
were identified that needed to be taken care of in order to build a fully scalable
platform for Philips’ injection moulding machines.

Although the eventual end goal is to prepare for a generic platform usable for
the full fleet of injection moulding machines across Philips’ factories, the final
architecture of this trial has been instantiated for the Drachten site only. This also
allows building an on-premise platform to manage all local data and consider
offloading and/or management connection to external platforms, e.g., the cloud
and/or the Industrial Data Spaces framework (IDS). The Drachten facility is a
so-called brown-field factory, which means we need to comply with the local
architecture as implemented. Philips has teamed up with two technology providers,
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Philips Research (PEN) and IMEC, to support the implementation. PEN has a long
heritage of pioneering innovation (inventions related to x-ray, optical recording, CD,
DVD, etc.), currently focusing on data-driven research and service orientation, and
IMEC is a world-leading research and innovation hub in nanoelectronics and digital
technologies, combining widely acclaimed leadership in microchip technology and
profound software and ICT expertise. Both technical partners (PEN & IMEC)
provided input on where to put their proposed solutions:

• Cloud connectivity using a custom-build gateway service (based on the
Microsoft Edge framework).

• Data broker to allow easy data acquisition for (historical) data, used for data
analysis and machine learning models.

• Machine learning models that use real-time and historical data for predicting
failures of machines.

• Dashboard (real-time) visualization of machine data, including pre-processing
and machine learning models deployed as services.

Boost 4.0 big data platforms and techniques (Fig. 6) comply with RAMI 4.0
Digital Factory Alliance (DFA) service development reference architecture and ISO
20547 Big Data Reference Architecture (see chapter ‘Big Data Driven Industry 4.0
Service Engineering Large Scale Trials: The Boost 4.0 Experience’ in this book).
Thus, it is possible to map into the Boost 4.0 Big Data Reference Architecture (RA)
[6] the Philips predictive quality architecture (Fig. 5).

The Boost 4.0 architecture is based on multiple (Big Data) IT solutions being
integrated via open APIs (Fig. 6). Some of which are essential and are part of
the backbone, while others are optional and extend functionality beyond the core
functionalities of the platform.

• Machine connector: Allow to acquire (time-series) data from the machine
controller. This is highly dependent on the machine interfaces available on
the equipment itself. Typical machine connectors include OPC(-UA), CodeSys,
Serial, Modbus, Canbus, EtherCAT, etc.

• Protocol translation: Translate an industrial protocol to another (open) standard.
In this case, this is done by KEPWARE [7] and transforms data to OPC-UA-
formatted data.

• Semantics injection: Make data understandable by adding semantic information
(standard names, units, location, source, etc.)

• Streaming data ingestion: Transform OPC-UA to JSON formatted data and put
them on a Kafka bus.

• Streaming data bus: A publish/subscribe enabled pipeline for real-time data
transport. In this case, the data is JSON, based on the JSON-Header-Body (JHB)
standard for industrial applications.

• Micro-service architecture for deployment of (Docker) containers (connected
to the data bus), usable for data (pre-)processing, data analysis and data visual-
ization.
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Fig. 5 Shopfloor automation trial mapping in Boost 4.0 big data reference architecture

• A data historian for long-term storage of time-series data. In the current version
this is handled by Inmation [8] (based on MongoDB) or by Azure Time Series
Insights (cloud storage, based on compressed JSON files in Parquet format).

• Data broker for providing different users with data from different sources in a
standardized format, used for analysis. It supports real-time connections and is
custom built.

• Data analysis is mainly taken care of by Python code (deployed in a container).
Depending on the solution, multiple packages are used (like Pandas, SciKit,
Keras, TensorFlow, etc.).

• Rancher solution to manage all micro-service containers from an easy-to-use
web interface.

• Open-source tools for visualization of (live) data, based on Web technology,
including Vue.JS, Quasar Framework, HTML, etc.).

2.4 Big Data Shopfloor Quality Automation Large-Scale Trial
Performance Results

The instantiation and deployment of the Boost 4.0 reference model and imple-
mentation of big data pipelines into the Philips Drachten factory has translated in
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Fig. 7 Shopfloor dashboards experience and advanced data processing tools

significant shopfloor performance improvements in terms of flexibility, efficiency,
quality and time to market. This is directly related to the ability to implement
advanced decision support dashboards that reduce decision-making time and allow
anticipating unplanned events, leveraging close to 10% production performance
improvements (Fig. 7).

The main quantitative efficiency achievements are summarized as follows:

• A 10% reduction in fall-off rate and a 9% reduction in downtime
• Increased availability of process parameters data available from every 20 minutes

to real-time information and increased number of parameters from 10 to ~80 per
machine per cycle

• Collected over 400k of individual shots in 5 months of injection moulding data,
which can be used to build more advanced models

• By automating the process of machine data end-point, increased and more
homogeneous data quality and decreased time needed for connecting a machine
to the ‘real-time’ platform from 2 weeks to around 4 h

• Reduction of 70% in the amount of (non)valuable and unnecessary control
actions by operators

The adoption of the Boost 4.0 universal big data pipeline has also translated into
increased quality of work in the shopfloor in the following way:

• Providing technicians with a more efficient tool for solving production issues and
becoming part of a better method for troubleshooting.

• Take wiser and more informed decisions based on facts, for instance avoiding
acquiring new machines by using the current machine park more efficiently.

• Better understanding of the current state of the art regarding IT, semantics and
machine Learning.
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• Better understanding of the time-related behaviour of the injection moulding
process.

• Use the pilot setup to showcase the value of digitalization to the management
board of Philips Corporate, in order to obtain their attention and support.

2.5 Observations and Lessons Learned

In the first year of the project, some basic interfaces were deployed on the shopfloor.
This provided valuable lessons on the exact requirements for deploying predictive
quality processes on the shopfloor.

As the main goal is to provide the operators with valuable insights, it became
clear that technology (IT) is only one part of the challenge. Working together with
operators and productions engineers quickly results in other challenges. With the
help of our partners, the technical implementation was built and deployed fast. It is
of crucial importance to keep ‘operations’ in the loop at all times.

Bringing IT solutions to the shopfloor (and essentially making them part of
the production system) also implies requirements that were not as visible at the
start of the project. These requirements must make sure operation can rely on
the performance as well as the availability of solutions, and include actions such
as training, coaching, providing support, but also continuously monitor solutions,
preferably 24/7. When these measurements are taken into consideration, the results
of the experimentations will already have a significant impact on the quality control
process.

3 Production Data Platform Trials for Intelligent
Maintenance at BENTELER Automotive

BENTELER is a global, family-owned company serving customers in automotive
technology, the energy sector and mechanical engineering. As an innovative partner,
it designs, produces and distributes safety-relevant products, systems and services.
In the 2019 financial year, Group revenues were AC7.713 billion. Under the man-
agement of the strategic holding BENTELER International AG, headquartered in
Salzburg, Austria, the Group is organized into the divisions BENTELER Automo-
tive and BENTELER Steel/Tube. Around 30,000 employees at 100 locations in 28
countries offer first-class manufacturing and distribution competence—all dedicated
to delivering a first-class service wherever their customers need it. BENTELER
Automotive is the development partner for the world’s leading automobile manu-
facturers. Around 26,000 employees and more than 70 plants in about 25 countries
develop tailored solutions for their customers. BENTELER Automotive’s products
include components and modules in the areas of chassis, body, engine and exhaust
systems, as well as solutions for electric vehicles.
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3.1 Data-Driven Digital Shopfloor Maintenance Process
Challenges

Intelligent, self-regulated maintenance is a key element in Industry 4.0. The
networking of machines and plants and the availability of machine data allows
continuous monitoring and evaluation of the health status of a production system
in real time. Failures and malfunctions can be detected or even foreseen at an early
stage, and measures to protect the functionality and performance of the production
system can be derived from them. The aim of Smart Maintenance is to increase
the performance of production technology, for example through increased plant
availability, optimized process quality and improved planning.

The basic technologies for Smart Maintenance solutions are already available.
Seventy per cent of machine and plant manufacturers are developing or piloting
Smart Maintenance offerings or already offer them [9]. Market-ready solutions
are offered in particular by component suppliers from the automation and drive
technology sector, as they can be transferred to a large quantity of systems.
Nevertheless, the application of Smart Maintenance in manufacturing is below
expectations, even though solutions for individual components are available: On the
side of machine operators, maintenance knowledge is required for a large number
of different machine types and systems. This know-how is hardly ever bundled,
documented or made available by means of standardized processes. According to
Acatech [10], 47% of German manufacturing companies record information on
malfunctions and failures only manually. Fifty-seven per cent of companies still
initiate measures without any data at all. Only 4% make decisions based on real-
time data.

The biggest challenge in developing a fault detection system is the availability of
fault data. Compared to the total amount of data available, failures and errors occur
only rarely. Many machine learning methods (especially so-called supervised learn-
ing methods) are therefore not or only partially applicable. Hence, mainly methods
of anomaly detection were used during the development. Thereby characteristics
for normal behaviour are derived from the signal courses in regular production
use. During operation, deviations from this normal behaviour are detected and
reported.

3.2 Implementation of a Big Data Production Platform for
Intelligent Maintenance in Automotive

The goal of the trial is the implementation of a global (cross-factory) system for
automated detection of failures and recommendations for actions in the context of
machine health monitors with notification and planning of actions (Fig. 8). The
availability of a platform for the storage and processing of production data is a
prerequisite for the implementation of such centralized intelligent maintenance in
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Fig. 8 Smart Maintenance Trial Factory: Solution modules from the systematic data connection,
data infrastructure and intelligent data processing are the basis for the successful implementation
of use cases (source: IEM)

production. As part of the Boost 4.0 project, BENTELER Automotive, the Fraun-
hofer Institute for Mechatronic Systems Design IEM and ATLANTIS Engineering
have built a Smart Maintenance pilot factory within the Leading-Edge Cluster it’s
OWL—Intelligent Technical Systems OstWestfalenLippe.

Solutions for different problem dimensions have been developed. In addition
to the technical infrastructure for industrial data analysis, the development of
data evaluation, process integration on the application level and the methodical
procedure for the implementation of Smart Maintenance have been analysed. The
maintenance of a hydraulic press, as well as a material handling system have
been considered as examples. The functional core of the pilot factory is the Smart
Production Data Platform. The platform operated by BENTELER IT fulfils three
central tasks:

• The central provision of current and historical production data
• The execution of data analysis such as error detection
• The visualization and return of results to the user

For data provision, the machine controls were connected by means of standard
interfaces (e.g. OPC-UA) and well over a thousand data sources have already been
tapped in the plant. Signal changes in the range of less than 1 s are recorded, so that
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several million data points are recorded and made available every hour. In addition
to real-time data, several years of historical data recordings can be accessed. These
are necessary for the development and testing of data analysis methods, such as
machine learning methods.

Dashboard usability and data interpretability are of prominent importance to
ensure effective data visualization and decision support experience. Standard
solutions like Grafana enable employees on the shopfloor to develop dashboards
and individual displays independently. Individual machine data as well as the results
of an anomaly detection are both available as data sources. The capability of the
workforce to easily create alarms has been introduced in the decision workflow.
The result is a significant time reduction in the response to unexpected events
or even anticipation to failures. These new features also allow that out-of-range
critical values or the frequent occurrence of anomalies can be reported immediately
and addressed effectively to allow reduction of unplanned breakdowns. For further
improvement of fault detection, employee feedback on the store floor by means of a
decision support system is installed.

The production data platform, see Fig. 9, complies with the modular approach
to Boost 4.0 big data pipeline development and open digital factory reference
framework. It deploys modern technologies for container management, which
allows the utilization of reusable software modules, for example for data provision,
error detection, reporting or visualization. The individual modules can be flexibly
combined to form new services, and a service can be transferred to another plant in
just a few steps. The error detection for material handling systems developed in the
Paderborn plant has already been tested in other BENTELER plants. The so-called
micro-service architecture allows the fast and flexible development, adaptation and

Fig. 9 Production data platform: A Smart Maintenance service accesses the provided data, uses
modules for data analysis and visualizes the results in a dashboard (source: IEM/ATLANTIS
Engineering)
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testing of smart maintenance solutions. At the same time, it provides a future-
proof architecture for other applications in production, such as process optimization
or Smart Quality. The platform is already being used in other OWL research
projects, for example ML4Pro [11]—Machine Learning for Production and its
products.

3.3 Big Data-Driven Intelligent Maintenance Large-Scale
Trial Performance Results

The implementation of the production data platform enables the deployment of
software solutions that take advantage of Industry 4.0 technologies. One example
is the Smart Maintenance Platform (SMP), which is able to monitor the machinery
equipment of potentially all the BENTELER plants that are connected to the
platform from a central remote location. Based on virtualization technologies, like
Docker, and utilizing a micro-service architecture, SMP is able to scale its resources
both vertically (e.g. adapt the system resources like CPU cores) and horizontally
(e.g. deploy more instances in parallel of the Anomaly Detection micro-service), in
order to cope with demanding data streaming scenarios.

Apart from the scalability challenge of the Big Data processing, SMP should also
address the transferability challenge, in order to enable its application in different
scenarios and use cases among the connected BENTELER plants. As already stated,
the supervised learning-based monitoring approaches require the existence of fault
data (i.e. machinery failures and errors), which in most of the crucial cases are rare
due to preventive maintenance. However, SMP offers a set of Fault Detection tools,
which utilize unsupervised learning approaches. Hence, only configuration over
the data-intensive training of the supervised approaches is required in order to be
applied. Of course, the great potential of the supervised predictive approaches is not
neglected, as Fault Prediction tools are also offered by the platform, once enough
fault data are collected by the Fault Detection tools and their training is feasible.

The performance of both the Fault Detection and Prediction approaches in terms
of Precision (i.e. TP / (TP + FP)), Recall ((TP) / (TP + FN)) and Accuracy (i.e.
(TP + TN) / (TP + TN + FP + FN)), where TP, TN, FP, FN are given by Table 1,
is of special importance.

Table 2, depicts indicative results for both Fault Detection and Fault Prediction
tools applied in the Paderborn plant analysing data of 1.5 years. The Fault Prediction

Table 1 The four outcomes of the data analysis tools

Actual case
Fault Normal

Predicted case Normal (False Negative) FN (True Negative) TN
Fault (True Negative) TP (False Negative) FP
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Table 2 Fault Prediction and Detection results of the Hydraulic Press and the Material Handling
use case in the Paderborn plant

Precision Recall Accuracy

Hydraulic Press use case Fault Prediction 0.5 1 0.93
Fault Detection 0.99 1 0.99

Material Handling system Fault Detection 0.93 0.95 0.99

was applied only in the Hydraulic Press use case as the behaviour of the Material
Handling System was unpredictable. The results of the prediction approach should
not be compared with the results from the detection approach as they are computed
differently; however, the low precision of the prediction shows the difficulty of the
approach to be trained properly as only three incidents occurred in 1.5 years.

Applying the Fault Prediction and Fault Detection tools to the Paderborn
production line has already shown promising results that have the potential to remain
at the same or even better levels, once the tools are adopted at a larger scale. The
key performance indicators of interest for BENTELER from the business point of
view are:

• Reduction in maintenance cost
• Reduction in MTTR (Mean Time To Repair)
• Increase in MTBF (Mean Time Between Failures)
• Increase in OEE (Overall Equipment Efficiency)

It should be mentioned that the application of the tools for certain equipment
has already indicated the possibility of reducing the MTTR by 30% and of at least
doubling the MTBF for certain types of failures.

3.4 Observations and Lessons Learned

The implementation of smart maintenance use cases posed not only technical
challenges, but also challenges in project organization, e.g. communication with
stakeholders within the company, knowledge management and its transfer between
stakeholders and acceptance of developed solutions. In terms of domain and data
understanding, using semi-formal models was a key to successful knowledge
transfer. Constructing easy-to-understand, interdisciplinary models in joint work-
shops also increases acceptance and awareness for the involved stakeholders. The
development of user-friendly and easily understandable dashboards allowed the
demonstration of benefit of the smart production platform at shopfloor level. The
utilization of reusable software modules facilitated the quick construction of a
solution and transfer to other plants.

The implementation of a production data platform has proven to play a central
role in the digitalization of BENTELER plants. It provides the basis for all data-
driven use cases and data-driven decision-making: transparency about individual



364 O. Lázaro et al.

production machines as well as extensive production processes, monitoring and
alerting, and advanced data analytics not only in smart maintenance, but also smart
quality and process optimization. The decision to invest in the implementation of a
production data platform thus is a complex matter, since it involves a comprehensive
benefit analysis that is difficult to quantify. It is a mostly strategic decision, setting
the roadmap for further approaches to factory operation and optimization.

4 Predictive Maintenance and Quality Control
on Autonomous and Flexible Production Lines: The FCA
Trial

4.1 Data-Driven Digital Process Challenges

The main challenges related to the pilot regard firstly the data management, starting
from their collection, which can be difficult because of the different sensing systems
implemented on the shopfloor production actors (e.g. accelerometers on AGVs and
power meter on the laser cells). The presence of heterogeneous devices means the
need to deal with specific communication protocols and different data acquisition
speeds.

Another aspect, linked to the previous one, concerns the possible speed mismatch
between production process, with the related data generation, and the information
flow. As a consequence, one of the main challenges consists in the reduction of this
time that has to be approximately equal to zero.

Then, an important challenge source is data protection, since security of the data
is a crucial element of the pilot as we are dealing with the industrial field and
especially with the production sector (e.g. production levels) and the quality sector
(e.g. level of default). In particular, the management of data exposition to external
providers on the cloud platform becomes very important, which necessitates careful
data subdivision.

An additional field of action is represented by the communication between the
industrial field and the cloud platform, because of the presence of security policies
regarding the data flow which have to be respected, and that could represent a strong
constraint for the pilot development.

Moving then to data utilization, the understanding, organization and use of the
expansive datasets made available in new and better ways pursuing data uniformity
and standardization across the entire product development lifecycle bring incredible
challenges for data exploitation.

Then, regarding the data processing and analytics, we have that the entire process
from the data acquisition, which sometimes could comprehend some edge pre-
processing in order to reduce the volume of stored data, to data transfer and cloud
analysis, in several cases has to be fast enough in order to enable near-real-time
process feedback.
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Finally, different challenges may come from the fields of data visualization and
user interaction, since several end-users are considered in the pilot, from operators
at the shopfloor level to maintenance operators at the information/operational
level.

4.2 Big Data Manufacturing Process Value in Autonomous
Assembly Lines in Automotive

The initial business scenario is about the implementation of the concept of
autonomous production, where the traditional linear process is removed and mobile
robots, such as Automated Guided Vehicles (AGVs); collaborative robots with
vision capabilities; and fixed production cells collaborate together. In the traditional
production processes, mobile robots have only duties related to logistics (e.g.
replenishment, preparation of components, etc.) or manufacturing (e.g. carrying
work in progress), and the control of fleets of such AGVs and their availability and
reliability to respect cycle time and lead-time is crucial to ensure the stability and
throughput of the production systems.

Planning, control, monitoring and maintenance of the mobile robots are required
due to the fact that currently there is no specific approach to store and analyse data
related to the missions of the vehicles, their wear-out and availability, taking into
account the lead time for delivery and the uncertainty related to the interaction with
the presence of human operators.

One of the main objectives is to ensure that the new technology is robust enough
to avoid business interruption (e.g. stock-out, unwanted waiting or idle time for the
machine), delays and reduction of throughput to transfer the autonomous production
to the rest of the plants.

The autonomous assembly line aims to provide the maximum flexibility to
potential changes in the demand or to issues/delays/changes in the logistics or
productive systems by means of using available and new datasets (such as flows of
components in the plants and their precise localization) ensuring business continuity.
At the same time, the over-dimensioned fleet of robots is reduced and the (big) data
are shared among the whole value chain (providers, maintenance services, etc.) (Fig.
10).

AGVs are used to replenish and handle material or work-in-process between
the different production islands, in particular the assembly and welding cells, and
to/from the warehousing areas. Production actors are connected to the different
production management platforms.

In the new scenario, production data coming from AGVs and laser cells are
collected and enriched using FIWARE technology. Then they are sent through
MindConnect technology and stored in a data lake on cloud provided by SIEMENS
MindSphere Platform.



366 O. Lázaro et al.

Fig. 10 FCA trial big data pipeline for autonomous assembly lines (AGV and Laser cells)

Different algorithms elaborate the production data in order to monitor the
quality of the produced components, detect malfunctions enabling the definition
of a maintenance schedule and optimizing the allocation of production missions.
Besides, the different data are made accessible to external service providers, in
order to enable the development of innovative applications based on proprietary
data. To this end, and to ensure data privacy and security, open data models have
been developed and IDS technology (e.g. IDS connector) has been implemented.

4.3 Implementation of Big Data Solutions

The pilot development began with a prototype application, which gathered sensors
data from an assembly cell, replenished by an AGV, located in the Campus Melfi
shopfloor. Data were collected from the machines to a central database, and they
were visualized by the prototype application through a dashboard.

Successively, it has evolved into an industrial experimentation site, which started
from the results provided by the prototype application in order to progressively
develop and test the complete pilot architecture. It began with a first phase, in
which data were gathered from different sources into MindSphere [12], which
implemented the IDS architecture [13] and has been structured on the basis of the
data sovereignty principles. The data sources were represented by an AGV owned
by FCA and located in the Melfi Campus, and a laser machine owned by PRIMA and
located within the Prima’s labs. MindSphere hosted on the cloud and data from the
shopfloor were exposed to external service providers. Specific APIs, called Mindlib
[14], were used to send data from the source systems (data provider) to MindSphere
Services Platform (data consumer). A datamodel has been created and used to set



Next-Generation Big Data-Driven Factory 4.0 Operations and Optimization. . . 367

Fig. 11 FCA Boost 4.0 Melfi Campus Experimental Site and several pilot production actors

up the platform, to be able to collect the data. A visualization App (MindApp)
displayed the data (Fig. 11).

Then, in the second phase a scenario of interaction between the robots (AGVs)
and the production cells (fixed machines from PRIMA) was implemented and
tested. Within this scenario, the manufacturing capability w granted by the correct
functioning of both the robots and the fixed machines. Three specific apps were
defined in the MindSphere environment and mostly the first two, the PRIMA
Fleet Management App which monitors the main parameters trends analysing and
correlating different types of data and the Smart Scheduling App which optimizes
the mission allocation to the different production actors, were developed. The
number of data sources from AGVs and Laser machines were widened and a DMZ
(demilitarized zone) was set up in CRF in order to permit the interface between the
industrial environment and MindSphere.

Lastly, during the third phase, the pilot was extended to the full industrial scale
and so the architecture was adapted to the final number of data sources and data
amount, the connector to the Fiware Orion Context Broker was developed and
inserted in the data flow system and an app for anomaly detection using data coming
the AGVs was finalized.

4.4 Large-Scale Trial Performance Results

The implementation of an Industrial IoT Data Space based on the MindSphere
platform has allowed FCA to develop a number of MindApps with the collaboration
of external service providers. This approach has delivered three big-data driven
innovative services that are currently being operated at the Melfi Campus:

• MindApp for production optimization
• MindApp for welding quality control
• MindApp for AGV anomaly detection (Fig. 12)

These three apps are significantly improving the performance and flexibility of
the autonomous assembly lines, adapting the production scheduling to real-time
sensitivity to production quality variation and asset maintenance needs to allow zero
unplanned breakdown.



368 O. Lázaro et al.

Fig. 12 MindApps dashboards developed by PRIMA and third-party developers at FCA Melfi
Campus Experimental Site based on the IIoT MindSphere industrial data space
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4.5 Observations and Lessons Learned

The pilot development and implementation presented some barriers that had to be
overcome. Regarding the software development, the main effort has been repre-
sented by the connectivity aspects. In order to make the applications work properly,
it was necessary to have data in the correct aggregation and format as required by
MindSphere. Therefore, the development of connectors and format converters was
the most expensive part, along with the coding and application deployment, in terms
of resources and effort. Moving then to the data flow architecture, the main issue
here was the choice and the development of a solution which allowed the exposition
of the industrial data to external partners avoiding to put in danger the security
of the entire company’s internal network. The identification and the development
of the solution, which consists in a Demilitarized Zone, required a huge effort in
collaboration with the IT and security departments in order to, on one side, respect
all the company policies and, on the other, meet all the project requirements that
would have led then to the development of the data transfer infrastructure.

5 Conclusions

This chapter has presented the advanced manufacturing processes and big data-
driven algorithms and platforms leveraged by the Boost 4.0 big data lighthouse
project that allow improved digital operations within increasingly automated and
intelligent shopfloors. It has demonstrated how three different companies have been
able to implement three distinct, open, yet sovereign cross-factory data spaces under
a unified framework, i.e. Boost 4.0 big data reference architecture and Digital
Factory Alliance (DFA) [15] service development framework. Philips has provided
evidence of the significant benefits that data spaces and integrated data pipelines
can bring to their Drachten brownfield production lines in terms of implemented
increasingly predictive quality control and fact-based automated decision support
processes. BENTELER Automotive, has equally demonstrated the benefits of a
modular and data-space approaches to deliver high cross-factory transferability
of smart maintenance 4.0 services from their factory in Padeborn, all based on
the use of advanced software containerization and virtualization as well as open
source technology for the implementation of data spaces and data pipelines. Finally,
FCA has demonstrated the benefits and challenges that the operation of Industrial
IoT data spaces supported by MindSphere entail to support the implementation
of flexible, modular autonomous assembly cells. FCA has demonstrated how the
implementation of such data spaces in their Melfi Campus facilities based on open
APIs allows not only a better integration of the shopfloor assets but also opens up
the opportunity for the development of high-value customized services and data-
driven apps that positively impact the performance of the digital shopfloor and
allow a more resilient and adaptive scheduling of production. The chapter has shown
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that maintenance performance improvements (main time between failures) can be
improved by 600%, overall equipment efficiency (OEE) by 14% and production
efficiency by 10%. These figures are close to those estimated by literature studies
and can be achieved by means of adopting a unified big data approach provided by
the Boost 4.0 reference model, the implementation of industrial data spaces and the
realization of advanced decision support dashboards that reduce the time to decision
and action data. Boost 4.0 has demonstrated that industry can cost-effectively
implement effective means for data integration, even in brownfield production lines
with significant legacy equipment.
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Abstract In the last few years, the potential impact of big data on the manufactur-
ing industry has received enormous attention. This chapter details two large-scale
trials that have been implemented in the context of the lighthouse project Boost
4.0. The chapter introduces the Boost 4.0 Reference Model, which adapts the
more generic BDVA big data reference architectures to the needs of Industry 4.0.
The Boost 4.0 reference model includes a reference architecture for the design
and implementation of advanced big data pipelines and the digital factory service
development reference architecture. The engineering and management of business
network track and trace processes in high-end textile supply are explored with a
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focus on the assurance of Preferential Certification of Origin (PCO). Finally, the
main findings from these two large-scale piloting activities in the area of service
engineering are discussed.

Keywords Reference architecture · ISO 20547 · ISO/IEC/IEEE 42010 · DIN
27070 · Sovereignty · Data spaces · Track & Trace · Blockchain · FIWARE ·
Virtual commissioning · Testbed · Trial · Business networks 4.0 · SUMA 4.0 ·
Intralogistics

1 Introduction

Over the last few years, the potential impact of big data for the manufacturing
industry has received enormous attention. However, although big data has become a
trend in the context of manufacturing evolution, there is not yet sufficient evidence
on how and if big data will leverage such impact in practical terms. New concepts in
the area of Industry 4.0 such as digital twins, digital threads, augmented decision
support dashboards and systems, and simulation-based commissioning systems
rely significantly on advanced engineering and operation of big data techniques
and technical enablers. The emergence of data-driven techniques to increase data
visibility, analytics, prediction and autonomy has been immense. However, those
techniques have been developed in many cases as individual efforts, without the
availability of an overarching framework making the transfer of such applications
to other industries at scale cumbersome. Moreover, the development of such big data
applications is not necessarily realized in context with reference architectures such
as the European Reference Architectural Model Industry 4.0 (RAMI 4.0), which
serves as reference in the sector for Industry 4.0 digital transformation. Big data
promises to impact Industry 4.0 processes at all stages of the product life-cycle.

The aim of this chapter is to present the advances made in the area of service
engineering and commissioning in the context of H2020 EU large-scale piloting
project Boost 4.0 [1]. It gathers the first set of experiences, best practices and lessons
learned during the deployment of the two lighthouse trials in the scope of the Boost
4.0 project: the most ambitious European initiative in big data for Industry 4.0. It
presents the experiences of two European manufacturing leaders (large industry and
SME) in the engineering and management at large scale of data-driven and traceable
intra-logistics and supply chain processes. Intra-logistic processes will be addressed
by the Volkswagen Autoeuropa (Portugal) plant in the automotive sector, whereas
supply chain business network engineering and management will be addressed by
the Italian SME Piacenza in the high-end textile sector. This chapter addresses initial
data value innovation elicitation and presents and assesses how a common RA can
be used to leverage advanced service engineering practices at large scale, as well as
lessons learned and impact evaluation.

This chapter relates mainly to the technical priorities Data Management Engi-
neering and optimized architectures for analytics of data-at-rest and data-in-motion
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of the European Big Data Value Strategic Research & Innovation Agenda [2]. It
addresses the horizontal concerns of heterogeneity, scalability and processing of
data-in-motion and data-at-rest of the BDV Technical Reference Model. It addresses
the vertical concerns of communication and connectivity, engineering and DevOps
for building big data value systems areas to facilitate timely access and processing of
big data and evolving digital twin models. The work in this chapter relates mainly
but not only to the Systems, Methodologies, Hardware and Tools cross-sectorial
technology enablers of the AI, Data and Robotics Strategic Research, Innovation &
Deployment Agenda [3].

The chapter is organized as follows: First the Boost 4.0 initiative is introduced
with a focus on the instantiation of the Boost 4.0 common big data-driven Reference
Architecture (RA). This RA is aligned with the big data RA proposed by Big
Data Value Association (BDVA) and harmonized with the Digital Factory Alliance
(DFA) overall digital factory open reference model. Next, the big data intra-
logistic process engineering trial and lessons learned at Volkswagen Autoeuropa are
introduced. Next, the engineering and management of business network track and
trace processes in high-end textile supply are presented with a focus on assurance
of Preferential Certification of Origin (PCO). Finally, the main findings extracted
from these two large-scale piloting activities in the area of service engineering are
discussed.

2 Boost 4.0 Universal Big Data Reference Model

Boost 4.0 (Big Data Value Spaces for Competitiveness of European Connected
Smart Factories 4.0) is the biggest European initiative in big data for Industry
4.0. With a 20 MAC budget and leveraging 100 MAC of private investment, Boost
4.0 has led the construction of the European Industrial Data Space to improve the
competitiveness of Industry 4.0. Since January 2018, it has guided the European
manufacturing industry in the introduction of big data in the factory, providing the
industrial sector with the necessary tools to obtain the maximum benefit of big data.

Since the beginning of the project, Boost 4.0 has demonstrated in a realistic,
measurable and replicable way an open, certifiable and highly standardized shared
data-driven Factory 4.0 model through 11 lighthouse factories, and has also
demonstrated how European industry can build unique strategies and competitive
advantages through big data across all the phases of product and process lifecycle.

2.1 Boost 4.0 Objectives

Boost 4.0’s overall mission is to accelerate the adoption of Industry 4.0 big
data-intensive smart manufacturing services through highly replicable lighthouse
activities that are intimately connected to current and future Industry 4.0 invest-
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ments, resolving the smart connected product and process data fragmentation and
leveraging the Factory 4.0 data value chain.

To accomplish this mission, Boost 4.0 has defined the following objectives:

• Global Standards: Contribution to the International Data Space data models
and open interfaces aligned with the European Reference Architectural Model
Industry 4.0 (RAMI 4.0).

• Secure Digital Infrastructure: Adaptation and extension of cloud and edge
digital infrastructures to ensure high-performance operation of the European
Industrial Data Spaces, i.e. support of high-speed processing and analysis of huge
and very heterogeneous industrial data sources.

• Trusted Big Data Middleware: Integration of the four main open-source
European initiatives (International Data Space, FIWARE, Hyperledger, Big Data
Europe) to support the development of open connectors and big data middleware.

• Digital Manufacturing Platforms: Opening of interfaces for the development
of big data pipelines for advanced analysis services and data visualization
supported by the main digital engineering, simulation, operations and industrial
quality control platforms.

• Certification: Development of a European certification programme for equip-
ment, infrastructures, platforms and big data services for operation in the
European Industrial Data Space.

2.2 Boost 4.0 Lighthouse Factories and Large-Scale Trials

In Boost 4.0, some of the most competitive factories, from three strategic economic
sectors that drive not only European manufacturing economy but also the IoT/smart
connected market development (i.e. automotive, manufacturing automation and
smart home appliance sectors) join forces to set up 11 lighthouse factories and 2
replication factories (Fig. 1) that are a coherent, complementary and coordinated big
data response to the 5 EFFRA Factory 4.0 Challenges, i.e. (1) lot size one distributed
manufacturing, (2) operation of sustainable zero-defect processes and products, (3)
zero break down operations, (4) agile customer-driven manufacturing value network
management and (5) human-centred manufacturing.

Boost 4.0 leverages five widely applicable big data transformations: (1) net-
worked commissioning and engineering, (2) cognitive production planning, (3)
autonomous production automation, (4) collaborative manufacturing networks and
(5) full equipment and product availability—across each of the five key product and
process lifecycle domains considered: (1) Smart Digital Engineering, (2) Smart Pro-
duction Planning and Management, (3) Smart Operations and Digital Workplace, (4)
Smart Connected Production and (5) Smart Maintenance and Service.
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Fig. 1 BOOST 4.0 big data driven lighthouse and replication factories 4.0

2.3 Boost 4.0 Universal Big Data Reference Architecture

One of the main ambitions of Boost 4.0 is to define and develop highly replicable big
data solutions to ensure the impact of the project beyond the project lifetime. One of
the main challenges Industry 4.0 faces when designing their big data solutions is first
of all to effectively address the design and development of high-performance big
data pipelines for advanced data visualization, analytics, prediction or prescription.
Then, the challenge lies in how to successfully integrate such big data pipelines in
the digital factory engineering and production frameworks. In this sense, to facilitate
the replicability of the lighthouse trials and big data solutions implemented, Boost
4.0 has relied on two reference models. On one hand, the BDVA Big Data Reference
Model (BD-RM) [4] to drive Industry 4.0 big data pipelines and process engineering
and operation. The goal of this RM is to ensure universality and transferability of
trial results and big data technologies as well as economies of scales for big data
platform and technology providers across sectors.

On the other hand, Boost 4.0 has developed and applied a RAMI 4.0 [5]
compliant Service Development Reference Architecture (SD-RA) for big data-
driven factory 4.0 digital transformation. This model is now maintained by the
Digital Factory Alliance (DFA) [6]. The goal is to ensure a perfect alignment
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between big data processes, platforms and technologies with overall digital transfor-
mation and intelligent automation efforts in manufacturing factories and connected
manufacturing networks.

As illustrated in Fig. 2, the Boost 4.0 BD-RA [7] is composed of four main
layers: Integration Layer, Information and Core Big Data Layer, Application
and Business Layers. This approach is aligned with the ISO 20547 Big Data
Reference Architecture—Big Data Application Provider layer—from Data Acqui-
sition/Collection through Data Storage/Preparation (and sharing) further to any
Analytics/AI/Machine Learning and also environmental Action/Interaction includ-
ing Visualization.

These four layers allow the implementation of a big data pipeline and the
integration of such pipelines in specific business processes supporting the Factory
4.0 product, process and service lifecycle, i.e. smart digital engineering, smart
digital planning and commissioning, smart digital workplace and operations, smart
connected production and smart servicing and maintenance. These four Boost 4.0
layers are supported by a set of transversal services, in particular data sharing
platforms, engineering and DevOps, Communications and Networking, Standards
and Cybersecurity and Trust. These layers enact the manufacturing 4.0 entities and
leverage a data 4.0 value chain that transforms raw data sources into quality data
that can be interpreted and visualized, providing mining and context for decision
support. This value chain is developed as data is aggregated, integrated, processed,
analysed and visualized across the Factory 4.0 layers (product, device, station,
workcentre, enterprise and connected world). The Boost 4.0 BD-RA adopts the
BDVA RM and adapts it to the specific needs of Industry 4.0.

However, the generic Boost 4.0 BD-RA needs to be articulated and instantiated
with the support of specific platforms, solutions and infrastructures so that the big
data-driven manufacturing processes can actually be realized. So, even if, as shown
in Fig. 2, the BDVA big data reference model can in fact be adapted to Industry
4.0 needs and aligned with the RAMI 4.0 model, a more formal harmonization
and integration of the BDVA RM is required to facilitate development of big
data services in the context of a digital factory exhibiting high transferability and
replication capabilities for big data-driven manufacturing processes. This is further
facilitated with the application of the DFA Digital Factory Service Development
RA (SD-RA), which ensures a broad industrial applicability of digital enablers,
mapping the technologies to different areas and to guide technology interoper-
ability, federation and standard adoption. The DFA SD-RA design complies with
ISO/IEC/IEEE 42010 [7] architectural design principles and provides an integrated
yet manageable view of digital factory services. In fact, DFA SD-RA integrates
functional, information, networking and system deployment views under one unified
framework. The DFA SD-RA address the need for an integrated approach to how
(autonomous) services can be engineered, deployed and operated/optimized in the
context of the digital factory. With this aim, the DFA SD-RA is composed of three
main pillars, as depicted in Fig. 3:
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1. Digital Service Engineering. This pillar provides the capability in the archi-
tecture to support collaborative model-based service enterprise approaches
to digital service engineering of (autonomous) data-driven processes with a
focus on supporting smart digital engineering and smart digital planning and
commissioning solutions to the digital factory. The pillar is mainly concerned
with the harmonization of digital models and vocabularies. It is this pillar that
should develop interoperability assurance layer capabilities with a focus on
mature digital factory standards adoption and evolution towards an “industry
commons” approach for acceleration of big data integration, processing and
management. It is this pillar where “security by design” can be applied both
at the big data, manufacturing process and shared data space levels.

2. Digital Manufacturing Platforms and Service Operations. This pillar sup-
ports the deployment of services and DMPs across the different layers of the
digital factory to enact data-driven smart digital workplaces, smart connected
production and smart service and maintenance manufacturing processes. The
pillar is fundamental in the development of three enabling capabilities central
to the gradual evolution of autonomy in advanced manufacturing processes,
i.e. multi-scale AI-powered cognitive processes, human-centric collaborative
intelligence and adaptive Intelligent Automation (IA). The enablement of both
knowledge-based (multi-scale artificial intelligence) and data-driven approaches
(collaborative intelligence) to digital factory intelligence is facilitated by the
support of service-oriented and event-driven architectures (interconnected OT
and IT interworking event and data buses) embracing international and common
standard data models and open APIs, thereby enabling enhanced automated con-
text development and management for advanced data-driven decision support.

3. Sovereign Digital Service Infrastructures. The operation of advanced digital
engineering and digital manufacturing platforms relies on the availability of
suitable digital infrastructures and the ability to effectively develop a digital
thread within and across the digital factory value chain. DFA SD-RA relies
on infrastructure federation and sovereignty as the main design principles for
the development of the data-driven architecture. This pillar is responsible for
capturing the different digital computing infrastructures that need to be resiliently
networked and orchestrated to support the development of different levels and
types of intelligence across the digital factory. In particular, the DFA SD-RA
considers three main networking domains for big data service operation; i.e.
factory, corporate and internet domain. Each of these domains needs to be
equipped with a suitable security and safety level so that a seamless and cross-
domain distributed and trustworthy computing continuum can be realized. The
pilar considers from factory-level digital infrastructure deployment such as PLC,
industrial PC or Fog/Edge to the deployment of telecom-managed infrastructure
such as 5G multi-access edge computing platforms (MEP). At the corporate
level, the reference architecture addresses the need for the development of IoT
Hubs that are able to process continuous data streams as well as dedicated big
data lake infrastructures, where batch processing and advanced analytic/learning
services can be implemented. It is at this corporate level that private ledger
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infrastructures are unveiled. Finally, at the internet or data centre level, the digital
factory deploys advanced computing infrastructures exploiting HPC, Cloud or
value chain ledger infrastructures that interact with the federated and shared data
spaces.

The DFA RA is aligned with ISO 20547 Big Data Reference Architecture. The
DFA Sovereign Digital Service Infrastructures pillar allows Boost 4.0 reference
model to additionally address the ISO 20547 Big Data Framework Provider layer.
The DFA RA is composed of four layers that address the implementation of the 6 big
data “C” (Connection, Cloud/edge, Cyber, Context, Community, Customization),
enables four different types of intelligence (smart asset functioning, reactive rea-
soning, deliberative reasoning and collaborative decision support) to be orchestrated
and maps to the 6 layers of the RAMI 4.0 (product, devices, station, workcentre,
enterprise and connected world), which target all relevant layers required for the
implementation of AI-powered data-driven digital manufacturing processes:

1. The lower layer of the DFA RA contains the field devices in the shopfloor:
machines, robots, conveyer belts as well as controllers, sensors and actuators
are positioned. Also in this layer the smart product would be placed. This layer is
responsible for supporting the development of different levels of autonomy and
smart product and device (asset) services leveraging on intelligent automation
and self-adaptive manufacturing asset capabilities.

2. The workcell/production line layer represents the individual production line or
cell within a factory, which includes individual machines, robots, etc. It covers
both the services, that can be grouped in two those that provide information about
the process and the conditions (IoT automation services), and the actuation and
control services (automation control services); and the infrastructure, typically
represented in the form of PLC, industrial PCs, edge and fog computing systems
or managed telecom infrastructures such as MEC. This layer is responsible
for developing reactive (fast) reasoning capabilities (automated decision) in the
SD-RA and leveraging augmented distributed intelligence capacities based on
enhanced management of context and cyber-physical production collaboration.

3. At the factory level, a single factory is depicted, including all the work cells or
production lines available for the complete production, as well as the factory-
specific infrastructure. Three kinds of services are typically mapped in this
layer: (1) AI/ML training, analytics and data-driven services; (2) digital twin
multi-layer planning services; and (3) simulation and visualization services.
The infrastructure that corresponds to this layer is the IoT Hubs, data lakes
and AI and big data infrastructure. This layer is responsible for supporting
the implementation of deliberative reasoning approaches in the digital factory
with planning (analytical, predictive and prescriptive capabilities) and orches-
tration capabilities, which combine and optimize the use of analytical models
(knowledge and physics based), machine learning (data-driven), high-fidelity
simulation (complex physical model) and hybrid analytics (combining data-
driven and model-based methods) under a unified computing framework. This
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leverages in the architecture collaborative assisted intelligence for explainable
AI-driven decision processes in the manufacturing environment.

4. The higher layer refers to the enterprise/ecosystem level, that encompasses all
enterprise and ecosystem (connected world) services, platforms and infrastruc-
tures as well as interaction with third parties (value chains) and other factories.
The global software systems that are common to all the factories (collaboration
business and operation services as well as engineering and planning services) are
supported usually by Cloud or HPC infrastructures. It is this layer that supports
the implementation of shared data spaces and value-chain-level distributed ledger
infrastructures for implementation of trusted information exchange and federated
processing across shared digital twins and asset administration shells (AAS).
This layer leverages a human-centric augmented visualization and interaction
capability in the context of data-driven advanced decision support or generative
manufacturing process engineering.

2.4 Mapping Boost 4.0 Large-Scale Trials to the Digital
Factory Alliance (DFA) Service Development Reference
Architecture (SD-RA)

This chapter aims to present two Boost 4.0 lighthouse trials that focus on the
engineering and process planification services, using big data technologies and
exploiting the digital twin capabilities to improve the overall production process
(Fig. 4). Each section corresponds to one trial:

Section 2 describes the trial that was deployed in Volkswagen Autoeuropa
Plant in Palmela (Portugal). This lighthouse factory has deployed a big-data-based
solution to plan intra-logistic processes, which fully integrates the material flow
from the unloading docks to the point of fit.

Section 3 introduces the Piacenza lighthouse trial, discussing how a business
network can be developed in the high-end textile sector with the support of
blockchain technology to guarantee traceability and visibility through the supply
chain.

3 Big Data-Driven Intra-Logistics 4.0 Process Planning
Powered by Simulation in Automotive: Volkswagen
Autoeuropa Trial

Volkswagen Autoeuropa (VWAE) belongs to an automotive manufacturing industry
located in Portugal (Palmela) since 1995 and is a production plant of Volkswagen
Group. VWAE plays a strategic role in the Portuguese automotive industry, as it is
the largest automotive manufacturing facility in the country and is responsible for



384 O. Lázaro et al.

F
ig

.4
M

ap
pi

ng
of

th
e

tw
o

se
rv

ic
e

en
gi

ne
er

in
g

tr
ia

ls
to

th
e

D
FA

SD
-R

A



Big Data-Driven Industry 4.0 Service Engineering Large-Scale Trials:. . . 385

around 10% of all Portuguese exportations. The plant employs around 6000 workers
and, indirectly, it employs close to 8000 people through the more than 800 suppliers
that provide materials, components and parts to the facility.

The goal of VWAE, within the Boost 4.0 project, is to take advantage of the
latest big data technology developments and apply them to an industry environment
with non-stop cycles and with high up-times. In the end, the desirable target is to
transform an environment overwhelmed with manual complex processes with one
that brings modular flexibility and automation.

The expected benefits with the implementation of a data-driven autonomous
warehouse would translate into financial benefits for the Volkswagen Group,
increase in flexibility (which is key specially during the introducing of a new model),
minimization of human dependency for manual operations and, thus, an increase in
the process efficiency. The automation and control of the process through a big data
architecture enables a business intelligence approach to the warehouse system. Tools
such as reporting, Digital Twin simulation, monitoring and optimization-support
offer the opportunity to analyse and improve the system with real-world big data.

3.1 Big Data-Driven Intra-Logistic Planning
and Commissioning 4.0 Process Challenges

Currently the logistics process is heavily reliable on manual processes and in
addition to that, the operation is performed inside the factory, where space is
limited. On the receiving area, trucks are traditionally unloaded by a manual forklift
operation, and then the unit loads are transported to the warehouse where they
will be stored either in shelves or block storage concept. System wise there is one
database to control the parts coming from each truck and then a separate database
which registers the unloading, transportation and storing of the material in the
warehouse.

Figure 5 represents the data silos used throughout the process to collect the
necessary logistics information. Besides the labour-intensive tasks within the logis-
tics at VWAE, the data silo-based architecture does not allow the monitorization
and optimization of the overall logistics process. Apart from the data silos for
receiving, unloading, warehousing and sequencing, there is a lack of information
about the transport operations between these phases in the process. Furthermore,
data is captured and collected manually, which contributes to loss of time in the
process and potentiates the existence of errors in the collected data.

Hence, the main challenge is to transform the siloed nature of data storage within
the logistics process to support a true big data architecture, from which valuable
insights can be extracted so as to optimize the whole logistics process and to aid
in the optimization and automation efforts within the logistics process at VWAE.
To achieve the transformation to a big data context, the integration of data present
in the various silos is of the utmost importance. Such data integration efforts will
enable the application of big data processing and analytics methods that will support
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Fig. 5 Intra-logistic silo-based system flow of current process

the capitalization on valuable insights within the process. Moreover, the envisaged
big data architecture will also form a basis for the development of a digital twin of
the logistics area, which will enable real-world simulation, testing and validation
of new automated solutions without the need for actual application in real-world,
ready-for-production scenarios.

The planning and commissioning of advanced intra-logistics 4.0 processes
therefore presents clear big data challenges in the velocity (real-time warehouse
data streaming), veracity (accuracy of digital twin simulations), variety (breaking
intralogistics information silos) and volume (data deluge) dimensions.

3.2 Big Data Intra-Logistic Planning and Commissioning
Process Value

The expected future scenario aims at achieving a full integration of the material flow,
from receiving up to the point of fit. Figure 6 shows the system flow integration as it
is foreseen in VWAE. The main objective of the VWAE trial is to eliminate human
intervention or at least reduce to a minimum at all phases from receiving up to the
point of fit.

In order to test and validate the future scenario, a recurrent issue was chosen as a
proof-of-concept: the issue of optimum stock in the logistics area. Due to the lack of
data-supported, informed decisions in the process of supply ordering, the logistics
area is often in a situation of overstock, meaning that there is always a surplus of
parts that goes beyond the envisaged safety stock. The safety stock exists to tackle
problems of parts’ delivery, due to transportation issues or other obstacles, such as
supplier shortfalls due to demand instability. Overstock has several consequences,
from overspending and time-in-shelf issues to more concrete problems, such as part
rejection due to its temporal validity.
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Fig. 6 System flow of data-driven intra-logistic 4.0 process

Hence, the chosen proof-of-concept was the overstock of batteries, since batteries
are perishable parts (they have temporal validity) and the overstock situations for
this type of part is a known problem and mitigating it represents real business value
due to the unit price involved.

3.3 Big-Data Pipelines for Intra-Logistic Planning
and Commissioning Solutions in Automotive

Figure 7 shows the general big data architecture and core open source big data
technologies that support most of data ingestion, processing and management work,
namely to efficiently gather, harmonize, store and apply analytic techniques to
data generated within the intra-logistics process. The use of big data technologies
with parallel and distributed capabilities is essential to address the processing
of large batch/stream data with different levels of velocity, variety and veracity.
Therefore, the architecture must meet requirements such as scalability, reliability
and adaptability.

The architecture is mainly split into four layers: Data ingestion layer, Data
Storage layer, Data Processing layer, and Data Querying/Analytics/Visualization
layer. For data processing and collection, Apache Spark [8] is used in conjunction
with the IDSA Connectors [9], enabling direct linkage with the IDSA Ecosystem,
while for big data storage, the chosen technologies were PostgreSQL [10] and
MongoDB [11]. Finally, for data querying and access, data analytics and data
visualization, the chosen tools were, respectively, Apache Hive [12], Spark Machine
Learning Library and Grafana [13].



388 O. Lázaro et al.

Fig. 7 Big data architecture for the VWAE trial

3.4 Large-Scale Trial of Big Data-Driven Intra-Logistic
Planning and Commissioning Solutions for Automotive

The large-scale trial connects the Visual Components simulation environment with
the suite of big data Analytics and Machine Learning tools, provided by UNINOVA,
in a bidirectional way, as shown in Fig. 8: First, big data and machine learning
technologies are used to aggregate real-time logistics operations’ data, perform
prediction over the data if needed, and send the results to the Visual Components
simulation environment. Then, after the simulation ends, analytics and machine
learning techniques are used in order to analyse key performance indicator data
returned by the simulation environment, in order to find patterns, anomalies or
possible points of optimization for future reference.

The 3D simulation environment replicates the trial scenario within the virtual
world, i.e. a digital twin. The real model provides the logistics process data, which,
after simulation, are validated with the current production outcomes. Once the
simulation scenario is validated, simulation data can be analysed to be reused in
the simulation to improve process performance and building the digital twin.

When the first version of the simulation, or digital twin, was developed, there
was a need to propose actual key performance indicators (KPIs) extracted from
the real logistics processes, focusing on the arrival and storage of batteries, with
the simulation itself. Several KPIs were selected, such as the number of batteries,
per battery type, in the warehouse and in the sequencing area at any given time,
the occupation percentage of workers in the several logistics steps and the overall
execution times of the different processes.

The first KPI to be validated in this phase was the reduction of truck arrivals, and
consequent decrease of battery palettes in stock. The reduction in KPI corresponds
to a decrease of 5% of the stock for the so-called high runners: the types of batteries
that are most used in the production line. So, the test was performed as follows:
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1. Real data corresponding to the truck arrivals, and to the usage of batteries in
production was injected into the simulation, via Orion Context Broker. From this
data injection, the Digital Twin produced a benchmark for the battery palettes’
arrival percentages and truck arrival times.

2. The selected KPI was to decrease the arrival of high-runner palettes by 5%, while
increasing the time interval between trucks, also saving in CO2 emissions and
direct costs for transport and stock, but maintaining the current production rates.
The percentages of arriving palettes were arranged so that there would be a cut of
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5% in the high runners while maintaining a total throughput/arrival of 100%. The
time between truck arrivals was also arranged in order to have bigger intervals.

3. Hence, an average decrease of 5% in the high runners’ arrival percentage, along
with an increase in the truck arrival time interval was simulated. The new values
showed that the battery stock was always above the level required, even with the
decrease of 5% arrival of batteries and the increase in the time interval between
truck arrivals.

4. Finally, a prediction model for the battery stock optimization was developed and
tested. The chosen model was an optimized long short-term memory (LSTM)
which is an artificial recurrent neural network model. This choice was made
because LSTM are reportedly very good at forecasting time series data and do
not require a lot of parameterization for multivariate datasets. Historical data was
used to estimate the possible optimizations.

In 2018, there were multiple cases of overstock of car batteries at VWAE. For
instance, in the case of the batteries, the warehouse was at least half of the time in
overstock situations and 25% of the time in severe overstock. The results showed
that a significant decrease in stock can be achieved, along with real benefits for
VWAE, financially, by cutting in stock costs, and environmentally, by reducing both
the number of truck arrivals and the occurrence of past-validity batteries.

3.5 Observations and Lessons Learned

The fusion between the big data architecture, developed in the Boost 4.0 project,
and the Visual Components simulation environment, in order to create a true Digital
Twin, was proven to be a crucial decision-support system, in the sense that it helped
relevant stakeholders at VWAE to better understand the limitations in the current
logistics process, but also to optimize critical aspects of this process, such as in the
case of the overstock situation.

Furthermore, the overall system is ready for full scale-up, since it is capable
of ingesting data from the whole logistics process, and for all the parts that are
necessary for automotive production. The system is also ready to simulate, in near-
real-world conditions, all phases of the logistics process, apart from the arrival of
trucks. Hence, it will be a powerful aid in achieving the future automation requisites
of VWAE, by enabling the simulation of new, automated and optimized scenarios
for the logistics processes.
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4 From Sheep to Shop Supply Chain Track and Trace
in High-End Textile Sector: Piacenza Business Network
Trial

Piacenza company is based in the Italian textile district of Biella, where all its
production is carried out, and is one of the oldest textile industries in the world,
founded in 1733 and from then on owned by the Piacenza family. Piacenza is one
of the few undisputed worldwide leaders in high fashion fabrics and accessories
production, with a competitive strategy focused on the maximum differentiation of
the product, in terms of raw material choice, style, and colour. Fabric production
includes more than 70 production passages or steps, which starts in the countries
of origin of the natural fibres used for fashion fabrics (cashmere, vicuna, alpaca,
mohair, silk, wool, linen, etc.) and can be summarized into three main changes of
material status: raw material ➔ yarn ➔ fabric.

High textile fabric production is characterized by an extremely high number of
product variables, deep customization, hardly predictable demand, length of pro-
duction cycle (60–90 days from raw materials to receipt), physical prototyping and
sampling, fragmented distribution and very small batches due to high customization.
The combination of these aspects leads to a very complex production, which must
properly balance the request of a very fast and demanding market with the length
and rigidity of a fragmented and long value chain.

4.1 Data-Driven Textile Business Network Tracking
and Tracing Challenges

The garment and footwear industry has one of the highest environmental footprints and
risks for human health and society. The complexity and opacity of the value chain makes
it difficult to identify where such impacts occur and to devise necessary targeted actions.
Key actors in the industry have identified interoperable and scalable traceability and
transparency of the value chain, as crucial enablers of more responsible production and
consumption patterns, in support of Sustainable Development.

—United Nations Economic and Social Council [14].

Textile and clothing play a significant role in climate change with 1.7 million
tons/year of CO2 emissions [15], 10% of substances of potential concern to
human health, 87% of the workforce (mainly women) gets below living wages.
Permitted by lowered cost, a garment is worn an average of 3 times in its lifecycle,
with 400 billion euros lost a year due to discarding clothes which can still be
worn, 92 million tons of fashion waste every year, 87% of clothes ending up
in landfills. In addition, the market for counterfeit clothing, textiles, footwear,
handbags, cosmetics, amounted to a whopping $450 billion per year—and growing.
The producers of these counterfeit goods, usually located in developing countries,
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do not adopt sustainable, circular and ethical models, and cause great harm to
European companies that are seriously committed to implementing them.

On the contrary, fashion and luxury consumers are becoming more and more
demanding with regard to sustainability of the products they are buying; 66%
of consumers are ready to pay more for products or services from companies
committed to sustainability [16]. But sustainability is only possible when supported
by production traceability, which demonstrates how and where the manufacturing
process is carried out. In addition, in recent years, duties have been increased as
the most evident aspect of international commercial turbulences. Since they are
calculated on the basis of the Preferential Certification of Origin (PCO), a proper
traceability of production is becoming mandatory to simplify the export procedures
and to address the increasing requirements of custom agencies.

4.2 Supply Chain Track and Trace Process Value

Traceability by blockchain technology provides all the information to support
informed purchase decisions of consumers, favouring real sustainable products.
We apply blockchain technology to build a shared tamper-proof ledger that tracks
the fabric manufacturing from source to sales. Our sheep to shop track and trace
blockchain-based solution records the transformation of raw materials into fabrics
and enables verification of EU PCO.

The expected impact is providing a complete and controlled set of information
to support the efforts of the Piacenza company in the field of sustainability,
environmental protection and ethical respect. The proposed solution leverages the
competitive positioning of Piacenza and its customers, by providing final consumers
with full provenance of items and documents. In addition, blockchain enables the
full visibility of textile manufacturing by a safe and not modifiable process, which
prevents the market from being affected by counterfeiting and unfair competition.

4.3 Distributed Ledger Implementation for Supply Chain
Visibility

The blockchain solution implemented in the Piacenza trial records all steps and
documents in the production process in a general way, storing documents hash on
the ledger (on-chain) and a reference to their physical location while assuring their
authenticity.

Figure 9 illustrates the main components of the supply chain visibility solution.
Real data flows from Piacenza’s ERP system through a wrapper so data can be
written to the blockchain ledger through a RESTful API. The wrapper extracts the
data from the ERP system in JSON format that matches the blockchain data model.
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Fig. 9 High-level overview of the solution

The wrapper also feeds a dedicated Web UI whose role is to show the provenance
of a specific selected item along with the corresponding documents as follows: The
UI feeds the data from the API wrapper. The wrapper has a recursive function to
retrieve every element in the chain. The recursive function calls the blockchain API
to retrieve the information. The same information stored in the blockchain is then
displayed in the UI. The PCO and other tracked documents information is displayed
in the UI with a link to download the document. In other words, for a selected
tracked item it graphically depicts its provenance and the (validated) documents
stored on the ledger. This web UI can serve all participants in the network to trace a
specific item and to check for specific documents (e.g., customs asking for a specific
PCO).

Figure 10 shows the main modules for our sheep to shop blockchain applica-
tion:

• Blockchain infrastructure: We apply Hyperledger Fabric [17] components. Our
data model consists of two primary entities: trackedItem and document.

• Smart contracts layer: Smart contracts (chaincodes in Fabric) embed the
business logic of the solution. Smart contracts functions are accessed through
the Hyperledger Fabric Client (HFC) Software Development Kit (SDK) in
Node.js.

– Query functions enable accessing and fetching information stored in the
ledger, including trackedItems and documents.

– Invoke functions include the possibility of creating trackedItems and docu-
ments, and connecting a new document to an existing trackedItem.

– Administration functions enable the management of the channels imple-
mented as well as basic functions such as enrolment and registration.
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• Blockchain apps: HFC SDK allows developing a blockchain client application
which can use the SDK to invoke smart contract functions. This client can serve
as a middle layer between frontend applications and the backend blockchain
platform by providing RESTful APIs to be used by frontend applications.

4.4 Observations and Lessons Learned

Our achievements include the blockchain backend (released to open source under
Apache v2 license [18]) and a (private) repository containing the dedicated code
developed for extracting data from Piacenza’s ERP system and enabling the display
of the provenance of items in the chain along with scripts, data and documents.
The trial has emulated a complete blockchain business network. Obviously, the
most natural way of extending and exploiting the results of the trial is by gradually
incorporating Piacenza partners to the business network (e.g. customs and buyers)
through the APIs provided. The provided blockchain backend is generic so this can
be done in a straightforward manner.

The more challenging part is, therefore, not the technical but the business one,
by defining a business model of onboarding, how to manage the network and how
to monetize the savings and costs of participating and managing such a network.
There are compelling evidences that show a great potential for this first trial solution
to be extended to a full production environment for a full transparent and trackable
solution towards a sustainable textile supply chain.
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5 Conclusions

This chapter has introduced two large-scale trials that have been implemented in the
context of the lighthouse project Boost 4.0. The Chapter has introduced the Boost
4.0 Reference Model, which adapts the more generic BDVA big data reference
architectures to the needs of Industry 4.0. The Boost 4.0 reference model includes,
on one hand, a reference architecture for design and implementation of advanced
big data pipelines and, on the other hand, the digital factory service development
reference architecture. Thus, Boost 4.0 can fully address ISO 20547 for Industry
4.0.

This chapter has demonstrated that the BDVA big data reference architecture can
indeed be adapted to the needs of the Industry 4.0 and aligned with an overall digital
factory reference architecture, where big data-driven processes will have to extend
advanced manufacturing processes such as smart engineering, smart planning and
commissioning, smart workplaces and operations, smart connected production and
smart maintenance and customer services. Such digital factory service development
architecture can indeed host and accommodate the needs of advanced big data-
driven engineering services.

The chapter has demonstrated that both intra-logistic process planning and
connected supply chain track and tracing can achieve significant gains and extract
significant value from the deployment of big data-driven technologies. The evolu-
tion from traditional data analytic architecture into big data architectures will enable
increased automation in simulation and process optimization. The combination of
Industry 4.0 data models such as OPC-UA, AML and IoT open APIs such as
FIWARE NGSI allows for dynamic and real-time optimization of intra-logistic
processes compared to off-the-shelve commercial solutions. Moreover, big data
architectures allow a higher granularity and larger simulation scenario assessment
for a high-fidelity intra-logistic process commissioning.

The use of open-source big data technology suffices to meet the challenge
of very demanding big data processes in terms of variety, velocity and volume
as the VWAE trial has demonstrated. This trial has also shown that digital twin
operations can be greatly improved if supported by advanced big data streaming
technologies, and the use of shared data spaces demonstrates the suitability of
such technologies to break information silos and increase efficiency and scale
up intralogistics processes. This chapter has also shown that distributed ledger
technology can be seamlessly integrated with distributed data spaces and support
business network traceability and visibility in the high-end textile sector (Piacenza
trial). The chapter has also provided evidence on how the extensive use of open
technologies, APIs and international standards can greatly support the large-scale
adoption and uptake of big data technologies across large ecosystems. The chapter
has provided compelling evidences that big data can greatly improve performance of
Industry 4.0 engineering services, particularly when development and exploitation
of digital threads and digital twins come into operation. The interested reader is also
referred and invited to browse the content in chapters “Next Generation Big Data
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Driven Factory 4.0 Operations and Optimisation: The Boost 4.0 Experience” and
“Model Based Engineering and Semantic Interoperability for Trusted Digital Twins
Big Data Connection Across the Product Life Cycle” focused on the Boost 4.0
lighthouse project; these chapters discuss how further trials have incorporated big
data technologies as part of the business processes for increased competitiveness.

This research is opening the ground for implementation of more intelligent,
i.e. cognitive and autonomous, intra-logistic processes. As the diversity of parts
considered and the autonomy in decision process increase, further research is needed
in terms of development of sovereign and large-scale distributed data spaces that
can provide access to the necessary data for AI model training beyond pure data
analytics and digital twin simulation. The Boost 4.0 big data framework calls for
further research on the development of federated learning models that can combine
highly tailored models matching and optimized to the specificities of the factory
layout with more general models that can be shared and work at higher levels of
abstractions; thus, speed and long-term planning can be combined in new forms of
autonomous shopfloor and supply chain operations.

Acknowledgements This research work has been performed in the framework of the BOOST
4.0 Big Data Lighthouse initiative, a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No. 780732. This data-
driven digital transformation research is also endorsed by the Digital Factory Alliance (DFA)
www.digitalfactoryalliance.eu

References

1. Boost 4.0 https://www.boost40.eu
2. Zillner, S., Curry, E., Metzger, A., Auer, S., & Seidl, R. (Eds.). (2017). European Big Data

Value Strategic Research & Innovation Agenda. Big Data Value Association.
3. Zillner, S., Bisset, D., Milano, M., Curry, E., García Robles, A., Hahn, T., Irgens, M., Lafrenz,

R., Liepert, B., O’Sullivan, B., & Smeulders, A. (Eds.) (2020) Strategic Research, Innovation
and Deployment Agenda - AI, Data and Robotics Partnership. Third Release. September 2020,
Brussels. BDVA, euRobotics, ELLIS, EurAI and CLAIRE.

4. Big Data Value Association. (2017). Strategic Research and Innovation Agenda v.4.0. Available
at: https://www.bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf

5. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik. (2015). Status Report: Refer-
ence Architecture Model Industrie 4.0 (RAMI4.0) (Vol. 0). https://www.zvei.org/Downloads/
Automation/5305. Publikation GMA Status Report ZVEI Reference Architecture Model.pdf.

6. Digital Factory Alliance (DFA). https://digitalfactoryalliance.eu/
7. D2.5 boost 4.0 reference architecture specification. Available at: https://boost40.eu/wp-

content/uploads/2020/11/D2.5.pdf
8. International Organization for Standardization. (2011). ISO/IEC/IEEE 42010. System and

Software Engineering – Architecture Description. Available at: https://www.iso.org/standard/
50508.html

9. Apache Spark. https://spark.apache.org/
10. International Data Spaces Association. (2019). Reference architecture model. Online. Avail-

able at: https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-
Architecture-Model-3.0.pdf

11. PostgreSQL. https://www.postgresql.org/

http://www.digitalfactoryalliance.eu
https://www.boost40.eu
https://www.bdva.eu/sites/default/files/BDVA_SRIA_v4_Ed1.1.pdf
https://www.zvei.org/Downloads/Automation/5305
https://digitalfactoryalliance.eu/
https://boost40.eu/wp-content/uploads/2020/11/D2.5.pdf
https://www.iso.org/standard/50508.html
https://spark.apache.org/
https://www.internationaldataspaces.org/wp-content/uploads/2019/03/IDS-Reference-Architecture-Model-3.0.pdf
https://www.postgresql.org/


Big Data-Driven Industry 4.0 Service Engineering Large-Scale Trials:. . . 397

12. MongoDB. https://www.mongodb.com/
13. Apache Hive. https://hive.apache.org/
14. Grafana. https://grafana.com/
15. Center for Trade Facilitation and Electronic Business, Economic Commission for Europe, UN.

(2019). Briefing note on sustainable textile value chains in the garment and footwear domain
For SDG12. [online] Geneva. Available at: https://undocs.org/pdf?symbol=en/ECE/TRADE/
C/CEFACT/2019/26

16. Center for Trade Facilitation and Electronic Business, Economic Commission for Europe,
UN. (2019). Report of the Centre for Trade Facilitation and Electronic Business on its
twenty-fifth session. [online] Geneva. Available at: https://www.unece.org/fileadmin/DAM/
cefact/cf_plenary/2019_plenary/ECE_TRADE_C_CEFACT_2019_02E_Report.pdf

17. NIELSEN. (2015). The sustainability imperative. New insights on consumer expec-
tations. Online. Available at: https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/
global-sustainability-report-oct-2015.pdf

18. Hyperledger Fabric. https://www.hyperledger.org/use/fabric
19. Available at: https://gitlab.com/boost4-piacenza/public-artifacts

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.mongodb.com/
https://hive.apache.org/
https://grafana.com/
https://undocs.org/pdf?symbol=en/ECE/TRADE/C/CEFACT/2019/26
https://www.unece.org/fileadmin/DAM/cefact/cf_plenary/2019_plenary/ECE_TRADE_C_CEFACT_2019_02E_Report.pdf
https://www.nielsen.com/wp-content/uploads/sites/3/2019/04/global-sustainability-report-oct-2015.pdf
https://www.hyperledger.org/use/fabric
https://gitlab.com/boost4-piacenza/public-artifacts
http://creativecommons.org/licenses/by/4.0/


Model-Based Engineering and Semantic
Interoperability for Trusted Digital Twins
Big Data Connection Across the Product
Lifecycle

Oscar Lázaro, Jesús Alonso, Roxana-Maria Holom, Katharina Rafetseder,
Stefanie Kritzinger, Fernando Ubis, Gerald Fritz, Alois Wiesinger,
Harald Sehrschön, Jimmy Nguyen, Tomasz Luniewski, Wojciech Zietak,
Jerome Clavel, Roberto Perez, Marlene Hildebrand, Dimitris Kiritsis,
Hugues-Arthur Garious, Silvia de la Maza, Antonio Ventura-Traveset,
Juanjo Hierro, Gernot Boege, and Ulrich Ahle

Abstract With the rising complexity of modern products and a trend from single
products to Systems of Systems (SoS) where the produced system consists of
multiple subsystems and the integration of multiple domains is a mandatory step,
new approaches for development are demanded. This chapter explores how Model-
Based Systems Engineering (MBSE) can benefit from big data technologies to
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implement smarter engineering processes. The chapter presents the Boost 4.0
Testbed that demonstrates how digital twin continuity and digital thread can be
realized from service engineering, production, product performance, to behavior
monitoring. The Boost 4.0 testbed demonstrates the technical feasibility of an
interconnected operation of digital twin design, ZDM subtractive manufacturing,
IoT product monitoring, and spare part 3D printing services. It shows how the
IDSA reference model for data sovereignty, blockchain technologies, and FIWARE
open-source technology can be jointly used for breaking silos, providing a seamless
and controlled exchange of data across digital twins based on open international
standards (ProStep, QIF), allowing companies to dramatically improve cost, quality,
timeliness, and business results.

Keywords Interoperability · Semantic data model chains · Industry commons ·
Model based design · IDSA · QIF · FIWARE · Pro-STEP · Digital twin ·
Digital thread · Testbed · Trial · Maintenance 4.0 · Metrology 4.0 · ZDM

1 Introduction

With a rising complexity of modern products and a trend from single products
to Systems of Systems (SoS) where the produced system consists of multiple
subsystems and the integration of multiple domains is a mandatory step, new
approaches for development are demanded. One of these approaches is Systems
Engineering (SE).

Systems Engineering is a transdisciplinary and integrative approach to enable the successful
realization, use, and retirement of engineered systems, using systems principles and
concepts, and scientific, technological, and management methods. (INCOSE) [1]
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To tackle this challenge Model-Based Systems Engineering (MBSE) has been
introduced.

Model-based systems engineering (MBSE) is the formalized application of modeling
to support system requirements, design, analysis, verification and validation activities
beginning in the conceptual design phase and continuing throughout development and later
life cycle phases. (INCOSE Technical Operations 2007) [2]

With the advent of Model-Based Definition (MBD) and Model-Based Engineering,
the 3D CAD model carries details for both human and machine interpretation,
taking legacy 2D drawings and practices and updating them to twenty-first century
evolutions leading to automation, AI, and improved products and cost savings. In
general, parametric modelling and optimization techniques supported by MBSE
methods contribute significantly to the process of building CAD simulations.
Several design parameters and probably density factors are taken into consideration
for simulation sequence. These simulations are very important in analyzing different
factors such as sensitivity, optimization, and correlation of the design or structure.
Moreover, the rapid growth of the Internet and wireless technology has led to an
influx of raw, unlimited data. Companies that are able to collect, analyze, and
execute upon internal data have become cultural and business revolutions, such as
Google, Facebook, and Amazon. As more industries refine their data, breakthroughs
in artificial intelligence, automation, Internet of Things, and predictive analytics
begin to showcase the influence of big data—especially the ability to connect
different data sets and provide actionables that can impact the bottom line and
society. Nearly a quarter of the way into the twenty-first century, while many
new industries are creating digital transformation and older industries embracing
it, today’s manufacturing enterprise is still stuck with last century’s practices and
mindset, especially when it comes to data that is disconnected and disorganized.
Though terms like Industry 4.0, Industrial Internet of Things, and Model-Based
Enterprise outline a fundamental need for digital transformation and a basic
understanding of its importance—for manufacturing, it is still more theory than
practice. And nothing highlights this better than the different data file formats used
from design to manufacturing. Additionally, many practical problems usually have
several conflicting objectives that need optimization.

Boost 4.0 [3] is the European lighthouse project that has trialed at large scale over
13 industrial leading factories, 40 business processes, and 7 manufacturing sectors a
unified standardized big data reference architecture, highly replicable advanced big
data solutions, and sovereign industrial data spaces for Industry 4.0. As the imple-
mentation of Boost 4.0 large-scale trials have evidenced, the real big data challenge
for Factory 4.0 does not lie just in the actual “storage of data or exchange of assets
across digital platforms” but primarily on the speed, transparency, and trustfulness
in which highly heterogeneous and multi-domain interoperable data networks can
be established and accessed, as well as the real-time synchronization of such data
networks across the many cross-sectorial big data lifecycles. In other words, the
ability to effectively support the implementation of cross-sectorial data value chains
along the product lifecycle and across connected factories; i.e., seamless “digital
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Fig. 1 Model-Based Systems Engineering (MBSE) BOOST 4.0 pillars for digital thread and
connected digital factories 4.0

threads” among connected designers, connected suppliers, connected machines,
connected boardrooms, connected products, and connected customers. To ensure
a unified approach and high replicability, within Boost 4.0 a number of pilots have
applied the model-based engineering paradigm, thereby enhancing the capability
for multi-objective optimization introducing machine learning and lightweight deep
learning architectures to address this issue taking into account significant production
features.

BOOST 4.0 is not just a project dealing with factories implementing isolated big
data processes. In fact, over the last few years, many Factories of the Future (FoF)
projects have already shown that Industrial Internet and big data can bring clear
business value to isolated factory operations. However, the connected smart Factory
4.0 is a paradigm shift towards optimizing how data and information are leveraged
across new value chains (becoming more integrated and more complex) with
interoperable digital manufacturing platforms as central to its vision. The connected
smart factory 4.0 pillars (see Fig. 1) integrate digital platforms and industrial things
and foster collaboration across factories and workforce. Factories 4.0 industrial
platform horizontal and vertical integration leads to E2E real-time business planning
with support of extended data availability and big data analytics for real-time
production scheduling, dynamic real-time inventory management based on demand
sensing, and production quality and maintenance automation and optimization.
Such competitive advantages for European factories can only be made possible
through industrial data model convergence at many levels, i.e., OT, IT, ET, and IoT
and a core capability in Industry 4.0 frameworks for big data and data analytics.

This chapter relates mainly to the technical priority Data Management Engineer-
ing of the European Big Data Value Strategic Research & Innovation Agenda [4]. It
addresses the horizontal concerns of semantic annotation, semantic interoperability,
and data lifecycle management of the BDV Technical Reference Model. It addresses
the vertical concerns of standardization of big data technology areas to facilitate data
integration, sharing, and interoperability. The work in this chapter relates mainly but
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not only to the Knowledge and Learning cross-sectorial technology enablers of the
AI, Data and Robotics Strategic Research, Innovation & Deployment Agenda [5].

This chapter will initially present in Sect. 2 the Boost 4.0 approach to big data-
driven smart digital model-based engineering. This section will also address how
such an approach has been realized in the Internet of Things Solutions World
Congress (IoTWC) [6] testbed. This testbed has been built to highlight the feasibility
of integrating model-based engineering methods with big data technologies and
Boost 4.0 European industrial data space technology to leverage digital twin and
digital thread continuity. Thus, the benefits of model-based engineering to improve
the interoperability and data sharing capabilities for trusted digital twin’s big data
connection across the product lifecycle can be materialized in a concrete workflow
and product, in this case a Mars rover.

This demonstrator has then inspired and motivated a number of large-scale
pilots that capitalize on the digital thread continuity technologies at scale. The
trials showcase the impact of enhanced engineering practices in the machine
tool sector. Section 3, presents the large-scale big data trial conducted by FILL
GmbH machine tool builder, addressing next-generation machine-tool engineering
and digital service provisioning. Section 4, presents an overview of the large-
scale pilot conducted by George Fischer’s Smart Zero-Defect Factory, focusing
on data-driven production improvement for milling machine spindle component
manufacturing. Finally, Section 5, presents Trimek large-scale big data pilot for
zero defect manufacturing powered by massive metrology that showcase how new
big data technologies can significantly increase the capacity for 3D quality control
of very large pieces and components in automotive through model-based design
and intensive use of QIF (Quality Information Framework), as an open standard
developed to enrich CAD models with additional process-related information.

2 Boost 4.0 Testbed for Digital Twin Data Continuity Across
the Product Lifecycle

The aim of this section is to introduce the Boost 4.0 approach to big data-
driven model-based engineering and the testbed built to demonstrate the feasibility
of digital twin and digital thread implementation across design, production, and
product operation lifecycle. There is a special bond between the digital twin
and the physical world it represents. The digital twin has largely been a PLM
concept for design and performance simulation of discrete products. Now, new
kinds of digital twins are available to support and improve specific manufacturing
plant production processes through Cyber Physical Systems (CPS) and obtain a
better understanding of the product performance in operation through IoT. Each
of these various kinds of digital twins have been developed as siloed solutions,
each dealing with different manufacturing processes across the product lifecycle.
The data exchange among digital twins breaking these silos opens manufacturers
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Fig. 2 Boost 4.0 smart digital engineering process using big data (based on VDI 2206)

the door to unprecedented insights, visibility, and automation opportunities leading
to efficiency improvements in product design, product performance, behavior and
manufacturing process operations like never before.

The approach implemented by Boost 4.0 to leverage data continuity across
product lifecycle has been twofold. On one hand, the adoption of an agile V
development model (based on VDI 2206) enhanced with big data (Fig. 2). A
metadata representation approach has been integrated to define the structure and
the relations (i.e., the connections) between the various data sources across the full
process lifecycle. The Boost 4.0 smart digital engineering process is interacting
with the model-based engineering process, a model repository (1) for trusted digital
twins using big data, (2) for better service design, (3) and a simulation-based release
process (4) to create product-service-systems (PSS) across the lifecycle.

On the other hand, to support the interconnection of metadata representation
across the full lifecycle, the Boost 4.0 approach has been the extension, adoption,
and demonstration of ProSTEP chain of Industry 4.0 standards with QIF capabilities
(Fig. 3). This would ensure the semantic interoperability across not only product
and process design/engineering but also quality control and production system
commissioning and optimization.

As illustrated in Fig. 4, the Boost 4.0 testbed demonstrates how ProStep [7]
model-based engineering approach, the QIF semantic framework, IDSA data space
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Fig. 4 A Mars rover vehicle trusted digital twin continuity testbed. IoTSWC 2019

[8] technology, and FIWARE NGSI Context Broker [9] open-source technology can
be integrated for providing a seamless and controlled exchange of data across digital
twins based on open international standards, allowing companies to dramatically
improve cost, quality, timeliness, and business results through enhanced traceability,
process workflow automation, and improved product and manufacturing process
knowledge.

Machines chained to a shop floor as part of the manufacturing setup are typically
working as information silos. They are “physically” connected since the part treated
by one machine is passed to the next machine in the chain, which in turns treats this
part and passes it to the next. Each of those machines generates a large amount of
data, which so far has been used to monitor and improve the processes and tasks
each machine performs. However, systems associated with each machine are not
designed to exploit data from others when improvements can be gained if the data
from one machine “feeds” the systems connected to the other and if such exchange
is made in a way that is secure: access control terms and conditions established by
each individual machine provider are preserved and the shop floor operator is also
the final decision-maker, defining what is exchanged and what for, and whether it
goes out of the factory.

In the context of the Internet of Things Solutions World Congress that took
place in Barcelona in 2019, a group of companies that partner in Boost 4.0
(Capvidia, EPFL, FIWARE Foundation, +GF+, IDSA, Trimek, and Innovalia), in
collaboration with key ProStep IVIP partners, presented a testbed that demonstrated
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Fig. 5 The Mars rover big data-driven model-based engineering process and federated digital
manufacturing platforms chain (PTC, CAPVIDIA, INNOVALIA METROLOGY)

how factories can benefit from IDS concepts and FIWARE open-source technology
by bringing enhanced functionalities for the improvement of processes or the
support of smart decisions, through management of context data shared across the
product lifecycle.

This testbed demonstrator uses the example of a specific component of the Mars
rover exploration vehicle to visualize the benefits of how companies can collaborate
throughout the product lifecycle. As illustrated in Fig. 5, thanks to the combined
exploitation of model-based engineering (MBE supporting standardized open PLM
STEP standards [10] and Quality Information Framework (QIF) semantics [11]),
digital threads and digital twin technologies based on European industrial data
space trusted connector technology that allows product and process information
sharing in an environment of trust.

The testbed is focused on the production of a specific component that is a very
sensitive piece in the suspension of the Mars rover. In this case, it is manufactured
by a +GF+ milling machine. As shown in Fig. 6, this milling machine is connected,
through an IDS connector, to a predictive maintenance system deployed at +GF+
cloud systems, so information about the status of the milling spindle is constantly
sent to the predictive maintenance system to be analyzed, and maintenance tasks are
programmed to avoid breakdowns that force to stop the production.

After the piece is produced, an Innovalia Metrology coordinate measuring
machine (CMM) takes care of the dimensional quality control. This machine
measures millions of points in a very short period of time, producing what is called
a point cloud (a high-resolution, high-fidelity, micron-resolution digital replica of
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Fig. 6 The Mars rover digital manufacturing excellence threads and integrated decision support
dashboards

the physical part). This information is sent to Innovalia’s quality control cloud (M3
Workspace) through trusted IDS connector technology, and there it is compared with
the 3D CAD model to identify deviations. The result of this analysis is a 3D model
with color mapping, which allows the operator to easily find out if these deviations
are within the allowed range.

The IDS connector in this setup is the same for both machines. Prior to use
the IDS connector, each machine adapter had to be deployed across all machines
that have to engaged in secure data sharing to enable trusted communication and
data exchange among the machines. Thanks to the privacy-by-design defined by the
IDS Reference Architecture, the communication between the machines and their
respective cloud systems is isolated and independent.

As part of the demonstration, and to showcase the benefits of using the IDS con-
nector to share information in a trusted and sovereign way, Innovalia can configure
the IDS connector to allow +GF+ predictive maintenance systems to gather data
from Innovalia’s CMM. This would allow the system to enrich their algorithms
to include the deviation’s information in the analysis, so the system can cross this
information with the machine status, improving the predictive maintenance system.
In a similar way, +GF+ can allow Innovalia to request specific information from
the milling machine to add new functions to the quality management system. The
overall schema of the use case is depicted in Fig. 4.
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3 FILL GmbH Model-Based Machine Tool Engineering
and Big Data-Driven Cybernetics Large-Scale Trial

The expansion of competitiveness and sustainability are fundamental goals of
companies. To achieve these, every business needs to deploy digital technologies
in a variety of areas, including customer relationships and services, productivity,
business model, IT security, and privacy. Digitization and networking are playing
an increasingly important role, as the digital data volume will increase significantly.

The growth speed of the data volume, the diversity of data, and the various data
sources pose many challenges, such as a collection of sensor data and the mapping
of model data underlying the machine, and their integration and interpretation into
a structured database system.

The FILL trial builds on the Boost 4.0 testbed concepts and technologies
described in Sect. 2, i.e., advanced model-based engineering coupled with product
digital thread and digital twin implementations applied to machine tool products.
The main achievement of the trial is to demonstrate that such an approach (big
data-driven V-model engineering and semantic data model chains) can be applied
under real production scenarios, with clear benefits and that the approach can scale
to effectively deal with the complexity of machine tool production lines. Semantic
information is integrated across the full lifecycle from machine operation to machine
design and manufacturing.

Within the Fill trial, it is possible to record the data of their machines standardized
by OPC UA data model [12], including semantic information and metadata to
be used in analyses and optimizations. Utilizing standardized communication
technology (e.g., MQTT, HTTP, REST) the existing specific solution Machine-
Work-Flow-Framework is generalized and used for further customer requests. In
doing so, Fill, and the pilot partners took a big step forward in the digitization of the
data flow on the shopfloor with the expanded machine state model. The Fill pilot
pursues the following goals:

1. Cost reduction expected by reducing the time spent on future development and
customer projects.

2. Development of data-driven business models in service and support.
3. Identification of optimization potentials in the engineering process for long-term

reduction in the development times of machines.

The Fill pilot primarily serves the engineering process of the machine builder.
It allows for a better understanding of machinery by detecting cause-and-effect
relationships due to anomalies and patterns (semantic interoperability). In addition,
maintenance intervals and cycles are optimized and, as a result, quality improve-
ments of the production and the product are achieved.
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3.1 Big Data-Driven Model-Based Machine Tool Engineering
Business Value

Within the CAx systems, the optimization of products, e.g., machine tools, are
done by engineer’s expertise and their empirical knowledge. Several loops are
performed to optimize products and production processes to fit customer needs.
Thus, customization is resource and time-consuming. During the sales and project-
planning phase in many cases, no simulations of the process or valid process data
are available for frontloading to minimize the risk for the machine builder.

During the engineering process, the start of the project is when the order is
placed. Several simulation models in different software tools are generated to avoid
failures in the early project phases. The models exist mostly independently and have
to be modified by hand if there is a change in the requirements.

In general, parametric modelling and optimization techniques contribute signif-
icantly to the process of building CAx simulations. Several design parameters and
probability density factors are taken into consideration for simulation sequences.
The simulations are most important for analyzing different factors such as sensitiv-
ity, optimization, and correlation of the design or structure. Many practical problems
usually have several conflicting objectives that need optimization. In these multi-
criteria optimization problems, a solution is found iteratively and systematically.

The production concept and the machines engineering solve the multi-criteria
equipment effectiveness optimisation function. The machine physical behavior sets
the quality of the part and the production time. The material flow concept imple-
mented solves the interaction of production steps and provides the overall logistic
concept. These concepts are most important for overall equipment effectiveness.

3.2 Implementation of Big Data-Driven Machine Tool
Cybernetics

The V-model (Fig. 2; compare VDI 2206 [13]) describes the development of
mechatronic systems based on a systematic analysis of the requirements and
a distribution of the requirements and loads among the individual disciplines.
The detailed development then takes place in parallel and independently of each
other in the individual disciplines. The results are then integrated into subsystems
and systems and validated regarding compliance with the requirements. The new
proposal for an integrated business process for smart digital engineering using big
data extends the V-model by (Fig. 7):

1. Agile model management and development process (model repository)
2. Data analytics process (involving data analysis and machine learning methods)
3. Service development process
4. Simulation-based release process for product service systems
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Fig. 7 The Fill big data cybernetics trial and semantic data integration based on Industry 4.0
standards. Digital twin and real line agile production engineering setups

Within the Fill pilot, TTTech provides the edge computing platform that provides
real-time data harvesting services and enables the data-driven model approach.
The resulting Product Service System (PSS) applications enhance shopfloor func-
tionality utilizing machine data with significantly decreased latency and increased
interoperability. To exploit the full potential of big data (and Industry 4.0), compa-
nies in the value-added network are willing to cooperate and share data. Openness
and trust are crucial factors since the long-term strategy aims to create partner
ecosystems, where different productions of different companies in the value-
added network are connected, and individual processes across the companies are
coordinated. The availability of process data across companies opens up great
potential for agile production systems.

The main tasks of RISC in the Fill trial are focusing on the selection of the
appropriate machine learning and data analysis methods that are suitable for very
large data and that have the potential for parallel implementation (step (2) from
above). An architectural concept [14] that combines big data technologies (such as
Apache Spark [15] on Hadoop) with semantic approaches (Apache Avro [16] and
SALAD [17]) has been defined to facilitate the exploration and analysis of large
volumes of data from heterogenous sources, adhering to the Boost 4.0 unified big
data pipeline and service mode proposed in the chapter “Big Data Driven Industry
4.0 Service Engineering Large Scale Trials: The Boost 4.0 Experience of this book.
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3.3 Large-Scale Trial Performance Results

The Boost 4.0 large-scale trial impact has been assessed in the engineering process
on Fill products, accurate robotic NDT systems Accubot®, and machine tools
Syncromill ®, addressing four key performance indicators.

Long-term Reduction of Machine Development Times (Estimated: 15%,
Achieved: 26.4%) or the Option for Better, More Innovative Concepts
Reducing time-to-market of innovative customized products is a key success factor
for industrial companies. Integrating big data feedback information from operation
and maintenance phases into the engineering phases shortened the time for real plant
or factory commissioning in lot-size-1 production facilities. The new engineering
process is shorter in time: in several projects of 2019/20 the time-to-market was
reduced by 26.4% compared to 2015/16 before the implementation. In addition to a
reduction in time, optimization loops can be also dedicated to increasing the quality,
efficiency and flexibility of the machines. Thus, it is definitely a cost-saving issue,
but also a key to attract customers because of fast ramp-up of production. Especially
the reduced time gives extra time for innovative new concepts and to fulfill SDGs.

Unplanned Downtimes (Estimated: 20%, Achieved: 20.8%)
To use this new model-based and big data-driven process engineering methodology
it is essential to establish a pattern and anomaly detection framework. With this
framework, different behavior models as well as artificial intelligence and machine
learning algorithms are developed and provided in a model repository. The models
are used in the engineering process to get better insights of the physical, logistics,
or other behaviors. This accelerates the reduction of unplanned downtimes and
therefore improvements in the sense of time, quality, and costs. The models are
stored in a model repository and can be further used by the customer, e.g., as virtual
sensors. This leads to new business models, such as “Model as a Service.” Since
the period of Boost 4.0, the amount and duration of downtimes due to maintenance
actions at the customer’s site was reduced by 20.8%.

Service Cost Reduction (Estimated: 15%, Achieved: 19%)
The pilot focuses on three states: as-engineered (state after the engineering was
finished) as-manufactured (state after manufacturing and in-house commissioning),
and as-operated (how the customer operates the production system, simulate
historical and real-time data). In order to extend the field of application from pure
simulation and monitoring usage, the requirements of service design and service
engineering has been integrated into the digital twin. This enables requirements
analysis for new projects, failure analysis, and designing a service process with
focus on service cost reduction. The measured projects in Boost 4.0 achieved a
reduction of 19%; this is mainly due to designed remote service actions and failure
prevention concepts in the engineering phase.
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Simulation-Based Release Process Reducing Commissioning Time (Estimated:
10%, Achieved: 14.7%)
With the efficient use of CAD models, interfaces between Visual Components sim-
ulation tools and the engineering management tools of Fill have been established;
thus a better integration of the simulation process into the proposed engineering
process has been achieved. This led to a simulation management in which saving,
loading, and version control are well integrated. Moreover, design changes are
updated faster in the simulation. The use of virtual commissioning was measured
in a reduction of commissioning time by 14.7%. In future, the target from Visual
Components is to create a generic PLM interface which can be tailored with add-
ons for the PLM solutions in the market.

“Beside the Fill Pilot that we have been involved in, by realizing customized solutions in
simulation, our customers benefit in reductions of commissioning time in the range of 15–
25%.” (Fernando Ubis (Visual Components).

3.4 Observations and Lessons Learned

The development of innovative, highly customized production systems is generally
based on a customer-centric approach. Furthermore, for the machine builder, the
operations process knowledge is a key success factor. This is mostly expertise and
empirical knowledge and is usually built during the operating phase and used in
follow-up projects. The intended feedback loop should accelerate the buildup of
knowledge and make it possible to secure customer needs and even wishes earlier
and increases customer satisfaction. This leads to fewer delays in the business
process, like customer-dependent approval processes, e.g., design approval, delivery
approval, etc.

“Fill is a grown family-owned company and focused on its customers success.
With the new approach of closing the gap of digitalization between customers and
the Fill engineering we also can feel a higher customer satisfaction, which is brought
to me by feedback of our customers. Beside the facts and figures of measured KPIs,
it is about the people working and their motivation. I think the digitalization and its
approach is mandatory to benefit but it is about the mindset to see digitalization as a
chance and not a threat. With the transparency on the process and the trust we have
built up with our partners and customers we are best prepared for the factory of the
future!” Alois Wiesinger (CTO of Fill).

4 +GF+ Trial for Big Data-Driven Zero Defect Factory 4.0

This section presents the +GF+ trial and the Boost 4.0 concepts adopted for
model-based engineering, in particular the semantic information framework to
deal with product quality information (metrology data) and digital factory/process
information. The trial is intended to demonstrate how the implementation of
semantic information representation supported by cutting-edge digital platforms and
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Fig. 8 GF milling machine spindles assembly process

based on agreed standards can break the silos, implement federated workflow and
pipelines, and lead to a cost-effective implementation of advanced decision support
systems and production cost reduction.

The trial is focused on the manufacturing of the most critical component on
+GF+ machine tools, i.e., +GF+ Milling Spindles. These are critical components
conveying the highest value in production processes. Their assembly processes
currently generate data in isolation, which can be identified in the diagram showed
in Fig. 8.

1. Factory machines produce some critical parts, which are measured with different
systems producing data in different formats (from manual devices to CMM
machines). One key issue is to link all those measurements to one part and avoid
dealing with multiple reports.

2. The data acquired on the assembly line is among the most critical ones. It is
currently collected by hand, what makes it, it difficult to aggregate and analyze.

3. The quality testing of each spindle also produces data, which today is stored as a
.csv file and not correlated to any other data in the process.

4. The data related to the assembly of the spindle into the machine itself is stored
into a PostgreSQL database, again not aggregated for analysis.

5. Finally, there is also data coming from service records and sensors (spindles
which are returned by the assembly of the machine or by the end customer),
with unexploited key information on the component quality.

While the quantity of data created is not a problem nowadays, the major chal-
lenge is the complexity to structure and aggregate it so as to have a comprehensive
understanding of their meaning, in order to improve the manufacturing process and
even machine operation through predictive maintenance applications.
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4.1 Value of a Quality Information Framework for
Dimensional Control and Semantic Interoperability

QIF (quality information framework) [18] is an open-standard CAD format made
specifically for introducing twenty-first-century concepts such as digital transfor-
mation, digital thread, and IoT (Internet of Things) to computer-aided technology
and engineering applications. The two main points of QIF are interoperability and
traceability throughout the entire product lifecycle. From design to planning to
manufacturing to analysis, full metadata can be mapped back to the “single source
of truth” (native CAD).

QIF is built on the XML framework for easy integration and interoperability with
other systems, web/internet applications, and other formal standards – a unified and
universal approach.

• Structured Data: featured-based, characteristic-centric ontology of manufactur-
ing quality metadata.

• Modern Approach: XML technology—simple implementation and built-in
code validation.

• Connected Data: information semantically linked to model for full information
traceability to MBD.

• Standard Data: approved ISO and ANSI interoperability standard.

It also contains holistic, semantic PMI (product manufacturing information)/3D
product definition and other metadata that is both human-readable and computer-
readable for MBD (model-based definition) implementation. QIF is an ANSI and
ISO 23952:2020 standard managed by the Digital Metrology Standards Consortium
(DMSC), an international leader in the field of metrology. QIF supports Design,
Metrology, and Manufacturing as it enters the Industry 4.0 initiative: data that is
semantic, machine-readable, standard, and interoperable to enable the smart factory.
QIF is a key conversation starter for companies beginning the MBD/MBE (model-
based enterprise) process, especially for metrology-related information in PLM
(produce lifecycle management) and PDM (product data management).

As the Boost 4.0 + GF+ trial has evidenced, a semantic approach to data
integration across the product and process lifecycle has very clear benefits:

1. Automation: Defined business process and software compatibility leads to the
possibility of automation.

2. Interoperability: Enables authority CAD file to be reused on different software
by different departments and companies.

3. Single Source of Truth: Derivative models for robust, semantic PMI, metrol-
ogy features, and mapping back to any native CAD model.

4. Big Data: Manufacturing data is moved upstream for analytics and design
improvements.

5. Faster Time to Market: Automation and decreased manual translation and
validation begets shorter production cycles.
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6. Cost Savings: Up to 80% of total hours saved for annotation, control planning,
and inspection processes together, meaning less resources needed for a partic-
ular task, reducing overhead.

7. Work Efficiency: Automation is repeatability, relying less on human involve-
ment (and possible error), and freeing the engineer to focus on other value-
adding work.

8. Process Over Personnel: Avoiding the “human-in-the-loop” method provides
documented process-driven strategy.

9. Better Product: Faster time to market leads to more iterations and break-
throughs in product, process, or pricing.

10. Better Bottom Line: Automated work processes, less bottlenecks, and faster
iteration and feedback for ideation all lead to savings in time and money.

On the other hand, many of today’s manufacturing practices depend on disparate
data sets and manual transcription and validation that impede the ability for
automation. Not all data is created equal. Different data file formats (e.g., PDF, TXT,
TIF, CSV, XLS, STEP, JT, IGES, PRT, QIF, XML, etc.) from different software
are either proprietary or lacking robust data capabilities to produce true MBD.
The incompatibility and inaccessibility prevents connecting data throughout the
whole product lifecycle—traceability and automation in the digital thread. With
multiple stakeholders throughout the supply chain with their own CAD, CAM, and
CMM software and custom-made data, exchanging inoperable data with a disjointed
approach results in multiple disconnections in the digital thread. As illustrated
in Fig. 9, QIF is an MBD-ready, XML-based, CAD-neutral, and open standard
that includes the following features: (1) PMI (Product Manufacturing Information),
(2) GD&T (Geometric dimensioning and tolerancing), (3) Measurement plans, (4)
Geometry, (5) Bill of Characteristics, (5) Inspection Plans, and (6) Other semantic
data.

All these features allow seamless handoff of data downstream, enabling automa-
tion to quality control and production with full traceability to the single source of
truth: the CAD model. It empowers businesses for a better product, faster process,
and bigger bottom line. This is the purpose of MBD and MBE in manufacturing!
And this all begins with quality information.

According to the Data Information Knowledge Wisdom (DIKW) Pyramid [19]
& QIF stands in the information layer, data is a number while information is data
with context. It is well known that decisions made from data require a “human-in-
the-loop,” while decisions made from information lead to automation. Anyone can
collect data, but data in action is wisdom (Table 1).

4.2 Value of Semantically Driven Big Data Zero Defect Factory

The realization of the concept of zero defect factory that underpins the +GF+
trial relies on mastering four critical business processes: (1) spindle component
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Fig. 9 QIF structure

Table 1 Decisions from data vs. information

Decisions from data Decisions from information

Interpretation Increases speed of task completion
Tedious process Lowers cost due to decreased labor requirements
High cognitive load Frees up valuable personnel for other tasks more suited for the

human mind
More opportunities for error Repeatable solutions
Costly solutions Lower risks
Inconsistent solutions

manufacturing, (2) spindle assembly and delivery to machine factory, (3) after-
sales guarantee management, and (4) service contracts. For each of these processes,
specific KPIs have been defined and are now constantly monitored. This will allow
delivering well-defined benefits reaching nearly 1 MAC/y only for the manufacturing
and after-sales guarantee stages (Fig. 10).
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Fig. 10 Spindle component lifecycle and KPIs

4.3 Semantic Big Data Pipeline Implementation for Zero
Defect Factories

The +GF+ big data pipeline has been built on the bases of three main types of data.
Metrology, machine sensor data and assembly data.

Spindle Metrology Data QIF workflow was implemented on a typical +GF+
part—the main spindle. The part was designed with PTC CREO software and was
used as input to the workflow, creating the QIF MBD representation with the help
of Capvidia’s MBDVidia for CREO software. The workflow was divided into steps.
Step 1: the native CAD model is converted into the standard Model Based Definition
(QIF). Step 2: the QIF file with the semantically linked Product Manufacturing
Information (PMI) is verified for correctness of the Model-Based Design (MBD)
definition (this check validates and corrects all semantics in the PMI definition).
As a result we get MBD Ready data being 100% machine-readable for the next
application (maintain the digital thread). Step 3: This MBD model is used for
automatic generation of the First Article Inspection (FAI) document specifying what
entities have to be measured in the quality control process. This is an inspection
document to verify the quality of the manufacturing process confirming that the
physical part complies with the design intent. As explained in the first part, today
for one specific part, information about the measurement is spread between three
documents most of the time (from different machines, operator measuring manually,
etc.). The implementation of the QIF workflow reduces it to one document, making
it easier for the quality team to check (Figs. 11 and 12).

In addition, the data, being fully digital, is now traceable and organized in a
standard (QIF) data format, guarantying open access and transparency. They are

https://www.capvidia.com/products/mbd-tools-for-creo
https://www.capvidia.com/blog/mbd-first-article-inspection-fai
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Fig. 11 +GF+ service development architecture

Fig. 12 +GF+ service development architecture and Azure Data Factory Pipeline

also uniquely linked with the physical part, which significantly simplifies the repair
and maintenance activities.

Spindle Assembly Data Assembly cards, which contain all the needed information
about the produced spindles, have been digitalized, and manual filling process
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suppressed. An Az-copy script copies these files from the +GF+ intranet to a
blob container on a storage account on +GF+’s Azure platform. Information
regarding the different parts of the spindles (the shaft, the front sleeve, and the
rear bearing flange) is also saved in different CSV files, which are also copied to
the blob container. This triggers a piece of logic called an Azure Function App.
This app contains two functions: one for processing the assembly cards and one for
processing the CSV files containing information to update the spindle parts. The
first function reads the assembly card, retrieves the data, transforms it to add the
semantics, and pushes the transformed data to the database in order to create a new
spindle. The second one read the files containing information about the spindle’s
parts, and for each part, retrieves the corresponding entity from the database, updates
it, and saves the changes to the database. The database is a CosmosDB database
which uses the Gremlin API, so as to operate with graph data, which allows us to
store data with its semantic metadata. Thanks to this platform, all the information
about the produced spindles is now digitalized and centralized into one single
database, and can be easily understood and retrieved by all parties thanks to the
semantics. It’s then possible to query this data, in order to learn information about
the spindles, and to display it on a dashboard. As another example, an Azure Data
Factory Pipeline has been set up in order to retrieve all the information about all the
spindles, and save them as a CSV file.

Finally, Machine Sensor Data is retrieved through OPC-UA channels and
protocols from the field and specific modelling has been implemented in order to
estimate the Residual Useful Time (RUT) of key components.

4.4 Large-Scale Trial Performance Results

The results of the large-scale trials (Fig. 13) are extremely positive in the following
two dimensions.

Data Workflow and Visualization
The implementation of the digital data flow enabled keeping a self-service ware-
house always up to date. This can be shown in a dashboard with the corresponding
KPIs. The Capvidia solution (QIF model) shows also the potential benefit from easy
data aggregation around a single model. It appears clearly that this provides value
in a short term (time savings, transparency) and in the subsequent steps of analysis.

Machine Learning and Predictive Quality
Thanks to this program, it is possible to apply machine learning in order to detect
30% of manufacturing quality problems. Additionally, the benefit of having an
interpretable model will enable us in the future to improve our design and our
tolerances by understanding the root causes (Fig. 14).
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Fig. 13 Example of report showing the potential benefit

Fig. 14 Predictive maintenance testing environment on Scilab Cloud
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Predictive Maintenance
Deployment is a key factor in big data knowledge inference. Preprocessing and
further inference technologies (e.g., machine learning) must be performed at the
data location. To do so, predictive maintenance algorithm has been deployed in
a dedicated testing environment on a Cloud Solution. This application could be
used to test and validate different predictive maintenance algorithms, and predictive
capabilities can be accessed from the client platform, at the data location, via a
dedicated API.

4.5 Observations and Lessons Learned

Bringing our data in one semantic model provides cost saving value in a short term
and in the later steps of analysis. Boost 4.0 trialed and discovered also new ways
and new standards to bring data together and set up a manufacturing digital twin,
highlighting the benefits internally during the project.

As a result, some critical improvements are now possible: machine learning
algorithms help to achieve unexpected accuracy (even with limited data) by
detecting manufacturing issues; semantic and QIF standards give the possibility to
link data together in an efficient way, and the cloud solution gives the possibility
to deploy easily AI in testing environments and integrate them through APIs in any
platform, making the full deployment swift and valuable.

5 Trimek Trial for Zero Defect Manufacturing (ZDM)
Powered by Massive Metrology 4.0

Zero Defect Manufacturing (ZDM) powered by massive metrology is aimed at
improving the performance and efficiency of the essential quality control processes
in manufacturing lines, which have to deal with very large parts, e.g., automotive,
aeronautics, renewable energy systems, and railways, and consequently have to
deal with very heavy data and large volumes of 3D information. This trial also
builds on the QIF (see +GF+ trial discussed earlier) semantic model and Boost
4.0 big data pipelines to implement a metrology 4.0 thread and data-driven digital
twin analytics. The aim of this trial is to demonstrate how the Boost 4.0 big data-
driven model-based approach can lead to increased automation of the quality control
workflow through seamless interoperability among product design data, product
GD&T information, and quality control process commissioning (Fig. 15).

The key pillars of this pilot are the implementation of high-definition inline
metrology process to capture large volumes of 3D point cloud data, the integration
and analysis of heterogeneous data, both quality and product data from different
sources, incorporating to the metrology flow data coming from the product design
steps, and finally the development of an advanced human-centric collaborative and
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Fig. 15 Massive metrology 4.0 trial scenario

visual analytic process based on advanced color mapping. As a result, a connected
and secure quality control process covering the whole metrology workflow and
based on QIF standard has been implemented, with innovative and efficient visu-
alization, processing, storage, and analysis capabilities, which definitely improves
the decision-making process and reduces the number of defective parts. The ZDM
Massive Metrology trial is based on the M3 Big Data Platform [20] for design
and production data sharing and QIF standard as dimensional metrology data
exchange. The M3 platform is poised to provide a structured solution for Metrology
4.0, an edge-powered quality control analytics, monitoring, and simulation system
(Fig. 16).

5.1 Massive 3D Point Cloud Analytics and Metrology 4.0
Challenges

Up to now, the metrology results are usually only visualized in reports based on the
Geometric Dimensioning and Tolerancing (GD&T) analysis, which is aimed only
for metrology use and only a few control points are considered (10–100 points).
Industry 4.0 in general and zero defect manufacturing in particular demand that
metrology 4.0 processes scale up data acquisition, processing time, and visualization
speed at various orders of magnitude. This is in accordance with the demand for
more holistic, flexible, and fast metrology solutions—see requirements and trends
from the VDI 2020 Manufacturing Metrology Roadmap.
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Fig. 16 Boost 4.0 reference model for massive metrology 4.0 based on the M3 platform pipeline

The Trimek trial exploits model-based engineering of metrology solutions to
implement massive metrology 4.0 workflows that will address the need for holistic
measurement systems capable of dealing with increasing information density,
diversity, integration, and data processing automation in reduced measurement
times.

The objective of the Trimek trial is to implement a rapid big data pipeline for
processing and advanced high-speed high-resolution texturized colormaps for high
fidelity visual analysis of massive 3D point clouds (from 10 to 100 million points) in
less than 30 s. So the challenge is to demonstrate that future metrology 4.0 platforms
can be used to assess and guarantee the fit, performance, and functionality of every
part (irrespective of its size and tolerancing requirements) and support the targets of
zero defect, zero waste, and carbon neutrality (Fig. 17).

5.2 Implementation of Massive Metrology 4.0 Big Data
Workflow

The Trimek ZDM Massive Metrology 4.0 trial considers two main business
processes for implementation:

• High-density metrology: This process has developed a system capable of rapid
acquiring and processing big volume of 3D point cloud data from complex
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Fig. 17 Massive metrology 4.0 trial data analytics challenges

parts and analyzing massive point clouds coming from those parts by means of
advanced 3D computational metrology algorithms, obtaining high-performance
visualization, i.e., a realistic 3D colormap with textures.

• Virtual massive metrology: This business process has developed a digital
metrology workflow and agile management of heterogeneous products and
massive quality data, covering the whole product lifecycle management process
and demonstrating an advanced semantic QIF metrology workflow (Fig. 18),
enabling product design semantic interoperability with product quality control
processes and advanced analysis and visualization of the quality information for
decision support.

5.3 Large-Scale Trial Performance Results

The Trimek trial has allowed the implementation of advanced metrology 4.0
algorithms based on 3D computational capabilities to finally obtain a texturized
mesh, instead of an annotated polygonal mesh, that is a more realistic visualization
of the physical product for human-centered decision support process. Large pieces
have been scanned and analyzed and the trial has demonstrated that the Boost 4.0
big data pipelines can process the whole body of a car (Fig. 19).

Table 2 summarizes the main system capacities.
These new big data capabilities have allowed the automotive industry to work

fluently with 10 times larger CAD files and control beyond 600 geometrical features,
which is important as having all the car modelized. The processing speed has also
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Fig. 18 QIF-ready semantic massive metrology big data analytics pipeline based on M3 platform

Fig. 19 Large-scale CAD file (left), annotated polygonal colormap mesh (middle), texturized
colormap mesh (right)

been multiplied by 5, which allow a better performance and a more fluent analysis
and visualization. Also, the time needed to program the scan of each piece has
been reduced significantly, up to 80%, as having the whole car already modelized
allows for a digital planification of the trajectories thus reducing the time needed to
configure the scan. Overall, this derives a cost reduction of 10%.
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Table 2 Trimek trial big data capabilities features for Metrology 4.0

Big data capability M3 M3—big data

Data usage 32 bits
CAD for 100 Mbs
Point cloud size <six million

64 bits
CAD for 400 Mbs
Point cloud size >100
million

CAD file format Mono CAD Multi CAD
Part/CAD alignment Mono-alignment algorithms Multi-alignment algorithms
Region of Interest (RoI)
extraction

Slow Effective

Color mapping Mono-core & Polygonal Multicore & Texturized
Visualization Monolithic Adaptive

6 Conclusions

This chapter has discussed how Model-Based Systems Engineering (MBSE) can
benefit from big data technologies to implement smarter engineering processes.
The chapter has presented the Boost 4.0 testbed that has demonstrated how
digital twin continuity and digital thread can be realized from service engineering,
production, product performance, to behavior monitoring. The Boost 4.0 testbed
has demonstrated the technical feasibility of an interconnected operation of digital
twin design, ZDM subtractive manufacturing, IoT product monitoring, and spare
part 3D printing services. It has shown how the IDSA reference model for data
sovereignty, blockchain technologies, and FIWARE open-source technology can be
jointly used for breaking silos, providing a seamless and controlled exchange of data
across digital twins based on open international standards (ProStep, QIF), allowing
companies to dramatically improve cost, quality, timeliness, and business results.

This closed-loop implementation allows the realization of advanced product-
service processes that have been trialed by Fill, +GF+ and Trimek manufacturing
equipment. The chapter has clearly presented how semantic data integration across
the product and process lifecycle based on open international standards such as
OPC-UA and QIF provide significant performance improvements in customization
of complex machine tool installations, development of zero-defect factories 4.0,
and massive product metrology 4.0. It has illustrated how QIF (Quality Information
Framework) ISO-standard (ISO 23952:2020) meets MBD conditions and leverages
interoperable data exchange between CAD, CAM, and other CAx systems for down-
stream use. This chapter has described how big data trials leverage the possibility
to map data back to a single source of truth; providing traceability and validation of
intended and unintended changes/outcomes. QIF with PMI (Product Manufacturing
Information, aka 3D annotations) can include GD&T, Bill of Materials, Process
Plans, and more for data that is unambiguous and machine-readable—able to
overcome human interpretation, thereby leveraging a new generation of data-driven
digital twins.
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This chapter has provided additional evidence that the Boost 4.0 service devel-
opment reference architecture maintained by the Digital Factory Alliance and
the Big Data Value Association (BDVA) reference architecture provide a unified
framework to develop high-performance big data pipeline that allow for fast transfer,
replication, and adoption of product engineering and manufacturing operational
optimization.

As it has become apparent in this chapter, over the last few years the role
of GD&T is gaining momentum in the definition of new generations of Industry
4.0 semantic models such as Automation ML. The need for increased levels of
interoperability across OPC-UA, AML, and QIF standards calls for additional
research that leverage higher manufacturing autonomy levels and facilitate more
efficient and effective collaborative engineering processes for highly customized
and complex products. The integration and alignment of such models will be a
fundamental milestone in the development of increasingly cognitive and intelligent
digital twin services that seamlessly interact not only between physical and digital
work but also across the product and manufacturing process lifecycle.
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A Data Science Pipeline for Big Linked
Earth Observation Data

Manolis Koubarakis, Konstantina Bereta, Dimitris Bilidas,
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Abstract The science of Earth observation uses satellites and other sensors to
monitor our planet, e.g., for mitigating the effects of climate change. Earth
observation data collected by satellites is a paradigmatic case of big data. Due to
programs such as Copernicus in Europe and Landsat in the United States, Earth
observation data is open and free today. Users that want to develop an application
using this data typically search within the relevant archives, discover the needed
data, process it to extract information and knowledge and integrate this information
and knowledge into their applications. In this chapter, we argue that if Earth
observation data, information and knowledge are published on the Web using the
linked data paradigm, then the data discovery, the information and knowledge
discovery, the data integration and the development of applications become much
easier. To demonstrate this, we present a data science pipeline that starts with data
in a satellite archive and ends up with a complete application using this data. We
show how to support the various stages of the data science pipeline using software
that has been developed in various FP7 and Horizon 2020 projects. As a concrete
example, our initial data comes from the Sentinel-2, Sentinel-3 and Sentinel-5P
satellite archives, and they are used in developing the Green City use case.

Keywords Earth observation · Linked data · Big data · Knowledge graphs

1 Introduction

Earth observation (EO) is the science of using remote sensing technologies to
monitor our planet including its land, its marine environment (seas, rivers and lakes)
and its atmosphere. Satellite EO uses instruments mounted on satellite platforms
to gather imaging data capturing the characteristics of our planet. These satellite
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images are then processed to extract information and knowledge that can be used in
a variety of applications (e.g. in agriculture, insurance, emergency and security, or
the study of climate change).

Lots of EO data are available to users at no charge today, due to the imple-
mentation of international programs such as Copernicus in Europe and Landsat
in the United States. EO data is a paradigmatic case of big data bringing into
play the well-known challenges of volume, velocity, variety, veracity and value.
Regarding volume, according to the Copernicus Sentinel Data Access Annual
Report of 2019 [14], the Sentinel satellites have produced 17.23 PiBs of data
from the beginning of operations until the end of 2019. Regarding velocity, the
daily average volume of published data for the same satellites has been 18.47
TiBs for November 2019. Regarding variety, EO data become useful only when
analysed together with other sources of data (e.g. geospatial data or in situ data) and
turned into information and knowledge. This information and knowledge is also
big and similar big data challenges apply. For example, 1PB of Sentinel data may
consist of about 750,000 datasets which, when processed, about 450TB of content
information and knowledge (e.g. classes of objects detected) can be generated.
Regarding veracity, EO data sources are of varying quality, and the same holds for
the other data sources they are correlated with. Finally, the economic value of EO
data is great. The Copernicus Market Report of 2019 [15] estimates that the overall
investment of the European Union in the Copernicus program has been 8.2 billion
Euros for the years 2008–2020. For the same period, the cumulated economic value
of the program is estimated between 16.2 and 21.3 billion Euros.

Linked data is the data paradigm which studies how one can make RDF data (i.e.
data that follow the Resource Description Framework1) available on the Web and
interconnect it with other data with the aim of increasing its value. In the last few
years, linked geospatial data has received attention as researchers and practitioners
have started tapping the wealth of geospatial information available on the Web [19,
21]. As a result, the linked open data (LOD) cloud has been rapidly populated with
geospatial data, some of it describing EO products (e.g. CORINE Land Cover and
Urban Atlas published by project TELEIOS) [20]. The abundance of this data can
prove useful to the new missions (e.g. the Sentinels) as a means to increase the
usability of the millions of images and EO products that are expected to be produced
by these missions.

However, big open EO data that are currently made available by programs such
as Copernicus and Landsat are not easily accessible, as they are stored in different
data silos (e.g. the Copernicus Open Access Hub2), and in most cases users have
to access and combine data from these silos to get what they need. A solution to
this problem would be to use Semantic Web technologies in order to publish the
data contained in silos in RDF and provide semantic annotations and connections to
them so that they can be easily accessible by the users. By this way, the value of the

1 http://www.w3.org/TR/rdf-primer/.
2 https://scihub.copernicus.eu/.

http://www.w3.org/TR/rdf-primer/
https://scihub.copernicus.eu/
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original data would be increased, encouraging the development of data processing
applications with great environmental and processing value even by users that are
not EO experts but are proficient in Semantic Web technologies.

The European project TELEIOS [20] was the first project internationally that has
introduced the linked data paradigm to the EO domain, and developed prototype
applications that are based on transforming EO products into RDF, and combining
them with linked geospatial data. The ideas of TELEIOS were adopted and extended
in the subsequent European projects LEO [8], MELODIES [7], BigDataEurope [2],
Copernicus App Lab [3] and ExtremeEarth [18].

In this chapter, we present a data science pipeline that starts with data in a satellite
archive and ends up with a complete application using this data. We show how to
support the various stages of the data science pipeline using software developed by
the above projects. As a concrete example, our initial data comes from the Sentinel-
1 and Sentinel-5 satellite archives, and the developed application is the Green City
use case we implemented in the context of project Copernicus App Lab[3].

The organization of the rest of the chapter is as follows. Section 2 introduces
the Green City use case which serves the context for our application. Section 3
gives a high level of the data science pipeline and describes its various stages. Then,
Sect. 4 describes how we have implemented the Green City use case using the linked
geospatial data software developed in the projects mentioned above. Finally, Sect. 5
summarizes the paper.

The chapter relates to the technical priority “Data Analytics” of the European Big
Data Value Strategic Research and Innovation Agenda. It addresses the horizontal
concern “Data Analytics” of the BDV Technical Reference Model. It addresses the
vertical concern “Standards”.

The chapter relates to the “Knowledge and Learning” and “Systems, Methodolo-
gies, Hardware and Tools”, cross-sectorial technology enablers of the AI, Data and
Robotics Strategic Research, Innovation and Deployment Agenda.

2 The Green City Use Case

Urban areas are the source of many of today’s environmental challenges – not
surprisingly, since two out of three Europeans live in towns and cities. Local
governments and authorities can provide the commitment and innovation needed to
tackle and resolve many of these problems. The European Commission’s European
Green Capital Award3 (EGCA), recognizes and rewards local efforts to improve the
environment, and thereby the economy and the quality of life in cities. The EGCA
is given each year to a city, which is leading the way in environmentally friendly
urban living. The award encourages cities to commit to ambitious goals for further
environmental improvement.

3 https://ec.europa.eu/environment/europeangreencapital/about-the-award/policy-guidance.

https://ec.europa.eu/environment/europeangreencapital/about-the-award/policy-guidance
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Fig. 1 A Green City map for Paris, France

Moreover, the Green City Accord4 is a movement of European mayors com-
mitted to making cities cleaner and healthier. It aims to improve the quality of life
of all Europeans and accelerate the implementation of relevant EU environmental
laws. By signing the Accord, cities commit to addressing five areas of environmental
management: air, water, nature and biodiversity, circular economy and waste, and
noise.

In order to define though how “green” a city is, one must combine various sources
of information that would allow us to measure and illustrate the greenness of each
city in Europe. In the context of the Copernicus App Lab project, we demonstrated
how one can interlink heterogeneous Earth Observation data sources and combine
this information with other geospatial data using Linked Data technologies to
produce Green City maps [3].

In Fig. 1 we show how to determine the greenness of Paris, France, by utilizing
Earth Observation data, crowd-sourced data and Linked Data technologies. To
produce this map, we combined air pollution data (NO2 concentration) with indices
that measure greenness (Leaf Area Index, OpenStreetMap Parks and CORINE Land
Cover-related classes). All sources were spatially interlinked using the geometries
of the administrative divisions of the city. Combining these diverse datasets using
Linked Data technologies allows us to produce GeoSPARQL queries that can be
visualized to construct such Green City maps for cities in Europe.

4 https://ec.europa.eu/environment/topics/urban-environment/green-city-accord_en.

https://ec.europa.eu/environment/topics/urban-environment/green-city-accord_en
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2.1 Data Sources

Sentinel data and Copernicus Services data that are currently available are not
following the linked data paradigm. They are stored in different data silos so users
might need to access and combine data from more than one source to satisfy
their user needs. Utilizing Semantic Web and Linked Data technologies to make
Copernicus Services data available as linked data increases their usability by EO
scientists but also application developers that might not be EO experts. Moreover,
the interlinking of Copernicus Services data with other relevant data sources (e.g.
GIS data, data from the European data portal, etc.) increases the value of this
data and encourages the development of applications with great environmental and
financial value.

2.2 Copernicus Sentinel Data

For the Green City use case, the most relevant Earth Observation data come from
the Land Monitoring service of Copernicus and air quality indices. To detect green
areas within a city, we used the Leaf Area Index (Sentinel-3) and the CORINE land
cover 2018 datasets (Sentinel-2 and Landsat-8). For air quality, we used the Nitrogen
Dioxide index (Sentinel-5P).

The Leaf Area Index (LAI) is defined as half the total area of green elements of
the canopy per unit horizontal ground area. The satellite-derived value corresponds
to the total green LAI of all the canopy layers, including the understory which may
represent a very significant contribution, particularly for forests. Practically, the LAI
quantifies the thickness of the vegetation cover. LAI is recognized as an Essential
Climate Variable by the Global Climate Observing System. The LAI dataset is
provided by the Copernicus Global Land Service5 and is distributed in Network
Common Data Form version 4 (netCDF4) file format.

The CORINE Land Cover (CLC) inventory was initiated in 1985 (reference year
1990). Updates have been produced in 2000, 2006, 2012 and 2018. This vector-
based dataset includes 44 land cover and land use classes. The time-series also
includes a land-change layer, highlighting changes in land cover and land use. The
high-resolution layers (HRL) are raster-based datasets which provide information
about different land cover characteristics and is complementary to land cover
mapping (e.g. CORINE) datasets. Five HRLs describe some of the main land cover
characteristics: impervious (sealed) surfaces (e.g. roads and built up areas), forest
areas, (semi-) natural grasslands, wetlands and permanent water bodies. The High-
Resolution Image Mosaic is a seamless pan-European ortho-rectified raster mosaic
based on satellite imagery covering 39 countries. The CLC dataset is provided by

5 https://land.copernicus.eu/global/products/lai.

https://land.copernicus.eu/global/products/lai
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the Copernicus Pan-European component of the Land Monitoring Service6 and is
distributed in Shapefile format.

Nitrogen dioxide (NO2) is a gaseous air pollutant composed of nitrogen and
oxygen. NO2 forms when fossil fuels such as coal, oil, gas or diesel are burned
at high temperatures. NO2 and other nitrogen oxides in the outdoor air contribute
to particle pollution and to the chemical reactions that make ozone, thus it is one
of six widespread air pollutants that have national air quality standards to limit
them in the outdoor air. The NO2 index is part of the Ozone Forecast dataset
provided by the LOTOS-EUROS team, consisting of the Netherlands Organisation
for Applied Scientific Research (TNO), the Environmental Assessment Agency of
the Dutch National Institute for Public Health and the Environment (RIVM/MNP)
and the Royal Netherlands Meteorological Institute (KNMI). The NO2 dataset was
distributed through the OPeNDAP protocol.

2.3 Other Geospatial Data

In addition to the above datasets, the Green City use case utilizes data from
OpenStreetMap and the global administrative divisions dataset GADM.

OpenStreetMap (OSM) is a collaborative project to create a free editable map of
the world. The geodata underlying the map is considered the primary output of the
project. The creation and growth of OSM has been motivated by restrictions on use
or availability of map data across much of the world, and the advent of inexpensive
portable satellite navigation devices. The project has a geographically diverse user-
base, due to emphasis of local knowledge and ground truth in the process of
data collection. Many early contributors were cyclists who survey with and for
bicyclists, charting cycleroutes and navigable trails. Others are GIS professionals
who contribute data with Esri tools. In this manner, OSM is an open and free map
of the whole world constructed by volunteers. It is available in vector format as
shapefiles from the German company Geofabrik.7 For our use case, information
about parks has been taken from this dataset.

The Global Administrative Areas (GADM) dataset is a high-resolution database
of country administrative areas, with a goal of “all countries, at all levels, at
any time period”.8 It is available in vector format as a shapefile, a geopackage
(for SQLlite3), a format for use with the programming language R, and KMZ
(compressed KML). GADM allows us to use the administrative boundaries of cities
and spatially interlink it with all the information we have from the other datasets.

6 https://land.copernicus.eu/pan-european/corine-land-cover.
7 http://download.geofabrik.de/.
8 https://gadm.org/.

https://land.copernicus.eu/pan-european/corine-land-cover
http://download.geofabrik.de/
https://gadm.org/
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3 The Data Science Pipeline

Developing a methodology and related software tools that support the complete life
cycle of linked open EO data has been studied by our group in project LEO [21]
following similar work for linked data, for example by project LOD2 and others
[1, 27]. Capturing the life cycle of open EO data and the associated entities, roles
and processes of public bodies and making available this data was the first step in
achieving LEO’s main objective of bringing the linked data paradigm to EO data
centres, and re-engineering the life cycle of open EO data based on this paradigm.
In this chapter we continue this work by presenting a data science pipeline for big
linked EO data and we apply it to the development of the Green City use case
presented in the previous section.

The life of EO data starts with its generation in the ground segment of a satellite
mission. The management of this so-called payload data is an important activity of
the ground segments of satellite missions. Figure 2 gives a high-level view of the
data science pipeline for big linked EO data as we envision it in our work. Each
phase of the pipeline and its associated software tools is discussed in more detail
below.

3.1 Ingestion, Processing, Cataloguing and Archiving

Raw data, often from multiple satellite missions, is ingested, processed, catalogued
and archived. Processing results in the creation of various standard products (Level
1, 2, etc., in EO jargon; raw data is Level 0) together with extensive metadata
describing them.

Fig. 2 The data science pipeline for big, linked EO data
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3.2 Dataset Discovery

Once data become available in an archive or on the Web, they can be accessed by
proprietary systems, traditional search engines or the Dataset Search service offered
by Google.9

For example, the Copernicus Open Access Hub currently stores products
from Sentinel-1, Sentinel-2, Sentinel-3 and Sentinel-5P missions10 and offers a
menu/map interface for searching for relevant data by date/time, area of interest,
mission, satellite platform, etc. Similar interfaces are offered by other EO data
centres hosting satellite data such as NASA11 and the German Aerospace Center
DLR.12

An interesting recent development in the area of dataset search is the devel-
opment of the service Dataset Search by Google. This service crawls the Web
retrieving metadata of datasets annotated using Schema.org vocabularies13 follow-
ing the guidelines of Google researchers.14 Schema.org was originally founded by
Google, Microsoft, Yahoo! and Yandex, and it has evolved into a community activity
developing vocabularies for annotating Web resources by an open community
process. Schema.org provides a unique structured data markup schema to annotate
a Web page with variety of tags that can be added to HTML pages as JSON-LD,
Microdata or RDFa markup. This markup allows search engines to index Web pages
more effectively.

Dataset Search also offers a keyword-based search interface for discovering these
datasets. For example, one can search for “CORINE land cover Copernicus App
Lab” to discover the CORINE land cover dataset in linked data form published on
datahub.io by our project Copernicus App Lab.15 CORINE land cover is a dataset
published by the European Environment Agency describing the land cover/land use
of geographical areas in 39 European countries.

3.3 Knowledge Discovery

In the knowledge discovery frameworks developed in project TELEIOS [12, 13],
traditional raw data processing has been augmented with content extraction methods
that deal with the specificities of satellite images and derive image descriptors

9 https://datasetsearch.research.google.com/.
10 https://scihub.copernicus.eu/.
11 https://search.earthdata.nasa.gov/.
12 https://eoweb.dlr.de/egp/.
13 https://schema.org/.
14 https://support.google.com/webmasters/thread/1960710.
15 https://datahub.ckan.io/dataset/corine-land-cover12.

https://datasetsearch.research.google.com/
https://scihub.copernicus.eu/
https://search.earthdata.nasa.gov/
https://eoweb.dlr.de/egp/
https://schema.org/
https://support.google.com/webmasters/thread/1960710
https://datahub.ckan.io/dataset/corine-land-cover12
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(e.g. texture features, spectral characteristics of the image). Knowledge discovery
techniques combine image descriptors, image metadata and auxiliary data (e.g. GIS
data) to determine concepts from a domain ontology (e.g. park, forest, lake, etc.)
that characterize the content of an image.

Hierarchies of domain concepts are formalized using ontologies encoded in the
Web Ontology Language OWL2 and are used to annotate standard products. Anno-
tations are expressed in RDF and its geospatial extension stRDF/GeoSPARQL [23,
30] and are made available as linked data so that they can be easily combined
with other publicly available linked data sources (e.g. GeoNames, OpenStreetMap,
DBpedia) to allow for the expression of rich user queries.

3.4 Transformation into RDF

This phase transforms vector or raster EO data from their standard formats (e.g.
ESRI Shapefile or NetCDF) into RDF.

In FP7 project LEO we developed the tool GeoTriples for transforming EO data
and geospatial data into RDF [26]. GeoTriples is able to deal with vector data and
their metadata and to support natively many popular geospatial data formats (e.g.
shapefiles, spatially enabled DBMS, KML, GeoJSON, etc.) The mapping generator
of GeoTriples employs the mapping languages R2RML [10] and RML [11] to create
mappings that dictate the method of conversion of the raw data into RDF.

R2RML is a language for expressing mappings from relational data to RDF
terms, and RML is a more general language for expressing mappings from files
of different formats (e.g. CSV, XML, etc.) to RDF. The mappings are enriched with
subject and predicate object maps in order to properly deal with the specifics of
geospatial data and represent it using an appropriate ontology.

GeoTriples is an open-source tool16 that is distributed freely according to the
Mozilla Public License v2.0.

3.5 Interlinking

This is a very important phase in the linked EO data life cycle since a lot of the value
of linked data comes through connecting seemingly disparate data sources to each
other.

Starting in our project LEO, we have worked on interlinking of open EO data
by discovering geospatial or temporal semantic links. For example, in linked EO
datasets, it is often useful to discover links involving topological relationships, for
example A geo:sfContains F, where A is the area covered by a remotely

16 http://geotriples.di.uoa.gr/.

http://geotriples.di.uoa.gr/
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sensed multispectral image I, F is a geographical feature of interest (field, lake,
city, etc.) and geo:sfContains is a topological relationship from the topology
vocabulary extension of GeoSPARQL. The existence of this link might indicate that
I is an appropriate image for studying certain properties of F.

In LEO we have dealt with these issues by extending the well-known link
discovery tool Silk in order to be able to discover precise geospatial and temporal
links among RDF data published using the tool GeoTriples. The extension of Silk
that we developed is now included in the main version. Since then other tools
that carry out the same task more efficiently have been developed, for example
Radon [32]. A recent comparison of geospatial interlinking systems is presented
in [31].

3.6 Publishing

This phase makes linked EO data publicly available in the LOD cloud or in open
data platforms such as datahub.io using well-known data repository technologies
such as CKAN. In this way, others can discover and share this data and duplication
of effort is avoided.

3.7 Storage and Querying

This phase deals with storing all relevant EO data and metadata on persistent storage
so they can be readily available for querying in subsequent phases.

In our projects we have used our own spatiotemporal RDF store Strabon17 which
was developed especially for this purpose [24]. Strabon supports the data model
stRDF and the query language stSPARQL developed by our group.

stRDF is an extension of RDF that allows the representation of geospatial data
that changes over time [5, 25]. stRDF is accompanied by stSPARQL, an extension of
the query language SPARQL 1.1 for querying and updating stRDF data. stRDF and
stSPARQL use OGC standards (WKT and GML) for the representation of temporal
and geospatial data.

Strabon extends the well-known open-source RDF store Sesame 2.6.3 and uses
PostgreSQL or MonetDB as the backend spatially enabled DBMS. As shown by
our experiments in [5, 16, 17, 25], Strabon is currently the most functional and
performant geospatial and temporal RDF store available.

Strabon also supports the Open Geospatial Consortium (OGC) standard
GeoSPARQL [30] for querying geospatial data encoded in RDF. stSPARQL
and GeoSPARQL are very similar languages although they have been developed

17 http://strabon.di.uoa.gr.

http://strabon.di.uoa.gr
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independently. Strictly speaking, if we omit aggregate geospatial functions from
stSPARQL, the geospatial component of GeoSPARQL offers more expressive
power than the corresponding component of stSPARQL. However, GeoSPARQL
does not support a temporal dimension to capture the valid time of triples as
stSPARQL does.

In our work stRDF has been used to represent satellite image metadata (e.g. time
of acquisition, geographical coverage), knowledge extracted from satellite images
(e.g. a certain area is a park) and auxiliary geospatial data sets encoded as linked
data. One can then use stSPARQL to express in a single query an information
request such as the following: “Find an image taken by a Meteosat second
generation satellite on August 25, 2007, which covers the area of Peloponnese and
contains hotspots corresponding to forest fires located within 2 km from a major
archaeological site.” Encoding this information request today in a typical interface to
an EO data archive such as the ones discussed above is impossible, because domain-
specific concepts such as “forest fires” are not included in the archive metadata, thus
they cannot be used as search criteria.

With the techniques of knowledge discovery developed in our projects, we
can characterize satellite image regions with concepts from appropriate ontologies
(e.g. landcover ontologies with concepts such as waterbody, lake and forest, or
environmental monitoring ontologies with concepts such as forest fires and flood)
[13, 22]. These concepts are encoded in OWL2 ontologies and are used to annotate
EO products. Thus, we attempt to close the semantic gap that exists between user
requests and searchable information available explicitly in the archive.

But even if semantic information was included in the archived annotations, one
would need to join it with information obtained from auxiliary data sources to
answer the above query. Although such open sources of data are available to EO
data centres, they are not used currently to support sophisticated ways of end-
user querying in Web interfaces such as the ones discussed above under “Dataset
Discovery”. In our work, we have assumed that auxiliary data sources, especially
geospatial ones, are encoded in stRDF and are available as linked geospatial data,
thus stSPARQL can easily be used to express information requests such as the
above.

In some applications it might not be a good idea to transform existing geospatial
data into RDF and then store it in a triple store such as Strabon (e.g. when
such data get frequently updated and/or are very large or when the data owners
choose not to do so). For this case, we have developed the system Ontop-
spatial,18 which is a geospatial extension of the ontology-based data access (OBDA)
system Ontop [9]. Ontop performs on-the-fly SPARQL-to-SQL translation on
top of relational databases using ontologies and mappings. Ontop-spatial extends
Ontop by enabling on-the-fly GeoSPARQL-to-SQL translation on top of geospatial
databases [4, 6]. Ontop-spatial allows geospatial data to remain in their original

18 http://ontop-spatial.di.uoa.gr.

http://ontop-spatial.di.uoa.gr
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databases (e.g. PostGIS, SpatiaLite, Oracle Spatial and Graph) and enables them to
be queried effectively and efficiently using GeoSPARQL and the OBDA paradigm.

3.8 Search/Browse/Explore/Visualize

This phase enables users to find and explore the data they need and start developing
interesting applications.

In FP7 project LEO, we redesigned the tool Sextant [28] for such purposes and
also developed a mobile version that is distributed as an APK file for Android
OS. The new version of Sextant is a web-based and mobile-ready application for
exploring, interacting and visualizing time-evolving linked geospatial data.

Sextant was designed as an open-source application19 that is flexible, portable
and interoperable with other GIS tools. This allows us to use it as a core building
block for creating new web or mobile applications, utilizing the provided features.
The core feature of Sextant is the ability to create thematic maps by combining
geospatial and temporal information that exists in a number of heterogeneous data
sources ranging from standard SPARQL endpoints to SPARQL endpoints following
the standard GeoSPARQL defined by the OGC, or well-adopted geospatial file
formats, like KML, GML and GeoTIFF. In this manner we provide functionality
to domain experts from different fields in creating thematic maps, which emphasize
spatial variation of one or a small number of geographic distributions. Each thematic
map is represented using a map ontology that assists on modelling these maps in
RDF and allows for easy sharing, editing and search mechanisms over existing
maps.

4 Implementing the Green City Use Case Using Linked
Geospatial Data Software

In this section we present the implementation of the Green City use case using
the pipeline of the previous section and the relevant software for each stage of the
pipeline.

4.1 Ingestion

In Green City use case, access to Copernicus data and information was achieved
in two ways: (1) by downloading the data via the Copernicus Open Access Hub or

19 http://sextant.di.uoa.gr/.

http://sextant.di.uoa.gr/


A Data Science Pipeline for Big Linked Earth Observation Data 443

the Websites of individual Copernicus services, and (2) via the popular OPeNDAP
framework20 for accessing scientific data.

4.2 Dataset Discovery

The Copernicus Open Access Hub21 offers access to Sentinel data, using a simple
graphical interface that enables users to specify the extent of the geographical area
one is interested in. In the Green City use case though, we mainly used data from the
Land Monitoring service that processes Copernicus data and produces higher-level
products that are of importance in the corresponding thematic area. To detect green
areas within the cities, we used the Leaf Area Index dataset, produced by Sentinel-
3 data, and the CORINE land cover dataset for 2018, produced by Sentinel-2 and
Landsat-8 (gap filling) data. For air quality, we used the Nitrogen Dioxide index,
produced by Sentinel-5p data. Moreover, we used data from OpenStreetMap (OSM)
and the Database of Global Administrative Areas (GADM).

4.3 Knowledge Discovery

Although in the Green City use case this step of the pipeline was not needed, it is a
very crucial step that allows us to discover knowledge hidden in the EO images and
use ontologies to describe this knowledge. Such techniques were used in the context
of the projects TELEIOS and ExtremeEarth by our group in collaboration with
Remote Sensing scientists. In TELEIOS, colleagues from the National Observatory
of Athens developed algorithms to detect fires in SEVIRI images in the context of a
fire monitoring application [20]. In ExtremeEarth, colleagues from the University of
Trento perform the accurate crop type mapping needed the Food Security use case,
using a deep learning architecture for Sentinel-2 images [29].

4.4 Transformation into RDF

In this stage of the pipeline, the outputs of the previous two stages are transformed
into RDF, so that they can be combined with other interesting linked geospatial
data. In the Green City use case, RDF is used to represent Earth Observation
data produced by the Copernicus Land Monitoring service, air quality indices,

20 https://www.opendap.org/.
21 https://scihub.copernicus.eu/.

https://www.opendap.org/
https://scihub.copernicus.eu/
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OpenStreetMap data and data from the database of Global Administrative Areas,
as described in Sect. 4.2.

To transform the mentioned data into RDF, we developed INSPIRE-compliant
ontologies. In the process of constructing ontologies to model Copernicus and other
geospatial data, our aim is to provide standard-compliant, reusable and extensible
ontologies. In this direction, we opted to follow vocabularies that have been defined
in well-established standards, such as the INSPIRE directives and the OGC.

The INSPIRE directive aims to create an interoperable spatial data infrastructure
for the European Union, to enable the sharing of spatial information among public
sector organizations and better facilitate public access to spatial information across
Europe.22 INSPIRE-compliant ontologies are ontologies which conform to the
INSPIRE requirements and recommendations. Our initial approach was to reuse
existing INSPIRE-compliant ontologies, but since these efforts are not as close
to the INSPIRE specifications as we would like to, we decided to construct our
own INSPIRE-compliant versions, following the data specifications as closely as
possible. Our aim is to reuse these ontologies for other datasets that belong to
the same INSPIRE themes and also publish them so that others can reuse these
ontologies for their geospatial datasets as well.

The ontologies we constructed for the Green City use case are the following:

• The ontology for the global database of Leaf Area Index (LAI), as shown in the
link: http://pyravlos-vm5.di.uoa.gr/laiOntology.png.

• The CORINE Land Cover (CLC) ontology, included in the link http://pyravlos-
vm5.di.uoa.gr/corineLandCover.svg, shows the ontology constructed for the
CLC dataset. The ontology is a specialization of the general ontology that we
constructed to model the respective Land Cover theme of INSPIRE so that we
have the first INSPIRE-compliant ontology.

• The ontology for the Ozone Forecast dataset, including the NO2 index, as
described in this link:
http://pyravlos-vm5.di.uoa.gr/atmosphereTimeSeriesOntology.png.

• The OpenStreetMap (OSM) ontology, as shown in this figure: http://sites.
pyravlos.di.uoa.gr/dragonOSM.svg.

• The ontology for the Database of Global Administrative Areas (GADM),
included in this link: http://pyravlos-vm5.di.uoa.gr/gadmOntology.png.

Figure 3 provides the ontology we constructed for the GADM dataset. To
construct this ontology, we extended the GeoSPARQL ontology (namespaces sf
and geo). For the class and properties that we introduced we use the prefix gadm.23

The GADM ontology can be used so that a GADM dataset24 can be either converted
into RDF or queried on-the-fly.

22 https://inspire.ec.europa.eu.
23 The corresponding namespace is: http://www.app-lab.eu/gadm/.
24 https://gadm.org/data.html.

http://pyravlos-vm5.di.uoa.gr/laiOntology.png
http://pyravlos-vm5.di.uoa.gr/corineLandCover.svg
http://pyravlos-vm5.di.uoa.gr/corineLandCover.svg
http://pyravlos-vm5.di.uoa.gr/atmosphereTimeSeriesOntology.png
http://sites.pyravlos.di.uoa.gr/dragonOSM.svg
http://sites.pyravlos.di.uoa.gr/dragonOSM.svg
http://pyravlos-vm5.di.uoa.gr/gadmOntology.png
https://inspire.ec.europa.eu
http://www.app-lab.eu/gadm/
https://gadm.org/data.html
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For the transformation of the aforementioned datasets, we use the tool GeoTriples
that automatically produces RDF graphs according to a given ontology. Shapefiles
along with corresponding ontologies are provided as input to GeoTriples, which
automatically creates R2RML or RML mappings that dictate the method of
conversion of data into the RDF data model. Spatial information is mapped into
RDF according to the GeoSPARQL vocabulary. Since GeoTriples does not support
NetCDF files as input, in the case of the LAI dataset, the translation into RDF was
done by writing a custom Python script.

It is very important to make the above datasets available on the Web as linked
data, in order to increase their use, as, in this way, they can be made “interoperable”
and more valuable when they are linked together. To achieve this goal, we followed
Google Dataset Search guidelines and annotated all the datasets of the Green City
use case by using the markup format JSON-LD. All these datasets can be searched
and found using Google Dataset Search.

4.5 Storage/Querying

For storage and querying, we used the tools Strabon and Ontop-spatial. The
spatiotemporal RDF store Strabon and the query languages stSPARQL and
GeoSPARQL are used for storage and querying linked geospatial data originating
from transforming EO products into RDF.

Strabon was utilized to create the SPARQL endpoints for the GADM, CLC 2018
and OSM parks data sources that are originally distributed in vector formats and are
not updated frequently. For example, assuming appropriate PREFIX definitions, the
GeoSPARQL query shown in Listing 1 retrieves how many CORINE areas in Paris
belong to every land use category and projects the union of the geometries of these
areas per category.

Listing 1 CORINE areas in Paris for every land cover category and their geometries

SELECT DISTINCT ?landUse (strdf:union(?w3) as ?geo) (count(?c) as
?instances)

WHERE{
?adm rdf:type gadm:AdministrativeUnit .
?adm gadm:hasName ?name .
?adm gadm:belongsToAdm2 ?adm2 .
?adm2 gadm:hasName

"Paris"^^<http://www.w3.org/2001/XMLSchema#string> .
?adm geo:hasGeometry ?geo2 .
?geo2 geo:asWKT ?w2 .
?c corine:hasLandUse ?landUse .
?c geo:hasGeometry ?geo3 .
?geo3 geo:asWKT ?w3 .
FILTER(geof:sfIntersects(?w2,?w3))}

GROUP BY ?landUse
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For the rest of the data sources (LAI and NO2) that are updated regularly and
are distributed in raster formats, we chose to use Ontop-spatial. This solution does
not require the transformation of the source data into RDF and allows us to create
virtual RDF graphs on top of geospatial databases and data delivered through the
OPeNDAP protocol, so they can be readily available for querying. In this case, the
developer has to write R2RML mappings expressing the correspondence between
a data source and classes/properties in the corresponding ontology. An example of
such a mapping is provided in Listing 2, in the native mapping language of Ontop-
spatial which is less verbose than R2RML.

Listing 2 Example of mappings

mappingId opendap_mapping
target lai:{id} rdf:type lai:Observation .

lai:{id} lai:lai {LAI}^^xsd:float;
time:hasTime {ts}^^xsd:dateTime .

lai:{id} geo:hasGeometry _:g .
_:g geo:asWKT {loc}^^geo:wktLiteral .

source SELECT id, LAI, ts, loc
FROM (ordered opendap
url:https://analytics.ramani.ujuizi.com/
thredds/dodsC/Copernicus-Land-timeseries-
global-LAI%29/readdods/LAI/, 10)
WHERE LAI > 0

In the example mappings shown in Listing 2, the source is the LAI dataset
discussed above, while the target part of the mapping encodes how the relational
data is mapped into RDF terms. Given the mapping provided above, we can pose
the GeoSPARQL query provided in Listing 3 to retrieve the LAI values and the
geometries of the corresponding areas.

Listing 3 Query retrieving LAI values and locations

SELECT DISTINCT ?s ?wkt ?lai
WHERE { ?s lai:hasLai ?lai .

?s geo:hasGeometry ?g .
?g geo:asWKT ?wkt }

4.6 Publishing

Some of the RDF datasets that are used in the Green City use case have been
published in the datahub https://datahub.ckan.io/organization/app-lab.

https://datahub.ckan.io/organization/app-lab
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4.7 Interlinking

In the Green City use case, combining information from different geospatial sources
was crucial, as we needed to spatially interlink the administrative divisions of a
city with the EO data and OSM parks. We address this issue by employing the
geospatial and temporal component of the framework Silk,25 which is a component
that enables users to discover a wide variety of spatial and temporal relations, such
as intersects, contains, before, and during, between different sources of data.

To retrieve features for which a spatial relation holds (e.g., intersection and
containment), we ask Silk to search for these relations between two RDF data
sources given the relations’ definitions. The outcome contains all of the entities for
which the relations hold. For example, to interlink the CLC and the GADM datasets,
a CLC class that intersects an administrative division is interlinked with it with the
property geo:sfIntersects. The discovered relations are then materialized in the RDF
store, resulting in a more semantically informative dataset.

Interlinking with topological and temporal relations can be used to considerably
decrease the query response time by replacing the spatial and temporal functions
with the respective bindings. For example, we can pose a SPARQL query by
replacing the function geof:sfIntersects with the triple pattern ?clc geo:sfIntersects
?ad, as the geospatial features for which the relation geo:sfIntersects holds have
already been discovered, and the evaluation engine would simply have to retrieve
the respective bindings instead of calculating the spatial filter.

4.8 Exploration and Visualization

In order to visualize the Green City use case, we used the tool Sextant to create
a map for the city of Paris, France. We used Sextant to build a temporal map that
shows the “greenness” of Paris, using the datasets LAI, GADM, CLC 2018, NO2
and OSM. We show how the LAI values change over time in each administrative
area of Paris and correlate these readings with the land cover of each area taken
from the CORINE land cover dataset. This allows us to explain the differences in
LAI values over different areas. For example, Paris areas belonging to the CORINE
land cover class clc:greenUrbanAreas overlap with parks in OpenStreetMap and
show higher LAI values over time than industrial areas.

Sextant allows us to pose GeoSPARQL/stSPARQL queries to SPARQL end-
points and visualize the results as layers on the map. Utilizing this feature, we
created the thematic map for Paris26 shown in Fig. 4, which consists of six layers:

25 http://silk.wbsg.de.
26 http://test.strabon.di.uoa.gr/SextantOL3/?mapid=mpm2tf7ha6ai5f78_.

http://silk.wbsg.de
http://test.strabon.di.uoa.gr/SextantOL3/?mapid=mpm2tf7ha6ai5f78_
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• GADM Paris. This layer shows us the different divisions of Paris and how
“green” each part of the city is.

• Instances per CLC category. This layer shows us the different CLC classes that
spatially intersect with the divisions on the city.

• LAI. This temporal layer consists of the different mean LAI values for area of
Paris, for the months June–August 2017. The dots on the map are the centroids of
300×300 m areas that correspond to the pixel of the satellite image that contains
the observation.

• Mean LAI per Administrative Unit. This is a statistical visualization layer, that
shows us the mean LAI value for the time period of observation, for each division
of Paris.

• OSM Parks. This layer shows us the parks that spatially intersect with the
divisions of Paris.

• NO2. This layer consists of the NO2 mean concentration values for the area of
Paris, for the observed time period.

5 Summary

We presented a data science pipeline for big, linked and open EO data and showed
how this pipeline can be used to develop a Green City use case. The pipeline is
implemented using the software developed in five FP7 and Horizon 2020 projects
(TELEIOS, LEO, Melodies, Optique and Copernicus App Lab). The work presented
in this chapter is now continued in the Horizon 2020 project ExtremeEarth, where
we develop deep learning and big data techniques for Copernicus data in the context
of two use cases: Food Security and Polar.

Acknowledgments This work has been funded by the FP7 projects TELEIOS (257662), LEO
(611141), MELODIES (603525) and the H2020 project Copernicus App Lab (730124).

References

1. Auer, S., Bühmann, L., Dirschl, C., et al. (2012). Managing the life-cycle of linked data with
the LOD2 stack. In ISWC .

2. Auer, S., Scerri, S., Versteden, A., Pauwels, E., Charalambidis, A., Konstantopoulos, S.,
Lehmann, J., Jabeen, H., Ermilov, I., Sejdiu, G., Ikonomopoulos, A., Andronopoulos, S.,
Vlachogiannis, M., Pappas, C., Davettas, A., Klampanos, I.A., Grigoropoulos, E., Karkaletsis,
V., de Boer, V., Siebes, R., Mami, M.N., . . . Vidal, M. (2017). The bigdataeurope platform
– supporting the variety dimension of big data. In Web Engineering – 17th International
Conference, ICWE 2017, Rome, Italy, June 5–8, 2017, Proceedings (pp. 41–59).

3. Bereta, K., Caumont, H., Daniels, U., Goor, E., Koubarakis, M., Pantazi, D., Stamoulis, G.,
Ubels, S., Venus, V., & Wahyudi, F. (2019). The copernicus app lab project: Easy access to
copernicus data. In Advances in Database Technology – 22nd International Conference on
Extending Database Technology, EDBT 2019, Lisbon, Portugal, March 26–29, 2019 (pp. 501–
511).



A Data Science Pipeline for Big Linked Earth Observation Data 451

4. Bereta, K., & Koubarakis, M. (2016). Ontop of geospatial databases. In The Semantic Web
– ISWC 2016 – 15th International Semantic Web Conference, Kobe, Japan, October 17–21,
2016, Proceedings, Part I (pp. 37–52).

5. Bereta, K., Smeros, P., & Koubarakis, M. (2013). Representation and querying of valid time of
triples in linked geospatial data. In The Semantic Web: Semantics and Big Data, Lecture Notes
in Computer Science (Vol. 7882, pp. 259–274). Springer.

6. Bereta, K., Xiao, G., & Koubarakis, M. (2019). Ontop-spatial: Ontop of geospatial databases.
Journal of Web Semantics, 58, 100514.

7. Blower, J., Clifford, D., Goncalves, P., & Koubarakis, M.: The melodies project: Integrating
diverse data using linked data and cloud computing. In Proceedings of the 2014 Conference
on Big Data from Space (BiDS) (2014)

8. Burgstaller, S., Angermair, W., Migdall, S., Bach, H., Vlachopoulos, I., Savva, D., Smeros,
P., Stamoulis, G., Bereta, K., & Koubarakis, M. (2017). Leopatra: A mobile application for
smart fertilization based on linked data. In Proceedings of the 8th International Conference on
Information and Communication Technologies in Agriculture, Food and Environment (HAICTA
2017), Chania, Crete Island, Greece, September 21–24, 2017 (pp. 160–171). http://ceur-ws.
org/Vol-2030/HAICTA_2017_paper17.pdf

9. Calvanese, D., Cogrel, B., Komla-Ebri, S., Kontchakov, R., Lanti, D., Rezk, M., Rodriguez-
Muro, M., & Xiao, G. (2017). Ontop: Answering SPARQL queries over relational databases.
Semantic Web, 8(3), 471–487.

10. Das, S., Sundara, S., & Cyganiak, R. (2012). R2RML: RDB to RDF mapping language. http://
www.w3.org/TR/r2rml/

11. Dimou, A., Vander, S., et al. (2014). RML: A generic language for integrated RDF mappings
of heterogeneous data. In Proceedings of the 7th Workshop on Linked Data on the Web. http://
events.linkeddata.org/ldow2014/papers/ldow2014_paper_01.pdf

12. Espinoza-Molina, D., & Datcu, M. (2013). Earth-observation image retrieval based on content,
semantics, and metadata. IEEE Transactions on Geoscience and Remote Sensing, 51(11),
5145–5159.

13. Espinoza-Molina, D., Nikolaou, C., Dumitru, C.O., Bereta, K., Koubarakis, M., Schwarz, G.,
& Datcu, M. (2015). Very-high-resolution SAR images and linked open data analytics based
on ontologies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing, 8(4), 1696–1708.

14. European Commission, European Space Agency. (2019). Copenicus sentinel data access
annual report 2019. Available from https://earth.esa.int/web/sentinel/news/-/article/
copernicus-sentinel-data-access-annual-report-2019

15. GAEL, NOA, GRNET, Serco. (2019). Copernicus market report. Available from https://www.
copernicus.eu/sites/default/files/2019-02/PwC_Copernicus_Market_Report_2019_PDF_
version.pdf

16. Garbis, G., Kyzirakos, K., & Koubarakis, M. (2013). Geographica: A benchmark for geospatial
rdf stores (long version). In The Semantic Web – ISWC 2013, Lecture Notes in Computer
Science (Vol. 8219, pp. 343–359). Springer.

17. Ioannidis, T., Garbis, G., Kyzirakos, K., Bereta, K., & Koubarakis, M. (2019). Evaluating
geospatial RDF stores using the benchmark geographica 2. CoRR abs/1906.01933

18. Koubarakis, M., Bereta, K., Bilidas, D., Giannousis, K., Ioannidis, T., Pantazi, D., Stamoulis,
G., Dowling, J., Haridi, S., Vlassov, V., Bruzzone, L., Paris, C., Eltoft, T., Krämer, T.,
Charalambidis, A., Karkaletsis, V., Konstantopoulos, S., Kakantousis, T., Datcu, M., Dumitru,
C.O., Appel, F., . . . Fleming, A. (2019). From copernicus big data to extreme earth analytics.
In Advances in Database Technology – 22nd International Conference on Extending Database
Technology, EDBT 2019, Lisbon, Portugal, March 26–29, 2019 (pp. 690–693).

19. Koubarakis, M., Bereta, K., Papadakis, G., Savva, D., Stamoulis, G. (2017). Big, linked geospa-
tial data and its applications in earth observation. IEEE Internet Computing, July/August,
87–91.

20. Koubarakis, M., Kontoes, C., & Manegold, S. (2013). Real-time wildfire monitoring using
scientific database and linked data technologies. In Joint 2013 EDBT/ICDT Conferences,
EDBT ’13 Proceedings, Genoa, Italy, March 18–22, 2013 (pp. 649–660).

http://ceur-ws.org/Vol-2030/HAICTA_2017_paper17.pdf
http://ceur-ws.org/Vol-2030/HAICTA_2017_paper17.pdf
http://www.w3.org/TR/r2rml/
http://www.w3.org/TR/r2rml/
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_01.pdf
http://events.linkeddata.org/ldow2014/papers/ldow2014_paper_01.pdf
https://earth.esa.int/web/sentinel/news/-/article/copernicus-sentinel-data-access-annual-report-2019
https://earth.esa.int/web/sentinel/news/-/article/copernicus-sentinel-data-access-annual-report-2019
https://www.copernicus.eu/sites/default/files/2019-02/PwC_Copernicus_Market_Report_2019_PDF_version.pdf
https://www.copernicus.eu/sites/default/files/2019-02/PwC_Copernicus_Market_Report_2019_PDF_version.pdf
https://www.copernicus.eu/sites/default/files/2019-02/PwC_Copernicus_Market_Report_2019_PDF_version.pdf


452 M. Koubarakis et al.

21. Koubarakis, M., Kyzirakos, K., Nikolaou, C., Garbis, G., Bereta, K., Dogani, R., Gian-
nakopoulou, S., Smeros, P., Savva, D., Stamoulis, G., Vlachopoulos, G., Manegold, S.,
Kontoes, C., Herekakis, T., Papoutsis, I., . . . Michail, D. (2016). Managing big, linked, and
open earth-observation data: Using the TELEIOS/LEO software stack. IEEE Geoscience and
Remote Sensing Magazine, 4(3), 23–37.

22. Koubarakis, M., Sioutis, M., Kyzirakos, K., Karpathiotakis, M., et al. (2012). Building
virtual earth observatories using ontologies, linked geospatial data and knowledge discovery
algorithms. In ODBASE.

23. Kyzirakos, K., Koubarakis, M., & Kaoudi, Z. (2009). Data models and languages for registries
in SemsorGrid4Env. Deliverable D3.1, Dept. of Informatics and Telecommunications,
University of Athens.

24. Kyzirakos, K., Karpathiotakis, M., & Koubarakis, M. (2012). Strabon: A semantic geospatial
DBMS. In The Semantic Web – ISWC 2012 – 11th International Semantic Web Conference,
Boston, MA, USA, November 11–15, 2012, Proceedings, Part I (pp. 295–311)

25. Kyzirakos, K., Karpathiotakis, M., & Koubarakis, M. (2012). Strabon: A Semantic Geospatial
DBMS. In: ISWC.

26. Kyzirakos, K., Savva, D., Vlachopoulos, I., Vasileiou, A., Karalis, N., Koubarakis, M., &
Manegold, S. (2018). Geotriples: Transforming geospatial data into RDF graphs using R2RML
and RML mappings. Journal of Web Semantics, 52–53, 16–32.

27. Maali, F., Cyganiak, R., & Peristeras, V. (2012). A publishing pipeline for linked government
data. In ESWC.

28. Nikolaou, C., Dogani, K., Bereta, K., Garbis, G., Karpathiotakis, M., Kyzirakos, K., &
Koubarakis, M. (2015). Sextant: Visualizing time-evolving linked geospatial data. Journal
of Web Semantics, 35, 35–52.

29. Paris, C., Weikmann, G., & Bruzzone, L. (2020). Monitoring of agricultural areas by using
Sentinel 2 image time series and deep learning techniques. In L. Bruzzone, F. Bovolo, &
E. Santi (Eds.) Image and Signal Processing for Remote Sensing XXVI (Vol. 11533, pp. 122–
131). International Society for Optics and Photonics, SPIE.

30. Perry, M., & Herring, J. (2012). Geosparql – a geographic query language for RDF data.
Available from https://www.ogc.org/standards/geosparql

31. Saveta, T., Fundulaki, I., Flouris, G., & Ngomo, A. N. (2018). Spgen: A benchmark generator
for spatial link discovery tools. In The Semantic Web – ISWC 2018 – 17th International
Semantic Web Conference, Monterey, CA, USA, October 8–12, 2018, Proceedings, Part I (pp.
408–423).

32. Sherif, M. A., Dreßler, K., Smeros, P., & Ngomo, A. N. (2017). Radon – rapid discovery of
topological relations. In AAAI (pp. 175–181).

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://www.ogc.org/standards/geosparql
http://creativecommons.org/licenses/by/4.0/


Towards Cognitive Ports of the Future

Santiago Cáceres, Francisco Valverde, Carlos E. Palau, Andreu Belsa Pellicer,
Christos A. Gizelis, Dimosthenes Krassas, Hanane Becha, Réda Khouani,
Andreas Metzger, Nikos Tzagkarakis, Anthousa Karkoglou,
Anastasios Nikolakopoulos, Achilleas Marinakis, Vrettos Moulos,
Antonios Litke, Amir Shayan Ahmadian, and Jan Jürjens

Abstract In modern societies, the rampant growth of data management
technologies—that have access to data sources from a plethora of heterogeneous
systems—enables data analysts to leverage their advantages to new areas
and critical infrastructures. However, there is no global reference standard
for data platform technology. Data platforms scenarios are characterized by
a high degree of heterogeneity at all levels (middleware, application service,
data/semantics, scalability, and governance), preventing deployment, federation,

S. Cáceres · F. Valverde
Instituto Tecnológico de Informática, Valencia, Spain
e-mail: scaceres@iti.es; fvalverde@iti.es

C. E. Palau · A. B. Pellicer
Universitat Politécnica de Valencia, Valencia, Spain
e-mail: cpalau@dcom.upv.es; anbelpel@upv.es

C. A. Gizelis · D. Krassas
Hellenic Telecommunications Organization S.A., Maroussi, Athens, Greece
e-mail: cgkizelis@cosmote.gr; dimkrass@ote.gr

H. Becha · R. Khouani
Traxens, Marseille, France
e-mail: h.becha@traxens.com; r.khouani@traxens.com

A. Metzger
Ruhr Institute for Software Technology, University of Duisburg-Essen, Essen, Germany
e-mail: andreas.metzger@paluno.uni-due.de

N. Tzagkarakis · A. Karkoglou · A. Nikolakopoulos · A. Marinakis · V. Moulos (�) · A. Litke
National Technical University of Athens, Zografou, Athens, Greece
e-mail: ntzagkarakis@mail.ntua.gr; akarkoglou@mail.ntua.gr; tasosnikolakop@mail.ntua.gr;
achmarin@mail.ntua.gr; vrettos@mail.ntua.gr; litke@mail.ntua.gr

A. S. Ahmadian
Institute for Software Technology, University of Koblenz-Landau, Koblenz, Germany
e-mail: ahmadian@uni-koblenz.de

J. Jürjens
Fraunhofer-Institute for Software and Systems Engineering ISST, Dortmund, Germany
e-mail: juerjens@uni-koblenz.de

© The Author(s) 2022
E. Curry et al. (eds.), Technologies and Applications for Big Data Value,
https://doi.org/10.1007/978-3-030-78307-5_20

453

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-78307-5_20&domain=pdf
mailto:scaceres@iti.es
mailto:fvalverde@iti.es
mailto:cpalau@dcom.upv.es
mailto:anbelpel@upv.es
mailto:cgkizelis@cosmote.gr
mailto:dimkrass@ote.gr
mailto:h.becha@traxens.com
mailto:r.khouani@traxens.com
mailto:andreas.metzger@paluno.uni-due.de
mailto:ntzagkarakis@mail.ntua.gr
mailto:akarkoglou@mail.ntua.gr
mailto:tasosnikolakop@mail.ntua.gr
mailto:achmarin@mail.ntua.gr
mailto:vrettos@mail.ntua.gr
mailto:litke@mail.ntua.gr
mailto:ahmadian@uni-koblenz.de
mailto:juerjens@uni-koblenz.de
https://doi.org/10.1007/978-3-030-78307-5_20


454 S. Cáceres et al.

and interoperability of existing solutions. Although many initiatives are dealing
with developing data platform architectures in diversified application domains, not
many projects have addressed integration in port environments with the possibility
of including cognitive services. Unlike other cases, port environment is a complex
system that consists of multiple heterogeneous critical infrastructures, which are
connected and dependent on each other. The key pillar is to define the design of a
secure interoperable system facilitating the exchange of data through standardized
data models, based on common semantics, and offering advanced interconnection
capabilities leading to cooperation between different IT/IoT/Objects platforms. This
contribution deals with scalability, interoperability, and standardization features of
data platforms from a business point of view in a smart and cognitive port case study.
The main goal is to design an innovative platform, named DataPorts, which will
overcome these obstacles and provide an ecosystem where port authorities, external
data platforms, transportation, and logistics companies can cooperate and create the
basis to offer cognitive services. The chapter relates to knowledge and learning as
well as to systems, methodologies, hardware, and tools cross-sectorial technology
enablers of the AI, Data and Robotics Strategic Research, Innovation & Deployment
Agenda (Milano et al., Strategic research, innovation and deployment agenda - AI,
data and robotics partnership. Third release. Big Data Value Association, 2020).

Keywords Industry 4.0 · Data for AI · Port authorities

1 Introduction

Serverless architecture is based on the ground that the deployment is a transparent
process where the developer is not aware of the cluster/server that the stateless
functions are deployed. Although the inability to specify where the functions should
run seems to weaken the overall architecture caused by a lack of control, that is
compensated by the benefit of performance of the application.

The digital transformation of the ports toward the Fourth Industrial Revolution
is revealing opportunities related to the add-on services that can be provided.
Port platforms are now integrating available data sources capturing the potential
needs that arise from the increased demand for more accurate and complete
information [20]. The value of that new trend is also boosted by the new wave of
startups that implement over-the-top services. However, most port authorities are
not technologically ready to host these services and frameworks. The necessary
technology infrastructure has anti-diametric different requirements from the one
that is deployed. The same drawback applies to the architecture where in most cases
must be shifted to serverless-oriented solutions.

For example, port authorities have the chance to enrich their services with
smart containers infrastructure. This add-on IoT infrastructure enables the online
information exchange capability about the entire journey and the conditions of the
cargo directly to the rest of the supply chain without human intervention. This
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provides greater visibility to the stakeholders within the transaction as well as to
regulatory agencies who need detailed information on the consignments before
they arrive at the border. This technology can be combined with other innovations
such as blockchain, big data, or data pipelines to provide even more facilitation
to the trading community. In all of these cases, though, we see that creating clear,
unambiguous message exchange standards will allow to capitalize the full potential
of the enhanced data. This shared data will enable the creation of new value-added
services that the port authorities can benefit from.

Unfortunately, port authorities are unprepared nowadays to host that massive
information exchange system. One reason is investments in IT that should be made,
as the port systems will be upgraded to the main exchange point where companies
and start-ups will connect to buy/sell data, information, and services. Another reason
is the lack of expertise in new design implementations from the port authority
staff since the orientation of the authority is anti-diametric different. Although a
few of these needed features are addressed by serverless platforms like Openwhisk
[3], OpenFaaS [33], OpenLambda [23], and Kubeless [26], some open challenges
remain. Scalability, interoperability, architectural design, and standardization are the
key pillars for a successful ecosystem. Definitions from a port authority view is
presented in Sect. 2, where a complete analysis of these concepts is given in Sects. 3,
4, 5, and 6. Finally, we conclude with the business challenges that future systems
will face after the transition to the new era.

2 Challenges for Port-Oriented Cognitive Services

A cognitive service is a software component that uses AI and big data capabilities to
solve a business task. Cognitive services are ready-to-use solutions to be integrated
into the context of software products for improving the decision-making process
related to data. Some cloud providers offer general cognitive services such as
image classification or natural text recognition/translation. However, this novel
paradigm has not been applied in the ports’ domain. Ports share common business
tasks in which cognitive services could provide answers. Some examples are the
prediction of the Expected Time of Arrival (ETA) of a container or a vessel, the
truck turnaround time to deliver a container to a terminal, or the definition of a
booking system to reduce environmental impact. The main goal is to build such
services to be generic enough to be applied in different ports and use cases. To
enable the cognitive services approach envisioned in the context of the project, the
DataPorts [13] platform must address the following technical challenges:

1. One issue to address is to enable the data sharing between an undefined number
of port stakeholders, such as terminal operators, port authorities, logistic carriers,
and so on. The accuracy of cognitive services is directly related to the amount
of available data. For building such a data ecosystem, the defined architecture
must include scalability as the first design principle. To address this challenge,
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we foresee the introduction of the International Data Spaces Association (IDSA)
Reference Architecture Model [4], a standard solution with the required building
blocks for achieving a seamless integration between organizations.

2. Scalability for AI training: Training models for cognitive services is a time-
consuming task even with a powerful computing infrastructure for supporting
it. As the state of the art evolves, new frameworks and techniques must be tested
in order to find the optimal one, which provides better accuracy for the problem
at hand. A cognitive service vision implies that not specific know-how from the
data science domain is required: the end-user is who defines the training process
with little manual intervention. This fact leads to the definition of several training
alternatives, which must run simultaneously over a distributed infrastructure.
This challenge will be addressed by the DataPorts platform, introducing the most
suitable technological approaches from the ML DevOps area.

3. Heterogeneous data processing: Ports field is a domain in which several IT
infrastructures, information systems like TOS or IoT sensing devices, are
potential candidates to become a valuable data source. In this scenario, two main
challenges arise: how to deal with the heterogeneity of the data sources (formats,
schema, etc.) and with an undefined volume of data. The DataPorts platform will
support the heterogeneity of schemas, applying techniques from the semantic
interoperability domain and taking into account vocabularies or taxonomies from
standardization bodies. Following the good practices for big data processing,
such as the use of containerized application and distributed databases, we expect
to provide the required tools for enabling a scalable data processing.

4. A trusted data governance: Ownership of the data is a key issue in any discussion
related to data sharing between different organizations. To enhance the data
sharing needed to build cognitive services, the DataPorts platform must first
of all provide a trusted framework for defining data sharing rules to specific
users, roles, and organizations. This framework must also enforce that the data
is used following the specifications the data owner has formally defined. Data
management, when this data is outside the boundaries of the organization, is a
challenge that requires a set of trusted software components and clear security
procedures. We foresee the use of smart contracts, in the context of a blockchain
network among organizations, as the technological foundation to address this
challenge.

The next sections introduce in more detail how we expect to address these
overall challenges in terms of the overall architecture management, scalability,
interoperability, and standardization. These challenges are in direct relation with the
DaaS and FaaS overall strategic plan as well as with the horizontal concern of data
management, data analytics, and data visualization of the BDV Technical Reference
Model [43].
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3 Scalability

In order to define a programming model and architecture where small code snippets
are executed in the cloud without any control over the resources on which the code
runs, the industry came with the term “Serverless Computing.” [5] It is by no means
an indication that no servers exist, simply that the developer should leave most
operational issues to the cloud provider, such as resource provisioning, monitoring,
maintenance, scalability, and fault tolerance. The platform must guarantee the
scalability and elasticity of the functions of the users. In response to load, and in
anticipation of potential load, this means proactively provisioning resources. This is
a more daunting serverless issue because these forecasts and provisioning decisions
must be made with little to no application-level information. For instance, as an
indicator of the load, the system can use request queue lengths but is blind to the
nature of these requests.

In a few words, serverless computing allows application developers to decom-
pose large applications into small functions, allowing application components
to scale individually [29]. The majority of Function-as-a-Service systems use
Kubernetes’ built-in Horizontal Pod Autoscaling (HPA) for auto-scaling, which
implements compute-resource-dependent auto-scaling of function instances [6].
However, custom scaling mechanisms, such as auto-scaling based on the number
of concurrent in-flight requests, can also be implemented. Generally speaking,
there exist many implementations regarding scaling and auto-scaling on serverless
functions.

Scalability is the ability of a system to handle a growing amount of work by
adding resources to itself. This means that scalability stands as a direct solution to
any workload issue that might emerge in a system. Therefore, today’s frameworks
should take a full advantage of scalability’s benefits by implementing tools that
achieve exactly that. How can a system be scalable? Solutions vary. However, the
selection field narrows down a lot when it comes to serverless computing systems.
That’s because serverless applications are created to have the scalability issue solved
in advance. What remains to be answered is how we can further improve scalability
in the serverless world.

Nevertheless, a solution to the scalability issue, distinct from the majority of
the available ones, is through the prism of a Data-as-a-Service Marketplace [36].
When combined with a fully working Function-as-a-Service (FaaS) platform, this
approach can lead to optimum scaling results. The core idea is about creating a
serverless platform as part of a Data-as-a-Service (DaaS) marketplace repository
framework, which enables dynamic scaling in order to ensure business continuity,
such as real-time accommodation of rapidly evolving user numbers, and fault
tolerance. That framework contains a multitude of readily accessible APIs to serve
the needs of a growing and changing DaaS platform marketplace, while it provides
great flexibility in selecting topologies and architectures for the storage pool. In
essence, any node, either located in the cloud, at the physical location of the
marketplace, or even at the edge of the network, may be used to store data as part of
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the repository cluster. That DaaS strategy uses the cloud to deliver data storage,
analytics services, and processing orchestration tools in order to offer data in a
manner that new-age applications can use.

4 International Data Spaces Architecture Reference Model

However, the adopted proposal in the context of the DataPorts project [13] is the
International Data Spaces Architecture (IDSA) Reference Model [4]. According
to the official documentation, the International Data Spaces (IDS) is a virtual data
space leveraging existing standards and technologies, as well as governance models
well accepted in the data economy, in order to facilitate secure and standardized data
exchange/linkage in a trusted business ecosystem (illustration of the architecture
is shown later on in Fig. 1). Therefore, it provides a basis for creating smart-
service scenarios and facilitating innovative cross-company business processes. At
the same time, it guarantees data sovereignty for data owners. Regarding the IDSA’s
Reference Model, it is highly scalable. In short, the IDSA reference architecture
model’s high scalability is attributable to the fact that this model is a decentralized
architecture (“peer-to-peer” data exchange with redundant replicated connectors and
brokers) without a central bottleneck.

The two main and most important components of the IDSA Reference Model
are the “Broker” and the “Connector.” These components are responsible for the
model’s decentralized architecture and its ability to be highly scalable, as mentioned
before. Additional to these two are the “Data Apps,” which are data services
encapsulating the functionality of data processing and/or data transformation,
packaged as container images for easy installation through the application container
management. The Data Apps are distributed through a secure platform, the “IDS
App Store.” The IDS App Store contains a list of available Data Apps. An App
Store therefore facilitates the registration, release, maintenance, and query of the
Data App operations, as well as the provisioning of the Data App to a Connector.
The presence of an App Store, with different types and categories of applications,
means that the IDSA is highly scalable, since connectors, as the main component of
the IDSA Reference Model, can be modified or expanded to increase the ability and
functionality of the connectors based on different requirements and domains.

To sum up, the key point (and what is worth noting) is that this architecture
model is capable of achieving high scalability, in combination with an existing
FaaS platform. Regarding the connection of IDSA with the DataPorts project,
an architecture design for cognitive ports has to enable data sharing and data
governance in a trusted ecosystem including various ports stakeholders. In the
context of cognitive ports, to realize trusted data sharing and data governance, one
can benefit from two main approaches:

1. Data is stored off-chain: Generally in this approach, we may leverage the
concept of the International Data Spaces (IDS) reference architecture model
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(RAM) [4]. In a nutshell, a peer-to-peer data exchange between the data owners
and data consumers through the IDS connectors is considered. To ensure the
security and privacy aspects, blockchain manages consent of access to data.
Smart contracts decide if a particular access to data is allowed concerning the
invoker’s credentials and the specification of access rules for the particular data
[1].

2. Data is stored on chain (blockchain platform for shared data): Blockchain
platform records transactions related to shared data and processes of all par-
ticipants in a business network. For instance, coldchain temperature-alarms
of a container for verification of its state such as if conditions have been
compromised, allows everybody in the network to be aware of the event and act
upon it. This approach in fact ensures verifiable and immutable information on
shared data through the entire chain to all business network participants serving
as a single source of truth and providing transparency and a not-repudiation
process.

As depicted in Fig. 1 and mentioned above, the International Data Spaces (IDS)
is a virtual environment that leverages existing standards and technologies, as well
as governance models well-accepted in the data economy, to facilitate secure and
standardized data exchange and data linkage in a trusted ecosystem [4].

As stated before and already analyzed, two main components of the IDS RAM
are a broker and a connector. A brief reminder, the broker is an intermediary that
stores and manages information about the data sources available in the IDS. It
mainly receives and provides metadata. As mentioned before, data sharing and data
exchange are the main fundamental aspect of the IDS. An IDS connector is the main
technical component for this purpose.

For the IDS connector, as the central component of the architecture, different
variants of implementation are available, may be deployed in various scenarios,
and can be acquired from different vendors. However, each connector is able to
communicate with any other connector (or other technical components) in the
ecosystem of the International Data Spaces.

• Operation: Stakeholders should be able to deploy connectors in their own IT
environment. Additionally, they may run a connector software on mobile or
embedded devices. The operator of the connector must always be able to describe
the data workflow inside the connector. Moreover, users of a connector must be
identifiable and manageable. Every action, data access, data transmission, and
event has to be logged. This logging data allows to draw up statistical evaluations
on data usage.

• Data exchange: A connector must receive data from an enterprise backend
system, either through a push mechanism or a pull mechanism. The data can
be either provided via an interface or pushed directly to other participants. Hence
each connector has to be uniquely identifiable. Other connectors can subscribe to
data sources or pull data from these sources. Data can be written into the backend
system of other participants.
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In addition to what it is described, the IDS RAM benefits from an information
model, which is an essential agreement shared by the participants and components
of the IDS, facilitating interoperability and compatibility. The main aim of this
formal model is to enable (semi-)automated exchange of digital resources in a
trusted ecosystem of distributed various parties, while the sovereignty of data
owners is preserved.

Data sovereignty is defined as data subject’s capability of being in full control
of the provided data. To this end, all the organizations attempting to access the
IDS ecosystem have to be certified, and so are the core software components
(for instance, IDS connector) used for trusted data exchange and data sharing.
Such a certification not only ensures security and trust, but the existence of
certified components guarantees compliance with technical requirements ensuring
interoperability.

5 Interoperability

5.1 Introduction

Interoperability among disparate computer systems is the ability to consume
services and data with one another. Each software solution provides its own
infrastructure, devices, APIs, and data formats, leading to compatibility issues and
therefore to the need for specifications in terms of interaction with other software
systems. Interoperability, as a complex concept, entails multiple aspects that address
the effective communication and coordination between components and systems
that might consist of a uniform platform at a larger scale. This section focuses on
interoperability from the point of view of semantic interoperability and Application
Programming Interfaces. On the one hand, semantic interoperability constructs a
consolidated ontology model that ensures the unambiguity of data exchanges, since
it is guaranteed that the requester and provider have a common understanding of the
meaning of services and data. On the other hand, APIs constitute an interoperability
tool that documents all the available services that are exposed by a software
system, as well as the information about the respective communication protocols.
Therefore, APIs are considered a significant step toward the interoperability of a
system through the standardization of the components’ communication. The present
section describes the evolution of the service architectural models based on the ever-
changing needs of communication, as well as the most powerful state-of-the-art tool
for API standardization.
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5.2 Semantic Interoperability

Semantic interoperability provides the ability to computer systems to exchange data
with unambiguous, shared meaning [22]. In any system focused on interoperability,
it is essential to take into account the production, collection, transmission and
processing of large amounts of data. An application consuming those data needs to
understand its structure and meaning. The metadata is responsible for representing
these aspects in a readable way by a machine. The more expressive is the language
used for representing the metadata, the more accurate the description might become.
The metadata provides a semantic description of the data and can be utilized for
many purposes, such as resource discovery, management, and access control [21].

The concept ontology refers to a structure that provides a vocabulary for a
domain of interest, together with the meaning of entities present in that vocabulary.
Typically, within an ontology, the entities may be grouped, put into a hierarchy,
related to each other, and subdivided according to different notions of similarity. In
the last two decades, the development of the Semantic Web resulted in the creation
of many ontology-related languages, standards, and tools. Ontologies give the
possibility to share a common understanding of the domain, to make its assumptions
explicit, and to analyze and reuse the domain knowledge. In order to achieve shared
meaning of data, the platforms or systems have to use a common ontology either
explicitly, or implicitly, for example, via a semantic mediator [18].

Typically, organizations in transportation and logistics, with a particular focus
on port logistics, have their own local standards. Sometimes they have a poor
formalization of semantics, or they don’t have explicit semantics at all [19]. The
development of ontologies for logistics is not a trivial task. Define and use guidelines
and best practices are necessary for this domain, especially to bridge the gap
between theory and practice. A proper theoretical and methodological support is
required for ontology engineering to deliver precise and consistent solutions to the
market, as well as to provide solutions to practical issues to be close to the real
market needs [12].

DataPorts project is developing a semantic framework for describing ports data
together with mappings to standard vocabularies in order to simplify the reuse
of data applications for analytics and forecasting. In particular, this semantic
framework will codify the domain knowledge of the domain experts, and thus can
be reused and exploited by the data experts directly, thereby empowering building
cognitive port applications.

The relevance of the use of data platforms and the exploitation of data sharing
are boosted by the high volume of different companies and public bodies that
need to collaborate among them with different degrees of digital capacities. In this
aspect, a semantic interoperability framework with a currently non-existing global
ontology will improve such collaboration and data representation. Regarding the
target group of users from the logistics domain, DataPorts semantics components
make the interpretation of data and metadata more manageable for data users, so
that their discovery is straightforward according to common search criteria. On
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the other hand, special provisions are taken in the platform to create an active and
easy to enter data marketplace for third-party developers and service providers, with
minimal integration efforts, clear monetization, and business value creation.

From a technical point of view, the aim of the project is to identify the different
data sources to be integrated into the DataPorts platform, including the mechanisms
to store and facilitate data management. Ontologies, mechanisms and enablers
must also be defined to provide semantic interoperability with the data of these
digital port infrastructures. This includes IoT devices, mobile applications, and,
legacy databases and systems. Finally, to develop the semantic-based tools and
components needed to facilitate the generation of interfaces to interact and manage
the information of these data sources through the DataPorts platform. The data
platform will guarantee semantic interoperability in order to provide a unified
virtualized view of the data for its use by the different data consumers and the data
analytic services. Figure 2 shows the architecture designed to achieve this purpose.

The Data Access Component solves the problem of access to different data
sources or origins in a secure way. Given the very different types of sources, the
platform will have to cope with the variety of data sources. It is necessary to analyze
the provided interfaces of each data source. These interfaces should facilitate the
way to access, to analyze the format and to understand the way to receive the data.

Fig. 2 Data Access and semantic interoperability Layer components of DataPorts Platform
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They should recognize the volume, the velocity and the veracity of the information.
In addition, to consider the existence of an ontology in the data source. To deal
with these heterogeneous data sources, a data access agent is necessary for each
data source integrated into DataPorts platform. An agent or adapter is the piece of
software in charge of acquiring data from a source under certain conditions. Then
the agents transform this data acquired from the sources to data in the DataPorts
common data model. Finally, this data is sent to the other platform components. In
addition, the Data Access Manager manages the metadata description of the data
processed by the agents and the interaction of the agents with the other platform
components. To recapitulate, the Data Access Component is the responsible for
getting the sharing data and metadata description from the different data sources.
It performs the processes to make the data sources understandable and available to
the other platform components.

The semantic interoperability Component provides a unified API to access the
data from the different data sources connected to the DataPorts platform, providing
both real-time and batch data to the data consumers. In collaboration with the
Data Access component, it will provide a data shared semantics solution for the
interoperability of diverse data sources using existing ontologies. The output data
will follow the common DataPorts ontology.

Regarding the metadata, the semantic interoperability Component obtains infor-
mation about the different data sources from the Data Access Manager and stores
it in the metadata registry to make it available for the other subcomponents of this
layer. In addition, the metadata is sent to the IDS broker to provide information to
the data consumers about the available data sources. Other components of DataPorts
platform like Data Abstraction and Vitrualization and Automatic Prediction Engine
can retrieve this metadata description of the data sources by asking the semantic
interoperability API. The output metadata will follow the common DataPorts
ontology.

The semantic interoperability Component provides a repository with the Dat-
aPorts Data Model and DataPorts Ontology. It offers an ontology definition using
OWL [34] and a Data Model description using JSON schema and JSON-LD context
documents. The aim is to integrate the following ontologies and data models:
Fiware Data Models [14], IDSA Information Model [24], United Nations Centre for
Trade Facilitation and Electronic Business (UN/CEFACT) [40] Model, and Smart
Applications REFerence (SAREF) ontology [38].

Finally, the semantic interoperability Component API will interact with the
Security and Privacy component to enable authentication and confidentiality, as well
as to enforce the data access policies, in order to ensure proper data protection in
the exchanges with the data consumers.

The open-source Fiware platform [16] has been selected to act as a core
element of the Data Access and semantic interoperability components of the
architecture presented, and it will be adapted, customized, and extended to fit the
DataPorts project expectations. Moreover, the Fiware Foundation is involved in the
development of IDS implementations and is actively cooperating with the Industrial
Data Space Association (IDSA). Together, Fiware and IDSA are working on the
first open-source implementation of the IDS Reference Architecture [2].
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The aim behind Fiware is that technology should be accessible for everyone, with
a focus on interoperability, modularity, and customizability. Data should seamlessly
merge with data from other relevant sources. For that reason, Fiware components
provide standardized data formats and API to simplify this integration. The platform
is open source and can be easily embedded by ecosystem partners in the design
of their solutions and reduce vendor lock-in risks. The standardized API means
that services can operate on different vendor platforms. Fiware NGSI [17] is the
API exposed by the Orion Context Broker and is used for the integration of
platform components within a “Powered by Fiware” platform and by applications
to update or consume context information. The Fiware NGSI (Next Generation
Service Interface) API defines a data model for context information, an interface for
exchanging context information, and a context availability interface for queries on
how to obtain context information. The agents are the connectors that guarantee the
transmission of raw data to Orion Context Broker using their own native protocols.

Some implementation decisions have been made in order to collaborate with the
Fiware ecosystem. Firstly, all data and metadata formats are going to be designed to
follow Fiware NGSI data models specifications [15]. Secondly, the use of the Orion
Context Broker is being adopted as the semantic broker component [17]. Finally,
regarding the data access agents, they are not mandatory to be implemented with a
closed specific technology, but in order to provide a standardized SDK (Software
Development Kit) to develop agents, the aim is to use the pyngsi Python framework
[37].

The work done in previous European projects, where Fiware technology is a
key element, is taken as a reference in the DataPorts implementation. For example,
it is interesting to highlight projects like SynchroniCity [39] and Boost 4.0 [11].
SynchroniCity is aimed to establish a reference architecture for the envisioned IoT-
enabled city market place with identified interoperability points and interfaces and
data models for different verticals. The baseline of the SynchroniCity [39] data
models is the FIWARE Data Models initially created by the FIWARE Community
and have been expressed using the ETSI standard NGSI-LD. Regarding Boost 4.0,
the aim of the project is to implement the European Data Space with FIWARE
technologies.

5.3 Application Programming Interfaces for Serverless
Platforms

In order for the envisioned software components of the DataPorts [13] architecture
to be manifested, their interconnection through a standardized API is crucial in
order to avoid a monolithic service approach that does not face the challenges
presented above and causes a major drawback in the process of building a federated
ecosystem. The concept of a service within a computational infrastructure has
been fundamental through the evolution of different architectural designs and
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implementations. Application Programming Interfaces (APIs), however, constitute
a powerful interoperability tool that enables communication within a heterogenous
infrastructure resulting in loosely coupled components. For that reason, their
usage has almost dominated the landscape of services, especially within serverless
infrastructures.

Considering the WWW as an ecosystem of heterogenous services that require
simplicity, Web APIs, or also known as RESTful services, have been increasingly
dominating over the Web services that are based upon WSDL and SOAP. RESTful
services conform to the REST architectural principles, which include constraints
regarding the client-server communication, the statelessness of the request, and the
use of a uniform interface. In addition, these services are characterized by resource-
representation decoupling, such that the resource content can manifest in different
formats (i.e., JSON, HTML, XML, etc.). Furthermore, the majority of Web APIs
reliance on URIs for resource identification and interaction and HTTP protocol for
message transmission result in a simple technology stack that provides access to
third parties, in order for them to consume and reuse data that originate from diverse
services in data-oriented service compositions named mashups [28].

The evolution of the monolithic service-oriented architectures (SOA) has com-
menced from the management of the complexity of distributed systems in scope of
integrating different software applications and has evolved through microservices
into serverless architectures. In service-oriented architectures, a service provides
functionalities to other services mainly via message passing. With the modular-
ization of these architectures into microservice ecosystems, different services are
developed and scaled independently from each other according to their specific
requirements and actual request stimuli, leading to the localization of decisions
per service regarding programming languages, libraries, frameworks, etc. However,
the rise of cloud computing has led to serverless architectures that support the
dynamic resource allocation and the corresponding infrastructure management in
order to enable auto-scaling based on event stimulus and to minimize operational
costs [25]. In that context, Web APIs should be considered the cornerstone of
the exploding evolution of service value creation, where enterprise systems are
embracing the XaaS (Anything-as-a-Service) paradigm, according to which all
business capabilities, products, and processes are considered an interoperable
collection of services that can be accessed and leveraged across organizational
boundaries [7]. Nevertheless, since the beginning of the APIs prevalence over the
traditional Web service technologies, the APIs have evolved in an autonomous
way, lacking an established interface definition language [28]. Hence, in terms
of serverless infrastructures, the subsequent need for homogeneity in application
design and development has risen.

A common denominator in the development of serverless functions is their
ability to support different functionalities in a scalable and stateless manner. For
instance, there might be a serverless application that is integrated with an already
existing ecosystem of functions that support API calls to cloud-based storage. While
the former is by definition scalable, the underlying storage system’s on-demand
scalability is bound to reliability and QoS guarantees. As far as these serverless
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implementations are concerned, two major use cases are addressed hereunder.
The first one involves the composition of a number of APIs, while filtering
and transforming the consumed data. A serverless function that implements this
functionality mitigates the danger of network overload between the client and the
invoked systems, and offloads the filtering and aggregation logic to the backend. The
second serverless application involves API aggregation, not only as a composition
mechanism but as a means to reduce API calls in terms of authorization, for
example. This composition mechanism simplifies the client-side code that interacts
with the aggregated call by disguising multiple API calls into a single one with
optional authorization from an external authorization service, e.g., an API gateway
[5].

Despite the commonalities among serverless platforms in terms of pricing,
deployment, and programming models, the most significant difference between
them is the cloud ecosystem [5]. Differences in cloud platforms lead to discrepancies
in developing tools and frameworks that are available to developers for creating
services native to each platform. The ever-evolving serverless APIs in combination
with the corresponding frameworks and libraries represent a significant obstacle
for software lifecycle management, service discovery, and brokering. The plethora
of incompatible APIs in terms of serverless technology has created the need for
multicloud API standardization, interoperability, and portability in order to achieve
seamlessness. In this direction, informal standardization has been formed after
community efforts toward addressing the lack of a common programming model
that enables platform-agnostic development and interoperability of functions [42].

Following the problem identification depicted above, the solution to the lack of a
standardized and programming language-agnostic interface description language is
fulfilled by the OpenAPI Specification (OAS). The OpenAPI initiative was founded
in November 2015 by the collaboration of SmartBear, 3Scale, Apigee, Capital One,
Google, IBM, Intuit, Microsoft, PayPal, and Restlet. This initiative was formed as
an open-source project under the Linux Foundation and was designed to enable
both humans and computers to explore and understand the functionalities of a
RESTful service without requiring access to source code, additional documentation,
or inspection of network traffic. OAS enables the understanding and interaction with
the remote service with a minimal amount of implementation logic according to a
vendor neutral description format. The OpenAPI Specification was based on the
rebranded Swagger 2.0 specification, donated by SmartBear Software in 2015 [32].

The most important advantages of the OpenAPI Specification are twofold. On
the one hand, the business benefit that comes a long is the recognition of this
standardization as a useful means for a lot of developers to develop open-source
repositories of tools that leverage this enablement. Furthermore, OAS is supported
by a group of industry leaders that contribute with their strong awareness and
mindshare, while indicating stability across a diverse code base. On the other hand,
OAS is registered as a powerful technical tool that is most importantly language-
agnostic and provides understanding of an API without the involvement of server
implementation. Its documentation is regularly updated by a broad community
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that provides additional example implementations, code snippets, and responses to
inquiries [32].

According to the above, the significance of the standardization that OAS offers
rationalizes its adoption as the proposed solution interface description language for
the proposed port platform. The pluralism of different data sources that need to
be integrated within this platform, in combination with the existence of different
frameworks and technologies of the existing APIs that are already utilized by ports,
introduces the need for a uniform description of the exposed interfaces. For instance,
the IoT infrastructure that includes APIs that are exposed by smart containers
enables the aggregation of information that implements the life cycle assessment
(LCA) applied for port logistics operations and needs to be integrated seamlessly
with the different components of the platform. Moreover, crucial role in the message
exchange between the different infrastructures within the ports ecosystem, play
the APIs that facilitate the communication between components. Therefore, the
standardization of their interface is of utter importance for the scalability and the
interoperability of the platform. The DataPorts architecture can be constructed based
on the OpenAPI specification, enabling the development of add-on services and the
creation of added value of the available data. Furthermore, the implementation of
the platform within a serverless architecture framework underlines the significance
of the OpenAPI specification as a powerful standard for the interface description of
all services within and exposed by the DataPorts platform.

6 Standardization

IDSA [4] aims at open, federated data ecosystems and marketplaces ensuring
data sovereignty for the creator of the data by establishing virtual space for the
standardized, secure exchange and trade of data. Standards, be they national,
regional, or global, are the fruit of collective efforts and guarantee interoperability.
They can be revised to meet industry needs and remain relevant over time. Standards
organizations, where participants from different segments of the industry gather, are
among the few places where competitors work side-by-side. Standards organizations
offer a safe place to do so from an antitrust perspective. Standards development
participants are industry experts, tech companies, and customers representing all
fields of the industry.

The adoption of global multimodal data exchange standards guarantees inter-
operability. In fact, smart container standardization effort [9, 10] is one of many
standardization initiatives [27] supporting global trade. Standards enable stake-
holders in the logistics chain to reap the maximum benefits from smart container
solutions while enabling them to share data and associated costs. Standards-based
data exchange usage increases the ability to collaborate, which in turn increases
efficiency. Additionally, such standards reduce development and deployment costs
and cut time to market for Internet of Things (IoT) solution providers.
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Data exchange standards developed in an open process offer a useful aid to
all parties interested in the technical applications and implementation of smart
container solutions. Additionally, if solution providers find there are new data
elements required to accommodate changing business requirements, it is possible to
create a backward-compatible revision of the standard to accommodate their needs.

With the ramp-up of new and emerging technologies, these standards are
more necessary than ever. Standards reduce the risk of developing proprietary
technologies with significant deployment limitations and the lack of interoperability
among systems and devices. Standards enable the parties to avoid costly and time-
consuming integration and limit the risk of vendor lock-in. In this context, IDS
provides a generic framework that can be leveraged by domain-specific instantiation
such as UN/CEFACT smart container standard that offers transport execution and
the condition under which the cargo was transported.

The United Nations Centre for Trade Facilitation and Electronic Business
(UN/CEFACT) Smart Container Business Requirements Specification (BRS)
ensures that the various ecosystem actors share a common understanding of smart
container benefits by presenting various use cases. It also details the smart container
data elements [41]. Defining the data elements that smart containers can generate
accelerates integration and the use of smart container data on different platforms for
the enhancement of operations. In addition, utilizing standard smart container data
enables open communications channels between supply chain actors.

Standards data models and standard APIs would help stakeholders to make the
necessary transformation to achieve supply chain excellence [8]. Indeed, APIs are
key to ensuring simplification and acceleration of the integration of digital services
from various sources.

The focus of the UN/CEFACT Smart Container project is to define the data
elements via varied use cases applicable to smart container usage. Currently, the
data model is being developed, which will provide the basis for the smart container
standard messaging and Application Programming Interfaces (APIs). The Smart
Container API catalog will be the source code-based interface specification enabling
software components (services) to communicate with each other. It is crucial to first
determine and align the required data elements and their semantics.

Smart containers will revolutionize the capture and timely reporting of data
throughout the supply chains. Such containers are an essential building block to
meet the emerging requirements for end-to-end supply chains. As leading carriers
adopt smart container solutions, they gain valuable data that can be shared with
shippers and other supply chain stakeholders.

However, generating and collecting data is not enough to make smart container
solutions or supply chains “smart.” Stakeholders already manage huge amounts of
data and struggle with multiple technologies that take time away from their core
businesses. A smart container solution must deliver data that matters, in a standard
format for easy integration into different systems. It must enable unambiguous data
interpretation and empower all involved stakeholders with actionable information.
Clear semantic standards are essential for effective smart container data exchange
ensuring that all stakeholders understand the same information in the same way.
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Then and only then, can smart containers truly become part of digital data streams
[35].

The UN/CEFACT Smart Container project aims to create multimodal commu-
nications standards that can facilitate a state-of-the-art solution in providing and
exposing services. Any intermodal ecosystem stakeholder may then orchestrate and
enrich these services to meet their business process needs. The availability and
exposition of these services can boost the digital transformation of the transportation
and logistics industry, fuelling innovation in new applications and services. Physical
supply chains that move goods need a parallel digital supply chain that moves
data describing the goods and their progress through the supply chain. The smart
container data flows ensure that the physical flow is well synchronized with the
required documents flow. Data are the raw material of Maritime Informatics.
Without data streams emanating from operations, there can be no data analytics. As
we digitalize, we improve operational productivity and lay the foundation, through
Maritime Informatics, for another round of strategic and operational productivity
based on big data analytics and machine learning.

7 Business Outcomes and Challenges

The fast-growing complexity at seaports makes data management essential, hence
the optimal goal is to achieve greater efficiency. The use of large volumes of data
(big data) is indisputably a major aid to this goal [31]. AI-based services available
in a smart seaport is a new revenue source for many stakeholders. When such data
and services are offered through a standard mechanism as is a data-driven platform,
this offering acts as a leverage to improve and increase various port operations,
especially those that are associated with traffic, vessel, and cargo movement, and
is of high importance for third parties. Imagine the case where cargo transfer data
are accessible by the shipping lines, and at the same time, all seaport’s operations
can be available by Port Authority’s associates. Passenger mobility patterns may
be available not only to the Port Authority but also to the city’s decision and
policy makers. Commercial or cultural associations may also be interested to access
such services, especially from seaports with high passenger activity. Such services,
will be used to transform the seaports into smart and cognitive, and eventually
will increase the ports’ stakeholders and activity boundaries. Hence, through data-
driven services, the demand will also be increased. Toward this direction, the
research community and the shipping-related SMEs or even the startup community
may benefit from analyzing large volumes of data offered by data providers and
propose additional offerings. Moreover, Analytics as a Service using data collected
from shipping and freight companies, warehouses, customs brokers, and other port
operations may be a key for data monetization. The opportunity of data monetization
may unlock any considerations regarding data sharing, that are related to the risk of
losing competitive advantages.
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From a business perspective, in order for data and service sharing to be
effective and useful for as many beneficiaries as possible, certain Quality of Service
(QoS) characteristics should be followed. Especially in big data, among the key
characteristics are considered the Volume, Velocity, Variety, Veracity, and Value.
Moreover, offering data and services should match certain needs and be easily
accessible for the users. Therefore, in terms of time, data should be up to date, real,
and able to be authenticated. Additionally, guarantying a QoS may be difficult for
heterogeneous data, especially when the competitiveness is increasing according to
the demand for new data and services. Hence, a monitoring mechanism is needed to
ensure the above-mentioned characteristics as well as the validity of the transferred
data. A main business-related concern with data QoS is considered the regulatory
compliance that today is vague, the customer satisfaction which is the goal, the
validity and the accuracy of the data to allow decision making, the relevance the data
should meet and their completeness for not have missing values and the consistency
of data format as expected by the users.

From a technical perspective, all types of applications of the fourth paradigm of
science deal with large amounts of data stored in various storage devices or systems.
Distributed storage systems are often chosen for storing data of this type, as depicted
in Fig. 1, framing requirements for IDS. Some of the requirements posed to those
storage systems may concern Quality of Service (QoS) aspects formally expressed
in a Service Level Agreement as was the traditional approach in the past. The role
of QoS is to provide the necessary technical specifications that specify the system
quality of features such as performance, availability, scalability, and serviceability.
Within the IDS ecosystem, system qualities are closely interrelated. Requirements
for one system quality might affect the requirements and design for other system
qualities. For example, within connected IDS managed and framed by various
companies may have different and higher levels of security policies that might affect
performance, which in turn might affect availability. Adding additional servers to
address availability issues affect serviceability (maintenance costs). Understanding
how system qualities are interrelated and the trade-offs that must be made is the
key to designing a system that successfully satisfies both business requirements
and business constraints. Having these QoS attributes in mind, it’s evident that the
QoS management in distributed and heterogeneous environment is a challenging
task given the possible storage device heterogeneity, the dynamically changing
data access patterns, the client’s concurrency, and storage resource sharing. The
problem becomes even more complicated when distributed computing environments
with virtualized and shared resources like Clouds and Blockchains are considered.
Furthermore, various heterogeneous devices or objects should be integrated for
transparent and seamless communication under the umbrella of Internet of Things
(IoT). This would facilitate the open-access of data for the growth of various digital
services. Building a general framework or selecting an approach for handling QoS
becomes a complex task due to the heterogeneity in devices, technologies, plat-
forms, and services operating in the same system. Additionally, Data’s Analytics and
Governance should follow an all-encompassing approach to consumer privacy and
data security as opposed by Compliance Regulations that will become a benchmark
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for how personal data are treated in the future. In the area of cognitive ports,
regulations introduce major restrictions and complexities for QoS in a technical
perspective, especially those parts that address how contact data are handled—and
how data quality approach can be used that involves both tools and processes as
part of compliance efforts. In such heterogeneous environment, technical aspects
of QoS relate to technical translation and treatment of compliance as concerning
entities of rights to: “access,” “be informed,” “data portability,” “be forgotten,”
“object,” “restrict processing,” “be notified,” “rectification,” and so on in addition
to the aforementioned technical specifications.

The majority of technical challenges discussed above, overcame by adopting
the serverless architecture approach, as described in section “Scalability”. The
use of APIs and the semantic interoperability in “5.2” provide vignettes for
the followed approach. Therefore, utilizing serverless as well as microservices
paradigms, cognitive ports constitute a PaaS and DaaS environment, in which the
majority of traditional QoS aspects are dealt dynamically by inheriting system’s
adaptation to current needs.

Additionally, the aspects of Compliance Regulations are approached by the
creation of workflows into the Blockchain and Broker infrastructure of the Cognitive
Port. For example, upon the request for every provider to comply with existing reg-
ulations concerning data and identity attributes, any stakeholder that provides data
is responsible for the integrity and compliance of their provided data. Furthermore,
risks that might arise from analytical aspects of shared data (such as combining data
with new or existing data sources within or external to Cognitive Ports environment,
etc) are secured by workflows for approving data processing requests. Therefore,
there are controls for either prohibit non-regulated actions, or inform consumers
that upon using them, any actions needed (i.e. consents) are their responsibility.
Therefore, Cognitive Ports are an ecosystem for dynamically sharing data in IDS
communities.
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Distributed Big Data Analytics
in a Smart City
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Abstract This chapter describes an actual smart city use-case application for
advanced mobility and intelligent traffic management, implemented in the city
of Modena, Italy. This use case is developed in the context of the European
Union’s Horizon 2020 project CLASS [4]—Edge and Cloud Computation: A highly
Distributed Software for Big Data Analytics. This use-case requires both real-
time data processing (data in motion) for driving assistance and online city-wide
monitoring, as well as large-scale offline processing of big data sets collected
from sensors (data at rest). As such, it demonstrates the advanced capabilities
of the CLASS software architecture to coordinate edge and cloud for big data
analytics. Concretely, the CLASS smart city use case includes a range of mobility-
related applications, including extended car awareness for collision avoidance, air
pollution monitoring, and digital traffic sign management. These applications serve
to improve the quality of road traffic in terms of safety, sustainability, and efficiency.
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This chapter shows the big data analytics methods and algorithms for implementing
these applications efficiently.

Keywords IoT · Big data · Analytics · Distributed · Real time · Smart city

1 Introduction

Current data analytics systems are usually designed following two conflicting
priorities to provide (1) a quick and reactive response (referred to as data-in-motion
analysis), possibly in real-time based on continuous data flows; or (2) a thorough
and more computationally intensive feedback (referred to as data-at-rest analysis),
which typically implies aggregating more information into larger models [17].

These approaches have been tackled separately although they provide comple-
mentary capabilities. This is especially relevant in the context of smart cities traffic
management for example, where both approaches play a fundamental role. On the
one hand, delivering timely driving assistance and/or city traffic control requires
real-time processing of data provided by city and smart car sensors. On the other
hand, city-wide traffic data needs to be collected and processed at bigger time
granularity (e.g., hourly, daily, weekly, etc.) to identify traffic issues, monitor air
pollution, plan further deployment and maintenance of traffic routes, etc.

This CLASS use-case presented in this chapter demonstrates these mixed
requirements. It takes place in the city of Modena (Italy), where different actors
are involved. It includes a significant sensor infrastructure to collect and process
real-time data across a wide urban area, supported by a private cloud and edge
infrastructure, prototype cars equipped with heterogeneous sensors/actuators, and
V2I connectivity. Representative applications for traffic management and advanced
driving assistance domains are employed to efficiently process very large hetero-
geneous data streams in real-time, providing innovative services for the public
sector, private companies, and citizens. The chapter relates to the technical priorities
“Data Processing Architectures” and “Data Analytics” of the European Big Data
Value Strategic Research & Innovation Agenda [17]. Moreover, the chapter relates
to the “Sensing and Perception” and “Knowledge and Learning” cross-sectorial
technology enablers of the AI, Data and Robotics Strategic Research, Innovation
& Deployment Agenda [16].

1.1 Processing Distributed Data Sources

The use of combined data-in-motion and data-at-rest analysis provides cities effi-
cient methods to exploit the massive amount of data generated from heterogeneous
and geographically distributed sources including pedestrians, traffic, (autonomous)
connected vehicles, city infrastructures, buildings, IoT devices, etc. Certainly,
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exposing city information to a dynamic, distributed, powerful, scalable, and user-
friendly big data system is expected to enable the implementation of a wide range
of new services and opportunities provided by analytics tools. However, big data
challenges stem not only from size and heterogeneity of data but also from its
geographical dispersion, making it difficult to be properly and efficiently combined,
analyzed, and consumed by a single system.

The CLASS project [4], funded by the European Union’s Horizon 2020 Pro-
gramme, faces these challenges and proposes a novel software platform that aims to
facilitate the design of advanced big data analytics workflows, incorporating data-in-
motion and data-at-rest analytics methods, and efficiently collect, store, and process
vast amounts of geographically distributed data sources. The software platform is
meeting these needs by integrating technologies from different computing domains
into a single development ecosystem, and by adopting innovative distributed
architectures from the high-performance computing (HPC) domain, as well as
highly parallel and energy-efficient hardware platforms from the embedded domain.

Although this chapter aims to describe the big data analytics algorithms involved
in the implementation of a real smart city use-case, the next subsection briefly
describes the software framework proposed in the CLASS project that supports the
execution of such smart city use case and tackles the aforementioned challenges.

1.1.1 The CLASS Software Architecture

The conceptual layout of a typical big-data subsystem setup manifests the so-called
compute continuum [3], in which the data is processed, transformed, and analyzed
through a range of IT hardware stages, from the field devices close to the source of
data (commonly referred to as edge computing) to the heavy-duty analytics in the
data centers (commonly referred to as cloud computing).

Figure 1 shows the CLASS software architecture, where different components
interact to distribute resources and services in a smart way, so that decision-making
occurs as close as possible to where the data is originated (either at edge or cloud
side), enabling faster processing time and lowering network costs. The CLASS
software components include:

• Data Analytics Platform: This layer exposes interfaces and tools for the devel-
opment and deployment of big data analytics applications for the CLASS use-
cases. The analytics methods currently available include map/reduce, distributed
workflow, and Deep Neural Networks (DNN). The core of the analytics platform
is a serverless/FaaS (Function-as-a-Service) layer, which allows analytics to be
invoked in response to invocations, or to events such as message arrival or
timer. It further allows polyglot programming [6], where different application
components using different analytics methods and programming languages to
cooperate in computation. In CLASS, the serverless layer is further augmented
for low-latency real-time computation.
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Fig. 1 Overview of the CLASS software platform to process distributed data sources

• Computation Coordination and Distribution Framework: This layer man-
ages the workload distribution across the continuum, with the objective of
minimizing the response time of big data analytics workflows and providing real-
time guarantees. This layer also provides a shared data storage backbone among
the different components of the platform.

• Cloud Layer: This layer provides a Container-as-a-Service (CaaS) service
that abstracts the cloud infrastructure details away from the data analytics
service developers. It provides not only service life cycle management but also
guaranteed performance of workloads.

• Edge Layer: This layer provides support for the most advanced highly parallel
heterogeneous embedded platforms, e.g., Nvidia GPUs, many-core fabrics, or
SoC-FPGAs. On top of this hardware, the software component that supports
the development of big data analytics is based on state-of-the-art Deep Neural
Networks (DNN). An analytics agent deployed at this layer allows deploying
various computations as part of the overall analytics layer discussed above.

Overall, a smart distribution of computing services, combined with the usage
of highly parallel hardware architectures across the compute continuum, is used to
significantly increase the capabilities of the data analytics solutions needed to fuel
future smart systems based on big data. Multiple domains can leverage the benefits
of the CLASS framework since the objective is also to provide sound real-time
guarantees on end-to-end analytics responses. This ability opens the door to the use
of big data into critical real-time systems, providing to them superior data analytics
capabilities to implement more intelligent and autonomous control applications.

The next subsection describes the particular smart city use-case applications
implemented on top of the CLASS software framework. More details of the
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technologies used in this framework can be found in the CLASS project website
[4].

1.2 Big Data Analytics on Smart Cities: Applications

The CLASS software framework supports the development and execution of a
set of advanced data analytics algorithms. Interestingly, all these data analytics
engines can be optimized to execute at both, the edge and the cloud side, providing
the required flexibility needed to distribute the computation of complex data
analytics workflows composed of different analytics frameworks across the compute
continuum.

Upon the described software computing infrastructure, there is a considerable
number of city-awareness services that can be implemented. In this chapter, we
describe the combined big data analytics that provide meaningful information for
three use-case applications:

• Digital Traffic Sign Application. It offers the opportunity to dynamically change
traffic conditions based on real-time traffic information collected by means of
the distributed sensor infrastructure. In case of accidents, the traffic signals
can advise the “best path to follow,” reducing the induced traffic impact and
improving the driver experience. For emergency vehicles (e.g., ambulances,
firefighters, and police vehicles), it can dynamically create “green routes” by
adjusting the frequency of the traffic lights to reduce the time of intervention.

• Air Pollution Estimation Application. It offers the possibility of estimating the
pollutant emissions of vehicles in real time and segregated by areas. In particular,
the proposed technique considers the real-time traffic conditions, e.g., as detected
by street cameras, to model and estimate such emissions without the need of
dedicated pollution sensors.

• Obstacle Detection Application. It offers the required real-time services for
warning a driver about critical situations that may endanger the safety of the
driver and the vulnerable road users (VRUs). The identification of potentially
hazardous situations can be enforced at the different levels of the compute
continuum, with different precision and latency, and considering the city cameras
and vehicles sensors information. The implementation of this application is
supported by the V2I communication, improving driving safety, especially in
case of blind spots such as in intersections.

The implementation of these three applications is supported by the big data
analytics presented in the next section. The rest of the chapter is organized as
follows: Sect. 2 describes the concrete big data analytics algorithms and their
integration to implement the desired applications; Sect. 3 describes the smart city
infrastructure to execute and distribute the proposed algorithms; finally, Sect. 4
concludes the chapter.
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2 Big Data Analytics Algorithms

This section describes the big-data analytics algorithms implementing the proposed
smart city use-case. All the algorithms contribute to the generating of a Data
Knowledge Base (DKB) from which valuable knowledge is extracted from the
city and the connected cars. The final goal is to implement the three smart city
applications: digital traffic sign, air pollution estimation, and obstacle detection.

Section 2.1 describes the considered big data analytics algorithms, each pro-
cessing part of the available data. Section 2.2 presents the combined big data
analytics workflow that shows the interaction and relationship between the different
algorithms to cooperate toward a common objective: the generation of the DKB and
the implementation of the proposed applications.

2.1 Description of Data Processing Algorithms

2.1.1 In-Vehicle Sensor Fusion

Autonomous vehicles or ADAS need to have a robust and precise perception of the
surrounding environment. A precise categorization and localization of road objects,
such as cars, pedestrians, cyclists, and other obstacles, is needed. In order to obtain
accurate results, fusing and combining the output of several different devices has
become a trend, being a good compromise to obtain good classification and 3D
detection. Concretely, the solution explained in this section uses a Light Detection
And Ranging (LiDAR) sensor, and multiple camera disposed to cover 360◦ surround
the vehicle.

In the context of 2D camera object detection, Convolutional Neural Networks
(CNN) are often adopted. YOLO [2] is a good example of real-time object detection
and classification, based on a fully CNN. The performance in terms of precision
is comparable to other methods, but the performance in terms of inference time
is better because it is optimized to be used in NVIDIA Jetson products. LiDARs,
instead, produce a 3D point cloud, which is then processed to place 3D bounding
boxes (BBs) around the objects via clustering methods [5].

Camera detection and LiDAR clustering are merged by developing a modified
parallel algorithm [13] that exploits the features of LiDAR point cloud and optimizes
a YOLO CNN, to deploy an open-source real-time framework that combines camera
2D BBs with LiDAR clustering. Figure 2 shows an example of this algorithm: video
frame processing and 2D BBs from four cameras installed in the vehicle (each with
120◦ field of view), and LiDAR 3D detections for a 360◦ field of view.

Moreover, GPS positions of all the detected objects are necessary to create a
comprehensive picture of the area. The connected vehicle GPS sensor, if not precise
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Fig. 2 Sensor fusion algorithm (vehicle’s detections): output from four cameras (120◦ field of
view each) and a LiDAR (360◦ field of view)

enough, could be enhanced by a previous mapping of the area, or a high-precision
map externally provided, using the surrounding features detected by the LiDAR
and cameras for matching. After determining a reliable position of the vehicle, the
relative position of the surrounding detected objects is added using a vector sum.

As a result, the ouput of the sensor fusion method provides detected and classified
objects in real time, their GPS position, and timestamp, as seen from a vehicle point
of view. Also, the position of the connected vehicle itself is provided.

In-vehicle sensor fusion output data

Category GPS-Position Timestamp

ConnectedCar (44.654540,10.933815) 1603963252
Car (44.654550,10.933815) 1603963252
Pedestrian (44.654534,10.933740) 1603963252
Truck (44.654744,10.934020) 1603963252

2.1.2 Street Camera Object Detection

From cameras located on the streets, objects can also be detected and classified.
This is also done with the optimized version of YOLO used in the in-vehicle sensor
fusion method, described in the previous section. After detection and classification,
the global position of the road user is also computed. To do so, each camera is
manually calibrated to match known points in the image with their GPS position
on a georeferenced map. As a result, this method provides detected and classified
objects in real time, as seen from a street camera point of view. Figure 3 shows
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Fig. 3 Object detection output from street camera

a video frame example with the bounding boxes of the objects detected, and an
example of the row data generated is shown below:

Street camera object detection output data

Category GPS-Position Timestamp

Car (44.655049,10.934328) 1603963252
Car (44.654550,10.933815) 1603963252
Pedestrian (44.655049,10.934328) 1603963252
Bike (44.655169,10.934410) 1603963252

2.1.3 Object Tracking

The purpose of this method is to track the road users, i.e., cars, as well as pedestrians,
bikes, and motorcycles, detected by both the in-vehicle sensor fusion and the
street cameras object detection methods. If only detection is performed, then only
different and uncorrelated detections for each video frame occur. Instead, if tracking
is also performed there are two main advantages: (1) to make the detection more
robust (since detection algorithms are not perfect and detection errors may occur);
and (2) to perform path prediction and guess where the objects will go which in turn
allows to predict possible collisions. Considering performance on edge devices, this
method is based on a Kalman filter on the position points [14] (contrary to visual
tracking algorithms that are computationally intensive, and not suitable for a real-
time scenario).

After the object detection methods detect the bounding boxes of objects, a point
of the bounding box is taken as a reference, and it is used to track each object with an
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Fig. 4 Object tracking output from street camera detections

aging mechanism. It means that this algorithm is able to not only correlate objects
in different frames but also to compute the speed of the objects. Figure 4 shows
two video frames with the bounding boxes of the objects detected, and the lines
representing the tracked trajectory. As an example, the car entering into the camera
field of view (at the bottom of the image) in the left frame is located at the entrance
of the roundabout in the right frame; the yellow line represents the tracking for this
vehicle. An example of the row data generated is shown below:

Object tracking output data

Category GPS-Position Timestamp ID Speed(Km/h)

Car (44.654550,10.933815) 1603963252 1 45
(44.654550,10.933818) 1603963253 1 45
(44.654552,10.933819) 1603963254 1 46
(44.654552,10.933820) 1603963255 1 46

Car (44.655049,10.934328) 1603963252 2 55
Pedestrian (44.655049,10.934328) 1603963252 3 4
Bike (44.655169,10.934410) 1603963252 4 10

In this example, the data from the Street camera object detection is considered,
after processing multiple video frames. The car with ID 1 has been detected in four
different frames; therefore, there are four entries for the same object, each with a
different GPS position and timestamp, and with the computed speed.

2.1.4 Data Deduplication

When multiple objects are detected in the same area by street cameras that share part
of their field of view, or by a smart connected car moving in the same area, there are
duplicated road users detected by those different actors. This method manages these
duplicated objects so that they appear only once in the system. A simple method
deduplicates objects by searching for all nearest objects with the same category,
comparing their position, and discarding the duplicated ones considering a certain
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threshold value. A different threshold is used depending on the category (and hence
size) of the road user.

As an example, the output after the Data deduplication is shown below:

Data deduplication output data

Source Category GPS-Position Timestamp ID Speed(Km/h)

cam_1 Car (44.654550,10.933815) 1603963252 1 45
(44.654550,10.933818) 1603963253 1 45
(44.654552,10.933819) 1603963254 1 46
(44.654552,10.933820) 1603963255 1 46

cam_1 Car (44.655049,10.934328) 1603963252 2 55
cam_1 Pedestrian (44.655049,10.934328) 1603963252 3 4
cam_1 Bike (44.655169,10.934410) 1603963252 4 10
veh_1 ConnectedCar(44.654540,10.933815) 1603963252 5 52
veh_1 Car (44.654550,10.933815) 1603963252
veh_1 Pedestrian (44.654534,10.933740) 1603963252 6 4.5
veh_1 Truck (44.654744,10.934020) 1603963252 7 32

In this example, the data from the Street camera object detection (source cam1)
and the In-vehicle sensor fusion (source veh1) is considered. After also processing
this data by the Object tracking algorithm, the Data deduplication is invoked. As
a result, one of the cars, detected by the vehicle, is discarded since it has the same
GPS position as Car with ID 1, detected by a street camera.

2.1.5 Trajectory Prediction

In order to foresee possible collisions between vehicles and other road users in the
streets, it is necessary to predict the trajectory of all those road users. Based on
the detected positions of an object and their associated timestamps, the prediction
algorithm computes multiple future positions (predictions) per object, at future
time points so that a complete trajectory is obtained. The trajectory prediction is
calculated for multiple objects simultaneously, where input samples are not equally
apart in time. This method is based on quadratic regression [12] that finds the
equation of the parabola that best fits a set of data (using the detected positions).
Then, the equation is used to predict the future positions.

Other known works, such as [7], employ Recurrent Neural Networks (RNNs)
to compute a trajectory prediction of street objects based on their previous steps
and with the environment context. This approach uses Long Short-Term Memory
(LSTM) neural networks, a type of RNNs that can extract patterns from a sequence.
In this case, the sequence is also a series of GPS positions along the time.
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An example of the output after the Trajectory prediction for the Car with ID 1 is
shown below:

Trajectory prediction output data

(Car ID=1) TP_latitude TP_longitude TP_timestamp

44.654553 10.933821 1603963256
44.654553 10.933822 1603963257
44.654555 10.933823 1603963258

The trajectory prediction function takes an object id and computes its trajectory
based on its updated location history. In this example, given the four detected
positions for this car (see the previous section), the algorithm is used to predict three
future positions. The core trajectory prediction needs to be applied to each object
covered by the cameras, only when new location data is available for the object.

2.1.6 Warning Area Filtering

According to the CLASS use-case design, connected vehicles may receive alert
notifications for possible collisions with objects within each vehicle’s respective
warning area, which is defined geometrically around the vehicle’s current location.
This is achieved by first filtering out all objects outside a given car’s warning area
and then detecting a possible collision (see Sect. 2.1.7) between the car and each of
the objects found to be within the warning area.

In CLASS, we employ a simple and highly efficient method of approximating a
rectangular warning area around a given location, using geohashes. A geohash [15]
is a unique string label assigned to each square in a map grid with a specific area
granularity. Each GPS position can be efficiently converted to the matching geohash
of the grid location containing the GPS coordinates. This is done once for each
object’s detected location and persisted in the shared data during the tracking phase.

The length of the geohash string matches a specific area granularity. For example,
a 7-character string identifies a square shape of 153×153 m. Thus, in CLASS, once
the rectangular dimensions of the warning area are determined at design time, the
geohash string length is selected to be the longest string (i.e., smallest squares) such
that the 3 × 3 grid of squares is guaranteed to cover the warning area of a car
located anywhere in the central square. When coverage is guaranteed, determining
if an object X is in the warning area of car C is approximated to X and C being
in neighbor geohashes—that is, if the geohash of X is in one of the 3 × 3 squares
surrounding the geohash of C, including that of C itself:

WA(C,X) ≈ neighbor(C.g,X.g)

The neighbor function is highly efficient and common in most geohash libraries.
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2.1.7 Collision Detection

For each given pair of objects with established trajectory predictions, it is possible
to evaluate potential collisions between the objects. Collision Detection refers to
detecting a possible collision between two objects, yielding a warning notification
in case of detection. The collision detection algorithm computes predicted path
intersections between a car and objects in its warning area as follows:

1. Quadratic regression is again used to compute the equation of the parabola for
the two street objects.

2. Parabola equations are used to detect intersection points among them. An
intersection indicates a potential collision between both objects, at a given GPS
position.

3. If a potential collision is detected, the potential timestamps at which the
intersection point occurs for both objects are computed. A threshold variable
is used to determine if the intersection point is reached at the same time (within
the threshold) for both objects. If this is the case, a potential collision has been
detected.

The output of the Collision detection is very simple, as an example:

Collision detection output data

Potential collision detected:
Objects IDs: 1 and 5
GPS position: (44.654565,10.933830)
Timestamp: 1603963258

Both the Trajectory prediction and the Collision detection algorithms work in
parallel, since they can be independently computed for each road user (or pairs of
them). Both algorithms are suitable for map/reduce operations.

2.1.8 Vehicles Emissions Model

Based on the traffic conditions, and the information of the vehicle fleet composition
in the area of study, it is possible to estimate the contamination level of such area.
In this context, the interest is on the estimation of the pollution emissions of current
traffic conditions in real time.

More specifically, the detected vehicles (category, timestamp, and speed) are
a representation of the current traffic conditions, while the vehicle class fleet
composition in the area of study is used to estimate the vehicle’s engine power, based
on the class of vehicle. The vehicle class compromises information on the shape,
weight, and default loading of a vehicle (passenger car, heavy-duty vehicle, . . . ),
as well as engine-related properties, for example rated power, fuel type, and most
important, the actual emission class (Euro 1, Euro 2, and so on). The emissions can



Distributed Big Data Analytics in a Smart City 487

be then interpolated from emission curvescontaining the normalized engine’s power
output and vehicle data [8]. The output obtained estimates emissions of NOx, PM,
CO, HC, and NO, at a configured time resolution and for road segment.

As an example, the output of the Vehicles emissions model, at a given time instant
and for three different streets, is shown below:

Vehicles emissions model output data

Emissions (g/h)
Road-Segment NOx HC CO PM PN NO

Str. Attiraglio 85 3 59 12 2.04E+15 60
Via Manfredo Fanti 1150 33 939 148 2.60E+16 755
Via Maria Montessori 200 6 162 39 5.56E+15 129

2.1.9 Data Aggregation: Data Knowledge Base

This Data aggregation big data analytics method is fundamental given the disper-
sion nature of data collected in a smart city use-case. Concretely, this method creates
and maintains a Data Knowledge Base (DKB), aggregating data into a single system,
collected and processed by multiple IoT sensors and devices (located in vehicles or
at city streets).

The challenging task of the DKB is to maintain (in real-time) the information
anonymized, updated, and consistent across the multiple actors, i.e., the city and the
vehicles, to ensure that decisions are taken based on the same updated information
at all levels. A key feature of the DKB is to allow taking decisions considering
information beyond the field of view of a single actor. As an example, a vehicle
can receive relevant information from the city, improving the vehicle’s safety. More
information is provided in Sect. 3.

2.1.10 Visualization

An important feature of big data analytics is how to visualize the meaningful
information. In this case, it is interesting to visualize the real-time processed
information of the DKB, i.e., the traffic conditions, the emissions level, and possible
alerts. There are two different final users that need to receive this information, at
different levels:

• At a vehicle level, real-time traffic conditions is available for connected vehicle’s.
More specifically, a lightweight 3D user interface shows a map to the driver with
its position in the city area, the position of the road users detected, and, more
importantly, warnings signals about potential collisions.
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• At a city level, a dashboard visualizes the aggregated data of the DKB, i.e., an
interactive map shows the traffic conditions, based on the detected road users,
and the emission levels.

2.1.11 Predictive Models

The interest of this method is to understand the potential to improve routing
and travel times while responding to traffic accidents. In case of accidents, the
digital traffic signals can advise the “best path to follow,” reducing the induced
traffic impact and improving the driver experience. For emergency vehicles (e.g.,
ambulances, firefighters, and police vehicles), this method can dynamically create
“green routes” by adjusting the frequency of the traffic lights to reduce the time of
intervention.

Trivially, the viability of modifications on a real-world urban area must be
carefully planned and tested before the actual deployment. Therefore, this method
is based on a well-known MATSim simulator [1] for urban transportation. The
baseline version of MATSim is only capable of simulating road users that cannot
communicate to nearby cars or the surrounding infrastructure. In contrast, this
extended method is able to simulate the interactions among sets of connected
vehicles within a smart city. It is composed of multiple modules to simulate cameras,
sensors, servers, and communication systems so that connected vehicles are able to
react to unexpected events such as traffic accidents.

2.2 Integration Toward a Relevant Smart City Use-Case

The big data analytics methods presented in the previous section are combined
into a unique big-data analytics workflow representing the generation of the Data
Knowledge Base (DKB) from which valuable knowledge is extracted from the
city and the connected cars (see Sect. 2.1.9). Then, the three use-cases applications
(digital traffic sign, obstacle detection, and air pollution estimation) are built upon
the information included in the DKB.

Figure 5 shows the combined big data analytics workflow representation, includ-
ing (1) the big data analytics methods presented in previous Sect. 2 (represented as
labelled nodes), (3) the interaction between them (represented as arrows), and (3)
the actors involved in the smart city system (sensors and use-cases applications).
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Fig. 5 Integration of the big data analytics

3 Distribution of Big Data Analytics Across the City
Infrastructure

This section presents the actual implementation of the proposed big data analytics on
a real smart city infrastructure. Section 3.1 describes the smart city infrastructure, in
terms of connectivity, sensors, and computing capabilities, to support the use-cases
demonstration. Concretely, the proposed big data analytics are being implemented
and tested in the Modena Automotive Smart Area (MASA) [9] (see Sect. 3.1.1),
using smart cars (Maserati vehicles) and connected cars (see Sect. 3.1.2). Section 3.2
describes the distribution of the big data analytics on the available city and vehicles
infrastructure, and presents an example of use-case scenarios. Finally, Sect. 3.3
makes emphasis on one of the key aspects for the successful development of the
considered use-cases: the real-time requirements.

3.1 Smart City Infrastructure

3.1.1 City Infrastructure: MASA

The Modena Automotive Smart Area (MASA) is a 1 km2 area in the city of Modena
(Italy), equipped with a sensing, communication, and computation infrastructure.
MASA is an urban laboratory for the experimentation and certification of new
technologies including autonomous driving and connecting driving technologies,
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Fig. 6 Modena Automotive Smart Area (MASA)

and V2X technologies, in general. Figure 6 shows the map of the equipped streets
in Modena. The tested technologies to be found in the area include interconnected
traffic lights, digital signposting, cameras, and sensors, among others.

Figure 7 provides a detailed description of the sensing, communication, and
computation infrastructure of MASA:

• Bullet cameras, optimized for detection or forensic purposes regardless of light
conditions, connected to the fog nodes through optical fiber.

• Four-optics camera (360◦ overview), that provides a full detection and control of
the roundabout.

• Pollution sensors, connected to the LoRa network, for the detection of air quality
parameters: carbon monoxide (CO), carbon dioxide (CO2), nitrogen dioxide
(NO2), and particulate matter (PM).

• Wireless communication, a 4G dedicated antenna for private local area network,
5G prototypes, and a Low-Range(LoRa) network to interconnect sensors and
devices with low bandwidth needs (e.g., parking and pollution sensors).

• Optical Fiber network, connects the cameras to the available fog nodes.
• Fog Nodes, with the following computing features: an Intel®Xeon E3-1245 v.5,

32 GB of RAM, 256 GB of hard disk, and an NVIDIA Volta GPU (TitanV).

Moreover, the city of Modena provides a private cloud infrastructure in a data
center, also connected to the fog nodes through optical fiber.
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Fig. 7 Modena Automotive Smart Area (MASA) sensing, communication, and computation
infrastructure

3.1.2 Vehicle Infrastructure

Maserati provides two prototype vehicles that incorporate all the sensing, com-
munication, and computation infrastructure needed to test the use-cases described
in this chapter. The vehicles are two Maserati Quattroporte (Model Year ’18 and
Model Year ’19, respectively), a four-door full-sized luxury sports sedan vehicle (F
segment). For simplicity, these are known as smart cars.

Each vehicle includes a set of sensor devices to obtain information about the
position, speed, and typology of the objects that surround the vehicle. In addition
to this data, the vehicle also provides information from the vehicle CAN network,
including speed, acceleration, and collision and emergency break information.
Concretely, the extra sensors installed on each vehicle are:

• Surrounding high-definition cameras, including four cameras with 120◦ of Field
Of View (FOV), and two cameras with 60◦ of FOV.

• A 3D Light Detection and Ranging (LiDAR) with 360◦ of FOV.
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• A Global Navigation Satellite System (GNSS) to increase the accuracy, redun-
dancy, and availability of the vehicle position, compared to the positioning
system already provided in the commercial vehicle.

Moreover, each vehicle is equipped with a 4G-LTE antenna receiver and a pow-
erful embedded high-performance computing platform capable of implementing
real-time bigdata analytics. Those platforms are designed to process data from
camera, radar, and LiDAR sensors to perceive the surrounding environment. The
first vehicle is equipped with an NVIDIA DRIVE PX2 Autochauffeur (dual TX2
SOC plus 2 discrete Pascal GPUs), and the second vehicle is equipped with the
NVIDIA DRIVE AGX Pegasus [10].

For testing purposes, and to enlarge the fleet of vehicles involved in the system,
without the need for a large budget, connected cars are also considered. A connected
car is simply equipped with a regular laptop or an embedded device with LTE
connectivity and GPS support, so that it can send its position to the system and
receive alerts.

3.2 Big Data Analytics Distribution

The big data analytics methods described in Sect. 2 are executed and distributed in
the available city and vehicles infrastructure, to provide the required functionality
for the three use-cases: Digital Traffic Sign, Obstacle Detection, and Air Pollution
Estimation. Concretely, the actual distribution depends on different factors: the
underlying infrastructure, the source of data, and the software architecture that
processes it. Moreover, the big data analytics distribution does not need to follow a
static approach, but instead it can be based on the current status of the infrastructure
(e.g., load or availability of computing nodes). This is one of the main challenges of
the CLASS project [4].

Figure 8 shows an example of distribution of the big data analytics on the MASA
and vehicles infrastructure, described in Sects. 3.1.1 and 3.1.2, respectively. This
example considers three fog nodes, four street cameras, the Modena data center
(private cloud), a smart car (acting as an active road user), and two pedestrian
(passive vulnerable road users -VRUs-). Cameras 1 and 2 are connected to fog
node 1, while cameras 3 and 4 are connected to fog node 2. Therefore, object
detection and tracking are executed (independently) for each camera video feed
in the corresponding fog node. Also, data deduplication is performed at fog nodes
1 and 2 with the purpose of identifying duplicated objects detected by more than
one camera. This happens if two cameras (or more) have an overlapping field of
view of a city area. From the smart car, the information from the sensor fusion
algorithm, i.e., objects detected and the position of the car itself, is sent to fog
node 3, where the tracking of these objects is performed. Then, deduplication is
also executed at fog node 3, in case overlapping areas (thus, possible duplicated
objects) are being recorded from cameras 1 or 2, cameras 3 or 4, and smart car.
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Fig. 8 Example of big data analytics distribution on the MASA and vehicles infrastructure

Once this data is collected and deduplicated at fog node 3, it can be aggregated
into the DKB and make it also available at cloud side. In this example, the rest of
big data analytics, i.e., from trajectory prediction and vehicles emission model, to
the dashboard visualization and predictive models, are executed in the cloud. The
visualization of the real-time traffic conditions and alerts is executed at the smart
car.

The big-data distribution shown in Fig. 8 is only an example; there are many
other possibilities depending on the aforementioned factors. For instance, the data
deduplication can be performed only at one level, at fog node 3, but the example
shows data deduplication execution at two levels (at nodes 1 and 2, and then at
fog node 3) for a twofold reason: (1) to split and distribute the computation of this
functionality, and (2) more importantly, to be able to obtain results (e.g., predict
possible collisions) at this level, in the fog nodes 1 and 2, without the need of
obtaining them in the cloud, contrary to what it is shown in this example. Another
possibility is to receive the data from the smart car, directly at fog nodes 1 or 2,
again with the purpose of boosting local computation at fog level. There are plenty
of distribution options that rapidly increase as the number of actors involved in the
use-case (e.g., smart cars, connected cars, fog nodes, etc.) increases as well. If the
software framework supports a dynamic balancing of the workload, according to the
different scenarios, it will promote the accomplishment of the envisioned use-case
results.
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Fig. 9 Real collision avoidance demonstration scenarios

3.2.1 Real Scenarios for Collision Avoidance

This section describes two possible scenarios that exploit the capabilities of the
distributed big data analytics. Figure 9 shows two different scenarios to be recreated
in the city of Modena. There are different actors involved: street cameras (a video
frame shows its FOV), smart cars (or connected cars), a passive car and truck, and
pedestrians. Arrows show the predicted trajectory of each actor.

• Scenario 1, Fig. 9a (Attiraglio Street in MASA): It evaluates the “virtual mirror”
functionality that increases the field of view of a vehicle beyond its actual vision
(or the driver’s vision). In this example, there is a stationary truck that hides the
view of both the smart car driver and the pedestrian who is crossing the street.
This hazard situation is detected by the two cameras located at the street and
processed by the combined big data analytics. As a result, an alert is sent to the
smart car.

• Scenario 2, Fig. 9b (Roundabout at Via Pico della Mirandola—Parking exit of the
Modena train station): It evaluates the “two sources of attention” functionality
that aims to alert drivers when attention must be paid to two different events
in opposite directions. In this example, there is a smart car exiting the parking,
a regular car reaching the roundabout, and a pedestrian crossing the road. This
hazard situation is detected by the camera located at the street and processed by
the combined big data analytics. As a result, an alert is sent to the smart car.

3.3 Real-Time Requirements

One important aspect of the big data system presented in this chapter is the
notion of real time: data is constantly being produced and processed, and big data
analytics are highly parallelizable, e.g., new objects are detected, while tracking
previous objects, or the warning area computation can be simultaneous for multiple
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objects. Exploiting this parallelism, along with an efficient use of the underlying
infrastructure, is extremely important to guarantee that the results are meaningful by
the time they are computed. This is especially relevant for the Obstacle Detection
use-case, since alerts must raise within a time interval that is useful for the driver
to react. A reasonable metric, considered in the scope of the CLASS project, is to
get updated results at a rate between 10 and 100 ms. Assuming that the maximum
speed of a vehicle within the city is 60 km/h, vehicles will advance between 0.17
and 1.7 m. This level of granularity is enough to implement the proposed use-cases.

4 Conclusions

One of the smart computing domains in which big data can have a larger impact
on people’s day-to-day life is the smart city domain. Nowadays, cities consume
70% of the world’s resources, with an estimated population rate growth of 66% by
2050, according to United Nation reports [11]. Smart cities are increasingly seen
as an effective technology capable of controlling the available city resources safely,
sustainability, and efficiently to improve economical and societal outcomes.

This chapter described the CLASS [4] use-case, a realistic yet visionary use-
case from the smart city domain, which includes the real-time elaboration of huge
amounts of data coming from a large set of sensors distributed along a wide
urban area, supporting intelligent traffic management and advanced driving assistant
systems. The CLASS framework and use-case are currently under deployment and
evaluation in the city of Modena (Italy). More details and up-to-date information
can be found on the CLASS project website: https://class-project.eu/.

For the successful outcome of this research project in particular, and for address-
ing the big-data challenge of future smart cities in general, it is fundamental to
combine multi-dimensional and multidisciplinary contexts and teams, from artificial
intelligence and machine learning to data storage and engineering.
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Abstract Rapidly extracting business value out of Big Data that stream in corporate
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in memory with a single pass over these data. In this chapter, we outline the
challenges of Big streaming Data analysis for deriving real-time, online answers to
application inquiries. We review approaches, architectures and systems designed to
address these challenges and report on our own progress within the scope of the EU
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1 Challenges of Big Streaming Data

Today, organisations and businesses have the ability to collect, store and analyse as
much data as they need, exploiting powerful computing machines in corporate data
centres or the cloud. To extract value out of the raw Big Data that are accumulated,
application workflows are designed and executed over these infrastructures engag-
ing simpler (such as grouping and aggregations) or more complex (data mining and
machine learning) analytics tasks. These tasks may involve data at rest or data in
motion.

Data at rest are historic data stored on disks, getting retrieved and loaded for
processing by some analytics workflow. Analytics tasks participating in such a
workflow perform computations on massive amounts of data, lasting for hours or
days. They finally deliver useful outcomes. Using a running example from the
maritime domain, historic vessel position data are used to extract Patterns-of-Life
(PoL) information. These are essentially collections of geometries representing
normal navigational routes of vessels in various sea areas [78], used as the basis
for judging anomalies.

Data in motion involve Big streaming Data which are unbounded, high-speed
streams of data that need to get continuously analysed in an online, real-time
fashion. Storing the data in permanent storage is not an option, since the I/O latency
would prevent the real-time delivery of the analytics output. Application workflows
get a single look on the streaming data tuples, which are kept in memory for a
short period of time and are soon stored or discarded to process newly received data
tuples.

At an increasing rate, numerous industrial and scientific institutions face such
business requirements for real-time, online analytics so as to derive actionable
items and timely support decision-making procedures. For instance, in the maritime
domain, to pinpoint potentially illegal activities at sea [54] and allow the authorities
to timely act, position streams of thousands of vessels need to be analysed online.

To handle the volume and velocity of Big streaming Data, Big Data platforms
such as Apache Flink [2], Spark [5] or toolkits like Akka [1] have been designed to
facilitate scaling-out, i.e., parallelising, the computation of streaming analytics tasks
horizontally to a number of Virtual Machines (VM) available in corporate computer
clusters or the cloud. Thus, multiple VMs simultaneously execute analytics on
portions of the streaming data undertaking part of the processing load, and therefore
throughput, i.e., number of tuples being processed per time unit, is increased. This
aids in transforming raw data in motion to useful results delivered in real time.
Big Data platforms also offer APIs with basic stream transformation operators such
as filter, join, attribute selection, among others, to program and execute streaming
workflows. However useful these facilities may be, they only focus on a narrow part
of the challenges that business workflows need to encounter in streaming settings.

First, Big Data platforms currently provide none or suboptimal support for
advanced streaming analytics tasks engaging Machine Learning (ML) or Data
Mining (DM) operators. The major dedicated ML/DM APIs they provide, such as
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MLlib [5] or FlinkML [2], do not focus on parallel implementations of streaming
algorithms.

Second, Big Data platforms by design focus only on horizontal scalability as
described above, while there are two additional types of scalability that are of
essence in streaming settings. Vertical scalability, i.e., scaling the computation with
the number of processed streams, is also a necessity. Federated scalability, i.e.,
scaling the computation one step further out, to settings composed of multiple,
potentially geo-dispersed computer clusters, is another type of required scalability.
For instance, in maritime applications, vessels transmit their positions to satellite or
ground-based receivers. These data can be ingested in proximate data centres and
communicated only on demand upon executing global workflows, i.e., involving the
entire set of monitored vessels, over the fragmented set of streams.

Third, Big Data technologies are significantly fragmented. Delivering advanced
analytics requires optimising the execution of workflows over a variety of Big Data
platforms and tools located at a number of potentially geo-dispersed clusters or
clouds [30, 34, 36]. In such cases, the challenge is to automate the selection of
an optimal setup prescribing (a) which network cluster will execute each analytics
operator, (b) which Big Data platform available at this cluster, and (c) how to
distribute the computing resources of that cluster to the operators that are assigned
to it.

Connecting the above challenges to a real-world setting from the maritime
domain, on a typical day at MarineTraffic,1 100GB vessel position data and approx-
imately 750M messages (volume, velocity—horizontal scalability) are processed
online. This data is complemented by other data sources such as satellite image data
of tens of TBs [54]. At any given time, MarineTraffic is tracking over 200K vessels
in real-time (vertical scalability) over a network of approximately 5K stations
(federated scalability). Additionally, the analysis engages a variety of Big Data
platforms including Apache Spark, Flink, Akka and Kafka (details in Sect. 3).

Finally, applications often require an additional level of abstraction on the derived
analytics results. Consider a vessel that slows down, then makes a U-turn and then
starts speeding up. Such a behaviour may occur in case of an imminent piracy
event where a vessel attempts to run away from pirates. The application is not
interested in knowing the absolute speed, heading or direction information in the
raw stream. Instead, it wants to receive continuous reports directly on a series of
detected, simple events (slowing down, U-turn, speeding) and the higher
level, complex piracy event or to be able to forecast such events [79]. Complex
Event Processing (CEP) and Forecasting (CEF) encompass the ability to query for
business rules (patterns) that match incoming streams on the basis of their content
and some topological ordering on them (CEP) or to forecast the appearance of
patterns (CEF) [31, 33, 35].

In this chapter, we discuss core system components required to tackle these
challenges and the state of the art in their internal architectures. We further describe

1 https://www.marinetraffic.com.

https://www.marinetraffic.com
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how we advance the state of the art within the scope of the EU H2020 project
INFORE. Finally, we showcase the INFORE approach into a real-world use case
from the maritime domain. We, however, stress that INFORE applies to any
application domain, and we refer the interested reader to [34] for more application
scenarios.

This chapter relates to the technical priorities (a) Data Management, (b) Data
Processing Architectures and (c) Data Analytics of the European Big Data Value
Strategic Research & Innovation Agenda [77]. It addresses the horizontal concerns
Cloud, HPC and Sensor/Actuator infrastructure of the BDV Technical Reference
Model and the vertical concern of Big Data Types and Semantics (Structured data,
Time series data, Geospatial data). Moreover, the chapter relates to (a) Knowledge
and Learning, (b) Reasoning and Decision Making, (c) Action and Interaction and
(d) Systems, Hardware, Methods and Tools, cross-sectorial technology enablers
of the AI, Data and Robotics Strategic Research, Innovation and Deployment
Agenda [76].

2 Core Components and System Architectures

2.1 The Case for Data Synopses

Motivation There is a wide consensus in the stream processing community [25,
26, 32] that approximate but rapid answers to analytics tasks, more often than not,
suffice. For instance, detecting a group of approximately 50 highly similar vessel tra-
jectories with sub-second latency is more important than knowing minutes later that
the group actually composes 55 such streams with a similarity value accurate to the
last decimal. In the latter case, some vessels may have been engaged in a collision.
Data synopses techniques such as samples, histograms and sketches constitute a
powerful arsenal of data summarisation tools useful across the challenges discussed
in the introduction of this chapter. Approximate, with tunable quality guarantees,
synopses operators including, but not limited to [25, 26, 32, 46], cardinality (FM
Sketches), frequency moment (CountMin, AMS Sketches, Sampling), correlation
(Fourier Transforms, Locality Sensitive Hashing [37]), set membership (Bloom
Filters) or quantile (GK Quantile) estimation, can replace respective exact operators
in application workflows to enable or enhance all three types of required scalability
as well as to reduce memory utilisation. More precisely, data summaries leave only
a footprint of the stream in memory and they also enhance horizontal scalability
since not only is the processing load distributed to a number of available VMs, but
also it is shed by letting each VM operate on compact data summaries. Moreover,
synopses enable federated scalability since only summaries, instead of the full (set
of) streams, can be communicated when needed. Finally, synopses provide vertical
scalability by enabling locality-aware hashing [37, 38, 46].
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Related Work and State of the Art From a research viewpoint, there is a large
number of related works on data synopsis techniques. Such prominent techniques
are reviewed in [25, 26, 32] and have been implemented into real-world synopses
libraries, such as Yahoo!DataSketch [9], Stream-lib [8], SnappyData [57] and
Proteus [7]. Yahoo!DataSketch [9] and Stream-lib [8] are libraries of stochastic
streaming algorithms and summarisation techniques, correspondingly, but imple-
mentations are detached from parallelisation and distributed execution aspects
over streaming Big Data platforms. Apache Spark provides utilities for data
synopsis via sampling operators, CountMin sketches and Bloom Filters. Moreover,
SnappyData’s [57] stream processing is based on Spark and its synopses engine can
serve approximate, simple sum, count and average queries. Similarly, Proteus [7]
extends Flink with data summarisation utilities. Spark utilities, SnappyData and
Proteus combine the potential of data summarisation with horizontal scalability,
i.e., parallel processing over Big Data platforms, by providing libraries of parallel
versions of data synopsis techniques. However, they neither handle all types of
required scalability nor cross Big Data platform execution scenarios.

INFORE Contribution In the scope of the INFORE project, we have developed
a Synopses Data Engine (SDE) [46] that advances the state of the art by tackling
all three types of the required scalability and also accounting for sharing synopses
common to various running workflows and for cross-platform execution. INFORE
SDE goes far beyond the implementation of a library of data summarisation
techniques. Instead, it also implements an entire component with its own internal
architecture, employing a Synopses-as-a-Service (SDEaaS) paradigm. That is, the
SDE is a constantly running service (job) in one or more clusters (federated
scalability) that can accept on-the-fly requests for start maintaining, updating and
querying a parallel synopsis built on a single high-speed stream (e.g. vessel) of
massive data proportions (horizontal scalability) or on a collection of a large number
of streams (vertical scalability). The SDEaaS is customisable to specific application
needs by allowing dynamic loading of code for new synopses operators at runtime,
with zero downtime for the workflows that it serves.

The architecture of INFORE SDEaaS [46] is illustrated in Fig. 1a. INFORE’s
SDEaaS proof-of-concept implementation is based on Apache Kafka and Flink.
Nevertheless, the design is generic enough to remain equally applicable to other
Big Data platforms. For instance, an equally plausible alternative would be to
implement the whole SDE in Kafka leveraging the Kafka Streams API. Nonetheless,
Kafka Streams is simply a client library for developing micro-services, lack-
ing a master node for global cluster management and coordination. Following
Fig. 1a, when a request for maintaining a new synopsis is issued, it reaches the
RegisterRequest and RegisterSynopsisFlatMaps which produce keys
for workers (i.e., VM resources) which will handle this synopsis. Each of this pair of
FlatMaps uses these keys for a different purpose. RegisterRequest uses the
keys to direct queries to responsible workers, while RegisterSynopsis uses the
keys to update the synopses on new data arrivals (blue-coloured path). In particular,
when a new streaming data tuple is ingested, the HashData FlatMap looks up the
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keys of RegisterSynopsis to see to which workers the tuple should be directed
to update the synopsis. This update is performed by the add FlatMap in the blue-
coloured path. The rest of the operators in Fig. 1a are used for merging partial
synopses results [11] maintained across workers or even across geo-distributed
computer clusters. Please refer to [46] for further details. In Sect. 3.2.3, we analyse
the functionality of a domain-specific synopsis building samples of vessel positions.

2.2 Distributed Online Machine Learning and Data Mining

Motivation As discussed in Sect. 1, ML/DM APIs such as Spark’s MLlib [5] or
FlinkML [2] are focused on analysing data at rest. Therefore, advanced analytics
tasks on data in motion call for filling the gap of a stream processing-oriented
ML/DM module. ML and DM algorithms that can meet the challenges discussed
in the introduction of this chapter are those that (1) are online, i.e., restricting
themselves on a single pass over the data instead of requiring multiple passes,
and (2) can run in a distributed fashion, i.e., they are parallelisable and thus the
load can be distributed to parallel learners and parallel predictors across a number
of VMs so as to provide the primitives for horizontal scalability over Big Data
platforms and computer clusters. There exists a variety of algorithms that satisfy
these preliminary requirements in diverse ML/DM categories, including [18, 34, 69]
classification (such as (Multiclass) Passive Aggressive Classifiers, Online Support
Vector Machines, Hoeffding Trees, Random Forests), clustering (BIRCH, Online k-
Means, StreamKM++) and regression (Passive Aggressive Regressor, Online Ridge
Regression, Polynomial Regression) tasks. These algorithms are designed or can be
adapted to get executed in an online, distributed setting. The primary focus, then, is
not on the algorithms themselves, but on the architecture an ML/DM module should
be built upon, so that various algorithms can be incorporated and also allow for
vertical scalability, federated scalability and cross-platform execution with reduced
memory utilisation.

Related Work and State of the Art Towards this direction, the two most
prominent approaches and modules that exist in the literature are StreamDM [19]
and Apache SAMOA [48]. StreamDM is a library of ML/DM algorithms designed
to be easily extensible with new algorithms, but dedicated to run on top of the Spark
Streaming API [5]. Thus, it does not cover cross-platform execution scenarios,
also lacking provisions for vertical and federated scalability. The only framework
with a clear commitment to the cross-platform execution goals is Apache SAMOA.
SAMOA is portable between Apache Flink, Storm [6] and Samza [4]. When it
comes to its model of computation, the architecture of SAMOA follows the Agent-
based pattern. In other words, an algorithm is a set of distributed processors
that communicate with streams of messages. Little more is provided, which is
intentional [48], claiming that a more structured model of computation reduces the
applicability of the framework.
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The state of the art in distributed ML and DM architectures is the Parameter
Server (PS) distributed model [51] as illustrated in Fig. 1b, where a set of distributed
learners receive portions of the training streams and extract local models in parallel.
The local models are from time to time synchronised to extract a global model
at the PS side. The global model is then communicated back to learners via a
feedback loop (Fig. 1b). Consider for instance a set of learners each handling a
subset of vessel streams within the scope of a vessel type classification task. The
learners coordinate with the PS sending their locally trained classification models,
while the PS responds back with an up-to-date global model. The PS paradigm
enhances horizontal and federated scalability via the option of an asynchronous
(besides synchronous) synchronisation policy to reduce the effect of stragglers
and bandwidth consumption, respectively. In the synchronous policy, learners are
communicating with the PS in predefined rounds/batches, while in the asynchronous
case each learner decides individually as to when it should send updates to the PS.
Performance-wise, the synchronous policy does not encourage enhanced horizontal
scalability because when many learners are used, the total utilisation is usually low,
should only few stragglers exist. The asynchronous one is the policy of choice in
large-scale ML; the processing speed is much higher when many learners are used
and the training is more scalable.

The PS paradigm has been criticised for limited training speed due to potential
network congestion at the PS side and for severely getting affected by low-
speed links between the learners and the PS. Under these claims, a number of
decentralised ML/DM architectures have evolved which employ a more peer-to-
peer alike structure, where the training rationale is based on gossiping [42, 70]. The
drawback of these approaches, though, is that it is unclear how the continuously
updated, but decentralised, global model can be directly deployed for real-time
inference purposes. This is because knowing the network node holding the updated
global model at any given time requires extra communication. Hence, in case we
want to train and simultaneously deploy the updated global ML/DM models at
runtime, such a decentralised architecture does not seem to mitigate low-speed
issues but moves the problem to the prediction, instead of the training, stage.

INFORE Contribution In the scope of the INFORE project, we follow a PS
distributed model [51]. As is the case with the SDEaaS described in the previous sec-
tion, INFORE’s ML/DM module includes provisions for cross-platform execution
scenarios by receiving input and output streams in JSON formatted Kafka messages.
Moreover, the communication between learners and the PS is performed using a
lightweight middleware where a generic API for PS and learner (bidirectional)
communication is provided. In that, learners can be implemented over any Big
Data platform and run in any cluster, while still being able to participate in the
common ML/DM task. Besides learners, INFORE’s ML/DM module includes a
separate pipeline of parallel predictors that can communicate with the PS in order to
receive up-to-date global models continuously extracted during the training process
and directly deploy them for inference purposes.
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INFORE’s ML/DM module accounts for vertical and boosts horizontal scala-
bility as well. This is achieved by using INFORE’s SDEaaS to partition streams
to learners or to allow learners to operate on compact stream summaries, corre-
spondingly. Remarkably, to effectively encounter congestions or low-speed links
and also allow to easily and effectively deploy/update the developed models,
instead of resorting to decentralised approaches [42, 70], we develop our own
synchronisation policy termed FGM [67] (Fig. 1b) that improves the employed
PS paradigm. The new synchronisation protocol strengthens horizontal (within a
cluster) and federated scalability by bridging the gap between synchronous and
asynchronous communication. Instead of having learners communicating in pre-
defined rounds/batches (synchronous) or when each one is updated (asynchronous),
FGM requires communication only when a concept drift (i.e., the global model has
significantly changed based on some criterion) is likely to have occurred. This is
determined based on conditions each learner can individually examine.

2.3 Distributed and Online CEF

Motivation Big Data analytics tools mine data views to extract patterns conveying
insights into what has happened, and then apply those patterns to make sense of
the fresh data that stream in. This only permits to react upon the detection of
such patterns, which is often inadequate. In order to allow for proactive decision-
making, predictive analytics tools that allow to forecast future events of interest
are required. Consider, for instance, the ability to forecast and proactively respond
to hazardous events, such as vessel collisions or groundings, in the maritime
domain. The ability to forecast, as early as possible, a good approximation to
the outcome of a time-consuming and resource-demanding computational task
allows to quickly identify possible outcomes and save valuable reaction time,
effort and computational resources. Diverse application domains possess different
characteristics. For example, monitoring of moving entities has a strong geospatial
component, whereas in stock data analysis this component is minimal. Domain-
specific solutions (e.g. trajectory prediction for moving objects) cannot thus be
universally applied. We need a more general Complex Event Forecasting (CEF)
framework.

Related Work and State of the Art Time-series forecasting is an area with some
similarities to CEF, with a significant history of contributions [56]. However, it is
not possible to directly apply techniques from time-series forecasting to CEF. Time-
series forecasting typically focuses on streams of (mostly) real-valued variables and
the goal is to forecast relatively simple patterns. On the contrary, in CEF we are
also interested in categorical values, related through complex patterns and involving
multiple variables. Another related field is that of prediction of discrete sequences
over finite alphabets and is closely related to the field of compression, as any com-
pression algorithm can be used for prediction and vice versa [17, 20, 24, 63, 64, 73].
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The main problem with these approaches is that they focus exclusively on next
symbol prediction, i.e., they try to forecast the next symbol(s) in a stream/string
of discrete symbols. This is a serious limitation for CEF. An additional limitation
is that they work on single-variable discrete sequences of symbols, whereas CEF
systems consume streams of events, i.e., streams of tuples with multiple variables,
both numerical and categorical. Forecasting methods have also appeared in the field
of temporal pattern mining [22, 50, 71, 75]. A common assumption in these methods
is that patterns are usually defined either as association rules [13] or as frequent
episodes [53]. From the perspective of CEF, the disadvantage of these methods is
that they usually target simple patterns, defined either as strictly sequential or as
sets of input events. Moreover, the input stream is composed of symbols from a
finite alphabet, as is the case with the compression methods mentioned previously.

INFORE Contribution In a nutshell, the current, state-of-the-art solutions for
forecasting, even when they are domain-independent, are not suitable for the kind
of challenges that INFORE attempts to address. In INFORE, the streaming input
can be constantly matched against a set of event patterns, i.e. arbitrarily complex
combinations of time-stamped pieces of information. An event pattern can either
be fully matched against the streaming data, in which case events are detected,
or partially matched, in which case events are forecast with various degrees of
certainty. The latter usually stems from stochastic models of future behaviour,
embedded into the event processing loop, which project into the future the sequence
of events that resulted to a partial event pattern match, to estimate the likelihood of
a full match, i.e. the actual occurrence of a particular complex event.

Given that INFORE’s input consists of a multitude of data streams, interesting
events may correlate sub-events across a large number of different streams, with
different attributes and different time granularities. For instance, in the maritime
domain relevant streams may originate from position signals of thousands of vessels
which may be fused with satellite image data [54] or even acoustic signals [40]. It
is necessary to allow for a highly expressive event pattern specification language,
capable of capturing complex relations between events. Moreover, the actual
patterns of what constitutes an interesting event are often not known in advance,
and even if they are, event patterns need to be frequently updated to cope with the
drifting nature of streaming data. Not only do we need an expressive formalism in
order to capture complex events in streams of data, but we also need to do so in a
distributed and online manner.

Towards this direction, the CEF module of INFORE uses a highly expressive,
declarative event pattern specification formalism, which combines logic, probability
theory and automata theory. This formalism has a number of key advantages:

• It is capable of expressing arbitrarily complex relations and constraints between
events. We are thus not limited to simple sequential patterns applied to streams
with only numerical or symbolic values.

• It can be used for event forecasting and offering support for robust temporal
reasoning. By converting a pattern into an automaton, we can then use historical
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data to construct a probabilistic description of the automaton’s behaviour and
thus to estimate at any point in time its expected future behaviour.

• It offers direct connections to machine learning techniques for refining event
patterns, or learning them from scratch, via tools and methods from the field
of grammatical inference. In cases where we only have some historical data and
some labels, we must find a way to automatically learn the interesting patterns.
This is also the case when there is concept drift in the streaming data and the
patterns with which we started may eventually become stale. It is therefore
important to be able to infer the patterns in the data in an online manner.

INFORE’s CEF module is built on top of Apache Kafka and Flink and has the
ability to handle highly complex patterns in an online manner, constantly updating
its probabilistic models. Figure 1d shows one possible scheme (pattern-based) for
structuring multiple parallel CEF pipelines. As shown in the figure, each such
pipeline processes a different CEF query [33, 35]. It is composed of a training
process, which estimates the probabilities of a future event to occur, as well as a
CEF process that utilises these probabilities to actually forecast complex events.
Finally, one implementation detail is that each pipeline also receives a subset of the
patterns (part1 to partX in Fig. 1d). The role of these loops is similar to the feedback
loop of Fig. 1b. Remarkably, the CEF module can also act as a CEP one since it can
not only predict but also detect occurred events of interest [14].

2.4 Geo-distributed Cross-Platform Optimisation

Motivation All the aforementioned advanced stream processing techniques and
technologies will only serve their goal if they are properly used. Consider, for
instance, that we perfectly tune the execution of a synopsis, ML/DM or CEF
operator in a specific cluster, but we assign the execution of the downstream operator
of a broader workflow to a distant cluster. The execution speed up achieved for one
operator may be diminished by network latency of long network paths. Therefore,
developing algorithms for optimising the execution of streaming workflows (a)
over a network of many clusters located in various geographic areas, (b) across
a number of Big Data platforms available in each cluster and (c) simultaneously
elastically devoting VMs and resources (CPU, memory, etc.) is a prerequisite
to efficiently deliver in practice real-time analytics. Within a cluster, common
optimisation objectives include throughput maximisation, execution latency and
memory usage minimisation, while in multi-cluster settings communication cost,
bandwidth consumption and network latency are also accounted for. Quality-of-
Service (QoS) and computer cluster (CPU, memory, storage) capacity constraints
also apply to these objectives.

Related Work and State of the Art There are a number of works that assign
the execution of operators targeting at optimising network-related metrics, such
as communication cost and network latency, while executing global analytics
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workflows across a number of networked machines or computer clusters. The
seminal work of SBON [59] seeks to optimise a quantity similar to network
usage (dataRate × latency), but with a squared latency, across multi-hop paths
followed by communicated data. An important limitation in SBON is that by
using such a blended metric, the optimisation process cannot support constrained
optimisation per metric (communication cost or latency). Due to that, also other
related techniques [49, 59, 62] which employ blended metrics cannot incorporate
resource or QoS constraints while determining operators’ assignment to clusters.
Although some [49, 62] claim to support latency constraints, this comes after having
determined where an operator will be executed. Finally, the approach of Geode [72]
purely focuses on minimising bandwidth consumption in the presence of regulatory
constraints, but it does not account for network latency.

A series of works aim at optimising the execution of analytics operators within
a single computer cluster. Such works focus on optimal assignment of operators
to VMs such that high performance (mainly, in terms of throughput) and load
balancing among VMs is achieved; subject to multiple function, resource and QoS
constraints. Related works mainly provide optimisations on load assignment and
distribution, load shedding, resource provisioning and scheduling policies inside
the cluster. In Medusa [16], Borealis [10], Flux [68] and Nexus [23], the focus is to
primarily balance the load, choose appropriate ways to partition data streams across
a number of machines and minimise the usage of available resources (CPU cycles,
bandwidth, memory, etc.) while maintaining high performance.

Another category of techniques examines the optimisation of network-wide
analytics, simultaneously scaling-out the computation of an operator to the VMs
of the cluster that undertakes its execution. JetStream [61] trades-off network
bandwidth minimisation with timely query answer and correctness, but while
exploring the cluster at which an operator will be executed, it restricts itself to
the MapReduce rationale (i.e. the operator is executed at the cluster where data
rests), nearest site of relevant data presence or a central location. Iridium [60],
basically targeting optimisation of analytics over data at rest, assumes control over
where relevant data are transferred and moves these data around clusters to optimise
query response latency. SQPR [45] and [21] propose more generic frameworks for
the constraint-aware optimal execution of global workflows across clusters, and
they also optimise resources devoted to each operator execution at each cluster.
However, [21, 45] do not account for cross-platform optimisation in the presence
of different Big Data technologies.

Systems such as Rheem [12], Ires [27], BigDawg [28] and Musketeer [39] are
designed towards cross-platform execution of workflows, but they can only optimise
the processing of data at rest,2 instead of data in motion. Furthermore, only Rheem
accounts for network-related optimisation parameters such as communication cost.

2 BigDawg supports stream processing over S-Store and Rheem supports JavaStreams, but no
alternatives are included to allow for optimising across different streaming platforms.
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INFORE Contribution The INFORE Optimiser is the first complete solution for
streaming operators [30, 34]. INFORE’s Optimiser is not simply the only one which
can simultaneously instruct the streaming Big Data platform, cluster and computing
resources for each analytics operator, but also it does so for a wide variety of
diverse operator classes including (1) synopses, (2) ML/DM, (3) CEF and (4) stream
transformations. INFORE’s Optimiser incorporates the richest set of optimisation
criteria related to throughput, network and computational latency, communication
cost, memory consumption and accuracy of SDE operators, and it also accounts for
constraints per metric, fostering the notion of Pareto optimality [30, 34].

The internals of INFORE Optimiser are illustrated in Fig. 1c. We use a statistics
collector to derive performance measurements from each executed workflow.
Statistics are collected via JMX or Slurm3 and are ingested in an ELK stack4

while monitoring jobs. A Benchmarking submodule automates the acquisition of
performance metrics for SDE, OMLDM and CEF/CEP operators run in different
Big Data platforms. The Benchmarking submodule utilises statistics and builds
performance (cost) models. Cost models are derived via a Bayesian Optimisation
approach inspired by CherryPick [15]. The cost models are utilised by the optimi-
sation algorithms [30, 34] to prescribe preferable physical execution plans.

3 Real-Life Application to a Maritime Use Case

3.1 Background on Maritime Situation Awareness (MSA)

According to the US National Concept of Operations for Maritime Domain Aware-
ness,5 “Global Maritime Intelligence is the product of legacy, as well as changing
intelligence capabilities, policies and operational relationships used to integrate all
available data, information, and intelligence in order to identify, locate, and track
potential maritime threats. Global MSA results from the persistent monitoring of
maritime activities in such a way that trends and anomalies can be identified”.

Maritime reporting systems are distinguished into two broad categories: cooper-
ative and non-cooperative. An example of a cooperative maritime reporting system
is the Automatic Identification System (AIS) [43]. All commercial vessels above
300 gross tonnage are obliged to bear AIS transponders. AIS forms the basis of
a lot of MSA applications, such as the MarineTraffic vessel tracking platform.
Other cooperative, but not public, maritime reporting systems are the Long Range
Identification and Tracking system (LRIT) [44], as well as the Vessel Monitoring

3 https://docs.oracle.com/javase/tutorial/jmx/overview/, https://slurm.schedmd.com/.
4 https://www.elastic.co/what-is/elk-stack.
5 https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/
MDAConOps.

https://docs.oracle.com/javase/tutorial/jmx/overview/
https://slurm.schedmd.com/
https://www.elastic.co/what-is/elk-stack
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps
https://web.archive.org/web/20111004213300/http://www.gmsa.gov/twiki/bin/view/Main/MDAConOps
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System (VMS) [29] for fishing vessels. Radar on-board or ashore installations can
be used as maritime surveillance systems, such as the ones installed by default in
a vessel’s bridge, as well as in ports. Thermal cameras and satellite imagery can
also be used as additional monitoring systems for vessels. Due to the time elapsed
between the actual image acquisition from a satellite and its availability on the
satellite repository that can be several hours, satellite imagery data do not offer real-
time snapshots of the maritime domain but can be used combined with other sources
such as AIS to “fill in the gaps” of AIS coverage (e.g., identify the whereabouts of
a vessel while its transponder was switched off).

Global and continuous monitoring of the maritime domain as well as the
identification of trends and anomalies require to address the challenges pointed
out throughout this chapter as well as the following generic Big Data challenges
described in the scope of the maritime domain:

• Volume, the number of available surveillance systems and sensors increases.
• Velocity, applications rely on continuous monitoring (e.g., vessel tracking) and

need to process high velocity streaming data in real time.
• Variety, data from heterogeneous surveillance systems should be combined.
• Veracity, most of the maritime data sources are heavily prone to noise requiring

data cleaning and analysis tasks to filter out unnecessary or invalid information.
• Value, as the availability of more sources of maritime data as well as the advanced

Big Data processing, ML and AI technologies that are now available can help to
maximise the derived knowledge that can be inferred from maritime data.

3.2 Building Blocks of MSA Workflows in the Big Data Era

Figure 2b shows an example of a generic workflow, implemented in the Maritime
Use Case of the INFORE project, for MSA purposes. Different applications may
include a subset of operators of Fig. 2b or implement different steps. In the
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following, we describe the functionality of the workflow operators of Fig. 2b which
serve as the building blocks of modern MSA applications.

3.2.1 Maritime Data Sources

The kinds of data sources that are provided as input in a typical MSA application
(Fig. 2b) are the following:

• Vessel positions. Data about vessel positions derive from vessel reporting
systems, the most popular of which is AIS. AIS forms the ground of a wide
variety of MSA applications. AIS relies on VHF communication: Vessels send
AIS messages that contain dynamic information (e.g., information about the
current voyage, such as vessel position, speed, heading, etc.) as well as static
information (e.g., vessel identifier, dimensions, etc.). For real-time applications,
positional data arrive in streaming fashion to the data consumers.

• Data from other sensors. Some applications do not rely only on one source of
information. For example, AIS data can be combined with acoustic data, thermal
camera data and satellite data. Vessel detection algorithms are applied on this
data to extract the positions of vessels. For example, AI techniques are applied
on satellite imagery to extract the vessel positions which is important in the cases
when a vessel is out of AIS coverage [54].

• Other datasets describing assets and activities in the maritime domain. These
are datasets that describe ports, harbours, lighthouses, the boundaries of areas
of interest, bathymetry datasets (e.g., for shallow waters estimation), datasets
containing vessel schedules, weather data, etc. These datasets are often combined
with other data (e.g., vessel positions) in order to enrich the information
displayed to the end-users (e.g., the different layers of the MarineTraffic Live
Map).

Kafka [3] is used at the data ingestion layer, as a fast, scalable and fault-tolerant
messaging system for large data (at rest or in motion) portions.

3.2.2 Maritime Data Fusion

Data from multiple sources besides AIS, such as radars and cameras, are available
in real time though in order to be used in MSA modules they must be fused
together with AIS and create a unified map. This essentially translates to a need
for tracking algorithms that can monitor moving objects globally and in real time
using overlapping detections from multiple sensors. The Fusion operator in Fig. 2b
is a custom operator with distributed implementations in order to achieve this goal.
Trackers are comprised of three main components [65, 66]: (a) a method for the
assignment of detections to tracks, (b) the prediction of a target’s movement and (c)
the architecture of the tracker that coordinates how the detections are processed.
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A detection arriving to the tracker can be assigned to a track using three
strategies, and each tracker implementation is based on one of them. The first way
is to simply choose the track that is closest to the detection, which has the lowest
computational complexity but it is not accurate in cases where two objects move
very close to each other. The second method focuses on improving the accuracy in
cases where a detection is close to multiple tracks by deferring the final assignment
until more detections arrive, thus making a more informed decision but at the cost of
significantly increasing the complexity and decreasing the responsiveness (i.e., real-
time challenge). The third approach stands between the two methods and allows that
a detection is assigned to multiple tracks as soon as it arrives, thus increasing the
accuracy satisfactorily without increasing complexity.

Each moving object is characterised by certain physical parameters and con-
straints according to which several kinematic models can predict its movement
under different conditions. A simple option is to choose one model, such as constant
velocity that assumes the object maintains the last speed, but this affects the
accuracy when an object manoeuvres. A better option is to use multiple models,
such as constant turn and acceleration, at the same time so that the tracker is able to
successfully detect a manoeuvring target.

3.2.3 SDE Operator For Trajectory Simplification

The plethora of incoming data from multiple overlapping sources poses a challenge
for data processing workflows. A data synopsis technique with which this challenge
can be tackled is trajectory simplification, i.e., reducing the amount of data
(positions) so that the computational effort required is reduced as well. The ideal
goal is to keep only those positions that are adequate in order to recreate the
trajectory with minimal losses in the accuracy of the data processing workflow.

For that, we use INFORE’s SDEaaS (Sect. 2.1) which includes an application-
specific synopses, namely STSampler. The STSampler scheme resembles the
concept of threshold-guided sampling in [58] but executes the sampling process in a
more simplistic, yet effective in practice, way. More precisely, the sampling process
is executed in a per stream fashion, i.e., for the currently monitored trajectory of
each vessel separately. The core concept is that if the velocity and the direction
of the movement of the vessel do not change significantly, the corresponding AIS
message is not sampled. The last two reported trajectory positions are cached in
the add FlatMap of Fig. 1a. When an AIS message holding information about
the current status of the vessel streams in via HashData, the add FlatMap
computes the change in the velocity between the lastly cached and the new AIS
report, i.e., Δvel = |vel(prev) − vel(now)|, and compares this value to a velocity
threshold Tvel . Using the previously cached points, the vector describing the lastly
reported direction of the vessel dir(prev) is computed, while using the last cached
and the newly reported positions we also compute dir(now). Then, we compare
Δdir = |dir(prev) − dir(now)| against a direction threshold Tdir . If at least one
of these deltas does not exceed the corresponding threshold, the newly received
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AIS message is not included in the sample by the add FlatMap. This holds,
provided that a couple of additional spatiotemporal constraints are satisfied: (a) the
time difference between the newly received AIS message and the last one that was
included in the sample does not exceed a given time interval threshold Ttdiff and
(b) the distance among the most recently sampled and the current position of the
vessel does not surpass a distance threshold Tdist . SDEaaS is implemented in Flink
instead of Kafka, for the reasons explained in Sect. 2.1.

3.2.4 Complex Maritime Event Processing

A very important module of the modern MSA applications is the Maritime Event
Detection module. This is essentially a CEP module tailored to the maritime domain.
For now, our analysis concentrates on distributed and online CEP, i.e., detecting
complex events, while future work will also exploit the potential of CEF (Sect. 2.3).
A description of some of the most common vessel events that can occur in the
maritime domain is provided below:

• Turn: A vessel turns to a different direction.
• Acceleration: A vessel accelerates.
• Route Deviation: The course of a vessel deviates from “common” routes.
• Shallow waters: A vessel navigates in shallow waters.
• Proximity: A vessel is in close distance to another vessel.
• Out of coverage. A vessel is out of coverage with respect to one or more vessel

monitoring systems such as AIS [47].

The events described above are simple events, i.e., they can be computed without
depending on other events. Complex events, on the other hand, are events composed
from other events. Below we provide examples of complex events:

• Ship-to-ship: Transfer of cargo between vessels.
• Bunkering: One vessel provides fuel to another vessel.
• Tugging: A smaller vessel (a tug) is tugging another vessel.
• Piloting: A smaller vessel (pilot vessel) approaches a bigger vessel so that the

pilot of the vessel boards the bigger vessel in order to help it navigate into a port
where special local conditions apply.

• Fishing: A vessel is engaged in fishing activities.

For distributed processing of streaming data in the CEP context, the Akka
framework is used [1]. Akka adopts an Actor-based architecture based on message-
passing communication, and it is preferred due to the fact that it is more customis-
able than Spark and Flink. Each Actor, run in parallel instances, is responsible for
detecting a simple or complex event as those described above (Fig. 2a and b).
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3.2.5 ML-Based Anomaly Detection

The ML algorithms that are relevant to the MSA workflow relate to Deep Neural
Network techniques for classifying vessels according to their type (such as cargo,
fishing vessel) [54]. Moreover, we are investigating ML-based techniques such as
Random Forests for classifying vessel trajectories and recognise simple or complex
events in them. This effort is also aided by advanced ML-based operators we have
developed to extract the common routes followed by the majority of vessels for
every voyage, defined as a pair of origin and destination ports [78]. At the moment,
these ML tasks are performed in an offline fashion mostly using Spark’s MLlib [5],
which we also use to estimate sea-port area regions in [55]. The outcomes of this
process performed at the batch layer of Fig. 2a can then be used as added value
knowledge to the event detection or the Fusion operator of Fig. 2b. Our ongoing
work focuses on incorporating INFORE’s module (Sect. 2.2) to materialise ML/DM
analytics in an online, real-time fashion, where possible (see restrictions on satellite
images in Sect. 3.1).

3.2.6 MSA Workflow Optimisation

Across the workflow of Fig. 2b, the INFORE Optimiser is responsible for prescrib-
ing the parallelisation degree, and the provisioned resources for the maintained
trajectory synopses (Sect. 3.2.3) determine the computer cluster and the number of
Akka Actors devoted to MSA-related CEP tasks (Sect. 3.2.4). The Optimiser can
also do the same for ML-based anomaly detection tasks (Sect. 3.2.5). An initial
workflow execution plan can be re-optimised and adjusted at runtime to adapt
(e.g., by increasing/decreasing the number of Akka Actors) to changing data stream
distributions or to a load of concurrently executed maritime workflows. Moreover,
the ongoing integration of the INFORE CEF module will allow the Optimiser to
prescribe the most efficient implementation among Akka (Sect. 3.2.4) and Flink
(Sect. 2.3) options for event processing tasks.

4 Future Research and Development Directions

Future research and development directions mainly lie in the synergies of ML/DM,
Synopses, CEP/CEF and optimisation technologies discussed in this chapter.

Resource-Constrained ML/DM Resource-Constrained ML/DM goes beyond
data processing over distributed, but computationally powerful infrastructures such
as computer clusters or the cloud. The objective in resource constrained ML/DM is
to bridge the gap between the very high computation and communication demands
of state-of-the-art ML algorithms, such as Deep Neural Nets and Kernel Support
Vector Machines, and the goal of running such algorithms (e.g. various classifiers)
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on a large, heavily distributed system of resource-constrained devices. Resource-
constrained devices, such as sensors, pose limitations to the power supply, memory,
computation and communication capacity. Fast and efficient classifiers requiring
reduced power and memory should be developed, along with novel algorithms to
train, apply and update the classifiers. Synergies between synopses and distributed,
online ML/DM utilities are critical for such tasks.

Optimisation over Internet of Things (IoT) Platforms Optimisation over Inter-
net of Things (IoT) platforms, since existing optimisation frameworks, should be
extended to allow for planning the execution of workflows taking into consideration
the whole set IoT features including: (a) resource scarcity, (b) hardware hetero-
geneity, (c) data heterogeneity, (d) dynamic population of devices, (e) mobility
of devices, (f) security aspects over massively distributed architectures, and (g)
resilience and accuracy of analytics in the presence of device failures.

CEP/CEF-Oriented Synopses CEP/CEF-Oriented Synopses techniques tailored
for CEP/CEF are becoming a necessity. The work in [41] was the first to point out
that load shedding schemes tailored for CEP are missing and that shedding the load
in CEP significantly differentiates itself from doing so in conventional streaming
settings. A few more approaches emerged since then [52, 74], but still little attention
has been paid on the distributed environments and the mergeability properties of
such techniques [11].
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1 Introduction

This chapter describes ongoing work in the Lane Analysis and Route Advisor
(LARA) project which aims at big data analysis and respective knowledge modeling
in the logistics sector, namely, in planning shipments with special handling needs
known as special cargo, or special freight, such as cargo consisting of temperature-
sensitive pharmaceuticals, live animals, dangerous goods, and perishables, such as
lithium batteries, flowers, and food products.

Currently, the execution of such shipments constitutes a complex process that
lacks transparency and standardized knowledge resources and relies on the expert
knowledge of freight forwarders, namely, individuals or companies organizing and
planning such shipments. Freight forwarders play a key role in the special cargo
industry because they possess expert knowledge on all crucial information for
deciding among shipment route options, such as services provided by airlines,
cargo restrictions and risks, and transport facilities. For this reason, most logistics
operations are handled manually, and there is currently no transparent way of
comparing and planning shipment routes, as is the case, for example, with passenger
air travel planning.

Route planning for (special) cargo has significant potential for optimization
with the application of advanced data analytics and artificial intelligence (AI)
methods. However, an added challenge in this application lies in the acquisition and
modeling of logistics and cargo knowledge from a variety of available information
sources. Currently, standardization and data integration are hard not only due to
the data complexity, size, and variation, but also due to cargo service providers
attempting to profit from the lack of transparency and information asymmetry.
Another challenge relates to processing and classifying cargo information in various
types of unstructured, free-text sources, with minimal training or lexical resources.
Finally, there are numerous challenges in understanding risks and constraints related
to special cargo shipments [12], so as to eventually assess a candidate shipment
route. In this chapter, we discuss ongoing work on addressing these challenges.

Our work addresses two of the main technical priority areas defined by the
European Big Data Value (BDV) Strategic Research & Innovation Agenda [47],
namely, the application of data analytics to improve data understanding and
providing optimized architectures for analytics of data-at-rest and data-in-motion,
the overall goal being in developing technologies contributing to the data value
chain in the logistics sector. With regard to the BDV Reference Model, we address
the ’‘vertical” dimension: Big Data Types and Semantics. We also address three
‘horizontal’ concerns: Data analytics, Data processing architectures and Data
management.

This chapter is organized around the three building blocks shown in Fig. 1.
In Sect. 2, Special Cargo Ontology, we discuss the knowledge elicitation and
respective research in modeling cargo knowledge into a standardized form. This
work sheds more light on the design and development of a logistics knowledge
base and the methodology for eliciting domain information, so as to eventually
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Fig. 1 An overview of the special cargo modeling system

be able to determine routing options. In Sect. 3, Case Study: Lane Analysis and
Route Advisor we describe a test bed for future application of the knowledge
modeling involving the following types of data: structured data, time series data,
geospatial data, text data, network data, and metadata. [47] Subsequently, we discuss
a novel palate of data analytics approaches to provide a major player in the freight
forwarding industry with a set of solutions for several of their organizational issues,
using this data. In Sect. 4, Natural Language Processing for Incident Handling,
NLP and the machine learning algorithm of Random Forests are used to gain
new insights on incident classification related to data quality issues in unstructured
data. In Sect. 5, Statistics and Machine to Improve Risk Assessment, a logistic
regression model is used to detect which features most profoundly influence which
incident types. With regard to data management, we consider the aspect of data
quality affecting the results. The analysis namely has to be considered carefully as
data quality issues affect the results.

The chapter accordingly relates to three main cross-sectorial technology enablers
of the Strategic Research, Innovation & Deployment Agenda for AI, Data, and
Robotics, recently released as a joint initiative by the Big Data Value Association,
CLAIRE, ELLIS, EurAI and EUrobotics [46]. These cross-sectorial technology
enablers are respectively: Knowledge and Learning (Sect. 2), Sensing and Percep-
tion (Sect. 4), and Reasoning and Decision Making (Sect. 5). Furthermore, due to the
nature of the case study involving incident analysis for special cargo, and thus digital
and physical AI working together (Sect. 3), a fourth cross-sectorial technology
enabler is inherently addressed: Action and Interaction.
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2 Special Cargo Ontology

An ontology is defined as ‘a formal, explicit specification of a shared concep-
tualization’ [35]. One of the main advantages in using ontologies for modeling
knowledge lies in allowing a versatile representation of concepts and hierarchical
concept relations, properties, and constraints [1]. This also allows machines to
make use of the World Wide Web without any interference of humans, as an
ontology translates human concepts in machine-readable terms. For our purposes,
a special cargo ontology is intended as a knowledge structure that models special
cargo services and properties, so as to (1) have an explicit model of the domain
information requirements, (2) develop a knowledge resource for unstructured text
processing (e.g., for information retrieval or extraction purposes), and (3) eventually
use the information in the respective knowledge base for, e.g., considering important
cargo constraints when reasoning about proposing a set of possible shipment routes.

Designing and developing an ontology from scratch can be a laborious and time-
consuming process. For this reason, there are numerous approaches in learning
an ontology in an automatic or semiautomatic way, such as using automatic term
extraction and clustering, or information extraction entity and relation extraction
[8, 10, 24, 30–33, 45]. In our approach, because of the lack of existing lexical or
other knowledge resources in the special cargo domain, we have opted for a top-
down method, namely, one that relies on applying knowledge elicitation techniques
for acquiring the domain knowledge from the human experts. More details about
the size of different components of the ontology are added in Table 1 In this
section, we discuss our knowledge elicitation methodology, ontology design, and
implementation.

2.1 Methodology and Principles for Ontology Construction

In order to support the planning phase within the special handling cargo sector,
a knowledge structure is constructed. Based on an analysis of the ontology life
cycle, (dis)advantages, and the conformity to the nature of the special cargo domain,
different methodologies are assessed. The result of the analysis of different method-
ologies and techniques is the augmented UPON (Unified Process for Ontology)
methodology [9] with knowledge elicitation and evaluation tools.

The building process of special cargo ontology follows the UPON methodology
that is based on a software development process. UPON is augmented with
knowledge elicitation techniques to derive knowledge from experts and evaluation
techniques to validate the ontology. (Un)Structured interviews including the teach-
back method, laddering,1 and document analysis techniques are implemented

1 This consists of techniques consists of creating a hierarchy of the gathered knowledge, reviewing,
modifying, and validating it together with an expert.



Knowledge Modeling and Incident Analysis for Special Cargo 523

Table 1 Different
components of the special
cargo ontology

Component Size

Axiom 724

Logical Axiom 344

Declaration Axiom 197

Declaration Axiom 197

Class 129

Object Property 43

Data Property 20

Individual 7

Annotation Property 4

Class Axiom: SubClassOf 240

DisjointClasses 14

Object Property Axioms: SubObjectPropertyOf 2

InverserObjectProperties 5

FunctionalObjectProperty 8

TransitiveObjectProperty 4

ObjectPropertyDomain 4

ObjectProperyRange 3

Data Property Axioms: FunctionalDataProperty 4

DataPropertyDomain 25

DataPropertyRange 19

Individual Axioms: ClassAssertion 16

Annotation Axiom: AnnotationAssertion 183

into this methodology. The UPON methodology consists of five main workflows,
namely, requirements, analysis, design, implementation, and test. In the require-
ments workflow, the goal is to identify the requirements and desires of the ontology
users, which consists of (1) determining the domain of interest and the scope,
and (2) defining the purpose, which results in the usage of knowledge elicitation
techniques and an Ontology Requirement Specification (ORS) document as well
as an application lexicon. In the analysis workflow, different existing ontologies
are assessed, and a Unified Modeling Language (UML) use-case diagram is
constructed, alongside the application lexicon. In the design workflow, the OPAL
(Object, Process, Actor Modeling Language) methodology as well as justification
for the relevancy of these concepts to the domain is applied to the concepts. A
comprehensive explanation of concepts is defined in this step. The implementation
workflow consists of implementing the lexicon and its attributes into Protege and
offers performance metrics and visualization of ontology structure. The evaluation
of an ontology is crucial and can be done in four strategies: gold standard,
application based, data driven, and user based [20]. Due to the lack of gold standard,
(technical) application, and data, human assessment is the main reference point. The
final workflow is testing the ontology, and this is achieved based on the ‘assessment’
and ‘evaluation’ methods. In the assessment method, competence questions and
principles are assessed. The evaluation approach consisted of a manual annotation
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Fig. 2 Components of a cargo shipment

approach to 20 documents that are annotated by an expert. Each phase of this process
is explained in more detail in the following sections.

2.2 Requirement Workflow

The application domain of the cargo ontology is the special cargo industry, with
a focus on airfreight. This concerns all the processes and products that cover the
interactions of special cargo airfreight forwarding within the planning phase of a
shipment. Figure 2 shows a general sketch of the components of a (special) cargo
shipment. This figure shows the activities that occur before the shipment planning,
the actual shipment of the cargo and the activities that occur after the shipment (e.g.,
management of deviations).

The goal of requirement workflow is to identify the requirements of the ontology
users, which consists of ’(1) determining the domain of interest and the scope,
and (2) defining the purpose’ [9]. In this phase, the knowledge engineering
techniques are applied according to the CommonKADS method [34] on top of
the UPON techniques. The interviews are designed based on the guidelines and
samples of CommonKADS. The knowledge elicitation is utilized in three phases,
namely, knowledge identification, knowledge specification, and knowledge refine-
ment. Knowledge identification consists of unstructured interviews and document
analysis. The next step is the specification of knowledge, with structured interviews.
Based on the background knowledge acquired, there are four types of experts:
freight forwarders, shippers, GHAs, and support experts. While shippers play a
vital role in the transportation of special cargo as it is their products being shipped,
they are not concerned with the transportation jargon of the special cargo. Freight
forwarders book and arrange the shipments based on the shipper’s requirement.
Transporters can be separated into the carriers (air carriers) and the handlers (GHA).
Due to resource and time constraints, the GHAs are not consulted. The final step of
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the requirement workflow is knowledge refinement, and this consists of applying
instances and validating the model.

To fulfill the two main goals of this workflow, an Ontology Requirement
Specification (ORS) document [36] is derived. The document entails the activities of
collecting the special cargo ontology requirements. The cargo that requires special
handling is divided into multiple segments, namely, pharma, dangerous goods,
perishables, live animals, and high value. In this regard, some information related to
the purpose of the special cargo ontology, determination of the available choice set
for routing options, including specific product features, capabilities, services of air
carriers, and GHAs are found in the ORS document.

Along with the ORS document that includes the competency questions, an
application lexicon (based on the knowledge engineering techniques) and a use-case
model are the outcomes of this workflow. Applying use-case models based on the
competency questions is the final step in the requirement workflow. Figure 3 shows
the visualization of this use case. Laddering is conducted with a support expert and
is used to elicit the UML diagram.

Compare products

Compare Lanes

Choose Lane

Choose Packaging

Support 
Capabilities

for Packaging

Choose Products

KNOWLEDGE STRUCTURE

Airline

<<include>>

<<include>>

<<include>>Shipper

Hires

Freight Forwarder

Fig. 3 Cargo ontology use case



526 V. Reshadat et al.

2.3 Analysis Workflow

The analysis phase aims to refine and structure the identified requirements of the
previous step. This includes reusing existing resources, modeling the application
scenario using UML diagrams, and building the glossary. Considering the reuse
of existing resources also entails the assessment of other domain ontologies.
Existing resources or ontologies have been acquired through a search of several
Ontology Libraries (OL). IATA—ONE Record,2 the NASA Air Traffic Management
Ontology,3 and the Air Travel Booking Ontology4 are assessed for the relevance to
the domain of built cargo ontology.

The IATA—ONE Record ontology, The NASA Air Traffic Management (ATM)
Ontology, and The Air Travel Booking Ontology are implemented in a message
system, air traffic management, and air travel booking service, respectively. They
are used in different stages of the process (i.e., planning vs booking), and the
domains are not completely compatible. Although in the context of the Semantic
Web, ontologies are often used with a purpose different from the original creators
of the ontology [36], and these ontologies do not offer significant benefits to be
implemented or associated with the Special Cargo Domain.

The next step is to model the application scenario based on the drafted UML use-
case diagram, in the form of a simple UML class diagram. A part of this diagram
is shown in Fig. 4, as the result of the elicitation technique laddering. The final step
of the analysis workflow is to build the first version of the glossary concerning the
concepts of the domain, which will merge the application lexicon and the domain
lexicon.

2.4 Design Workflow

The identified entities, actors, and processes and the relations among them in
the previous workflow are refined in the design phase. The steps within this
workflow consist of inhabiting, categorizing the concepts according to the OPAL
methodology [42], and refining the concepts and their relations. OPAL is organized
into three primary modeling aspects: actor, processes, and object. The identification
of the OPAL methodology, as well as a justification of why such entities exist in the
ontology, is defined under the lexicon. The subclasses are related to the main class
through a ‘kind-of’ or an ‘is-a’ relation. When a ‘part-of’ relation is defined, it is
found in column ‘notes’. The object, data properties, and the related explanation are
found in the ontology.

2 https://www.iata.org/en/programs/cargo/e/one-record.
3 https://data.nasa.gov/ontologies/atmonto/ATM.
4 https://www.southampton.ac.uk/~cd8e10/airtravelbookingontology.owl.

https://www.iata.org/en/programs/cargo/e/one-record
https://data.nasa.gov/ontologies/atmonto/ATM
https://www.southampton.ac.uk/~cd8e10/airtravelbookingontology.owl
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Fig. 4 A part of the Cargo Ontology class

2.5 Implementation Workflow

In this phase, ontology is formalized in a language and implemented with regard to
its components. The special cargo ontology is constructed in Protege and written in
RDF (Resource Description Framework) and OWL (Ontology Web Language). A
part of the visualization of the special cargo ontology is shown in Fig. 5.

2.6 Test Workflow

While each ontology differs in structure and domain, testing is vital to assess the
domain compliance. The goal of the test phase is to evaluate the ontology and its
components and requirements. The evaluation is performed based on human-based
and task-based assessment. Human-based assessment is divided into two parts: the
competency questions and the principles assessment. The competency questions
(CQ) are drafted in the requirement workflow, as the manual assessment will be
based on the CQChecker module of Bezerra et al. [27]. The principle assessment is
a subjective tool, which requires the collaboration of the ontology engineer and a
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Table 2 Competence Questions

Question Real-life answer Ontology answer Compliance and relation

Does a pharma solution
have a booked
temperature range?

Yes Yes YES: Temperature
controlled solutions ‘has
temperature range’ some
booked temperature range

Does lithium batteries
transport have
restrictions?

Yes Not fully
deductible

SEMI: Dangerous goods
class ‘has maximum
capacity’ (classes are not
populated yet)

Table 3 Design principles

General design principles compliance Compliance

The design should clearly state its
purpose, so the user knows what the
design has to offer to avoid unclear
expectations

Compliant. During the extent of this research, the
scope, the domain, and its purpose have been
defined as well as the expectations by the LARA
project

The design should remain its stability
throughout time, changes, and additions

Compliant, so far. As the ontology is constructed
as of late, time is hard to test on this design.
However, similarly to the maintainable design
principle, Protégé allows for adjustment and
augmentation

domain expert. Tables 2 and 3 show some parts of these two different assessments,
competence questions and design principles, respectively.

2.7 Evaluation Workflow

Task-based, data-driven evaluation is conducted by a domain expert. The evaluation
is executed on two sets of ten documents concerning special cargo, collected from
online cargo websites and news articles. The expert who annotated the documents
has experience within the freight forwarding process as well as the risk analysis of
lanes.

The final step in the testing phase is to adjust the ontology according to
the result of the overall evaluation. There were three concepts (‘Certification’,
‘Hub’, ‘Documentation’) that were neglected in the original ontology which were
implemented after the evaluation. In Table 4, a snippet from this evaluation is shown.
During the analysis of the evaluation, it became clear that certain small or significant
attributes were omitted in the process of creating the ontology, or in return some
attributes were insignificant. In the result of this analysis, these attributes were
omitted or inserted.
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Table 4 A snippet from cargo ontology evaluation

Annotation Relevance Presence

Our products allow you to get your
life-saving cargo to its destination

Yes Yes, triple incorporated: product,
pharma, and the relation

Cool Center Yes Yes, cool center is a synonym for
temperature-controlled environment,
this concept is incorporated

Highly trained experts can stand by
24/7/365 to monitor and support

Yes Yes, trained personnel and monitoring
are incorporated

2.8 Summary

In the LARA project, knowledge representation is developed for the special han-
dling goods and services in the airfreight sector. It is designed based on the software
engineering methodology with the aim of digitizing the determination of the choice
set of solutions and routes for the airfreight forwarders by making data transparent
and understandable to machines. For the integration of disparate knowledge sources,
a special cargo domain ontology of shipping concepts is constructed for the domain
of goods transported by air in a semiautomatic manner. As a structured resource, the
special cargo ontology provides valuable insights into the scope of the application,
the different components of the system, and the interaction between them. It can be
used during the actual operation of the system [6, 22]. As an example, the fact that
consumer-ready laptop computers contain a lithium battery can be modeled in the
ontology means that when processing a request for shipping laptops, the system can
determine that the cargo service needs to allow for lithium batteries to be shipped.

The UPON methodology is used for the construction of the cargo domain
knowledge structure to get the relevant concepts and attributes. This output is
evaluated based on reviewed evaluation methods and adjusted accordingly. The
ontology is integrated into a software program to obtain an applicable product of
the special cargo scope and domain, and subsequently, the final product is the base
of an artificial intelligence route advisor based on the semantic web for the special
cargo sector.

3 Case Study: Lane Analysis and Route Advisor

In the past few decades, international freight transportation has increased rapidly.
This rise can be explained by technological developments, simplifying the global
transport process and causing a decline in shipping costs [37]. It has led to a growing
demand for freight forwarding services. Freight forwarding companies can be hired
to handle the logistics of shipping goods from the customer to the consignee.

However, the process of transportation carries many risks, for which the freight
forwarding company has to take responsibility. Certain types of cargo may require
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strict conditions during transit. For instance, some pharmaceutical products are
temperature-sensitive and have to be kept at a specific temperature throughout
the entire process. When constructing the route the cargo should follow, the type
of packaging and possible exposure to external weather conditions need to be
taken into account. Furthermore, when transporting high-value cargo (HVC) like
electronics, the number of crime incidents increases. Hence, additional security
measurements should be taken into consideration for HVC goods.

Freight forwarding companies aim to maintain high customer satisfaction as
satisfied customers will presumably hire the company again and might help recruit
other customers through positive feedback[28]. Key elements driving customer
satisfaction are the service quality and the perceived value [15]. Hence, to avoid
incidents and thus increase customer satisfaction, it is essential to develop a risk
assessment model and to determine high-risk lanes.

Despite the aim of freight forwarders to work as carefully and efficiently as
possible, incidents are inevitable. While considerable amounts of data are available
regarding every incident, a lot of potential still exists to gain knowledge on factors
that cause (or contribute to) incidents. Research on this matter is essential for freight
forwarders; the prevention of incidents can not only contribute to keep costs as low
as possible but also help forwarders maintain their reputation of a reliable forwarder.

The question arises whether factors or even combinations of factors exist that
drive incident risk. A comprehensive study concerning the incident data is needed
to answer this question, which is the objective of this research. This chapter focuses
on incident analysis and tries to determine which factors drive risk.

For this research, high-dimensional data on incidents was provided by one of the
major freight forwarding companies in the industry.

4 Natural Language Processing for Incident Handling

Logistics is defined as the process of planning, implementing, and controlling
procedures for the efficient and effective transportation and storage of goods
including services, and related information from the point of origin to the point
of consumption for the purpose of conforming to customer requirements [25].

With regards to logistics, the data focuses on the transportation of cargo,
specifically incident handling with regard to air cargo. Because this is the case, it is
interesting to look at ways other chapters tackled this issue of cargo risk assessment.
One of these risks is cargo loss. This is defined by Wu et al. [44] as either cargo
damage or cargo theft.

According to [29], cargo damage is the most occurring problem in the logistics
sector. These authors mention five main causes of cargo damage: human error (such
as miscommunication); handling error (examples include incorrect placement in
plane or having incorrect/missing documents); machine/tool error (such as having
old or broken equipment); environment (such as temperature); and packing material.
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When it comes to cargo theft, [26] mentions that employees, as well as outside
offenders, may steal cargo. These authors also mention a couple of reasons why it
is often difficult to detect cargo theft. One of these reasons is the fact that thefts are
often under-reported. They further mention ways in which the amount of cargo theft
can be decreased. These methods include, but are not limited to, placing containers
with doors facing each other (so that it is more difficult to remove cargo) and
minimizing waiting times for vehicles (because it is easier to steal from a still-
standing vehicle).

These issues have been tackled by other authors using both predictive and
descriptive analysis techniques to gain insight on cargo loss [44]. One thing they
found is that high-value cargo should not be sent as land cargo, and to certain regions
not as sea cargo either.

While the above-mentioned results are interesting, Hazen [18] mentions a few
reasons why data analysis results regarding the logistics and supply chain industries
should be considered carefully. Most of these reasons are due to data quality issues.
According to these authors, data in this sector is often full of errors. They mention
four key attributes in data quality that could use improvement: accuracy, timeliness,
consistency, and completeness.

4.1 Random Forest Decision Trees

One of the issues that the company has been dealing with is data quality. Registration
of an incident may provide text describing the incident. The classification of
incidents is a subjective process in which mistakes can happen. Comparing text
could, therefore, be a competent way to eliminate these mistakes. A suitable method
is to process the data using Natural Language Processing (NLP) and to classify the
incident using a classification model with this processed data.

NLP is a subfield of computer science that uses computational techniques to
learn, understand and produce human language content [19]. The authors mention
multiple reasons why NLP is useful. Among them are translating and helping the
human-machine communication, which are both relevant for this research. Also, the
process of analysis and learning from human language content which is available
online is discussed in this chapter and might be relevant for this research as well.

One way to analyze and learn from human language content is by using machine
learning algorithms. Random forests can be seen as a combination of multiple tree
predictors in which each tree depends on the values of a random vector sampled
independently and each following the same distribution for all trees that are included
in the forest [7]. Although different types of trees exist, in this case, decision trees
are used. In decision trees, the decisions are the edges of the tree and form the nodes
for data classification. Decision trees are applied commonly in machine learning;
one reason for their frequent usage is that they are easy to interpret [43].
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However, a random forest algorithm is generally preferable over using just a
decision tree; random forests improve performance by training multiple decision
trees [43]. These trees are chosen randomly because, in that way, the chance
of correlation between individual trees is reduced, and more accurate results are
obtained.

4.2 Implementation

There are several NLP environments on the market. One of the more standard
environments is the Natural Language Toolkit (NLTK) which is combined with
the python sklearn library for the best results. A common process in NLP is
tokenization. In this process, sentences are broken up into individual words, where
any capital letters and interpunction are also removed. The classification model
then uses a set number of most common words in the incidents. Using these most
common words, the random forest classification is then trained on the training data
using a set number of classification trees.

Random forest classification uses a trained classification model that is capable
of classifying data based on processed text. It requires the incident data to be split
up into a training and a testing set. Because of the large number of incidents, it
is possible to split them up into a training set that contains 75% of the incidents
and a testing set that includes 25% of the incidents. To make the random forest
classification easier, the problem is reduced to a single classification problem. This
means that all possible combinations of levels are given an ID, which the model
tries to classify.

The accuracy of the classification model will vary based on the chosen parame-
ters during the NLP and the classification process. Furthermore, it would be extra
interesting to look at the incidents that were wrongly classified, as the original
classification by the incident handlers could also be wrong.

4.3 Results and Discussion

Natural Language Toolkit (NLTK) combined with a random forest classifier provides
the prediction accuracy as shown in Table 5. The NLP random forest algorithm was
implemented with 1, 10, and 100 trees.

Table 5 NLP results based
on NLTK with random forest
classifier

#trees Precision

1 82.0

10 82.6

100 83
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An interesting result is that in all cases, the precision rounds up to being an
integer, and after 100 trees, the precision does not rise much more than that integer.
Since adding random forests are not prone to over-fitting and the precision flattens
out at 100 trees, 100 trees seem like an adequate number of trees.

It could be interesting to look at incident types that are predicted wrong relatively
often and see if it would not be better to put these under a different class.

5 Statistics and Machine Learning to Improve Risk
Assessment

To be able to determine possible factors that drive incident risk, a multinomial
classification model was implemented on the incident data. In this model, features
are defined for every incident type that significantly predict this type. After literature
research, it became clear that a Logistic Regression Model suited the data well.

5.1 Logistic Regression

A classification method known as the Logistic Regression model is used during
the analysis. Regression models are used to calculate the interdependency between
an outcome (response variable) and the variables thought to affect this outcome
(explanatory variables). The most simple form of a regression model is the linear
regression model, in which a linear function is mapped between data points. The
logistic regression model is in certain ways similar to linear regression, but there
are a few differences. The main difference is that with the logistic regression (logit)
model used in this research, the outcome variable is discrete instead of continuous.
The statistical model is typically estimated via (simulated) maximum likelihood
estimation [21, 38]. Logit family models are widely applied in the transportation
domain [2, 14]. Examples include: mode choice [11], route choice [23], choice of
departure time [41], location choice [3, 40], and choice of products and services
[13, 39].

In the logistic regression model, the relationship between the response variable
and explanatory variables is expressed as a simple equation:

g (E[Y ]) = α + β1x1 + β2x2 + . . . + βpxp (1)

where g is the logit link function. In the equation above, the αrepresents a constant
term, the xirepresent the explanatory variables, and the βi represent a measure of
the degree to which the response variable is explained by variable xi[17]. For every
explanatory variable, a t-test is performed on the corresponding βto test whether
it can be statistically proven that the explanatory variable influences the response
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variable. To determine how useful the explanatory variables are in predicting the
response variables, the ρ2statistic or a likelihood ratio test can be used [4].

For the implementation of the Logistic Regression in a Machine Learning
fashion. a procedure is required that identifies features that are of importance to
the response variable. A procedure that determines this is called Recursive Feature
Elimination (RFE). After training the classifier and computing the ranking, the
feature with the smallest ranking criterion is removed [16]. This step is repeated
until a certain number of features n remains.

5.2 Methodology

To classify incidents into categories, these categories first had to be determined. The
data that was provided for this analysis contained a feature that described what kind
of incident happened. Based on this column, the incident types with the highest
number of occurrences were chosen to implement in the model. Also, types that
were prioritized by the company, but did not have a significantly high number of
occurrences, were taken into account. In total, nine categories were obtained.

Two classification models were used, using different python packages:Biogeme
and RFE. Both use the incident types described above as categories. The methods
per model are described in the following subsections.

5.3 Statistical Implementation

For the implementation of the statistical Logistic Regression model, a package
called Biogeme by Bierlaire [5] was used. The model performs a multinomial
classification and determines significant features that predict all possible classes
(the incident types). For this model, it was necessary to manually determine which
variables drive the chosen incident types most and include these in the model.
To determine these variables cross-tabular matrices were used, which show the
proportional relation of a variable to a particular incident type. More specifically,
they depict which possible values of certain variables show a connection to an
incident type. The cross tab had all incident types as rows and all possible values
for the variable to take into consideration as columns. For example, when taking a
region variable into account, a certain incident type might have a strong correlation
with a specific region. In this case, a binary variable was created, where ’1’ equals
the situation where the incident was reported in that region, and 0 otherwise. Next,
this variable was added to the regression model for this incident type. In this process,
also the number of occurrences per region has to be taken into account, to avoid an
unreliable view on possible predictors. If a certain region only occurred once in the
data, and by coincidence an incident occurred on the shipment connected to this
region, the percentage error will be 100%. Therefore, a threshold was set for the
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cross tabs, where every possible value taken into account in the cross tab had to
have at least a minimum number of occurrences in the incident data.

The chosen features were entered for the corresponding incident type. The
python package Biogeme was able to check for all features whether it was an
important predictor for the incident type. After the first run, a base model was
created that included all features for which the value of the t-test statistic was bigger
than 1. This does not imply all these values are statistically significant on a 5%
level, but they have enough descriptive purpose for the model. After this, all features
included in the base model were analyzed for possible combinations of features with
a high correlation. For instance, when the incident was caused in a particular city,
the corresponding country at fault is of course always the country containing that
city. This collinearity has a negative effect on the performance of the model, so
for the combinations of features with high correlation, the less specific features are
excluded. In the example, it would be more important to look at the city specifically,
than to only take the country into consideration. Hence, in such case, the country is
excluded from the model features.

Using this base, all other features were checked again for possible relevance to
the incident type. This was done by performing a batch run on the base model,
where every time one of the features not contained in the base model was added
to the base. The rho squared and likelihood ratio test results were compared for all
resulting models to determine the optimal one.

In a general logistic regression model, the predictive power of a feature cannot be
determined by the beta value, since the influence on the utility function is defined
as the beta times the value of the feature. Therefore, a feature with high values
generally has a smaller beta than a feature with low values. However, since the
features used in the regression model are all dummy variables (so only binary values
are included), it is possible to compare the strength of the feature on the beta value.

5.4 Recursive Feature Elimination

For comparison with the statistical Logistic Regression model, a machine learning
Logistic Regression was used as an alternative. For implementation, one of the more
general packages and approaches within python, known as sklearn, provided
the necessary tools. The main difference with the statistical approach concerns
the selection of possible values per feature. All features that were determined of
importance were used for the machine learning approach as well, but instead of
selecting important values per feature manually using cross tabs, these values were
decided using Recursive Feature Elimination (RFE). A data set was created in a
‘one-hot-encoding’ fashion where all features were split up into binary variables.
So, for example, all possible values for the party responsible for the incident in the
data got their own column, where 1 indicates that the incident was caused by that
specific company and 0 indicates that another company was responsible. Since some
columns have many different possible values, and some of these values only occur a
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few times in the data, it was decided to set a threshold on the number of occurrences.
This was done to ensure predictive power and reduce the running time of the model.

It was impossible to run the model as a multinomial regression model, since
then the overall best features were decided for all incident types in total, instead
of per type. Therefore, the formulation of the model changed to a set of binary
decisions: the model was run for every incident type separately. To achieve this,
a binary column per incident type was added to use as classification feature. A
drawback of this implementation is that it can also produce negative betas. Because
the model is run for every incident type separately, it is now classifying features on
the constraint ‘is it a predictor for incident type X or not’, instead of taking into
account all incident types. A negative beta shows that the corresponding feature is
not a good predictor for incident type X, but it is a significant predictor for some
other incident type.

The machine learning implementation works in the following way. First, the
model splits the data set into a training and testing set of 70% versus 30%. RFE
calculates the best features to be used by the model using the training set. It was
decided to let the RFE determine ten features per incident type. Following the RFE,
a simple logistic regression model is constructed, using the training set to fit the
model, which then provides results based on the testing set. The accuracy of the
model shows the percentage of the prediction by the model that was correct.

5.5 Results

The analysis of features that could possibly predict certain incident types has led to
a little over 300 different variables among the nine different regression models. So,
on average around 30 possible predictors were determined per incident type. The
Logistic Regression models determined the features that were the most important
predictors per incident type.

The classification model implemented with the python package Biogeme gives
as output an overview of all features used. A statistical test is conducted for every
β, which shows whether the influence of the corresponding explanatory variable is
statistically significant for the incident type it was tested for. As explained in the
chapter ‘Methods’, a base model was created with all features for which the t-test
value was bigger than 1. Per feature and value combination, the Beta gives a measure
of how much this combination influences the incident type. Thus, the features with
the highest Beta values for each incident type are the strongest predictors. The
p-value depicts the significance of the feature in the base model. The smaller the
p-value, the higher the accuracy of this feature for the model. After running the base
model separately from the full model, some insignificant p-values were obtained,
while they were significant when all of the features were taken into account. It
would have been better to iterate over the results of the model and to exclude the
insignificant features every time. However, due to the immense running time of the
model, it was decided to focus on this base model and to accept the few high p-
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Fig. 6 All rhos of batch run

values. The rho squared for the base model was equal to 0.575 and the likelihood
ratio test was equal to 93,295.63.

The batch run of the base with every single feature separately produced 220
models. Figure 6 shows a box plot of all rho squares that were obtained per
model. Figure 7 shows all likelihood ratio test values. The highest rho squared and
likelihood ratio are equal to 0.597 and 97,203.09, respectively.

The Logistic Regression model performed with the columns detected by the
RFE gave as output ten features with most predictive power per incident type. The
accuracy of each model can be found in Table 6.

5.6 Discussion

As mentioned before, the results show some insignificant p-values in the base
model. These values could be explained by the fact that the corresponding features
occur often for multiple incident types. Thus, they have a substantial variance as
a predictor. Therefore, these features should be considered with caution. It should
also be noted that some of the incident types that were implemented in the model



Knowledge Modeling and Incident Analysis for Special Cargo 539

Fig. 7 All likelihood ratios of batch run

Table 6 Accuracy for the
Logistic Regression model
based on RFE determined
features

Incident type Accuracy

A 0.904

B 0.713

C 0.987

D 0.867

E 0.951

F 0.978

G 0.965

H 0.987

I 0.999

did not have many occurrences in the data. After running the full model, only
a few predictors were determined for the base model, and they were all deemed
insignificant after running the base model on its own. Therefore, a high number of
occurrences is needed per incident type to acquire significant results.

The box plots with the results of the batch run (Figs. 6 and 7) show that
no significant differences could be found between the resulting models. The rho
squared has its mean at 0.589, and only has a few outliers. Still, the base model had
a rho squared of 0.575, so adding another variable to the model generally leads to
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a better performing model. The highest rho squared and likelihood ratio were 0.597
and 97,203.09, respectively. However, adding the binary variable that achieved these
maximum statistical measures lead to collinearity with other features. The features
corresponding to the next few highest rho squares lead to the same issue. After
the sixth feature, the rho squared becomes 0.59 for any feature added to the model
(except for a few). Therefore, the batch run does not provide any significant results
of features to add.

5.7 Comparison of the Statistical and RFE Models

The results of the two models implemented by Biogeme and RFE require special
attention to compare. A reason for this is the fact that the features of the Biogeme
model are judged by the statistical t-test that is performed and the resulting p-values.
However, the machine learning-based model does not judge the performance of
features on a statistical test. Instead, it splits the data up into a train and a test set,
trains the model on the train set, and calculates the performance of the model based
on the test set.

Another challenge with the comparison is the negative betas that occur for the
RFE implementation. The statistical model is a multinomial implementation, which
implies that it runs the model on all nine different incident types at once, and
determines the appropriate features accordingly. The formulation of the machine
learning model, however, is a separate set of binomial decisions. For every incident
type, the model is run separately, in order to find features per incident type. This
means that the model is classifying features on the constraint ‘is it a predictor for
incident type X or not’, instead of taking into account all incident types. Because
of this, the results for the RFE model contain negative betas. A negative beta shows
that the corresponding feature is not a good predictor for incident type X, but it
is a significant predictor for some other incident type. However, for the analysis
conducted in this report, the negative betas do not add any important information.
Hence, only the positive betas should be taken into account.

Still, when comparing the significant features per incident type, most of the
features with a positive beta in the machine learning implementation also occurred
in the results for the statistical implementation. This shows that these values are in
fact important predictors for the incident types.

6 Summary, Challenges, and Conclusion

This research project is directly related to BDVA SRIA’s strategic and specific
goals, particularly to the topic Data Analytics to improve data understanding and
providing optimized architectures for analytics of data-at-rest and data-in-motion.
In this project, we conduct research into solutions based on advanced data analytics
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that combine the integration of various data sources (‘big data’), AI-based methods
such as machine learning, and natural language processing for prescriptive analytics
and decision making. These methods can be applied to the optimization of route
planning in global transportation and freight forwarding of sensitive products with
special handling needs (e.g., COVID-19 vaccine) targeted at air freight shipment.

According to the European Big Data Value Strategic Research and Innovation
Agenda (SRIA) [32], understanding data has been one of the greatest challenges
for data analytics. In this regard, we use semantic and knowledge-based analysis
specifically ontology engineering for Big Data sources in the special cargo domain
to improve the analysis of data and provide a near-real-time interpretation of the
data (i.e., accurate prediction of the lane performance). Moreover, employing Big
Data analytics we develop an ontology for the products and services offered for
air freight logistics providers. Based on this, a search engine can be developed to
determine the available routing options for a shipment with specific features. Thus,
it provides additional value in the transportation sector, leads to more efficient and
accurate processes, and improves operational efficiencies and customer service.

The work has some limitations and challenges. Evaluation of the special cargo
ontology is difficult and needs manual intervention, which is time-consuming and
subjective. Expert intervention is required at every step of constructing ontology.
Nevertheless, this work aims to make a significant contribution to the digitization of
global freight forwarding, which may also pave the way toward ‘no-touch’ planning
in airfreight transportation.

In this chapter, we also present a case study applying a novel palate of data
analytics for risk assessment. A natural language processing classification model
used on text in the incident handling data shows at least an 82% accuracy at
identifying incident types. Furthermore, via a statistical logistic regression model
for classification, it can be proven that several features are significant predictors of
certain incident types. A machine learning logistic regression model also identified
similar features. Focusing on these features can help the company prevent similar
incidents in air cargo handling in the future.

The chapter addresses some important challenges of the airfreight industry for
shipping goods with special handling needs such as vaccines. In order to design,
develop, and optimize the decision making of a routing service in the special cargo
domain, it is necessary to conceptualize and structure the available knowledge from
different resources as a special cargo knowledge resource (ontology). This ontology
is efficient for reasoning and can be used during the actual operation of the system.
As an example, the fact that vaccines must be stored at an ultracold temperature
can be modeled in the ontology, which means that, when processing a request for
shipping vaccines, the system can determine that the cargo service needs to allow
the shipment of products with special temperature needs.

Using the special cargo ontology, more heterogeneous sources of information
can be automatically extracted and integrated. This information includes, for
example, previous incidents and service performance. This knowledge base can
be used in various downstream tasks, e.g., risk assessment model as a feature-
extraction source. On the other hand, the machine learning algorithms applied in
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risk assessment tasks can be used for enriching the cargo domain ontology and map
the extracted information to the structured knowledge source.

This research is directly related to TKI Dinalog’s innovation roadmap, specifi-
cally to the topic Advanced Data Analytics in Transport Planning within the Smart
ICT Roadmap.
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